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ABSTRACT

Bacteria exist in stressful and constantly changing environments. In order to to sense,

respond to, and survive in various stress conditions, microbes have evolved diverse mech-

anisms to regulate their gene expression. RNAs, and sRNAs in particular, are prevalent

mediators of gene regulation in bacteria. The identities of many sRNAs and the stresses

they are associated with have often been revealed by traditional biochemical means, but

a deeper understanding of the underlying physics that governs how RNAs efficiently regu-

late their targets could allow us to manipulate and leverage sRNAs for the sake of synthetic

biology and human health.

Here, I present my contributions to the quantitative study of RNA-mediated gene regu-

lation. First, I present the general model that describes how individual kinetic parameters

contribute to the overall efficacy of sRNA-mediated regulation and the hierarchy of the

sRNA-regulon. Additionally, I found that certain sRNAs that have canonically been de-

scribed as post-transcriptional regulators can regulate their targets co-transcriptionally.

Next, I describe our recent work regarding interactions between the ribosome and the

sRNA accessory protein, Hfq, and how such interactions might contribute to the sRNA

target search process. Finally, I offer a set of the image analysis tools I have developed

that can be utilized to study RNA-mediated regulation. In all, these tools and findings can

help develop quantitative descriptions of the physics of RNA-mediated gene regulation.

xii



CHAPTER 1

INTRODUCTION

1.1 Gene regulation in bacteria

Bacteria must adapt to stressful and changing environments in order to survive. Bac-

teria also have DNA. The specific ways that bacteria convey the genetic information con-

tained in DNA in response to the environment dictates whether or not they survive.

The genetic information encoded in DNA is converted to a functional gene product via

a process broadly referred to as ”gene expression.” Gene expression canonically follows

the blueprint defined by the ”central dogma of molecular biology;” DNA is copied into mes-

senger RNA (mRNA) by the RNA Polymerase (RNAP), in a process called transcription,

and mRNA is decoded by the ribosome to produce protein in a process called translation.

Both protein and certain types of RNA can serve as functional gene products.

Gene expression is one of the most, if not the most, studied processes in biology.

And though the general scheme of gene expression is well-understood, it is the specifics

of the process that determine how a cell fares in its environment. In particular, the quantity

of gene products, and the timing of their production, can determine the fate of the cell.

A given number of functional gene products may be appropriate for one environment,

but incompatible with another. Because cells exist in changing, and potentially hostile,

environments, they must be able to rapidly respond to those changes by adjusting their

gene expression accordingly. The process by which cells make these adjustments is

called ”gene regulation.”

Every step of the gene expression process can be regulated, and bacteria effect these

regulatory actions throughmyriad means. For example, bacteria can utilize proteins called

transcription factors (TFs)1–3 to either repress or activate transcription. Or, bacteria can
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use RNA-binding proteins (RBPs)4–6 to affect the stability or accessibility of mRNAs. The

number of proteins involved in bacterial gene regulation is extensive, but this thesis fo-

cuses elsewhere.

In this thesis, we investigate the role of RNAs in gene regulation. We are interested,

though, not just in the identities of the RNAs involved, but the fine details of RNA-mediated

regulation. In particular, we are interested in mathematical and physical descriptions of

RNA-mediated regulation, and quantitative approaches to generate those descriptions.

We believe that these mathematical and quantitative studies can serve as a complement

to traditional molecular biology approaches, that they can shed additional light on the

mechanisms and dynamics of RNA-mediated gene regulation, and they can potentially be

leveraged for synthetic biology purposes to positively impact human health7–9.

1.2 Early Studies of RNA-mediated Gene Regulation in Bacteria

In the beginning, there were mRNAs, transfer RNAs (tRNA), and ribosomal RNAs

(rRNA). These RNAs comprised the middle step in the central dogma and the mechanistic

arrow pointing to the final step, and for ages we believed that RNAs were confined to

this role as intermediaries. Then, in the 1980s, a new sort of RNA was discovered. An

independent E. coli gene, micF was found to have its own promoter and to generate a

small, non-coding RNA. The RNA transcribed from micF was later found to bind to the

ompF RNA, which generates the OmpF outer membrane protein, and reduce the protein

levels in response to high temperatures10–13. The discovery of micF and its roles in

temperature regulation represented the first known case of a non-coding RNA playing a

regulatory role in gene expression, rather than just serving as an intermediate step to

translation14. Thus, a new class of RNAs was born.

Since the discovery ofmicF there have been many more regulatory RNAs discovered

in both prokaryotes and eukaryotes15–18. There are regulatory RNAs that impact every
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step of gene expression19. Eukaryotic regulatory RNAs fall under many categories, in-

cluding long non-coding RNAs (lncRNA20), microRNAs (miRNA21), small nucleolar RNAs

(snoRNA)22, etc. In bacteria, though, the predominant regulatory RNA is referred to

simply as the small RNA (sRNA).

1.3 Currentmethods to discover bacterial small RNAs and their roles

Starting from humble beginnings, hundreds of sRNAs have now been discovered in

bacteria. Before the 2000s, we knew of only a few sRNAs. The explosion in the discov-

ery of sRNAs was sparked by computational, genome wide searches for sRNA-encoding

genes23–25. Even today, more sRNAs are being discovered and the functions of many of

them are still being determined. Nonetheless, it is already clear that sRNAs are important

and prevalent vehicles of gene regulation in bacteria.

Often, but not strictly, genes encoding sRNAs are found in intergenic regions (IGRs).

In fact, initial searches for sRNA-encoding genes focused mostly on IGRs, seeking pro-

moters and terminators within them. Later on, deep-sequencing-basedmethods26,27,27–30

greatly increased the pool of potential sRNAs. In addition to those found in IGRs, sRNA-

encoding genes have been found in the 5’- and 3’-regions of mRNA-encoding genes31,

within protein-coding genes26, as cis-encoded antisense transcripts32–34, and more. It

seems that the origins of sRNAs are indeed plentiful.

sRNAs mostly act (with some exceptions) by Watson-Crick base-pairing interactions

with target nucleic acids. Cis-encoded sRNAs are transcribed from the opposite strand of

their target RNA and therefore have perfect complementarity with those targets. Trans-

encoded sRNAs, in contrast, are transcribed in locations distant from their target RNAs,

and do not have perfect complementarity; they often bind their targets with incomplete

base-pairing. Though it might seem intuitive that cis-encoded sRNAs with perfect com-

plementarity may be more effective and prevalent regulators, in fact imperfect comple-
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mentarity trans-encoded sRNAs are far more prevalent in bacteria. For the most part, we

will focus on trans-encoded sRNAs in this thesis.

Beyond identifying sRNAs, defining their role is another challenge altogether. sRNA

gene deletions typically cause only subtle, if any, phenotypic changes35. Because of this,

finding the role of an sRNA is often reduced to finding its target mRNAs. However, because

sRNAs utilize imperfect base-pairing, and therefore it is insufficient to simply search for

sRNA-complementary sequences. Furthermore, sRNAs typically regulate not just one,

but multiple targets36–39, making the search for true positive targets even more difficult.

Instead, successful computational algorithms have incorporated information about

sRNA ”seed” sequences and sRNA-mRNA co-conservation40–42. The seed sequence

of an sRNA initiates base-pairing or stabilizes the sRNA-mRNA interaction43,44. Several

important features shared among sRNA seed sequences have been considered in suc-

cessful search algorithms: first, seed sequences are highly phylogenetically conserved

relative to the rest of the sRNA sequence; second, the seed sequence most be structurally

available for binding; and third, since seed sequences often initiate mRNA binding, there

is at least imperfect complementarity with target mRNAs. Alorithms such as CopraRNA40

that incorporate these commonalities have shed light on the regulatory networks and, con-

sequently, functional implications of sRNAs.

A common in vivo experimental approach to finding sRNA targets has been to track

changes in mRNA levels after sRNA induction. This is made possible by the fact that many

sRNAs promote target mRNA degradation35,45,46. Microarray analyses are one such

method that exploit this47,48, but are only effective when sRNAs impact mRNA levels.

When mRNA levels are unaffected, proteomics-based approaches have also been used

to identify targets49. Recently, RIL-seq (RNA interaction by ligation and sequencing) has

been used for transcriptome-wide identification of sRNA targets without the need for any

downstream changes in the target gene expression50. In all, there have been a number of
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successful and innovative strategies developed in the past twenty years for in vivo sRNA-

target discovery.

Beyond target discovery, various in vitro methods have been developed to study the

kinetics, thermodynamics, and mechanics of sRNA-mediated regulation39,46,51. How-

ever, predictions based on thermodynamic measurements and in vitro kinetic analyses

have failed to explain various features of sRNA regulatory networks, such as their hier-

archical nature39, perhaps due to their failure to incorporate the roles of regulatory proteins

or the simultaneous presence of multiple sRNA binding partners. This is an oversight and

challenge we seek to address in Chapter 2.

1.3.1 Chaperones and cellular machineries involved in sRNA regulation

sRNAs do not work alone. Intimately interwoven into the sRNA-mediated regulation

process are a number of accessory proteins and cellular machines. Three are of principal

interest in this thesis: Hfq, RNase E, and the ribosome.

RNA-binding proteins coordinate with regulatory RNAs to effect gene regulation. Hfq

is perhaps the most important and prevalent RBP in bacteria, predicted to exist in more

than half of all bacterial species52,53. The majority of trans-encoded sRNAs in E. coli

require Hfq for regulation. Hfq is a homo-hexameric, Sm-like protein that performs nu-

merous roles in E. coli 54. Chief among those roles are promoting RNA-RNA interactions

and protecting sRNAs from degradation15,55. This is performed by three different binding

faces that allow Hfq to bind to multiple mRNAs, sRNAs, and rRNAs simultaneously. Ad-

ditionally, Hfq can regulate mRNAs in an sRNA-independent manner56,57, though these

alternative routes are of lesser interest in this thesis. In general, the ways in which Hfq

promotes the sRNA target search process are of great interest.

A third major component of the sRNA-regulation machinery, in addition to Hfq and the

sRNA itself, is RNase E. RNase E is an endoribonuclease and the principal component of
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the E. coli degradosome, which also consists of polynucleotide phosphorylase (PNPase,

a 3’ exoribonuclease), RNA helicase B (RhlB), and enolase (a glycolytic enzyme)58–61.

RNase E consists of a catalytic N-terminal, a scaffolding C-terminal, and an RNA binding

domain. Through its C-terminal scaffolding region, RNase E forms a ternary complex with

Hfq and sRNA to initiate targeted mRNA decay. Full-length RNase E, but no other com-

ponent of the degradosome, was shown to copurify with Hfq and sRNAs simultaneously,

while a C-terminal truncation mutant did not58.

Finally, while not part of the regulation machinery itself, the ribosome can not be

ignored in the sRNA-mediated regulation process. Many inhibitory sRNAs operate by

binding their target mRNAs in a region either directly overlapping the RBS or a site close

to it. In this way, the sRNA, or Hfq in some instances62, blocks the ribosome from binding

and subsequently prevents translation and promotes degradation. In a sense, sRNA-

mediated regulation can be thought of as an interplay between the Hfq-sRNA-RNase E

complex and the ribosome, as both attempt to bind the same sites on the mRNA, yet

each has a different goal. One might infer that there exists a competition between the two

players because of the overlapping binding sites; however, there is now some evidence

that suggests this might not be the case63. We will explore this subject further in Chapter

3.

1.3.2 Function of sRNAs in stress response

One common trait shared by many sRNAs, outside of some housekeeping sRNAs, is

that they are expressed only in response to specific conditions, evincing one of the main

roles of sRNAs: defense mechanisms used during stress response.

The definition of what constitutes a stress response to a bacteria is somewhat cir-

cuitous, but a broad, general definition is that a bacterial stress response is some change

in gene expression, relative to gene expression in normal growth conditions, in response

to a change in the environment. Examples of bacterial stresses include Iron-deprivation
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stress64, glucose-phosphate metabolism stress65, and temperature stress12. Under nor-

mal growth conditions, sRNAs associated with stress responses are found in very low,

even single-digit, copy numbers; but, under specific stress conditions they can increase

100-fold. It is helpful to consider a few examples of sRNAs utilized in stress responses in

order to understand the general mechanisms underlying sRNA-mediated gene regulation.

The sRNA RyhB responds to iron deprivation stress64. Under normal growth con-

ditions when iron is widely available for the cell, the ferric uptake regulator protein, Fur,

represses expression of RyhB. Proteins that utilize iron are synthesized regularly, and

proteins responsible for the uptake of more iron are repressed. When iron is deprived, the

Fur-repression of RyhB ceases, thereby activating the its expression, which subsequently

regulates a collection of genes encoding iron-utilizing proteins including the mRNA sodB,

which encodes a Fe-superoxidase dismutase66, via incomplete base-pairing and induced

degradation. The logic of RyhB-mediated regulation is straightforward and illustrative: un-

der normal conditions, iron is abundant, proteins that utilize iron are allowed to operate

normally, and RyhB is unnecessary; when iron is deprived, RyhB is expressed and down-

regulates genes that encode iron-utilizing proteins. In addition to sodB, RyhB also reg-

ulates mRNAs in the sdhCDAB operon, which encodes succinate dehyrogenase, acnA,

which encodes tricarboxylic acid cycle enzymes, and ftnA, which encodes ferritin, among

others64.

Glucose-phosphate stress is characterized by a cytosolic accumulation of phosphor-

ylated sugars. Such an accumulation can be the result of ingesting non-metabolizable sug-

ars, such as the phosphorylated glucose analog α-methyl glucoside-6-phosphate (αMG6P),

or by some mutation affecting sugar metabolism. In normal growth conditions, glucose is

transported into E. coli and phosphorylated by the primary glucose transporter of the phos-

phoenolpyruvate phosphotransferase system (PTS), EIICBglc65. EIICBglc is encoded by

the mRNA ptsG. An accumulation of phosphosugars, which can lead to growth defects,

activates expression of the sRNA, SgrS, which binds ptsG via imperfect base pairing
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in a region overlapping the ribosome binding site (RBS), thus blocking translation and

simultaneously inducing degradation. In addition to regulation of other genes such as

manXYZ67,67, which encodes a mannose transporter, purR, which encodes a purine bio-

synthesis operon repressor68,69, and yigL, which encodes a phosphatase that can de-

phosphorylate non-metabolizable sugars69,70, this downregulation of ptsG by SgrS helps

counter the deleterious accumulation of phosphosugars.

In response to high temperature and high osmolatiry conditions, the sRNA MicF tar-

gets and represses the translation of the OmpF protein, an outer membrane protein, help-

ing to regulate pore size in a manner compatible with the environment12. Additionally,

MicF regulates lrp, which encodes the leucine responsive protein, yahO, which encodes

a periplasmic protein, and others71,72. Similar to RyhB and SgrS, MicF regulates some

of its targets by binding and subsequently blocking its translation and inducing its degrad-

ation. This general scheme - induction of sRNA, followed by imperfect base-pairing of

target, followed by translation or stability regulation - is common amongst sRNAs utilized

in stress responses. The finer details, of course, differ, but the commonalities are helpful

in understanding the role of sRNAs in bacteria.

1.4 Diverse mechanisms of sRNA regulation

Regulatory, trans-encoded sRNAs regulate at multiple levels of gene expression.

Some work by affecting the stability of their target mRNAs. Others activate or inhibit trans-

lation. Still others regulate by atypical means. The following are just a few examples of

the many mechanisms utilized by sRNAs to control gene expression.

1.4.1 Translation-level control by sRNAs

Perhaps the most common mechanism of action in sRNA-mediated regulation is by

direct occlusion of the RBS binding site. Many sRNAs bind sites in the 5’-untranslated
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regions (UTR) of their target mRNAs that either directly overlap the RBS or close enough

that the bound Hfq-sRNA complex sterically prevents the ribosome from binding. Apart

from the downstream destabilization effects this causes, the inhibition of translation leads

to a direct and immediate downregulation of the translated gene product of the target

mRNA. SgrS regulation of ptsG is an example of an sRNA binding directly over the RBS73.

SgrS regulation of another mRNA in its regulon, manXYZ, represents an example of an

sRNA that binds outside of the RBS, but is able to inhibit translation anyway. SgrS binds

the polycistronic mRNA manXYZ at a site upstream of and completely separate from the

RBS. However, in a role reversal, SgrS binding promotes Hfq-mediated occlusion of the

RBS62.

Other sRNAs can activate, rather than inhibit, translation. Such instances can occur

when an mRNA has a leader sequence with a structure that occludes the RBS within a

stem-loop. An example is the activation of the translation of sigma factor RpoS by the small

RNA, DsrA74–76. Under normal growth conditions, the translation of RpoS is inhibited

because its RBS is buried within a stem-loop in its leader sequence. In low temperatures,

DsrA is synthesized, and by imperfect pairing between its first stem-loop and a site within

the folded leader region of RpoS, it unwinds the leader sequence of RpoS, thus exposing

its RBS and promoting translation.

1.4.2 Degradation-level control

Because of the interaction between RNase E and the Hfq-sRNA complex, sRNA bind-

ing also often guides RNase E to cleaveage sites on the target mRNAs, thereby destabil-

izing the target. This mechanism is entwined with translation inhibition, as ridding the

mRNA of ribosomes grants easier access to the cleavage sites by RNase E. Therefore,

sRNAs that block translation often also induce degradation, as is the case with SgrS-ptsG

regulation. Induced mRNA degradation may merely be a secondary effect in some cases,

though, as some sRNAs can efficiently silence their targets even without mRNA degrada-
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tion77. Outside of the direct recruitment of RNase E by the Hfq-sRNA complex, it appears

that the downstream effects of translation inhibition alonemay passively encourageRNase

E-mediated degradation, which we will discuss in Chapter 2.

An example of atypical, positive sRNA-mediated regulation at the degradation level

is the stabilization of target mRNA by the Salmonella sRNA RydC. RydC-Hfq complex

binds the mRNA cfa at a site that prohibits RNase E binding, thus preventing cleavage

and upregulating cfa78. SgrS upregulates the mRNA yigL in a similar manner70.

1.4.3 Transcriptional control

The sRNA ChiX is an interesting example of co-transcriptional regulation of a single

gene within a polycistronic mRNA. ChiX regulates the chiPQ operon by co-transcriptionally

binding to a site overlapping the chiP RBS, thus preventing further translation. But, the

interesting regulation happens downstream, in the chiQ region. By preventing ribosomes

from binding, ChiX binding leaves the mRNA bare and exposes a Rho binding site. This

allows the transcription termination factor Rho to bind and inhibit further transcription of

the downstream chiQ sequence79.

1.5 Prominent mathematical and computational studies of bacterial

small RNAs

Several general features of sRNA-mediated regulation make it ripe for quantitative

study. Because a single sRNA is able to regulate multiple target mRNAS, studies that

treat sRNAs and mRNA as nodes in a regulatory network are appealing80. The kinetics

and robustness of sRNA-mediated regulation have been studied, much in the same light

as study of other gene regulatory networks. In this section, we describe a small subset of

the important quantitative descriptions of sRNA-mediated regulation.

The earliest quantitative studies of sRNA regulation were conducted by the Hwa

10



lab81,82. Being the first, they were able to start with the simplest mathematical model,

which considered only the transcription and turnover rates of sRNAs and their mRNA tar-

gets, and assumes coupled degradation of the targets. With this simple model alone,

the authors were able to establish the ”linear-threshold” model of sRNA-mediated regu-

lation, a popular model which is still referred to today. The model states that the sRNA

transcription rate relative to the mRNA transcription rate alone can explain the target ex-

pression behavior. Below a threshold, when the sRNA synthesis rate is much higher than

the target mRNA synthesis rate, the expression of the target gene is completely silenced.

Beyond that threshold, target gene expression rises linearly with the mRNA transcription

rate81. The authors also found that sRNAs were effective in repressing fluctuations that

arise from stochastic gene expression. This relatively simple model explained fairly well

the RyhB-sodB regulation network.

Erel Levine explored the effect that the presence of multiple mRNA targets would have

on the quantitative characteristics of sRNA regulation. The authors posited that sRNAs

could mediate indirect interactions, or cross-talk, between disparate target mRNAs, as the

co-degradation of the sRNA with one of the targets could reduce its availability to regu-

late the other. Using a RyhB-targeted, plasmid-encoded reporter gene and tracking the

copy numbers of two different chromosomal RyhB targets (in two separate experiments),

the authors showed that regulation of one target by an sRNA could indeed rescue the

second target from regulation. Incorporating their experimental findings into a model that

accounted for the transcription rates and binding rates of two common targets of a single

sRNA, they predicted a ”hierarchical cross-talk effect,” wherein the expression of a weakly-

interacting target mRNA is highly effected by the expression of a strongly-interacting tar-

get, and a strongly-interacting target mRNA is hardly affected at all by the expression of

a weakly-interacting target82.

In a study from the Margalit Lab, the authors shed light on the advantages of sRNA-

mediated regulation over other forms of regulation, such as transcription factor driven
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regulation83. The authors showed with a mathematical model that sRNA-mediated regu-

lation could be enacted faster than TF-mediated regulation, due to the fact that sRNAs do

not need to be translated into proteins before they regulate their targets, a time-consuming

process. Similar to the Hwa Lab study, the Margalit Lab model indicated that the expres-

sion levels of the target gene were essentially determined by the relative synthesis rates

of the sRNA and the target mRNA, as well as the co-degradation rate. They also found

that by adjusting the ratio of these rates, they could fine-tune the expression levels of the

target.

The Wingreen lab similarly compared the quantitative characteristics of sRNA and TF

regulatory networks. In addition to validating the linear-threshold behavior of proteins in

sRNA regulatory networks, the authors further explored the output noise behavior, defined

as the protein expression variance divided by the mean expression level, in the various

protein expression regimes (i.e. repressed, expressing, and crossover). They found that

even in the face of large intrinsic noise, in the form of transcriptional bursting, sRNA-based

networks much more reliably tempered protein output noise due to the buffering effects

of sRNAs on mRNA fluctuations. Additionally, sRNA-based networks were found to be

more effective filters of high-frequency input noise, defined as rapidly-changing cellular

inputs such as fluctuating external concentrations of some molecular signal. This could

be functionally important, as sRNAs are often expressed in response to rapidly changing,

external signals. TF-based networks, on the other hand, were found to be superior for

precise control of protein expression, due to their ability to sensitively respond to small

input signals. In all, there were clear distinctions between sRNA- and TF-based networks

that point to the physiological contexts in which one is superior to the other84.

One final study worth mentioning was conducted by the Stavans Lab, which described

the effect of a small RNA on cell-to-cell phenotypic variation in E. coli80. Using RyhB

regulation of sodB and fumA as a model system, the authors experimentally determined

that in response to different sRNA levels, not only do the average target gene expression

12



levels change, but so too do the distributions of expression levels across different cells.

Interestingly, while the the cell-to-cell variability in target protein levels remained close

to constant across different RyhB levels, phenotypic variability, defined as the cell-to-cell

variability in the ratio of the two target proteins, increased as a response to stress when

RyhB decoupled the expression of the target genes. Thus, total phenotypic noise could

increase in response to a sRNA, even when individual protein noise remained steady.

Beyond these revelations, this study pointed to the fact that there are interesting dynamics

exhibited by sRNA-regulatory networks when we move beyond just average expression

levels, and observe distributions of gene expression levels.

1.6 Current challenges

What remains to be done in the study of sRNA-mediated regulation? It is notable

that while the models described above do a decent job at describing sRNA-regulatory

networks generally, they do sometimes fail in the finer details, or leave details unstudied.

For example, the hypothesis of faster and more efficient regulation provided by sRNAs

relative to transcription factors, response curves measured in later studies cast doubt on

it85. The Hwa Lab’s linear-threshold model is perhaps overly simplistic by considering

only sRNA and mRNA synthesis rates, and is only concerned with mean target protein

expression levels. How are the response curves and thresholds affected by binding rates,

for example? Or different types of degradation? And how can we reconcile the different

predictions made from in vitro studies of thermodynamics and kinetics with the true, in vivo

kinetics? These are the sorts of questions that will be addressed in the remainder of this

thesis.
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CHAPTER 2

KINETIC MODELING REVEALS ADDITIONAL REGULATION AT

CO-TRANSCRIPTIONAL LEVEL BY POST-TRANSCRIPTIONAL SRNA

REGULATORS

2.1 Introduction

To cope with changes in both natural and host environments, microbes have evolved

diverse mechanisms to sense, respond to, and adjust to stress conditions. Small RNAs

(sRNAs) are common mediators of gene regulation in bacteria, especially in stress re-

sponses, and have been observed to provide survival benefits during infections, biofilm

formation, and exposure to toxins and antibiotics86–90. In the canonical scheme of sRNA-

mediated gene regulation (Figure 2.1A), sRNAs, often along with a chaperone protein,

Hfq, target and bind mRNAs via incomplete Watson-Crick base-pairing91. As many sRNA

binding sites on target mRNAs partially overlap with the ribosome binding site (RBS), bind-

ing of sRNAs can affect mRNA translation. In addition, the stability of the mRNAs can be

affected through RNase E-mediated co-degradation of the sRNA-mRNA complex55,91,92.

Previous biochemical studies suggest two mechanisms for sRNA-mediated degradation:

(1) sRNA-mediated reduction of translation leads to a change in degradosome access to

the target mRNA, thereby increasing the degradation rate of sRNA-bound mRNA46,93–95

(here referred to as “passive degradation”, or “translation-coupled degradation”, inter-

changeably), and (2) modulation of degradation through direct recruitment of the degra-

dosome45,46,51,58,65 or direct obstruction of RNase E cleavage sites78 (here referred to

as “active degradation”). For a particular target mRNA, distinct sRNAs may regulate at

one or more levels of expression – translation or mRNA stability – by different molecu-

lar mechanisms45,55,65,92. However, how control at each of these levels quantitatively

contributes to the overall efficacy of sRNA-mediated regulation is not well characterized.
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One characteristic feature of sRNA regulators is their ability to regulate multiple tar-

get mRNAs39,44,96,97. Previous studies have shown that the regulation of various targets

by the same sRNA can exhibit a hierarchical pattern; i.e. certain targets are more effect-

ively regulated than others81,98. Such prioritization in regulation helps optimize stress

responses when sRNA abundance is limited99. However, the in vivo kinetic determinants

that set the regulation hierarchy are largely unclear. A previous in vivo kinetic characteriza-

tion of the sRNA target search and sRNA-mRNA co-degradation processes suggests that

the in vivo binding affinity between specific sRNA-mRNA pairs can contribute to setting the

regulatory hierarchy38, whereas the in vitro binding affinity does not seem to correlate with

the regulation hierarchy39. In addition, a recent RIL-seq (RNA Interaction by Ligation and

sequencing) based study found a positive correlation between the Hfq occupancy of the

target mRNA and sRNA-target interaction frequency, indicating that the binding efficiency

of Hfq may affect the regulation priority of the target mRNA100. These observations sug-

gest that in vivo target search and regulation kinetics may be collectively determined by

complex molecular interactions and kinetic pathways that are difficult to fully recapitulate

in vitro and therefore require in vivo characterization.

In this work, we sought to provide a comprehensive model of sRNA-mediated regu-

lation at the level of translation and mRNA stability. To achieve this goal, we utilized a

genetically and biochemically well-characterized E. coli sRNA, SgrS, as a model. SgrS

is the central regulatory effector of the glucose-phosphate stress response. Intracellu-

lar accumulation of phosphorylated glycolytic intermediates, such as the phosphorylated

glucose analog α-methyl glucoside-6-phosphate (αMG6P), along with depletion of other

glycolytic intermediates, launches transcription of SgrS, and subsequent regulation of sev-

eral mRNA targets101. The best characterized targets include negatively regulated ptsG

mRNA (encoding glucose transporter)65,102, manXYZ mRNA (encoding mannose trans-

porter)67,103, purR mRNA (encoding purine biosynthesis operon repressor)68,69, as well

as positively regulated yigL mRNA (encoding a phosphatase that can dephosphorylate

non-metabolizable sugars so they can be excreted to relieve stress)69,70.
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By implementing a combined single-cell imaging and mathematical modeling ap-

proach, we determined the kinetic parameters of SgrS regulation of a subset of its target

mRNAs. Unexpectedly, our data reveal that instead of acting exclusively on fully synthes-

ized transcripts, SgrS is able to regulate some targets co-transcriptionally. We found that

another sRNA, RyhB also acts on nascent mRNA co-transcriptionally, suggesting that this

may be a general feature for sRNAs previously characterized as post-transcriptional reg-

ulators. We found that co-transcriptional regulation is attenuated when Rho factor activity

is inhibited, indicating that this co-transcriptional regulation is likely due to Rho-dependent

termination following sRNA-mediated repression of translation. Finally, our data suggest

several important kinetic steps that may determine the efficiency and differential regulation

of multiple mRNA targets by an sRNA. Binding of sRNA to the target mRNA is likely the

rate-limiting step and may dictate the regulation hierarchy observed within an sRNA reg-

ulon. Our approach may be used as a general platform for dissecting kinetic parameters

and providing mechanistic details for sRNA-mediated regulation.

2.2 Results

2.2.1 Kinetic model and experimental measurement of sRNA-mediated

regulation

Since SgrS has been biochemically characterized as a post-transcriptional gene reg-

ulator, we first set up a post-transcriptional regulation model to describe this process,

including regulation at the levels of both translation and degradation (Figure 2.1A). In the

absence of the sRNA, this model includes basal levels of mRNA transcription (αm, as

rate constant), translation (kx), and endogenous mRNA and protein degradation (βm and

βp respectively). When the sRNA is produced, its transcription rate is defined by αs and

the effective degradation rate by βs. βs approximates endogenous degradation as well

as target-coupled degradation with all other mRNA targets except for the specific target
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mRNA of interest. The sRNA binds to an mRNA target with an on-rate of kon and disso-

ciates with an off-rate of koff. Upon binding, the translation activity of the bound mRNA

changes to kxs. The sRNA-mediated degradation is described by βms for translation-

coupled degradation and βe for active degradation.

Production of the sRNA, SgrS (from the endogenous chromosomal gene), was in-

duced by exposing E. coli cells to glucose-phosphate stress using α-methylglucoside

(αMG)65. The target mRNAs (containing SgrS binding sequences) fused to the super-

folder GFP (sfGFP) gene104 were carried on low-copy number plasmids under the control

of a tetracycline promoter (Ptet) (Figure 2.2A and Supplementary Figure 2.7). In contrast

to the induction scheme commonly used in previous studies in which the changes in target

mRNA abundance or translation were recorded after sRNA induction, we chose to induce

SgrS before target mRNA induction and then record the levels of SgrS, target mRNA and

protein simultaneously as a function of time. Time t = 0 was defined as the time at which

the target mRNA was induced (Figure 2.2B). Fractions of cells were fixed at different time

points. SgrS and the target mRNAs were fluorescently labeled with DNA oligo probes

through a standard fluorescence in situ hybridization (FISH) method38. Translation of the

sfGFP fusion produced a direct fluorescent readout for protein levels (Figure 2.2B). The

single-cell sRNA, mRNA, and protein levels were characterized by their volume-integrated

fluorescent signals105. sRNA and mRNA copy numbers were further determined by com-

paring fluorescent intensities and the Ct values in the reverse transcription and quantitat-

ive PCR (RT-qPCR)-based calibration (Figure 2.2C and Supplementary Figure 2.8). The

abundance of endogenous ptsG mRNA is 1-2 copies per cell under our growth conditions

measured by RT-qPCR, <1% of the ptsG-sfGFP fusion mRNA expressed from the plas-

mid, suggesting that the contribution of the endogenous mRNAs to our measurement is

negligible. As the copy numbers of sRNA and mRNA were in the range of tens to hun-

dreds per cell, we described the time-dependent changes in sRNA, mRNA and protein

deterministically by mass action equations (Figure 2.1B).
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Figure 2.1 Model for determination of kinetic parameters of sRNA-mediated regulation in

vivo.

(A) Kinetic model describing sRNA-mediated, post-transcriptional regulation. (B) ODE for post-

transcriptional regulation model. (C) Kinetic model for co-transcriptional regulation. (D) ODE for

co-transcriptional regulation model. Parameters are described in the text.

We chose to pre-induce the sRNA for two reasons. First, by capturing the sRNA-
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mediated changes in the production of new proteins, we can more accurately measure

regulation at the translational level. sRNA-mediated regulation generally occurs within

minutes65,81,106. However, many proteins, including the reporter sfGFP, have long life-

times in E.coli, which are essentially determined by rate of dilution due to cell division107.

Therefore, the fluorescent signal from already existing proteins in the cell can overwhelm

any protein level changes caused by sRNAs. Second, and more importantly, we were in-

terested in the timing of sRNA-mediated regulation of target mRNAs andmore specifically,

whether sRNAs can act on the newly synthesized mRNAs co-transcriptionally. In the case

of pre-induced mRNA, the mature mRNAs outcompete the nascent mRNAs owing to their

relative abundances, which may make any effect at the transcriptional level undetectable.

For each sRNA-mRNA pair, we measured the time-course changes of sRNA, mRNA

and protein levels in four genetic backgrounds: wild-type (WT),∆sgrS, rne701, and rne701

∆sgrS. Time-dependent changes in mRNA and protein upon mRNA induction were recor-

ded in the absence of SgrS for the determination of parameters describing basal transcrip-

tion (αm) and translation (kx) activities. By comparing the fusion mRNA and protein levels

in the ∆sgrS strain in the presence of αMG with the corresponding levels in the WT strain

in the absence of αMG, we noticed that the presence of αMG alone (i.e., without ensuing

production of SgrS) reduced the efficiency of induction of the mRNA fusion (Figure 2.2C,

Supplementary Figure 2.9, and Table 2.1). Therefore, to quantify the regulation by the

sRNA specifically, we use the ∆sgrS and rne701 ∆sgrS grown in the presence of αMG

as our “-sRNA” condition to quantify the basal transcription and translation activities of the

target mRNA in the WT and rne701 backgrounds, respectively.
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Figure 2.2 Illustration of experimental setup and representative results.

(A) Illustration of the target mRNA, including the 5’ UTR and part of the coding region from the

endogenous mRNA target containing the SgrS binding site, and a coding region for sfGFP re-

porter. (B) Representative images of SgrS, ptsG-sfGFP mRNA, and sfGFP signal in the absence

(upper) or presence (lower) of sRNA induction over 24 minutes. (C) Measured sRNA, mRNA, and

protein levels from images in (B), representing volume-integrated single cell fluorescence values,

converted to copy numbers for the case of RNA molecules.

20



Comparison of the kinetic behaviors in the WT vs. rne701 strain allowed us to sep-

arate the effect of sRNA-mediated passive and active degradation. The rne701 allele en-

codes a truncated RNase E protein lacking part of the C-terminal unstructured region108,

including RhlB, enolase, PNPase and Hfq binding sites51,109–111. The rne701 mutant still

fully retains its catalytic function but has an impaired ability to interact with Hfq and other

degradosome components without the C-terminal unstructured region58,108,112. Consist-

ent with previously reported38,113, βm of the fusion mRNAs, measured using rifampicin

pulse-chase experiments, did not show any difference between the WT and rne mutant

background (Supplementary Figure 2.10). This result suggests that rne701 has a minor

effect on endogenous mRNA degradation, and that accessibility to the translated mRNA

is unlikely to be affected by the partial truncation of the C-terminal region of RNase E. Our

model therefore assumes that SgrS-mediated mRNA degradation in the rne701 back-

ground is primarily through translation-coupled degradation.

Finally, to further constrain our model, we experimentally measured a subset of para-

meters. In addition to βm, we measured βs by first inducing SgrS and then washing away

the inducer (Supplementary Figure 2.11). βs was slightly slower in the rne701 background

(Supplementary Figure 2.11), suggesting that active co-degradation with target mRNAs

contributes to the ensemble sRNA turnover, consistent with previous results38. We ap-

proximated sfGFP protein half-life using the cell doubling time (∼90 min) under our exper-

imental condition (Supplementary Figure 2.12). The six-minute folding time of sfGFP was

accounted for in the model by building in a six-minute delay between mRNA and protein

production (i.e., the protein present at t = 12 minutes is translated by the mRNA present at

t = 6 minutes). αs was determined by measuring the time-dependent production of SgrS

upon induction.

21



2.2.2 Simulation predicts that SgrSmay regulate ptsG co-transcriptionally

Under the assumption that SgrS regulates ptsG-sfGFP mRNA post-transcriptionally,

we fixed the αm and kx values obtained from the ∆sgrS and rne701 ∆sgrS strains and fit

the rest of the parameters in the time-dependent levels of SgrS, target mRNA, and sfGFP

in the WT and rne701 strain in the presence of αMG, including βe, βms, kxs, kon, and koff,

using Bayesian Markov Chain Monte Carlo (MCMC) modeling (Materials and Methods).

However, the optimized parameters of the post-transcriptional regulation model did not

accurately describe the experimental data, specifically the amplitude of sRNA-induced

repression (Figure 2.13A). We therefore considered an alternative model that included the

possibility that SgrS could regulate its targets co-transcriptionally, rather than exclusively

post-transcriptionally.

Initially, we modeled co-transcriptional regulation by allowing αm to change in the

presence of sRNA (denoted αms). This model fit the data well (Figure 2.13B). The resulting

αms (0.87 ± 0.05 molecules ·s-1) was smaller than αms (1.9 ± 0.3

molecules ·s-1), i.e., transcription was slower in the presence of the sRNA. Since the FISH

probes for the target mRNA specifically bind to the sfGFP coding region in the mRNA

fusion downstream of the sRNA binding site, we infer that generation of the full-length

mRNA, and therefore the fluorescent signal, was reduced upon sRNA binding, or sRNA-

mediated regulation may occur during transcription. In addition, the reduction in αm, was

more pronounced in the WT rne background (αms = 0.46 αm) compared to in the rne701

background (αms = 0.98 αm), suggesting that a fully assembled degradosome contributes

to the strength of co-transcriptional regulation.
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2.2.3 SgrS decreases the abundance ratio of downstream to upstream

regions relative to the SgrS binding site on the target mRNA

Since, according to our model, co-transcriptional regulation by SgrS reduces the pro-

duction of full-length ptsG-sfGFP mRNA, we reasoned that this may be reflected by a

decrease in the abundance of downstream (from the SgrS binding site) relative to up-

stream regions on the ptsG-sfGFP mRNA (henceforth referred to as the “D/U ratio”). To

experimentally measure the D/U ratio, we devised a RT-qPCR assay. In this assay, we

utilized two sets of primers: one amplifying the region upstream of the SgrS binding site,

and the other amplifying the downstream region, in the coding region (Figure 2.3A). To

evaluate the D/U ratio change specifically contributed by the co-transcriptional regula-

tion, we compared RT-qPCR results on extracted RNA from cells at 1 and 15 min after

induction (Figure 2.3B). These times were chosen based on the fact that the lifetime of

ptsG-sfGFP mRNA is around 7-8 min (Supplementary Figure 2.10 and Table 2.1). At

1 min after induction (D/Ut=1), the contribution by endogenous degradation on the read-

though ratio should not dominate. In addition, since the cellular level of mRNA at 1 min

post-induction is low (Figure 2.2C), the fraction of nascent mRNAs, i.e., the mRNAs still

being transcribed, compared to fully synthesized mRNAs, should be relatively high. We

therefore considered this pool of ptsG-sfGFP mRNAs as relatively enriched in nascent

mRNAs and expected that effects at the co-transcriptional level would be enhanced in this

sample. At 15 min after induction (D/Ut=15), ptsG-sfGFP mRNA levels reach steady-state,

with a high cellular abundance (Figure 2.2C); thus, the fraction of nascent mRNAs should

be minimal compared to fully synthesized mRNAs. We therefore reasoned that effects at

the co-transcriptional level are largely buried by effects at the post-transcriptional level at

this time point.
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Figure 2.3 RT-qPCR measurement of the D/U ratio.

(A) Schematic illustration of the qPCR primer binding sites relative to SgrS binding site on the

mRNA.. (B) Schematic illustration of total RNAs extracted at different time points of mRNA induc-

tion, which contain different ratios of nascent mRNAs to fully transcribed mRNAs. (C) Reduction

in the D/U ratio of ptsG-sfGFP mRNA affected by SgrS (D/U(+/-), defined by the ratio of D/U in the

presence of SgrS to D/U in the absence of the SgrS). (D) D/U(+/-) of ptsG-sfGFP mRNA affected

by RyhB. (E) D/U(+/-) of ptsG-sfGFP mRNA affected SgrS with addition of Bicyclomycin (BCM). 50

µg/mL BCM was added 15 minutes before the time of cell collection, i.e. at t = -14 minutes relative

to aTc induction of ptsG-sfGFP mRNA for cells collected at t=1 minutes, and t = 0 relative to aTc

induction of ptsG-sfGFP mRNA for cells collected at t = 15 minutes.

Wemeasured D/Ut=1 and (D/Ut=15) in theWT and∆sgrS cells in the presence of αMG

(Figure 2.3C). The comparison between the D/U ratios of WT and ΔsgrS cells (reported as

“D/U (+/-)” in Figure 2.3C-E) reflects the change of D/U introduced by SgrS. (D/Ut=15)(+/-)

was about ∼0.7, suggesting that the regulation by SgrS caused reduction in the abund-
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ance of the downstream region compared to the upstream region of the SgrS binding site

on the target mRNA. The reduced (D/Ut=15) upon SgrS regulation may be explained by the

directionality of RNase E activity, i.e., an enhanced RNase E activity on the downstream

fragment with 5’ monophosphate114–116. In comparison, (D/Ut=1)(+/-) was about 0.4, sug-

gesting that in the nascent-mRNA enriched pool, the regulation by SgrS led to significantly

more reduction in the abundance of the downstream region compared to the upstream re-

gion, and supporting our prediction that SgrS repressed the generation of the downstream

portion co-transcriptionally. As a control, (D/Ut=1)(+/-) and (D/Ut=15) remained around 1

when inducing a non-matching sRNA, RyhB, a small RNA that is repressed by Fur (fer-

ric uptake regulator) and produced in response to iron depletion, by adding 2,2’-dipyridyl

(referred to as “DIP”) into the culture (Figure 2.3D)64. In addition, the reduction in D/Ut=1

was less in the rne701 background ((D/Ut=1)(+/-) was ∼0.5) (Figure 2.3C), consistent with

the predicted trend from the simulation that the co-transcriptional regulation is stronger in

the WT background.

2.2.4 Co-transcriptional regulation by SgrS is dependent on Rho activity

Though co-transcriptional regulation was stronger in WT compared to the rne701

background, it was nonetheless present in both backgrounds. We inferred that RNase

E may play a role in co-transcriptional regulation, however, additional factors may contrib-

ute. One mechanism that could underlie co-transcriptional regulation is Rho-dependent

termination. As SgrS binding to mRNA targets leads to translational repression, reduction

in the transcription-coupled translation could lead to increased Rho access to the mRNA

followed by premature termination. To test this possibility, we compared the D/U ratio on

extracted RNA from cells at 1 and 15 min after ptsG induction in the presence of SgrS and

Bicyclomycin (BCM). BCM targets and selectively inhibits Rho-dependent transcription

termination117,118. In the presence of BCM, the significant disparity between D/Ut=1(+/-)

and D/Ut=15(+/-) disappeared, indicating that in the absence of Rho-dependent transcrip-

tion termination, co-transcriptional regulation is insignificant relative to post-transcriptional
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regulation (Figure 2.3E). We therefore conclude that SgrS-induced co-transcriptional reg-

ulation of ptsG is Rho-dependent.

2.2.5 A revised kineticmodel containing co-transcriptional regulationmod-

ule

After experimentally confirming SgrS-dependent co-transcriptional regulation, we then

improved the kinetic model by linking sRNA binding directly to the co-transcriptional reg-

ulation (Figure 2.1C and D). In this revised model, we assumed that sRNA binds and un-

binds nascent and mature mRNAs with the same kon and koff rates. In order to allow for

co-transcriptional binding, mRNA transcription is separated into two steps: initiation (kini)

and elongation (kelon). When nascent mRNAs are bound by sRNA during elongation, a

free parameter (P) is introduced to the model, representing the probability of generating

the full-length, mature mRNA. We allow P to differ between the WT and rne701 back-

grounds. The revised kinetic model significantly improved the fitting of data for the SgrS

regulation of ptsG (Figure 2.4A and B). To further validate the improved performance of the

co-transcriptional regulation model, we applied the Bayesian information criterion (BIC),

where a penalty is applied to the co-transcriptional model for its two added parameters

(namely, P, in WT rne and rne701 background)119, to select between co-transcriptional

and post-transcriptional regulation models. The co-transcriptional model was selected by

virtue of having the lower BIC value. Consistent with the qPCR results, P was lower in the

WT background than in the rne701 background (Figure 2.4A and B, Table 2.1).

To validate the co-transcriptional regulationmodel, we generated two data sets. In the

first, we reduced the induction of SgrS using a lower concentration of αMG and measured

αs experimentally. In the second, we reversed the induction order of SgrS and ptsG-sfGFP

mRNA, presenting the condition under which newly induced sRNAs regulate pre-existing

mRNA targets. We simulated the time courses of SgrS, ptsG-sfGFP mRNA, and sfGFP

using the best set of parameters obtained from amodel with (Figure 2.4A and B) or without
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(Supplementary Figure 2.14A) co-transcriptional regulation, respectively. In both cases,

the co-transcriptional regulation model predicted the experimental data better (Figure 2.4C

and D, Supplementary Figure 2.14B and C).
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Figure 2.4 Fitting of SgrS regulation of ptsG expression with co-transcriptional regulation

model.

Time-dependent changes of SgrS, ptsG-sfGFP mRNA, and sfGFP levels in the presence or ab-

sence of SgrS, in the (A) WT rne background and (B) rne701 background. Points with error bars

represent experimental data from 2-3 biological replicates.
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Figure 2.4 (continued) Fitting of SgrS regulation of ptsG expression with co-transcriptional

regulation model.

Each biological replicate contains∼500-1000 cells. Black lines represent fitting with the best set of
parameters using co-transcriptional regulation model with two-step transcription module. Shaded,

colored regions represent predicted error of the fitting, calculated by sampling from the means and

errors of individual kinetic parameters. (C) Simulated prediction (black curve with shaded, colored

region) using co-transcriptional regulation model for validation dataset with reduced αMG concen-

tration for SgrS induction, overlaid with experimental data (points with error bars). (D) Simulated

prediction using co-transcriptional regulation model and experimental data for validation dataset of

pre-induced mRNA.

2.2.6 Co-transcriptional regulation may be a widespread mechanism util-

ized by sRNAs

We next asked if co-transcriptional regulation might be a general feature shared by

other previously characterized post-transcriptional sRNA regulators. We applied the same

imaging and modeling scheme to RyhB and one of its targets, sodB. We generated two fu-

sion mRNAs, sodB130 and sodB130+30 , containing the RyhB binding site and sfGFP gene

(Supplementary Figure 2.7). sodB130+30 contains an additional 30 nucleotides which in-

clude a RNase E cleavage site and is more sensitive to RyhB regulation at the degradation

level46.

The responses of sodB130 and sodB130+30 to RyhB regulation were again best cap-

tured by the co-transcriptional regulation model as suggested by BIC (Supplementary Fig-

ures 2.15 and 2.16), suggesting that co-transcriptional regulation may be a general mech-

anism of sRNA-mediated regulation. Consistent with the SgrS regulation, co-transcriptional

regulation for RyhB was also more efficient in the WT background compared to rne701. In

addition, the βe value of the sodB130+30 was ∼4.5 fold higher than that of the sodB130, in

line with the addition of the RNase E cleavage site in sodB130+30, serving as a validation

of our model.
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2.2.7 Parameters that contribute to regulation efficiency of sRNA over dif-

ferent targets

We next fit the models to two other SgrS targets, manX and purR. It has been es-

tablished that ptsG is the primary target of SgrS, manX is a secondary target, and purR

is a lower-priority target39. Consistently, we observed 78%, 53% and 18% repression re-

spectively for ptsG,manX and purR at the protein level at 24minutes under the same SgrS

induction condition (Table 2.2). At steady state, the model predicted the regulation effi-

ciency to be 57%, 43% and 5% at the protein level, and 48%, 33% and 11% at the mRNA

level for ptsG, manX and purR, respectively. BIC suggested that the co-transcriptional

regulation model better fitmanX (Supplementary Figure 2.17), but the post-transcriptional

model better fit purR (Supplementary Figure 2.18), indicating that the contribution of co-

transcriptional regulation for purR is negligible.

Comparison of the parameters for the three mRNA targets for SgrS and two targets

for RyhB (described above) suggests features that contribute to the overall regulation

efficiency (Figure 2.5A, Table 2.2).

1. Within the same sRNA regulon, a faster binding rate led to more efficient regulation.

We found that kon changed more dramatically than koff among different targets. For

SgrS, the difference in koff was within ∼2-2.5 fold among the three targets, whereas

the change in the kon values was up to∼40 fold between ptsG and purR, suggesting

that the binding kinetics is dominated by kon. Interestingly, although sodB130 and

sodB130+30 had the same RyhB target site, which led to the similar koff, sodB130+30

showed a higher kon than sodB130(see Discussion). In addition, RyhB had a much

higher koff for the sodB constructs compared to SgrS.

2. The repression at the translation level (kxs/k]x) contributed positively to the regula-

tion efficiency among the SgrS targets. The SgrS binding site is located in the 5’

UTR of ptsG mRNA, partially overlapping the RBS, and within the first 10 codons
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and 34 codons in CDS of manX and purR respectively62,69. SgrS inhibits transla-

tion initiation on these mRNAs through different mechanisms. On ptsGmRNA, base

pairing of SgrS directly blocks ribosome binding, while on manX and purR mRNAs,

binding of SgrS guides Hfq to bind at a site close to the RBS to block ribosome bind-

ing62,69. Our results indicate that direct binding of SgrS at the RBS may be more

efficient in repressing translation, and that the efficiency of translational regulation

may decrease as the sRNA binding site moves further into the CDS. kxs /k]x was

similar among the two sodB constructs upon RyhB regulation, consistent with the

fact that they share the same RyhB binding site. However, even though RyhB also

regulates sodB through directly blocking ribosome binding at the RBS120,121, the

repression of translation was less efficient than for SgrS regulation of ptsG, sug-

gesting that the different structures of sRNA-mRNA duplexes may affect translation

to different extents.

3. For all target mRNAs, βms was larger than the corresponding βm, supporting the

translation-coupled degradation model in which reduced translation activity upon

sRNA binding leads to faster degradation of the sRNA-bound mRNA. For the three

SgrS targets, there was no correlation between βe and regulation efficiency. Al-

though a higher βe was observed for purR, the most weakly regulated target of SgrS,

a much smaller kon value for purR limited the regulation efficiency. The impact of

active degradation became more evident when comparing the two RyhB targets, in

which most other parameters were similar. The higher βe value of the sodB130+30

contributed to a higher regulation efficiency of sodB130+30 (67% and 67% at pro-

tein and mRNA levels for sodB130+30 respectively compared to 48% and 37% for

sodB130).

4. We observed a positive correlation between the strength of co-transcriptional reg-

ulation and the overall regulation efficiency. Co-transcriptionally bound ptsG had a

lower probability of generating a full-length mRNA compared to manX, while purR
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was insignificantly affected by co-transcriptional regulation. Similarly,

co-transcriptionally bound sodB130+30 had a lower probability of generating a full-

length mRNA compared to sodB130.
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Figure 2.5 Kinetic parameters that contribute to regulation efficiency of sRNA over different

targets.

(A) Parameters of sRNA regulation over different mRNA targets. Error bars represents s.d. from

2-3 biological replicates, each containing ∼500-1000 cells. p-values for two-sample t-tests are

provided for pairwise comparisons. ∗indicates p<0.0001.
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Figure 2.5 (continued) (B) Protein-level repression heatmap, calculated by screening across the

listed parameters. Repression level of 1 represents complete repression of protein expression; 0

means no repression. For the left panel, βe = 1.0x10-3 and P = 0.32. For middle panel, kxs/kx =

0.5 and P = 0.32. For right panel, kxs/kx = 0.5 and βe = 1.0x10-3. For all simulations, kinit, kx, koff,

βm, βms, βs, and αs are set to the measured or MAP values for ptsG (Tables 2.1 and 2.2).

2.3 Conclusions and Discussion

We have presented here a general approach combining imaging and modeling, which

can be used to quantify the kinetic parameters underlying differential regulation of multiple

mRNA targets by a single sRNA. While we focused on mRNAs that are downregulated by

their corresponding sRNA in this study, we expect that this approach can easily be adapted

to upregulated mRNA targets. While we initially sought to determine kinetic parameters of

regulation at translation and degradation levels for an sRNA that was classically categor-

ized as a post-transcriptional regulator, we unexpectedly found that SgrS can regulate

co-transcriptionally. Similar co-transcriptional regulation was also observed for the sRNA

RyhB. In our revised model, sRNAs can act on nascent transcripts as soon as their bind-

ing sites are released from the RNA polymerases (Figure 2.6A). This co-transcriptional

regulation is promoted by Rho-dependent termination, but also affected by the C-terminal

region of RNase E. Our model provides, so far, the most comprehensive description of

sRNA-mediated gene regulation and helps dissect kinetic parameters governing hierarch-

ical regulation. We find that binding of sRNA to the mRNA target is the rate-limiting step

and the primary determinant for setting hierarchical regulation, while regulation at tran-

scription, translation and degradation levels all contribute.

Previous models of sRNA regulation were able to reproduce mRNA repression as-

suming only post-transcriptional regulation63,80–82,84,98,122–124. The different order of

sRNA and mRNA induction may explain why co-transcriptional regulation has not been

noted in previous studies. Previous studies mostly either induced sRNAs in the pres-

ence of pre-existing or pre-induced mRNAs, or co-induced mRNAs and sRNAs simultan-
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eously, whereas we pre-induced sRNAs to a certain level before inducing and tracking

the changes of targets. Therefore, we created a time window, i.e., early induction phase,

when the mature mRNA level was low and the ratio between the nascent mRNA and the

mature mRNA was high. Given the high abundance of pre-induced sRNA, and assuming

in our model that sRNA used the same binding kinetics for both nascent andmature mRNA

targets, the action of sRNA at the co-transcriptional level was enhanced compared to the

cases where mature mRNAs were predominant. The effect of co-transcriptional regula-

tion may be further enhanced by the target being plasmid-encoded. Because total target

mRNA transcription was contributed by multiple plasmids in our experimental setting, the

sRNA may more effectively regulate mRNA co-transcriptionally by targeting multiple tran-

scription sites.

Although our target reporter mRNA genes are encoded by plasmids, it is very likely

that sRNAs can act co-transcriptionally on the chromosomally encoded, endogenous genes.

To co-transcriptionally regulate chromosomally encoded targets, sRNAs should be able

to diffuse into the nucleoid region, which normally has a higher diffusion barrier. A pre-

vious report demonstrated that sRNAs have unbiased distribution between the nucleoid

and cytoplasm using a few plasmid-encoded sRNAs as examples125,126. Here, using

single-molecule localization microscopy (SMLM), we confirmed the unbiased localization

for these two sRNAs under our experimental conditions (Figure 2.6B-E). In addition, the

chaperone protein, Hfq, was observed to diffuse freely into the nucleoid region using

single-particle tracking127,128 and to bind to the nascent transcripts in a recent study us-

ing Chip-seq129. It is likely that at least part of the Hfq binding to the nascent transcripts

is mediated by sRNAs.
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Figure 2.6 Model for co-transcriptional regulation by sRNAs.

(A) sRNAs can freely diffuse in into the nucleoid region of bacterial cells and bind to the target

mRNAs as soon as the sRNA binding site is transcribed. Binding of sRNA affect transcriptional-

coupled translation and increase the binding of Rho, thereby terminating transcription. Recruit-

ment of RNase E through its C-terminal scaffold region positively contributes to the efficiency of

co-transcriptional regulation. Representative SMLM images of SgrS in the absence of ptsG-sfGFP

mRNA induction (30 minutes after sRNA induction, before mRNA induced) (B), and in the presence

ptsG-sfGFP mRNA induction (54 minutes after sRNA induction, 24 minutes after mRNA induction)

(C). Representative SMLM images of RyhB in the absence (D) and presence (E) of sodB130+30-

sfGFP induction. Red spots are sRNA signals detected by SMLM imaging. Blue area represents

DAPI-stained nucleoid region. (F) The 3-dimensional localization for SgrS andRyhB in the absence

and presence of the target mRNA was determined. Both SgrS and RyhB exhibited unbiased loc-

alization between the nucleoid and cytoplasm regardless of the presence of their target mRNAs.

Error bars represents s.d. from 2-3 biological replicates, each containing ∼100 cells.

While the majority of sRNAs are categorized as post-transcriptional regulators, cases

have also been reported in which sRNAs can regulate transcription elongation, for ex-

ample, by modulating the accessibility of the binding site of Rho factor, or by the con-

formational switch between terminator and antiterminator structures130–133. Interestingly,

previously characterized post-transcriptional sRNA regulators, DsrA, ArcZ and RprA can

also upregulate the target rpoS mRNA by suppressing pre-mature Rho-dependent tran-

scription termination, a mechanism that may be widespread in bacterial genes with long
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5’ UTRs containing a Rho binding site113. In addition, ChiX sRNA was observed to co-

transcriptionally regulate the distal gene in the chiP cistron by inducing Rho-dependent

termination within the chiP coding region, establishing a regulation polarity of the down-

stream gene with the same cistron79. Our results demonstrate, using SgrS and RyhB as

examples, that co-transcriptional regulation may be a common feature for sRNAs that can

regulate at the translational level. While translational repression of the mature mRNAs

by sRNAs increases their susceptibility to ribonucleases in the cytoplasm, repression of

transcription-coupled translation on the nascent mRNA increases the access of Rho and

therefore promotes pre-mature transcription termination. It remains to be demonstrated

whether such Rho-dependent co-transcriptional regulation is pervasive throughout sRNA

regulons. In addition, we observe that, for the same sRNA-mRNA pair, efficiency of co-

transcriptional regulation is in general higher in the WT compared to the rne701 back-

ground (smaller P value in WT compared to rne701 background), indicating that the pres-

ence of the intact scaffold region of RNase E positively contributes to this process. Future

investigation is needed to pinpoint themechanistic role of RNase E in the co-transcriptional

regulation.

Finally, our model suggests several kinetic steps that can determine the overall reg-

ulation efficiency. The binding kinetics between the sRNA and mRNA are the primary de-

terminant of regulation efficiency. While koff differs substantially between different sRNAs,

within the regulon of a given sRNA, kon changes more dramatically compared to koff, and

contributes to the regulation priority of different mRNAs by the same sRNA. At a constant

kon, the strength of translational regulation (kxs /k]x), sRNA-induced RNase E-mediated

active degradation (βe), and regulation efficiency at the co-transcriptional level (P) all pos-

itively contribute to the overall regulation efficiency (Figure 2.5B). However, a fast kon

(>105 M-1S-1) is generally needed to repress the target by more than 50% regardless of

the rates or efficiencies at other steps (Figure 2.5B), suggesting that binding of the sRNA

to the target mRNA might be the rate-limiting step. This is consistent with the observa-

tion that purR, which has a very low kon rate, has the lowest regulation efficiency among
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SgrS regulon despite a higher βe. The binding kinetics are not correlated with the in vitro

predicted hybridization thermodynamics (Supplementary Figure 2.7)134, suggesting that

more factors in vivo can affect the sRNA target search process. Interestingly, when com-

paring different sRNA-mRNA pairs, we found a positive correlation between kon and the

basal translation rate of the mRNA (k]x) (Figure 3.1), as noted previously63. Specific-

ally, higher kon observed for sodB130+30 compared to sodB130is possibly due to its higher

k]x. This correlation implies a potential positive role of translating ribosomes in promoting

sRNA binding. From a functional point-of-view, it is logical to have a higher regulation

efficiency on the most translated targets under stress conditions to achieve the most ef-

fective response. One possible mechanism by which ribosome can facilitate sRNA binding

is through unwinding the secondary structures at the sRNA binding site135, while other

potential mechanisms are yet to be uncovered.

2.4 Materials and Methods

2.4.1 Bacterial strains, plasmids

DB166 was made via P1 transduction by moving lacIq, tetR, specR cassette from

JH11167 into DJ480. ∆ryhB::cat was moved to DB166 from EM1453 (Jacques et al.,

2006) via P1 transduction to create DB186. rne701-FLAG-cat was moved into strains

DB166 and JH11167 by P1 transduction from TM528112 to create XM100 and XM101 re-

spectively. The ryhB::tet allele in strain XM221 was created by using primers OXM211 and

OXM212 with homology to RyhB to amplify the tetracycline resistance cassette. The PCR

product was recombined into the chromosome of XM100 using λred functions provided

by pSIM6136.

Target mRNAs are all encoded by pSMART plasmid and under Ptet promoter. Target

mRNA reporters carry the small RNA binding sequence from the endogenousmRNAs, and

a sfGFP gene (Supplementary Figure 2.7). pSMART_ptsG-10aa-sfGFP (“10aa” refers
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to the first 10 codons) was generated from pZEMB839 using site directed mutagenesis

and the pSMART LCKan Blunt Cloning Kit (Lucigen, 40821-2). Briefly, the lac promoter

of pZEMB8 was switched to a tet promoter to reduce leaky expression, using primers

(JZ25 and JZ26) that include 5’ overhangs containing the tetracycline promoter sequence.

The fragment containing the entire promoter, gene of interest, and terminator was gen-

erated by PCR using primers EH1 and EH2 and ligated into the pSMART vector, fol-

lowing manufacturer’s instructions. pSMART_manX -34aa-sfGFP was generated follow-

ing the same method as pSMART_ptsG-10aa-sfGFP, with pZEMB1069 serving as the

template for the manX -34aa-sfGFP region, and primers JZ26 and EH3 containing the

tetracycline promoter sequence. pSMART_ptsG-10aa-sfGFP was further used to gener-

ate pSMART_purR-32aa-sfGFP and pSMART_sodB430-sfGFP using Gibson Assembly.

sodB430 contains RyhB binding site on sodB mRNA and additional 363 nucleotides in the

coding region. pSMART_sodB130-sfGFP and pSMART_sodB130+30-sfGFP were gener-

ated from pSMART_sodB430-sfGFP by using primers (EH390/EH391 and EH440/441)

that amplify the entire plasmid, excluding the regions that were not desired in sodB130-

sfGFP or sodB130+30-sfGFP. The PCRproducts were then phosphorylated (NEBM0201S)

and ligated (NEB M0202S) before transformation. Each plasmid was confirmed by DNA

sequencing and transformed into the various genetic backgrounds utilized in this study.

All cell strains and plasmids used in this work are listed in Table 2.3, and primers used

for PCR are listed in Table 2.4.

2.4.2 Culture growth and induction for imaging experiments

For all imaging and qPCR experiments, overnight E. coli cultures were grown in LB

media with 25 ug/mL Kanamycin. Overnight cultures were diluted 100-fold in MOPS-

Minimal media (TEKnova, M2106) supplemented with 1% glycerol and 25 µg/mL kana-

mycin at 37 °C. The cells were grown to approximately OD = 0.2-0.3, at which point SgrS

or RyhB was induced by adding 0.5% αMG or 500 µM DIP directly to the culture. The
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stress was present for 30 minutes before induction of the reporter mRNA construct using

10 ng/mL anhydrous tetracycline (aTc, Sigma-Aldrich). The time of aTc induction marked

the t=0 time point in imaging experiments. Fractions of cells were taken at different time

points after mRNA induction for downstream sample treatment.

2.4.3 Fluorescence in situ hybridization (FISH)

10 FISH probes targeting the sfGFP coding region, 9 probes for SgrS and 4 probes

for RyhB were designed using the Stellaris Probe Designer from Biosearch, and labeled

as previously described38. sfGFP probes were labeled Alexa Fluor 568 NHS ester (A568,

Invitrogen A20003). SgrS and RyhB probes were labeled with Alexa Fluor 647 NHS ester

(A647, Invitrogen A20006). The16S rRNA probe was labeled with Alexa Fluor 405 NHS

ester (A405, Invitrogen A30000). The A405 signal serves to indicate sufficient permeabil-

ization. FISH was performed as previously described (Fei et al., 2015). 10 mL of culture of

cells were taken out at the corresponding time points and fixed with 4% formaldehyde at

room temperature (RT) for 30 minutes. Cells were then permeabilized with 70% ethanol

for 1 hour at RT. After ethanol permeabilization, 60 µL samples were taken for each time

point and cells were additionally permeabilized with 25 µg/mL lysozyme for 10 minutes

(1 µg/mL lysozyme corresponds to 70 units/mL). Cells were hybridized with labeled DNA

probes (Table 2.4) in the FISH Hybridization buffer (10% dextran sulfate (Sigma D8906)

and 10% formamide in 2x SSC) at 30°C in the dark for overnight. The concentration of

the labeled probes was 15 nM per probe for mRNAs, 50 nM per probe for sRNAs, and

10 nM for 16S rRNA. After the hybridization, samples were washed three times with 10%

formamide in 2x SSC and resuspended in 4x SSC.

2.4.4 Epi-fluorescence Imaging and image analysis

Cells in 4x SSC buffer were imaged in 3D printed 2-well chambers. 1.2-1.4 µL of the

sample were placed on the glass slide bottom of the chamber, with a 1% agarose gel pad
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placed on top to lay the cells flat. Imaging was performed on a custom invertedmicroscope

(Nikon Ti-E with 100x NA 1.49 CFI HP TIRF oil immersion objective)137. Multicolor Z-stack

images were taken with 0.130 µm step size and 11 slices for each color. SgrS-A647 and

RyhB-A647, mRNA-A568, sfGFP, and 16S rRNA-A405 were imaged with a 647 nm laser

(Cobolt 06-01), a 561 nm laser (Coherent Obis LS), a 488 nm laser (Cobolt 06-01), and

a 405 nm laser (CrystaLaser, DL405-025-O), respectively. In addition to the multicolor

z-stack images, each image had a corresponding differential interference contrast (DIC)

image, used for segmentation and image analysis purposes.

Cells were segmented individually based on DIC images using homemade MATLAB

code105. The segmented cell mask was then overlaid on each color channel stack indi-

vidually, and the volume-integrated fluorescence intensity was calculated by adding the

area-integrated intensities of each cell for the 5 most in-focus slices (the most in-focus

slice, and two slices above and below). The background intensities of the image and of

the cells due to nonspecific binding of the FISH probes were subtracted from the calcu-

lated volume-integrated intensities. The signal contributed by probe nonspecific binding

was measured using the same imaging conditions by calculating the volume integrated

intensities of cells lacking target RNAs but in the presence of the FISH probes at the

same concentration as for positive samples. ΔsgrS cells (JH111) without transformation

of any mRNA-sfGFP fusion plasmids were used for background measurements in the

sRNA, mRNA, and GFP channels. The 16S rRNA-A405 signal was used as an indicator

of sufficiently permeabilized and labeled cells. Background A405 fluorescence intensity

distribution due to probe nonspecific binding was first determined using cells labeled with

the same concentration of off-target A405-labeled probes. A threshold at the 90th percent-

ile of the background intensity distribution was then used as the 405 intensity cutoff. Cells

with 16S rRNA -A405 intensities below this threshold (less than 10% of the total popula-

tion) were considered not sufficiently permeabilized, and not included in further analysis.
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2.4.5 SMLM Imaging and image analysis

Single molecule localization microscopy (SMLM) imaging was conducted using the

same microscope as described above with super-resolution modality137. Fixed cells were

immobilized on the 8-well chambered glass coverslip (Cellvis C8-11.5H-N) using poly-L-

lysine (Sigma-Aldrich P8920) and imaged in imaging buffer (50 mM Tris-HCl, 10% gluc-

ose,1% 2-Mercapgtoethanol (Sigma-Aldrich M6250), 50 U/mL glucose oxidase (Sigma

Aldrich G2133-10KU), 404 U/mL catalase (EMD Millipore 219001) in 2X SSC, pH = 8.0).

Images were acquired through a custom programmed data acquisition code, which pro-

grams the laser power, camera exposure time, and spot detection threshold, using the

Nikon NIS JOBS function. SMLM images were reconstructed with the IDL analysis pack-

age as previously published137.

2.4.6 RT and qPCR

Total RNA was extracted from each sample using Trizol (Thermo Fisher, 15596026)

extraction. 2 mL culture of bacterial cells were collected at the desired time point and

immediately spun at 12,000 g for 1 minute in cold. The cell pellet was homogenized in

200 µL of trizol incubated at RT for 5 minutes. 1/5 volume of chloroform was added to

the Trizol mixture. After incubation for 2-5 minutes at RT, the mixture was centrifuged at

12,000 g for 5 minutes. The upper phase was transferred to a new tube and extracted

again with chloroform. The aqueous layer was collected, from which the RNA was then

precipitated by standard ethanol precipitation. The total RNA pellet is resuspended in

nuclease-free water, and further desalted by a P6 microspin column (Bio-Rad, 7326221).

Genomic DNA contamination in the total RNA was further removed by DNase treatment.

2 µL of Turbo DNase (Thermo Fisher, AM2238) was added to 2 µg of total RNA, and the

reaction was incubated for 2 hours at 37°C. The DNase was inactivated by adding EDTA

(pH = 8) at a final concentration of 15 mM and incubating at 75°C for 10 minutes. The

reaction was desalted by a P6 column.
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Each reverse transcription (RT) reaction was performed using 50 ng total RNA in 1

mM dNTPs (NEB N0447S), 10% DMSO (Fisher, BP231), 10 mM DTT (Sigma-Aldrich,

10197777001), 250 nM of gene specific reverse primer (IDT), and 20-fold dilution of re-

verse transcriptase from iScript cDNA Synthesis Kit (Bio-Rad, 1708891) and incubated

following manufacturer instructions. Each qPCR reaction was prepared using 1X SsoAd-

vanced Universal SYBRGreen Supermix (Bio-Rad 1725274), 250 nM forward and reverse

primers (Table 2.4), and 1 µL of cDNA generated by the RT reaction in a final volume of

20 µL. The qPCR reactions were performed with CFX real-time PCR system (Bio-Rad),

using pre-incubation of 95°C for 30 s, followed by 40 cycles of 95°C for 10 s and 60°C

for 30 s. The reported D/U ratio (RD/U), a ratio between the downstream and upstream

amplification of the mRNA target, was calculated as:

RD/U =
1

2(CtD−CtU )

where CtD and CtU are the Ct values of the downstream and upstream amplicons

respectively.

2.4.7 Determination of sRNA and mRNA copy numbers

To convert the mRNA and sRNA fluorescence values to molecule copy numbers, a

qPCR calibration curve of RNA copy number vs. Ct value was first built. ptsG-sfGFP

mRNA and SgrS were produced using in vitro transcription. PCR using forward primers

harboring the T7 promoter sequence were used to produce linear dsDNA transcription

templates (Table 2.4) and 1 µg template was incubated in T7 buffer (160 mM HEPES-

KOH, pH 7.5, 20 mM DTT, 3 mM each rNTP, 20 mM MgCl2, 2 mM spermidine, 120 units

SUPERase In RNAse inhibitor) and 10 units T7 RNA polymerase (kind gift from Yuen-

Ling Chan) at 37°C for overnight. 4 units TURBO DNase was added to remove template

DNA and incubated at 37°C for an additional 2 hours. RNA was extracted using standard
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phenol-chloroform and confirmed on a 7% Urea-PAGE gel.

To build a calibration curve between Ct value and RNA copy number, RT reactions

were performed on a series of dilutions of in vitro transcribed RNA, from 10 ng to 0.001

ng. Different amounts of in vitro transcribed RNA were spiked into collected cell samples,

then subjected to the same total RNA extraction protocol as described above. Briefly,

JH111 cells (∆sgrS cells with the plasmid encoding the mRNA-sfGFP) were grown under

the same conditions used for imaging and collected when cells reached OD600 = 0.2-0.3.

Cells were spun down, then homogenized in Trizol. At this point (after adding Trizol, but

before subsequently spinning down and adding chloroform) the in vitro transcribed RNA

was added. RT was performed using iScript cDNA Synthesis Kit (Bio-Rad, 1708891) and

qPCR was performed using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad

1725274). A linear function was fit between the Ct values of the qPCR reactions and the

logarithm of the input RNA copy numbers (Supplementary Figure 2.8A). The copy number

of the RNA was calculated using the known molecular weight of the RNA and the amount

of RNA added to the initial RT reaction.

To relate RNA copy number and arbitrary fluorescence values, cell samples with dif-

ferent RNA expression levels were subjected to RNA extraction, RT-qPCR, and fluores-

cence measurement, as described above. Based on the Ct value vs. RNA copy number

calibration curve built above, sfGFP fusion mRNA and SgrS copy numbers were calcu-

lated for the extracted RNA of each sample, and further converted into copy number per

cell based on the cell numbers measured by OD600 for each sample. RNA copy number

per cell was then plotted against the volume-integrated cell fluorescent intensities for each

corresponding sample and fit with a linear function (Supplementary Figure 2.8B). Fluores-

cent intensities of the cells from the imaging experiments were compared to this calibration

curve of fluorescent intensity vs. RNA copy number to extract RNA copy number per cell.

For RyhB, the conversion factor between SgrS fluorescence values and copy number was

multiplied by 4/9, as only 4 FISH probes were used to label RyhB compared to 9 for SgrS,
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which was used to create the calibration curve. We assume a linear relationship between

number of probes and fluorescent intensity.

2.4.8 Simulation, fitting, and model selection

We used Markov Chain Monte Carlo (MCMC) simulation to explore the parameter

spaces of our kinetic models as defined by their ordinary differential equations (ODEs).

Specifically, we utilized the emcee package138, which is a Python implementation of the

Goodman-Weare Affine Invariant Ensemble Sampler139, and integrated the ODEs with

the LSODA solver140,141. In this approach, an ensemble of parameter sets evolves to

sample a Bayesian posterior distribution, which is the product of a prior distribution and

a likelihood function. Assuming Gaussian and independent errors, the logarithm of the

likelihood (log-likelihood) function takes the form:

L = lnp(y|x, θ) =
∑
m

{
− 1

2

∑
n

ym,n − f(xm,n|θ)2

σ2
(m,n)

}
,

where m is the molecular species (mRNA, sRNA, and protein in the WT and rne701

strain, for a total of 6), n is the time point (7 in our case, t = 0, 1, 3, 6, 12, 18 and 24 min),

ym,n is the experimental value for molecular speciesm at time tn, (in units of copy number

for sRNA and mRNA, and arbitrary fluorescent unit for protein), f(xm,n|θ) is the simulated

value for molecular species m at time tn given the parameter value set θ, σ2
(m,n)

is the

experimental variance for molecular species m at time point tn. The six-minute folding

time of sfGFP is directly accounted for in the fitting process by introducing a six minute

time delay in protein observation, meaning that the protein fluorescent signal is assumed

to have been produced by mRNA transcribed six minutes earlier (e.g. yWT Protein,t=12

corresponds to yWT mRNA,t=6). The log-posterior distribution is the sum of the log-prior

distribution and log-likelihood function.
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We fit parameters by running simulations in a two-step process. First, mRNA tran-

scription and translation rates were fit using the –sRNA experimental data, i.e. the data

acquired from the cell samples in the absence of sRNA. The best fit parameter values

and their associated errors were used as prior distributions for transcription and transla-

tion rates in the second step, where the rest of the parameters were determined by fitting

to the +sRNA experimental data, acquired from cell samples in the presence of sRNA.

For the co-transcriptional regulation model using the one-step transcription module, the

–sRNA simulations explored a 3-dimensional parameter space: [αm, kx, βm]; and the

+sRNA simulations explored a 9-dimensional parameter space: [kon, koff, kxr, βe, βms,

kx,wt, kx,rne, αms,wt, αms,rne], where kxr is the ratio kxs/kx. For the post-transcriptional

regulation model using the one-step transcription module, αms,wt and αms,rne were set

to αwt and αrne, respectively. For the co-transcriptional regulation model using the two-

step transcription module, the –sRNA simulations explored a 3-dimensional space: [kinit,

kx, βm]. The elongation rate, kelon was assumed to be a constant for each mRNA, de-

termined by dividing a constant elongation speed (50 nucleotides per second142) by the

length of the mRNA. The +sRNA simulations explored a 9-dimensional space [kon, koff,

kxr, βe, βms, kx,wt, kx,rne, Pwt, Prne], where Pwt and Prne represent the probability of gen-

erating full length mRNA in WT rne and rne701 backgrounds, respectively. For the post-

transcriptional regulation model using the two-step transcription module, Pwt and Prne

were set to 1. For –sRNA simulations in 3 dimensions, 50 walkers, representing 50 para-

meter sets, each evolved for 10000 steps, which we found to be a sufficient number of

steps for the log posterior to level off. For +sRNA simulations in 9 dimensions, 100 walk-

ers each evolved for 10000 steps. Initial positions for the walkers were chosen at random

from the bounded interval of possible values defined by its prior distribution. We used the

default settings for the emcee sampler, such that the each move is a “stretch” move, with

stretch parameter, a = 2, giving an average acceptance fraction equal to 0.44138,139.

For –sRNA fitting, the prior distributions for the free parameters were uniform distribu-

tions (Table 2.5). For the +sRNA fitting, the prior distributions of the parameters determ-
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ined from the –sRNA fitting were normal distributions centered on their –sRNA maximum

a posteriori (MAP) values, and the prior distributions for the remaining parameters were

uniform distributions. After the parameter fitting, the posterior probability distributions of

the fitted parameters were determined, along with their MAP values and associated er-

rors. For experimentally determined variables, the widths of the normal distributions were

determined by their experimental errors. For the remaining free parameters, the widths

of the uniform distributions were set empirically, either by observing physical constraints

(e.g., kon is constrained by the diffusion limit) or by logical constraints (e.g., kxr cannot be

below 0 or above kx).

Each experimental replicate was fit separately. σ2
(m,n)

was the same across all rep-

licates. A single set of parameter values was chosen to be the best fit for the combined

samples by selecting the point estimate of the MAP parameter values for the best walker

for each replicate, then averaging over the replicates. One replicate in a –sRNA simula-

tion was one experimental dataset containing mRNA and associated protein values, with

datasets for WT and rne701 backgrounds fit separately. One replicate in a +sRNA simu-

lation was a combination of one experimental dataset in the WT background, and one in

the rne701 background. The reported parameter values and their associated errors were

the mean and standard deviations of the MAP values from all simulations, respectively.

All simulations were performed with custom software written in Python, and parallelization

was implemented using emcee. We utilize both CPU and GPU functions to maximize the

efficiency of our simulations. All codes for all simulations are available publicly on GitHub:

https://github.com/JingyiFeiLab/Regulation_Kinetics.

The Bayesian information criterion (BIC) was used for model selection between post-

transcriptional and co-transcriptional regulation models. The BIC is defined as:

BIC = kln(n)− 2ln(L̂)
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where L̂ is the maximized likelihood value of the model, k is the number of parameters

(k = 7 for post-transcriptional model, k = 9 for co-transcriptional model, accounting for the

added variables P wt and P rne), n is the number of data points or observations (n = 42 in

our case, representing 7 time points x 3 molecules x 2 rne backgrounds). For each target,

the minimized BIC was calculated for both the post- and co-transcriptional models, and

the model which produced the lowest BIC was selected.

2.5 Supplementary Information

SgrS 3’:    ... AAAAUGUGGUUAUGAGUCAGUGUGUACUACGUCCGUUC...

ptsG 5’:    ... CACGCGUGAGAACGUAAAAAAAGCACCCAUACUCAGGAGCACUCUCAAUUAUGUUU...

manX 5’:    ... UAAAGGAGGUAGCAAGUGACCAUUGCUAUUGUUAUAGGCACACAUGGUUGGGCUGCA...

SgrS 3’:    ... AAAAUGUGGUUAUGAGUCAGUGUGUACUACGUCCGUUC...

purR 5’:    ...  UACAACUGUGUCAC ACGUGAU_CAACAAAA...

SgrS 3’:    ... GUUAUGAGUCAGUGUGUACUACGUCCGUUC...

180

180

180

sodB 5’:    ... AAAUUAAUAAUAAAGGAG__AGU____AGCAAUGUCAUUCGAAUUACCUGCACUACCAUAUGC...

RyhB 3’:    ... UUCAUUAUGACCUUCGUUACACUCGUUACAGCAC_GAAA...

∆G = -21.6

∆G = -12.4

∆G = -19.1

∆G = -15.8

Figure 2.7 sRNA target sequences.

of SgrS mRNA targets (ptsG, manX, and purR) and RyhB mRNA target (sodB). Vertical bars rep-

resent base pairing between the mRNA and sRNA. Purple boxes represent the Shine-Dalgarno

sequence of the mRNA. Blue boxes represent the start codon of the mRNA-sfGFP fusion. The

purR Shine-Dalgarno sequence and start codon are far upstream of the sRNA binding site. ΔG for

each base pair interaction was calculated using the DINAMelt server134
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Figure 2.8 RT-qPCR calibration for RNA copy number determination.

(A)Calibration curve relating copy number of the input RNA to the Ct value. Dilution series of in vitro

transcribed SgrS or ptsG-sfGFP mRNA was spiked into the cell pellet of the ΔsgrS strain without

the plasmid encoding the target mRNA. The spike-in RNAs and the cell pellet were put through

total RNA extraction, RT and qPCR reactions and Ct values were determined.. (B) Calibration

curves relating the fluorescence value of each RNA from image to RNA copy number determined

by RT-qPCR and calibration curve from (A). Error bars represent standard deviation of duplicate

measurements.

Figure 2.9 Transcription and translation of ptsG-sfGFP in the absence of αMG in the WT

strain.

The mRNA and protein levels are significantly higher than those in the ΔsgrS strain in the presence

of αMG experiments (Figure 2.2C). Error bars represent standard deviation of duplicate measure-

ments.
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Figure 2.10 Measurements of mRNA degradation rates.

Degradation rates for all target mRNAs used in this study were determined with rifampicin pulse

chase experiments. Degradation rates were measured in bothWT rne and rne701 backgrounds for

ptsG and sodB constructs, confirming that the degradation rates for the target mRNA fusions were

the same in both backgrounds. Y-axis shows the fluorescent intensity of the target mRNA relative

to its intensity when rifampicin was added. Degradation rates were determined by fitting the time-

dependent relative fluorescent intensity with an exponential decay model. Error bars represent

standard deviation of duplicate measurements.

Figure 2.11 Measurements of sRNA transcription and degradation rates.

(A) SgrS and RyhB transcription rates were measured in both WT rne and rne701 backgrounds by

inducing the appropriate stress in the absence of target mRNA. (B) SgrS and RyhB degradation

rates were measured in both WT rne and rne701 backgrounds by inducing sRNA to steady state

levels, then removing the inducer from the media. Degradation rates were determined by fitting

the time-dependent relative fluorescent intensity with an exponential decay model. Error bars

represent standard deviation of duplicate measurements.
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Figure 2.12 Cell doubling time measurement.

. Log2(OD600) relative to OD600 at first time point in the exponential growth phase is plotted over

time to determine cell doubling time. Error bars represent standard deviation of duplicate meas-

urements.
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Figure 2.13 Fits of SgrS regulation on ptsG-sfGFP using one-step transcription module.

(A) Best fit of post-transcriptional regulation model for ptsG. (B) Best fit of co-transcriptional regu-

lation model for ptsG using one-step transcription module.
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Figure 2.14 Fits and predictions of post-transcriptional regulationmodel for SgrS regulation

on ptsG-sfGFP using two-step transcription module.

(A) Best fit of post-transcriptional regulation model ptsG in WT and rne701 background. (B) Simu-

lation of best fit using post-transcriptional model on 0.25% αMG validation dataset. (C) Simulation

of best fit using post-transcriptional model on pre-induced mRNA dataset.
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Figure 2.15 Model comparisons for sodB130+30 regulation.

(A) Best fit of co-transcriptional regulation model for RyhB regulation of sodB130+30-sfGFP. (B) Best

fit of post-transcriptional regulation model for RyhB regulation of sodB130+30-sfGFP.
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Figure 2.16 Model comparisons for sodB130 regulation.

(A) Best fit of co-transcriptional regulation model for RyhB regulation of sodB130-sfGFP. (B) Best

fit of post-transcriptional regulation model for RyhB regulation of sodB130-sfGFP.
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Figure 2.17 Model comparisons for manX regulation.

(A) Best fit of co-transcriptional regulation model for SgrS regulation of manX-sfGFP. (B) Best fit

of post-transcriptional regulation model for SgrS regulation of manX-sfGFP.
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Figure 2.18 Post-transcriptional model for purR regulation.

Best fit of post-transcriptional regulation model for SgrS regulation of purR-sfGFP. As the BIC

for the post-transcriptional model of purR regulation was lower than the BIC for co-transcriptional

model, the post-transcriptional model was chosen and the co-transcriptional model is not shown

here.

55



Table 2.1 Basal activity kinetic parameters.

SgrS

αs (molecules ·s-1) 0.36 ±0.03

βs (WT) (s-1) (1.5 ±0.3) x10-3

βs (rne701) (s
-1) (1.0 ±0.1) x10-3

Targets of SgrS ptsG manX purR

αm (ΔsgrS + αMG) (molecules ·s-1) 0.09 ±0.01 0.06 ±0.01 0.08 ±0.01

αm (rne701ΔsgrS + αMG) (molecules ·s-1) 0.07 ±0.01 0.04 ±0.01 0.08 ±0.01

kx (ΔsgrS) (AU•s
-1)) 14 ±1 11 ±1 1.5 ±0.7

kx (rne701ΔsgrS) (AU•s
-1)) 6.1 ±0.4 5.46 ±0.03 0.7 ±0.3

βm (s-1) (3.2 ±0.1) x10-3 (3.3 ±0.1) x10-3 (1.7 ±0.1) x10-2

RyhB

αs (molecules ·s-1) 0.26 ±0.07

βs (WT) (s-1) (2.8 ±0.2) x10-3

βs (rne701) (s
-1) (2.0 ±0.4) x10-3

Targets of RyhB sodB130+30 sodB130

αm (ΔryhB + DIP) (molecules ·s-1) 0.11 ±0.03 0.12 ±0.01

αm (rne701ΔryhB + DIP) (molecules ·s-1) 0.11 ±0.01 0.09 ±0.02

kx (ΔryhB) (AU•s
-1) 27 ±2 19.9 ±0.9

kx (rne701ΔryhB) (AU•s
-1) 10 ±2 8 ±1

βm (s-1) (5.2±0.1) x10-3 (5.0 ±0.1) x10-3
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Table 2.2 Parameter Comparison between sRNA-mRNA pairsa.

mRNA pstG manX purRb sodB130+30 sodB130

sRNA SgrS SgrS SgrS RyhB RyhB

Repression% 0.78 ± 0.07 0.53 ± 0.18 0.20 ± 0.05 0.68 ± 0.14 0.63 ± 0.03

Steady State

Protein Repression%

0.57 0.43 0.05 0.67 0.48

Steady State

mRNA Repression%

0.48 0.33 0.11 0.67 0.37

kon (M
-1s-1)c (1.3±0.6)x106 (3.4±1.2)x105 (3.3±1.2)x104 (14 ±0.6)x105 (4.6±0.9)x105

koff (s
-1) 0.30 ± 0.04 0.21 ± 0.12 0.56 ± 0.14 9.6 ± 0.3 9.1 ± 0.4

kxs/kx 0.14 ± 0.06 0.28 ± 0.12 0.63 ± 0.13 0.36 ± 0.16 0.43 ± 0.29

βms (s
-1) (5.0 ±1.5)x10-3 (3.7±0.3)x10-3 (2.6±0.8)x10-2 (5.6±0.1)x10-3 (5.8±0.4x10-3

βe (s
-1) (1.3±1.1)x10-3 (2.3±1.2)x10-3 (5.7±1.2)x10-1 (2.2±1.5)x10-3 (4.9±0.8)x10-4

P (WT) 0.32 ± 0.14 0.43 ± 0.21 N/A (Post) 0.04 ± 0.02 0.16 ± 0.07

P (rne701) 0.93 ± 0.04 0.57 ± 0.09 N/A (Post) 0.80 ± 0.02 0.50 ± 0.23

BIC (co) 497.420 481.706 436.404 492.869 494.216

BIC (post) 577.487 486.493 429.181 669.051 515.328

a Reported parameter values and their associated errors are the mean and standard de-

viations of the outputted MAP values from all replicates. One replicate in a +sRNA simu-

lation is a combination of one experimental dataset in WT background, and one in rne701

background

b b. Best fit parameters for purR were determined from experiments using 1% αMG, rather

than the 0.5% used for other SgrS targets. This is due to the fact that repression was

minor for purR at 0.5% αMG. The repression % for purR was determined using 0.5% αMG

induction for a fair comparison with other SgrS targets.

c kon is reported as M
-1s-1 assuming 1 molecule corresponds to 1 nM in E. coli cells143.
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Table 2.3 List of all strains and plasmids used in this study.

Strain Description Reference

DB166 WTsgrS, λattB::lacIq,tetR, specR This study

JH111 ΔsgrS, λattB::lacIq,tetR, specR Reference67

XM100 lacIq tetR specR rne701-FLAG::cat This study

XM101 ΔsgrS lacIq tetR specR rne701-FLAG::cat This study

XM221 lacIq, tetR, specR, rne701-FLAG::cat, ryhB::tet This study

DB186 lacIq, tetR, specR, ryhB::cat This study

Plasmids Description Reference

pSMART_ptsG-10aa-sfGFP This study; modified from Reference69

pSMART_manX -34aa-sfGFP This study; modified from Reference39

pSMART_purR-32aa-sfGFP This study

pSMART_sodB430-sfGFP This study

pSMART_sodB130-sfGFP This study

pSMART_sodB130+30-sfGFP This study; modified from Reference46

Table 2.4 List of all oligonucleotides used in this study.

Strain/plasmid

generation

primers

Sequence 5’-3’ Description

JZ25 TCCCTATCAGTGATAGAGATACTG-

GAGCACAGAATTCATAAATAAAGGG

Tet promoter + ptsG

JZ26 TCAATCTCTATCACTGATAGGGACTTTCTC-

GAGGTGAAGACGAAA

Tet promoter + pZEMB vector

EH1 TCGTCTTCACCTCGAGAAAGTC Amplifies tet_mRNA-sfGFP for liga-

tion into pSMART

EH2 CGAACGCCTAGGTCTAGGGCGG Amplifies tet_mRNA-sfGFP for liga-

tion into pSMART

EH3 TCCCTATCAGTGATAGAGATACTGGATACT-

GAGCACAGAATTC

Tet promoter + manX

EH307 TGGACCTGGGGATCCGCTGGCTCCG sodB430 + pSMART
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Table 2.4 - continued from previous page

EH308 CAGCGGATCCCCAGGTCCAGCCAGAAC-

CAAAG

pSMART + sodB430

EH309 ATTGTGCGTATGAATTCTGT-

GCTCCAGTATCTCTATCACTG

sodB + pSMART

EH310 GCACAGAATTCATACGCACAATAAGGCTAT-

TGTACGTATG

pSMART + sodB

EH390 CTCGATGGTTTCCGCAGAAATGTG sodB130

EH391 GGATCCGCTGGCTCCGC sodB130

EH440 ATCAAAAACTTTGGTTCTGGCTGG sodB130+30

EH441 CTCGATGGTTTCCGCAGAAA sodB130+30

OXM211 GTGTTGGACAAGTGCGAAT-

GAGAATGATTATTATTGTCTC CAT-

TAATTCCTAATTTTTGTTGACACTCTATC

OXM212 AAGCACTCCCGTGGATAAAT-

TGAGAACGAAAGATCAAAAA GAATAA-

CATCATTTGGTGACGAAATAACTA

OXM112 ATGAGCAAAGGAGAAGAAC pSMART

OXM113 GAATTCTGTGCTCCAGTATC pSMART

OXM115 gttcttctcctttgctcatGAATTCGCCAGAACCAGC purR + pSMART

OXM116 atactggagcacagaattcTACACTATTTGCGTACT-

GGC

purR + pSMART

qPCR primers Sequence 5’-3’

ptsG_U_F CAGAATTCATAAATAAAGGGCGCTTAGA qPCR targeting ptsG-sfGFP up-

stream of SgrS binding site

ptsG_U_R TCTCACGCGTGGCAAGG qPCR/RT targeting ptsG-sfGFP up-

stream of SgrS binding site

ptsG_D_F CCGTTCAACTAGCAGACCATTA qPCR targeting ptsG-sfGFP down-

stream of SgrS binding site

ptsG_D_R GACAGATTGTGTCGACAGGTAA qPCR/RT targeting ptsG-sfGFP

downstream of SgrS binding site

16S rRNA_F AGGCCTTCGGGTTGTAAAGT qPCR targeting ribosomal RNA
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Table 2.4 - continued from previous page

16S rRNA_R ATTCCGATTAACGCTTGCAC qPCR/RT targeting ribosomal RNA

SgrS_F AGCGTCCCACAACGATTAAC qPCR targeting SgrS

SgrS_R CACCAATACTCAGTCACACATGA qPCR targeting SgrS

In vitro tran-

scription

primers

Sequence 5’-3’

SgrS +T7_F TAATACGACTCACTATAGGGAT-

GAAGCAAGGGGGTGC

SgrS +T7_R AAAAAAAACCAGCAGGTATAATCTGCT

ptsG-sfGFP

+T7 F

TAATACGACTCACTATAGGCACAGAATTCATAAATAAAGGGCG

ptsG-sfGFP

+T7 R

CCGCCCTAGACCTAGGCGTTCG

FISH Probes Sequence 5’-3’

SgrS_1 GTGCTGATAAAACTGACGCA

SgrS_2 ACTTCGCTGTCGCGGTAAAA

SgrS_3 CTTAACCAACGCAACCAGCA

SgrS_4 CATGGTTAATCGTTGTGGGA

SgrS_5 ATCCCACTGCATCAGTCCTT

SgrS_6 GTCAACTTTCAGAATTGCGG

SgrS_7 TCAGTCACACATGATGCAGG

SgrS_8 GCGGGTGATTTTACACCAAT

SgrS_9 AACCAGCAGGTATAATCTGC

sfGFP_1 ATTTGTGCCCATTAACATCA

sfGFP_2 GAGTAGTGACAAGTGTTGGC

sfGFP_3 TCATGTGATCCGGATAACGG

sfGFP_4 TAGTGCGTTCCTGTACATAA

sfGFP_5 GCCGTGATGTATACATTGTG

sfGFP_6 GTTAGCTTTGATTCCATTCT

sfGFP_7 GCTAGTTGAACGGAACCATC
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Table 2.4 - continued from previous page

sfGFP_8 CGCCAATTGGAGTATTTTGT

sfGFP_9 TGTCGACAGGTAATGGTTGT

sfGFP_10 TCAAGAAGGACCATGTGGTC

RyhB_1 GCGAGGGTCTTCCTGATCGC

RyhB_2 ATGTCGTGCTTTCAGGTTCT

RyhB_3 AATACTGGAAGCAATGTGAG

RyhB_4 GCCAGCACCCGGCTGGCTAA

16S rRNA CCC CAG TCA TGA ATC ACA AA

Table 2.5 Parameter prior distributions.

αm (molecules ·s-1) N(μα,σα)
a

kx (AU•·s-1) N(μk,σk)

kon (molecules-1s-1) U(10-9,10-2)b

koff (molecules ·s-1) U(10-5,10)

kxs/kx U(0,1)

βms (s
-1) U(βm,1.0)

βe (s
-1) U(10-6,1.0)

a Normal distribution with mean and standard deviation calculated from –sRNA experi-

ments

b Uniform distribution

2.6 Appendix: Fitting and Simulation Code Instructions

2.6.1 Introduction and requirements

The following is an instruction manual for the pipeline I used to get from raw image

data to kinetic parameter values. It can be followed exactly to reproduce the results de-
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scribed in this chapter, or modified according to the needs of the user. If the user would

like to run the protocol as is, the following are required:

1. A full analysis, from raw image data to kinetic parameter values requires at least eight

imaging datasets: two replicates each of wild-type (WT) rne, ∆sgrS and rne701,

∆sgrS (in order to calculate the transcription and translation rates), and two replic-

ates each of WT rne, WT SgrS and rne701, WT SgrS. Of course, more replicates

of any sample can be acquired and accommodated, but these are the minimum set.

Each fluorescent image is assumed to be a multichannel Z-stack, with a violet chan-

nel included, in .nd2 format. These .nd2 files should be converted to .tif format using

the NIKON conversion program.

2. Converted fluorescent image data is organized in a tiered folder organization, fol-

lowing the naming format: ImageFolder = ”Date”/”Sample”/”Time”/”Replicate”. For

example, the image of the second replicate from the t=24 time point of the sample

”MR156” (pSMART_ptsG-10aa-sfGFP, wt rne background), acquired on January 25,

2021 can be found in the folder ”January_25_2021/MR156/t24/sample2/”. Within the

folder ”January_25_2021/MR156/” is a separate folder for each time point, named

according to the above example.

3. Each fluorescent image has an associated DIC image, labeled according to the rep-

licate. For example, the DIC image associated with the second image in the January

21, 2021, MR156, t = 24 dataset is called ”dic2.tif”, with full extension name ”Janu-

ary_25_2021/MR156/t24/dic2.tif”

4. The most in-focus slices of the Z-stack in the violet channel and one other channel

are recorded. For example, for a Z-stack with the 647, 568, 488, and 405 nm chan-

nels recorded, the most in-focus slice for the violet (405 nm) channel might be slice

6, and the most in-focus slice for the 647 channel might be slice 4. These should be

recorded somewhere, most likely a lab notebook. Notably, the 647, 568, and 488
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channels always have the same in-focus slice (assuming there is no z-drift during

the data acquisition), but that slice is often different from the most in-focus slice for

the violet channel.

The ensuing instructions will be written assuming these requirements have been ful-

filled and the folders and files are named according to this format.

2.6.2 Segmentation

The first step in the analysis is to segment the cells and calculate their volume-

integrated fluorescent intensities using the MATLAB code ”seg2D_DIC.m”.

1. Line 4: change ”parentDir” to the folder path you would like all your analyzed fluores-

cent image data to be saved to. For example, all of my data (all dates, all samples)

are saved within the folder called ”/Users/reyer/Data/SingleCellEpi/”. Thus, I change

Line 4 to: parentDir = ”/Users/reyer/Data/SingleCellEpi/”. Data will be further organ-

ized automatically according to the strain name and date of the dataset.

2. Line 6: Input the strain numbers to be analyzed. All of my strains are named ac-

cording to the format ”MRx”, where ”x” is replaced with the strain number. The de-

scriptions corresponding to each strain number are stored in a Google Sheet.

For example, if you are to analyze a dataset of strain ”MR156”, replace Line 6 with:

strain = 156. If you would like to analyze multiple datasets at once, perhaps two

”MR156” and ”MR162”, replace Line 6 with: strain = [156,156,162], etc.

If User X would like to label their strain names using their own initials, for example

”UX156”, they can replace the ”MR” in Line 28 with ”UX”.

3. Line 8: Input the date of each dataset. For example, to analyze a dataset acquired

on January 25, 2021, change Line 8 to: Date = {’January_25_2021’}. To analyze
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three datasets, two from January 25, 2021, and one from January 27, 2021, change

Line 8 to: Date = {’January_25_2021’,’January_25_2021’,’January_27_2021’}.

4. Line 13: Input time points of dataset. For example, for the experiments described in

Chapter 2, replace Line 13 with: time = [0,1,3,6,12,18,24].

5. Line 15: Input the number of fluorescent channels in the dataset. For example, for

a dataset with images in the 647, 568, 488, and 405 nm channels, replace Line 15

with: channels = 4.

6. Line 16: Input the identity of the violet channel. Fluoresent image datasets are

acquired sequentially by imaging every slice in a channel, then moving to the next

channel and imaging every slice, and so on. If the violet channel is the fourth channel

in this sequence, replace Line 16 with: violet_channel = 4

7. Line 17: Input the most in-focus slice for each non-violet fluorescent channel. For

example, for a single dataset including only two time points, t=0 and t=1, with three

replicates each, where the most in-focus slices for the three replicates of t=0 are 5,

9, and 9, respectively, and the most in-focus slices for the three replicates of t=1 are

9, 9, and 6, respectively, replace Line 17 with: ref_slice_i = {{[5,9,9],[9,9,6]}}

8. Line 18: Input the most in-focus slice for each violet fluorescent channel. For ex-

ample, for a single dataset including only two timepoints, t=0 and t=1, with three

replicates each, where the most in-focus slices in the violet channel for the three

replicates of t=0 are 6, 10, and 10, respectively, and the most in-focus slices for the

three replicates of t=1 are 10, 10, and 7, respectively, replace Line 18 with: violet_-

slice_i = {{[6,10,10],[10,10,7]}}

After these steps have been completed, ”seg2D_DIC.m” can be run. No other steps

are required. A single .mat file will be saved in the directory specified in Line 4 for each

analyzed image. For example, the analyzed .mat files corresponding to the three replic-
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ates of the t=0 time point of the sample ”MR156” acquired on the date January 25, 2021

will be stored automatically in the folder ”/Users/reyer/Data/SingleCellEpi/MR156/Janu-

ary_25_2021/t0/” as ”sample_001.mat”, ”sample_002.mat”, and ”sample_003.mat”. Each

.mat file contains all the input and output variables so that they can be accessed at any

time. Of particular interest are the structured array titled ”part4”, which contains the Cell

ID, volume, center, and volume-integrated intensity in each channel for each cell, and the

intermediate segmented images, which can be checked for quality assurance.

2.6.3 Violet channel filtration

In the experiments described in Chapter 2, the 16S rRNA-A405 signal was used as

an indicator of sufficiently permeabilized cells. A threshold at the 90th percentile of the

background intensity distribution was then used as the 405 intensity cutoff. Cells with 16S

rRNA -A405 intensities below this threshold (less than 10% of the total population) were

considered not sufficiently permeabilized, and not included in further analysis. The violet

filtration can be done using ”VioletNormalize.m” following the segmentation.

1. Line 4: Input the time points, same as in ”seg2D_DIC.m”. For example, replace Line

4 with: time = [0,1,3,6,12,18,24]

2. Line 5: Input the strain name, same as in ”seg2D_DIC.m” For example, replace Line

5 with: strain = [156].

3. Line 6: Input the replicates you wish to filter. Normally, this is every replicate ana-

lyzed in ”seg2D_DIC.m” but if there is some aberration in the image that makes it not

appropriate for subsequent analysis, for example xy-drift during the image acquisi-

tion, they can be skipped. For example, for a single dataset including only two time

points, t=0 and t=1, with three replicates each, but the second replicate of the t=1

dataset cannot be analyzed further, replace Line 6 with: sample = {{[1,2,3],[1,3]}}.
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4. Line 7: Input the dates of the datasets to be analyzed, same as in ”seg2D_DIC.m”.

5. Lines 8-11: Input the identities of the red, green, blue, and violet channels in the

multichannel fluorescent image. For example, if the first channel is red, the second

channel is green, the third channel is blue, and the fourth channel is violet, replace

Line 8 with: red_channel = 1; replace Line 9 with: green_channel = 2;, replace

Line 10 with: blue_channel = 3; and replace Line 11 with: violet_channel = 4. If

the fluorescent image does not include one of the channels, that channel ID should

be set to 0. For example, if in the multichannel fluorescent image the first channel

is green, the second channel is blue, the third channel is violet, and there is no

red channel included, replace Line 8 with: red_channel = 0; replace Line 9 with:

green_channel = 1;, replace Line 10 with: blue_channel = 2; and replace Line 11

with: violet_channel = 3.

After these steps have been completed, ”VioletNormalize.m” can be run. Cells that

do not meet the 405 intensity cutoff will be filtered out of the dataset, and the saved .mat

file will be modified to now include the structured array titled ”Part4_V_Normalized”, which

is in the same format as ”part4”.

2.6.4 Sample check

This step is optional but highly recommended, as it serves as a check of the quality of

the data. If any of the replicates are anomalous in someway, for example if the background

fluorescence is very high in one image, it will stand out in the figures output in this step

by the code ”internalSampleCheck_VThresh.m”. The inputs for ”internalSampleCheck_-

VThresh.m” are identical to those in in ”VioletNormalize.m”, but located in Lines 17-24.

The code outputs a figure like Figure 2.19.

66



Time after Induction (min)
0 5 10 15 20 25

m
R

N
A 

W
ho

le
 C

el
l I

nt
en

si
ty

× 106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Example mRNA Intensity Output

Figure 2.19 Example Output from internalSampleCheck_VThresh.

Each point with error bar represents the average fluorescent intensity and standard deviation of a

single channel, in this instance the mRNA channel, of an image. In this example, there are some

points at the t=18 and t=24 time point that appear to be anomalous. The user may want to carefully

inspect those images.

2.6.5 Timecourse of intensities output CSV

The final step before fitting kinetic parameters is calculating and recording the mean

and standard deviation of intensities for the experiment using the code ”makeSingleCell-

Figs_VThresh.m”. The inputs for ”makeSingleCellFigs_VThresh.m” are identical to those

in ”internalSampleCheck_VThresh.m” and ”VioletNormalize.m”, but located in Lines 18-

25. The code outputs a .csv file titled ”VThresh_BackSubIntensity.csv” in the same output

folder as defined earlier in the analysis. The output csv appears like Table 2.6, where

each entry is in Arbitrary Fluorescent Unites (AU).

67



Table 2.6 Example Image Timecourse Output.

Time Mean_Blue Blue_Sigma Blue_SE Mean_Green Green_Sigma Green_SE Mean_Red Red_Sigma Red_SE

0 23388.0291 33948.4802 1203.27198 30174.4949 40376.8198 1431.11843 1151599.51 1879311.02 66610.413

1 17162.258 149951.909 5275.28974 14820.0972 28180.2301 991.377037 1301486.68 1930173.29 67903.2595

3 12621.4844 20156.6204 765.686695 49188.4762 57617.4171 2188.70469 888734.425 1701998.49 64653.5764

6 34618.1992 66218.5343 2920.77434 174907.248 127528.66 5625.04803 1085190.52 1917016.75 84555.9839

12 52863.2863 60751.2941 1745.75567 139805.535 96143.8918 2762.80114 231026.965 879624.013 25276.9695

18 87460.673 94507.3212 2830.27099 126775.679 87631.9686 2624.37042 301791.504 1048239.68 31392.3017

24 169019.18 156426.523 5925.07705 181014.856 119098.897 4511.19242 169274.09 623835.524 23629.4554

2.6.6 Running scripts on Midway

All kinetic parameters are calculated with Python scripts run on Midway. An easy way

to transfer scripts and run them on Midway is described here. Users will need a Midway

user account. These instructions are written for a Mac user.

Editing scripts on your computer:

1. Create a folder on local computer containing all scripts of interest. Write and edit

scripts locally using some text editor or Python Interactive Development Environment

(IDE). A good choice is the Spyder IDE.

Transferring scripts to Midway:

1. To change directories, use the command ”cd”, then enter. In order to move back one

folder, type ”cd ..”. In order to move into a new folder, type ”cd new/folder/directory”.

In the terminal, you will start in your Home folder. If at any time you need to check

which directory you are currently located in, use the command ”pwd”. To check the

contents of the current folder, type ”ls”.

2. From the home directory in the Mac terminal, change to the directory containing

scripts of interest. If the scripts of interest are located in the folder ”Users/reyer/py-

thon_trans/5320/”, type ”cd python_trans/5320”. You are able to tab complete in the
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Terminal, meaning you can type ”cd pyth” for example, then press ”tab” and (as-

suming there is only one folder that starts with ”pyth”), the rest of the folder will be

auto-completed to ”cd python_trans”. This is useful for time purposes and if you

can’t remember the exact name of the folder.

3. You should now be located in the directory of interest. Check with ”pwd” if necessary.

4. To transfer the entire folder to some folder in your Midway directory, use the ”scp”

command. For example, if I want to copy ”Users/reyer/python_trans/5320/” to the

”project2/jingyifei/deltaSgrS/” directory on Midway2, type:

”scp -r . reyer@midway2.rcc.uchicago.edu://project2/jingyifei/deltaSgrS”.

5. You will be prompted to type your Midway password, which will be invisible. Press

enter. You will next be asked to authenticate with 2-FA.

6. If you initiated the transfer correctly, you will see the progress of the transfer in the

Terminal.

Logging on to Midway:

1. To log on to your Midway account, from any directory in the terminal use the com-

mand ”ssh”, for example ”ssh reyer@midway2.rcc.uchicago.edu”, then enter. You

will again be asked to enter your password and authenticate with 2-FA

2. If successful, you will arrive in your home directory on Midway 2, for example

”/home/reyer”. Use ”pwd” to confirm

Running scripts on Midway:

1. Change to the directory you just copied to Midway. That should be somewhere in the

PI-account directory on project2. NEVER RUN SCRIPTS ON THE LOGIN NODE!

Only run scripts in project2.
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2. To change to the directory of interest, use ”cd ../../directory/of/interest”. You usu-

ally need to move back a couple folders from you home directory first. For ex-

ample, if I transferred the folder ”Users/reyer/python_trans/5320/” to ”reyer@mid-

way2.rcc.uchicago.edu://project2/jingyifei/deltaSgrS” and I now want to change to

that directory, from the Midway home directory type ”cd ../../project2/jingyifei/deltaS-

grS/5320/”. Check if you are in the correct directory using ”pwd”.

3. Once in the directory of interest, either move into the subfolder containing your script,

or if the script is located in the current folder, it can be run now.

4. The folder should contain your python script and a .sbatch file, which gives the dir-

ections to run the script. My .sbatch files are always called ”mcmcFitting.sbatch”,

and there is one in each folder containing a python script. You can check and edit

the .sbatch script by typing ”emacs mcmc.sbatch”.

5. Run the script by typing the command ”sbatch mcmcFitting.sbatch”. Let the code

run to completion.

6. You can check the status of your runs using:

”sacct -u user –format=jobid,partition,elapsed,stat”

7. When the runs are complete, the output files ”likelihood.csv”, ”posterior.csv”, and

”walkers.csv” will be written in the same folder as the script is located. You can now

transfer this whole folder back to your local computer.

Transferring Folders back to Local Computer:

1. Logout of Midway by typing ”logout”. You will now be in whatever directory you were

in when you logged into Midway

2. To transfer the entire folder, containing the output files, from Midway back to your

computer, first change directories to wherever you want your data deposited. For
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example, if I want to copy all my data to ”Users/reyer/Data/Kinetics”, I will move back

to my home directory then type ”cd Data/Kinetics”

3. Once in the directory where you would like your data deposited, copy the folder

using ”scp -r reyer@midway2.rcc.uchicago.edu://project2/jingyifei/deltaSgrS/5320 .”

replacing the username and file name as necessary. You will again be asked to enter

your password and authenticate with 2-FA. If successful, you will see the progress

of the transfer in the terminal

2.6.7 Calculating transcription and translation Rates

The scripts to calculate transcription (or initiation) and translation rates will vary slightly

based on the number of replicates and the model (e.g. one-step vs. two-step transcrip-

tion). The terms ”transcription” and ”initiation” will be used interchangeably in these in-

structions, as the procedure for calculating either is exactly the same. The only thing that

changes is the Model ODE’s in the python script.

The following instructions are written for an example calculating the ptsG initiation

and translation rates using the two-step transcription model in WT rne background, when

two imaging replicates have been collected. Of course, the same thing will need to be

done for rne701 background, and for each mRNA. This example uses the script titled

”ptsG_delta_MCMC.py”, which I place in its own folder with an associated .sbatch file, as

described above. I write a separate script for each replicate. Assuming all this, the script

can be edited according to:

1. Line 53: Input the timepoints, in seconds. If the experiment to be analyzed has

timepoints, t = 0,1,3,6,12,18,24 change line 53 to: xData = [0, 60, 180, 360, 720,

1080, 1440].

2. Lines 57-65: Input protein and mRNA fluorescence intensity numbers. You can
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copy these from the fluorescence intensity .csv, such as in Table 2.6, into the arrays

yP1, yP2, yM1, and yM2. For replicate 2, you can switch the names yP1 and yP2,

as well as yM1 and yM2. An example of what a protein data array would look like

using the data from Table 2.6 is: yP1 = [23388.02909, 17162.25803, 12621.48443,

34618.19921, 52863.28629, 87460.67299, 169019.1797].

3. Line 89: Input the mRNA degradation rate, which should have been calculated with

rifampicin experiment.

These are the only inputs that need to be changed for this script. Of course, if more

detailed changes, for example a change to the Model or a different number of MCMC

walkers, are required, the script will need to be further modified. For this example, the

script can be run as is.

Once the script is edited, transfer the folder to Midway, and run it using the instructions

in Section 2.6.6. When the run is complete, transfer the folder back from Midway to your

local computer. Using the posterior and walker output .csv files, we will now calculate the

transcription and translation rates using ”am_kx_outputs.py” and ”am_kx_fits.py”. First,

using ”am_kx_outputs.py” we will output figures that visualize the walker trajectories and

posterior distributions.

1. Line 25: Input the name of the directory containing the output .csv files. For example,

change Line 25 to: WalkerFolder = ”/Users/reyer/Data/Kinetics/5320/”

2. Line 27: Input the number of walkers used in the MCMC run.

3. Line 28: Input the number of steps each walker took in the MCMC run.

4. Output figures will be saved automatically in WalkerFolder.

Next, we will calculate the transcription and translation rates with ”am_kx_fits.py”.
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1. Line 15: Input the name of the directory containing the output .csv files, same as in

”am_kx_outputs.py”. For example, change Line 25 to:

WalkerFolder = ”/Users/reyer/Data/Kinetics/5320/”.

2. Line 27: Input the number of walkers, same as in ”am_kx_outputs.py”.

3. Line 29: Input the number of steps, same as in ”am_kx_outputs.py”.

After these steps have been completed, the script can be run without further modifica-

tion. Output figures showing the MAP values for the transcription and translation rates will

be saved automatically in WalkerFolder. The average MAP values for each parameter,

and the associated error, should be recorded.

2.6.8 Calculating remaining kinetic parameter values

The scripts to calculate the remaining kinetic parameter values will vary slightly based

on the number of replicates and the model (e.g. one-step vs. two-step transcription, co-

transcriptional vs post-transcriptional).

The following instructions are written for an example calculating the ptsG kinetic para-

meter values using the two-step transcription, co-transcriptional regulation model, when

two imaging replicates have been collected in both WT rne and rne701 backgrounds (4

datasets total). This example uses the script titled ”ptsG_plus_delta_MCMC.py”, which

I place in its own folder with an associated .sbatch file, as described above. I write a

separate script for each replicate. Assuming all this, the script can be edited according to:

1. Line 50: Input the timepoints, in seconds. If the experiment to be analyzed has

timepoints, t = 0,1,3,6,12,18,24 change line 53 to: xData = [0, 60, 180, 360, 720,

1080, 1440].

2. Line 55: Input the number of replicates in the dataset. In this example, there are two
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replicates, so Line 55 is: numReplicates = 2.

3. Lines 61-73: Input protein, mRNA, and sRNA fluorescence intensity numbers from

both replicates. You can copy these values in the yData matrix. An example of the

yData matrix is:

yData[0, 0, :] = [134917.1029, 184452.1771, 180579.3257,216245.1063, 432250.9255, 839879.6454, 1170873.494, 1903248.354]

yData[0, 1, :] = [22443.71086, 339380.1687, 774276.8132, 989754.3786, 1178364.294, 1168843.171, 1039977.762, 1152377.24]

yData[0, 2, :] = [1299487.304, 2158748.53, 1461797.642, 1479650.818, 1213052.738, 1132760.79, 930608.6544, 743058.2862]

yData[0, 3, :] = [257171.8156, 242054.4163, 248115.1836, 246027.831, 383643.0025, 802367.1203, 1131430.97, 1382649.746]

yData[0, 4, :] = [16225.77785, 7646.443305, 194166.3494, 714018.5826, 1418654.816, 1533096.423, 1617435.188, 2046367.339]

yData[0, 5, :] = [2188990.237, 2050903.278, 2390768.473, 1788277.574, 1296136.946, 1018016.032, 973140.0654, 973140.0654]

yData[1, 0, :] = [144202.1426, 333919.142, 149161.7576, 304584.7737, 738063.1426, 808832.9779, 1392651.226, 1681171.266]

yData[1, 1, :] = [33318.96697, 262752.4716, 627298.9573, 851325.6287, 1159651.072, 1151829.933, 1016580.917, 1118273.902]

yData[1, 2, :] = [1788327.436, 1787030.495, 1406293.534, 1188055.269, 1088649.355, 825880.4722, 785990.9093, 744898.0836]

yData[1, 3, :] = [64338.27187, 36900.77477, 47182.78534, 52802.52599, 298986.6166, 731084.9614, 1055270.669, 1940635.146]

yData[1, 4, :] = [28424.46802, 39375.74472, 237406.821, 1027314.934, 2003857.809, 2042997.469, 1758470.575, 2012571.706]

yData[1, 5, :] = [2547665.889, 2079076.002, 2324980.48, 2178616.805, 1944435.717, 956261.5957, 1099876.149, 1250870.797]

where the format of the data is as follows:
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yData[0, 0, :] = WT Protein, Rep 1

yData[0, 1, :] = WT mRNA, Rep 1

yData[0, 2, :] = WT sRNA, Rep 1

yData[0, 3, :] = rne701 Protein, Rep 1

yData[0, 4, :] = rne701 mRNA, Rep 1

yData[0, 5, :] = rne701 sRNA, Rep 1

yData[1, 0, :] = WT Protein, Rep 2

yData[1, 1, :] = WT mRNA, Rep 2

yData[1, 2, :] = WT sRNA, Rep 2

yData[1, 3, :] = rne701 Protein, Rep 2

yData[1, 4, :] = rne701 mRNA, Rep 2

yData[1, 5, :] = rne701 sRNA, Rep 2

The MAP values of the kinetics will be calculated for the combination of datasets

(WT rne and rne701) with the 0’s in the first column of yData. The 0’s and 1’s in the

first columns can be switched appropriately to calculate the MAP values for the four

dataset combinations (see Section 2.4.8)

4. Line 95-97: Input the WT initiation rate and standard deviation, calculated in Section

2.6.7.

5. Line 99-101: Input the rne701 initiation rate and standard deviation, calculated in

Section 2.6.7.

6. Line 107-109: Input the mRNA degradation rates and standard deviation

7. Lines 116-121: Input the WT rne sRNA transcription and degradation rates, and

standard deviation

8. Lines 123-128: Input the rne701 sRNA transcription and degradation rates, and
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standard deviation

9. Lines 130-135: Input the WT rne and rne701 translation rates and standard devi-

ations, calculated in Section 2.6.7.

These are the only inputs that need to be changed for this script. Of course, if more

detailed changes, for example a change to the Model or a different number of MCMC

walkers, are required, the script will need to be further modified. For this example, the

script can be run as is.

Once the script is edited, transfer the folder to Midway, and run it using the instructions

in Section 2.6.6. When the run is complete, transfer the folder back from Midway to your

local computer. Using the posterior and walker output .csv files, we will now calculate

the remaining kinetic parameter values using ”coTran_outputs.py” and ”coTran_fits.py”.

There are different versions of ”output.py” and ”fits.py” depending on the Model being

simulated. Again, here we are assuming the two-step transcription, co-transcriptional reg-

ulation model. First, using ”coTran_outputs.py” we will output figures that visualize the

walker trajectories and posterior distributions.

1. Line 40: Input the name of the directory containing the output .csv files. For example,

change Line 40 to: WalkerFolder = ”/Users/reyer/Data/Kinetics/5320/”

2. Line 42: Input the number of walkers used in the MCMC run.

3. Line 43: Input the number of steps each walker took in the MCMC run.

4. Output figures will be saved automatically in WalkerFolder.

Next, we will calculate the kinetic parameter values with ”coTran_fits.py”.

1. Line 45: Input the name of the directory containing the output .csv files, same as in

”coTran_outputs.py”. For example, change Line 45 to:
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WalkerFolder = ”/Users/reyer/Data/Kinetics/5320/”.

2. Line 74: Input the number of walkers, same as in ”coTran_outputs.py”.

3. Line 64: Input the number of steps, same as in ”coTran_outputs.py”.

After these steps have been completed, the script can be run without further modi-

fication. Output figures showing the MAP values for the kinetic parameter values will be

saved automatically in WalkerFolder. The average MAP values for each parameter, and

the associated error, should be recorded.

2.6.9 BIC calculation

Calculate the BIC associated with the best fit set of parameters using ”co_BIC.py”

(or ”post_BIC.py” for post-transcriptional regulation model). The only input is the Walker-

Folder, same as in the previous scripts, in Line 22.

2.6.10 Checking quality of fits

Check the quality of the fits by inputting the MAP kinetic values and their associated

errors into the MatLab script ”ptsG_initFit.m”. There is a separate script for each mRNA

(e.g. ”manX_initFit.m”, ”purR_initFit.m”, etc.), and for each model being simulated. The

output figures will look like those in Figure 2.4.
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CHAPTER 3

INTERACTIONS BETWEEN THE SRNA ACCESSORY PROTEIN, HFQ,

AND THE RIBOSOME

3.1 Introduction

In the broad view of RNA-mediated gene regulation, RNA-binding proteins are per-

haps of equal importance to the regulatory RNAs themselves. Chief among the RBPs in

bacteria is Hfq, which has been found in more than half of known bacterial species52,53.

Hfq works in tandem with small RNAs as a chaperone protein, helping to regulate gene

expression at the co-transcriptional, post-transcriptional, and translational levels144–147.

Hfq aids the sRNA-mediated regulatory process mainly via three mechanisms. First,

Hfq protects sRNAs from degradation by RNases45,54,148. Second, Hfq facilitates the

sRNA target search process and sRNA-mRNA base pairing54,149. Third, Hfq promotes

the rapid turnover of mRNA and sRNA by RNase E45,58,127,150. Hfq can efficiently carry

out these roles because of its ability to directly bind both sRNAs and mRNAs through

different surfaces5,50,127,151, and because of its interactions with various other proteins

involved in the regulation process, principally RNase E46,58,150,152–154.

From a simplified perspective, an effective bacterial stress response can come down

to whether an mRNA is translated into a gene product by the ribosome, or regulated by

the sRNA-Hfq complex. It has already been established that sRNA-Hfq interacts directly

with both the mRNA and RNase E, and indirect association between the ribosome and

Hfq have been noted before155–158, so it perhaps follows naturally to ask if sRNA-Hfq

interacts directly with the other major player, the ribosome, and how such interactions

may affect the regulatory functions of Hfq. In this chapter, inspired in part by a revelation

from Chapter 2, we propose to explore the possibility of direct interactions beetween Hfq

and the ribosome, and what effect those interactions may have on the sRNA-Hfq target
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search process and subsequent regulation of target mRNAs.

3.2 Potential relationship between translation and association rates

We can imagine potential interactions between the ribosome and sRNA-Hfq to be

either competitive or cooperative. In the former scheme, Hfq and the ribosome ”compete”

for access to the mRNA. Since many target mRNAs have sRNA binding sites close to or

directly overlapping the ribosome binding site (RBS)26,55,73,159,160, one might infer that

ribosome binding and Hfq binding are mutually exclusive. Therefore, rapid and regular ri-

bosome binding and, by extension, efficient translation would decrease the effectiveness

of sRNA-mediated regulation by blocking access of the sRNA-Hfq to its mRNA binding

site. Such a model is analogous to the competition between the ribosome and RNase

E that dictates mRNA degradation, wherein binding between the two molecules is in fact

mutually exclusive and efficient translation subsequently protects mRNA from degrada-

tion161. If this model were real, we would expect a negative correlation between the

mRNA translation rate and the binding rate of sRNA-Hfq.

In the latter scheme, ribosome binding facilitates sRNA-Hfq in its pursuit to regulate

the target mRNA. Such cooperation could perhaps be the byproduct of efficient translation

increasing mRNA stability162, an increased ability of sRNA to bind stable targets163, or

some other unknown mechanism. While it is certainly true that the ribosome and Hfq

cannot be bound to the same site on an mRNA at the same time, perhaps binding of the

ribosome could attract Hfq to bind in quick succession. If this were the case, we would

instead expect a positive correlation between translation rates and sRNA-Hfq association

rates.
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Figure 3.1 Translation rate vs on-rate of sRNA binding.

kx vs. kon for all mRNA targets. Points in blue are mRNA targets of SgrS. Points in green are

targets of RyhB. Error bars represent standard deviation of calculated MAP values (see Table 2.1

and 2.2).

While the kinetic competition model of ribosome-Hfq interactions is perhaps more

intuitive, mounting evidence suggests that ribosome-Hfq interactions do exist and more

closely resemble the cooperation model. A quantitative study by the Levine group set

out to probe an adjacent question, namely whether ribosome and sRNA interactions are

competitive or cooperative63. Using a library of reporter genes with RBSs of differing

predicted translation efficiencies and mathematical models representing both the compet-

ition and cooperation frameworks, they showed that translation was positively correlated

with sRNA-mediated regulation. Though at the time of the study the mechanism behind

the recruitment was unknown, the authors posited that it might be due to ”direct interac-

tion between the ribosome and either the sRNA or Hfq,” motivating our search for such

interactions63.
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Furthermore, a result from our own work (described in Chapter 2) also point towards

the cooperative model of ribosome-sRNA interactions. In the our study on the kinetics

of sRNA-mediated regulation, we were able to directly measure the translation rates of

multiple target mRNAs, each with different RBSs and translation efficiencies, within single

sRNA regulons. We inferred the on-rates of sRNA binding from modelling. In line with the

results from (Lavi-Itzkovitz, 2014), we saw a positive correlation between translation and

association rates (Figure 3.1). Furthermore, since we were deriving the association rates

themselves rather than simply observing the amplitude of the sRNA regulation effect, our

observation of a connection between translation and sRNA binding was an even more

direct and concrete comment on the cooperation model. This result combined with the

hypothesis posed by the Levine group inspired us to investigate further the mechanisms

behind the correlation, and specifically the potential of a direct ribosome-Hfq interaction.

3.3 Hfq-ribosome interactions revealed by imaging and staining

We sought to utilize both traditional molecular biology techniques and imaging to ex-

plore potential interactions between Hfq and the ribosome.

Using our platform designed to detect the binding and interaction states of Hfq using

diffusivity as a proxy127, we discovered a connection between translation activity and

Hfq spatial dynamics. Under normal conditions (exponential growth, no treatment, NT),

Hfq is equally distributed and diffuses freely throughout the cell (Figure 3.2A). Imaging

results show that Hfq can be trapped in low-diffusivity, high density clusters under two

conditions under which ribosomes become locally condensed. In the first condition, E. coli

cells are exposed to cloramphenicol (CM), an antibiotic that blocks translation by inhibiting

elongation and causes ribosome stalling164. The same phenomenon was not observed

when the antibiotic kasugamycin (Ksg), which inhibits translation by preventing ribosome

loading, was added165 (Figure 3.2B).
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In the second condition, we overexpressed a translation-efficient (i.e. has a strong

RBS) fusion mRNA, sodB-lacZ, from a plasmid. Again, in the presence of high transla-

tion activity, we observed low-diffusivity Hfq clusters (Figure 3.2B, C). Interestingly, these

clusters remained present even when WT Hfq was replaced with a mutant Hfq (Hfq65)

with its C-terminal, unstructured region truncated, suggesting that the clustering is not

driven by intrinsically disordered regions (IDRs), a common requisite for in vivo cluster-

ing. Furthermore, a second Hfq mutant (Y25D), which is a distal face mutant deficient

in mRNA binding, still formed clusters and co-localized with the ribosome, though its dif-

fusivity decreased. In total, these result suggest that translation activity, but specifically

the clustering of ribosomes, attracts and condenses Hfq, and that this trapping effect is

enhanced by mRNA binding, but neither dependent on mRNA binding nor IDRs.
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Figure 3.2 Hfq is Trapped by Condensed Ribosomes.

(A) A representative example of WT Hfq-mMaple3 in WT rne background in a single cell during

exponential growth under no treatment (NT) condition. 2D reconstructed image of Hfq-mMaple3

is shown in the black background. One-step displacement (osd) speed map (unit: µm/s) is shown

as a scatter plot where different colors represent different speeds at each position, and the white

curves represent the nucleoid regions detected by Hoechst staining. Different diffusion trajectories

from tracking algorithm are shown in different colors (‘Traj’).
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Figure 3.2 (continued) (B)WTHfq is trapped in low-diffusivity clusters under conditions where the

ribosome becomes condensed, including in the presence of CM and by overexpressing sodB-lacZ.

Trapping is not observed in the presence of Ksg. Notably, the Hfq65 and Y25D mutations do not

affect the trapping behavior. (C) Representative cell images of fixed Hfq-mMaple3 co-stained with

rRNA FISH and DAPI to illustrate co-compartmentalization of Hfq and the ribosome.

Next, we utilized Western blotting to detect if there existed an interaction between Hfq

and the ribosome. The Western blot was conducted with purified ribosome, Hemagglu-

tinin (HA)-tagged Hfq, and HA antibody to detect the tagged Hfq. Ribosome-containing

fractions were collected from a sucrose gradient and analyzed for the presence of Hfq.

The size of Hfq is 52 kDa; therefore, the presence of Hfq should be communicated by a

band around the 50 kDa marker (Figure 3.3). When left untreated, we see faint bands at

the 50 kDa marker. However, in the presence of CM, we see much darker bands at the 50

kDa marker, indicating an interaction between Hfq and the ribosome is enhanced under

conditions where the ribosome becomes condensed, consistent with our imaging results.

Seeing as the apparent interaction betweenHfq and the ribosome is dependent neither

on the Hfq IDR or mRNA binding, we looked elsewhere for potential mechanisms. It has

been observed in a study by Schavemaker et al. that positively charged proteins (spe-

cifically, a charged GFP) diffuse more slowly than negatively charged proteins due to

electrostatic interactions with the ribosome166. E. coli Hfq, notably, is highly positively

charged. We therefore hypothesized that the trapping effect ribosomes have on Hfq may

be due to electrostatic interactions. However, when the Western blot was performed with

the reduced-charge mutant of Hfq, R17D, there is no subsequent decrease in the Hfq-

ribosome interaction, which potentially complicates this hypothesis. Therefore, the search

for a mechanism continues.
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Figure 3.3 Hfq association with Ribosome Revealed by Western Blot.

Western blot was conducted with purified ribosome and HA antibody against HA-tagged Hfq.

Bands at 25 kDa likely represent Hfq dimers.

Before we can conclusively determine the mechanism, though, we first ask: if there

does exist an interaction between the ribosome and Hfq, what effect might it have on the

sRNA target search process? We attempt to address this question using simulations.

3.4 Simulations on sRNA target search as a function of Hfq recruit-

ment

Disregarding for a moment the mechanism behind the Hfq-ribosome interaction, we

now ask what are the functional implications of it and specifically, what effect it may

have on sRNA target search process. To test the feasibility of Hfq-ribosome interaction-

facilitated target search, we first turned to a spatial stochastic simulation. Using the Lattice

Microbes platform developed by the Luthey-Schulten lab167, we attempted to computa-

tionally recapitulate the observed correlation between translation and sRNA association

rates, assuming that the ribosome has a trapping effect on Hfq.

Lattice Microbes uses chemical and reaction-diffusion master equations to simulate

the cell containing various compartments (e.g., cytoplasm, membrane, nucleoid) com-

85



posed by many 3D sub-volumes (or lattices), which particles (representing biomolecules)

can diffuse into and react if co-occupying with other particles. The likelihoods of diffusion

and reaction steps are determined by a transition matrix, which is defined by diffusion

coefficients and kinetic rates as inputs. We are able to set some of these inputs from liter-

ature38,168–174 and results from both our Hfq tracking experiments and sRNA regulation

kinetics study (Chapter 2).

The model we enacted simulates a regulatory sRNA searching for a target mRNA in

vivo, assuming that the target mRNA is greatly outnumbered by non-target mRNAs, that

Hfq is limited relative to all cellular sRNAs andmRNAs156,175, and that ribosomes can trap

Hfq in a translation-dependent manner. We do not consider the downstream regulatory

effects of the sRNA-mediated regulation, only the target search and binding processes.

The model includes specific kinetic modules for:

(A) Translation of target and non-target mRNAs;

(B) Transient interactions between the sRNA-Hfq complex (referred to as “SHC”) and

the ribosome/polysomes on both target and non-target mRNAs in a translation rate-

dependent manner (i.e. the higher translation rate, the larger polysome density on

the mRNA, and the stronger interactions in kinetic module (B));

(C) Association of SHC with target and non-target mRNAs when they are in the same

lattice, with the former having a higher reaction rate than the latter.

A detailed description of the model parameters can be found in Section 3.7.3.

This model simulates an intrinsic linkage between basal translation activity and the

effective target search rate, in order to see if and how Hfq-ribosome interactions may play

a role. Module (B) connects the basal translation rate of the mRNA to the dwell time of

SHCs in close proximity. Module (C) links the longer dwell time to an increased chance

of SHC binding to the mRNAs. These scenarios are meant to demonstrate that if in fact
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translating ribosomes trap Hfq, the effective search time of the SHC can be reduced. Here

we define the effective search time (t) as the time required for 50% of the target mRNAs

bound by a sRNA. Our preliminary results from the simulation demonstrate that a higher

basal translation rate (kx) shortened the search time (t) by orders of magnitude (Figure

3.4B). Our simulation demonstrates a potential function of Hfq-ribosome interactions in

facilitating the sRNA target search.
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Figure 3.4 Ribosome Recruitment of Hfq Simulation.

(A) A detailed description of model parameters can be found in Section 3.7.3. Briefly, we model

the ribosome trapping of SgrS-Hfq, and the subsequent binding of SgrS-Hfq to mRNA as a two-

step process. The first step locally traps the SgrS-Hfq, and the second constitutes the actual

binding step. The faint SgrS-Hfq cartoon represents the locally trapped SgrS-Hfq complex which

we consider a separate species called SgrS-ribo. We consider dissociation only of non-specific

mRNAs. (B) t is the mean target search time, which decreases as a function of translation initiation

rate in the presence of ribosome-driven recruitment.
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3.5 Proposed single molecule experiments to test effect of transla-

tion on sRNA-Hfq binding to mRNA

In order to experimentally test the effect of translation on the sRNA target search pro-

cess, we propose a single-molecule microscopy experiment. Using Cy3 and Cy5 fluor-

escent labels to tag RyhB and the sodB-GFP, we will perform an in vitro translation ex-

periment. sodB-GFP will be anchored to a glass slide, and we can test the speed of the

target search process as a function of translation rate using FRET experiments. The exact

protocol for this experiment is currently under development.

We intend to introduce two perturbations to the experiment. First, we will change

the salt or polyamine conditions in the imaging solution to disrupt the Hfq-ribosome inter-

actions. We are currently performing electrophoretic mobility shift assay (EMSA) and in

vitro translation assays in order to make sure that the perturbed imaging conditions do not

affect the Hfq-RNA interaction or the basal translation rate, respectively. This assay can

help determine if the Hfq-ribosome interaction is in fact driven by electrostatics.

Second, we will modify the anchored mRNA to contain a stop codon located only a

short distance downstream from the start codon. The ribosome should unload from the

mRNA soon after initiating translation, thus preventing polysome buildup. In this way, we

can reduce the ribosome density without affecting the translation initiation rate. If Hfq-

ribosome interactions do in fact facilitate the sRNA target search process, as the simula-

tions in Section 3.4 predict, this assay can help distinguish if that is due to the ribosome

density itself, or if it is merely a byproduct of the ribosome removing the secondary struc-

ture of the mRNA, for instance.
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3.6 Discussion

In this chapter, we discussed our findings regarding the trapping effect that condensed

ribosomes have on the accessory protein Hfq. We believe that this effect is driven specific-

ally by translation and polysome clustering. Though the exact mechanism of the trapping

effect is still unknown to us, we show via simulation that such a trapping effect can aid

the sRNA-Hfq target search process. In the immediate future, we intend to experimentally

test if translation does in fact reduce the sRNA target search time.

3.7 Appendix: Running Lattice Microbes simulation

The following is an instruction manual for running the Lattice Microbes simulation of

ribosome recruitment described in Section 3.4. The probability distributions of ribosome

density (probability of n number of ribosomes per mRNA) were calculated analytically for

three initiation rates (Table 3.7.4). Those distributions take the form of discrete cumulative

distribution functions (CDF), representing the probability of having n ribosomes or fewer

bound to an mRNA at a given initiation rate. Those CDFs are written as arrays in the

simulation scripts.

All simulations are written as Python scripts and are run on Midway. Instructions for

how to edit scripts locally and transfer and run them on Midway are identical to those

written about in Section 2.6.

3.7.1 Running the ribosome recruitment simulation

We simulated the search times, defined as the time until half of the target mRNAs are

bound by SgrS-Hfq complex, in 20 cells. To run this simulation using ”riboSim.py” and its

associated .sbatch file, follow:

1. Copy the folder containing ”riboSim.py” and subsequent processing codes toMidway
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2. Line 13: Set the initiation rate (either 0.833, 0.0833, or 0.00833 molecules-1s-1)

3. Line 14: Set the recruitment option. If simulating a recruitment model, we set α=

0.95. For the no recruitment model, set α= 0.0

4. Line 494: Name the output file to be saved when the simulation is done, for example

”riboOutput.lm”.

5. Initiate the simulation run with ”sbatch lmBatch.sbatch”.

In order to run the simulations as described, these are the only inputs that need to

be changed. The output file, which records the trajectories and reactions of every particle

within the lattice at each time step, is saved in the same folder as a .lm file, which can be

interpreted with built-in Lattice Microbes functions.

3.7.2 Processing ribosome recruitment simulations

After running ”riboSim.py”, process the data using ”Processing.py”. Unlike the ana-

lysis in Chapter 2, the analysis here should be performed on Midway before transferring

files back to local computer. The reason for this is that the Lattice Microbes environment

has been (or should have been) previously built on Midway. Therefore, some of the built-in

functions associated with the environment are not accessible in a standard Python envir-

onment.

1. To initiate a Python environment while on Midway, simply type ”python” and press

enter.

2. Open ”Processing.py” by typing ”emacs Processing.py”.

3. Line 5: Input the output file from ”riboSim.py”. For example, change Line 5 to: file-

name = riboOutput.lm
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4. Run ”Processing.py” by typing ”python Processing.py” and pressing enter

The processing code will output a .png figure displaying the traces of sRNAs, target

mRNA, and non-target mRNAs. The sRNA .png’s will display the ”SHp” species, which

is the complex formed when sRNA-Hfq binds to target mRNA. These traces can be used

to visualize the search time. In addition to a figure for each trace, a figure called ”distri-

bution.png”, which displays the distribution, mean, and median of search times across all

cells, is saved automatically. These figures can be used for further analysis.

3.7.3 Description of parameters used in ribosome recruitment simulations

Table 3.1 Basal Kinetic Parameters used in Ribosome Recruitment Simulations.

Parameter Value

Initial Target mRNA Transcript Molecular Count 10

Initial Nonspecific mRNA Transcript Molecular Count 2000

Initial Free Ribosome Molecular Count 10000

Initial SgrS-Hfq Molecular Count 100

β 5 x 109 s-1

kA1 1 molecules-1s-1

kA2 1 molecules-1s-1

kD 100 s-1

DmRNA 1 x 10-12 m2/s

DSgrS-Hfq 0.124 x 10-12 m2/s

Dribosome 0 m2/s

In this model, ribosome recruitment of the SgrS-Hfq complex is modeled as a two-step

process. The first step is an electrostatic recruitment at the rate kA1, which in the language
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of the simulation turns the molecular species ”SgrS-Hfq” into the molecular species ”SgrS-

Ribo”. The second is the actual binding between the electrostatically recruited SgrS-Ribo

species and the target mRNA at rate kA2, which results in the new molecular species

”SgrS-Hfq-mRNA”. In our simulations, both of these steps in the recruitment and binding

process are diffusion-limited. The rate of this two-step process is separate from the search

process required for SgrS-Hfq to diffuse into the same volume as the target mRNA so that

the recruitment step can occur.

Binding of SgrS-Hfq to non-target mRNAs happens via the same two-step process,

but the subsequent ”SgrS-Hfq-non-specific-mRNA” molecular species can also dissociate

with the rate kD. As we were only interested in the time required for target search and

binding to target mRNAs, we did not include a dissociation step between SgrS-Hfq and

target mRNAs.

Instead, the electrostatically trapped SgrS-Ribo species can escape, thus returning

to the freely diffusing SgrS-Hfq species, via the rate ke. ke is based on the Arrhenius

Equation, and decreases exponentially with the number of ribosomes bound on the mRNA

associated with the SgrS-Ribo:

ke = βe-αn

where β is a constant used for unit conversion, α quantifies the strength of recruitment

(α= 0 for no recruitment, α> 0 for recruitment), and n is the number of ribosomes bound to

the mRNA. Thus, the rate at which SgrS-Hfq escapes the electrostatic trap is proportional

to the number of bound ribosomes.

The diffusion rates for unboundmRNA (DmRNA) and the SgrS-Hfq complex (DSgrS-Hfq)

come from literature176 and our own tracking data. The diffusion rate of any species bound

to the ribosome (Dribosome) is set to 0.
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The mean search times as a function of initiation rate, in both ribosome recruitment

simulations and non-recruitment simuations, are shown in Table 3.2. Each recruitment

simulation was replicated over 20 cells. Each non-recruitment simulation was replicated

over at least 12 cells, rather than 20, because the simulations took much longer in the

absence of recruitment.

Table 3.2 Search Times as a function of Initiation Rate.

Conditions Mean Search times (Seconds)

k init = 0.833 molecules
-1s-1 , α = 0.95 (Recruitment) 3.62

k init = 0.0833 molecules
-1s-1, α = 0.95 (Recruitment) 14.51

k init = 0.00833 molecules
-1s-1, α = 0.95 (Recruitment) 45.78

k init = 0.833 molecules
-1s-1, α = 0 (No Recruitment) 366.8

k init = 0.0833 molecules
-1s-1, α = 0 (No Recruitment) 333.9

k init = 0.00833 molecules
-1s-1, α = 0 (No Recruitment) 426.9

In the presence of ribosome recruitment, the SgrS-Hfq search time decreases as the

initiation rate increases. In the absence of recruitment, there is no relationship between

search time and initiation rate. These simulations serve to show how ribosome-driven

trapping of the SgrS-Hfq complex could aid the sRNA target search process.
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CHAPTER 4

IMAGE ANALYSIS TOOLS TO STUDY RNA-MEDIATED REGULATION

4.1 Introduction

The forte of the Fei lab is our advanced fluorescence and super-resolution imaging

approaches to studying RNA-mediated regulation. The contexts, environments, and sys-

tems in which we study RNA-mediated regulation are varied, but at the core, all of the

studies share these common goals: to detect RNAs, find where they are, see how they

move, and determine how those things contribute to the tasks they carry out. The de-

tection we leave to the microscopes (and those who operate them). As for the where

and how they move, we rely on computer programs to extract that information from the

microscope-acquired images and movies. But with novel detection techniques comes a

void in such programs to analyze them. My efforts to fill this void, for the good of the lab

and the community at large, are the subject of this chapter.

4.2 An automated image analysis method for segmenting fluores-

cent bacteria in three dimensions

4.2.1 Introduction

Single-cell fluorescence microscopy has become a powerful method for studying the

stochasticity of cellular activities and heterogeneity within a population177,178. To achieve

single-cell resolution, an efficient and accurate segmentation method is a critical tool in the

data analysis. Bacteria serve as model systems for investigating the fundamental mech-

anisms of many biological processes. In many experiments, bacteria are immobilized in

two-dimensional (2D) surfaces or trapped and aligned in microfluidic devices;178 there-

fore, many automatic segmentation methods are available to identify and track bacterial
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cells lying in two dimensions179–181. However, many interesting behaviors of microbes

may not be observed in a 2D setting. Bacterial pathogens invading host cells182 or bac-

teria undergoing a 2D to 3D transition during biofilm formation183, for instance, are often

clustered with different 3D orientations. In such examples, changes in the phenotypes and

cellular activities at the single-cell level may be not only time-dependent but also 3D space-

dependent. Therefore, a 3D segmentation method designed for these specific conditions

is necessary. Currently, a fully automatic 3D segmentation method for bacterial cells with

high cell identification and segmentation accuracy is not available. We considered several

well-cited programs used for 3D segmentation, including ImageJ184, Imaris (Bitplane, St.

Paul, MN), Icy Spot Detector185, and Cell Profiler186, and found two general shortcom-

ings. (1) Most of the commercial software can perform automatic 2D segmentation but

not automatic 3D reconstruction to generate 3D segmentation, and (2) the performance

on segmenting clustered cells is not satisfying (Figure 4.7).

Here we report a new analysis method, Seg-3D, for the segmentation of bacterial

cells in three dimensions that can also be flexibly applied to 2D images. Seg-3D is based

on local thresholding, 2D shape and concavity analysis, concavity-based cluster splitting

in two dimensions, and morphology-based 3D reconstruction (Figure 4.1). First, we use

a two-step local thresholding technique to minimize background noise and the additive

background characteristic of bacterial clustering. Second, the likelihood of identified 2D

objects being single cells is calculated using 2D-shape and concavity analysis. Third,

we split multicell clusters at concave points along the object borders, which denote cell

boundary intersections187–189. The single-cell identification step and concavity-based

splitting iterate until all objects can be either identified as single cells or discarded. Finally,

2D objects are combined with their most likely partners in adjacent slices to form 3D cells.

The parameters used to reconstruct 3D cells can be determined using low-density, single-

cell images, which improves the flexibility and accuracy of automatic 3D segmentation.
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Thresholding and object selection 

2D-Shape and concavity analysis

Concavity-based splittingSingle cells?
No
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Input image

2D Segmented image

3D Segmented image

Combining 2D objects based on shape, orientation, and center location

Determining 3D volume and number of z slices

Single cells?
No

Combining 3D objects based on 3D projection

Yes

Figure 4.1 Workflow of the image analysis program.

Details explained in text.

4.2.2 Image smoothing and thresholding

3D image stacks are loaded as 3D matrices and converted to grayscale. The gray-

scale image stacks are minimally smoothed using an anisotropic diffusion algorithm190,

with previously published MATLAB code191. We compared the effect of the number of
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smoothing iterations using experimental images containing densely packed cells (Figure

4.8). Without smoothing, the object outlines remain jagged to the point of creating many

identifiable concave points. After three smoothing iterations, the object outlines become

smooth and, mostly, significant concave points, representing actual intersections between

cells, remain. After 10 smoothing iterations, objects become indistinguishable and mean-

ingful concave points are obscured. Depending on the actual properties of the input im-

ages, especially the signal-to-noise ratio, the users may need to optimize the number of

smoothing iterations empirically. However, we generally recommend one to three itera-

tions, because, on one hand, without any smoothing, signal variations within the same cell

can cause more roughness on the edges that leads to oversplitting of cells into multiple

small fragments (Figure 4.9); on the other hand, oversmoothing can lead to the merging

of multiple cells into one.

After image smoothing, the first stage in cell identification is implemented through

a two-step local thresholding technique. First, the original image is sharpened by sub-

tracting its corresponding low-frequency image, in which only the low-frequency signals

of the Fourier-transformed image are kept, and then rescaling192. This helps correct for

the slow-sweeping changes in background illumination characteristic of bacteria cluster-

ing around distinct puncta in images. Second, objects pass through a Bradley adaptive

threshold193,194, wherein the intensity of pixels of candidate objects must be a defined

percentage higher than the mean intensity of the pixels in an n × n neighborhood (we set

n equal to 10, 11, or 12, depending on the size of the image). We chose a local, adaptive

threshold with a fixed percentage, rather than a single, global threshold, to avoid false

positives and false negatives due to uneven illumination, autofluorescence from the host

cells, and/or additive fluorescence from neighboring cells. We tested the threshold para-

meter sensitivity of the 2D object selection on experimental input images with or without

smoothing. The initial thresholding results are robust across a range from 25 to 400% of

the default intensity thresholding value (0.00001), leading to no discernible differences in

the initial characterization of the objects (Figure 4.10).
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4.2.3 Single-cell identification by shape and concavity analysis

For each identified object in a 2D slice, we perform shape and concavity analysis to

distinguish single cells from clustered cells. For shape analysis, we fit each 2D object to an

ellipse using a least-squares criterion195,196. We then compare the actual outline of the

thresholded object to the ellipse and calculate the deviation of the outline from the best-fit

ellipse, using an analogue of the Hausdorff distance196 (Figure 4.2A). The assumption is

that bacterial cells are roughly elliptical, and if a 2D slice of an object deviates too far from

its best-fit ellipse, it is likely not a single cell (Figure 4.2C). The deviation of the object from

its best-fit ellipse is calculated by the sum of the distance between each object edge pixel

and the nearest edge pixel in the best-fit ellipse. The sum is then normalized by the total

number of pixels on the periphery of the object to give an error value (Err2D-shape) (Figure

4.2A).

To calculate the concavity of each edge pixel (Figure 4.2B), the edge coordinates are

first arranged into a two-column array and then smoothed with a Savitzky–Golay filter197.

After the smoothing, the tangent line of a given edge pixel is approximated by fitting a

straight line to the edge pixel and two pixels before and after the edge pixel. The angle of

the approximate normal line, perpendicular to the tangent line, is then calculated. Finally,

the difference between the angles of the normal lines for pixeli and pixeli–1 is recorded,

which we define as a parameter for concavity (Conc) (Figure 4.2B). With our definition,

a positive Conc value marks a concave point (Figure 4.2B). In the case in which multiple

cells are clustered into the same binary object, the point at which the cells intersect is a

concave point in the binary map (Figure 4.2C).
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Figure 4.2 Shape and concavity analysis for single-cell identification in two dimensions.

(A) Illustration of the calculation of Err2D�shape. (B) Illustration of the calculation of Conc. (C) Ex-

ample of single cell vs clustered cells, showing a difference in Err2D�shape and Conc. The outline of

the isolated, single cell closely resembles its best-fit ellipse, resulting in a subthreshold Err2D�shape
value. The outline of the clustered cells, in contrast, deviates significantly from their best-fit ellipse,

resulting in a high Err2D�shape value and leading to this object being labeled as a nonsingle cell.

Similarly, the isolated single cell is a mostly convex object, whereas the clustered cells can be

easily identified by the presence of one or more concave points. (D) Concavity values for every

border pixel in the clustered cell object are shown in the plot (left). The two most concave points

are marked and are made candidates for splitting location. These splitting coordinates result in a

successful segmentation.
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Therefore, we could distinguish single cells from clustered cells using their Err2D-shape

and Conc values. If Err2D-shape and Conc are below the user-defined thresholds, the

object is classified as a single cell; otherwise, the object is deemed a nonsingle cell and

is subjected to concavity-based splitting (Figure 4.2C).

Objects that do not pass the single-cell identification described above are passed

through a concavity-based splitting algorithm, adapted from previously published meth-

ods187–189. After calculating and storing the concavity of every edge pixel for nonsingle

cells, we arrange them from highest to lowest Conc value (x1 to xn, respectively), dis-

regarding convex points (Conc < 0), and select the largest Conc values along the object

borders as candidate locations for splitting (Figure 4.2D). Starting from the pair of x1 and

x2, we draw a straight line between the points, splitting the cell. After the cell is split, we

characterize the fragments using the single-cell identification procedure described above.

If one or both of the fragments now pass the single-cell identification, we move on to the

next nonsingle cell object. If neither of the fragments passes the threshold, we draw a new

line between points x1 and x3, x1 and x4, ..., and x1 and xn, and then between points x2

and x3, etc. In the interest of time, if the nonsingle cell is not split into objects that pass

the single-cell identification in k attempts (k can be adjusted by the user), the algorithm

passes over this object onto the next one, and the object remains classified as a nonsingle

cell and discarded in the end.

4.2.4 Morphology-based 3D reconstruction

After each slice of the 3D image has been fully segmented and characterized, the

2D slices of the cells are combined into 3D volumes. We introduce three parameters for

3D reconstruction: DCenter, the distance between the geometric centers of the candid-

ate objects from two consecutive z slices (Figure 4.3A); Err3D-shape, the shape deviation

between two candidate objects, a parameter equivalent to Err2D-shape, substituting the

best-fit ellipse with a potential partner 2D object (Figure 4.3B); and θz, the angle between
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the z axis and the line connecting the centers of the candidate objects from two consecut-

ive z slices (Figure 4.3C). The use of these parameters is based on the assumption that

each projection on the x–y plane from a single cell should have similar localization and

shape, and the orientation of the cell relative to the z axis should be a constant. Therefore,

we can define thresholds for these parameters to determine whether 2D objects belong

to the same cell. If multiple objects in slicei+1 meet the criteria for 3D recombination with

a 2D cell in slicei, the object in slicei+1 that minimizes these parameters is chosen as the

partner.

The reconstructed 3D objects are checked for two additional criteria: V, the total voxel

number occupied by the cell, and Nz , the number of z slices occupied by the cell. Con-

sidering all possible orientations, a single cell should still occupy a minimum number of

z slices and 3D volume. Therefore, by applying these two criteria, we can eliminate in-

completely reconstructed cell fragments due to mis-segmentation in two dimensions. The

identified 3D fragments based on V and Nz can then be combined into a complete single-

cell candidate if they have matching θz and small DCenter values. Fragments that remain

after attempted 3D recombination will be disregarded if they do not exceed the V and Nz

thresholds.
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Figure 4.3 Parameters for 3D reconstruction.

(A) Illustration of the calculation of DCenter between potential partner objects in adjacent z slices. (B)

Illustration of the calculation of Err3D�shape for potential partners in adjacent z slices. (C) Illustration

of the calculation of θz for a 3D cell.

4.2.5 Method validation with synthetic data

To validate Seg-3D, we first tested it on synthetic data (Figure 4.4). To generate

the synthetic data, we modeled bacterial cells as 3D rod-shaped objects comprised of

individual voxels with an xy pixel size and z step interval of 130 nm × 130 nm × 130
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nm, the parameters of our microscope and camera setup198. The 3D objects were then

convolved with the point-spread function to better represent the 3D image of the bacteria.

Several synthetic bacteria were randomly placed in 3D space with certain interbacterial

space to make synthetic images with certain crowdedness such that cells can touch but

cannot intersect (Figure 4.4B).

Seg-3D requires several user-input parameters for single-cell identification and 3D

reconstruction as described above, including Err2D-shape, Conc, DCenter, Err3D-shape, θz,

V, and Nz . To correctly decide the thresholds for these parameters, we generated syn-

thetic single cells with a random orientation and extracted all the parameters from these

single cells (Figure 4.4A). A histogram of each parameter represents the expected range

from single cells. Thresholds were then set on the basis of the histograms to include at

least 90% of the single-cell population. Specifically, we picked values marked by the red

lines in Figure 4.4A as parameters for analyzing all of our images.

Seg-3D was then applied to the synthetic data (Figure 4.4B). We compared Seg-3D

with previously published methods used to study bacterial biofilm based on the watershed

algorithm without splitting or user correction183,199. Seg-3D showed improved accuracy

in segmentation of the clustering bacteria. With 50 randomly generated synthetic images

each containing five clustered bacteria, Seg-3D correctly segmented all five cells in �76%

of the synthetic images. Of 250 cells in the synthetic data, Seg-3D correctly segmented

�92% of them, while the watershed algorithm correctly segmented only 36% of the cells

(Figure 4.4C). Several cases contributed to the incorrect segmentation (�8% of the total),

including failure in splitting two significantly merging cells in two dimensions (missing split-

ting), failure to identify objects in two dimensions (missing objects), and failure to combine

two 3D fragments belonging to one cell (oversplitting). Very rarely (two of 250 cells from 50

synthetic images), we observed misidentification of an object from the background, which

was characterized as a cell. We found tuning parameters such as Err2D-shape could elim-

inate this error.
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Figure 4.4 Examination of Seg-3D on synthetic images.

(A) Distribution of all parameters from synthetic images containing single cells. Red lines mark

the thresholds used in analyzing synthetic images. (B) Two examples of 3D segmentation on syn-

thetic images with Seg-3D and the watershed-based method without object splitting or manual fixa-

tion. Each group of successfully segmented cells is color-coded, while cells that failed to segment

correctly are colored gray. (C) Success probability of Seg-3D (black) and the watershed-based

method (red). Each synthetic image contains five randomly oriented but closely neighboring cells.

4.2.6 Test of parameter sensitivity

To evaluate the parameter sensitivity of the segmentation accuracy, we picked four

other values smaller than (minimum of 25% of) and larger than (maximum of 400% of)

the standard values for each parameter and tested them on the same synthetic data sets.

Our results show that the Seg-3D values are robust to the changes in these user-input

parameters as long as they exclude the expected ranges for single cells. Specifically, the
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results are not sensitive to the change in Conc (0.1–0.4), as single cells should generate

only negative Conc values, or sensitive to the change in θz (0.6–1.4). Mis-segmentation

happens frequently when the choice of the parameters gets close the single-cell parameter

range. For example, when Err2D-shape is set to 0.5 (too stringent), 2D objects more often

fail to be considered as single cells after a few trials of concavity-based splitting and are

therefore discarded. When Err3D-shape or DCenter is set to be too small (too stringent), 2D

objects more often fail to be considered to come from the same 3D cell, causing frequent

oversplitting in three dimensions. The choice of a large value for V or Nz causes rejection

of small cells and therefore undercounts the cell number (Figure 4.5).
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Figure 4.5 Test of parameter sensitivity on synthetic images.

Parameters are varied relative to the default values marked in Figure 4.4. The success probability

using default parameters is shown as dashed lines.

4.2.7 Application of method to intrahost pathogenic bacteria

We then applied our 3D segmentation method to sample images of bacteria invading

macrophages (Figure 4.4). Salmonella cells expressing GFP from a constitutive
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promoter200 were used to infect murine macrophages (RAW 264.7), and macrophages

were then fixed and imaged under the fluorescence microscope. Similar to the synthetic

data analysis, we first analyzed the distributions of all critical parameters corresponding

to single cells from low-cell density images. Relative to the histograms derived from syn-

thetic data, we found that ranges expected from single cells were very similar for all seven

parameters, suggesting the parameters would be robust for applications to bacterial spe-

cies with similar 3D shape and size. Therefore, we directly applied the same thresholds

to analyze the real data. Figure 4.4 shows two examples of clustered intramacrophage

Salmonella cells, and Seg-3D effectively segmented individual Salmonella in three dimen-

sions.
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Figure 4.6 Examination of Seg-3D on experimental images.

Segmented cells are color-coded.
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4.2.8 Additional features in the user interface

While Seg-3D has greatly improved the efficiency and accuracy of 3D segmenta-

tion, mis-segmentation still occurs. For example, when two cells happen to be completely

touching each other with the exact same orientation, it is very likely that they can pass the

single-cell criteria in 2D segmentation, or the concavity-based automatic splitting fails to

split them. Therefore, we add in the manual proofread and correction feature after auto-

matic segmentation. Possible corrections include switching positive selections to negat-

ive, switching negative selections to positive, manually drawing split lines for remaining

clustered objects, manually drawing borders for missed objects, and deleting objects.

Moreover, the algorithm allows analysis for multichannel images. 3D segmentation

will be performed on a user-defined channel with a uniformly stained fluorescent signal that

can represent the full cell volume well. The fluorescence signal from other channels with

staining on biomolecules of interest will be allocated into each segmented cell, allowing

further single-cell quantification of biomolecules. Finally, the 3D segmentation code can

be very flexibly adapted to analyze surface-attached cells in two dimensions. Seg-3D

will benefit single-cell imaging and analysis under complex conditions such as bacterial

pathogen infection and biofilm formation. The full package of Seg-3D, coded in MATLAB,

with a user manual can be found in the Supporting Information or downloaded as open

source code (https://github.com/JingyiFeiLab/Cell_seg).
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4.2.9 Supplementary information

Icy CellProfilerInput image
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Figure 4.7 Segmentation results from available commercial and free software.

(A) The same two experimental images as in Figure 4.4 are used to test the performance of popular

available software packages. Since most available packages do not have 3D reconstruction or

visualization capabilities, we show their performance on 2D slices. (B) Results from Icy Spot

Detector. All disconnected objects in a slice are given unique IDs, and any objects connected

by at least a single pixel are identified as a single object. (C) Results from CellProfiler. Each

enclosed space is given a unique ID. (D) Results from the ImageJ Plug-In, 3D Object Counter.

Each color represents a unique 3D object. (E) Results from ImageJ Plug-In, MorphoLibJ. Each

color represents a unique 3D object. (F) 3D reconstruction results from Imaris. The two views for

each image are the same as those in Figure 4.4. Each color represents a unique 3D object.

108



 

 

 
Figure 4.8 Effect of different number of smoothing iterations.

(Left) Two 2D slices before any image processing, and (Right), the image after processing by the

Anisotropic Diffusion smoothing algorithm for different numbers of iterations. The output image

from smoothing will be passed directly to the initial, local-intensity thresholding. It is clear that the

difficulties arise when the image is over-smoothed. Aside from the number of smoothing iterations,

other parameters for Anisotropic Diffusion smoothing algorithm are the default parameters provided

by reference191.

 
 

Figure 4.9 Example of an over-split cell due to no smoothing.

(Left) An example of two clustered cells, without any image processing. (Middle) An attempt at

segmentation without smoothing the image at all. Each color represents a unique object. The

cell on the left is incorrectly split into two, likely due to the jagged edges of its initial outline before

concavity-based splitting. (Right) The segmentation of the same two cells after three smoothing

iterations. The cells are correctly segmented.
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Figure 4.10 Sensitivity of 2D segmentation to intensity threshold after different numbers of

smoothing iterations.

The same two z slices shown in Figure 4.8 are used as examples. It is clear that the results of

the local-intensity-based thresholding depend on the number of smoothing iterations the original

image is subjected to, but they are robust to a wide range of intensity threshold parameter values.

We varied this value from 25 to 400% of the default parameter value, and the differences in the

results are indiscernible.
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4.3 An improved method for bacterial immunofluorescence staining

to eliminate antibody exclusion from the fixed nucleoid

In this study, we introduce an improved immunofluorescence (IF) staining method

that avoids one of the common disadvantages of the general technique. IF involves many

steps, such as fixation and permeabilization, that may affect cell morphology and intro-

duce potential imaging artifacts. These artifacts manifest in the images as changes in the

geometry of the cells, or in altered fluorescent signals relative to the ground truth. These

are both things that could be measured with image analysis, which is presented here.

In response to the first concern (distorted cell geometry), I adapted the code from

Section 4.2 such that we were able to both automatically segment cells in DIC images

and quantify their geometry. Again, an adaptive, local threshold was used to distinguish

objects from the background of the images. In order to further distinguish non-cell selec-

ted objects from true cells, each threshold-selected object was fit, using a least-squares

criterion, this time to a superellipse of best fit201, rather than simply an ellipse. This modi-

fication was carried forth to all future image analysis code involving E. coli, as we found

the 2D profile of E. coli matched the superellipse more closely than the ellipse. The for-

mula for the best-fit superellipse for the identified cells was then used to calculate the area,

length, and width of the cells. Using this analysis, we were able to determine the effect of

various fixation and permeabilization steps on the morphology of the cell and, importantly,

find the protocol that affected the natural morphology the least (Figure 4.11).
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Figure 4.11 DIC images of E. coli cells with different permeabilization conditions.

(A) 70% ethanol, (B) 1 μg/mL lysozyme, (C) 25 μg/mL lysozyme (red arrows indicate severely

disrupted cells), (D) 70% ethanol with 25 μg/mL lysozyme, () fixed only, and (F) live cells. The scale

bar represents 2 μm. (G) Areas of cells under different permeabilization conditions, quantified

by cell segmentation based on the DIC images105. Error bars represent means and standard

deviations of 5−10 images, with each image containing 70−300 cells. p values from the t test are

added to indicate significance. n.s. stands for “not significant”.

To address the second concern, we visualized the same protein in two different ways;

comparing the two signals revealed which permeabilization methods led to staining arti-
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facts. Using RecA-GFP, we were able to compare the fluorescent protein signal directly

from the expressed protein with stained-antibody, tagged with Alexa Fluor 647 NHS Ester

dye (A647) fluorescent signal. The GFP signal served as the ground truth for the pro-

tein distribution. If the antibody staining worked well, the A647 fluorescent signal should

correlate well with the GFP signal; the level of divergence from that correlation served

as a reference for how disruptive a particular permeabilization method was. In order to

quantify that divergence, and therefore the quality of the method, I created a program to

automatically calculate the correlation between fluorescent signals in bacteria. Using the

technique described above to identify cells and fit their profiles to superellipses. Then,

using the identified tilt and major axis of the superellipse of best fit, a line scan was con-

ducted in the fluorescent channels of interest along the middle length of the cell in order

to create intensity profiles. Since E. coli cells are close to uniform width under a given

growth condition and narrow relative to the length, the fluorescent signal of a localized

protein generally takes up the entire width of the cell; therefore a single length-wise line

is sufficient to accurately characterize the intensities. Correlations between two intensity

profiles were calculated by assuming each intensity profile was an independent random

variable with N observations, where N is the number of pixels in the line scan. The Pear-

son correlation coefficient is calculated according to:

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA

σA
)(
Bi − µB

σB
)

To further test if different permeabilization methods affected the IF signals, we used

that same code to calculate the correlations between the A647 fluorescent signal and DAPI

staining of DNA. These analyses revealed that a permeabilization method with a lysozyme

only treatment lead to an accurate depiction of protein distribution, but greatly affected

the cell morphology. In contrast, a method including 70% ethanol followed by lysozyme

treatment preserved the cell morphology, but affected the protein distribution, specifically
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excluding the cell from the nucleoid region, as seen by the negative correlation between

the A647 and DAPI profiles. Further, we found that the antibody exclusion effect could be

overcome by a subsequent DNase I treatment, all the while preserving cell morphology.

Finally, we were able to land on an optimal protocol involving 70% ethanol, lysozyme, and

DNase I treatment, which preserves both protein distribution and cell morphology. These

revelations were made possible in part because of the image analysis programs.
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Figure 4.12 Correlation analysis between RecA-A647 and DAPI signals.

Cells are first segmented based on the DIC image, and the two fluorescent channels are manually

aligned. An intensity profile for each fluorescent channel is determined by scanning across that

long axis of each cell. The correlation coefficient between the two intensity profiles is calculated

for each cell. (A) A647 and DAPI intensity profiles from a representative cell from the 70% ethanol

+ 25 µg/mL lysozyme treatment condition. (B) Average correlation coefficient between A647 and

DAPI signals under various permeabilization conditions. (a) 70% ethanol + 25 µg/mL lysozyme;

(b) 1 µg/mL lysozyme; (c) 25 µg/mL lysozyme; (d) 70% ethanol + 25 µg/mL lysozyme, with Atto

655 labeled secondary antibody (e) 70% ethanol + 25 µg/mL lysozyme + 100 U/mL DNase I; (f)

70% ethanol + 25 µg/mL lysozyme + 0.8 U/mL DNase I; (g) 70% ethanol + 25 µg/mL lysozyme +

0.16 U/mL DNase I; (h) 70% ethanol + 25 µg/mL lysozyme + 0.032 U/mL DNase I. Except for (d),

all other conditions were prepared with A647 labeled secondary antibody. Error bars represent

mean and standard deviations of 3-8 images, with each image containing 70-300 cells.

4.4 Analysis of Localization and Diffusion of RNA and Proteins in

Bacterial Cells

In this study127, we establish a platform to determine the RNA binding states of the

RNA chaperone protein, Hfq, using diffusivity as a proxy. Using this platform, we were
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able to shed light on the complex interplay between Hfq, mRNAs, sRNAs, and RNase E,

and reveal how Hfq is able to efficiently prioritizes different RNAs for regulation, when Hfq

is greatly outnumbered. The diffusion speeds and coordinates of Hfq molecules were ac-

quired with single-molecule localization microscopy (SMLM), specifically PALM imaging

of Hfq tagged with a photo-switchable fluorescent protein, mMaple3202,203 in 2D, though

the corresponding analysis code is capable of analyzing both 2D and 3D image datasets.

The insights we gained into the mechanism of Hfq-sRNA-mediated regulation were de-

pendent upon localizing and tracking fluorescently-tagged Hfq in live cells. New image

analysis programs were required to transform the tracking and localization data into a

comprehensible form. This section describes my contribution in the form of creating those

programs.

4.4.1 Diffusion and localization of Hfq

The code to localize individual Hfq molecules and their respective one-step diffusion

coordinates requires only two inputs. The first is a DIC image in order to segment individual

cells and assign image volumes to them. The second is a .txt file listing the one-step

diffusion speeds and locations. Optionally, a single image of DNA staining can be included

if the nucleoid is also a region of interest.

Again, segmented cells or fit to a superellipse in order to calculate their center, length,

width, and tilt (relative to vertical in the image). Next, the coordinates of the cell boundaries

(representing the outer cell membrane) are stored as 2D vectors (x- and y-coordinates

of boundary pixels represented by columns, each pixel represented by a separate row).

Using the tilt angle, Θ, the cell boundary coordinates are transformed to vertical using the

2D rotation matrix:
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RΘ =

cos(Θ) − sin(Θ)

sin(Θ) cos(Θ)

 (4.1)

Every Hfq localization is assigned to a segmented cell, based on whether or not the

spot falls within the cell boundaries. All Hfq localizations within a given cell are also stored

in another 2D vector (x- and y-coordinates of each localization represented by columns,

each localization represented by a separate row). The corresponding one-step diffusion

rates for each localization are stored in a separate vector, with the rows equal to the particle

ID in both the localization and rate vectors. Next, all Hfq localizations are rotated using

the same rotation matrix as the one used for the cell boundaries. The cells and the corres-

ponding Hfq localizations are transformed to a vertical alignment to simplify subsequent

distance and compartmentalization calculations. For the sake of downstream analysis,

information regarding cells and spots are stored in separate structured arrays, containing

information regarding The location, size, alignment, etc. of the cells, and localization, cell

assignment, distance to membrane, etc. for the spots.

Next, the cells are segmented further into separate compartments of interest. Using

information on themajor andminor axes of the cells and their vertically aligned boundaries,

the cells can be broken down into a number of sub-cellular compartments, including the

membrane, poles, cytoplasm, and nucleoid (if a DNA staining image was included). The

number of compartments included in the analysis is up to the user. In this study, we were

interested only in the nucleoid, cytoplasm, and membrane of the cell. In this analysis, we

found that under normal growth conditions (exponential growth, no treatment applied) Hfq

diffuses and localizes relatively uniformly throughout the cell, with a slight over-enrichment

in the cytoplasm and a slighlty slower diffusion in the membrane (Figure 4.13).
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Figure 4.13 Diffusion and localization of Hfq during exponential growth.

(A) A representative example of WT Hfq-mMaple3 in WT rne background in a single cell during

exponential growth under no treatment (NT) condition. Nucleoid is stainedwith Hoechst in live cells.

2D reconstructed image of Hfq-mMaple3 is shown in the black background. One-step displacement

(osd) speed map (unit: µm/s) is shown as a scatter plot where different colors represent different

speeds at each position, and the white curves represent the nucleoid regions detected by Hoechst

staining. (B) Enrichment of Hfq localization is calculated for cytoplasm, membrane, and nucleoid

regions under NT condition. (C) Average osd speed of Hfq within the cytoplasm, membrane, and

nucleoid regions under NT condition. Error bars in all plots represent the standard deviation (s.d.)

from two experimental replicates, with each data set containing∼20,000 trajectories from 80 cells.

4.4.2 3D bacterial cell region projection and enrichment

In a separate study (unpublished) we were interested in the 3D organization and com-

partmentalization of various sRNAs under different stress conditions. The code described

above can be easily adapted for this purpose. Rather than one-step diffusion speeds ac-

quired from PALM imaging, our input data instead was 3D coordinates of FISH-labeled

sRNAs acquired from STORM imaging. Cells are segmented and geometrically trans-

formed as described above; sRNA spots are similarly transformed with the corresponding

rotation matrix. The z-dimension represents an added difficulty for the geometric trans-
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formation, but here we see the advantage of the vertical cell realignment by the rotation

matrix. Using a step-wise transformation we first transform only the x- and y-coordinates

of the sRNA spots. Then, since the segmented cells are already projected onto 2 dimen-

sions (we assume bacteria cells are roughly cylindrical and thus have circular width-wise

cross sections), the x/y transformed coordinates can easily be collapsed onto the 2D cell

plane by considering only their z-coordinate as one side of a right triangle, and the dis-

tance off the center axis (represented by the transformed x-coordinate) as the other side.

Then, simple trigonometry can be used for the second transformation. The results of one

such analysis are shown here (Figure 4.14).
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Figure 4.14 3D Bacterial Cell Region Projection and Enrichment.

(Left) Average sRNA spot density projected along the short, circular cross-section of E. coli cells,

and (Right) Assignment of sRNA spots and boundary definitions of subcellular regions for a single

cell. Purple represents the nucleoid, green the cytoplasm, blue the poles, and black themembrane.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

The work I have described in this dissertation describes my contributions to to the

study of RNA-mediated regulation. Specifically, I have attempted to provide mathematical

and computation methods and models to describe such regulation. I developed a gen-

eral, quantitative model of sRNA-mediated regulation, and in the process, discovered that

certain sRNAs that are canonically described as post-transcriptional regulators are able to

regulate their mRNA targets co-transcriptionally; I helped define which kinetics contribute

to the hierarchy of an sRNA regulon; I contributed numerous image analysis methods that

have helped and will continue to help future studies of the localization, dynamics, and kin-

etics of RNA-mediated regulation; and I have described our early ventures into the study

of interactions between Hfq and the ribosome.

I am excited by the new questions my research has inspired. In particular, I hope to

apply the kinetic description of sRNA-mediated regulation to an expanded set of sRNA

regulons, and attempt to describe other forms of regulation, such as translation activation.

I believe that the modelling and analysis work described especially in Chapter 2 can be

broadly applied to other kinetic studies, and I hope that Bayesian MCMC methods can

provide deeper physical insights into gene regulatory networks.

In the immediate future, we will dive directly into and expand the studies proposed in

Chapter 3. We hope to settle the mechanisms behind the trapping effect that condensed

ribosomes have on Hfq, and to determine whether or not this effect facilitates the sRNA

target search process, which could provide further evidence in support of the kinetic co-

operation model of sRNA-mediated regulation.

And finally, I hope to apply the computational and mathematical methods I have de-

veloped more broadly to biological phenomena outside of sRNA-mediated regulation. I
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believe that the general framework we described here - moving from imaging, to image

analysis, to mathematical analysis - can be a powerful and broad tool for a more physical

understanding of biology.
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