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ABSTRACT

Deep transformer models have pushed performance on NLP tasks to new limits, suggesting
sophisticated treatment of complex linguistic inputs. However, we have limited understanding
of how these models handle representation of input sequences, and whether this reflects
sophisticated composition of meaning like that done by humans. In this dissertation, we take
steps to analyze and improve compositionality in natural language models.

We present systematic analysis of phrasal representations in state-of-the-art pre-trained
transformers. We use tests leveraging human judgments of phrase similarity and meaning
shift, and compare results before and after control of word overlap, to tease apart lexical
effects versus composition effects. We find that phrase representation in these models relies
heavily on word content, with little evidence of nuanced composition. We also identify
variations in phrase representation quality across models, layers, and representation types,
and make corresponding recommendations for usage of representations from these models.

Motivated by the observations of pre-trained transformers, we explore directions of
improving compositionality in neural language models. We first investigate the impact
of fine-tuning on the capacity of contextualized embeddings to capture phrase meaning
information beyond lexical content. Specifically, we fine-tune models on an adversarial
paraphrase classification task with high lexical overlap, and on a sentiment classification task.
After fine-tuning, we assess phrasal representations in controlled settings following prior work.
We find that fine-tuning largely fails to benefit compositionality in these representations,
though training on sentiment yields a small, localized benefit for certain models. In follow-up
analyses, we identify confounding cues in the paraphrase dataset that may explain the lack of
composition benefits from that task, and we discuss factors underlying the localized benefits
from sentiment training. We then inspect a model with compositional architecture and
show that the model shows weak compositionality despite incorporating explicit composition
structure.
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CHAPTER 1
INTRODUCTION

Neural language models have been pushing the state-of-the-art in a variety of natural language
processing (NLP) tasks. The constant advances and seemingly super-human performance in
well-defined tasks suggest that these models may be succeeding at composition of complex
meanings, which is an essential component of language understanding. However, these neural
language models are opaque—they are sensitive to disturbances in input, and significantly
underperform humans on various adversarial datasets.

In this dissertation, I will explore how language models handle representations of linguistic
units, and whether they master language understanding. Specifically, I will focus on compo-
sition—a model’s capacity to combine meaning units into more complex units. The effort
of assessing language models to be covered in this dissertation includes: 1) I will propose
a set of model-independent tasks aiming at teasing apart lexical content encoding from
nuances of composition. With careful control of lexical content, compositional information is
isolated from lexical content; 2) I will apply the proposed tasks to state-of-the-art pre-trained
transformers (Vaswani et al., 2017); 3) I will futher investigate the possibilities of improving
compositionality in transformers through fine-tuning; 4) I will complement the work on
transformers with another analysis on Recurrent neural network grammars (RNNG) (Dyer

et al., 2016)—a model with compositional architecture.

1.1 Analyzing composition in language models

A notable difficulty of analyzing composition in representations is the mixed effect of lexical
content encoding and nuances of composition. Furthermore, as discussed by Poliak et al.
(2018); Gururangan et al. (2018); Ettinger et al. (2018), superficial clues and/or biases can to

a large extent inflate models’ performance on downstream tasks. For instance, in paraphrase
)



identification task, word overlap between sentence pairs can be an indicative clue that the
model is able to pick up, which significantly trivializes the task. To tackle the aforementioned
problems, we propose tests leveraging human judgments of phrase similarity and meaning
shift, and compare results before and after control of word overlap, to tease apart lexical effects
versus composition effects. Deep transformer models have pushed performance on NLP tasks
to new limits, suggesting sophisticated treatment of complex linguistic inputs. However, we
have limited understanding of how these models handle representation of phrases, and whether
this reflects sophisticated composition of phrase meaning like that done by humans. In this
dissertation, I will mainly focus on analyzing and improving compositionality in transformer-
type models. In Chapter 4, I will present systematic analysis of phrasal representations in
state-of-the-art pre-trained transformers. We find that phrase representation in these models
relies heavily on word content, with little evidence of nuanced composition. We also identify
variations in phrase representation quality across models, layers, and representation types,
and make corresponding recommendations for usage of representations from these models.
However, lacking compositional information can be a limitation imposed by the transformer
architecture. In Chapter 6, I will explore the compositionality in a model with explicit
compositional architecture. We find that with the removal of biases and superficial cues,
the model still shows very little nuanced composition despite incorporating compositional

structures based on parsing trees.

1.2 Improving compositionality in language models

Although composition is an indispensable component of language understanding, when testing
for composition in pre-trained transformer representations, we find that these representations
reflect word content of phrases, but do not show signs of more sophisticated humanlike
composition beyond word content. Motivated by the findings that these representations

reflect heavy influences of lexical content, in Chapter 5, I will present a follow-up work on
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improving compositionality of pre-trained transformers. We investigate the impact of fine-
tuning on the capacity of contextualized embeddings to capture phrase meaning information
beyond lexical content. Specifically, we fine-tune models on an adversarial paraphrase
classification task with high lexical overlap, and on a sentiment classification task. After
fine-tuning, we analyze phrasal representations in controlled settings following prior work.
We find that fine-tuning largely fails to benefit compositionality in these representations,
though training on sentiment yields a small, localized benefit for certain models. In follow-up
analyses, we identify confounding cues in the paraphrase dataset that may explain the lack of
composition benefits from that task, and we discuss factors underlying the localized benefits

from sentiment training.

1.3 Composition in models with explicit composition structure

With the observations of transformers’ reliance on lexical content and missing compositional
information, possibility remains that the lack of compositionality results from the limitation
of the model architecture. In Chapter 6, I will investigate RNNG (Dyer et al., 2016)—a model
with hierarchical composition structure guided by syntactic parsing trees. We experiment
with the representation generated by vanilla recurrent composition, and the one produced
by hierarchical structure. We apply two sets of tasks to assess composition in models’
embeddings. The first set is sentence probing tasks proposed in Ettinger et al. (2018). It
utilizes a specialized sentence generation system to generate large, annotated sentence sets.
With the generation system, they are able to control superficial cues of word content and
word order, so that bag-of-word model is not able to achieve above-chance performance. The
other evaluation set is the similarity correlation and paraphrase classification proposed in
Chapter 4. We show that with the explicit compositional structure, the model does not do

composition more than transformers. The model demonstrates strong performance on lexical

probing tasks, fails on tasks require systematic learning of syntactic information. In addition,
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even though RNNG shows non-trivial alignment with human judgment under normal setting,
performance degradation is still significant in controlled tests. However, the model is less

sensitive to lexical content removal, suggesting less reliance on word overlap information.

1.4 This dissertation

1.4.1 Contributions

The contributions described in this dissertation are threefold.

In Chapter 3-4 T will propose a set of model-independent evaluation tasks to assess
phrasal representation and composition. The tasks aims at capturing correspondence of
phrase representation with human judgment. Specifically, the evaluation consists of similarity
correlation, paraphrase classification and a qualitative analysis called “landmark experiment”
(Kintsch, 2001). I will then report analyses on the state-of-the-art transformers. Across
all models, there is non-trivial alignment with human judgment, but it seems to rely on
lexical information. With careful control of lexical content and removal of superficial cues, we
observe severe performance drop in both similarity correlations and paraphrase classifications.
We conclude that pre-trained transformers lack sophisticated phrase composition beyond
word content encoding.

In Chapter 5 I will investigate the interplay between fine-tuning transformer models
and composition. Inspired by the finding that pre-trained models show heavy reliance on
lexical content, we examine whether models will show better evidence of composition after
fine-tuning on tasks that are good candidates for requiring composition: an adversarial
paraphrase dataset forcing models to classify paraphrases with high lexical overlap, and a
sentiment dataset with fine-grained phrase labels to promote composition. I report analyses
based on evaluation tasks proposed in Chapter 4. Additionally, I will present fine-grained

analyses on model changes and impact of different fine-tuning datasets, shedding light on



understanding the process of fine-tuning language models. We find that fine-tuning has
limited benefit on improving compositionality, and I will present explanations on why it fails.

In Chapter 6 I will focus on analyzing a language model with compositional structure.
We apply the sentence probing tasks proposed in Ettinger et al. (2018) and tasks proposed in
Chapter 4. We find that even with the presence of hierarchical composition structure, the

model still shows little nuanced composition information.

1.4.2  Overview

The remainder of this dissertation is organized as follows: in Chapter 2 I will introduce
previous work that this dissertation builds on. In Chapter 3 I will discuss a variety of
token representations I investigate for analyzing compositional information. In Chapter 4 I
will elaborate on tasks we propose for evaluating phrasal representations and teasing apart
compositional information from lexical encoding. This chapter will focus on investigating pre-
trained transformer models. In Chapter 5 I will further report the possibilities of improving
models’ compositionality via fine-tuning. In Chapter 6 I will complement Chapter 3-5 with
an analysis of a model incorporating explicit compositional architecture. In Chapter 7 I will

conclude the dissertation and discuss potentials of future directions.



CHAPTER 2
BACKGROUND AND RELATED WORK

In this chapter, I discuss background and previous work related to the main body of work
discussed in this dissertation. Section 2.1 briefly discusses background of text representation
learning and language modeling. Section 2.2 gives overview of previous work on probing
neural models. Section 2.3 discusses previous approaches on investigating composition, which

is a central topic of this dissertation.

2.1 Text representation learning and language modeling (LM)

The work in this dissertation focuses on analyzing text representations. In this section we
review the progress of learning text embedding and language modeling.

The early work on text representations explores latent semantic analysis (LSA) and
learning word vectors. Prominent work on LSA investigates using singular value decomposi-
tion (Bellegarda, 2000), Latent Dirichlet Allocation (LDA) (Blei et al., 2003; Tam and Schultz,
2005; Mrva and Woodland, 2006) and HMM-LDA (Griffiths et al., 2004; Hsu and Glass, 2006).
Notably attempts on mapping from individual words into word vectors include Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Values in these word vectors are
generally trained based on semantic similarities (Rong, 2014). A notable characteristic that
makes these embeddings attractive is the alignment between algebraic property and semantic

meaning. A famous example is:

emb(king) — emb(queen) + emb(woman) = emb(man)

where emb(+) is the word vector of the corresponding word. When it comes to evaluating word
embeddings, popular tasks include WordSim353 (Finkelstein et al., 2001) and SimLex-999 (Hill

et al., 2015), which both evaluate based on semantic similarity.
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A natural generalization of word embedding is sentence embedding. The idea of sentence
embedding is to encode sentence text into a single vector, where important information
is retrievable. Among different sentence embeddings, notable ones include: Doc2Vec (Le
and Mikolov, 2014)—dense vectors are trained to predict words in the sentence/document;
InferSent (Conneau et al., 2017)—the model is trained on Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015) and Skip-thought (Kiros et al., 2015)—the encoder is trained
to reconstruct the surrounding sentences.

Most early encoders are built on the assumption that words/sentences/paragraphs are char-
acterized by their surroundings. And the resulting representations are context-independent.
To tackle this problem, the idea of contextualized embeddings gains attention. One line of
work approaches the problem by re-embedding existing word embeddings through neural
models (McCann et al., 2017; Salant and Berant, 2018; Shi et al., 2019). ELMo (Peters et al.,
2018a) vectors are derived from a bidirectional LSTM trained with language model objective,
which captures context-dependent aspects of word meaning.

Since the introduction of the self-attention mechanism (Vaswani et al., 2017), transformer
models become a new milestone. Universal Sentence Encoder (Cer et al., 2018) demonstrates
promising performance with transformer and Deep Averaging Network (DAN) (Iyyer et al.,
2015). GPT (Radford et al., 2018, 2019; Brown et al., 2020) and BERT (Devlin et al.,
2019) pushed performance of a wide variety of downstream NLP tasks to new limit. And it
becomes a paradigm to pre-train deep neural language models on general language modeling
task, and fine-tune on downstream tasks. Following BERT, numerous variants are proposed.
Notable work includes: RoBERTa (Liu et al., 2019) (builds on BERT, and makes changes to
pre-training tasks and hyper-parameters), DistilBERT (Sanh et al., 2019) (a lightweight, fast
transformer model with 40% than Bert base model and preserve competitive performance
on The General Language Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018)), XLNet (Yang et al., 2019b) (builds on Transformer-XL (Dai et al., 2019) and uses



an autoregressive method to learn bidirectional contexts), XLM-RoBERTa (Conneau et al.,
2019) (a large multilingual version of RoBERTa), BART (Lewis et al., 2020) (a denoising
autoencoder based on transformer-based architecture) and SentiBERT (Yin et al., 2020) (a
variant effectively captures sentiment semantics). In this dissertation, I will investigate some
of the foregoing transformer models. In addition to language modeling tasks, BERT and
its variants have been explored for other tasks. Li et al. (2020); Garg and Ramakrishnan
(2020) explores adversarial samples generation with BERT. Zhang et al. (2019a) proposes
using BERT as an automatic evaluation metric for text generation.

A common practice to evaluate the quality of word embeddings is to correlate embedding
similarities with semantic/syntactic similarities (Finkelstein et al., 2001; Gerz et al., 2016; Hill
et al., 2015; Conneau and Kiela, 2018). When it comes to evaluating LM models and sentence
encoders, various tasks and datasets have been proposed. SentEval (Conneau and Kiela,
2018) presents a toolkit to evaluate sentence representations, which contains a variety of
tasks including binary and multi-class classification, natural language inference and sentence
similarity. XNLI (Conneau et al., 2018b) proposes a dataset of 15 languages, focusing on
cross-lingual language understanding. Natural Language Decathlon (decaNLP) (McCann
et al., 2018) encompasses a set of 10 tasks, formulating as question answering over context.
GLUE (Wang et al., 2018) ! and SuperGLUE (Wang et al., 2019) 2 are popular benchmarks
for general-purpose language understanding. Despite showing improved performance on
downstream tasks, analyses show that these contextualized embeddings have various limita-
tions, for instance, gender bias (Zhao et al., 2019; Basta et al., 2019) and lack of semantic
information (Tenney et al., 2019) and social bias (May et al., 2019; Kurita et al., 2019). The
work presented in this thesis builds on the above works to evaluate representation quality and

compositionality via correlation with human judgment. And we propose additional controlled

1. https://gluebenchmark.com

2. https://super.gluebenchmark. com
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settings to isolate superficial cues that inflate models’ performance. Extensive analysis work

has specifically focused on transformer-type models, which will be covered in Section 2.2.

2.2 Interpretability of neural models

Along with continuous advances in NLP tasks, it attracts more and more attention to open
up black-box models, and understand why models work/not work. One line of work interpret
existing models by probing and analyzing outputs/representations/internals of these models.
Another branch of effort attempts to build interpretable neural models from ground up,
making output directly explainable. The work to be covered in later chapters closely relates
to previous work on probing and interpreting neural models. In this section, I will review
notable work that this dissertation builds on.

While variation and improvement of state-of-the-art models report surprisingly good
performance, the community also notices failures of neural NLP models. Poliak et al. (2018);
Gururangan et al. (2018); Chen et al. (2016) identify biases and uncontrolled cues exist in
popular datasets that can inflate the performance. Geva et al. (2019) report annotator bias in
crowd-sourcing dataset also harms the soundness of NLP tests. Ribeiro et al. (2019) open up
a new perspective on QA tasks—regardless of correctness, models should produce consistent
and coherent answers to questions on the same fact. They conclude that current models
fall short on consistency, despite reporting strong performance on QA datasets. Gardner
et al. (2020) reach a similar conclusion to this dissertation where systematic gaps (annotation
artifacts etc.) can trivialize seemingly hard tasks.

All foregoing works imply that solely looking at evaluation metrics of neural models is not
sufficient to determine the quality of neural models. To tackle the problem, various methods
are proposed to evaluate neural models beyond metrics, including: correlating input features
with model outputs (Belinkov and Bisk, 2017; Wallace et al., 2019b), approximating local

decision boundaries with explainable linear models (Ribeiro et al., 2016) and investigating
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important training samples (Yeh et al., 2018; Koh and Liang, 2017). Instead of evaluating
models in a different way, another line of work (Andreas et al., 2015; Bogin et al., 2020; Lei
et al., 2016; Narang et al., 2020) builds models with interpretability in the structure.
Besides above approaches, another popular trend is to directly interpret model predictions.
Significant advantages of this method are that it is model-agnostic, lightweight to compute
and faithful to underlying model. In terms of interpretation methods, a wide variety of

directions have been explored, among which two approaches are frequently used:

1. Correlate importance of input features with model output. Murdoch et al. (2018)
introduce contextual decomposition (CD) to interpret predictions made by LSTMs.
Some works use gradient-based approaches to generate saliency maps to interpret
image classification models (Simonyan et al., 2013; Shrikumar et al., 2017) and NLP
models (Han et al., 2020). In addition to vanilla gradient based interpretation, many
other variants are proposed—SmoothGrad (Smilkov et al., 2017) and Integrated Gradi-

ents (Sundararajan et al., 2017).

2. Systematically introduce perturbation to input as explanations. Anchors (Ribeiro
et al., 2018a) and Universal Adversarial Triggers (Wallace et al., 2019a) are two notable
attempts to find global decision rules by searching consistent perturbation patterns
that affect models’ output. Leave-one-out (Li et al., 2016)—define importance as drop
in confidence when an input token is erased. Input Reduction (Feng et al., 2018)
approaches the problem from a different direction where they iteratively remove least
important input tokens without changing output of a model. Subramanian et al.
(2019) further applies Input Reduction to models on Visual Question Answering (VQA)
dataset. Additionally, several other approaches to generate adversarial examples have
been proposed: HotFlip (Ebrahimi et al., 2018) targets at adversarial generation against
character-level neural classifiers; SEARs (Ribeiro et al., 2018b) explores semantic-

preserving perturbations that induce changes in the model’s predictions; SCPN (Iyyer
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et al., 2018) generates adversarial examples given a sentence and target syntactic form.

This dissertation contributes to a growing body of work on analysis of neural network
models. Much work has studied recurrent neural network language models (Linzen et al.,
2016; Wilcox et al., 2018; Chowdhury and Zamparelli, 2018; Gulordava et al., 2018; Futrell
et al., 2019) and sentence encoders (Adi et al., 2016; Conneau et al., 2018a; Ettinger et al.,
2016). Extensive work has studied the nature of learned representations in NLP models (Adi
et al., 2016; Conneau et al., 2018a; Ettinger et al., 2016; Durrani et al., 2020). The present
work builds in particular on analysis of contextualized representations (Bacon and Regier,
2019; Tenney et al., 2019; Peters et al., 2018b; Hewitt and Manning, 2019; Klafka and
Ettinger, 2020; Toshniwal et al., 2020). Chang and Chen (2019) proposes a framework
of explaining information captured by contextualized word embeddings. Wu et al. (2020)
analyzes contextual word representation based on similarities.

In particular, a majority part of this dissertation concentrates on analyzing transformers.
Characteristics of transformers are major considerations when designing probing tasks: instead
of incremental composition in recurrent networks, transformers maintain representations for
every token in every layer. It lacks a clear aggregated representations of a text span. Figure 2.1
demonstrates a common setup for interpreting transformer models. A popular practice is
to perform layer-wise analysis—applying tasks to contextualized representations/attention
heads/internal parameters to every layer of the model. The layer-wise analysis provides
insights on dynamics of the model, shedding lights on how representations/model internals

evolve as layer progresses. As for the choice of tasks, two trends prevail:

1. Classification-based probing. This line of work often designs classification tasks with
controls to probe behaviors of a model. The most common setup uses contextualized
embeddings as the input to a classifier, and the classification accuracy reflects infor-
mation encoded in the contextualized representations. Kim et al. (2019a) target at

function word comprehension through a set of classification tasks. van Aken et al. (2019)
11
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Figure 2.1: Common task setup for analyzing Transformers.

analyzes BERT’s performance on QA tasks by applying probing tasks in a layer-wise

fashion.

. Intrinsic analysis. This branch analyzes models’ internals directly—often with simply
operations like cosine similarity, without additional classifiers. Specifically, Vig and
Belinkov (2019); Clark et al. (2019) analyze attention mechanism, reporting corre-
spondence between attention patterns and linguistic structures. Roberts et al. (2020);
Raffel et al. (2020) report investigation on learned parameters of the models, exploring
possibilities of transfer learning. There are also attempts exploring redundancy in

transformers (Dalvi et al., 2020; Voita et al., 2019; Michel et al., 2019), suggesting

12



competitive performance can be reserved even majority of parameters are tuned.

Other than above popular trends, there have been other work on analyzing transformers.
Ramnath et al. (2020) present layer-wise interpretation of BERT on Reading Comprehension
based Question Answering (RCQA) through Integrated Gradients (Sundararajan et al., 2017).
The evaluation that we use in this dissertation follows the paradigm of classification-based
probing and correlation with similarity judgments.

Chapter 5 also builds on work subjecting trained NLP models to adversarial inputs, to
highlight model weaknesses. One body of work approaches the problem by applying heuristic
rules of perturbation to input sequences. PAWS (Zhang et al., 2019b)3 and PAWSX (Yang
et al., 2019a) are adversarial paraphrase datasets with high lexical overlap. The samples are
generated via word swapping and back translation. State-of-the-art models report less than
40% accuracy without tuning on the dataset. In Chapter 5, I will present in-depth analysis
of PAWS showing that superficial cues are not controlled, significantly trivializing the task.
Universal Adversarial Triggers (Wallace et al., 2019a) explores gradient-based search to find
input-agnostic sequences of tokens that trigger a model to produce a specific prediction. Jia
and Liang (2017) propose an adversarial test scheme by inserting automatically generated
sentences to samples in the Stanford Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016). Another line of work uses neural models to construct adversarial examples or
manipulate inputs in embedding space. Li et al. (2020) explores generating BERT adversarial
samples using BERT. TEXTFOOLER (Jin et al., 2020) presents an model-independent
algorithm to generate adversarial samples for text classification and textual entailment.
Textbugger (Li et al., 2018) builds a framework to generate adversarial samples while
preserving original meaning under both white-box and black-box settings.

Our work also contributes to efforts to understand impacts and outcomes of fine-tuning

process. Miaschi et al. (2020); Mosbach et al. (2020); Merchant et al. (2020) compare linguistic

3. https://github.com/google-research-datasets/paws
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knowledge learned by neural language models before and after fine-tuning, concluding that
models lose general linguistic information during fine-tuning. Perez-Mayos et al. (2021)
investigate the dynamics of syntax information during fine-tuning on various tasks (e.g.
PoS tagging, dependency parsing and semantics-related tasks). To deal with the loss of
generalizability during fine-tuning, Meta Fine-tuning (Wang et al., 2020) is proposed to train
on multi-tasks in a group of similar tasks, mitigating learning gap between pre-training and

fine-tuning to acquire transferable knowledge.

2.3 Composition in language models

Composition has drawn frequent attention in analysis of language models, as it is a fun-
damental component of language understanding. Several tasks have been proposed to
evaluate composition in language models. Sentences Involving Compositional Knowledge
(SICK)* (Marelli et al., 2014b) aims at composition of phrase and sentence meaning, which
constitutes a task in SemEval-2014 (Marelli et al., 2014a). SICK contains ~10,000 sentence
pairs with semantic relatedness scores. Landmark test (Kintsch, 2001) also serves as a popular
task on evaluating composition in early works. Question Answering via Sentence Composition
(QASC) (Khot et al., 2020) is a QA dataset that explicitly requires model to compose facts
from a large corpus in order to answer questions. It examines models’ compositionality at
sentence and paragraph level. COGS (Kim and Linzen, 2020) contains multiple systematic
gaps that can only be solved by compositional generalization, such as generalizing syntactic
structures.

In terms of methods for analyzing composition, one common practice relies on analysis of
internal representations and downstream task behavior (Conneau et al., 2019; Nandakumar
et al., 2019; McCoy et al., 2019). Some work adds careful controls on dataset to tease apart

compositional information on sentence level (Ettinger et al., 2018; Dasgupta et al., 2018)

4. http://marcobaroni.org/composes/sick.html
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and phrase level (Yu and Ettinger, 2020). Some work investigates compositionality via
constructing non-linguistic synthetic datasets (Liska et al., 2018; Hupkes et al., 2018; Baan
et al., 2019). Another line of work analyzes word interactions in neural networks’ internal
gates as the composition signal (Saphra and Lopez, 2020; Murdoch et al., 2018), extending
the Contextual Decomposition algorithm proposed by Jumelet et al. (2019).

Similar to this dissertation, analyzing composition in transformers has also drawn frequent
attentions. Staliunaité and Iacobacci (2020) explores the benefit of multitask learning in the
context of a Conversational Question Answering (CoQA) task, which requires compositional
semantics information. Parthasarathi et al. (2020) investigate the capability of transformers to
compose multiple tasks within the same dialogue. Geva et al. (2020) focuses on understanding
feed-forward layers in transformer language models. They conclude that it serves as a
composition of key-value memories the model learned, and different layers pick up different
textual patterns. Andor et al. (2019) explores the numerical composition of BERT on Discrete
Reasoning Over Paragraphs (DROP) (Dua et al., 2019), and extend BERT with a lightweight
extraction and composition layer.

In addition to analyzing composition in existing models, extensive effort has been made
to incorporate composition in model architecture. Filimonov et al. (2020) propose a language
modeling system that explicitly composes class-based models. Lin et al. (2019) introduce
a dynamic composition mechanism to take reliability signals into consideration, and fur-
ther improve performance on name tagging tasks. Recurrent Neural Network Grammars
(RNNG) (Dyer et al., 2016) conducts composition of component representations hierarchi-
cally according to parsing tree of the input sequence. Parsing-Reading-Predict Networks
(PRPN) (Shen et al., 2017) adopts a similar idea by simultaneously inducing syntactic
structure and leveraging the inferred structure to learn a better language model.

The work presented in this thesis complement previous analysis work with a targeted and

systematic study of a variety of models, focused on identifying both lexical and compositional
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properties. We introduce controlled variants in addition to normal tasks to isolate signals of

composition from the impact of other superficial cues that inflate models’ performance.

Summary In this chapter, I review previous work that this dissertation closely relates
to. Specifically, T discuss text representation learning and its evaluation in Section 2.1;
progresses of NLP interpretability is covered in Section 2.2; lastly I present previous attempts

on analyzing composition in Section 2.3.

16



CHAPTER 3
PHRASAL REPRESENTATION TYPES

A variety of approaches have been taken for representing sentences and phrases when all
tokens output contextualized representations, as in our tested transformers. To clarify the
phrasal information present in different forms of phrase representation, we experiment with

a number of different combinations of token embeddings as representation types. In this

dissertation, we experiment each of these representations at every layer of each model.

Figure 3.1: Example input sequences (BERT format). CLS is a special token at beginning of
sequence. Tokens in yellow correspond to Head-Word. Avg-Phrase contains element-wise
average of phrase word embeddings. Avg-All averages embeddings of all tokens.

Formally, let [Ty, - ,T}] be an input sequence of length k + 1, with corresponding
embeddings at ith layer [e%), e ,ei:]. Assume the phrase spans the sequence [a, b], where
0 <a < b < k. Because two-word phrases are atypical inputs for these models, we experiment
both with inputs of the two-word phrases alone (“phrase-only”), as well as inputs with the
phrases embedded in sentences (“context-available”). This is illustrated in Figure 3.1 along

with phrase representation types.
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We test the following forms of phrase representation, drawn from each model and layer

separately:

CLS Depending on specific models, this special token can be the first or last token of the
input sequence (i.e. e% or efc). In many applications, this token is used to represent the full

input sequence.

Head-Word In each phrase, the head word is the semantic center the phrase. For instance,
in the phrase “public service”, “service” is the head word, expressing the central meaning
of the phrase, while “public” is a modifier. Because phrase heads are not annotated in
our datasets, we approximate the head by taking the embedding of the final word of the
phrase. This representation is proposed as a potential representation of the whole phrase, if

information is being composed into a central word:
T _ 1
Phw = €b

Avg-Phrase For this representation type we average the embeddings of the tokens in the
target phrase (dashed box in Figure 3.1). This type of averaging of token embeddings is a

common means of aggregate representation (Wieting et al., 2015).

: 1 ,
(] _ (2
pap_b—a+lzew

r=a

Avg-All Expanding beyond the tokens in “Avg-Phrase”, this representation averages

embeddings from the full input sequence.

p’fza:k_‘_lzezw

=0
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SEP With some variation between models, the SEP token is typically a separator for
distinguishing input sentences, and is often the last token (efc) or second to last token (ei:_l)
of a sequence.

Other than aforementioned representation types, many representation types have been

investigated by previous work (Toshniwal et al., 2020) including:

Endpoint is the concatenation of the boundary points of the phrase, which has shown
effective in various tasks (Lee et al., 2016; Wadden et al., 2019) (e.g. SQuAD (Rajpurkar

et al., 2016)):

pép = [6’2; e%)]

Attention Pooling is a pooling method based on learned weights over the contextualized

token embeddings (Tenney et al., 2019; Lee et al., 2017; Lin et al., 2017).
. b . .
pzttt,pool - Z ageg
r=a

i it
t, =v'e,

ol = softmaz(t'),

where v? is a learned attention vector, and tl. is a weighted sum of the contextualized

embeddings.

Max Pooling for all embeddings within the range of the phrase, max pooling takes the
maximum value of the embeddings in each dimension to form the final embedding (Collobert

et al., 2011; Conneau et al., 2017; Hashimoto et al., 2017).
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Diff-Sum Diff-sum is a variant of Endpoint, which has been used by numerous previous
work (Stern et al., 2017; Ouchi et al., 2018):
Phs = el + ef; el — e}

This dissertation does not include these representations for the reason that they do not
have a clear correspondence between composed representation and its constituents. For above
representations, each dimension of the final representation can be a combination of values
from different individual constituents, which complicates the identification of composition

process from individual words. We leave investigation on these representation types and

other representations for larger linguistic units for future work.
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CHAPTER 4
COMPOSITION IN PRE-TRAINED LANGUAGE MODELS

4.1 Introduction

A fundamental component of language understanding is the capacity to combine meaning
units into larger units—a phenomenon known as composition—and to do so in a way that
reflects the nuances of meaning as understood by humans. Transformers (Vaswani et al., 2017)
have shown impressive performance in NLP, particularly transformers using pre-training,
like BERT (Devlin et al., 2019) and GPT (Radford et al., 2018, 2019), suggesting that
these models may be succeeding at composition of complex meanings. However, because
transformers (like other contextual embedding models) typically maintain representations for
every token, it is unclear how and at what points they might be combining word meanings into
phrase meanings. This contrasts with models that incorporate explicit phrasal composition
into their architecture, e.g. RNNG (Dyer et al., 2016; Kim et al., 2019b), recursive models for
semantic composition (Socher et al., 2013), or transformers with attention-based composition
modules (Yin et al., 2020).

In this chapter we take steps to clarify the nature of phrasal representation in transformers.
We focus on representation of two-word phrases, and we prioritize identifying and teasing apart
two important but distinct notions: how faithfully the models are representing information
about the words that make up the phrase, and how faithfully the models are representing
the nuances of the composed phrase meaning itself, over and above a simple account of
the component words. To do this, we begin with existing methods for testing how well
representations align with human judgments of meaning similarity: similarity correlations and
paraphrase classification. We then introduce controlled variants of these datasets, removing
cues of word overlap, in order to distinguish effects of word content from effects of more

sophisticated composition. We complement these phrase similarity analyses with classic sense
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selection tests of phrasal composition (Kintsch, 2001).

We apply these tests for systematic analysis of several state-of-the-art transformers:
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al., 2019),
XLNet (Yang et al., 2019b) and XLM-RoBERTa (Conneau et al., 2019). We run the tests
in layerwise fashion, to establish the evolution of phrase information as layers progress,
and we test various tokens and token combinations as phrase representations. We find
that when word overlap is not controlled, models show strong correspondence with human
judgments, with noteworthy patterns of variation across models, layers, and representation
types. However, we find that correspondence drops substantially once word overlap is
controlled, suggesting that although these transformers contain faithful representations of
the lexical content of phrases, there is little evidence that these representations capture
sophisticated details of meaning composition beyond word content. Based on the observed
representation patterns, we make recommendations for selection of representations from these
models. All code and controlled datesets are made available for replication and application
to additional models. Datasets and code are available at https://github.com/yulang/

phrasal-composition-in-transformers.

4.2 Testing phrase meaning similarity

Our methods begin with familiar approaches for assessing representations via meaning
similarity: correlation with human phrase similarity judgments, and ability to identify
paraphrases. The goal is to gauge the extent to which models arrive at representations
reflecting the nuances of composed phrase meaning understood by humans. We draw on
existing datasets, and begin by testing models on the original versions of these datasets—then
we tease apart effects of word content from effects of more sophisticated meaning composition
by introducing controlled variants of the datasets. The reasoning is that strong correlations

with human similarity judgments, or strong paraphrase classification performance, could be
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Normal Examples
Source Phrase = Target Phrase & Score
ordinary citizen (0.724)
average person person average (0.518)
country (0.255)
AB-BA Examples
Source Phrase  Target Phrase & Score

law school school law (0.382)
adult female female adult (0.812)
arms control control arms (0.473)

Table 4.1: Examples of correlation items. Numbers in parentheses are similarity scores
between target phrase and source phrase. Upper half shows normal examples, and lower half
shows controlled items.

influenced by artifacts that are not reflective of accurate phrase meaning composition per se.
In particular, we may see strong performance simply on the basis of the amount of overlap in
word content between phrases. To address this possibility, we create controlled datasets in
which word overlap is no longer a cue to similarity.

As a starting point we focus on two-word phrases, as these are the smallest phrasal unit
and the most conducive to these types of lexical controls, and because this allows us to

leverage larger amounts of annotated phrase similarity data.

4.2.1 Phrase similarity correlation

We first evaluate phrase representations by assessing their alignment with human judgments
of phrase meaning similarity. For testing this correspondence, we use the BiIRD (Asaadi
et al., 2019) dataset. BiRD is a bigram relatedness dataset designed to evaluate composition,
consisting of 3,345 bigram pairs (examples in Table 4.1), with source phrases paired with
numerous target phrases, and human-rated similarity scores ranging from 0 to 1.

In addition to testing on the full dataset, we design a controlled experiment to remove
effects of word overlap, by filtering the dataset to pairs in which the two phrases consist of

the same words. We refer to these pairs as “AB-BA” pairs (following terminology of the
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authors of the BiRD dataset), and show examples in the lower half of Table 4.1.

We run similarity tests as follows: given a model M with layers L, for ith layer [; € L and
a source-target phrase pair, we compute representations of source phrase pfaep(src) and target
phrase pf,ep(trg), where rep is a representation type from Chapter 3, and we compute their
cosine cos(pfaep(src), piep(trg)). Pearson correlation r; of layer I; is then computed between

cosine and human-rated score for all source-target pairs.

4.2.2  Paraphrase classification

Normal Examples

Source Phrase Target Phrase

is absolutely vital (pos)

was a matter of concern (neg)

is an essential part (pos)

are exacerbating (neg)
Controlled Examples
Source Phrase Target Phrase

are crucial

telecommunications infrastructure (pos)

communication infrastructure :
data infrastructure (neg)

Table 4.2: Examples of classification items. Classification labels between target phrase and
source phrase are in parentheses. Upper half shows normal examples, and lower half shows
controlled items.

We further investigate the nature of phrase representations by testing their capacity to
support binary paraphrase classification. This test allows us to explore whether we will see
better alignment with human judgments of meaning similarity if we use more complicated
operations than cosine similarity comparison. For the classification tasks, we draw on PPDB
2.0 (Pavlick et al., 2015), a widely-used database consisting of paraphrases with scores
generated by a regression model. To formulate our binary classification task, after filtering
out low-quality paraphrases (discussed in Section 4.4), we use phrase pairs (source phrase,
target phrase) from PPDB as positive pairs, and randomly sample phrases from the complete

PPDB dataset to form negative pairs (source phrase, random phrase).
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Because word overlap is also a likely cue for paraphrase classification, we filter to a
controlled version of this dataset as well, as illustrated in Table 4.2. We formulate the
controlled experiment here as holding word overlap between source phrase and target phrase
to be exactly 50% for both positive and negative samples. Our choice of 50% word overlap in
this case is necessary for construction of a sufficiently large, balanced classification dataset
(AB-BA pairs in PPDB are too few to support classifier training, and AB-BA pairs are more
likely to be non-paraphrases). Note, however, that by controlling word overlap to be exactly
50% for all phrase pairs, we still hold constant the amount of word overlap between phrases,
which is the cue that we wish to remove. As an additional control, each source phrase is
paired with an equal number of paraphrases and non-paraphrases, to avoid the classifier
inferring labels based on phrase identity:.

Formally, for each model layer [; and representation type rep, we train
CLF},,, = MLP(([pairf;)
where pai’r,’;ep represents embedding concatenations of each source phrase and target phrase:

pairﬁep = [p;;ep(src) ; p;ep(trg)]

The classifier is trained on binary classification of whether concatenated inputs represent

paraphrases.

4.2.8  Feature importance analysis

With foregoing correlation and classification tasks, we investigate composition patterns of
different token embeddings. However, when comparing different representations, which
representation contains most information regarding paraphrase differentiation and how the
pattern evolves across layers? To answer these questions, we formulate feature importance
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analysis, targeting at analyzing relative amount of information contained in different tokens
and their mappings. The main tool we use is LIME(Ribeiro et al., 2016)1, which approximates
complex black-box classifiers locally with interpretable linear models. For each layer of each
model, we experiment with concatenating embeddings of all representation types as the input
to train the classifier on the paraphrase classification task.

Formally, for each model layer [;, we train
CLF* = MLP([pairg,; pairgep; Pairy,,  Pairyy; pairflp])
where pair,’;ep represents embedding concatenations of each source phrase and target phrase:

pair:‘ep = [p:“ep(src) 3 p:‘ep(tTg)]

We train classifiers on paraphrase classification task for each layer of the model. LIME is
then used to approximate the decision boundary of CLF;, and normalize weights for each
feature (in our case, token representations) in the vicinity of a specific sample. The weight of
a specific representation reflects how much the presence of a representation contributes to
the classification decision.

With LIME, we are able to probe into classifiers we trained, mitigating the potential
discrepancy between strong classification performance and compositionality in models intro-
duced in previous tasks. Another important insight we could have is to probe the classifier
trained on controlled dataset. The feature importance reflects on which representation the
classifier relies on most when word overlap information is removed. And thus the weights

indicate which token representation, in which layer, contain most composed information.

1. https://github.com/marcotcr/lime
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4.3 Polysemous disambiguation

In addition to aforementioned large-scale quantitative metrics, we also present fine-grained
analysis proposed by (Kintsch, 2001; Mitchell and Lapata, 2008, 2010). The task focuses
on models’ ability to distinguish polysemous words by means of phrasal composition. We

borrow two types of experiments presented in Kintsch (2001).

4.3.1 Landmark experiment

horse ran | color ran
gallop POS NEG
dissolve NEG POS

Table 4.3: An example of landmark experiment of verb "run”. Representations are expected
to have higher cosine similarities between phrase and landmark word that are marked “POS”.

Each test item consists of a) a central verb, b) two subject-verb phrases that pick out
different senses of the verb, and ¢) two landmark words, each associating with one of the
target senses of the verb. Table 4.3 shows an example with central verb “ran” and phrases
“horse ran” / “color ran”. The corresponding landmark words are “gallop”, which associates
with “horse ran”, and “dissolve”, which associates with “color ran”. The reasoning is that
composition should select the correct verb meaning, shifting representations of the central
verbs—and of the phrase as a whole—toward landmarks with closer meaning. For this
example, models should produce phrase embeddings such that “horse ran” is closer to “gallop”
and “color ran” is closer to “dissolve”. We use the items introduced in (Kintsch, 2001), which
consist of a total of 4 sets of landmark tests. We feed landmarks and phrases respectively
through each transformer, without context, to generate corresponding representations pfnep

for each layer [; and representation type rep. Cosine similarity between each phrase-landmark

pair is computed and compared against expected similarities.
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4.3.2  Inference experiment

Source Sentence Candidate 1 Candidate 2
the student washed the table. the table was clean. (pos) the student was clean. (neg)

Table 4.4: An example of inference experiment.

Each set consists of 3 sentences, where one source sentence is paired with two potential
inferences. Reasonable sentence representation is expected to have high cosine similarity
between source sentence and the positive candidate. In the example in Table 4.4, we evaluate
contextualized representations for source sentence, candidate 1 and candidate 2 respectively,

and calculate pair-wise cosine similarities.

In landmark experiment, all token representations discussed in Chapter 3 are examined,

whereas only CLS is evaluated in inference experiment.

4.4 Experimental setup

Embeddings of each token are obtained by feeding input sequences through pre-trained
contextual encoders. We investigate the “base” version of five transformers: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al., 2019), XLNet (Yang
et al., 2019b) and XLM-RoBERTa (Conneau et al., 2019). For the models analyzed in this
dissertation, we are using the implementation of (Wolf et al., 2019),2 which is based on
PyTorch (Paszke et al., 2019).

For correlation analysis, we first use the complete BiRD dataset, consisting of 3,345 phrase
pairs.? We then test with our controlled subset of the data, consisting of 410 AB-BA pairs.

For classification tasks, we first do preprocessing on PPDB 2.0,4 filtering out pairs containing

2. https://github.com/huggingface/transformers
3. http://saifmohammad.com/WebPages/BiRD.html
4. http://paraphrase.org
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hyperlinks, non-alphabetical symbols, and trivial paraphrases based on abbreviation or tense
change. For our initial classification test, we use 13,050 source-target phrase pairs (of varying
word overlap) from this preprocessed dataset. We then test with our controlled dataset,
consisting of 11,770 source-target phrase pairs (each with precisely 50% word overlap). For
each paraphrase classification task, 25% of selected data is reserved for testing. We use a
multi-layer perceptron classifier with a single hidden layer of size 256 with ReLLU activation,
and a softmax layer to generate binary labels. We use a relatively simple classifier following
the reasoning of Adi et al. (2016), that this allows examination of how easily extractable
information is in these representations.

For both correlation and classification tasks, we experiment with phrase-only inputs and
context-available (full-sentence) inputs. To obtain sentence contexts, we search for instances
of source phrases in a Wikipedia dump, and extract sentences containing them. For a given
phrase pair, target phrases are embedded in the same sentence context as the source phrase,
to avoid effects of varying sentence position between phrases of a given pair. Because context
sentences are extracted based on source phrases, our use of the same context for source
and target phrases can give rise to unnatural contextual fit for target phrases. We consider
this acceptable for the sake of controlling sentence position—and if anything, differences in
contextual fit may aid models in distinguishing more and less similar phrases. The slight
boost observed on the full datasets (for Avg-Phrase) suggests that the sentence contexts do

provide the intended benefit from using input of a more natural size.

4.5 Results

In this section, we present results of transformers on similarity correlation and paraphrase
classification, under both full and controlled settings. By comparing the performance on
full and controlled datasets, we are able to isolate the effect of compositional information

encoding from lexical content encoding. We will then complement these two tests with a
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feature importance analysis (will be discussed in Section 4.6) and a qualitative analysis using

tasks proposed in Kintsch (2001) (will be discussed in Section 4.7).

4.5.1  Similarity correlation
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Figure 4.1: Correlation on BiRD dataset, phrase-only input setting. First row shows results
on full dataset, and second row on controlled AB-BA pairs. Layer 0 corresponds to input
embeddings passing to the model.

Full dataset The top row of Figure 4.1 shows correlation results on the full BiRD dataset for
all models, layers, and representation types, with phrase-only inputs. Among representation
types, Avg-Phrase and Avg-All consistently achieve the highest correlations across models
and layers. In all models but DistilBERT, correlation of Avg-Phrase and Avg-All peaks at
layer 1 and decreases in subsequent layers with minor fluctuations. Head-Word and SEP
both show weaker, but non-trivial, correlations. The CLS token is of note with a consistent
rapid rise as layers progress, suggesting that it quickly takes on properties of the words of
the phrase. For all models but DistilBERT, CLS token correlations peak in middle layers
and then decline.

Model-wise, XLM-RoBERTa shows the weakest overall correlations, potentially due to

the fact that it is trained to infer input language and to handle multiple languages. BERT
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retains fairly consistent correlations across layers, while RoOBERTa and XLNet show rapid
declines as layers progress, suggesting that these models increasingly incorporate information
that deviates from human intuitions about phrase similarity. DistilBERT, despite being of
smaller size, demonstrates competitive correlation. The CLS token in DistilBERT is notable
for its continuing rise in correlation strength across layers. This suggests that DistilBERT
in particular makes use of the CLS token to encode phrase information, and unlike other

models, its representations retain the relevant properties to the final layer.

Controlled dataset Turning to our controlled AB-BA dataset, we examine the extent
to which the above correlations indicate sophisticated phrasal composition versus effective
encoding of information about phrases’ component words. The bottom row of Figure 4.1
shows the correlations on this controlled subset. We see that performance of all models
drops significantly, often with roughly zero correlation. Avg-All and Avg-Phrase no longer
dominate the correlations, suggesting that these representations capture word information,
but not higher-level compositional information. XLM-RoBERTa and XLNet show particularly
low correlations, suggesting heavier reliance on word content. Notably, the CLS tokens in
RoBERTa and DistilBERT stand out with comparatively strong correlations in later layers.
This suggests that the rise that we see in CLS correlations for DistilBERT in particular may
correspond to some real compositional signal in this token, and for this model the CLS token
may in fact correspond to something more like a representation of the meaning of the full
input sequence. The Avg-Phrase representation for RoOBERTa also makes a comparatively

strong showing.

Difference between full and controlled datasets Figure 4.2 shows the layer-wise drop
in correlation of each model between full and controlled dataset. The performance gap reflects
the extent of reliance on lexical content. Model-wise, RoOBERTa in later layers demonstrates

less significant drop. However, it is worth noting that correlation in these layers is relatively
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Figure 4.2: Correlation difference on BiRD between full and controlled dataset, phrase-only
input setting. Layer 0 corresponds to input embeddings passing to the model.

weak on full dataset compared to other models, suggesting it contains information rather
than maintaining lexical information from lower layers. Among representation types, the drop
in CLS and SEP is less prominent compared to representations directly correspond to phrase
tokens (i.e. Head Word, Avg-Phrase, Avg-All). It is consistent with the belief that CLS in
particular captures higher level information of the entire input sequence. Layer-wise, lower
layers show heavier influence of lexical content, and higher layers are more robust against the

removal of word overlap cues.

Including sentence context Figure 4.3 shows the correlations when target phrases are
embedded as part of a sentence context, rather than in isolation. As can be expected,
Avg-Phrase is now consistently the highest in correlation on the full dataset—other tokens
are presumably more impacted by the presence of additional words in the context. We also
see that the Avg-Phrase correlations no longer drop so dramatically in later layers, suggesting
that when given full sentence inputs, models retain more word properties in later layers

than when given only phrases. This general trend holds also for Avg-All and Head-Word
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Figure 4.3: Correlation on BiRD dataset with phrases embedded in sentence context (context-
available input setting).
representations.

In the AB-BA setting, we see that presence of context does boost overall correlation
with human judgment. Of note is XLM-RoBERTa’s Avg-Phrase, which without sentence
context has zero correlation in the AB-BA setting, but which with sentence context reaches
our highest observed AB-BA correlations in its final layers. However, even with context,
the strongest correlation across models is still less than 0.3. It is still the case, then, that
correlation on the controlled data degrades significantly relative to the full dataset. This
indicates that even when phrases are input within sentence contexts, phrase representations
in transformers reflect heavy reliance on word content, largely missing additional nuances of

compositional phrase meaning.

Difference between full and controlled datasets Figure 4.4 shows the correlation
difference under context available setting. Compared to the result under phrase-only setting in
Figure 4.2, the overall drop is mitigated with the presence of context. Among all representation
types, CLS and SEP are of note having less degradation compared to phrase-only input.
The only exception is Avg-phrase, where context words push it to focusing more on lexical

information, and thus we see a more notable correlation drop. Model-wise, BERT, RoBERTa
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Figure 4.4: Correlation difference on BiRD between full and controlled dataset, context-
available input setting.
and XLM-RoBERTa benefit more from contexts, whereas XLNet still shows heavy reliance

on lexical content, especially for Head-word representation.

4.5.2  Paraphrase classification

Full dataset Results for our full paraphrase classification dataset, with phrase-only inputs,
are shown in the top row of Figure 4.5. Accuracies are overall very high, and we see generally
similar patterns to the correlation tasks. Best accuracy is achieved by using Avg-Phrase
and Avg-All representations. RoBERTa, XLM-RoBERTa, and XLNet show decreasing
correlations for top-performing representations in later layers, while BERT and DistilBERT
remain more consistent across layers. Performance of CLS requires a few layers to peak, with
top performance around middle layers, and in some models shows poor performance in later
layers. SEP shows unstable performance compared to other representations, especially in

DistilBERT and RoBERTa.
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Figure 4.5: Classification accuracy on PPDB dataset (phrase-only input setting). First row
shows classification accuracy on original dataset, and second row shows accuracy on controlled
dataset.

Controlled dataset The bottom row of Figure 4.5 shows classification accuracy when word
overlap is held constant. Consistent with the drop in correlations on the controlled AB-BA
experiments above, classification performance of all models drops down to only slightly above
chance performance of 50%. This suggests that the high classification performance on the
full dataset relies largely on word overlap information, and that there is little higher-level
phrase meaning information to aid classification in the absence of the overlap cue. We see in
some cases a very slight trend such that classification accuracy increases a bit toward middle
layers—so to the extent that there is any compositional phrase information being captured,
it may increase within representations in the middle layers. Overall, the consistency of these
results with those of the correlation analysis suggests that the apparent lack of accurate
compositional meaning information in our tested phrase representations is not simply a result

of cosine correlations being inappropriate for picking up on correspondences.

Difference between full and controlled datasets Figure 4.6 shows the classification
accuracy changes of all models on full and controlled PPDB dataset. The accuracy changes

are more consistent as layer progresses compared to correlation changes. One potential reason
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Figure 4.6: Accuracy difference on PPDB between full and controlled dataset, phrase-only
input setting. Layer 0 corresponds to input embeddings passing to the model.

is that MLP classifier masks minor fluctuations in information encoded in contextualized
embeddings, whereas cosine similarity is more sensitive to these fluctuations. However, the
overall trends we observe are consistent with the similarity correlation task: representation-
wise, CLLS and SEP show relatively less influence of lexical information, whereas Avg-Phrase
and Avg-All show more accuracy drop in early layers. The finding supports our conclusion
from similarity correlation, where representations in lower layers of transformers maintain
more low level lexical information and CLS maintain more higher-level information. Model-
wise, DistilBERT and RoBERTa demonstrate more robustness against the removal of word
overlap. And layer-wise, later layers show less significant accuracy drop, indicating some

higher level compositional information is captured.

Including sentence context Figure 4.7 shows the classification results for representations
of phrases embedded in sentence contexts. The patterns largely align with our observations
from the correlation task. Performance on the full dataset is still high, with Avg-Phrase now

showing consistently highest performance, being least influenced by the presence of new context

36



BERT RoBERTa DistilBERT 1.0 XLM-RoBERTa 1.0 XLNet

. ‘;.'.'-6'-'-'3'—'-:-_--2?—!:' O.BAH...AA-A“‘A‘A'A-A.= _A-A'A'A'A:-Tr.h-.rl.’

A-Aj‘:O-O".'..' O'B“H-.‘.\ rabal > 3
, «® PN v
_a_ /o6 06
A 4

o
©

o
o

Accuracy

Uncontrolled Dataset

0.4 0.4 0.4
0.2 02 02 02! 02
005 i534567890101112°%°0123456780101112°°%°0 1 2 3 4 5 6 %0 0i23a56780101112°°01234567 89101112
Layer Layer Layer Layer Layer
BERT-Exact RoBERTa-Exact DistilBERT-Exact XLM-RoBERTa-Exact XLNet-Exact o
1.0 1.0 1.0 1.0; 1.0; =
8
0.8 0.8 0.8 08! 08! g
o o L s - r a
L ;—’- By | 0.6( g o B " 06 -—-_fg' ‘- O.G—W 06| g B B Bty |
g & =ttt +: 3 M._ -y
So04®” 0.4 0.4 04|00 0.4{g™e 2
o
-
0.2 0.2 0.2 02! 02 £
o
(
0051335456780101112°00123456789101112°°0 1 2 3 4 5 6°00123456769101112°°01334567 680101112
Layer Layer Layer Layer Layer

=#= CLS -4 Head Word =@~ SEP =@ : AvgPhrase =®: AvgAll

Figure 4.7: Classification accuracy on PPDB dataset with phrases embedded in sentence
context. First row shows classification accuracy on original dataset, and second row shows
accuracy on controlled dataset.

words. In the controlled setting, we see the same substantial drop in performance relative to
the full dataset—there is very slight improvement over the phrase-only representations, but
the highest accuracy among all models is still around 0.6. Thus, the inclusion of sentence
context again does not provide any additional evidence for sophisticated compositional

meaning information in the tested phrase representations.

Difference between full and controlled datasets Figure 4.8 presents the accuracy
difference on PPDB dataset under full and controlled settings. Similar to context-available
correlation task, overall accuracy drops are mitigated with context words available, which
benefits from the slight improvement on controlled task. Notably, CLS and SEP show minor
drops, especially in BERT, DistilBERT and XLM-RoBERTa. It is worth noting that later
layers SEP in DistiIBERT and XLM-RoBERTa show a different trend where last few layers
have more significant drop than early layers. It implies that the presence of context makes
the contextualized embeddings in later layers to maintain more lexical information. We find
similar trend in XLNet, where early layers have less accuracy changes but later layers suffer

more. The trend is also a result of more significant improvement in later layers under full
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Figure 4.8: Accuracy difference on PPDB between full and controlled dataset, context-
available input setting.
dataset setting. As discussed earlier, the context words boost the performance of later layers

by pushing models to maintain lexical information, rather than compositional information.

4.6 Feature importance analysis

In this section, we present the analysis using LIME. Figure 4.9 shows the importance analysis
on classifiers trained on PPDB classification tasks, and Table 4.5 shows the raw importance
of BERT representations.

Among representation types, feature importance shows that classifiers prefer Head-Word
as the most important representation for the binary classification. Even though accuracy
of using Head-Word only is not as good as Avg-Phrase and Avg-All in correlation and
classification tasks (as discussed in Section 4.5), Head-Word is considered more informative
when all representation types are concatenated. It suggests that with information about
phrases available (from Avg-Phrase and Avg-All), Head-Word contains most indicative

information on identifying paraphrases. It is not surprising that Avg Phrase is selected as
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Figure 4.9: LIME experiments. Feature importance analysis of classifiers trained on PPDB
classification tasks. Feature weights are normalized for each sample.

the second important features, with almost same weight as Head Word. Whereas SEP is
assigned almost no weight, which accords with our previous experiments. Another notable
observation is that CLS in XLM-RoBERTa is assigned significantly less weights compared to
CLS in other models. It suggests that CLS in XLM-RoBERTa contains little information,
which explains the fluctuation and weak performance we see in Figure 4.5.

Moving to the dynamics of weights as layer progresses, we see that proportion of weights
for CLS peaks at middle layers (layer 4 for BERT, layer 5 for RoBERTa). We find a similar
pattern on correlation task where the performance of CLS reaches highest at middle layer.
The LIME experiment support the previous finding from another angle, that CLS requires
some layer of composition to include most information about input phrases, and as layer

progresses, CLS embeddings incorporate other information and lose the phrasal encoding.
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Layer CLS Head-Word SEP Avg-Phrase Avg-All

0 0.15 0.24 0.21 0.22 0.18
1 0.18 0.23 0.22 0.21 0.17
2 0.18 0.21 0.22 0.23 0.17
3 0.09 0.30 0.07 0.32 0.22
4 0.21 0.24 0.10 0.26 0.19
) 0.12 0.30 0.04 0.33 0.21
6 0.16 0.28 0.06 0.30 0.20
7 0.20 0.28 0.03 0.28 0.21
8 0.20 0.20 0.18 0.23 0.20
9 0.21 0.24 0.06 0.27 0.22
10 0.24 0.20 0.14 0.22 0.20
11 0.22 0.24 0.05 0.27 0.21
12 0.16 0.23 0.14 0.26 0.20

Table 4.5: Feature weights of classifiers trained on normal PPDB classification with BERT
representations.

4.7 Qualitative analysis: sense disambiguation

The above analyses rely on testing models’ sensitivity to meaning similarity between two
phrases. In this section we complement these analyses with another test aimed at assessing
phrasal composition: testing models’ ability to select the correct senses of polysemous words

in a composed phrase, as proposed by (Kintsch, 2001).

4.7.1 Landmark experiment

Figure 4.10 shows the percentage of phrases that fall closer to the correct landmark word
than to the incorrect one, averaged over 16 phrase-landmark word pairs. We see strong
overall performance across models, suggesting that the information needed for this task is
successfully captured by these models’ representations. Additionally, we see that the patterns
largely mirror the results above for correlation and classification on uncontrolled datasets.
Particularly, Avg-Phrase and Avg-All show comparatively strong performance across models.
RoBERTa and XLNet show stronger performance in early layers, dropping off in later layers,

while BERT and DistilBERT show more consistency across layers. XLM-RoBERTa and
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Figure 4.10: Landmark experiments. Y-axis denotes the percentage of samples that are shifted
towards the correct landmark words in each layer. Missing bars occur when representations
are independent of input at layer 0, such that cosine similarity between phrases and landmarks
will always be 1.

XLNet show lower performance overall.

For this verb sense disambiguation analysis, the Head-Word token is of note because
it corresponds to the central verb of interest, so its sense can only be distinguished by its
combination with the other word of the phrase. XLM-RoBERTa has the weakest performance
with Head-Word, while BERT and DistilBERT demonstrate strong disambiguation with this
token. As for the CLS token, RoBERTa produces the highest quality representation at layer
1, and BERT outperforms other models starting from layer 6, with DistilBERT also showing
strong performance across layers.

Notably, the observed parallels to our correlation and classification results are in alignment
with the uncontrolled rather than the controlled versions of those tests. So while these parallels
lend further credence to the general observations that we make about phrase representation
patterns across models, layers, and representation types, it is worth noting that these
landmark composition tests may be susceptible to lexical effects similar to those controlled for
above. Since these test items are too few to filter with the above methods, we leave in-depth

investigation of this question to future work.
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4.7.2 Inference experiment

Inference Experiments
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Figure 4.11: Accuracy on inference experiments. Y value denotes the percentage of CLS
representations that reside closer to the correct inference candidate in terms of cosine similarity
distance.

Figure 4.11 shows the accuracy of CLS representations that reside closer to the correct
candidate inference in cosine distance space for each model. Overall, BERT consistently
outperforms other models in lower layers while XLNet shows strong performance in deeper
layers. RoBERTa shows a similar pattern as BERT, where the performance peaks at early
layers, and degrades as layer continues. Although the task setup is similar to natural language
inference task, the performance we observe largely mirrors the trend of full correlation and
classification tasks. It is similar to what we see in landmark experiment, which indicates that
these tests that are traditionally believed to be composition tasks, might require more lexical
knowledge rather than higher-level compositional information. We speculate that there are

spurious cues that make the models able to infer correct candidate without understanding
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the input sentences. One potential cue can be the connection between subject of the source

sentence and that of the correct candidate. We leave closer investigation for future work.

4.8 Discussion

The analyses reported above yield two primary takeaways. First, they shed light on the
nature of these models’ phrase representations, and the extent to which they reflect word
content versus phrasal composition. At many points in these models there is non-trivial
alignment with human judgments of phrase similarity, paraphrase classification, and verb
sense selection. However, when we control our correlation and classification tests to remove
the cue of word overlap, we see little evidence that the representations reflect sophisticated
phrase composition beyond what can be gleaned from word content. While we see strong
performance on classic sense selection items designed to test phrase composition, the observed
results largely parallel those from the uncontrolled versions of the correlation and classification
analyses, suggesting that success on this landmark test may reflect lexical properties more
than sophisticated composition. Given the importance of systematic meaning composition
for robust and flexible language understanding, based on these results we predict that we
will see corresponding weaknesses as more tests emerge for these models’ handling of subtle
meaning differences in downstream tasks.

Our systematic examination of models, layers and representation types yields a second
takeaway in the form of practical implications for selecting and extracting representations
from these models. For faithful representations of word content, Avg-Phrase is generally
the strongest candidate. If only the phrase is embedded, drawing from earlier layers is best
in RoBERTa, XLM-RoBERTa, and XLNet, while middle layers are better in BERT, and
later layers in DistilBERT. If the phrase is input as part of a sentence, middle layers are
generally best across models. Though the CLS token is often interpreted to represent a full

input sequence, we find it to be a poor phrase representation even with phrase-only input,
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with the notable exception of the final layer of DistilBERT.

As for representations that reflect true phrase meaning composition, we have established
that such representations may not currently be available in these models. However, to the
extent that we do see weak evidence of potential compositional meaning sensitivity, this
appears to be strongest in DistilBERT’s CLS token in final layers, in RoBERTa’s Avg-Phrase
representation in later layers, and in XLM-RoBERTa’s Avg-Phrase representation from later

layers only when the phrase is contained within a sentence context.

4.9 Conclusions

We have systematically investigated the nature of phrase representations in state-of-the-art
transformers. Teasing apart sensitivity to word content versus phrase meaning composition,
we find strong sensitivity across models when it comes to word content encoding, but little
evidence of sophisticated phrase composition. The observed sensitivity patterns across models,
layers, and representation types shed light on practical considerations for extracting phrase
representations from these models.

Future work can apply these tests to a broader range of models, and continue to develop
controlled tests that target encoding of complex compositional meanings, both for two-word
phrases and for larger meaning units. We hope that our findings will stimulate further work
on leveraging the power of these generalized transformers while improving their capacity to
capture compositional meaning.

Majority of the work in this chapter is published in Yu and Ettinger (2020).
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CHAPTER 5
INTERPLAY BETWEEN FINE-TUNING AND COMPOSITION

5.1 Introduction

Transformer neural language models like BERT (Devlin et al., 2019), GPT (Radford et al.,
2018, 2019) and XLNet (Yang et al., 2019b), have improved the state-of-the-art in many
NLP tasks since their introduction. The versatility of these pre-trained models suggests
that they may acquire fairly robust linguistic knowledge and capacity for natural language
“understanding”. However, an emerging body of analysis (Niven and Kao, 2019; Kim and
Linzen, 2020; Ettinger, 2020) demonstrates a level of superficiality in handling of language.

As presented in the previous chapter, when testing for composition in pre-trained trans-
former representations, these representations reflect word content of phrases, but do not show
signs of more sophisticated humanlike composition beyond word content. In this chapter we
perform a direct follow-up of that study, asking whether models will show better evidence of
composition after fine-tuning on tasks that are good candidates for requiring composition: 1)
the Quora Question Pairs dataset in Paraphrase Adversaries from Word Scrambling (PAWS-
QQP) (Zhang et al., 2019b), an adversarial paraphrase dataset forcing models to classify
paraphrases with high lexical overlap, and 2) the Stanford Sentiment Treebank (Socher et al.,
2013), a sentiment dataset with fine-grained phrase labels to promote composition. We base
our analysis on the tests proposed in the previous chapter, which rely on alignment with
human judgments of phrase pair similarities, and leverage control of lexical overlap to target
compositionality. We fine-tune and test the same models, for optimal comparison.

We find that across the board, fine-tuning on PAWS does not improve compositionality—if
anything, performance on composition metrics tends to degrade. Composition performance
also remains low after training on SST, but we do see some localized improvements for certain

models. Analyzing the PAWS dataset, we find reliable superficial cues to paraphrase labels
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(distance of word swap), explaining in part why fine-tuning on that task might fail to improve
compositionality—and reinforcing the need for caution in interpreting difficulty of NLP tasks.
We also discuss the contribution of variation in size of labeled phrases in SST, with respect
to the benefits that result from fine-tuning on that task. All experimental code and data will

be made available for further testing.

5.2 Fine-tuning pre-trained transformers

In response to the weaknesses observed by (Yu and Ettinger, 2020), we select two different
datasets with promising characteristics for addressing these weaknesses. We fine-tune on these
tasks, then perform layer-wise testing on contextualized representations from the fine-tuned
models, comparing against results on the pre-trained models. Here we describe the two

fine-tuning datasets.

5.2.1 PAWS: fine-tuning on high word overlap

Sentence 1 Sentence 2 Label
There are also specific discussions , pub- There are also public discussions , profile

lic profile debates and project discus- specific discussions , and project discus- 0
sions . sions .

She worked and lived in Stuttgart , She worked and lived in Germany (
Berlin ( Germany ) and in Vienna ( Stuttgart , Berlin ) and in Vienna ( 1
Austria ) . Austria ) .

Table 5.1: Example pairs from PAWS-QQP. Both positive and negative pairs have high
bag-of-words overlap.

The core of the (Yu and Ettinger, 2020) finding is that model performance on the selected
composition tests degrades significantly when cues of lexical overlap are controlled. It stands
to reason, then, that a model trained to discern meaning differences under conditions of high
lexical overlap may improve on these overlap-controlled composition tests. This drives our

selection of the Paraphrase Adversaries from Word Scrambling (PAWS) dataset (Zhang et al.,
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2019c), which consists of sentence pairs with high lexical overlap. The task is formulated
as binary classification of whether two sentences are paraphrases or not. State-of-the-art
pre-trained models achieve only < 40% accuracy before training on the dataset (Zhang et al.,
2019b). Table 5.1 shows examples from this dataset. Due to the high lexical overlap, we
might expect that in order to achieve non-trivial accuracy on this task, models must attend

to more sophisticated meaning information than simple word content.

5.2.2 SST: fine-tuning on hierarchical labels

Another dataset that has been associated with training and evaluation of phrasal composition
is the Stanford Sentiment Treebank, which contains syntactic phrases of various lengths,
together with fine-grained human-annotated sentiment labels for these phrases. Because this
dataset contains annotations of composed phrases of various sizes, we can reasonably expect
that training on this dataset may foster an increased sensitivity to compositional phrase
meaning. We formulate the fine-tuning task as a 5-class classification task following the setup
in (Socher et al., 2013). The models are trained to predict sentiment labels given phrases as

input.

5.3 Representation evaluation

For optimal comparison of the effects of fine-tuning on the above tasks, we replicate the tests,
representation types, and models reported on by (Yu and Ettinger, 2020). Here we briefly
describe these methods. For more details on the evaluation dataset and task setup, please

refer to (Yu and Ettinger, 2020).
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5.3.1 Fwvaluation tasks

(Yu and Ettinger, 2020) propose two analyses for measuring composition, which we apply
to our fine-tuned models: similarity correlations and paraphrase classification. They focus
on two-word phrases, using the BiRD (Asaadi et al., 2019) bigram relatedness dataset for
similarity correlations, and the PPDB 2.0 (Pavlick et al., 2015) paraphrase database for
paraphrase classification.

For both task types, (Yu and Ettinger, 2020) compare between “normal” and “controlled”
tests, with the latter filtering the data to control word overlap, such that amount of word
overlap can no longer be used as a cue to improve performance.

It is on these controlled settings that (Yu and Ettinger, 2020) observe the significant drop
in performance, concluding that model representations lack the compositional knowledge to

discern phrase meaning beyond word content.!

5.3.2  Representation types

Following (Yu and Ettinger, 2020), for each input phrase we test as a potential representation
1) CLS token, 2) average of tokens within the phrase (Avg-Phrase), 3) average of all sentence
tokens (Avg-All), 4) embedding of the second word of the phrase, intended to approximate
the semantic head (Head-Word), and 5) SEP token. We test each of these representations at

every layer of each model.

5.4 Experimental setup

We fine-tune and analyze the same models that (Yu and Ettinger, 2020) test in pre-trained
form: BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al.,

1. Like (Yu and Ettinger, 2020), we also test both phrase-only input (encoder input consists only of
two-word phrase plus special CLS/SEP tokens), as well as inputs in which phrases are embedded in sentence
contexts.
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2019), XLNet (Yang et al., 2019b) and XLM-RoBERTa (Conneau et al., 2019). In each
case, the pre-trained “base” version is used as the starting point for fine-tuning. We use the
implementation of (Wolf et al., 2019)? based on PyTorch (Paszke et al., 2019).

We fine-tune these models on the two datasets described in Section 5.2. The Quora
Question Pairs dataset in Paraphrase Adversaries from Word Scrambling (PAWS-QQP)3
consists of a training set with 11,988 sentence pairs, and a dev/test set with 677 sentence
pairs. Tuning on PAWS-QQP is formulated as binary classification. Sentences are passed as
input and models are trained to predict whether two input sentences are paraphrases or not.
Models are trained on the training set, and validated on the dev/test set for convergence.

The Stanford Sentiment Treebank (SST)* (Socher et al., 2013) contains 215,154 phrases.
15% of the data is reserved for validation. The fine-tuning task is formulated as 5-class
classification on sentiment labels, where models are given phrases as input, and asked to
predict sentiment. In both tasks, the Adam optimizer (Kingma and Ba, 2014) with default
weight decay is used. Models are trained until convergence on the validation set.

The evaluation tasks consist of correlation analysis and paraphrase classification. For
correlation in the “original” setting, we use the complete BiRD dataset, containing 3,345
phrase pairs.® In the controlled setting from (Yu and Ettinger, 2020), the data consists of 410
“AB-BA” mirror-image pairs with 100% word overlap (e.g., law school | school law). For the
classification tasks, we use the preprocessed data released by (Yu and Ettinger, 2020).6 We
collect 12,036 source-target phrase pairs from the preprocessed dataset for our uncontrolled
classification setting, and for the controlled classification setting, we collect 11,772 phrase

pairs with exactly 50% word overlap in each pair.

2. https://github.com/huggingface/transformers
3. https://github.com/google-research-datasets/paws
4. https://nlp.stanford.edu/sentiment/treebank.html
5. http://saifmohammad. com/WebPages/BiRD.html

6. https://github.com/yulang/phrasal-composition-in-transformers
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5.5 Results after fine-tuning

5.5.1 Full datasets
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Figure 5.1: Correlation on BiRD dataset with phrase-only input. First row shows correlation
of pre-trained models, second row shows models tuned on PAWS-QQP, and last row shows
models tuned on Sentiment Treebank. X-axis of each subplot corresponds to layer index,
and Y-axis corresponds to the correlation value. Layer 0 corresponds to input embeddings
passing to the model.

Similarity Correlation Figure 5.1 presents the original results from (Yu and Ettinger,
2020) on pre-trained models, alongside our new results after fine-tuning, on the full BiRD
dataset. Since this is prior to the control of word overlap, these correlations can be expected
to reflect effects of lexical content encoding, without yet having isolated effects of composition.
We see that overall, all models benefit from fine-tuning in this setting, with consistent
improvements in peak correlations. For a given representation type, improvements are
generally stronger after fine-tuning on SST than on PAWS. Between representation types,

Avg-Phrase and Avg-All remain consistently at the highest correlations after fine-tuning.
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Additionally, we see that the steady decline in correlation at later layers in pre-trained BERT,
RoBERTa and XLM-RoBERTa is mitigated after fine-tuning. Model-wise, we see the most
significant improvement in RoBERTa, where the correlations become more consistent across
layers for all representation types except SEP. As we discuss below, we take this as indication
that the fine-tuning promotes more robust retention of word content information across layers,

if not more robust phrasal composition.
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Figure 5.2: Accuracy on normal PPDB dataset with phrase-only input. First row shows
accuracy of pre-trained models, second row shows models tuned on PAWS-QQP, and last
row shows models tuned on Sentiment Treebank.

Paraphrase Classification Figure 5.2 shows the paraphrase classification accuracy on
uncontrolled PPDB dataset. Overall, we see a similar pattern to the correlation task,
where all models benefit from fine-tuning, and SST-tuned models demonstrate stronger peak
performance compared to PAWS-tuned. Between representation types, Avg-Phrase and
Avg-All show the strongest performance after fine-tuning. We find fine-tuning has the least
impact on SEP across all models, and accuracy of SEP in middle layers of BERT is harmed

by fine-tuning. It suggests that SEP contains little information on differentiating paraphrases,
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which fine-tuning shows little changes in it. Layer-wise, fine-tuning mitigates the performance
drop in later layers, which is also a notable pattern we observe in similarity correlation task.
Model-wise, Avg-Phrase, Avg-All and Head-Word in later layers in RoBERTa and XLNet see
the most prominent improvement from fine-tuning. CLS in XLM-RoBERTa demonstrates

unstable fluctuation even after fine-tuning.

5.5.2 Controlled datasets

Above we see benefits of fine-tuning for performance on the full datasets—but the critical
question here is whether correlations also show improved performance on the word-overlap

controlled datasets, which better isolate effects of composition.
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Figure 5.3: Correlation on controlled BiRD dataset (AB-BA setting) with phrase-only
input. First row shows correlation of pre-trained models, second row shows models tuned on
PAWS-QQP, and last row shows models tuned on Sentiment Treebank.

Figure 5.3 shows correlations for all models on the controlled AB-BA (full word overlap)
correlation test. Figure 5.4 shows the results for the controlled paraphrase classification

setting, where both paraphrase and non-paraphrase pairs have exactly 50% word overlap.
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Figure 5.4: Accuracy on controlled PPDB dataset (exact 50% setting) with phrase-only
input. First row shows accuracy of pre-trained models, second row shows models tuned on
PAWS-QQP, and last row shows models tuned on Sentiment Treebank.

The first comparison to note is that between original and controlled settings, which
allows us to establish the contributions of overlap information as opposed to composition.
Comparing between Figure 5.1 and Figure 5.3, it is clear that fine-tuned models still show
substantial drops in correlation when overlap cues are removed. The same goes for Figure 5.4
(by comparison to Figure 5.2)—we see that on the controlled dataset the fine-tuned accuracies
hover just above chance-level performance both before and after fine-tuning, compared to
over 90% accuracy on the uncontrolled dataset. This gap in performance between the original
and controlled datasets mirrors the findings of (Yu and Ettinger, 2020), and suggests that
even after fine-tuning, the majority of correspondence between model phrase representations
and human meaning similarity judgments can be attributed to capturing of word content
information rather than composition.

The second key comparison is between pre-trained and fine-tuned models within the

overlap-controlled settings. While the prior comparison tells us that similarity correspondence
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is still dominated by word content effects, this second comparison can tell us whether fine-
tuning shows at least some boost in compositionality. Comparing performance of pre-trained
and fine-tuned models in Figure 5.3, we see that fine-tuning on PAWS-QQP in fact consistently
harms correlations in all models, except Avg-Phrase and Avg-All in XLM-RoBERTa. This is
despite the fact that models achieve strong validation performance on PAWS-QQP (as shown
in Table 5.2), suggesting that learning this task does little to improve composition. We will
explore the reasons for this below.

In Figure 5.4, we see that fine-tuning does very slightly improves the best accuracies
among models in the controlled datasets (around 3% increase in peak accuracy for SST and
2% for PAWS), but even so, the best accuracies among models continue to be only marginally
above chance. This, too, fails to provide evidence of any substantial composition improvement

resulting from the fine-tuning process.
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Figure 5.5: Correlation on full BiRD dataset with phrases embedded in context sentence
(context-available input). First row shows correlation of pre-trained models,second row shows
models tuned on PAWS-QQP, and last row shows models tuned on Sentiment Treebank.
X-axis of each subplot corresponds to layer index, and Y-axis corresponds to the correlation
value. Layer 0 corresponds to input embeddings passing to the model.
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The story changes slightly when we turn to impacts of SST fine-tuning on correlations in
Figure 5.3. While all correlations remain low after fine-tuning, we do see that correlations for
BERT, XLM-RoBERTa and XLNet exhibit some non-trivial benefits from SST tuning. In
particular, SST tuning consistently improves correlation among all representation types in
BERT, boosting the highest correlation from ~0.2 to ~0.39. Between representation types,
the greatest change is in the CLS token, with the most dramatic point of improvement being
an abrupt correlation peak in the CLS token at BERT’s fourth layer. We will discuss more

below about this localized benefit from SST.
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Figure 5.6: Correlation on controlled BiRD dataset (AB-BA setting) with phrases embedded
in context sentence (context-available input). First row shows correlation of pre-trained
models,second row shows models tuned on PAWS-QQP, and last row shows models tuned
on Sentiment Treebank. X-axis of each subplot corresponds to layer index, and Y-axis
corresponds to the correlation value. Layer 0 corresponds to input embeddings passing to the
model.

A final important observation is that fine-tuning on either dataset harms the correlations
for Avg-Phrase and Avg-All in RoBERTa under the controlled setting, by contrast to the

general improvements seen for that and other models in the uncontrolled setting. This

suggests that at least for that model, fine-tuning encourages retention or enhancement of
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lexical information, but results in degradation of compositional phrase information.

5.5.8 Including sentence context

Following the setup discussed in Chapter 4, in addition to phrase-only inputs we also try
embedding target phrases in sentence contexts. Figure 5.5 shows the result of similarity
correlation with phrases embedded in context sentences. Compared to phrase-only setting in
Figure 5.1, we see that presence of context words does boost overall correlation and accuracy,
but does not alter the general trends. Avg-Phrase still dominates the correlation performance
consistently across layers and models. Notably, the sharp correlation drop of Avg-Phrase and
Head-Word in later layers are mitigated. It indicates that context words help Avg-phrase
and Head-Word maintain more information about phrase similarity. Another trend is that
correlation of Avg-All drops consistently, which is a result of the presence context words.
Avg-All in this case incorporates information from context other than target phrases, leading
to the consistent correlation degradation. Similar effect occurs to CLS, where it encodes
more information not directly relevant to the phrase similarity task.

Comparing between pre-trained models and fine-tuned models, peak correlations are
improved consistently after fine-tuning. Across all models, SST consistently has a greater
improvement on peak performance. Model-wise, we find RoBERTa and BERT benefit more
from fine-tuning on both tasks. Specifically, peak performance of BERT is boosted by ~ 5% in
later layers, whereas RoBERTa peaks at middle layers, with around 3% correlation increase.

Figure 5.6 shows the impact of context on controlled BiRD dataset (AB-BA setting).
Even with the presence of context words, models still show relatively weak performance on
controlled tasks. Compared to phrase-only setting in Figure 5.3, we see that correlation of
Avg-Phrase improves, especially in later layers. With context available, correlation no longer
peaks in early layers as in phrase-only input, which implies that under context-available

setting, it requires more layers of composition for these representations to capture phrase
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similarity nuances. Similar to phrase-only, SST tuning consistently shows better improvement
than PAWS. Since PAWS is specifically designed for paraphrase identification in sentence
level, it is surprising that with context present, it under-performs SST, which consists of
linguistic phrases of various length. In the next section, we will provide in-depth analysis
on why PAWS largely fails. Another important observation is that fine-tuning mitigate the

correlation drop in last layer of XLNet, and boost the peak correlation.

5.6 Analyzing impact of fine-tuning

The presented results suggest that despite compelling reasons to think that fine-tuning on the
selected tasks may improve compositionality, these models mostly do not exhibit noteworthy
benefits from fine-tuning. In particular, fine-tuning on the PAWS-QQP dataset mostly harms
performance on the controlled datasets taken to be most indicative of compositionality. As for
SST, the benefits are minimal, but in localized cases like BERT’s CLS token, we do see signs
of improved compositionality. In this section, we conduct further analysis on the impacts of

fine-tuning, and discuss why tuned models behave as they do.

5.6.1 Failure of PAWS-QQP

Table 5.2 shows accuracy of fine-tuned models on the dev/test set of PAWS-QQP. The
performance of BERT in the table is different from previous work mainly due to the fact
that models in (Zhang et al., 2019b) are tuned on concatenation of QQP and PAWS-QQP
dataset rather than PAWS only. It is clear that the models are learning to perform well on
this dataset, but this does not translate to improved composition sensitivity.

We explore the possibility that this discrepancy may be caused by trivial cues arising
during the construction of the dataset, enabling models to infer paraphrase labels without
needing to improve their understanding of the meaning of the sentence pair (c.f., Poliak et al.,

2018; Gururangan et al., 2018). Sentence pairs in PAWS are generated via word swapping and
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Model Accuracy (%)
BERT 80.13
RoBERTa 90.81
DistilBERT 81.98
XLM-RoBERTa 91.18
XLNet 88.24
Linear CLF 71.34

Table 5.2: Accuracy of fine-tuned models on the dev/test set of PAWS-QQP. Baseline is a
linear classifier with relative swapping distance as the only input feature.
back translation to ensure high bag-of-words overlap (Zhang et al., 2019b). We hypothesize
that models may be able to achieve high performance in this task based on distance of the
word swap alone, without requiring any sophisticated meaning extraction.

To test this, given a sentence pair (s1, s2) with word counts 1, l9, respectively, we define
“relative swapping distance” as

dist = ————
relative max(h’ l2)

where distsyap is defined as the index difference of the first swapping word in s; and s9. For
the example shown in the first row of Table 5.1, the first swapping word is “specific”, with
dist syap = 4.

In the last plot of Figure 5.7, we show an association between relative swapping distance
and paraphrase labels in the PAWS dev /test set: sentence pairs with small swapping distance
tend to be positive samples, while large swapping distance associates with negative labels.
Other plots in Figure 5.7 show the distribution of positive and negative predictions generated
by each fine-tuned model with respect to relative swapping distance. We see a similar pattern,
with models tending to generate negative labels when swapping distance is larger.

To verify the viability of this cue, we train a simple linear classifier on PAWS, with relative
swapping distance as the only input feature. The results are reported as “Linear CLF” in

Table 5.2. Even without access to the content of the sentences, we see that this simple model
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Figure 5.7: Distribution of positive and negative predictions made by tuned models. Last
plot shows the statistics in the dev/test set. X-axis corresponds to the relative swapping
distance, Y-axis shows the number of samples in the specific relative swapping distance bin.
is able to achieve non-trivial and comparably good classification accuracy on the dev/test
set. The strong performance of the linear classifier and the distribution of predictions are
consistent with the hypothesis that when we tune on PAWS-QQP, rather than forcing models
to learn nuanced meaning in the absence of word overlap cues, we may instead encourage

models to focus on lower-level information having little to do with the actual sentences,

further degrading their performance on the composition tasks.

5.6.2  Localized impacts of SST

Fine-tuning on sentiment shows a bit of a different pattern—while it mostly shows only
minor changes from pre-training, and the correlations and classification accuracies remain at

decidedly low levels on the controlled settings, we do see in certain models some distinctive
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changes in levels of similarity correlation as a result of tuning on SST. Notably, since these
improvement patterns are seen in the similarity correlations but not in the classification
accuracies, this suggests that these two tasks are picking up on slightly different aspects
of phrasal compositionality. To investigate these effects further, we focus our attention on
BERT, which shows the most distinctive improvement in correlations.

The obvious candidate for the source of the localized SST benefit is the dataset’s inclusion
of labeled syntactic phrases of various sizes. The benefits seen from SST-tuning suggest that
this may indeed encourage models to gain finer-grained sensitivity to compositional impacts
of phrase structure (at least those relevant for sentiment). To examine this further, we filter
the SST dataset to subsets with phrases of the same length, from 2 to 6 words, and tune

pre-trained BERT on each subset.
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Figure 5.8: Layer-wise correlation of BERT fine-tuned on phrases of different lengths in SST.

Figure 5.8 shows the correlations for BERT, fine-tuned on each phrase length, on the
overlap-controlled BiRD dataset. We see that tuning on the full dataset (mixed phrase
lengths) gives the strongest fourth-layer boost in CLS correlation performance—but among
the size subsets, a semblance of the fourth layer CLS peak is seen across phrase lengths,
with length 2 training yielding the strongest peak, and length 6 training the smallest. This

suggests an amount of size-based specialization—sentiment training on phrases of (or closer
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to) length two has more positive impact on similarity correlations for our two-word phrases.
However, we also see that phrases of other sizes contribute non-trivially to the ultimate
correlation improvement from training on the full dataset. This is consistent with the notion
that training on diverse phrase sizes encourages fine-grained attention to compositionality,

while training on phrases of similar size may have slightly more direct benefit.
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Figure 5.9: Average layer-wise embedding similarity between fine-tuned and pre-trained
BERT. The upper half shows the comparison between PAWS-QQP tuned and pre-trained
BERT. And the lower half presents Sentiment Treebank-tuned v.s. pre-trained. Embeddings
are evaluated using full BiRD dataset for input.

5.0.3 Representation changes

For further comparison of fine-tuning effects between tasks, we analyze changes in BERT
representations before and after fine-tuning. Figure 5.9 shows the results. We see substantial
differences between tasks in terms of representation changes: while SST fine-tuning produces
significant changes across representations and layers, PAWS fine-tuning leaves representations

largely unchanged (further supporting the notion that this task can be solved fairly trivially).
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We also see that after SST tuning, BERT’s CLS token shows robust similarity to pre-trained
representations until the fifth layer, followed by a rapid drop in similarity. This suggests that
the fourth-layer correlation peak may be enabled in part by retention of key information
from pre-training, combined with heightened phrase sensitivity from fine-tuning. We leave
in-depth exploration of this dynamic for future work.

For PAWS tuning, similarity of all representation types decreases as layers progress,
suggesting that fine-tuning has greater impact on later layers of transformers. And the only
exception is SEP, where the impact of fine-tuning fades as layer progresses. It suggests that
SEP plays very little role on fine-tuning tasks, and thus sees minor changes in deeper layers.
In addition, the effect on tokens in later layers does not succeed in pushing later layers to
focus more on higher-level information. As shown in the previous section, PAWS essentially
makes models focus more on low-level lexical information in deeper layers.

For SST tuning, similarity evolution demonstrates a more diverse pattern: CLS shows
decrease in similarity until layer 3, and a slight increase at layer 4. As the irregular variation
matches the correlation peak in controlled BiRD task, we speculate that fine-tuning guides
models to contain more nuances of composition in lower layers, and starting from layer 4,
CLS starts to absorb information other than phrasal similarity (potentially global sentence
information). Representations that directly correspond to phrase tokens (Avg-Phrase, Avg-
All, Head-Word) show consistent decrease as layer progresses, suggesting fine-tuning alters
deeper layers to contain more higher-level information. Like PAWS, SEP shows a contrary
pattern of increasing similarity except last layer.

Overall, among all representation types, CLS shows the most notable changes, and SEP
shows almost no changes except last layer, which is not surprising since CLS in last layer
is used as the input for classification tasks during fine-tuning. And SST, to some extent,
improves models’ ability to capture compositional information, while PAWS essentially harms

models’ compositionality.
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5.7 Discussion

The results of our experiments indicate that despite the promise of these two tasks for im-
proving models’ phrasal composition, fine-tuning on these tasks falls far short of resolving the
composition weaknesses observed by (Yu and Ettinger, 2020). The majority of correspondence
with human judgments can still be attributed to word overlap effects—disappearing once
overlap is controlled—and improvements on the controlled settings are absent, extremely
small, or highly localized to particular models, layers and representations. This outcome aligns
with the increasing body of evidence that NLP datasets often do not require of models the
level of linguistic sophistication that we might hope for—and in particular, our identification
of a strong spurious cue in the PAWS dataset contributes to a number of findings emphasizing
that NLP datasets often have artifacts that can inflate performance (Poliak et al., 2018;
Gururangan et al., 2018; Kaushik and Lipton, 2018).

We do see a ray of promise in the small, localized benefits for certain models from tuning on
SST. These improvements do not extend to all models, and are fairly small in the models that
do see benefits—but as we discuss above, it appears that training on fine-grained syntactic
phrase distinctions can indeed confer some enhancement of compositional meaning in phrase
representations—at least when model conditions are amenable. Since sentiment information
constitutes only a very limited aspect of phrase meaning, we anticipate that training on
fine-grained phrase labels containing richer meaning information would be promising for

promoting composition more robustly.

5.8 Conclusions

We have tested effects of fine-tuning on phrase meaning composition in transformer repre-
sentations. Although we select tasks with promise to address composition weaknesses and

reliance on word overlap, we find that representations in the fine-tuned models show little
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improvement on controlled composition tests, or show only very localized improvements.
Follow-up analyses suggest that PAWS-QQP has spurious cues that undermine learning of
sophisticated meaning properties. However, results from SST tuning suggest that training on
labeled phrases of various sizes may be effective for learning composition.

Future work should investigate how model properties interact with fine-tuning to produce
improvements in particular models and layers—and should move toward phrase-level training
with meaning-rich annotations, which we predict will be a promising direction for improving

models’ phrase meaning composition.
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CHAPTER 6
COMPOSITION IN MODELS WITH EXPLICIT
COMPOSITION STRUCTURE

6.1 Introduction

In previous chapters, we target our effort on Transformer-type models. We conclude that
despite strong performance on downstream NLP tasks, these models show little sign of high
level compositionality. We then select two tasks with promise to push models focusing more
on compositional information and reduce reliance on lexical content. However, as discussed
in Chapter 5, these efforts only show localized impact on pre-trained models, and models fail
to capture higher-level compositional information despite improving on uncontrolled tasks.

However, several possibilities remain to improve compositionality in language models:

1. Design a better fine-tuning task. As analyzed in Section 5.6, presence of spurious clues
can trivialize the fine-tuning task, leaving little impact on improving compositionality.
With careful control of lexical cues and a task requires rich compositional information,
language models can potentially learn to focus composition of meaning. I will elaborate

on this option in Chapter 7.

2. Incorporate explicit compositional architecture in model design. Possibility remains
that the weak compositionality we observe in transformers is the limitation of the
transformer architecture. In order to learn composition in language modelling, explicit

composition structure in model design might be beneficial.

In this chapter, 1T will present further investigation on option 2. Specifically, I will
investigate Recurrent Neural Network Grammars (RNNG) (Dyer et al., 2016)—a probabilistic
model that explicitly models hierarchical relationships among words. With direct modeling

of hierarchical structure of input sequences, we ask whether the model is able to capture
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nuances of composition. To further isolate the impact of the compositional structure, we
present in-depth analysis, by testing embeddings of RNNG from different model components
respectively. We utilize two task sets: 1)the sentence probing tasks proposed by Ettinger
et al. (2018), where workloads are generated with full control of lexical content, and biases
of word pair order, word pair frequency are removed; and 2) similarity correlation and
paraphrase classification proposed in Chapter 4. With normal and overlap controlled tasks,
these evaluations are able to tease apart nuances of composition from lexical encoding.

We find that the model shows strong performance on tasks relying on lexical encoding.
However, when it comes to tasks requiring higher level linguistic information (e.g. semantic
role task), we see significant performance degradation, suggesting the failure of composing

information beyond word content despite the presence of hierarchical composition component.

6.2 Analyzing composition in RNNG

[
pa
T

T

The hungry cat

Figure 6.1: Ilustration of model architecture from Dyer et al. (2016). At each time-step, the
probability distribution of next action (p(at)) is computed based on three embeddings of
different components: embeddings that represent the stack (S¢), output buffer of terminals
(T}) and history of actions (a<¢).

Figure 6.1 illustrates the state of RNNG on a certain time-step of input processing. At a

certain time-step, the probability distribution of next action a; is dependent on the repre-
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sentations from three components: Stack (St) of partially completed syntactic constituents,
history of actions (a<¢) and output buffer of terminals (7). The representations of action
history and output buffer are encoded with standard RNN architectures, whereas embedding
for Stack (S¢) is generated based on bidirectional LSTMs according to the parse tree struc-
ture. We consider the embedding for output buffer embie,y, as embedding purely based on
lexical tokens, and embedding for Stack embg; .1 has potential for capturing compositional
information, given the fact that accumulated representation is composed guided by syntactic
parsing information. Since the embedding for action history is model-specific, in this chapter,
we will focus on analyzing embiery, and embgqcr-

We complement the tasks discussed in Chapter 4 with a set of sentence probing tasks
that consist of various tasks targeting at both lexical and compositional information. With
these tasks, we are able to investigate the capability of word content encoding, as well as

compositionality of the model.

6.2.1 Sentence probing tasks

The first set of tasks we use is sentence probing tasks proposed by Ettinger et al. (2018). Since
RNNG is a model specifically designed to encode sentences, it produces clear accumulated
sentence representation. The sentence representation makes it natural to apply sentence
probing tasks in this chapter, in addition to evaluation tasks we use in previous chapters.
Targeting at eliminating potential artifacts and superficial cues in the dataset, the sentence
probing tasks utilize a specialized generation system to generates large number of examples
with rich variations based on input lexical, semantic and syntactic constraints. Additionally,
potential biases from lexical content and train/test split are controlled in the output dataset.

The set of tasks is formulated as classification probing tasks, which consists of the following

tasks:

e Content1Probe: Given a sentence s and a verb v, it is formulated as a binary
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classification task on whether the sentence contains the verb (or its conjugation).

e Content2Probe: Given a sentence s and a noun-verb pair n-v, it is formulated as a

binary classification task on whether the sentence contains the noun-verb words.

e Order: Given a noun n, a verb v and a sentence s (containing both n and v), it is

formulated as a binary classification on whether n occurs before v.

e Negation: Given a verb v and a sentence s (containing v, one negation and one other

verb), the task is formulated as whether v is negated in s.

e SemRole: Given a noun n, a verb v and a sentence s (containing both n and v), binary

classification on whether n is the agent to v.

Negation and SemRole have a specific focus on assessing composition in representations,
while other tasks require more lexical knowledge to solve. In particular, Negation cannot
be solved trivially by identifying the existence of negation word, and SemRole targets at

systematic learning of semantic information.

6.2.2  Similarity correlation and paraphrase classification

In addition to the sentence probing tasks, we apply composition evaluation tasks discussed in
Section 4.2. For similarity correlation with BiRD, we embed phrases on context sentences,
and extract RNNG embeddings at the last time step of processing sentence as the embedding
for the phrase. We also apply the controlled test as discussed in the early chapter. Similar to
the setup in investigating transformers, We then correlate the cosine similarity between source
and target phrases (embedded in sentences) with human judgment scores. For paraphrase
classification, we follow the random sampling and controlled schemes discussed earlier. For
both normal and controlled test, phrase pairs are embedded in context sentences, and
embeddings at last time steps are extracted as representations. Representations of each

phrase pair are then concatenated as the input to the classifier.
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By applying aforementioned tasks, we are able to tease apart the capability of lexical

encoding from composition of input sequence meaning.

6.3 Experimental setup

For the RNNG inspected in this chapter, we use the pre-trained generative model published
by the author.! We experiment with three different versions of sentence embeddings from
RNNG: Term, where we only use embeddings of the output buffer of terminals (embysern,);
Stack, where we only use embeddings of stack (embg,.1); and Stack+Term, where we
concatenate Term and Stack embedding as the representation for sentences (€mbyerm 1 stack)-

Each sentence probing task is formulated as binary classification task. We use the dataset
published by the authors. 2 We follow the same setup as discussed in the original paper: for
each task, we use a MLP classifier with a single hidden layer of size 256 with ReLLU activation.
Train/test split is maintained so that sentences and context of probing words have no overlap
between train and test set. The concatenation of sentence embedding and probing word
embeddings is passed to the classifier as input for the binary classification task. And the
classifier is trained until convergence on training set. Each evaluation task consists of 4000
training samples and 1000 test samples. For each sample, sentence embeddings are generated
using pre-trained RNNG, and embeddings for probing words are generated as one-hot vectors
over vocabulary.

For similarity correlation and paraphrase classification tasks, we use the same datasets
and settings presented in Chapter 4. Code of the experiments in this chapter is available at

https://github.com/yulang/rnng-composition.

1. https://github.com/clab/rnng

2. https://github.com/aetting/compeval-generation-system
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6.4 Results

6.4.1 Sentence probing

Embedding Dim Contentl Content2 Negation Order SemRole

Stack 256 59.88 51.2 51.1 76.1 51.1
Term 256 90.31 62.7 92.6 87.3 99.9
Stack + Term 512 84.64 60.0 91.7 87.9 52.0

Table 6.1: Performance (in percentage) of probing classifiers trained with RNNG embed-
dings on different sentence composition tasks. Dim denotes the dimension of the sentence
embeddings passed to the classifier.

Table 6.1 shows the classification accuracy of RNNG representations on all evaluation tasks.
The first finding to note is Contentl. The task tests whether lexical content information
is extractable from sentence embedding. emby;,.;. shows comparatively weak accuracy,
while embyc,y, achieves strong performance. It suggests that embeddings from direct LSTM
composition over lexical tokens maintain more lexical information compared to hierarchical
composition according to parsing trees. The fact that embg . is composed hierarchically
also leads to less extractability of lexical information. Additionally, concatenation embedding
embyc,m +stack achieves strong yet slightly weaker than embye,p, performance, implying that
most lexical information comes from embye,y, and the introduction of embg, ... confuses
the probing classifier, thus degrades classification accuracy. The result accords with our
assumption that embg, . has less focus on lexical information whereas embye,, contains
rich lexical information as a result of vanilla recurrent composition of input tokens.

When it comes to probing noun-verb phrase (Content2), performance of all three
embeddings drops significantly. embyer, and embye,p, 1 spqck still shows non-trivial accuracy,
but embg;, .. drops down to near random guess. Despite explicit composition based on
syntactic constituents, embg; ;. still show random performance. It supports the argument
that lexical information is largely missing in embg, .k, even though the embedding contains to

some extent information about presence of syntactic constituents. We find similar pattern in
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Negation as in Content2, where term embedding outperforms stack embedding. Note that
the Negation task cannot be solved trivially by identifying the presence of negation word.
The strong performance on this task with embye,, hints that vanilla LSTM composition
is able to maintain negation information, however hierarchical composition falls short on
maintaining relevant information. On SemRole task, we see particularly weak performance
among all three representations. Sentence representations investigated in the original paper
show lowest accuracy on this task, and it requires substantial ability to capture semantic role
systematically (Ettinger et al., 2018). Above chance performance of embyeyy, reflects that it
captures certain level of semantic information, but still largely misses abstract compositionality
of the input sequence. And surprisingly, embg,. performs at chance, indicating that it

does not capture semantic information, despite the help of explicit composition structure.

6.4.2 Similarity correlation and paraphrase classification

Embedding BiRD BiRD Controlled PPDB (%) PPDB Controlled (%)

Stack 0.123 -0.061 81.73 59.76
Term 0.283 -0.0286 81.58 58.6
Stack+Term  0.228 -0.055 82.51 57.09

Table 6.2: Performance of RNNG embeddings on phrase similarity correlation and paraphrase
classification tasks (under both normal and controlled settings).

Table 6.2 presents the performance of RNNG embeddings on similarity correlation and
paraphrase classification. On similarity correlation task, all three representations show
relatively weak performance even under normal setting. However, when it comes to PPDB
classification task, the accuracy is competitively strong compared to Transformer models.
The performance discrepancy between correlation and classification tests has two potential
causes: 1) extracting information encoded in RNNG embeddings requires more complicated
operation than cosine similarity, and MLP classifier is more capable of utilizing the composed

information; 2) similarity correlation is a finer-grained test, while binary classification on
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paraphrases requires less sophisticated information.

For normal correlation task, embyc,y, achieves the strongest performance. The observation
aligns with the findings that uncontrolled task requires lexical information, and embyey,
encodes more lexical information compared to emb, ... When lexical cues are controlled,
correlations of all three embeddings drop to random, with embyc,y, showing slightly better
correlation. The weak correlation is also consistent with the result from sentence probing,
where embg;, 1. shows very weak performance on tasks requiring knowledge beyond lexical
content (e.g. Negation and SemRole).

When it comes to paraphrase classification task, embye,,1stqcr Shows the strongest
performance. The observation indicates that with powerful extraction operation, information
encoded in embyery, and embg;, . complement each other, yielding a stronger performance
with concatenated embeddings. Another result of note is that with MLP operation, embg; ;1
outperforms embye;,. It reflects that there are rich information regarding phrase content
encoded in embg;,.1., but it is not easily extractable as embyery,. Another observation to
note is that embg;, ;. achieves highest accuracy under PPDB controlled setting. However,
RNNG still under-performs transformers under controlled settings, suggesting RNNG does
not do composition more than transformers. Additionally, we observe consistent significant
performance gap between uncontrolled and controlled tasks, which suggests reliance of lexical

content despite the presence of explicit compositional architecture.

6.5 Discussion

Table 6.3 summarizes the peak performance of all models investigated in this thesis so far.
Between RNNG and transformers, we find more significant performance gap in correlation
tasks than classification tasks. It is consistent with our arguments that information encoded
in the RNNG embeddings requires more powerful extraction operations than transformer

representations. Additionally, we find that for RNNG, the performance drop between
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Model BiRD | BiRD Controlled | PPDB | PPDB Controlled
RNNG 0.283 -0.0286 82.51 59.76
BERT 0.565 0.201 95.07 64.42
BERT (PT) 0.565 0.204 95.85 63.98
BERT (ST) 0.640 0.359 96.88 64.80
RoBERTa 0.562 0.222 94.58 60.07
RoBERTa (PT) 0.502 0.147 94.75 61.88
RoBERTa (ST) 0.556 0.139 95.55 63.91
DistilBERT 0.606 0.228 95.25 63.51
DistilBERT (PT) 0.600 0.258 95.85 63.30
DistilBERT (ST) 0.593 0.245 96.58 63.57
XLM-RoBERTa 0471 0.044 92.83 58.31
XLM-RoBERTa (PT) | 0.471 0.166 94.32 61.20
XLM-RoBERTa (ST) | 0.540 0.228 95.88 64.12
XLNet 0.568 0.07 94.24 63.13
XLNet (PT) 0.571 0.062 95.71 63.61
XLNet (ST) 0.625 0.196 96.38 63.61

Table 6.3: Peak performance of all models investigated in this thesis on phrase similarity
correlation and paraphrase classification tasks (under both normal and controlled settings,
phrase-only). (PT) corresponds to PAWS-tuned model, and (ST) stands for SST-tuned model.
For transformer models, peak performances are maximum across all representation types and
all layers. Performance of BiRD and BiRD controlled are correlation value. Performance of
PPDB and PPDB controlled are classification accuracy in %.
controlled and uncontrolled settings is less severe, suggesting less reliance on word overlap
cues. However, for all 4 tasks, RNNG under-performs transformers. We argue that despite
having explicit compositional structure, RNNG does not show better compositionality than
transformers. Along with the results in Table 6.1, we argue that RNNG is capable of
composing input sequences while maintaining information that contains word content and
word order. However, the result representation largely misses systematic encoding about
lexical and semantic information.

As discussed earlier, Stanford Sentiment Treebank tuning shows localized benefit to
BERT. Among all transformers, BERT tuned on SST shows consistently the strongest peak

performance for all tasks. We also see that a majority of PAWS tuned models report weaker

performance on controlled tasks, due to the fact that PAWS tuning pushes models to focus
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more on lower-level information, further degrading compositionality.

6.6 Conclusion

In this chapter, I investigate the compositionality in each component of RNNG. I evaluate
the model with two sets of tasks: sentence probing tasks proposed in Ettinger et al. (2018)
and similarity correlation/classification tasks discussed in Chapter 4. With control of lexical
cues, both task sets shed light on model’s compositionality beyond lexical sensitivity.

In sentence probing tasks, embeddings from vanilla composition report stronger perfor-
mance on lexical-oriented tasks. And surprisingly hierarchical composition structure fail to
yield representations that systematically capture semantic information. As for similarity
correlation and paraphrase classification, though RNNG shows non-trivial alignment with
human judgment, performance degradation when lexical cues are removed is still significant.
With the explicit compositional structure, the model does not do composition more than
transformers. However, the model is less sensitive to lexical content removal, suggesting less

reliance on word overlap information.
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CHAPTER 7
CONCLUSION

In this dissertation, I have proposed evaluation tasks and artifact-removal strategy that
allow teasing apart nuances of phrase-level composition from effective lexical encoding. I
have investigated a variety of state-of-the-art transformer models. By applying the proposed
tasks and qualitative analysis to these models, I have shown that despite achieving strong
performance on full datasets, the performance is significantly inflated by the superficial cues
like lexical overlap and word content. With cues removed, performance of all models drops
significantly, suggesting heavy reliance on lexical content to infer phrase similarity. I have
further explored the potentials of improving compositionality of pre-trained language models
by fine-tuning on tasks with promise to address composition weaknesses and reliance on word
overlap. However, I have shown in the follow-up analysis that spurious cues in the adversarial
dataset undermine the learning of sophisticated information, trivializing the fine-tune task.
Even though the other dataset of sentiment composition demonstrates localized improvement,
the improvement does not generalize to models other than BERT. Additionally, I have
analyzed a model with explicit compositional architecture. By applying evaluation tasks
proposed in this thesis and a set of sentence probing tasks, I have shown that the model
does not have stronger composition capability than transformers, despite the presence of
hierarchical compositional structure. However, the model is less sensitive to lexical cues

removal, suggesting less reliance on word overlap information.

7.1 Overview

In Chapter 1, I began the discussion by laying out the motivation of interpretability project. I
presented the overall organization of the dissertation, and highlighted the efforts of analyzing

and improving compositionality in language models.
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In Chapter 2, I systematically reviewed previous work related to this dissertation. Specif-
ically, I discussed progress on text representation learning and language modeling, from
context-independent word embeddings to recent transformer-based contextualized embed-
dings. And I gave an overview of methods to evaluate quality of text representations and
LM models, including semantic-similarity-based datasets, multilingual datasets for cross-
lingual language understanding and general-purpose language understanding benchmarks.
On interpretability of neural models, I first discussed work on identifying notable failures
of NLP models, resulting from biases and uncontrolled cues in datasets. Then I reviewed
previous work on interpreting model predictions. One line of work correlate importance of
input features with model input. Another line of work systematically introduce perturbation
to input as explanations. I also presented overview of work on analysis of neural models.
Particularly, I focused on growing body of work on analyzing transformer models, among
which two trends prevail—classification-based probing and intrinsic analysis. Additionally,
I reviewed previous attempts to highlight model weaknesses via adversarial attack, and
efforts to understand impacts of fine-tuning process. Lastly, I investigated work on analyzing
composition in language models, as well as incorporating composition in models’ architecture
to improve performance.

In Chapter 3, I presented a variety of representation types analyzed in this dissertation.
For the reason that transformer does not have a clear aggregated representation corresponds
to input phrase, we investigate different representation types in a layer-wise manner. Further-
more, for each phrase being investigated, I proposed to have phrase-only setting (where only
phrase tokens and special tokens are passed as input) and context-available setting (where
phrases are embedded in the context sentences extracted from Wikipedia).

In Chapter 4, I systematically investigated the nature of phrase representations in state-of-
the-art transformers. I proposed a set of model-agnostic tasks targeting at assessing phrasal

representation and composition. The methods begin with meaning similarity evaluation:
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correlation with human judgment on phrase similarity, and ability to identify paraphrases.
The first two tasks I proposed is similarity correlation and paraphrase classification. Motivated
by the findings that there are correlation between word overlap of phrase pairs and meaning
similarity, I proposed a control strategy for both tasks to hold word overlap among phrase
pairs to be constant. With overlap controlled, models are unable to infer phrase similarity
based on lexical content. In addition to these two tasks, I presented feature importance
analysis, which interprets trained paraphrase classifier with explainable linear models. As
a complement to foregoing analyses, I discussed two qualitative analyses—landmark and
inference experiments. These two tests are popular tasks on analyzing composition in early
works.

I then presented in-depth analyses on numerous state-of-the-art pre-trained by apply-
ing these tasks and investigating layer-wise performance of different representation types
(discussed in Chapter 3). All models show non-trivial performance on full correlation and
classification tasks, suggesting representations produced by these pre-trained models contain
relevant information regarding phrases. However, when lexical cues are removed, performance
of all models drops significantly. We concluded that these contextualized embeddings reflect
heavy reliance on word content, but little nuances of compositional information. Feature
importance analysis demonstrates similar conclusion, where representations directly related
to phrase tokens contain more phrase similarity information. The findings from landmark
and inference experiment mirror the performance on full datasets, suggesting that these
traditional experiments are essentially tasks on lexical encoding rather than composition task
as previously believed.

In Chapter 5, I delved deeper into improving compositionality in state-of-the-art trans-
formers. Motivated by conclusions in previous chapter that pre-trained models show weak
compositionality and reflect heavy lexical encoding, I selected fine-tuning tasks with promise

to guide models to focus more on compositional and higher-level information. Specifically, I
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explored tuning on PAWS—an adversarial paraphrase classification dataset with high lexical
overlap pairs, and Standford Sentiment Treebank—a sentiment dataset contains syntactic
phrases of various length, together with human-annotated sentiment labels. I then applied
similarity correlation and paraphrase classification to fine-tuned models under both full and
controlled settings. We found that fine-tuning on both datasets improves overall performance
on full datasets. However, models still show weak (often slightly above chance) performance on
controlled tasks. Detailed discussion shows that fine-tuning improves models on maintaining
lexical information in deeper layers, but not focusing on higher level compositional nuances.
I presented follow-up analyses on failures of PAWS, and localized impact of SST. I showed
that spurious cues can trivialize the fine-tuning task, and provided in-depth discussion on
potential directions to improve composition.

In Chapter 6, I expanded the scope of this dissertation to RNNG—a model with composi-
tional architecture. With workloads targeting at sentence composition, I showed that RNNG
is able to achieve strong performance on lexical-focused tasks, but falls short when it comes
to tasks required higher level composition tasks. This chapter complements other chapters
that focus on transformer models.

In summary, in this dissertation, I discussed my efforts centered on composition in neural
language models. I take steps to tackle this notion: with a focus on transformer models,
Chapter 3 and Chapter 4 explore the methods to clarify two important but distinct notions:
lexical encoding—how faithfully models encode information about input tokens, and nuances
of composition of phrase meaning—independent of word contents. I concluded that pre-
trained models have nontrivial correlation with human judgment on full datasets, but largely
miss composition of phrase meaning. Chapter 5 targets at a follow-up question—whether
we can improve compositionality through fine-tuning. I showed that these tasks only show
localized impact on pre-trained models, due to existence of spurious cues in the dataset,

and lack of rich compositional information. I further explore the potentials of incorporating
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composition in model architecture in Chapter 6. Through composition task for sentence
vectors, I concluded that the model achieves strong performance on lexical-focus tasks, but is

incapable of composing information beyond lexical content.

7.2 Future directions

In this section, I will propose future directions of this dissertation, and discuss potential

concerns and topics for future work.

7.2.1 Beyond Phrasal Representation and Composition

The majority work described in this dissertation focuses on phrase level composition. Specif-
ically, we focus on two-word phrases. As a starting point, these are the smallest phrasal
unit and the most conducive to lexical controls. Two-word phrases allow us to control word
overlap among phrase pairs to be exact 100% or 50% as we did in Chapter 4. When it comes
to composition beyond two-word phrases, controlling lexical overlaps is more complicated.
As embeddings generated by contextualized encoders are context-dependent, the idea of
controlling lexical content can be generalized to sentence level, with careful control of contexts.
To generate syntactically and semantically plausible sentences while having full control on
superficial cues, the method proposed in Ettinger et al. (2018) is one potential solution, where
sentences are generated based on pre-defined oracles of sentence, and words are selected
from a set of candidates to plug in the oracle to generate final sentences. Another concern is
that focusing on two-word phrases allows us to leverage larger amounts of annotated phrase
similarity data. Admittedly, there are large amounts of datasets on sentence similarity. As
discussed in Chapter 2 and Chapter 5, biases and annotation artifacts in these datasets might
introduce noise to model’s performance. In order to tease apart true compositional effect
from performance inflation, further investigation and data processing might be required to

remove potential cues and biases.
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Even though sentence-level composition introduces additional complications, it opens up

various possibilities:

1. More representation types and accumulated contextualized representations can be
explored. A variety of pooling methods and attention-based representations are not
included in this dissertation, for the reason that we look for embeddings of clear
correspondence to original phrase tokens. Moving to sentence level, these methods can

be applied and analyzed.

2. Impact of larger context can be investigated. In this dissertation, we investigate the
impact of sentence context on phrasal composition. With sentence level composition,
passage context and even the position of the target sentence in its document can also

play a role on the accumulated representation.

3. Evaluation tasks can be applied to wider scope of model types. In this dissertation, we
focus our work on transformer models and RNNG. Evaluation on representation and
composition on sentence level can be extended to other model types, shedding light on

difference in compositionality and lexical encoding across different architectures.

Besides generalizing to larger linguistic units, future work can also be done to extend
evaluation tasks. Evaluation tasks proposed in Chapter 4 rely on meaning similarity of phrases.
Evaluation criteria can be extended to generalizability, which is often considered as another
signal for compositionality. In addition to cosine similarity and single hidden layer classifier
used in this dissertation, future work can look into other approaches to extract information
from contextualized embeddings. However, we argue that the extraction operations should be
simple, since extractability of information is also a dimension of compositionality. Moreover,
when using a powerful extraction operation (e.g. deep neural network), question arises
on whether good performance results from strong capability of the extraction model or

compositional information encoded in the embedding.
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Furthermore, there are other potential annotation artifacts and biases in existing tasks. In
this dissertation, we concentrate on removing lexical cues and word overlap bias. Future work
can look into controlling other spurious cues that trivialize the task, such as subject-object

order, length of input sequence, subject-verb combinations etc.

7.2.2  Improving Compositionality in Language Models

Results presented in Chapter 5 indicate localized improvement from fine-tuning. The follow-up
analyses suggest that training on labeled phrases of various sizes may be effective for learning
composition. Specifically, future directions with promise to show better compositionality

include:

1. Further investigation on how model properties interact with fine-tuning to produce
improvements in particular models and layers. Dynamics of self-attention mechanisms
during fine-tuning can benefit the understanding of fine-tuning process, and thus
improving composition in language models. Moreover, gradient-based analysis with

saliency maps can provide insights in finer granularity.

2. Better fine-tuning tasks and datasets. As discussed in earlier chapters, we should move
toward phrase-level training with meaning-rich annotations, which we predict will be a
promising direction for improving models’ phrase meaning composition. As discussed
in failure of PAWS-QQP (Section 5.6), a key factor to consider is biases and artifacts
in these tasks. In addition to choosing tasks with rich composition information, further
processing to control potential biases and artifacts is necessary to push models towards

better compositionality.

3. Delving deeper into the interplay between compositionality and performance of down-
stream tasks. In this dissertation, attempts are made to isolate composition nuances

from performance on vanilla downstream tasks. In future work, it will be useful to
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explore in this line—how compositionality benefits or harms performance of different
NLP tasks. As an essential component of language understanding, we speculate that
models with better compositionality will naturally demonstrate generalizability, which

benefits a wide variety of tasks. We leave this line of analyses for future work.

7.2.83  Extractability of representations

This dissertation mainly utilizes cosine similarity operations and shallow MLP classifiers
to extract information from representations. The central assumption being made is that
composed information encoded in the representations should be extractable with simply
operations. However, as shown in Chapter 6, weak performance on certain tasks does not
necessarily imply missing information in the representations, but rather extraction operation
is not powerful enough.

In particular, possibility remains that model captures higher-level information about input
sequence, but such information is not easily extractable as lower-level lexical information.
Future work can be applied to fine-grained investigation on extractability of these information.
Specifically, analysis can focus on the dynamics between the extractability of representations
produced by a certain model and its downstream performance on tasks require different level
of information. In order to isolate the signals of extractability, necessary efforts have to made
to tease apart the impact of the capability of extraction operation on the downstream task

from the extractability of relevant information.
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