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ABSTRACT

As the population ages, governments and international organizations are trying to lengthen

the labor-force participation of older adults. For older adults, health is an important de-

terminant of working decisions. In this paper, I introduce heterogeneity in health dynamics

with age and argue uncertainty about health dynamics affects the working decisions of older

adults. Using the Health and Retirement Study, I first show evidence of heterogeneity in

health profiles with age. Second, I use subjective survival expectations to infer health beliefs

in a Bayesian-learning framework. Third, I flexibly estimate how working decisions depend

on those beliefs, using a neural-network approach that does not require additional structure.

The results show beliefs have substantial negative bias. That is, on average, individuals

incorrectly believe their health will deteriorate too fast. Furthermore, eliminating that bias

would increase labor-force participation by up to 2 percentage points. In the last part of

the paper, I look at a policy that could affect beliefs: the provision of information on blood-

glucose and cholesterol levels. I take advantage of the randomization in the collection and

provision of such information. The results show the information has only small effects on

beliefs and working decisions, and consequently, policies with larger effects on beliefs are

needed to delay retirement.
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CHAPTER 1

HETEROGENEOUS AND UNCERTAIN HEALTH DYNAMICS

AND WORKING DECISIONS OF OLDER ADULTS

1.1 Introduction

The population is aging rapidly. Worldwide, the median age was 40 years old in 2018

and is estimated to be 45 years old by 2050. And though the participation of older adults

in the labor market has also been recently increasing, the number of older people out of the

labor force who will need to be supported by each worker is projected to increase by around

40% between 2018 and 2050. This aging pattern puts considerable strain on public budgets,

therefore, promoting employment at older ages has garnered large interest.1 The success of

policies promoting the employment of older adults depends on our correct understanding of

the determinants of working decisions of this group, for whom health is an important factor.

For older adults, health deteriorates naturally with aging, affecting retirement choices and

expectations.2 Yet, little is known about how heterogeneous health dynamics of older adults

are and how this heterogeneity affects their working decisions.

This paper documents individual-level heterogeneity in health dynamics among older

adults and studies how individuals’ beliefs about their own health dynamics affect their

working decisions. To do so, the paper proceeds in three parts. In the first part, I show

evidence that health dynamics are indeed heterogeneous among older adults. That is, while

some individuals see their health slowly deteriorating with age, other individuals see their

health deteriorating much more rapidly. I argue this heterogeneity, which the literature has

1See statistics from OECD (2019). In 2015, the OECD adopted an agenda promoting employment at older
ages, to protect living standards and public finances (OECD (2015)).

2For health effects on retirement choices, see, for example, Bound et al. (1999) and Maurer et al. (2011). For
health effects on retirement expectations, see Dwyer and Mitchell (1999) and McGarry (2004).
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mostly ignored, is an important factor in the working decisions of older adults. Furthermore,

what matters for those decisions is how much individuals know about their own health

profiles. Hence, in the second part of the paper, I study uncertainty in health dynamics

by developing a Bayesian learning model in which individuals have beliefs about their own

health profiles and update those beliefs as they see their health changing with age. I leverage

data on survival expectations to infer these beliefs and to quantify how uncertain individuals

are. Then, in the third part of the paper, I estimate the working decisions implied by an

economic model that incorporates heterogeneous and uncertain health dynamics. I focus on

the effects that health beliefs have on working decisions of older adults. Instead of following

a structural estimation approach, I use machine-learning tools. A big limitation of this

approach is that I cannot run counterfactual analyses. However, the tools do not require

specifying the primitives of the model or adding almost any functional-form assumption.

Thus, the results are robust to misspecification of those elements.

Using the Health and Retirement Study (HRS), the first part of the paper leverages

the longitudinal nature of the data to estimate a dynamic model of health allowing for

more general forms of heterogeneity.3 In particular, I assume health is a persistent process

with individual-level heterogeneity both in levels and in changes with age. The results show

significant heterogeneity, in levels and in changes. Furthermore, the heterogeneity in changes

helps explain the increasing variance of health with age, a pattern observed in the population

but mostly ignored by traditional models of health.4

The panel estimates in the first part of the paper provide evidence of individual-level het-

erogeneity in health dynamics, but they do not address the question of how much individuals

know about their own health profiles. In the second part of the paper, I study this question

using a Bayesian learning model5 with initial beliefs that allow for bias (through the mean)

3Most of the literature allows only for individual heterogeneity in health levels. See, for example, Contoyannis
et al. (2004) and Heiss (2011).

4See, for example, Heiss (2011) and Heiss et al. (2014).
5The health process in this paper is similar to the income process studied by Guvenen (2007), who shows
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and uncertainty (through the variance). Data on subjective survival expectations,6 available

in the HRS, allow me to identify the parameters governing these beliefs. Intuitively, future

survival depends on future health; hence, expectations about future survival depend on be-

liefs about future health, and therefore on beliefs about health profiles. Thus, according

to the model, survival expectations are a complex nonlinear function of health and health

beliefs. Hence, I use simulated method of moments to estimate the parameters of those

beliefs. Average survival expectations speak to bias in beliefs. Covariance between changes

in health and changes in expectations speak also to uncertainty. To see this, note that, given

a change in health, individuals update their survival expectations for two reasons: first, be-

cause the persistence of health implies future health is affected by a health change today,

and second, because the uncertainty and the learning model imply beliefs are updated with a

health change today. Moreover, the larger the persistence and the larger the uncertainty, the

larger the change in survival expectations. Hence, moments of survival expectations are the

key source for identification of beliefs. My results show individuals are uncertain, updating

their beliefs over time, and they are negatively biased; that is, on average, they believe their

health will deteriorate faster than the average rate in the population.7

The heterogeneity and uncertainty in health dynamics imply beliefs about health profiles

enter the decisions of forward-looking individuals. In the third part of the paper, I study

how these beliefs affect the working decisions of older adults. In particular, this step requires

estimating the relationship between working decisions and all the information available to

individuals at the moment they make those decisions, including their beliefs about their

health profiles. Under the Bayesian assumptions of the learning model, including normality

that although learning of heterogeneous levels occurs fairly rapidly, learning of heterogeneous slopes with
age is much slower.

6Survival expectations have been shown to have predictive power for individuals’ survival and to be con-
sistently updated with new health information. See, for example, Hurd et al. (2001), Hurd and McGarry
(2002), and Smith et al. (2001).

7As discussed section 1.5, this result of negative bias in initial beliefs is consistent with the literature. See
Elder (2013) and Ludwig and Zimper (2013).
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of beliefs, those beliefs are summarized by their mean and variance. This section is similar

in spirit to Arellano et al. (2017), who estimate a nonlinear policy rule for consumption

nonparametrically, without specifying a full structural model. As in their case, I provide

estimates of marginal quantities, here, marginal changes in the probability of working. One

of the drawbacks of this approach is that by not fully specifying the structure of the model,

both in terms of primitives and functional-form assumptions, we cannot perform policy

counterfactuals. However, at the same time, the results on marginal effects are robust to

misspecification of those elements. Besides robustness to misspecification, another attractive

feature of this framework is that it can also be applied to study other outcomes that may

depend on health beliefs, such as savings and health insurance of older adults. To the best

of my knowledge, this paper is the first to study the effect of beliefs about heterogeneous

health dynamics on the working decisions of older adults.

To flexibly estimate the policy rule for working decisions, I use neural networks. Neural

networks are a tool within the machine-learning toolkit that, in the present context, gener-

alize logit with a non-linear index (see Farrell et al. (2021), Hornik et al. (1989), Goodfellow

et al. (2016)). To deal with the fact that some of the inputs are unobserved by the econo-

metrician (mainly, the individual-level heterogeneity in initial beliefs), I use an iterative

approach in the spirit of EM algorithms (Dempster et al. (1977)).

I discuss three results related to beliefs and working decisions of older adults. The first

result shows beliefs matter in working decisions, and that expecting health to deteriorate

more slowly is associated with larger probabilities of working. Furthermore, for individuals in

their 50s who are not working, an interaction occurs between beliefs and health. The effects

on working probabilities of both beliefs and health are larger for individuals who believe their

health will deteriorate relatively slowly. These results suggest adjustment costs of finding

a job are important in individuals’ decisions about going back to work. This observation

highlights an advantage of the current framework and the data-driven estimation method,
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because this result is not a consequence of any assumption on the structure of the economic

model. As mentioned by Arellano et al. (2017), economic structure could be added to this

framework to conduct policy evaluation exercises. This result suggests that when adding such

structure, adjustments costs of returning to the labor market should be included. Hence,

the two approaches complement each other.

A second result is related to the resolution of uncertainty about health profiles and the

precision of health as a signal. A health shock has two effects on working decisions: it affects

working decisions by changing the stock of health through persistence, and it affects work-

ing decisions by changing beliefs about future health through changes in information about

health profiles. I decompose the effect of a health shock into these two channels, namely, per-

sistence and information, and find nearly all the effect goes through the persistence channel.

Intuitively, this result comes from the signal-to-noise ratio of health being low, and it implies

health by itself is not enough to resolve the uncertainty and correct the bias in beliefs.

In a third result, I simulate the impact of changing beliefs, by applying machine-learning

tools to predict not only work but also assets and health insurance. I use those results to

compare baseline working probabilities over time with probabilities after eliminating initial

overall bias in beliefs. I find eliminating initial bias increases participation by 2 percentage

points, an effect that lasts beyond traditional retirement ages.

Given that (i) individuals are uncertain about their health profiles, (ii) they have biased

initial beliefs, (iii) health changes are not enough to resolve uncertainty, and (iv) beliefs

matter for working decisions, a natural question that follows is: Can we provide additional

information to individuals in order to correct their beliefs and affect their working decisions?

In the last part of the paper, I look at this question in the context of an information exper-

iment available in the HRS. Starting in 2006, the HRS collects and analyzes blood samples

of their interviewees and informs them about their blood-glucose and cholesterol results.

Although the implementation in the HRS was not designed as an information experiment, in
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order to save costs, the blood sample is collected for a random half of the sample each wave,

providing us with exogenous variation. A reduced-form analysis in the spirit of difference-

in-differences8 shows small and insignificant effects of this additional information on survival

expectations and working decisions. I then analyze these data through the lens of the model.

That is, I modify the learning model to include biomarker results as additional signals of

health profiles. Consistently, this model-based analysis also shows small and insignificant

results. The model, however, provides us with an interpretation for the results: the magni-

tude of this blood-based signal is too small.

Contribution to the literature. This paper is related to three strands of the literature.

First, it is related to the literature studying health dynamics, a literature that consistently

finds persistence and heterogeneity in health, both among the general population (Halliday

(2008), Hernández-Quevedo et al. (2008), Contoyannis et al. (2004)) and among older adults

(Heiss et al. (2009), Heiss (2011), Heiss et al. (2014), Lange and McKee (2011)). However,

most of this literature allows only for limited heterogeneity. An exception is Halliday (2008),

who allows for discrete types of multivariate heterogeneity, including heterogeneity in health

changes with age. Contrary to my results, he finds only weak evidence of this heterogeneity.

However, he focuses on a much younger population, whereas I focus on older individuals for

whom health changes with age are prevalent. Thus, a first contribution of this paper is to

highlight heterogeneity in health dynamics for older adults. An additional contribution to

this literature is related to health measurement. Traditionally, health has been considered

a latent variable measured with one binary variable (Halliday (2008), Hernández-Quevedo

et al. (2008), Heiss et al. (2009), Heiss (2011)), though, more recently, several measures of

health are being used (Heiss et al. (2014), Lange and McKee (2011), Blundell et al. (2017)).

In this paper, I also use several measures of health to better capture the richness of health

8As discussed in section 1.8, the design needs to control also for changes in the interview mode.
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and its dynamics, hence contributing in this direction.

Second, this paper is related to the literature on empirical learning. In a broad sense, the

paper is related to the literature on the importance of beliefs for individuals’ choices and eco-

nomic outcomes.9 More specifically, the paper is related to the literature studying individu-

als’ learning of own unobserved heterogeneity, for example, regarding abilities (Stinebrickner

and Stinebrickner (2014), Arcidiacono et al. (2016)), productivity (Arcidiacono et al. (2016))

and income profiles (Guvenen (2007), Guvenen and Smith (2014)). My paper is more closely

related to Guvenen and Smith (2014), who study an income process with heterogeneous lev-

els and heterogeneous growth rates. As in the case of health, the more flexible heterogeneity

helps explain the income pattern of increasing variance over time. However, an important

difference from that paper is the source of identification of profile uncertainty. Guvenen and

Smith (2014) use consumption data to identify uncertainty in income profiles. Instead, I use

data on expectations to identify uncertainty in health profiles. This difference is important

because my goal is to study the effect of uncertainty regarding health dynamics on working

decisions of older adults, and hence, using that outcome to identify beliefs would mean my

results could suffer from misspecification issues. By using expectations data, my results are

robust to such issues. I also allow for individuals to be biased overall in their initial beliefs,

consistent with findings from the literature on survival expectations (see Elder (2013) and

Ludwig and Zimper (2013)). Additionally, this paper contributes to a more recent literature

on the provision of information and its effects on beliefs (see, e.g., Delavande and Kohler

(2015), Wiswall and Zafar (2014), Bates (2020)).

Finally, the paper is related to the literature on health and other outcomes of older adults.

Particularly, the paper is related to the literature studying the effects of health on work and

9Outcomes studied by this literature include occupational choices and college attrition (Breen and Garćıa-
Peñalosa (2002), Arcidiacono et al. (2020), Arcidiacono et al. (2016)), labor supply of women and employ-
ment transitions (Gong et al. (2019), Conlon et al. (2018)), birth-control choice and risky sexual behaviors
(Delavande (2008), Paula et al. (2014), Delavande and Kohler (2015)), and investment decisions (Delavande
and Rohwedder (2011)).
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retirement choices (Siddiqui (1997),McClellan (1998), Bound et al. (1999), French (2005),

Disney et al. (2006), Zucchelli et al. (2010), Maurer et al. (2011)) and expectations (Dwyer

and Mitchell (1999), McGarry (2004)). Although this literature considers future health as

uncertain, it assumes a known stochastic process for health. On the contrary, this paper

allows for a stochastic health process that is not fully known, introducing the role of health

beliefs as an additional determinant of those decisions. More broadly, this paper is also

related to a series of papers studying health-related outcomes for older individuals. These

papers estimate structural models assuming discrete values for health with homogeneous

transition probabilities. Examples include papers studying the effect of health insurance on

retirement (French and Jones (2011), De Nardi et al. (2016a)), Social Security and labor

supply (van der Klaauw and Wolpin (2008)), portfolio choice (Yogo (2016)), and long-term

care (Ameriks et al. (2020), Lockwood (2018)). Though health is not the main explanatory

variable of interest in these papers, the results here suggest beliefs about health may also

play a role.

Organization. The paper proceeds as follows. Section 1.2 presents the framework, that

is, an economic model of working decisions that incorporates heterogeneous and uncertain

health dynamics. This framework underlies and gives context to the analysis in the rest of

the paper. Section 1.3 describes the data. Section 1.4 provides evidence of heterogeneity

in health dynamics, and section 1.5 provides evidence of uncertainty. Section 1.6 presents

the main results for working decisions as a function of beliefs, and section 1.7 expands those

results. Section 1.8 analyzes the information experiment available in the HRS. Section 1.9

concludes.
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1.2 Framework

This paper introduces two elements into a standard model of labor-participation decisions

in late life: individual-level heterogeneity in health dynamics and individuals’ uncertainty

regarding their own health profile. This section formalizes this idea and describes a frame-

work in which older adults choose labor participation based on their health and on their

beliefs about how their health will change with age. Let i denote an individual and let t

denote his age. I focus on individuals 50 years and older and define t as 0 for age 50.

1.2.1 Health process with heterogeneous dynamics

Health is a dynamic process that, as people get older, naturally deteriorates in a hetero-

geneous way across individuals. In particular, I assume health is scalar and follows

hit = ρhit−1 + αi + δi · t+ εit. (1.1)

The parameter ρ ∈ (0, 1) captures persistence in health, αi captures heterogeneous levels in

health, δi captures heterogeneous changes in health with age, and εit represents health shocks.

Both the persistence of health and its heterogeneity in levels are well-recognized elements of

health in the literature, both among the general population (see, e.g., Hernández-Quevedo

et al. (2008)) and among older individuals (see, e.g., Heiss et al. (2014)). The first novel

element in this paper is to allow for heterogeneous slopes of health with age, δi. Larger

values of hit represent better health, and health decreases with age.

Throughout the paper, I assume health is exogenous. In a review of the literature on

health, health insurance, and retirement, French and Jones (2017) mention much of the

retirement literature assumes health is exogenous, and their model makes the same assump-

tion. In a review of the literature on savings after retirement, De Nardi et al. (2016b)
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conclude most of the studies on the effects of health care on health find small effects. A

similar argument is made in French and Jones (2011). The exogeneity assumption implies

we can estimate equation (1.1) without needing to model endogenous regressors.10

1.2.2 Uncertain health dynamics and beliefs

The second novel element is to allow for individuals to be uncertain about their own health

dynamics. I assume individuals observe their health hit, but they do not observe their health

shocks εit nor their individual heterogeneity (αi, δi). Given that health deteriorates in old

age, I assume 50-year-old individuals do not know δi, which has not affected them before.11

I assume they know their heterogeneous level αi,
12 because they have observed their health

for several decades.

Under uncertainty, rational individuals form beliefs about their health slopes δi (hence-

forth, slope beliefs) and update those beliefs as they see their health changing with age.

In particular, I assume individuals are Bayesian learners, with initial beliefs (at age 50)

about δi equal to N(δ̂i0, σ̂
2
0).13 By further assuming health shocks εit are i.i.d. normally dis-

tributed, posterior beliefs in period t after observing health hit are also normally distributed,

N(δ̂it, σ̂
2
t ), with mean and variance defined recursively by

δ̂it
σ̂2
t

=
δ̂it−1

σ̂2
t−1

+
(hit − ρhit−1 − αi)t

σ2
ε

(1.2)

1

σ̂2
t

=
1

σ̂2
t−1

+
t2

σ2
ε

. (1.3)

10The assumption is also relevant for the identification of beliefs, as discussed in section 1.5.
11This assumption is consistent with results from Halliday (2008), who studies health dynamics with discrete

heterogeneity, using the Panel Study of Income Dynamics. He studies younger individuals, ages 22 to 60,
and finds no heterogeneous slopes with age.

12This assumption can be generalized. In studying income profiles, Guvenen (2007) proposes a similar process
with heterogeneous intercepts and slopes, both unknown. He finds the learning process for intercepts is
much faster than the learning process for slopes.

13The assumption of common-prior variance across individuals is usual in the learning literature. See, for
example, Guvenen (2007) and Arcidiacono et al. (2016). However, the assumption is important for the
identification results provided later.
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Equation (1.2) shows the posterior mean is a weighted average of the prior mean δ̂it−1

and the signal derived from health hit, with weights that depend on precision. The more

certain an individual is to begin with (lower σ̂2
t−1), the more weight he gives to what he

already knows, namely, the prior. The more precise health is as a signal (lower σ2
ε ), the more

weight is given to its information. Equation (1.3) shows precision increases over time, and

increases more when the signal is more precise, that is, when health is less noisy (lower σ2
ε )

and when individuals are older.

Conditional on health history, the key parameters determining beliefs are the parameters

governing initial beliefs:

b = E(δ̂i0 − δi) (1.4)

λ2 =
σ̂2

0

V ar(δi)
. (1.5)

The parameter b measures the bias in initial beliefs at the population level. If b = 0,

individuals are overall unbiased, in the sense that E(δ̂i0) = E(δi). If b is positive (negative),

individuals are upward (downward) biased, and hence, they believe health deteriorates on

average more slowly (faster) than the average rate. The parameter λ measures the degree of

initial uncertainty individuals face regarding δi, which affects their amount of learning over

time. If λ = 0, no uncertainty exists and therefore no learning. The larger the value of λ,

the more uncertain individuals are and the more weight they give to new information. The

Bayesian learning and normality assumptions allow me to reduce the dimensionality of the

problem, giving structure to time-varying beliefs that are unobserved by the econometrician.

1.2.3 Embedding health uncertainty in a model of labor supply

In a life-cycle model, forward-looking individuals attempt to predict variables that will

affect their future utility or their future set of options in order to choose their best current
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action. The need for those predictions is given by the inherent uncertainty about many

key variables. In this paper, I focus on working decisions of older adults and argue a key

source of uncertainty for this group is related to their future health. In particular, I focus

on uncertainty about health profiles with age, specifically δi, and study how beliefs about

them, given by N(δ̂it, σ̂
2
t ), relate to their working decisions.

Consider a model where individual i must choose consumption cit and labor participation

pit every period. I focus on the extensive margin of labor participation and assume pit is a

binary decision. The health of individual i is given by hit, which follows equation (1.1). The

main components of this life-cycle model are the following.

Preferences. Individual i’s flow utility is given by a function U that depends on his par-

ticipation and consumption decisions, pit and cit, as well as on his health hit. Furthermore,

preferences depend on past labor participation, for example, to reflect psychological costs of

going back to work after retirement and adjusting to a new work environment. I summarize

this dependence by allowing pit−1 to enter the utility function. Hence, flow utility is given

by U(pit, cit, hit, pit−1). The individual discounts the future, and when he dies, his remaining

assets a are left as a bequest.

Budget constraint. Let ait−1 denote individual i’s assets at the end of period t− 1. If the

individual chooses to work, he receives labor income, which depends on his past labor income

wit−1, his health hit due to the effects of health on productivity, and his past participation

pit−1, due to wage penalties of reentering the labor market after retirement. His assets at

the end of the period depend also on his consumption choice, his other sources of income,

including pension and social security, and other health-related costs.

Uncertainty. Individuals are uncertain about their future health, in part because of unpre-

12



dictable health shocks εit, and in part because they don’t know their health slopes δi. They

form beliefs about their slopes δi and update those beliefs as they see their health changing

over time according to equations (1.2) and (1.3). Future wages are also uncertain, following

a first-order Markov process.

Timing. At the beginning of period t, an individual must choose participation pit and con-

sumption cit before health shocks are realized and health hit is observed. Then, beliefs are

updated. At the end period t, individual i may or may not die.

Information set. The information set of individual i at the beginning of period t is given

by his history up to t− 1 in terms of labor participation pt−1
i (superscripts denote histories),

consumption ct−1
i , and health ht−1

i , as well as labor income wt−1
i . It also includes his known

value αi and his prior-beliefs parameters δ̂i0 and σ̂2
0. The relevant information from this set

can be summarized in his state variables, given by

Ωit−1 =
{
pit−1, ait−1, wit−1, hit−1, δ̂it−1, σ̂

2
t−1, αi

}
.

Slope uncertainty implies δi does not belong to Ωit−1 but beliefs about δi do, with those

beliefs summarized by δ̂it−1 and σ̂2
t−1. Note I am assuming only heterogeneity in health;

thus, no other individual-level heterogeneity is stated in Ωit−1.

The solution to this problem is policy rules for labor participation pit and consumption cit,

which are functions of the state variables and the parameters of the model θ (including the

discount factor and parameters entering flow utility, health process, the budget constraint,

and so on), which I omit for ease of notation. Focusing on pit, which is the object of interest
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in this paper,

P(pit = 1|Ωit−1) = P(pit = 1|pit−1, ait−1, wit−1, hit−1, δ̂it−1, σ̂
2
it−1, αi). (1.6)

Similarly, policy rules for other decisions, including consumption and assets, can be

written as functions of the state variables Ωit−1. In the spirit of Arellano and Bonhomme

(2016) and Arellano et al. (2017), the objective is to flexibly estimate this relation between

participation decisions and its inputs, without adding the full structure required by structural

models.

Equation (1.6) assumes these decisions are stochastic. Implicitly, I assume random taste

shifters are affecting individuals’ preferences. These taste shifters are part of the state

variables, but they are unobserved by the econometrician. Hence, from the econometrician’s

point of view, the decision is stochastic, corresponding to a conditional choice probability

problem.

With these elements, the model is a standard model of labor participation in late life and

includes several channels through which health can play a role. First, health directly affects

utility by changing the marginal utility of consumption and the disutility of work. Second, it

enters the budget constraint via health-related costs and via effects on labor income due to

changes in productivity. Third, health affects the probabilities of survival. The overall effect

of health on individuals’ participation decisions depends on all of these channels. The novel

element in this paper is that beliefs about future health also play a role. They could have

a positive or negative effect, depending on the relative importance of these channels in the

individual’s problem. For example, if an individual predicting better future health wants to

work longer, the sign of beliefs would be positive. This case would arise if the dominant effect

were the desire to save more given the longer life expectancy implied by better health. If an

individual predicting worse future health wants to work longer, the sign would be negative.
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This case would arise if the dominant effect were the desire to save more given the higher

cost of future health care implied by worse health.

1.2.4 Objective of the paper

Under this framework, the objectives of the paper are the following:

(i) To document heterogeneity in health dynamics among older adults, particularly het-

erogeneity in δi.

(ii) To study older adults’ beliefs about their health dynamics, in particular, to estimate

their initial bias b and their initial uncertainty λ.

(iii) To examine whether these beliefs have an effect on working decisions of older adults,

by studying the effect of marginal changes in beliefs on those decisions,14

∂P(pit = 1|Ωit−1)

∂δ̂it−1

. (1.7)

One goal of this paper is to estimate equation (1.7) flexibly, without imposing any ad-

ditional structure on the model of labor supply (such as preferences, labor income process,

and so on). A flexible estimation provides results that are robust to misspecification issues

on that model. The paper uses a data-driven estimation method that allows me to achieve

that flexibility. Furthermore, as discussed in section 1.6, this data-driven approach allows

the data to suggest mechanisms that may be overlooked otherwise. Nevertheless, this frame-

work could also be applied under a structural approach, by adding assumptions about the

14I focus on the marginal effect of the posterior mean δ̂it−1 and not of the posterior variance σ̂2
t . The

reason for this choice is that the posterior variance σ̂2
t−1 is common across individuals. Thus, I do not

have variation in the data to separately identify its effects from the effects of age t, without relying on
functional-form assumptions.
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different elements in the model. A structural approach, on the other hand, has the advan-

tage of allowing for interesting counterfactual analysis. Hence, the objective of the current

approach is not to compete with structural models, but to complement them.

In this context of uncertain health dynamics, an additional interesting question is related

to the dual role of health shocks εit−1 in working decisions. On the one hand, a health shock

εit−1 affects hit−1, which in turn affects hit through persistence of the health process. This

persistence effect disappears if ρ = 0. On the other hand, an uncertain individual cannot

perfectly distinguish between εit−1 and δi within hit−1. Hence, the effect of a shock εit−1

on hit−1 is partly interpreted as new information regarding δi, affecting beliefs δ̂it−1. This

information channel disappears if λ = 0. Using Bayes’ rule, we can write,

dP(pit = 1|Ωit−1)

dεit−1

=
∂P(pit = 1Ωit−1)

∂hit−1︸ ︷︷ ︸
persistence channel

+
∂P(pit = 1|Ωit−1)

∂δ̂it−1

factor︷ ︸︸ ︷
(t− 1)σ̂2

t−1

σ2
ε︸ ︷︷ ︸

information channel

, (1.8)

where the factor term corresponds to the change in the posterior mean δ̂it−1 given a marginal

change in εit−1, and it is related to the signal-to-noise ratio of health as a signal. The term

is larger when more uncertainty exists concerning the unknown δi and when the variance of

the health shocks is smaller. How important these channels are in explaining the total effect

of a health shock on working decisions of older adults is, then, an empirical question

1.3 Data and descriptive statistics

For this study, I use data from waves 4 to 12 of the Health and Retirement Study (2014)

(HRS),15 a longitudinal survey representative of the population 50 years and older in the US.

This survey interviews individuals and their spouses every two years and includes several

15The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and is conducted by the University of Michigan.
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measures of health, questions about expectations, information about labor participation and

retirement, as well as income and wealth variables.16 For most of the analysis, I use the

RAND HRS Longitudinal File (2014).17 In this section, I briefly describe the variables used

in this study.

1.3.1 Data on health

The most common measure of health used in the literature is self-assessed health, an

ordinal variable taking five values from very poor to excellent. It has been shown to cor-

relate with several outcomes, including education, income, savings, retirement, and health

insurance. Still, its limited range makes it not ideal in studying health dynamics with age.

The HRS, however, provides a larger battery of health-related questions, which I exploit to

construct a summary measure of health via factor analysis that I use throughout the paper.

This approach of using several measures to construct a summary variable is not unique to

this paper; see, for example, Heiss et al. (2014), Lange and McKee (2011), and Blundell et al.

(2017). Table 1.1 presents summary statistics for these health-related questions and for the

summary health measure. Note these measures reflect a health concept that is the relevant

one for the working decisions of older adults, related to how individuals perceive their health

in relation to their everyday activities. Appendix A provides details on the estimation of

the summary measure hit via factor analysis. The scale of hit is set to be the inverse scale

of the number of chronic conditions, which ranges from 0 to 7. That is, larger values of hit

represent better health, and an increase of one unit in hit corresponds to one less chronic

condition. Figure 1.1 shows a box plot for hit per value of self-assessed health. Both mea-

sures are highly correlated, but hit captures more variation than what we can capture with

16I exclude proxy interviews because these interviews do no ask questions about survival expectations.
17The RAND HRS Longitudinal File is an easy-to-use dataset based on the HRS core data. This file

was developed at RAND with funding from the National Institute on Aging and the Social Security
Administration.
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Table 1.1: Summary statistics for health-related questions

Variable Observations Mean SD Min Max

Number of chronic conditions 156,968 5.17 1.34 0 7
Self-assessed health 156,862 2.86 1.11 1 5
Body mass index (kg/m2) 154,602 27.89 5.81 7 83
Eyesight in general 156,768 2.85 1.01 1 6
Eyesight at a distance 156,833 2.57 1.01 1 6
Eyesight up close 156,822 2.75 1.04 1 6
Hearing 156,869 2.63 1.09 1 5
Pain 156,550 0.63 0.97 0 3
Difficulties in ADLs regarding mobility 156,748 1.09 1.45 0 5
Difficulties in ADLs of large muscles 156,737 1.28 1.33 0 4
Difficulties in other ADLs 151,923 0.40 0.66 0 2

Summary health measure hit 148,866 5.22 0.67 2.96 6.18

Note: Summary statistics for the health measures including the summary health measure. The
sample comprises 30,657 individuals interviewed in person, in wave 4 or later, that are 50 years old or
older. Chronic conditions include high blood pressure, heart attack, diabetes, stroke, lung disease,
arthritis, and cancer. The categories for self-assessed health and hearing include 1. excellent, 2.
very good, 3. good, 4. fair, 5. poor. These categories are also the same ones for eyesight variables,
but those include alternative 6. legally blind. The categories for the level of pain are 0. no pain,
1. mail pain, 2. moderate, 3. severe. ADL stands for activities of daily living. ADLs regarding
mobility include walk 1 block, several blocks, across room, climb one flight of stairs, several flight
of stairs. ADLs involving large muscles include push or pull large object, sit for two hours, get up
from chair, stoop kneel or crouch. Other ADLs include carry 10 lbs and reach arms.

a discrete measure. Furthermore, as I mention later, the heterogeneity in health dynamics

is robust to the use of self-assessed health instead of the summary measure.

Figure 1.2 shows the mean and variance of health hit by age.18 Given the two years

between waves, throughout this paper, I consider age as measured in two-year bins. These

plots are the starting point for thinking about health for older adults: they show that

with age, the average health in the population decreases while the variance of health in the

population increases. This pattern of decreasing mean and increasing variance is robust to

18The standard errors in this figure, as well as the following results in this paper, need yet to be adjusted
for the estimation of the summary health measure.
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Figure 1.1: Summary health variable hit by category of self-assessed health
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Note: Sample of 148,866 observations from Table 1.1.

sample composition and also holds for most of the individual measures. Similarly, Figure

1.3 shows percentiles of health by age, which also reflect an increasing variance over time.

The pattern in these plots suggests a process with heterogeneous slopes with age, which I

empirically investigate in section 1.4. Finally, Figure 1.4 shows the mean of health for groups

of individuals surviving to different ages. The figure suggests survival bias, because cohorts

of individuals surviving to older ages have better health than cohorts that may not survive

that long. The relevance of addressing survival bias for older individuals is well recognized

in the literature (see, e.g., Heiss et al. (2014)), and I address it also, as explained in section

1.4.

1.3.2 Data on subjective survival expectations

The HRS includes a battery of questions relative to subjective expectations, including

subjective survival expectations, which I use in this paper. The question asks, What is the

percentage chance you will live to be (80, 85, 90, 95 or 100) or more?, where the reference

age is a function of the individual’s age and the wave of the survey. This reference age

is usually around 10 to 15 years into the future.19 Survival expectations have been shown

19The HRS also includes a question on survival expectations to the age of 75. However, I do not use this
variable for the main analysis, given that this question is only asked of individuals under 65 years old.
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Figure 1.2: Mean and variance of health by age
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(a) Mean of hit by age
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(b) Variance of hit by age

Note: Results from a balanced sample of 433 individuals observed at 50 years with at
least 9 consecutive waves. The bands represent the 95% confidence intervals.

Figure 1.3: Health percentiles by age
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Note: Results from a balanced sample of 414 individuals observed at age 64 with at least
9 consecutive waves.

Figure 1.4: Mean of health with age for individuals with different survival ages
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Note: Results from two balanced samples of individuals with at least 9 consecutive waves:
433 individuals observed from age 50, and 509 individuals observed from age 62. The
bands represent 95% confidence intervals.
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Figure 1.5: Histogram of survival expectations to age 85
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Note: Sample comprises 54,754 observations from individuals interviewed in person, in
wave 4 or later, who are 50 years old or older, and who are asked for a reference age of 85
years old. The variable is rescaled to take values between 0 and 1 instead of 0 and 100.

to have predictive power for individuals’ survival (Hurd et al. (2001), Hurd and McGarry

(1995)) and to be consistently updated with new health information (Hurd and McGarry

(2002), Smith et al. (2001)). Furthermore, survival expectations are correlated with several

outcomes for older individuals. A histogram of the variable is shown in Figure 1.5. It is well

known that this variable suffers from measurement error, including rounding and focal-point

issues (Manski and Molinari (2010), Kleinjans and Van Soest (2014)). The model in this

paper takes those issues into account.

1.3.3 Data on other variables related to working decisions

In this paper, the main objective is to study how beliefs regarding health profiles affect the

working decisions of older adults. As described in section 1.2, doing so requires estimating

the policy rule of participation pit as a function of past participation pit−1, health hit−1,

heterogeneity in health levels αi, beliefs regarding health profiles (δ̂it, σ̂
2
t ), as well as other

variables in the information set Ωit−1, including assets ait−1 and labor income wit−1. Table

1.2 presents summary statistics for these other variables in Ωit−1 that I use in section 1.6 in

Thus, using this variable would restrict my sample considerably.
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predicting working outcomes of older adults.

1.4 Health process with heterogeneous dynamics

This section estimates a health process with heterogeneous intercepts and slopes. As

Figure 1.4 suggests, for a population of older adults, we need to control for survival bias,

which I address by jointly modeling the two processes, given the lack of a suitable instrument

affecting survival chances but not health.

1.4.1 Empirical strategy

Let Sit be a binary variable for surviving up to the beginning of period t with Si0 = 1

and let the health and survival processes be given by

hit = ρhit−1 + αi + δi · t+ τ · t2 + εit, εit i.i.d. N(0, σ2
ε ) (1.9)

Sit = 1{γhit−1 + θ0 + θ1 · t+ θ′2xi + ηit ≥ 0}Sit−1, ηit i.i.d. N(0, 1) (1.10)

with individual-level heterogeneity (αi, δi),

 αi

δi

∣∣∣∣xi, hi0 ∼ N


 µα + ν ′αxi + ωαhi0

µδ + ν ′δxi + ωδhi0

 ,

 σ2
α φσασδ

φσασδ σ2
δ


 . (1.11)

The health process is persistent, measured by the parameter ρ, and it has heterogeneous

levels αi and heterogeneous slopes with age δi. The survival process depends on age through

the parameter θ1, and it depends on health through the parameter γ. This dependence of

survival on health allows us to take into account the survival bias observed in the data (see

Figure 1.4). The health and survival shocks, εit and ηit, are assumed to be independent. Ap-

pendix B includes a specification allowing for survival to depend directly on individual-level
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Table 1.2: Summary statistics for variables used in studying working decisions

Variable Mean SD Min Max

Panel (a)

Age 66.26 7.49 52 80
Work 0.38 0.49 0 1
Female 0.52 0.5 0 1
Education: less than high school 0.20 0.40 0 1
Education: some college 0.55 0.50 0 1
White 0.84 0.37 0 1
Hispanic 0.06 0.24 0 1
Marital Status: married 0.70 0.46 0 1
Marital Status: separated or divorced 0.12 0.33 0 1
Marital Status: widow 0.14 0.35 0 1
Number of household members 2.15 1.03 1 12
Total number of years worked 39.79 9.17 20 68
Spouse works 0.28 0.45 0 1
Spouse has health insurance 0.17 0.38 0 1
Income from pension 6.08 50.49 0 10000
Income from Social Security 6.65 5.95 0 58.3
Wealth 366.51 730.98 -1585.01 10000
Health insurance: employer covering retirement 0.14 0.35 0 1
Health insurance: employer not covering retirement 0.07 0.25 0 1
Health insurance: employer (already 65) 0.17 0.37 0 1
Health insurance: government 0.47 0.5 0 1
Health insurance: other 0.11 0.31 0 1

Panel (b)

Income from work 30.51 39.83 0 1190.68
Tenure 14.31 12.4 0 66.1
Self-employed 0.22 0.42 0 1
Occupation: managerial 0.16 0.36 0 1
Occupation: professional 0.21 0.4 0 1
Occupation: sales 0.12 0.32 0 1
Occupation: clerical 0.16 0.37 0 1
Occupation: services 0.14 0.35 0 1
Occupation: farming, mechanics, construction, operators 0.22 0.41 0 1
Occupation: FF.AA. 0.00 0.02 0 1
Job requires physical effort 0.17 0.38 0 1
Job requires lifting heavy loads 0.07 0.25 0 1
Job requires stooping or kneeling 0.13 0.34 0 1
Job requires good eyesight 0.68 0.47 0 1
Job involves lots of stress 0.16 0.37 0 1

Note: Summary statistics for the variables used in estimating working decisions in section 1.6.
The sample consists of observations from 12,623 individuals who have participated in the labor
market for at least 20 years, excluding missing values in any of these variables. Panel (a) comprises
48,607 observations, and panel (b) comprises 18,415 observations from working periods. Income
and wealth variables are measured in thousands of 2002 dollars. Wealth variables are capped at
$10 million.
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heterogeneity, αi and δi. However, those results indicate no such dependence. The vari-

ables in xi are time-invariant binary variables for female, white, Hispanic, and an education

level below high school graduation. These variables potentially affect health (through the

individual-level heterogeneity) and survival. I also allow for the unobserved heterogeneity to

depend on health hi0 (health at age 50) in order to address initial-conditions concerns.

Under these assumptions, the panel structure of the data identifies the distribution of αi

and δi. Let Θ be the set of parameters of this random-coefficients model.20 I estimate these

parameters by maximizing the likelihood:

max
Θ

N∑
i=1

log

(∫ ∞
−∞

∫ ∞
−∞

Ti∏
t=1

P
(
hit, Sit|hit−1, Sit−1 = 1, xi, α, δ

)
· φ(α, δ|xi, hi0)dαdδ

)
.

The full expression of this likelihood is included in appendix B.21

1.4.2 Results

I use a sample of 8,901 correlative observations from 1,671 individuals observed since they

were 50 years old (t = 0). Over the span of the following eight waves, 112 of these individuals

died. The main results are shown in Table 1.3 and full results are shown in appendix B.

The table shows, first, heterogeneity in both the intercepts and the slopes of the health

process, with positive and significant σ2
α and σ2

δ . Second, these two sources of heterogeneity

are uncorrelated, which implies knowing αi does not provide additional information on δi.

Health decreases with age, and the persistence of the health process is relatively low, with

ρ = 0.22. The results in the appendix further show that health is worse for individuals with

low levels of education, health decreases faster for white individuals, and probabilities of

survival are higher on average for women and Hispanic individuals. Those results also show

20Θ = {ρ, τ, σ2
ε , γ, θ0, θ1, θ2, µα, µδ, να, νδ, ωα, ωδ, σ

2
α, σ

2
δ , φ}

21For estimation, I approximate the double integral by using 1, 000 draws from a bivariate normal distribu-
tion.
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Table 1.3: MLE results on health and survival

Symbol Coefficient Pvalue

Persistence ρ 0.223 0.000
Mean∗ of αi µα 0.955 0.000
Mean∗ of δi µδ -0.057 0.018
SD of αi σα 0.235 0.000
SD of δi σδ 0.043 0.000
Corr(αi, δi) φ -0.033 0.714
SD of health shocks σε 0.266 0.000

Survival dependence on health γ 0.583 0.001

Controls Yes
N alive observations 8,901
N dead observations 112
N individuals 1,671
-Log likelihood 3,027.6

Note: Main results of estimating equations (1.9), (1.10), and (1.11). Full set of results
are shown in appendix B.

hi0 is correlated with αi, but hi0 does not provide information on δi.

I want to emphasize two aspects of this model: the inclusion of heterogeneous slopes

with age and the joint estimation with survival. To understand how these two aspects

influence my results, I estimate two additional versions of the model: (i) one excluding the

equation for survival but allowing for heterogeneous slopes with age, and (ii) another one

assuming homogenous slopes with age but including an equation for survival. The results

are in appendix B and show qualitatively similar results for the coefficients that are common

across specifications. Their main difference is that ignoring slope heterogeneity increases the

point estimate of the persistence parameter ρ by over 50% (from 0.22 to 0.37). However,

a key takeaway is that these models achieve very different fits of health over time. This

takeaway is more clearly seen in Figure 1.6, which repeats the exercise for a sample of

individuals observed from 66 years old and plots the predicted mean and variance of health
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Figure 1.6: Mean and variance of health in models with different assumptions about slope
heterogeneity and survival
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Note: The sample consists of 26,950 correlative observations from 7,301 individuals observed since
they were 66 years old. Over the span of the following eight waves, 996 of them died. The figure
plots data from 354 individuals with health in all 9 waves. The solid lines plot the health data and
the dotted lines plot the predicted values of health in each model.

with age. The figure shows ignoring survival leads to a downward bias of average health and

an upward bias of its variance, consistent with a model that includes the lower tail of the

health distribution, which is dropped from the data as people die. The figure also shows that

when ignoring slope heterogeneity, we predict a rather constant variance of health, contrary

to what the data show. In that sense, these plots support a model with slope heterogeneity,

though they don’t discard alternative explanations for the increasing variance with age. As

a robustness check, included in appendix D, I estimate a version with heteroskedastic error

εit, allowing its variance to depend on age. The results show an increasing variance of health

shocks does not explain away the heterogeneity in slopes δi.

Finally, I add two robustness checks included in the appendices. First, I estimate a similar

model using self-assessed health instead of the constructed summary measure of health. The
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results show the presence of heterogeneous slopes with age is robust to the use of this measure

alone. Second, I estimate a version of the model adding the unobserved heterogeneity (αi, δi)

directly to the survival equation. The results show αi and δi are not (jointly) significant; that

is, I find no direct effect of heterogeneity in survival, once I condition on lagged health hit−1.

The lack of significance of δi has an additional advantage. It implies survival is not another

signal for the unknown δi. If δi had a direct effect on survival, then, as in the case of health,

survival would provide individuals with additional information. In that case, by being alive,

individuals would learn something more about their heterogeneous slopes, and the Bayesian

updating equations (1.2) and (1.3) would not be valid. The results in this exercise, with the

lack of significance of δi on survival, say survival is not an additional signal for δi.

Overall, these results show novel evidence of heterogeneity in health profiles, in particular,

in health slopes with age. To study the effects of this heterogeneity on individuals’ working

decisions, we need to know how much individuals know about their own slope δi, which I

address next.

1.5 Uncertain health dynamics and beliefs

To study the effect of beliefs on labor-participation decisions of older adults, the main

difficulty is that those beliefs are unobserved by the econometrician. The Bayesian learn-

ing model implies beliefs are updated over time using health, starting from initial beliefs,

N(δ̂i0, σ̂
2
0). Hence, a key issue is the identification of those initial beliefs, in particular, the

identification of the parameters b and λ. These parameters are defined by

b = E(δ̂i0 − δi),

λ2 =
σ̂2

0

V ar(δi)
,
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and they measure how biased initial beliefs are and how much individuals at age 50 know

about their slopes. Because the health process does not reveal slope beliefs, this section

proposes the use of survival expectations, available in the HRS. Equation (1.10) implies

survival is a health-related process. Therefore, expectations about future survival are related

to expectations about future health; thus, they are related to slope beliefs.

1.5.1 Empirical strategy

The exact wording of the HRS question follows:

[plive10it] What is the percentage chance you will live to be (80, 85, 90, 95 or 100) or

more?

where the reference age depends on the individual’s age t at the time of the survey (and

wave), and it is approximately 10 years in the future. Let s denote this reference age. Then,

this question corresponds to

plive10it = P(Sis = 1|Ωit) =
s−1∏
l=t

P(Sil+1 = 1|Sil = 1,Ωit)

=
s−1∏
l=t

P(γhil + θ0 + θ1(l − 1) + θ′2xi + ηil+1 ≥ 0|Ωit),

where we omitted the regressors in the survival equation (besides health) for ease of notation.

Applying the equation for health (1.9) recursively, we can write

hil = ρl−thit + αi

l−t−1∑
k=0

ρk︸ ︷︷ ︸
known under Ωit

+ δi

l−t−1∑
k=0

(l − k)ρk +
l−t−1∑
k=0

ρkεi(l−k)︸ ︷︷ ︸
unknown under Ωit

.

From the view point of Ωit, the second term is random, with a normal distribution that

depends on (δ̂it, σ̂
2
t ) (and the parameters of the model). Because age-t beliefs depend on

health history hti and initial beliefs N(δ̂i0, σ̂
2
0), this second term is a function of λ and b.
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Therefore, plive10it are complex non-linear functions of slope beliefs,

plive10it = plive10it(αi, hit, δ̂it, σ̂
2
t , xi) = plive10it(αi, h

t
i, δ̂i0, σ̂

2
0, xi). (1.12)

The exact function is given in appendix E. Each period, individuals observe their health

and update their beliefs regarding their unknown δi. This new information allows them to

also update their expectations about their future health, and hence their expectations about

future survival. Thus, slope beliefs, unobserved by the econometrician, are closely linked to

survival beliefs, which are observed by the econometrician. Intuitively, the bias parameter b

affects expected health and hence the average survival expectation. Thus, levels of survival

expectation identify bias b. Next, I discuss identification of the uncertainty parameter λ.

In what follows, I assume (αi, δi, δ̂i0) are jointly normally distributed, with Cov(αi, δ̂i0) =

Cov(αi, δi) (which is zero according to the results in section 1.4). This assumption implies

the information about δi contained in αi is already incorporated in initial beliefs δ̂i0.

Identification using subjective expectations about survival rates

(ideal data)

The relation between survival expectations plive10it and the parameters governing beliefs,

b and λ, is a complex one. To provide intuition, I start by discussing identification using

ideal data, which I do not actually observe. This intuition carries out to the data available

in the HRS, which I show numerically next. Let Ωit be the information set of individual i

after observing his health up to period t. Thus, αi, δ̂it, σ̂
2
t ∈ Ωit.

Proposition 1.5.1 (Identification of λ) Let the health and survival processes be given by

equations (1.9) and (1.10), and assume individuals are Bayesian learners with prior beliefs
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about δi following N(δ̂i0, σ̂
2
0). Consider the subjective expectations about survival rates:

bsritr ≡ P(Sir+1 = 1|Sir = 1,Ωit), r ≥ t

Then, conditional on bsritt+1, bsritt+2, and hit (all in Ωit)

Cov(∆Φ−1(bsrit+1t+2),∆hit+1) = CtV ar(∆hit+1),

where the time-varying constant Ct is increasing in λ.

The proof is in the appendix. The proposition says we can identify λ with enough

longitudinal data on subjective expectations about these survival rates and health. The key

equation behind this result,

∆wΦ−1(bsrit+1r) =
r∑

k=0

ρr−t−1(hit+1 − ρhit − αi − δ̂it(t+ 1))︸ ︷︷ ︸
due to persistence

+ (δ̂it+1 − δ̂it)
r−t−2∑
k=0

(r − k)ρk︸ ︷︷ ︸
due to learning

,

shows individuals update their survival expectations for two reasons. The first reason is that

health is a persistent process; thus, any change in health will have future repercussions on

health and therefore on survival. Note that if ρ = 0, this channel disappears. The second

reason is that learning implies a change in future predictions of health and therefore of

survival. Note that if λ = 0, δ̂it+1 = δ̂it, and this channel disappears.

Identification using subjective expectations about survival proba-

bilities (HRS data)

We cannot use the previous result directly, because the HRS does not exactly measure

subjective expectations about survival rates. However, Figure 1.7 shows the intuition of
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proposition 1.5.1 extends to the available data. It shows the results of a simulation exercise.

In the exercise, I first simulate individual-level heterogeneity (αi, δi) and health hit, according

to equations (1.9), (1.10) and (1.11). Then, for different values of the uncertainty parameter

λ, I simulate initial beliefs (δ̂i0, σ̂
2
0) assuming b = 0. I update those beliefs over time and

construct (δ̂it, σ̂
2
t ) using the Bayesian updating equations and the simulated values of health.

Finally, I use these simulated beliefs, to construct survival expectations plive10it according

to equation (1.12). In Figure 1.7, the plots depict the uncertainty parameter λ in the x-

axis, and a simulated moment in the y-axis. The six plots correspond to the six moments

used later for estimation. The top row considers moments in levels, and the bottom row

considers moments in differences. The figure clearly shows that, as before, the covariance

between changes in health and changes in survival expectations depends on the underlying

uncertainty.

Figure 1.7: Simulated moments of plive10it by uncertainty λ in data-generating process
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Note: Moments in simulated data following the structure of the available data in the HRS. The
x-axis in each figure shows the value of the uncertainty parameter λ used in the data-generating
process. In all cases, the bias parameter b is set to zero.
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This model has two simplifying assumptions. First, the model assumes the health pro-

cess is exogenous, with no choice variable that affects the evolution of health; that is, no

investment is purposefully made in the form of health behaviors (e.g., exercising or smok-

ing), and working decisions do not affect health. This assumption is not uncommon in the

literature on labor market decisions among older individuals, and it emphasizes changes in

health due to aging. By ruling out the possibility of individuals changing their behavior in

order to affect their health, the strict exogeneity assumption implies the correlation between

changes in health and changes in survival expectations are not confounded by changes in

individuals’ planned behaviors. Second, the model assumes health is the only or sufficient

signal available to individuals. This assumption is partly addressed in the last section of the

paper, where I look at another source of information that may shift beliefs.

Under these assumptions, plive10it is a function of initial beliefs N(δ̂i0, σ̂
2
0), heterogeneous

intercept αi, and health history up to t, (hi0, . . . hit). Hence, for any value of b and λ,

I can use the estimated health process to simulate draws αi and δ̂i0, and then use those

variables to simulate plive10it.
22 I estimate the parameters governing initial beliefs, b and

λ, by simulated method of moments (SMM). I use six moments, three in levels and three

in differences, corresponding to the mean of plive10it, its variance, and its covariance with

hit.
23 Details of the implementation are given in appendix G.

Subjective survival expectations are measured with substantive error, which is well es-

tablished in the literature (see, e.g., Manski and Molinari (2010)). Similar to Kleinjans and

Van Soest (2014), I allow for non-classical i.i.d. measurement error νit ∼ N(µmerror, σ
2
merror),

22The distribution of δ̂i0 depends on b and λ. Hence, I first simulate αi and δi conditional on health history
hi0, . . . hiTi

, and then for a given value of b and λ, I draw δ̂i0 conditional on αi, δi, and hi0.
23As described in appendix G, most individuals are first observed in sample at age t0 older than 50, and I

modify the simulation process for them accordingly. Overall, I target these six moments averaged across
time for different subgroups of individuals, depending on the age t0 I first observe them, for a total of 78
moments.
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such that the observed survival expectations are given by

p̃live10it = max{min{plive10it + νit, 1}, 0}.

Note the measurement error shifts observed survival expectations by µmerror on average.

Similarly, the bias in initial beliefs b also shifts observed survival expectations. However,

these two biases have different effects over time: the average shift due to measurement error

is constant with age, given the i.i.d. assumption, whereas the average shift due to initial bias

in beliefs is decreasing with age as individuals observe their health and update their beliefs.

Thus, we can separately identify both effects.

1.5.2 Results

The estimation results presented in Table 1.4 show individuals face a sizable amount

of uncertainty and a large amount of negative initial bias; that is, individuals believe their

health will decay with age at a faster rate than what is actually true on average. In line

with previous literature, subjective survival expectations are subject to large amounts of

measurement error. Following Manski and Molinari (2010), I also estimate a version including

rounding and find similar results. These results are consistent with previous evidence that

finds that, on average, older adults up to 65 years old underestimate their chances of survival

(Elder (2013), Ludwig and Zimper (2013)). Those papers also find adults 80 years and older

overestimate their survival chances. My results similarly show overestimation at those ages,

which is explained by measurement error. The fit of the results is shown in Table 1.5. Panel

(a) shows the fit of the targeted moments using plive10it, whereas panel (b) shows the fit of

similar untargeted moments using survival expectations to age 75.24

24The HRS includes two questions on survival expectations every wave: plive10it asks for a reference age
approximately 10 years ahead, and plive75it asks for a reference age equal to 75 years. However, this last
question is only asked of individuals 65 or younger, limiting the sample; hence, I use it only here as a
check.
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Table 1.4: SMM results on prior beliefs

Symbol Coefficient Lower bound Upper bound

Uncertainty λ 0.338 0.336 0.340
Bias b -0.061 -0.061 -0.060
Mean of measurement error µmerror 0.121 0.118 0.123
SD of measurement error σmerror 0.177 0.176 0.177

Note: Prior beliefs about slopes are unobserved N(δi+b, λ2σ2
δ ), depending on the bias b and uncer-

tainty λ parameters, whereas subjective survival expectations plive10it are observed but measured
with error. The estimation uses a subsample of 2,000 individuals with eight periods, chosen ran-
domly for computational reasons. Moments are simulated using 20 draws of measurement error
and 20 draws of unobserved heterogeneity. The bounds correspond to a 95% confidence interval,
constructed using standard errors clustered at the individual level.

With these estimated parameters, I can simulate slope beliefs, which I use in the next

section to study their effect on working decisions of older adults.

1.6 Working decisions as functions of beliefs about health

In the life-cycle model of labor participation pit and consumption cit outlined in section

1.2, an individual’s dynamic problem is

Vt(Ωit−1) = max
pit,cit

{
E

(
U(pit, cit, hit, pit−1)

∣∣∣∣Ωit−1

)
+

βE

(
Sit+1Vit+1(Ωit) + (1− Sit+1)B(ait)

∣∣∣∣Ωit−1, pit, hit

)}
st. budget constraint,

health (1.9) and survival (1.10) processes,

and beliefs updating equations (1.2) and (1.3),

where B(ait) is the utility perceived by leaving bequest ait. In this problem, the policy rule

for labor participation is a function of the state variables in the model. The novelty in this
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Table 1.5: Moments’ fit

(a) Targeted moments

Data moment SE Simulated moment

E(plive10) 0.531 (0.00011) 0.538
E(plive102) 0.371 (0.00012) 0.357
E(plive10 · h) 2.890 (0.00065) 2.957
E(∆plive10) -0.013 (0.00002) -0.014
E((∆plive10)2) 0.070 (0.00003) 0.066
E(∆plive10∆h) 0.007 (0.00002) 0.007

(b) Other moments (not targeted)

Data moment SE Simulated moment

E(plive75) 0.702 (0.00017) 0.806
E(plive752) 0.556 (0.00021) 0.687
E(plive75 · h) 3.886 (0.00101) 4.469
E(∆plive75) -0.001 (0.00010) 0.018
E((∆plive75)2) 0.054 (0.00008) 0.042
E(∆plive75∆h) 0.006 (0.00005) 0.003

Note: Panel (a) uses the same sample used for estimation. Panel (b) uses a subsample of 1, 247
individuals up to 65 years old who are asked plive75it (the percentage chance you will live to be
75 ). Standard errors are clustered at the individual level.
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paper is that those state variables include individuals’ beliefs about their future health. These

beliefs are the result of two key elements: heterogeneity in health dynamics and uncertainty

about that heterogeneity. These elements imply beliefs about that heterogeneity -instead

of just a common parameter- enter individuals’ choices. In this section, I estimate the

probability of working as a function of those state variables,

P(pit = 1|Ωit−1) = P(pit = 1|pit−1, ait−1, wit−1, hit−1, δ̂it−1, σ̂
2
t−1, αi). (1.13)

By using the results from the previous section, we can simulate all of the state variables,

and hence identify their effect on working decisions. Furthermore, by using survival expec-

tations to identify and simulate beliefs, no additional assumption on the relation between

beliefs and working decisions has been made. In particular, no restriction is imposed on the

sign of the effect of δ̂it−1 on working decisions. If individuals expecting better future health

want to work longer, the sign would be positive. This case would arise if the dominant effect

were the desire to save more, given the longer life expectancy implied by better health. If

individuals expecting worse future health want to work longer, the sign would be negative.

This case would arise if the dominant effect were the desire to save more given the higher

cost of future health care implied by worse health. Note also that, conditional on states

variables in Ωit−1, survival expectations plive10it−1 do not play an additional role in working

decisions pit.

1.6.1 Probit results on working decisions

To explore the relation between health beliefs and working decisions of older adults, I

first estimate equation (1.13) using a probit approach, that is, assuming P(pit = 1|Ωit−1) =

Φ
(
β′Ωit−1

)
. Note some of the input variables are unobserved by the econometrician, namely,

heterogeneity in health level αi and beliefs about slope heterogeneity, δ̂it and σ̂2
t . Conditional
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on health history, these unobserved variables depend on individual-level heterogeneity, which

is integrated out. See appendix H for details on the likelihood specification.

Table 1.6 presents the results of the probit estimation. As expected, the probability of

working decreases with age and increases with better lagged health. Lagged work has a

significant effect; the probability of working is larger for individuals who were working the

previous period. This result confirms the dynamic aspect of the working decisions. Fur-

thermore, the table shows that beliefs do matter for working decisions, with a positive and

significant coefficient for δ̂it−1. This positive sign implies expecting better health, that is,

expecting health to deteriorate more slowly with age, is associated with larger probabilities

of working.25 The table also shows survival expectations plive10it−1 are significant predictors

of the probability of working, but that significance holds only while slope beliefs are not ac-

counted for. This result is consistent with survival expectations reflecting individuals’ beliefs

about slope heterogeneity. Thus, once those beliefs are considered, survival expectations do

not provide additional information.

Though interesting, these results assume a linear index for the probability of working,

which is a strong assumption and is not justified by assumptions on the fundamentals of the

model. Hence, the results may be inconsistent with the policy rule derived from the economic

model. Thus, in what follows, I flexibly estimate the probability of working, without imposing

this index linearity. I achieve that flexibility by using instead a neural-network approach.

1.6.2 Neural-network approach

Neural networks provide flexible tools for estimation (Goodfellow et al. (2016)). They are

universal approximators, because they are capable of approximating any measurable function

25The assumptions of the learning model imply the posterior variance σ̂2
t is constant across individuals

of the same age t. Given that age is also a relevant determinant of working decisions, I don’t have
enough variation to disentangle these two effects separately; any results would be based on functional-form
assumptions alone. Therefore, I focus instead on interpreting the effects of the posterior mean.
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Table 1.6: Probit results on probability of working

(1) (2) (3)

Coefficient SE Coefficient SE Coefficient SE

age t− 1 -0.20*** (0.016) -0.08*** (0.003) -0.19*** (0.016)
lagged work pit−1 2.03*** (0.018) 2.03*** (0.019) 2.03*** (0.019)
lagged health hit−1 0.17*** (0.024) 0.26*** (0.033) 0.18*** (0.046)
heterogeneous intercept αi 0.24*** (0.036) 0.07 (0.046) 0.24*** (0.075)

beliefs mean δ̂it−1 1.93*** (0.249) 1.90*** (0.499)
beliefs var σ̂2

t−1/σ
2
δ -13.85*** (2.048) -13.33*** (2.102)

survival expectations plive10it−1 0.11*** (0.031) 0.01 (0.043)

Controls other vars Ωit−1 Yes Yes Yes
N individuals 14,969 14,718 14,718
N observations 58,040 55,592 55,592

Note: Results of estimating equation (1.13) using a probit approach. Standard errors are clustered
at the individual level.*** p < 0.01, ** p < 0.05, * p < 0.1

to any desired degree of accuracy (Hornik et al. (1989)). In the case of a binary outcome, and

under some particular specifications, a neural network corresponds to a maximum likelihood

estimation with logistic errors, where the probability of success is a complex non-linear index

of the inputs. As mentioned by Farrell et al. (2021), we can think of neural networks as a

type of non-parametric or sieve estimation whereby the basis functions are learned from the

data, hence allowing for greater flexibility.

In this case, I also need to account for the fact that some of the input variables are

unobserved by the econometrician. These unobserved variables are slope beliefs (δ̂it−1, σ̂
2
t )

and heterogeneous health levels αi. Though they are time-varying variables, they can be

written as functions of time-invariant unobserved variables (δ̂i0, αi) and the observed health

path (hi1, . . . hiTi) of each individual.26 Thus, following a standard likelihood approach, I

want to maximize the log of the likelihood integrating out this time-invariant unobserved

heterogeneity. To do so, I follow the insight of EM-type algorithms (Dempster et al. (1977)).

26This relationship depends also on the parameters of the health process (ρ, σ2
ε ) and the parameters of beliefs

(b and λ), but it does not depend on the parameters defining the relation between working decisions and
state variables.

38



Let θ be the parameters governing an outcome variable, in this case, working decisions.

When underlying heterogeneity exists, we estimate θ by maximizing a likelihood that in-

tegrates out that heterogeneity. In this context, EM-type algorithms provide us with two

key insights. First, the parameter θ that maximizes the integrated log-likelihood also maxi-

mizes an alternative specification using the posterior distribution given the outcome variable.

Formally, let ηi denote the vector of unobserved heterogeneity, f(ηi) its prior distribution,

and f(ηi|pi; θ) its posterior distribution given the outcomes pi. The first insight of EM-type

algorithms is to note that

argmax
θ
log

∫
P(pi|ηi; θ)f(ηi)dηi = argmax

θ

∫
log(P(pi|ηi; θ))f(ηi|pi; θ)dηi. (1.14)

The expression on the right-hand side is simpler to use. However, because this posterior

distribution depends on θ, it is unknown. Thus, the second insight of EM-type algorithms

is to solve the problem for θ iteratively: in iteration k, the E step uses θk−1 to update the

posterior distribution of the heterogeneity, and the M step estimates θk by maximizing the

right-hand side of equation (1.14), using that posterior.

I use this same iterative logic as a convenient implementation for maximizing the in-

tegrated likelihood under a neural-network approach. In this case, the E step is done by

Markov chain Monte Carlo (MCMC) and provides draws from the posterior distribution of

(αi, δ̂i0) given working decisions pi.
27 Those draws, along with individuals’ health histories,

are used to simulate the inputs (δ̂it, σ̂
2
t , αi) and to expand the data. Then, the M step es-

timates θ by using a neural network on the expanded data.28 I start this iterative process

at an M step using an incomplete posterior: the distribution of (αi, δ̂i0) conditional on the

27MCMC uses the likelihood of pi given (αi, δ̂i0) from the previous-iteration M step and the prior distribution

of (αi, δ̂i0).
28The standard EM algorithm is known to converge, as the likelihood increases in each step of the sequence.

This convergence does not hold in this case, given the lack of uniqueness of the solution. Therefore, the
approach is not aimed at getting at the unique solution, but as a convenient implementation.
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health history (hi1, . . . hiTi) and the history of survival expectations (plive10i1, . . . plive10iTi).

This distribution is incomplete because it does not condition on the working decisions, but it

does already include the heterogeneity information contained in the health and expectations

variables.

1.6.3 Neural-network results on working decisions

Following this strategy,29 I estimate the probability of working conditional on the state

variables Ωit−1. This set includes past participation pit−1, past health hit−1, heterogeneous

health levels αi, and slope beliefs δ̂it, σ̂
2
t , which are the main interest in this paper. It also

includes more traditional variables, listed in Table 1.2, including demographic variables, in-

come, wealth, health insurance, and job characteristics. I restrict the analysis to a sample

of individuals who are attached to the labor market, defined as individuals with at least 20

years of working experience. The loss and fit of the model is given in appendix I.

(1) Beliefs play a role in the participation decisions of older adults, with positive av-

erage marginal effects that are similar in orders of magnitude to the average marginal

effects of health and assets.

Table 1.7 presents the effects of a marginal change in expected beliefs δ̂it−1, health hit−1,

and assets ait−1, respectively, on the probability of working, conditional on age and past par-

ticipation pit−1, averaged across individuals. The table shows that even though the effects

are of different magnitudes and signs, they are similar in orders of magnitude. The same

result holds in Figures 1.8 and 1.9, which show the marginal effects of beliefs δ̂it−1 by deciles

29The results in this section come after running the iterative approach 5 times. These results are qualitatively
similar to the results using the incomplete prior. This similarity is not unexpected given that the incomplete
prior already incorporates the information on health and survival beliefs.
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of health and beliefs for adults aged 52-59 and 66-75, respectively.

(2) For individuals in their 50s who are not working, an interaction exists between

beliefs and health in their future participation decisions.

This result can be seen in Figure 1.8. The figure shows health has larger marginal ef-

fect on working probabilities for individuals with better beliefs, that is, for individuals who

believe their health will deteriorate relatively slowly. A similar pattern is observed for the

marginal effect of beliefs themselves. These results suggest adjustment costs of going back

to work are important for the decisions of this group. These adjustment costs could be due

to difficulties in finding jobs or in adapting to new work environments. The framework and

data-driven approach used in this paper have the advantage of letting the data suggest mech-

anisms that may be otherwise overlooked. Overlooking important mechanisms is a source

of misspecification in structural models. Hence, the approach in this paper complements

structural models, by providing a flexible way to identify patterns in the data that suggest

mechanisms to incorporate in such models.

(3) The total effect of a health shock εit−1 on working decisions goes mostly through

the persistence channel, with negligible effects through the information channel.

This result is shown in Table 1.7, which includes the decomposition of the effects of a

health shock into a persistence channel and an information channel, according to equation

(1.8). The persistence channel refers to the effect that a health shock εit−1 has on hit through

hit−1 and the persistence of the health process. The information channel refers to the effect

that a health shock εit−1 has on beliefs δ̂it−1, as individuals interpret hit−1 (and hence this

health shock) as a health signal. According to equation (1.8), the total effect of a health
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Table 1.7: Average marginal effects on the probability of working and decomposition of the
effects of a health shock

Age
Average marginal effects Decomposition of a health shock

Health Beliefs Assets Assets
Factor

Persistence Information

hit−1 δ̂it−1 a1it−1 a2it−1 channel channel

pit−1 = 0

52 0.056 0.028 -0.021 -0.043 0.003 1.00 0.00
54 0.049 0.024 -0.019 -0.039 0.006 1.00 0.00
56 0.043 0.021 -0.017 -0.034 0.009 1.00 0.00
58 0.038 0.018 -0.015 -0.030 0.011 0.99 0.01
60 0.033 0.016 -0.013 -0.027 0.013 0.99 0.01
62 0.028 0.013 -0.011 -0.023 0.014 0.99 0.01
64 0.022 0.010 -0.008 -0.018 0.015 0.99 0.01
66 0.019 0.009 -0.007 -0.015 0.015 0.99 0.01
68 0.015 0.007 -0.006 -0.013 0.014 0.99 0.01
70 0.013 0.006 -0.005 -0.010 0.014 0.99 0.01
72 0.010 0.004 -0.004 -0.008 0.013 0.99 0.01
74 0.008 0.003 -0.004 -0.007 0.012 1.00 0.00

pit−1 = 1

52 0.010 0.011 0.000 -0.005 0.003 1.00 0.00
54 0.011 0.012 0.000 -0.006 0.006 0.99 0.01
56 0.013 0.013 0.000 -0.007 0.009 0.99 0.01
58 0.015 0.015 0.000 -0.008 0.011 0.99 0.01
60 0.017 0.017 0.000 -0.008 0.013 0.99 0.01
62 0.018 0.018 0.000 -0.009 0.014 0.99 0.01
64 0.020 0.020 0.001 -0.009 0.015 0.99 0.01
66 0.021 0.021 0.003 -0.009 0.015 0.99 0.01
68 0.021 0.021 0.004 -0.009 0.014 0.99 0.01
70 0.021 0.022 0.005 -0.009 0.014 0.99 0.01
72 0.022 0.022 0.005 -0.009 0.013 0.99 0.01
74 0.022 0.022 0.006 -0.009 0.012 0.99 0.01

Note: Assets a1 are total assets excluding assets on retirement accounts, which are considered
separately on variable a2. The columns on persistence and information channels correspond to the
terms in equation (1.8), expressed as a proportion of the total partial effect.

shock is a weighted sum of the effects through these two channels. Note the small values

on the column Factor in Table 1.7, which imply a health shock has only a small effect on
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Figure 1.8: Average marginal effect of expected beliefs δ̂it−1, and health hit−1 on the proba-
bility of working pit for adults in their 50s

(a) Marginal change in δ̂it−1 conditional on
pit−1 = 1

(b) Marginal change in δ̂it−1 conditional on
pit−1 = 0

(c) Marginal change in hit−1 conditional on
pit−1 = 1

(d) Marginal change in hit−1 conditional on
pit−1 = 0

Note: Each row corresponds to the average marginal effects with respect to δ̂it−1 and hit−1, respec-
tively. The left column conditions on individuals who were working, pit−1 = 1, and the right column
conditions on individuals who were not working, pit−1=0, in the previous period. In each plot, the
x- and y-axis correspond to deciles of health hit−1 and expected beliefs δ̂it−1 for the corresponding
subsample of the plot. The z-axis corresponds to the work response (probability). Note the range
of the z-axis changes in each row.

beliefs δ̂it−1 and therefore only a small effect through the information channel. This result

highlights that even though individuals are uncertain and biased, to significantly affect their
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Figure 1.9: Average marginal effect of expected beliefs δ̂it−1, and health hit−1 on the proba-
bility of working pit for adults between 66 and 75 years old

(a) Marginal change in δ̂it−1 conditional on
pit−1 = 1

(b) Marginal change in δ̂it−1 conditional on
pit−1 = 0

(c) Marginal change in hit−1 conditional on
pit−1 = 1

(d) Marginal change in hit−1 conditional on
pit−1 = 0

Note: Each row corresponds to the average marginal effects with respect to δ̂it−1 and hit−1, respec-
tively. The left column conditions on individuals who were working, pit−1 = 1, and the right column
conditions on individuals who were not working, pit−1=0, in the previous period. In each plot, the
x- and y-axis correspond to deciles of health hit−1 and expected beliefs δ̂it−1 for the corresponding
subsample of the plot. The z-axis corresponds to the work response (probability). Note the range
of the z-axis changes in each row.

decisions, we need large enough signals. Section 1.8 looks at one possible such policy: health

information regarding blood glucose and cholesterol levels.
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1.7 Reducing bias in initial beliefs

In this section, I study how labor participation would change if we could eliminate bias

in initial beliefs. In particular, I look at two questions:

1. How much would labor participation change if initial beliefs were unbiased at the

population level, that is, E(δ̂i0) = E(δi)?

2. How much would labor participation change if we could reduce each individual’s bias

in half, by closing the distance between δ̂i0 and δi?

To look at these questions, I use an impulse-response-function approach. That is, I sim-

ulate working decisions under a sample’s baseline scenario, and compare those predictions

against the predictions simulated under each of these two potential changes in initial beliefs.

The figures in this section present the response in terms of labor-participation decisions by

age, given a change in initial beliefs. Over time, this change in initial beliefs translates

into changes in posterior beliefs, labor-participation decisions, and decisions regarding assets

and health insurance. The effects on these last two variables were also predicted using a

neural-network approach. Note these exercises assume no other variable change in response

to the change in initial beliefs or to the subsequent changes in participation, assets, or health

insurance. Therefore, the exercises presented here are not exactly counterfactual analyses,

but are interesting exercises as long as we are capturing the main choices.30

(1) Eliminating the bias in prior beliefs b would increase participation by more than

2 percentage points around the formal retirement age (66-67).

30The results presented in this section use the incomplete prior of the unobserved heterogeneity. As dis-
cussed in the previous section, this prior already accounts for the information in the health and survival
expectations variables, and incorporating the additional information has only a minor effect.
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Figure 1.10 shows the average change in the probability of working after eliminating the

initial bias in prior beliefs, b. Note this effect has an inverted-U shape. In the early 50s, the

effect is small given that individuals are still mostly working. But as people start to retire,

the new beliefs imply larger probabilities of working that do not vanish completely over time

and remain above 2 percentage points for individuals in their early seventies. Note that,

in this sample, the average probability of working prior to the change in beliefs is 34% at

age 66 and 17% at age 78; hence, the increment in the figure is not trivial. Furthermore,

because this effect results from eliminating a misconception at the population level, it is an

easier target policy that could be addressed by information campaigns, without the need to

provide individual-specific information.

Figure 1.10: Impulse-response function to a shift in prior beliefs eliminating overall bias b
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Note: Impulse-response function using the subsample of individuals used in estimation that are
observed at 52 years old, corresponding to 1,184 individuals.

(2) Reducing the initial bias of each individual by half has a heterogeneous effect,

with larger gains in the probability of working for individuals who are initially more

biased.

Figure 1.11 shows this results, distinguishing by quartile of initial bias, δ̂i0 − δi. Given the

overall initial bias b < 0, most individuals are initially downward biased. Thus, reducing bias
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in half per each individual means increasing initial beliefs for most of them, which translates

into the effects being positive, as shown in the figure.

Figure 1.11: Impulse-response function to reducing individuals’ initial bias by half
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Note: Impulse-response function using the subsample of individuals used in estimation that are
observed at 52 years old, corresponding to 1,184 individuals.

As a reference, using a structural model, French and Jones (2011) find raising the Medi-

care age from 65 to 67 leads individuals to work an additional 0.074 years over ages 60 to

69, whereas eliminating two years’ worth of Social Security benefits increases time spent in

the work force by 0.076 years.

1.8 An information experiment: Blood-based biomark-

ers as signals of health

1.8.1 Setup

The results on working decisions of older adults show beliefs matter, and expecting health

to deteriorate more slowly is associated with larger probabilities of working. Furthermore,

beliefs are initially biased, and eliminating that bias has non-trivial effects. Information cam-

paigns providing better information can be a way to eliminate that bias. In this section, I
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exploit a feature of the HRS and study the effects of an information shock on individuals’ de-

cisions: information on blood-based biomarkers. In 2006, the HRS introduced the collection

of a blood sample for measuring biomarkers. With the blood sample, three biomarkers are

measured and individuals are informed of their levels: HDL cholesterol (known as the good

cholesterol), total cholesterol, and blood glucose hbA1c. The results are provided around a

month after the survey has ended31 (see Edwards (2018) for more details). These biomarkers

are also included in other health surveys, including the REasons for Geographic and Racial

Differences in Stroke study (REGARDS) and the National Health and Nutrition Examina-

tion Survey (NHANES), where the information is also provided to individuals. Studies using

those biomarkers have found that new diagnoses through the surveys increase the number of

doctor visits for Medicare beneficiaries (Myerson et al. (2018)), but they increase the fraction

of patients with low uptake of ex-post medical treatment (Myerson et al. (2017)).

A key aspect in the introduction of these measures in the HRS is that, to control costs

associated with their collection, the HRS randomly split the sample into two halves, and

in each wave, the HRS collects these biomarkers in only one of those halves. Hence, this

collection scheme provides us with an information experiment, that is, with exogenous vari-

ation in who receives this additional information. Note, however, that setting an experiment

was not the intended goal of the HRS, and as such, this experiment is not ideal. An ideal

experiment would include a control arm of individuals who get their blood taken but are

not informed of their results. Still, the HRS collection scheme of biomarkers does provide

us with exogenous variation that I use in this section. Another advantage of looking at this

additional source of information is that it allows me to relax the assumption of health as the

only (or sufficient) signal32 and to use additional sources of variation when estimating the

31Two other biomarkers are measured: C-reactive protein (CRP), a general marker of systemic inflammation,
and Cystatin C, an indicator of kidney functioning. However, individuals are not informed of their levels
on these two biomarkers; hence, these results do not provide additional information to individuals.

32The signal analyzed here is provided exogenously to individuals. Hence, this paper does not address
endogenous acquisition of information, which is left for future work.
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effects of beliefs on working decisions of older adults.33 However, the counterpart of using

this experiment is that the information provided in the experiment is very small.

1.8.2 Reduced-form approach

I start by estimating the overall effect of receiving this information on individuals’ survival

expectations and working decisions. To that end, I use the experiment introduced with the

biomarker collection in 2006 (wave 8), when the sample was randomly divided into two. To

be able to generate this information, the experiment also introduces a difference in interview

mode between the two groups, because collecting the blood sample requires an in-person

interview.34 The interview mode could have an effect on individuals’ answers, in particular,

on questions regarding opinions and expectations. Though potentially problematic, the

timing of the information provision allows me to separately identify the interview-mode

effect from the information effect of the biomarker results, because that information is only

provided to individuals after the fieldwork has ended. Hence, individuals do not have the

information in the wave when the blood is collected, but in the following wave.

Figure 1.12 presents the structure of the biomarker collection and the information ex-

periment, and it helps us visualize the identification strategy. Note, first, that a difference-

in-differences analysis using waves 7 and 8 returns the interview-mode effect. Second, a

difference-in-differences analysis using waves 7 and 9 returns the interview-mode effect (with

the opposite sign) plus the information effect of receiving the additional signal. Hence, we

can identify the information effect by adding these two terms. Under the parallel-trends

33In inferring slope beliefs and using them to study their effect on labor-participation decisions in the previous
sections, I only use cross-sectional variation given by differences in initial beliefs, conditional on health and
survival-expectations histories.

34The HRS survey is usually conducted by phone, except for first interviews of new cohorts, people who
request in-person interviews, and individuals residing in nursing homes. A shift to in-person interviews in
2004 also occurred in an attempt by the HRS to increase individuals’ consent to link their survey responses
with administrative data. These differences in interview mode are unimportant for the analysis as long as
they are applied in the same way across the two groups.
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assumption, the same idea holds if we construct these terms using wave 5 instead of wave 7.

Figure 1.12: Timing of the biomarker collection and information experiment
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Therefore, I estimate the following equation:

yiw = β0 + β1dgi + β2wdw + β3wdgi · dw + εiw, (1.15)

where i denotes an individual and w denotes a wave. I use w instead of t, because in this

paper, t denotes age. I consider two dependent variables separately, survival expectations

plive10iw and a binary of work piw. I estimate these equations using a balanced sample

of individuals observed from waves 5 to 9.35 dgi is a dummy for the group of individuals

set for blood collection in wave 8 (group 1 in Figure 1.12, with group 2 as the reference

category), and dw are dummies for waves 6 to 9 (wave 5 is the reference category). Hence,

the interview-mode effect is given by β3w8 , and the information effect of the signal is given by

β3w8 + β3w9 , where the interview-mode effects in each group cancel each other out. Parallel

trends (before randomization) hold if β3w6 = β3w7 = 0, and randomization in the selection

of the two groups implies β1 = 0.

Table 1.8 presents the estimation results of equation (1.15) for both plive10iw and piw.

When looking at the results for survival expectation, plive10iw, the table shows the two

35I use only up to wave 9, because from wave 10 onward, the groups are no longer comparable, given that
they have been provided information with different timing.
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groups are similar and that pre-trends are parallel. The table also shows a positive and

significant interview-mode effect of 1.77 percentage points and a similar but insignificant

information effect of 1.36 percentage points. Though insignificant, this positive sign is aligned

with what we already know about beliefs: on average, individuals’ beliefs about health

and survival are downward biased. Therefore, providing more information moves those

expectations up. When looking at the results for working decisions, piw, the two groups

are similar to begin with and have parallel pre-trends, but we find no significant effect of

interview mode36 or information. Overall, these results suggest the signal is not large enough

to have a significant effect on expectations and decisions.

Table 1.9 presents the results separately by education level. It shows that for adults with

a college degree, both the interview-mode and information effects are larger and significant

when looking at survival expectations. For adults with less than a college degree, only the

interview-mode effect is marginally significant (at 12%). When looking at working decisions,

no significant effects —interview-mode or information effects— for either group are seen.

These differences by education level suggest the ability to process the information matters,

with more educated adults internalizing the provided information better. The effect on their

working decisions is also larger though still not significant.37

Appendix J further decomposes group 1 into adults who receive a bad biomarker result

versus those who do not. However, because we cannot make the same distinction in group 2,38

we cannot identify information effects by the type of signal received (good or bad biomarker

36The lack of an interview-mode effect on working decisions is expected, given the more objective nature of
working outcomes versus survival expectations.

37I run a similar regression with the number of doctor visits since the last interview as a dependent variable
and find no effects (results not shown), neither interview-mode nor information effects, for either group.
This result suggests the difference in survival expectations between these two groups is not explained
by a different number of doctor visits. However, more educated individuals may still be better able to
incorporate the new information with the help of their physicians, even if the number of doctor visits
remains the same.

38One possibility would be to use the biomarker results in wave 9 to attempt the same distinction for group
2. However, an analysis using repeated biomarker results from future waves shows these results change
over time, introducing noise when using results from wave 9 to assign wave 8 status for the second group.
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Table 1.8: Information and interview-mode effects of biomarker experiment

Survival expectation Work decision
(plive10iw) (piw)

Group 1 β1 -0.47 0.00
Wave 6 β2w6 -1.42*** -0.07***
Wave 7 β2w7 -1.50*** -0.12***
Wave 8 β2w8 -6.41*** -0.16***
Wave 9 β2w9 -3.57*** -0.20***
Group 1, wave 6 β3w6 0.28 0.01
Group 1, wave 7 β3w7 -0.27 0.01
Group 1, wave 8 β3w8 (a) 1.77** 0.01
Group 1, wave 9 β3w9 (b) -0.42 0.01
Constant β0 53.97*** 0.49***

Observations 41,930 41,923
R-squared 0.004 0.021

Interview mode effect (a) 1.77** 0.01
Information effect (a)+(b) 1.36 0.02

Note: Results of estimating equation (1.15). The sample consists of N = 8, 386 individuals with
non-proxy interviews who are at least 50 years old in wave 8 and who give a valid answer to
plive10iw every wave between waves 5 and 9. Seven of these observations do not have information
on piw. Standard errors are clustered at the household level. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.9: Information and interview-mode effects by education level

Survival expectation (plive10iw) Work decision (piw)

Less than college College Less than college College

Group 1 β1 -0.24 -1.38 0.01 -0.01
Wave 6 β2w6 -1.21** -2.09** -0.07*** -0.09***
Wave 7 β2w7 -1.44*** -1.72** -0.12*** -0.12***
Wave 8 β2w8 -6.12*** -7.37*** -0.16*** -0.19***
Wave 9 β2w9 -3.22*** -4.70*** -0.20*** -0.22***
Group 1, wave 6 β3w6 -0.06 1.37 0.00 0.02
Group 1, wave 7 β3w7 -0.24 -0.33 0.01 0.01
Group 1, wave 8 β3w8 (a) 1.29 3.31*** 0.00 0.03
Group 1, wave 9 β3w9 (b) -1.12 1.82 0.01 0.00
Constant β0 52.42*** 58.96*** 0.45*** 0.61***

Observations 31,815 10,115 31,810 10,113
R-squared 0.004 0.005 0.021 0.022

Interview mode effect (a) 1.29 3.31*** 0.00 0.03
Information effect (a)+(b) 1.65 5.12** 0.01 0.04

Note: Estimation results are from equation (1.15). The sample consists of N = 8, 386 individuals
with non-proxy interviews who are at least 50 years old in wave 8 and who give a valid answer to
plive10iw every wave between waves 5 and 9. Seven of these observations do not have information
on piw. Standard errors are clustered at the household level. *** p<0.01, ** p<0.05, * p<0.1
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results). Still, this analysis is interesting because it shows older adults who receive bad

results have lower survival expectations to begin with, suggesting they already knew at least

some of this information. Consistently, by wave 7, people who later receive bad biomarker

results also work less on average than those who receive good results.

1.8.3 Model-based approach

In this section, I use the learning model to re-assess the information experiment. I

estimate survival expectations allowing for the biomarker information to be a second signal

for health profiles. For these biomarkers to be a valid signal, being correlated with health

is not enough; they must be correlated with δi. The appendix shows they are indeed. It

presents the results of estimating an equation for health, similar to the equation of section 1.4,

allowing for the distribution of the heterogeneity to depend on blood-glucose and cholesterol

levels. The results show both the heterogeneous intercepts αi and heterogeneous slopes δi

are correlated with these particular biomarkers.

Hence, some individuals have two signals of δi: health hit and biomarker results lit. Let

lit be the blood-glucose level of individual i at age t,39 and let the two signals be given by

hit = ρhit−1 + αi + δi · t+ εit

lit = τ0 + τ1hit−1 + τ2αi + τ3δi · t+ τ4 · t+ τ5 · xi + ωit,

where ωit are i.i.d. and independent of health shocks εit. Bayes’ rule implies the updating

equations for the posterior mean and variance of beliefs are given by

δ̂it
σ̂2
t

=
δ̂it−1

σ̂2
t−1

+
(hit − ρhit−1 − αi)t

σ2
ε

+
(lit − τ0 − τ1hit−1 − τ2αi − τ4t− τ5xi)t · τ3

σ2
ω

(1.16)

1

σ̂2
t

=
1

σ̂2
t−1

+
t2

σ2
ε

+
τ 2

3 t
2

σ2
ω

. (1.17)

39I focus on blood glucose because it is the biomarker more consistently related to slopes δi.
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Equation (1.17) shows the posterior variance includes the information provided by health

and by the biomarker results. As long as the biomarkers provide information about δi, that

is, as long as τ3 6= 0, having this additional signal increases the precision of posterior beliefs.

Furthermore, the overall gain in precision depends on both τ3 and σω, because they determine

the biomarkers’ signal-to-noise ratio. Equation (1.16) shows the posterior mean of δi is a

weighted average of the prior at that period, the signal provided by health, and the signal

provided by the biomarker information. The weights depend on how uncertain individuals

are to begin with, and on the precision of the information provided by each signal. Thus, to

predict beliefs δ̂it and survival expectations plive10it, a key issue is to measure the precision

of the additional signal.

To measure that precision, I use the biomarker experiment in the spirit of Todd and

Wolpin (2006). That is, to predict beliefs of group 1, I use parameters estimated using

data from future waves of group 2. Specifically, I want to predict beliefs when biomarker

information was first introduced between waves 8 and 9. By wave 8, only group 1 had their

blood collected, and by wave 9, only group 1 had their biomarker information available as

a second signal. I estimate the parameters governing the precision of that second signal,

using individuals from group 2. They had their blood collected for the first time in wave 9,

and they received their biomarker information before wave 10. Hence, I use their biomarker

information and their survival expectations in waves 9 and 10 to estimate the parameters

of the additional signal using simulated method of moments.40 Using those parameters, I

predict beliefs and survival expectations for group 1 in wave 9 (no second signal was available

yet in wave 8). The randomness in the selection of the groups implies the parameters

recovered by looking at group 2 must also represent the parameters governing the biomarker

signal for group 1.

40In an alternative version, I use a maximum likelihood approach to jointly estimate health and biomarker
results as a function of slope heterogeneity δi. I then use those parameters to predict slope beliefs and
survival expectations. Under this alternative approach, I obtain qualitatively the same results as the ones
from using SMM.
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Table 1.10: Predicted survival expectations in a model with health and blood glucose as
signals

Number of Predicted survival expectations

observations wave 8 wave 9 wave 9 - wave 8

Control (group 2) 4,852 45.8 45.4 -0.3
Treated (group 1) 5,357 44.8 44.9 0.1

Treated with bad blood glucose 552 39.1 38.5 -0.5
Treated with good blood glucose 3,649 46.0 46.3 0.3
Treated no blood glucose 1,156 43.8 43.7 -0.2

Note: The sample consists of N = 10, 209 individuals with non-proxy interviews who are at least
50 years old in wave 8 and who provide a valid answer to plive10iw in waves 8 and 9. Survival
expectations are predicted from a model with one signal for the control group (health) and two
signals for the treated group (health and blood-glucose results). These two signals are assumed to
be independent conditional on individual heterogeneity. The parameters determining the strength
of blood glucose as a signal of δi come from an estimation using future values of the control group
(waves 9 and 10)

The overall results on survival expectations by group are presented in Table 1.10. Ac-

cording to these results, the learning model suggests that by having the additional signal on

health, group 1 increases their survival expectations between waves 8 and 9 by 0.4 percent-

ages points more than the control group. This change in survival expectations is positive

but negligible, consistent with the results in Table 1.9. Thus, though a valid signal for

health profiles, biomarker results are only a small signal, and not enough to shift beliefs and

significantly affect decisions.

1.9 Conclusion

This paper documents individual-level heterogeneity in health dynamics among older

adults and studies how individuals’ beliefs about their own health dynamics affect their

working decisions. In the first part of the paper, I show evidence that health dynamics are
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indeed heterogeneous. In particular, I show health is heterogeneous in the way it changes

with age and that this heterogeneity helps explain the increasing variance of health with age,

a pattern observed in the population but mostly ignored by traditional models of health.

Motivated by this evidence, I turn to the question of how much individuals know about

their own health profiles. I develop a Bayesian learning model in which individuals have

beliefs about their own health profiles and update those beliefs as they see their health

changing with age. Leveraging data on subjective survival expectations, I find individuals

are uncertain and are negatively biased; that is, on average, they believe their health will

deteriorate faster than the average rate in the population.

Using the results from the learning model, I infer individuals’ beliefs about their own

health profiles. In an economic model with heterogeneous and uncertain health dynamics,

those beliefs are inputs in the policy rule for labor participation. I flexibly estimate this policy

rule, using a neural-network approach. I find beliefs matter for working decisions, and that

expecting health to deteriorate more slowly is associated with larger probabilities of working.

Furthermore, for individuals in their 50s who are not working, an interaction exists between

beliefs and health, suggesting adjustment costs of finding a job are important in individuals’

decisions regarding going back to work. The framework and data-driven estimation approach

imply this result is not a consequence of any additional structure imposed on the economic

model. In an additional exercise, applying machine-learning tools to also predict assets and

health insurance, I simulate the effects on participation over time of eliminating the initial

bias in beliefs. I find labor-force participation would increase by up to 2 percentage points,

an effect that lasts beyond traditional retirement ages. Taken together, these results suggest

room exists for policies to affect labor-participation decisions by shifting individuals’ beliefs

about their future health.

Thus, in the last part of the paper, I look at one such policy: the provision of informa-

tion on blood-glucose and cholesterol levels. I take advantage of the randomization of the
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collection and provision of such information, and analyze the results using a reduced-form

approach and a model-based approach. The results show the additional information has

negligible effects on survival expectations and working decisions. This negligible result is

due to a small effect of the information on beliefs, as shown by the model. Nevertheless, the

fact that this particular information policy does not have an effect on beliefs and working

decisions of older adults does not mean other policies could not have an effect. Such poli-

cies could include information policies aimed at correcting bias in beliefs about aggregate

values in the population, or more individualized information.41 In the case of the HRS, poli-

cies could include providing information about biomarkers on kidney function and systemic

inflammation, as well as genetic information, all already collected in the survey but with

results not shared with individuals. As a final note of caution, note this paper assumes no

endogenous acquisition of health information (e.g., through preventive care), an interesting

question that is left for future research.

41Information policies have been studied in other settings, for example, Delavande and Kohler (2015) and
Bates (2020). Information policies have also been studied in the context of surveys, for example, Armona
et al. (2018) and Wiswall and Zafar (2014).
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APPENDICES

A Estimation of the summary measure of health hit

Let Mijt be the j-th observed measure of unobserved health hit, j = 1, . . . 11, described in

Table 1.1. I assume a linear factor model structure, that is,

Mijt = µj + λjhit + εhijt, (18)

where εhijt is a measurement error. The coefficients µj are called intercepts and the coeffi-

cients λj are called loadings. I assume these coefficients are invariant in age t. Given that

hit is not directly measured, its location and scale are not identified without further assump-

tions. Hence, I fix the intercept and loading of one of the measures, the number of chronic

conditions1, to 0 and 1 respectively.

I use confirmatory factor analysis (CFA) to estimate (18), assuming classical measure-

ment errors that are normally distributed. Note, however, the model is identified under

weaker assumptions (see Cunha and Heckman (2008)). Estimates of the latent health hit

are obtained by minimizing the generalized sum of squares deviations of the factor from

their true values. The resulting formula can also be justified as an empirical Bayes estimator

of the factor given a prior normal distribution (Kolenikov (2009)). Table A1 presents the

results. The table shows all coefficients have the expected sign and are significant at 1%.

The table also shows the percentage of the variance of each measure Mijt that is explained

by health hit. Variables regarding difficulties in ADLs have the higher R-squared, consistent

with its common use in the assignment of many health-related benefits, such as long-term

care services provided by Medicaid. The values of hit predicted are highly correlated with

1For the measurement system, I define the variable as 7 minus the number of chronic conditions, so larger
values represent better health.
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Table A1: CFA results of health measurement

Measure of health
Coefficients

R-squared
Intercept Loading

Number of chronic conditions(a) 0 1 0.29
Self-assessed health 8.188 -1.027 0.44
Body mass index 37.278 -1.812 0.05
Eyesight in general 5.710 -0.549 0.15
Eyesight at a distance 5.177 -0.502 0.13
Eyesight up close 5.465 -0.523 0.13
Hearing 4.830 -0.424 0.08
Pain 4.792 -0.802 0.36
Difficulties in ADLs regarding mobility 9.398 -1.598 0.64
Difficulties in ADLs of large muscles 8.964 -1.475 0.63
Difficulties in other ADLs 3.812 -0.654 0.50

Note: (a) The first measure corresponds to 7 minus the number of chronic conditions,
hence, larger values represent better health. For this variable, the intercept and loading
are fixed to 0 and 1, respectively. All other coefficients are significant at 1%.

the values predicted by using principal component analysis instead.
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B MLE results for health and survival

Consider the following health and survival processes,

hit = ρhit−1 + αi + δi · t+ τ · t2 + εit

Sit = 1{γhit−1 + ι1αi + ι2δi + ι3 · t · αi + ι4 · t · δi + θ0 + θ1 · t+ θ′2xi + ηit}Sit−1,

where εit is i.i.d N(0, σ2
ε ) and ηit is i.i.d. N(0, 1), independent of εit. Furthermore,

 αi

δi

∣∣∣∣xi, hi0 ∼ N


 µα + ν ′αxi + ωαhi0

µδ + ν ′δxi + ωδhi0

 ,

 σ2
α φσασδ

φσασδ σ2
δ


 .

Let Θ be the set of parameters of this random-coefficients model. The likelihood corresponds

to

max
Θ

N∑
i=1

log

(∫ ∞
−∞

∫ ∞
−∞

Ti∏
t=1

P
(
hit, Sit|hit−1, Sit−1 = 1, xi, α, δ

)
· φ(α, δ|xi, hi0)dαdδ

)
,

where,

P
(
hit, Sit = 1|hit−1, Sit−1 = 1, xi, α, δ

)
= φ

(
hit − ρhit−1 − α− δ · t− τ · t2

)
·Φ
(
γhit−1 + ι1αi + ι2δi + ι3 · t · αi + ι4 · t · δi + θ0 + θ1 · t+ θ′2xi

)
P
(
Sit = 0|hit−1, Sit−1 = 1, xi, α, δ

)
=

1− Φ
(
γhit−1 + ι1αi + ι2δi + ι3 · t · αi + ι4 · t · δi + θ0 + θ1 · t+ θ′2xi

)
.

Table B1 presents the MLE results of estimating these equations under 3 different set of

assumptions. Columns (3) and (4) present the main results. Columns (1) and (2) present the

results of an MLE estimation of health only, ignoring survival. Columns (5) and (6) present
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the results of an MLE estimation of health and survival, but assuming no heterogeneity in

health slopes, that is, δi = δ1. Thus, for these columns, σδ = φ = ωδ = ι2 = ι4 = 0. Note

also the equation for survival includes direct effects of the individual heterogeneity (αi, δi),

hence it allows us to test for these direct effects. The results imply these direct effects are

not (jointly) significant; hence, survival does not provide additional information on δi.

1The model allows for differences in slopes by observed heterogeneity, but it does not allow for differences
in slopes by unobserved heterogeneity.

67



Table B1: MLE results on health and survival under different assumptions

Heterogeneous slopes Heterogeneous slopes Homogeneous slopes
without survival eq with survival eq with survival eq

Coefficient Pvalue Coefficient Pvalue Coefficient Pvalue
(1) (2) (3) (4) (5) (6)

ρ 0.225 0.000 0.223 0.000 0.366 0.000
τ 0.001 0.087 0.001 0.119 0.001 0.108
µα 0.968 0.000 0.955 0.000 0.781 0.000
ναfemale -0.029 0.132 -0.029 0.131 -0.024 0.163
ναwhite 0.026 0.338 0.027 0.335 0.018 0.458
ναhispanic 0.004 0.909 0.005 0.889 -0.001 0.973
ναless HS -0.134 0.000 -0.134 0.000 -0.120 0.000
ωα 0.599 0.000 0.603 0.000 0.492 0.000
µδ -0.060 0.012 -0.057 0.018 -0.051 0.000
νδfemale 0.006 0.146 0.006 0.136 0.005 0.198
νδwhite 0.015 0.007 0.015 0.008 0.013 0.011
νδhispanic 0.010 0.196 0.010 0.199 0.006 0.390
νδless HS -0.003 0.677 -0.003 0.624 0.001 0.896
ωδ 0.000 0.956 0.000 0.962
σα 0.235 0.000 0.235 0.000 0.212 0.000
σδ 0.042 0.000 0.043 0.000
φ -0.030 0.741 -0.033 0.714
σε 0.266 0.000 0.266 0.000 0.285 0.000

γ 0.583 0.001 0.640 0.000
ι1 -0.277 0.334 -0.422 0.125
ι2 0.044 0.986
ι3 0.029 0.306 0.036 0.287
ι4 0.241 0.601
θ0 0.529 0.326 0.514 0.336
θ1 -0.178 0.136 -0.193 0.092
θ2female 0.259 0.002 0.255 0.002
θ2white 0.019 0.847 0.029 0.758
θ2hispanic 0.317 0.079 0.311 0.078
θ2less HS -0.106 0.305 -0.114 0.267

N alive observations 8,901 8,901 8,901
N dead observations 0 112 112
N individuals 1,671 1,671 1,671
-LL 2,498.6 3,027.6 3,067.6

Note: Standard errors are clustered at the individual level.
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C Robustness: MLE results for self-assessed health

Let hSAHit denote the 1 to 5 self-assessed health (SAH) measure, rescaled so that larger

values represent better health. In this section, I estimate a model similar to the main model

in the text, but using hSAHit instead of the summary measure hit. Let h̃SAHit be the latent

health variable for hSAHit . Consider the following equations,

h̃SAHit = ρhSAHit−1 + αi + δi · t+ τ · t2 + εit, εit ∼ N(0, 1), t ≥ 1

Sit = 1{γhit−1 + θ0 + θ1 · t+ θ′2xi + ηit}Sit−1, ηit i.i.d. N(0, 1)

hSAHit =



1 if h̃SAHit ≤ 0

2 if 0 < h̃SAHit ≤ O2

3 if O2 < h̃SAHit ≤ O3

4 if O3 < h̃SAHit ≤ O4

5 if O4 < h̃SAHit

with individual-level heterogeneity (αi, δi),

 αi

δi

∣∣∣∣xi, hi0 ∼ N


 µα + ν ′αxi + ωαhi0

µδ + ν ′δxi + ωδhi0

 ,

 σ2
α φσασδ

φσασδ σ2
δ


 .

This system of equations is similar to the system of equations in the main text, but replace

hit for discrete hSAHit .

Table C1 presents the MLE results of estimating these equations. The table shows that

in this case too there is evidence of slope heterogeneity, that is, σδ > 0. Thus, heterogeneity

in health dynamics is robust to using SAH instead of the summary measure of health used

in the main analysis.
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Table C1: MLE results for SAH with and without a survival equation

Without survival eq With survival eq

Coefficient Pvalue Coefficient Pvalue

ρ 0.230 0.000 0.230 0.000
τ 0.012 0.000 0.012 0.000
µα -1.168 0.000 -1.185 0.000
ναfemale -0.006 0.939 -0.005 0.951
ναwhite 0.236 0.010 0.242 0.009
ναhispanic -0.265 0.048 -0.266 0.047
ναless HS -0.612 0.000 -0.603 0.000
ωα 1.148 0.000 1.151 0.000
µδ -0.057 0.158 -0.054 0.182
νδfemale 0.030 0.085 0.029 0.089
νδwhite -0.008 0.696 -0.009 0.647
νδhispanic 0.060 0.040 0.060 0.040
νδless HS 0.020 0.378 0.019 0.406
ωδ -0.043 0.000 -0.043 0.000
σα 0.970 0.000 0.970 0.000
σδ 0.137 0.000 0.137 0.000
φ -0.258 0.004 -0.257 0.004

γ 0.402 0.000
θ0 1.371 0.000
θ1 -0.101 0.000
θ2female 0.164 0.043
θ2white 0.034 0.711
θ2hispanic 0.404 0.018
θ2less HS -0.076 0.457

O2 1.713 0.000 1.712 0.000
O3 −O2 1.711 0.000 1.711 0.000
O4 −O3 2.062 0.000 2.063 0.000

N alive observations 8,901 8,901
N dead observations 0 112
N individuals 1,671 1,671
-LL 8,985.2 9,502.0

Note: Standard errors are clustered at the individual level.
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D Robustness: MLE with heteroskedastic errors εit

In this appendix, I estimate the health and survival processes defined in equations (1.9),

(1.10) and (1.11), except that I allow for heterokedastic errors in the health equation, such

that, V ar(εit) = σ2
ε + t · σ2

tε. Table D1 presents the results of estimating these equations

by MLE. The table shows allowing for increasing variance of health shocks does not explain

away heterogeneity in health slopes δi.
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Table D1: MLE results for health hit allowing for heteroskedastic error εit

Coefficient Pvalue

ρ 0.225 0.000
τ 0.001 0.088
µα 0.961 0.000
ναfemale -0.03 0.122
ναwhite 0.027 0.330
ναhispanic 0.003 0.928
ναless HS -0.134 0.000
ωα 0.601 0.000
µδ -0.059 0.015
νδfemale 0.006 0.139
νδwhite 0.015 0.008
νδhispanic 0.010 0.193
νδless HS -0.003 0.661
ωδ 0.000 0.986
σα 0.234 0.000
σδ 0.042 0.000
φ -0.025 0.776
σε 0.266 0.000
σεt 0.000 1.000
γ 0.494 0.000
θ0 -0.103 0.707
θ1 -0.083 0.000
θ2female 0.244 0.005
θ2white 0.025 0.793
θ2hispanic 0.248 0.263
θ2less HS -0.096 0.345

Note: Standard errors are clustered at the individual level.
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E Formula for plive10it

Let s denote the reference age asked in plive10it. By definition,

plive10it = P(Sis = 1|Ωit) =
s−1∏
l=t

P(Sil+1 = 1|Sil = 1,Ωit)

=
s−1∏
l=t

P(γhil + θ0 + θ1(l − 1) + θ′2xi + ηil+1 ≥ 0|Ωit),

where

hil = ρl−thit + αi

l−t−1∑
k=0

ρk︸ ︷︷ ︸
known under Ωit

+ δi

l−t−1∑
k=0

(l − k)ρk +
l−t−1∑
k=0

ρkεi(l−k)︸ ︷︷ ︸
unknown under Ωit

.

Then,

P(Sil+1 = 1|Sil = 1,Ωit) = P(γhil + ηil+1 ≥ 0|Ωit) = Φ

(
Mitl

W
1/2
tl

)

where

Mitl = γ

(
ρl−thit + αi

l−t−1∑
k=0

ρk + δ̂it

l−t−1∑
k=0

(l − k)ρk
)

+ θ0 + θ1(l − 1) + θ′2xi

Wtl = γ2σ̂2
t

( l−t−1∑
k=0

(l − k)ρk
)2

+ γ2σ2
ε

l−t−1∑
k=0

ρ2k + 1

Note that Mitl and Wtl are functions of hit, αi, δ̂it, σ̂
2
t , xi and parameters of the model.

Hence,

plive10it =
s−1∏
l=t

Φ

(
Mitl

W
1/2
tl

)
= plive10it(αi, hit, δ̂it, σ̂

2
t , xi).
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Furthermore, beliefs at age t are a function of prior beliefs at age 50 (t = 0), the hetero-

geneity in levels αi, and the health history up to that point hti (and parameters of the model).

The exact formulas come from applying the Bayesian updating equations recursively. First,

for the posterior variance,

1

σ̂2
t

=
1

σ̂2
t−1

+
t2

σ2
ε

⇒ 1

σ̂2
t

=
1

σ̂2
0

+
1

σ2
ε

t∑
l=1

l2

We can also rewrite the Bayesian updating equation for the posterior mean as

δ̂it = (1− tKt)δ̂it−1 +Kt(hit − ρhit−1 − αi − τt2) (19)

where Kt =
tσ̂2
t

σ2
ε

. Moreover, Kt satisfies that (1 − tKt)Kt−1 = t−1
t
Kt. Using this property

and equation (19) recursively, we can write

δ̂it = δ̂i0

t∏
l=1

(1− lKl) +
t∑
l=1

l

t
Kt(hil − ρhil−1 − αi − τ l2)

Noting that Kt is a function of σ̂2
0, σ2

ε and t, we conclude

plive10it = plive10it(αi, h
t
i, δ̂i0, σ̂

2
0, xi).

74



F Proof of proposition 1.5.1

Identification of λ with ideal data

We could identify λ with longitudinal information on beliefs about survival rates1,

bsritr = P(Sir+1 = 1|Sir = 1,Ωit) = P(γhir + ηir+1 ≥ 0|Ωit).

From the equation for health (1.9),

hir = ρr−thit + αi

r−t−1∑
k=0

ρk + δi

r−t−1∑
k=0

(r − k)ρk +
r−t−1∑
k=0

ρkεir−k

Hence,

hir|Ωit ∼ N

(
ρr−thit + αi

r−t−1∑
k=0

ρk + δ̂it

r−t−1∑
k=0

(r − k)ρk, σ̂2
t

( r−t−1∑
k=0

(r − k)ρk
)2

+ σ2
ε

r−t−1∑
k=0

ρ2k

)

Defining

wtr =
1

γ

√√√√γ2σ̂2
t

( r−t−1∑
k=0

(r − k)ρk
)2

+ γ2σ2
ε

r−t−1∑
k=0

ρ2k + 1

we can write

∆wΦ−1(bsrit+1r) ≡ wt+1rΦ
−1(bsrit+1r)− wtrΦ−1(bsritr)

= ρr−t−1
(
hit+1 − αi − δ̂it(t+ 1)

)
+ (δ̂it+1 − δ̂it)

r−t−2∑
k=0

(r − k)ρk (20)

1For ease of notation, in this section I ignore the quadratic term for age in the health equation and the
demographic terms in the survival equation.
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We denote individual i’s perceived innovation in health at period t as

ζ̂it = hit −E(hit|Ωit−1) = hit − ρhit−1 − αi − δ̂it−1 · t

and note that the Bayesian updating formulas can be rewritten as

δ̂it = δ̂it−1 +Kt · ζ̂it

σ̂2
t = (1−Kt · t)σ̂2

t−1

where Kt =
σ̂2
t−1·t

σ̂2
t−1·t2+σ2

ε
=

tσ̂2
t

σ2
ε

, Kt ≤ 1. Then, we can write equation (20) as

∆wΦ−1(bsrit+1r) =

(
ρr−t−1 +Kt+1

r−t−2∑
k=0

(r − k)ρk
)
ζ̂it+1

=

(
ρr−t−1 +Kt+1

r−t−2∑
k=0

(r − k)ρk
)

(hit+1 − wtt+1Φ−1(bsritt+1))

Then, for r = t+ 2, conditional on hit, bsritt+1 and bsritt+2 (belonging to Ωit),

Cov(∆Φ−1bsrit+1t+2,∆hit+1) =
(ρ+ (t+ 2)Kt+1)

wt+1t+2︸ ︷︷ ︸
Ct

·V ar(∆hit+1)

Finally,

∂Ct
∂λ

=
1

w2
t+1t+2

[
(t+ 2)(t+ 1)

σ2
ε

∂σ̂2
t+1

∂λ
wt+1t+2 −

1

2wt+1t+2

(t+ 2)2∂σ̂
2
t+1

∂λ

(
ρ+ (t+ 2)(t+ 1)

σ̂2
t+1

σ2
ε

)]
=

t+ 2

w3
t+1t+2

∂σ̂2
t+1

∂λ

[
(t+ 1)

σ2
ε

(σ̂2
t+1(t+ 2)2 + σ2

ε + 1/γ2)− 1

2
(t+ 2)

(
ρ+ (t+ 2)(t+ 1)

σ̂2
t+1

σ2
ε

)]
=

t+ 2

w3
t+1t+2

∂σ̂2
t+1

∂λ

[
(t+ 1)

2σ2
ε

σ̂2
t+1(t+ 2)2 +

t+ 1

γ2σ2
ε

+ (t+ 1)− 1

2
(t+ 2)ρ︸ ︷︷ ︸

>0

)]
≥ 0

�
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G Strategy for simulating survival expectations plive10it

To estimate the bias b and uncertainty λ parameters, I use simulated method of moments

comparing empirical moments of observed plive10it with simulated moments of plive10it. The

simulated moments come from plive10it being a function of individual-level heterogeneity

αi, health history hti, initial beliefs (δ̂i0, σ̂
2
0) and demographic characteristics xi. The exact

expression of this function is derived in appendix E. In this expression, αi and δ̂i0 are random

variables unobserved by the econometrician, but with a know distribution, given b and λ.

Let t0 denote the age an individual is first observed in the data, and let T denote the age

an individual is last observed in the data. These values are individual-specific, but I omit

the index i for ease of notation. The simulation strategy depends on the age an individual

is first observe, t0.

Case t0 = 0, individuals first observed in data at age 50

In this case, the health history relevant for beliefs, that is, the health history starting at 50

years old is fully observed. Then, the simulation strategy is straightforward:

1. Draw (αi, δi) conditional on hi0, . . . hiT (which follows a known normal distribution).

2. For a given b and λ,

(a) Set σ̂2
0 = λ2σ2

δ .

(b) Draw δ̂i0 conditional in αi, δi, hi0 (which follows a known normal distribution given

b and λ).

(c) Use αi, h
T
i , xi, δ̂i0, and σ̂2

0 to set plive10it (according to the formula in section E).
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Case t0 > 0, individuals first observed in data at age older than 50

In this case, we only observe hit0 , . . . hiT . Moreover, the prior mean δ̂it0 at that point is not

random conditional on b and λ, because survival up to the point depends on past health,

and therefore on health profiles. Instead, it satisfies,

δ̂it0 = Kt0(λ)

[
− ρt0hi0 − αi

t0−1∑
k=0

ρk + δi

(
1

t0

t0−1∑
l=1

l2 −
t0−1∑
k=1

(t0 − k)ρk
)

−ρTi1 + Ti2
1

t0
+

(
hit0 − γ

t0−1∑
k=0

(t0 − k)2ρk
)]

+ δ̂i0
σ2
ε

λ2σ2
δ

Kt0(λ)

t0
(21)

where

Ti1 =

t0−1∑
l=1

ρt0−1−lεil, Ti2 =

t0−1∑
l=1

lεil

are random variables, and Kt0(λ) is constant across individuals depending on both λ and t0.

According to this expression,

δ̂it0 = δ̂it0(hi0, αi, δi, Ti1, Ti2, δ̂i0︸ ︷︷ ︸
unobserved by

the econometrician

, hit0 ;λ)

Hence, we can simulate δ̂it0 by simulating (hi0, αi, δi, Ti1, Ti2, δ̂i0) and using (21) to define

δ̂it0 . However, being alive at t0 further restricts the distribution of (hi0, αi, δi, Ti1, Ti2). The

distribution of this vector conditional on observed health history and conditional on surviving

up to t0 has no closed-form solution. Hence, I use Markov chain Monte Carlo (MCMC) to

get these conditional draws. In this case, the simulation strategy is the following:

1. Draw (hi0, αi, δi, Ti1, Ti2) conditional on hit0 . . . hiT , Sit0 = 1 by MCMC.

2. For a given b and λ,
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(a) Set σ̂2
t0

= σ̂2(λ2, σ2
δ , t0) (defined by the Bayesian updating equation for the poste-

rior variance).

(b) Draw δ̂i0 conditional on αi, δi, hi0 (which follows a known normal distribution

given b and λ).

(c) Use δ̂i0 and (hi0, αi, δi, Ti1, Ti2) to construct δ̂it0 according to (21).

(d) Use αi, hit0 , . . . hiT , xi, δ̂it0 , and σ̂2
t0

to set plive10it (according to a modification

of the formula in section E, starting at t0).

Overall, I target moments of averages across time for sub samples of individuals with

different values of t0.
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H Probit likelihood and results

The working decision of individual i at age t depends on the information he has at

that moment, including his age t, past participation pit−1, past health hit−1, beliefs about

health slopes (δ̂it−1, σ̂
2
t−1) and individual-level heterogeneity αi. His decision also depends on

his assets ait−1, past labor income wit−1, and demographic variables, all of which I denote

together as xit−1.

P(pit = 1|Ωit−1) = Φ

(
β0 + β0tt+ β1hit−1 + β2δ̂it−1 + β3σ̂

2
t−1 + β4αi︸ ︷︷ ︸

unobserved to the
econometrician

+β5pit−1 + β6xit−1

)

= Φ

(
β′Ωit−1

)

Conditional on Ωit−1, the likelihood of pit is

Lcit = Φ

(
β′Ωit−1

)pit
·
(

1− Φ

(
β′Ωit−1

))1−pit

Let t0 be the age at which individual i is first observed in the data1. Then, according to

the economic framework discussed in section 1.2, the likelihood of the vector (pit0+1, . . . piT )

conditional on pit0 and (t0, T, hit0 , . . . hiT ,δ̂it0 , . . . δ̂iT ,σ̂2
t0
, . . . σ̂2

T ,αi,xit0 , . . . xiT ) is

Lci =
T∏

t=t0+1

Lcit

I address the initial condition problem by modeling the initial condition pit0 as a function of

(t0, hit0 , δ̂i0, σ̂0, αi, xi0)

P(pit0 = 1) = Φ

(
γ0 + γ0tt0 + γ1hit0 + γ2δ̂it0 + γ3σ̂

2
t0

+ γ4αi + γ6xit0

)
= L̃cit0

1Note t0 and T are individual specific, though I omit that index for ease of notation.
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This last equation is not derived from the economic model, but it is assumed as a way of

approximating the conditional density of pit0 . Then, the likelihood of observing (pit0 , . . . piT ),

conditional on (t0, T, hit0 , . . . hiT ,δ̂it0 . . . δ̂iT , σ̂t0 . . . σ̂
2
T ,αi,xit0 , . . . xiT ) is given by

Lci = L̃cit0

T∏
t=t0+1

Lcit

However, this likelihood is conditional on variables that are unobserved by the econome-

trician, namely, slopes beliefs {δ̂it, σ̂2
t }Tt=t0 and heterogeneity in health levels αi. These time-

varying unobserved variables can be written as a function of time-varying observed health

(hit0 . . . hiT ) and time-invariant unobserved variables, namely, beliefs at t0 (δ̂it0 , σ̂
2
t0

) and αi.

Hence, I write instead the likelihood of (pit0 , . . . piT ), conditional on (t0, T, hit0 . . . hiT , plive10it0 ,

. . . plive10iT , xit0 . . . xiT ) (observed by the econometrician), integrating out this time-invariant

unobserved heterogeneity,

Li =

∫
Lci · f(αi, δ̂it0|t0, T, hit0 , . . . hiT , plive10it0 . . . plive10iT , xit0 , . . . xiT )

where I used that σ̂2
t is constant for individuals of the same age. Note I added in the

conditional set plive10it0, . . . plive10iT . These variables do not enter the economic model,

and hence the probability of working, but they provide information on individuals slopes

beliefs. This formulation assumes no other unobserved heterogeneity at the i-level.

The distribution within the integral has no closed form solution, given that surviving up to

t0 adds additional restrictions on the distribution of the underlying individual heterogeneity.

Hence, in practice, I approximate this integral using draws from this distribution gotten by

Markov chain Monte Carlo (MCMC). Tables H1 and H2 present the full set of results of this

integrated probit. They also include a specification using survival expectations plive10it−1

instead of slope beliefs (δ̂it−1, σ̂
2
t−1), and a specification using both, survival expectations and
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slope beliefs.

Table H1: Probit results on probability of working: main equation

(1) (2) (3)

Coefficient SE Coefficient SE Coefficient SE

Main equation

intercept -0.564 (0.294) -2.445 (0.098) -0.693 (0.297)
t− 1 -0.196 (0.016) -0.082 (0.003) -0.192 (0.016)
work 2.032 (0.018) 2.031 (0.019) 2.034 (0.019)
health 0.169 (0.024) 0.261 (0.033) 0.175 (0.046)
educ LHS -0.032 (0.020) -0.034 (0.021) -0.032 (0.022)
MS married -0.030 (0.040) -0.014 (0.041) -0.012 (0.041)
MS divorce 0.053 (0.043) 0.064 (0.044) 0.069 (0.045)
MS widow 0.012 (0.045) 0.029 (0.046) 0.028 (0.046)
Q1 income -0.283 (0.026) -0.294 (0.027) -0.290 (0.027)
Q2 income -0.165 (0.022) -0.168 (0.023) -0.165 (0.023)
Q3 income -0.105 (0.020) -0.112 (0.020) -0.108 (0.020)
Q1 wealth 0.176 (0.024) 0.181 (0.025) 0.187 (0.025)
Q2 wealth 0.112 (0.022) 0.112 (0.022) 0.117 (0.022)
Q3 wealth 0.027 (0.020) 0.025 (0.021) 0.027 (0.021)
female -0.037 (0.015) -0.048 (0.016) -0.036 (0.016)
αi 0.244 (0.036) 0.074 (0.046) 0.243 (0.075)

δ̂it−1 1.933 (0.249) 1.903 (0.499)
σ̂2
t−1/σ

2
δ -13.854 (2.048) -13.335 (2.102)

plive10it−1 0.114 (0.031) 0.007 (0.043)

Note: Standard errors are clustered at the individual level.
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Table H2: Probit results on probability of working: initial condition

(1) (2) (3)

Coefficient SE Coefficient SE Coefficient SE

Initial condition

intercept -2.840 (0.417) -1.583 (0.138) -2.779 (0.419)
t0 -0.107 (0.022) -0.163 (0.004) -0.106 (0.022)
health 0.481 (0.040) 0.549 (0.058) 0.448 (0.083)
educ LHS -0.059 (0.032) -0.040 (0.033) -0.038 (0.033)
MS married -0.276 (0.063) -0.297 (0.063) -0.288 (0.063)
MS divorce 0.055 (0.068) 0.045 (0.068) 0.051 (0.069)
MS widow 0.023 (0.072) 0.008 (0.072) 0.012 (0.073)
Q1 income -1.201 (0.045) -1.227 (0.045) -1.218 (0.046)
Q2 income -0.677 (0.039) -0.708 (0.039) -0.703 (0.039)
Q3 income -0.413 (0.035) -0.426 (0.035) -0.421 (0.035)
Q1 wealth 0.709 (0.043) 0.695 (0.043) 0.703 (0.044)
Q2 wealth 0.512 (0.039) 0.507 (0.039) 0.513 (0.039)
Q3 wealth 0.249 (0.037) 0.253 (0.037) 0.255 (0.037)
female -0.09 (0.025) -0.097 (0.026) -0.079 (0.026)
αi 0.200 (0.057) 0.057 (0.076) 0.249 (0.126)

δ̂it0 1.473 (0.383) 2.238 (0.788)
σ̂2
t0
/σ2

δ 8.775 (2.992) 9.279 (3.081)
plive10it0 -0.016 (0.047) -0.135 (0.065)

Note: Standard errors are clustered at the individual level.
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I Neural network details

A neural network is comprised of units arranged into layers: an input layer, hidden layers,

and an output layer. The units of the first layers are the inputs or observed variables of the

problem. In each subsequent layer, units are a transformation of a linear combination of the

units in the previous layer. The weights in the linear combinations are chosen to minimize

a loss function.

For a binary outcome p, the output layer has 2 units. Let V0 and V1 denote last layer’s

units pre-transformation (as non-linear functions of the inputs). The transformation at the

last layer corresponds to sj = eVj

eV0+eV1
, j = 0, 1 (softmax activation function for 2 categories)

and the loss function (cross-entropy) corresponds to

−
∑
obs

{
1(p = 0)log(s0) + 1(p = 1)log(s1)

}
.

Hence, a neural network for a binary outcome is a generalization of a logit with a flexible

non-linear index.

This flexibility, however, implies that the optimization problem is non-convex and may

have multiple local minima, so a few techniques are usually applied: weight regularization,

ensemble of results from multiple starting values, and search of hyperparameters. The algo-

rithm uses gradient descent and back propagation to find the weights in an efficient and fast

way.

In this paper, I apply neural networks to panel data

max
∑
i,t

log
(
P(pit|xit)

)
The inputs xit are state variables in the Bellman equation, Ωit−1. However, some of the
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inputs are unobserved latent variables: slope beliefs (δ̂it−1, σ̂
2
t−1) and heterogeneity in health

levels αi. Conditional on health history hti, these latent variables can be subsumed in time-

invariant unobserved (αi, δ̂i0) ≡ ηi, with ηi included in xit.

The objective is to maximize the log likelihood after integrating out this unobserved and

time-invariant heterogeneity

max
∑
i

log

∫ ∏
t

P(pit|xit)f(ηi)dηi

which is a difficult object to work with. Hence, I use instead a key insight from the EM-

algorithm, that is,

argmax
θ

∑
i

log

∫
P(pTi |xTi ; θ)f(ηi)dηi = argmax

θ

∑
i

∫
logP(pTi |xTi ; θ) f(ηi|pTi ; θ)︸ ︷︷ ︸

unknown
posterior

dηi (22)

and solve this problem iteratively: given θk−1

1. Get draws of ηi from the posterior distribution f(ηi|pTi ; θk−1) by MCMC

2. Estimate θk by using a neural network approach in the augmented data

max
∑
i

∑
draws

∑
t

logP(pit|xit)

corresponding to an approximation of the right-hand side of equation (22)

As mentioned before, this iterative approach is used as a convenient implementation, but

given the lack of unique solution to the problem there is no convergence result. As a starting

point, I use the posterior distribution f(ηi|hTi , plive10Ti ), which should already incorporate

a substantial amount of information about ηi. The results presented here confirm that

intuition: after 5 iterations the results are not qualitatively different.

For estimation, I perform the following steps:
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Table I1: Hyperparameter space

Hyperparameter Space

Depth {3, 5, 8}
Width {3, 5, 8}
Regularization L1 : {1e−15, 1e−10, 1e−5}

L2 : {1e−15, 1e−10, 1e−5}
Epochs up to 200

Table I2: Loss and accuracy at 5th iteration across 30 starting points

Mean Median SD

Loss 0.313 0.312 0.003
Accuracy 0.883 0.883 0.0005

1. I split the sample in an estimation and validation sample (80% and 20% of the indi-

viduals respectively). Using the estimation sample and one draw from the incomplete

prior, I estimate a neural network for several combinations of hyperparameters. Table

I1 show the hyperparameter space considered.

2. I choose the hyperparameters of the neural network as those that minimize the pre-

dicted loss in the validation sample. The values chosen are depth 3, width 3, L1

regularization 1e−15, and 33 epochs.

3. Using that structure, I apply the iterative approach describe earlier 5 times. In each

iteration, I average the results across 30 starting points. The loss and accuracy of the

last iteration is presented in table I2.
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Figure I1: Observed [dashed] versus predicted [solid] probability of work at 5th iteration
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J Additional biomarker results

Besides the collection of a blood sample for measuring biomarkers, the change in collection

mode for the selected group also introduced more detailed measures of health, including

physical measures, and a saliva sample for DNA analysis. The physical measures include

blood pressure and pulse, lung function, hand grip strength, balance test, timed walk test,

height, weight, and waist circumference. These variables are valuable measures of health,

but I do not include them in this paper given that they are measured only every two waves.

Furthermore, their value as signals of health is limited given that, on one hand, they reflect

aspects of health already experienced by individuals in their everyday life, and on the other,

the results of the measures are immediately communicated to individuals before asking them

about their survival expectations.1

Distribution of in-person interviews

Table J1: Percentage of in-person interviews by wave and group

wave group 2 group 1

wave 5 8.7 8.3
wave 6 10.5 10.8
wave 7 75.7 74.2
wave 8 17.8 94.5
wave 9 95.3 21.0

Note: The sample consists of N = 8, 386 individuals with non-proxy interviews who are
at least 50 years old in wave 8, and who give a valid answer to plive10 every wave between
waves 5 and 9.

1In that sense, part of what am denoting interview-mode effect could reflect differences in information given
by these results. I expect those effects to be low given that individuals experience most of them in their
everyday lives.
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Balance test

Table J2: Balance tests at wave 8

Mean per group Difference

N obs. gi = 2 gi = 1 coeff. p-value

female 8,386 .611 .608 .002 .819
age 8,386 68.8 68.6 .177 .302
race: white 8,385 .875 .879 -.004 .543
race: black 8,385 .099 .096 .003 .661
race: other 8,385 .026 .025 .002 .658
hispanic 8,386 .045 .046 -.002 .742
education: less than highschool 8,386 .199 .183 .016 .058
education: highschool 8,386 .336 .345 -.008 .425
education: some college 8,386 .227 .228 -.001 .933
education: college 8,386 .237 .245 -.007 .44
plive10 8,386 47.6 48.9 -1.3 .057
number doctor visits 8,145 9.851 10.06 -.208 .571
diagnosis of HBP 8,382 .556 .561 -.005 .668
diagnosis of heart condition 8,381 .241 .234 .007 .437
diagnosis of stroke 8,382 .075 .064 .011 .05
medication for HBP 8,283 .547 .547 0 .967
medication for diabetes (oral meds) 8,335 .141 .143 -.002 .833
medication for diabetes (insulin) 8,335 .038 .039 -.001 .731
medication for cholesterol 8,374 .439 .435 .004 .696
work 8,384 .323 .336 -.013 .197

Note: The sample consists of N = 8, 386 individuals with non-proxy interviews who are at least 50
years old in wave 8, and who give a valid answer to plive10 every wave between waves 5 and 9.

The 1.3 percentage-points difference in survival expectations between the two groups is

also captured in table 1.8, and as I mentioned before, I interpret it as caused by differences

in interview mode between those two groups, given that no significant differences are found

when the interview mode is also similar.
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Results distinguishing bad biomarkers results

I use the biomarker results of wave 8 to further distinguish group 1 in two subgroups:

individuals whose biomarker results are within normal levels (good results) and those whose

results are outside normal levels (bad results). Hence, I estimate the following equation

yiw = β0 + β1dgi + β2dbi + β3wdw + β4wdgi · dw + β5dgi · dw · dbi + εiw (23)

where as before, dgi is a dummy for group 1 (those who get their blood collected in wave

8), and dw are dummies for waves. The new variable dbi is a dummy for the subgroup of

individuals in group 1 that get bad results in any of the 3 tests. Receiving a bad results

corresponds to having a total cholesterol equal or above 240 mg/dL, HDL cholesterol below

40 mg/dL, or blood glucose hbA1c equal or above 6.4%. Note that in this equation, the

interpretation of the coefficients is not the same as in equation (1.15). For example, β1 is

now comparing the individuals in group 1 who get good results versus all individuals in

group 2, whether or not their (unobserved) test results are good or bad. Thus, β1 is not

a fair comparison. Consequently, the interest in this equation lies not on the comparison

between groups 1 and 2, but on comparing the differences between group 1 individuals that

receive good versus bad results.

Table J3 presents the results of estimating this equation. The results suggest the infor-

mation contained on bad test results is at least partially known by individuals themselves,

as they have lower survival expectations even before receiving this information, and their

labor participation is also decreasing ahead of time.
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Table J3: Biomarkers experiment distinguishing bad vs good test results

Survival expectations Working decisions
plive10iw piw

group 1 dgi -0.39 -0.01
group 1, bad results dbi -0.37 0.04**
wave 6 dw6 -1.42*** -0.07***
wave 7 dw7 -1.50*** -0.12***
wave 8 dw8 -6.41*** -0.16***
wave 9 dw9 -3.57*** -0.20***
group 1, wave 6 dgi · dw6 0.58 0.01
group 1, wave 7 dgi · dw7 0.15 0.02*
group 1, wave 8 dgi · dw8 2.23*** 0.02*
group 1, wave 9 dgi · dw9 -0.05 0.02
group 1, bad results, wave 6 dgi · dbi · dw6 -1.25 -0.01
group 1, bad results, wave 7 dgi · dbi · dw7 -1.75* -0.04**
group 1, bad results, wave 8 dgi · dbi · dw8 -1.94* -0.05***
group 1, bad results, wave 9 dgi · dbi · dw9 -1.56 -0.03
Constant 53.97*** 0.49***

Observations 41,930 41,923
R-squared 0.005 0.021

% of group 1 individuals with bad results 12.29 12.30

Note: Estimation results from equation (23). The sample consists of N = 8, 386 individuals with
non-proxy interviews who are at least 50 years old in wave 8, and who give a valid answer to
plive10iw every wave between waves 5 and 9. Of these, 7 observations do not have information on
piw. Standard errors are clustered at the household level. *** p<0.01, ** p<0.05, * p<0.1

Correlation between biomarker results and unobserved slopes δi

In order for the biomarker results to be valid signals, they must be correlated with δi. I

checked this by restimating the equation of health dynamics allowing for the mean hetero-

geneity to depend on biomarker results. That is, I include binary variables indicating values

out of range, averaged across waves. Table J4 show that there is indeed this correlation.
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Table J4: MLE results of health dynamics including biomarker information

Coefficient Pvalue

ρ 0.189 0.000
γ 0.002 0.057
σε 0.264 0.000

µα 4.450 0.000
ναfemale -0.128 0.000
ναwhite 0.108 0.002
ναhispanic 0.022 0.640
ναless HS -0.354 0.000
ναcohorte1 -0.059 0.040
ταTotal chol 0.170 0.000
ταHDL -0.030 0.467
ταHBP -0.161 0.001
µδ -0.053 0.000
νδfemale 0.005 0.271
νδwhite 0.010 0.073
νδhispanic 0.008 0.326
νδless HS 0.003 0.579
νδcohorte1 0.005 0.247
τδTotal chol -0.005 0.396
τδHDL -0.010 0.076
τδHBP -0.028 0.000
σα 0.442 0.000
σδ 0.040 0.000
φ -0.057 0.336

N observations 7,768
N individuals 1,344
-LL 4,223.2
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