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ABSTRACT

As the population ages, governments and international organizations are trying to lengthen
the labor-force participation of older adults. For older adults, health is an important de-
terminant of working decisions. In this paper, I introduce heterogeneity in health dynamics
with age and argue uncertainty about health dynamics affects the working decisions of older
adults. Using the Health and Retirement Study, I first show evidence of heterogeneity in
health profiles with age. Second, I use subjective survival expectations to infer health beliefs
in a Bayesian-learning framework. Third, I flexibly estimate how working decisions depend
on those beliefs, using a neural-network approach that does not require additional structure.
The results show beliefs have substantial negative bias. That is, on average, individuals
incorrectly believe their health will deteriorate too fast. Furthermore, eliminating that bias
would increase labor-force participation by up to 2 percentage points. In the last part of
the paper, I look at a policy that could affect beliefs: the provision of information on blood-
glucose and cholesterol levels. 1 take advantage of the randomization in the collection and
provision of such information. The results show the information has only small effects on
beliefs and working decisions, and consequently, policies with larger effects on beliefs are

needed to delay retirement.
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CHAPTER 1
HETEROGENEOUS AND UNCERTAIN HEALTH DYNAMICS
AND WORKING DECISIONS OF OLDER ADULTS

1.1 Introduction

The population is aging rapidly. Worldwide, the median age was 40 years old in 2018
and is estimated to be 45 years old by 2050. And though the participation of older adults
in the labor market has also been recently increasing, the number of older people out of the
labor force who will need to be supported by each worker is projected to increase by around
40% between 2018 and 2050. This aging pattern puts considerable strain on public budgets,
therefore, promoting employment at older ages has garnered large interest.! The success of
policies promoting the employment of older adults depends on our correct understanding of
the determinants of working decisions of this group, for whom health is an important factor.
For older adults, health deteriorates naturally with aging, affecting retirement choices and
expectations.? Yet, little is known about how heterogeneous health dynamics of older adults
are and how this heterogeneity affects their working decisions.

This paper documents individual-level heterogeneity in health dynamics among older
adults and studies how individuals’ beliefs about their own health dynamics affect their
working decisions. To do so, the paper proceeds in three parts. In the first part, I show
evidence that health dynamics are indeed heterogeneous among older adults. That is, while
some individuals see their health slowly deteriorating with age, other individuals see their

health deteriorating much more rapidly. I argue this heterogeneity, which the literature has

1See statistics from OECD (2019). In 2015, the OECD adopted an agenda promoting employment at older
ages, to protect living standards and public finances (OECD (2015)).

2For health effects on retirement choices, see, for example, Bound et al. (1999) and Maurer et al. (2011). For
health effects on retirement expectations, see Dwyer and Mitchell (1999) and McGarry (2004).



mostly ignored, is an important factor in the working decisions of older adults. Furthermore,
what matters for those decisions is how much individuals know about their own health
profiles. Hence, in the second part of the paper, I study uncertainty in health dynamics
by developing a Bayesian learning model in which individuals have beliefs about their own
health profiles and update those beliefs as they see their health changing with age. I leverage
data on survival expectations to infer these beliefs and to quantify how uncertain individuals
are. Then, in the third part of the paper, I estimate the working decisions implied by an
economic model that incorporates heterogeneous and uncertain health dynamics. I focus on
the effects that health beliefs have on working decisions of older adults. Instead of following
a structural estimation approach, I use machine-learning tools. A big limitation of this
approach is that I cannot run counterfactual analyses. However, the tools do not require
specifying the primitives of the model or adding almost any functional-form assumption.
Thus, the results are robust to misspecification of those elements.

Using the Health and Retirement Study (HRS), the first part of the paper leverages
the longitudinal nature of the data to estimate a dynamic model of health allowing for
more general forms of heterogeneity.® In particular, I assume health is a persistent process
with individual-level heterogeneity both in levels and in changes with age. The results show
significant heterogeneity, in levels and in changes. Furthermore, the heterogeneity in changes
helps explain the increasing variance of health with age, a pattern observed in the population
but mostly ignored by traditional models of health.*

The panel estimates in the first part of the paper provide evidence of individual-level het-
erogeneity in health dynamics, but they do not address the question of how much individuals
know about their own health profiles. In the second part of the paper, I study this question

using a Bayesian learning model® with initial beliefs that allow for bias (through the mean)

3Most of the literature allows only for individual heterogeneity in health levels. See, for example, Contoyannis
et al. (2004) and Heiss (2011).

4See, for example, Heiss (2011) and Heiss et al. (2014).

>The health process in this paper is similar to the income process studied by Guvenen (2007), who shows



6 available

and uncertainty (through the variance). Data on subjective survival expectations,
in the HRS, allow me to identify the parameters governing these beliefs. Intuitively, future
survival depends on future health; hence, expectations about future survival depend on be-
liefs about future health, and therefore on beliefs about health profiles. Thus, according
to the model, survival expectations are a complex nonlinear function of health and health
beliefs. Hence, I use simulated method of moments to estimate the parameters of those
beliefs. Average survival expectations speak to bias in beliefs. Covariance between changes
in health and changes in expectations speak also to uncertainty. To see this, note that, given
a change in health, individuals update their survival expectations for two reasons: first, be-
cause the persistence of health implies future health is affected by a health change today,
and second, because the uncertainty and the learning model imply beliefs are updated with a
health change today. Moreover, the larger the persistence and the larger the uncertainty, the
larger the change in survival expectations. Hence, moments of survival expectations are the
key source for identification of beliefs. My results show individuals are uncertain, updating
their beliefs over time, and they are negatively biased; that is, on average, they believe their
health will deteriorate faster than the average rate in the population.”

The heterogeneity and uncertainty in health dynamics imply beliefs about health profiles
enter the decisions of forward-looking individuals. In the third part of the paper, I study
how these beliefs affect the working decisions of older adults. In particular, this step requires
estimating the relationship between working decisions and all the information available to
individuals at the moment they make those decisions, including their beliefs about their

health profiles. Under the Bayesian assumptions of the learning model, including normality

that although learning of heterogeneous levels occurs fairly rapidly, learning of heterogeneous slopes with
age is much slower.
6Survival expectations have been shown to have predictive power for individuals’ survival and to be con-
sistently updated with new health information. See, for example, Hurd et al. (2001), Hurd and McGarry
(2002), and Smith et al. (2001).
7As discussed section 1.5, this result of negative bias in initial beliefs is consistent with the literature. See
Elder (2013) and Ludwig and Zimper (2013).



of beliefs, those beliefs are summarized by their mean and variance. This section is similar
in spirit to Arellano et al. (2017), who estimate a nonlinear policy rule for consumption
nonparametrically, without specifying a full structural model. As in their case, I provide
estimates of marginal quantities, here, marginal changes in the probability of working. One
of the drawbacks of this approach is that by not fully specifying the structure of the model,
both in terms of primitives and functional-form assumptions, we cannot perform policy
counterfactuals. However, at the same time, the results on marginal effects are robust to
misspecification of those elements. Besides robustness to misspecification, another attractive
feature of this framework is that it can also be applied to study other outcomes that may
depend on health beliefs; such as savings and health insurance of older adults. To the best
of my knowledge, this paper is the first to study the effect of beliefs about heterogeneous
health dynamics on the working decisions of older adults.

To flexibly estimate the policy rule for working decisions, I use neural networks. Neural
networks are a tool within the machine-learning toolkit that, in the present context, gener-
alize logit with a non-linear index (see Farrell et al. (2021), Hornik et al. (1989), Goodfellow
et al. (2016)). To deal with the fact that some of the inputs are unobserved by the econo-
metrician (mainly, the individual-level heterogeneity in initial beliefs), I use an iterative
approach in the spirit of EM algorithms (Dempster et al. (1977)).

I discuss three results related to beliefs and working decisions of older adults. The first
result shows beliefs matter in working decisions, and that expecting health to deteriorate
more slowly is associated with larger probabilities of working. Furthermore, for individuals in
their 50s who are not working, an interaction occurs between beliefs and health. The effects
on working probabilities of both beliefs and health are larger for individuals who believe their
health will deteriorate relatively slowly. These results suggest adjustment costs of finding
a job are important in individuals’ decisions about going back to work. This observation

highlights an advantage of the current framework and the data-driven estimation method,



because this result is not a consequence of any assumption on the structure of the economic
model. As mentioned by Arellano et al. (2017), economic structure could be added to this
framework to conduct policy evaluation exercises. This result suggests that when adding such
structure, adjustments costs of returning to the labor market should be included. Hence,
the two approaches complement each other.

A second result is related to the resolution of uncertainty about health profiles and the
precision of health as a signal. A health shock has two effects on working decisions: it affects
working decisions by changing the stock of health through persistence, and it affects work-
ing decisions by changing beliefs about future health through changes in information about
health profiles. I decompose the effect of a health shock into these two channels, namely, per-
sistence and information, and find nearly all the effect goes through the persistence channel.
Intuitively, this result comes from the signal-to-noise ratio of health being low, and it implies
health by itself is not enough to resolve the uncertainty and correct the bias in beliefs.

In a third result, I simulate the impact of changing beliefs, by applying machine-learning
tools to predict not only work but also assets and health insurance. I use those results to
compare baseline working probabilities over time with probabilities after eliminating initial
overall bias in beliefs. I find eliminating initial bias increases participation by 2 percentage
points, an effect that lasts beyond traditional retirement ages.

Given that (i) individuals are uncertain about their health profiles, (ii) they have biased
initial beliefs, (iii) health changes are not enough to resolve uncertainty, and (iv) beliefs
matter for working decisions, a natural question that follows is: Can we provide additional
information to individuals in order to correct their beliefs and affect their working decisions?
In the last part of the paper, I look at this question in the context of an information exper-
iment available in the HRS. Starting in 2006, the HRS collects and analyzes blood samples
of their interviewees and informs them about their blood-glucose and cholesterol results.

Although the implementation in the HRS was not designed as an information experiment, in



order to save costs, the blood sample is collected for a random half of the sample each wave,
providing us with exogenous variation. A reduced-form analysis in the spirit of difference-
in-differences® shows small and insignificant effects of this additional information on survival
expectations and working decisions. I then analyze these data through the lens of the model.
That is, I modify the learning model to include biomarker results as additional signals of
health profiles. Consistently, this model-based analysis also shows small and insignificant
results. The model, however, provides us with an interpretation for the results: the magni-

tude of this blood-based signal is too small.

Contribution to the literature. This paper is related to three strands of the literature.
First, it is related to the literature studying health dynamics, a literature that consistently
finds persistence and heterogeneity in health, both among the general population (Halliday
(2008), Hernandez-Quevedo et al. (2008), Contoyannis et al. (2004)) and among older adults
(Heiss et al. (2009), Heiss (2011), Heiss et al. (2014), Lange and McKee (2011)). However,
most of this literature allows only for limited heterogeneity. An exception is Halliday (2008),
who allows for discrete types of multivariate heterogeneity, including heterogeneity in health
changes with age. Contrary to my results, he finds only weak evidence of this heterogeneity.
However, he focuses on a much younger population, whereas I focus on older individuals for
whom health changes with age are prevalent. Thus, a first contribution of this paper is to
highlight heterogeneity in health dynamics for older adults. An additional contribution to
this literature is related to health measurement. Traditionally, health has been considered
a latent variable measured with one binary variable (Halliday (2008), Hernandez-Quevedo
et al. (2008), Heiss et al. (2009), Heiss (2011)), though, more recently, several measures of
health are being used (Heiss et al. (2014), Lange and McKee (2011), Blundell et al. (2017)).

In this paper, I also use several measures of health to better capture the richness of health

8 As discussed in section 1.8, the design needs to control also for changes in the interview mode.



and its dynamics, hence contributing in this direction.

Second, this paper is related to the literature on empirical learning. In a broad sense, the
paper is related to the literature on the importance of beliefs for individuals’ choices and eco-
nomic outcomes.? More specifically, the paper is related to the literature studying individu-
als’ learning of own unobserved heterogeneity, for example, regarding abilities (Stinebrickner
and Stinebrickner (2014), Arcidiacono et al. (2016)), productivity (Arcidiacono et al. (2016))
and income profiles (Guvenen (2007), Guvenen and Smith (2014)). My paper is more closely
related to Guvenen and Smith (2014), who study an income process with heterogeneous lev-
els and heterogeneous growth rates. As in the case of health, the more flexible heterogeneity
helps explain the income pattern of increasing variance over time. However, an important
difference from that paper is the source of identification of profile uncertainty. Guvenen and
Smith (2014) use consumption data to identify uncertainty in income profiles. Instead, I use
data on expectations to identify uncertainty in health profiles. This difference is important
because my goal is to study the effect of uncertainty regarding health dynamics on working
decisions of older adults, and hence, using that outcome to identify beliefs would mean my
results could suffer from misspecification issues. By using expectations data, my results are
robust to such issues. I also allow for individuals to be biased overall in their initial beliefs,
consistent with findings from the literature on survival expectations (see Elder (2013) and
Ludwig and Zimper (2013)). Additionally, this paper contributes to a more recent literature
on the provision of information and its effects on beliefs (see, e.g., Delavande and Kohler
(2015), Wiswall and Zafar (2014), Bates (2020)).

Finally, the paper is related to the literature on health and other outcomes of older adults.

Particularly, the paper is related to the literature studying the effects of health on work and

90utcomes studied by this literature include occupational choices and college attrition (Breen and Garcia-
Pefialosa (2002), Arcidiacono et al. (2020), Arcidiacono et al. (2016)), labor supply of women and employ-
ment transitions (Gong et al. (2019), Conlon et al. (2018)), birth-control choice and risky sexual behaviors
(Delavande (2008), Paula et al. (2014), Delavande and Kohler (2015)), and investment decisions (Delavande
and Rohwedder (2011)).



retirement choices (Siddiqui (1997),McClellan (1998), Bound et al. (1999), French (2005),
Disney et al. (2006), Zucchelli et al. (2010), Maurer et al. (2011)) and expectations (Dwyer
and Mitchell (1999), McGarry (2004)). Although this literature considers future health as
uncertain, it assumes a known stochastic process for health. On the contrary, this paper
allows for a stochastic health process that is not fully known, introducing the role of health
beliefs as an additional determinant of those decisions. More broadly, this paper is also
related to a series of papers studying health-related outcomes for older individuals. These
papers estimate structural models assuming discrete values for health with homogeneous
transition probabilities. Examples include papers studying the effect of health insurance on
retirement (French and Jones (2011), De Nardi et al. (2016a)), Social Security and labor
supply (van der Klaauw and Wolpin (2008)), portfolio choice (Yogo (2016)), and long-term
care (Ameriks et al. (2020), Lockwood (2018)). Though health is not the main explanatory
variable of interest in these papers, the results here suggest beliefs about health may also

play a role.

Organization. The paper proceeds as follows. Section 1.2 presents the framework, that
is, an economic model of working decisions that incorporates heterogeneous and uncertain
health dynamics. This framework underlies and gives context to the analysis in the rest of
the paper. Section 1.3 describes the data. Section 1.4 provides evidence of heterogeneity
in health dynamics, and section 1.5 provides evidence of uncertainty. Section 1.6 presents
the main results for working decisions as a function of beliefs, and section 1.7 expands those
results. Section 1.8 analyzes the information experiment available in the HRS. Section 1.9

concludes.



1.2 Framework

This paper introduces two elements into a standard model of labor-participation decisions
in late life: individual-level heterogeneity in health dynamics and individuals’ uncertainty
regarding their own health profile. This section formalizes this idea and describes a frame-
work in which older adults choose labor participation based on their health and on their
beliefs about how their health will change with age. Let ¢ denote an individual and let ¢

denote his age. I focus on individuals 50 years and older and define ¢ as 0 for age 50.

1.2.1 Health process with heterogeneous dynamics

Health is a dynamic process that, as people get older, naturally deteriorates in a hetero-

geneous way across individuals. In particular, I assume health is scalar and follows

hit = phz‘t—l +Oé,;+(5i 't—f—éit. (11)

The parameter p € (0, 1) captures persistence in health, «; captures heterogeneous levels in
health, §; captures heterogeneous changes in health with age, and €;; represents health shocks.
Both the persistence of health and its heterogeneity in levels are well-recognized elements of
health in the literature, both among the general population (see, e.g., Herndndez-Quevedo
et al. (2008)) and among older individuals (see, e.g., Heiss et al. (2014)). The first novel
element in this paper is to allow for heterogeneous slopes of health with age, §;,. Larger
values of h;; represent better health, and health decreases with age.

Throughout the paper, I assume health is exogenous. In a review of the literature on
health, health insurance, and retirement, French and Jones (2017) mention much of the
retirement literature assumes health is exogenous, and their model makes the same assump-

tion. In a review of the literature on savings after retirement, De Nardi et al. (2016b)



conclude most of the studies on the effects of health care on health find small effects. A
similar argument is made in French and Jones (2011). The exogeneity assumption implies

we can estimate equation (1.1) without needing to model endogenous regressors.”

1.2.2 Uncertain health dynamics and beliefs

The second novel element is to allow for individuals to be uncertain about their own health
dynamics. I assume individuals observe their health h;, but they do not observe their health
shocks €;; nor their individual heterogeneity («;,d;). Given that health deteriorates in old
age, I assume 50-year-old individuals do not know 6;, which has not affected them before.!!
I assume they know their heterogeneous level a;,'? because they have observed their health
for several decades.

Under uncertainty, rational individuals form beliefs about their health slopes ¢; (hence-
forth, slope beliefs) and update those beliefs as they see their health changing with age.
In particular, I assume individuals are Bayesian learners, with initial beliefs (at age 50)
about d; equal to N (6, 65).13 By further assuming health shocks €; are i.i.d. normally dis-

tributed, posterior beliefs in period t after observing health h;; are also normally distributed,

N (&t, 67), with mean and variance defined recursively by

5i Oir_ his — phis_1 — a;)t

A_;t _ A; 1 +( t— P t21 a) (1‘2)
Ut Jt—l UE

1 1 12

— = —. 1.3
7o ()

10The assumption is also relevant for the identification of beliefs, as discussed in section 1.5.

HThis assumption is consistent with results from Halliday (2008), who studies health dynamics with discrete
heterogeneity, using the Panel Study of Income Dynamics. He studies younger individuals, ages 22 to 60,
and finds no heterogeneous slopes with age.

12This assumption can be generalized. In studying income profiles, Guvenen (2007) proposes a similar process
with heterogeneous intercepts and slopes, both unknown. He finds the learning process for intercepts is
much faster than the learning process for slopes.

13The assumption of common-prior variance across individuals is usual in the learning literature. See, for
example, Guvenen (2007) and Arcidiacono et al. (2016). However, the assumption is important for the
identification results provided later.

10



Equation (1.2) shows the posterior mean is a weighted average of the prior mean Sit—1
and the signal derived from health h;, with weights that depend on precision. The more
certain an individual is to begin with (lower 67 ;), the more weight he gives to what he
already knows, namely, the prior. The more precise health is as a signal (lower ¢?), the more
weight is given to its information. Equation (1.3) shows precision increases over time, and
increases more when the signal is more precise, that is, when health is less noisy (lower o?)
and when individuals are older.

Conditional on health history, the key parameters determining beliefs are the parameters

governing initial beliefs:

b = E(bip —6;) (1.4)
2
2 o= % 1.5
Var(6;) (15)
The parameter b measures the bias in initial beliefs at the population level. If b = 0,

individuals are overall unbiased, in the sense that E(d;) = E(6;). If b is positive (negative),
individuals are upward (downward) biased, and hence, they believe health deteriorates on
average more slowly (faster) than the average rate. The parameter A measures the degree of
initial uncertainty individuals face regarding d;, which affects their amount of learning over
time. If A = 0, no uncertainty exists and therefore no learning. The larger the value of A,
the more uncertain individuals are and the more weight they give to new information. The
Bayesian learning and normality assumptions allow me to reduce the dimensionality of the

problem, giving structure to time-varying beliefs that are unobserved by the econometrician.

1.2.3 Embedding health uncertainty in a model of labor supply

In a life-cycle model, forward-looking individuals attempt to predict variables that will

affect their future utility or their future set of options in order to choose their best current

11



action. The need for those predictions is given by the inherent uncertainty about many
key variables. In this paper, I focus on working decisions of older adults and argue a key
source of uncertainty for this group is related to their future health. In particular, I focus
on uncertainty about health profiles with age, specifically §;, and study how beliefs about
them, given by N(dy,62), relate to their working decisions.

Consider a model where individual ¢ must choose consumption ¢;; and labor participation
pit every period. I focus on the extensive margin of labor participation and assume p;; is a
binary decision. The health of individual 7 is given by h;;, which follows equation (1.1). The

main components of this life-cycle model are the following.

Preferences. Individual i’s flow utility is given by a function U that depends on his par-
ticipation and consumption decisions, p;; and c¢;, as well as on his health h;;. Furthermore,
preferences depend on past labor participation, for example, to reflect psychological costs of
going back to work after retirement and adjusting to a new work environment. I summarize
this dependence by allowing p;_1 to enter the utility function. Hence, flow utility is given
by U(pit, Cits hit, pir—1)- The individual discounts the future, and when he dies, his remaining

assets a are left as a bequest.

Budget constraint. Let a;_; denote individual ¢’s assets at the end of period ¢t — 1. If the
individual chooses to work, he receives labor income, which depends on his past labor income
w;—1, his health h;; due to the effects of health on productivity, and his past participation
pit—1, due to wage penalties of reentering the labor market after retirement. His assets at
the end of the period depend also on his consumption choice, his other sources of income,

including pension and social security, and other health-related costs.

Uncertainty. Individuals are uncertain about their future health, in part because of unpre-

12



dictable health shocks €;, and in part because they don’t know their health slopes d;. They
form beliefs about their slopes d; and update those beliefs as they see their health changing
over time according to equations (1.2) and (1.3). Future wages are also uncertain, following

a first-order Markov process.

Timing. At the beginning of period ¢, an individual must choose participation p;; and con-
sumption ¢;; before health shocks are realized and health h;; is observed. Then, beliefs are

updated. At the end period ¢, individual + may or may not die.

Information set. The information set of individual ¢ at the beginning of period ¢ is given
by his history up to ¢ — 1 in terms of labor participation p!~' (superscripts denote histories),
consumption c¢; !, and health h!™!, as well as labor income w!™'. It also includes his known
value «; and his prior-beliefs parameters dio and 2. The relevant information from this set

can be summarized in his state variables, given by

2 A2
Qi1 = {Pit—hait—l,wit—hhit—1,5it—170t_1,04i}-

Slope uncertainty implies d; does not belong to €2;_; but beliefs about 9; do, with those
beliefs summarized by dir—1 and 62 ;. Note I am assuming only heterogeneity in health;

thus, no other individual-level heterogeneity is stated in €2;;_1.

The solution to this problem is policy rules for labor participation p;; and consumption c;,
which are functions of the state variables and the parameters of the model # (including the
discount factor and parameters entering flow utility, health process, the budget constraint,

and so on), which I omit for ease of notation. Focusing on p;;, which is the object of interest
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in this paper,

A

P(pit = 1Qi—1) = Ppir = 1pic—1, Qit—1, Wit 1, Pit—1, 0it—1, 015 ). (1.6)

Similarly, policy rules for other decisions, including consumption and assets, can be
written as functions of the state variables €;;_;. In the spirit of Arellano and Bonhomme
(2016) and Arellano et al. (2017), the objective is to flexibly estimate this relation between
participation decisions and its inputs, without adding the full structure required by structural
models.

Equation (1.6) assumes these decisions are stochastic. Implicitly, I assume random taste
shifters are affecting individuals’ preferences. These taste shifters are part of the state
variables, but they are unobserved by the econometrician. Hence, from the econometrician’s
point of view, the decision is stochastic, corresponding to a conditional choice probability
problem.

With these elements, the model is a standard model of labor participation in late life and
includes several channels through which health can play a role. First, health directly affects
utility by changing the marginal utility of consumption and the disutility of work. Second, it
enters the budget constraint via health-related costs and via effects on labor income due to
changes in productivity. Third, health affects the probabilities of survival. The overall effect
of health on individuals’ participation decisions depends on all of these channels. The novel
element in this paper is that beliefs about future health also play a role. They could have
a positive or negative effect, depending on the relative importance of these channels in the
individual’s problem. For example, if an individual predicting better future health wants to
work longer, the sign of beliefs would be positive. This case would arise if the dominant effect
were the desire to save more given the longer life expectancy implied by better health. If an

individual predicting worse future health wants to work longer, the sign would be negative.
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This case would arise if the dominant effect were the desire to save more given the higher

cost of future health care implied by worse health.

1.2.4 Objective of the paper

Under this framework, the objectives of the paper are the following:

(i) To document heterogeneity in health dynamics among older adults, particularly het-

erogeneity in o;.

(ii) To study older adults’ beliefs about their health dynamics, in particular, to estimate

their initial bias b and their initial uncertainty .

(iii) To examine whether these beliefs have an effect on working decisions of older adults,

by studying the effect of marginal changes in beliefs on those decisions,!*

a]P(pit = 1|Qit—1)
0dis—1

. (1.7)

One goal of this paper is to estimate equation (1.7) flexibly, without imposing any ad-
ditional structure on the model of labor supply (such as preferences, labor income process,
and so on). A flexible estimation provides results that are robust to misspecification issues
on that model. The paper uses a data-driven estimation method that allows me to achieve
that flexibility. Furthermore, as discussed in section 1.6, this data-driven approach allows
the data to suggest mechanisms that may be overlooked otherwise. Nevertheless, this frame-

work could also be applied under a structural approach, by adding assumptions about the

14T focus on the marginal effect of the posterior mean 51‘#1 and not of the posterior variance 62. The
reason for this choice is that the posterior variance 67 ; is common across individuals. Thus, I do not
have variation in the data to separately identify its effects from the effects of age ¢, without relying on
functional-form assumptions.
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different elements in the model. A structural approach, on the other hand, has the advan-
tage of allowing for interesting counterfactual analysis. Hence, the objective of the current
approach is not to compete with structural models, but to complement them.

In this context of uncertain health dynamics, an additional interesting question is related
to the dual role of health shocks €; 1 in working decisions. On the one hand, a health shock
€ir—1 affects h;;_q, which in turn affects h; through persistence of the health process. This
persistence effect disappears if p = 0. On the other hand, an uncertain individual cannot
perfectly distinguish between €;_; and 9; within h;_;. Hence, the effect of a shock €;_;
on h;_1 is partly interpreted as new information regarding ¢;, affecting beliefs &t_l. This

information channel disappears if A = 0. Using Bayes’ rule, we can write,

factor

/—’T
dP(pir = 1/Qi1) _ OP (pir = 1Q1) | OP(piyr = 1[Qy 1) (t —1)57 4
= + ~ 2 ) (1'8)
deir—1 Ohjt—y 001 O
persister;cg channel informatio‘,n channel

where the factor term corresponds to the change in the posterior mean dit_1 given a marginal
change in €;_1, and it is related to the signal-to-noise ratio of health as a signal. The term
is larger when more uncertainty exists concerning the unknown 9; and when the variance of
the health shocks is smaller. How important these channels are in explaining the total effect

of a health shock on working decisions of older adults is, then, an empirical question

1.3 Data and descriptive statistics

For this study, I use data from waves 4 to 12 of the Health and Retirement Study (2014)
(HRS),' a longitudinal survey representative of the population 50 years and older in the US.

This survey interviews individuals and their spouses every two years and includes several

15The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and is conducted by the University of Michigan.
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measures of health, questions about expectations, information about labor participation and
retirement, as well as income and wealth variables.'® For most of the analysis, I use the
RAND HRS Longitudinal File (2014).'7 In this section, I briefly describe the variables used

in this study.

1.3.1 Data on health

The most common measure of health used in the literature is self-assessed health, an
ordinal variable taking five values from very poor to excellent. It has been shown to cor-
relate with several outcomes, including education, income, savings, retirement, and health
insurance. Still, its limited range makes it not ideal in studying health dynamics with age.
The HRS, however, provides a larger battery of health-related questions, which I exploit to
construct a summary measure of health via factor analysis that I use throughout the paper.
This approach of using several measures to construct a summary variable is not unique to
this paper; see, for example, Heiss et al. (2014), Lange and McKee (2011), and Blundell et al.
(2017). Table 1.1 presents summary statistics for these health-related questions and for the
summary health measure. Note these measures reflect a health concept that is the relevant
one for the working decisions of older adults, related to how individuals perceive their health
in relation to their everyday activities. Appendix A provides details on the estimation of
the summary measure h; via factor analysis. The scale of h; is set to be the inverse scale
of the number of chronic conditions, which ranges from 0 to 7. That is, larger values of h;
represent better health, and an increase of one unit in h; corresponds to one less chronic
condition. Figure 1.1 shows a box plot for h; per value of self-assessed health. Both mea-

sures are highly correlated, but h; captures more variation than what we can capture with

16T exclude proxy interviews because these interviews do no ask questions about survival expectations.

"The RAND HRS Longitudinal File is an easy-to-use dataset based on the HRS core data. This file
was developed at RAND with funding from the National Institute on Aging and the Social Security
Administration.

17



Table 1.1: Summary statistics for health-related questions

Variable Observations Mean SD Min Max
Number of chronic conditions 156,968 517 134 0 7
Self-assessed health 156,862 286 1.11 1 5
Body mass index (kg/m?) 154,602 2789 581 7 83
Eyesight in general 156,768 2.85 1.01 1 6
Eyesight at a distance 156,833 257 101 1 6
Eyesight up close 156,822 275 104 1 6
Hearing 156,869 263 109 1 5
Pain 156,550 0.63 097 0 3
Difficulties in ADLs regarding mobility 156,748 1.09 145 0 5
Difficulties in ADLs of large muscles 156,737 1.28 133 0 4
Difficulties in other ADLs 151,923 0.40 0.66 0 2
Summary health measure h;, 148,866 522 0.67 296 6.18

Note: Summary statistics for the health measures including the summary health measure. The
sample comprises 30,657 individuals interviewed in person, in wave 4 or later, that are 50 years old or
older. Chronic conditions include high blood pressure, heart attack, diabetes, stroke, lung disease,
arthritis, and cancer. The categories for self-assessed health and hearing include 1. excellent, 2.
very good, 3. good, 4. fair, 5. poor. These categories are also the same ones for eyesight variables,
but those include alternative 6. legally blind. The categories for the level of pain are 0. no pain,
1. mail pain, 2. moderate, 3. severe. ADL stands for activities of daily living. ADLs regarding
mobility include walk 1 block, several blocks, across room, climb one flight of stairs, several flight
of stairs. ADLs involving large muscles include push or pull large object, sit for two hours, get up
from chair, stoop kneel or crouch. Other ADLs include carry 10 Ibs and reach arms.

a discrete measure. Furthermore, as I mention later, the heterogeneity in health dynamics
is robust to the use of self-assessed health instead of the summary measure.

Figure 1.2 shows the mean and variance of health h; by age.!® Given the two years
between waves, throughout this paper, I consider age as measured in two-year bins. These
plots are the starting point for thinking about health for older adults: they show that
with age, the average health in the population decreases while the variance of health in the

population increases. This pattern of decreasing mean and increasing variance is robust to

8The standard errors in this figure, as well as the following results in this paper, need yet to be adjusted
for the estimation of the summary health measure.
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Figure 1.1: Summary health variable h;; by category of self-assessed health
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Note: Sample of 148,866 observations from Table 1.1.

sample composition and also holds for most of the individual measures. Similarly, Figure
1.3 shows percentiles of health by age, which also reflect an increasing variance over time.
The pattern in these plots suggests a process with heterogeneous slopes with age, which I
empirically investigate in section 1.4. Finally, Figure 1.4 shows the mean of health for groups
of individuals surviving to different ages. The figure suggests survival bias, because cohorts
of individuals surviving to older ages have better health than cohorts that may not survive
that long. The relevance of addressing survival bias for older individuals is well recognized
in the literature (see, e.g., Heiss et al. (2014)), and I address it also, as explained in section

1.4.

1.3.2 Data on subjective survival expectations

The HRS includes a battery of questions relative to subjective expectations, including
subjective survival expectations, which I use in this paper. The question asks, What is the
percentage chance you will live to be (80, 85, 90, 95 or 100) or more?, where the reference
age is a function of the individual’s age and the wave of the survey. This reference age

is usually around 10 to 15 years into the future.!® Survival expectations have been shown

9The HRS also includes a question on survival expectations to the age of 75. However, I do not use this
variable for the main analysis, given that this question is only asked of individuals under 65 years old.
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Figure 1.2: Mean and variance of health by age
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Note: Results from a balanced sample of 433 individuals observed at 50 years with at
least 9 consecutive waves. The bands represent the 95% confidence intervals.

Figure 1.3: Health percentiles by age
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Note: Results from a balanced sample of 414 individuals observed at age 64 with at least
9 consecutive waves.

Figure 1.4: Mean of health with age for individuals with different survival ages
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Note: Results from two balanced samples of individuals with at least 9 consecutive waves:

433 individuals observed from age 50, and 509 individuals observed from age 62. The
bands represent 95% confidence intervals.
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Figure 1.5: Histogram of survival expectations to age 85
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Note: Sample comprises 54,754 observations from individuals interviewed in person, in
wave 4 or later, who are 50 years old or older, and who are asked for a reference age of 85
years old. The variable is rescaled to take values between 0 and 1 instead of 0 and 100.

to have predictive power for individuals’ survival (Hurd et al. (2001), Hurd and McGarry
(1995)) and to be consistently updated with new health information (Hurd and McGarry
(2002), Smith et al. (2001)). Furthermore, survival expectations are correlated with several
outcomes for older individuals. A histogram of the variable is shown in Figure 1.5. It is well
known that this variable suffers from measurement error, including rounding and focal-point
issues (Manski and Molinari (2010), Kleinjans and Van Soest (2014)). The model in this

paper takes those issues into account.

1.3.3 Data on other variables related to working decisions

In this paper, the main objective is to study how beliefs regarding health profiles affect the
working decisions of older adults. As described in section 1.2, doing so requires estimating
the policy rule of participation p; as a function of past participation p;_1, health h;_1,
heterogeneity in health levels «;, beliefs regarding health profiles (5#, 62), as well as other

variables in the information set €2;_1, including assets a;;_, and labor income w;_;. Table

1.2 presents summary statistics for these other variables in €;; _; that I use in section 1.6 in

Thus, using this variable would restrict my sample considerably.
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predicting working outcomes of older adults.

1.4 Health process with heterogeneous dynamics

This section estimates a health process with heterogeneous intercepts and slopes. As
Figure 1.4 suggests, for a population of older adults, we need to control for survival bias,
which I address by jointly modeling the two processes, given the lack of a suitable instrument

affecting survival chances but not health.

1.4.1 Empirical strategy

Let S;; be a binary variable for surviving up to the beginning of period t with S;p = 1

and let the health and survival processes be given by

hit = phiy1+a;+ 6 -t +7- 2+ €, € 1.i.d. N(0,02) (1.9)

with individual-level heterogeneity (o, d;),

/ 2
o Ha + VT + wWalig oL 0,05

Ti hig ~ N , . (111)

J; s + Vi + wshio $on05 O3
The health process is persistent, measured by the parameter p, and it has heterogeneous
levels «; and heterogeneous slopes with age d;. The survival process depends on age through
the parameter 6;, and it depends on health through the parameter v. This dependence of
survival on health allows us to take into account the survival bias observed in the data (see
Figure 1.4). The health and survival shocks, €; and 7;;, are assumed to be independent. Ap-

pendix B includes a specification allowing for survival to depend directly on individual-level
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Table 1.2: Summary statistics for variables used in studying working decisions

Variable Mean SD Min Max
Panel (a)

Age 66.26  7.49 52 80
Work 0.38 0.49 0 1
Female 0.52 0.5 0 1
Education: less than high school 0.20 0.40 0 1
Education: some college 0.55 0.50 0 1
White 0.84 0.37 0 1
Hispanic 0.06 0.24 0 1
Marital Status: married 0.70 0.46 0 1
Marital Status: separated or divorced 0.12 0.33 0 1
Marital Status: widow 0.14 0.35 0 1
Number of household members 2.15 1.03 1 12
Total number of years worked 39.79 9.17 20 68
Spouse works 0.28 0.45 0 1
Spouse has health insurance 0.17 0.38 0 1
Income from pension 6.08 50.49 0 10000
Income from Social Security 6.65 5.95 0 58.3
Wealth 366.51 730.98 -1585.01 10000
Health insurance: employer covering retirement 0.14 0.35 0 1
Health insurance: employer not covering retirement 0.07 0.25 0 1
Health insurance: employer (already 65) 0.17 0.37 0 1
Health insurance: government 0.47 0.5 0 1
Health insurance: other 0.11 0.31 0 1
Panel (b)

Income from work 30.51  39.83 0 1190.68
Tenure 14.31 124 0 66.1
Self-employed 0.22 0.42 0 1
Occupation: managerial 0.16 0.36 0 1
Occupation: professional 0.21 0.4 0 1
Occupation: sales 0.12 0.32 0 1
Occupation: clerical 0.16 0.37 0 1
Occupation: services 0.14 0.35 0 1
Occupation: farming, mechanics, construction, operators  0.22 0.41 0 1
Occupation: FF.AA. 0.00 0.02 0 1
Job requires physical effort 0.17 0.38 0 1
Job requires lifting heavy loads 0.07 0.25 0 1
Job requires stooping or kneeling 0.13 0.34 0 1
Job requires good eyesight 0.68 0.47 0 1
Job involves lots of stress 0.16 0.37 0 1

Note: Summary statistics for the variables used in estimating working decisions in section 1.6.
The sample consists of observations from 12,623 individuals who have participated in the labor
market for at least 20 years, excluding missing values in any of these variables. Panel (a) comprises
48,607 observations, and panel (b) comprises 18,415 observations from working periods. Income
and wealth variables are measured in thousandiff 2002 dollars. Wealth variables are capped at
$10 million.



heterogeneity, «; and ¢;. However, those results indicate no such dependence. The vari-
ables in z; are time-invariant binary variables for female, white, Hispanic, and an education
level below high school graduation. These variables potentially affect health (through the
individual-level heterogeneity) and survival. I also allow for the unobserved heterogeneity to
depend on health h; (health at age 50) in order to address initial-conditions concerns.
Under these assumptions, the panel structure of the data identifies the distribution of «;
and J;. Let © be the set of parameters of this random-coefficients model.?’ I estimate these

parameters by maximizing the likelihood:

N [ele) [e’e) T;
mgxz;log(/oo/ [P (i, Sitl it Sie—1 = 1,21, ,6) -¢(a,5|xi,hi0)dadé).

0 t=1

The full expression of this likelihood is included in appendix B.%!

1.4.2 Results

I use a sample of 8,901 correlative observations from 1,671 individuals observed since they
were 50 years old (¢t = 0). Over the span of the following eight waves, 112 of these individuals
died. The main results are shown in Table 1.3 and full results are shown in appendix B.
The table shows, first, heterogeneity in both the intercepts and the slopes of the health
process, with positive and significant 02 and . Second, these two sources of heterogeneity
are uncorrelated, which implies knowing «a; does not provide additional information on ;.
Health decreases with age, and the persistence of the health process is relatively low, with
p = 0.22. The results in the appendix further show that health is worse for individuals with
low levels of education, health decreases faster for white individuals, and probabilities of

survival are higher on average for women and Hispanic individuals. Those results also show

20@ = {pa T, 062? Ys 907 917 02, Moy 5, Vo, V§y Wa, W6 0(2)” O-gv d)}
21For estimation, I approximate the double integral by using 1,000 draws from a bivariate normal distribu-
tion.
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Table 1.3: MLE results on health and survival

Symbol Coefficient Pvalue

Persistence p 0.223 0.000
Mean* of o L 0.955 0.000
Mean* of ¢; s -0.057 0.018
SD of o o 0.235 0.000
SD of ¢; Os 0.043 0.000
Corr(a;, ;) ¢ -0.033 0.714
SD of health shocks O 0.266 0.000
Survival dependence on health y 0.583 0.001
Controls Yes

N alive observations 8,901

N dead observations 112

N individuals 1,671

-Log likelihood 3,027.6

Note: Main results of estimating equations (1.9), (1.10), and (1.11). Full set of results
are shown in appendix B.

h;o is correlated with «a;, but h;y does not provide information on ;.

I want to emphasize two aspects of this model: the inclusion of heterogeneous slopes
with age and the joint estimation with survival. To understand how these two aspects
influence my results, I estimate two additional versions of the model: (i) one excluding the
equation for survival but allowing for heterogeneous slopes with age, and (ii) another one
assuming homogenous slopes with age but including an equation for survival. The results
are in appendix B and show qualitatively similar results for the coefficients that are common
across specifications. Their main difference is that ignoring slope heterogeneity increases the
point estimate of the persistence parameter p by over 50% (from 0.22 to 0.37). However,
a key takeaway is that these models achieve very different fits of health over time. This
takeaway is more clearly seen in Figure 1.6, which repeats the exercise for a sample of

individuals observed from 66 years old and plots the predicted mean and variance of health
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Figure 1.6: Mean and variance of health in models with different assumptions about slope
heterogeneity and survival

Age Age Age

(a) Heterogeneous slopes (b) Heterogeneous slopes (c) Homogeneous slopes
without survival equation  and survival equation and survival equation

(d) Heterogeneous slopes (e) Heterogeneous slopes (f) Homogeneous slopes
without survival equation  and survival equation and survival equation

Note: The sample consists of 26,950 correlative observations from 7,301 individuals observed since
they were 66 years old. Over the span of the following eight waves, 996 of them died. The figure
plots data from 354 individuals with health in all 9 waves. The solid lines plot the health data and
the dotted lines plot the predicted values of health in each model.

with age. The figure shows ignoring survival leads to a downward bias of average health and
an upward bias of its variance, consistent with a model that includes the lower tail of the
health distribution, which is dropped from the data as people die. The figure also shows that
when ignoring slope heterogeneity, we predict a rather constant variance of health, contrary
to what the data show. In that sense, these plots support a model with slope heterogeneity,
though they don’t discard alternative explanations for the increasing variance with age. As
a robustness check, included in appendix D, I estimate a version with heteroskedastic error
€;+, allowing its variance to depend on age. The results show an increasing variance of health
shocks does not explain away the heterogeneity in slopes ;.

Finally, I add two robustness checks included in the appendices. First, I estimate a similar

model using self-assessed health instead of the constructed summary measure of health. The
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results show the presence of heterogeneous slopes with age is robust to the use of this measure
alone. Second, I estimate a version of the model adding the unobserved heterogeneity («, 9;)
directly to the survival equation. The results show «; and §; are not (jointly) significant; that
is, I find no direct effect of heterogeneity in survival, once I condition on lagged health h;_;.
The lack of significance of §; has an additional advantage. It implies survival is not another
signal for the unknown ¢;. If §; had a direct effect on survival, then, as in the case of health,
survival would provide individuals with additional information. In that case, by being alive,
individuals would learn something more about their heterogeneous slopes, and the Bayesian
updating equations (1.2) and (1.3) would not be valid. The results in this exercise, with the
lack of significance of §; on survival, say survival is not an additional signal for 9;.

Overall, these results show novel evidence of heterogeneity in health profiles, in particular,
in health slopes with age. To study the effects of this heterogeneity on individuals’ working
decisions, we need to know how much individuals know about their own slope ¢;, which I

address next.

1.5 Uncertain health dynamics and beliefs

To study the effect of beliefs on labor-participation decisions of older adults, the main
difficulty is that those beliefs are unobserved by the econometrician. The Bayesian learn-

ing model implies beliefs are updated over time using health, starting from initial beliefs,

~

N(di0,02). Hence, a key issue is the identification of those initial beliefs, in particular, the

identification of the parameters b and A\. These parameters are defined by

b == E(&O—@),
55

Var(s;)’
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and they measure how biased initial beliefs are and how much individuals at age 50 know
about their slopes. Because the health process does not reveal slope beliefs, this section
proposes the use of survival expectations, available in the HRS. Equation (1.10) implies
survival is a health-related process. Therefore, expectations about future survival are related

to expectations about future health; thus, they are related to slope beliefs.

1.5.1 Empirical strategy

The exact wording of the HRS question follows:
[plivel0;] What is the percentage chance you will live to be (80, 85, 90, 95 or 100) or
more?
where the reference age depends on the individual’s age t at the time of the survey (and
wave), and it is approximately 10 years in the future. Let s denote this reference age. Then,

this question corresponds to

s—1

plivelOit = ]P(Sls = 1|ta> = HIP(Sil—l-l = ]-‘Szl = 1;Qit)
=t

s—1
= [P Ovha+ b0+ 6:(1 = 1) + Oh; + nug > 0[Qu),

I=t

where we omitted the regressors in the survival equation (besides health) for ease of notation.

Applying the equation for health (1.9) recursively, we can write

I—t—1 l—t—1 I—t—1
|—t k k k
ha = p " hy+ E p- 0 E (l—k)p" + E P Ei—k) -
N k=0 k=0 k=0 ,
known under ;¢ unknown under €2;;

From the view point of €2;, the second term is random, with a normal distribution that

depends on (d;,67) (and the parameters of the model). Because age-t beliefs depend on

health history hf and initial beliefs N (&0,(33), this second term is a function of A and b.
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Therefore, plivelO; are complex non-linear functions of slope beliefs,
plivel0;; = plivelOy(ay, by, it 62, 1;) = plivelO; (g, ht, 51»0, 6o, ;). (1.12)

The exact function is given in appendix E. Each period, individuals observe their health
and update their beliefs regarding their unknown ¢;. This new information allows them to
also update their expectations about their future health, and hence their expectations about
future survival. Thus, slope beliefs, unobserved by the econometrician, are closely linked to
survival beliefs, which are observed by the econometrician. Intuitively, the bias parameter b
affects expected health and hence the average survival expectation. Thus, levels of survival
expectation identify bias b. Next, I discuss identification of the uncertainty parameter \.

In what follows, I assume (ay, d;, 81’0) are jointly normally distributed, with C'ov(a, &0) =
Cov(a;, d;) (which is zero according to the results in section 1.4). This assumption implies

the information about §; contained in «; is already incorporated in initial beliefs 52‘0-

Identification using subjective expectations about survival rates

(ideal data)

The relation between survival expectations plivel0;; and the parameters governing beliefs,
b and A, is a complex one. To provide intuition, I start by discussing identification using
ideal data, which I do not actually observe. This intuition carries out to the data available
in the HRS, which I show numerically next. Let €2; be the information set of individual 7

after observing his health up to period ¢t. Thus, «;, Sit, o2 € Q.

Proposition 1.5.1 (Identification of \) Let the health and survival processes be given by

equations (1.9) and (1.10), and assume individuals are Bayesian learners with prior beliefs
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about &; following N(04,63). Consider the subjective expectations about survival rates:

bsri, = P(Sip41 =180 =1,Qy), r>t

Then, conditional on bsriyy1, bsriyre, and hy (all in Q)

COU(A¢_1([)ST“+U+2), Ahit-{-l) = Ctva,T(Ahit+1),

where the time-varying constant Cy is increasing in .

The proof is in the appendix. The proposition says we can identify A with enough
longitudinal data on subjective expectations about these survival rates and health. The key

equation behind this result,

r—t—2
Ap® (bsrierr) = 7 N his1 — phas — @i — 03 (t + 1)) + (0041 — i) Z (r —k)p",
k=0
due to p‘e,rsistence due to\l:earning

shows individuals update their survival expectations for two reasons. The first reason is that
health is a persistent process; thus, any change in health will have future repercussions on
health and therefore on survival. Note that if p = 0, this channel disappears. The second
reason is that learning implies a change in future predictions of health and therefore of

survival. Note that if A =0, Sz‘t+1 = by, and this channel disappears.

Identification using subjective expectations about survival proba-

bilities (HRS data)

We cannot use the previous result directly, because the HRS does not exactly measure

subjective expectations about survival rates. However, Figure 1.7 shows the intuition of

30



proposition 1.5.1 extends to the available data. It shows the results of a simulation exercise.
In the exercise, I first simulate individual-level heterogeneity («;, d;) and health h;, according
to equations (1.9), (1.10) and (1.11). Then, for different values of the uncertainty parameter
A, I simulate initial beliefs (&O, 62) assuming b = 0. I update those beliefs over time and
construct (5#, 62) using the Bayesian updating equations and the simulated values of health.
Finally, I use these simulated beliefs, to construct survival expectations plivel0;; according
to equation (1.12). In Figure 1.7, the plots depict the uncertainty parameter A in the x-
axis, and a simulated moment in the y-axis. The six plots correspond to the six moments
used later for estimation. The top row considers moments in levels, and the bottom row
considers moments in differences. The figure clearly shows that, as before, the covariance

between changes in health and changes in survival expectations depends on the underlying

uncertainty.
Figure 1.7: Simulated moments of plivel(;; by uncertainty A in data-generating process
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This model has two simplifying assumptions. First, the model assumes the health pro-
cess is exogenous, with no choice variable that affects the evolution of health; that is, no
investment is purposefully made in the form of health behaviors (e.g., exercising or smok-
ing), and working decisions do not affect health. This assumption is not uncommon in the
literature on labor market decisions among older individuals, and it emphasizes changes in
health due to aging. By ruling out the possibility of individuals changing their behavior in
order to affect their health, the strict exogeneity assumption implies the correlation between
changes in health and changes in survival expectations are not confounded by changes in
individuals’ planned behaviors. Second, the model assumes health is the only or sufficient
signal available to individuals. This assumption is partly addressed in the last section of the
paper, where I look at another source of information that may shift beliefs.

Under these assumptions, plivel0;; is a function of initial beliefs N (52-0, 62), heterogeneous
intercept «;, and health history up to t, (hj,...hs). Hence, for any value of b and A,
I can use the estimated health process to simulate draws «; and 5,-0, and then use those
variables to simulate plivel0;.?* T estimate the parameters governing initial beliefs, b and
A, by simulated method of moments (SMM). I use six moments, three in levels and three
in differences, corresponding to the mean of plivel0;, its variance, and its covariance with
hi.2* Details of the implementation are given in appendix G.

Subjective survival expectations are measured with substantive error, which is well es-
tablished in the literature (see, e.g., Manski and Molinari (2010)). Similar to Kleinjans and

Van Soest (2014), T allow for non-classical i.i.d. measurement error vi; ~ N (fimerrors Oerror)s

22The distribution of d;0 depends on b and A\. Hence, I first simulate «; and §; conditional on health history
hio, - .. hiT;, and then for a given value of b and A, I draw 51’0 conditional on «;, d;, and h;g.

23 As described in appendix G, most individuals are first observed in sample at age to older than 50, and I
modify the simulation process for them accordingly. Overall, I target these six moments averaged across
time for different subgroups of individuals, depending on the age t I first observe them, for a total of 78
moments.
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such that the observed survival expectations are given by

—_——

plivel0;, = max{min{plivelOy + vy, 1},0}.

Note the measurement error shifts observed survival expectations by fimerror ON average.
Similarly, the bias in initial beliefs b also shifts observed survival expectations. However,
these two biases have different effects over time: the average shift due to measurement error
is constant with age, given the i.i.d. assumption, whereas the average shift due to initial bias
in beliefs is decreasing with age as individuals observe their health and update their beliefs.

Thus, we can separately identify both effects.

1.5.2 Results

The estimation results presented in Table 1.4 show individuals face a sizable amount
of uncertainty and a large amount of negative initial bias; that is, individuals believe their
health will decay with age at a faster rate than what is actually true on average. In line
with previous literature, subjective survival expectations are subject to large amounts of
measurement error. Following Manski and Molinari (2010), I also estimate a version including
rounding and find similar results. These results are consistent with previous evidence that
finds that, on average, older adults up to 65 years old underestimate their chances of survival
(Elder (2013), Ludwig and Zimper (2013)). Those papers also find adults 80 years and older
overestimate their survival chances. My results similarly show overestimation at those ages,
which is explained by measurement error. The fit of the results is shown in Table 1.5. Panel
(a) shows the fit of the targeted moments using plivel0;;, whereas panel (b) shows the fit of

similar untargeted moments using survival expectations to age 75.%4

24The HRS includes two questions on survival expectations every wave: plivel(;; asks for a reference age
approximately 10 years ahead, and plive75;; asks for a reference age equal to 75 years. However, this last
question is only asked of individuals 65 or younger, limiting the sample; hence, I use it only here as a
check.
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Table 1.4: SMM results on prior beliefs

Symbol Coefficient Lower bound Upper bound

Uncertainty A 0.338 0.336 0.340
Bias b -0.061 -0.061 -0.060
Mean of measurement error  fierror 0.121 0.118 0.123
SD of measurement error O merror 0.177 0.176 0.177

Note: Prior beliefs about slopes are unobserved N (d; + b, )\20(%), depending on the bias b and uncer-
tainty A parameters, whereas subjective survival expectations plivel0;; are observed but measured
with error. The estimation uses a subsample of 2,000 individuals with eight periods, chosen ran-
domly for computational reasons. Moments are simulated using 20 draws of measurement error
and 20 draws of unobserved heterogeneity. The bounds correspond to a 95% confidence interval,
constructed using standard errors clustered at the individual level.

With these estimated parameters, I can simulate slope beliefs, which I use in the next

section to study their effect on working decisions of older adults.

1.6 Working decisions as functions of beliefs about health

In the life-cycle model of labor participation p; and consumption ¢;; outlined in section

1.2, an individual’s dynamic problem is

W(Qitfl) = max {E(U(pitacitahitapitl)

Pit,Cit

Qitl) +

BE (Sit+1‘/it+1(Qit) + (1 — Sit41)B(ai)

Qie—1, pit, hz’t> }

st. budget constraint,
health (1.9) and survival (1.10) processes,

and beliefs updating equations (1.2) and (1.3),

where B(a;) is the utility perceived by leaving bequest a;;. In this problem, the policy rule

for labor participation is a function of the state variables in the model. The novelty in this
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Table 1.5: Moments’ fit

(a) Targeted moments

Data moment SE Simulated moment
E(plivel0) 0.531 (0.00011) 0.538
E(plivel0?) 0.371 (0.00012) 0.357
E(plivel0 - h) 2.890 (0.00065) 2.957
E(Aplivel0) -0.013 (0.00002) -0.014
E((Aplivel0)?) 0.070 (0.00003) 0.066
E(Aplivel0Ah) 0.007 (0.00002) 0.007
(b) Other moments (not targeted)

Data moment SE Simulated moment
E(pliveTs) 0.702 (0.00017) 0.806
E(plive75?) 0.556 (0.00021) 0.687
E(plive75 - h) 3.886 (0.00101) 4.469
E(Aplive75) -0.001 (0.00010) 0.018
E((ApliveT5)?) 0.054 (0.00008) 0.042
E(ApliveT5 Ah) 0.006 (0.00005) 0.003

Note: Panel (a) uses the same sample used for estimation. Panel (b) uses a subsample of 1,247
individuals up to 65 years old who are asked plive75; (the percentage chance you will live to be
75). Standard errors are clustered at the individual level.
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paper is that those state variables include individuals’ beliefs about their future health. These
beliefs are the result of two key elements: heterogeneity in health dynamics and uncertainty
about that heterogeneity. These elements imply beliefs about that heterogeneity -instead
of just a common parameter- enter individuals’ choices. In this section, I estimate the

probability of working as a function of those state variables,

~

]P(pit = 1‘Qit71) = ]P(pit = 1\2%71, Qjt—1, Wit—1, hit71,5it71,5t271,0%)- (1-13)

By using the results from the previous section, we can simulate all of the state variables,
and hence identify their effect on working decisions. Furthermore, by using survival expec-
tations to identify and simulate beliefs, no additional assumption on the relation between
beliefs and working decisions has been made. In particular, no restriction is imposed on the
sign of the effect of dir_1 on working decisions. If individuals expecting better future health
want to work longer, the sign would be positive. This case would arise if the dominant effect
were the desire to save more, given the longer life expectancy implied by better health. If
individuals expecting worse future health want to work longer, the sign would be negative.
This case would arise if the dominant effect were the desire to save more given the higher
cost of future health care implied by worse health. Note also that, conditional on states
variables in §2;;_1, survival expectations plivel0O;;_; do not play an additional role in working

decisions p;;.

1.6.1 Probit results on working decisions

To explore the relation between health beliefs and working decisions of older adults, I
first estimate equation (1.13) using a probit approach, that is, assuming P(py; = 1|Q_1) =
<I>(B’ Qit—1)~ Note some of the input variables are unobserved by the econometrician, namely,

heterogeneity in health level «; and beliefs about slope heterogeneity, by and 2. Conditional
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on health history, these unobserved variables depend on individual-level heterogeneity, which
is integrated out. See appendix H for details on the likelihood specification.

Table 1.6 presents the results of the probit estimation. As expected, the probability of
working decreases with age and increases with better lagged health. Lagged work has a
significant effect; the probability of working is larger for individuals who were working the
previous period. This result confirms the dynamic aspect of the working decisions. Fur-
thermore, the table shows that beliefs do matter for working decisions, with a positive and
significant coefficient for di—1. This positive sign implies expecting better health, that is,
expecting health to deteriorate more slowly with age, is associated with larger probabilities
of working.?® The table also shows survival expectations plivel0;_; are significant predictors
of the probability of working, but that significance holds only while slope beliefs are not ac-
counted for. This result is consistent with survival expectations reflecting individuals’ beliefs
about slope heterogeneity. Thus, once those beliefs are considered, survival expectations do
not provide additional information.

Though interesting, these results assume a linear index for the probability of working,
which is a strong assumption and is not justified by assumptions on the fundamentals of the
model. Hence, the results may be inconsistent with the policy rule derived from the economic
model. Thus, in what follows, I flexibly estimate the probability of working, without imposing

this index linearity. I achieve that flexibility by using instead a neural-network approach.

1.6.2 Neural-network approach

Neural networks provide flexible tools for estimation (Goodfellow et al. (2016)). They are

universal approximators, because they are capable of approximating any measurable function

25The assumptions of the learning model imply the posterior variance 67 is constant across individuals

of the same age t. Given that age is also a relevant determinant of working decisions, I don’t have
enough variation to disentangle these two effects separately; any results would be based on functional-form
assumptions alone. Therefore, I focus instead on interpreting the effects of the posterior mean.
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Table 1.6: Probit results on probability of working

(1) (2) (3)
Coefficient SE Coefficient SE Coefficient SE

age t—1 -0.20%**  (0.016)  -0.08***  (0.003)  -0.19%**  (0.016)
lagged work Pit—1 2,03 (0.018)  2.03*F*  (0.019)  2.03***  (0.019)
lagged health hit—1 0.17%8  (0.024)  0.26***  (0.033)  0.18***  (0.046)
heterogeneous intercept —«; 0.24*%%%  (0.036) 0.07 (0.046)  0.24**  (0.075)
beliefs mean dit—1 1.93%%%  (0.249) 1.90%**  (0.499)
beliefs var 62 /02 -13.85%**  (2.048) -13.33%**  (2.102)
survival expectations plivelO;_q 0.11*%**  (0.031) 0.01 (0.043)
Controls other vars ;1 Yes Yes Yes

N individuals 14,969 14,718 14,718

N observations 58,040 55,592 55,592

Note: Results of estimating equation (1.13) using a probit approach. Standard errors are clustered
at the individual level.*** p < 0.01, ** p < 0.05, * p < 0.1

to any desired degree of accuracy (Hornik et al. (1989)). In the case of a binary outcome, and
under some particular specifications, a neural network corresponds to a maximum likelihood
estimation with logistic errors, where the probability of success is a complex non-linear index
of the inputs. As mentioned by Farrell et al. (2021), we can think of neural networks as a
type of non-parametric or sieve estimation whereby the basis functions are learned from the
data, hence allowing for greater flexibility.

In this case, I also need to account for the fact that some of the input variables are
unobserved by the econometrician. These unobserved variables are slope beliefs (&-t,l, 5?)
and heterogeneous health levels a;. Though they are time-varying variables, they can be
written as functions of time-invariant unobserved variables (5,»0, «;) and the observed health
path (R, ... hi7) of each individual.?® Thus, following a standard likelihood approach, I

want to maximize the log of the likelihood integrating out this time-invariant unobserved

heterogeneity. To do so, I follow the insight of EM-type algorithms (Dempster et al. (1977)).

26This relationship depends also on the parameters of the health process (p, 02) and the parameters of beliefs
(b and A), but it does not depend on the parameters defining the relation between working decisions and
state variables.
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Let 0 be the parameters governing an outcome variable, in this case, working decisions.
When underlying heterogeneity exists, we estimate # by maximizing a likelihood that in-
tegrates out that heterogeneity. In this context, EM-type algorithms provide us with two
key insights. First, the parameter 6 that maximizes the integrated log-likelihood also maxi-
mizes an alternative specification using the posterior distribution given the outcome variable.
Formally, let n; denote the vector of unobserved heterogeneity, f(#;) its prior distribution,
and f(n;|ps; @) its posterior distribution given the outcomes p;. The first insight of EM-type

algorithms is to note that

argmeaxlog/]P(pi]m;G)f(m)dm = argmgmx/log(]P(pi]m;9))f(ni\pi;9)dm. (1.14)

The expression on the right-hand side is simpler to use. However, because this posterior
distribution depends on #, it is unknown. Thus, the second insight of EM-type algorithms
is to solve the problem for @ iteratively: in iteration k, the E step uses 0;_; to update the
posterior distribution of the heterogeneity, and the M step estimates 6, by maximizing the
right-hand side of equation (1.14), using that posterior.

I use this same iterative logic as a convenient implementation for maximizing the in-
tegrated likelihood under a neural-network approach. In this case, the E step is done by

Markov chain Monte Carlo (MCMC) and provides draws from the posterior distribution of

~

(s, 040) given working decisions p;.>” Those draws, along with individuals’ health histories,

are used to simulate the inputs (d;, 67, a;) and to expand the data. Then, the M step es-

281

timates 6 by using a neural network on the expanded data. start this iterative process

A

at an M step using an incomplete posterior: the distribution of («y,d;0) conditional on the

2TMCMC uses the likelihood of p; given (o, 51-0) from the previous-iteration M step and the prior distribution
of (Oéi, (51'0).

28The standard EM algorithm is known to converge, as the likelihood increases in each step of the sequence.
This convergence does not hold in this case, given the lack of uniqueness of the solution. Therefore, the

approach is not aimed at getting at the unique solution, but as a convenient implementation.
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health history (h;1, ... hir,) and the history of survival expectations (plivel0;y, . . . plivelO;r, ).
This distribution is incomplete because it does not condition on the working decisions, but it
does already include the heterogeneity information contained in the health and expectations

variables.

1.6.3 Neural-network results on working decisions

Following this strategy,?” I estimate the probability of working conditional on the state
variables €2; 1. This set includes past participation p;_1, past health h;_;, heterogeneous
health levels «;, and slope beliefs 5@:, 62, which are the main interest in this paper. It also
includes more traditional variables, listed in Table 1.2, including demographic variables, in-
come, wealth, health insurance, and job characteristics. I restrict the analysis to a sample
of individuals who are attached to the labor market, defined as individuals with at least 20

years of working experience. The loss and fit of the model is given in appendix I.

(1) Beliefs play a role in the participation decisions of older adults, with positive av-
erage marginal effects that are similar in orders of magnitude to the average marginal

effects of health and assets.

Table 1.7 presents the effects of a marginal change in expected beliefs Sit_l, health A;_q,
and assets a;;_1, respectively, on the probability of working, conditional on age and past par-
ticipation p;;_1, averaged across individuals. The table shows that even though the effects
are of different magnitudes and signs, they are similar in orders of magnitude. The same

result holds in Figures 1.8 and 1.9, which show the marginal effects of beliefs dir_1 by deciles

29The results in this section come after running the iterative approach 5 times. These results are qualitatively
similar to the results using the incomplete prior. This similarity is not unexpected given that the incomplete
prior already incorporates the information on health and survival beliefs.
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of health and beliefs for adults aged 52-59 and 66-75, respectively.

(2) For individuals in their 50s who are not working, an interaction exists between

beliefs and health in their future participation decisions.

This result can be seen in Figure 1.8. The figure shows health has larger marginal ef-
fect on working probabilities for individuals with better beliefs, that is, for individuals who
believe their health will deteriorate relatively slowly. A similar pattern is observed for the
marginal effect of beliefs themselves. These results suggest adjustment costs of going back
to work are important for the decisions of this group. These adjustment costs could be due
to difficulties in finding jobs or in adapting to new work environments. The framework and
data-driven approach used in this paper have the advantage of letting the data suggest mech-
anisms that may be otherwise overlooked. Overlooking important mechanisms is a source
of misspecification in structural models. Hence, the approach in this paper complements
structural models, by providing a flexible way to identify patterns in the data that suggest

mechanisms to incorporate in such models.

(3) The total effect of a health shock €;;_1 on working decisions goes mostly through

the persistence channel, with negligible effects through the information channel.

This result is shown in Table 1.7, which includes the decomposition of the effects of a
health shock into a persistence channel and an information channel, according to equation
(1.8). The persistence channel refers to the effect that a health shock €;_; has on h;; through
h;—1 and the persistence of the health process. The information channel refers to the effect
that a health shock €;;_; has on beliefs 3@571, as individuals interpret h;_; (and hence this

health shock) as a health signal. According to equation (1.8), the total effect of a health
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Table 1.7: Average marginal effects on the probability of working and decomposition of the
effects of a health shock

Average marginal effects Decomposition of a health shock
Age Health Beliefs Assets Assets Fact Persistence Information
hz‘t—l &it—l Q1it—1 A2it—1 actor channel channel

Dit—1 =0

52 0.056  0.028 -0.021 -0.043 0.003 1.00 0.00
54 0.049 0.024 -0.019 -0.039 0.006 1.00 0.00
56 0.043 0.021 -0.017 -0.034 0.009 1.00 0.00
58 0.038  0.018 -0.015 -0.030 0.011 0.99 0.01
60 0.033 0.016 -0.013 -0.027 0.013 0.99 0.01
62 0.028 0.013 -0.011 -0.023 0.014 0.99 0.01
64 0.022  0.010 -0.008 -0.018 0.015 0.99 0.01
66 0.019 0.009 -0.007 -0.015 0.015 0.99 0.01
68 0.015  0.007 -0.006 -0.013 0.014 0.99 0.01
70 0.013  0.006 -0.005 -0.010 0.014 0.99 0.01
72 0.010  0.004 -0.004 -0.008 0.013 0.99 0.01
74 0.008 0.003 -0.004 -0.007 0.012 1.00 0.00
Pi—1 =1

52 0.010  0.011  0.000 -0.005 0.003 1.00 0.00
54 0.011  0.012 0.000 -0.006 0.006 0.99 0.01
56 0.013 0.013 0.000 -0.007 0.009 0.99 0.01
58 0.015 0.015 0.000 -0.008 0.011 0.99 0.01
60 0.017 0.017 0.000 -0.008 0.013 0.99 0.01
62 0.018 0.018 0.000 -0.009 0.014 0.99 0.01
64 0.020  0.020 0.001 -0.009 0.015 0.99 0.01
66 0.021  0.021  0.003 -0.009 0.015 0.99 0.01
68 0.021  0.021  0.004 -0.009 0.014 0.99 0.01
70 0.021  0.022 0.005 -0.009 0.014 0.99 0.01
72 0.022 0.022 0.005 -0.009 0.013 0.99 0.01
74 0.022 0.022 0.006 -0.009 0.012 0.99 0.01

Note: Assets a; are total assets excluding assets on retirement accounts, which are considered
separately on variable as. The columns on persistence and information channels correspond to the
terms in equation (1.8), expressed as a proportion of the total partial effect.

shock is a weighted sum of the effects through these two channels. Note the small values

on the column Factor in Table 1.7, which imply a health shock has only a small effect on
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Figure 1.8: Average marginal effect of expected beliefs &-t_l, and health h;;_; on the proba-
bility of working p;; for adults in their 50s

(a) Marginal change in é;_; conditional on (b) Marginal change in d;;—1 conditional on
Pit—1 =1 pit—1 =10
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(¢) Marginal change in hj—; conditional on (d) Marginal change in h;—1 conditional on
pit-1 =1 pit-1 =0

Note: Each row corresponds to the average marginal effects with respect to 5it_1 and h;_1, respec-
tively. The left column conditions on individuals who were working, p;;—1 = 1, and the right column
conditions on individuals who were not working, p;;—1=0, in the previous period. In each plot, the
x- and y-axis correspond to deciles of health h;;_1 and expected beliefs 8it—1 for the corresponding

subsample of the plot. The z-axis corresponds to the work response (probability). Note the range
of the z-axis changes in each row.

beliefs 31‘15-1 and therefore only a small effect through the information channel. This result

highlights that even though individuals are uncertain and biased, to significantly affect their
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Figure 1.9: Average marginal effect of expected beliefs &-t_l, and health h;;_; on the proba-
bility of working p;; for adults between 66 and 75 years old

(a) Marginal change in 5ir—1 conditional on (b) Marginal change in ;1 conditional on
pir—g =1 pit—1 =10
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(c) Marginal change in h;—1 conditional on (d) Marginal change in h;_1 conditional on
pit—1 =1 pit—1 =0

Note: Each row corresponds to the average marginal effects with respect to bir—1 and hit—1, respec-
tively. The left column conditions on individuals who were working, p;;—1 = 1, and the right column
conditions on individuals who were not working, p;;—1=0, in the previous period. In each plot, the
x- and y-axis correspond to deciles of health h;;_1 and expected beliefs &t_l for the corresponding
subsample of the plot. The z-axis corresponds to the work response (probability). Note the range
of the z-axis changes in each row.

decisions, we need large enough signals. Section 1.8 looks at one possible such policy: health

information regarding blood glucose and cholesterol levels.
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1.7 Reducing bias in initial beliefs

In this section, I study how labor participation would change if we could eliminate bias

in initial beliefs. In particular, I look at two questions:

1. How much would labor participation change if initial beliefs were unbiased at the

population level, that is, ]E(Sio) =E(6;)7

2. How much would labor participation change if we could reduce each individual’s bias

in half, by closing the distance between 51-0 and 9;7

To look at these questions, I use an impulse-response-function approach. That is, I sim-
ulate working decisions under a sample’s baseline scenario, and compare those predictions
against the predictions simulated under each of these two potential changes in initial beliefs.
The figures in this section present the response in terms of labor-participation decisions by
age, given a change in initial beliefs. Over time, this change in initial beliefs translates
into changes in posterior beliefs, labor-participation decisions, and decisions regarding assets
and health insurance. The effects on these last two variables were also predicted using a
neural-network approach. Note these exercises assume no other variable change in response
to the change in initial beliefs or to the subsequent changes in participation, assets, or health
insurance. Therefore, the exercises presented here are not exactly counterfactual analyses,

but are interesting exercises as long as we are capturing the main choices.?°

(1) Eliminating the bias in prior beliefs b would increase participation by more than

2 percentage points around the formal retirement age (66-67).

30The results presented in this section use the incomplete prior of the unobserved heterogeneity. As dis-
cussed in the previous section, this prior already accounts for the information in the health and survival
expectations variables, and incorporating the additional information has only a minor effect.
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Figure 1.10 shows the average change in the probability of working after eliminating the
initial bias in prior beliefs, b. Note this effect has an inverted-U shape. In the early 50s, the
effect is small given that individuals are still mostly working. But as people start to retire,
the new beliefs imply larger probabilities of working that do not vanish completely over time
and remain above 2 percentage points for individuals in their early seventies. Note that,
in this sample, the average probability of working prior to the change in beliefs is 34% at
age 66 and 17% at age 78; hence, the increment in the figure is not trivial. Furthermore,
because this effect results from eliminating a misconception at the population level, it is an
easier target policy that could be addressed by information campaigns, without the need to

provide individual-specific information.

Figure 1.10: Impulse-response function to a shift in prior beliefs eliminating overall bias b
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Note: Impulse-response function using the subsample of individuals used in estimation that are

observed at 52 years old, corresponding to 1,184 individuals.

(2) Reducing the initial bias of each individual by half has a heterogeneous effect,
with larger gains in the probability of working for individuals who are initially more

biased.

Figure 1.11 shows this results, distinguishing by quartile of initial bias, b0 — 0;. Given the

overall initial bias b < 0, most individuals are initially downward biased. Thus, reducing bias
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in half per each individual means increasing initial beliefs for most of them, which translates

into the effects being positive, as shown in the figure.

Figure 1.11: Impulse-response function to reducing individuals’ initial bias by half
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Note: Impulse-response function using the subsample of individuals used in estimation that are

observed at 52 years old, corresponding to 1,184 individuals.

As a reference, using a structural model, French and Jones (2011) find raising the Medi-
care age from 65 to 67 leads individuals to work an additional 0.074 years over ages 60 to
69, whereas eliminating two years’ worth of Social Security benefits increases time spent in

the work force by 0.076 years.

1.8 An information experiment: Blood-based biomark-

ers as signals of health

1.8.1 Setup

The results on working decisions of older adults show beliefs matter, and expecting health
to deteriorate more slowly is associated with larger probabilities of working. Furthermore,
beliefs are initially biased, and eliminating that bias has non-trivial effects. Information cam-

paigns providing better information can be a way to eliminate that bias. In this section, I

47



exploit a feature of the HRS and study the effects of an information shock on individuals’ de-
cisions: information on blood-based biomarkers. In 2006, the HRS introduced the collection
of a blood sample for measuring biomarkers. With the blood sample, three biomarkers are
measured and individuals are informed of their levels: HDL cholesterol (known as the good
cholesterol), total cholesterol, and blood glucose hbAlc. The results are provided around a
month after the survey has ended®! (see Edwards (2018) for more details). These biomarkers
are also included in other health surveys, including the REasons for Geographic and Racial
Differences in Stroke study (REGARDS) and the National Health and Nutrition Examina-
tion Survey (NHANES), where the information is also provided to individuals. Studies using
those biomarkers have found that new diagnoses through the surveys increase the number of
doctor visits for Medicare beneficiaries (Myerson et al. (2018)), but they increase the fraction
of patients with low uptake of ex-post medical treatment (Myerson et al. (2017)).

A key aspect in the introduction of these measures in the HRS is that, to control costs
associated with their collection, the HRS randomly split the sample into two halves, and
in each wave, the HRS collects these biomarkers in only one of those halves. Hence, this
collection scheme provides us with an information experiment, that is, with exogenous vari-
ation in who receives this additional information. Note, however, that setting an experiment
was not the intended goal of the HRS, and as such, this experiment is not ideal. An ideal
experiment would include a control arm of individuals who get their blood taken but are
not informed of their results. Still, the HRS collection scheme of biomarkers does provide
us with exogenous variation that I use in this section. Another advantage of looking at this
additional source of information is that it allows me to relax the assumption of health as the

only (or sufficient) signal®* and to use additional sources of variation when estimating the

31Two other biomarkers are measured: C-reactive protein (CRP), a general marker of systemic inflammation,
and Cystatin C, an indicator of kidney functioning. However, individuals are not informed of their levels
on these two biomarkers; hence, these results do not provide additional information to individuals.

32The signal analyzed here is provided exogenously to individuals. Hence, this paper does not address
endogenous acquisition of information, which is left for future work.
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effects of beliefs on working decisions of older adults.?®> However, the counterpart of using

this experiment is that the information provided in the experiment is very small.

1.8.2 Reduced-form approach

I start by estimating the overall effect of receiving this information on individuals’ survival
expectations and working decisions. To that end, I use the experiment introduced with the
biomarker collection in 2006 (wave 8), when the sample was randomly divided into two. To
be able to generate this information, the experiment also introduces a difference in interview
mode between the two groups, because collecting the blood sample requires an in-person
interview.?* The interview mode could have an effect on individuals’ answers, in particular,
on questions regarding opinions and expectations. Though potentially problematic, the
timing of the information provision allows me to separately identify the interview-mode
effect from the information effect of the biomarker results, because that information is only
provided to individuals after the fieldwork has ended. Hence, individuals do not have the
information in the wave when the blood is collected, but in the following wave.

Figure 1.12 presents the structure of the biomarker collection and the information ex-
periment, and it helps us visualize the identification strategy. Note, first, that a difference-
in-differences analysis using waves 7 and 8 returns the interview-mode effect. Second, a
difference-in-differences analysis using waves 7 and 9 returns the interview-mode effect (with
the opposite sign) plus the information effect of receiving the additional signal. Hence, we

can identify the information effect by adding these two terms. Under the parallel-trends

33In inferring slope beliefs and using them to study their effect on labor-participation decisions in the previous
sections, I only use cross-sectional variation given by differences in initial beliefs, conditional on health and
survival-expectations histories.

34The HRS survey is usually conducted by phone, except for first interviews of new cohorts, people who
request in-person interviews, and individuals residing in nursing homes. A shift to in-person interviews in
2004 also occurred in an attempt by the HRS to increase individuals’ consent to link their survey responses
with administrative data. These differences in interview mode are unimportant for the analysis as long as
they are applied in the same way across the two groups.
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assumption, the same idea holds if we construct these terms using wave 5 instead of wave 7.

Figure 1.12: Timing of the biomarker collection and information experiment

Mostly in-person Mostly phone Mostly in-person

group 1 Blood test Blood test
Blood info
Mostly ph Mostly pk Mostly in-person
OSHY phone Ot phone ALOSTY Trpersor Mostly phone Mostly in-person Mostly phone
group 2 Blood test
‘ ‘ ‘ ‘ ‘ Blood info
wave 5 wave 6 wave 7 wave 8 wave 9 wave 10
2000 2002 2004 T 2006 2008 2010
randomization
Therefore, I estimate the following equation:
Yiw = BO + ﬂldgi + Bdew + /83wdgi . dw + €iw, (115)

where 7 denotes an individual and w denotes a wave. I use w instead of ¢, because in this
paper, t denotes age. I consider two dependent variables separately, survival expectations
plivelO;, and a binary of work p;,. I estimate these equations using a balanced sample
of individuals observed from waves 5 to 9.% d,, is a dummy for the group of individuals
set for blood collection in wave 8 (group 1 in Figure 1.12, with group 2 as the reference
category), and d,, are dummies for waves 6 to 9 (wave 5 is the reference category). Hence,
the interview-mode effect is given by f35,,, and the information effect of the signal is given by
Baws + Baw,, Where the interview-mode effects in each group cancel each other out. Parallel
trends (before randomization) hold if f3,, = B3w, = 0, and randomization in the selection
of the two groups implies 5; = 0.

Table 1.8 presents the estimation results of equation (1.15) for both plivel0;,, and p;,.

When looking at the results for survival expectation, plivel0;,, the table shows the two

351 use only up to wave 9, because from wave 10 onward, the groups are no longer comparable, given that
they have been provided information with different timing.
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groups are similar and that pre-trends are parallel. The table also shows a positive and
significant interview-mode effect of 1.77 percentage points and a similar but insignificant
information effect of 1.36 percentage points. Though insignificant, this positive sign is aligned
with what we already know about beliefs: on average, individuals’ beliefs about health
and survival are downward biased. Therefore, providing more information moves those
expectations up. When looking at the results for working decisions, p;,, the two groups
are similar to begin with and have parallel pre-trends, but we find no significant effect of
interview mode®® or information. Overall, these results suggest the signal is not large enough
to have a significant effect on expectations and decisions.

Table 1.9 presents the results separately by education level. It shows that for adults with
a college degree, both the interview-mode and information effects are larger and significant
when looking at survival expectations. For adults with less than a college degree, only the
interview-mode effect is marginally significant (at 12%). When looking at working decisions,
no significant effects —interview-mode or information effects— for either group are seen.
These differences by education level suggest the ability to process the information matters,
with more educated adults internalizing the provided information better. The effect on their
working decisions is also larger though still not significant.37
Appendix J further decomposes group 1 into adults who receive a bad biomarker result

versus those who do not. However, because we cannot make the same distinction in group 2,%®

we cannot identify information effects by the type of signal received (good or bad biomarker

36The lack of an interview-mode effect on working decisions is expected, given the more objective nature of
working outcomes versus survival expectations.

37I run a similar regression with the number of doctor visits since the last interview as a dependent variable
and find no effects (results not shown), neither interview-mode nor information effects, for either group.
This result suggests the difference in survival expectations between these two groups is not explained
by a different number of doctor visits. However, more educated individuals may still be better able to
incorporate the new information with the help of their physicians, even if the number of doctor visits
remains the same.

380ne possibility would be to use the biomarker results in wave 9 to attempt the same distinction for group
2. However, an analysis using repeated biomarker results from future waves shows these results change
over time, introducing noise when using results from wave 9 to assign wave 8 status for the second group.
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Table 1.8: Information and interview-mode effects of biomarker experiment

Survival expectation Work decision

(plivel0yy,) (Piw)
Group 1 Ioh -0.47 0.00
Wave 6 Bows -1.42%%* -0.Q7F**
Wave 7 Bow, 150 0.1
Wave 8 Boug .41 10,167+
Wave 9 Bows 357 10,205
Group 1, wave 6 [33,, 0.28 0.01
Group 1, wave 7 sy, -0.27 0.01
Group 1, wave 8 3, (a) 1.77%% 0.01
Group 1, wave 9 fs,, (b) -0.42 0.01
Constant Bo 53.97F** 0.49%**
Observations 41,930 41,923
R-squared 0.004 0.021
Interview mode effect (a) 1.77%* 0.01
Information effect (a)+(b) 1.36 0.02

Note: Results of estimating equation (1.15). The sample consists of N = 8,386 individuals with
non-proxy interviews who are at least 50 years old in wave 8 and who give a valid answer to
plivelQ;, every wave between waves 5 and 9. Seven of these observations do not have information
on pj,. Standard errors are clustered at the household level. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.9: Information and interview-mode effects by education level

Survival expectation (plivel0;,) Work decision (pi)

Less than college College Less than college  College

Group 1 b1 -0.24 -1.38 0.01 -0.01
Wave 6 Bowe -1.21°%* -2.09%* -0.07F** -0.09%**
Wave 7 Bows -1.44%%% -1.72%* -0.12%%* -0.12%%*
Wave 8 Bows -6.127%%* 7. 37 -0.16%** -0.19%**
Wave 9 Bow, -3.22%%* -4, TO*** -0.20%** -0.22%%*
Group 1, wave 6 5y, -0.06 1.37 0.00 0.02
Group 1, wave 7 (33, -0.24 -0.33 0.01 0.01
Group 1, wave 8 [I3,, () 1.29 3.3 0.00 0.03
Group 1, wave 9 f33,, (b) -1.12 1.82 0.01 0.00
Constant Bo 52.42%%* 58.96*** 0.45%%* 0.61%**
Observations 31,815 10,115 31,810 10,113
R-squared 0.004 0.005 0.021 0.022
Interview mode effect (a) 1.29 3.317%H% 0.00 0.03
Information effect (a)-+(b) 1.65 5.12%* 0.01 0.04

Note: Estimation results are from equation (1.15). The sample consists of N = 8,386 individuals
with non-proxy interviews who are at least 50 years old in wave 8 and who give a valid answer to
plivelO;y, every wave between waves 5 and 9. Seven of these observations do not have information
on pi,. Standard errors are clustered at the household level. *** p<0.01, ** p<0.05, * p<0.1
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results). Still, this analysis is interesting because it shows older adults who receive bad
results have lower survival expectations to begin with, suggesting they already knew at least
some of this information. Consistently, by wave 7, people who later receive bad biomarker

results also work less on average than those who receive good results.

1.8.3 Model-based approach

In this section, I use the learning model to re-assess the information experiment. I
estimate survival expectations allowing for the biomarker information to be a second signal
for health profiles. For these biomarkers to be a valid signal, being correlated with health
is not enough; they must be correlated with §;. The appendix shows they are indeed. It
presents the results of estimating an equation for health, similar to the equation of section 1.4,
allowing for the distribution of the heterogeneity to depend on blood-glucose and cholesterol
levels. The results show both the heterogeneous intercepts «; and heterogeneous slopes ¢;
are correlated with these particular biomarkers.

Hence, some individuals have two signals of §;: health h; and biomarker results ;. Let
£39

l;+ be the blood-glucose level of individual i at age and let the two signals be given by

hit = phi—1 +a; +0; -t + €

li = 70+ Thyg_1+ Toa; +7130; - t+ 74t + 75 T; + Wi,

where w;; are i.i.d. and independent of health shocks €;. Bayes’ rule implies the updating

equations for the posterior mean and variance of beliefs are given by

Si Si, hl— hi, —Ckit li—T—Thi, —TOéi—Tt—Txit‘T

A; _ A;1+( t— P t21 ) +(t 0 1/hit—1 i 4 5 ) 3(1.16)
o Ut—l Oe Ow

1 1 2 T2

— = 4 43 1.17
7 o, 2 o (117

391 focus on blood glucose because it is the biomarker more consistently related to slopes §;.
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Equation (1.17) shows the posterior variance includes the information provided by health
and by the biomarker results. As long as the biomarkers provide information about §;, that
is, as long as 73 # 0, having this additional signal increases the precision of posterior beliefs.
Furthermore, the overall gain in precision depends on both 75 and o, because they determine
the biomarkers’ signal-to-noise ratio. Equation (1.16) shows the posterior mean of ¢; is a
weighted average of the prior at that period, the signal provided by health, and the signal
provided by the biomarker information. The weights depend on how uncertain individuals
are to begin with, and on the precision of the information provided by each signal. Thus, to
predict beliefs &-t and survival expectations plivel0;;, a key issue is to measure the precision
of the additional signal.

To measure that precision, I use the biomarker experiment in the spirit of Todd and
Wolpin (2006). That is, to predict beliefs of group 1, I use parameters estimated using
data from future waves of group 2. Specifically, I want to predict beliefs when biomarker
information was first introduced between waves 8 and 9. By wave 8, only group 1 had their
blood collected, and by wave 9, only group 1 had their biomarker information available as
a second signal. I estimate the parameters governing the precision of that second signal,
using individuals from group 2. They had their blood collected for the first time in wave 9,
and they received their biomarker information before wave 10. Hence, I use their biomarker
information and their survival expectations in waves 9 and 10 to estimate the parameters
of the additional signal using simulated method of moments.** Using those parameters, I
predict beliefs and survival expectations for group 1 in wave 9 (no second signal was available
yet in wave 8). The randomness in the selection of the groups implies the parameters
recovered by looking at group 2 must also represent the parameters governing the biomarker

signal for group 1.

4Tn an alternative version, I use a maximum likelihood approach to jointly estimate health and biomarker
results as a function of slope heterogeneity §;. I then use those parameters to predict slope beliefs and
survival expectations. Under this alternative approach, I obtain qualitatively the same results as the ones
from using SMM.
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Table 1.10: Predicted survival expectations in a model with health and blood glucose as
signals

Number of Predicted survival expectations

observations wave 8 wave 9 wave 9 - wave 8

Control (group 2) 4,852 45.8 45.4 -0.3
Treated (group 1) 5,357 44.8 44.9 0.1
Treated with bad blood glucose 552 39.1 38.5 -0.5
Treated with good blood glucose 3,649 46.0 46.3 0.3
Treated no blood glucose 1,156 43.8 43.7 -0.2

Note: The sample consists of N = 10,209 individuals with non-proxy interviews who are at least
50 years old in wave 8 and who provide a valid answer to plivelQ;, in waves 8 and 9. Survival
expectations are predicted from a model with one signal for the control group (health) and two
signals for the treated group (health and blood-glucose results). These two signals are assumed to
be independent conditional on individual heterogeneity. The parameters determining the strength
of blood glucose as a signal of §; come from an estimation using future values of the control group
(waves 9 and 10)

The overall results on survival expectations by group are presented in Table 1.10. Ac-
cording to these results, the learning model suggests that by having the additional signal on
health, group 1 increases their survival expectations between waves 8 and 9 by 0.4 percent-
ages points more than the control group. This change in survival expectations is positive
but negligible, consistent with the results in Table 1.9. Thus, though a valid signal for
health profiles, biomarker results are only a small signal, and not enough to shift beliefs and

significantly affect decisions.

1.9 Conclusion

This paper documents individual-level heterogeneity in health dynamics among older
adults and studies how individuals’ beliefs about their own health dynamics affect their

working decisions. In the first part of the paper, I show evidence that health dynamics are
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indeed heterogeneous. In particular, I show health is heterogeneous in the way it changes
with age and that this heterogeneity helps explain the increasing variance of health with age,
a pattern observed in the population but mostly ignored by traditional models of health.
Motivated by this evidence, I turn to the question of how much individuals know about
their own health profiles. I develop a Bayesian learning model in which individuals have
beliefs about their own health profiles and update those beliefs as they see their health
changing with age. Leveraging data on subjective survival expectations, I find individuals
are uncertain and are negatively biased; that is, on average, they believe their health will
deteriorate faster than the average rate in the population.

Using the results from the learning model, I infer individuals’ beliefs about their own
health profiles. In an economic model with heterogeneous and uncertain health dynamics,
those beliefs are inputs in the policy rule for labor participation. I flexibly estimate this policy
rule, using a neural-network approach. I find beliefs matter for working decisions, and that
expecting health to deteriorate more slowly is associated with larger probabilities of working.
Furthermore, for individuals in their 50s who are not working, an interaction exists between
beliefs and health, suggesting adjustment costs of finding a job are important in individuals’
decisions regarding going back to work. The framework and data-driven estimation approach
imply this result is not a consequence of any additional structure imposed on the economic
model. In an additional exercise, applying machine-learning tools to also predict assets and
health insurance, I simulate the effects on participation over time of eliminating the initial
bias in beliefs. I find labor-force participation would increase by up to 2 percentage points,
an effect that lasts beyond traditional retirement ages. Taken together, these results suggest
room exists for policies to affect labor-participation decisions by shifting individuals’ beliefs
about their future health.

Thus, in the last part of the paper, I look at one such policy: the provision of informa-

tion on blood-glucose and cholesterol levels. I take advantage of the randomization of the
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collection and provision of such information, and analyze the results using a reduced-form
approach and a model-based approach. The results show the additional information has
negligible effects on survival expectations and working decisions. This negligible result is
due to a small effect of the information on beliefs, as shown by the model. Nevertheless, the
fact that this particular information policy does not have an effect on beliefs and working
decisions of older adults does not mean other policies could not have an effect. Such poli-
cies could include information policies aimed at correcting bias in beliefs about aggregate
values in the population, or more individualized information.*! In the case of the HRS, poli-
cies could include providing information about biomarkers on kidney function and systemic
inflammation, as well as genetic information, all already collected in the survey but with
results not shared with individuals. As a final note of caution, note this paper assumes no
endogenous acquisition of health information (e.g., through preventive care), an interesting

question that is left for future research.

4Information policies have been studied in other settings, for example, Delavande and Kohler (2015) and
Bates (2020). Information policies have also been studied in the context of surveys, for example, Armona
et al. (2018) and Wiswall and Zafar (2014).
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APPENDICES

A Estimation of the summary measure of health h;

Let M;;; be the j-th observed measure of unobserved health h;, j = 1,...11, described in

Table 1.1. I assume a linear factor model structure, that is,

M;je = pj + Ajhis + E?jta (18)

h
ijt

where €}, is a measurement error. The coefficients p; are called intercepts and the coeffi-
cients \; are called loadings. I assume these coefficients are invariant in age ¢. Given that
h; is not directly measured, its location and scale are not identified without further assump-
tions. Hence, I fix the intercept and loading of one of the measures, the number of chronic
conditions!, to 0 and 1 respectively.

I use confirmatory factor analysis (CFA) to estimate (18), assuming classical measure-
ment errors that are normally distributed. Note, however, the model is identified under
weaker assumptions (see Cunha and Heckman (2008)). Estimates of the latent health h;
are obtained by minimizing the generalized sum of squares deviations of the factor from
their true values. The resulting formula can also be justified as an empirical Bayes estimator
of the factor given a prior normal distribution (Kolenikov (2009)). Table A1 presents the
results. The table shows all coefficients have the expected sign and are significant at 1%.
The table also shows the percentage of the variance of each measure M;;; that is explained
by health h;. Variables regarding difficulties in ADLs have the higher R-squared, consistent

with its common use in the assignment of many health-related benefits, such as long-term

care services provided by Medicaid. The values of h; predicted are highly correlated with

'For the measurement system, I define the variable as 7 minus the number of chronic conditions, so larger
values represent better health.
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Table Al: CFA results of health measurement

Measure of health Coefficients R-squared
Intercept Loading
Number of chronic conditions(® 0 1 0.29
Self-assessed health 8.188 -1.027 0.44
Body mass index 37.278 -1.812 0.05
Eyesight in general 5.710 -0.549 0.15
Eyesight at a distance 5.177 -0.502 0.13
Eyesight up close 5.465 -0.523 0.13
Hearing 4.830 -0.424 0.08
Pain 4.792 -0.802 0.36
Difficulties in ADLs regarding mobility 9.398 -1.598 0.64
Difficulties in ADLs of large muscles 8.964 -1.475 0.63
Difficulties in other ADLs 3.812 -0.654 0.50

Note: (a) The first measure corresponds to 7 minus the number of chronic conditions,
hence, larger values represent better health. For this variable, the intercept and loading
are fixed to 0 and 1, respectively. All other coefficients are significant at 1%.

the values predicted by using principal component analysis instead.
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B MLE results for health and survival

Consider the following health and survival processes,

hit = phi—1+ i+ 0 - t+7 12+ e

Si = I{yhiu—1 + o+ 0 +13-t-a;+ta-t-0; +0g+ 61 -t + 052 + 1i }Si1,
where €;; is i.i.d N(0,0?) and n; is i.i.d. N(0,1), independent of ¢;. Furthermore,

/ 2
o Po + VaTi + Wallio Oh  $0a0s
Ty, hig ~ N )

/ 2
51' Us + VsZ; + w(;hio ¢0a0'5 O

Let © be the set of parameters of this random-coefficients model. The likelihood corresponds

to

N [ele) [e’e) T;
m@aX;lOg(/_oo/_ HP<hitaSit|hit—l>Sit—l = 1,931',04,5) '¢(a75|$i,hi0)dad5>,

0 t=1

where,

P (hit, Sit = Lhi—1, Siu—1 = 1, 24,0, 8) = ¢(hiy — phy—y —ax =6 -t — 7 - t%)
~(I)("}/hit71 +L10&i+L2(5i+L3 't'ai+b4 t(51+90+61 t—|—(9/2331)
P(Si = Olhiy—1, Si1 = 1,25, 0,08) =

1—(D(Vhit,l+L10&i—|—1,2(5i+L3't‘&i+b4‘t'5i+90+91't—i-eél'l’).

Table B1 presents the MLE results of estimating these equations under 3 different set of
assumptions. Columns (3) and (4) present the main results. Columns (1) and (2) present the

results of an MLE estimation of health only, ignoring survival. Columns (5) and (6) present
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the results of an MLE estimation of health and survival, but assuming no heterogeneity in
health slopes, that is, 6, = §'. Thus, for these columns, 05 = ¢ = ws = 1o = 14 = 0. Note
also the equation for survival includes direct effects of the individual heterogeneity (ay, d;),
hence it allows us to test for these direct effects. The results imply these direct effects are

not (jointly) significant; hence, survival does not provide additional information on ¢;.

The model allows for differences in slopes by observed heterogeneity, but it does not allow for differences
in slopes by unobserved heterogeneity.
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Table B1: MLE results on health and survival under different assumptions

Heterogeneous slopes Heterogeneous slopes Homogeneous slopes
without survival eq with survival eq with survival eq

Coefficient  Pvalue Coeflicient Pvalue Coefficient Pvalue

(1) (2) (3) (4) (5) (6)

P 0.225 0.000 0.223 0.000 0.366 0.000
T 0.001 0.087 0.001 0.119 0.001 0.108
Lo 0.968 0.000 0.955 0.000 0.781 0.000
Va female -0.029 0.132 -0.029 0.131 -0.024 0.163
Vawhite 0.026 0.338 0.027 0.335 0.018 0.458
Vahispanic 0.004 0.909 0.005 0.889 -0.001 0.973
Valess HS -0.134 0.000 -0.134 0.000 -0.120 0.000
Wa 0.599 0.000 0.603 0.000 0.492 0.000
1bs -0.060 0.012 -0.057 0.018 -0.051 0.000
Vs female 0.006 0.146 0.006 0.136 0.005 0.198
Vswhite 0.015 0.007 0.015 0.008 0.013 0.011
Vshispanic 0.010 0.196 0.010 0.199 0.006 0.390
USless_HS -0.003 0.677 -0.003 0.624 0.001 0.896
Ws 0.000 0.956 0.000 0.962

Oq 0.235 0.000 0.235 0.000 0.212 0.000
o 0.042 0.000 0.043 0.000

0] -0.030 0.741 -0.033 0.714

O 0.266 0.000 0.266 0.000 0.285 0.000
5 0.583 0.001 0.640 0.000
L -0.277 0.334 -0.422 0.125
Lo 0.044 0.986

L3 0.029 0.306 0.036 0.287
Ly 0.241 0.601

0o 0.529 0.326 0.514 0.336
0, -0.178 0.136 -0.193 0.092
05 remale 0.259 0.002 0.255 0.002
Oowhite 0.019 0.847 0.029 0.758
Oshispanic 0.317 0.079 0.311 0.078
Oatess 1S -0.106 0.305 -0.114 0.267
N alive observations 8,901 8,901 8,901

N dead observations 0 112 112

N individuals 1,671 1,671 1,671

-LL 2,498.6 3,027.6 3,067.6

Note: Standard errors are clustered at the individual level.
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C Robustness: MLE results for self-assessed health

Let hi A denote the 1 to 5 self-assessed health (SAH) measure, rescaled so that larger

values represent better health. In this section, I estimate a model similar to the main model

in the text, but using h34# instead of the summary measure h;. Let EiAH be the latent

health variable for A4, Consider the following equations,

RSAH — ppSAH L 465t 7 P+ ey, e ~N(0,1), t>1

Sit = ]l{f)/hit—l + 00 + ‘91 -+ Qél’z + nit}Sit—lu Nit i.1.d. N(O, 1)
( ~
1 if hSAH <

2 if  0<hSAT <O,

WM = L3 it 0, < hSAH < O,

4 if O3 < h5AT <O,

5 if Oy < h3AH
with individual-level heterogeneity (o, d;),

/ 2
o Mo + V0T + wWalio oL 00,05

T hig ~ N )
2
(Si s + V:;J?i + w(;hio ¢0a0'5 O

This system of equations is similar to the system of equations in the main text, but replace
h;: for discrete hiAH .

Table C1 presents the MLE results of estimating these equations. The table shows that
in this case too there is evidence of slope heterogeneity, that is, o5 > 0. Thus, heterogeneity

in health dynamics is robust to using SAH instead of the summary measure of health used

in the main analysis.
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Table C1: MLE results for SAH with and without a survival equation

Without survival eq ~ With survival eq

Coefficient Pvalue Coefficient Pvalue

p 0.230 0.000 0.230 0.000
T 0.012 0.000 0.012 0.000
Lo -1.168 0.000 -1.185 0.000
Va female -0.006 0.939 -0.005 0.951
Vawhite 0.236 0.010 0.242 0.009
Vahispanic -0.265 0.048 -0.266 0.047
Vedess HS -0.612 0.000 -0.603 0.000
We 1.148 0.000 1.151 0.000
s -0.057 0.158 -0.054 0.182
V5 female 0.030 0.085 0.029 0.089
Vswhite -0.008 0.696 -0.009 0.647
Vshispanic 0.060 0.040 0.060 0.040
Usless HS 0.020 0.378 0.019 0.406
Ws -0.043 0.000 -0.043 0.000
Ou 0.970 0.000 0.970 0.000
Os 0.137 0.000 0.137 0.000
[0) -0.258 0.004 -0.257 0.004
¥ 0.402 0.000
0o 1.371 0.000
0, -0.101 0.000
02 femae 0.164 0.043
Oowhite 0.034 0.711
Oanispanic 0.404 0.018
O2tess HS -0.076 0.457
O, 1.713 0.000 1.712 0.000
O3 — Oy 1.711 0.000 1.711 0.000
Oy — O3 2.062 0.000 2.063 0.000
N alive observations 8,901 8,901

N dead observations 0 112

N individuals 1,671 1,671

-LL 8,985.2 9,502.0

Note: Standard errors are clustered at the individual level.
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D Robustness: MLE with heteroskedastic errors ¢;

In this appendix, I estimate the health and survival processes defined in equations (1.9),
(1.10) and (1.11), except that I allow for heterokedastic errors in the health equation, such
that, Var(e;) = o2+t - o2. Table D1 presents the results of estimating these equations

by MLE. The table shows allowing for increasing variance of health shocks does not explain

away heterogeneity in health slopes 9;.
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Table D1: MLE results for health h; allowing for heteroskedastic error €;

Coeflicient Pvalue

P 0.225 0.000
T 0.001 0.088
Ha 0.961 0.000
Vafemale -0.03 0.122
Vawhite 0.027 0.330

Vahispanic 0.003 0.928
Valess_.HS -0.134 0.000

War 0.601 0.000
s -0.059 0.015
Vs female 0.006 0.139
V§white 0.015 0.008

Vshispanic 0.010 0.193
Vsless_HS -0.003 0.661

Ws 0.000 0.986
Oa 0.234 0.000
o5 0.042 0.000
o -0.025 0.776
O 0.266 0.000
Ot 0.000 1.000
g 0.494 0.000
to -0.103 0.707
0, -0.083 0.000
02 femae 0.244 0.005
Oowhite 0.025 0.793

Oonispanic  0.248  0.263
Oess s -0.096 0345

Note: Standard errors are clustered at the individual level.
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E Formula for plivel0;

Let s denote the reference age asked in plivel(;;. By definition,

s—1
plivelOit = ]P(st = 1|ta) = H]P(Sil-l—l = 1‘Szl = 1,9#)
=t
s—1
= H]P('Yhil + 00+ 01(1 — 1) + 0525 + mig1 > 0[Qr),

=t

where
I—t—1 I—t—1 I—t—1
hi = p"h+ q Z p* +6; Z (I—k)p* + Z preia—r) -
k=0 k=0 k=0
known uvnder Q¢ unknowndeer it
Then,
My
P(Sig1 = 1Su = 1, Qi) = P(yhi + nip1 2 0[€%) = @ —73
Wy
where

I—t—1 l—t—1
My = ’Y<Plthit + oy Z pF + 3it (I — k)ﬂk) + 600+ 01(1 — 1) + b5,
k=0 k=0
l—t—1

I—t—1 2
Wa = Pot( 30 (=0 ) oot 3 g%
k=

k=0

Note that M,;; and Wy are functions of h;, ay, Sit, 62, r; and parameters of the model.

Hence,

s—1

M; . s

plivelOy = H‘P< 172):pl“}eloit(aiuhita(sz’tuO—tQ?xi)'
= \Wy
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Furthermore, beliefs at age ¢ are a function of prior beliefs at age 50 (¢ = 0), the hetero-
geneity in levels a;, and the health history up to that point k! (and parameters of the model).
The exact formulas come from applying the Bayesian updating equations recursively. First,

for the posterior variance,

1 1 12 1 1 1
= TR W
R -l b A=)

We can also rewrite the Bayesian updating equation for the posterior mean as

~

6it = (1 — th)Sit—l —|— Kt<hit — phit—l — O — Tt2) (19)

where K; = f—f Moreover, K; satisfies that (1 — tK) K1 = %Kt. Using this property

and equation (19) recursively, we can write

t

t
l
Oit U (1-1K)+ ; (b = phay = a; = 71%)
Noting that K; is a function of 62, ¢ and ¢, we conclude

plivelOy; = plivelO;(ay, hi, (520,00,:&)
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F Proof of proposition 1.5.1

Identification of \ with ideal data

We could identify A with longitudinal information on beliefs about survival rates!,
bsrir = P(Sirp1 = 1|Sir = 1, Qi) = P(vhir + Nirr1 > 0]Q4).

From the equation for health (1.9),

r—t—1 r—t—1 r—t—1

hir: Tthzt—f—azzp—'—ézr_ p+zp€zrk

Hence,
r—t—1 r—t—1 r—t—1 2 r—t—1
hir| Sl ~ N(Pr_thz‘t tai Y o 0w ) (r— k) 5'3( (r— kf)ﬂk> +o? P%)
k=0 k=0 k=0 k=0
Defining
1 r—t—1 2 r—t—1
Wy = 720t< (r— k‘)ﬂ’“) YRoR Y PPl
v k=0 k=0
we can write
Ay @ (bsrirr1,) = w1, P (bsTirgay) — wur @ (bsriry)
r—t—2
= Pr_t_l (hit—i-l — o — 0 (t+ 1)) dit41 — Z k (20)
k=0

'For ease of notation, in this section I ignore the quadratic term for age in the health equation and the
demographic terms in the survival equation.
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We denote individual i’s perceived innovation in health at period ¢ as
Gt = hit = E(hi|Qi—1) = hit — phig—1 — a; — 01 -

and note that the Bayesian updating formulas can be rewritten as

~

o = Ou_1 + K- Gy

62 = (1-K,-t)62,

t

~2 .9
011 t _ tO’t

BT = o K; <1. Then, we can write equation (20) as

where K; =

r—t—2
Ay @ (bsriyr,) = <l)rt1 + K Z (r— k)/)k) Git41
k=0

r—t—2
= <Prt1 + K Z (r— /f)/)k) (Ritr1 — w1 @7 (bsTit41))
k=0

Then, for r =t + 2, conditional on h;, bsry1 and bsry o (belonging to Qy),

(0 + (t+2) K1)

COU(ACI)_leTitJrltJrQ, Ahit+1) = 'Var(AhitJrl)
N Wit 11+2
C
Finally,
Cy 1 [(t+2)(t+1)057, 1 ,062, 62,
o — o (t+2)' = t42)(t+ 1)
o\ wt2+1t+2{ o? BN Wit 1442 2wt+1t+2( +2) A p+(t+2)(t+1) =
t+2 067, [(t+1) ., 2., 2 oy 1 Gt
B t+2 1/7%) = 5(t+2 t42)(t + 1)L
W} 1ee O o2 (Gt +2)" + 0. +1/77) 2( +2)p+(t+2)(t+1) 2
t+2 067, [(t+1) , , t+1 1
- t+2 t+1)— (t+2 >0
Wi OA 202 Fualt 2]+ Y202 +\( Y 2( i >p, N

>0
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G Strategy for simulating survival expectations plivel0;;

To estimate the bias b and uncertainty A parameters, I use simulated method of moments
comparing empirical moments of observed plivel0;; with simulated moments of plivel0;. The
simulated moments come from plivelO; being a function of individual-level heterogeneity
«;, health history hf, initial beliefs (5,»0, 62) and demographic characteristics z;. The exact
expression of this function is derived in appendix E. In this expression, a; and di0 are random
variables unobserved by the econometrician, but with a know distribution, given b and .

Let ty denote the age an individual is first observed in the data, and let T" denote the age
an individual is last observed in the data. These values are individual-specific, but I omit
the index ¢ for ease of notation. The simulation strategy depends on the age an individual

is first observe, ty.

Case ty = 0, individuals first observed in data at age 50

In this case, the health history relevant for beliefs, that is, the health history starting at 50

years old is fully observed. Then, the simulation strategy is straightforward:
1. Draw (o, d;) conditional on hyg, ... h; (which follows a known normal distribution).
2. For a given b and A,

(a) Set 62 = N\?o2.

(b) Draw 50 conditional in a;, 8;, hip (which follows a known normal distribution given

b and \).

(¢) Use ay, hT, i, 0j0, and 62 to set plivel0; (according to the formula in section E).
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Case ty > 0, individuals first observed in data at age older than 50

In this case, we only observe h;,, ... h;p. Moreover, the prior mean &to at that point is not
random conditional on b and A, because survival up to the point depends on past health,

and therefore on health profiles. Instead, it satisfies,

to—1
2 1
5ito = Kto(/\) |: - ptohio — Oy Z pk + 6@ <_ l2 - (tO - k)/)k)
to
k=0 =1 k=1
1 = .02 Ky (N
— Ty + Tio— + | hiy, — to — k)2 p" P L 21
pLin + Qto‘l‘(to 72(0 ),0)}%— 032,72 I (21)
k=0 s
where
to—1 to—1

to—1—1
Th = E p° €il, Tio = E leq
=1 =1

are random variables, and Ky, () is constant across individuals depending on both A and .

According to this expression,

5it0 = 5it0 (ZLZ'OJ a;, 6i7 7—%17 ﬂQu 5@97 hito; )\)

unobserved by
the econometrician

Hence, we can simulate &to by simulating (hjo, «;, d;, Ti1, Tie, 51-0) and using (21) to define
5it0. However, being alive at to further restricts the distribution of (hs, i, 0;, i, Tio). The
distribution of this vector conditional on observed health history and conditional on surviving

up to o has no closed-form solution. Hence, I use Markov chain Monte Carlo (MCMC) to

get these conditional draws. In this case, the simulation strategy is the following:
1. Draw (hjo, v, 04, Ti1, T;2) conditional on hyy ... hir, Sy, = 1 by MCMC.

2. For a given b and A,
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(a) Set 67 = 0*(N\?, 03, t) (defined by the Bayesian updating equation for the poste-

rior variance).

(b) Draw &0 conditional on «;,d;, hyy (which follows a known normal distribution

given b and \).
(c) Use b0 and (hio, o, 65, Ti1, Tio) to construct 5it0 according to (21).
(d) Use ay, hitg, - - - hir, T, Sito, and &fo to set plivel0;; (according to a modification

of the formula in section E, starting at ty).

Overall, I target moments of averages across time for sub samples of individuals with

different values of ¢.
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H Probit likelihood and results

The working decision of individual ¢ at age t depends on the information he has at
that moment, including his age ¢, past participation p;_1, past health h;_;, beliefs about
health slopes (5Z~t_1, 62 ;) and individual-level heterogeneity «;. His decision also depends on
his assets a;;_1, past labor income w;;_1, and demographic variables, all of which I denote

together as x;;_1.

P(pi = 1|Qu—1) = @ (50 + Boet + Bihi—1 + \5251171 + 53@2_1 + 540@ +0B5pit—1 + 565%1)

= o (5’@11)

unobserved to the
Conditional on €2;_1, the likelihood of p;; is

econometrician
Dit 1—pit
Lft = o (5/91'1&1) : <1 - (5’@11))

Let to be the age at which individual 7 is first observed in the data!. Then, according to
the economic framework discussed in section 1.2, the likelihood of the vector (pitg+1, - - - pir)

.. : : ~92 ~92 .
conditional on py, and (to, T hity, - - - hiT\0itgs - - - 07,07, 5 - - - OF, 0, Tty - - . Tyr) 18
T
C _ C
L = | | L
t=to+1

I address the initial condition problem by modeling the initial condition p;, as a function of

~

(to, hity, 0i0, G0, 4, Tip)

P(piw, =1) = @ (70 +Yotto + Y1l + 72&‘1:0 + 73@20 + Ya0y + %‘%to) = f/fto

!'Note tg and T are individual specific, though I omit that index for ease of notation.
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This last equation is not derived from the economic model, but it is assumed as a way of
approximating the conditional density of p;,,. Then, the likelihood of observing (py,, - . . pir),

.. < < A~ ~92 . .
conditional on (to, T, hity, - - - hiT,0ity - - - OiTy Oty - - - Oy, Tty - - - Tir) 18 given by

3 T
Lf - Lfto H Lft

t=to+1

However, this likelihood is conditional on variables that are unobserved by the econome-
trician, namely, slopes beliefs {5it, &tz}tT:to and heterogeneity in health levels o;. These time-
varying unobserved variables can be written as a function of time-varying observed health
(Ritg - - - hi) and time-invariant unobserved variables, namely, beliefs at to (9, ;) and a;.
Hence, I write instead the likelihood of (pj,, - . . pir), conditional on (¢, T, hi, - - - hir, plivel0y,,
... plivelO;r, Ty, - . . 1) (observed by the econometrician), integrating out this time-invariant

unobserved heterogeneity,

Li = \/Lf . f(Oéi, Sito |t(), T, hitoa Ce hiT,pliUelOitO .. .pliUGIOiT, xitoa Ce I‘iT)

where T used that 67 is constant for individuals of the same age. Note I added in the

conditional set plivelOyy, ... plivelO;r. These variables do not enter the economic model,
and hence the probability of working, but they provide information on individuals slopes
beliefs. This formulation assumes no other unobserved heterogeneity at the i-level.

The distribution within the integral has no closed form solution, given that surviving up to
to adds additional restrictions on the distribution of the underlying individual heterogeneity.
Hence, in practice, I approximate this integral using draws from this distribution gotten by
Markov chain Monte Carlo (MCMC). Tables H1 and H2 present the full set of results of this
integrated probit. They also include a specification using survival expectations plivelO;_;

A

instead of slope beliefs (01,52 ;), and a specification using both, survival expectations and
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slope beliefs.

Table H1: Probit results on probability of working: main equation

(1) (2) (3)

Coefficient SE Coefficient SE Coeflicient SE

Main equation

intercept 0564 (0.294)  -2445  (0.098)  -0.693  (0.297
t—1 0.196  (0.016)  -0.082  (0.003)  -0.192  (0.016
work 2.032  (0.018) 2031  (0.019) 2034  (0.019
health 0.160  (0.024) 0261  (0.033)  0.175  (0.046
educ LHS 0.032  (0.020)  -0.034  (0.021)  -0.032  (0.022
MS married 0.030  (0.040)  -0.014  (0.041)  -0.012  (0.041
MS divorce 0.053  (0.043)  0.064  (0.044)  0.069  (0.045
MS widow 0.012  (0.045)  0.029  (0.046)  0.028  (0.046
Q1 income 0283 (0.026)  -0.294  (0.027)  -0.290  (0.027
Q2 income 0.165  (0.022)  -0.168  (0.023)  -0.165  (0.023
Q3 income 0.105  (0.020)  -0.112  (0.020)  -0.108  (0.020
Q1 wealth 0.176  (0.024)  0.181  (0.025)  0.187  (0.025
Q2 wealth 0.112  (0.022)  0.112  (0.022)  0.117  (0.022
Q3 wealth 0.027  (0.020)  0.025  (0.021)  0.027  (0.021
female -0.037  (0.015)  -0.048  (0.016) -0.036  (0.016
a; 0244  (0.036)  0.074  (0.046)  0.243  (0.075
Sit_1 1.933  (0.249) 1.903  (0.499
62 /o2 13.854  (2.048) -13.335  (2.102
plivelOy_1 0114  (0.031)  0.007  (0.043

Note: Standard errors are clustered at the individual level.
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Table H2: Probit results on probability of working: initial condition

(1) (2) (3)

Coefficient SE Coefficient SE Coefficient SE

Initial condition

intercept 2840  (0.417)  -1.583  (0.138)  -2.779  (0.419
to -0.107  (0.022)  -0.163  (0.004)  -0.106  (0.022
health 0.481  (0.040)  0.549  (0.058)  0.448  (0.083
educ LHS 0.059  (0.032)  -0.040  (0.033)  -0.038  (0.033
MS married 0276 (0.063)  -0.297  (0.063)  -0.288  (0.063
MS divorce 0.055  (0.068)  0.045  (0.068)  0.051  (0.069
MS widow 0.023  (0.072)  0.008  (0.072)  0.012  (0.073
Q1 income 1201 (0.045)  -1.227  (0.045)  -1.218  (0.046
Q2 income 0.677  (0.039)  -0.708  (0.039)  -0.703  (0.039
Q3 income 0413 (0.035)  -0.426  (0.035)  -0.421  (0.035
Q1 wealth 0.709  (0.043)  0.695  (0.043)  0.703  (0.044
Q2 wealth 0.512  (0.039)  0.507  (0.039)  0.513  (0.039
Q3 wealth 0249  (0.037) 0253  (0.037)  0.255  (0.037
female 0.09  (0.025)  -0.097  (0.026) -0.079  (0.026
a; 0.200  (0.057)  0.057  (0.076)  0.249  (0.126
Oitg 1473 (0.383) 2.238  (0.788
&2 | 8775 (2.992) 0279  (3.081
plivelOy, -0.016  (0.047)  -0.135  (0.065

Note: Standard errors are clustered at the individual level.
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I Neural network details

A neural network is comprised of units arranged into layers: an input layer, hidden layers,
and an output layer. The units of the first layers are the inputs or observed variables of the
problem. In each subsequent layer, units are a transformation of a linear combination of the
units in the previous layer. The weights in the linear combinations are chosen to minimize
a loss function.

For a binary outcome p, the output layer has 2 units. Let V; and V; denote last layer’s

units pre-transformation (as non-linear functions of the inputs). The transformation at the

last layer corresponds to s; = ﬁ, j = 0,1 (softmax activation function for 2 categories)

and the loss function (cross-entropy) corresponds to

_ Z {]l(p = O)log(so) + Il(p - 1)[09(81)}-

obs

Hence, a neural network for a binary outcome is a generalization of a logit with a flexible
non-linear index.

This flexibility, however, implies that the optimization problem is non-convex and may
have multiple local minima, so a few techniques are usually applied: weight regularization,
ensemble of results from multiple starting values, and search of hyperparameters. The algo-
rithm uses gradient descent and back propagation to find the weights in an efficient and fast
way.

In this paper, I apply neural networks to panel data
max Z log (]P(pit ]xlt))
it

The inputs x;; are state variables in the Bellman equation, €2;;_;. However, some of the
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inputs are unobserved latent variables: slope beliefs (d;_1,62 ;) and heterogeneity in health
levels «;. Conditional on health history hf, these latent variables can be subsumed in time-
invariant unobserved (q;, 5,-0) = n;, with n; included in x;.

The objective is to maximize the log likelihood after integrating out this unobserved and

time-invariant heterogeneity

maleog/H]P(pit\l'z’t)f(m)dm

which is a difficult object to work with. Hence, I use instead a key insight from the EM-

algorithm, that is,

argmax Y log /P(pfle;(?)f(ni)dni =argmaXZ/loglP(piTkE?;@)f(m|pz~T;9) dn; (22)
0 ; 0 - ————

unknown
posterior

and solve this problem iteratively: given 64

1. Get draws of 7; from the posterior distribution f(n;|p!;6x_1) by MCMC

2. Estimate 6, by using a neural network approach in the augmented data

max Z Z Z LogP (pit| i)

i draws t

corresponding to an approximation of the right-hand side of equation (22)

As mentioned before, this iterative approach is used as a convenient implementation, but
given the lack of unique solution to the problem there is no convergence result. As a starting

T

T plive10T), which should already incorporate

point, I use the posterior distribution f(n;|h
a substantial amount of information about 7;. The results presented here confirm that
intuition: after 5 iterations the results are not qualitatively different.

For estimation, I perform the following steps:
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Table I1: Hyperparameter space

Hyperparameter Space

Depth {3,5,8}

Width (3,5,8)

Regularization Ly : {1e715 1e71% 1e7°}
Ly : {le7 1e719 177}

Epochs up to 200

Table 12: Loss and accuracy at 5 iteration across 30 starting points

Mean Median SD

Loss 0.313  0.312 0.003
Accuracy 0.883  0.883  0.0005

1. I split the sample in an estimation and validation sample (80% and 20% of the indi-
viduals respectively). Using the estimation sample and one draw from the incomplete
prior, I estimate a neural network for several combinations of hyperparameters. Table

I1 show the hyperparameter space considered.

2. T choose the hyperparameters of the neural network as those that minimize the pre-
dicted loss in the validation sample. The values chosen are depth 3, width 3, L

15

regularization le™ ™, and 33 epochs.

3. Using that structure, I apply the iterative approach describe earlier 5 times. In each
iteration, I average the results across 30 starting points. The loss and accuracy of the

last iteration is presented in table 12.
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Figure 11: Observed [dashed] versus predicted [solid] probability of work at 5 iteration
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J Additional biomarker results

Besides the collection of a blood sample for measuring biomarkers, the change in collection
mode for the selected group also introduced more detailed measures of health, including
physical measures, and a saliva sample for DNA analysis. The physical measures include
blood pressure and pulse, lung function, hand grip strength, balance test, timed walk test,
height, weight, and waist circumference. These variables are valuable measures of health,
but I do not include them in this paper given that they are measured only every two waves.
Furthermore, their value as signals of health is limited given that, on one hand, they reflect
aspects of health already experienced by individuals in their everyday life, and on the other,
the results of the measures are immediately communicated to individuals before asking them

about their survival expectations.!

Distribution of in-person interviews

Table J1: Percentage of in-person interviews by wave and group

wave group 2 group 1

wave 5 8.7 8.3
wave 6 10.5 10.8
wave 7 75.7 74.2
wave 8 17.8 94.5
wave 9 95.3 21.0

Note: The sample consists of N = 8,386 individuals with non-proxy interviews who are
at least 50 years old in wave 8, and who give a valid answer to plivel(O every wave between
waves 5 and 9.

'In that sense, part of what am denoting interview-mode effect could reflect differences in information given
by these results. I expect those effects to be low given that individuals experience most of them in their
everyday lives.
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Balance test

Table J2: Balance tests at wave 8

Mean per group Difference

Nobs. ¢g=2 ¢;,=1 coeff. p-value

female 8,386  .611 .608 .002 .819
age 8,386  68.8 68.6 A77 302
race: white 8,385  .875 .879 -.004 .543
race: black 8,385 .099 .096 .003 .661
race: other 8,385 .026 .025 .002 .658
hispanic 8,386  .045 .046 -.002 742
education: less than highschool 8,386  .199 183 .016 .058
education: highschool 8,386  .336 .345 -.008 425
education: some college 8,386  .227 228 -.001 933
education: college 8,386  .237 245 -.007 44
plivel( 8,386  47.6 48.9 -1.3 .057
number doctor visits 8,145  9.851 10.06  -.208 D71
diagnosis of HBP 8,382  .556 561 -.005 .668
diagnosis of heart condition 8,381 241 234 .007 437
diagnosis of stroke 8,382 075 .064 011 .05
medication for HBP 8,283  .547 547 0 967

medication for diabetes (oral meds) 8,335  .141 143 -.002 833
medication for diabetes (insulin) 8,335  .038 039  -.001 .731
medication for cholesterol 8,374 439 435 .004 .696
work 8,384  .323 336 -.013 197

Note: The sample consists of N = 8,386 individuals with non-proxy interviews who are at least 50
years old in wave 8, and who give a valid answer to plivel(O every wave between waves 5 and 9.

The 1.3 percentage-points difference in survival expectations between the two groups is
also captured in table 1.8, and as I mentioned before, I interpret it as caused by differences
in interview mode between those two groups, given that no significant differences are found

when the interview mode is also similar.
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Results distinguishing bad biomarkers results

I use the biomarker results of wave 8 to further distinguish group 1 in two subgroups:
individuals whose biomarker results are within normal levels (good results) and those whose

results are outside normal levels (bad results). Hence, I estimate the following equation

Yiw = 60 + Bldgi + ﬂdei + ﬂ?ﬂudw + 64wdgi : dw + B5dgi : dw : dbi + €iw (23)

where as before, d,, is a dummy for group 1 (those who get their blood collected in wave
8), and d,, are dummies for waves. The new variable dp, is a dummy for the subgroup of
individuals in group 1 that get bad results in any of the 3 tests. Receiving a bad results
corresponds to having a total cholesterol equal or above 240 mg/dL, HDL cholesterol below
40 mg/dL, or blood glucose hbAlc equal or above 6.4%. Note that in this equation, the
interpretation of the coefficients is not the same as in equation (1.15). For example, /3 is
now comparing the individuals in group 1 who get good results versus all individuals in
group 2, whether or not their (unobserved) test results are good or bad. Thus, f; is not
a fair comparison. Consequently, the interest in this equation lies not on the comparison
between groups 1 and 2, but on comparing the differences between group 1 individuals that

receive good versus bad results.

Table J3 presents the results of estimating this equation. The results suggest the infor-
mation contained on bad test results is at least partially known by individuals themselves,
as they have lower survival expectations even before receiving this information, and their

labor participation is also decreasing ahead of time.
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Table J3: Biomarkers experiment distinguishing bad vs good test results

Survival expectations Working decisions

plivel0;y, Diw
group 1 dg, -0.39 -0.01
group 1, bad results dp, -0.37 0.04%*
wave 6 dws -1.42%%* -0.Q7F**
wave 7 oy _1.50%** L0, 12%%
wave 8 dows -6.417%F* -0.16%%*
wave 9 dw9 -3.5 7Kk -0.20%**
group 1, wave 6 dg, - dus 0.58 0.01
group 1, wave 7 dg, - dur 0.15 0.02*
group 1, wave 8 dg; - dys 2.23%H* 0.02*
group 1, wave 9 dg, - dug -0.05 0.02
group 1, bad results, wave 6 d, - dy, - dus -1.25 -0.01
group 1, bad results, wave 7 dg, - dp, - duyr -1.75% -0.04**
group 1, bad results, wave 8 dg, - dp, - dys -1.94%* -0.05%**
group 1, bad results, wave 9 dg, - dy, - dwg -1.56 -0.03
Constant 53.97HH* 0.49%#*
Observations 41,930 41,923
R-squared 0.005 0.021
% of group 1 individuals with bad results 12.29 12.30

Note: Estimation results from equation (23). The sample consists of N = 8,386 individuals with
non-proxy interviews who are at least 50 years old in wave 8, and who give a valid answer to
plivel0;, every wave between waves 5 and 9. Of these, 7 observations do not have information on
Piw- Standard errors are clustered at the household level. *** p<0.01, ** p<0.05, * p<0.1

Correlation between biomarker results and unobserved slopes J;

In order for the biomarker results to be valid signals, they must be correlated with ¢;. I
checked this by restimating the equation of health dynamics allowing for the mean hetero-
geneity to depend on biomarker results. That is, I include binary variables indicating values

out of range, averaged across waves. Table J4 show that there is indeed this correlation.
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Table J4: MLE results of health dynamics including biomarker information

Coefficient Pvalue

p 0.189 0.000
v 0.002 0.057
O 0.264 0.000
Ho 4.450 0.000
Vafemale -0.128 0.000
Vawhite 0.108 0.002
Vahispanic 0.022 0.640
Valess.HS -0.354 0.000
Vacohortel -0.059 0.040
TaTotal_chol 0.170 0.000
TaHDL -0.030 0.467
TaHBP -0.161 0.001
s -0.053 0.000
Vs female 0.005 0.271
Vswhite 0.010 0.073
Vshispanic 0.008 0.326
Vsless_HS 0.003 0.579
V§cohortel 0.005 0.247
TS§Total_chol -0.005 0.396
TSHDL -0.010 0.076
TSHBP -0.028 0.000
O 0.442 0.000
o5 0.040 0.000
[0} -0.057 0.336
N observations 7,768

N individuals 1,344

-LL 4,223.2
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