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Abstract

This thesis is a compilation of three papers.

The Cayley–Salmon theorem implies the existence of a 27-sheeted covering space of the

parameter space of smooth cubic surfaces, marking each of the 27 lines on each surface. In

Chapter 2 we compute the rational cohomology of the total space of this cover, using the spectral

sequence in the method of simplicial resolution developed by Vassiliev. The covering map is

an isomorphism in cohomology (in fact of mixed Hodge structures) and the cohomology ring

is isomorphic to that of PGL(4,C). We derive as a consequence that over the finite field Fq

the average number of lines on a smooth cubic surface equals 1 (away from finitely many

characteristics); this average is 1+O(q−1/2) by a standard application of the Weil conjectures.

In Chapter 3 we compute the rational cohomology of the universal family of smooth cubic

surfaces using the same method of simplicial resolution. Modulo embedding, the universal

family has cohomology isomorphic to that of P2. It again follows that over the finite field Fq,

away from finitely many characteristics, the average number of points on a smooth cubic surface

is q2 + q+ 1.

In Chapter 4 we compute the distributions of various other markings on smooth cubic surfaces

defined over the finite field Fq, for example the distribution of pairs of points, ‘tritangents’ or

‘double sixes’. We also compute the (rational) cohomology of some of the associated bundles

and covers over complex numbers.
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Chapter 1

Introduction

The three following chapters are essentially independent; there is considerable overlap in the

background sections, but we consider this to be helpful in reading them in isolation, rather than

wasted space. They originally appeared as individual papers: [Das20c], [Das20b] and [Das20a]

respectively. Each chapter is about spaces of smooth cubic surfaces with certain markings, with

results on their cohomology over C and point counts over the finite field Fq. A brief summary

follows.

Let X3,3 be the parameter space of smooth degree 3 hypersurfaces in CP3. Vassiliev, in

[Vas99], showed that H∗(X3,3;Q) ∼= H∗(PGL(4,C);Q) (see Theorem 2.4 or Theorem 3.10

below). The proof works by first reducing the problem to studying the cohomology of the

complement Σ, that consists of singular cubic surfaces. A classification of the possible singular

loci of each cubic surface provides a stratification of this discriminant locus Σ. Vassiliev then

replaces Σ by its simplicial resolution, a simplicial space whose spaces of k-simplices for various

k are simpler moduli spaces of each class of singular loci. For instance, since a cubic surface

can be singular at a pair of points in P3, there is a contribution from the space UConf2P3

parametrizing such pairs.

Extending these methods, we look at spaces over X3,3 that correspond to additional geometric

markings on each cubic surface. In Chapter 2, we look at the 27-sheeted cover X3,3(1) of X3,3

corresponding to marking one of the 27 lines on each cubic surface, as given by the Cayley–

Salmon theorem. We prove (see Theorem 2.1, though the notation is different) that this cover
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has isomorphic rational cohomology to X3,3. The isomorphism in Theorem 2.1 preserves enough

structure that we can apply comparison theorems between H∗sing(X (C)) and H∗ét(X/Fq
) for a finite

field Fq and then the Grothendieck–Lefschetz trace formula to either side and obtain equivalent

answers. Thus we prove Corollary 2.7 establishing that the average number of lines over a

smooth cubic surface over Fq is 1 (possibly away from finitely many characteristics, though this

exception is eliminated in Theorem 4.1).

Similarly, let U3,3 denote the incidence variety of points and smooth cubic surfaces; this is a

fiber bundle over X3,3 whose fiber over the cubic surface S ∈ X3,3 is the set of points S ⊂ P3. In

Chapter 3, specifically Theorem 3.3, we compute the cohomology of this universal family.

A more straightforward application of the trace formula to individual cubic surfaces S shows

that the number of its Fq points #S(Fq) = q2 + tq+ 1 for some t ∈ {−2,−1,0,1,2,3,4,5,7}.
As a corollary of Theorem 3.3, we obtain in Theorem 3.2 that the average of #S(Fq) over

S ∈ X3,3(Fq) is q2 + q+ 1, i.e. the average of t is 1. However, not every t appears for every q;

see Theorem 3.1. Theorem 4.9 below establishes a much more refined version of Theorem 3.1

by determining the exact distribution of t for each q. The same Theorem 4.9 can be used to

also recover results of Loughran–Trepalin [LT18] that explore when some of these distributions

are 0 (i.e. for which q do there not exist smooth cubic surfaces with certain properties).

It is worth noting that analogues to Corollary 2.7, Theorem 3.2 or Theorem 4.9 that are

only asymptotic in q are often much easier to obtain, using standard arithmetic tools like the

Cebotarev density theorem or a more naïve application of the trace formula.

In Chapter 4 we look at more general markings. The monodromy group of the cover

X3,3(1)→ X3,3 is isomorphic to W (E6), the Weyl group of type E6. In other words, the associated

Galois cover, which we denote by X3,3(27), has deck group W (E6), which acts on the 27 lines

on S ∈ X3,3 (i.e. the fiber over S of the map X3,3(1)→ X3,3). The intermediate cover X3,3(1)

corresponds to the subgroup stabilizing a given line. By the Galois correspondence, other

subgroups of W (E6) correspond to other intermediate covers, many of which are the parameter

spaces of cubic surfaces with markings of classically studied patterns of lines (e.g. “tritangents”
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or “double sixes”). For each of these there is an enumerative question over Fq, analogous

to Corollary 2.7. Refining this question, we can also ask for the exact distribution instead of

just the average. Using the computation of H∗(X3,3(27);Q) by Bergvall–Gounelas [BG19], we

determine in Theorem 4.9 all of these distributions and in Theorem 4.6 the Betti numbers of

these covers.

Further, we can choose to mark a pattern of lines as above in addition to some number of

points on each cubic surface to produce more bundles over X3,3 by combining the construc-

tions of U3,3 (and its fiberwise products) along with X3,3(27) (see Section 4.2 for the details).

Theorem 4.9 computes the associated distribution for each of these bundles and Theorem 4.6

computes the rational cohomology in many of the cases.
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Chapter 2

The space of cubic surfaces equipped with

a line

2.1 Introduction

One of the first theorems of modern algebraic geometry and specifically enumerative geometry

is the Cayley–Salmon theorem [Cay49]. This classical theorem states that every smooth cubic

surface (over an algebraically closed field, in particular C) contains exactly 27 lines. A cubic

(hyper)surface in P3 = CP3 is the zero set S = V(F) of a homogeneous polynomial F of degree

3 in 4 variables. The surface S is singular (i.e. not smooth) if and only if the 20 coefficients of F

are a zero of a discriminant polynomial ∆ : C20→ C. Thus the space of smooth cubic surfaces

is an open locus M = M3,3 := P19 \ V(∆). The Cayley–Salmon theorem can be reinterpreted

as a covering map π : eM → M , where eM is the incidence variety of lines and smooth cubic

surfaces (see (2.1) and the preceding discussion for precise definitions). The fiber π−1(S) over

S ∈ M is the set of 27 lines on S.

The automorphism group of P3 is PGL(4,C) and this group acts on lines and cubic surfaces,

preserving smoothness. In particular the covering map π : eM → M is PGL(4,C)-equivariant.

It was shown by Vassiliev (in [Vas99]) that the space M has the same rational cohomology as

PGL(4,C), and it follows from the results of Peters–Steenbrink ([PS03]) that the orbit map

given by g 7→ g(S0) induces an isomorphism for any choice of S0 ∈ M (see Theorem 2.4). See
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also [Tom14].

The main result of this chapter is that the covering space eM also has the same rational

cohomology.

Theorem 2.1. For a choice (S0, L0) ∈ eM, the orbit map PGL(4,C)→ eM given by g 7→ g(S0, L0)

induces an isomorphism

H∗( eM ;Q) ∼−→ H∗(PGL(4,C);Q)∼=Q[a3, a5, a7]/(a
2
3, a2

5, a2
7) ,

where ai ∈ H i(PGL(4,C);Q). Since the composition PGL(4,C) → eM
π−→ M also induces an

isomorphism on H∗(_;Q), the map

π∗ : H∗(M ;Q)→ H∗( eM ;Q)

is an isomorphism. Since the orbit map and π are algebraic, the isomorphisms respect mixed Hodge

structures.

Remark 2.2. In particular, Hk( eM ;Q) is pure of Tate type; the generator a2k−1 is of Hodge

bidegree (k, k).

The main tool in our proof of Theorem 2.1 is simplicial resolution à la Vassiliev. However

the introduction of a line significantly increases the combinatorics of the casework. We devote

all of Section 2.3 to this computation, while Section 2.2.2 contains the rest of the proof. The

approach is similar to the one developed in [BT07].

2.1.1 Applications: moduli space, representations of W (E6) and point

counts

Before presenting a proof of Theorem 2.1, which we postpone to Section 2.2.2 and the particu-

larly tedious details further to Section 2.3, we describe a few applications. All of the corollaries

in this section are corollaries to Theorem 2.1.
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Cohomology of moduli spaces

The map π : eM → M is PGL(4,C) equivariant and each orbit (in either M or eM) is closed

(see e.g. [ACT02]). Thus passing to the geometric quotient we get a covering map

H3,3(1)→H3,3 ,

where

H3,3 = M/PGL(4,C)

is the moduli space of smooth cubic surfaces and

H3,3(1) = eM/PGL(4,C)

is the moduli space of cubic surfaces equipped with a line. Note that both H3,3 and H3,3(1) are

coarse moduli spaces. For example the Fermat cubic defined by x3+ y3+ z3+w3 equipped with

the line {x = y, z = w} has non-trivial (but finite) stabilizer in PGL(4,C).

Peters and Steenbrink show that a generalization of the Leray–Hirsch theorem ([PS03,

Theorem 2]) applies to the action of PGL(4) on M . It automatically follows (see [BT07,

Theorem 10] for the argument applied to a similar case) that it also applies to the action on eM

and hence

H∗( eM ;Q)∼= H∗(PGL(4);Q)⊗H∗(H3,3(1);Q) .

Thus we have the following corollary of Theorem 2.1.

Corollary 2.3. The space H3,3(1) is Q-acyclic: H i(H3,3(1);Q) = 0 for i > 1.

For comparison, Vassiliev’s results imply that H3,3 is Q-acyclic.

Theorem 2.4 (Vassiliev [Vas99], Peters–Steenbrink [PS03]). The map PGL(4)→ M given by

g 7→ g(S0) induces an isomorphism

H∗(M ;Q) ∼−→ H∗(PGL(4);Q) .

Equivalently, H3,3 is Q-acyclic, i.e. H i(H3,3;Q) = 0 for i > 1.
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Various compactifications of H3,3, H3,3(1) and other covers can be found in [DvGK05], in

particular the two moduli spaces mentioned here are rational. Also relevant are the computation

of π1(H3,3) (as an orbifold) by Looijenga [Loo08], the identification of a compactification of

H3,3 as a quotient of complex hyperbolic 4-space by Allcock, Carlson and Toledo [ACT02] and

explicit descriptions of the moduli space of cubic surfaces given by Brundu and Logar [BL98].

The cohomology of the normal cover as a representation of W (E6)

The combinatorics of how the 27 lines intersect is extremely well-studied. Let L be the graph

with vertices the 27 lines and edges corresponding to intersecting pairs for the generic cubic

surface [Cay49]. It was classically known that the automorphism group of L is realized as the

Galois group of the extension given by adjoining the coefficients defining the lines over the field

containing the coefficients of a cubic form. Camille Jordan proved [Jor89] that this group is

the Weyl group W (E6) of the root system E6 (see also [Man86, Remark 23.8.2]). The Galois

group can also be realized as the monodromy of the covering space eM → M and hence the

deck group of its normal closure; see [Har79].

The cover eM → M is in fact not normal (Galois): its normal closure is the space eMnor

consisting of pairs (S,α), where α is an identification of the intersection graph of the 27 lines

on S with L. The deck group of eMnor is W (E6), as mentioned, and so H∗( eMnor;Q) is a W (E6)

representation. We can restrict this representation to the index-27 subgroup that stabilizes a

line, which can be identified with W (D5) (see [Nar82]). The intermediate cover corresponding

to this W (D5) is exactly eM . We can now deduce the following corollary about H∗( eMnor;Q) from

Theorem 2.1.

Corollary 2.5. For any non-trivial irreducible representation V of W (E6) appearing in H∗( eMnor;Q),

the restriction of V to W (D5) cannot have a trivial summand. Equivalently, the non-trivial

irreducible representations of W (E6) that occur in the 27-dimensional permutation representation

given by the action on left cosets of W (D5) in W (E6) cannot occur in H∗( eMnor;Q).
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Proof. By Theorem 2.1 and transfer,

H∗( eMnor;Q)W (E6) = H∗(M ;Q) = H∗( eM ;Q) = H∗( eMnor;Q)W (D5) .

The second statement is equivalent to the first by Frobenius reciprocity.

Computing the cohomology H∗( eMnor;Q) (as a W (E6) representation) would be an obvious

and major generalization of Theorem 2.1. While the above corollary provides a restriction

towards which irreducible representations can occur, it only rules out a small fraction: the

order of W (E6) is 51840, and it has 24 non-trivial irreducible representations (see [Car93,

pp. 428–429] for a character table).

There are other intermediate covers of M , by marking different configurations of the 27

lines. For instance, taking unordered triples of lines that intersect pairwise, we get a 45-sheeted

cover marking the ‘tritangents’ of a cubic surface. See [Nar82] and the appendix by Looijenga

for more on this cover and its quotient under PGL(4,C).

Lines over Fq

The spaces eM and M as defined above are (the complex points of) quasiprojective varieties

defined by polynomials with integer coefficients. To be more explicit, the discriminant ∆ is a

polynomial with integer coefficients, as are the polynomials defining the incidence of a line

and a cubic surface. For a finite field Fq of characteristic p, we can base change to Fq. That is,

reducing the defining polynomials mod p defines spaces

M(Fq) ⊂ P19(Fq) ,

eM(Fq) ⊂ P19(Fq)×Gr(2,4)(Fq) ,

and a projection map

π : eM(Fq)→ M(Fq) .

For p 6= 3, the discriminant ∆ continues to characterize singular polynomials, so M(Fq) is

the space of smooth cubic surfaces defined over Fq (where a homogeneous cubic polynomial is

8



smooth if it is smooth at all Fq points). Similarly, eM(Fq) is the space of pairs (S, L) of smooth

cubic surfaces S and lines L defined over Fq such that L ⊂ S. Thus,
# eM(Fq)

#M(Fq)
is the average

number of Fq-lines on a cubic surface defined over Fq. The Grothendieck–Lefschetz fixed point

formula (see e.g. [Mil13]) lets us use our results to deduce consequences about the cardinality

of # eM(Fq).

Remark 2.6. The fact that eM is a connected cover of M already implies H0( eM ;Q)∼=Q. Given

Deligne’s theorem [Del80, Théorème 3.3.1] we get that both #M(Fq) and # eM(Fq) are q19(1+

O(q−1/2)), since dim M = dim eM = 19. Hence the average number of lines on a Fq-cubic surface

is 1+O(q−1/2) as q→∞. One needs much more information to compute this number exactly.

Corollary 2.7. There is a finite set of characteristics, so that for a fixed q with p not in this set,

#M(Fq) = # eM(Fq) = q4(# PGL(4,Fq)) = q4 (q
4 − 1)(q4 − q)(q4 − q2)(q4 − q)

q− 1
.

Thus the average number of lines defined over Fq on a smooth cubic surface defined over Fq is

exactly 1.

To the best of our knowledge, the point count for eM(Fq) and the consequence about the

average number of lines is new. The point count for M(Fq) follows from Theorem 2.4.

Proof of Corollary 2.7. The varieties M and eM are smooth since M is open in P19. For a smooth

quasiprojective variety Y , the Fq points are exactly the fixed points of Frobq on Y (Fq), and

#Y (Fq) is determined by the Grothendieck–Lefschetz fixed point formula (see e.g. [Mil13]):

#Y (Fq) = qdim Y
∑

i≥0

(−1)i Tr(Frobq : H i
ét(Y ;Q`)∨) ,

where ` is a prime other than p. Further, there are comparison theorems implying isomorphisms

H i
ét(Y ;Q`)∼= H i(Y (C);Q`)∼= H i(Y (C);Q)⊗Q` ,

away from a finite set of characteristics (see e.g. [Del77, Théorème 1.4.6.3, Théorème 7.1.9]).

In particular, as a corollary of Theorem 2.1 we obtain # eM(Fq) = #M(Fq) = q4(#PGL(4,Fq))

and hence the corollary.

9



Remark 2.8. One can define H3,3(Fq) and H3,3(1)(Fq) as base-changes of H3,3 and H3,3(1) from

above. Using an analogue of the Grothendieck–Lefschetz fixed-point formula, it is possible to

conclude that

#H3,3(1)(Fq) = #H3,3(Fq) = q4 ,

again away from finitely many characteristics. However, as a point of caution, these are point

counts on a stack and a deeper discussion of the arguments involved is out of the scope of this

thesis.

2.2 Rational cohomology of the incidence variety

2.2.1 Definitions and setup

From now on we will work over the field C of complex numbers. Let X = X3,3 be the space

of smooth homogeneous degree 3 (complex) polynomials over 4 variables, for concreteness

a subset of C[x , y, z, w]3 ∼= C20. A polynomial F ∈ C[x , y, z, w]3 is smooth precisely when

{Fx , Fy , Fz, Fw} do not have a common root, by Euler’s formula. This is equivalent to a certain

‘discriminant’ in the coefficients not vanishing; there is an irreducible polynomial ∆ : C20→ C
with integer coefficients that vanishes on (the coefficients of) F if and only if F is not smooth.

In other words, X is the complement of the discriminant locus, Σ= V(∆) ⊂ C20.

We also have the ‘incidence variety’ of a line and a (not necessarily smooth) cubic polynomial

Π=
�

(F, L)
�

� F |L ≡ 0
	 ⊂ C[x , y, z, w]3 ×Gr(2, 4) ,

where Gr(2,4) is the Grassmannian of lines in P3 (that is, 2-planes in C4). This space comes

equipped with two projections. The first, π : (F, L) 7→ F forgets the line, and we denote the

inverse image π−1(X ) of X by eX , which by (a version of) the Cayley–Salmon theorem is a

27-sheeted cover π : eX → X .

The second projection is to Gr(2,4), given by (F, L) 7→ L, and is a fiber bundle with fiber

Π`
∼= C16 over ` ∈ Gr(2,4). To be explicit, Π` is the space of (not necessarily smooth) cubic

10



polynomials that vanish on `. The restriction of the projection to eX is also a fiber bundle, and we

will denote the fiber over ` by eX`, this is the space of smooth homogeneous cubic polynomials

in 4 variables that vanish on `. Let

Σ` = Π` \ eX` = Σ∩Π` .

Since a polynomial and its scalar multiples define the same vanishing locus, to go from

the space of polynomials to the space of cubic surfaces, we need to quotient by the action of

λ ∈ C× mapping F 7→ λF . This action of course preserves smoothness, i.e., ∆ is a homogeneous

polynomial and Σ is a conical hypersurface in C20, so passing to the quotient by C× produces

spaces

M = X3,3/C× ⊂ P19 ,

eM = eX/C× ⊂ M ×Gr(2, 4) (2.1)

and a covering map eM → M , which we will also denote by π. By transfer we know that

π∗ : H∗(M ;Q)→ H∗( eM ;Q) is an injection. In fact, there is no new cohomology that appears in

this cover, as in Theorem 2.1.

The map eM → Gr(2, 4) continues to be a fiber bundle, we denote the fiber over ` ∈ Gr(2, 4)

by

eM` =
�

(S,`)
�

� S ∈ M , S ⊃ `	 .

All these spaces and the maps described so far fit into the following commuting diagram:

eX` eM`

eX eM

X M

Gr(2,4) Gr(2,4)

C×

27

C×

27
C×

(2.2)

11



There is one more action to consider, which is important for both our theorem and its proof.

As mentioned in the introduction, GL(4) := GL(4,C) acts on C4 and PGL(4) = GL(4)/(C×I)

acts on the quotient P3. There are induced actions on the spaces defined above: on X and eX by

GL(4); on M and eM by PGL(4). The action of GL(4) on Gr(2,4) also factors through PGL(4).

Fixing a line ` ∈ Gr(2,4), the respective stabilizers in GL(4) and PGL(4) act on the fibers eX`

and eM`. If we fix a basepoint (F0, L0) ∈ eX , and set S0 = V(F0) so that (S0, L0) ∈ eM , we get orbit

maps g 7→ g(S0, L0) = (g · S0, g · L0), and so on. Then we also have the following commuting

diagram:

C× C× C×

GL(4) eX X

PGL(4) eM M

z 7→z3

π

π

(2.3)

All the four maps in the bottom-left square are in fact maps of bundles over the same base

Gr(2,4), and all the vertical maps are bundles with fiber C×. The second and third vertical

maps are elaborated in the previous diagram (2.2).

Remark 2.9. It is worth noting that the map on the fibersC×→ C× induced by the first horizontal

map is not identity but the degree 3 map z 7→ z3. This is an isomorphism on cohomology with

rational coefficients, so this does not affect our computations.

Remark 2.10. Since eM is connected, the orbit maps for different choices of basepoint (S0, L0) ∈ eM
are homotopic.

2.2.2 Proof of Theorem 2.1 and the role of simplicial resolution

Vassiliev’s method of simplicial resolution works by first reducing the computation of the

cohomology of the discriminant complement X to computing the Borel–Moore homology

H∗(Σ) = HBM
∗ (Σ) of the discriminant locus Σ via Alexander duality. The space Σ consisting

of the singular cubic surfaces is itself highly singular, and stratifies based on the how big the
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singular set of each F ∈ Σ is. The space Σ is replaced with its simplicial resolution σ with an

induced stratification and applying the spectral sequence of a filtration to this stratification of σ

produces a spectral sequence converging to H∗(σ)
∼−→ H∗(Σ). For more details in our context,

see Section 2.3.1.

While eM or eX is not an open subset of a vector space, recall that the fiber eX` over ` of the

map eX → Gr(2,4) is open in the vector space Π` of polynomials vanishing on `. So we can

apply the Vassiliev spectral sequence to each eX` to find H∗(eX`;Q). For this, we need to stratify

Σ` = Σ∩Π` by not just how big the singular sets are, but how they are configured with respect

to the line `. These are the types and subtypes described in Section 2.3.1. For now we will

assume that we can perform this computation (which takes up all of Section 2.3), and when

needed we refer to the answer described in Proposition 2.19.

Lemma 2.11. For a fixed ` ∈ Gr(2, 4), let StabGL(4)(`) be the stabilizer of ` in GL(4). Then for a

choice of basepoint F0 ∈ eX`, the orbit map Stab(`)→ eX` given by g 7→ g(F0) = F0 ◦ g induces a

surjection

H∗(eX`;Q)� H∗(StabGL(4)(`);Q)∼= H∗(GL(2)×GL(2);Q) .

Proof. First, fix a complement `⊥ of `. Then StabGL(4)(`) deformation retracts to

G = StabGL(4)(`,`
⊥) = GL(`)×GL(`⊥) ,

the subgroup of elements that fix both ` and `⊥.

As in the computation of H∗(eX`;Q) in Section 2.3, it is important to identify via Alexander

duality H∗(eX`;Q) with H∗(Σ`), and similarly H∗(GL(2);Q) with H∗(Mat(2) \ GL(2)), where

Mat(2) is the space of all 2 × 2 matrices. The generators of H∗(GL(2);Q) (as a ring) are

represented by the locus of matrices whose first i columns are linearly dependent1, for i = 1, 2.
1For i = 1 this means the first column is 0. This description of the generators generalizes to GL(n) ⊂ M(n).
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Fix P ∈ ` and P ′ ∈ `⊥ non-zero and extend to bases of ` and `⊥ respectively. This identifies

GL(`)×GL(`⊥)∼= GL(2)×GL(2). The orbit map extends to a map

Mat(2)×Mat(2)→ Π` = eX` ∪Σ` .

It is enough to identify subspaces of Σ` that pull-back to (a rational multiple of) the corre-

sponding subspaces of Mat(2)×Mat(2). Then directly from arguments in [PS03, section 6], it

is enough to pick the following four subspaces of polynomials that are: (i) singular at P, (ii)

singular at some (non-zero) point of `, (iii) singular at P ′, (iv) singular at some (non-zero)

point of `⊥.

Now we can prove Theorem 2.1, restated here for convenience.

Theorem 2.1. For a choice (S0, L0) ∈ eM, the orbit map PGL(4,C)→ eM given by g 7→ g(S0, L0)

induces an isomorphism

H∗( eM ;Q) ∼−→ H∗(PGL(4,C);Q)∼=Q[a3, a5, a7]/(a
2
3, a2

5, a2
7) ,

where ai ∈ H i(PGL(4,C);Q). Since the composition PGL(4,C) → eM
π−→ M also induces an

isomorphism on H∗(_;Q), the map

π∗ : H∗(M ;Q)→ H∗( eM ;Q)

is an isomorphism. Since the orbit map and π are algebraic, the isomorphisms respect mixed Hodge

structures.

Proof of Theorem 2.1. First we prove the analogous statement for eX . Note that the surjection

induced on H∗(_;Q) by the orbit map StabGL(4)(`)→ eX`, as in Lemma 2.11, must actually be an

isomorphism since from the spectral sequence in Proposition 2.19 we get that

dim H∗(eX`;Q)≤ 16= dim H∗(GL(2)×GL(2);Q) = dim H∗(StabGL(4)(`);Q) .

In particular that spectral sequence degenerates at the E1 page.
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Thus we have a map of bundles (as in (2.2))

StabGL(4)(`) eX`

GL(4) eX

Gr(2, 4) Gr(2, 4)

that fiberwise induces an isomorphism

H∗(eX`;Q) ∼−→ H∗(StabGL(4)(`);Q) .

There is no monodromy in either bundle since Gr(2,4) is simply connected. Therefore from

naturality of the Serre spectral sequence, the map GL(4)→ eX must also be an isomorphism on

cohomology.

Now to obtain the result for eM , we use another map of bundles (as in (2.3)):

C× C×

GL(4) eX

PGL(4) eM

z 7→z3

Since both total spaces are complements of conical hypersurfaces, these bundles satisfy the

Leray–Hirsch theorem and the fiberwise map C×→ C× is degree 3, so induces an isomorphism

on H∗(C×;Q). Thus the map of bases PGL(4)→ eM must also induce an isomorphism

H∗( eM ;Q) ∼−→ H∗(PGL(4);Q) .

2.3 Rational cohomology of eX`
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2.3.1 Definitions and plan of attack

We will suppress constant rational coefficients throughout this section, and use H to denote

Borel–Moore homology (for a definition see e.g. [Bre97, Chapter V]). Note that for an orientable

but not necessarily compact 2n-manifold M , Poincaré duality takes the form

H i(M)∼= H2n−i(M)∼= (H2n−i(M))
∨ ∼= (H i

c(M))
∨ .

We use the spectral sequence developed by Vassiliev in [Vas92] and closely follow the

approach in [Vas99]. We refer the reader to Vassiliev’s works for the theory, but summarize how

the computation works in practice. Recall that eX` ⊂ Π` ∼= C16, and set Σ` = Π` \ eX` = Π` ∩Σ,

the set of singular cubic polynomials that vanish on the line `. Then via Alexander duality,

eH i(eX`) = H31−i(Σ`) . (2.4)

Note that Σ` is a hypersurface in Π`, being the vanishing locus of ∆` =∆|Π` .

Remark 2.12. The complex variety eX`, being the complement of a hypersurface, is affine and

hence a 16-dimensional Stein manifold. Thus by the Andreotti–Frankel theorem, H i(eX`) = 0

for i > 16. This along with Eq. (2.4) imply that H i(Σ`) can only be non-zero for 15≤ i ≤ 31.

Let F ∈ Σ` be a singular cubic polynomial and let K be its singular locus. Then K, as a

subset of P3, can be one of the following 11 types (see [Vas99, Proposition 8]):

(I) a point;

(II) two distinct points;

(III) a line;

(IV) three points, not on a line;

(V) a smooth conic contained in a plane P2 ⊂ P3;

(VI) a pair of intersecting lines;

(VII) four points, not on a plane;

(VIII) a plane;
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(IX) three lines through a point, not all on the same plane;

(X) a smooth conic contained in a plane along with another point not on that plane;

(XI) all of P3 .

These further break up as subtypes depending on their configuration with respect to `. For

most of the types, how they break up will not be relevant to us; we list those that will. We list

names for the points for convenience, they are still to be thought of as a priori unordered sets of

points: {P,Q}= {Q, P} and so on.

(I) a point P

(a) P ∈ `
(b) P /∈ `

(II) two points P, Q

(a) P,Q ∈ `
(b) P ∈ `, Q /∈ `
(c) P,Q /∈ `, P and Q coplanar with `

(d) P,Q /∈ `, P and Q not coplanar with `

(IV) three points P, Q, R, not collinear

(a) P,Q ∈ `, R /∈ `
(b) P ∈ `, Q, R /∈ `, Q, R coplanar with `

(c) P ∈ `, Q, R /∈ `, Q, R not coplanar with `

(d) P,Q, R /∈ `, P, Q, R and ` all coplanar

(e) P,Q, R /∈ `, P, Q and ` coplanar, R not on that plane

(f) P,Q, R /∈ `, no two coplanar with `

(VII) four points P, Q, R, S, not coplanar

(a) P,Q ∈ `, R, S /∈ `
(b) P ∈ `, Q, R, S /∈ `, Q, R, ` coplanar
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(c) P ∈ `, no two of Q, R, S coplanar with `

(d) P,Q, R, S /∈ `, P, Q, R coplanar with `, but S not on that plane

(e) P,Q, R, S /∈ `, P, Q and ` coplanar, R, S and ` coplanar

(f) P,Q, R, S /∈ `, P, Q and ` coplanar, no other pair coplanar with `

(g) P,Q, R, S /∈ `, no two coplanar with `

Remark 2.13. The types correspond to orbits of the singular loci under the PGL(4) action on P3

and the subtypes correspond to orbits under Stab(`) ⊂ PGL(4), but this will not be explicitly

important for us.

Definition 2.14. For a manifold M and natural number n, the ordered configuration space of n

points on M is given by

PConfn(M) := {(a1, . . . , an) ∈ M n | ai 6= a j for i 6= j} .

This space comes with a natural action of the symmetric group Sn by permuting the coordinates

and the quotient is the unordered configuration space UConfn(M) of n points on M .

Definition 2.15. For any A ⊆ UConfn(M), the sign local coefficients on A, denoted by ±Q, is

given by the composition

π1(A)→ π1(UConfn(M))→Sn→ {±1} ⊂Q×

thought of as a representation on Q. Explicitly, a loop in A acts on Q by the sign of the induced

permutation on the n points.

The method of simplicial resolution produces for us a space σ with a map f : σ→ Σ` with

the following properties:

(1) The map f∗ : H∗(σ)→ H∗(Σ`) is an isomorphism.

(2) The space σ has a stratification

σ =
⋃

i

Fi ,
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where i varies over all the subtypes (not just the ones listed, but all of them). That is, Fi is a

stratum corresponding to the subtype i. The strata are (partially) ordered by degeneracy:

Fi intersects F j only if polynomials with singularity of subtype i can degenerate to a

polynomial with singularity of subtype j.

(3) Let

Ai = {singular sets K of subtype i}

and K ∈ Ai. Let L(K) be the linear subspace of Π` consisting of polynomials that are

singular on K and possibly elsewhere. Then there are spaces Φi and Λ(K) along with

fiber bundles:
L(K) Fi

Λ(K) Φi

K Ai∈

(4) The space Λ(K) is an open cone with vertex representing K and captures the combinatorics

and topology of the subsets of K that can appear as singular sets of other polynomials in

Σ`. The homeomorphism type of Λ(K) depends only on the type of K and not its subtype.

Further, H∗(Λ(K)) = 0 unless K is of type I, II, IV, VII or XI. For K of type I, II, IV and VII

respectively, i.e. when K is a finite set of points, Λ(K) can be identified with the open

simplex with vertex set K . In particular, setting n= #K ,

H∗(Λ(K)) = 0 for ∗ 6= n− 1 ,

and

Hn−1(Λ(K))∼=Q ,

generated by the fundamental class2 representing an orientation on the simplex Λ(K)∼=
Bn−1. Further, Ai is a subset of UConfn(P3), and the monodromy on H∗(Λ(K)) is given by

2Recall that the fundamental class of an orientable but not necessarily compact n-manifold M without boundary
is a generator of Hn(M), and the choice of the generator corresponds to the choice of an orientation on M .
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±Q (permuting the points of K changes the orientation of the simplex by the sign of the

permutation).

(5) For the type XI (note that XI has only one subtype, itself), AXI is singleton, the only

element being K = P3. The only polynomial singular on K is 0, so L(K) = {0}. Thus

FXI = ΦXI = Λ(P3). Further, the space ΦXI = Λ(P3) is the open cone over
⋃

j 6=XIΦ j for

certain gluings.

Example 2.16. For the subtype IIb, a point on ` and a point not on `, we have AIIb = `×P3\`. For

the subtype IId, two points not coplanar with `, the space AIId is an open set in UConf2(P3 \ `).

We refer the reader to [Vas99] for details of the construction and proofs for (1)–(5). Ev-

erything we use for our computation has been summarized in these properties. We now go

through the steps of the computation before digging into the details.

By the isomorphism given by Alexander duality (Eq. (2.4)), we are reduced to computing

H∗(Σ`). By (1), this is the same as H∗(σ). Let

deg(i) = 14− dim L(K)

for any K ∈ Ai (these numbers, along with dim Ai, can be found in Table 2.1). This is monotonic

on the poset described in (2), in the sense that if Fi intersects F j, then deg(i)≤ deg( j). Using

the filtration of σ given by
⋃

deg(i)≤p Fi there is a spectral sequence E r
p,q =⇒ H p+qσ, with the

E1 page given by

E1
p,q =

⊕

deg(i)=p

H p+q(Fi) . (2.5)

To compute each term, since L(K)→ Fi → Φi is a complex vector bundle, we have the Thom

isomorphism

H∗(Fi) = H∗−2 dimC L(K)(Φi) . (2.6)

For the right-hand side, if Λ(K) is acyclic then so must be Φi, so this automatically vanishes

unless i is a subtype of I, II, IV, VII, or XI.
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i Ia Ib IIa IIb IIc IId IVa IVb IVc IVd IVe IVf

dim Ai 1 3 2 4 5 6 5 6 7 7 8 9
dim L(K) 14 12 12 10 9 8 8 8 6 7 5 4

i VIIa VIIb VIIc VIId VIIe VIIf VIIg XI

dim Ai 8 9 10 10 10 11 12 0
dim L(K) 4 3 2 3 2 1 0 0

Table 2.1: dim Ai and dim L(K) for K ∈ Ai for each subtype i.

For the (sub)type XI, from (5) we have that ΦXI = C Z , the open cone on Z , where

Z =
⋃

i 6=XI

Φi .

So we get a spectral sequence er
p,q =⇒ Hp+q(Z) with

e1
p,q =

⊕

deg( j)=p,
j 6=XI

H p+q(Φ j) .

But then we also have

H∗(C Z) = H∗(C Z , Z) = eH∗−1(Z) .

For all the other i, the set K is finite, of say n points (1≤ n≤ 4). Then as described in (4),

H∗(Λ(K)) is concentrated in degree n− 1, so

H∗(Φi) = H∗−n+1(Ai;±Q) = H2dimC Ai+n−1−∗(Ai;±Q) , (2.7)

where the latter isomorphism is by (twisted) Poincaré duality, since the Ai are complex manifolds.

So the computation eventually boils down to computing H∗(Ai;±Q) for these i (see Proposi-

tions 2.18 and 2.19) and bookkeeping.

2.3.2 Case work

We now state the results of some general computations that we will use in the case work. We

would like to point out that these are well known, can be proved in many ways and collected

here only for the reader’s convenience.
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Lemma 2.17.

H∗(UConf2(C);±Q)∼= H∗(UConf2(C2),±Q)∼= H∗(UConf4(C2);±Q) = 0 .

H∗(UConf4(P2 \ {•});±Q)∼= H∗(UConf4(P3 \ P1);±Q) = 0

H∗(UConf2(P1);±Q)∼= H∗(UConf2(P3 \ P1);±Q)∼=











Q if ∗= 2

0 otherwise.

Proof. For UConf2(C) or UConf2(C2), we can use that PConf2(R2n)' S2n−1, and the S2 action

is by the antipodal map, which is degree 1 and hence by transfer H∗(UConf2(R2n);±Q) = 0.

For all the other spaces of the form UConfn(Z), [Tot96] provides spectral sequences that con-

verge to PConfn(Z) as an Sn representation. The computation of each of these is straightforward

from [Tot96, Theorem 1]. The conclusion again follows from transfer, since H∗(UConfn(Z);±Q)
is the ±Q summand of H∗(PConfn(Z);Q) as a Sn representation.

For H∗(UConf2(P1);±Q) we can also use [Vas99, Lemma 2B] and the argument therein

applies to the other cases as well.

The rest of this section contains the details of the arguments to compute the various

H∗(Ai;±Q). The main idea is decomposing these spaces as fiber bundles, where both the fiber

and base are ‘simpler’. In many instances the bases are A j for some lower j, and the computation

is ‘inductive’ or recursive. We separate out the cases where the answer is 0 in Proposition 2.18,

the recursive nature of the argument makes some of the cases relatively easy and the details

are postponed to the end of the section. The remaining cases are treated in Proposition 2.19.

Proposition 2.18. Suppose that i is a subtype of I, II, IV or VII. Then H∗(Ai;±Q) = 0 unless i is

one of Ia, Ib, IIa, IIb, IId, IVa, IVc, VIIa.

Recall that by (2) we have spectral sequences E r
p,q =⇒ H p+q(σ) and er

p,q that let us compute

H∗(FXI) = eH∗−1(Z), where

Z =
⋃

i 6=XI

Φi .
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Figure 2.1: Spectral sequence page E1
p,q for H p+q(σ) (with 0s omitted) and all potentially

non-zero differentials in subsequent pages
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Figure 2.2: Spectral sequence page e1
p,q for Hp+q(Z) (with 0s omitted)

Proposition 2.19. The spectral sequence E r
p,q =⇒ H p+q(σ) has the page E1

p,q as in Fig. 3.2. The

spectral sequence er
p,q =⇒ Hp+q(Z) has the page e1

p,q as in Fig. 3.3.

Proof. Recall that by construction, the terms of E1 and e1 are related by Thom isomorphisms:

E1
p,q+2(14−p)

∼= e1
p,q
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except for p = 14, where e1
14,∗ ≡ 0. So we first go through case work to establish columns

p 6= 14.

By Eqs. (2.5) to (2.7) and careful bookkeeping, it is enough to find H∗(Ai;±Q) along with

the numbers dim(Ai) = dimC(Ai) and dim(L(K)) = dimC(L(K)) for K ∈ Ai, for the subtypes i

of I, II, IV VII (see Table 2.1 for the relevant numerics). Further, there are only eight subtypes

that need to be dealt with — the exceptions from Proposition 2.18.

Ia, P ∈ ` AIa = `∼= P1, since there is only one point, the coefficients ±Q are trivial, so

H∗(AIa;±Q) = H∗(P1) =











Q ∗= 0, 2

0 otherwise.

This contributes to E1
0,28
∼= e1

0,0 and E1
0,30
∼= e1

0,2 since dim(AIa) = 1 and dim(L(K)) = 14.

Ib, P /∈ ` AIb = P3 − `' P1. Again, the coefficients are trivial, so

H∗(AIb;±Q) = H∗(P1) =











Q ∗= 0,2

0 otherwise.

This contributes to E1
2,26
∼= e1

2,2 and E1
2,28
∼= e1

2,4 since dim(AIb) = 3 and dim(L(K)) = 12.

IIa, P,Q ∈ ` AIIa = UConf2(`)∼= UConf2(P1). By Lemma 2.17,

H∗(AIIa;±Q) =











Q ∗= 2

0 otherwise.

This contributes to E1
2,25
∼= e1

2,1 since dim(AIIa) = 2 and dim(L(K)) = 12.

IIb, P ∈ `, Q /∈ ` AIIb
∼= `× (P3 \ `)' P1 × P1 and the coefficients are trivial. Hence,

H∗(AIIb;±Q)∼= H∗(P1 × P1) =























Q ∗= 0,4

Q2 ∗= 2

0 otherwise.
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This contributes to E1
4,21
∼= e1

4,1, E1
4,23
∼= e1

4,3 and E1
4,25
∼= e1

4,5 since dim(AIIa) = 4 and dim(L(K)) =

10.

IId, P,Q /∈ `, P and Q not coplanar with ` AIId = UConf2(P3 \ `) \ AIIc). Proposition 2.18

shows that H∗(AIIc;±Q) = 0, so from the Gysin sequence, and by Lemma 2.17,

H∗(AIId,±Q)∼= H∗(UConf2(P3 \ P1),±Q) =











Q ∗= 0, 2

0 otherwise.

This contributes to E1
6,21
∼= e1

6,5 since dim(AIIa) = 6 and dim(L(K)) = 8.

IVa, P,Q ∈ `, R /∈ ` AIVa
∼= UConf2(`)× (P3 \ `), and the local coefficients restrict to trivial

coefficients on the second factor P3 \ `' P1. Thus,

H∗(AIVa;±Q)∼= ⊕a+b=∗H
a(UConf2(P1);±Q)⊗H b(P1) =











Q ∗= 2, 4

0 otherwise.

This contributes to E1
6,18
∼= e1

6,2 and E1
6,20
∼= e1

6,4 since dim(AIVa) = 5 and dim(L(K)) = 8.

IVc, P ∈ `, Q, R /∈ `, Q and R not coplanar with ` Since the line 〈Q, R〉 doesn’t intersect `,

P can be any point on ` for any choice of Q and R. Thus AIVc = `×AIId and the local coefficients

are trivial on the first factor (` is anyway simply connected). Hence

H∗(AIVc;±Q)∼= ⊕a+b=∗H
a(P1)⊗H b(AIId;±Q) =











Q ∗= 2,4

0 otherwise.

This contributes to E1
8,16
∼= e1

8,4 and E1
8,18
∼= e1

8,6 since dim(AIVa) = 7 and dim(L(K)) = 6.

VIIa, P,Q ∈ `, R, S /∈ ` By definition of VII, the four points cannot be coplanar. This is

equivalent to R and S not being coplanar with `. If ρ : P3 \ ` → `⊥ is the projection, then

this is further equivalent to ρ(R) 6= ρ(S). Note that ρ−1(T) = 〈T,`〉 \ `∼= C2. Thus, mapping
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{P,Q, R, S} 7→ ({P,Q}, {ρ(R),ρ(S)}), we get a bundle:

C4 AVIIa

UConf2(`)×UConf2(`⊥)

This implies, using Lemma 2.17,

H∗(AVIIa;±Q)∼= ⊕a+b=∗H
a(UConf2(P1);±Q)⊗Ha(UConf2(P1);±Q) =











Q ∗= 4

0 otherwise.

This contributes to E1
10,13
∼= e1

10,5 since dim(AVIIa) = 8 and dim(L(K)) = 4.

Thus we’ve computed the pages e1
p,q and E1

p,q except the p = 14 column of the latter. For XI,

L(K) = 0, so E1
14,q
∼= H14+q(ΦXI). Now, if any term with 1≤ d = p+ q ≤ 14 remains non-zero in

e∞p,q, then it would appear as Hd+1(ΦXI) and hence as a term E1
14,d−13, which cannot interact with

any of the other terms, by the shapes of the other columns, which we have already determined.

That means 0 6= Hd+1(σ)∼= eH31−d(eX`), which is a contradiction with eX` being a 16-dimensional

Stein manifold, as in Remark 2.12. This implies, given the shape of e1
p,q, that H∗(ΦXI)≡ 0, so

we have also verified E1
14,∗.

Proof of Proposition 2.18. We need to show that H∗(Ai;±Q) = 0 when i is one of IIc, IVb, IVd,

IVe, IVf, VIIb, VIIc, VIId, VIIe, VIIf, VIIg. Let’s deal with each in turn.

IIc, P,Q /∈ `, but P, Q and ` coplanar Mapping {P,Q} 7→ H = 〈P,Q,`〉, the projective span

of P,Q,`, i.e. the plane containing P, Q and `, we get a map from AIIc to the space of planes in

P3 containing `, which is a P1 ∼= `∨ ⊂ (P3)∨. This is a fiber bundle

UConf2(H \ `) AIIc

P1

and the local coefficients ±Q restrict to the fiber to the sign local coefficient on UConf2(H \`)∼=
UConf2(C2). But H∗(UConf2(C2),±Q) = 0 from Lemma 2.17, so we are done.
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IVd, P,Q, R /∈ `, but P, Q, R and ` coplanar Mapping {P,Q, R} 7→ H = 〈P,Q, R,`〉, we get a

fiber bundle:
F AIVd

P1

The fiber is the space of three (unordered points) non-collinear points on H \ ` ∼= C2, and

the local coefficients ±Q restrict to the local coefficients ±Q on F ⊂ UConf3(C2). Hence

UConf3(C2) \ F fibers over the space of lines in C2 with fiber UConf3(C). Hence we are done

by [Vas99, Lemma 2].

IVf, P,Q, R /∈ `, no two coplanar with ` In this case, we go to the S3 cover eA of AIVf, so

that by transfer H∗(AIVf;±Q) is the sign-representation summand of H∗(eA;Q). Then eA can be

broken up by fiber bundles:

(C \ 0)× (C2 \ 0)∼= P3 \ (〈P,`〉 ∪ 〈Q,`〉 ∪ 〈P,Q〉) eA

C3 ∼= P3 \ 〈P,`〉 {(P,Q)}

{P} P3 \ `' P1

The transposition (PQ) acts by −1 on the fiber (C\0)×(C2 \0) and trivially on P3 \`. Therefore

the action of S3 on H∗(eA) is trivial and we are done.

VIIe, P,Q, R, S /∈ `; P, Q and ` coplanar; R, S and ` coplanar We can map {P,Q, R, S} to

{〈P,Q〉, 〈R, S〉}, the pair of lines through PQ and RS and get a map AVIIe → B, where B is the

set of unordered pairs of lines in P3 that both intersect `, but so that the three lines are not

coplanar (in particular the pair of lines do not themselves intersect). This is a fiber bundle:

UConf2(L1 \ `)×UConf2(L2 \ `) AVIIe

B

Since Li \ `∼= C, and H∗(UConf2(C),±Q) = 0, H∗(AVIIe;±Q) = 0.
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VIIg, P,Q, R, S /∈ `, no two coplanar with ` By an argument analogous to the case of IVf,

AVIIg has an S4 cover by ordering the four points that breaks up as a fiber bundle over the S3

cover of AIVf. The sign representation doesn’t occur in the cohomology of this cover, so we are

done.

The recursive cases The rest of the cases each fiber over one of the previous cases. For

example, consider the case IVb, with P ∈ `, Q, R /∈ `, but Q, R and ` coplanar. Even though P, Q

and R are a priori unordered, we cannot (continuously) swap R with one of P and Q. So there

is a well-defined map {P,Q, R} 7→ {Q, R}, and we get a fiber bundle:

C∼= ` \ 〈Q, R〉 AIVb

AIIc

The local coefficients ±Q on the total space pull-back from ±Q on base (that is, the map

π1(AIVb)→ {±1} factors through π1(AIIc). But as we just showed, H∗(AIIc;±Q) = 0, so we are

done.

Similarly, AIVe, AVIIb and AVIIf fiber over AIIc, AVIId fibers over AIVd and AVIIc fibers over AIVf.

We leave the explicit maps in each case to the reader.
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Chapter 3

The universal smooth cubic surface

3.1 Introduction

A cubic surface S ⊂ P3 = CP3 is the zero set S = V(F) of a homogeneous complex polynomial

F of degree 3 in 4 variables. The surface S is singular (i.e. not smooth) if and only if the 20

coefficients of F are a zero of a discriminant polynomial∆ : C20→ C. Thus the space of smooth

cubic surfaces is an open locus M = M3,3 := P19 \ V(∆).
Similarly one can define a smooth cubic surface over the finite field Fq as the smooth

zero set of a homogeneous Fq polynomials of degree 3 in 4 variables. It is a fact (see Sec-

tion 3.1.1) that every smooth cubic surface over Fq has q2 + (t + 1)q + 1 points for some

t ∈ {−3,−2,−1, 0, 1, 2, 3, 4, 6}. Serre asked (e.g. in [Ser12, Section 2.3.3]) which t can occur

over all surfaces defined over each q.

Theorem 3.1 (Swinnerton-Dyer ([Swi10]), Banwait–Fité–Loughran ([BFL18])). For q = 2, 3

or 5, the value t = 6 is impossible. These are the only exceptions. That is, for every other possible

value of t and q, there is some cubic surface over Fq with that value of t.

Using the topology of the space M and of the ‘universal family’ of smooth cubic surfaces,

we can obtain the average value of t for fixed q.

Theorem 3.2. There is a finite set of characteristics, so that for a fixed q = pd with p not in this

set, the average number of Fq points on a smooth cubic surface defined over Fq is exactly q2+q+1.
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To the best of our knowledge, this result about the average number of points is new. The

average number of points on irreducible (but not necessarily smooth) cubic surfaces was known

to also be q2 + q+ 1 by N. Elkies (see [Kap13, Section 2.4]) using different methods.

To prove this theorem (in Section 3.1.1), we will need the incidence variety

U =
�

(S, p)
�

� p ∈ S
	 ⊂ M × P3

of points and cubic surfaces (see Eq. (3.2)); a subvariety U ⊂ M ×P3. The canonical projection

map U → M is a fiber bundle, whose fiber over S ∈ M is exactly S ⊂ P3. This bundle is the

aforementioned universal family of cubic surfaces with embeddings in P3, in the sense that a

family of embedded smooth cubic surfaces corresponds to a pullback of this bundle by a map

to M .

The automorphism group of P3 is PGL(4,C) and this group takes cubic surfaces to cubic

surfaces, preserving smoothness. In particular the projection map π : U → M is PGL(4,C)-

equivariant. Vassiliev showed (in [Vas99]) that the space M has the same rational cohomology

as PGL(4,C) and it following results of Peters–Steenbrink ([PS03]) this isomorphism is induced

by the orbit map given by g 7→ g(S0), for any choice of S0 ∈ M (see Theorem 3.10). See also

Tommasi ([Tom14]).

The main result of this chapter is that the rational cohomology of U is isomorphic to that of

PGL(4,C)×CP2.

Theorem 3.3 (Cohomology of the universal smooth cubic). Let η ∈ H2(CP3;Q) be the hyper-

plane class. Let ι : U → M ×CP3 be the inclusion map. Then ι∗(1⊗ η3) = 0 and the induced

map

H∗(M ×CP3;Q)/(η3)→ H∗(U;Q)

is an isomorphism. In particular, with rational coefficients,

H∗(U)∼= H∗(M ×CP2)∼= H∗(PGL(4,C))⊗H∗(CP2)∼=Q[α3,α5,α7,η]/(α2
3,α2

5,α2
7,η3)
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where αi ∈ H i(PGL(4,C);Q). Since the inclusion map is algebraic, each isomorphism is an

isomorphism of mixed Hodge structures. In particular, Hk(U;Q) is pure of Tate type; each generator

α2k−1 is of bidegree (k, k) and η is of bidegree (1,1).

The key tool in our proof of Theorem 3.3 is simplicial resolution à la Vassiliev. Considering

the combinatorics of how the marked point is situated with respect to possible singularities

on the surfaces makes the casework fairly complicated. We devote all of Section 3.3 to this

computation, while Section 3.2.2 contains the rest of the proof.

3.1.1 Applications: moduli space, representations of W (E6) and point

counts

We now give a few applications of Theorem 3.3.

Cohomology of moduli spaces

The map π : U → M is PGL(4,C)-equivariant and each orbit (in either M or U) is closed

(see e.g. [ACT02]). Further, two cubic surfaces are isomorphic exactly when they are in the

same PGL(4,C)-orbit. Thus, passing to the geometric quotient gives a bundle

U3,3→H3,3 ,

where

H3,3 := M/PGL(4,C)

is the moduli space of smooth cubic surfaces and

U3,3 := U/PGL(4,C)

is the moduli space of cubic surfaces equipped with a point. The induced map U3,3→H3,3 is

the universal family of cubic surface up to isomorphism.
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Note that both H3,3 and U3,3 are coarse moduli spaces. For example the Fermat cubic defined

by x3+ y3+ z3+w3 equipped with the point [1 : −1 : 0 : 0] has non-trivial (but finite) stabilizer

in PGL(4,C). Using a theorem of Peters and Steenbrink ([PS03, Theorem 2]), which is a

generalization of the Leray–Hirsch theorem, we have the following corollary.

Corollary 3.4. The space U3,3 has the rational cohomology of P2:

H i(U3,3;Q)∼=











Q if i = 0, 2 or 4;

0 otherwise.

For comparison, it was known previously that H3,3 is Q-acyclic; see Theorem 3.10 below.

Monodromy and the normal cover with deck group W (E6)

One way of trying to compute H∗(U;Q) would be to use the fiber bundle U → M . Since the

fiber over a surface S ∈ M is exactly S ⊂ CP3, this provides a spectral sequence

H p(M ; Hq(S)) =⇒ H p+q(U) ,

where the coefficients are twisted by the monodromy action of π1(M) on

H∗(S;Q) =























Q if ∗= 0,4;

Q7 if ∗= 2;

0 otherwise.

The monodromy action on H0 and H4 are of course trivial but the action on H2 is quite

interesting; to explore this we need a better description of H2(S).

There are different elements of H2(S) that can be described as the hyperplane class: the

pullback η of a generic hyperplane in P3, which also equals the anticanonical class; or the strict

transform λ of a line when S is identified with P2 blown up at 6 points. Every cubic surface S

famously contains 27 lines and a choice of any 6 disjoint lines out of the 27 when blown down

produces P2 (see for instance [Har77, Section V.4, specifically Proposition V.4.10]). It is then
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straightforward to see that the classes of 6 such (disjoint) lines, along with either η or λ is a

basis of H2(S).

The monodromy action keeps η invariant since it preserves the embedding S ⊂ P3, but it

does not preserve the choice of lines—in fact it must be transitive on the choices of 6 disjoint

lines. It does act by a finite group, the automorphism group of the intersection pairing of the

27 lines, which can be identified as the Weyl group W (E6) of the root system E6 (see [Man86,

Remark 23.8.2], also [Jor89; Har79]). As a representation of W (E6), we get a decomposition of

H2(S) into a one-dimensional trivial representation spanned by η and a copy of the irreducible

fundamental representation of W (E6), denoted Vfund, spanned by the projections of any 6 disjoint

lines. Thus,

H p(M ; H2(S))∼= H p(M ;Q〈η〉)⊕H p(M ; Vfund) .

So to use the Serre spectral sequence, for U → M , we would need to compute H p(M ; Vfund).

The finite quotient π1(M)→W (E6) corresponds to a normal cover M(27) of M , whose points

are given by decorating each S ∈ M with a choice of ordering of the 27 lines, consistent with

some chosen intersection pattern. Thus by transfer, we would need the multiplicity of Vfund

in H∗(M(27);Q). As the following corollary shows, it is in fact possible to turn this argument

backwards and use Theorem 3.3 to compute this multiplicity.

Corollary 3.5. The fundamental representation Vfund of W (E6) does not appear in H∗(M(27);Q).

Remark 3.6. Some of the other irreducible representations of W (E6) are also precluded from

occurring in H∗(M(27)), see Corollary 2.5, but this is not sufficient to determine H∗(M(27))

entirely.

Proof of Corollary 3.5. By Bezout’s theorem, η2 = η ∪ η ∈ H4(S) is 3 times the fundamental

cohomology class of S and of course η3 = 0. Moreover the pullback of a generic hyperplane to

U under the map U → P3 further pulls back to η for every inclusion S ⊂ U , so we also denote

this class by η ∈ H2(U). By Theorem 3.3, H∗(U) = H∗(M)⊗Q[η].
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But in the Serre spectral sequence for the bundle U → M from above, the E2 page has three

rows (q = 0, 2, 4), which consist of H p(M)⊗Q〈ηq/2〉 along with H p(M ; Vfund) on the q = 2 row.

There cannot be a non-zero differential mapping either into or out of H p(M)⊗Q[η], since these

terms must survive till the E∞ page and thus all the differentials vanish. But H∗(M)⊗Q[η]
already accounts for all of H∗(U), so we must have

H p(M ; Vfund) = 0

for each p. But by transfer,

H p(M ; Vfund)∼= H p(M(27))⊗W (E6) Vfund ,

so this irreducible representation cannot occur in any H p(M(27)).

Remark 3.7. The vanishing of the differentials is consistent with the bundle U → M having

a (continuous) section. In fact, the existence of such a section, along with the result that

H∗(M ; Vfund) = 0 would be sufficient to recover Theorem 3.3.

Point counts over Fq

The spaces U and M as defined are (the complex points of) quasiprojective varieties defined by

integer polynomials. To be more explicit, the discriminant ∆ is an integer polynomial, as are

the polynomials defining the incidence of a point and a cubic surface. For a finite field Fq of

characteristic p, we can base change to Fq. That is, reducing the defining polynomials mod p

defines spaces

M(Fq) ⊂ P19(Fq) , and U(Fq) ⊂ P19(Fq)× P3(Fq) ,

and a projection map

π : U(Fq)→ M(Fq) .

For p 6= 3, the discriminant ∆ continues to characterize singular polynomials, so M(Fq) is

the space of smooth cubic surfaces defined over Fq (where a homogeneous cubic polynomial is
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smooth if it is smooth at all Fq points). Similarly, U(Fq) is the space of pairs (S, p) of smooth

cubic surfaces S and points p defined over Fq such that p ∈ S. Thus,
#U(Fq)

#M(Fq)
is the average

number of Fq points on a cubic surface defined over Fq.

For a smooth quasiprojective variety Y , the Fq points are exactly the fixed points of

Frobq on Y (Fq) and #Y (Fq) is determined by the Grothendieck–Lefschetz fixed point formula

(see e.g. [Mil13]):

#Y (Fq) = qdim Y
∑

i≥0

(−1)i Tr(Frobq : H i
ét(Y ;Q`)∨) , (3.1)

where ` is a prime other than p. Further, there are comparison theorems implying isomorphisms

H i
ét(Y ;Q`)∼= H i(Y (C);Q`)∼= H i(Y (C);Q)⊗Q` ,

away from a finite set of characteristics (see e.g. [Del77, Théorème 1.4.6.3, Théorème 7.1.9]).

This formula lets us use our results to deduce consequences about #U(Fq).

Applying the fixed-point formula to each S we get #S(Fq) = q2 + (t + 1)q+ 1, where t is

the trace of Frobenius on the complement of η ∈ H2(S) described above. Frobenius must act

on H2(S) by some element of W (E6), so the possible values of t are given by the character of

W (E6) on the fundamental representation, namely the set {−3,−2,−1,0, 1,2, 3,4, 6}.
Fixing a q, the average number of points over all S has to be q2+q+1+q(taverage). Theorem 3.2

shows that taverage = 0.

Proof of Theorem 3.2. By the Grothendieck–Lefschetz fixed point formula (Eq. (3.1)) and Theo-

rem 3.3 we obtain

#U(Fq) = #(M × P2)(Fq) = q4 · (#PGL(4,Fq)) · (#P2(Fq)) .

Similarly from Theorem 3.10,

#M(Fq) = q4 · (#PGL(4,Fq)) .

Dividing produces the average number #P2(Fq) = q2 + q+ 1.
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Remark 3.8. The q4 factor in these formulas arises from the difference in dimensions of M and

PGL(4).

3.2 Rational cohomology of the incidence variety

3.2.1 Definitions and setup

Much of the following is analogous to Section 2.2, although here we are looking at the incidence

variety of smooth cubic surfaces and points instead of lines. From now on we will work over

the field C of complex numbers.

Let X = X3,3 be the space of smooth homogeneous degree 3 (complex) polynomials in 4

variables, seen as a subset of C[x , y, z, w]3 ∼= C20. It will be important for us to note that

smoothness of such a polynomial is defined by a ‘discriminant’ ∆: there is a homogeneous

polynomial ∆ : C20→ C with integer coefficients so that a polynomial F ∈ C[x , y, z, w]3 is not

smooth if and only if ∆(F) = 0. Denoting the discriminant locus by Σ= V(∆) ⊂ C20,

X = C20 \Σ ⊂ C20 \ {0} .

Two polynomials F and F ′ in C[x , y, z, w]3 define the same cubic surface (V(F) = V(F ′))

exactly when they are scalar multiples, that is, F ′ = λF for some λ ∈ C×. Further, F is smooth

if and only if λF is smooth. Thus we can quotient by C× and get the space

M = X/C× ⊂ P19

of smooth cubic surfaces.

Next we have the ‘incidence variety’ of cubic polynomials and points

Π=
�

(F, p)
�

� F(p) = 0
	 ⊂ C[x , y, z, w]3 × P3 .

The preimage of X under the projection π : (F, p) 7→ F is the incidence variety of smooth

polynomials and points and will be denoted by eX . Again taking the quotient by C×, we get the

36



incidence variety of smooth cubic surfaces and points:

U = eX/C× =
�

(S, p) ∈ M × P3
�

� p ∈ S
	 ⊂ M × P3 . (3.2)

The projection U → M is a fiber bundle, which we will also denote by π.

Each of the incidence varieties also comes equipped with another projection, to P3; each of

these maps is in fact a fiber bundle (Π→ P3 happens to be a vector bundle). We will denote the

fiber over p ∈ P3 in Π, eX and U by Πp
∼= C19, X p and Up respectively. To be explicit, Πp is the

space of (not necessarily smooth) cubic polynomials that vanish at p, X p is the subset of smooth

cubic polynomials that vanish at p and Up is the space of smooth cubic surfaces that contain p.

All the spaces and maps above far fit into the following commuting diagram:

X p Up

eX U

X M

P3 P3

C×

π

C×

π
C×

(3.3)

The actions of GL(4) := GL(4,C) on C4 and PGL(4) = GL(4)/(C×I) on P3 induce actions

on the spaces defined above: on Π, X and eX by GL(4); on M and U by PGL(4). Fixing a point

p ∈ P3, the respective stabilizers in GL(4) and PGL(4) act on the fibers X p and Up. Choose

a basepoint (F0, p0) ∈ eX and set S0 = V(F0) so that (S0, p0) ∈ U . Then the actions produce

orbit maps g 7→ g(S0, p0) = (g · S0, g · p0) and so on. Since all the actions are compatible by

construction, we also have the following commuting ‘cube’:

StabGL(4)(p) X p

StabPGL(4)(p) Up GL(4) eX

PGL(4) U

(3.4)
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All the horizontal maps are orbit maps, all the vertical maps are quotients by C× and the

diagonal dotted maps are inclusions of fibers over p ∈ P3.

Remark 3.9. Since eX and X p are connected, a different choice of basepoint (F0, p0) ∈ eX does

not change the orbit maps up to homotopy.

Theorem 3.10 (Vassiliev [Vas99], Peters–Steenbrink [PS03]). The map PGL(4)→ M given by

g 7→ g(S0) induces an isomorphism

H∗(M ;Q) ∼−→ H∗(PGL(4);Q) .

3.2.2 Proof of Theorem 3.3 and the role of simplicial resolution

Vassiliev’s computation of H∗(M ;Q) and H∗(X ;Q) (as in [Vas99]) starts with a reduction, via

Alexander duality, to computing the (Borel–Moore) homology of the discriminant locus Σ. The

space Σ, the set of singular cubic surfaces, is itself highly singular and stratifies based on the

singular locus of an F ∈ Σ. This stratification then produces a spectral sequence converging to

H∗(Σ) = HBM
∗ (Σ) (Borel–Moore or compactly supported homology).

Similar to the proof of Theorem 2.1, we apply the same methods to each fiber X p, over

p, of the map eX → P3, since each is a ‘discriminant complement’ in the vector space Πp of

polynomials vanishing at p. We then need to stratify Σp = Σ∩Πp not just by what the singular

loci are as subsets of P3, but also how they are configured with respect to the point p. These

are the types and subtypes described in Section 3.3.1. For now we will assume that we can

perform this computation (which takes up all of Section 3.3) and when needed we refer to the

answer described in Proposition 3.27.

The following Lemma 3.11 is relatively elementary but included for the reader’s convenience:

Lemma 3.11. Let f : Cn → C be a non-constant homogeneous polynomial of degree d, so that

V( f ) is a conical hypersurface; denote its complement by Y = Cn \ V( f ). Let PY = Y /C× =
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Pn−1 \ VP( f ) be the complement of the projective hypersurface given by the same polynomial f .

Then H∗(Y ;Q)∼= H∗(C×)⊗H∗(PY ).

Lemma 3.12. For a fixed p ∈ P3, choose a complement hyperplane H = PV , with V ⊂ C4. Then

GL(V ) ⊂ StabGL(4)(p) acts on X p. For a choice of basepoint F0 ∈ X p, the orbit map GL(V )→ X p

given by g 7→ g(F0) = F0 ◦ g induces a surjection

H∗(X p;Q)� H∗(GL(V );Q)∼= H∗(GL(3);Q) .

Proof. Choose a basis of V and denote the corresponding projective flag by P ∈ L ⊂ H. This

identifies GL(V ) with GL(3,C).

As in the computation of H∗(X p;Q) in Section 3.3, it is important to identify, via Alexander

duality, H∗(X p;Q) with H∗(Σp) and similarly H∗(GL(3);Q) with H∗(Mat(3) \ GL(3)), where

Mat(3) is the space of all 3 × 3 matrices. The generators of H∗(GL(3);Q) (as a ring) are

represented by the locus of matrices whose first i columns are linearly dependent1, for i = 1, 2, 3.

The orbit map extends to a map

Mat(3)→ Πp = X p ∪Σp .

It is enough to identify subspaces of Σp that pull back to (a rational multiple of) the corre-

sponding subspaces of Mat(2)×Mat(2). Then by the proof of [PS03, Lemma 7] (which is the

analogous statement for all singular polynomials, while X p restricts to polynomials vanishing at

p), appropriate choices of subspaces are the sets of polynomials that are: (i) singular at P, (ii)

singular at some point of L, (iii) singular at some point of H.

Remark 3.13. The stabilizer of p in PGL(4) deformation retracts to Stab(p, H)∼= GL(V ), for any

choice of complement H = PV above. However, there isn’t a way of extending the action of

GL(V ) on X p to an action of PGL(4) on eX .
1For i = 1 this means the first column is 0. This description of the generators generalizes to GL(n) ⊂ M(n).
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This allows us to apply Leray–Hirsch to X p→ X p/GL(V ) by [PS03, Theorem 2]. Knowing

the Betti numbers of X p from Proposition 3.27 and using Lemma 3.11 to move from X p to Up,

we get the following.

Corollary 3.14. As rings,

H∗(X p;Q)∼= H∗(S1 × S3 × S5 × S5;Q)

and

H∗(Up;Q)∼= H∗(S3 × S5 × S5;Q) .

Now we can prove Theorem 3.3.

Proof of Theorem 3.3. Let us supress rational coefficients for brevity. Setting

Gp = StabPGL(4)(p)' GL(3) ,

we have maps of bundles (as in (3.4)):

Gp Up M

PGL(4) U M × P3

P3 P3 P3

The pair of horizontal maps on the left are orbit maps as described above and the pair on the

right are inclusions.

Since the base is simply connected, we get spectral sequences

H p(P3)⊗Hq(Gp) =⇒ H p+q(PGL(4)) ; H p(P3)⊗Hq(Up) =⇒ H p+q(U)

and, since the last bundle is trivial,

⊕

p+q=d

H p(P3)⊗Hq(M)∼= Hd(M × P3) .
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Alternatively, all the differentials in the spectral sequence for the third bundle are 0. Since the

Serre spectral sequence is natural, this will help us compute the differentials in the case of U .

We will also use our knowledge of the differentials in the PGL(4) case.

By Theorem 3.10, H∗(M) is isomorphic to H∗(PGL(4)) via the orbit map. This implies that

the map Gp→ M induces isomorphisms:

H3(M)∼= H3(Gp) ; H5(M)∼= H5(Gp) .

In particular, the map

Q∼= H3(M)→ H3(Up)∼=Q

is an isomorphism and

Q∼= H5(M)→ H5(Up)∼=Q2

is injective. Now, by the Leibniz rule for differentials in the Serre spectral sequence and the

description of H∗(Up) from Corollary 3.14, it is enough to find the ranks of the differentials

(see Fig. 3.1)

d4 : H3(Up)→ H4(P3) and d6 : H5(Up)→ H6(P3) .

By the isomorphism H3(M)∼= H3(Up), the differential d4 vanishes but the injection H5(M)→
H5(Up) is not enough to determine if the differential d6 has rank 1 or 0 (although the image of

H5(M) must be in the kernel of d6).

Since we are considering field coefficients, H∗(U) is isomorphic to the associated graded as

a vector space. Thus, the Poincaré polynomial of U is either

(1+ t3)(1+ t5)(1+ t7)(1+ t2 + t4)

or

(1+ t3)(1+ t5)2(1+ t2 + t4 + t6) .

But the map H∗(U)→ H∗(PGL(4)) is surjective (since the map H∗(M)→ H∗(PGL(4)) is), so by

yet another application of [PS03, Theorem 2], the Poincaré polynomial of U must be divisible
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Figure 3.1: Serre spectral sequence for the bundle U → P3. Only potentially non-zero differen-
tials on generating degrees are shown.

by that of PGL(4), in particular by (1+ t7). This implies that the rank of d6 is 1 and that H6(P3)

is in the kernel of the pullback map for the fiber bundle U → P3.

Finally, to establish the ring structure, it is enough to note that in addition to the version of

Leray–Hirsch from [PS03], the generators in degrees 3, 5 and 7 cannot have any relations except

those forced by graded commutativity since this is true for their images in H∗(PGL(4)).

3.3 Rational cohomology of X p

3.3.1 Definitions and plan of attack

We will suppress constant rational coefficients throughout this section and use H to denote

Borel–Moore homology. Recall that for an orientable but not necessarily compact 2n-manifold

M , Poincaré duality takes the form

H i(M)∼= H2n−i(M)∼= (H2n−i(M))
∨ ∼= (H i

c(M))
∨ .
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Recall that X p ⊂ Πp
∼= C19 and setΣp = Πp\X p = Πp∩Σ, the set of singular cubic polynomials

that vanish at the point p. Then by Alexander duality,

eH i(X p) = H37−i(Σp) . (3.5)

Remark 3.15. The ‘discriminant locus’ Σp is a conical hypersurface in Πp, being the vanishing

locus of ∆p = ∆|Πp
. The complex variety X p, being the complement of a hypersurface, is

affine and hence a 19-dimensional Stein manifold. Thus by the Andreotti–Frankel theorem,

H i(X p) = 0 for i > 19. Hence, by Eq. (3.5), H i(Σp) can only be non-zero for 18≤ i ≤ 37.

Let F ∈ Σp be a singular cubic polynomial and let K be its singular locus. Then K, as a

subset of P3, can be one of the following 11 types (see [Vas99, Proposition 8]):

(I) a point

(II) two distinct points

(III) a line

(IV) three points, not on a line

(V) a smooth conic contained in a plane P2 ⊂ P3

(VI) a pair of intersecting lines

(VII) four points, not on a plane

(VIII) a plane

(IX) three lines through a point, not all on the same plane

(X) a smooth conic contained in a plane along with another point not on that plane

(XI) all of P3

These can be further classified into subtypes depending on their configuration with respect

to the marked point p. This will not be relevant for most of the types; we list those that are

relevant. The names P, Q etc. below for the points are for convenience, the sets of points are a

priori unordered: {P,Q}= {Q, P} and so on.

(I) a point P
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(a) P = p

(b) P 6= p

(II) two points P, Q

(a) P = p

(b) P and Q collinear with p, P,Q 6= p

(c) P and Q not collinear with p

(IV) three points P, Q, R, not collinear

(a) P = p

(b) P and Q collinear with p, P,Q 6= p

(c) P, Q and R coplanar with p, no two collinear with p

(d) P, Q and R not coplanar with p

(VII) four points P, Q, R, S, not coplanar

(a) P = p

(b) P and Q collinear with p, P,Q 6= p

(c) P, Q and R coplanar with p, no two collinear with p

(d) no three coplanar with p

Remark 3.16. The types correspond to singular loci that are equivalent under the PGL(4)-

action on P3 and the subtypes correspond to equivalence under the action of the subgroup

Stab(p) ⊂ PGL(4). However, this will not be explicitly important for us.

Definition 3.17. For a singular locus K , denote by L(K) the set of all polynomials in Σp that

are singular on all of K (and perhaps elsewhere as well). This is a vector space for any K ⊂ P3.

Remark 3.18. The subtypes are (partially) ordered by degeneracy: i ≤ j if polynomials with

singularity of subtype i can degenerate to a polynomial with singularity of subtype j. In the

following we need to choose a rank function (i.e., monotonic integer-valued map) on this poset,
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we use

deg(i) = 16− dim L(K)

for any K of subtype i.

Definition 3.19. For a manifold M and natural number n, the ordered configuration space of n

points on M is given by

PConfn(M) := {(a1, . . . , an) ∈ M n | ai 6= a j for i 6= j} .

This space comes with a natural action of the symmetric group Sn by permuting the coordinates

and the quotient is the unordered configuration space UConfn(M) of n points on M .

Definition 3.20. For any A ⊆ UConfn(M), the sign local coefficients on A, denoted by ±Q, is

given by the composition

π1(A)→ π1(UConfn(M))→Sn→ {±1} ⊂Q×

thought of as a representation on Q. Explicitly, a loop in A acts on Q by the sign of the induced

permutation on the n points.

The method of simplicial resolution ultimately produces for us a spectral sequence

E∗,∗ =⇒ H∗(Σp)

with the E1 page described below. For slightly more details see an entirely analogous description

in Section 2.3.1; for proofs and constructions, see [Vas99].

Let the index i vary over all the subtypes (not just the ones listed, but all of them). Define

Ai := {singular sets K of subtype i} .

Example 3.21. For the subtype IIa, a point P = p and a point Q 6= p, we have AIIa = {p} ×
(P3 \ {p}). For the subtype IIc, two points not collinear with p, the space AIIc is an open set in

UConf2(P3 \ {p}).
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There are spaces Fi so that the E1 page is given by

E1
p,q =

⊕

deg(i)=p

H p+q(Fi) . (3.6)

There are further spaces Φi and Λ(K) as well as fiber bundles:

L(K) Fi

Λ(K) Φi

K Ai∈

So to compute H∗(Fi), we can use the Thom isomorphism

H∗(Fi) = H∗−2 dimC L(K)(Φi) . (3.7)

Unless i is a subtype of I, II, IV, VII or XI, H∗(Λ(K)) = 0 ([Vas99, proof of Proposition 9])

and hence H∗(Φi) = 0. Now suppose i is a subtype of I, II, IV or VII, i.e. K ∈ Ai is a finite set of

say n points. Then Ai is a subset of UConfn(P3) and

H∗(Φi) = H∗−n+1(Ai;±Q) = H2dimC Ai+n−1−∗(Ai;±Q) . (3.8)

For the type XI (note that XI has only one subtype, itself), AXI is singleton, the only element

being K = P3. The only polynomial singular on K is 0, so L(K) = {0}. Thus FXI = ΦXI = Λ(P3).

Further, the space ΦXI = Λ(P3) is the open cone �C Z over

Z =
⋃

j 6=XI

Φ j

for certain gluings. So we get a spectral sequence er
p,q =⇒ Hp+q(Z) with

e1
p,q =

⊕

deg( j)=p,
j 6=XI

H p+q(Φ j) .

But then we also have

H∗(�C Z) = H∗(C Z , Z) = eH∗−1(Z) .
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So the computation eventually reduces to computing H∗(Ai;±Q) for the various subtypes

of I, II, IV and VII (see Propositions 3.25 and 3.26) followed by bookkeeping and relatively

standard arguments involving spectral sequences following [Vas99] (see Proposition 3.27).

Remark 3.22. We could keep track of the mixed Hodge structures throughout the entire compu-

tation, as in [Tom05; Tom14] (see also [Gor05]), but this ends up being unnecessary for our

purposes.

3.3.2 Case work

This section contains the details of the arguments to compute the various H∗(Ai;±Q). The

main idea is decomposing these spaces as fiber bundles, where both the fiber and base are

simpler. In many instances the bases are A j for some lower j and the computation is ‘inductive’

or recursive.

First, a couple of general facts that we will use freely in the computation below:

Lemma 3.23. Let H ∼= Pk be a k-dimensional linear subspace of Pn for some 0 ≤ k ≤ n and

let H⊥ be the (projectivized) orthogonal complement of H. Then Pn \ H deformation retracts to

H⊥ ∼= Pn−k−1.

Lemma 3.24.

H∗(UConf2(C);±Q) = 0 .

H∗(UConf2(P2);±Q)∼=











Q if ∗= 2, 4,6;

0 otherwise.

Proof. For UConf2(C), we can use that PConf2(R2n)' S2n−1 and the S2 action is by the antipodal

map, which is degree 1. Hence, by transfer, H∗(UConf2(R2n);±Q) = 0. For H∗(UConf2(P2);±Q)
see [Vas99, Lemma 2B].

Now we establish the cases where H∗(Ai;±Q) = 0, the recursive nature of the argument

makes some of the cases relatively easy. The remaining cases are treated in Proposition 3.26.
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Proposition 3.25. If i is IIb, IVb, IVc, VIIb, VIIc or VIId then H∗(Ai;±Q) = 0.

Proof. Let’s deal with each case in turn.

IIb. P,Q 6= p, but P, Q and p collinear Mapping {P,Q} 7→ L = 〈P,Q, p〉, the projective span

of P, Q and p, i.e. the line containing P, Q and p, we get a map from AIIb to the space of lines

in P3 containing p, which is a P2 ⊂ G(1, 3). This is a fiber bundle

UConf2(L \ p) AIIb

P2

and the local coefficients ±Q restricts to the fiber to the sign local coefficient on UConf2(L\p)∼=
UConf2(C). But H∗(UConf2(C),±Q) = 0 from Lemma 3.24, so we are done.

IVb. P,Q, R 6= p, P, Q and p collinear, but R not on that line Here, even though P, Q and

R are a priori unordered, we can’t (continuously) interchange R with one of P and Q. So there

is a well-defined map {P,Q, R} 7→ {Q, R} and we get a fiber bundle:

P3 \ P1 ∼= P3 \ 〈P,Q, p〉 AIVb

AIIb

The local coefficients ±Q on the total space pulls back from ±Q on base (that is, the map

π1(AIVb)→ {±1} factors through π1(AIIb)). But as we just showed, H∗(AIIb;±Q) = 0, so we are

done.

IVc. P,Q, R 6= p, coplanar with p and no three of P, Q, R and p collinear Mapping

{P,Q, R} 7→ H = 〈P,Q, R, p〉 ,

we get a fiber bundle:
F AIVc

P2
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The fiber is the space of three (unordered) non-collinear points on H \ {p} and the local

coefficients ±Q restricts to the local coefficients ±Q on F ⊂ UConf3(P2). Since π1(F)→ {±1}
factors through S3, we can go to the associated S3 cover eF ⊂ PConf3(P2) and then, by transfer,

H∗(F ;±Q) is the summand of H∗(eF ;Q) where S3 acts by the sign representation.

But eF can be identified with the fiber of (P,Q, R, S) 7→ S, where (P,Q, R, S) varies over all

tuples in PConf4(P2) so that no three are collinear. But PGL(3) acts freely and transitively on

this open subset of PConf4(P2) and hence we have a fiber bundle:

eF PGL(3)

P2

The action of S3 extends to PConf4(P2), permuting the first three points, so the action on the

base is trivial. The action on the total space extends to the action of the entire (connected)

group PGL(3) by right multiplication, so is trivial on homology. As a result, the S3 action on

H∗(eF ;Q) is trivial, which implies H∗(F ;±Q) = 0, as needed.

VIIb. P, Q, R and S not coplanar, P and Q collinear with p Note that if the four points

are not coplanar, at most one pair can be collinear with p, so this determines the subset

{P,Q} ⊂ {P,Q, R, S}. The line L = 〈P,Q, p〉 can be any line through p that is not on the plane

〈R, S, p〉 and fixing L, P and Q vary exactly in UConf2(L \ {p}) ∼= UConf2(C). Thus mapping

{P,Q, R, S} 7→ (L, {R, S}) we get a fiber bundle:

UConf2(L \ {p}) AVIIb

{(L, {R, S})}

But again H∗(UConf2(C),±Q) = 0 from Lemma 3.24, so we are done.

VIIc. P, Q and R but not S coplanar with p, and no two collinear with p Mapping

{P,Q, R, S} 7→ {P,Q, R}
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we get a fiber bundle:

C3 ∼= P3 \ 〈P,Q, R〉 AVIIc

AIVc

Since H∗(AIVc,±Q) = 0 by previous arguments, we are done.

VIId. P,Q, R, S 6= p, no three coplanar with p By an argument analogous to the case of

IVc, AVIId has an S4 cover by ordering the four points. This cover is the fiber of the bundle

PGL(3)→ P3, where PGL(3) is identified with five (ordered) points in P3, no four of which are

coplanar, by its free and transitive action. The action of S4 is again trivial on the base and on

H∗(PGL(3)), so we are done.

Recall that we have spectral sequences E r
p,q =⇒ H p+q(σ) and er

p,q that let us compute

H∗(FXI) = eH∗−1(Z), where

Z =
⋃

i 6=XI

Φi .

Proposition 3.26. The spectral sequence E r
p,q =⇒ H p+q(σ) has the page E1

p,q as in Fig. 3.2. The

spectral sequence er
p,q =⇒ Hp+q(Z) has the page e1

p,q as in Fig. 3.3.

Proof. Recall that by construction, the terms of E1 and e1 are related by Thom isomorphisms

E1
p,q+2(16−p)

∼= e1
p,q ,

except for p = 16, where e1
16,∗ ≡ 0. So we first go through more case work to establish columns

p 6= 16.

By Eqs. (3.6) to (3.8) and careful bookkeeping, it is enough to find H∗(Ai;±Q) along with

the numbers dim(Ai) = dimC(Ai) and dim(L(K)) = dimC(L(K)) for K ∈ Ai, for the subtypes i of

I, II, IV and VII (see Table 3.1 for the relevant numerics). Further, there are only seven subtypes

remaining — the ones not covered in Proposition 3.25.
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Figure 3.2: Spectral sequence page E1
p,q for H p+q(σ) (with 0s omitted) and all potentially

non-zero differentials in subsequent pages
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Figure 3.3: Spectral sequence page e1
p,q for Hp+q(Z) (with 0s omitted)
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i Ia Ib IIa IIc IVa IVd VIIa XI

dim Ai 0 3 3 6 6 9 9 0
dim L(K) 16 15 12 11 8 7 4 0

Table 3.1: dim Ai and dim L(K) for K ∈ Ai for each subtype i excepted in Proposition 3.25.

Ia. P = p AIa = {p} and the coefficients ±Q are trivial, so

H∗(AIa;±Q) = H∗({p}) =











Q if ∗= 0;

0 otherwise.

This contributes to E1
0,32
∼= e1

0,0 since dim(AIa) = 0 and dim(L(K)) = 16.

Ib. P 6= p AIb = P3 − p ' P2. Again, the coefficients are trivial since there is only one point,

so

H∗(AIb;±Q) = H∗(P2) =











Q if ∗= 0,2, 4;

0 otherwise.

This contributes to E1
1,31
∼= e1

1,1, E1
1,33
∼= e1

1,3 and E1
1,35
∼= e1

1,5 since dim(AIb) = 3 and dim(L(K)) =

15.

IIa. P = p, Q 6= p AIIa = {p} × P3 \ {p} ∼= (P2) and the coefficients are trivial. So,

H∗(AIIa;±Q) =











Q if ∗= 0, 2,4;

0 otherwise.

This contributes to E1
4,23
∼= e1

4,−1, E1
4,25
∼= e1

4,1 and E1
4,27
∼= e1

4,3 since dim(AIIa) = 3 and dim(L(K)) =

12.

IIc. P, Q and p not collinear The three points not being collinear is equivalent to the lines

〈P, p〉 and 〈Q, p〉 being distinct (lines through p). Hence mapping {P,Q} 7→ {〈P, p〉, 〈Q, p〉}, we

get a fiber bundle

C2 ∼= (〈P, p〉 \ p)× (〈Q, p〉 \ p) AIIc

UConf2(P2
p)
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where P2
p
∼= P2 is the space of lines through p. The coefficients on the total space pull back from

±Q coefficients on the base, hence by Lemma 3.24,

H∗(AIIc;±Q)∼= H∗(UConf2(P2);±Q) =











Q if ∗= 2, 4,6;

0 otherwise.

This contributes to E1
5,24
∼= e1

5,2, E1
5,26
∼= e1

5,4 and E1
5,28
∼= e1

5,6 since dim(AIIc) = 6 and dim(L(K)) =

11.

IVa. P = p, Q and R not coplanar with p AIVa = {p} × AIIc and the coefficients pull back

from the ±Q coefficients on AIIc. Hence,

H∗(AIVa;±Q) =











Q if ∗= 2, 4,6;

0 otherwise.

This contributes to E1
8,16
∼= e1

8,0, E1
8,18
∼= e1

8,2 and E1
8,20
∼= e1

8,4 since dim(AIIa) = 6 and dim(L(K)) =

8.

IVd. P, Q and R not coplanar with p Mapping {P,Q, R} 7→ 〈P,Q, R〉, we get a fiber bundle

whose base is (P3)∨ \ p⊥ ∼= C3 and the fiber is the space of non-collinear triples of points in P2,

whose cohomology with ±Q coefficients is the same as that of UConf3(P2), by [Vas99, Lemma

4]. Thus, using Lemma 3.24,

H∗(AIVd;±Q) =











Q if ∗= 6;

0 otherwise.

This contributes to E1
9,19
∼= e1

9,5 since dim(AIVd) = 9 and dim(L(K)) = 7.

VIIa. P = p, Q, R and S not coplanar with p AIVa = {p} × AIVd and the coefficients pull

back from the ±Q coefficients on AIVd. Hence

H∗(AVIIa;±Q) =











Q if ∗= 6;

0 otherwise.

This contributes to E1
12,11
∼= e1

12,3 since dim(AVIIa) = 9 and dim(L(K)) = 4.
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Thus we’ve computed the pages e1
p,q and E1

p,q except the p = 16 column of the latter. For XI,

L(K) = 0, so E1
16,q
∼= H16+q(ΦXI). Now, if any term with 1≤ d = p+ q ≤ 16 remains non-zero in

e∞p,q, then it would appear as Hd+1(ΦXI) and hence as a term E1
16,d−15, which cannot interact with

any of the other terms, by the shapes of the other columns, which we have already determined.

That means 0 6= Hd+1(σ)∼= eH37−d(X p), which is a contradiction with X p being a 19-dimensional

Stein manifold, as in Remark 3.15. This implies, given the shape of e1
p,q, that H∗(ΦXI)≡ 0, so

we have also verified E1
16,∗.

Proposition 3.27. The spectral sequence E r
p,q degenerates at r = 1 and hence the (rational)

Poincaré polynomials of X p and Up are given by:

P(X p; t) = (1+ t)(1+ t3)(1+ t5)2

P(Up; t) = (1+ t3)(1+ t5)2

Proof. Recall that E r
p,q =⇒ H p+q(σ)∼= eH37−p−q(σ). The page E1

p,q is quite sparse to begin with,

the only potentially non-zero differentials (on any page) are shown in Fig. 3.2. By Lemma 3.11,

since X p = Πl \ V(∆p), we must have

P(X p; t) = P(C×; t)P(Up; t) = (1+ t)P(Up; t) .

This shows that H4(X p)∼= H33(σ) and H10(X p)∼= H27(σ) cannot be 0, which means all those

differentials must vanish. So E∞p,q
∼= E1

p,q and there are no extension problems with rational

coefficients. It is then straightforward to factor the polynomials in the given manner.
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Chapter 4

Arithmetic statistics on cubic surfaces

4.1 Introduction

The classical Cayley–Salmon theorem implies that each smooth cubic surface over an alge-

braically closed field contains exactly 27 lines (see Section 4.2 for detailed definitions). In

contrast, for a surface over a finite field Fq, all 27 lines are defined over Fq but not necessarily

over Fq itself. In other words, the action of the Frobenius Frobq permutes the 27 lines and only

fixes a (possibly empty) subset of them. It is also classical that the full monodromy group of

the 27 lines, i.e. the Galois group of an appropriate extension or cover, is isomorphic to the

Weyl group W (E6) of type E6.

The Frobenius action on the 27 lines governs much of the arithmetic of the surface S:

evidently the pattern of lines defined over Fq and, less obviously, the number of Fq points on S

(or UConfn S etc). Work of Bergvall and Gounelas [BG19] allows us to compute the number of

cubic surfaces over Fq where Frobq induces a given permutation, or rather a permutation in a

given conjugacy class of W (E6). The point-counting results in this chapter can be thought of as

a combinatorial reinterpretation of their computation.

Theorem 4.1. Over the finite field Fq, the number of smooth cubic surfaces on whose 27 lines

Frobq acts by a given conjugacy class of W (E6) is as in Table 4.1.

The results of Bergvall–Gounelas that we use are cohomological in nature and we use the
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Table 4.1: The number of cubic surfaces over Fq on whose 27 lines Frobq acts by a given
conjugacy class of W (E6). The factors in the second column are to normalize to a degree
4 monic polynomial in q (and come up naturally in the representation theoretic setup, see

Section 4.2.1). The normalization factor
#W (E6)

# PGL(4,Fq)
reappears in Tables 4.2 to 4.4 for similar

reasons. The third column lists q for which the count in the second column vanishes. See
Section 4.3 for the notation used for conjugacy classes.

Conjugacy class c
#{S|Frobq,S ∼ c}

#PGL(4,Fq)
× #W (E6)

#c
#{S|Frobq,S ∼ c}= 0 for q =

(16) (q− 2)(q− 3)(q− 5)2 2,3, 5
(12, 22) (q+ 1)2(q− 2)(q− 3) 2,3
(1−2, 24) (q− 2)(q− 3)(q2 − 2q− 7) 2,3
(13, 3) q(q+ 1)(q2 − q+ 1)
(1−3, 33) (q+ 1)2(q2 + q− 3)
(32) (q− 2)(q3 − q2 − 2q− 6) 2

(12, 2−2, 42) (q+ 1)3(q− 2) 2
(2, 4) (q+ 1)(q− 2)(q2 + 1) 2
(1, 5) q2(q2 + 1)

(1,2, 3−1, 6) q(q+ 1)(q2 + q− 1)
(1−1, 22, 3) q(q+ 1)(q2 − q+ 1)
(1−2, 2, 6) q(q− 2)(q2 + q+ 2) 2

(1,2−2, 3−1, 62) (q+ 1)(q3 − 2q2 + 2q− 3)
(3−1, 9) q(q+ 1)(q2 − q+ 1)

(1−1, 2, 3, 4−1, 6−1, 12) (q+ 1)2(q2 − q+ 1)

(14, 2) q(q− 1)(q2 − 4q+ 5)
(23) q(q− 1)(q2 − 3)
(12, 4) q(q+ 1)2(q− 1)
(1−2, 22, 4) q(q− 1)3

(1, 2,3) q(q− 1)(q2 − q− 1)
(1−2, 2, 32) q(q− 1)(q2 + 2q+ 2)
(6) q3(q− 1)

(2, 4−1, 8) q(q+ 1)(q2 + 1)
(1−1, 2, 5) q2(q+ 1)(q− 1)

(1,2−1, 3−1, 4, 6) q(q− 1)(q2 + q+ 1)
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Grothendieck–Lefschetz trace formula to convert them to point-counting; see Section 4.2.1. We

also directly obtain the rational cohomology of various bundles and covers over the moduli

space of smooth cubic surfaces; see Theorem 4.6 and Corollary 4.7. These spaces are the

respective moduli spaces of smooth cubic surfaces with various markings of points and lines.

The point-counting analogue of this is Theorem 4.9.

It is worth noting how Theorem 4.1 relates to the distribution predicted by the Cebotarev

density theorem: for a fixed smooth cubic surface defined over Z, the conjugacy class of Frobp

acting on the 27 lines of the mod p reduction is distributed (as p→∞) proportional to the

sizes of the conjugacy classes. Theorem 4.1, on the other hand, describes for each fixed q

the distribution over all smooth cubic surfaces defined over Fq. The asymptotic distribution

as q → ∞ is still proportional to the size of the conjugacy class (with the normalization

factor in Table 4.1, this corresponds to each of the polynomials listed being monic); this is a

relatively easy application of the Grothendieck–Lefschetz trace formula for twisted coefficients

(see Section 4.2.1).

It also follows from the trace formula that a cubic surface over Fq contains q2+ tq+1 points,

where t is the trace of the element of W (E6) induced by Frobq on an appropriate representation

of W (E6) (specifically, V1 ⊕ V6 in the notation of Section 4.3). Adding up the counts for a given

t, we get the number of surfaces containing a given number of points.

Corollary 4.2. Over the finite field Fq, the number of smooth cubic surfaces with q2+ tq+1 points

is given by Table 4.2.

In particular, a cubic surface for a pair (t, q), for a listed t, exists unless the polynomial listed

in Table 4.2 vanishes at q (i.e. unless t = 7 and q = 2,3,5). These pairs were known before,

by Swinnerton-Dyer [Swi10] and Banwait–Fité–Loughran [BFL18], but the exact numbers of

surfaces were not. We can also check when the number of cubic surfaces vanishes for each

conjugacy class individually (as in the third column of Table 4.1) and recover more recent

results of Loughran–Trepalin [LT18].
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Table 4.2: The number of cubic surfaces over Fq with a given number of points.

t #{S(Fq) = q2 + tq+ 1} × #W (E6)
#PGL(4,Fq)

−2 80(q2 + q− 3)(q+ 1)2

−1 45(77q4 − 43q3 + 45q2 − 181q− 42)
0 432(27q3 − 17q2 + 5q+ 10)(q+ 1)
1 60(347q4 − 51q3 + 27q2 + 161q− 12)
2 144(91q4 − 5q3 + 36q2 − 35q− 15)
3 270(9q2 − 13q+ 2)(q+ 1)2

4 240(q2 − q+ 1)(q+ 1)q
5 36(q2 − 4q+ 5)(q− 1)q
7 (q− 2)(q− 3)(q− 5)2

Corollary 4.3 ([LT18, Theorem 1.1]). Over every prime power q, every conjugacy class of W (E6)

occurs as the class of Frobq acting on the lines of some cubic surface, with the following exceptions:

• the conjugacy class (16) (i.e. identity) does not appear for q = 2, 3,5;

• the conjugacy classes (12, 22) and (1−2, 24) do not appear for q = 2, 3;

• the conjugacy classes (32), (1−2, 22, 4), (2, 4) and (1−2, 2, 6) do not appear for q = 2.

Just like the number of lines, the intersection pattern of pairs of lines is fixed over Fq.

Once we know how Frobq acts on the set of lines on S, we can determine how many sets of

lines with a given intersection pattern are fixed by Frobq (and hence are defined over Fq).

Since we know the distribution of conjugacy classes of Frobq, this allows us to compute the

distribution of that intersection pattern over all S defined over Fq. Similarly, we can also find the

distribution of the number of Fq points on Symn S or UConfn S. Two such examples are listed

in Table 4.3 (tritangents), and Table 4.4 (unordered pairs of points); for a general statement

see Theorem 4.9.

As mentioned above, we obtain these results on point counts by applying (an equivariant

version of) the Grothendieck–Lefschetz trace formula to the cohomology of the W (E6)-cover Y

of the parameter space X of smooth cubic surfaces (see Section 4.2), as computed by Bergvall–

Gounelas (and restated here as Theorem 4.4). They perform their computation by first obtaining
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S6-equivariant point counts of smooth cubic surfaces [BG19, Table 1], i.e. the analogue of

Table 4.1 for S6 < W (E6). This determines H∗ét(YFq
;Q`) as S6 representations and leaves

finitely many possibilities as W (E6) representations. They then use various constraints on the

W (E6)-equivariant point counts (for example that each entry in Table 4.1 must be non-negative

for each q) to reduce to a single possibility.

We also apply their computation of cohomology, along with some facts from Chapter 3,

to various bundles and covers over X . More explicitly, marking n, not necessarily distinct,

ordered (resp. unordered) points on each S ∈ X corresponds to a bundle over X whose fiber

over S is Sn (resp. Symn S); see Section 4.2 for details. In Theorem 4.6 and Corollary 4.7 we

compute the rational cohomology of each of these bundles and their finite covers given by

subgroups of W (E6); these covers correspond to marking various subsets of the 27 lines in

addition to the n points on the surface S. These cohomology computations are of course related

to the point-count computations in Theorem 4.1 again by the trace formula; see Theorem 4.9

and Remark 4.10.

4.2 Marking points and lines on cubic surfaces

Denote the ordered configuration space of n points on a space X by

PConfn X :=
�

(x1, . . . , xn) ∈ X n
�

�

� x i 6= x j for i 6= j
	

.

The unordered configuration space of n points on X is the quotient by the action of the symmetric

group Sn permuting the n points and will be denoted by

UConfn X := PConfn X/Sn .

A cubic surface S ⊂ P3 is defined by a homogeneous cubic polynomial F in 4 variables.

Accordingly, the space of cubic surfaces is the projectivization P19 of the affine space of homoge-

neous cubic polynomials in 4 variables. The cubic surface S is smooth if its defining polynomial

F is smooth, i.e. its partials do not simultaneously vanish on S.
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The subspace of non-smooth or singular cubic surfaces is a closed set Σ, given by a ‘dis-

criminant’ polynomial (with integer coefficients) in the coefficients of F . We will denote the

complement, the space of smooth cubic surfaces, by

X = P19 \Σ .

Thus X is an algebraic variety defined over Z.

According to the classical theorem of Cayley and Salmon, a smooth cubic surface over C

contains 27 lines. This corresponds to a degree 27 cover of X (C) given by the incidence variety

of lines ` ∈ Gr(2, 4) (the Grassmannian of lines in P3) and cubic surfaces S ∈ X (see Chapter 2).

This cover is not Galois; its Galois group is W (E6), the Weyl group of type E6 (see [Man86;

Har79]). More precisely, this is the subgroup of S27 permuting the lines that preserves the set

of intersecting pairs of lines. Explicitly, let R ⊂ {1, . . . , 27}2 be the set of intersecting pairs of

lines for some fixed S0 ∈ X . Then the Galois cover is

Y =
�

(S, L1, . . . , L27)
�

�

� Li ⊂ S, Li ∩ L j 6=∅ iff (i, j) ∈ R
	 ⊂ X × PConf27 Gr(2, 4) .

Note that Y is an algebraic variety over X and, by above, Y (C)→ X (C) is a Galois cover with

Galois group W (E6)∼= Stab(R)<S27. This finite subgroup is of order 51840 and has a simple

subgroup of index 2; we describe some of its representation theory in Section 4.3.

There are also actions of PGL(4) = Aut(P3) on X and on Y such that the covering map

is equivariant. Both the actions over C have closed orbits and finite stabilizers, which are

subgroups of W (E6).

In the following, the summands on the right denote irreducible representations of W (E6);

for details and the notation see Section 4.3 and Table 4.7. In particular, Vd or Ud has dimension

d and V1 is the trivial representation. Bergvall and Gounelas prove the following:

Theorem 4.4 ([BG19, Theorem 1.2]). Let H i = H i(Y (C)/PGL(4,C);Q). Then as representations

60



of W (E6):

H0 = V1 ;

H1 = V15,2 ;

H2 = V81 ;

H3 = V15,1 ⊕ U80 ⊕ U90 ;

H4 = V30 ⊕ V ′30 ⊕ U10 ⊕ U80 .

For dimensional reasons, H i = 0 for other i.

This is sufficient to determine H∗(Y (C);Q) as a W (E6) representation since it follows from

the work of Peters and Steenbrink [PS03] that

H∗(Y (C);Q)∼= H∗(Y (C)/PGL(4,C);Q)⊗H∗(PGL(4,C);Q) ,

where the action on PGL(4,C) (and its cohomology) is trivial.

A subgroup G < W (E6) corresponds to an intermediate cover Y /G → X . These often

also correspond to marking a (labeled) subset of lines on S ∈ X , when G is the (pointwise)

stabilizer of such a set. For example, marking one line L corresponds to Stab(L)∼=W (D5) (see

Chapter 2), and marking a ‘tritangent’ T corresponds to Stab(T )∼=W (F4) (see [Nar82]). Note

that Y = Y /{1} and X = Y /W (E6) are the ‘trivial’ examples.

We denote the incidence variety of points in P3 and S ∈ X by

U :=
�

(S, p)
�

� p ∈ S
	 ⊂ X × P3 .

Then U → X is the ‘universal family’ of smooth cubic surfaces and U(C) is a fiber bundle over

X (C) with fiber S ⊂ P3(C) over S ∈ X (C) (see Chapter 3). We can also construct various

associated spaces over X : Πn
X U with fiber Sn, Symn

X U with fiber Symn S, PConfn
X U with fiber

PConfn S, etc.
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Finally, we can combine the two constructions above by taking more fiber products over X ,

for instance:

(Y /W (D5))×X (Π
2
X U) =

�

(S, L, p1, p2)
�

� L ⊂ S, pi ∈ S
	 ⊂ X ×Gr(2, 4)× (P3)2 .

Of course,

(Y /G)×X U = (Y ×X U)/G ,

where the action of G ⊂W (E6) on U is trivial, and similarly for (Y /G)×X (Πn
X U) etc. It is worth

noting that in these examples there is no enforced relation between the points and the lines

marked, in particular we do not insist that pi ∈ L.

Remark 4.5. We should not expect the results and techniques of this chapter to apply if we do

insist e.g. that pi ∈ L. For one, the space

�

(S, L, p)
�

� p ∈ L ⊂ S
	 ⊂ (X ×Gr(2, 4)× P3)(C)

is not a fiber bundle over X (C) due to the existence of Eckardt points, i.e. triple intersections of

lines, on some special S ∈ X .

The bundle U → X and the associated constructions each have monodromy: H∗(S) is a

π1(X , S) representation. However, the monodromy representation factors through W (E6) (see

Eq. (4.1) for an explicit description of the representation) and consequently in the pullback

bundle Y ×X U → Y the monodromy action of π1(Y ) on H∗(S) is trivial. The same holds for

Y ×X (Πn
X U) etc.

Theorem 4.6. Let Z be Πn
X U or Symn

X U. Let F be the fiber of Z(C)→ X (C) over S (i.e. Sn or

Symn S respectively). Then

H∗((Y ×X Z)(C);Q)∼= H∗(Y (C);Q)⊗H∗(F ;Q)

as both W (E6) representations and mixed Hodge structures.
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Proof. We will suppress the field C for brevity. In the quotient Y ×X Π
n
X U → Y ×X Symn

X U ,

the Sn action is trivial on the Y factor (and also trivial on the H∗(Y ) factor in the action on

H∗(Y ;Q)⊗H∗(Πn
X U;Q)). Thus by transfer, it is enough to restrict to the cases Πn.

Since, as we noted, the monodromy π1(Y ) : H∗(F) is trivial, the associated Serre spectral

sequence converging to H∗(Y ×X Z;Q) has E2 page

Ep,q
2
∼= H p(Y ;Q)⊗Hq(F ;Q) .

It is then enough to show that this spectral sequence degenerates immediately. Since H∗(F) =

H∗(Sn) ∼= H∗(S)⊗n, and the differentials satisfy the Leibniz rule, we reduce to the n = 1 case.

Note that the differentials in these spectral sequences must be W (E6)-equivariant, since the

respective bundles are.

To describe H∗(S) as a W (E6) representation, identify S as the blowup of P2 at 6 points, with

the exceptional divisors constituting 6 of the 27 lines. It follows that H2(S) is generated by the

canonical class of S and the classes of these 6 lines, and implies that as W (E6) representations,

H2(S;Q)∼= V1 ⊕ V6 . (4.1)

But there is no copy of the irreducible fundamental representation V6 in E2,1 = 0 or E3,0 ∼=
H3(Y ;Q). Thus it remains to show that the differentials vanish on the W (E6)-invariant classes

in H∗(S), or equivalently (by transfer) that the differentials in the Serre spectral sequence for

the bundle U → X vanish. The latter is shown in the proof of Corollary 3.5.

Corollary 4.7. For Z and F as above, and G <W (E6),

H∗((Y /G)×X Z)∼= (H∗(Y (C);Q)⊗H∗(F ;Q))G .

In particular, taking G =W (E6),

H∗(Z)∼= (H∗(Y (C);Q)⊗H∗(F ;Q))W (E6) = H∗(Y (C);Q)⊗W (E6) H∗(F ;Q) .

Thus computations of these cohomology groups reduce to elementary representation theory,

namely character theory. For convenience, a character table of W (E6) is reproduced in Table 4.7.
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4.2.1 The Grothendieck–Lefschetz trace formula and point counts

The varieties above are all smooth and quasiprojective. Therefore their point counts over

the finite field Fq can be obtained from the action of Frobq on their étale cohomology via the

Grothendieck–Lefschetz trace formula:

#Z(Fq) = qdim Z
∑

i≥0

(−1)i Tr(Frobq : H i
ét(ZFq

;Q`)∨) .

This formula holds for a smooth Z and a prime ` not dividing q.

The Cayley–Salmon theorem holds over any algebraically closed field, in particular Fq. The

identification of the Galois group of Y → X with W (E6) implies that if S is defined over Fq, then

Frobq permutes the 27 lines by some element of W (E6)<S27. We denote this by Frobq,S. This

also determines how Frobq acts on H∗ét(S) as follows.

Recall that a smooth cubic surface S is the blowup of P2 at 6 points and

H2(S;Q)∼= V1 ⊕ V6 . (4.2)

Since Frobq acts on H2i
ét (Pn
Fq
)∨ by the scalar q−i, we deduce that Frobq acts on H0(S)∨ as identity,

on H2(S)∨ by the action of q−1 ·Frobq,S ∈Q[W (E6)] on V1⊕ V6 and on H4(S)∨ by the scalar q−2.

Here (and henceforth) we use that each irreducible representation of W (E6) are self-dual. This

also proves Corollary 4.2. It remains to prove Theorem 4.1.

Remark 4.8. The action of Frobq on H∗(S) determines the action of Frobq on H∗(Sn) and

H∗(Symn S). Totaro [Tot96] describes H∗(PConfn S) as the cohomology of a DGA generated by

H∗(Sn) along with classes in degree 3 which can be identified with the generator of H3(A2− 0).

This is enough to determine the action of Frobq on H∗(PConfn S) and, since this description is

Sn-equivariant, on H∗(UConfn S). In particular, the conjugacy class of Frobq,S determines the

number of Fq points on Sn, Symn S, etc, again via the Grothendieck–Lefschetz trace formula.

Proof of Theorem 4.1. We want to count points of X depending on the conjugacy class of Frobq

in W (E6). Thus we will apply a version of the Grothendieck–Lefschetz trace formula with local
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coefficients (see e.g. [DL76, §3]), specifically for representations of π1(X ) that factor through

the finite group W (E6). By transfer, this exactly corresponds to the cohomology of Y ; more

explicitly, for a W (E6)-representation V ,

H∗(X ; V )∼= H∗(Y ;Q)⊗Q[W (E6)] V .

To combine this with the Grothendieck–Lefschetz trace formula, we need knowledge of how

W (E6) and Frobq acts on H∗ét(Y ).

Even though Theorem 4.4 is stated for singular cohomology of the complex points, the

same identifications with W (E6) representations (now over Q`) can be made for H∗ét(YFq
;Q`)

for every q. Further, it is an important part of the results of Bergvall–Gounelas in [BG19] that

H∗(Y /PGL(4)) is minimally pure, i.e. that Frobq acts on (H i
ét)
∨ by the scalar q−i. In fact, the

argument in [BG19] in some sense reverses the steps here, to go from point counts to étale

cohomology to singular cohomology.

Equipped with this knowledge and using some linear algebra, one obtains

#
�

S ∈ X
�

�

� Frobq,S ∈ c
	

= #PGL(4,Fq)
∑

i≥0

(−1)iq4−i



H i,χc

�

W (E6)

where χc is the characteristic function of the conjugacy class c and H i are as in Theorem 4.4.

This formula is enough to compute Table 4.1 and also explains the normalizing factors in its

second column.

We can also state a point-count version of Theorem 4.6. We already saw in Remark 4.8

that #Sn(Fq), # PConfn S(Fq) etc only depend on Frobq,S. More elementary is the fact that the

cardinality of the fiber of Y /G→ X over S ∈ X (Fq) is determined by Frobq,S for any G <W (E6),

since this fiber is isomorphic to W (E6)/G as a G-set. Thus we get the following statement whose

proof is obvious.

Theorem 4.9. Let Z be Πn
X U, Symn

X U, PConfn
X U or UConfn

X U and G < W (E6). Let c be any

conjugacy class of W (E6) and set X c =
�

S ∈ X (Fq)
�

�

� Frobq,S ∈ c
	

. For any S ∈ X c, let d =
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#(Y /G)S(Fq) and let F be the fiber of Z → X over S (i.e. Sn, Symn S, PConfn S or UConfn S

respectively). Then

#
�

((Y ×X Z)/G)(Fq)×X (Fq) X c

�

= d × (#F(Fq))× (#X c) .

Since we know the distribution of Frobq,S, i.e. #X c for each c, we can find the distribution

of d ×#F . Two examples of such distributions are tabulated in Tables 4.3 and 4.4. Specifically,

for Table 4.4, H∗(UConf2(S);Q) as a W (E6) representation can be computed to be the following

using the spectral sequence in [Tot96]:

H0 ∼= V1 ; H2 ∼= V1 ⊕ V6 ; H4 ∼= V⊕2
1 ⊕ V6 ⊕ V20 ; H i = 0 for other i .

Remark 4.10. It is possible to deduce Theorem 4.9 by applying the trace formula to Theorem 4.6

for Z = Πn
X U or Symn

X U , and to the Serre spectral sequence of the bundle Y ×X Z → Y for

Z = PConfn
X U or Z = UConfn

X U . The differentials in this spectral sequence are irrelevant for

the purpose of point-counting, since the trace formula uses an alternating sum of traces, similar

to the Euler characteristic. We leave the details to experts.

4.3 Character table of W (E6)

In this section we explain our notation for the conjugacy classes and irreducible representations,

borrowing heavily from [Fra51]. The conjugacy classes will be denoted by “virtual cycle

types” as determined by their action on the 6-dimensional fundamental representation V6. In

more detail, elements from different conjugacy classes in W (E6) remain non-conjugate in the

representation V6. Thus a conjugacy class c can be identified by the action of any g ∈ c on V6,

and since this action of {1, g, g2, . . . } ∼= Z/n (i.e. n is the order of g) is defined over Q, it can

be decomposed as a (virtual) direct sum

⊕

d|n
Q[Z/d]⊕id .
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Table 4.3: Distribution of tritangents over S ∈ X (Fq). The average is 1.

N
#W (E6)

# PGL(4,Fq)
×#

�

S
�

� S has N tritangents
	

0 576(38q3 − 5q2 + 5)q
1 540(39q4 + 3q3 + 3q2 − 3q− 10)
2 2160(q2 − q+ 1)(q+ 1)q
3 240(17q4 − 25q+ 24)
4 1440(q2 + q− 1)(q+ 1)q
5 270(q+ 1)2(q− 2)(q− 3)
6 240(q2 − q+ 1)(q+ 1)q
7 540(q2 − 3)(q− 1)q
9 80(q2 + q− 3)(q+ 1)2

13 45(q2 − 2q− 7)(q− 2)(q− 3)
15 36(q2 − 4q+ 5)(q− 1)q
45 (q− 2)(q− 3)(q− 5)2

Table 4.4: Distribution of #UConf2(S) over S ∈ X (Fq). The average is q2(q2 + q+ 2).

N
#W (E6)

# PGL(4,Fq)
×#

�

S
�

� # UConf2(S) = N
	

q4 − 2q3 + q2 80(q+ 1)2(q2 + q− 3)
q4 − q3 + q2 2880q(q3 − 3)
q4 − q3 + 2q2 540q(q− 1)3

q4 − q3 + 4q2 45(q− 2)(q− 3)(q2 − 2q− 7)
q4 + q2 864(q+ 1)(11q3 − 6q2 + 5)
q4 + 2q2 2160q(q+ 1)(q2 − q+ 1)
q4 + q3 + q2 960(11q4 − 6q3 + 5q+ 6)
q4 + q3 + 2q2 3240(q+ 1)(3q− 2)(q2 + 1)
q4 + q3 + 4q2 540q(q− 1)(q2 − 3)
q4 + 2q3 + q2 720(q+ 1)(q3 − 2q2 + 2q− 3)
q4 + 2q3 + 2q2 4320q(q− 1)(q2 + q+ 1)
q4 + 2q3 + 3q2 5184q2(q2 + 1)
q4 + 2q3 + 4q2 2880q4

q4 + 3q3 + 4q2 540(q+ 1)3(q− 2)
q4 + 3q3 + 6q2 1620q(q+ 1)2(q− 1)
q4 + 3q3 + 8q2 270(q+ 1)2(q− 2)(q− 3)
q4 + 4q3 + 10q2 240q(q+ 1)(q2 − q+ 1)
q4 + 5q3 + 16q2 36q(q− 1)(q2 − 4q+ 5)
q4 + 7q3 + 28q2 (q− 2)(q− 3)(q− 5)2
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Then we will denote the conjugacy class c by the tuple (d id )id 6=0. For example, the tuple

(1, 2−2, 3−1, 62)

denotes a conjugacy class of order 6 whose elements act on V6 with eigenvalues

(ζ,ζ,ζ2,ζ4,ζ5,ζ5) ,

where ζ is a primitive 6th root of unity. We assure the reader that the tuples below do in fact

represent actual (i.e. not just virtual) representations of dimension 6, in particular they satisfy
∑

did = 6.

The group W (E6) contains a simple subgroup W (E6)+ of index 2. Call the conjugacy classes

in W (E6) that are contained in W (E6)+ even, the others odd. In particular, (14, 2) is odd. Every

irreducible character of W (E6) that does not remain irreducible upon restriction to W (E6)+

vanishes on odd conjugacy classes. There are 5 such characters, and they have different

dimensions, so we will denote the one of dimension n by Un.

On the other hand, each of the other irreducible characters χ, whose restriction to W (E6)+

does remain irreducible, satisfies χ(14, 2) 6= 0. These occur in 10 pairs, differing in the sign of the

character on odd conjugacy classes (and hence by a tensor product with the sign representation

V ′1 pulled back from the non-trivial representation of the quotient W (E6)/W (E6)+). Each pair is

denoted V and V ′ with subscripts, where V has χ(14, 2)> 0, and V ′ has χ(14, 2)< 0. Distinct

pairs have different dimensions, except two of the pairs have dimension 15. Hence we will

denote them by Vn, V ′n for n = dim 6= 15, and V15,1, V ′15,1, V15,2, V ′15,2. A full list of the 25

irreducible representations and the notation for them in other sources is listed in Table 4.6.

Finally, we include a character table of W (E6) as Table 4.7. To avoid redundancy, we omit

the characters of the representations denoted V ′n; these can be obtained by taking the character

of the corresponding character Vn and negating the values on the odd conjugacy classes.
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Table 4.5: Conjugacy classes of W (E6)

Notation for the class c Properties of c and g ∈ c
Here [CCN+85] [Swi67] ord g #c #Z(g)

ev
en

cl
as

se
s:

g
∈W
(E

6
)+

(16) 1A C1 1 1 51840
(12, 22) 2B C2 2 270 192
(1−2, 24) 2A C3 2 45 1152
(13, 3) 3D C6 3 240 216
(1−3, 33) 3A, 3B C11 3 80 648
(32) 3C C9 3 480 108

(12, 2−2, 42) 4A C4 4 540 96
(2,4) 4B C5 4 3240 16
(1,5) 5A C15 5 5184 10

(1, 2,3−1, 6) 6C, 6D C7 6 1440 36
(1−1, 22, 3) 6F C8 6 2160 24
(1−2, 2, 6) 6E C10 6 1440 36

(1, 2−2, 3−1, 62) 6A, 6B C12 6 720 72
(3−1, 9) 9A, 9B C14 9 5760 9

(1−1, 2, 3, 4−1, 6−1, 12) 12A, 12B C13 12 4320 12

od
d

cl
as

se
s:

g
/∈W
(E

6
)+

(14, 2) 2C C16 2 36 1440
(23) 2D C17 2 540 96
(12, 4) 4D C18 4 1620 32
(1−2, 22, 4) 4C C19 4 540 96
(1, 2,3) 6G C21 6 1440 36
(1−2, 2, 32) 6H C22 6 1440 36
(6) 6I C23 6 4320 12

(2, 4−1, 8) 8A C20 8 6480 8
(1−1, 2, 5) 10A C25 10 5184 10

(1,2−1, 3−1, 4, 6) 12C C24 12 4320 12

Table 4.6: Various notations for irreducible repre-
sentations of W (E6)

Here [Fra51] [CCN+85] [Car93]

V1 1p χ1 φ1,0

V6 6p χ4 φ6,1

V15,1 15p χ7 φ15,5

V15,2 15q χ8 φ15,4

V20 20p χ9 φ20,2

V24 24p χ10 φ24,6

V30 30p χ11 φ30,3

V60 60p χ18 φ60,5

V64 64p χ19 φ64,4

V81 81p χ20 φ81,6

V ′1 1n φ1,36

V ′6 6n φ6,25

V ′15,1 15n φ15,17

V ′15,2 15m φ15,16

V ′20 20n φ20,20

V ′24 24n φ24,12

V ′30 30n φ30,15

V ′60 60n φ60,11

V ′64 64n φ64,13

V ′81 81n φ81,10

U10 10s χ2 +χ3 φ10,9

U20 20s χ5 +χ6 φ20,10

U60 60s χ12 +χ13 φ60,8

U80 80s χ14 +χ15 φ80,7

U90 90s χ16 +χ17 φ90,8
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Table 4.7: Character table of W (E6). See text for notation.

Class c V1 V6 V15,1 V15,2 V20 V24 V30 V60 V64 V81 U10 U20 U60 U80 U90

(16) 1 6 15 15 20 24 30 60 64 81 10 20 60 80 90
(12, 22) 1 2 −1 3 4 0 2 4 0 −3 2 −4 4 0 −6
(1−2, 24) 1 −2 −1 7 4 8 −10 −4 0 9 −6 4 12 −16 −6
(13, 3) 1 3 3 0 5 0 3 −3 4 0 −2 2 −6 −4 0
(1−3, 33) 1 −3 6 −3 2 6 3 6 −8 0 1 −7 −3 −10 9
(32) 1 0 0 3 −1 3 3 −3 −2 0 4 2 0 2 0
(12, 2−2, 42) 1 2 3 −1 0 0 −2 0 0 −3 2 4 4 0 2
(2,4) 1 0 −1 1 0 0 0 0 0 −1 −2 0 0 0 2
(1,5) 1 1 0 0 0 −1 0 0 −1 1 0 0 0 0 0
(1,2, 3−1, 6) 1 1 −1 −2 1 2 −1 −1 0 0 0 −2 0 2 0
(1−1, 22, 3) 1 −1 −1 0 1 0 −1 1 0 0 2 2 −2 0 0
(1−2, 2, 6) 1 −2 2 1 1 −1 −1 −1 0 0 0 −2 0 2 0
(1,2−2, 3−1, 62) 1 1 2 1 −2 2 −1 2 0 0 −3 1 −3 2 −3
(3−1, 9) 1 0 0 0 −1 0 0 0 1 0 1 −1 0 −1 0
(1−1, 2, 3, 4−1, 6−1, 12) 1 −1 0 −1 0 0 1 0 0 0 −1 1 1 0 −1

(14, 2) 1 4 5 5 10 4 10 10 16 9
(23) 1 0 −3 1 2 4 −2 2 0 −3
(12, 4) 1 2 1 −1 2 0 0 −2 0 −1
(1−2, 22, 4) 1 −2 1 3 2 0 −4 −2 0 3
(1,2, 3) 1 1 −1 2 1 −2 1 1 −2 0
(1−2, 2, 32) 1 −2 2 −1 1 1 1 1 −2 0
(6) 1 0 0 1 −1 1 1 −1 0 0
(2,4−1, 8) 1 0 −1 −1 0 0 0 0 0 1
(1−1, 2, 5) 1 −1 0 0 0 −1 0 0 1 −1
(1,2−1, 3−1, 4, 6) 1 1 1 0 −1 0 −1 1 0 0
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