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ABSTRACT

This thesis consists of four research papers stapled together. In this work, we study moduli

spaces of principally polarised abelian varieties of dimension g > 1 with p-torsion structure

for prime p. In particular, given a Galois representation ρ : GQ → GSp(2g,Fp) with

cyclotomic similitude character, we study various rationality aspects of the twist Ag(ρ) of

the Siegel modular variety Ag(p) of genus g and level p.

Using a description of the cohomology of the compactification A∗2(3) given by Hoffman

and Weintraub, we show that the variety A2(ρ) is not rational in general (Theorem 1.1.1).

When ρ is surjective, the minimal degree of a rational cover is 6 (Theorem 1.1.2). Boxer,

Calegari, Gee and Pilloni have shown the existence of a rational cover Aw2 (ρ) of degree 6. We

find explicit formulae parametrizing the pullback Mw
2 (ρ) of Aw2 (ρ) under the Torelli map

M2 → A2 (Theorem 2.3.1). This describes the universal family of genus 2 curves with a

rational Weierstrass point, having fixed 3-torsion of Jacobian. This exploits Shioda’s work on

Mordell-Weil lattices and the invariant theory of the complex reflection group C3×Sp4(F3).

We also outline how similar results can be obtained for (g, p) = (2, 2), (3, 2), (4, 2).

By making use of the modularity lifting theorem for abelian surfaces proved by Boxer,

Calegari, Gee and Pilloni, we produce some explicit examples of modular abelian surfaces A

with EndC(A) = Z (Theorems 3.3.1, 3.3.2). Using the explicit formulae describing families

of abelian surfaces with fixed 3-torsion, and transferring modularity in the family yields

infinitely many such examples (Corollary 2.4.1).

When g = 1 and p > 5, the existence of mod-p Galois representations not arising from

elliptic curves over Q is known. For g > 1 and (g, p) 6= (2, 2), (2, 3), (3, 2), we investigate

a local obstruction to the existence of rational points on Ag(ρ), and thus construct Galois

representations ρ : GQ → GSp(2g,Fp) with cyclotomic similitude character, that do not

arise from the p-torsion of any g-dimensional abelian variety over Q (Theorem 4.1.1). This

is accomplished by solving embedding problems with local conditions at suitably chosen

auxiliary primes l 6= p, with the help of Galois cohomological machinery.
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CHAPTER 1

RATIONALITY OF TWISTS OF THE SIEGEL MODULAR

VARIETY OF GENUS 2 AND LEVEL 3

1.1 Introduction

Let p be a prime and suppose that A/Q is an abelian variety of dimension g with a polariza-

tion of degree prime to p. Associated to the action of the absolute Galois group GQ on A[p]

there exists a Galois representation

ρ : GQ → GSp2g(Fp)

such that the corresponding similitude character is the mod-p cyclotomic character ε. One

can ask, conversely, whether any such representation comes from an abelian variety in in-

finitely many ways. When g = 1, this question is well-studied, and has a positive answer

exactly for p = 2, 3, and 5. Indeed, the corresponding twists X(ρ) of the modular curve X(p)

are rational over Q for p = 2, 3, and 5, and have higher genus for larger p.

In [7], this question arose for abelian surfaces (g = 2) when p = 3. (The case p = 2,

which is also discussed in that paper, is understood by analyzing the branch points of the

hyperelliptic involution.) Let A2(3) denote the Siegel modular variety of genus 2 and level 3.

It is the moduli space of principally polarized abelian surfaces together with a symplectic

isomorphism A[3] ' (Z/3Z)2 ⊕ (µ3)2. Given a ρ as above, one can form the corresponding

moduli space A2(ρ) where now one insists that there is a symplectic isomorphism A[3] ' V ,

where V is the representation space of ρ with its symplectic structure. The variety A2(3) is

well-known to be birational to the Burkhardt quartic, which is rational over Q ([9]). It is

clear that A2(ρ) is isomorphic to A2(3) over C (and even over the fixed field of the kernel

of ρ), and hence A2(ρ) is geometrically rational. If A2(ρ) was in fact rational (by which

we always mean rational over the base field), then indeed the answer to the question above
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would be positive, just as for elliptic curves when p ≤ 5. In [7, Prop 10.2.3], a weaker result

was established: The variety A2(ρ) is unirational over Q via a map of degree at most 6.

As a consequence, any such ρ does arise from (infinitely many) abelian surfaces. We refer

the reader to [15] which produces explicit polynomials describing the universal family over a

rational cover of A2(ρ) of degree 6. However, the question as to whether A2(ρ) was actually

rational was left open. We address this question here.

Theorem 1.1.1. Let ρ : GQ → GSp4(F3) be a representation with cyclotomic similitude

character. Suppose that the order of im(ρ) is greater than 96. Then A2(ρ) is not rational

over Q.

More refined results can be extracted directly from Table 1.2 in §1.3. Since ρ has cy-

clotomic similitude character, the restriction of ρ to GE , where E = Q(
√
−3), has im-

age contained in Sp4(F3). If we let H denote the projection of im(ρ|GE
) to the simple

group PSp4(F3), then we prove that A2(ρ) is not rational over Q for all but 26 of the 116

conjugacy classes of subgroups of PSp4(F3). With the exception of three cases (including

when H is trivial) where the methods of [9] may be applied (see §1.2.3), we do not know what

happens in the remaining 23 cases, nor do we even know whether the rationality of A2(ρ)

depends only on im(ρ) or not. One easy remark is that, for a quadratic character χ, there

is an isomorphism A2(ρ) ' A2(ρ⊗ χ), and so the rationality of A2(ρ) depends only on the

image of ρ in PGSp4(F3).

The case of a surjective representation ρ is of special interest, since this is what happens

generically for the three-torsion Galois representations of abelian surfaces.

Theorem 1.1.2. Suppose that ρ is surjective. Then A2(ρ) is not rational over Q, and the

minimal degree of any rational cover is 6.

In light of the result [7, Prop 10.2.3] mentioned above, the constant 6 is best possible in

this case.
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The key ingredient in our results is the explicit description of the cohomology of the

compactified Siegel modular variety A∗2(3) given in [23]. We use it to study the Galois mod-

ule PicQ(A∗2(ρ)). The Galois action over E = Q(
√
−3) factors through the projectivization

of ρ turning it into a H-module. We then calculate group cohomology of this module for var-

ious subgroups P ⊂ H, and employ a necessary criterion for rationality (see Theorem 1.2.1)

to deduce our results.

1.1.1 Acknowledgments

We thank Jason Starr and Yuri Tschinkel for discussions about rationality versus geometric

rationality for smooth varieties over number fields, Steven Weintraub for a suggestion on

how to explicitly extract a description of H2(A∗2(3),Z) as a G = PSp4(F3)-module from

Theorem 4.9 of [23], and Mark Watkins with help using Magma. We thank the anonymous

referees for useful comments and corrections, and we also thank Nils Bruin for explaining to

us many of the ideas in section 1.2.3.

1.2 Strategy

The main idea behind the proof is to follow a strategy employed by Manin for cubic sur-

faces. Recall [28, §A.1] that a continuous GK -module with the discrete topology is called a

permutation module if it admits a finite free Z-basis on which GK acts (via a finite quotient)

via permutations, and that two GK -modules M and N are similar if M ⊕ P ' N ⊕ Q for

some permutation modules P and Q. In particular, we employ the following theorem.

Theorem 1.2.1. [28, §A.1 Theorem 2] Let Z be a smooth projective algebraic variety over a

number field K. Suppose that Z is rational over K. Then PicK Z as a GK-module is stably

permutation. In other words, it is similar to the zero module.

The Shimura variety A2(3) admits a smooth toroidal projective compactification A∗2(3),

the (canonical) toroidal compactification constructed by Igusa [26]. The automorphism group
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of A∗2(3) over Q is the group G = PSp4(F3), the simple group of order 25920, which acts over

the field E = Q(
√
−3). It will be convenient from this point onwards to always work over the

field E. (Certainly rationality over Q implies rationality over E, so non-rationality over E

implies non-rationality over Q.) This action on A2(3) arises explicitly from the action of G

on the 3-torsion A[3] = (Z/3Z)2⊕ (µ3)2 ' (Z/3Z)4 over E. We will apply Theorem 1.2.1 to

the corresponding twist A∗2(ρ). We then make crucial use of very explicit description of the

cohomology of this compactification given by Hoffman and Weintraub [23]. We recall some

facts from that paper here now.

1.2.1 Picard group

The Picard group ofA∗2(3) over Q is a free Z-module of rank 61. It is generated by two natural

sets of classes. The first is a 40-dimensional space explained by the 40 connected components

of the boundary. The second is a 45-dimensional space explained by divisors coming from

Humbert surfaces. These are also in one to one correspondence with the 45 nodes on the

Burkhardt quartic. Together, these generate the Picard group of A∗2(3) over Q, which is free

of rank 61. Indeed, the Betti cohomology of A∗2(3) over Z is free of degrees 1, 0, 61, 0, 61, 0, 1

for i = 0, . . . 6 by [23, Theorem 1.1]. Furthermore, all of these classes are trivial under the

action of GE .

Let ρ : GQ → GSp4(F3) be a continuous Galois representation with cyclotomic similitude

character. The assumption on the similitude character implies that the restriction of ρ to E

is valued in Sp4(F3). Let

% : GE → G = PSp4(F3)

denote the projectivization of the representation ρ restricted to E. The group G acts over E

on A∗2(3) via automorphisms, and A∗2(ρ) is the twist of A∗2(3) by %. The group PicQA
∗
2(ρ)

as a GE-module is obtained by considering PicQA
∗
2(3) as a G-module and then obtaining

the Galois action via the map % : GE → G. Thus it remains to closely examine PicQ(A∗2(3))
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as a G-module over Z. In fact, we can quickly prove a weaker version of Theorem 1.1.2

by studying this G-module over Q. The group G admits a unique conjugacy class G45 of

subgroups of index 45, but two conjugacy classes of index 40; let G40 denote the (conjugacy

class of) subgroups which fix a point in the tautological action of G ⊂ PGL4(F3) on P3(F3).

The following is an easy consequence of the calculations of [23] (and is also confirmed by our

Magma code).

Lemma 1.2.1. As Q[G]-modules, there is an equality of virtual representations

H2(A∗2(3),Q) ' PicQ(A∗2(3))⊗Q = Q[G/G40] + Q[G/G45]− [χ24],

where χ24 ⊗Q C is the unique absolutely irreducible 24-dimensional representation of G.

Now, assuming that % is surjective, we can prove that A∗2(ρ) is not rational simply by

proving that χ24 is not virtually equal to a sum of permutation representations. If RQ(G)

denotes the representation ring of G, this is equivalent to proving that χ24 ∈ RQ(G) does

not lie in the Burnside subring generated by permutation representations. But one may

compute (using Magma or otherwise) that the Burnside cokernel of G has order 2 and is

generated by χ24. This proves a weaker version of Theorem 1.1.2 showing that any rational

cover of A2(ρ) should have degree at least 2, although it is softer in that it only needs

the Q[G]-representation rather than the Z[G]-module. This argument also applies if one

only assumes that the image of % is H ⊂ G, as long as the restriction of χ24 to H is still

non-trivial in the Burnside cokernel, which it is for precisely 8 of the 116 conjugacy classes

of subgroups of G.

1.2.2 Cohomological Obstructions

From now on, we let H denote the image of % : GE → G = PSp4(F3). A second way to

prove that a Galois module is not similar to the zero module is to use cohomology. If M is a

permutation module of H, then the restriction of M to any subgroup P is also a permutation
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module, and thus a direct sum of P -modules of the form Z[P/Q] for subgroups Q of P . (Note

that since a permutation module of a group G arises from a finite G-set, it always decomposes

over Z into a direct sum of such irreducible permutation modules.) Then, Shapiro’s Lemma

implies that H1(P,M) is a direct sum of groups of the form

H1(P,Z[P/Q]) = H1(Q,Z) = 0,

where the second group vanishes because Q is finite. Moreover, the Z-dual M∨ = Hom(M,Z)

of a permutation module is isomorphic to the same permutation module (a permutation

matrix is its own inverse transpose). Thus one immediately has the following elementary

criterion.

Lemma 1.2.2 (Cohomological Criterion for non-rationality). Let M denote the G-module

PicQ(A∗2(3)). Suppose A∗2(ρ) is rational over E = Q(
√
−3), and %|GE

has image H ⊂ G.

Then

H1(P,M∨) = H1(P,M) = 0

for every subgroup P ⊂ H.

We note that this is not an “if and only if” criterion. In the language of [18], the lemma is

saying that M as a GE-module is flasque and coflasque respectively. In general, this is weaker

than being stably permutation (which itself is not enough to formally imply rationality).

In order to test this criterion in practice, we need an explicit description of M as a Z[G]-

module rather than a Q[G]-module. In order to do this, we explain how an explicit descrip-

tion ofM can be extracted from Theorem 4.9 of [23]. That theorem describes a set of elements

which generate both H4(A∗2(3),Z) and H2(A∗2(3),Z), and explicitly gives the intersection

pairing between them. Moreover, the basis comes with a transparent action of the group G.

Specifically, H2(A∗2(3),Z) is given as a quotient of Z[G/G40] ⊕ Z[G/G45]. Hence to com-

puteH2(A∗2(3),Z) as aG-module, it suffices to compute the quotient of Z[G/G40]⊕Z[G/G45]

by the saturated subspace which pairs trivially with all elements of H4(A∗2(3),Z). Having
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carried out this computation, we obtain a free abelian group of rank 61 with an explicit

action of G. We then do the following for every conjugacy class of subgroups H ⊂ G.

1. Determine whether χ24 is non-trivial in the Burnside cokernel of H.

2. Determine whether H1(P,M) 6= 0 for any subgroup P ⊂ H.

3. Determine whether H1(P,M∨) 6= 0 for any subgroup P ⊂ H.

If any of these is non-trivial, this proves that A∗2(ρ) is not rational. Moreover, the computa-

tion of these cohomology groups allows us to deduce our result about the minimal degree of

any rational covering.

Lemma 1.2.3. Let M denote the G-module PicQ(A∗2(3)). Suppose %|GE
has image H ⊂ G.

Let n denote the least common multiple of the exponents of H1(P,M) and H1(P,M∨) as

P varies over all subgroups of H. Suppose f : X → A∗2(ρ) is a rational cover of degree d

defined over Q. Then n divides d.

Proof. The induced pullback map f∗ : PicQ(A∗2(ρ)) → PicQ(X) and pushforward map

f∗ : PicQ(X)→ PicQ(A∗2(ρ)) are Galois equivariant since f is defined over Q. The composite

map g = f∗ ◦ f∗ on PicQ(A∗2(ρ)) is multiplication by d. The discussion in §1.2.1 shows that

the GE-module PicQ(A∗2(ρ)) can be thought of as the H-module M .

By Theorem 1.2.1, we know that PicQ(X) is stably permutation as a Galois module and

hence the Galois cohomology group H1(GQ,PicQ(X)) = 0. Therefore, the maps induced

by g on the cohomology groups H1(P,M) and H1(P,M∨) are the zero maps for every

subgroup P ⊂ H. Since the map g is multiplication by d, the induced map on cohomology is

also multiplication by d, and hence we deduce that the exponent of each of these cohomology

groups divides d.

We give one final statement which can be extracted from the Magma code given in the

supplementary file CodeRationality.txt, but not directly from Table 1.2. In order to
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represent elements of G = PSp4(F3) by matrices, we follow the conventions of Magma by

fixing Sp4(F3) ⊂ GL4(F3) to be the matrices preserving the symplectic form

J =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


.

Lemma 1.2.4. Suppose that the image of ρ contains an element conjugate in PSp4(F3) to



1 0 0 −1

0 1 1 0

0 0 1 0

0 0 0 1


.

Then A2(ρ) is not rational, and the minimal degree of any rational cover is divisible by 3.

Proof. It suffices to note that this element generates the subgroup labelled as subgroup 6 in

Table 1.2 below, and then to apply Lemma 1.2.3.

1.2.3 Other cases where rationality can be established

The analysis of Baker’s parametrization [1] undertaken in [9, §4] allows one to deduce the

rationality of certain twists of the Burkhardt quartic B (and hence of A2(ρ)) in a few more

cases. (We thank Nils Bruin for pointing this out to us, as well as explaining the geometric

construction below.) The rational parametrization P3 99K B over Q constructed in [9] is

not equivariant with respect the action of PSp4(F3). If it were, then the twists A2(ρ) we are

considering would all be birational to Brauer–Severi varieties. However, because they are

also unirational over Q by [7, Prop 10.2.3], they would be rational over Q, which we prove

in this paper to be false in general. On the other hand, the parametrization P3 99K B is
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equivariant with respect to the (unique up to conjugacy) cyclic group of order 9 [9, §4.3],

and also the corresponding group scheme over Q whose E points are this group of order 9

(c.f. [15, §2.3]), which controls the descent from E to Q. In particular, the same argument

implies that A2(ρ) is rational in two further cases, namely, the subgroups labelled n = 4 (of

order 3) and n = 24 (of order 9) in Table 1.2 below. One can also arrive at this rational

parametrization more geometrically, following [9, §4], whose notation we now freely follow.

The variety of lines LJ1,J2,J3 incident with 3-distinct planes Ji ⊂ P4 is geometrically rational.

If these planes are mutually skew and lie on B, there is a dominant map LJ1,J2,J3 99K B

defined by noting that a line will generically intersect B in four points and each Ji in one

point, and hence one can send the line to the fourth point of intersection with B. There

are 40 Jacobi planes Ji on B, and 2880 triples of mutually skew such planes. The stabilizer

under PSp4(F3) on these 2880 triples is the cyclic group of order 9. The assumption that H

is contained inside this group then implies that there exists a triple of Gal(Q/Q)-invariant

mutually skew planes on the twist of B corresponding to ρ. The result then follows after

noting that LJ1,J2,J3 is rational over Q whenever this triple is defined over Q. (We omit a

direct proof of this last claim in light of the alternate argument given above.)

1.3 Computation

Let M denote the G-module PicQ(A∗2(3)) ' H2(A∗2(3),Z). We have, by Poincaré dual-

ity, an isomorphism M∨ = H4(A∗2(3),Z), Below we present in Table 1.2 the result of our

computation for all 116 conjugacy classes of subgroups H ⊂ G, indicating the following data:

1. An ordering n = 1 . . . 116 of the conjugacy class of the subgroup H as determined by

Magma.

2. The group H in the small groups database [3]. The first element of the pair gives the

order of H.

3. The order of M in the Burnside cokernel of H over Q (if it is non-trivial). If this is
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greater than 1, then the corresponding twist is not rational over E (or Q).

4. The least common multiple of the exponents of H1(P,M) and H1(P,M∨) as P ranges

over subgroups P ⊂ H. If this is greater than 1, then the corresponding twist is not

rational over E (or Q). In particular, the fact that this number is 6 for G itself proves

Theorem 1.1.2.

5. The pre-image of H in Sp4(F3) acts on F4
3. Is this action absolutely irreducible? (That

is, is the action on F
4
3 irreducible.)

6. A list of the conjugacy class of maximal subgroups of H (as indexed in the table).

This allows one to compute the LCM column directly. The table is separated into

blocks to reflect the geometry of the corresponding poset of subgroups. In particular,

all maximal subgroups of H occur in blocks before that of H.

7. The last two columns give H1(H,M) and H1(H,M∨).

One must be careful while reading Table 1.2 because the ordering of the conjugacy classes

of subgroups is not evident. The Small Group tag and the indices of the maximal subgroups

given in the second and sixth columns of the table do determine the ordering uniquely once

we distinguish between the conjugacy classes indexed by n = 2, 3, n = 4, 5, 6, n = 9, 11

and n = 10, 12. This can be done by considering the length of each of these conjugacy

classes (i.e., the number of subgroups in each conjugacy class) as shown in Table 1.1.

n Length

2 45

3 270

4 40

5 120

6 240

n Length

9 270

11 405

10 270

12 540

Table 1.1: Distinguishing conjugacy classes of subgroups of PSp4(F3) based on length.
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The Magma code in the supplementary file CodeRationality.txt computes G and M

directly from the description given by Hoffman and Weintraub [23]. This leads to a repre-

sentation of G as generated by two sparse 61 × 61 matrices x and y in GL61(Z) such that

the underlying module on which G acts (on the right, by Magma conventions) is M . The

matrices x and y are also printed in the output file CodeRationality.out of our Magma

script.

n SmallGroup B LCM irred maximal subgroups H1(M) H1(M∨)
1 <1,1> 1 no
2 <2,1> 1 no 1
3 <2,1> 1 no 1
4 <3,1> 1 no 1
5 <3,1> 1 no 1
6 <3,1> 3 no 1 Z/3Z Z/3Z
7 <5,1> 1 no 1
8 <4,1> 1 no 2
9 <4,2> 1 no 2 3

10 <4,2> 2 no 3 (Z/2Z)2

11 <4,2> 2 no 2 3 Z/2Z
12 <4,2> 1 no 3
13 <4,1> 1 no 3
14 <6,1> 3 no 2 6 Z/3Z
15 <6,2> 1 no 2 4
16 <6,2> 3 no 2 6
17 <6,1> 3 no 3 6 Z/3Z
18 <6,1> 1 no 3 5
19 <6,2> 1 no 2 5
20 <6,2> 1 no 3 5

21 <9,2> 3 no 5 6 (Z/3Z)2

22 <9,2> 3 no 4 6 (Z/3Z)2

23 <9,2> 3 no 4 5 6
24 <9,1> 1 no 4
25 <10,1> 1 no 3 7
26 <8,4> 1 no 8

27 <8,5> 2 no 11 12 (Z/2Z)2

28 <8,5> 2 no 10 11 (Z/2Z)2

Table 1.2: Subgroup lattice structure of G = PSp4(F3) and computational results for the G-
module M = PicQ(A∗2(3)): order in Burnside cokernel; cohomological data.

11



n SmallGroup B LCM irred maximal subgroups H1(M) H1(M∨)
29 <8,5> 2 no 9 10 11
30 <8,2> 2 no 8 11
31 <8,2> 2 no 11 13 Z/2Z Z/2Z
32 <8,3> 2 no 8 11 Z/2Z
33 <8,3> 2 no 10 12 13 Z/2Z
34 <8,3> 1 no 9 12 13
35 <12,3> 2 no 5 10
36 <12,3> 3 no 6 12 Z/3Z Z/3Z
37 <12,4> 3 no 9 14 16 17
38 <12,5> 1 no 9 19 20
39 <12,1> 1 no 13 20
40 <12,2> 1 no 8 15
41 <12,4> 1 no 12 18 20

42 <18,4> 3 no 17 18 21 (Z/3Z)2

43 <18,3> 3 no 14 16 21
44 <18,3> 3 no 14 19 23
45 <18,3> 3 no 14 15 22
46 <18,3> 3 no 18 20 21 Z/3Z
47 <18,3> 3 no 17 20 23
48 <18,5> 3 no 15 16 19 23
49 <20,3> 1 yes 13 25
50 <27,5> 3 no 21 22 23 Z/3Z

51 <27,3> 3 no 22 (Z/3Z)2

52 <27,4> 3 no 22 24 Z/3Z
53 <16,14> 2 yes 28 29
54 <16,13> 2 no 26 30 32
55 <16,11> 2 yes 27 28 30 32 Z/2Z

56 <16,3> 2 no 28 31 (Z/2Z)2

57 <16,11> 2 yes 27 29 31 33 34 Z/2Z
58 <16,3> 2 no 29 30 31
59 <24,3> 1 no 15 26
60 <24,13> 2 no 20 29 35
61 <24,3> 3 no 16 26
62 <24,3> 1 no 19 26
63 <24,11> 2 1 no 26 40
64 <24,13> 2 no 19 28 35
65 <24,13> 6 no 16 27 36
66 <24,12> 2 no 18 33 35
67 <24,12> 6 no 17 33 36 Z/6Z

Table 1.2 continued
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n SmallGroup B LCM irred maximal subgroups H1(M) H1(M∨)
68 <24,12> 3 no 14 34 36 Z/3Z
69 <24,8> 1 no 34 38 39 41
70 <36,10> 3 no 37 42 43
71 <36,10> 3 no 41 42 46 Z/3Z
72 <36,9> 3 no 13 42 Z/3Z
73 <36,12> 3 no 37 38 44 47 48
74 <54,8> 3 no 45 51
75 <54,13> 3 no 42 46 47 50 Z/3Z
76 <54,12> 3 no 43 44 45 48 50
77 <60,5> 2 no 18 25 35
78 <60,5> 3 no 17 25 36 Z/3Z
79 <81,7> 3 no 50 51 52 Z/3Z
80 <32,49> 2 no 54 56
81 <32,6> 2 yes 55 56 Z/2Z
82 <32,27> 2 yes 53 55 56 57 58
83 <48,30> 2 no 39 58 60
84 <48,49> 2 yes 38 53 60 64
85 <48,33> 2 yes 40 54 59
86 <48,48> 2 no 41 57 60 66 Z/2Z
87 <48,48> 6 yes 37 57 65 67 68
88 <72,40> 3 no 34 70 71 72
89 <72,25> 2 3 no 48 59 61 62 63
90 <80,49> 2 yes 7 53
91 <108,40> 3 no 71 75 Z/3Z
92 <108,15> 3 no 40 74
93 <108,38> 3 no 70 73 75 76
94 <108,37> 3 no 39 72 75
95 <120,34> 3 yes 37 49 68 78
96 <120,34> 2 yes 41 49 66 77
97 <162,10> 3 no 74 76 79
98 <64,138> 2 yes 80 81 82
99 <96,204> 2 no 62 64 80
100 <96,204> 6 no 61 65 80
101 <96,201> 2 2 no 63 80 85
102 <96,195> 2 yes 69 82 83 84 86
103 <160,234> 2 yes 25 82 90
104 <216,88> 2 3 no 63 92
105 <216,158> 3 no 69 88 91 93 94
106 <324,160> 3 no 36 79 91 Z/3Z

Table 1.2 continued
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n SmallGroup B LCM irred maximal subgroups H1(M) H1(M∨)
107 <360,118> 6 no 66 67 72 77 78 Z/3Z
108 <192,1493> 6 yes 87 98 100
109 <192,201> 2 yes 84 98 99
110 <288,860> 2 6 no 89 99 100 101
111 <648,533> 2 3 no 89 97 104
112 <648,704> 3 no 68 97 105 106
113 <720,763> 6 yes 86 87 88 95 96 107
114 <576,8277> 2 6 yes 73 108 109 110
115 <960,11358> 2 yes 77 102 103 109
116 G 2 6 yes 111 112 113 114 115

Table 1.2 continued
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CHAPTER 2

ABELIAN SURFACES WITH FIXED 3-TORSION

2.1 Introduction

2.1.1 Overview

Consider a genus two curve X over Q given by an affine equation

y2 = x5 + ax3 + bx2 + cx+ d. (2.1.1)

The representation ρ : Gal(Q/Q)→ GSp4(F3) on the three-torsion Jac(X)[3] of its Jacobian

is given by an explicit degree 80 polynomial with coefficients in Q[a, b, c, d]. The polynomial

can be extracted from [36], or following the recipe given in §2.3.1. The main theorem of this

paper parametrizes all pairs (Y, i) consisting of a curve

Y : y2 = x5 + Ax3 +Bx2 + Cx+D (2.1.2)

and a Gal(Q/Q)-equivariant symplectic isomorphism, i : Jac(X)[3]→ Jac(Y )[3]. The curves

in (2.1.2) all have a rational Weierstrass point at ∞. The reader may wonder why we did

not instead try to parametrize pairs (Y, i) for all genus two curves Y . The answer is that

the corresponding moduli space, while rational over C, will not typically be rational over Q

(see the discussion towards the end of §2.1.2).

Analogous problems for genus one curves and their mod-p representations for p ≤ 5 were

solved by Rubin and Silverberg [33]. In Section 2.2, we explain how the mod 3 formulas of

[27] can be reconstructed by using that Sp2(F3) has a two-dimensional complex reflection

representation, summarizing the result in Theorem 2.2.1.

Section 2.3 contains our main result, Theorem 2.3.1. It follows Section 2.2 closely, using

now that Sp4(F3) is the main factor in the complex reflection group C3 × Sp4(F3). We
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write the new curves as Y = X(s, t, u, v) with X(1, 0, 0, 0) = X. The new coefficients A, B,

C and D are polynomials in a, b, c, d, s, t, u, and v. While the genus one and two cases

are remarkably similar theoretically, the computations in the genus two case are orders of

magnitude more complicated. For example, A, B, C, and D have 14604, 112763, 515354,

and 1727097 terms respectively, while the corresponding two coefficients in the genus one

case have only 6 and 9 terms. We give all these coefficients and other information the reader

may find helpful in Mathematica files in the supplementary material.

Section 2.4 provides four independent complements. §2.4.1 sketches an alternative method

for computing the above (A,B,C,D). §2.4.2 presents a family of examples involving Riche-

lot isogenies. §2.4.3 gives an application to modularity which was one of the motivations for

this paper. §2.4.4 illustrates that much of what we do works for arbitrary complex reflection

groups; in particular, it sketches direct analogs of our main result in the computationally

yet more difficult settings of 2-torsion in the Jacobians of certain curves of genus 3 and 4.

2.1.2 Moduli spaces

Theorems 2.2.1 and 2.3.1 and the analogs sketched in §2.4.4 are all formulated in terms of

certain a priori complicated moduli spaces being actually open subvarieties of projective

space. To underscore this perspective, we consider a whole hierarchy of standard moduli

spaces as follows.

Let A be an abelian variety over Q of dimension g with a principal polarization λ.

If VA = A[p] is the set of p-torsion points with coefficients in Q, then VA is a 2g-dimensional

vector space over Fp with a symplectic form ∧2
A induced by the Weil pairing A[p]×A[p]→ µp.

This structure is preserved by Gal(Q/Q), and so gives rise to a Galois representation:

ρA : Gal(Q/Q)→ GSp2g(Fp);

here the similitude character Gal(Q/Q)→ F×p is the mod-p cyclotomic character.
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Conversely, if ρ is any such representation on a symplectic space (V,∧2), coming from an

abelian variety or not, there exists a moduli spaceAg(ρ) over Q parametrizing triples (A, λ, ι)

consisting of a principally polarized abelian variety A together with an isomorphism ι :

(V,∧2) ' (VA,∧2
A) of symplectic representations.

Via (A, λ, ι) 7→ (A, λ), one has a covering map Ag(ρ) → Ag to the moduli space of

principally polarized g-dimensional abelian varieties. For the split Galois representation ρ0,

corresponding to the torsion structure (Z/pZ)g⊕ (µp)
g with its natural symplectic form, the

cover Ag(ρ0) is the standard “full level p” cover Ag(p) of Ag. In general, Ag(ρ) is a twisted

version of Ag(p), meaning that the two varieties become isomorphic after base change from

Q to Q.

The varieties Ag(ρ) become rapidly more complicated as either g or p increases. In

particular, they are geometrically rational exactly for the cases (g, p) = (1, 2), (1, 3), (1, 5)

(2, 2), (2, 3), and (3, 2) [24, Thm II.2.1]. In the three cases when g = 1, the curves A1(ρ)

are always rational. In the main case of interest (2, 3) for this paper, the three-dimensional

variety A2(3) = A2(ρ0) is rational [9]. However, for many ρ, including all surjective repre-

sentations, it is proven in [13] that the variety A2(ρ) is never rational. It is true, however,

that there exists a degree 6 cover Aw2 (ρ) which is rational ([7, Lemma 10.2.4]). Thus while

Theorem 2.2.1 corresponds to a parametrization of A1(ρ) for p = 3, Theorem 2.3.1 corre-

sponds to a parametrization of Aw2 (ρ). More precisely, the Torelli mapM2 → A2 is an open

immersion, and the pullback of Aw2 (ρ) is the moduli spaceMw
2 (ρ) of genus two curves of the

form (2.1.1) whose Jacobians give rise to ρ, and it isMw
2 (ρ) which we explicitly parametrize.

The retreat to this cover is optimal in the sense that six is generically the minimal degree

of any dominant rational map from P3
Q to A2(ρ) [13]. We mention in passing that our

arguments give an alternative proof of [7, Lemma 10.2.4].

There is a natural generalization of the varieties Ag(ρ). Namely, for any m ∈ F×p , one

can require instead an isomorphism i : (V,∧2) ' (VA,m∧2
A). For m/m′ a square, the

corresponding varieties are canonically isomorphic, so that one gets a new moduli space
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only in the case of p odd. We denote this new moduli space involving “antisymplectic”

isomorphisms by A∗g(ρ). Our policy throughout this paper is to focus on Ag(ρ) and be much

briefer about parallel results for A∗g(ρ).

2.1.3 Acknowledgments

We thank Tom Fisher and the anonymous referees for corrections and other improvements.

2.2 Elliptic curves with fixed 3-torsion

In this section, as a warm up to Section 2.3, we rederive the formulas in [27] describing

elliptic curves with fixed 3-torsion from the invariant theory of the group Sp2(F3) as in [20].

Many of the steps in the derivation transfer with no theoretical change to our main case of

abelian surfaces. We present these steps in greater detail here, because space allows us to

give explicit formulas right in the text. Throughout this section and the next, we present

the derivations in elementary language which stays very close to the computations involved.

Only towards the end of the sections do we recast the results in the moduli language of the

introduction.

2.2.1 Elliptic curves and their 3-torsion

Let a and b be rational numbers such that the polynomial discriminant ∆poly = −4a3−27b2

of x3 + ax+ b is nonzero and consider the elliptic curve X over Q with affine equation

y2 = x3 + ax+ b. (2.2.1)

We emphasize the discriminant ∆(a, b) = ∆ = 24∆poly in the sequel, because it makes §2.2.7

cleaner.

By a classical division polynomial formula, the eight primitive 3-torsion points (x, y) ∈ C2
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are exactly the points satisfying both (2.2.1) and

3x4 + 6ax2 + 12bx− a2 = 0. (2.2.2)

Equations (2.2.1) and (2.2.2) together define an octic algebra over Q. Rather than work

with the two generators x and y and the two relations (2.2.1) and (2.2.2), we will work with

z, the slope of a tangent line to the elliptic curve at the 3-torsion point (x, y). Then z2 = 3x

and assuming a 6= 0 to avoid inseparability issues, the algebra in question is the quotient

K := Ka,b of Q[z] coming from the equation

F (a, b, z) := z8 + 18az4 + 108bz2 − 27a2 = 0. (2.2.3)

2.2.2 Sp2(F3) and related groups

For generic (a, b), the Galois group of the polynomial F (a, b, z) is GSp2(F3) = GL2(F3). The

discriminant of F (a, b, z) is −28321a2∆4. Thus the splitting field K ′a,b of F (a, b, z) contains

E = Q(
√
−3) for all a, b. The relative Galois group Gal(K ′a,b/E) is Sp2(F3) = SL2(F3).

We will generally use symplectic rather than linear language in the sequel, to harmonize our

notation with our main case of genus two. Also we will systematically use ω = exp(2πi/3) =

(−1 +
√
−3)/2 as our preferred generator for E.

To describe elliptic curves with fixed 3-torsion, we use that (2.2.3) arises as a generic

polynomial in the invariant theory of Sp2(F3). The invariant theory is simple because

Sp2(F3) = 〈
1 0

1 1

 ,

1 1

0 1

〉 can be realized as a complex reflection group by sending the gen-

erators in order to

g1 =

 ω̄ ω̄ − 1

0 1

 , g2 =

 1 0

(ω − 1)/3 ω

 . (2.2.4)

The matrices g1 and g2 are indeed complex reflections because all but one eigenvalue is
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1. In our study of the image ST4 = G = 〈g1, g2〉, the subgroup H = 〈g1〉 will play an

important role. Here our notation ST4 refers to the placement of G in the Shephard–Todd

classification of the thirty-seven exceptional irreducible complex reflection groups sorted

roughly by increasing size [35, Table VII].

For both the current case of n = 2 and the main case of n = 4, we are focused principally

on three irreducible characters of Spn(F3), the unital character χ1 and a complex conjugate

pair χna and χnb. Here χna corresponds to the representations (2.2.4) and (2.3.2) on V = En.

Just as invariant is used for polynomials associated to χ1, we will use the terms covariant

and contravariant for polynomials similarly associated to χna and χnb respectively.

The left half of Table 2.1 shows how the three characters 1, χ2a, and χ2b fit into the

entire character theory of Sp2(F3). For example, via ω̄ + 1 = −ω and its conjugate, g1 and

g2 lie in the classes 3A and 3B respectively. While this information is clarifying, it is not

strictly speaking needed for our arguments.

|C| : 1 1 4 4 6 4 4 〈χi, φk〉
C : 1A 2A 3A 3B 4A 6A 6B 0 1 2 3 4 5 6 7 8 Ni(x)
χ1 1 1 1 1 1 1 1 1 1 1 1 1

χ1a 1 1 ω̄ ω 1 ω̄ ω 1 1 x4

χ1b 1 1 ω ω̄ 1 ω ω̄ 1 x8

χ2 2 −2 −1 −1 0 1 1 1 1 x5 + x7

χ2a 2 −2 −ω −ω̄ 0 ω ω̄ 1 1 1 2 x+ x3

χ2b 2 −2 −ω̄ −ω 0 ω̄ ω 1 1 1 x3 + x5

χ3 3 3 0 0 −1 0 0 1 1 2 2 x2 + x4 + x6

Table 2.1: Character table of Sp2(F3) and invariant-theoretic information.

The right half of Table 2.1 gives numerical information that will guide our calculation with

explicit polynomials in the next subsections. The characters are orthonormal with respect to

the Hermitian inner product 〈f, g〉 = |G|−1∑
C |C|f(C)g(C). Let φk =

∑
i〈χi, φk〉χi be the

character of the kth symmetric power SymkV . The multiplicities 〈χi, φk〉 for k ≤ 8 are given

in the right half of Table 2.1. These numbers are given for arbitrary k by
∑∞
k=0〈χi, φk〉xk =

Ni(x)/((1−x4)(1−x6)). The character of the permutation representation of G on the coset
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space G/H is φG/H = χ1 + χ3 + χ2a + χ2b. If W has character χi then the dimension of

the subspace WH of H-invariants is 〈χi, φG/H〉. So dim(WH) = 1 if i ∈ {1, 2a, 2b, 3} and

dim(WH) = 0 if i ∈ {1a, 1b, 2}.

2.2.3 Rings of invariants

The group G acts on the polynomial ring E[u, z] by the formulas induced from the matrices

in (2.2.4),

g1u = ω̄u+ (ω̄ − 1)z, g2u = u,

g1z = z, g2z = (ω − 1)u/3 + ωz.

Despite the appearance of the irrationality ω in these formulas, there is an important ratio-

nality present. Namely we have arranged in (2.2.4) that g2
1 = g1 and g2

2 = g2. Accordingly G

is stable under complex conjugation, a stability not present in either the original Shephard–

Todd paper [35, §4] or in Magma’s implementation ShephardTodd(4).

We can use stability under complex conjugation to interpret G and H as the E-points of

group schemes G and H over Q. Then actually G acts on Q[u, z]. All seven irreducible rep-

resentations of G are defined over Q, just like all three representations of the familiar group

scheme H ∼= µ3, are defined over Q. In practice, we continue thinking almost exclusively

in terms of ordinary groups; these group schemes just provide a conceptually clean way of

saying that in our various choices below we can and do always take all coefficients rational.

Define

w =
u3

3
+ u2z + uz2, a =

wz

9
, b =

w2 − 6wz3 − 3z6

324
(2.2.5)
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in Q[u, z]. Then the subrings of H- and G-invariants are respectively

Q[u, z]H = Q[w, z], Q[u, z]G = Q[a, b]. (2.2.6)

Giving u and z weight one, the elements w, a, and b clearly have weights 3, 4, and 6

respectively. If one eliminates w from the last two equations of (2.2.5), then one gets the

polynomial relation F (a, b, z) = 0 of (2.2.3), explaining our choice of overall scale factors

in (2.2.5). The fact that the rings on the right in (2.2.6) are polynomial rings, rather than

more complicated rings requiring relations to describe, comes exactly from the fact that H

and G are complex reflection groups, by the Chevalley–Shephard–Todd Theorem [17].

2.2.4 Covariants and contravariants

The graded ring Q[w, z] is free of rank eight over the graded ring Q[a, b]. Moreover there is a

homogeneous basis 1, z2, z4, z6, α1, α3, β3, β5 with the following properties. The exponent

or index d gives the weight, and the elements αd and βd are in the isotypical piece of Q[u, z]d

corresponding to χ2a and χ2b respectively.

The covariants αd and the contravariants βd are each well-defined up to multiplication

by a nonzero rational scalar. Explicit formulas for particular choices can be found by si-

multaneously imposing the G-equivariance condition and the H-invariance condition. We

take

α1 = z, α3 =
w + z3

6
, β3 =

w − z3

2
, β5 =

5wz2 + 3z5

18
. (2.2.7)

Ideas from classical invariant theory are useful in finding these quantities. For example, the

polynomials in Q[u, z]3 which have the required G-equivariance property for contravariance

are exactly the linear combinations of the partial derivatives ∂ua and ∂za. The subspace

fixed by H is the line spanned by (∂u − ∂z)a. Thus β3 ∝ (∂u − ∂z)a and, in the same way,

β5 ∝ (∂u − ∂z)b. Further the covariant α3 ∝ ∂uD, where D3 = ∆(a, b).

22



2.2.5 New coefficients

While we call the unique (up to scalar) homogeneous H-invariant elements α1, α3 generating

the χ2a isotypical pieces as covariants, Fisher in [20] defines a covariant to be a tuple defining

an equivariant map Q[u, z]1 → Q[u, z]d. For d = 1, a covariant tuple is given by l1 = (u, z)

corresponding to the identity map. For d = 3, a covariant tuple is given as l3 = (α3,1, α3,2),

where α3,2 := α3 and the first entry α3,1 is uniquely determined because of the required

G-equivariance. Following [20], one can obtain new coefficients by evaluating the invariants

a and b at the general covariant tuple (u, z) = s · l1 + t · l3 = (su + tα3,1, sz + tα3,2). This

approach yields our answer immediately in the case of g = 1, but becomes computationaly

difficult for g = 2. So we continue to treat covariants as polynomials as in §2.2.4 and describe

two approaches to obtain new coefficients.

The octic Q[a, b]-algebra Q[w, z] acts on itself by multiplication and so every element

e in Q[w, z] has an octic characteristic polynomial φ(e, u) ∈ Q[a, b, u]. One has φ(z, u) =

F (a, b, u) from (2.2.3). To obtain the characteristic polynomial for a general e, one can

express e as an element of Q(a, b, z) via (2.2.7) and w = 9a/z. Then one removes z by a

resultant to get the desired octic relation on e. Alternatively, we could have calculated these

characteristic polynomials by using 8-by-8 matrices; in §2.3.5 we use the matrix approach.

Carrying out this procedure for the general covariant and contravariant gives

φ(sα1 + tα3, u) = F (A(a, b, s, t), B(a, b, s, t), u),

φ(sβ3 + tβ5, u) = F (A∗(a, b, s, t), B∗(a, b, s, t), u),

with

3A(a, b, s, t) = 3as4 + 18bs3t− 6a2s2t2 − 6abst3 − (a3 + 9b2)t4,

9B(a, b, s, t) = 9bs6 − 12a2s5t− 45abs4t2 − 90b2s3t3 + 15a2bs2t4

−2a(2a3 + 9b2)st5 − 3b(a3 + 6b2)t6,
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and A∗ and B∗ in the accompanying computer file. As stated in the introduction, A and B

when fully expanded have 6 and 9 terms respectively and agree exactly with expressions in

[27, §2].

The polynomials A and B and their starred versions are respectively of degrees four

and six in s and t. Also in the main case assign weights (4, 6,−1,−3) to (a, b, s, t) and in

the starred case make these weights (4, 6,−3,−5) instead. Then all four polynomials are

homogeneous of weight zero.

2.2.6 Geometric summary

The following theorem summarizes our calculations in terms of moduli spaces. The ρ of the

introduction is the mod 3 representation of the initial elliptic curve, so to be more explicit

we write Aa,b rather than A1(ρ).

Theorem 2.2.1. Fix an equation y2 = x3 + ax + b defining an elliptic curve X over Q.

Let Aa,b be the moduli space of pairs (Y, i) with Y an elliptic curve and i : X[3] → Y [3] a

symplectic isomorphism. Then Aa,b can be realized as the complement of a discriminant locus

Za,b in the projective line Proj Q[s, t]. The natural map to the j-line A1 ⊂ Proj Q[A,B]

has degree twelve and is given by

(A,B) = (A(a, b, s, t), B(a, b, s, t)). (2.2.8)

The formula y2 = x3 + A(a, b, s, t)x + B(a, b, s, t) gives the universal elliptic curve X(s, t)

over Aa,b.

The discriminant locus Za,b is given by the vanishing of the discriminant

∆(A,B) = ∆(a, b)δ(a, b, s, t)3/27, δ(a, b, s, t) = 3s4 + 6as2t2 + 12bst3 − a2t4. (2.2.9)

It thus consists of four geometric points. Comparing with (2.2.2), one sees that these
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points are permuted by Gal(Q/Q) according to the projective mod 3 representation into

PGL2(F3) ∼= S4. Theorem 2.2.1 has a direct analog for the covers A∗a,b → A1.

2.2.7 Finding (s, t)

Let X : y2 = x3 + ax + b and Y : y2 = x3 + Ax + B be elliptic curves over Q with

isomorphic 3-torsion. Then, in contrast with the analogous situation for the genus two case

described in §2.3.7, it is very easy to find associated (s, t) ∈ Q2. Namely, (2.2.8) and its

analog (A,B) = (A∗(a, b, s, t), B∗(a, b, s, t)) each have twenty-four solutions in C2. One just

extracts the rational ones, say by eliminating s and factoring the resulting degree twenty-four

polynomials f(t) and f∗(t). If the image of Gal(Q/Q) is all of GSp2(F3) = GL2(F3), then

one of these polynomials factors as 1 + 1 + 6 + 8 + 8 and the other as 12 + 12. The two 1’s

correspond to the desired solutions ±(s, t).

Discriminants are useful in distinguishing the two moduli spaces as follows. If Y has

the form X(s, t) then ∆X/∆Y is a perfect cube by (2.2.9). If it has the form X∗(s, t) then

∆X∆Y is a perfect cube by the starred analog of (2.2.9). These implications determine a

unique space on which Y represents a point unless ∆X and ∆Y are both perfect cubes. Since

x3 −∆ is a resolvent cubic of the octic (2.2.3), this ambiguous case arises if and only if the

image Γ of ρX has order dividing 16.

As an example, let (a, b) = (−1, 0) so that X has conductor 25 and discriminant 26. Let

(A,B) = (−27,−162) so that Y has conductor 2533 and discriminant −2939. The octic poly-

nomials F (a, b, z) and F (A,B, z) define the same field because under Pari’s polredabs they

each become z8+6z4−3. This polynomial has Galois group of order 16. The procedure in the

first paragraph yields solutions only in the starred case, these being (s, t) = ±(−1/2, 3/2).

An elliptic curve Y can give rise to a point on both moduli spaces constructed from X

if and only if the two moduli spaces coincide. The spaces coincide exactly when there is

an equivariant isomorphism (X[3],∧) ' (X[3],−∧) where ∧ is the Weil pairing. Such an

isomorphism exists if and only if X[3] is either a twist of ρ0 = Z/3Z ⊕ µ3 or when X[3]
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is irreducible but not absolutely irreducible. (The latter occurs precisely when the image

factors through the non-split Cartan subgroup F×9 and has order > 2; this case does not

arise over Q.) An instance over Q is X = Y coming from (a, b) = (5805,−285714) which is

the modular curve X0(14) of genus one and discriminant −21831273; here (s, t) = ±(1, 0) in

the main case and 263472(s, t) = ±(435, 11) in the starred case.

2.3 Abelian surfaces with fixed 3-torsion

In this section, we present our main theorem on abelian surfaces with fixed 3-torsion. We are

brief on parts of the derivation which closely follow steps described in the previous section,

and concentrate on steps which have a new feature.

2.3.1 Weierstrass curves and their 3-torsion

By a Weierstrass curve in this paper we will mean a genus two curve together with a dis-

tinguished Weierstrass point. Placing this marked point at infinity and shifting the variable

x, one can always present a Weierstrass curve via the affine equation (2.1.1), which we call

a Weierstrass equation. Replacing (a, b, c, d) by (u4a, u6b, u8c, u10d) yields an isomorphic

Weierstrass curve via the compensating change (x, y) 7→ (u2x, u5y). The standard discrim-

inant of the genus two curve (2.1.1) is ∆(a, b, c, d) = ∆ = 28∆poly, where ∆poly is the

discriminant of the quintic polynomial on the right of (2.1.1). It is best for our purposes to

give the parameters a, b, c, and d weights 12, 18, 24, and 30. In this system, ∆ is homogeneous

of weight 120. The (coarse) moduli space of Weierstrass curvesMw
2 is then the complement

of the hypersurface ∆ = 0 in the weighted projective space P3(12, 18, 24, 30) = P3(2, 3, 4, 5).

As explained at the end of §1.2, rather than describing moduli spaces mapping to A2, we

will be describing their base changes to Mw
2 .

The group law in terms of effective divisors on the Jacobian of a general genus two curve

X : y2 = f(x) yields a classical Gal(Q/Q)-equivariant bijection [16] from the non-zero
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3-torsion points to decompositions of the form

f(x) = (b4x
3 + b3x

2 + b2x+ b1)2 − b7(x2 + b6x+ b5)3.

In the quintic case of (2.1.1), one has b24 = b7. The minimal polynomial of b−2
4 is a degree

40 polynomial p40 such that p40(x2) describes the 3-torsion representation of X.

In our reflection group approach, it is actually p40(z6) which appears naturally. It has

1673 terms and begins as

F (a, b, c, d, z) = z240 + 15120az228 + 2620800bz222

−504
(

70227a2 − 831820c
)
z216 − 1965600z210(2529ab− 33550d)z210 + · · · .(2.3.1)

The splitting field of F (a, b, c, d, z) is the compositum of the splitting fields of p40(x2) and

x3 − ∆. In particular, having chosen a Weierstrass equation, the field E(∆1/3) remains

constant throughout our family of Weierstrass equations, even though E(∆1/3) is not de-

termined by the 3-torsion representation. On the other hand, the change of coordinates

(x, y) 7→ (u2x, u5y) maps ∆ to u40∆, and so this auxiliary choice places no restrictions

on the Weierstrass curves which can occur in the family. In contrast, when g = 1, the

field E(∆1/3) also remains constant, but in this case it is determined by the 3-torsion rep-

resentation as it is the fixed field of the 2-Sylow of the image of Gal(Q/E) in Sp2(F3).

2.3.2 Sp4(F3) and related groups

Define g1, g2, g3, and g4 to be



1 0 0 0

0 1 0 0

0 0 ω 0

0 0 0 1


,



α −ᾱ −ᾱ 0

−ᾱ α −ᾱ 0

−ᾱ −ᾱ α 0

0 0 0 1


,



1 0 0 0

0 ω 0 0

0 0 1 0

0 0 0 1


,



α ᾱ 0 ᾱ

ᾱ α 0 −ᾱ

0 0 1 0

ᾱ −ᾱ 0 α


, (2.3.2)
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where α = ω/
√
−3. Define H = 〈g1, g2, g3〉 and G = 〈g1, g2, g3, g4〉. The matrices gi are

all complex reflections of order 3, and they are exactly the matrices given in [35, 10.5]. As

with H = C3 and G = ST4 = Sp2(F3) of the last section, the new groups H = ST25 and G =

ST32 are also complex reflection groups. The group G has the structure C3 × Sp4(F3) and

it is the extra C3 that is the reason that ∆ behaves differently in the two cases.

Again numeric identities guide polynomial calculations as we discussed around Table 2.1.

For example, orders are products of degrees of fundamental invariants. Analogous to the old

cases |C3| = 3 and | Sp2(F3)| = 4 ·6, the new cases are |H| = 6 ·9 ·12 and |G| = 12 ·18 ·24 ·30.

Thus again the index |G|/|H| = 240 matches the degree of the main polynomial (2.3.1). The

character table of G has size 102×102, so we certainly will not present the analog of Table 2.1.

The most important information is that the degrees in which co- and contravariants live,

previously 1, 3 and 3, 5, are now 1, 7, 13, 19 and 11, 17, 23, 29 for G.

2.3.3 Rings of invariants

One has the rationality condition g2
i = gi for all four i, allowing us again to interpret H and

G as E-points of group schemes H and G over Q. The matrices gi together give an action

of G on Q[z1, z2, z3, z4]. The variable z = z4 plays a role which is different from the other

zi.

Define, following [25, 4.72],

p = z6
1 + z6

2 + z6
3 − 10

(
z3
2z

3
3 + z3

2z
3
1 + z3

3z
3
1

)
,

q = (z3
1 − z

3
2)(z3

2 − z
3
3)(z3

3 − z
3
1),

r = (z3
1 + z3

2 + z3
3)
[
(z3

1 + z3
2 + z3

3)3 + 216z3
1z

3
2z

3
3

]
.
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Define also a, b, c, and d by taking (24375a, 263952b, 2831253c, 21031655d) to be

(−p2 − 5r + 1320qz3 − 132pz6 − 6z12,

p3 − 400q2 − 5pr − 680pqz3 + 323p2z6 − 255rz6 − 7480qz9 + 68pz12 − 4z18,

2p4 − 800pq2 − 5p2r + 320p2qz3 − 3000qrz3 − 722p3z6 + 175200q2z6 + 990prz6

+33040pqz9 − 953p2z12 + 3495rz12 + 15720qz15 + 268pz18 − 3z24,

13p5 − 6000p2q2 − 25p3r + 21600p3qz3 − 9600000q3z3 − 45000pqrz3 + 11790p4z6

−4572000pq2z6 − 37575p2rz6 + 28125r2z6 − 247200p2qz9 − 945000qrz9

+37155p3z12 + 234000q2z12 − 150075prz12 − 214200pqz15 + 30855p2z18

−143775rz18 + 354600qz21 + 2340pz24 − 12z30).

Because H and G are complex reflection groups, the rings of invariants are freely generated,

explicit formulas being

Q[z1, z2, z3, z]
H = Q[p, q, r, z], Q[z1, z2, z3, z]

G = Q[a, b, c, d].

When one removes p, q, r from the equations defining a, b, c, d, one gets exactly the degree

240 equation (2.3.1) for z.

2.3.4 Covariants and contravariants

As mentioned before, group-theoretic calculations like those in Table 2.1 say that covariants

lie in degrees 1, 7, 13, and 19. Formulas for H-invariant covariants in these degrees are

α1 = z, 22335α7 = 7pz − 3z7, 2436α13 = (11r − 3p2)z + 216qz4 + 72pz7,

24310α19 = (p3 − pr − 468q2)z − 24pqz4 + (66r − 6p2)z7 − 288qz10 − 12pz13.

Here, unlike in the genus one case, there is an ambiguity beyond multiplying by a nonzero

scalar. Namely rather than working with α13 we could work with any linear combination

of aα1 and α13 that involves α13 nontrivially. Similarly we could replace α19 by c1bα1 +
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c7aα7 +c19α19 for any nonzero c19. The choices involved in picking particular contravariants

βk mirror the choices involved in picking αk−10. Our choice of (β11, β17, β23, β29) is given in

the accompanying computer file. Just as in §2.2.4, the contravariants βk can be described

in terms of partial derivatives of the invariants. To be precise, we take (β11, β17, β23, β29) =

(∂za, ∂zb, ∂zc, ∂zd).

2.3.5 New coefficients

Each covariant element αd is the last entry of a uniquely determined covariant tuple ld of

length 4 defining an equivariant map Q[z1, z2, z3, z]1 → Q[z1, z2, z3, z]d. By evaluating the

invariants a, b, c, d at the general covariant tuple i.e., by setting (z1, z2, z3, z) = s · l1 + t · l7 +

u · l13 + v · l19, one can theoretically obtain the new coefficients. For computational reasons,

we instead follow the matrix approach as stated in §2.2.5.

Our key computation takes place in the algebra Q[p, q, r, z] of H-invariants viewed as

a graded module over the algebra Q[a, b, c, d] of G-invariants. As a graded basis we use

piqjrkzl with 0 ≤ i, j, k < 2 and 0 ≤ l < 30. Repeatedly using the vector equation in §2.3.3,

we expand the products

αep
iqjrkzl =

∑
I,J,K,L

M(e)
i,j,k,l
I,J,K,Lp

IqJrKzL

to represent the covariants αe as 240-by-240 matrices M(e) with entries in Q[a, b, c, d]. The

general covariant

Z = sα1 + tα7 + uα13 + vα19 (2.3.3)

satisfies the characteristic polynomial of M = sM(1) + tM(7) +uM(13) + vM(19). In other

words, Z satisfies a degree 240 polynomial equation

F (A,B,C,D,Z) = Z240 + c2Z
228 + c3Z

222 + c4Z
216 + c5Z

210 + · · · = 0
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with F from (2.3.1). We need to calculate A, B, C, D in terms of the free parameters a, b,

c, d, s, t, u, and v. Define normalized traces τn by

6τn = Tr(M6n) =
∑

i+j+k+l=6n

(
6n

i, j, k, l

)
sitjukvlTr(M(1)iM(7)jM(13)kM(19)l).

Because the first trace τ1 is 0, standard symmetric polynomial formulas simplify, giving

(c2, c3, c4, c5) = (−τ2/2, τ3/3, τ2
2 /8− τ4/4, τ2τ3/6− τ5/5). Then (2.3.1) yields

(A,B,C,D) =

(
−τ2

30240
,
−τ3

7862400
,
3667τ2

2 − 5600τ4
9390915072000

,
2521τ2τ3 − 2688τ5
886312627200000

)
. (2.3.4)

The matrices Mk have entries in Q[a, b, c, d, s, t, u, v] and for k = 1, . . . , 6 they take

approximately 2, 10, 40, 125, 300, and 675 megabytes to store. The matrix M6 suffices to

determine A because the evaluation of Tr(M12) = Tr(M6 ·M6) does not require the full

matrix multiplication on the right. However we would not be able to continue in this way to

the needed M15. In contrast, the M(e) have entries only in Q[a, b, c, d] and take less space

to store. The worst of the M(e)j that we actually use in the above expansion is M(19)15,

which requires about 210 megabytes to store. By getting the terms in smaller batches and

discarding matrix products when no longer needed, we can completely compute all of A,

B, C, and D without memory overflow. In principle, one could repeat everything in the

contravariant case, although here the initial matrix M∗ takes twice as much space to store

as M .

The polynomials A, B, C, and D have respectively degrees 12, 18, 24, and 30 in s, t,

u, and v. Also, assign weights (12, 18, 24, 30,−1,−7,−13,−19) to (a, b, c, d, s, t, u, v). Then

all four polynomials are homogeneous of weight zero. The bigradation allows A, B, C, and

D to have 14671, 112933, 515454, and 1727921 terms respectively. With our choice of α13

and α19, respectively 67, 170, 100, and 824 of these terms vanish, so A, B, C, and D have

the number of terms reported in the introduction. Not only do the polynomials have many

31



terms, but the coefficients can have moderately large numerators. The largest absolute value

of all the numerators is achieved by the term

230 · 33 · 523 · 1381131815224116413 · a3bc5d10u16v14

in D. On the another hand, denominators of the coefficients in A, B, C, and D always

divide 5, 52, 53, and 55 respectively.

2.3.6 Geometric summary

We now summarize our results in the following theorem. The ρ of §1.2 is the mod 3

representation of the initial genus two curve (2.1.1). So, to be more explicit, we write

Ma,b,c,d =Mw
2 (ρ) below.

Theorem 2.3.1. Fix an equation y2 = x5+ax3+bx2+cx+d defining a curve X over Q. Let

Ma,b,c,d be the moduli space of pairs (Y, i) with Y a Weierstrass curve and i : Jac(X)[3]→

Jac(Y )[3] a symplectic isomorphism on the 3-torsion points of their Jacobians. ThenMa,b,c,d

can be realized as the complement of a discriminant locus Za,b,c,d in the projective three-space

Proj Q[s, t, u, v]. The covering maps to the moduli space Mw
2 ⊂ Proj Q[A,B,C,D] have

degree 25920 and are given by

(A,B,C,D) = (A(a, . . . , v), B(a, . . . , v), C(a, . . . , v), D(a, . . . , v)). (2.3.5)

The formula

y2 = x5 + A(a, . . . , v)x3 +B(a, . . . , v)x2 + C(a, . . . , v)x+D(a, . . . , v) (2.3.6)

gives the universal Weierstrass curve X(s, t, u, v) over Ma,b,c,d.
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The discriminant locus Za,b,c,d is given by the vanishing of the discriminant

∆(A(a, . . . , v), . . . , D(a, . . . , v)) = ∆(a, b, c, d)δ(a, b, c, d, s, t, u, v)3. (2.3.7)

where δ is homogeneous of degree 40 in s, t, u, v. Geometrically, Za,b,c,d is the union

of forty planes and these planes are permuted by Gal(Q/Q) according to the roots of p40

from the end of §2.3.1. While the fibres of Ma,b,c,d over Mw
2 are projective spaces, the

entire space defines a non-trivial projective bundle which can be determined explicitly from

our equations in terms of Pic(Mw
2 ) (for more details, see the blog post [11], in particular

the comments of Najmuddin Fakhruddin). In principle, Theorem 2.3.1 has a direct analog

for M∗a,b,c,d → Mw
2 . The computer file only gives the starred coefficients evaluated at

(a, b, c, d, 1, 0, 0, 0), as this is sufficient for moving from one moduli space to the other.

2.3.7 Finding (s, t, u, v)

Let X and Y be Weierstrass curves over Q having isomorphic 3-torsion and given by coef-

ficient sequences (a, b, c, d) and (A,B,C,D) respectively. Then finding associated rational

(s, t, u, v) is both theoretically and computationally more complicated than in the genus one

case of §2.2.7.

As in the genus one case, for (2.3.5) to have a solution, the ratio ∆X/∆Y must be a

perfect cube by (2.3.7). Similarly, for the starred version of (2.3.5) to have a solution the

product ∆X∆Y must be a perfect cube. The theoretical complication was introduced at the

end of §2.3.1: the class modulo cubes of the discriminant now depends on the model via

∆(u4A, u6B, u8C, u10D) = u40∆(A,B,C,D). So as a preparatory step one needs to adjust

the model of Y to some new (A,B,C,D) before seeking solutions to (2.3.5), and also to some

typically different (A∗, B∗, C∗, D∗) before seeking solutions to the starred analog of (2.3.5).

Having presented Y properly, one then encounters the computational problem. Namely

both (2.3.5) and its starred version have 155520 solutions (s, t, u, v) ∈ C4, and so one cannot
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expect to find the rational ones by algebraic manipulations. Working numerically instead,

one gets 240 solutions (p, q, r, z) ∈ C4 to the large vector equation in §2.3.3. Eight of

these solutions are in R4. These vectors yield eight vectors (α1, α7, α13, α19) ∈ R4 from

the covariants in §2.3.4, and also eight vectors (β11, β17, β23, β29) ∈ R4. Let Z and Z∗

respectively run over the eight real roots of F (A,B,C,D, U) and F (A∗, B∗, C∗, D∗, U). Then

one can apply the LLL algorithm to find low height relations of the form (2.3.3) and its starred

variant

Z∗ = sβ11 + tβ17 + uβ23 + vβ29.

When the image of Gal(Q/Q) on 3-torsion is sufficiently large then there will just be a

single pair of solutions ±(s, t, u, v) from the eight equations of one type and none from the

other eight equations. The supplementary file code 3torsion.txt provides a Mathematica

program findisos to do all steps at once. Examples are given in §2.4.2 and §2.4.3.

2.4 Complements

The four subsections of this section can be read independently.

2.4.1 A matricial identity

The polynomials A, B, C, and D in Theorem 2.3.1 satisfy the matricial identity

E(A(a, . . . , v), B(a, . . . , v), C(a, . . . , v), D(a, . . . , v), S, T, U, V ) = E(a, b, c, d,M(S, T, U, V )t),

where E can be any one ofA, B, C, D, andM is a 4×4 matrix with entries in Q[a, b, c, d, s, t, u, v]

whose first column is (s, t, u, v)t. The columns of M are homogeneous of degrees 1, 7, 13, 19

in s, t, u, v, and the rows are homogeneous of degrees −1,−7,−13,−19 with respect to the

weights assigned in §2.3.5.
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The situation in the g = 1 case is analogous but enormously simpler:

A(A(a, b, s, t), B(a, b, s, t), S, T ) = A(a, b,M(S, T )t),
M=

s −as2t− 3bst2 + a2t3/3

t s3 + ast2 + bt3

 .
B(A(a, b, s, t), B(a, b, s, t), S, T ) = B(a, b,M(S, T )t),

Here, as is visible, columns of M have degrees 1 and 3 in s, t, while rows have weights −1 and

−3 with respect to the weights assigned in §2.2.5. The second column is in fact proportial

to [−∂tδ, ∂sδ]t, where δ is as in (2.2.9). Hence M is the matrix found in Lemma 8.4 of [20],

up to rescaling of the columns.

The identities say that changing the initial Weierstrass curve to a different one inMa,b,c,d

has the effect of changing the parametrization of the family through a linear transformation

M of the covariants. In fact, our first method of calculating the quantities E(a, . . . , v) ex-

ploited this ansatz. Starting from a few curves with a = b = 0, computing covariants

numerically, and changing bases so as to meet the bigradation conditions of §2.3.5, we ob-

tained the polynomials E(0, 0, c, d, s, t, u, v). We then examined the matricial identity with

a = b = 0. Comparing certain monomial coefficients, we determined the second column of

M precisely, the third column up to one free parameter, and the fourth column up to two

free parameters. This corresponds to the ambiguity in the covariants in degrees 13 and 19

described in §2.3.4. Once a choice of M was made, comparing coefficients again and solving

the resulting linear equations determined the polynomials E(a, . . . , v) completely.

2.4.2 Examples involving Richelot isogenies

Let X and Y be Weierstrass curves and let I : Jac(X)→ Jac(Y ) be an isogeny with isotropic

kernel of type (m,m) with m prime to 3. Then I induces an isomorphism ι : Jac(X)[3] →

Jac(Y )[3] which is symplectic if m ≡ 1 (3) and antisymplectic if m ≡ 2 (3). In the following

examples, m = 2.

35



Let Xe,f,g be defined by (2.1.1) with (a, b, c, d) =

(
−5(7e2 − 2f),−10e(3e2 − 2f), 5(32e4 − 39e2f + g),−4e(24e4 + 115e2f − 5g)

)
.

The discriminant of Xe,f,g is

∆X = −21255
(

125e4 + 20f2 − 4g
)2 (

25e2f − g
)(

25e2f + g
)2
.

Define Ye,f,g to be the quadratic twist by 2 of Xe,−f,g. The form of (a, b, c, d) has been

chosen so that there is a Richelot isogeny from Jac(Xe,f,g) to Jac(Ye,f,g).

Let ·̄ be the involution of Q[e, f, g] given by (ē, f̄ , ḡ) = (e,−f, g). To make ∆X∆Y a cube

and avoid denominators in (s, t, u, v), present Ye,f,g via (A,B,C,D) = (āz2, b̄z3, c̄z4, d̄z5)

with z = 2354
(
125e4 + 20f2 − 4g

)4 (
25e2f + g

)6
. Applying the numeric method of §2.3.7

and interpolating strongly suggests (s, t, u, v) =

±
(
−4e(80e4 + 7e2f − g), 2(40e4 − 9e2f − g),−4e(5e2 + 2f), 5e2 + 2f

)
.

Specializing the contravariant matrix M(a, b, c, d, s, t, u, v)∗ of §2.3.5 to M(e, f, g)∗ allows

direct computation of its powers up through the needed fifteenth power. Applying (2.3.4)

indeed recovers (A,B,C,D) so that the interpolation was correct.

The examples of this subsection are already much simpler than the general case with

its millions of terms. For a smaller family of even simpler examples, now with all mod 3

representations non-surjective, one can set e = 0. Then b, d, B, D, s, and u are all 0, while

a, c, A, C, t, and v are given by tiny formulas.

2.4.3 Explicit families of modular abelian surfaces

Our main theorem gives a process by which modularity of a genus two curve can be trans-

ferred to modularity of infinitely many other genus two curves:
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Corollary 2.4.1. Suppose the genus two curve X : y2 = x5 + ax3 + bx2 + cx + d has good

reduction at 3, and assume that A = Jac(X) satisfies all the conditions of [7, Prop. 10.1.1,

10.1.3], so that X is modular. Then all the curves X(s, t, u, v) or X∗(s, t, u, v) having good

reduction at 3 are also modular.

The conclusion follows simply because the hypotheses imply that the new Jacobians also

satisfy the conditions of [7, Prop. 10.1.1, 10.1.3] and are thus modular. In particular, for

any (s, t, u, v) ∈ P3(Q) reducing to (1, 0, 0, 0) ∈ P3(F3), the curves X and X(s, t, u, v) are

identical modulo 3 and therefore X(s, t, u, v) is modular.

The hypotheses of [7, Prop. 10.1.1, 10.1.3] include that the mod 3 representation ρ is

not surjective. The easiest way to satisfy the hypotheses is to look among X for which the

geometric endomorphism ring of Jac(X) is larger than Z. One such X, appearing in [14,

Example 3.3], is given by

(a, b, c, d) =
(

12/5, 12/52, 292/53,−3672/55
)
,

having arisen from the simple equation y2 = (x2+2x+2)(x2+2)x. This curve has conductor

215 and discriminant ∆X = 223. Applying the corollary, one gets infinitely many modular

genus two curves X(s, t, u, v). For generic parameters, the geometric endomorphism ring of

Jac(X(s, t, u, v)) is just Z.

It is much harder to directly find curves Y satisfying the hypotheses of [7, Prop 10.1.1,

10.1.3] and also satisfying End(Jac(Y )Q) = Z. A short list was found in [14]. The curve Y

in Example 3.3 there has

(A,B,C,D) =
(

27/5, 211 · 57/52,−212 · 503/53, 217 · 17943/55
)

and comes from the simple equation y2 = (2x4 + 2x2 + 1)(2x + 3). It has conductor 2155

and Example 3.3 also observes that its 3-torsion is isomorphic to that of X.

While Y was found in [14] via an ad hoc search, it now appears as just one point in an
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infinite family. To see this explicitly, note that ∆Y = 28356 so that ∆Y /∆X is a perfect

cube. Numerical computation as in §2.3.7 followed by algebraic verification yields

Y = X(129/125, 11/25, 3/100, 1/20).

If this procedure had failed, we would have found the proper X∗(s, t, u, v) by dividing

(A,B,C,D) by (24, 26, 28, 210) to make ∆X∆Y a cube.

2.4.4 Analogs for p = 2

Complex reflection groups also let one respond to the problem of the introduction for residual

prime p = 2 and dimensions g = 2, 3, and 4 via descriptions of moduli spaces related to

Ag(ρ). A conceptual simplification is that since p = 2 one does not have the second collection

of spaces A∗g(ρ). Correspondingly, the relevant groups are actually reflection groups defined

over Q, so that covariants and contravariants coincide. The cases of dimension g = 3, 4

make fundamental use of work of Shioda [36].

We begin with the easiest case g = 2, because it shows clearly that our approach has

classical roots in Tschirnhausen transformations. Greater generality would be possible by

using the symmetric group S6, but we describe things instead using S5 to stay in the uniform

context of Weierstrass curves. Let α1 be a companion matrix of x5 + ax3 + bx2 + cx + d.

For j = 2, 3, 4, let αj = α
j
1 − kjI where kj is chosen to make αj traceless. Then the curve

y2 = det(xI − sα1 − tα2 − uα3 − vα4)

has the same 2-torsion as the original curve. From this fact follows a very direct analog of

Theorem 2.3.1, with the new Ma,b,c,d ⊂ Proj Q[s, t, u, v] now mapping to the same Mw
2 ⊂

Proj Q[A,B,C,D] with degree 120. Carrying out this easy computation, the elements A,

B, C, and D of Q[a, b, c, d, s, t, u, v] respectively have 24, 86, 235, and 535 terms. Of course

there is nothing special about degree 5, and the analogous computations in degrees 2g + 1
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and 2g + 2 give statements about genus g hyperelliptic curves with fixed 2-torsion.

For g = 3, we work with the moduli space Mq
3 of smooth plane quartics which maps

isomorphically to an open subvariety of A3. From the analog addressed in [13], we suspect

that the varieties A3(ρ) are in general not rational. To place ourself in a clearly rational

setting, we work with the moduli space Mf
3 of smooth plane quartics with a rational flex.

This change is analogous to imposing a rational Weierstrass point on a genus two curve,

although now the resulting cover Mf
3 →M

q
3 has degree twenty-four. A quartic curve with

a rational flex can always be given in affine coordinates by

y3 + (x3 + a8x+ a12)y + (a2x
4 + a6x

3 + a10x
2 + a14x+ a18) = 0. (2.4.1)

Here the flex in homogeneous coordinates is at (x, y, z) = (0, 1, 0) and its tangent line is the

line at infinity z = 0. Changing ad to udad gives an isomorphic curve via (x, y) 7→ (u4x, u6y).

The variety Mf
3 is the complement of a discriminant locus in the weighted projective space

Proj Q[a2, . . . , a18] = P6(2, . . . , 18). The invariant theory of the reflection group ST36 =

W (E7) = C2 × Sp6(F2) gives polynomials Ai(a2, . . . , a18, s−1, . . . , s−17) of degree i in the

s−j and total weight 0. Following the template of the previous cases, for fixed (a2, . . . , a18)

one has a six-dimensional variety Ma2,...,a18 ⊂ Proj Q[s−1, . . . , s−17] parametrizing genus

three curves with a rational flex and 2-torsion identified with that of (2.4.1). The covering

maps Ma2,...,a18 → Mf
3 now have degree | Sp6(F2)| = 1451520. The number of terms

allowed in Ai(a2, . . . , a18, s−1, . . . , s−17) by the bigradation is the coefficient of xit19i in

∏
d∈{2,6,8,10,12,14,18}

1

(1− td)(1− xtd)
. (2.4.2)

For i = 18, this number is 11, 617, 543, 745, so complete computations in the style of this

paper seem infeasible.

For g = 4, one needs to go quite far away from the 10-dimensional variety A4 to obtain a

statement parallel to the previous ones. Even the nine-dimensional variety M4 is too large
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because for a generic genus four curve X corresponding to a point in M4, the image of

Gal(Q/Q) in its action on Jac(X)[2] is Sp8(F2), and this group is not a complex reflection

group. However, one can work with the smooth curves

y3 + (a2x
3 + a8x

2 + a14x+ a20)y + (x5 + a12x
3 + a18x

2 + a24x+ a30) = 0 (2.4.3)

and a corresponding seven-dimensional moduli space Ms
4 ⊂ P7(2, . . . , 30). For a generic

curve in (2.4.3), the image of Gal(Q/Q) is the index 136 subgroup O+
8 (F2) : 2 of Sp8(F2).

Now from the invariant theory of the largest Shephard–Todd group ST37 = W (E8) =

2.O+
8 (F2) :2, one gets polynomialsAi(a2, . . . , a30, s−1, . . . , s−29) and covering mapsMa2,...,a30 →

Ms
4 of degree |O+

8 (F2) :2| = 348, 364, 800. Aspects of this situation are within computational

reach; for example Shioda computed the degree 240 polynomial F (a2, . . . , a30, z) analogous to

(2.2.3) and (2.3.1). However the number of allowed terms in Ai(a2, . . . , a30, s−1, . . . , s−29)

is even larger than in the previous g = 3 case, being the coefficient of xit31i in the ana-

log of (2.4.2) where d runs over {2, 8, 12, 14, 18, 20, 24, 30}. For i = 30, this number is

100, 315, 853, 630, 512. We close the paper with this W (E8) case because it is here that the

paper actually began: the polynomial (2.3.1) for our main case C3 × Sp4(F3) is also the

specialization F (0, 0, a12, 0, a18, 0, a24, a30, z) of Shioda’s polynomial.
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CHAPTER 3

SOME MODULAR ABELIAN SURFACES

3.1 Introduction

Let C/Q be a smooth projective curve of genus g. Let1 ΓC(s) = (2π)−sΓ(s). Associated

to C and its Jacobian A = Jac(C) is a completed L-function

Λ(C, s) = ΓC(s)g
∏
p

Lp(C, p
−s)−1,

where, for any ` 6= p, Lp(C, T ) = det
(
I2g − T · Frobp | H1

et(C,Q`)
Ip
)

. We say that C is

automorphic if Λ(C, s) = Λ(π, s), where π is an automorphic form for GL2g(Q), and Λ(π, s)

is the completed L-function associated to the standard representation of GL2g. If C is

automorphic, then

Λ(C, s) = ±N1−sΛ(C, 2− s),

where N is the conductor of A. One conjectures that all smooth projective curves C over Q

are automorphic. When g = 0 and g = 1, one knows that C is automorphic by theorems

of Riemann [32] and Wiles et al. [38, 37, 8] respectively. The conjecture seems completely

hopeless with current technology for general curves when g ≥ 3, but for g = 2 it was recently

proved in [7] that all such curves over Q (and even over totally real fields) were potentially

automorphic. For abelian surfaces over Q, let us additionally say that A = Jac(C) is

modular of level N if there exists a cuspidal Siegel modular form f of weight two such

that Λ(C, s) = Λ(f, s), where Λ(f, s) is the completed L-function associated to the degree

four spin representation of GSp4. If A is modular in this sense, then it is also automorphic in

the sense above by taking π to be the transfer of the automorphic representation associated

1. There is some ambiguity in the literature as to whether one defines ΓC(s) to be (2π)−sΓ(s)
or ΓR(s)ΓR(s+1) = 2·(2π)−sΓ(s). It makes no difference as long as one uses the same choice for both Λ(C, s)
and Λ(π, s). To be safe, we make the same choice as Serre [34, §3(20)].
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to f from GSp(4)/Q to GL(4)/Q. It was also shown in [7] that certain classes of abelian

surfaces over Q were actually modular (see Theorem 3.1.1 below), and even that there were

infinitely many modular abelian surfaces over Q up to twist with EndC(A) = Z. However,

no explicit examples of such surfaces were given in that paper.

The aim of this note is to give explicit examples of modular abelian surfaces A/Q

with EndC(A) = Z and such that A has good reduction outside a set S that is either S =

{2, 5}, S = {2, 5, 7}, or S = {2, 3, 7}. Previous explicit examples of modular abelian surfaces

with trivial endomorphisms were found by [10] (in 2015) and also by [2]; these results relied

heavily on very delicate and explicit computations of spaces of low weight Siegel modular

forms following [31, 30]. In particular, they rely on the conductor being relatively small

and also take advantage of the fact that the conductor is odd and squarefree. (The ex-

amples in those papers are of conductors 277, 353, 587, and 731 = 17 · 43.) In contrast,

the examples of this paper only require verifying some local properties of A at the prime p

(with p = 3 or p = 5) and showing that the image of the action of GQ on the p-torsion

of A = Jac(C) is of a suitable form. Although the conductors of our examples have only

small factors, the conductors themselves are quite large — the smallest of our examples has

conductor 98000 = 24 · 53 · 72. The modularity of the examples in this paper follows by

applying the following result (with either p = 3 or p = 5) proved in [7, Propositions 10.1.1

and 10.1.3].

Theorem 3.1.1. Let A/Q be an abelian surface with good ordinary reduction at v|p and a

polarization of degree prime to p, and suppose that the eigenvalues of Frobenius on A[p](Fp)

are distinct. Let

ρA,p : GF → GSp4(Fp)

denote the mod-p Galois representation associated to A[p], and assume that ρA,p has vast

and tidy image in the notation of [7]. Suppose that either:

1. p = 3, and ρA,3 is induced from a 2-dimensional representation over a real quadratic
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extension F/Q in which 3 is unramified.

2. p = 5, and ρA,5 is induced from a 2-dimensional representation valued in GL2(F5)

over a real quadratic extension F/Q in which 5 is unramified.

Then A is modular.

A precise definition of what representations are vast and tidy is included in §7.5 of [7],

but we content ourselves with the following list which exhausts all of our examples:

Lemma 3.1.1 (Examples of vast and tidy representations from [7, Lemmas 7.5.13 and 7.5.21]).

The representation ρA,p is automatically vast and tidy when the image of ρA,p is one of the

following conjugacy classes of subgroups of GSp4(Fp):

1. The groups G2304, G768, G′768 or G480 in GSp4(F3) of orders 2304, 768, 768, and 480,

where:

(a) The group G2304 is a semi-direct product ∆ o Z/2Z where

∆ =
{

(A,B) ∈ GL2(F3)2 | det(A) = det(B)
}

;

it is (up to conjugacy) the unique subgroup of order 2304 of GSp4(F3).

(b) The groups G768 and G′768 are subgroups of G2304 of index 3, and are (up to

conjugacy) the only two subgroups of order 768 of GSp4(F3). They are isomorphic

as abstract groups, but they are distinguished up to conjugacy inside GSp4(F3) by

their intersections H384 and H ′384 with Sp4(F3). In particular, (H384)b ' Z/6Z

and (H ′384)b ' Z/2Z. According to the small groups database of magma (cf. [4]),

G768 ' G′768 ' SmallGroup(768,1086054),

whereas

H384 ' SmallGroup(384, 18130), H ′384 ' SmallGroup(384, 618).
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These groups can also be distinguished by their images P192 and P ′192 in PSp4(F3) ⊂

PGSp4(F3), namely

P192 ' SmallGroup(192, 1493), P ′192 ' SmallGroup(192, 201).

(c) The group G480 is a semi-direct product Ã5 o 〈σ〉 where Ã5 ⊂ GL2(F9) is a

central extension of A5 by Z/4Z. There are precisely two subgroups of this order

up to conjugacy in GSp4(F3). The second subgroup G′480 also contains Ã5 with

index two, but it is not a semi-direct product. According to the small groups

database of magma,

G480 ' SmallGroup(480, 948), G′480 ' SmallGroup(480, 947).

2. The group G115200 in GSp4(F5) is a semi-direct product ∆ o Z/2Z where

∆ =
{

(A,B) ∈ GL2(F5)2 | det(A) = det(B)
}

;

it is (up to conjugacy) the unique subgroup of order 115200 of GSp4(F5).

The conditions of the theorem are all very easy to verify in any given example (once

found) with the possible exception of computing the image of the mod-p representation

for p = 3 or 5. We describe how we computed this in the section below. The second problem

is then to find a list of candidate curves. Our original approach involved searching for curves

in a large box, which did indeed result in a number of examples. However, we then switched

to using a collection of curves provided to us by Andrew Sutherland, all of which had the

property that they had good reduction outside the set {2, 3, 5, 7} (these were found during

the construction of [5] but discarded because their minimal discriminants were too large).

This list consisted of some 20 million curves, so the next task was to identify examples to

which we could apply Theorem 3.1.1. For a genus two curve C on Sutherland’s list, we
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applied the following algorithm.

1. Fix a real quadratic field F of fundamental discriminant D dividing ∆C in which p ∈

{3, 5} is unramified. Since ∆C is only divisible by primes in {2, 3, 5, 7}, there are at

most seven such F . Let χD denote the quadratic character associated to F .

2. Check whether aq ≡ 0 mod p for all primes q ≤ 100 of good reduction for C with χD(q) =

−1.

3. Check that aq 6= 0 for at least one prime q ≤ 100 of good reduction for C with χD(q) =

−1.

Any C that passes this test is likely to have the following two properties: ρA,p is induced

from F , but the p-adic representation ρA,p itself is not induced. The third condition in

particular guarantees that A itself is not isogenous to a base change of an elliptic curve

defined over F . Note that this test is very fast — one can discard a C as soon as one finds

a prime q with χD(q) = −1 and aq 6≡ 0 mod p, so for almost all curves C, one only has

to compute aq for very small primes q. In addition, the following postage stamp calculation

with the Chebotarev density theorem suggests that false positives will be few in number:

for each of the allowable discriminants D (there are 7 such D for either p = 3 or p = 5),

there are at least M ≥ 10 primes in the interval [10, 100] with χD(q) = −1. A “random”

abelian surface A will have aq ≡ 0 mod p for any such prime q approximately 1/p of the

time (the exact expectation depends on A[p] — if the mod-p representation is surjective,

the exact expectation that aq ≡ 0 mod p for a random prime q is 231/640 for p = 3

and 3095/14976 for p = 5), and so one might expect a false positive to occur with probability

approximately 1/pM . On the other hand, false positives are certainly not impossible. In

our original box search, we did find the one curve C : y2 = x5 − 2x4 + 6x3 + 5x2 + 10x+ 5

that “passed” the test for ρA,3 to be induced from Q(
√

7), whereas it turns out instead to

be induced from Q(
√

85) — requiring only an accidental vanishing of aq for q = 23, 73, 89,
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and 97. The smallest prime guaranteeing that ρA,3 is not induced from Q(
√

7) in this case

is a151 = 5 6≡ 0 mod 3.
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3.2 Determining the mod-p representation

Consider a genus two curve

C : Y 2 = f(X),

with deg(f) = 6. The desingularization of the corresponding projective curve has two

points b1 and b2 at infinity. The canonical class O in Pic2(C) is represented by the divi-

sor b1 + b2, and the Jacobian A = Jac(C) can be identified with Pic2(C) under addition of

the canonical class. By Riemann–Roch, every class in Pic2(C) except O has precisely one

effective divisor. Thus, we may represent any point of A as an unordered pair {P,Q} of

points on C.

If we assume f(X) has a rational root, then, by suitably transforming the variables X

and Y , we can make deg(f) = 5; then, there will be exactly one point b at infinity, and the

canonical class will be represented by 2b. We will not need this assumption, however, and

several of our examples do not have any Weierstrass points over Q.
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3.2.1 p = 3

Let K/Q denote the Galois closure of the corresponding projective representation. It will

contain the field Q(x + u, xu, yv) for any 3-torsion point {P,Q} of A, where P = (x, y)

and Q = (u, v). There exist polynomials Bij , given in [16, Theorem 3.4.1 and Appendix

II], using which the multiplication-by-n map can be described explicitly at the level of the

Kummer surface of A. Writing the equation [2]{P,Q} = −{P,Q} in terms of the Kummer

coordinates explicitly, taking resultants, and eliminating spurious solutions, one can compute

the minimal polynomials of x+u, xu and yv in any particular case, as well as determine the

Galois group of the corresponding extension.

Note that the first coordinates determine the GSp4(F3)/〈±1〉 = PGSp4(F3)-representation,

so this determines the image of ρA,3 modulo the central subgroup of order 2 as an ab-

stract group. One can similarly compute the field Q(y + v, yv) if one wants to know the

full GSp4(F3)-representation. In any case of interest, this is enough (purely by consider-

ing possible orders) to determine the order of the image of ρA,3 itself. It then remains to

determine the precise subgroup of GSp4(F3) in the cases where this is ambiguous. The

group PGSp4(F3) has a natural permutation representation on 40 points, corresponding to

the non-zero points of A[3] up to sign (warning: the group PGSp4(F3) has a second non-

conjugate representation on 40 points). From this data, one can distinguish between G480

and G′480 purely based on the degrees of the polynomials arising from the computation above.

Table 3.1 gives the corresponding decomposition in the cases of interest:

G Orbits

G2304 8, 32

G768 8, 32

G′768 8, 32

G480 20, 20

G′480 40

Table 3.1: Orbit decomposition for subgroups of PGSp4(F3).
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The groups G768 and G′768 cannot be distinguished by this method. This is not important

for establishing modularity since both groups give representations with vast and tidy image.

However, in order to complete the tables, we distinguish between these cases as follows: we

explicitly compute (using magma) the Galois group of the corresponding degree 32 polynomial

over the field Q(
√
−3), and see whether the resulting group is P192 or P ′192 (in which case

the group is G768 or G′768 respectively).

3.2.2 p = 5

Similar to the p = 3 case, for an arbitrary point {P = (x, y), Q = (u, v)} of A, we write

the equation 3{P,Q} = −2{P,Q} in terms of the Kummer coordinates of the point, and

take resultants to find the minimal polynomials of x + u, xu and yv of 5-torsion points on

A. The splitting field of these polynomials is the Galois closure K/Q of the representation

to PGSp4(F5) = GSp4(F5)/〈±1〉.

We describe an algorithm for showing that the image ρA,5 of a mod-5 representation

in GSp4(F5) with cyclotomic determinant has image G115200. The group GSp4(F5) has a

representation on 312 = (54 − 1)/2 points, given by the action on the non-trivial 5-torsion

points up to sign (which factors through PGSp4(F5)).

Lemma 3.2.1. Let G ⊂ GSp4(F5) be a subgroup, and suppose that the similitude character

is surjective on G, or equivalently that [G : G ∩ Sp4(F5)] = 4. Suppose, in addition, that G

acts on the degree 312 permutation representation above with two orbits of size 288 and 24

respectively. Then:

1. G is one of four groups, distinguished by their orders: 2304, 4608, 57600, and 115200.

2. The degree 24 permutation representation of G factors through a group of order 576,

1152, 14400, and 28800 respectively.

In particular, we can distinguish these representations by computing the Galois group of

the factor of size 24. Hence by computing the corresponding polynomials of order 24 and 288
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we can verify that the image is indeed G115200.

3.2.3 Checking the Sato–Tate group

For all the residual representations we consider, it turns out that the image of ρ is big enough

to guarantee that the Sato–Tate group is either USp(4) or the normalizer of SU(2)× SU(2).

More precisely:

Lemma 3.2.2. Suppose that p = 3 and that ρA,p has image either G480, G768, G′768, G2304,

or that p = 5, and ρA,p has image G115200. Then the Sato–Tate group of A is either USp(4)

or N(SU(2)× SU(2)). Moreover, if the Sato–Tate group is N(SU(2)× SU(2)), the quadratic

extension F/Q over which A has Sato–Tate group SU(2) × SU(2) is the quadratic field F

from which ρ is induced.

Proof. The image of ρA,p is constrained by the Sato–Tate group, and thus the fact that the

Sato–Tate group can only be USp(4) orN(SU(2)×SU(2)) follows directly from a classification

of all such groups in [21]. (In fact, when the image is G480, only the first case can occur.) In

the latter case, the representation becomes reducible over the quadratic extension F where A

has Sato–Tate group SU(2)× SU(2), and (for the given ρ) this forces F to be the field from

which ρ is induced.

In particular, in all our examples, our initial selection process requires the existence of a

prime q of good reduction with χ(q) = −1 and aq 6= 0, which implies that ρA,p cannot be

induced from F , and thus the Sato–Tate group in each example below is USp(4).

3.3 Examples

Of the curves we consider, a number satisfy the conditions of the main theorem, and are

thus provably modular. For any curve C that is modular, so too are any quadratic twists.

Hence we only list a single representative curve for each equivalence class of abelian surfaces

under both Q-isogenies and twisting by quadratic characters.
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3.3.1 Inductions from GL2(F3) and GL2(F9)

We first give the examples of modular curves whose mod-3 representation is induced from

either GL2(F3) or GL2(F9)-representations of GF for real quadratic fields F . It turns out

that, in the range of our computation, the representation ρ up to twist determined the

representation ρ up to twist — after applying our other desiderata, including that A/Q had

good reduction at p and had Sato–Tate group USp(4). In particular, all the examples below

give rise to mod-3 representations that are not twist equivalent. The examples C we choose

to list in Table 3.2 are of minimal conductor amongst all those with Jacobian isogenous to

a twist of Jac(C). The conductors were computed rigorously away from 2 using magma. The

conductors at 2 were computed for us by Andrew Sutherland using an analytic algorithm

discussed in §5.2 of [5]. This computation assumes the analytic continuation and functional

equation for L(A, s), which we know to be true in this case. (More precisely, as explained

to us by Andrew Booker, one version of this program gives a non-rigorous computation of

these conductors and a second slower but more rigorous version then confirms these values.)

In the case of ties, we chose the curve with smaller minimal discriminant. In the case of

subsequent ties, we eyeballed the different forms and chose the one that looked the prettiest.

Theorem 3.3.1. The Jacobians A = Jac(C) of the following smooth genus two curves C

over Z[1/70] given in Table 3.2 are modular. In particular, the L-function L(A, s) is holo-

morphic in C and satisfies the corresponding functional equation. Each A has good ordinary

reduction at 3 and is 3-distinguished and EndC(A) = Z. Moreover, the representation ρA,3

is induced from a GL2(F3)-valued representation of GF that is vast and tidy.
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Curve Cond Disc im(ρ) ∆F

y2 = x6 − 10x4 + 2x3 + 31x2 − 13x− 18 245372 285373 G480 5

y2 = −5x6 − 20x5 − 10x4 + 36x3 + 22x2 − 20x 210537 2205473 G′768 5

y2 + y = −4x5 − 23x4 − 22x3 + 74x2 − 40x+ 6 285372 2195772 G2304 5

y2 = 16x6 − 46x4 + 10x3 + 46x2 − 9x− 17 2125274 2195974 G480 5

y2 = 2x5 − 8x4 + 26x2 − 7x− 26 2155 21653 G2304 8

y2 = x5 − x4 − 4x3 − 44x2 − 60x− 100 2145 · 7 233537 G2304 8

y2 = x5 − 17x4 + 70x3 + 26x2 − 35x− 29 2165 · 7 237537 G2304 8

y2 + x2y = 13x6 − 29x5 − 10x4 + 41x3 + 6x2 + 20x+ 20 275274 21652716 G2304 8

y2 = x5 − 11x4 − 2x3 − 34x2 − 5x− 25 2205 · 7 2215373 G768 8

y2 = −2x6 − 41x5 − 48x4 + 54x3 + 42x2 − 49x 2145274 23252711 G2304 8

y2 = 2x5 + 34x4 − 16x3 − 52x2 − 13x− 1 2195372 2205576 G′768 8

y2 = 8x6 − 24x5 − 4x4 + 20x3 + 49x2 − 21x− 28 2155274 2235679 G2304 8

y2 + (x+ 1)y = 64x5 − 8x4 + 39x3 + x2 + 2x+ 1 275373 2275676 G480 40

y2 = 15x5 + 23x4 + 20x3 + 28x2 + 12x− 4 2143 · 53 2333254 G2304 40

y2 = 3x5 + 7x4 + 28x3 + 20x2 + 28x− 36 2143 · 53 2363254 G2304 40

Table 3.2: Some smooth genus 2 curves with Jacobians A that are modular, 3-distinguished,
and have good ordinary reduction at 3 and EndC(A) = Z.

Example 3.3.1. Precisely one curve in Table 3.2 is actually smooth over a smaller ring,

namely the curve of conductor 163840 = 215 · 5 which is smooth over Z[1/10]. This curve

has a quadratic twist with particularly small näıve height, namely the curve:

y2 = 4x5 + 6x4 + 4x3 + 6x2 + 2x+ 3

which also has conductor 163840 = 215 · 5 but larger minimal discriminant

131072000000 = 223 · 56
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rather than 8192000 = 216 · 53 as the curve in the table. The mod-3 representation of

both of these curves is actually unramified at 5, and is congruent up to twist to the mod-3

representation attached to the curve y2 = 4x5 − 4x4 + 4x3 − 2x2 + x of conductor 215. The

Jacobian of this latter curve is isogenous to ResQ(
√

2)/Q(E), where E is the elliptic curve:

y2 +
√

2xy = x3 + (−1−
√

2)x2 + 2(
√

2 + 1)x− 3
√

2− 5.

3.3.2 Inductions from GL2(F5)

We now consider the case p = 5.

Theorem 3.3.2. The Jacobians A = Jac(C) of the following smooth genus two curves C

over Z[1/42] are modular. In particular, the L-function L(A, s) is holomorphic in C and

satisfies the corresponding functional equation. Each A has good ordinary reduction at 5 and

is 5-distinguished and EndC(A) = Z. Moreover, the representation ρA,5 is induced from

a GL2(F5)-valued representation of GF that is vast and tidy.

Curve Cond Disc im(ρ) ∆F

y2 + xy = 7x6 − 22x5 − 7x4 + 61x3 − 3x2 − 54x− 12 273273 2113974 G115200 8

y2 = 8x6 − 24x5 − 30x4 + 8x3 − 24x2 − 48x− 8 26387 251387 G115200 8

Table 3.3: Some smooth genus 2 curves with Jacobians A that are modular, 5-distinguished,
and have good ordinary reduction at 5 and EndC(A) = Z.

The second curve also admits a quadratic twist of smaller näıve height, namely

y3 + x2y = x6 − 3x5 − 4x4 + x3 − 3x2 − 6x− 1

of conductor 5878656 = 27 · 38 · 7 and minimal discriminant 96315899904 = 221 · 38 · 7.
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CHAPTER 4

MOD-P GALOIS REPRESENTATIONS NOT ARISING FROM

ABELIAN VARIETIES

4.1 Introduction

Let g ≥ 1 and p be a prime. Let Ag(p) be the Siegel modular variety which is the moduli

space of principally polarized abelian varieties of dimension g with full level p structure.

The space Ag(p) is geometrically rational only for (g, p) = (1, 2), (1, 3), (1, 5), (2, 2), (2, 3),

(3, 2) [24]. Furthermore, in all the genus 1 cases above, it is known that A1(p) and its twists

A1(ρ) corresponding to two dimensional mod-p Galois representations ρ with cyclotomic

determinant, are in fact rational over Q. That is, if ρ : GQ → GL(2,Fp) with p = 2, 3, 5

is any representation with cyclotomic determinant, then it arises from an elliptic curve over

Q, and in fact from infinitely many elliptic curves [33]. In the three exceptional cases

with g ≥ 2, the corresponding moduli spaces Ag(p) and their twists are all unirational, as

explained in [7, Lemma 10.2.4] and [15, §4.4]. Hence, in these cases, all representations

ρ : GQ → GSp(2g,Fp) with cyclotomic similitude character do arise from g-dimensional

abelian varieties over Q.

In this paper, we consider the cases where g ≥ 2 and Ag(p) is not geometrically rational.

The main theorem we prove is:

Theorem 4.1.1. Let g ≥ 2 and p be a prime number. Suppose (g, p) is not one of (2, 2),

(2, 3), (3, 2). Then there exists a Galois representation ρ : GQ → GSp(2g,Fp) with cy-

clotomic similitude character such that ρ does not arise from the p-torsion of any abelian

variety over Q.

The case g = 1, p > 5 has been studied earlier in [12], [19] which show the existence of

non-elliptic mod-p Galois representations. The representations constructed in [12] for p ≥ 11

are modular, semistable Galois representations of weight 2 and level Γ0(N). For p = 7, one
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desired representation is constructed explicitly, with image contained in the normalizer of

the non-split Cartan subgroup. We extend this idea to higher genus situations.

Our approach is as follows. Let l 6= p be any prime. For any mod-p representation

arising from an abelian variety, we use Raynaud’s inertial criteria for semistable reduction

and deduce that there exists a constant Kg only depending on g such that the prime to p

part of the order of image of the inertia subgroup at l divides Kg. On the other hand, we

can easily show using Zsigmondy’s theorem that there exists q > 1 coprime to p such that q

divides # GSp(2g,Fp) and does not divide Kg. If one could construct Galois representations

valued in GSp(2g,Fp) with cyclotomic similitude and such that the image of inertia at l had

order q, we could then deduce that such Galois representations did not come from abelian

varieties. But the inverse Galois problem (with local conditions) for GSp(2g,Fp) is unknown

— indeed the standard approach to constructing such groups as Galois groups is to use

abelian varieties which is the opposite of what we want. We instead describe various solvable

subgroups of GSp(2g,Fp) which have an element of order q and are also big enough so that

the restriction of the similitude character is surjective. We then attempt to construct these

groups as Galois representations using class field theory. The condition that the similitude

character is cyclotomic leads to some non-split embedding problems which we solve using

Galois cohomological machinery related to the Grunwald-Wang theorem.

In Section 4.2, we recall basic notions about abelian varieties and semistable reduction.

Let Kg = gcd
primes r 6=2

# GSp(2g,Fr). We show that if ρ is the p-torsion representation of a

g-dimensional abelian variety over Q, then the prime to p part of #ρ(Il) divides Kg.

Let d ≥ 1. In Section 4.3, we study several solvable subgroups inside GSp(2d,Fp). We

consider a symplectic pairing on k2 valued in Fp, where k = Fpd . The natural action of

SL(2, k) on k2 gives us a map SL(2, k) → Sp(2d,Fp). Let C1 ⊂ Sp(2d,Fp) denote the

image of the non-split Cartan subgroup of SL(2, k), and N denote a certain subgroup of the

normalizer of C1 in GSp(2d,Fp). Then C1 is a cyclic group of order pd + 1, [N,N ] = C1,

and Nab ' Z/(p − 1) × Z/2d. The quotient on to the first factor Z/(p − 1) ' F×p in
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fact corresponds to the similitude character. Conjugation action of Nab on [N,N ] factors

through the Z/2d factor, and it is given by multiplication by p. When p = 2, N is in fact a

semi-direct product.

In Section 4.4, we consider odd primes p and study the embedding problem

GQ

0 [N,N ] = Z/(pd + 1) N Z/(p− 1)× Z/2d 0

φ
? (4.1.1)

for some φ with pr1 ◦ φ equal to the p-cyclotomic character. We choose φ carefully so that all

local obstructions to the embedding problem vanish. We then show that global obstructions

vanish as well, and that φ can be lifted to a proper solution φ̃ : GQ → N .

In Section 4.5, we finish the proof of the main theorem. We twist φ̃ to obtain represen-

tations ρ such that ρ(Il) ⊂ [N,N ] has prime power order q not dividing Kg. By allowing

ourselves to consider reducible representations landing inside GSp(2d,Fp) ⊂ GSp(2g,Fp)

for d ≤ g, we can deal with all cases except (g, p) = (3, 3) using this approach. We deal with

the exceptional case explicitly, by producing a representation whose image in GSp(6,F3) has

order 78, with ρ(Il) being the unique cyclic subgroup of order 13.

4.1.1 Acknowledgments

I would like to thank Frank Calegari for suggesting this problem, and for many helpful

discussions.

4.2 Semistable reduction of abelian varieties

Let X be an abelian variety of dimension g defined over a field F . Let v be a discrete

valuation on F , and X denote the Neron model of X at v. Let l be the residue characteristic

of v.
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Definition 4.2.1. 1. X is said to have good reduction at v, if the identity component of

the special fiber of X is an abelian variety

2. X is said to have semistable reduction at v, if the identity component of the special

fiber of X is an extension of an abelian variety by an affine torus.

Let Iv denote the absolute inertia group at the finite prime v of F . For a rational prime

p, let X[p] and Tp(X) denote the p-torsion subgroup and the p-adic Tate module of X

respectively. The following are simple critera for semistable reduction in terms of inertial

action on Tp(X) and X[p]. The proofs can be found in Propositions 3.5 and 4.7 of [22], and

Theorem 6 of [6, §7.4].

Theorem 4.2.1 (Grothendieck). Let p 6= l be a prime. Then the following are equivalent.

1. X has semistable reduction at v.

2. Iv acts unipotently on the Tate module Tp(X).

Theorem 4.2.2 (Raynaud). Let m ≥ 3 be an integer not divisible by l, and suppose that

all the points of X[m] are defined over an extension of F unramified at v. Then X has

semistable reduction at v.

Before describing the inertial condition alluded to in the introduction, we prove a few

lemmas about the number Kg = gcd
primes r 6=2

# GSp(2g,Fr). We repeatedly make use of

Dirichlet’s theorem about primes in arithmetic progression in the proofs. Let νp denote the

p-adic valuation function normalized so that νp(p) = 1.

Lemma 4.2.1. All primes dividing Kg are less than or equal to 2g + 1. Further, if g ≥ 2

and p is a prime such that 2 < p ≤ 2g + 1, then νp(Kg) < g2.

Proof. Suppose p > 2g + 1 is a prime. Choose a primitive root a ∈ Z/p and let r ≡ a

(mod p) be a prime. Then, r2i − 1 6≡ 0 (mod p) for each 1 ≤ i ≤ g showing that p does not

divide Kg.
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For the second part of the lemma, choose a primitive root a ∈ (Z/pg
2
)× and let r ≡ a

(mod pg
2
) be a prime. Then, for n ≤ g2, the order of r ∈ (Z/pn)× is pn−1(p − 1). So pn

divides a term r2i− 1 in the product below if and only if pn−1(p− 1) dividies 2i. Using this

observation we count the powers of p to get that

νp(# GSp(2g,Fr)) = νp

(
(r2 − 1)(r4 − 1) · · · (r2g − 1)

)
=

⌊
2g

p− 1

⌋
+

⌊
2g

p(p− 1)

⌋
+

⌊
2g

p2(p− 1)

⌋
+ · · ·

≤
⌊

2g

2

⌋
+

⌊
2g

4

⌋
+

⌊
2g

8

⌋
+ · · · < 2g ≤ g2

since g ≥ 2. Therefore, νp(Kg) < g2.

Lemma 4.2.2. For any M > 2, Kg = gcd
primes r>M

# GSp(2g,Fr).

Proof. Let L = gcd
primes r>M

# GSp(2g,Fr). Clearly Kg divides L, and following the argument

in the proof of Lemma 4.2.1, no prime greater than 2g + 1 divides L.

Let p ≤ 2g+ 1 be a prime and suppose νp(Kg) = n. Then, there exists some prime r 6= 2

such that νp(# GSp(2g,Fr)) = n. If r > M , it is clear that νp(L) = n as well. Suppose

r ≤ M . By the second part of Lemma 4.2.1, we know r 6= p since νp(# GSp(2g,Fp)) = g2.

Choose a prime l > M such that l ≡ r (mod pn+1). Then, it is clear that # GSp(2g,Fl) ≡

# GSp(2g,Fr) (mod pn+1) showing that νp(# GSp(2g,Fl)) = n. This shows that νp(L) = n

as well. Hence, Kg = L which is what we want.

Proposition 4.2.1. Let p 6= l be a prime and let ρ : GF → Aut(X[p]) denote the p-torsion

representation coming from the g-dimensional abelian variety X. Then, the prime to p part

of #ρ(Iv) divides Kg.

Proof. Suppose X admits a polarization X → X∨ of degree M . Thus for primes r > M , the

mod r representation associated to X[r] is valued in GSp(2g,Fr). Let r > M be a prime

distinct from l. Let w be an extension of v to K = F (X[r]). By Theorem 4.2.2, we know

X attains semistable reduction at w over K. Theorem 4.2.1 now implies that the absolute
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inertia group at w acts unipotently on Tp(X) and hence also on X[p]. So, ρ(Iw) is a p-group.

Thus the prime to p part of #ρ(Iv) divides #Iv(K|F ) which in turn divides # GSp(2g,Fr).

Since this is true for all primes r > M , r 6= l, we get by Lemma 4.2.2 that the prime to p

part of #ρ(Iv) divides Kg.

4.3 Certain subgroups inside GSp(2d,Fp)

Let k denote the finite field of order pd. Consider the symplectic pairing ∧k on k2 valued in

k, defined as follows. It is preserved by the action of SL(2, k).

∧k(v1,v2) = ad− bc, if v1 = [a b]t, v2 = [c d]t

Then, ∧ = Trk|Fp
◦∧k is a symplectic pairing on k2 valued in Fp, and we get an induced

map

SL(2, k)→ Sp(2d,Fp)

Let Gd ⊂ GL(2, k) denote the subgroup consisting of elements whose determinant lies in

F×p ⊂ k×. This preserves ∧k and ∧ up to scalars, and hence induces a map Gd →

GSp(2d,Fp). Further, the composite of this map with the similitude map to F×p is sur-

jective.

Let l be the finite field of order p2d. Then [l : k] = 2, and we consider an identification

of l with k2 as vector spaces over k. This induces an inclusion l× ⊂ GL(2, k), and the image

is called the non-split Cartan subgroup of GL(2, k). We consider the following subgroups

C = { x ∈ l× | Nml|k x ∈ F×p } ⊂ Gd

C1 = { x ∈ l× | Nml|k x = 1 } ⊂ SL(2, k).

Then C1 is the non-split Cartan subgroup of SL(2, k). Identifying C and C1 with their
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images under the inclusion Gd → GSp(2d,Fp), we see that C ⊂ GSp(2d,Fp) is a cyclic

subgroup of order (pd + 1)(p− 1) and C1 = C ∩ Sp(2d,Fp) is the subgroup of order pd + 1.

The Galois group of l over Fp acts naturally on C, with Frobenius raising an element of

C to its pth power. The following lemmas, for p = 2 and odd p, let us describe a subgroup

N inside the normalizer of C in GSp(2d,Fp), such that the action of the quotient N/C on

C is exactly this Galois action.

Lemma 4.3.1. Let p = 2. Let η ∈ l× be such that Trl|k(η) = −1, i.e., the minimal

polynomial over k of η is of the form x2 + x + u for some u ∈ k. Let us identify l with k2

using the basis 1, η. Let σ = Frobp ∈ Gal(l|Fp). Then σ acts Fp-linearly on l = k2, and

preserves the pairing ∧.

Proof. It is clear that σ acts Fp-linearly. Let a + bη and c + dη be elements of l. With the

given identification l = k2, we have ∧(a+ bη, c+ dη) = Trk|Fp
(ad− bc). Then, we get

∧(σ(a+ bη), σ(c+ dη)) = ∧(a2 + b2(η2), c2 + d2(η2))

= ∧((a2 − ub2)− b2η, (c2 − ud2)− d2η)

= Trk|Fp
(−a2d2 + b2c2)

= Trk|Fp
(Frobp(ad− bc))

= Trk|Fp
(ad− bc)

= ∧(a+ bη, c+ dη)

showing that the action of σ preserves the pairing ∧.

It is clear that σ has order 2d, and the conjugation action of σ on x ∈ C sends it to

σxσ−1 = σ(x) · σ ◦ σ−1 = σ(x) = x2. Let N denote the subgroup of GSp(2d,F2) generated

by C and σ. Then, N is contained in the normalizer of C, and admits a split short exact
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sequence

0 [N,N ] = C1 = C N Nab = Z/2d 0. (4.3.1)

Let x denote a generator of C, and y = σ so that 〈x, y|x2d+1 = y2d = 1, yxy−1 = x2〉 is a

presentation of N . Then the abelianization map above sends xayb ∈ N to b ∈ Z/2d, with

the obvious splitting Z/2d→ N sending b 7→ yb.

Lemma 4.3.2. Let p be odd. Let η ∈ l× such that η2 ∈ k× is a primitive root, and let us

identify l with k2 using the basis 1, η. Let α ∈ l× and let σ = Frobp ∈ Gal(l|Fp). Then

σ̃ := ασ acts Fp-linearly on l = k2, and it preserves the pairing ∧ exactly if and only if

Nml|k(α) = η1−p.

Note this means that α can be taken to be in k× if and only if p ≡ 1 (mod 4).

Proof. It is clear that σ̃ acts Fp-linearly, since both σ and multiplication by α ∈ l× are

Fp-linear operations. With the given identification l = k2, we have ∧(a + bη, c + dη) =

Trk|Fp
(ad− bc). If α = α1 + α2η, then we have

∧(ασ(a+ bη), ασ(c+ dη)) = ∧((α1 + α2η)(ap + bpηp), (α1 + α2η)(cp + dpηp))

= Trk|Fp
(ηp−1(α2

1 − α
2
2η

2)(apdp − bpcp))

= Trk|Fp
(ηp−1 Nml|k(α) Frobp(ad− bc))

This is equal to Trk|Fp
(ad− bc) for all a, b, c, d ∈ k if and only if ηp−1 Nml|k(α) = 1, which

proves the lemma.

The conjugation action of σ̃ on x ∈ C sends it to ασxσ−1α−1 = αxpα−1 = xp. The next
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question is what power of σ̃ lies in the image of C. We have

σ̃n = (ασ)n = ααp . . . αp
n−1

σn = α
pn−1
p−1 σn.

In particular, since the order of σ is 2d we have

α̃2d = α
p2d−1
p−1 σ2d = (α1+pd)

pd−1
p−1 = Nml|k(α)

pd−1
p−1 = η−(pd−1) = −1 ∈ C.

Hence, the element σ̃ ∈ Sp(2d,Fp) is of order 4d, and normalizes C. Let N denote the

subgroup of GSp(2d,Fp) generated by C and σ̃. Then, N is contained in the normalizer of

C, and admits a short exact sequence

0 −→ [N,N ] = C1 −→ N −→ Nab = Z/(p− 1)× Z/2d −→ 0. (4.3.2)

Unlike the case p = 2, this sequence does not split. Let x denote a generator of C, and

y = σ̃ so that N has the presentation 〈x, y|xe = 1, y2d = xe/2, yxy−1 = xp〉 where e =

(pd + 1)(p − 1). Then, C1 is generated by xp−1 and the abelianization map above sends

xayb ∈ N to (a, b) ∈ Z/(p − 1) × Z/2d. The similitude character N → F×p corresponds to

the projection on to the first factor in Nab, followed by the isomorphism Z/(p − 1) ' F×p

sending 1 7→ Nml|k(x).

4.4 Embedding problem

In this section, we show the existence of a number field K with Gal(K|Q) ' N , such that

the similitude character of N cuts out the subfield Q(ζp) ⊂ K. When p = 2, N was shown

to be a semi-direct product of abelian groups in Section 4.3, and furthermore the similitude

condition is trivial. Hence the existence of K in this case is immediate from known results on

Inverse Galois problem. For example, Shafarevich’s theorem says that every solvable group

is a Galois group over Q, though it is too strong for our need.
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When p is odd, Shafarevich’s theorem again yields that N is a Galois group over Q

since it is solvable. But this is not enough since we need additionally that our number field

have Q(ζp) as the appropriate subfield. So we are forced to study the following embedding

problem

GQ

0 [N,N ] = Z/(pd + 1) N Z/(p− 1)× Z/2d 0

φ
? (4.4.1)

where the kernel of pr1 ◦ φ corresponds to the p-cyclotomic field Q(ζp). Suppose F |Q is a

number field such that F ∩Q(ζp) = Q and Gal(F |Q) ' Z/2d. Then, F (ζp)|Q is Galois over

Q with Galois group isomorphic to Z/(p− 1)× Z/2d. Let φ be the homomorphism cutting

out F (ζp) i.e., Q
kerφ

= F (ζp). The embedding problem of (4.4.1) asks whether φ can be

lifted to a map φ̃ : GQ → N such that the diagram commutes. Such a lift φ̃ describes an

embedding of F (ζp) into a number field L = Q
ker φ̃

with Gal(L|Q) ⊆ N . A lift φ̃ is called a

proper solution to the embedding problem if it is surjective, i.e., if Gal(L|Q) ' N . We refer

to [29, §3.5] for a detailed discussion of embedding problems.

The rest of this section is devoted to proving the existence of a proper solution to (4.4.1)

for a suitably chosen initial field F . We follow the general strategy to study these types of

problems. Let ε denote the cohomology class in H2(Z/(p − 1) × Z/2d,Z/(pd + 1)) cor-

responding to the group extension in (4.3.2). Then there exists a lift φ̃ if and only if

φ∗ε = 0 ∈ H2(Q,Z/(pd + 1)) [29, Prop. 3.5.9.]. We show φ∗ε = 0 in two steps. First,

we show that the restriction resl(φ
∗ε) = 0 ∈ H2(Ql,Z/(p

d + 1)) for all primes l including

the infinite prime. Second, we show that Hasse principle holds in our case. That is, if all

the local restrictions of a global cohomology class are trivial, then the class itself is trivial.

Finally, we exploit the fact [29, Prop. 3.5.11.] that the space of solutions to (4.4.1) is a prin-

cipal homogenous space over H1(Q,Z/(pd + 1)), and twist using a suitable class to obtain

properness.
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We will choose F so that all ramification in F is tame and all the local embedding

problems are solvable. Let 2d = 2nd1 where d1 is odd. Then, Z/2d ' Z/2n×Z/d1. We will

choose Galois extensions F1 and F2 of Q with Galois groups Z/2n and Z/d1 respectively,

and define F to be their compositum. For i = 1, 2, we take Fi to be the unique subfield of the

above mentioned degree inside the cyclotomic field Q(ζNi
), for certain primes Ni described

below.

Let N2 ≡ 1 (mod d1), so N2 = 2αd1 + 1 for some α ∈ N . Let N1 be a prime satisfying

(a) N1 ≡ 2n + 1 (mod 2n+1).

(b) N1 ≡ 1 (mod N2).

(c) p 6≡ � (mod N1).

The third condition can be rewritten as a congruence condition on N1 modulo p using

quadratic reciprocity. Dirichlet’s theorem on primes in arithmetic progression guarantees

the existence of such primes N1, N2.

We first study the local embedding problems at the infinite prime, and all ramified primes

in F (ζp)|Q. Let us call this set S, so that S = Ram(F |Q)∪ {∞, p}. With the choices made

above, we have Ram(F |Q) = {N1, N2}, and S = {∞, p,N1, N2} and F (ζp) is tamely ramified

at each finite prime in S.

4.4.1 Local obstruction at ∞

If F1 is chosen as above, condition (a) on N1 implies that F1 is not a totally real extension

of Q. That is, complex conjugation is given by the non-trivial order 2 element in Gal(F1|Q).

Complex conjugation acts trivially on F2 since the order of Gal(F2|Q) = deg(F2) = d1 is

odd. Thus, complex conjugation in Gal(F (ζp)|Q) = Z/(p−1)×Z/2d is given by the element

(p−1
2 , d).

The element x(p−1)/2yd is clearly a lift of complex conjugation to N . Recalling that
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e = (pd + 1)(p− 1), we further have

(
x
p−1
2 yd

)2
= x

p−1
2

(
ydx

p−1
2 y−d

)
y2d = x

p−1
2 x

(p−1)pd
2 y2d = x

e
2y2d = 1,

so the lift has order 2. This shows that there is no local obstruction at the infinite place to

the embedding problem (4.4.1).

4.4.2 Local obstruction at p

The local obstruction at p is measured by whether or not the restriction of φ to the decom-

position group GQp
, can be lifted to a map GQp

−→ N . The map φ|GQp
factors through the

tame Galois group Gtame
Qp

which is a profinite group with presentation 〈σ, τ |στσ−1 = τp〉,

where τ is a generator of tame inertia, and σ is a lift of the Frobenius of the maximal unram-

ified extension. Without loss of generality, suppose that φ sends σ to (0, a) and τ to (1, 0)

in Gal(F (ζp)|Q) ' Z/(p− 1)× Z/2d.

Proposition 4.4.1. There exist σ̃, τ̃ ∈ N lifting (0, a) and (1, 0) and satisfying σ̃τ̃ σ̃−1 = τ̃p

if and only if a ≡ 1 (mod 2).

Proof. Let σ̃ = xl(p−1)ya and τ̃ = x1+k(p−1) be any lifts. We have

σ̃τ̃ σ̃−1τ̃−p = yax1+k(p−1)y−ax−(1+k(p−1))p = x(1+k(p−1))(pa−p)

If a = 0, then the desired condition σ̃τ̃ σ̃−1 = τ̃p cannot be met since the equation

1 + k(p− 1) ≡ 0 (mod pd + 1)

has no solution. If a = 1, any choice of k and l gives desired lifts.

Assume a ≥ 2. We get a lift satisfying σ̃τ̃ σ̃−1 = τ̃p if and only if there exists k ∈
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Z/(pd + 1) satisfying

(1 + k(p− 1))(pa − p) ≡ 0 (mod e)

i.e., k(p− 1) ≡ −1 (mod e′)

where

e′ =
e

gcd(e, pa − p)
=

pd + 1

gcd(pd + 1, 1 + p+ p2 + · · ·+ pa−2)
.

This equation has a solution if and only if p− 1 is invertible modulo e′. Since gcd(p− 1, e′)

divides gcd(p− 1, pd + 1) = 2, this happens if and only if e′ is odd.

Lemma 4.4.1. e′ is odd if and only if a ≡ 1 (mod 2).

Proof. If d is even, then the maximum power of 2 dividing pd + 1 is 2 itself. Hence e′ is odd

if and only if 2 divides 1 + p+ p2 + · · ·+ pa−2, which happens if and only if a ≡ 1 (mod 2).

Suppose d is odd. Let m ≥ 1 be such that p ≡ 2m − 1 (mod 2m+1). Then,

pd + 1 ≡ p+ 1 ≡ 2m (mod 2m+1).

Hence, e′ is odd if and only if 2m divides 1 + p+ p2 + · · ·+ pa−2. We have

1 + p+ · · ·+ pa−2 ≡ 1− 1 + · · ·+ (−1)a−2 (mod 2m)

Hence, e′ is odd if and only if a ≡ 1 (mod 2).

This completes the proof of the proposition.

The proposition says that the local obstruction at p to the embedding problem vanishes

if and only if Frobp ∈ Gal(F |Q), equivalently Frobp ∈ Gal(F1|Q), is not a square. This

holds as a result of condition (c).
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4.4.3 Local obstruction at N1

The prime N1 is unramified in Q(ζp), totally tamely ramified in F1 ⊂ Q(ζN1
), and split in F2.

The first two assertions are clear, and the third one follows from condition (b). Hence, the

restriction of φ to the decomposition group GQN1
factors through the profinite tame quotient

Gtame
QN1

= 〈σ, τ |στσ−1 = τN1〉 as before, and without loss of generality, we may suppose that

φ sends σ to FrobN1
= (a, 0) and τ to (0, d1) in Gal(F (ζp)|Q) ' Z/(p− 1)× Z/2d.

Note that the parity of a is already determined by conditions (a) and (c). To be precise,

if d is even making n ≥ 2 and hence N1 ≡ 1 (mod 4), or if p ≡ 1 (mod 4), then by quadratic

reciprocity we have that N1 6≡ � (mod p) meaning that a is odd. Otherwise, that is, if d is

odd and p ≡ 3 (mod 4) then a is even. This will be used below.

Consider the elements σ̃ = xa+k(p−1) and τ̃ = yd1 in the group N lifting the elements

φ(σ) and φ(τ). We will show that there is a choice of k so that σ̃τ̃ σ̃−1 = τ̃N1 . Hence these

elements determine a map GQN1
−→ N factoring through the tame Galois group, that lifts

φ|GQN1
.

We first simplify both sides of the expression.

σ̃τ̃ σ̃−1 = xa+k(p−1)yd1x−(a+k(p−1)) = xa+k(p−1)
(
yd1x−(a+k(p−1))y−d1

)
yd1

= x(a+k(p−1))(1−pd1)yd1 .

Since the order of y ∈ N is 4d = 2n+1d1, and condition (a) says that N1 ≡ 2n + 1

(mod 2n+1),

τ̃N1 = yN1d1 = y(2n+1)d1 = y2dyd1 = xe/2yd1 .
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Thus, we need to show that there is a solution k to the equation

(a+ k(p− 1))(1− pd1) ≡ e/2 (mod e)

i.e., k(p− 1)(1− pd1) ≡ e/2− a(1− pd1) (mod (p− 1)(pd + 1))

i.e., k(1− pd1) ≡ pd + 1

2
+ a(1 + p+ p2 + · · ·+ pd1−1) (mod pd + 1).

Since d1 divides d, it is clear that gcd(1 − pd1 , pd + 1) = 2. Hence, there is a solution k to

the above equation if and only if

pd + 1

2
+ a(1 + p+ p2 + · · ·+ pd1−1) ≡ 0 (mod 2)

i.e.,
pd + 1

2
+ a ≡ 0 (mod 2) (since d1 is odd)

The parity condition on a we described earlier ensures that this holds. If d is even or p ≡ 1

(mod 4), then both pd+1
2 and a are odd. Otherwise, both are even. Hence there is no local

obstruction to the embedding problem at the prime N1.

4.4.4 Local obstruction at N2

The prime N2 is unramified in Q(ζp) and F1, and totally tamely ramified in F2 ⊂ Q(ζN2
).

Hence, the restriction of φ to the decomposition group GQN2
factors through the profinite

tame quotient Gtame
QN2

= 〈σ, τ |στσ−1 = τN2〉, and without loss of generality, we may suppose

that φ sends σ to FrobN2
= (a, bd1) and τ to (0, 2n) in Gal(F (ζp)|Q) ' Z/(p− 1)× Z/2d.

Consider the elements σ̃ = xa+k(p−1)ybd1 and τ̃ = y2n in the group N lifting the elements

φ(σ) and φ(τ). We will show that there is a choice of k so that σ̃τ̃ σ̃−1 = τ̃N2 . Hence these

elements determine a map GQN2
−→ N factoring through the tame Galois group, that lifts

φ|GQN2
.
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We first simplify both sides of the expression, recalling that N2 = 2αd1 + 1.

σ̃τ̃ σ̃−1 = xa+k(p−1)y2nx−(a+k(p−1)) = xa+k(p−1)
(
y2nx−(a+k(p−1))y−2n

)
y2n

= x(a+k(p−1))(1−p2n)y2n .

τ̃N2 = y2nN2 = y2n+1d1αy2n = y4dαy2n = y2n .

Thus, we need to show that there is a solution k to the equation

(a+ k(p− 1))(1− p2n) ≡ 0 (mod e).

k(1− p2n) ≡ a(1 + p+ p2 + · · ·+ p2n−1) (mod pd + 1).

k(1− p2n−1)(1 + p2n−1) ≡ a(1 + p2n−1)(1 + p+ · · ·+ p2n−1−1) (mod pd + 1).

k(1− p2n−1) ≡ a(1 + p+ · · ·+ p2n−1−1) (mod M),

where

M =
pd + 1

p2n−1 + 1
= 1− p2n−1 + p2·2n−1 − p3·2n−1 + · · ·+ p(d1−1)·2n−1 .

Now, it is easy to see that gcd(1− p2n−1 ,M) = 1. If l > 1 divides 1− p2n−1 , then

M ≡ 1− 1 + 1− 1 + · · ·+ 1 ≡ 1 (mod l).

This proves that there does exist a solution k to the above equation. Hence there is no local

obstruction to the embedding problem at the prime N2 either.

Since F (ζp)|Q is unramified at primes not in S, the local embedding problems at these

primes are trivially solvable. Thus, we have shown that there is no local obstruction to the

embedding problem.
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4.4.5 Global obstruction

Let A denote the GQ-module [N,N ] = Z/(pd + 1) with Galois action factoring through the

map φ and given by conjugation in N as in the short exact sequence (4.3.2). Note that this

action further factors through pr2 ◦ φ : GQ → Gal(F |Q) = Z/2d. Global obstruction to the

embedding problem is measured by the group X2
Q(A) defined as

X2
Q(A) = ker

(
H2(Q, A) −→

∏
v

H2(Qv, A)

)
,

where v runs over all places of Q.

Proposition 4.4.2. There is no global obstruction to this embedding problem, i.e., X2
Q(A) =

0.

Proof. By Poitou-Tate duality, we have X2
Q(A) 'X1

Q(A∨)∨, where A∨ = Hom(A,Q
×

) is

the dual module. If we let m = pd + 1, then A∨ = Hom(A, µm). Let k be the trivializing

extension of A∨. It is clear that k is contained in F (ζm). In fact it is easy to see that A∨

as a Gal(k|Q)-module is isomorphic to µm as a (Z/m)× ' Gal(Q(ζm)|Q)-module. That is,

there is an isomorphism of pairs

ψ :
(
Gal(k|Q), A∨

)
−→ (Gal(Q(ζm)|Q), µm) (4.4.2)

The map Gal(F (ζm)|Q) ' Z/2d × (Z/m)× → (Z/m)× ' Gal(Q(ζm)|Q) sending (a, b) 7→

p−ab induces the isomorphism ψ on the groups. Since inertia subgroup behaves well with

respect to quotients, we deduce that for any prime unramified in F |Q, the isomorphism ψ

identifies the inertia subgroups of k and Q(ζm) at that prime. In particular, the inertia

subgroups at 2 get identified.
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Consider the following commutative diagram

H1(k,A∨)
∏
w
H1(kw, A

∨)

0 X1
Q(A∨) H1(Q, A∨)

∏
v
H1(Qv, A

∨)

0 X1
k|Q(A∨) H1(k|Q, A∨)

∏
v
H1(kv|Qv, A

∨)

0 0

(4.4.3)

where the vertical maps are coming from the inflation restriction sequence. Since A∨ is trivial

as a Gk-module, and w ranges over all places of k, Hasse principle holds for the Gk-module

A∨ as per [29, Theorem 9.1.9.(i)]. That is, the horizontal map at the top is injective. Thus

we get the isomorphism

X1
Q(A∨) 'X1

k|Q(A∨), (4.4.4)

bringing us to the study of the cohomology of the module A∨ of the finite group Gal(k|Q).

This will be done by using the isomorphism ψ in (4.4.2) and studying the familiar module

µm. Before that, we relax local conditions slightly. Let T denote the set of all odd primes

that are unramified in k|Q. Let L denote the Selmer condition given by

Lv =


H1
ur(kv|Qv, A

∨), if v = 2

0, if v ∈ T

H1(kv|Qv, A
∨), otherwise

In words, the local condition at 2 is relaxed from split to unramified, and the local conditions
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at ramified primes are fully relaxed. The resulting Selmer group H1
L(k|Q, A∨) is given by

H1
L(k|Q, A∨) = ker

(
H1(k|Q, A∨) −→

∏
v

H1(kv|Qv, A
∨)/Lv

)

and it clearly contains X1
k|Q(A∨). So, it is enough to show that H1

L(k|Q, A∨) = 0.

The Selmer condition L amounts exactly to requiring that restriction to inertia subgroup

at 2 of k|Q, and to any cyclic subgroup of Gal(k|Q) is zero. As mentioned earlier, the

isomorphism ψ in (4.4.2) identifies the inertia group at 2 of k|Q with that of Q(ζm)|Q. Thus,

the induced isomorphism in group cohomology ψ∗ : H1(k|Q, A∨) ' H1(Q(ζm)|Q, µm) gives

an isomorphism of Selmer subgroups

H1
L(k|Q, A∨) ' H1

L′(Q(ζm)|Q, µm), (4.4.5)

where L′ is a similar set of Selmer conditions. To be precise, let T ′ denote the set of all odd

primes that are unramified in Q(ζm)|Q. Then, L′ imposes the unramified condition at the

prime 2, and the split condition at every prime in T ′.

We temporarily forget the condition at 2, and consider a commutative diagram similar

to (4.4.3) for the Galois module µm and the set T ′.

H1(Q(ζm), µm)
∏
w∈T ′

H1(Q(ζm)w, µm)

0 X1
Q(T ′, µm) H1(Q, µm)

∏
v∈T ′

H1(Qv, µm)

0 X1
Q(ζm)|Q(T ′, µm) H1(Q(ζm)|Q, µm)

∏
v∈T ′

H1(Q(ζm)v|Qv, µm)

0 0
(4.4.6)

Then, [29, Theorem 9.1.9.] again says that the horizontal map at the top is injective, and
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hence

X1
Q(ζm)|Q(T ′, µm) 'X1

Q(T ′, µm). (4.4.7)

Furthermore, the same theorem says that Hasse principle for µm holds over Q as long as we

are not in a special case. In fact, the obstruction to Hasse principle is described precisely.

X1
Q(T ′, µm) =


0, if (Q,m, T ′) is not a special case

Z/2, if (Q,m, T ′) is a special case

As per the remarks following [29, Lemma 9.1.8.], the special case is equivalent to the state-

ment that 8 divides m, since T ′ only consists of odd primes and has Dirichlet density 1.

If (Q,m, T ′) is not a special case, then we are done by (4.4.5), (4.4.7) and the inclusion

H1
L′(Q(ζm)|Q, µm) ⊆X1

Q(ζm)|Q(T ′, µm).

Suppose (Q,m, T ′) is a special case. Then 8 divides m. Let m = 2rm1 with m1 odd and

r ≥ 3. Then the non-trivial element in X1
Q(T ′, µm) ' Z/2 is the inflation of the class in

H1(Q(ζm)|Q, µm) represented by the cocycle

Gal(Q(ζm)|Q) −→ Gal(Q(ζ2r)|Q) −→ Gal(Q(
√
−2)|Q)

'−→ {±1} ⊆ µm.

It is non-trivial when restricted to Gal(Q(ζm)|Q(ζm1)), which is the inertia group at 2 of

Q(ζm)|Q. Hence, this class fails the unramified condition at 2 of L′. So, we get that

H1
L′(Q(ζm)|Q, µm) = 0, and we are done by (4.4.5).

We have therefore shown that the map φ : GQ → Z/(p − 1) × Z/2d = Gal(F (ζp)|Q)

in (4.4.1) lifts to some map φ̃ : GQ → N . The map φ̃ is not necessarily surjective. But

we can twist it using a suitable cohomology class in H1(Q, A) to get a surjective lift. If
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c : GQ → A ⊂ N is a representing cocycle, then the twisted solution it determines is given

by c · φ̃.

Choose a prime v that splits completely in both k and F (ζp). Cebotarev density theorem

guarantees the existence of such a prime. The fact that v splits completely in F (ζp) implies

that φ is trivial on GQv
and hence the restriction of φ̃ to GQv

lands inside A. So, the map

φ̃|GQv
∈ Hom(GQv

, A) = H1(Qv, A). Choose another homomorphism cv ∈ H1(Qv, A) so

that cv · φ̃ : GQv
→ A is surjective. If there is a global cohomology class in H1(Q, A) which

restricts to cv ∈ H1(Qv, A), then twisting by this class gives us a proper solution. The

existence of such a class is guaranteed by the following proposition.

Proposition 4.4.3. The map H1(Q, A) −→ H1(Qv, A) is surjective.

Proof. Let coker1
Q(T,M) denote the cokernel of the restriction mapH1(Q,M)→

∏
v∈T

H1(Qv,M)

for a GQ-module M and a set T of places of Q. We want to show coker1
Q({v}, A) = 0. Ac-

cording to [29, Lemma 9.2.2.], there is a canonical short exact sequence

0 −→X1
Q(A∨) −→X1

Q(S \ {v}, A∨) −→ coker1
Q({v}, A)∨ −→ 0

where S is the set of all places of Q. So it is enough to show that X1
Q(S \ {v}, A∨) =

X1
Q(A∨).

Following a similar argument as in the proof of Proposition 4.4.2, we get that

X1
Q(S \ {v}, A∨) 'X1

k|Q(S \ {v}, A∨)

Since the prime v was chosen to be split in k|Q, the decomposition group of v inside Gal(k|Q)

is trivial. Hence, the restriction map at v on the finite group cohomology H1(Gal(k|Q), A∨)

is automatically zero. So a local condition at v is vacuous. Thus we deduce from the

isomorphism X1
Q(S \ {v}, A∨) ' X1

k|Q(S \ {v}, A∨) = X1
k|Q(A∨) ' X1

Q(A∨) that

coker1
Q({v}, A) = 0.
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4.5 Proof

We first discuss some preliminaries about the desired inertia condition at an auxiliary prime

l. Recall the subgroups C,C1 and N of GSp(2d,Fp) introduced in Section 4.3. For every 1 ≤

d ≤ g, since GSp(2d,Fp) ⊂ GSp(2g,Fp), the group GSp(2g,Fp) contains cyclic subgroups

C,C1 of orders (pd + 1)(p − 1) and pd + 1, and a subgroup N of the normalizer of C as

described in Section 4.3 such that [N,N ] = C1. We desire ρ(Il) ⊂ [N,N ] to have a prime

power order q not dividing Kg. So, we first need to look for prime powers q that divide

pd + 1 for some 1 ≤ d ≤ g, but do not divide Kg.

Lemma 4.5.1. Let g ≥ 7 and p be any prime. Then, there exists a prime q > 2g + 1 such

that q divides pd + 1 for some 1 ≤ d ≤ g.

Proof. Zsigmondy’s theorem implies that for any prime p and n ≥ 1, with the exception of

p = 2, n = 3, there is a prime divisor of pn + 1 which does not divide pm + 1 for any m < n.

Let π denote the prime counting function.

Case 1: p 6= 2.

If g ≥ 7 then π(2g + 1) ≤ g − 1. Zsigmondy’s theorem implies that there are at least g

distinct prime numbers that divide some number in the set {pd + 1 : 1 ≤ d ≤ g}. So one of

them has to be bigger than 2g + 1.

Case 2: p = 2.

If g = 7, 8, 9, we may take d = 7 and q = 43. If g ≥ 10 then π(2g + 1) ≤ g− 2. Zsigmondy’s

theorem implies that there are at least g−1 distinct prime numbers that divide some number

in the set {2d + 1 : 1 ≤ d ≤ g}. So one of them has to be bigger than 2g + 1.

Lemmas 4.2.1 and 4.5.1 ensure that when g ≥ 7 there exists a prime q that divides pd+1

for some 1 ≤ d ≤ g, and does not divide Kg. Suppose 2 ≤ g ≤ 6. If p is a large enough

prime, for example, if pg + 1 > Kg, then there exists a prime power q that divides pg + 1 and

does not divide Kg. This leaves only finitely many cases (g, p) to be dealt with. For each
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of them except (g, p) = (2, 2), (2, 3), (3, 2), (3, 3) we check explicitly that there exists some

prime power q dividing pd + 1 for some 1 ≤ d ≤ g, such that q does not divide Kg.

We can now prove Theorem 4.1.1.

Proof. Suppose (g, p) 6= (3, 3). By the preceding discussion, we find a number d and a prime

power q such that 1 ≤ d ≤ g, q divides pd + 1, and q does not divide Kg.

Let C,C1, N denote the subgroups of GSp(2d,Fp) of orders (pd + 1)(p− 1), pd + 1 and

2d(pd+1)(p−1) as defined in Section 4.3. We will consider them as subgroups of GSp(2g,Fp)

by a fixed inclusion GSp(2d,Fp) ⊂ GSp(2g,Fp) Choose a number field F and define k to be

the trivializing extension of the dual module A∨, just as in Section 4.4. The calculations in

Section 4.4 say that there is no obstruction to the embedding problem (4.4.1).

In order to get desired inertia at an auxiliary prime, we follow the same approach that was

used in Section 4.4 to get properness. Let φ̃ be a solution to the embedding problem (4.4.1).

In addition to the prime v and the cohomology class cv ∈ H1(Qv, A) chosen in Section 4.4

to get properness, choose an auxiliary prime l ≡ 1 (mod q) that splits completely in k and

F (ζp), and a homomorphism cl : GQl
→ A = [N,N ] so that the image of Il under cl · φ̃

is the cyclic subgroup of [N,N ] of order q. The proof of Proposition 4.4.3 goes through to

show that the restriction map

H1(Q, A)→ H1(Qv, A)×H1(Ql, A)

is surjective. Thus, there is a global cohomology class c ∈ H1(Q, A) which restricts to cv

and cl. Twisting φ̃ by this class produces a representation ρ : GQ � N ⊂ GSp(2d,Fp) ⊂

GSp(2g,Fp) with #ρ(Il) = q - Kg. Proposition 4.2.1 now implies that ρ does not arise from

the p-torsion of an abelian variety over Q.

Suppose (g, p) = (3, 3). We find that there is a subgroup N ⊂ GSp(6,F3) of order

78, with surjective similitude character. It is a semi-direct product of Z/13 and Z/6 with

presentation 〈x, y|x13 = y6 = 1, yxy−1 = x4〉. We take φ : GQ → Gal(Q(ζ9)|Q) ' Z/6.
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Since N is a semi-direct product, the resulting embedding problem is trivially solvable. We

twist as in Section 4.4 to get a proper solution ρ with #ρ(Il) = 13 for an auxiliary prime

l. Proposition 4.2.1 again implies that ρ does not arise from the 3-torsion of an abelian

threefold over Q.
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