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ABSTRACT

In this thesis, we study the problem of stationary measure classification, equidistribution and
orbit closure classification in three different settings. We use tools from homogeneous dynamics,
smooth dynamics and random product of matrices to make progress in each setting.

In Chapter 2, we study the problem of classifying stationary measures and orbit closures for
non-abelian action on a surface with a given smooth invariant measure. Using a result of Brown
and Rodriguez Hertz, we show that under a certain finite verifiable average growth condition,
the only nonatomic stationary measure is the given smooth invariant measure, and every orbit
closure is either finite or dense. Moreover, every point with infinite orbit equidistributes on
the surface with respect to the smooth invariant measure. This is analogous to the results of
Benoist-Quint and Eskin-Lindenstrauss in the homogeneous setting, and the result of Eskin-
Mirzakhani in the setting of moduli spaces of translation surfaces. We then apply this result to
two concrete settings, namely discrete perturbation of the standard map and Out(F»)-action on
a certain character variety. We verify the growth condition analytically in the former setting,
and verify numerically in the latter setting.

In Chapter 3, we provide a self-contained proof of the classification of stationary measures
for linear actions on vector spaces. This will be a major input of the result in the next chapter.

In Chapter 4, we study the problem of classifying stationary measures on homogeneous
spaces of the form G/H, where G is a connected real Lie group, and H is a closed unimodular
subgroup of G. Under an assumption of relative uniform expansion, we show that the stationary
measures can be decomposed into homogeneous parts and generalized Bernoulli convolutions.

The main tools used are a relative version of the technique of Eskin-Lindenstrauss, and the

measure classification result of linear action on real vector spaces from Chapter 3.
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CHAPTER 1
INTRODUCTION

1.1 Background

One of the central themes in dynamical systems is to describe the orbits and invariant measures
of the system. One version of this question can be described as follows: given a topological space
M (or manifold, algebraic variety, {0, 1}N etc.), and a set S of self-maps f1,...,fr : M = M
with suitable regularity, let the orbit of a point xg € M under S be the set of all elements in
M obtained by applying compositions of finitely many maps (possibly with repetition) in S to

xg. For instance the orbit of g under S = {f} and {f, g} are, respectively,

Orbit({f}, z0) := {xo, f(x0), f(f(x0)), F(f(f(x0))), -},
Orbit({f, 9}, 20) := {0, f(x0), 9(x0), f(9(x0)), 9(f (o)), [ (f(x0)), [(9(f(x0))), - -}

It is often natural to consider the (topological) closures of orbits to capture the topological lim-

iting behaviors of such actions. We consider these topological and measure-theoretic questions:
Question 1. What are the possible (closures of) orbits of a given element xg € M under S?

Question 2. Are there any Borel probability measures on M invariant under S7 If so can they

be classified?

A “random walk” variant of such dynamical system is often considered if a probability
distribution g on the finite set S is given: start with a point g € M, at each stage take an
element f; in § according to the law g and act on the current point x, to get a new point
Tpt1 = fixn. Iterating this indefinitely, one obtains a countable set {z,} that is called the
random walk orbit of xy under p (which is a set-valued random variable). One may ask the

analogous topological question:

Question 3. Given xg € M, what do the random walk orbits {x;,} of xg under p look like?

1



In the random walk setting, a natural generalization of invariant measures is the so-called
p-stationary measures. A measure v on the space M is p-stationary if v = pxv = [ g du(g)
- in other words, while the measure v may not necessarily be invariant under any individual
element g in the support of p, it is “invariant on average” if in each step of the action, a random
acting element is chosen according to the law given by u. The corresponding measure-theoretic

question in the random walk setting is:
Question 4. What are the possible p-stationary measures on M?7

Since S-invariant measures are, in particular, p-stationary, a classification of stationary
measures automatically yields a classification of invariant measures (thus Question 4 subsumes
Question 2).

As an example, consider the 2-torus M = T? := R2 /ZQ. Any unimodular 2 x 2 integer
matrix A € SLo(Z) acts naturally on M by left multiplication. One can ask, what are the orbit

closures under the self-maps given by, say,

2 1 11

11 1 2

We first notice that if g is a rational point of the form zo = (p1/q,p2/q) € R?/Z2, its orbit
is finite since the denominator does not increase (hence the orbit is contained in the finite
set (%Z/Z)Q). On the other hand, if the starting point z( is an irrational point (at least one
coordinate is irrational), the orbit is infinite. In fact, it can be shown using Birkhoff’s pointwise
ergodic theorem that almost every point on T2 has dense orbit. In other words, if a point on
the torus T2 is chosen at random (with respect to the uniform probability measure), then with
probability 1, the orbit closure of that point is the entire space T2. However Birkhoff’s theorem
tells us nothing about any specific 2o € T2. For instance, is the orbit of (7/5,4/2/4) dense?

It turns out that if only the first matrix A; is used, then there are orbit closures that are
neither finite, nor all of T2. In fact, there are orbit closures of arbitrary fractional Hausdorff

2



dimensions in (0,2)! But if both matrices A; and Ag are used, then the situation is more rigid,
in the sense that every orbit is either finite or dense. This is a special case of the following

recent breakthrough theorem, answering a conjecture of Furstenberg.

Theorem 1.1.1 (Bourgain-Furman-Lindenstrauss-Mozes [BFLM11], Benoist-Quint [BQ11]).
Let p be a compactly supported probability measure on SL;(Z). If S = supp p generates a

Zariski dense subsemigroup of SL;(R), then
o for all z € T%, Orbit(S, ) is either finite or dense.

e Every p-stationary probability measure v on T is a convex combination of the Lebesgue

measure on T? and invariant probability measures supported on finite orbits.

e For every z € T? with infinite Orbit(S, x), the random walk orbit equidistributes on T

almost surely.

Theorem 1.1.1 can then be applied to the previous example, by taking p = %((5 A, +0 Ag)a
an atomic measure on SLo(Z), to show that the orbit of every irrational point equidistributes
on Td, thus is, in particular, dense.

The ability to promote the almost-sure statement from Birkhoff’s theorem to the every-
where statement of Benoist-Quint is crucial for applications - in practice one often concerns the
behavior of a specific orbit, which Birkhoff’s theorem says nothing about.

In fact, the result of Benoist-Quint applies not just to the torus Td, but also to more general
homogeneous spaces (will be described in Theorem 1.4.1 of Section 1.4).

Since the breakthrough work of Benoist-Quint, there has been a long list of work trying to

answer the following meta-theorem in different settings:

Main Question. Let M be a manifold, I' be a semigroup acting on M, p be a probability

measure on [' and S := supp p, the support of . Under what conditions on M and u can we
e (Orbit closure classification) classify all the orbit closures under S?

e (Measure rigidity) classify all the u-stationary measures?
3



e (Equidistribution) obtain equidistribution of typical random walk orbits of every point?

One theme of this circle of ideas is that even special cases of such theorems can have strong
applications in other areas of mathematics. For instance, the celebrated Ratner’s theorem
[Rat91] resolved these questions in the setting of the (deterministic) action of Lie groups gener-
ated by unipotent elements on homogeneous spaces, which in particular implies the half-century
old Oppenheim conjecture (proved by Margulis [Mar87]) when applied to the special case
of the SO(2,1)-action on SL3(R)/SL3(Z). Eskin-Mirzakhani [EM18] and Eskin-Mirzakhani-
Mohammadi [EMM15] proved these results for the SLy(R)-action on moduli spaces of flat
surfaces, resolving a longstanding conjecture in the field of translation surfaces. In the case of
abelian actions, the work of Einsiedler-Katok-Lindenstrauss [EKL06] about positive diagonal
actions on SL3(R)/SL3(Z) made significant progress towards the century-old Littlewood conjec-
ture, and the work of Lindenstrauss [Lin06] proved the Arithmetic Quantum Unique Ergodicity
Conjecture of Rudnick-Sarnak [RS94]. In other settings, Simmons-Weiss [SW19] considered a
special class of locally homogeneous spaces and proved implications about diophantine approx-
imation on fractals. Sargent-Shapira [SS19] proved such results for a specific kind of projective
bundle and made progress towards a conjecture of Furstenberg about cubic irrational numbers.

In the following, we describe three settings where we made progress towards the Main
Question in this thesis, namely the case of volume-preserving C 2_actions on closed Riemannian
surfaces (Section 1.2), linear actions on vector spaces (Section 1.3), and homogeneous actions

on locally homogeneous spaces assuming relative uniform expansion (Section 1.4).



1.2 Random walks on surfaces

As a start, we generalize Theorem 1.1.1 in the two-dimensional case to general Riemannian

manifolds when the action preserves a volume measure.

Theorem 1.2.1 (Proposition 2.3.1, 2.4.1 and 2.4.2 of this thesis). Let M be a closed surface
(compact connected two-dimensional Riemannian manifold without boundary) with volume
measure vol induced by the Riemannian metric. Let p be a compactly supported probability

measure on Diff%ol(M ) that is uniformly expanding, and S := supp p be the support of . Then
e for all z € M, Orbit(S, x) is either finite or dense.
e Every ergodic p-stationary probability measure v on M is either finitely supported or vol.

e For every x € M with infinite Orbit(S, z), the random walk orbit equidistributes on M

almost surely.

Moreover, we proposed a finite algorithm to verify uniform expansion in explicit settings, and

verified it in two examples.

Here Diff\% (M) is the set of C? diffeomorphisms on M that preserve the volume measure vol.
Note that it is a general theorem in ergodic theory that any p-stationary measure is a convex
combination of ergodic stationary measures, hence it suffices to classify ergodic ones. Uniformly
expanding is an assumption that generalizes the Zariski density assumption of the homogeneous
setting considered in Theorem 1.1.1. In particular, Theorem 1.1.1 in the case when d = 2 is a
special case of Theorem 1.2.1. We remark that the method of Benoist-Quint for Theorem 1.1.1
needs substantial modification to be adapted in this non-homogeneous setting. Our main inputs
are the deep work of Brown-Rodriguez Hertz [BRH17], ideas of Dolgopyat-Krikorian [DKO07] to

prove ergodicity, and ideas of Margulis functions originated from Eskin-Margulis [EMO04].



1.3 Random walks for linear actions on vector spaces

In this section, we consider the linear action of GL(V') on a finite dimensional real vector space V'
driven by a finitely supported probability measure p on GL(V'). The reason for considering this
setting is twofold: on one hand, linear actions on vector space are special cases of homogeneous
actions on homogeneous spaces where Main Question can be answered completely. On the

other hand, this result is used critically in the result described in the next section.

Theorem 1.3.1 (Theorem 3.1.1 and 3.1.2 of this thesis). Let V' be a nonzero finite dimensional
real vector space, 4 be a finitely supported probability measure on GL(V') and I', be the closed
subsemigroup of GL(V') generated by the support of p. Then there exist I',-invariant vector

subspaces W/ C W C V such that
1. every p-stationary probability measure on V' is supported in W,

2. the map v — supp m«V gives a one-to-one correspondence between

{ergodic p-stationary measure on V'} “ {compact I'-orbit in W/W'},

where : W — W/W' is the quotient map,

3. every ergodic p-stationary probability measure on V' is the convolution of a compactly

supported I'-invariant probability measure on W/ W' and a “Bernoulli convolution”.

Here “Bernoulli convolution” is a generalization of a class of measures well studied in the
literature (see e.g. a survey by Peres-Schlag-Solomyak [PSS00]). In our context, the resulting
Bernoulli convolution can be computed explicitly using the measure . Rather than giving
the precise definition (the precise definition is in Chpater 4 Definition 4.3.9), we consider the
following example which illustrates the theorem. Consider G = SL9(R) acting on R2 by left

multiplication, and p the probability measure on G that gives the following two elements equal



probability 1/2:

where A is any real number in (0, 1). Then for any real number ¢, the random series

PEDY

is a p-stationary probability measure on R?2, and is an example of a Bernoulli convolution.

At first sight the existence of such stationary measure may suggest that the situation is not
rigid - after all, these measures have fractional dimensions, and there are uncountably many
of them (one for each ¢ € R). However, the theorem states that these measures are unique up
to the scaling factor ¢ (in particular they all have the same Hausdorff dimension). Using the
notations in Theorem 1.3.1, we take V = W = R2 and W’ to be the 2-axis. Then clearly 'y

acts as the identity on W/W’, and the ergodic u-stationary probability measures on W/W' are

0
precisely the delta masses at each coset +W'" € W/W'. Now each such probability measure

C

corresponds to one of the Bernoulli convolutions described above. The theorem states that these
are the only ergodic u-stationary probability measures on V. Corresponding equidistribution

and orbit closure classification theorems can also be appropriately stated.

1.4 Random walks on homogeneous spaces with nondiscrete

quotients

In a later work, Benoist-Quint generalized Theorem 1.1.1 to the following setting of a locally

homogeneous space.



Theorem 1.4.1 (Benoist-Quint [BQ13a]). Let G be a connected real Lie group, A be a lattice
in G, pu be a compactly supported probability measure on G. If & = supp u generates a sub-
semigroup 'y, of G whose Zariski closure is semisimple and Zariski connected with no compact

factors, then
e for all z € G/A, the orbit closure Orbit(S,z) C G/A is homogeneous.

e Every ergodic p-stationary probability measure v on G/A is I'j-invariant and homoge-

neous.
e For every z € G/A, the random walk orbit equidistributes on Orbit(S, ) almost surely.

Here a orbit closure is homogeneous if Orbit(S, ) = Hx for some closed subgroup H C G.
A probability measure v on G/A is homogeneous if the support of v is Hx for some closed
subgroup H C G and some z € G, and v is the unique H-invariant probability measure on
Hzx. Note that if the acting group is isomorphic to R or Z (corresponding to a flow and a single
invertible transformation), these notions coincide with the usual notion of a periodic orbit and
the uniform probability measure on the periodic orbit. Hence these can be considered as natural
generalization of periodicity.

The assumption that S generates a semigroup with semisimple Zariski closure is necessary
to guarantee that all the ergodic stationary measures are homogeneous. In Eskin-Lindenstrauss,
where they relaxed the assumptions to uniform expansion on G, they demonstrated examples
of non-homogeneous stationary measures when the Zariski closure is not semisimple (but uni-
form expansion still holds). In fact their main result is that assuming uniform expansion, any
stationary measure is the convolution of an H-homogeneous measure on G/A and a stationary
probability measure on G/H for some nondiscrete closed unimodular subgroup H C G. Since
their statement focuses on homogeneous spaces of the form G/A with discrete A, their results

do not apply directly to G/H. This motivates the following question.

Question. Under what conditions can we classify all the stationary measures on G/H, where

H is a closed unimodular subgroup of the Lie group G?
8



It turns out that under suitable assumptions, we can study this question using the results
from both the vector space case as studied in Chapter 3 and the semisimple case studied by
Benoist-Quint (and the more general case by Eskin-Lindenstrauss [ELal). To do so, we consider
L= Ncl;(Ho) = {g € Ng(H®) | Ad(g) preserves the Haar measure of H°}, where H® is the
connected component of identity of H, Ng(H®) is the normalizer of H° in G.

Such L is one way to construct the so-called H -envelope (see Section 1 of Eskin-Lindenstrauss
and Chapter 4 of this thesis for the precise definition and other constructions). The key prop-

erties of an H-envelope L are:

1. L/H = (L/H®)/(H/H®) is the quotient of a real Lie group L/H® by a discrete subgroup

H/H® (hence in the setting of Eskin-Lindenstrauss).

2. there is a G-equivariant continuous injection G/L — V into a vector space V', thus any

p-stationary measure on G/L is a p-stationary measure on the vector space V.

Now we consider G/H as the total space of the fiber bundle

(L/H?)/(H/H®) = L/H — G/H

|

G/L—=V

We then apply the technique of Eskin-Lindenstrauss for G/A to obtain extra invariance in
the fiber direction. The main assumption is a “relative” version of their uniform expansion

assumption. The following result summarizes the conclusion.

Theorem 1.4.2 (Theorem 4.1.1 of this thesis). Let G' be a real linear algebraic group, and
i be a Borel probability measure on G with finite first moment. Let I';, be the (topological)
closure of the subsemigroup generated by the support of x4 in G, and FZ be the Zariski closure
of I',.

Let H C G be a closed unimodular subgroup, and H® be the connected component of the
identity in H. Suppose there exists an H-envelope L and xg € G/L such that p is uniformly

expanding on L/H at x.



Let vg /H be an ergodic pu-stationary probability measure on ffng /H. We also assume

an algebraic condition (f) (see Chapter 4). Then one of the following holds:
(I) there exist a Lie subgroup H' C G with H°® ¢ H' C L C G and dim(H'/H®) > 0,
an H’-homogeneous probability measure vy /H on L/H and finite p-stationary measure
vG/m on ffo/H’ such that

VG/H =VG/H *VL/H ::/ 9xVL/H dVG/H/(g).

G/H'

(II) the stationary measure v, can be written as

VG/H:/G/LV$ df((lﬁ),

where

(a) 7 is a generalized p-Bernoulli measure (see Definition 4.3.9) supported on fZCCOL /L,

(b) there exists a positive integer k such that for v-almost every = € G/L, v, is the
uniform measure on k points in 7~ (z) = xL/H, where 7 : G/H — G/L is the

natural quotient map,

(c) there exists a I';-invariant locally Zariski closed subset F such that supp v /H C F,
and F has finite intersection with xL/H for all = € fﬁxOL/ L (the set F is defined

dynamically and can be made more explicit and computable - see Theorem 4.4.9).

We remark that if H is a discrete subgroup of G, this statement recovers [ELa, Thm. 1.7
for trivial Z (in this case (}) is always satisfied).

Theorem 1.4.2 together with Theorem 1.7 of Eskin-Lindenstrauss form one step of an in-
duction, which allows us to say more about measure rigidity even in the cases considered in
Eskin-Lindenstrauss (with extra assumptions in the form of relative uniform expansion). See
Section 4.2 for one such example (and it will be clear how to generalize the example to a family

of such) in which all the ergodic stationary measures can be classified.
10



CHAPTER 2
STATIONARY MEASURES AND ORBIT CLOSURES OF
UNIFORMLY EXPANDING RANDOM DYNAMICAL SYSTEMS
ON SURFACES

2.1 Introduction

Given a Riemannian manifold M and an acting semigroup I, the closure of the I'-orbit of some
points of M may exhibit fractal-like structure. For instance in the case when M is a compact
manifold and I" is generated by a single Anosov diffeomorphism, there are orbit closures with
fractional Hausdorff dimension. A one-dimensional example is the action of N on the circle
Sl = R/Z generated by

z — 3z mod 1.

By the Birkhoff ergodic theorem, we know that (Lebesgue-)almost every point on the circle
has dense orbit. Nonetheless the orbit of every rational number is clearly finite, and one can
get orbit closures that are neither finite nor the whole circle, for instance the standard Cantor
middle third set.

It turns out that if one consider instead the action of a larger group, the situation becomes

more rigid. Furstenberg [Fur67] showed that the orbits of the action of N2 generated by

x +— 2x mod 1 and x +— 3z mod 1,

are either finite or dense. Moreover, he famously asked whether all the ergodic invariant Borel
probability measures are either finitely supported or the Lebesgue measure on S'. Major
progress on this conjecture was made by Rudolph [Rud90], who showed that the ergodic invari-
ant measures either have zero-entropy for the action of every one-parameter subgroup or is the
Lebesgue measure on St

In two or higher dimensions, similar phenomena have been observed. For example, the
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action of Z on the 2-torus T2 = R2/Z2 generated by the matrix

has orbits that are neither finite nor dense. In fact using the theory of Markov partitions
[Bow75], one can conjugate this system to a subshift of finite type to obtain orbit closures of
any Hausdorff dimension between 0 and 2. If one consider instead the nonabelian action on T2

generated by, say,

2 1 11
and ,

11 1 2

then it follows from a result of Bourgain, Furman, Lindenstrauss and Mozes [BFLM11] that
the orbits are either finite or dense (for this particular example, the orbit closure classification
statement was already shown in [GS04] and [Muc05], in [BFLM11] measure rigidity, orbit closure
classification and quantitative equidistribution were shown). In fact Benoist and Quint has
proved in a series of papers [BQ11, BQ13a, BQ13b] a number of such orbit closure classifications
and the corresponding measure rigidity results. A special case of their result is the following:
let 1 be a finitely supported measure on SL(n,Z) and let I';, C SL(n, Z) be the closed subgroup
generated by the support of pu. If T’y is “large enough”, in this case this means that every
finite-index subgroup of I';, acts irreducibly on R", then every ergodic p-stationary probability
measure on T' is either finitely supported or the Haar measure on T". In particular every p-
stationary probability measure is SL(n, Z)-invariant. They used this measure rigidity result to
show that every orbit closure is either finite or dense, by first showing a stronger equidistribution
result.

The results of Benoist and Quint are in the setting of homogeneous dynamics, where one
considers the natural action of a Lie group G acting on a homogeneous space G/A. In [BQ11],

it was proved that if p is a compactly supported measure on a simple real Lie group G, and
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the subgroup I' C G generated by the support of u is Zariski dense in GG, then every I'-orbit is
either finite or dense. Moreover, the corresponding p-stationary probability measures are either
finitely supported or the Haar measure on GG/A, hence in particular are I-invariant. The result
was extended to a general real Lie group G in [BQ13a], where they showed that assuming the
Zariski closure of T" is semisimple, Zariski connected with no compact factor, any p-stationary
measure is homogeneous. This result was further generalized by Eskin-Lindenstrauss [ELa]
where they relaxed the assumption on I' to the “uniform expansion” assumption to include
many cases where the Zariski closure of I' is not semisimple. In contrast with the case of
abelian actions (for instance Rudolph’s theorem mentioned above), the measure classification
has no entropy assumption, and the orbit closure classification follows as a corollary of the
measure rigidity theorem.

In this paper, we study the question of measure rigidity and orbit closure classification in
the setting of smooth dynamics, i.e. the action of a subgroup of diffeomorphisms on a manifold
M. In particular, we shall prove positivity of Lyapunov exponent, measure rigidity and orbit

closure classification theorems in the following two settings.
e Discrete random perturbation of the standard map.
e Outer automorphism group action on the character variety Hom(F», SU(2))//SU(2).

The first setting was studied by Blumenthal, Xue and Young [BXY17], where they considered
a “continuous” random perturbation of the standard map and obtained positivity of Lyapunov
exponent, even though positivity of exponent for the standard map is notoriously hard. Their
method, however, does not apply to discrete perturbations that we consider in this paper, as it
is no longer clear that any stationary measure is absolutely continuous with respect to Lebesgue.
This will be explained in Section 2.6.

The second setting was studied by Goldman [Gol07], which is based on his earlier work
[Gol97]. In [Gol07], the ergodic decomposition of the Out(F»)-action on the character variety
Hom(F»,SU(2))/SU(2) is given. The topological dynamics was studied by Previte and Xia

[PX00], who proved that on each ergodic component, every Out(Fh)-orbit is either finite or
13



dense. Their method uses crucially the fact that Out(F3) is generated by Dehn twists. In this
paper, we shall prove that for some finite set of generators S of I' := Out(F3) that does not
contain any nontrivial powers of Dehn twist, every I'-orbit on each ergodic component is either
finite or dense. This will be explained in Section 2.8.

Both results are part of a more general theorem concerning the volume-preserving action of
a group I' C Difo(M ) on a closed surface M. The measure rigidity problem in this setting was
studied by Brown and Rodriguez-Hertz [BRH17]. Based on the “exponential drift” technique
first introduced in [BQ11] and some ideas in [EM18], they proved that in this setting, if “the
stable distribution is not nonrandom” (see Section 2.3 for the precise definition), then the
stationary measures are either finitely supported, or the restriction of the volume on a positive
volume subset. In this paper, we will build on the work of [BRH17] to give a more verifiable
(but stronger) criterion on the acting group I' so that the stationary measures and orbit closures
can be classified. Such a criterion should, on one hand, be strict enough to rule out the case of
a one-parameter acting group (in which case we can see from above that there can be measures
of arbitrary Hausdorff dimension in general), and, on the other hand, be flexible enough to
include many larger group I'. We will then verify this criterion in both of the aforementioned
settings.

Our measure rigidity result relies heavily on the result of Brown and Rodriguez-Hertz
[BRH17], hence only works in the two-dimensional case. The assumption we introduce will
be stronger than that of [BRH17], in order to give us the proof of the orbit closure classifica-
tion. Nonetheless, such an assumption is a finite criterion and hence can be checked, at least

in principle, in concrete settings.

2.1.1 Main results

In this paper, we shall prove positivity of Lyapunov exponent, measure rigidity and orbit closure

classification in the following two settings.

1. Discrete random perturbation of the standard map

14



Theorem A. Let T? := R?/(27Z)? be the 2-torus. For L > 0, € > 0 and positive integer
r, let

o Fy :T? — T2 be the standard map Fy(z,y) = (Lsinz + 2z — y, ),

o I, T2 — T2 be the perturbation Fr (v, y) == Fr(r +w,y) by w € Q= {ke :

k=0,+1,42,..., +r},

Let 6 € (0,1). There exists an integer rg = rg(d) > 0 such that if » > rg and ¢ €

[L~10 1/(2r + 1)), then for all large enough L,
(a) the random dynamical system defined by Fy, o 1= {F,, 1w € Q} C Diff?(T?) has
positive Lyapunov exponent with respect to the Lebesgue measure on T2,

(b) every orbit of the system defind by F, () is either finite or dense.

. Outer automorphism group action on character variety

Theorem B. Let X := Homg(Fb, SU(2))//SU(2) be the relative character variety cor-
responding to the boundary conjugacy class s € [—2,2]. Each X has a natural finite
measure \g inherited from the natural measure on Hom(F», SU(2)) that is invariant under

the natural action of Out(F3) (see Section 2.8 for the precise definitions and motivations).
There exists a finite set S C Out(F») without any nontrivial powers of Dehn twists such
that for the semigroup I' generated by S, and for s = 1.99,
(a) the only I'-invariant measure v on X that is not finitely supported is the natural
finite measure As.
(b) Every orbit of I on X is either finite or dense,

(c) Each dense I'-orbit equidistributes (with respect to S) on X (in the precise sense

defined in Proposition 2.4.1).

In [BXY17], Theorem A(a) was proved when Q) = [—¢ ¢], and ¢ > L7 However, in

this paper, we shall prove a stronger condition (called wuniform expansion), and we are only
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able to show this for ¢ > L™119, In fact, in a subsequence paper [BXY18], the same authors
essentially showed uniform expansion in the case when Q = [—¢,¢] and ¢ > L~119 [BXY18,
Prop. 9]. Their method, however, does not apply in this discrete setting, since their approach
relies heavily on the fact that any stationary measure is absolutely continuous with respect to
Lebesgue measure (see [BXY17, Lem. 5] and [BXY18, Lem. 8]), which is not necessarily true
in the discrete setting.

In [PX00], the orbit closure classification in Theorem B was proved for I' = Out(F3) without
going through a measure rigidity result. Instead, the topological dynamics was analyzed directly
using critically the fact that Out(F») is generated by two Dehn twists. These Dehn twists take
a particularly simple form on the space, which allow an explicit analysis of the orbits generated
by them. In this paper, we shall prove uniform expansion for generators S of Out(F5) that
does not have any nontrivial powers of Dehn twists, hence does not admit such explicit analysis.
The difference between these two results is analogous to the classical setting of the action on

the 2-torus T? generated by

11 10

0 1 11

where the action by each individual generator is rotation on a circle, versus the action generated
by hyperbolic elements in SL(2,Z) that generate a subgroup Zariski dense in SL(2,R), where
the generic orbit (though certainly not all orbit) of each individual generator is dense in T2.
Our method in the proof of Theorem B goes through a numerical verification using a com-
puter program. We demonstrate such verification on one particular shell s = 1.99 and for one
particular set of generators S, though just by some derivative bounds (to be made explicit in
Section 2.8) the same result can be extended to nearby shells. Such verification is faster for s
close to 2, though there is no theoretical obstruction in applying the same verification to any
shells X5 with s € (—2,2) (just the computation time grows as s — —2). There is also no
theoretical obstruction in applying it to other finite subsets S that generate a non-elementary

subgroup I' C Out(F»).
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2.1.2  Uniform expansion

As mentioned in the introduction, both theorems are special cases of a more general result. In
this section, we shall introduce a general criterion called uniform expansion, and state that this
criterion implies positivity of Lyapunov exponents, measure rigidity and orbit closure classifi-
cation.

Given a Riemannian manifold M, let Diff* (M) be the group of C* diffeomorphisms on
M. Given a measure m on M, let Diff% (M) be the group of C* diffeomorphisms on M that
preserve m, i.e.

Diff* (M) := {f € Dift*(M) : fum = m}.

Throughout this paper, any measure is assumed to be a Borel probability measure on the

corresponding topological space.

Definition. A probability measure v on M is called p-stationary if

LxV =1, where y*y:/ fav du(f).
Diff2 (M)

Definition. Let M be a Riemannian manifold, z be a measure on Diff2(M). We say that y is

uniformly expanding if there exists C' > 0 and N € N such that for all x € M and v € T, M,

Dy
/D'HQ(M) log Mdumm el

o]

(N) .= [k k- - -x 1 is the N-th convolution power of p. We remark that if M is compact,

Here p
this is equivalent to the weaker formulation where we allow C' and N to depend on z and v (see

e.g. [LX, Lem. 4.3.1], where such weaker criterion is called “weakly expanding”).

Sometimes we say that a finite subset S C Diff2(]\/[ ) is uniformly expanding if the uniform
measure supported on § is uniformly expanding in the above sense. Note that in this case the
integral in the uniform expansion condition reduces to a finite sum.

The goal of the first half of the paper is to classify p-stationary measures on a closed
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surface M and the corresponding orbit closures if p is uniformly expanding and supported on
Diﬂ“?n]\/[ for some smooth measure m on M, i.e. a Borel probability measure m equivalent to

the Riemannian volume on M.

Theorem C. Let M be a closed surface (compact connected two-dimensional C'°° Riemannian
manifold without boundary) and m be a smooth measure on M. Let i be a uniformly expanding

probability measure on Diff2, (M) with

/Diff2 an log™ (| flc2) +logt (If o) du(f) < oo (*)

Let v be an ergodic, p-stationary Borel probability measure on M. Then
(a) v has positive Lyapunov exponent;

(b) either v is finitely supported, or v = m.

This result was proved in [LX, Thm. 4.1.4], where they used this statement to prove a large
deviation result. We shall recall the proof in Section 2.2 and 2.3 for completeness.
Here we are more concerned with the following orbit closure classification which follows from

Theorem C, and its applications in concrete settings.

Theorem D. Let M be a closed surface, m be a smooth measure on M, and S C Diff2, (M)
be a finite subset of diffeomorphisms that preserve m. Let I' C Diff?n(M ) be the subsemigroup

generated by S. If § is uniformly expanding, then

(a) every orbit of I' is either finite or dense,

(b) every dense I'-orbit equidistributes on M (in the precise sense defined in Proposition

2.4.1).

Note that we could have replaced the word “subsemigroup” with “subgroup” to get a weaker
statement. Also if S is uniformly expanding, then I" cannot be cyclic (see Lemma 2.3.3 below).
An analogous statement has been proved in greater generality in the homogeneous setting by

Eskin and Lindenstrauss [ELa].
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In the setting of homogeneous dynamics, uniform expansion has been verified in some cases.
For instance, let G be a real semisimple Lie group with no compact factors and A be a discrete
subgroup of G. Let pu be a countably supported probability measure on G whose support
generates a Zariski dense subgroup of GG. Then p is uniformly expanding, see e.g. [EMO04,
Lem. 4.1], the idea of which goes back to Furstenberg [Fur63]. As a second example, one
may consider the case of the SL(n,Z)-action on the n-torus T" := R"/Z". Let u be a finitely
supported probability measure on SL(n, Z) such that the support of 1 generates a Zariski dense
subgroup of SL(n,R). Using the classical theory of product of random matrices (for instance
in Goldsheid and Margulis [GM89]), one can show that p is uniformly expanding (see e.g. the
proof of Theorem 4.1.3 in [LX] for the precise argument). Clearly uniform expansion is a C'l-
open property, therefore any small C''-perturbations of these examples also support uniformly

expanding measures.

2.1.8 Verification of Uniform Expansion

Theorem A and B are both proved by verifying uniform expansion and then applying Theorem
C and D. Theorem A will be proved in Section 2.6 by verifying uniform expansion analytically.
Theorem B will be proved in Section 2.8 by verifying uniform expansion numerically, using
an algorithm described in Section 2.7. The context and motivation will be provided in the
respective sections.

Other than the fact that these examples are interesting in their own right, they are also
chosen to illustrate how to overcome two difficulties in the verification of uniform expansion.

First of all, as we saw in Theorem C, uniform expansion is a stronger criterion than positivity
of Lyapunov exponent, and the latter is notoriously difficult to verify for one-parameter group
actions without some sort of uniform hyperbolicity. The reason is that even strong expansion
in the early stages of the dynamics can be cancelled out by strong contraction in the future, for
instance when the dynamics hit a region where it behaves like a rotation, such “backtracking”

phenomenon may occur. In our examples, there are small rotation regions for each individual
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map. Nonetheless we show that as long as the random dynamics enter these rotation regions
with small enough probability, the overall dynamics is expanding on average.

Secondly, it is clear that if the dynamics is generated by a single volume-preserving hy-
perbolic diffeomorphism, then uniform expansion never holds, since the stable direction is
contracted by the dynamics. For higher rank actions, it is still possible that the contract-
ing directions of the maps may overlap for some subset of points but not all. Note that this
does not happen in the homogeneous setting, in the sense that if the contracting directions are
separated at one point, then by homogeneity, they are separated at every point of the space. In
our examples, the contracting directions may overlap in a codimension one subset, and again
we show that uniform expansion occurs as long as the random dynamics enter a neighborhood
of such subset with small enough probability. Proposition 2.5.4 illustrates that rotation regions
and overlapping contracting directions are essentially the only two obstructions to uniform
expansion.

For Theorem A, we are able to verify uniform expansion directly since at each point, with
high probability, the map has strong expansion in the same (horizontal) direction. Moreover,
one can compute with high accuracy the separation of the contracting directions of the maps.
These allow us to understand exactly where the rotation regions and overlapping contracting
directions occur. In particular, for each point and each direction, we can obtain an upper bound
on the probability that the map contracts in that direction after n steps. Depending on how
small the separation of the contracting directions is, one can then choose a suitable N so that
uniform expansion occurs.

For Theorem B, however, the contracting directions of each map vary for different points
on the space. In particular, we can no longer prove explicitly that backtracking occur with
low probability (though we expect so). Therefore we can only check unifom expansion at each
point on a fine enough grid, and then show that such expansion still occur at neighboring points
using a C2-bound.

The paper is structured as follows:

e In Section 2.2, positivity of Lyapunov exponents for uniformly expanding systems (The-
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orem C (a)) is proved (Proposition 2.2.2).

e In Section 2.3, classification of stationary measures of uniformly expanding systems (The-
orem C (b)) is proved using a result of Brown and Rodriguez-Hertz [BRH17] (Proposition
2.3.1).

e In Section 2.4, using the measure rigidity result in Section 2.3, an equidistribution result
(Proposition 2.4.1) will be proved. The orbit closure classification (Theorem D) is then

obtained as a corollary (Proposition 2.4.2).

e In Section 2.5, we introduce a geometric way to view uniform expansion and prove a

general criterion for uniform expansion (Proposition 2.5.4).

e In Section 2.6, the setting of perturbation of the standard map is introduced, and uniform

expansion is verified analytically in this setting (Proposition 2.6.1). This proves Theorem

A.

e In Section 2.7, an algorithm to check uniform expansion is presented.

e In Section 2.8, the setting of the Out(F») action on character variety is introduced, and

uniform expansion is verified using the algorithm introduced in Section 2.7. This proves

Theorem B.

2.2 Positive exponent

We first recall the celebrated Oseledets theorem in the setting of random dynamical systems.
Here we adopt the notation in [BRH17] and define f!! := w,_1 0o wy_92 0+ 0wy owy for
w = (wp,w1,ws, . ..) € Diff2(M)N. Let o : Diff2(M)N — Diff2(M)N be the left shift map given

by (wo, w1, w2, ...) = (w1, w2, w3, ...).

Proposition 2.2.1 (Random Oseledets multiplicative ergodic theorem). Let M be a closed
smooth Riemannian manifold, 1 be a measure on Diff?(M) satisfying the moment condition

(*). Let v be an ergodic, p-stationary Borel probability measure. Then there are numbers
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AM(v) > Aa(v) > -+ > A(v) such that for pN-almost every sequence w € Diff2(M)N and

v-almost every x € M, there is a filtration
1 2 / {41
T:UM:Vw(QJ)ng(m)g”'ng(x)ngJr =0

such that for v € VF(z) ~ VFT1(z),

1 IDufr)
i, 7 log T = = Ak(v):

The subspaces V/(x) are invariant in the sense that

DafuV(z) = V)i, (ful@)).

For a proof of the theorem, see e.g. [L.Q95, Prop. 1.3.1].

Proposition 2.2.2 (Uniform positive exponent). Let M be a closed surface, i be a uniformly
expanding probability measure on Diff?(M) satisfying (*). Then there exists a uniform constant
Ay > 0, depending only on p, such that for all x € M, and ,uN—almost every w € Difo(M)N,

In particular for all ergodic, p-stationary probability measure v, for v-almost every x € M and

pN-almost every w, the top Lyapunov exponent A; (v) = \(w, r) > Ay > 0.

Sketch of Proof. The point of this proposition is that assuming uniform expansion, Oseledets
theorem holds for every point x € M and almost every sequence w € Difo(M )N , and the top
exponent is positive. See Lemma 4.3.5 of [LX] for a more refined version of this proposition,
where it is shown that there is an Oseledets splitting for every point. Here we only need
positivity of exponent. We include a sketch of the proof here for completeness.

Let T1M be the unit tangent bundle of M. By definition of uniform expansion, there exists
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C > 0and N € N such that for all (z,v) € T'M,

/ log [ D/ (0)]|du™(f) > C.

Let (2,v9) € T'M. For each w € Diff>(M)N and n € N, let

(5 00) = (ol ) = ( 120 A0 )

1 Da fi5 (wo)

be the image of (x,vg) in TYM after n steps of the random dynamics following the sequence w.

For k > 1, consider the event

Xp(w) :=10g | Day o Sy, (-1 W)l = /IOgHDJ:(k1)Nf(v(k—1)N)|’dN(N)<f)'

Notice that

| D2 fEN (o) |

X (w) = log =
1D, £ ()|

~ [ 1081z oyl

Let S; =11 Xj. Then

. J
Sj(w) = log || D2 f5™ (wo) = 3 / log [| Dy f W1y ) [ ™ (£).
k=1

Thus by uniform expansion,

, j
log || D f1™ (wo) || = S(w) + > / 10g [| Dy F @1y i)™ (£) > Sj(w) + C.
k=1

The main observation is that the family {S)},en form a square integrable martingale. Then
by the strong law of large numbers for square integrable martingales, for ,uN—almost every

w € Diff2(M)N, we have the limit
Sn

lim — =0.
n—o00 n
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Thus if we write j = |[n/N|, then lgn j/n =1/N, and we have for almost every w,
n—oo

e o] —jN ] N
lim inf —log || Dy £ (vo) || = iminf —log || Dy f754, (i) | + liminf —log | Dy £ (vo)|
S' .
> liminf (o+ﬂ+9—0> S
n—00 n n N
Hence we can take A\, := C'/N. O

2.3 Measure rigidity

We prove the measure rigidity result in this section. The precise statement was already proved
in [LX, Thm. 4.1.4]. We include the proof here for completeness.

The main input of the proof is a result of Brown and Rodriguez-Hertz [BRH17, Thm. 3.4].
This result provides a trichotomy for the ergodic p-stationary Borel probability measures v:
either the stable distribution is non-random, v is finitely supported or v is an ergodic component
of the volume on M. The uniform expansion condition eliminates the possibility that the stable
distribution is non-random. The same condition also implies that the volume is I'-ergodic using
a refined version of the classical Hopf argument inspired by [DKO07, Sect. 10], as detailed in
[LX, Prop. 4.4.1].

2.3.1 Main statement

Proposition 2.3.1 (Measure Rigidity). Let M be a closed surface, I' € Diff2(M) be a subgroup
that preserve a smooth measure m on M. Let u be a uniformly expanding probability measure
on Diff?(M) with u(T') = 1 satisfying (*¥). Let v be an ergodic, p-stationary Borel probability

measure on M. Then either v is finitely supported or v = m.

Following [BRH17], we write

E}(x) = U Vi(x) = {v €Ty M : hmsup—logw < O}.

s R T ]
J
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for the stable Lyapunov subspace for the word w at the point x € M. We say that the stable
distribution is non-random if there exists p-almost surely invariant r-measurable subbundle
V € TM such that V(z) = E5(x) for (1 x v)-almost every (w, z), i.e. Df(ES(x)) = E5(f(z))
for p-a.e. f € Diff>(M) and v-a.e. z € M.

Given a smooth probability measure m on M, let Diff2 (M) := {f € Diff>(M) | fem = m}.

We recall the theorem of Brown and Rodriguez Hertz.

Theorem 2.3.2. [BRH17, Thm. 3.4] Let M be a closed surface, I' C Diff2(M) be a subgroup
that preserve a smooth measure m on M. Let p be a uniformly expanding probability measure
on Diff?n(]\/[ ) with u(I') = 1 satisfying (*). Let v be an ergodic, hyperbolic p-stationary Borel

probability measure on M. Then either
(1) v has finite support,
(2) the stable distribution E?(x) is non-random, or
(3) v is - up to normalization - the restriction of m to a positive volume subset.

It remains to refine the conclusion of this theorem using the condition of uniform expansion.
We will eliminate the second possibility in the next lemma, and refine the third possibility in

the next subsection.
Lemma 2.3.3. If y is uniformly expanding, then the stable distribution is not non-random.

Proof. Assume that the stable distribution E7?(z) is non-random, i.e. there is a p-almost
surely invariant subbundle V' ¢ TM with V(z) = E?(z) for (u x v)-ae. (w,z). By defi-
nition of the stable distribution, for v-almost every x € M, for all large enough n, we have
log(|| Dz fit(v)]|/]]v]]) < 0 for all nonzero v € Ef(x). Hence by taking average, for v-almost all
2 € M, and for all nonzero v € V(xz), we have

D, n
/Difo(M) log I f(U)“du( )(f) <0

o]
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for all large enough n. However, this contradicts the uniform expansion property of p, as it is
striaghtforward from definition that there exists C' > 0 and N € N such that for all x € M,

nonzero v € T, M and k € N,

o]

2.3.2  Ergodicity

The main theorem of [BRH17, Thm. 3.1] did not assume the existence of a smooth invariant
measure, in which case the third possibility is that the stationary measure is SRB (see [BRH17,
Def. 6.8] for a precise definition). The existence of a smooth invariant measure m allows the
authors to refine the third possibility to being a restriction of m to a positive volume subset
using a local ergodicity argument (see [BRH17, Ch. 13]), as stated above.

In this section, using uniform expansion, we further refine the third possibility to show that

the stationary measure has to be the smooth invariant measure m.

Proposition 2.3.4. Let M be a closed (connected) surface, p be a Borel probability measure
on Diff2, (M). Suppose there exists a positive volume subset A C M such that v := #A)nﬂ A
is an ergodic p-stationary Borel probability measure. If 4 is uniformly expanding, then in fact

V=m.

This is proved in [LX, Prop. 4.4.1] based on ideas from [DKO07, Sect. 10]. For completeness
we give a detailed outline of the proof.

The main idea of the proof is to perform a version of the classical Hopf argument. Rather
than transversing along the stable and unstable leaves as in the setting of Anosov systems, the
argument goes by transversing along the stable leaves W (x) and W7 (z) of two distinct words

w,w’ with suitable geometric and dynamical properties.
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Classical facts about the stable manifolds of a random system

We first collect some standard facts about stable manifolds of a random dynamical system.

Given z € M and w € Diff?(M)N, let

Wi(z) = {y €M | liTrLr;SO%p%bg (15 (@), () < 0} :

There exists a (uN x vol)-co-null set A ¢ Diff?(M)N x M such that W7 (z) is a C2-embedded
curve in M for all (w,z) € A. We call W5(x) the global stable manifold at x for w.
We define local stable manifolds using the classical stable manifold theorem (we only list

properties needed for our purpose).

Theorem 2.3.5 (Local stable manifold theorem). Let A, > 0 be the constant from Proposition
2.2.2. For every 0 < e < \,/200, for pN-almost every word w € Diff?(M)N, there exists a full
volume set A, C M and a measurable family of local stable manifolds {W} (¥)}zep,, With

the following properties:

(a) W5

w,loc

(z) is a C? embedded curve, i.e. the image of a C? embedding v : (—1,1) — M.
(b) oW o(2) = E3(a).
(0) for n > 0, FH(WS . (2) € W3, (F2(z).

(d) for y,z € Wf},loc(x) and n > 0,
d(f2(y), [1(2)) < L(w, x)e"MFoma(y, 2),

where L : Diff2(M )N X M — [1,00) is a Borel measurable function such that for all
r €Ny and n > 0,

L(o"(w), f5(x)) < " L(w, z).

Here o : Diff2(M)N — Diff2(M)N is the left shift given by o(w)p = wpi1.
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() W) = | () (W oy soc F2 ().

n>0
We refer to [BP13, Ch. 7] for a treatment in the deterministic setting, and [LQ95, Ch. IIL.3]

in the random setting.

Definition (Measures on stable leaves). We recall the following notions related to the induced

volume measure on the local stable manifolds.

L. Given r > 0 and (w,x) € A, let W3 .(x) == {y € Wji(z) | dys(x,y) < r}, where dys is

the Riemannian distance along the C2-curve W5 (z).

2. Given a Cl-curve v on M, there is a natural measure on 7 induced by the restriction of
the Riemannian metric on M to . We call this measure the leaf-volume of ~, denoted

volfy.

3. Given a measurable subset 7" C Wj(z) for some word w and point = € M, we write

VOlWS (T) = VOIWj (ac) (T) s

as the dependence on w and z is clear from the definition of T'.

4. Unless otherwise specified, “almost every” point on 7 means almost every point with

respect to the leaf-volume.

We will also need the standard fact that for (uN x vol)-almost every (w,z), the stable
manifold W (x) satisfies two versions of absolute continuity that we will describe in the next
lemma.

By Lusin theorem and Theorem 2.3.5 (a), for all 6 > 0, there exists a measurable subset

Q C M with vol(Q) > 1 — § such that W?

wloc<y) varies continuously in y € @ in the C?

topology.

Lemma 2.3.6 (Absolute Continuity). For (1 x vol)-almost every (w,z) € Diff2(M)N x M,
for sufficiently small R > 0, the family of local stable manifolds F := {W3 ,.(¥)}yconB(z,R)

satisfies the following properties:
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1. Forally e QN B(z, R), W?

w,loc

(y) intersects OB(z, R) at two points.

2. Fory,y' € QNB(z, R), ify' € W5, .(y), then W? (v )NB(x, R).

w,loc

(y)NB(z,R) = W?

w,loc

Then the following two versions of absolute continuity hold (we write F(y) for the element in

F containing the point y).

(AC1) Let 4 and 49 be two Cl-curves in B(z, R) everywhere uniformly transverse to F. Let

T =m0 | Fu). and Ty:=vn | Fy).
YyEY2 yeTly

Define the holonomy map hx : 177 — 15 given by “sliding” along the leaves in F, i.e.

hx(y) is the only point in v N F(y) for all y € T7.

Then on 75, we have

voly, < (hx)«voly,.

(AC2) For any Borel subset A C M, we have

vol(A) =0 & volyys () (AN W5(y)) =0 for volae. ye M.

See [BP13, Ch. 8] for a statement in the case of deterministic systems, [LY88, Sect. 4.2] or

[LQ95, Sect. IIL.5] for a statement in the case of random systems.

Implications of uniform expansion

One consequence of uniform expansion is uniform control on the angles between stable directions

of different words.

Lemma 2.3.7 (Uniform avoidance of the stable direction). [LX, Prop. 4.4.4] [Zhal9, Prop. 3]
If 1 is uniformly expanding, then there exists a > 0 with the following property:

for any (z,v) € T1M, there exists a subset I'y,, C Diff2(M)N with ,uN(Fx’v) > (.99 such that,
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for any w € I'y v,

L(E(z),v) > a.

Another property of uniformly expanding systems is that for every point on the surface, the
dynamics exhibit uniform hyperbolicity for a large proportion of words. This implies uniform

control on the lengths and curvatures of the local stable manifolds.

Lemma 2.3.8 (Uniform control of the local stable manifolds). [LX, Prop. 4.4.9] [Zhal9, Prop.
3] If p is uniformly expanding, then there exist a constant ¢ = ¢(u) > 0 with the following
properties:

for any = € M, there exists a subset Ay C Diff?(M)N with xN(Az) > 0.99 such that for all

w € Ay,

() WS, (@) CC WS 1o (o).
(ii) the angle change of the curve exp;l(Wf]’g(m)) is less than «//100.

Here « is as in Lemma 2.3.7, and for a Cl-curve ~ : [a,b] — R2, the angle change of ~ is

max £ (7'(t),7'(s)).
t,s€[a,b]

The notation A CC B in (i) means A is compactly contained in B, i.e. the closure of A is
compact and is contained in B. Note that (i) implies that the leaf-volume of W? () is at least

2( since the condition implies, in particular, that W2 ,(z) C Wg5(x).

)

We say that W?

S loc(®) 18 a nice curve if w € Ag.
)

We shall use these constants a and ¢, which depend only on pu, later in the proof. The set

Ay of words in Lemma 2.3.8 will also appear a few times in the proof.

Basin of v

We will consider the classical notion of a basin of v in this random setting, and remark that to

show that v = m, it suffices to show that the basin B(v) has full volume. This will be used in
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Step 1 below.

Definition. Given = € M, w € Diff>(M)N and a continuous function ¢ : M — R, define the

w-Birkhoff average of ¢ at x as

Suli)(x) = lim —Zw (fifa

n—oon

if the limit on the right exists.

Definition. Given an ergodic p-stationary measure v on M, define the basin of v, denoted
B(v) C M, as the set of points x € M such that for any continuous function ¢ : M — R and

pN-almost every w € Diff?(M)N,

Lemma 2.3.9. If vol(B(v)) = 1, then v = m.

Proof. Assume that vol(B(v)) = 1. Then m(B(v)) = 1. Let ¢ € CO(M). By the pointwise
ergodic theorem (and the argument in the proof of Lemma 2.3.12), there exists a function @(z)

such that for (uN x m)-a.e. (w,x),
Sue)@ =) ad [p) @) = [ el@) dna)
On the other hand, by definition of the basin B(v), for all z € B(v), we have
Sue)(@) = [ v
Therefore B(z) = [ ¢ dv for all © € B(v). But since m(B(v)) = vol(B(v)) = 1, we have

/ plo) dm(a) = [ pta) dm(o) = | P ) = [ ¢t@) avio)

Since ¢ is arbitrary, we have v = m. O
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Reduction to a local argument via Lebesgue density theorem

By Lemma 2.3.9, it suffices to argue that the basin has full volume. In this section, we argue
that it suffices to show that in every (uniformly) small enough ball, the basin either has zero
density or has density bounded from below by a positive uniform constant. This allows us to

reduce the problem to a local argument in a small ball. This will be used in Step 2 below.

Definition (Density). Given a Borel measurable subset U C M, a point + € M and r > 0,

define the density of U in the ball B(z,r) as

vol(U N B(x,r))

vol(U : B(z,r)) := vol(B(x, 7))

Lemma 2.3.10. Assume that a measurable subset U C M satisfies the following: there exist

¢ >0 and Ry > 0 such that for all z € M and positive r < Ry, either
vol(U : B(z,1)) =0 or vol(U : B(z,r)) > c.

Then vol(U) =0 or 1.

Proof. Assume the contrary that vol(U) € (0,1). Clearly the assumption continues to hold if
we decrease c. Thus without loss of generality assume that 0 < ¢ < 1/2.
Since vol(U) and vol(U€) are both positive by assumption, by Lebesgue density theorem,

there exist y € U, z € U¢ and r € (0, Ry) such that
vol(U : B(y,r)) >1—c¢ and vol(U : B(z,1)) < ¢/4.

Now observe that the function z — vol(U : B(z,r)) is continuous in € M for fixed U C M
and r > 0. Since M is connected, there exists x € M such that vol(U : B(z,r)) = ¢/2. This

yields a contradiction. O]

In the rest of this section, we shall find uniform constants ¢ > 0 and Ry > 0 so that the

assumptions of Lemma 2.3.10 hold for the basin U = B(v).
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Regular points

Similar to the proof of ergodicity in [DKO07, Sect. 10], we define a notion of regular points,
and show that almost every point on M is regular. This will be used in Step 3 of the main
argument.

Informally, the notions of regular points can be summarized as follows: for x € M and

w € Diff2(M)N,

1. x is w-regular if the w-Birkhoff averages at = agree with the w’-Birkhoff averages at z for

Noae. o
2. x is regular if for pN-a.e. w, x is w-regular and almost every y € W5 (x) is w-regular.

Definition. For w € Diff2(M )N, a point x € M is called w-regular if for ,uN—almost every

w' € Diff?(M)N, for any continuous function ¢ : M — R, we have

(in particular the Birkhoff averages exist).

Remark 2.3.11. Note that if  is w-regular, then for gN-almost every w’ € Difo(M)N, x is

w'-regular.

Lemma 2.3.12. [Kif86, Cor. 1.2.2, Page 24] For u!N x vol-almost every (w,z) € Diff2(M)Nx M,
x is w-regular.
Definition. A point x € M is called regular if for uN—almost every word w € Diﬁ"Q(M )N AT

w-regular and almost every point y € Wj(z) is w-regular.

It can be shown using Lemma 2.3.12 and absolute continuity of the stable manifolds that

almost every point on M is regular.

Lemma 2.3.13. [LX, Lem. 4.4.18] vol-almost every point x € M is regular.
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Proof. We need to show that the set
By = {(w,z) € Diff2(M)N x M | volyys({y € WS:(x) | y is not w-regular}) > 0}
has ,uN x vol-measure zero. By Lemma 2.3.12, for ,uN—almost every word w, we have
vol({y € M | y is not w-regular}) = 0.

By absolute continuity of the foliation W7 (Lemma 2.3.6 (AC2), ignore a null set of words w if

necessary), for vol-almost every point € M, we have
volyys({y € WS (z) | y is not w-regular}) = 0.

This is enough to show that B; has measure zero. O]

The following lemma is a direct consequence of the definitions, and will be used repeatedly

in Step 6.

Lemma 2.3.14. [LX, Lem. 4.4.19] Given an ergodic u-stationary measure v on M and w €
Diff2 (M)N, if 2,4 € M are both w-regular and y € W7 (z), then z € B(v) if and only if
y € B(v).

Proof. For any continuous function ¢ : M — R, and for uN—almost every w' € Diffz(M )N, we

have

S (@) (@) = Sw(w) (@) = Sw(p)(y) = S () (Y),

where the second equality uses the fact that y € Wj(z), and M is compact so that ¢ is
uniformly continuous. The first and third equalities use the fact that x and y are w-regular.

Therefore the leftmost term equals [ ¢ dv if and only if the rightmost term equals [ dv. O
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Basic setup of the Hopf argument

Using Lemma 2.3.7 and 2.3.8, we can set up the Hopf argument in a small local ball B(xzq, )

containing a regular point x by finding two words w, w’ € DiffZ(M )N whose local stable mani-

folds through = have nice geometric and dynamical properties. Throughout this subsection we

shall fix xg € M and r > 0. We first give an outline of the main argument (see Figure 2.1 for

an illustration).

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

By Lemma 2.3.9, to show that v = m, it suffices to show that vol(B(v)) = 1.

By Lemma 2.3.10, to show that vol(B(v)) = 1, it suffices to show that for some uniform
constants Ry > 0 and ¢ > 0, for all g € M and r < Ry, either vol(B(v) : B(zg,r)) =0
or vol(B(v) : B(zg,r)) > ¢. We will choose Ry in subsection 2.3.2. We fix g € M and

r < Rp in the rest of the outline.
Assume that vol(B(v) : B(zg,r)) > 0. Choose a regular point x in B(v) N B(xq, ).

Choose words w,w’ and a subset T C W, () N B(zq, r) with positive leaf-volume such

that for all y € T,

(i) W

oo (7) and Wj,JOC(y) are nice curves (in the sense of Lemma 2.3.8) and uniformly

transverse;
(ii) = and y are w-regular;

(iii) y and almost every z € Wj,’loc(y) are w'-regular.
We will choose w,w’ and T in subsection 2.3.2.

Construct a good set U’ C B(xg,r) with (uniformly) positive density in B(xg,), a word

w" and a subset 77 C T with positive leaf-volume such that for all p € U’,

(i) W2 ..(p) is anice curve, and is uniformly transverse to the family {W?, |  (y)},e7-

(ii) p is w’-regular,
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Step 6:

(iii) the set of intersection points between Wj,,’loc(p) and {sz’,loc(y)}yET, that are both

w'-regular and w”-regular has positive leaf-volume in Wj,, 10C(p>.

We will choose 7" in subsection 2.3.2. We will choose the word w”, the set U’ and the

uniform positive lower bound c3 on the density of U’ in subsection 2.3.2.

Apply Lemma 2.3.14 to show that U’ C B(xg, ) is contained in the basin B(v). In fact,

for p € U,

(i) x € B(v) by Step 3.

(ii) Let y e T" C T C Wj’loc(x). Both = and y are w-regular, so by (i) and Lemma

2.3.14, y € B(v).

(iii) Let 2 € W2, (y) for somey € T'. Suppose that z is both w’-regular and w”-regular.
By (ii), y € B(v). Since y is w'-regular, by Lemma 2.3.14, z € B(v).

(iv) By Step 5, a positive leaf-volume set of points z in Wj,,’loc(p) are in Wj,’loc(y)
for some y € T’, and are w'-regular and w”-regular. By (iii), z € B(v). Since p is

w-regular, by Lemma 2.3.14, p € B(v).

This concludes the argument, since U’ C B(xg,7) N B(v) and has (uniformly) positive

density in B(zg,r).

In the rest of this section, we shall make Step 4-6 precise by choosing the appropriate param-

eters.

Choice of the radius R

We choose Ry = Rg(a,¢) > 0 with the following properties: for positive r < Ry and y €

B(xq,r),

1.

(Angle between off center tangent vectors)

o for v,w € TyM, if L(v,w) > o, then £(Dy expgjo1 v, Dy exp;o1 w) > /2.
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B($O,T’)

/

Figure 2.1: Tllustration of the main argument (U
with positive density; x € T C W7 (7))

is a subset of the shaded region B(yq, cor)

o for v,w € TyM, if £(v,w) > /4, then £(Dy expa?o1 v, Dy expgol w) > af8.

2. (Angle change of curves) given a C2-curve v; C B(zg,r) through y, if eXp:;1 ~1 has angle

change less than «/100, then expgo1 71 has angle change less than a//99.
3. Also choose Ry < £/10, where ¢ = {(u) is the constant from Lemma 2.3.8.

Such conditions hold for small enough 7 such that for y € B(zg,r), the map D, expgjo1 :
TyM — TTyyM is close enough to the identity (using the C? assumption and compactness of
the manifold, the appropriate constants depend only on «, ¢ and the geometry of the smooth

Riemannian manifold M, in particular Ry can be taken independent of x).
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Choice of the words w,w’, the set T C W .(z) and the constant ¢; (for Step
4)

Lemma 2.3.15. [LX, Lem. 4.4.20] For any ¢y € M and positive r < Ry (from subsection 2.3.2),
let = € B(zg,r) N B(r) ~ {z} be a regular point. Then there exist words w,w’ € Diff2(M)N,
a subset T" C W7, () N B(xg,r) and a constant 0 < ¢1 = c1(a) < 1 with the following

properties.
1. z is w-regular,

2. W3

Mloc(m) is a nice curve, i.e. w € Ay as in Lemma 2.3.8,

3. the set of w'-regular points has full volume in M,

4. the leaf-volume of T' C Wj(x) is at least ¢;r,

(S

. forany y e T,

(a) y is w-regular and w’-regular,

(b) W*

w,’loc(y) is a nice curve.

(c) d(y,0B(xo,7)) > crr,
(d) L(EG(y), B (y) > o
Proof. We have the following properties of x:
(i) for pN-a.e. w, z is w-regular and almost every y € W5 (x) is w-regular since x is regular.

(i) for at least 99% of the words w (with respect to pN), W*

wlo () is a nice curve by Lemma

2.3.8.

Note that = # xg. Let v be the initial vector in T, M of the geodesic from = to xg, and

v € P(T; M) be the orthogonal complement of v in T, M.

(iii) for at least 99% of the words w (with respect to ), £(ES(z),v+) > o by Lemma 2.3.7.
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Choice of w: Let w be one of the 99% words that satisfy (i), (ii) and (iii). Since W?*

w,loc (Ji) is

a nice curve, it contains an ¢-neighborhood of x with ¢ > 10r, and we have a uniform bound

on angle change of exp; ( S ().

Choice of ¢: Using Euclidean geometry, (iii) implies that there exist ¢; = ¢j(«) > 0 and a

C2-segment y C Wci’loc(x) such that
(iv) volyys(y) > 2c1r,
(v) for all y € v, d(y, 0B(zg,r)) > c1r.
Now for the almost every y € v that is w-regular, we have the following properties of y:

(viy) for pN-ace. W',y is w'-regular by Remark 2.3.11.

(vily) for at least 99% of the words w’ (with respect to i), W2 1. (¥) is a nice curve by Lemma

2.3.8.

(viiiy) for at least 99% of the words o' (with respect to u), £(EZ(y), E®/(y)) > a by Lemma

2.3.7.

Now consider the set
G:={(,y) € Diﬂ?2(M)N x v | y is w-regular, and w’ satisfies (viy), (viiy), (viiiy)}.

Almost every y € ~ is w-regular by (i). For each y € v, at least 98% of the words ' satisfy

(viy), (vily), (viliy). Thus by Fubini’s theorem,
1 x volyys (G) > 0.98 volyys (7).

By Fubini’s theorem again,

(ix) for at least 96% of the words /,

volyys({y € v | y is w-regular, and o' satisfies (viy), (vily), (viiiy)}) > 0.5 volyys(y) > ey
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Here in the last inequality, we have used (iv). Recall that
(x) for pN-almost every word w’, vol({z € M | z is w'-regular}) = 1 by Lemma 2.3.12.

Choice of w’' and T: Let w' be one of at least 96% words that satisfy (ix) and (x). Let
T :={y € v |y is w-regular, and w’ satisfies (viy), (viiy), (viiiy)}.

We can verify each property:

1. This follows from (i).

2. This follows from (ii).
3. This follows from (x).
4. This follows from (ix).
5. foryeT,

(a) This follows from the definition of 7" and (viy).
(b) This follows from (viiy).
(c¢) This follows from (v).

(d) This follows from (viiiy).

Choice of the direction £ € P(T,,M ), the ball B(yy, cor), and the set T" C T C

(j,loc(x)

Let » < Rgp. Now lift the ball B(xg,r) to the tangent space at xq via the inverse of the

exponential map expl_;ol. Let = € B(xg,r). Recall that

3 S
1. since Ww,loc

is less than «//100.

(z) is a nice curve by Lemma 2.3.15 (2), the angle change of exp; ! Wié(:c)
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2. Also by Lemma 2.3.15 (5d), for any y € T', £L(E(y), E7,(y)) > a.
By the choice of Ry, we have

1. the angle change of expy, o Ws o() is less than a/99,

2. forally e T, A(expg[;1 Wi(y), expy, Ww (y)) > a/2.

Choice of E: By compactness of P(T;,M) and volys(T) > 0, there exists a direction E €
(T (M)) such that

L. volyys({y € T' | L(E, expx1 W2 (y)) < a/100}) > 0, and

2. for each B/ € P(Ty,(M)) with £(E, E") < a/100, and each tangent vector v to the curve

expm0 Ws.  (z) on TyyM, we have £(E',v) > a/4.

w,loc

Choice of co: Now take a constant co = ca(, ¢1) > 0 small enough so that co < ¢1/2 and the
following property holds: for any yg € M and 21, 20 € B(yg, cor), if two C'l-curves 71 and o

on M satisfy the following properties:
1. 21 € y1 and 29 € 79,
2. v; contains an (c1r/2)-neighborhood (within the curve) of z; for i = 1,2,
3. the angle changes of expy_o1 ~v1 and expy_o1 o are less than /99,
4. L(expy 11, expyy 12) > /8,

then 1 and ~9 intersect at least once.

Choice of ygy: Take yg € T such that
volyys({y € T'N By, car) | £(B, expyy Wi (y)) < a/100}) > 0
Choice of T': Let T' := {y € T N B(yy,cor) | L(E, expxO W2 (y)) < «/100}. Then

volyys(T") > 0.
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Choice of the good set U’ C B(xg,r), the word w” and the constant c3 (for Step
5)

Lemma 2.3.16. Define R as in subsection 2.3.2, the words w,w’ as in subsection 2.3.2, and
E,yg,c9, T as in subsection 2.3.2. Let r < Ry. Then there exists a uniform constant c3 =
c3(cg) > 0, a measurable set U’ C B(wg,r) with vol(U’) > cgvol(B(zg,r)) and a word w” such

that for all p € U/,

(a) W3

w”,loc(p) is a nice curve.

(b) almost every z € W*,(p) is w'-regular, where w’ is the chosen word in subsection 2.3.2.
(c) pis w"-regular and almost every point in W2, (p) is w’-regular.

(d) The angle
A(Dp eXp:;01 Es//(p)7 E) > 06/27

w
where E € P(Ty, M) is the direction chosen in subsection 2.3.2.

Proof. We first collect a few facts that hold for vol-almost every points p € M and a large set

of words w”.

(a) By Lemma 2.3.8, for any p € M, for at least 99% of the words w”, W2 1oe(p) 1s a nice

curve.

(b) By (AC2) and Lemma 2.3.15(3), for vol-almost every p € M and pN-ae. o, almost

every z € W7, (p) is w'-regular.

(¢) By Lemma 2.3.13, vol-almost every point p € M is regular, i.e. for pN-ae. W, p is

w"-regular and almost every point in W2, (p) is w’-regular.

(d) By Lemma 2.3.7 and the choice of Ry, for any p € B(zq,r), for at least 99% of the words

"
w?

£(Dp expgjo1 E?y(p), E) > a/2,

w

where E € P(T,M) is the direction in subsection 2.3.2.
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Hence for vol-a.e. p € B(xg,r), there are at least 98% of the words w” such that (a)-(d)
hold. Now consider the small ball B(yg,cor) chosen in subsection 2.3.2. Since cg < ¢; and

d(yo, 0B(zg,7)) > c1r (since yo € T'), B(yo, car) C B(xz, 7).

Choice of U’ and w": By Fubini’s theorem, there exists a word w” such that the subset
U' = {p € B(yg,cor) | (a)-(d) hold for p with respect to w”} C B(zq,)

has volume vol(U’) > 0.5 vol(B(yg, cor)), where B(yq, cor) is the ball from subsection 2.3.2.

Choice of c3: Now we can take a uniform constant c3 = c3(co) > 0 such that vol(U’) >

cgvol(B(zq,1)). O

The set U’ and the word w” are related to the w’-local stable curves through 77 in the

following manner.

Lemma 2.3.17. Define T/ ¢ W?*

w,loc

() as in subsection 2.3.2. Let U := [Jyer Wj,Joc(y).

Then for all p € U’,

volyys({z € Wi ,.(p) N U | 2 is w'-regular and w”-regular}) > 0.

! loc

Proof. Let p € U' and y € T'. Note that p,y € B(yg, cor). Let z1 = p and 29 = y. We verify

properties 1-4 in the choice of cg in subsection 2.3.2 for the local stable curves

M= W e 2(P) © W 10 (P) and 72:= Wi e y2(¥) © Wi 1oc ()

Note that since co < ¢1/2, d(yg, 0B(xg,7)) > c1r (since yg € T') and p,y € B(yg, cor), we have
71,72 C B(an T’).

1. Clearly p € y1 and y € 7.

2. By definition of v; and 79, ~; is the (¢17/2)-neighborhood of z; in the local stable curve.
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3. Note that Wj,,)loc(p) and W?*

51 10c(y) are nice curves by Lemma 2.3.16(a) and Lemma

2.3.15 (5b), so 71 and 79 have bounded angle change in their respective tangent spaces.
Now using the choice of R applied to the tangent space at 1y, we conclude the bound on

angle changes in Ty, M.

4. By the choice of Ry, E and T’, one can readily verify that A(expgol Y1, explfo1 v2) > /4.

Apply the choice of Ry again, A{(expgol Y1, exp%1 v2) > a/8.

Therefore properties 1-4 in the choice of c¢9 are satisfied, thus Wj,,’loc(p) intersects Wj,’loc(y)
for all y € T”, with angle at least «/4 on Ty, M.
Now W?#

w,loc

() is uniformly transverse to W2 |~ (y) fory € T’ by Lemma 2.3.15 (5d). Apply

(AC1) to the holonomy hyys between the transversals Wj,,’loc(p) and W#, (x) along the family

w,loc

of local stable curves {Wj,Joc(y)}yeT/. By the previous paragraph, hyys is a bijection from

Wj”,loc(p) NU toT' C Wo‘j’loc(x). Since T' has positive leaf-volume in W*, (z), by (AC1),

w,loc

WS

w loc

(p) N U has positive leaf-volume.
Now the conclusion holds since almost every point in Wj,,JOC(p) is w'-regular and w’’-regular

by Lemma 2.3.16 (b, c). O

Conclude the proof of Proposition 2.3.4 and Proposition 2.3.1

Proof of Proposition 2.5.4. The proof goes by performing the Hopf argument in a local ball

B(zg,r) with r < Ry, combining the pieces built in previous sections.

Step 1: It suffices to show that the basin B(v) has full volume.

By Lemma 2.3.9, to show that v = m, it suffices to show that vol(B(v)) = 1.

Step 2: It suffices to show that the basin has nontrivial density in each small local ball
B = B(xq,r).
Note that vol(B(v)) > vol(A) > 0 since a full volume subset of A is in the basin B(v) by
the pointwise ergodic theorem and that v = ﬁmu. By Lemma 2.3.10, to show that
B(v) has full volume, it suffices to show that there exist ¢ > 0 and Ry > 0 such that for
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Step 3:

Step 4:

Step 5:

Step 6:

all zg € M and positive r < Ry that satisfy vol(B(zg,r) N B(v)) > 0, we have
vol(B(xqg, ) N B(v)) > ¢ vol(B(zg,r)).

We choose Ry as in subsection 2.3.2; and will choose ¢ = ¢g from subsection 2.3.2 in Step

6. In particular Ry < ¢/10.

In the rest of the proof we fix g € M and r € (0, Ry). Let B := B(xq, 7).

Choose a regular point = in the local ball B.
By Lemma 2.3.13, the set of regular points in M has full volume. Thus for fixed xg € M

and r < Ry with vol(B(zg,r) N B(r)) > 0, one can choose a regular point € B(xzg,r) N

B(v) ~ {xg}.

Choose two words w,w’ with transverse local stable manifolds in 8.
Choose words w,w’ € Diff2(M)N as in subsection 2.3.2 and a subset T’ C W2 1oe(®) as in
subsection 2.3.2.

Let

U:= U WZ’,]OC<y)'
yeT’

Choose a good set U’ with positive density in B, a word " and a subset 7/ C T
with positive leaf-volume.
We choose the good set U’ C 9B, the word w” and the subset 77 C T as in subsection

2.3.2.

The good set U’ is contained in the basin B(v).

Let p € U'. Now we claim that p € B(v). In fact

(i) € B(v) by the choice in Step 3.

(ii) For all y € T’, note that T" C WS5(z) and x,y are w-regular by Lemma 2.3.15 (1,
5a). Therefore by Lemma 2.3.14, y € B(v).

45



(iii) Suppose z € W, (p)NU is w'-regular. By the definition of U, there exists y € T”

! loc

such that z € W (y). Recall that y € T is w'-regular from Lemma 2.3.15 (5a).

! loc
Therefore by Lemma 2.3.14, z € B(v).

(iv) By Lemma 2.3.17, the set of points in Wj,, 1OC(]D) N U that are w'-regular and w’-
regular has positive leaf-volume. Let z be one such point. Note that p € Wj,,(z),

and p is w”-regular by Lemma 2.3.16(c). Therefore by Lemma 2.3.14, p € B(v).

Therefore U’ C 8 N B(v), hence
vol(B N B(v)) > vol(U’) > c3 vol(B)

by Lemma 2.3.16, as desired.
[

Proof of Proposition 2.3.1. Since p is uniformly expanding, by Proposition 2.2.2, any ergodic -
stationary measure v has positive Lyapunov exponent. Hence in the case of volume-preserving
diffeomorphisms on surfaces, it is hyperbolic. Now by [BRH17, Thm. 3.4], either v is finitely
supported, the stable distribution is non-random, or v is the restriction of m to a positive
volume subset. By Lemma 2.3.3, the second possibility is eliminated. In the third possibility,

by Proposition 2.3.4, we have v = m. The result follows. ]

2.3.8  Comparison with Brown-Rodriguez Hertz

The following proposition may be viewed as a motivation for the assumption of uniform expan-

sion, in view of the theorem [BRH17, Thm. 3.4].

Proposition 2.3.18. Let M be a closed surface, u be a Borel probability measure on Diff?(M).
If 1 is not uniformly expanding, then there exists an ergodic u-stationary measure v on M and
a p-almost surely invariant r-measurable subbundle V C TM in which the top Lyapunov

exponent is nonpositive.
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In particular, if p is supported on Diff?n(M) for some smooth measure m on M, then p is
uniformly expanding if and only if every ergodic u-stationary measure v on M has a positive

Lyapunov exponent and the stable distribution is not non-random with respect to v.

To prove this proposition, we first note that each map f € Difo(M ) induces the projective

action on the unit tangent bundle T2 M by

(o) = (#on pi )

[ D f (v)]]

From now on we shall abuse the notation and write f(z,v) := f - (z,v).
In the case that u is uniformly expanding, we first construct an ergodic stationary measure

on T1M which does not exhibit exponential growth on average.

Lemma 2.3.19. If p is not uniformly expanding, then there exists an ergodic p-stationary

measure 77 on T M such that

[[rosIDar@)ldut v, <.

Proof. Fix ¢ > 0. Since p is not uniformly expanding, for all positive integer N, there exists

(zn,vy) € TTM such that

[ 1081102y o llan™f) < e (23.1)

Let

1 N—-1
=5 X [0

and let 7 be any weak-* limit point of {vy'}. Note that 7 is a p-stationary measure on 7'M

since

N
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and hence as N — oo,

1
HAVN —VN = (/ 6f(:cN,vN)d’u(N)(f) B 5($N’UN)> -0

For f € Diff>(M) and (z,v) € T'M, let

O(f, (x,v)) := log || Da f(v)]-

Note that for each N € N and w = (wp,wy,wo,...) € Diff2(M)N,

N-1

log || De £ ()| = Y ®(wn, f5(x,v)). (23.2)

n=0

Since the first argument of ®(wy,, f/*(z,v)) depends only on the (n + 1)-th coordinate of w, and

the second argument depends only on the first n coordinates of w, we have

[ 10810222 )" Z/ (s £, 0)) A Z/ (9, f (2, 0))du(g)dp™ ().

On the other hand, the left hand side is /log HDg;f(v)Hdu(N)(f). Therefore if we set (z,v) =

(xn,vN), by the definition of vy and (2.3.1), for all N € N,

[ [0t dutg) don o) <

By continuity of ® and weak-* convergence, we have upon taking limit

//cbdudvg().

Let 7/ be an ergodic component of 7 such that

//d)dudﬁ’go,
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which exists since 7 is a convex combination of its ergodic components. This measure 77 satisfies

the desired properties. O

Proof of Proposition 2.3.18. Assume that p is not uniformly expanding. Consider the measure
7' given by Lemma 2.3.19. Let v := 17/, where 7 : TIM — M is the natural projection. Then
note that v is an ergodic p-stationary measure on M since 7 is equivariant with respect to the
action by Diff?(M). Let {7} be a family of conditional measures of 7 along the partition of
T1M into fibers over M.

Let F be the skew product map on Diff2(M)N x T1M defined by F(w,z) = (o(w), wo(z)).
Recall that 7 is an ergodic p-stationary measure on T1M if and only if ,uN x 7' is an ergodic
F-invariant measure on Diff2(M)N x T1M ([Kif86, Lem. 1.2.3, Thm. 1.2.1]). Consider the
following map on Diff2(M)N x T1M,

V(w, (#,v)) := log || Dzwo(v)]|

By the pointwise ergodic theorem, for v-a.e. x € M and 7,-a.e. v € T%M,

N—

1
.1 _
lim N g . V(o™ (w), f5(z,v)) = //\IJ N av’ for N-ae. w. (2.3.3)
n=

N—o0

Note that since ¥ depends only on the first coordinate of w, by Lemma 2.3.19,

//wuN i = //10g||Dmf(v)||du(f) 47 (,v) < 0, (2.3.4)

/ spans a p-a.s. invariant v-measurable subbundle V. TM (not

Now the support of 7
necessarily proper). Apply (2.3.3) again, we have that the top Lyapunov exponent in V is
nonpositive.

Finally, to show the second assertion, assume that p is supported on Diﬁ%(M ) for some

smooth measure m on M and p is not uniformly expanding.

In the volume preserving case, for each ergodic p-stationary measure v, either all exponents
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are zero for v-a.e. x, or there is a positive and a negative exponent for v-a.e. x. If all the
Lyapunov exponents of v are zero, we are done. Hence we may assume that v has a positive
exponent. By Oseledets theorem, for N x v-a.e. (w,z) € Diff2(M)N x M, the tangent vectors
in T M outside of ES(z) have exponential growth. Since vectors in V(z) have nonpositive
top exponent, V(z) C ES(z) for v-ae. x € M. Since ES(x) is one-dimensional, we have
V(z) = ES(x). Since V is p-a.s. invariant, we have that the stable distribution ES(z) is
non-random. This shows the “if” direction. The “only if” direction follows from Proposition

2.2.2 and Lemma 2.3.3.

2.4 Equidistribution and Orbit closures

We now prove an equidistribution statement from the measure rigidity result using the exis-
tence of a Margulis function, which follows from uniform expansion. We follow the strategy in
[EMM15], the idea of which goes back to [EM04] and [EMMO98]. The orbit closure classification
then follows. The assumptions we make in this section are slightly weaker than Theorem D,

though Theorem D suffices for the applications in the subsequent sections.

Proposition 2.4.1 (Equidistribution). Let M be a closed surface, I' € Diff?(M) be a subsemi-
group that preserves a smooth measure m on M. Let pu be a uniformly expanding probability

measure on Diff2 (M) with u(I') = 1 satisfying
/D'HQ(M) |f|g2 + |f_1|602 du(f) < oo for all sufficiently small 6 > 0. (**)
1

Suppose x € M has infinite [-orbit. Then for any continuous function ¢ € C (M),

1 n
im — (k) ( ¢y —
A ; /Diﬁ2(M) o(f(x)) dpt™ (f) /M © dm.

Clearly if p is finitely supported, then (**) is satisfied. Also assumption (**) is stronger than

().
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Proposition 2.4.2 (Orbit Closures). Let M be a closed surface, I' € Diff?(M) be a subsemi-
group that preserves a smooth measure m on M. Let u be a uniformly expanding probability
measure on Diff2,(M) with p(T') = 1 satisfying (**). Then every orbit of T' is either finite or

dense.

The following lemma shows that if p is uniformly expanding, then there exists a so-called

Margulis function.

Lemma 2.4.3. Suppose p is a uniformly expanding measure. Then there exists a proper
continuous function u: M x M N A — R4, ¢ <1, b> 0 and a positive integer ng such that for

all (z,y) € M x M A,

/ w(f(2), F(9)du"(f) < culw,y) +b.

Proof. The proof is similar to Lemma 10.8 of [Vial4]. We can take

u(w,y) = d(z,y) ",

where ¢ € (0,1) is a small number to be determined. Fix € M and v € T, M. Consider the

#al0) = /Diﬂ-’2(M) (HD:ﬁiﬁ )H) au (f)'

This is a differentiable function in d, with

)|\ ~° "
W“‘/Diﬁz(m () s (1) oy

By uniform expansion, there exists C' > 0 and N € N (independent of = and v) such that

S (D)) )
0 = /Dime)lg( ol )“ (N=<-C

Since ¢ (0) = 1, for small enough 6 > 0 (can be chosen independent of x and v using the

function
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compactness of M and T1M), we have

HmﬂMU” (V) s
o) = _— d -
#N(0) Awmx o] )=t

Take such a ¢ in the definition of u, and let ng = N. Then we have

1D FIN ™ (no) o
ﬂgm@< M!) W) = 1=

Let ¢ = 1—C§/4. Take ¢ > 0 small enough such that for all z,y € M x M ~\ A with d(z,y) < e,

d(f (@), W)™ (no) G
/ () < 1= e

For 0 < d(z,y) < ¢,

/wﬂwﬂmeWﬁ:/wﬂmﬂwﬁwMWﬁ<mmw”=w@w

Now using the moment condition (**) (take a smaller § > 0 if necessary), we can take some

b > 0 so that for all z,y € M with d(z,y) > ¢,
[ @), £ dn) ) <.
Hence for all (z,y) € M x M \ A,

/wﬂmﬂmeWﬁSwww+b

]

Corollary 2.4.4. Suppose u is a uniformly expanding measure and N/ C M is a finite I-orbit.

Then there exists a proper continuous function frr: M~ N — R, ¢ < 1, b > 0 and a positive
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integer ng such that for all z € M ~ N,

/fN n0)(f) < efpr(@) +b.

Here ¢ and b depend only on the size of N. Moreover, for each x € M ~ N, there exists a

positive integer n(x) such that for all n > n(x),

(" 5 2) () = [ I ()™ (1) < b,
where by = by(b,¢). For each compact subset F C M ~ N, we can take n(z) such that
supgep n(z) < oco.

Proof. Let u: M x M ~ A — R4 be the function as in Lemma 2.4.3 with the corresponding

¢ < 1and b >0, and define the function frr: M ~ N — R by

V(x) = \N\Z (x,y).

yeN

Take the positive integer ng as in Lemma 2.4.3. Then for all z € M ~ N,

/ (@) dpm0) (1) = W1| S u(f (@), y)dum) (f)

yEJ\/
_Wll S ulf (@), Fy)du™(f) < efa(a) +b
yeN

Here we used that A is I-invariant in the second equality. This gives the first assertion.

For the second assertion, from the above, for all positive integer k and z € M ~ N,

b
1—¢

(1700 4 5,)(fr) = / I (F@)dut ) (£) < far(a) +
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Therefore for all n > 0,

(1™ 5 6,) () = / In(F@)dp™ (f) < o)y s, (far) +

1—¢’

where i := n — ng|n/ng|] < ng. Now for any compact F C M ~ N, there exists some positive

integer mp such that for all n > mp,

. b
CLn/noJM(Z) x 0p(fr) < R forall 0<i<ngyg z€kF

Then for any n > mp and z € F,

2b

(") 5 02) (fa) < =, = b1

]

Corollary 2.4.5. Suppose p is a uniformly expanding measure and N C M is a finite I'-orbit.
Take far,c, b as in Corollary 2.4.4. Suppose v is an ergodic p-stationary measure on M with

v({fny < o0}) > 0. Then
/fN(I)dV(:L‘) < B,

where B depends only on b, c.

Proof. For each positive integer n, let far,, := min{fys,n}. By the Birkhoff ergodic theorem,

for uN x v-ae. (w,z) e N x M,

where for w = (wp,wi,...) € TN, fF .= w;_{owp_go0-- 0wy Pick a point zg € M ~ N
such that the convergence holds for uN—a.e. weN (note that we can pick such xg ¢ N since
v({fy < 00}) = v(M ~ N) > 0). By Egorov’s theorem, we can take a subset I’ ¢ TN with

pN(I7) > 1/2 such that at © = x, the convergence is uniform on w € I'. Then there exists a
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positive integer m,, such that for all m > my, and w € I”,
_Zf/\/nfwx() /f./\/n )dv(z

Integrating over w € I'N, we have for all m > my,,

—Z/f/vn (w))du®) /an )dv(x

By Corollary 2.4.4, for large enough m, the left hand side is at most some constant B’ = B/ (b, ¢).

Therefore for all n,

[ i atwyiv(e) < 18"
Taking the limit n — oo, we have the assertion. [
Proposition 2.4.6. The number of points with finite I'-orbit is countable.

Proof. 1t suffices to show that for each positive integer n, there are finitely many I'™-orbits of size
n. Suppose the contrary that there are infinitely many I'-orbits of size n. Then by compactness
of M, they have an accumulation point © € M, hence there exists a sequence of points x; € M
with finite ['-orbit of size n such that d(x;, z;41) — 0 as i — co. Fix an ¢ = ¢(B,n,d) > 0 (to
be determined later), and a large enough j such that d(z;,7;11) < e. By deleting finitely many
points from the sequence if necessary, we may assume z; and x ;1 are in different I'-orbits. For
each i € N, let v; be the ergodic I'-invariant (hence p-stationary) measure on M supported on
the I-orbit A; of x; with uniform distribution, i.e. v;(2) = 1/n for each x € N;, and let f; := fy;,
be the function defined in Corollary 2.4.4 with the corresponding upper bound B = B(b, ¢) as
in Corollary 2.4.5. As w11 ¢ N}, fj(xj41) < oo. Hence v 1(fj < o00) > 1/n > 0. Therefore

by Corollary 2.4.5,
[ i@vjsa@) < B (%)

On the other hand, recall from definition that f;(x) = Wl’TZyENJ u(z,y) where u(z,y) =
j
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d(x, y)_5 for some ¢ > 0 chosen in the proof of Lemma 2.4.3. Thus

1 1 1
/fj(a:)dyj+1(x) =3 Z Z u(z,y) > mu(xﬁ—la%’) > ms_é.

ZZTE./V.]'+1 yGJ\/j

Taking e small enough such that e~ > 2Bn?, this leads to a contradiction to (¥**). O

Define

zn: W)

k=1

ﬁ(n) =

SRS

Lemma 2.4.7. Let N be a finite I-orbit in M. The for any € > 0, there exists an open set
Qp e containing N with (Qpr .)¢ compact such that for any compact F' C M \ A there exists

a positive integer np, such that for all x € F' and n > np, we have

(A" * 62) (v e) <.

Proof. The proof follows that of Proposition 3.3 in [EMM15]. Take the function fpr : M~ N —

R as in Corollary 2.4.4 with the corresponding ¢ < 1, b > 0 and positive integer ng. Let

QJ\/,63:{93€M1fN(55)>§(12—_I)C+1)}-

By Corollary 2.4.4, for each compact subset F' C M ~ N, there exists by = 2b/(1 —¢) >0

and positive integer mp such that for all n > mp and x € F,

(") % 82) (far) < by

Therefore there exists a positive integer np > mp such that for all n > np and =z € F,

(™) 5 82) (far) < by + 1.
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Thus for all n > np, x € F and L > 0, we have

b1 +1

(A" 5x)({p € M : fir(p) > L}) < =

Therefore by the choice of Q) ., we know that (7 %6,) (02 N ) < €. Moreover, it is clear from

the definition of fys and the choice of u in Lemma 2.4.3 that

o) = foe s o < 2 (2 +1)]

3

is compact. ]

Proof of Proposition 2.4.1. Assume that the conclusion of the assertion does not hold. Then
there exists ¢ € C'(M), € > 0, € M with infinite I'-orbit and a subsequence nj — oo such

that

(@) 8,) () — m()] > e.

By compactness of the space of probability measures on M with the weak-* topology, we may
assume that ﬁ<”k) x 0, — v for some probability measure v.
First note that v is a u-stationary measure. By Proposition 2.4.6, there are at most countably

many finite [-orbits. Therefore by Proposition 2.3.1, we have the ergodic decomposition of v:

V= Z anNvN +am,
NcM

where the sum is over all finite T'-orbit N. Here a,ap € [0, 1], and vp is the probability
measure supported on the finite I'-orbit A with uniform distribution. It remains to show that
ap = 0 for all finite I-orbit N.

For each finite I'-orbit NV, as x ¢ N by assumption, we may apply Lemma 2.4.7 with N
and compact F' = {x}. Then for any € > 0, there exists a positive integer n, such that for all

n > ng, (ﬁ(") *02) (7 £)¢) > 1 — €. Passing to the limit along the subsequence nj, — oo, we
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have

v((Qe)) 21 —e
As e > 0 is arbitrary, we have v(N) = 0. Hence ay < v(N) = 0. O

Proof of Proposition 2.4.2. This is an immediate consequence of Proposition 2.4.1, as every

nonempty open subset of M has positive volume. O

2.5 Geometric interpretation of uniform expansion

In the rest of the paper, we study how to verify uniform expansion in concrete settings. In this

section, we give a geometric perspective of uniform expansion by visualizing it on the hyperbolic

disk.

2.5.1 Cartan decomposition and hyperbolic geometry

Let F € SLy(R). Throughout we identify the real projective line Pt = P}(R) with R/7Z as
metric spaces, i.e. we identify each line in R? through the origin with the angle it makes with

the positive horizontal axis. Recall that the Cartan decomposition of F' is given by

cosf sinf A0

F =r_gpayrg, where rg = and ay = ,

—sinf cos® 0 M1

for some A > 1 and ¢,0 € S1 = R/27Z. Moreover,

A=||F[l:= " sup

is the (operator) norm of the matrix F. We remark that if A = ||F'|| > 1, then ¢ and 6 are

uniquely defined modulo 7, i.e. correspond to a unique element in Pl We call § € P! the
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expanding direction of I’ since

IF(0)] = sup [|[F(0)] = A,
§'cP!

cos 0
where F'(0) is the vector F' . Tt is easy to see that if we let p := 6 + /2 € P, then

sin 0
FO:)|| = inf |[F(@)] = 1.
1F(0F)] oL 1£(0")]]

Hence for |[F|| > 1, we call p = 0 + 7/2 € P! the contracting direction of F. Notice also that
p e P! and p+m/2 € P! are the contracting and expanding directions of F~ 1.

In certain computation we find it helpful to have an explicit formula to compute the con-
traction direction and the norm given the matrix F' € SL9(R). This is given by the following
simple lemma.

a b
Lemma 2.5.1. Let F = € SLy(R) with ||F|| > 1. Then

c d

(a) the contracting direction 8 € P! satisfies

2(ab + cd)
a?+c2 -2 —d?¥

tan 2‘9F =

here we follow the convention that 1/0 = co and that tan ¢ = oo implies ¢ = 7/2 € P!,

(b) The norm X := || F|| satisfies

M2+ 2+ 2+ 42
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In particular, if a2 + 02+ c2+d?>>1, then

/\N\/a2+b2+c2+d2.

Proof. Part (a) is a straightforward computation by considering the function

a b cos
£(6) := | F@O)]? =

c d sin 6

Notice that for ||F'|| > 1, f is not a constant function, and the expanding and contracting
directions are precisely the critical points of f, i.e. when f/(#) = 0.

For part (b), we observe that
tr(FTF) = a® + 0> + 2 + d>.
On the other hand, if we write F' = r_yayrg, then
FTF = (r_paxry)(r—payrg) = r_,ga%\rg.

Hence its trace equals A\2 + A\~ 2. O

We also find it helpful to think of each F' € SLo(R) as a point of the unit tangent bundle of
the hyperbolic plane in the disk model 77D, using the identification 71D < PSLy(R) :=
SLo(R)/{x+I} (Figure 2.2). Recall that the group PSLs(R) is the group of orientation-
preserving isometries of the hyperbolic plane H? := {z € C : Im(z) > 0}, which can be identified
isometrically with the hyperbolic disk D := {w € C : |w| < 1} via the map z — (z —4)/(z + 7).
PSLy(R) acts simply transitively on the unit tangent bundle T 1D, hence one can identify
PSLy(R) with TMD so that the identity element e corresponds to the unit vector based at

the origin pointing rightward. Moreover the identification is such that the isometry ¢ on 71D
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corresponds to the right multiplication by the inverse g~ ! on PS Lo(R). We visualize the base
point on the disk model D <+ SO(2)\SLa(R). For instance, the matrix F' = r_,a\rg € SLo(R)
corresponds to the point Pp € D with polar coordinates (2log A, 20) (the first coordinate mea-
sured in hyperbolic distance) and the unit tangent vector with angle 2(6 — ¢) from the positive

real axis.

Figure 2.2: The matrix F' = r_yay\rg € SLo(R) in the hyperbolic disk

Hence one can read off the norm of F' from the distance between Pp and the origin, and
read off the contracting direction from the angle from the positive axis.

Now we relate this picture with uniform expansion. From now on, we assume that p is finitely
supported, so that the uniform expansion condition reduces to a finite sum. For simplicity, for
the moment we also assume that the maps in the support of u have the same mass. Let
Q:={f1,fo,---, fa} C Difo(M) be the support of u. Then p is uniformly expanding if there
exists C' > 0 and N € N such that for all x € M and v € T, M,

D.. N
S 1o 20,
e T

Here we recall that for w = (wi,ws, ..., wy) € QY and 1 <i < N, fl :=wjowj_j0---0wi.
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Note that by picking a measurably varying basis for the tangent bundle T'M, we can identify
D, fY as an element in SLy(R). Note that if § € P! is the contracting direction of Dy f,
then log || Dz £ (0)|| < 0. In particular if for some = € M, § € P! is close to the contracting
direction of D, fujj\f for many words w € QN then uniform expansion cannot hold. Hence
verifying uniform expansion amounts to checking that the contracting directions of D, f(ﬁv are
“spread out” enough. On the hyperbolic disk, for each x € M, we can draw the matrices D, fb{}\f
as endpoints of a tree from the origin, where each node with graph distance ¢ from the origin
corresponds to a matrix D, ff;, (Figure 2.3, the dashed lines indicate the contracting directions
of D, fb{,v for N = 3). Hence verifying uniform expansion reduces to studying the geometry of

the contracting directions.

Figure 2.3: The tree representing the random walk after 3 steps

2.5.2  Estimates on changes of the contracting directions

The following lemma provides a lower bound on the expansion of a given matrix F' € SLo(R)
in the direction 6, depending on the norm of F' and how far 6 is from the contracting direction

of F.
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Lemma 2.5.2. For all F € SLy(R) with norm || F|| > 1 and contracting direction 85 € P!, we
have

2
IF®)| > =||F| - d(6,0F) for all € P!.
™
Here we recall that the metric d on P! is given by the identification P! < R /7.

Proof. By the Cartan decomposition one may assume that F' is a diagonal matrix with entries

A and A1, with A\ = ||F||. The lemma now follows from a direct calculation. O

For matrices My, My € SLo(R), the following lemma shows that if My has large norm Ao,
then as long as the contracting direction of M is far away from the contracting direction of
My 1, as we vary the contracting direction of Mj, the contracting direction of the product

My My changes by 1/)\% of that amount.

Lemma 2.5.3. Let My, My € SLy(R). Let \; = [[M;]| > 1 fori = 1,2 and ¢ = 0Oy, +
/2 —0 Al e pis the distance between the contracting direction of M7 and the expanding
2

direction of M2_ 1

(a) If ||MyMs]| > 1, then
d9M1M2

=1
dor,

where we treat 0y, 7, as a function of 6y, by fixing My, ¢ My and \g.

b) If Ay > 1 and d(p. 7/2) > A5 then
() 2 2 ~ 2

dOnr v, 2(1+ kcos2p) 1

R 2
doyr, (k 4 cos2p)? A2

where k=——-=1 + .
2 —2 4

Here we treat 0y, 57, as a function of 6y, by fixing 6 L A1 and Ms. Furthermore, if
1

A > 1 and d(p,7/2) 2 A[ ! as well, then

dQMlM2 N 2 1

dOyr, (1+cos2p) A3’
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Proof. For (a), write Ms in its Cartan decomposition My = r_gya),7g,, and write Myr_g,ay,

in its Cartan decomposition
Mir—gyay, =1_ayry.
Then
MMy = Myr—pyay),rg, = T_ G ANT Y 1y

By the uniqueness of the Cartan decomposition (up to 1), we have 07, r7, = Opz, + ¢’ where

0" depends only on Mj, p9 = QM_1 and A9, hence the result of (a). This statement can be
2

visualized on the hyperbolic disk (Figure 2.4).

s
’

ld\efl/hj\;&

2log Ao
Figure 2.4: The change of 07, pz, as 0y, varies.
For (b), the assumptions d(p,7/2) 2 )\El and A1, Ao > 1 imply that ||M1Ms] > 1. Thus

On1, M, 18 well-defined. By applying the Cartan decomposition, we may, without loss of gener-

ality, assume that 6 := 0, 5y, is the contracting direction of

A1 O cosy singp Ao 0
0 /\1_1 —singp cosy 0 )\2_1
Note that
donrn,  dO
dOp, Cdy’
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The statement can be illustrated on the hyperbolic disk (Figure 2.5).

.
.
.
.
‘df
s //
7 //
. _
Rl
7z /’
e

s -

Z

Figure 2.5: The change of 6 as ¢ varies.

Using Lemma 2.5.1(a), one computes directly that

1o 12+ A7) -2
cot29—2()\2~|—)\2 )cot2g0+2 )\%_)\1_2

csc 2.

Hence upon taking derivative, one gets

(A?HIQ)(A%Q—AEZ)

dg A=A
A%H;?)(A%;A;?

A=A

cos 2¢ + (A3 + )\2_2)

de

5-
251n2290~|—%<( )+(>\%—|—)\2_2)C082§0)

Thus for Ag > 1, let & = (A + A7 %) /(A2 — A\[?), then

df 2(1+kcos2p) 1
dp (k + cos 2¢p)2 )\%'

In addition, by taking Ay > 1, we have k ~ 1, so

db 2 1
dp (14 cos2p) A3’

It is clear from Figure 2.5 that when ¢ is close to m/2, the random walk “backtracks” towards

65



the origin, so we do not expect a good estimate on df/dep. O]

2.5.8 A general criterion for uniform expansion

We finish this section with a sufficient condition for uniform expansion on one step of the
random dynamics. As mentioned in the introduction, this criterion illustrates that overlap
of contraction directions and maps close to rotations are essentially the two obstructions to
uniform expansion. Even though we will not use this criterion in the rest of the paper, one may
consider the verification in the next few sections as proving a more refined version of Proposition
2.5.4 (depending on the specific features of each application) and the verification of this more
refined criterion.

Given F € SLy(R), recall that we define Ap := || F|| to be the norm of F' with A\p > 1, and

0 € P! to be the contracting direction.

1 1
Proposition 2.5.4. For all A\.;it > 0, Amax > 0 and small enough € > 0 satisfying ——1/2 + - <
sine €

Aerit < Amax, there exists 7 = 9(Agrit, Amax, €) € (0, 1) such that if for all (z,0) € T'M,

p({f :dlp,f,0) >cand Ap, r > Aeig}) >n, and  Ap 5 < Amax  for p-as. f,

then p is uniformly expanding. Furthermore, n can be made explicit.

We think of € as measuring the separation of the contracting directions at each point x € M,
Acrit s measuring how far D, f is from a rotation, and Apax as the maximum norm over all
the points z € M and all the possible maps f in the support of u.

The idea of the proposition is that if at every point, the contracting directions of the
diffeomorphisms are spread out enough and most of the diffeomorphisms are far from being
a rotation, then with high probability the random walk does not backtrack. Lemma 2.5.3(b)
and the next two lemma then tell us that the contracting directions of the random walk will
eventually be spread out as well. In this case, as long as none of the norms dominate the others

(bounded by Amax), we can obtain uniform expansion. In particular, as we will see, 7 is an
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increasing function of A\jpax and a decreasing function of M.t and €.

Lemma 2.5.5. Fix m > 1. Let My, My € SLo(R). Let A\ := ||Mq] > 1 and 7 := ||Ms]| > 1
be the norm of M and M, ¢ =0y, + /2 — 0M51 be the difference between the contracting
direction of Mj and the expanding direction of M, 1 Then the norm of the product MjMs is
at least A\7/m if and only if

2(()\T/m)2 + ()\T/m)_Q) B N2 7242
(>\2 _ )\—2)(7_2 _ 7.—2> )\2 _ )\—2 7_2 _ 7.—2’

cos 2¢ >

In particular, if A\ > /m, 7 > y/m and |cosp| > 1/m, then the norm of MM, is at least

AT /m.

Proof. The first equivalence is a calculation using the Cartan decomposition. Note that the

a b
norm A of a matrix € SLo(R) is the unique root of

Niat=d it + A+ P

with A > 1. In particular X\ is an increasing function of a? + b2 + 2 + d?. Now the norm of

M1 My is the same as that of

A0 cosp sing T 0 AT COS ¢ A Lging

0 A1 —sing cosp 0 71 A lrsing Al leosy

Thus ||M1Ms|| > A7 /m if and only if

AN
(At cos )2 + (A Tsing)2 + (A rsing)? + (A Leos ) > (ET) + <ET) . (2.5.1)

Rearranging (2.5.1) gives the first assertion. Finally, the left hand side of (2.5.1) is an increasing

function of cos? ¢ for A > 1 and 7 > 1. One can verify directly that (2.5.1) holds when A > \/m,
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T > \/m, cos? ¢ = 1/m?, therefore it also holds for cos® ¢ > 1/m?2. O

The next lemma controls the contracting direction of MMy assuming no backtracking.

Lemma 2.5.6. Fix m > 1 large (an explicit lower bound will be obtained in the proof). Let
My, My € SLy(R). Let A := [[Mi]| > 1 and 7 := |[Ma|| > 1, ¢ = Opp, +7/2—0,,1 € P! =
2

R/7Z as in the previous lemma. If |cosp| > 1/m and 7 > m,

m2

Oy, O 0m,) < —3-

If we further assume that 7 > \/§m, the conclusion holds for all m > 1.

Proof. Note that if ¢ = 0, d(0r,, Opr,01,) = 0. Therefore we need to give an upper bound on the
increment of 07, pz, as we vary ¢ within the given range. Again by the Cartan decomposition,

it suffices to consider the matrix

A0 cosp sing T 0 AT COS ¢ A~ Lsin g

0 A1 —sing cosp 0 7 A 1rsing A lrlcose

and give an upper bound on the absolute value of its contracting direction . By Lemma 2.5.1

(a), one obtains,

(A2 = X 2)sin 2

tan 20 = )
%()\2 +A2) (2 —172) + %()\2 — A" 2) (72 + 772) cos 2¢

Since |20| < |tan 26|, and also the right hand side is an odd function of ¢, it remains to show

that for ¢ € [0, 7/2] with |cos¢| > 1/m,

2 =2\ 2
(A2 — A79)sin2¢p < m (25.2)

flp) = A2+ X2 (12 =772+ (N2 = A 2)(72 + 77 2) cos 20 — T2

Clearly | cos ¢| > 1/m if and only if cos 2 > —1 + 2/m?.
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Case 1: A < 7. Then

O e (G e I O S N [C e o )}

Using the fact that cos2¢ > —1 4+ 2/m?, the denominator of f(¢) has a lower bound

A EA D =72+ AN = A2+ 7D cos20 > (A2 = A7) (2 + 772)(1 + cos 2¢)

(>\2 - )‘_2)7—27

and (2.5.2) holds.
Case 2: A\ > 7. Welet k:= (A2 + XA72)/(A\2 — \72) > 1 and write

sin 2¢
E(r2 — 77 2) 4+ (12 + 77 2) cos 2¢°

flp) =

Since A > T,

AW +A (P —r ) <M =22 +772),
and therefore k(72 — 772) < (72 + 72). Now compute

k:(T2 — 7_2) cos2p + (72 + 7_2)

> 0.
k(12 — 772) + (72 + 772) cos 2¢)2

fle) =2

On the other hand, note that the denominator of f(¢) is positive for ¢ € [0, /2] with | cos | >
1/m:

()\2 + )\72)(72 — 7'72) + (>\2 — )\*2)(7'2 + 7'72) cos 2¢p
> ()\2 — )\_2)[(72 — 7'_2) + (7'2 + 7'_2) cos 2¢]

> (M= AP =) + (P ) (=14 2/m))

> (2 (G e,
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Since T > m, 272 / m? > 2772 and hence the right hand side is positive. Therefore within
the given range of ¢, f(p) is a smooth increasing function of ¢, hence its maximum occurs for
© = g, where g € [0,7/2] is such that cos2pg = —1 4 2/m?, or equivalently | cos ¢g| = 1/m.
Now

2
sin 2 = 2sin g cos pg < —.
m

Therefore recalling that k > 1,

f( ) B sin 2¢q 2/m
TR T ) F (2 ) cos2pg

B T_j (1 - (77112/7111)7'_4) '

Finally, as 7 > m, we have

1/m < 1/m m3
I—(m2 -1 4" 1-m2-1)m* mi+1-—m2

As m — oo, the right hand side goes to 0, therefore for large enough m, it is less than 1, hence

for large enough m (can take, say, m > 1.4),

fleo) < m?/7%,

and the result follows. If we assume that 7 > \/§m, then we have instead

1/m < 1/m B m3
1+(1—m2)r4 = 1+ (1 —m?m4/4  mi4+(1-m2)/4

The right hand side is a smooth decreasing function for all m > 1 and is exactly 1 at m =1,

hence it is at most 1 for all m > 1, and so f(pg) < 7712/7'2 for all m > 1. O

Proof of Proposition 2.5.4. Let mg := 1/sine. Clearly Aeq¢ > mg. Fix x € M and 0 € Tle.
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Consider n maps f1, fa, ..., fn € Diff?(M) satisfying

)\Dfiflfi72"'f1($)fi > /\Cl"it and ADfZ’*lfi72"'fl(z)fi S )\max for all 1,
(2.5.3)
and
d(gDa:fl ,0) > ¢, d<0Dfi71fi72“'f1(x)‘fi’ Q(Da:fi—lfi—z"'ﬁ)_l) > ¢ for all 7. (2.5.4)

For each ¢ > 1, we apply Lemma 2.5.5 with My = Dfiflfi72"'f1($)fi’ Moy =Dyfi1fi—o--- f1

and m = mqg. Then M{ Moy = Dy f;fi—1--- f1. Note that the corresponding

Y= ‘L)Dfiilfiﬂ...fl(m)fi /2= 0D, gy fimgefi)

satisfies | cos | = |Sin(eDfiflfif2'“f1($)fi - Q(Da:fiflfif?"fl)_lﬂ > |sine| =1/myg. Also

||sz—1fz—2f1(x)fl“ > Aerit > Mo > \/m_o

for all ¢, thus by induction using Lemma 2.5.5 we have

AL

CI'l

Afz‘fi—l"‘fl > =
m

(note that the right hand side is greater than Ay > mqg > y/mg.) Since Agit > v2mg, by

Lemma 2.5.6, we get that

, —9 ,
N\ m 21

2 ri 0
AODy f; 1 fi—o 110D fifior11) < 0 (%) = ( ) :
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Since d(0p, f,,0) > €, we have

o 9> (m0)2+<mo)4+ .+(mo)2” oD’
Dy fnfn—1f1 )\crit )\Cﬁt )\Cﬁt 1_ (mo/)\crit)Q .

1 /1 Acrit)
As — 2+ — < Aqit, we have (1710 Acrit) 5 < €/2 (recall that mg = 1/sine). Thus
sin e € 1 — (mo/Acrit)

dOp, f, f, 1 f1:0) > €/2. By Lemma 2.5.2,

n

2 AT
log | Dy frfn—1--- f1(0)|| = log (;/\fnfn1.-.fld(9sznfn1...f1,9)) > 10gm%—rlt1
0

£
=

By assumption we know that the ,u(”)—probability that the chosen f1, ..., f, satisfy (2.5.3) and

(2.5.4) is at least 5. Moreover for u(")-almost every f, log || Duf(0)|| > —nlog Amax. Hence

A e
/ log | D f(8) ™ () = " (1og mn—j;) + (1= 1) (=n10g Mna). (2.5.5)
0
Take n large enough so that
log Litli > 0.
my T

Now fix such n, as the right hand side of (2.5.5) increases to log %—ritl— as 1 — 1, there is

m

0
some n € (0,1) such that the right hand side of (2.5.5) is positive. O

ne(0,1) g p

2.6 Discrete random perturbation of the standard map

In this section, we show an example of a random dynamical system satisfying uniform expansion.

Let L € R be a parameter. The standard map ®; of the 2-torus T? = R?/(27Z)?2, given by

O (1,0)=(]+ Lsind,0 + I+ Lsinb),

is a well-known example of a chaotic system for which it is hard to show positivity of Lyapunov

exponents (with respect to the Lebesgue measure on T2). For L > 1, it has strong expansion
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and contraction on a large but non-invariant region. Nonetheless on two narrow strips near
0 = +m/2, vectors can be arbitrarily rotated. The area of these “bad regions” goes to zero as
L — 00, so one expect the Lyapunov exponent to be roughly log L, reflecting the expansion
rate in the rest of the phase space. However, positivity of Lyapunov exponents has not been
shown for any single L.

In [BXY17], the authors considered a kind of random perturbations of a family of maps
including the standard map, and showed positivity of Lyapunov exponents for this perturbation
for sufficiently large L. More precisely, under a linear change of coordinates x =6, y =60 — I,

the standard map is conjugate to the map
F(z,y) = (Lsinx + 2z — y, x) (2.6.1)

on T? = R?/(2nZ)?. Note that F preserves the Lebesgue measure on T2. They considered the
composition of random maps

F) =F,, 0---0F, for n=123,...,

where

Fw:FOSLU7 Sw(x,y)z(x—l—w,y),

and the sequence w = (wi,ws,...) € ON is chosen with the probability measure ,uN, where
p = Leby_,  is the uniform distribution on the interval [—¢,¢] for some € > 0.

For this Markov chain, any stationary measure is absolutely continuous with respect to
Lebesgue measure. Hence they were able to use this in the subsequent estimates of the Lyapunov
exponents, using the fact that the Lebesgue measure of the “bad regions” goes to zero as L — oo.

In this section, we consider a discrete version of the random perturbation, where at each
step, one can choose from only finitely many maps with equal probability. In this case it is not
a priort clear that every stationary measure is absolutely continuous with respect to Lebesgue.

In particular it is possible that the stationary measure may have positive measure concentrated
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in the bad region. In fact, one of our results is a classification of the ergodic stationary measures
of this perturbation.

We shall show that this random dynamical system satisfies uniform expansion. As a corollary
we show that the maps have a Lyapunov exponent ~ log L. Moreover, from the previous
sections, it follows that the stationary measures are either finitely supported or Lebesgue, and
the orbits are either finite or dense.

Let r € Nand Q := {ke : k = 0,£1,£2,...,+r}. We consider the composition of random
maps

F)=F,, 0---0F, for n=123,...,

where

Fw:FOSLU7 SW(xay):(x—i_w?y)a

and the sequence w = (wy,w9,...) € ON is chosen with the probability measure ,uN =
N

1
ﬁ Z 0o | . Here 0. is the delta mass on Diff?(T2) at the map FJ,..
wefd
The main proposition in this section is the following.

Proposition 2.6.1. Let 6 € (0,1). There exists an integer rg = r¢(d) > 0 such that if r > r
1

and e € [L~19 1/(2r + 1)), then the measure p = T

Z 8, is uniformly expanding on T?

we
for all large enough L.

Throughout this section, estimates containing >, 2> and ~ are with respect to L — oo. More

precisely, we write
o f(L)>g(L)if [f(L)/g(L)| = o0 as L — oo.
* f(L) 2 g(L) if timinf [ F(L)/g(L)| > 0 (possibly infinitc).
o f(L)~g(L)if f(L)/g(L) = 1as L — oo.

A —1 Lecosx+2 —1
For A € R, let G(A) = € SLy(R). Note that DF, ) = =
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G(Lcosz +2). Let n € N to be determined. By Lemma 2.5.1, we observe that if A > 1, then

T
[G(A)|| ~ A, 9(;(,4) ~ g and QG(A)—l ~ 0.

The next lemma estimates the change of the contracting direction of products of G(A;) as

we vary one of A; and fix the rest, assuming A; is large for all j # 1.

Lemma 2.6.2. Let 6, be the contracting direction of G(A,)G(Ap—1)---G(A2)G(Ay). If

A; > 1foralli =1,2,...n, then for each i with 1 <17 <n,

doy, 1
dA;  A2A%.. A%

More precisely, let 8}, be the contracting direction of G(A},)G (Al _;)---G(AL)G(A]).

n—1

For each i =1,2,...,n, if A; :A;.>>1for all j # i, and A;, AL > 1, then

ot (%)
AjAG - A A '

]

Proof. By Lemma 2.5.1(a), we know that

2
2 ==
tan QG(A) 1
By differentiating in A,
ey 1
dA A2 44
By Lemma 2.5.3 (a), for all 1 <i <mn,
W6(A)G(An1)-G(4) _ WGy 1
dA; dA; A2 +4

Moreover, using Lemma 2.5.1(b), one can show that for all 1 <i <mn,

|G(A;)G(Ai—1) - G(A)|| ~ A1Ag--- A;
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since the top left corner of G(A4;)G(A;_1)---G(A1) is A1Ag--- A; and the other three entries

are of strictly lower order if Az > 1 for all 1 <k <. Also notice that

0G(An)G(An_1)-G(Ay) ™~ T/2 and 0(Gai_1)G(A_g)-G(A)) 1 ~ 0

Apply Lemma 2.5.3(b) with M7 = G(A,)G(A,_1) - G(A;) and
My = G(A;—1)G(Ai-2) - G(A1), we have

WOcA)G(An1)-C4y)  (A1Az--- A 1)?

Hence

diy _ db, A0 (A,)G(Ap_1)—C(4;)
i d0G(4,)G(An1)~GC(A) dA;
1 1 1

(AgAg---A;_1)? A2 +4  A2A3... A%

]

The next lemma estimates the change of the contracting direction of DFJ if we fix the first

i — 1 letters in w and change wj; for all j > 1.
Lemma 2.6.3. Let w,w’ € QN, e > L~ L Given (x,y) € ']I'2, fori=20,1,2,...,n, let

o (x1.yi) = Fi(a,y) and (2, y}) = Fl (2,y).

e A;:=Lcosz;_1+2 and Aé = Lcosxgil +2fori=1,2,3,.

c ey

e 0,0 be the contracting directions of G(Ay)G(A,_1)---G(A3)G(A7) and
GALGA, )+ GIAYG(A)).

n—1
For each i = 1,2,...,n, suppose A; = A;- > 1 for all j < 1, Aj,A"j > 1 for all 5 > ¢ and
A; — Al Z eL/2. Then

1 eL/2

-6 > : (a)
~ A2 A2 2 Al
ATAG - A7 A
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As a result,
~ AjAg- - A A; .

IDEZ ()]

Proof. Without loss of generality, assume that A; > A;. For all j > 1, let ; be the contracting
direction of

G(AR)G(A)_1) - G(A})G(Aj1)G(Aj—a) - G(Ay).

n—1

Then 6" = ;. We also use the notation 6,1 := 6, the contracting direction of

G(An)G(A,_1)---G(A1). By Lemma 2.6.2, for all i < j < n,

" 1 <1 1)
J T VI 940 2 A, A |
A A\ Ay A

For all j > 1, since Aj,Ag- >1,A; > Ag and ¢ > L™, we have

0 1 ( 11 ) - 1 eL/2
3T VI 02 2 A Al 212 2 A
ARA3A2  \4 A AZAZ. A2 AA

1 (1 1>
S - — 7 ) ~0i— b
22 AT \A A

7

Therefore 6; — 011 is dominated by 6; — ;1 for all i < j < n. Hence

1 1 1
0/ —0=0;—0p11=0;—0;41)+ 011 —0i40)+- (On—0Op11) ~ (———).
7 n+1 ( ) z+1) ( i+1 z+2) ( n n+1) A%A%"'Ag_l Ai Al

7

The second statement follows from the first by Lemma 2.5.2 since ||G(Ay,)G(Ap—1) - - G(A1)]| ~
ApAp—1--- Ay by Lemma 2.5.1(b). ]

Proof of Proposition 2.6.1. We are now ready to prove the main proposition of the section. The
idea is as follows: for each point (x,y) € T2, since the elements in Q are of distance at least
e> [0 apart, for each ke € Q, for all k'e € Q\ {ke}, all except possibly one of them satisfy

(let A(x) := Lcosx + 2 for x € R/277Z)

|A(z + K'e) — Az + ke)| > eL/2 and |A(z + K'e)| > L°. (2.6.2)
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Geometrically, this means that firstly, all except one of them has norm growing to infinity with

L, and the contracting directions of the corresponding differential maps

Leos(x +w)+2 —1

DE(gywy)

are all pointing in roughly the vertical direction. Moreover, each of the contracting direction
is separated from all others (except one) by a significiant amount (~ /[[F(,4,,,)[). Hence
after n steps, for many of the words w € 2", the contracting directions are close to the vertical
direction and yet well separated (Figure 2.6). Thus each § € P! has distance from all but
one of these contracting direction bounded from below. From Lemma 2.6.3, we know that
the distance between the contracting directions of two words are dominated by their distance
at the first letter they differ, and yet the norm grows by at least L9 after every step. Using
Lemma 2.5.2, as long as the word does not enter a bad region (where the contracting direction
is rotated drastically), the log expansion log || DF[}|| will eventually be large. Since most words
do not enter a bad region, and those that do enter a bad region admit a trivial lower bound
log | DF|| = —nlog L, eventually we will obtain positive expansion on average.

We now make the above discussion precise using the previous lemmas. For x € R/27Z, let
A(z) = Lcosz + 2. Recall that at each point (z,y) € T2 = ]R2/(27rZ)2, the differential map of

F(z,y) = (Lsinz + 2x —y, ) is

Lcosx+2 —1
DF = = G(A(x)).

Let ¢ € [L™19,1/(2r +1)). For each w € Q = {ke : k=0, +£1, 42, ... +r},

Fyo=FoS,=(Lsin(z +w)+2r+w)—yz+w).
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Figure 2.6: The random walk after 3 steps. The bold directions form a well-separated ”tree”.

Hence the differential DFy, is

Leos(r+w)+2 —1
= G(A(z +w)).

Fix a point (z,7) € T?. For w,w’ € Q" and 0 < i < n, let

(i, yi) == F(z,y) and (2}, yl) == F" (z,y).

Let
A; = Lcosx;_1+ 2, and A; := L cos :L’g_l + 2.
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We say that a word w € Q" is long (with respect to (z,y) € T?) if
|AZ-|ZL5 for all 1 <i <n.

For each word w € Q" let

O :=Opprn

be the contracting direction of the matrix DF}}.
Observe by (2.6.2) that for each long w € Q" there are at least (] — 2)(|Q| — 1)~ ! long

words w’ € Q" such that

L
A1 - A4 2
By Lemma 2.6.3(a), since A} < L+ 2,
eL/2 _ ¢/2
O — 0, 2 7 2 =

Similarly, for all 1 < i < n, there are at least (|Q] — 2)(|Q2] — 1)"~* long words w’ € Q" such
that

wj = w} for all j < 1, and |A; — A;‘ 2 5

Thus again by Lemma 2.6.3(a),

1 L/2 1 2
0w — O 2 A2A2... 42 21/4’ < A2AZ... A2 %
I e A

For all § € P!, take a long word w € Q" that minimizes |6, — 6| (among long words). Then
from above, we know that for each 1 < i < n, there are at least (|| —2)(|Q] —1)"~* long words

w' € Q" such that

1 e/2 1 e/4
2 42 2 Al T 1242 2 Al
AJAs5--- A7 Ag AjA5--- A7 A;.

1
b =612 5
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Hence by Lemma 2.5.2 (note that A; = A;- for j < since w; = w;-),

1 e/4 1 e/4
2 42 2 Al 2 42 2 /
AIAQ"'Az’—l Ai A1A2"'Ai—1 Az’
S A{L+1A{L+2A%§ - (L5)n—z L—1+5
~ Al . 'Ai—l 4~ -l 4

Z Lé(n—z+1)—z

IDFZG O 2

Thus for each direction # € P!, for each i = 1,2, ..., n, we have at least (|Q —

words w in Q" such that
log |[DF;(0)|| 2 (0(n — i+ 1) —i)log L.
For the remaining |Q" — (|Q2] — 1) + 1 words w, we have
log [| DF(0)|| > —nlog L.

Hence

Jroe Dz @ 2 = o 1

n

IDED) 2 S AAY--

n)

2)(1Q]-1)""

where Z(|€2|,n,d) = Z(|Q| —)(Q - )" U6(n—i+1) —i)— (19" — (| — D" + 1)n.

1=1
The coefficient of || in Z(|€2], n, ) is nd — 1, hence is positive if n > 1/§. The coefficient of

Q" Lis —(6+1)(n?2+1)+n. If n > 1/, for large enough 7 (hence large enough |Q| = 2r +1),

we have Z(|€2|,n,0) > 1. Hence p is uniformly expanding for all large enough r (depending only

on §) and large enough L, with N := [1/8] and C = |Q|~" log L. Moreover, for § € (1/3,1),

106 + 7
30 —1°

we can take n = 3, and Q| >
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2.7 Computer-assisted verification of uniform expansion

In this section we outline an algorithm to verify uniform expansion numerically, when g is
finitely supported on Difo(M ). Uniform expansion is a priori an infinite condition in the sense
that there are infinitely many points on the manifold and infinitely many directions on each
fiber of the unit tangent bundle. Nonetheless since the maps in the support of u are C? and
the left hand side of the uniform expansion condition is Lipschitz in v, using the fact that the
unit tangent bundle T1M is compact, one can take a finite grid on THM, verify the uniform
expansion at each grid point, and then prove uniform expansion on the whole T1M by the
Lipschitz condition.

This algorithm checks a sufficient condition of uniform expansion when N = 1. Nonetheless,
by replacing u(N ) with {t, one may in principle apply the same algorithm to verify uniform
expansion for any N.

Let fi,... fq be the maps in the support of p and = c1dp +- - +cqdy, for ¢; € (0,1]. For

eachi=1,2,...,d, P € M and § € P!, we consider the function

F;(P,0) :=log || Dpf;(0)]].

Our goal is to verify that

IR

&
l
_

F(P, 9) = CZ‘FZ'(P, 9) >C (UE)

for some C > 0.

We now outline the algorithm.

Step 1: Choose local coordinates t1,t9 on M, and find Cjs, Cy > 0 such that

OF,;

OF;| _ OF;
ot

M 90 <Cy

for t = t1,t9. Such constants exist since F; is C1 and M is compact.
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Step 2: Fix some C > 0.
Step 3: Pick r, p > 0 such that rCp; < C/4 and pCy < C/4.

Step 4: Take a finite grid G on the unit tangent bundle 71 M that is r-dense on the manifold and

p-dense on the unit tangent space TIEM for each grid point P € M.
Step 5: Verify (UE) for each grid point (P,0) € G.

Step 6: From the derivative bounds in Step 1 and the choices of r and p in Step 3, one can
conclude that (UE) holds with C' replaced by C'/4.

2.8 QOuter automorphism group action on character variety

2.8.1 Introduction

In this section, we consider an example of a random dynamical system where the uniform
expansion property can be checked numerically using the algorithm outlined in Section 2.7.

Let F}, be a free group of rank n > 1, G be a compact Lie group. The natural volume form
on Hom(Fy,, G) is invariant under Aut(Fy,). This form descends to a natural finite measure A
on the character variety Hom(F},, G)//G that is invariant under Out(F},). We refer the reader
to [Gol07] for more details about ergodic properties of this system, and the celebrated work of
Goldman [Gol97] for a detailed account in the case when Fj, is replaced by the mapping class
group of a surface.

Goldman [Gol07] proved that in the case when G = SU(2) and n > 2, the Out(F},)-action
on Hom(F,,G)//G is ergodic. On the other hand, the action is not ergodic when n = 2, since

it preserves the surjective function

k:Hom(Fy,G)//G — [-2,2]

o] = tr(p([X, Y]))

83



where XY is a pair of free generators of Fy, and [X,Y] := XY X1y —1is the commutator of
X and Y. The ergodic components are the disintegration A of A on the fibers X := k71 (s) of
r for s € [-2,2].

In the case when n = 2, the topological dynamics of this action was studied by Previte
and Xia [PX00], who proved, in particular, that on each shell Xy, the Out(Fs)-invariant sets
are either finite or dense. In fact, they classified all the finite Out(F»)-invariant sets, and
gave a condition for when the invariant set is dense. On the other hand, Brown [Bro98]
showed using standard KAM techniques that for any nontrivial cyclic subgroup I' C Out(F3)
and s close enough to —2, there is a I'-invariant set with positive measure on Xg that is not
dense. We refer our readers to [Gol97] and [PX02] for analogous analysis of the measurable and
topological dynamics of the mapping class group Out(m(M))-action on the character variety
Hom (71 (M),SU(2))/SU(2).

The analysis in [PX00] relies crucially on the fact that Out(F3) is generated by Dehn twists.
In fact with minor modification their method also applies to the action of a subsemigroup
I' C Out(Fy) generated by at least two powers of distinct Dehn twists. In this section, we
consider a set of generators S of a semigroup I' C Out(F») that does not contain any Dehn
twists or powers of Dehn twists, and attempt to show that the I'-invariant sets are finite or
dense by showing uniform expansion on S and applying Theorem D. The uniform expansion
property is checked using a computer program. For s close to 2, the expansion is large enough
that uniform expansion is observed after 1 iteration. However, for s close to —2, the expansion
cannot be checked numerically due to the limitation of computational power. We will verify
uniform expansion for a specific s as a proof of concept, though the same algorithm carries for
other s close to 2 as well.

More precisely, consider the following two elements of Out(F»):

Tx : X=X, Y—=XY, v : X—=YX Y=Y

Note that 7x and 7y generate a subgroup (7x,7y) that has index 2 in Out(F2). Let T4go =
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74071 o T where A, B,C € {X,Y}. Define the subsemigroup
D={(fi:i=12...,16) C Out(Fy),

where
* f1=TXXXXY
* fo=TxXXYY"
* [3=TxXYYY"
* f4=TxyYYY,
® [5=TyXXXX:
* f6 =TYyvXXX,
* [T=TyyvXXx,
* f[s=TyyvyYX,

16
1
and f; = !/‘"1_71_Z for i =9,10,...,16. Now define the measure p := T (Z 5f2.> on Out(Fy).
i=1

The result of this section is the following.

Proposition 2.8.1. For s = 1.99, the measure p is uniformly expanding as an action on the

surface Xj.

Corollary 2.8.2. For s = 1.99, the I'-invariants sets on Xy are either finite or dense.
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2.8.2 Character variety as a subvariety of R?

We now describe the character variety Hom(F»,SU(2))//SU(2) in more explicit terms. The

character variety Hom(Fy, SU(2))//SU(2) injects into R? under the trace coordinates

Hom(F,,SU(2))//SU(2) — R?

tr(p(X))

o] = tr(p(Y))

tr(p(XY))

This is injective, with image
— 3. 2 2 2
X ={(zr,y,2) eR?: =2 < +y“+ z* —axyz — 2 < 2}.

Hence we may identify Hom(F,SU(2))//SU(2) with X. In these coordinates, the map x :
Hom(F>,SU(2))//SU(2) — [—2, 2] described in the introduction is then

k(x,y,z) = 2+ y? + 22— ayz — 2.
For s € [-2,2], the ergodic components are
Xs=r 1(s)={(z,y,2) e R :a? + 2 + 22 —ayz — 2 =s}.

In trace coordinates, the maps 7x and 7y are

T €T T z
TX - y — > , Ty y — y
z Tz — Y z Yz — T
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At each point P = (z,y, z), a normal vector is given by n(P) = (2z — yz,2y — zz,2z — xy),
_ n(P)

In(P)|I
From [Gol07, Sect. 5.3], a cosymplectic structure on X; can be given explicitly by (up to a

with the unit normal vg(P)

multiplicative constant)

Jg 0 0 g 0
20 — y2)— A — 4 (2y — 22) o A — + (22 — TY) e A —.
(2 yz)@y 82+( Y ZI)(‘?Z ox + (22 xy)(‘?x dy
Since T preserves the symplectic structre, if we take the metric || - [|p == |[n(P)||71/2| - |
on TpXs, where || - || is the restriction of the Euclidean metric from R3 to the tangent space

TpXs, then for each f € Out(F>), we have the area-preserving linear map

Dpf . TP%S — Tf(p)%s

Note that each element f € Out(Fy) is the restriction of a map fy : R® — R3 to Xy in
terms of the trace coordinates. Therefore Dp f can be expressed as the restriction of a volume-
preserving linear map Dpfy : R? — R3, i.e. an element of SL3(R), to TpXs. For instance,

writing P = (x,v, 2),

1 0 0 0 01
Dprx=10 0o 11 Dpry =10 1 0of>
z —1 = -1 2z v

both restricted to the tangent space TpXs.

2.8.8 Choice of metric

We will choose a convenient metric to work with. To do so, it suffices to give an orthonormal
basis at each point. For each P = (z,y,2) € X, let n(P) = (n1(P),n2(P),n3(P)) == (2x —
yz,2y — zx,2z — xy) be the normal vector. Consider the following three tangent vectors in
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TP(}:S)

0 —ng(P) na(P)
vi(P)= | ny(p) |- va(P) = 0 ) vs(P) = | —ny(P)
—no(P) n1(P) 0

Clearly these are tangent vectors at P. Moreover since the normal vector

n(P) = (n1(P),n2(P), n3(P))

is nonzero, at least one of n;(P), i = 1,2, 3 is nonzero, thus at least two of v{(P), vo(P),v3(P)
are linearly independent. In fact, for s < 2, there is a positive lower bound ¢ = ¢(s) such that
max;—12.3 [ni(P)| > c(s) for all P € X;, so at least two of vi(P),va(P), v3(P) have Euclidean
norm larger than c(s).

Now at each P € X, we define a positive definite inner product (-,-) p on TpXs such that

{ VZ'(P) Vj(P) }
Ve(P) /ny,(P)

form an orthonormal basis, where k € {1, 2,3} is the index that maximizes |nj(P)|, and {3, j, k}

form an even permutation of {1,2,3} (we will comment on the normalizing factor y/n;(P) in
the next section). The map P — (-,-)p is smooth except along the curves on Xs where at
least two of x,y, 2z are equal. Therefore strictly speaking they do not form a smooth metric.
Nonetheless from the end of the previous paragraph, we know that there exists a constant

(s) > 0 such that

d(s)7H ) < () p < s)( ),

where (-,-) is the Euclidean inner product induced from R3. It is evident from the definition of

uniform expansion that it is invariant under change of equivalent metrics, so it suffices to verify
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uniform expansion with respect to {(-,) p} pex,-
The advantage of considering this metric is that, with respect to this metric and the specific
orthonormal basis chosen above, Dp7Tx and Dp7y (and hence the compositions) are 2 x 2

matrices such that up to the factor nj(P), the entries are polynomials in z,y, z. For instance,

Dprxvi(P) = vi(tx(P)),

oy (P) vi(r n3(P) volr
Dprxvo(P) = r3rx (P)) 1(tx (P)) + na(rx (P)) 2(Tx (P)),

~ n3(P) il no(P) volr
DPTYV1<P)——n3(Ty(P)) 1( Y(P))+n3(Ty(P)) 2(ty (P)),

Dpryva(P) = va(ry (P)).
The matrices with respect to other bases can be found using the identity

n1(P)vi(P) + na(P)va(P) + ng(P)vs(P) = 0.

2.8.4 Deriative bounds

To choose the bounds Cj; and Cy in the algorithm, it is necessary to compute bounds on
|0F;/0t| and |0F; /00| for F;(P,0) = log||Dpf;(0)| and local coordinates t = t1,to near P. If
we treat f; as a function R3 — R3, we can compute Dpf; as an element L; of SL3(R).

With respect to the metric and the corresponding orthonormal basis chosen above, Dp f;

can be written as a 2 x 2 matrix with entries being the square root of rational functions of z, y, z,

aip bip {vi(P),va(P)}

say Dpf; = . For instance, if the orthonormal basis for P is and
n3(P)

c.p dip
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that of f;(P) is {vi(fi(P)), va(fi(P))}
n3(fi(P))

, we can write explicitly that

1 (Livi)2  (Liva)2
Vn3(P)n3(fi(P))

Dpf; =
—(Livi)1 —(Liva)

In particular, \/ng(P)n3(f;(P))Dpf; has polynomial entries and
det Dpfz' =1

(the primary reason to have the normalizing factor /nj(P) is to ensure this matrix has de-
terminant 1.) Similar expressions can be obtained for the other points where the other two
orthonormal bases are chosen. Hence if we choose x and y to be the local coordinates near P
(corresponding to the v and vo directions), the derivatives with respect to x and y can be

explicitly computed and bounded.

a b
More explicitly, for M = € SLy(R), let Fi(0) = log ||M(0)]]. Then

1 1 1
Fy(6) = 5 log (§(a2 +02+ P+ d) + §(a2 — b2 + % — d?) cos 20 + (ab + cd) sin29) :

Thus OF;(0)/0t can be represented explicitly in terms of a,b,c,d,a’,V/,/,d" and 6, where

a’ = da/0t etc. Since for all P = (x,y,2) € Xs, the coordinates x,vy, z are in [—2,2], while

a,b,c,d are polynomials in z,y,z divided by \/n3(P)ng(fi(P)), all these can be explicitly

bounded. Furthermore by the choice of the orthonormal bases at P and f;(P) we know that

In3(P)| > |n1(P)|,|n2(P)| and similarly for |ng(f;(P))|, we have that \/ng(P)ns(f;(P)) is
bounded below by an explicit positive number depending only on s. We shall omit the explicit

expressions here as they are written in the program (see Program 1).
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2.8.5 Choice of Parameters in the verification
In this section we choose the parameters in the algorithm to check that u is uniformly expanding.

Proof of Proposition 2.8.1. We verify uniform expansion using the algorithm from the previous
section. Let f; be the maps in the support of u with ¢ = 1,2,...,d, where d = 16. We choose

the grid G in the following process: recall that
Xs ={(z,y,2) €R3: 513'2—|—y2—|—22—:1:yz—2:s}.

Let n(P) = (n1(P),na(P),n3(P)) = (22 — yz,2y — zx,2z — zy). Within the region {P €
M | |ng(P)| = max_1 93 [n;(P)|}, we use the r and y directions as local coordinates. This
corresponds to using vi and vo as an orthonormal coordinate system. Similarly for the other

two regions where |n1(P)| and |ng(P)| dominate. We verify uniform expansion for s = 1.99.

Step 1: We take C'j; = 600 and Cy = 600.
(these are computed using the explicit expressions of dF;(0)/0t on a grid (Program 1)

and then a naive bound on second derivatives of Fi(6). ).
Step 2: Fix C' = 0.25.
Step 3: Let r = 0.0001 < C'/(4C)y) and p = 0.0001 < C'/(4Cyp).

Step 4: Take an r-dense grid on X using the specified local coordinates. We fix a p-grid in the

unit tangent space direction.
Step 5: We verify with Program 2 that (UE) holds on the grid with C' = 0.25 as in Step 2.

Step 6: From the derivative bounds in Step 1 and the choices of » and p in Step 3, one can

conclude that (UE) holds on the whole surface with C replaced by C'/4.

The programs were run on the University of Chicago Midway compute cluster partition broadwl.

Specification: 28 cores of Intel E5-2680v4 2.4 GHz. Memory: 64 GB. Runtime: 47714 seconds.
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Program 1 (C2 bounds in Step 1):
e Code: http://math.uchicago.edu/~briancpn/derivative_single.cpp
e Output: http://math.uchicago.edu/~briancpn/secondderivative.txt
Program 2 (C'! bounds and (UE) in Step 5):
e Code: http://math.uchicago.edu/~briancpn/actual.cpp

e Output: http://math.uchicago.edu/~briancpn/character_variety_test.txt
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CHAPTER 3
STATIONARY MEASURES ON VECTOR SPACES

3.1 Introduction

Let p be a Borel probability measure on G = GL(V), and let I';, := (supp ) C G be the
(topological) closure of the semigroup generated by the support of p.
In this note, we are interested in studying the p-stationary measures on the vector space V'

with respect to the I';-action on V' by left multiplication.

Definition. We say that a Borel probability measure v on V' is p-stationary if pxv =v, i.e.

V= / g«v dp(g).
GL(V)

Clearly if v is T'y-invariant then it is y-stationary. Also note that since supp p acts linearly
on V, the origin of V is a fixed point, so the delta mass dg at the origin of V is always a
p-stationary probability measure on V. We would like to understand when there are other
p-stationary probability measures on V| and if so whether we can classify all of them. In the
rest of this note, we say that a p-stationary measure v on V' is nontrivial if v # Jy.

In order to state our main classification result, we need the following two notions.

Definition. A Borel probability measure p on GL(V') has finite first moment if

[ togmax(lgll g~ )duto) < .
GL(V)

Here || - [| :== || - [gr.(v) s the operator norm on GL(V') with respect to a fixed norm on V..

Definition. We define the top Lyapunov exponent of p on a I'j-invariant subspace W C V' as
i (n)
Mw =M w(p) = lim — log [|gllgrmwydun™ (9),
GL(V)
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where p(") := jis ju% -+ - % is the n-th convolution power of y, and for g € GL(V), l9llarov)

denotes the operator norm of the restriction g|y in GL(W).

The following result gives a necessary and sufficient condition for the existence of a nontrivial

pu-stationary measure on V.

Theorem 3.1.1. Let u be a Borel probability measure on GL(V') with finite first moment. Then
there exists a nontrivial p-stationary measure v on V' if and only if there exist I'j-invariant

subspaces W/ C W C V such that
(i) '), acts compactly on W/W’, i.e. the image of pww Ly — GL(W/W') is compact,
(i) either W’ = 0, or the top Lyapunov exponent of p on W' is negative,
(iii) the support of every p-stationary probability measure on V' is in W.

The author only knew afterwards that the main proposition (Proposition 3.5.5) was already
proved in the necessity direction of [Bou87, Thm. 5.1]. Theorem 3.1.1 follows directly from
Proposition 3.5.5 (see Section 3.6) (can be shown that (i) in [Bou87, Thm. 5.1] can be improved

to ensure dp > 0 if d > 0).

The following result classifies the stationary measures on V' in terms of the compact I';-

orbits on W/W'.

Theorem 3.1.2. Suppose there is a nontrivial j-stationary measure on V andlet W/ C W C V
be the I'j-invariant subspaces from Theorem 3.1.1. Then the map v + supp 7.V gives a one-

to-one correspondence between
{ergodic p-stationary measure on V'} > {compact I'-orbit in W/W'},

where 7 : W — W/W' is the quotient map.

We can describe the inverse map in a more explicit way in terms of the asymptotic behavior

in law of the random walk on V' induced by pu.
94



Theorem 3.1.3. For any compact I'y-orbit C in W/W’, let me be the Haar (probability)
measure supported on C. Let s : W/W’ — W be a linear section, i.e. a linear map such that
mos =1id. Then the weak-* limit

ve = lim 1) (sxmc)

n—oo

exists and does not depend on the choice of the section s. Moreover, the map C — v is the

inverse map of the bijection in Theorem 3.1.2.

Using the classification of stationary measures, we can obtain the following equidistribution

result.
Theorem 3.1.4. For all z € W, let C is the compact T'y-orbit of  + W' in W/W’. Then

1. we have the weak-* convergence

n—1

lZu(i) * 0p — 1p.

n
1=0
2. For pN-almost every word b = (by,ba,...) € GL(V)N, we have the convergence of the

empirical measures
n—1

1
- Z 5bibi—1---b1x — e as n — 00.
1=0

The following definition is standard when considering stationary measures.
Proposition 3.1.5. [BL85, Lem. I1.2.1] Let p be a Borel probability measure on G = GL(V)

and v be a u-stationary measure on V. Then for ,uN—almost every b = (by,bo,...) € GN , there

exists a probability measure v}, on V' such that for all g € Ty,

(b1ba ... bpg)sv.

vy = lim
n—oo

Moreover, we have

v :/ v, dplN(b).
GN
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The measure v}, is sometimes called the limit measure of v with respect to the word b.
We can describe the limit measures of any stationary measures on V.

Theorem 3.1.6. For each compact I'y-orbit C in W/W', for ,uN—almost every word b €

GL(V)N, the limit measure

vy = nh_%o(b@ cobn)sre

is supported on the compact subset p,(C) C W for some linear section p, : W/W/ — W. In
particular, v, is compactly supported on W.

If T'), acts trivially on W/W’, then v, is a delta mass 55(1)) for ;iN-almost every word b, and
thus v is p-proximal (cf. [BQ16, Sect. 2.7]).

The note is structured as follows.

1. In section 3.2, we recall a few preliminary facts about stationary measures and top expo-

nents.

2. In section 3.3, we recall the situation when the action is irreducible, which will form the

building blocks of the general case.

3. In section 3.4, we list a few properties of I';-actions that satisfy (i) and (ii) of Theorem
3.1.1. In particular most of Theorem 3.1.2, 3.1.3, 3.1.4 and 3.1.6 will be proved in this

section.

4. In section 3.5, we study properties of the action on the span of the support of any given
stationary measure on V. The main result in this section is Proposition 3.5.5, when we

show that the action on this span satisfies (i) and (ii) of Theorem 3.1.1.

5. In section 3.6, we conclude by proving Theorem 3.1.1 using results from the previous

sections.
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3.2 Preliminary facts

We first recall that, in the case of a compact action, we have the standard fact that any

stationary measure is invariant.

Proposition 3.2.1. [BQ11, Lem. 8.4] Let u be a Borel probability measure on G = GL(V')
and v be a p-stationary measure on V. If '), acts compactly on V, then v is I'j-invariant.
Moreover, if v is ergodic, then the support of v is a single compact I'j-orbit in V', and v is the

unique p-stationary measure supported on this orbit.

We recall the following general theorem by Furstenberg and Kesten, which follows from

Kingman’s subadditive ergodic theorem and the ergodicity of the Bernoulli shift.

Theorem 3.2.2. [FK60, Thm. 2], see also [BQ16, Lem. 4.27].
Let p be a Borel probability measure on GL(V') with finite first moment. For pN-ae. b=

(b1,b9,...) € GN | one has
) 1 . 1
i 08 l1on bl =l Zog by -+ bnll = Aa,v (w)

In particular, if Aj y» < 0, then [|by - - - by || — O for pN-almost every word b.

To simplify notation, given a vector space V/ with a homomorphism py : Iy — GL(V'),
we say that u has negative top exponent on V' if the top Lyapunov exponent ALy of py with

respect to p is negative.

We need the following two lemmas that allow us to carry certain properties to invariant

subspaces and quotients.

Lemma 3.2.3. Let p be a Borel probability measure on GL(V') with finite first moment. Let

W C V be a I'y-invariant subspace of V. Then the following are equivalent:

(i) p has negative top exponent on V.
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(ii) p has negative top exponent on W and V/W.

Proof. In fact the top exponent on V' is the maximum of the top exponents on W and V/W.
This is standard. See, for instance, [FK83, Lem. 3.6]. ]

We also need the following elementary result about boundedness.

Lemma 3.2.4. Let i be a Borel probability measure on GL(V'). Let W C V be a I';-invariant
subspace of V. Given a subset B C I, if B is bounded from above in GL(V), then B is
bounded from above in GL(W) and GL(V/W).

3.3 The irreducible case

We first recall the classification of stationary measures for irreducible I'j-actions, i.e. the only

I'y-invariant subspaces of V' are 0 and V.

Proposition 3.3.1. Let p be a Borel probability measure on GL(V). Suppose that I';, acts
irreducibly on V. Then there exists a nontrivial p-stationary probability measure v on V' if and

only if Iy, is compact in GL(V).

Proof. 1f Ty, is compact in GL(V) then clearly there is a nontrivial I';-invariant measure on V'
(by averaging via the finite Haar measure on I';,), hence in particular p-stationary.
The opposite direction was proved in [BL85, Prop. V.8.1].
O

We will also need another proposition that shows that for irreducible actions, assuming a

boundedness condition, the only two options are negative top exponent and compact action.

Proposition 3.3.2. Let p be a Borel probability measure on G = GL(V) with finite first
moment. Assume that I', is irreducible. If for ,uN—almost every b = (by,b9,...) € GN, the
sequence

{onbp—1...b1In>1}
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is bounded from above (with respect to the operator norm on GL(V')), then either u has

negative top exponent on V', or I';, is compact in GL(V).

Proof. The assumption implies that the top exponent is nonpositive by Theorem 3.2.2. Hence
it suffices to consider the case when Ay = 0.

Let C': GN — Ry U{oo} be a measurable function such that
|bnbp—1 ... 01| < C(b) for all n.

Then by assumption, we can take C' to be finite uN-almost surely. If we take C’ large enough,
there is a subset B ¢ GN with uN(B) > 1/2 such that C(b) < €’ for all b € B. Now fix a
pi-stationary measure vp on P(V), and consider the dynamical system on GN x P(V') with the
map

T(b,v) == <a(b), log M) ,

o]
where o : GN — GN is the left shift map. Note that ,uN X vp is a T-invariant probability
measure on G x P(V).
By the proof of the Atkinson’s lemma ([Atk76], [Kes75], see e.g. [BQ16, Lem. 3.18]), for

pN x vp-almost every (b,v) € GN x P(V), there is an infinite sequence {ny}; such that

by, - - - b12||

‘log <1 (3.3.1)

o]

Fix a nonzero v € V such that (3.3.1) holds for xN-almost every b € GN. For each such word

b e GN, for each n > 1, take k large enough so that ng > n. Then

[bn - . by -1 [bny, - - - b1 _ [bny, - - - by

log og og :
o] o] 1br - - - by

Now on the right hand side, the first term is at least —1 by (3.3.1), and the second term is at
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least —log C'(0™(b)) by definition of C. Therefore

[bn..byo]

1
Tl

> —1—1log C(c"(b)).

However note that C'(¢"(b)) does not depend on by,bs, ..., b,. Therefore we can replace b by
one of the words that starts with by, bo,. .., b, and satisfies 0"(b) € B so that C(a"(b)) < C’

for the uniform constant C’ chosen above. Thus for pN-almost every word b, for all n > 1,

1bp - - by

1
I

> —1—logC’.

Now consider the sequence of measures on V'

| N-1
N Z Obybyy1...byv-
n=0

Then any weak-x limit v is a p-stationary measure on V' by Breiman’s Law of Large Numbers
([Bre60], also see e.g. [BQ16, Cor. 3.4]), and is a probability measure since there is a uniform

bound from above on the sequence {bpb,_1...b1 | n > 1} by assumption. Since

1bn - - b

> " forall n > 1
[ v]]

for some uniform C”, v is not &, so it is a nontrivial p-stationary probability measure on V.

By Proposition 3.3.1, I';, is compact in GL(V). m
The same is true if the order of the matrix product b1by ... by, is reversed.

Corollary 3.3.3. Let i be a Borel probability measure on G = GL(V') with finite first moment.

Assume that ', is irreducible. If for NN-almost every b = (by,bo,...) € GN, the sequence

{biby...bp | n>1}

is bounded from above (with respect to the operator norm on GL(V')), then either u has
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negative top exponent on V', or I', is compact in GL(V).

Proof. Apply Proposition 3.3.2 to the pushforward uT of p via the adjoint map GL(V) —
GL(V*) defined by g — g7 (i.e. the matrix transpose). Note that l9llarovy = HQTHGL(V*)a
so the first moments of p and p! are the same. Similarly the top exponents of 1 and p! are
the same. Finally I';, is irreducible if and only if I' T is, and I'y, is compact if and only if T’ T

18. O

3.4 Properties of a contracting-by-compact action

In this section, we list a few properties of subspaces with a contracting-by-compact action by
i, i.e. there is a proper subspace (possibly zero) with negative top exponent with respect to u
and 'y, acts compactly on the quotient.

The following proposition shows that for such action, almost every word is bounded from

above with respect to the operator norm (though this bound may depend on the word).

Proposition 3.4.1. Let u be a Borel probability measure on GL(W') with finite first moment.

Moreover there exists a proper I';-invariant subspace W' C W such that
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W',

Then there exists a measurable map C' : GN — R4 such that for ,uN—almost every word

b= (b1,ba,...),
|b1b2 ... by || < C(b) for all n > 1.

Proof. By choosing suitable basis, we can write each b; € supp u as

Ty Yi
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where z; € GL(W'), z; € GL(W/W') and y; € Hom(W/W' W),

Now we expand bybs ... by, in terms of z;, y;, 2,

X, Y,
biby...bp = ,
0 Z,
where
Xp=x129...2p, Yn:le---xk_1yk2k+1---2n, Lp = 2129...2n.

Since ;1 has negative top exponent on W', xyx9... 2y, — 0 for ,uN—almost every word b by
Theorem 3.2.2. Since I, acts compactly on W/ W', Z, is uniformly bounded by some constant
C’. Hence it remains to find a bound on Y, that is independent of n (but may depend on the
word b).

If W' =0, we are done. If W’ # 0, let )xLW/ < 0 be the top exponent of © on W’. Then for

,uN—almost every word b,
o1
lim —log||lz1za. .. 2kl = A v <O.
k— ’

oo k

Since p has finite first moment in GL(W), in particular, we have

/G log™ (lgll) du < oo,

where log™ () := max(log(z),0). This implies that (since ||b|| > ||y

> et ol > -5 < i (1o lal) > =2 ) < oo

k=1
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By Borel-Cantelli Lemma, for ,uN—almost every word b,

/\l,W'

1
1i Zlog™T <
1mkSUP ;- log yxll < 5

This implies that

)\LW/

) 1 , 1
thllpElOg |21 2p_qyell < thUPElOg(H%l corpop el < 5
2 k

Since Ay yp7 < 0, and 2; is in a compact subgroup of GL(W/ W) with a uniform upper bound

C', there exist ng = ng(b) and C” = C”(b) such that for all large enough n,

C/

— 5 <X
1 — Pwr/? 7

n n
WVall < S a1 apqgpzpsn - zall < 7O S0 Fw 2 <oy
k=1 k=ng

as desired. O

The following proposition shows that there is at least one nontrivial stationary measure in

the subspace W.

Proposition 3.4.2. Let p be a Borel probability measure on G = GL(W) with finite first

moment. Suppose there exists a proper I';-invariant subspace W' C W such that
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W',
Then for all z € W ~. W/, any weak- limit point of the sequence of probability measures
1 n—1 ‘
I/J,’,n = E ZO /J’(Z) * 51’
1=

is a nontrivial p-stationary probability measure on .

Proof. Let W:=Wwu {o0} be the one-point compactification of W. Then the space of prob-

ability measures M(/W) is compact, hence there exists a subsequence {ny} such that vy p,
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converges to a probability measure v € M(W) Moreover,

— - k _
g ’
ok Ven Vi nyg g (,U * Oy 596) — 0.

Hence v is p-stationary. Since oo is a fixed point, we may consider v as a u-stationary measure
on W (a priori may not be a probability measure). It remains to show that v(W ~ {0}) = 1.
Let 7 : W — W/W’ be the quotient map.

First of all since I', acts compactly on W/W' and z € W~ W', T'yw(z) C W/W’ is compact
and does not contain the origin in W/ W'. Therefore there exists a compact subset C,, C W~ W'
such that I'yz C Cp + W’. Note that 0 ¢ C; + W'. Now clearly the support of v, is contained
in 'z C Cp + W' for all n and hence the support of v is also contained in the closed set
Cy + W', In particular v({0}) = 0.

It remains to show that for all € > 0, there exists C" = C” (e, x) > 0 such that
v({fw e W | |w|| <C"}) >1—=¢.

Since vy, — v, applying this convergence to the indicator function 1 {weW |||jw]|<C"}> We have

nkfl
lim — % ' ({(br o, by) € GT [ baby . bizl| < €)= v({w € W | [lw] < C"}).

k—o0 N P

But the left hand side can be bounded from below using Fatou’s lemma:

nk—l
Jim > H{nby ) € G aty- il <€)
nk—l
~ lm — > /1||b1b2 i< (b) dp™ (b)
k—o00 N P et
. . 1 nk—l N
> /%ﬂrggéfn—k ; Lbyby.. by <c7 (D) dp (D)

Moreover, by Proposition 3.4.1, there exists a measurable function C' : N - R such that,
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for uN—almost every word b = (by,bs,...),
|b1b ... by || < C(b).

Now take a subset B C GN and large enough C”. > 0 such that N (B:) > 1 —¢ and C(b) < C”
for all b € Be. Let C" = C"(e, ) := CL||z||. Then for all b € B,

ng—1
1}?_1?@ g )by by.. byl <7 (0) = 1.
Thus
1 nk—l
I/({’LU eWw ‘ HU}H < C//}) > /l}frggéfn—k Z 1||b1b2...bi33||<0”(b) duN(b) > MN(BE) >1—e.
1=0

]

The following proposition shows that any stationary measure in such subspace W is uniquely

determined by its pushforward on the quotient W/W’.

Proposition 3.4.3. Let p be a Borel probability measure on G = GL(W) with finite first

moment. Let W/ C W be a I')-invariant flag. Suppose
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W’

Suppose that we have two p-stationary measures v and v/ on W that satisfy mev = mer/ for

the quotient map m: W — W/W' then v = /.
Proof. By Proposition 3.4.1, there exists a measurable map C : GN — Ry such that for pN-
almost every word b = (by,bs,...) € GN, we have
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Also for almost every word b, we have the limit measure
vy = nlgréo(blbg b))
Therefore we can take a limit point by of the sequence {b1bo...b, | n > 1} in End(W), and

vy = (boo)«.

Similarly, we have, for almost every word b,

vy o= lm (b1bg...bp)st' = (boo)s/.

n—oo

Now since p has negative top exponent on W, for almost every word b,
lim byby...bpv =0 for every vector v € W'.
n—o0

Therefore W/ C ker boo, hence the map boo : W — W factors through W/W’ i.e. there exists
a linear map bl : W/W' — W such that b = b, o m, where 7 : W — W/W' is the quotient

map. Since Ty = 1/, for MN—almost every word b, we have
Vp = (boo)sl = (ba)semmsty = (bh ) st = (boo)st/ = Vll).
Thus by Theorem 3.1.5,

_ N _ /7. N o
V—/GNl/bdu (b)—/GNl/bd,u (b) ="

]

In particular the above proof shows that each limit measure 14, is supported on a compact

subset of W. We record this in the following proposition (which proves Theorem 3.1.6).
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Proposition 3.4.4. Let p be a Borel probability measure on G = GL(W) with finite first

moment. Let W/ C W be a I')-invariant flag. Suppose
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W',

Given an ergodic p-stationary measure v on W, for ,uN—almost every word b, the limit measure

vy = nhj%o(bll’? cobp) kv

is supported on the pushforward of a single compact I';-orbit on W/ W' via a linear injection

pp : W/W' — W. In particular, v, is compactly supported on W.

Proof. Take pj, to be the linear map b, defined in the proof of Proposition 3.4.3. Since myv is
an ergodic p-stationary measure on W/W' and u acts compactly on W/W’, m.v is an ergodic
I';-invariant measure and is supported on a single compact I',-orbit in W/ W' by Proposition

3.2.1. Thus v}, = (b )«m«v is also compactly supported on W, O
Using Proposition 3.4.3, one can refine Proposition 3.4.2.

Proposition 3.4.5. Let 1 be a Borel probability measure on G = GL(W) with finite first

moment. Suppose there exists a proper I';-invariant subspace W' C W such that
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W',

For all z € W~ W/, let

1 n—1
1=

Then the weak-x limit

Ve = lim vgp
n—oo 7’

exists and is a nontrivial p-stationary probability measure on W.
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Proof. By Proposition 3.4.2, we know that any limit point of the sequence {v; p}p is a non-
trivial p-stationary measure on W. Moreover, since the projection of vy, on W/ W' lies in
the compact I'y-orbit of x + W' € W/W' any weak-* limit point projects to a u-stationary
measure supported on the single compact orbit I',z + W' c W/W’, hence is in fact the unique
invariant measure supported on the compact set I'jx + W', In particular, any limit point of
{vzn}n is a p-stationary probability measure that projects to the same measure on W/W’. By

Proposition 3.4.3, all such limit points agree, so the sequence {vz ,}n converges. O

In fact, if we start with any initial measure that projects to the Haar measure supported on
a compact I'j-orbit in W/ W', then the convolution powers are not just Cesaro summable, but

themselves converge.

Proposition 3.4.6. Let u be a Borel probability measure on G = GL(W) with finite first

moment. Suppose there exists a proper I'j-invariant subspace W' C W such that
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W',

For all z € W ~. W/, let C, be the I'-orbit of the image x in W/W' and mg be the Haar
(probability) measure on W/W' supported on C,. Then for any linear section s : W/W/ — W,

i.e. a linear map such that m o s = id, we have the following weak-* convergence

Uy = nli)rréo ,u(n) * (sxmyg).

Moreover, v, is a nontrivial p-stationary probability measure on W that does not depend on

the choice of the linear section s. The map x — v, is constant along the orbit Cy.

Proof. By Proposition 3.4.2, for all z € W ~. W', there exists a nontrivial p-stationary measure
vy on W that projects to my on W/W'.

Similar to the proof of Proposition 3.4.3, there exists a measurable function C' : GN — Ry
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such that for yN-almost every word b = (b1, b, ...), we have

[b1b2 - .. bullgrawy < C(b), and vy = lim (by...bp)svs

n—oo

exists. Moreover, for any limit point boo of {b1ba...by | n > 1} in End(WV), there exists a linear
map bl : W/W' — W such that boo = b, o m. Let {nj}; be the indices of the subsequence
such that

lim byby...bp, = boo = by, o .
k—o0

Now for any linear section s : W/W’' — W, we have

k—o0

since 7o s = id. On the other hand since the stationary measure v, projects to my on W/W/,

we also have

vy = nli_)rréo(bl o bp)slz = (boo )tz = (bho)sTatg = (bhg)emi.

Thus

vy = (ba)emy = kli_)lgo(bl by ) s (semg)

for any convergent subsequence {b1...by, | kK > 1}. Since the left hand side does not depend

on the subsequence, we have the convergence

vy = nli_%o(bl coobn)e(semyg).

Since this holds for xN-almost every b, we have

Uy = /Vbd,uN(b) = / lim (by ...bp)s(ssmg)dp (b) = lim () (sxmy).

n—oo n—oo
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3.5 Properties of the span of the support of a stationary measure

In this section, we prove a few properties of the action on the span of the support of a given
stationary measure. The main statement is that the span of the support of a given stationary
measure must have a contracting-by-compact action by p (Proposition 3.5.5). An important

auxiliary proposition leading towards this fact is Proposition 3.5.2.

Lemma 3.5.1. Let p be a Borel probability measure on GL(V'), v be a p-stationary probability

measure on V. Let W be the linear span of the support of v. Then
(i) W is I';-invariant.

(ii) For pN-almost every word b = (b1,b9,...) € GN. the sequence {biby...by | n > 1} is

bounded from above in GL(W).

Proof. (i) is clear since supp v is I'y-invariant. The proof of (ii) is similar to the proof of [BP13,
Lem. 3.3], using ideas of [Fur63, Thm. 1.2]. By considering the restriction of the action to W
we may assume that V' = W and thus G = GL(W) without loss of generality. For b € GN for
which the limit measure v}, exists, assume the contrary that the sequence {b1bo...b, | n > 0}
is not bounded from above in GL(W). Then we can find a subsequence {n; | k¥ € N} and

boo € End(W) with [|boo|gnq(wy = 1 such that

= boo.

lim {b1ba - - buy e owr) = oo, and i P1b2-- oy
e koo 0162 - gl w)

Let Wy, :=kerboo C W. For v € W \ W}, we have
lim ||b1bg ... bp 0| = oo.
k—o0
Thus for any continuous function ¢ : W — R with compact support, for all v € W W,

¢(blb2 R bnkv) —0 as k — oo.
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Therefore

/gb(v)dub(v) = lim /gb(v)d(blbg by )sv(v)

k—o00

= k;li{go / ¢(blbg . bnkv)dv(v)
= lim [ 1y, (v)¢(b1ba ... bp,v)dv(v)

k—o00

< v(Wp) sup [¢(v)].
veW

Since ¢ is an arbitrary continuous function on W with compact support, by taking a sequence
of such ¢ supported on balls of radius n — oo and takes value 1 within a slightly smaller open
ball, we can conclude that v(W}) = 1. Since W} is closed, we have supp v C W,

Since W}, is a subspace of W and supp v spans W, we have kerboo = Wj, = W, ie. by is

the zero map. But this is a contradiction since ||boo||gnqm) = 1- O

We shall show the following important auxiliary proposition.

Proposition 3.5.2. Let p be a Borel probability measure p on G = GL(V') with finite first
moment. Suppose there exists a p-stationary measure v on V' such that V' is the span of supp v.

Suppose there exist I';-invariant subspaces 0 C W' c W C V such that
(i) T}, acts compactly on W’;
(ii) if W’ # W, p has negative top exponent on W/W’;
(iii) I', acts compactly on V/WW.

Then there is a ['j-invariant splitting of V'
V=waew”

for some I';;-invariant subspace w"cv.

We first prove a lemma which allows us to reduce the proposition to the case when the

acting group I'; is uniformly bounded from above in GL(V').
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Lemma 3.5.3. Under the assumptions of Proposition 3.5.2, if in addition, I';, is unbounded
from above with respect to the operator norm on GL(V'), i.e. there exists a sequence {gx} C I'y,

such that ||gx||qr) — oo, then there is a nonzero I'y-invariant subspace Wy C W' such that
W' nw, = 0.

Proof. The proof is similar to that of Lemma 3.5.1(ii). By Lemma 3.5.1(ii), for pN-almost every
word b € GV, the sequence

{biby...by | n > 1}

is bounded from above in GL(V'). Let by be a limit point of this sequence in End(V'). Moreover,

by Lemma 3.1.5, for all g € I, and each positive integer k, we have

vy = lim (biby ... bnggp)v = (booggp)«v-

Let goo be a limit point of the sequence {g;./||gx]|}; in End(V'). Then by the same argument

as the proof of Lemma 3.5.1(ii), using the fact that ||g|| — oo, one can conclude that
booggoo = 0,
the zero map on V. Hence for all g € T'y,
G900V C ker bog.

Let Wy be the span of {ggooV | g € I'yi}. Then Wy C ker boo. Since ||goo|| = 1, gooV is nonzero,
so Wy is a nonzero I'y-invariant subspace of V. Moreover, since I';, acts compactly on W' and
boo is in the closure of T'y, in End(V), W' Nker boo = 0.
On the other hand, we claim that kerbs, C W. In fact, for v ¢ W, since b € Iy, acts
compactly on V/W, we have boov ¢ W, in particular boov # 0, so v ¢ ker bo.
Now since Wy C ker boo, we have that Wy C W and W/ NWy = 0, as desired. O]
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We also need an algebraic fact about compact subsemigroups of End(V').

Lemma 3.5.4. [HM66, A.1.22] Let S C End(V) be a nonempty compact subsemigroup. Then

there exists h € S such that
(a) h is idempotent, i.e. h? = h,
(b) hSh := {hgh | g € S} has the structure of a compact group with identity element h,
(c) there is a group action by hSh on hV'.
For completeness we include a sketch of the proof here.

Sketch of Proof. Let r be the smallest rank among elements in S, and let Sy = {g € S |
rank(g) = r}. Then Sy is itself a compact subsemigroup of End(V') since the rank cannot
increase when taking products and limits. By Ellis-Numakura lemma ([HM66, A.1.16]), any
nonempty compact semigroup has an idempotent element, so there exists h € Sy with h2 = h.
Then hSh is a compact semigroup with h acting as the identity element.

We claim that A is the only idempotent element in ASh. In fact let A’ be another idempotent
element in ASh. Then the image of A’ is contained in the image of h. But h has minimal rank
in S and hSh is contained in S, so the images of h and A’ are the same. Moreover, since h and

h' are idempotents in End(V'), we have the decompositions

V=imh®kerh=1imh & kerh'.

Since ' € hSh, kerh C ker h'. But since im h = im &', the dimensions of ker h and ker A’
agree, so ker h = ker h/. Any idempotent in End(V) is determined by its image and kernel, so
h="n.

On the other hand, one can check that if a compact semigroup K with identity has no other
idempotent, then it is a compact group. In fact, for any t € K, tK and Kt are nonempty

compact subsemigroups of K, so they also have idempotent elements. But by assumption, this
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idempotent element must be the identity, so ¢ has left and right inverses for all t € K, as
desired.
Thus we have shown that K = hSh is a compact group with identity h. hSh acts on hV

since the identity element h acts trivially on AV'. [
Now we are ready to prove Proposition 3.5.2.

Proof of Proposition 3.5.2. We prove the statement by induction on dim V.

Base case: dimV = 1.

Since W is a proper subspace of V, we have W/ = W = 0. Therefore we can take W/ = V.

Induction step.
If I'), is unbounded from above in GL(V'), by Lemma 3.5.3, there exists a nonzero I';-invariant

subspace Wy C W with W/ N Wy = 0. Now consider the ' ;-invariant flag
0S W cWw/Wy S V/Wy.

Since Wy is nonzero, dim V/Wy < dimV/, so by the induction hypothesis, there exists a I'j-

invariant subspace Wo C V' with W C Wy such that there is the I'j-invariant splitting
V/IWo =W @ Wo/W.

Thus we can take W/ = Ws.

Hence in the remaining part of the proof we assume also that there exists C' > 0 such that
lg]l < C for all g € T'),. Let I, be the (topological) closure of T, in End(V), then T, is
a compact semigroup in End(V). By Lemma 3.5.4, there exists an idempotent h € F_u (i.e.
h? = h) such that

K := hl'yh
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is a compact group with identity h. Moreover K acts on hV, and preserves W’ (note that
W' = W' since '), acts compactly on W'). Since K is compact, there exists a K-invariant

complementary subspace Wy C hV of W/, i.e.

RV = W' & Wy.

Note that hWW; = W7 since h € K. Now let W be the span of {ghW; | g € F_N} Then W is
I';-invariant.

Let v € W” N W’. On one hand, hv € hW' = W', on the other hand,

hv € span({hghW; | g € T,}) = W,

since hgh € K for g € F_u and Wy is K-invariant. Thus hv € W/ NWy = 0, i.e. v € kerh.
Now since I';, acts compactly on W' kerhN W' =0. But v € ker hnN W', so v = 0. Therefore
wW"'nw’'=0.

Hence we have found a I'j-invariant subspace W' with trivial intersection with W'. It
remains to show that W” + W' =V.

We first observe that ker h C W. In fact, consider v ¢ W. Since h acts compactly on V/W |
hv #0in V/W, so hv # 0 in V, thus v ¢ ker h.

Since h is idempotent, we have that

V =im h@® kerh = W' & W] & ker h.

Since Wy € W and W’ @ ker h C W, we have

V=w"+w.

If W' =W, we are done. If W’ # W, by assumption, p has negative top exponent on W/W’.
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Now

VW' =W" +w)/wW" =w/W"nw).

Since W' is I';-invariant, W' c W and W/ NnW"” = 0, we have the following I',-equivariant

identification

VW' W =w/(W'nw)e W) = W/W)/W"n Ww/w).

Since u has negative top exponent on W/W’, it also has negative top exponent on (W/W')/(W"n
(W/W")), thus on V/(W" @ W'). Therefore the only p-stationary measure on V/(W" @& W')
is dp. On the other hand, since v is a p-stationary measure on V with span(supp v) = V|
the pushforward of v on V/(W" @ W') also spans. But this pushforward is p-stationary on
V/(W" & W'), so it equals 6y. Therefore V. =W" @& W’ as desired. O

Now we are ready to prove that the p-action on the span of the support of a stationary

measure is contracting-by-compact.

Proposition 3.5.5. [Bou87, Thm. 5.1 necessity direction] Let x be a Borel probability measure
pon G = GL(V) with finite first moment, and v be a nontrivial p-stationary measure on V.
Let W be the linear span of supp v. Then there exists a I'j-invariant proper subspace w'cw

such that
(i) '), acts compactly on W/W’, and
(ii) if W’ # 0, u has negative top exponent on W',

Proof. We prove this by induction on dim W.

Base case: dimW = 1.
In this case, I';, acts irreducibly on W. By Proposition 3.3.1, I';, acts compactly on W and we

can take W/ = 0.
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Induction step.
If '), acts irreducibly on W, then again by Proposition 3.3.1, I';, acts compactly on W and we
can take W’/ = 0.

If I'), does not act irreducibly on W, take a minimal nonzero I'j-invariant proper subspace
0 C Wy € W. The pushforward of v under the map W — W/W is a stationary measure on
W /W whose support spans W/W,,. Since dim W/W{ < dim W, by the induction hypothesis,

we know that there exists a I',-invariant proper subspace Wy C W such that
i) oCcWycCcWw CW,
(ii) I'y acts compactly on W/W7, and
(iii) either W7 = Wy or p has negative top exponent on Wy /Wj.

By minimality of W, we know that I';, acts irreducibly on Wy. Since W is the linear span of
supp v, by Lemma 3.5.1, for uN-almost every word b € GN, the sequence {biby...bp | n > 1}
is bounded from above in GL(W). By Lemma 3.2.4, {b1by...b, | n > 1} is also bounded from
above in GL(Wj). Thus by Corollary 3.3.3, either p has negative top exponent on Wy or I',

acts compactly on Wj.

Case 1: i has negative top exponent on Wj.
We claim that in this case, p has negative top exponent on Wy. The claim is clear if W = W),.
If Wy € W1, since p has negative top exponent on Wy /Wy, by Lemma 3.2.3, p also has negative

top exponent on W7. Thus we can take W/ = W7.

Case 2: p acts compactly on Wj.
In this case, by Proposition 3.5.2, there exists a proper I'y-invariant subspace Wy C W such
that

W =Wy Ws.

Let Wé = W1 N Wy, Then we can I'y-equivariantly identify W2’ and W1 /Wy. Thus either
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Wé = 0 or p has negative top exponent on Wé, and I';, acts compactly Wy/ Wé Moreover,
since

W/Wy =Wy & Wa /Wy,

and I';, acts compactly on Wy and Wy/ WQ', we have that I';, acts compactly on W/ Wé Therefore

we can take W/ = Wé

3.6 Proofs of the main theorems

Using properties proved in the previous two sections, we can now prove the main theorems.

Proof of Theorem 3.1.1. Let W C V' be the I';-invariant subspace of maximal dimension such
that W = span(supp 1) for some p-stationary measure vy on V.

We now claim that every u-stationary measure v satisfies supp ¥ C W. In fact, assume that
there is some stationary measure v/ such that supp v/ ¢ W. Let U = span(supp v/). Now let
V= %V + %V’. Then W + U = span(supp ). Since W + U has strictly larger dimension than
W, this contradicts the maximality of dim W, hence condition (i) in the theorem holds.

By Proposition 3.5.5, there exists a I'j-invariant proper subspace W' C W such that 'y
acts compactly on W/W’, and if W’ # 0, u has negative top exponent on W’. Thus (i) and

(iii) in the theorem hold. O

Proof of Theorem 3.1.2. Let 7 : W — W/W' be the quotient map. By Theorem 3.1.1 and

Proposition 3.2.1, the map
® : {ergodic p-stationary measure on V'} — {compact I'-orbit in W/W'},
defined by ®(v) := supp m«v is well-defined.

e d is injective.
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This follows from Proposition 3.4.3 and the uniqueness of the I'j-invariant measure sup-

ported on a single compact I',-orbit.

e ® is surjective and determine ¢!
The origin 0 of W/W’ is a compact invariant subset of W/W’ and is the image of the
invariant measure dp on V. Now given a compact I';-invariant subset C # {0} in W/ W,
let 2 € 7~ 1(C) € W~W'. By Proposition 3.4.6, v, = nlggo () *(sxmy) is a p-stationary
probability measure on V such that supp msvy is C, where as we recall, s : W/ W' — W
is any linear section and my is the unique I'j-invariant measure supported on C. Thus

C — v, is the inverse of O.

O

Proof of Theorem 3.1.3. The first claim was proved in Proposition 3.4.6. The second claim was

shown in the proof of Theorem 3.1.2. O

Proof of Theorem 3.1.4. The convergence of the limit in the first claim was shown in Proposi-
tion 3.4.5. That the limiting measure is v follows from the injectivity of ® in Theorem 3.1.2.
The second claim is true since by Breiman’s law of large number [Bre60], for MN—almost every
word b € GN, every weak-* limit point of the empirical measures is a p-stationary probability
measure. Now the rest follows from the same argument as Proposition 3.4.5 and the injectivity

of ® in Theorem 3.1.2. O

Proof of Theorem 3.1.6. This follows from Proposition 3.4.4. m
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CHAPTER 4
RANDOM WALKS ON HOMOGENEOUS SPACES WITH
NONDISCRETE QUOTIENTS

4.1 Introduction

Let G be a (real) Lie group, H C G is a closed unimodular subgroup. Let p be a Borel
probability measure on G, and let ', := (supp 1) C G be the (topological) closure of the
semigroup generated by the support of u.

In this paper, we are interested in studying the p-stationary measures on a homogeneous
space G/H with respect to the I'j-action by left multiplication. We first recall the definition

of stationary measures.

Definition. Suppose G acts on a Borel space X. We say that a Borel probability measure v

on X is p-stationary if pxv =v, ie.

v = /Gg*v du(g).-

Clearly if v is I'j-invariant then it is p-stationary. On the other hand, if I'; is abelian
(for instance if I', is isomorphic to R, R4, Z or N), then every p-stationary measure is I'j-
invariant by the classical Choquet-Deny theorem ([CD60], see [BQ16, Cor. 2.22] for a short
proof). Therefore stationary measures can be considered a natural generalization of invariant
measures, which is a major object of interest in dynamics.

It has long been observed in the literature that while the space of invariant measures of a
typical dynamical system given by an R or Z-action is rich and flexible (for instance there can
be invariant measures whose support has arbitrary Hausdorff dimension up to the dimension of
the space), the space of stationary measures of a random dynamical system given by a “large
enough” semigroup I', is quite rigid. One of the first instances of such phenomena was observed

by Furstenberg ([Fur67]), who famously conjectured that the only Borel probability measures
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on the circle S! invariant and ergodic under x2 and x3 are either finitely supported or the
Lebesgue measure.

The first result that is close to our setting was given by Bourgain, Furman, Lindenstrauss
and Mozes [BFLM11]. They considered the action of a semigroup I' C SLy(R) on the n-
torus T" such that I" acts strongly irreducibly on RY is proximal, and showed using techniques
from Fourier analysis and additive combinatorics that for any probability measure p that is
supported on a set of generators of I' and satisfies a suitable moment condition, the only
ergodic u-stationary measures on T" are either finitely supported or the Lebesgue measure.

Later, Benoist and Quint [BQ11] gave another proof of this result without the proximality
assumption using techniques from ergodic theory. Moreover, their proof also applies to the
p-action on homogeneous spaces of the form G /A, where G is a simple real Lie group, A is a
lattice in G, and p is a probability measure on G whose support is Zariski dense in G. They
showed that in this case, the only ergodic u-stationary measures are either finitely supported or
the Haar measure. In a later paper [BQ13a], they generalized the result to the setting where G
is a real Lie group (they also have analogous statements for S-arithmetic groups), A is a discrete
subgroup of G, and p is a compactly supported measure on G such that the Zariski closure of
its support is semisimple, Zariski connected and has no compact factors. They showed that in
this case, every ergodic p-stationary measure on G/A is homogeneous.

This result was extended by Eskin and Lindenstrauss [ELa] using slightly different tech-
niques in ergodic theory inspired by the ideas of Eskin and Mirzakhani [EM18] in the context
of Teichmiiller dynamics. They also considered the G-action on G /A, but they relaxed the
assumption that the support of y has semisimple Zariski closure to an assumption they called
“uniform expansion”. We state a special case of their main result as it will be relevant to our

mailn statement.

Theorem (Eskin-Lindenstrauss). [ELa, Thm. 1.7] Let G be a real Lie group and I' be a
discrete subgroup of G. Suppose that p is a probability measure on G with finite first moment
(to be defined in the next section), and let I';, be the (topological) closure of the semigroup

generated by the support of .
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Let v be an ergodic p-stationary probability measure on G/T". Suppose that p is uniformly

expanding on g. Then one of the following holds.

(a) There exists a closed subgroup H C G with dim(H) > 0 and an H-homogeneous prob-
ability measure vy on G/T" such that the unipotent elements of H act ergodically on vy,

and there exists a finite u-stationary measure A on G/H such that
v= Ak = / g1y dX\(g).
G

(b) The measure v is I'j-invariant and finitely supported.

We record a few remarks about H in the statement. First, it is a nondiscrete closed subgroup
of G since dim(H) > 0. Second, H is unimodular by the existence of an H-homogeneous
probability measure, i.e. a translate of an H-invariant probability measure on H/H N gTg~!
for some g € G, which implies that H admits a lattice subgroup H N glg~*. Third, H may
have infinitely many connected components. Fourth, it follows easily from [BQ11, Prop. 6.7]
that if G is connected and simple, and I';, is Zariski dense in G, then the only possible H in
(a) is G. Using this observation, the theorem of Eskin-Lindenstrauss easily implies the main
statement of [BQ11] that every ergodic stationary measure is either finitely supported or Haar
(this was already observed and used in the last step of [BQ11] - see [BQ11, Lem. 8.2]). A similar
restriction on H was also observed in the case when the Zariski closure of Iy, is semisimple (see
the proof of [BQ13a, Thm. 2.7], using [BQ13a, Prop. 5.19]), which allows one to conclude, for
instance, that every ergodic stationary measure is homogeneous.

However, in the setting of Eskin-Lindenstrauss, without assuming that the Zariski closure of
I, is semisimple, the possibility of H such that G//H admits a p-stationary measure is much less
restrictive. In particular there is not enough restriction on H to conclude that the stationary
measure on G/I" is homogeneous, unlike in the situation of [BQ13a]. In fact, it was already
observed in [ELa] that there exists an example of u and G//T" that satisfies the assumptions of
[ELa, Thm. 1.7] and admits a non-homogeneous stationary measure. This prompts the natural

question:
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Question. What are the possible stationary measures on G/H when H is a closed nondiscrete

unimodular subgroup of G?
The purpose of this paper is threefold:

1. Generalize the result of Eskin-Lindenstrauss to study the possible p-stationary measures
on G/H, where H is a closed nondiscrete unimodular subgroup of G, under suitable easily
verifiable assumptions on p that is analogous to the “uniform expansion” assumption

introduced in [ELa].

2. Combine such an understanding of stationary measures on G/H with [ELa, Thm. 1.7] to

understand a clearer picture of stationary measures on G/I" under suitable assumptions.

3. Demonstrate how to apply the technique of Eskin-Lindenstrauss, the main ideas of which
first introduced in Eskin-Mirzakhani [EM18], to a fiber bundle where stationary measures
on the base are classified and well-understood, to generate extra invariance in the fiber

direction.

4.1.1  Main Statement

We will need the following definitions to state the main results.

Definition. A Borel probability measure p on G has finite first moment if

/G log max(|lg], llg~")dp(g) < oo.

As in [ELal, we shall use the following definition of an H-envelope.

Definition. Given a Lie group G and H C G a closed subgroup, let H° be the connected
component of the identity in H. A subgroup L C G is called an H-envelope if the following
holds:

(i) L D H and H° is normal in L.
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(ii) The image of H in L/H® is discrete.

(iii) There exists a representation p : G — GL(W) and a vector v;, € W such that the

stabilizer of vy, is L.

The point of this definition is that (i) and (ii) imply that L/H = (L/H®)/(H/H®) is
a discrete quotient of a real Lie group L/H®, while (iii) implies that there is a G-equivariant
smooth injection from G/ L to a vector space W (by sending g — p(g)vy), therefore a stationary
measure on G/L can be considered a stationary measure on W. For unimodular H, there are

at least two common constructions of an H-envelope L.

1. Let py be a nonzero element in AT 7§ c AY™H g Define

L:={g€ Ng(H") | g«xp = pu}

In words, L contains elements in the normalizer of the connected component H° that
preserves the Haar measure on H. Since H is unimodular, H C L. The other conditions

are satisfied, as can be readily checked.

2. If G is an algebraic group and I' an arithmetic lattice, one can take
L = Zariski closure of I' N Ng(H®) in G.

On one hand, by a theorem of Chevalley (e.g. [Hum?75, Thm. 11.2]), there exists a
representation p : G — GL(W) and a one dimensional subspace ¢ C W such that L is
the stabilizer of £. On the other hand, L has no nontrivial character , therefore L fixes ¢

pointwise, hence we can take vy, to be any nonzero vector in /.

Definition. Let p be a Borel probability measure on GG. Suppose H C G is a closed subgroup

and L is an H-envelope. We say that y is uniformly expanding on L/H at x if for all

124



v E ;= Lie(mLx_l), for MN—a.e wh e @GN, neN,
li L log [|[Ad(T! 0
A~ log [|AA(T)vl1/p) g, > 0,

where T} := wp w1 € G, and || - [ /5, 1s a norm on (I/h); induced by a fixed norm on
g. For instance, define |[v|( /). = [[v A py,lla/llpp,|lg, where py, is a nonzero element in the

one-dimensional subspace /\dimH by C /\dimH g, and || - ||g is a fixed norm on /\dimH +1 g

Theorem 4.1.1. Let G be a real linear algebraic group, and p be a Borel probability measure
on G with finite first moment. Let I';, be the (topological) closure of the subsemigroup generated
by the support of p in G, and ff be the Zariski closure of I',.

Let H C G be a closed unimodular subgroup, and H° be the connected component of the
identity in H. Suppose there exists an H-envelope L and zy € G/L such that p is uniformly
expanding on L/H at x.

Let vg /H be an ergodic pu-stationary probability measure on ffxOL JH. We also assume

that

(t) There exists a closed normal subgroup U C ff and some zg € G with zgL = xgL such

that ffxoL = Uz9gH® and zo_lUZO N H° = {id}.
Then one of the following holds:

(I) there exist a Lie subgroup H' ¢ G with H° ¢ H' ¢ L C G and dim(H'/H®) > 0,
an H’-homogeneous probability measure vy /H on L/H and finite p-stationary measure

VG /H' On fﬁ:ﬁL/Hl such that

VG/H:VG/H/*I/L/H I:/C;’ g*I/L/H dI/G/H/(g)

/H'

(II) the stationary measure v,/ f can be written as

VGIH = /G/L vy dv(z),
125



where

(a) 7 is a generalized p-Bernoulli measure (see Definition 4.3.9) supported on fﬁxoL /L,

(b) there exists a positive integer k such that for v-almost every = € G/L, v, is the
uniform measure on k points in 7~ '(z) = zL/H, where 7 : G/H — G/L is the

natural quotient map,

(c) there exists a I';-invariant locally Zariski closed subset F such that supp v /H C F,
and F has finite intersection with xL/H for all x € TZIOL/ L (the set F is defined

dynamically and can be made more explicit and computable - see Theorem 4.4.9).

We remark that if H is a discrete subgroup of G, this statement recovers [ELa, Thm. 1.7

for trivial Z (in this case () is satisfied with U = ff)
Remark 4.1.2. We have the following remarks regarding the assumptions of the theorem.

1. The assumption of uniform expansion on L/H is the main assumption of the theorem,
and is analogous to the uniform expansion assumption in [ELa]. Note that we only require
uniform expansion in the fiber direction above a single point = € G/L, in particular it is
readily verifiable. However the tradeoff is that we can only consider stationary measures

supported on ffxOL/H.

2. The reason to assume that vy /H is a stationary measure on foOL/ H rather than on
G/H is twofold: firstly a simple ergodicity argument shows that any ergodic measure on
G/L is supported on a single fLZL—orbit. Now any ergodic stationary measure v on G/H
induces a ergodic stationary measure w4« on G/L, so v is supporte on fﬁng/ L for
some x € G/L, and hence v is supported on W_l(fiwoL/L) = ffxoL/H. On the other
hand, the assumption of uniform expansion on L/H at xg ensures uniform expansion on
L/H at 2’ for all 2/ € ffxOL /L, thus focusing only on measures supported on FﬁwoL/ H

ensures that the assumption on that one fiber above x( is relevant to v-almost every point.

3. The assumption (t) is only used in Case II (see Theorem 4.4.9). In particular it is only
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used in Section 4.11. It is our intention to remove this assumption in the final version.

Subsection 4.11.1 records all the conseqeuences we need from assumption (7).

Theorem 4.1.1 together with [ELa, Thm. 1.7] form one step of an induction scheme, which
allows one to obtain more information about measure rigidity even in the special case considered
in [ELa] (with extra assumptions in the form of uniformly expanding on L/H). In some
cases this would be enough to completely classify the ergodic stationary measures, and we will
demonstrate one such example (and it will be clear how to generalize the example to a family

of such) in Section 4.2 where all the ergodic stationary measures can be classified.

4.1.2  Ideas of the proof

As mentioned in the introduction, the main idea is to apply a bundle version of the technique
of Eskin-Lindenstrauss. More precisely, we consider the bundle 7 : G/H — G/L given by the
natural quotient map, where L is an H-envelope. We have the following observations based on

the definition of an H-envelope.

1. Let v be an ergodic p-stationary measure on G/H, then 7 := mw is an ergodic u-
stationary measure on GG/L. By the remarks following the definition of an H-envelope,
we know that there is an algebraic homomorphism p : G — GL(V') that induces a G-
equivariant injection p : G/L — GL(V) given by g — p(g)v, where L is the stabilizer
of v. Thus 7 induces an ergodic p-stationary measure px7 on V ~ {0}. We will see
that (Theorem 4.3.1) unless I';, C L, the existence of such stationary probability measure
imposes severe restrictions on I';,. Furthermore such ergodic stationary measures on V' can
be completely classified and explicitly described (see Section 4.3) as self-affine measures on

V. The pullback of such measures on G/ L will be called generalized p-Bernoulli measures.

2. The definition of an H-envelope implies that L/H = (L/H®)/(H/H®) is a homogeneous
space of the Lie group L/H® (since H® is normal in L) with the discrete subgroup H/H® C
L/H®. Since each fiber of the bundle 7 : G/H — G/L is a translate of L/H, each

fiber falls in the setting of Eskin-Lindenstrauss. Furthermore, the assumption of uniform
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expansion on L/H at some x € G/L is the same as the uniform expansion assumption of

Eskin-Lindenstrauss applied to the fiber xL/H.

The second remark suggest a simple way to adapt the drift method of Eskin-Lindenstrauss -
one performs the drift argument by taking two points in the same L/H-fiber, and run the drift
to gain extra invariance in the fiber direction. In fact, this was the approach taken by [SS19]
in adapting the method of Benoist-Quint to the bundle of interest in their case. However, this
adaptation will not give the Case II conclusion (c¢) in our main statement, since it does not
relate the conditional measures on nearby L/H-fibers at all.

Our method, instead consider two starting points that may be in different fibers (though still
stably related as in the method of Eskin-Lindenstrauss). This, however, imposes extra difficulty
since unlike in the case of G/I", where there is a natural identification of the tangent spaces at
every point on G/I' with the Lie algebra g := Lie(G) via right multiplication, in the case of
G/H where H has nontrivial identity component (that is also not normal in G in general), the
tangent spaces at different points of G/H cannot be canonically identified. Such identification
was used in certain constructions in Eskin-Lindenstrauss (for instance the P~ map in [ELa,
Sect. 2.2] and linear map A(q1,u, ¢,t) in [ELa, Sect. 4]) in a crucial way. Therefore to adapt
their method in this situation, we need to apply a factorization technique, pioneered in the work
of Eskin-Mirzakhani, to our setting. This is the content of Section 4.6 and is the main new
ingredient of this work. We will also need to use the natural holonomy maps H; (subsection

4.5.6) in this context to construct the P~ maps (subsection 4.5.7) and other constructions.

4.1.83  Qutline

The outline of the paper is as follows:

e In Section 4.2, we will discuss an example where we can use Theorem 4.1.1 to completely
classify the stationary measures, and where not all ergodic stationary measures are ho-
mogeneous. This is a canonical example of cases where measure classification can be done

using Theorem 4.1.1.
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e In Section 4.3, we summarize the results about the classification of stationary measures
on finite-dimensional real vector spaces from Chapter 3 of this thesis. Most of the results
are consequences of [Bou87, Thm. 5.1]. The main result that will be used in the future
sections is Corollary 4.3.8, which gives a description of the I'j-action on G/L and the

possible stationary measures on G/ L.

e In Section 4.4, we discuss the basic setup of our setting, and recall a few basic facts
from [ELal. This includes the general construction of a two-sided skew product from a
stationary measure, a choice of metric on G/H, the stable and unstable manifolds, and

how we split the two cases in the main argument.

e In Section 4.5, we recall the decomposition of the tangent spaces using Oseledets theorem
and Zimmer’s amenable reduction theorem. In particular we will discuss the relationship
between the Lyapunov spaces of G/H, G and L/H. We also discuss the construction of
the suspension space, the holonomy maps, the equivariant measurable flat connections

P, and the dynamically defined norm on the tangent spaces.

e In Section 4.6, we describe the factorization procedure in the case of G/H, which is the
main new ingredient of our paper. In particular we define the linear map A(qy, u, ¢, t)
which plays an important role in the main argument. The main result of this section is

Theorem 4.6.5.

e In Section 4.7, we discuss a key divergence estimate (Proposition 4.7.2) of the norm
of A(G1,u,?,t) under the assumption of Case I and uniform expansion on L/H. We
also record a general lemma on conditional measures (Lemma 4.7.6) already appeared in
[ELa] which allows us to choose points appropriately in a good compact set in the main

argument.

e In Section 4.8, we describe the inert subbundle E of the tangent bundle. The main result
is that under the assumption of Case I and uniform expansion on L/H, the image of

A(q1,u,l,t) converges to the inert bundle (Proposition 4.8.7) as { — oo.
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e In Section 4.9, we cite the necessary theorems from [ELa] that describe the tie-breaking
procedure. Since the entire procedure happens in a single L/H fiber, the corresponding

theorems can be quoted direclty from [ELa].

e In Section 4.10, we describe the main argument of case I using the Eskin-Mirzakhani
scheme. We first give a detailed outline of the procedure, including how the main results

in the previous section fit into the procedure, and then prove the claims afterwards.

e In Section 4.11, we prove Theorem 4.4.9, which describes the conclusion under the as-

sumption of Case II.

4.2 Example with non-homogeneous stationary measures

Before presenting the proofs of the main theorem, we present an explicit example of a random
walk where the classification of stationary measures can be done using Theorem 4.1.1 and (as
far as we can tell) does not follow from previous results in the literature. One feature of this

example is that the ergodic stationary measures are non-homogeneous.

Let G = SL4(R),

SLy(R)  « SLy(R) SLy(R)
H =

0 SLy(Z) 0o I 0  SLy(R)

Note that L/H = SLy(R)/SLo(Z) and L is an H-envelope. Define the acting elements (i.e. the

support of u)

4 0 00 4 0O 0 O

0 1/4 0 0 0 1/4 0 0
g+ = s g— =

0O 0 21 0 0 1 1

4 0 11 -4 0 1 2
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Then

If we let

then one can check that (1) is satisfied with zg = L € G/L and zp = id € G (i.e. U is normal

in fLZL, ffL = UH® and U N H° = {id}). Furthermore p is uniformly expanding on L/H at

ro = L.

Our goal is to classify the p-stationary measures on ffL/ H. We first remark that the
p-action on U/(UNH)=UH/H = FiL/H is given by the following calculation: for A, X €

SLa(R),b,v € R%, X € R,

b 0 A v 0 X v 0 AX

where

ceG:axy=1

A 0 0
0 1l o
0 0 I

v :=A"1(Av +b).

Thus for any ergodic pu-stationary measure v on fiL/ H, via the natural map ffL/ H =
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UH/H=U/(UNH)— U/(UNL), one obtains a u-stationary measure 7 on U/(U N L), where

g+ acts on U/(U N L) by (4.2.1), explicitly written as:

1121 0 1|11 0
ng:V»—>Z—l v+ , g— Vi~ — v+
11 1 1 2 -1
1 0 0

(Here we are using the identifications U/(UNL) <+ | g 1 o | L < v. ) Note that 4 is

v 0 X
2 1
greater than the top Lyapunov exponent of the random walk given by the matrices and
11
11
(for instance it is larger than the norm of both matrices), therefore g+ are contractions
1 2

on U/(UNL), hence the ergodic p-stationary measures 7 on FfL /L can be completely classified
(in terms of generalized p-Bernoulli measures) using the statements in Section 4.3.

Now we apply Theorem 4.1.1. If Case I holds with H' = L, then we are done - there
is only on L-homogeneous probability measure v} /H on L/H, namely the Haar measure
Haargr, (r)/s1,(z) o0 L/H = SLa(R)/SL2(Z) in our case, and we have a complete classifi-
cation of stationary measures v /1 on G/ L, therefore any p-stationary probability measure v

on ffL/H is of the form

. /G /L g+Haarsy r) /sLy(z) Va/L(9)-
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If Case II holds, let

It can be computed that Fé?H[z] N ffL/H = .7-“502 for all z € ffL/H. Thus by the Case II
conclusion of Theorem 4.1.1 (in the form of Theorem 4.4.9), v is supported on finitely many
cosets of ]—‘50 permuted by I';,, moreover it projects to a stationary measure on FfL /L that
was classified in Section 4.3. (There is a third possibility where Case I holds with H' C L such
that H'/H® is a one-parameter unipotent subgroup of L/H®, in which case one applies the
theorem again to conclude that there is no p-stationary measure that is not already included

in the previous two cases. We omit this straightforward but tedious analysis in this expository

section. )

4.3 Stationary measures on vector spaces

In this section, we summarize the statements about classifying stationary measures of linear
actions on a vector space from Chapter 3, and deduce Corollary 4.3.8 from them. The results
in this section will be a crucial input to the general statement. The key statements for the
purpose of the future sections are Theorem 4.3.1, 4.3.2 and Corollary 4.3.8.

Let u be a Borel probability measure on G = GL(V') for some finite dimensional (real) vector
space V. Let 'y, := (supp 1) C G be the (topological) closure of the semigroup generated by
the support of .

Consider the action of GL(V') on V by left multiplication. In this section we classify the
p-stationary probability measures on V' with respect to this action. The main input is the

result [Bou87, Thm. 5.1].
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Since the origin of V' is a fixed point of this linear action, the delta mass g at the origin is
always an I'-invariant measure (hence in particular p-stationary). We say that a p-stationary

measure v on V' is nontrivial if v # dg.

Definition. We define the top Lyapunov exponent of p on a I'j-invariant subspace W C V' as
m (n)
AMw = A w () = lim — log lgllqrw)dr™™ (9),
GL(V)
where u() == 1% ju % -+ % p is the n-th measure power of p, and for g € GL(V), HQHGL(W)

denotes the operator norm of the restriction gy in GL(W).

The following result, which follows immediately from [Bou87, Thm. 5.1], gives a necessary

and sufficient condition for the existence of a nontrivial p-stationary measure on V.

Theorem 4.3.1 (Theorem 3.1.1 of this thesis). Let u be a Borel probability measure on GL(V')
with finite first moment. Then there exists a nontrivial p-stationary measure v on V if and

only if there exist I'j-invariant subspaces W' C W C V such that
(i) '), acts compactly on W/W’, i.e. the image of pww Ly — GL(W/W') is compact,
(i) either W’ = 0, or the top Lyapunov exponent of p on W' is negative,
(iii) the support of every u-stationary probability measure on V' is in W.

The following result classifies the stationary measures on V' in terms of the compact I';-

orbits on W/W'.

Theorem 4.3.2 (Theorem 3.1.2 of this thesis). Suppose there is a nontrivial u-stationary
measure on V and let W/ C W C V be the T p-invariant subspaces from Theorem 4.3.1. Then

the map v +— supp sV gives a one-to-one correspondence between
{ergodic p-stationary measure on V'} “— {compact I'-orbit in W/W'},

where 7 : W — W/W' is the quotient map.
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We can describe the inverse map in a more explicit way in terms of the asymptotic behavior

in law of the random walk on V' induced by .

Theorem 4.3.3 (Theorem 3.1.3 of this thesis). For any compact I'-orbit C in W/W’, let m¢
be the Haar (probability) measure supported on C. Let s : W/W/ — W be a linear section, i.e.
a linear map such that m o s = id. Then the weak-* limit

ve = lim " s (s,mc)

exists and does not depend on the choice of the section s. Moreover, the map C — v is the

inverse map of the bijection in Theorem 4.3.2.

Using the classification of stationary measures, we can obtain the following equidistribution

result.

Theorem 4.3.4 (Theorem 3.1.4 of this thesis). For all x € W, let C is the compact I';-orbit

of z + W' in W/W'. Then

1. we have the weak-* convergence

n—1

lZu(i) * 0y — 1p.

n 4
1=0

2. For pN-almost every word b = (b1,b9,...) € GL(V)N , we have the convergence of the

empirical measures

n—1

Z 5b¢bi_1...b1x — e as n — oo.
1=0

1

n
The following definition is standard when considering stationary measures.

Proposition 4.3.5 (Proposition 3.1.5 of this thesis). [BL85, Lem. I11.2.1] Let u be a Borel
probability measure on G = GL(V) and v be a p-stationary measure on V. Then for ,uN—

almost every b = (b1, bo,...) € GN| there exists a probability measure v on V' such that for all
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ger/.u

vy = nli_)rgo(blbg o bpg)sr.

Moreover, we have

v :/ vy dpN(b).
GN
The measure v}, is sometimes called the limit measure of v with respect to the word b.

We can describe the limit measures of any stationary measures on V.

Theorem 4.3.6 (Theorem 3.1.6 of this thesis). For each compact I'y-orbit C in W/W’, for

pN-almost, every word b € GL(V)N, the limit measure

vy = nli_>ncl>o(b1b2 Cobp)se

is the pushforward of m¢ via a linear injection p, : W/W’' — W, where m¢ is the Haar (proba-
bility) measure supported on C. In particular, v, is compactly supported on W. Moreover, the

family {pp}ycon is equivariant, in the sense that

by o pp = p1p © b1,

where T : GN — GN is the left shift map given by (Tb)p, = bpy1.

If T'), acts trivially on W/W’, then v, is a delta mass 55(1)) on V for ,uN—almost every word
b, and thus any ergodic p-stationary measure v on V is p-proximal (cf. [BQ16, Sect. 2.7]). In
general, we have the following classification, which follows immediately from Proposition 3.1.5

and Theorem 3.1.6.
Theorem 4.3.7. There exists a single compact I'-orbit C on W/W’ and an equivariant family

of sections {py, : W/W' — W}beGN}, i.e. for ,uN—a.e. b= (by,bo,...) € GN,

by o py = pryp © b1,

136



where T : GN — GN is the left shift map defined by (Tb)y, = bp41, such that

o= [ e i)
G

where mg is the Haar (probability) measure on W/W’ supported on C.

Corollary 4.3.8. Let p : G — GL(V) be a finite dimensional representation. Let X be a
G-homogeneous space with a G-equivariant injection ¢y : X — V| and inherit a metric dx on
X from the Euclidean metric on V.

Let 7 be a p-stationary measure on X and 7 be the corresponding invariant measure on

SZ x X. There exist
(i) a partition W of X (use W][z| to denote the atom of W containing = € X),
(ii) a compact I'y-homogeneous space C with its (unique) I';-invariant measure mg,

(iii) a measurable map p : SLxc - SLxX (let p : SZ x ¢ — X be the composition

of p with the projection onto X) that projects to the identity on the SZ factor, i.e.

pw, z) = (W, p(w, z)),
such that
(a) pis T-equivariant, i.e. T(p(w,x)) = p(T(w, x)),
(b) ps(u? x me) =¥, so p(u® x me) =7,

(c) for p%-ae. we S, 1+ p(w,x) is a continuous injection, thus p({w} x C) is compact in

X

(d) for all z € C, for pZ-a.e. w e S, p(S% x {z}) € Wp(w, z)].

(e) for p%-a.e. w, for all z € X and 2/ € Wlz],

1
limsup — log dx (T (x), T} (")) < 0.

n—oo 1N
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Proof. Take p(w,z) = (w,p,—(x)), where p - is the map defined in Theorem 4.3.7, and for
each z € X, take W|[z] := L{/l(bv(z) + W’), where W’ is the T'-invariant subspace in Theorem

4.3.1. We verify each property here.
(a) This follows from the equivariance of p - in Theorem 4.3.7.
(b) This follows from Theorem 4.3.7 that 7,— = (p,-)«me and 7 = [T du?(w).
(c) Since p,,— is a linear injection, so in particular continuous.

(d) Since p,,— is a section for the projection W — W/W’', for fixed x € C, for plae. w,

p-(x) € z + W', therefore p(w, z) is in the same atom of W for plae. w.

(e) Since 2/ € W[z] if and only if ty(2') — 1/ (z) € W' by the definition of W, this property
follows from the fact that 7' is exponentially contracted by pZ—a.e. word w since the top

Lyapunov exponent of z on W' is negative.
O

We use Corollary 4.3.8 to give a precise definition of “generalized p-Bernoulli measure”

stated in the main Theorem 4.1.1.

Definition 4.3.9. We say that a Borel probability measure 7 on a locally compact Borel G-
space X is a generalized pi-Bernoulli measure if there exists a compact I'y-space C with its
(unique) uniform probability measure me and a measurable map p : SZ x C — X such that
U= p*(uZ x me), and the map p : SZ x ¢ — S% x X defined by pw,z) == (w,p(w,)) is

T-equivariant: p(T(w,x)) = T(p(w, z)).

We note that this definition includes the classical self-affine measures on R” (for the appro-
priate measure ) and uniform measures on compact I';-spaces. If y is finitely supported, C
is trivial, and the elements in S form a contracting similarity IFS, then this also include the
Bernoulli measures defined in [SW19, Sect. 8] (hence for specific choices of p this also include

the classical Hausdorff measures on certain fractal sets).

138



4.4 Setup

In this section, we lay down the foundations of the proof. In particular, towards the end of this
section, we will state precisely the Case I and II assumptions, and the precise conclusions we
will prove in Theorem 4.4.8 and 4.4.9. These two theorems together imply Theorem 4.1.1.

We record the following setup from Eskin-Lindenstrauss [ELa|, which form the basis of the

modified exponential drift argument in the fiber direction L/H.

4.4.1 The acting group fi

Let S := supp p, and Iy, := (supp pr) C G be the (topological) closure of the semigroup
generated by S§. Let ff C G be the Zariski closure of I'y, in G. In cases that this paper

considers, Ff will not be the whole group G, nor semisimple.

4.4.2  Skew Product S% x G/H

Consider the two-sided shift (SZ , ,uZ ,T) with the map
T:8% - S%

defined by the left shift (Tw), = wp41 forw=(...,w_1,wg,w1,...) € SZ.
Given a locally compact Borel G-space X (for instance X = G/L,G/H°,G/H), define the

skew product map
T:87xX 588 xX by (w, ) = (Tw,wpx).
For w € SZ and nonnegative integer n, if we let
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then for any integer n, ¥ = (w,x) € SZ x X,

~

T w,x) = (T"w, T x).
Given a p-stationary measure v on X and w = (..., w_1,wp,wq,...) € SZ et

V- = nlgrgo(w_l W)k

The existence of the limit follows from the martingale convergence theorem (cf. [BL85, Lem.
I1.2.1]). Hence v~ is a probability measure on X.

Moreover, one can define a T-invariant probability measure 7 on SZ x X by
do(w™,wh, 2) = dp (W™, w') dv,,—(z). (4.4.1)

Proposition 4.4.1. If v is an ergodic u-stationary measure on X, then 7 is an ergodic T-

invariant measure on SZ x X.
Proof. This follows from [Kif86, Lem. 1.2.4, Thm. 1.2.1, P.19-20], as in [ELa, Prop. 1.12]. O

As in [ELa], we also introduce a group U, acting on SZ so that the Uy -orbit of (w™,wT) €
SZ is {w™} x SN and extend to an Z/lfr—action on S x X by acting trivially on the second
factor. In particular for any # € S% x X, Lll+ # is naturally identified with SY, thus can be
endowed with the probability measure ,uN. We similarly define the group ¢/, that changes w™

inw € SZ. Then

Proposition 4.4.2. A measure  on S% x X is T-invariant and Z/{l+ -invariant if and only if ¥

is constructed from a p-stationary measure v on X as in (4.4.1).

Now we apply the above constructions to X = G/H and G/L. Let v be an ergodic u-
stationary measure on G//H. Let g/ : G/H — G/L be the natural quotient map. Let
U= (g / 1)xv. Then 7 is an ergodic p-stationary measure on G /L. We construct the ergodic

T-invariant measures © and 7 on 8% x G /H and S% x G /L respectively.
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It can be verified that

1. The pushforward of # via S x G/H — SZ is %

2. The pushforward of  via S% x G/H — G/H is v.

3. The pushforward of ¥ via 8% x G/H — 8% x G/L is v.

4. The pushforward of 7 via 8% x G/H — SN x G/H is puN x v.

5. 0 = pZ x v if and only if v is S-invariant.

4.4.8 Notational Remark 1

To make our notations more suggestive, we will adopt a number of notational rules.
Throughout this paper, we will consider a number of spaces, each with their natural Borel
probability measure, and have a T*-action and Uf' -action that are measure-preserving. The

ones we have seen so far are:
(8%, u?), (87 x G/L,v), (8% x G/H, D).

We will also consider cocycle actions over these dynamical systems (and some others introduced
in future sections). For instance 7} is a cocycle action on the trivial bundle SZ x X over S~

for X = G/L and G/H.

Elements
For an element in a measure-preserving system with SZ as a factor,
e we use a letter with a hat to denote that element, for instance 2,9, 2, ¢ etc.
e we use the same letter without the hat to denote the component in a G-space, for instance

z,Y,z,q etc.
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e we use w with sub/superscripts to denote the component in the SZ factor, for instance

w, w', W ete.

Dynamics

Rather than using a different notation for the dynamics on various spaces, we use the following

rules.

e We use T for the action on (SZ, ui%).

e We use T" (for Z-action) and T* (for R-action) for the dynamics of any system except

(SZ, u?).

t . n . .
e We use T} (for Z-action) or T (for R-action) for any cocycle action over any measure-

preserving system, where 2 is an element in the underlying space of the system.

Manifolds and vector spaces

We will consider various dynamically defined submanifolds and vector bundles.

e We use curly letters for submanifolds of a G-space or subsets of SZ. often (though not
always) with a subscript to indicate the manifold it is embedded in, and a superscript

related to the exponential growth rate. For instance WG 1 W ‘FG JH etc.

e We use curly letters with a hat for subsets of a system with a SZ component and a

. N + AT
G-space component. For instance We JH Wa /L etc.

e We use straight letters for vector bundles, sometimes with a superscript related to the

exponential growth rate, or in boldface. For instance W<)‘i, F, E etc.

We use straight letters for subgroups of G, for instance G, H, L etc.

See Notational Remark 2 in the end of Section 4.5 for other remarks on the notation.
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4.4.4  Metric on G/H
Let H° be the connected component of identity in H.

Definition (Metric). Fix a representation p : G — GL(V) s.t. L C G is the stabilizer of a

nonzero vector v € V. Then there is an injection G/L — V given by g — gv. Let
1. dj, JH be a right invariant Riemannian metric on L/H®,

2. dg /L be the metric on G/L induced by the injection G/L — V from the Euclidean metric
onV,

We need to choose a convenient metric on G/H to control the drift of points in different
fibers. We use a metric similar to that in Sargent-Shapira [SS19, Sect. 6.1].
Let g := Lie(G) and b := Lie(H®). For z € G/L, let by := xhz~! (note that this is

well-defined since L normalizes H®). Consider the orthogonal projection

with respect to a fixed K-invariant inner product on g. Let 7 : G/H® — G/L be the quotient
map. Now for z € G/H®, define b, := hw(z) = zhz~ 1.

We then define a metric on G/H® as follows:
e for 2 € G/H®, define r, : G — G/H® by g — gz.

e The derivative at the identity der, : g — T>(G/H®) has kernel h,, hence gives a well-

defined linear isomorphism der; : my () = T2(G/H®) = g/(b2).

e We pushforward the metric on M) inherited from g via this isomorphism to obtain a

metric on T,(G/H®) = g/(h2).
e Doing this for all z € G/H® we obtain a metric dg, 7 on G/H°.

e We use || - ||p for the norm on g/, induced by this metric to distinguish this from the

dynamically defined norm to be constructed in subection 4.5.9.
143



A convenient way to view the dynamics is to use the following diagrams: for all v € G,

ze€ G/H®,

Ad
G—1—G g —g
TZL jr'yz derzl Lder,yz
G/HOmG/HO TZG/HOﬁTVZG/HO

where ¢y : G — G is conjugation by v, i.e. ¢y(g) = ~vgy L.

The vertical maps restrict to an isometry (by definition of the metric) on Moy and my (o
respectively, and has norm at most 1 on all of g. The top horizontal map induces a map

Ady : g/b. — g/by.. Note that this map does not map m .y to my,) in general.

V%)
Proposition 4.4.3. The metric dg /H on G/H°® defined above has the following properties.

(a) dg/p is invariant under right multiplication by L/H®, i.e. dg/p (29, Zg) = dG/H(z,z’)
for 2,2/ € G/H® and g € L/H°.

(b) On each fiber xL/H® for x € G/L, if 2,2’ € L /H®, then right multiplication gives an
isometry on tangent spaces T.G/H® — T,,G/H®. Under the identification above, it is

an isometry g/bh. — g/b,s, hence we can identify the tangent spaces with g/b, for all
z€axL/HC.
(c) dG/H(gz,gz/) < HgHAd(G)dG/H(z,Z’) for all g € G and 2,2 € G/H°.
(d) dg/r(m(2), m(')) < ¢p dg/m (2, 2), where ¢, is the Lipschitz constant of the map p : G —
GL(V).
Here || - || oq(q) is the operator norm on G given by the adjoint action Ad : G — Ad(g).

For (z,2') € G/H® x G/H?® close enough, define the orthogonal displacement vector 0,4 €

m_ () as the unique vector v € m ) such that 2 = exp(v)z.

Proposition 4.4.4. For any compact set £ C GG, and all 0 < ¢ < 1, there exists a neighborhood
of the diagonal U € G/H® x G/H® such that for all (z,2') € U, and g € EU E~L U {e}, we

have
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(a) The vector oy, ;.1 € M,y is well-defined.

92,97 92)
(b) C”ng,gz’HO < dG/H(gz7gzl) < CilHng,gz’HO-

(c) For all nonzero pg € /\dimH b, we have

lg(o, » A pr)llo
lgpmllo

< c_lHo

CHogz7gz’H0 < gz,gz’HO-

4.4.5 Stable and Unstable manifolds

We consider stable and unstable manifolds for the dynamics on both SZx G /L and Stx @ JH®.

Stable and unstable manifolds on SZ x G/L

For (w,z) € S% x G/L, define the stable manifolds

Welw] = {u’ € 8% | () =w},
A 1
W5, i =4 (W, 2)) € 8% x G/L | (W) =wh and limsup = log dg/L(Tﬁx,Tﬁx') <0¢,
G/L n—oo N
Similarly define the unstable manifolds W, [w], W/ skl

Stable and unstable manifolds on S x G/ H®

Let m = mq/r, « G/H® — G/L be the quotient map. For 2z = (w,z) € S% x G/H®, define the

stable manifolds
VAVE/H[Q] = {(w’,zl) eS8t xG/H® | (W) = w+,7rG/L(z’) = 7mg/r(?), and
1
lim sup — logdG/H(Tﬁz,Tﬁz’) < O},

n—oo N

. 1
W(_}/H['é] = {(w/,zl) eS8t xG/H® | (W) =wT, and limsup—logdG/H(Tﬁz,Tﬁzl) < 0}.

n—oo N
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Similarly define the unstable manifolds Wz_ / 1Z] and W, [2]. We remark that the manifolds

G/H
are local in the 8% component and global in the G-space component.

Then for almost every (w,z) € S% x G/L, there exist unipotent subgroups N;{(w,x) =
N;{(w_, x) and Ny (w,z) = Ng (wt,z) of 2(L/H®)x~! such that for almost every 2 = (w, 2) €
SZ x G/H®, the fiberwise stable set

W:I:

Tyl = Wﬁz[w] xA{mq(2)} x N;E(w]F,W(z))z.

Also write the total stable set
W@H[z] = W] x Wg y[2].

where W, ;[2] C G/H® denotes the stable manifold of z with respect to the combinatorial

/H

_|_

future w™, i.e.

— . I 1
WG/H[Z] = {z/ e G/H® | hTrLrifolépﬁlogdG/H(Tﬁz,ng/) < O} :

Note that Wg/L(Wa/H[(w,z)]) C Wé/L[(w,ﬂg/L(z))] by Proposition 4.4.3(d). We can also
describe W, / 7[Z] in terms of the stable unipotent subgroup N~ (w) C G of G with respect to
the word w, namely

Wé/H[é] =N~ (w)zH°.

This will be proved in Lemma 4.5.3.

Inert center-stable set

Definition. Define the inert center-stable set by, for = € G/H®,

FEO = {2 € G/H® | limsup ~ log dg r(TH(=), TA()) 0 for aue. wt e SV},
G/H n—oo N
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For z € G/L, define

1
FSY 2] =42’ € G/L| limsup—logdG/L(Tﬁ(a:),Tﬁ(m/)) <0 for almost every wt e SN }.
G/L n—oo N

+

In words, 2/ € FS G/ H[ 2] if for almost every future w™, 2z and 2’ do not diverge exponentially.

Proposition 4.4.5. We have the following equivariance properties: for all z € G/H®,
<
(a) for p-a.e. g € G, we have gj:@?H[ z] C FA /H[gz] Similar for ]:G/L[ x].

(b) for all h € L/H®, we have F,

Shleh] = F,

G/H[ z)h, where L/H® acts on G/H® by right

multiplication.

(c) m (]:C<¥?H[ z]) C }"S?L[ 7(2)] where 7 : G/H® — G/L is the quotient map.

Proof. For p-a.e. g € G, we have gF

G/H[]C]-“

G/ H[gz] basically by definition. For part (b),

the equivariance follows from the right invariance of the metric dg, by L/H®. Part (c) follows

from Proposition 4.4.3(d). O

Proposition 4.4.6. If x is uniformly expanding on L/ H at © € G/ L, and there is a p-stationary
measure v on fixH/H, then for all z € ffa:Ho/Ho, the intersection of ‘FCSJ?H 2] and 2'L/H®
contains at most one point for all 2’ € fooL /L.

Proof. We defer the proof of this proposition to Section 4.8.2, as it will be a corollary of
Proposition 4.8.4 (see Corollary 4.8.5). O

Proposition 4.4.7. For almost every # = (w,z) € SZ x G/L, we have WG/L[ z] = ,FE/L[QE]

W]z], where W is the partition in Corollary 4.3.8.

Proof. This follows from Corollary 4.3.8 (e). O

4.4.6 Two cases

)} on

Vgl
w', 2)]: For v-almost every (w, z) € SZ x G/H,
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Case I: the conditional measure v

We n

Case II: the conditional measure ﬁ|w,
G/H

By ergodicity of ©, Case I and II are complementary. In Case I, we apply the modified exponen-

Ve lw)] is not supported on W, [w] x }—é?H [2].

[(w,2)] is supported on W, [w] x fé?H[z]

~

tial drift argument to pairs of points (w, z), (W', 2’) in Wé/H[(w, )] such that the basepoints
z,2' € G/H have different inert stable sets Fé?H [2] # F, é?H [2/]. In Case 11, a separate argu-
ment will be needed. In particular, the main theorem follows from the following two statements:

Suppose G, H, i satisfying the conditions of Theorem 4.1.1 and there exists an H-envelope
L that satisfying the conditions of Theorem 4.1.1. Let v be an ergodic p-stationary probability

measure on GG/H, which projects to a pu-stationary probability measure v := m4v on G/ L.

Theorem 4.4.8. If Case I holds, then there exist a Lie subgroup H' ¢ G with H° ¢ H' C
L C G and dim(H'/H®) > 0, an H'-homogeneous probability measure v, /i on L/H and finite

p-stationary measure v, g on G /H' such that

VG/H = VG/H *VL/H = /G/H/ 9«vr g e m(9)-

Theorem 4.4.9. Assume that

(t) There exists a closed normal subgroup U C ff and some zg € G with zgL = x¢L such

that ffxoL = UzpH® and Zo_lUZO N H® = {id}.

If Case II holds, then the stationary measure v /g can be written as

VG/H:\/G/LVCC dﬁ(l’),

where
1. 7 is a generalized p-Bernoulli measure supported on ffng /L.

2. there exists a positive integer k such that for 7-almost every x € G/L, v, is the uniform

measure on k points in 71 (z) C G/H,
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3. there exist finitely many z1,..., 2z, € ffng/H such that for F := [JI% }E?H[Z@']’ we
have (i) supp v/ C F, (ii) F has finite intersection with 2/L/H for all 2’ € ffxoL/L,

and (iii) F is invariant under I',.

4.5 Refined Lyapunov Subspaces W;(w, z)

In this section, we will apply Oseledets multiplicative ergodic theorem and Zimmer’s amenable

reduction theorem to write the cocycle in a specific form, as was done in [ELa].

4.5.1  Suspension flow T : Q4 — Q, on Q = SZ x [0, 1]

In the process of the exponential drift, it would be convenient consider the ag—action not just
as a Z-action, but an R-action. This motivates the use of a suspension flow.

It will be evident by definition that the dynamics between two times ¢ < ¢’ is the identity
map unless there is an integer between ¢ and t'. Nonetheless, in subection 4.5.9, we will define
a dynamical norm that varies for different times in the suspension. In particular, the operator
norm of a certain linear map A(q1,u,¢,t) with respect to these dynamical norms will vary
continuously with respect to t (rather than a nondecreasing step function in ¢ that changes
only at integer times, as in the usual norm). This will help us determine a stopping time ¢ by
setting ||.A(q1,u, ¢, t)|| = € for some constant £ > 0.

Let €, = SZ x [0,1], let T* be the suspension flow on €, obtained by descending the flow
(w,s) — (w,s+1) on SZ x R onto Q) with respect to the identification (w,s + 1) ~ (Tw, s).
Let Leb[o,l] be the Lebesgue (probability) measure on [0,1]. Then the probability measure
1 x Lebjg 1 on €Y is invariant under the flow.

With this in mind we can extend the definitions of iteration of maps defined in Section 4.4.2

to a flow: for w € O and z € G/H, define
° Tf, : G/H — G/ H for any real number ¢, not just for integers t = n, by setting Tf, = Ttgﬂ.
o T1:Qy x G/H — Qy x G/H by (w,z) — (Thw, T 2).
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o T Qy x T(G/H) = Q x T(G/H) by (w,z,v) = (Ttw, Tt 2, (T!)«v), where T(G/H) is
the tangent bundle on G/H.

Analogous notations are used to extend the base dynamics on SZ x G/L to € x G/L.
Similarly, define Qg := S% x G/L x [0,1] with the natural measure 7 x Lebpg,1] and let T!

be the suspension flow on 25 by the same construction.

4.5.2  Lyapunov subspaces Wi (w, 2)

Apply Oseledets theorem to the cocycle Tt : Qp x T(G/H) — Q x T(G/H) over the base (:

Proposition 4.5.1. There exists real numbers \; > Ao > --- > A\, such that for almost every

Z=(w,z,8) € SZ x G/H, there exists a T'-invariant splitting
n
T.(G/H) = P Wi(w, 2)
1=1

with the property that v € Wi (w, z) ~ {0} if and only if

IT)vlo _

li —1
=0t 8 [vlo

Here we think of each W?i(w, z) as a subspace of g/h, using the identification T, (G/H) =
g/b. from subsection 4.4.4. The numbers \; are called the Lyapunov exponents, WA (w, z) are
called the Lyapunov subspaces of g/b, with respect to the cocycle Tt

Also for any real number A, define the vector bundles

1 T}
WS Mw, z) == {0} U {V €g/h, ~ {0} | limsup—logw < )\} ,
oo 1 Ivllo

1 Tt
WZMNw, z) == {0} U {v €g/h. ~ {0} | limsup—logw < —)\} :
oo Ivlo
And similarly define the bundles W< and W>2. Then by Oseledets theorem, for each ¢, for

almost every (w, z) € SZ % G/H, the lim sup in the definition of W=A and W22 can be replaced
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by lim, and furthermore, we have

W>)‘ (w, 2) = @W)‘ (w, 2) W<)‘ (w,2) = @W)‘ (w, 2)
J<i Jj=>t

W>)‘ (w, 2) = @W)‘ (w, 2) W<)‘ (w,2) = @W)‘ (w, 2)
1<t j>Z

The filtration

is called the forward Lyapunov flag. The filtration
0CWM Ccw2R C...Cc W2 =T(G/H)
is called the backward Lyapunov flag. Note that for almost every (w,z) € SZ x G/H,
WA — WX q Wi
We also define the unstable and stable bundles

= @ W (w, 2), W (w,z) = @ WA (w, 2).
)\j>0 /\j<0
Note that WZMw, z) = W2MNW/, 2) for o € W;Z W], and WSMw, 2) = WSMW, 2) for o' €
WgZ[w].
Also Whi(w, z) = Whi(w,2/) if Tq/r(z) = 7TG/L<Z/). Thus for z € G/L, sometimes we write

Wi(w, ) :== Whi(w, 2) for any z € G/H such that Tq/L(z) = .
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4.5.8  Fiberwise Lyapunov subspaces Wl/b( x)

Now for each x € G/L, define [, := zlz~1. Consider the Oseledets splitting on the fiberwise

subspace

o/bz = 6{}?V§%(w,x)
=1

defined by W[% (w, ) := WAi(w,2) N (I/bz) (possibly trivial).
Now since H° is a normal subgroup of L, [;/b; is a Lie algebra. In particular, we can
now define the unipotent subgroups Nfi(w, x) claimed in Section 4.4.5: they are the unipotent

subgroups of the Lie group x(L/H®)z~! such that

Lie(NT) (&) = W[J/Fh W, x) EB W[/]f) w,x), Lie(N7)(z)= [/f) @ I/V[/J[j W, T)
Aj>0

Here we are using the fact that the right hand sides are nilpotent subalgebras of ([/h);.

4.5.4  Relationship with Lyapunov subspaces on g

Recall from subsection 4.4.4 that under the identification 7,(G/H®) = g/b., the differential
map of left multiplication by v on G/H® is given by Ady : g/b, — g/byz, where we recall

b, := Ad.h = zhz~1. Thus we can consider the dynamics using the short exact sequence of

cocycles over SZ x G/H

b —g—g/b:

where the action on all three are given by conjugation by elements in G. Recall that the

Lyapunov subspaces and exponents are canonical with respect to short exact sequences.

Proposition 4.5.2. Let

W Vo V/W

be a short exact sequence of cocycles over an ergodic base (€2, uq), Tt). More precisely, for each
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bundle £ = W, V,V/W, for w € Q, label the cocycle by
1! By — Epi,

where F,, is the fiber of E above w € €2. Then these cocycles are compatible with the bundle
maps in the short exact sequence.

For each real number A, let
<X 1TV
E;" ={0}U<sve E,~{0}| hrnsup log v = <Ap.

Define the subbundle E<* C E over  with fibers EE/\. Then E=? is a Tt-invariant subbundle
of E/, and
WA =v=Anw, (V/W)=A = VA=A

over pg-a.e. w € €.

Here we interpret V=" /W= as a subspace of V/W via the natural isomorphism V<A /17 <A
(V</\ + W) /W once we have established WSA = VSANTW. The analogous statements hold if

we replace < X\ by < A\, > X or > \ everywhere.

Proof. The first two claims are clear from definition. It remains to show the third claim that
(V/W)SA c (VS + W)W, (4.5.1)

i.e. for each v € (V/W)é)‘, there is a representative v/ € V= + W, that is in the coset v+ W,,.
The key is to apply [Fill9, Lem. 2.3.3], which states that “unusually large growth in invariant
subbundle implies splitting”.

Let ¢ : V. — V/W be the natural quotient map of bundles over €, and consider the
subbundle ¢~ 1(V/W)SA ¢ V. By Tt-equivariance of ¢ and T*-invariance of (V/W)=A, we
know that ¢~ 1 (V/W)=* is a Tt-invariant subbundle of V that contains W as an invariant
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subbundle. Thus for the purpose of showing (4.5.1), we may assume that V = ¢~ 1(V/W)A
by restricting to this subbundle and show that V = V= 4 W. We may further assume that
A= )\¥/W, the top exponent of V/W.

Let )\}/V > )\gV > > )\TVlV be the Lyapunov exponents of W. If the top exponent of W is
at most A = )\Y/ W, then we are done. Otherwise, let )\%V be the smallest exponent such that
)\kW > A¥/W. Now apply [Fill9, Lem. 2.3.3] (see also [Mn87, Lem. 11.6]) successively to the
Oseledets filtration of V/W and of W/ WA , we have an invariant splitting of the short exact

sequence

0= W/WMN S v/wN S v/w o,

i.e. a section o : V/W — V/ W< such that there is a T'-invariant decomposition
VIWA = o(V/W) & W/W<N (4.5.2)

and the exponents of o(V/W) coincide with the exponents of V/W (since o is tempered). In
particular the top exponent of o(V/W) is A = /\¥/W.

Let V! C V be the preimage of o(V/W) under the quotient map V — V/ WM. Then the
top exponent of V' is the maximum of the top exponents of o(V/W) and W<>‘kW. Note that
either £ = n, in which case W<)‘kw is trivial, or the top exponent of W<>‘kW is /\Z[il, which is

at most A by the choice of k. In both cases, we can conclude that the top exponent of V' is \,

so V'€ V=2 On the other hand, from the decomposition (4.5.2), we have
V=V+W

Therefore V = V=A 4 W, as desired.
m

In particular, we can read off the Lyapunov flags on g/h, from the Lyapunov flags on g
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using this exact sequence. Namely, for w € SZ and real number A, let

1 T!
Wgé’\(w) ={0}U {V €g| limsup—logw < /\} .
oo Ivllo

Then for 2 = (w, 2) € SZ x G/H, the forward flag on T,G/H = g/b. is given by
WEN(E) = W @)/ (W™ () N1h2) 2 (Wg ™ () + )/ (45.3)

In particular, the successive quotient is given by

WS/\i (2’)/W<)\Z(2) — WQS)\Z(W) + [Jz ~ ng/\l (w) ‘
Weliw) +b:  Witiw) N (W) +b2)

4.5.5 Description of stable manifolds on G/H

We now describe the (un)stable manifolds on G/H® with respect to a given word w in terms

of the (un)stable unipotent subgroup of G' with respect to w, as claimed in Subsection 4.4.5.

Lemma 4.5.3. For all zH® € G/H® and p%-ae. w € 8%, the stable manifold on G/H®
through zH° € G/H® along the word w is N~ (w)zH®, where N~ (w) is the (unipotent) stable
subgroup of G with respect to the word w.

More precisely, let

1
— N o /
WG/H[(w,z)] = {z e G/H® | hrrlnsupﬁlogdg/H(ng,ng ) < O} :

Then for all zH® € G/H® and p%-ae. w e S, we have W,

G/H[(w,z)] = N (w)zH® and in

particular is algebraic. The analogous statement holds for the unstable manifold.

Remark. It will be clear from the proof that the analogous statement is true for the strong

(un)stable manifolds

<A o o1 1 n .
WG/H[(W»Z)] = {Z e G/H® | hTIlr;so%pglogdG/H(Twz,Twz) < )\}
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for all A < 0, though we will not need this fact. However, it is not true in general for the

<0
center-stable set Wé/H[(w, z)].

We first prove the following (elementary) lemma.

Lemma 4.5.4. Let V be a finite-dimensional real inner product space, and A € GL(V) be a
self-adjoint real operator on V' with all eigenvalues (real and) positive. Let V20 c V be the
direct sum of the eigenspaces corresponding to the eigenvalues at least 1.

Let {vn}pen C V20 be a sequence of nonzero vectors such that

1
lim sup — log ||vy,|| < 0. (4.5.4)
n—oo 1
Then
lim A" "v,, — 0.
n—o0
Proof. Let eM > e > ... > e be the set of eigenvalues of A, and let VY C V be

the eigenspace of edi. Note that the assumption (4.5.4) does not depend on the choice of a

(equivalent) norm || - || on V, thus we may use the equivalent norm || - || on V defined as follows:
for each v € V, decompose v := > 1" vAi as a sum of eigenvectors v with eigenvalue e)‘i,

and define |[v||" := max;<j<, ||V>‘1||
If we write the eigenvector decomposition of v, = > 1" v, then (4.5.4) (with the norm

| - |I") implies that for all 1 <i < m,
: 1 s
lim sup — log ||vy*|| < 0.
n—oo "N

. .\ DY
Since A™"vy' = e ”Alvn% we have

1 A 1 , , 1 .
lim sup — log HA*nv%ZH = lim sup — log e*”)"Han‘fH = —\; + limsup — log HV%ZH < =N
n n—oo 1 n—oo N

n—oo
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Since v, € V=Y, v{)i =0 for all \; < 0. Thus we have

1 _ 1 T s
lim sup — log ||A™"v,||" = lim sup = lo max A" < 0.
n—)oop n & H n” n—>oop n & 1<i<m, ;>0 H " H

Hence A~™™v,, — 0 as n — oo, as desired. H

Proof of Lemma 4.5.3. First of all since the metric dg /H on each tangent space g/b, is defined
by pullback from the restriction of a fixed inner product on g to m, := (fh Z)L C g, we have for
all 2,2 € G,

dg/p(zH, 7 H®) <dg(z, 7).

In particular, we have

N~ (w)zH® C Wé/H[(w, 2)].

. . , p—
For the other direction, let 2’ € WG JH

{0n}nen C G and {hp},en C H® such that T2 = 6, T zhy, and lim sup,,_, o, %log dg(0n,e) <

[(w,2)]. Then by definition, there exists a sequence

0.
Now consider the adjoint action of g on g. By assumption p has finite first moment.
Therefore we can apply [GM89, Thm. 1.2] to this random action, and get for plae. we SZ,

an element A(w) € G such that

1. A(w) = lim ((Tﬁ)T(Tﬁ))l/%, in particular the adjoint action of A(w) on g is self-adjoint

n—oo

with positive eigenvalues,

.1 _ 1 _
2. lim —log |AW)"(Z) ™! = Jlim_ ~log |(TZ)A) ™" =0.

n—oon

3. let g<%(w) C g be the direct sum of the eigenspaces of Ad(A(w)) on g with eigenvalue

less than 1. Then

0%w) = {V €g

1
lim sup — log ||Ad(T]})v]| < 0} :
n—oo N

Thus exp(g<%(w)) = N~ (w).
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Let g20(w) C g be the direct sum of the eigenspaces of Ad(A(w)) with eigenvalue at least
1. Then g = g2%w) @ g<Y(w). Moreover, there exists an open neighborhood U C G of the
identity such that U C exp(g=%(w)) exp(g<Y(w)), i.e. forall g € U, there exist wy € g=%w) and
vy € g<%(w) such that g = exp(wy) exp(vy) (the existence of such a neighborhood U follows,
for instance, from the inverse function theorem applied to the map g=%w) ® g~ (w) — G
defined by (w,v) — exp(w) exp(v)).

Since lim sup,, o0 %log da(0p,e) < 0 and limy,— oo %log |A(w)™(T)~ Y| = 0, we have in
particular

lim sup ~ log dgz(A ()" (T7) 60 (T A (W)™, ) < 0.

n—oo N

Take a large enough N > 0 such that for all n > N, A(w)™(T) L6 (T7)A(w)™ € U, and

write

A@)™M(T) ™ on(T)Aw) ™" = exp(wy) exp(vn) with wy, € g7°(w) and vy € g=0(w).
Then

On = exp(Ad((T)Aw) " )wn) exp(Ad((TZ)A(w)")vy) with wy, € g=(w) and vy € g=0(w).

Moreover, we have

1
lim sup — log ||wy|| < 0,
n—oo N

and analogously for v,,. By definition,
2= (T 6, T 2hy = exp(Ad(A(w))"wy) exp(Ad(A(w)) Vi) zhn. (4.5.5)

Now apply Lemma 4.5.4 to the adjoint action of A(w) on g and the sequence of vectors {wy,} C

g72%(w), we have Ad(A(w)) ™ "wy, — 0 as n — co. Therefore by (4.5.5),

I -n
z —nlg%oexp(Ad(A(w)) Vi) zhy.
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Since v, € g<%w), we have Ad(A(w)) v, € g~Yw). Since exp(g=(w)) = N~ (w) and
hn € H°, we conclude that 2’ is in the closure of N~ (w)zH°®.

Finally, by Chevalley’s theorem and that H° has no nontrivial character , there exists
a representation G — GL(V) such that H® is the stabilizer of an element v € V. Thus
N7 (w)zH® can be identified with a single N~ (w)-orbit in V', namely N~ (w)zv C V, via the
injection G/H® — V by g + gv. Since N~ (w) is a unipotent algebraic group, any orbit
of N7 (w) on V is Zariski closed by Kostant-Rosenlicht theorem (see e.g. [Ros61, Thm. 2]).
Therefore N~ (w)zH® is algebraic (and in particular, closed), and thus 2’ € N~ (w)zH®. Since

2 e Wé/H[(w, z)] is arbitrary, we have W(_;/H[(w, 2)] =N~ (w)zH°. O

Remark 4.5.5. In several occasions, we would want an “identification” map between the
tangent spaces of two points z, 2’ € G/H, i.e. a linear map I(z,2') : g/b, — g/b,s. Since G/H

is homogeneous, there exists ¢ € G such that 2’ = gz, thus one can define

‘[(Z’ 2/79) : g/hZ — g/hz’

by v = Adgv = gvg~ L for such an identification map. However, this map is not canonical -
it depends on the choice of such g € G. In particular there is no canonical way to define them
that is compatible with the dynamics. We will used it several times to define more canonical

constructions, like the holonomy map in the next subsection.

4.5.6  Holonomy maps H; (2,2)

Proposition 4.5.6. For r-almost every 2 = (w,z) € S% x G/H and almost every 2/ :=

(W2 € Wé/H

WSAi(21) W <Ai(2) such that

2], for each 4, there exist a linear map H, (2,%) WSAi(2)/W<Ai(2) —

1. H;(2,2) =id and H; (2,2") = H; (2/,2") o H (2,%).

1
2. (T!))«o H; (2,2) = H (T'2,T"%') o (T},)s.

3. (2,2) = H; (%,2') varies continuously.
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4. H; (2,7) is the identity map if WG/L(Z) = WG/L(Z/), where mq/p, - G/H — G/L is the

quotient map.

Proof. Let 2/ = (W', H) € W(_;/H[é] By Lemma 4.5.3 (and that the exponential map
is a diffeomorphism on the unipotent group N~ (w)), there exists v € W;O(w) such that
exp(v)zH = 2'H.

Recall from Remark 4.5.5 the map

I(z, 7 exp(v)) = Adexp(v) 1 8/bz = a/br.
Since v is exponentially contracted, I(z, 2/, exp(v)) induces a map

H7(2,2) : WShi(2) /WX (2) — WShi(z!)yw=Xi(2)).

7

Now recall from subsection 4.5.4 that

Weti(w)
W (w) N (W (w) + b2)

W=Ai(2)/Whi(2) =

For each w € ng/\i (w), since v € Wg<0(w), we have

Ai <A Ai
Adp(v) (W) = w € W (w) € Wi (w) N (W (w) + b). (4.5.6)
In particular Adexp(V)ng)"' (w) = ng)‘i (w) and Adexp(V)W;)‘i (w) = Wg< Ai (w). Also clearly
Adgyp(v) maps bz to b as exp(v)zH = Z'H (recall that b, := Ad.h). Therefore H, (2,%) is

well-defined and does not depend on the choice of representative v in the coset v+h, € W<O(;3)
as along as it satisfies exp(v)zH = 2'H.

In particular since H; (2,2') does not depend on the choice of v, one can readily verify
properties 1-3. Property 4 holds since if WG/L(Z) = ﬂG/L(z’), then h, = b, and furthermore
2 e Wé/H[é} then W=Yi(w,z) = WSAi(w',2/) (see the end of subsection 4.5.2). By (4.5.6),

the restriction of the identity map g/bh. — g/b,/ coincides with H," (2, 2’) on each successive
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quotient. O

4.5.7  FEquivariant measurable flat connections P~(z,2)

For p-almost every 2 = (w, z) € S% x G/H and almost every 2/ := («/, %) € Wa/H[(w, 2)], we
can define P, (2,%') : Wi(w, z) — WAi(w, 2') by the composition
A,L' SAZ <)\’L H’Lf (272/) SAZ / / <)\1, / / AZ / /

Whi(w, z) = W= (w, 2) /WS (w, 2) ———— W= (w0, 2') /WY (W', 2') — Whi(w', 2'),
where we use the natural isomorphism Wi (w, z) — W=i(w, z)/W<i(w, z) given by injection
and then quotient.

Define P~ (2, 2') : g/b. — g/b,s be the unique linear map that restricts to P, (2, 2') on each

subspaces Wi (w, z). The following properties of P~ are clear from definition and Proposition

4.5.6.

Lemma 4.5.7. cf. [ELa, Lem. 2.1] For 7-almost every 2 = (w,z) € SZ x G/H and almost

every 2/ = (o

) € Wg glw, 2)),

(a) P7(2, Wi (w,2) = Wh(W', 2),

(b) P7(2,2") = (T s 0 P~ (T'2,T"2") o (T))s,

(¢) P=(2,3") = P~ (2,2") o P~ (2,%)).

(d) P™(2,2) =id if 7gp(2) = mgp (7)) and w = .

Similarly define P (%, 2/) for 2/ € W, 1lé-

Remark 4.5.8. Due to property 3 and 4, for # = (w,z) € S% x G/L and ¥/ = (W,2') €
Wé/L[fc], we may sometimes write P~ (%,2) := P~ (2,2') for 2 = (w,2) and 2/ = (&, 2/) with
Tq/r(2) = = and WG/L(Z/) = 2/. Conversely, we may extend the definition of P~ (2,2’) to
all 2 = (w,2),% = (W, 2) € 8% x G/H such that (w/,ﬁg/L(z')) € Wé/L[(w,WG/L(z))] (note

that it follows from Lemma 4.5.3 that in this case, W / 2] has nonempty intersection 2" with
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Z'L/H, and we have 2" := (&, 2") € W5,

G/H [2]. Thus we can first define P~ (2, 2”), then post-

compose with the identity map P~ (2", 2’) to define P~ (2,2’)). We will need this extension in

the proof of Theorem 4.10.1 (see Step 15 in the proof outline in subsection 4.10.1).

The following lemma is an important property of the map P~ (and the corresponding map
PT). The proof in [ELa, Lem. 2.5] applies in our setting. The main input is a theorem of
Ledrappier [Led86, Thm. 1].

Lemma 4.5.9. cf. [ELa, Lem. 2.5] Let {M (%) C g/bx}i‘ESZxG/L be a T-equivariant subbun-

dle over SZ x G/L. Then, up to a null set, for i’ € Wé/L[ir],

The analogous property holds for ' € W, [#] and the map P (&,1’).

G/L

Lemma 4.5.10. [ELa, Lem. 2.2] There exists a > 0 depending only on the Lyapunov expo-
nents, and for all 6 > 0 there exists a subset K C ) with measure at least 1 — 9 such that for
all & = (w,z) € K, 2/ = (J,2)) € Wé/L[i] NK,t>0and any g € exp(Wg<0(w)) C G such

that grL = 2/ L, we have
1P~ (T"%, T'%') — 1(T*%, T, (TL)g(T4) o0 < lgllaaie) C(0)e .

Here || - |00 is the operator norm on a linear operator g/, — 9/b,, With respect to the
norm || - [|o defined in subsection 4.4.4. The identification map I(z,2’,g) := Ady was defined
as in Remark 4.5.5. Also [|g]|pq(q) i the operator norm of the image of g via the adjoint
representation Ad : G — GL(g) given by g — Adg, with the norm of g chosen in subsection
4.4.4.

Proof. Let € > 0 be smaller than one third the smallest gap between consecutive Lyapunov

exponents. Then by Oseledets theorem, for any 6 > 0, there exists K C () of measure at least

1 — ¢ and constants 0 = ¢(d) > 0, p = p(d) > 0 such that for all £ € K and ¢t > 0, we have
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(a) for any subset S of Lyapunov exponents,

dy | PWHhi(Tha), WA (T'2) | > oe .
ieS Jj¢s

(b) for any i and w; € Wi(#),
pe NN willo < I(Th)willo < o~ e wyo.

By (a), it suffices to show that for v € Wi (T%#) for some i, we have

1P~ (7", T'%")v — Ad(gerey-1¥ o

Ivlo

< C(6)e™

for any g € exp(W;%(w)) C G such that gzL = a'L.
Let w € WAi(&) be such that (T%)sw = v. Then by (b),

Ivllo = e~ wllo. (4.5.7)
Now we recall the definition of P~ and the construction of the holonomy map H; (%, #') that

P (3,3 )w = Adgw + Y _w;, w; € WA (@), (4.5.8)
j>i
where ¢ is any element in exp(WEfO(w)) with grL = 2'L (it was for grH = 2’ H but since the
holonomy map is the identity along xL/H, we can relax to requiring gzL = 2’'L. The vectors
w; will depend on the choice of g). By equivariance of the P~ map (Proposition 4.5.7(b)), we
have

P (T2, Tt yv = (TL,) P (3,3 )w.
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Therefore

P (1'%, T )v = (T),))«Adgw + > (T},)sw;.
g>i

Note that (Tf),)*Adgw = Ad(Tt)g(Tt)_1v since (Toi,)* acts by conjugation on g/hz (note that

Tl = Tf}, since &' € W,

G/ 2], ie. wand w' have the same combinatorial future). Therefore we

have

P~ (T'%, Tt v — Ad(qt g1ty -1V = > (Th)aw;. (4.5.9)
J>t

By (a) and (4.5.8), for all j > i, we have (note that P~ (&,4’) € Wi(#') and w; € Wi (&)
Iw;llo < C1(0)|Adgwllo < C1(6) gl aae 1wl
Thus by (b),
ITL)ewsllo < o=t wjllo < CL@)p™ e g g 1wl

By (4.5.7) and (4.5.9), we have

1P~ (T, T3 )v = Ad ) rey-1vllo < D Cr(0)p~ 22 gy 1V -
j>i

This implies the statement since A; < A; for all j > 1. [

4.5.8 Jordan Canonical Form of a cocycle

Recall that Qy := SZ x G /L x [0,1]. We recall Zimmer’s amenable reduction theorem in the

case of a cocycle in GL(n,R).

Theorem 4.5.11. cf. [ELa, Lem. 2.3] Suppose T? is a linear cocycle over an ergodic action of

R on Q. Then there exists a finite set ¥ and an extension of the flow T to Q = Qg x ¥ s.t.:
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For each 7, for T-a.e. & = (w, z), there exists an invariant flag
{0} = Wi’()(u},l') - Wi’l(w7l’) c--C Wi’ni(w,l‘) = W/\Z'(w,x),

and on each W;(w,z)/W; j_1(w,z), there exists a nondegenerate quadratic form (-,-);; » and

a cocycle A;; : @ x R — R such that for all u,v € W;;(w,z)/W; j_1(w, z),

((T5) s, (Tci)*v>z‘j,Tt:% = M (E) (0, v)ijz-

The space € has a natural probability measure, defined as the product of the measure
U x Leb[O’l] on 2y and the uniform measure Unify, on the finite set .
In summary, we have the following spaces, each with their natural measure, and has a T-

action and a Z/lfr -action that are measure-preserving.

Space Probability measure
Qb = SZ X [O, 1] [J,Z X Leb[OJ]
Qo =S% x G/L x [0,1] v x Lebyg )

Q=82xG/Lx[0,1]x% |V x Lebpg 1) % Unify,

Qo =8% x G/H x [0,1] D x Lebyg )

QO =S8%x G/H x[0,1] x ¥ | & x Lebjg 1) x Unify,

Recall that Z/{1+ acts on w € SZ by changing the future of w, i.e. if W’ := uw, then (W)~ = w
and (/)T is an arbitrary. Extend this to an action on €, Qg, 2, Qp, Q by acting trivially on
the extra factors and we again have a natural measure on Z/llJr Z for any Z in any of these spaces

using its natural identification with SN,

Notational remark 2: there are obvious projection maps between various spaces defined
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above that are compatible with the dynamics and the measures. From now on, objects defined
on a certain factor will be automatically lifted as objects defined on spaces with a projection
onto this factor.

For instance there is a projection map 7 : Q- SLxa /L defined by projecting onto the
first two factors, and then apply the quotient map G/H — G/L on the second factor. Then if
we define an object f(&) for & € S x G/L, we may sometimes write f(2) := f(x(2)) for 2 € Q

without referencing the projection map.

4.5.9 Dynamically defined norms || - ||z

We would like to construct a norm on the tangent spaces of the bundle Q) — Q so that the
exponentially growth rate given by Oseledets theorem does not just hold asymptotically, but
hold for all time ¢. To do so, we first recall a choice of Markov partition on the base as in [ELa],

and then the proof in [ELa] applies.

A Markov partition

Proposition 4.5.12. [ELa, Prop. 2.8] Suppose C C  is a set with positive measure, and
Ty : C — R™ is a measurable function that is finite a.e. Then there exists &y € 2, a subset
C1 C W(_;/L[io] NC and for each ¢ € C1 a subset BT [¢] C W&‘_/L [¢] depending measurably on ¢,
and a number ¢(¢) > 0 such that if we let

L= |J T7'B{,
0<t<t(¢)

then the following holds:

+71a7 2 . . A+ A ~ +r1a
(a) B¢ is relatively open in WG/L[C], and i W&L/L[é](B [¢]) > 0.

(b) JeN Jy :(bifé#é/.
(¢) Ugec, Je is conull in €.
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(d) For every ¢ € Cq, there exists ¢ € C; such that 7-"9)B*[e] ¢ B[]
(e) t(¢) > Ty(c) for all ¢ € Cy.

For & € Q, let J[z] denote the set J; containing . Let By[z] := J[z] N WE/L[:%]

Dynamical inner product (-, )z
Using the partition given by Bg[z], the proof of [ELa, Prop. 2.14] holds in our setting.

Proposition 4.5.13. c¢f. [ELa, Prop. 2.14] There exists a T'-invariant full measure set
Q' C Q such that for all # € €, there exists an inner product (-,-); on g/h; and cocycles

Aij o 2 X R — R with the following properties:
(a) For all & € €, the distinct eigenspaces W™i(z) are orthogonal.

(b) Let W[;(#) := Wit | C W;j(#). Then for all & € €, ¢ € R and v € W/[;(#) C g/ba,

(T%,)*V _ e)\ij(iﬂf)vl + V//7

where v/ € W{j(Tti), v e Wi’j_l(Tt:i:) and ||v = ||v||;z. In particular,

/||th

t Nii(z,t
I(TE)sv > i@ |y

f,%'
(c) There exists x > 1 such that for all # € @', ¢t > 0 and i with \; > 0, k1t <
>‘ij<£7t) < kt.

(d) There exists k > 1 such that for all € ¢/,

vl <ITE)wvllpey < e™Iv]z forallt >0, ve Wt (&),

-1
e vl ST vlljey < e vl forallt>0, veW™(z),
e Mvle <N Tavllog < e Mvilg forallt € R, v €g/hs.
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In particular, the map ¢ — ||(T£)*V||T% is continuous.

(e) For all 7 € 3 e Bolz| N Q) and t > 0, )\Z‘j(i’, —t) = /\Z‘j(f/, —t).
(f) Fora.e. & € Q' ae. &' € Bp[2]NQ and v, w € g/bz, (PT(z,2")v, PT (2,2 )W)y =
(v, w)s.

Remark 4.5.14. We remark that the proof of [ELa, Prop. 2.14] applies more generally to any

L . . . Avi
finite dimensional linear cocycle V' over € for the corresponding Lyapunov subspaces WVV’ ,
refined Lyapunov subspaces Wy ;; and corresponding maps Pﬁ; for some constant Ky > 1 using

the same partition Bg[z] on the base.

From now on, we may drop the subscript when we refer to the dynamical norm
| -1l :==1 -z and will always use || - |o to denote the norm defined in subsection

4.4.4.

At times we may need to compare the dynamical norm || - ||z with the fixed norm || - ||g on

g/b2 defined in Section 4.4.4.

Lemma 4.5.15. cf. [ELa, Lem. 2.16] For every § > 0 and ¢ > 0, there exists a compact set

K(6) C  with measure at least 1 — § and C7(d,¢) < oo such that for all z € K(§), v € g/b,

and t € R,
01(5)—1€—E|t| < ”VHTt:ﬁ < 01(5)65‘”.
Ivllo
Proof. The proof is identical to that of [ELa, Lem. 2.16]. ]

4.6 Factorization

4.6.1 Normal forms

In this subection, we briefly discuss the theory of normal forms in our particular setting, where
a much simpler construction is available. The main purpose for us is to build the necessary
tool for the factorization theorem in the next subsection. The general theory of normal forms

has been studied extensively in the smooth ergodic theory literature (see for instance [KS17]).
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In our particular setting, a choice of normal forms can be more explicitly chosen with extra
properties (in particular it is a subspace in g). The main result of this section is Proposition

4.6.3.

Lemma on nilpotent Lie groups

The key to the construction of normal forms in the setting of G/H is the following elementary

lemma about nilpotent Lie groups.

Lemma 4.6.1. Let N be a nilpotent real Lie group, and U C N be a Lie subgroup. Let

u = Lie(U) and n = Lie(N). Let the lower central series of n ben=ng>ny D - Dnp =0

(ie. njp1 = [nmy)).

If a complementary subspace v of u in n satisfies
(unNn;) & (bNn;) =ny forall 0 <i<k-—1,

then for V := exp(v), the map V' x U — N defined by (v, u) — vu is bijective with polynomial
inverse.

Proof. For each 0 < ¢ < k — 1, define a complementary subspace u; of u N n;11 in uNn,;.
Similarly define the subspaces v;. Thus

u; ® (uNn;e) =unn, v, ®(bNn;) =0Nn;.

By assumption, we have (uNn;) @ (v N n;) = n;. Therefore this implies (u; & v;) G ;1 = ny.

Let n; :=u; ®v;. Then we have

n=n @ on_ . (4.6.1)

Now note that the exponential map exp is polynomial with polynomial inverse log on

nilpotent Lie algebra, therefore it suffices to show that the map ¥ : v X u — n defined by
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Y(v,u) = log(exp(v) exp(u)) has polynomial inverse.

By (a weak form of) the Baker-Campbell-Hausdorff formula, ¥ (v, u) = v 4+ u+ iterated Lie
brackets of v and u. Now given n € n, we need to find v € v and u € u such that ¥ (v,u) = n.
Write n = ng+nj +- - - nj_q using the decomposition in (4.6.1) so that n; € n;. Similarly write
u=uyg+u +---Fu_jandv=vg+vy+---+vp_1.

Since [v;, uj] € Mnax{itj}+1 (setting ng = 0 if ¢ > k), by comparing the nj-component of
both sides of n = (v, u), we have ng = vy + ug, and thus we can obtain ug, vy as the ug
and by components of ng respectively. Inductively, if we already know u;,v; for j <, we can
decompose n using the decomposition n = n6 EBn’l b-- ~69n§_1 @n;. Let n; be the n; component

of n. Then we have n; € v; + u; + 5(uj,'uj/ : 4,7 <) +njyq, where € is a linear combination

/

X Thus we can extract w; and v; inductively by

of repeated Lie brackets of the terms u;,v
computing the remainder term ¢ using the induction hypothesis, extract its ng component &;
so that n; = v; + u; + ¢; (recall that n; | = ng+1 e P n?{il). Since ¢; can be computed
using the induction hypothesis, and n; is given, we can compute v; + u; € n; =u; & v;, and

then set u;,v; to be its u; and v; components respectively. Since € is a polynomial, u; and v;

are computed as polynomials of components of ng, nq,...,n;. Thus ¥ has polynomial inverse.

]

The following proposition shows that for Lie subgroup U of a nilpotent Lie group NV, there

exists v that satisfies the assumption of the Lemma.

Proposition 4.6.2. Let N be a nilpotent real Lie group, and U C N be a Lie subgroup. Let
u = Lie(U) and n = Lie(N).
Then there exists a complementary subspace v of 1t in n such that for V' := exp(v), the map

V x U — N defined by (v,u) — vu is bijective with polynomial inverse.

Proof. Let u; :=unmn;. One can construct a flag of subspaces
g D01 D Do =0
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such that n; = u; @ v; for all 0 < i < k — 1. This can be done inductively by, for instance,
pick a finite set B; of independent vectors in n; . (n; 1 + u;) such that n; = (n;1 +u;) & (B;),
and then set v; := v;.1 + (B;). Note that it follows from the defining property of v; that
v; = vg N n; for all 2: on one hand we have the containment vg Nn; D v;. On the other hand
(vp M) Nu; C vgNug =0, and thus dim(vg N n;) < dimn; — dimu; = dimv;. Therefore the
containment cannot be strict.

Thus we have obtained a complementary subspace v := vy such that (unn;) @ (b Nn;) =

u; @ v; =n; for all i. Now apply Lemma 4.6.1 to get the result.

Stable normal form

Given two (real) vectors spaces Vi and Vo, a polynomial map p : Vi — Va is an element in
Sym'(Vl\/) ® V5. In more explicity terms, it is a map so that if we fix a basis on V] and on V3,
the coordinates of the map are polynomial in the coordinates on V7 with respect to this basis
on Vj. Clearly this notion does not depend on the choice of basis (since pre-/post-composing a
polynomial with a linear map is still polynomial).

We say that a (real) vector space V is filtered if there is a filtration
0= VMl c SM cySAn-t c ... Cc ySA = v,

and we say that v € V has weight (or Lyapunov exponent) \; if v € AN VS)‘ifl, and write
Ay (v) := A;. For our purpose, all the weights will be negative (as we will only apply such
notion to the stable subspaces).

Given two filtered vector spaces V1 and Vs, we say that a map p : Vi — Vb is subresonant
if Ay, (p(v)) < Ay, (v) for all v € V4. In other words, the map p does not increase the weights
of the vectors in V.

With these definitions, we can define the following notion of a stable normal form. We
remark that this is a much simpler case than the general theory of normal form, which we refer
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the readers to, say, [KS17].

Proposition 4.6.3. For almost every § = (w, q) € S% x G/H. there exists a subspace VaCa

and a diffeomorphism Ny : Vz — W,

G/H [G] such that:

(i) V4 can be made a filtered vector space where for all nonzero v € Vj, AV, (v) is the

exponential growth rate of dg /r (17q, Tty exp(v)q) as n — oo.

(ii) For all ¢ where Vj is defined, for all ¢, the map

-1 it .
NTt(j ol ON@ : V(j — Vft(j

is a subresonant polynomial map (with respect to the filtration defined in (i)).

(i) For all ¢ € W5,

G/ gldl = Welw] x W, JH [g], such that V; and Vi are defined, we have

SZ

Nt o NG Vg = Vy

is a subresonant polynomial map (with respect to the filtration defined in (i)).

Proof. Recall that for § := (w,qH) € S& x G/H, W(_?/H

the stable unipotent subgroup with respect to the word w € SZ by Lemma 4.5.3.

(] = N~ (w)qH, where N~ (w) C G is

Let n™ (w) C g be the nilpotent subalgebra such that exp(n™(w)) = N~ (w). Then n™ (w) N
ghg~! C g is also a nilpotent subalgebra. Now apply Proposition 4.6.2 to n (w) N ghg!
and n~ (w), we have a complementary subspace Vi C g such that the multiplication map
exp(V5) X (N™(w) N qHq ') — N~ (w) is bijective with polynomial inverse.

Now define NV : V; — Wé/H[d] = N~ (w)gH by v = exp(v)gH. Ny is a diffeomor-
phism since exp(Vz) x (N~ (w) N qHq ') — N~(w) is bijective with polynomial inverse .
Recall that 7% acts by left multiplication by some element g € G. Then /\/;t; oTto /\/'(j
maps v € V; to the unique element w in Vth such that exp(w)gqH = gexp(v)qH, i.e.

exp(w) € exp(gvg‘l)(gq)H(gq)_l. Thus it suffices to find the unique elements w € Vft(j
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and v’ € (9q)H (gq)~! such that exp(w)u’ = exp(gvg~!). From the choice of Vth using Propo-

L and w are

sition 4.6.2, we know that the map exp(gug™!) — exp(w) is polynomial. Since gvg™
nilpotent, the exponential map and its inverse are polynomial. Thus v — w is also polynomial,
as desired. Subresonance follows from the fact that the dynamics preserve the stable manifolds
with exponent at most < A for all A < 0. This shows the first property.

For the second property, recall that if ¢ € WC_J / H[Q], there exists n’ € N~ (w) such that
n'¢ H = ¢H. Now note that ./\/(271 o N maps v € Vj to the unique vector w € Vi such that
exp(w)q'H = exp(v)qH = exp(v)n'¢’H. Thus it suffices to find the unique element w € Vi
and v’ € ¢’H(q')~! such that exp(w)u’ = exp(v)n’. But v — w is polynomial by Proposition
4.6.2. Subresonance is clear. This shows the second property.

O

Remark 4.6.4. From now on we shall fix a choice of stable normal form. In particular some
constants may implicitly depend on such a choice (in additional to dependence on u, G/H
and other parameters explicitly stated). Any other choice differ by a measurable family of

subresonant automorphisms.

4.6.2  Factorization

Theorem 4.6.5. Fix a constant 3 > 0. There exist a linear cocycle V = V(3) over S x G/H,
a measurable family of smooth maps Fj : W& / H[@] — Vg for each g € SLx @ /H and linear
maps A(q1,u, (,t) : VTA,gql — ([/b>TtU(j1 for 4, € SZ x G/H and u € Llfr, ¢>0andt > 0 such

that
(a) (Fy is centered) Fj(q) = 0.

(b) (Equivariance of F};) Fj is equivariant:

F.

St ot
prgo T =T;oF;

Here Tg Vi — Vth is the cocycle action on V.
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(c) (Equivariance of A(G1,u,?,t)) A(dy,u,l,t) are linear maps and satisfy: for all ¢/ > 0
and t’ > 0,

. t/ . 4
AlGru 04+ 0t 4+t = TTtuql o A(qq,u,¢,t) o TT—(HZ')Q{

Here the cocycle action Té c (I/h)g — ([/h)th on ([/h)g is given by conjugation by
wig—1---wo € Glor ¢ =(w,q) € S% x G/H (i.e. the restriction of the derivative cocycle

on the tangent bundle g/b).

(d) (Factorization) For all § > 0, there exists a compact set K = K(6) € 8% x G/H of
measure at least 1 — d and constants C' = C(K, f) > 0 and a > 0 depending only on the
Lyapunov spectrum such that if ¢, ¢, 4; := 74, q = Ttq are allin K, § € W(_}/H 4],

and 0 < t < B, let go := T"uqy, G := T'ug}, then
g/ ar(d2, d5) — 1AL, 6,8 Fy(@)]|| < Ce™ ! (4.6.2)

Proof. The steps of the proof are as follows:

Step 0: Reduction to polynomial cocycle V' and polynomial maps A(qG,u,?,t)
We first show that it suffices to construct a subresonant polynomial cocycle V' and polyno-
mial maps A(q1,u, ¢,t) that are polynomial maps up to a fixed degree (the degree bound
depends only on G/H).

Subresonant polynomial cocycle V: Suppose that we have a measurable family of
smooth maps Fj : Wé / H[cj] — Vj and a cocycle V where the cocycle action Tg Vg — VTt(j
is subresonant polynomial. Then we claim that we can find a linear cocycle V/ over

S% x G/H with an equivariant smooth embedding V < V.

The idea is to consider PVj := Sym'(V(j\/)S)‘l, the space of polynomial functions on

Vi with weight at most A1, the top exponent of the dynamics on G /H, and then take
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Vq/ = (PVq)v. The embedding V < V' is given by the evaluation map:

€V AV /
Vi vy =

v ev(v)(p) = p(v)

The cocycle action on qu is given by the following: given a subresonant polynomial map
f:V — W, it induces a map f* : PW — PV by pullback. Since f is subresonant
polynomial, the pullback of a polynomial in PW indeed does give an element in PV
(with the same weight upper bound ;). This induces the dual map (f*)¥ : V/ — W’
By construction this is linear. It is immediate that this is compatible with the evaluation
map V; — Vq’ and therefore gives a smooth embedding of cocycles V' — V’. Finally we

post-compose the original maps Fj with this embedding to get the new maps Fé.

Polynomial maps A(qi,u,l,t):  Suppose we already have a measurable family of
smooth maps [ : Wé/H [g] — V4, a linear cocycle V' over SZ x G/H, and polynomial
maps A(q1,u, ¢, t) of degree at most d (that depends only on G/H) that satisfy the given
properties. Then we claim that we can find a new linear cocycle V/ and linear maps

A'(G1,u, £, t) that satisfy the given properties with an embedding of cocycles V — V.

In fact, any polynomial map f : V' — W of degree at most d factors through the symmetric

power:

<d !
v A gym<dy L,

d

where Sym=% can be thought of as the Veronese embedding (a polynomial map but not

linear in general), and f’ is a linear map.

q1
SydeVTA_%1 — ([/b)Tt(uql) factored from A(qy,u, ¢,t). Now any linear map f: V — W

Thus we can take qu = SydeVq, and then take A’(q1,u,?,t) to be the map V%_é =

induces naturally a linear map Symgd f: SydeV — SydeW, therefore we have an
embedding of linear cocycles V' — V’. The new maps F é is then given by post-composing
the original maps Fj with Symgd.
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Centering of [;: Note that after the previous two procedures, Fi may not be centered

(even if they were originally). Therefore we need to take F é((j’ ) = Fy(q') — Fy(q).

Step 1: Construction of Fj.

For each § = (w,q) € SZ x G/H, we consider the normal form Ny Vi — WG/H[ q] =

N7 (w)gH of its stable manifold as described in Proposition 4.6.3, and define Fj :=
N tomy: G/HH_>V wherer:W5/H[Q]=wS [w] x Wg ldl = Wg 1d] is the

projection map onto the second factor.

The normal forms give a measurable vector bundle V over SZ x G /H where each fiber is
V. The cocycle on V' is given by
¢ H—woq' H

4%

G/H[TCI]

N ~ 1
which is subresonant polynomial by a property of normal form coordinates. By the

definition of the cocycle on V, Fy; = N(j_l o m9 is equivariant. Note that using this

definition, Fg(g) = 0.

Step 2: Construction of the analytic map A’(G1,u,(,t)
We first construct an analytic map A’(Gy, u, ¢, t) that satisfies all the properties of A(gy, u, £, )
except being only analytic (rather than polynomial). In future steps, we shall explain how
to construct a polynomial map A(g1,u, £,t) that approximates A’(Gy,u, £,t) with appro-

priate error and still satisfies the desired properties.

To construct the map A'(G1,u,¢,t), the key is to first lift the stable manifold on G/L
with respect to the new future in ug; to an algebraic section of the bundle G/H — G/L,

and then use the projection along this stable section to the fiber ¢} (L/H)(¢})~! through

q].

/
exp(Fy, (d1)) i
£A<ql,u,07o>Fql (@)ed, (L/H)(d)) ™"
@ H —=exp(v)q1 H
exp(v)
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To describe the construction more precisely, we first describe the map A’(¢y, u,0,0) (and

then we extend this to other ¢ and ¢ using the equivariance property).

Let NQ,G/L : VG/L,(j — WC_;/L[(}] = N7 (w)qL be a stable normal form coordinate on
G/L as described in Proposition 4.6.3 (but for the space G/L rather than G/H). Then
Va/r,g C G gives a (algebraic) section Vig/p 4qH of the bundle G/H — G/L above

We /L [¢]. Now we consider the map

—1
Nuél,G/L

¢dH—qL _ _
——— > N (w)q1L =N (w)q1 L ———— V)L

Ty gy Vi, % N (w)q H
Here we use the key property about the base dynamics on G/L that two points that are
stably related with respect to one future are also stably related with respect to almost
every future by Proposition 4.4.7, so N~ (w)q1 L = N~ (uw)qq L holds almost surely (even
though generically N~ (w) # N~ (uw)).

In other words, mg, 4,5, maps Fy, (q}) to a vector v such that

(a) v e Ve Lug C log(N ™ (uw)) C g,

(b) exp(v)q1H € q’lL/H.

Note that this is a polynomial map . Now for w € V; , we take

q1°
A'(G1,u, 0,0)w := log(exp(mg, gy (w)) exp(w) ™) € (1/6) 4.

Note that the map before taking log is polynomial since w and g, 4, (w) are both nilpo-
tent matrices in g. Finally, log : ¢}(L/H®)(¢})™! — (1/b)g = ay(1/9)(q) 1 is well-
defined and analytic since H° is normal in L (so L/H® is itself a Lie group with Lie

algebra [/h).

Both the domain and image of A’(g1,u,0,0) : Vi — (I/h),g, have natural dynamics (V/

is a polynomial cocycle, (I/h),q, has dynamics given by conjugation), so we can extend
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Step 3:

the definition to other ¢,¢ > 0 by

A'(gryu, 0.8) = Thg 0 A'(g,u,0,0) 0 Tf, .

In particular the equivariance property of A’(q1,u, £,t) is satisfied by construction.

Factorization using A’(G1,u, ¢, t)

Here we show that A’(Gy,u, £,t) satisfies the factorization property in the theorem. The
point is that since the vector v € Vi /Ludy is a nilpotent matrix in g that is contracted
by the future in ugy, the image of A’(q1,u, £, t) gets exponentially close to the distance
between goH = Tfujlqu and qéH = T;(j,l q’lH (note that ug; and wj’l have the same

future).

/ q’lH = C]éH = gqle
g H —=exp(v)q1 H q@H = QQIH—>QGXP( v)g1 H
exp(v) exp(gvg

More precisely, let v := w4 a0, (Fg,

(@) € VG Lug - For all € > 0, take a compact set
K' € 8ZxG/H of measure at least 1 —¢ and diameter at most some constant C’(K’) > 0.
Assume that ¢ := T_Zq] and ¢ = T_gcjll are both in K’. Then by Oseledets’ theorem,
there exists o/ > 0 depending only on the Lyapunov spectrum, and ¢’ = C’(K) > 0 such
that dg / g(aH, ¢ H) < et (since g, ¢’ are stably related. Shrink K if necessary).

F

Therefore v = 74 a1

A J— / . . .
i1.ugy (Fg, (d7)) has norm at most C'e™ ¢ Moreover, since v is contracting

under the future of ugy, in particular we have H(Tl’iql)*vH < C"||v]| for some C"(K') > 0

(shrink the compact set K’ if necessary). Thus by the triangle inequality,

_ /
g/ ar(a2H, gy H) — | A(dr,u, 0,8) Fg ()] < I(TL; )v]| < €"Clem "
Finally by the equivariance of Fy; and the construction of A(q1,u,l,t), we know that for
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Step 4:

Step 5:

q:= T_gcjl and ¢ == T_gq”l, we have
AGr,u, 1) Fy(d') = Aldr,u, 0,8) Fy, (47)-

Combining this with the previous inequality yields the result. Note that so far we have
not used the constant 5 > 0 at all (this will appear in later steps). In particular the

factorization property holds for A’(qy,u, ¢, t) for all t > 0 (without the upper bound 3¢).

Construction of the polynomial map A(G,u,?,t)

Now we explain how to obtain a polynomial map A(qq,u,¢,t) from the analytic map
A’(G1,u,0,t) constructed in the previous step. Note that as mentioned before the only
intermediate map that is not polynomial in the construction of A’(d1,u,0,0) is the
last map log : ¢} (L/H®)(¢})~! — (L/)g = ¢1(1/5)(¢)) 1. Nonetheless, we can ap-
proximate it using the Taylor expansion of log up to degree k£ by a polynomial map

log |1, : ¢4 (L/H®) (@) ™" = (1/b) g = d;(1/h)(¢}) ™" such that
[ log(v) — log | (v)[| < Ok(JJv]**1).

Define

A1, u, 0, 0)w := log | (exp(w) exp(mg, g, (w)) ) € (1/h)g

for some k = k() to be chosen in the last step.

.- We will show that A(Gy,u, ¢, t)

: s _ gt 4 14
Now again define A(qy,u, ¢, t) = Tui, oA(q1,u, 0, O)oTT i

is still factorizable for large enough choices of k = k(f).

Factorization using A(qG,u,(,t)
Here we show that A(qy, u, ¢, t) satisfies the factorization property in the theorem. Using

Step 3, it suffices to show that

1A(G1, w, 0,8) Fy (1) — A'(d1.u, 0,) F ()| < O (e )
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for some constant o/ > 0 depending only on the Lyapunov spectrum. In Step 3 we have
shown that we can take a large compact set K C SZ % G/H such that if ¢ := T—qu
and ¢ = T’Ecj’l are in K and are stably related, then |[Fy (47)] < OK(e’O‘/g) for some
o' > 0 depending only on the Lyapunov spectrum. Thus we can use the error term in the
approximation of log by log |;. to get

I A(G1, 4, 0,0)Fy, (41) — A'(G1,u,0,0)F,

o (@D < Op e (e D8,

Finally, let Apax > 0 be the top exponent of the dynamics on (I/h)4, . Then we have
7l 5 A N DV
||-A(QI7 u, 0, t)FqA (q/l) _ .A,(Q1, u, 07 t)Fql (qll) H < Ok7K(€>\maxt fa (kJrl)E).

Finally, take k = k(8) large enough such that Apmax8 — o/(k + 1) < 0. Since t < jY,
the error term still decays exponentially with respect to ¢ (with rate at least o :=

—Amaxf3 + /(k +1) > 0) and we have the desired result.

]

We have the following contraction property of Fg. We will use it later to prove Proposition

4.7.2 that certain equivariant subbundle in V' is exponentially contracting.

Proposition 4.6.6 (Contraction of Fj). There exists a constant ' > 0 depending only on the
Lyapunov spectrum such that the following holds: for all § > 0, there exists a compact set
K = K(6) € 8% x G/H of measure at least 1 — ¢ and real number C/(6) > 0 such that for all

G, € K and ¢ > 0 with ¢ € W5 and TG, T%G € K, then

G gld
~p . ~p . !
P4y (T°4) = Fpuf(T°0)]| < C(8)e™"".

Proof. Given § > 0, take a compact set K = K(8) C S x G/H of measure at least 1 — § and

a real number C7(d) > 0 with the following properties:

1. K has diameter at most C7(9).
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1S at most

Fi(d) = Fi(§
2. For all ¢ € K, the Lipschitz constant || Fj|| := sup 1£(d )A = @]
d'€ B(4,1/100) d(q,q
C1(9).

3.If 6,4, 7%, T'¢ € K and ¢ € W&/H[(j] for some ¢ > 0, we have d(T%G,Tt¢) <
1 (5)6’“%6[(@,(]’ ), where " is 1/3 the largest negative Lyapunov exponent of the tan-

gent bundle on S% x G/H.

Here the first property holds since the entire space St x G /H can be exhausted by compact
sets of increasing finite diameter. The second property can be obtained since Fj is smooth.
The third property can be obtained by Oseledets theorem.

With these three properties, the result follows:

~p ~p ~p . R ! A !
IIFTA%(TEQ')—FTA%(TECJ)II = CL@OAT' G, T'G) < C1(6)%e " d(g,qd') < Cr(8)*e ™"
y

Y 2 by 3 by 1
O
4.7 Preliminary divergence estimate
Throughout this section, we assume uniform expansion on L/H.
Define
.fbrzz(wﬁ)est<L%P,Mtﬁ4£p]={@Azqe)&&ﬂﬂaydgﬂﬂ4z®<1}
e Define £7(2) C V; as the smallest subspace of V; such that the pushforward of ﬁ]wlgc 2

via the map F3 o mo : WC_J/H[’%] — V3 is supported on £7(2). Here my : Wé/H[é] =

Wy [w] x Wg / gl =W, / 71Z] is the projection map onto the second factor.

e In Case I, £7(2) is not contained in Fi(wgz

injective. Here, we recall that fé?H[z] is the set of elements 2/ € G/H that is in the

Mx<§gww%mm»mm@m

center-stable manifold of z for almost every future word w™.

e In particular, since z € FE?H[Z] NAW-, . [2], dim £7(2) > 0 almost surely in Case I.

G/H
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From now on, we restrict the domain of the map A(¢,u, ¢, t) defined in subection
4.6.2 to L~ (T 4,), so it is a linear map A(G,u,(,t) : L~ (T 44) — (1/9) iy,

We first show that the family of subspaces {£™(q)}4 form an equivariant subbundle of V.

Lemma 4.7.1. (cf. [ELa, Lem. 7.1]) For almost every ¢ € SZ x G/H, and all t € R,
— it ot A
L7(T°q) = T,L£7(4)-

Proof. Note that by definition and equivariance of Fy, for ¢ > 0, we have Tgﬁ_(d) C L(T%).
Therefore ¢ — dim £7(§) is a bounded integer-valued function on 8% x G/H that is non-
decreasing under 1. By ergodicity, this function is constant almost surely. Therefore the

statement holds. ]

We then show that the cocycle restricted to £7(q) is exponentially contracting. This follows

from Proposition 4.6.6.

Proposition 4.7.2. There exists a constant x’ > 0 depending only on the Lyapunov spectrum
of the dynamics on SZ x @G /H such that: the top Lyapunov exponent on the linear cocycle V

restricted to £7(§) is at most —x/.

Proof. Recall that since Fy is centered, FT%(T E(j) = 0. Since Fj is equivariant, FT%(T%’ ) =
T(qu(d’). Therefore the inequality in Proposition 4.6.6 simplifies to ||T§Fq(cj')|| < 0(5)6_/46.
Now note that for large enough ¢y, at least (1 — 28) portion of £ in [0, £y] satisfies T¢G € K
1
[
tends to a limit at most —#’. Now by Oseledets theorem, the limit Elggo % log Hqu Fq(cj/) || exists

by the pointwise ergodic theorem. Therefore along a subsequence of £ in RT, = log ||Tq£ Fq(q/) [

for almost every ¢, and thus this limit agrees with the limit along the previous subsequence,
and hence is at most —r’. Thus for all § > 0, there exists a compact set K5 C SZ x G/H with

measure at least 1 — ¢ such that if ¢, ¢’ € K5 and ¢’ € W?[g], then
lim + log |74 Fy(d)]] < —+
(—o0 L a4 - .
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Finally, if we take 6 — 0, we obtain this inequality for almost every ¢ and ¢’ € WC_; / H[Q] Since

L7 (q) is the span of Fyg(

Wi [Q]), we conclude that the restriction of the cocycle to £7(q)

has top exponent at most —&’. L]

Proposition 4.7.3. cf. [ELa, Prop. 5.1] Recall the constants k,kxy > 0 from Proposition
4.5.13 and Remark 4.5.14 which depend only on the Lyapunov spectrum. For every § > 0,
there exists a subset K C () with measure at least 1 — § such that for all §; € K, there exists
Q=0Q(q) C Z/l1+ such that Q¢ has measure at least 1 — 9, and foru € Q, ¢ > 0 and t > 0, we
have

7t o A(dy, u, £,1)]| > C(8)e v ErnT"t

Here the operator norm is with respect to the dynamical norms || -

the dynamical inner product (-,-); defined in subection 4.5.9. In particular, since (I/h); =

F-tg, OB the domain and

Fug, O0 the target. my : (I/h); — W[—}_b( %) is the orthogonal projection with respect to

[ /h< ) & W /b 0(2) is an orthogonal decomposition, we also have
| A(q1, u, ¢, t)]| > 0(5)6—/€V€+/€_1t

Remark. This statement is considerably different from the first part of [ELa, Prop. 5.1] since
the analogous statement of [ELa, Prop. 5.1] does not hold if v is in the image of ‘FG/H[ q] via Fy.
In particular we only have a lower bound on the norm rather than the conorm of A(gy,u, ¢, t).
We will see that this does not affect the main argument since we can apply Lemma 4.7.5 and
Proposition 4.7.6, so that we can focus on points ¢’ such that F(j(cj/) grow roughly at the rate
of | A(G1,u, ¢, t)|| under A(q1,u,,t).

Proof. Let q’l

= @] that is not in .7-" / I [q1] (which exists for almost every §; in
w4

Case I), and let v := Fj (¢). Since ¢] ¢ F, G/ H[ql] for almost every u ,

7+ (A(dr, u,0,0)v)]| > 0.
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In particular, we have the operator norm |74+ o A(qy,u,0,0)|| > 0 for almost every §; and
almost every u. Thus for all § > 0, there exists a subset K C ) with measure at least 1 — ¢
such that for all ¢; € K, there exists Q) = Q(q1) C Llfr with measure at least 1 —  such that
for u € Q, ||7+ o A(G1,u,0,0)|| > C1(0).

By Proposition 4.6.6 and the fact that the dynamics on V is bijective, this implies |74 o

A(G,u, £,0)| > 02(5)67'45. Finally Proposition 4.5.13(d) implies that for some v € £~ (T 4Gy),

ITE. om0 A(dy,u, €,0)v] > Cy(8)e L,

uqq

Finally, since the dynamics Tf@ restricts to W[J/Fh(ucjl) — W% (Ttuql) and W[?é) (uq1) —

W[§€(TtUQ1), Tl. omy=myoTl. . Since A(qr.u,l,t) =T, o A(G1,u,¢,0), we have

74 0 A1, u, £, 8)v]|| > Co(6)e " AL,

]

Lemma 4.7.4. [ELa, Lem. 5.6] For all 6 > 0, there exists a compact set K C © with measure

at least 1 — d such that: for t > 0,let & € K, &/ e W, [i]NK, T'# € K and T3/ € Tlad g

G/L

for some a > 0. Then

|/\ij(.f,t) - /\Z‘j(il,tﬂ < C =C(a,0).

Proof. The proof is the same as that of [ELa, Lem. 5.6], using Lemma 4.5.10, Lemma 4.5.15,
and Proposition 4.5.13 (b). O

We will need the following elementary linear algebra fact (see e.g. [ELa, Lem. 8.1]).

Lemma 4.7.5. For any p > 0, there exists a constant ¢(p) > 0 with the following property: let
A : W7 — Ws be a linear map between Euclidean spaces. Then there exists a proper subspace

W' C Wy such that for any v with ||v| = 1 and d(v, W’) > p, we have

[A]] = [[Av]] = c(p)[|All.
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We also need a general lemma on conditional measures.

Proposition 4.7.6. cf. [ELa, Prop. 8.2] Let B be an arbitrary finite measure space.

For every 6 > 0, there exists constants ¢1(d) > 0, €1(0) > 0 with ¢1(6) — 0 and £1(d) — 0 as
§ — 0, and also constants 0 < p(§) < C(d) < oo and p/(5) > 0 such that:

For any subset K’ C Q with #(K’) > 1— 4, there exists a subset K C K’ with 7(K) > 1—¢(6)
such that:

suppose for each ¢ € Q, there is a measurable map from B to proper subspaces of £~ (), written
as u — My(q). Then for any § € K there exists ¢ € K/ with ¢’ € VAVC_;/H[Q],FQ(@/) € L7(qQ)

such that

p(0) < dgypla,q") < 1/100, p(0) < [IF4(d")llg < C(9),

and

dq(F(j(cj’),./\/lu(cj)) > p/(9) for at least (1 — €1())-fraction of u € B.

Proof. The proof can be adapted from the proof of [EM18, Prop. 5.3 (see also [ELa, Prop.
8.2]). In the proof, we define the measure 73 := (F3)«(?|);~ (). By definition of £7(2), 73
G/H[‘T]
restricted to a sufficiently small ball (say of diameter 1/10) is supported on £ ().
The rest of the proof follows from adapting the analogous statements of [EM18, Lem. 5.4,
5.5, 5.6], where we replace Lezt[2](") by £7(&) and F(z) by Fj(2) = 0, and then follow the
rest of the proof of [EM18, Prop. 5.3]. O

4.8 Inert Subbundle E(2)

In this section, we define an 7% and Z/{f' -equivariant subbundle of (I/h);. In the end we will

show that all the extra invariance is obtained within this bundle.
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4.8.1 Inert subspaces E;(Z)

For & = (w,z) € SZ x G/L, for a real number )\, define

FSA@) = {ve (I/h);: forae ui el ve WM ui)}.
Similarly define F<*. In particular,

F<U(2):={ve(/h);: forae uiec Uz, ve W=0(uz)},

so for almost every future, vectors in F=9(u) does not grow exponentially. Note that FSA(2)
depends only on the point # € G/L and not the word w, hence we will sometimes write
F\(z) := FSA(4).

By definition, for € G/L, F<0(z) = 0 if and only if z is uniformly expanding on L/H at

xg. Then we have a flag
{0} CFSM(3) € - C FSN2(3) € F=Y (@) = (1/h);.

Define

E; () = F<Y(3) n WY (7).

Define

Ag ={i: E;(2) # {0} for a.e. T}.
We quote the following basic properties from [ELa].

Lemma 4.8.1. [ELa, Lem. 3.1] For almost every € Q, for all v € E;(#) \ {0} and almost

every u € Z/{1+ Z, we have

t
(Tl

lim -log j-

t—doo t Ivllo

In particular E;(2) C W (%), hence E;(2) NEg(2) = {0} for j # k.

Lemma 4.8.2. [ELa, Lem 3.2, 3.4] For almost every = € Q,
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(a) Forany t € R, (TL)«E;(2) = E;(T'%), and  (TL)F=Y (i) = FSN(Tt).

(b) For almost every uz € Z/If_i, E;(ut) = E;(2), and F<Y (ug) =

FAi (7).

(c) For & = (w,z) € S x G/L, v € (I/h);, let Qi(v) ={ut eUjz :v e WA (uz)}
W;Z [w] x {z}. Then for each j, for a.e. &, Q;(v) is either null or conull in W;Z [w] x {z}

(in the latter case, v € FSYi(#)).

4.8.2  Consequence of uniform expansion on L/H

Proposition 4.8.3. Let xg € G/L. Suppose that
(i) p is uniformly expanding on L/H at z(, and

(i) for all x € ff:co C G/L, for pN-a.e wt e GV, there exists a compact subset K =

K(w™,2") € G/L such that for all n € N, T"2' € K(w™,2/).
Then for all z € ffzvo C G/L, p is uniformly expanding on L/H at z, i.e. F<0(z) = 0.

Proof. Let
NUE := {z € G/L | F<(z) +# 0}.

Then it suffices to show that NUE is ff-invariant. By Lemma 4.8.2(a), F=0 is an equivariant
bundle over G/H (and thus over G/L), in particular, g«:F<Y(z) = F=0(gz) for p-a.e. g € G.
Therefore NUE is I'-invariant.

To show that NUE is ff-invariant, it suffices to show that NUE is an algebraic subset of
G/L. Here we use the norm [[v||(/p). = [[v A pp,llg, where py_ is a nonzero element in the
one-dimensional subspace AT 7 p, c AU g,

Using this norm, we have that v € Fgo(x) if and only if for NN—a.e. wt e SN,

1
lim sup — log [[(Ad(T5))v) A ppy || < 0.
n—oo N wT
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Since p is bounded on G/ L at xq, it is also bounded on G/L at z for all = € fiwo C G/L.

Since Ad(z)py and pp, are both nonzero vectors in the one-dimensional space /\dimH Ha, we
also have

1
lim —log [|Ad(Ty)py, |l = 0.

n—oon
Therefore

_ 1 ) 1
limsup —log [[(Ad(T3))v) A ppy, || = limsup —log [[AA(TE) (v A py,)]I-
n w n—oo N

n—oo

Thus for v € I, v € F<9(z) if and only if for pN-a.e. w e SN,

1
lim sup — log [|Ad(Z3) (v A py, )| < 0.

n—oo

Now consider the action of 1 on the wedge power /\Olim H+1 g, and consider the corresponding

subspace

dim H+1 1
Fs0 .= {W e lim sup — log ||Ad(T™")w]| < O}.
N A g | limsup - log [AA(T)w]| <

Note that this space depends only on p (and not on any word or basepoint).
Then x € NUE if and only if z(I A ph)mfl N F/S\(; # 0. Now note that F/S\% is I';;-invariant,
therefore it is also ff—invariant. Thus NUE is also Fﬁ—invariant. Therefore so is its complement,

as desired. []

Lemma 4.8.4. Suppose p is uniformly expanding on L/H at © € G/L and there is a u-
stationary measure 7 on fooL/L. Then for all 2’ € fooL/L, F=0(z/) = {0}. In particular,
for a.e. & € Q, F<0(2) = {0}.

Proof. It suffices to verify the second assumption of Proposition 4.8.3, assuming the existence
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of a stationary measure on fﬁxH /H.

Since there is a stationary measure 7 on ffxoL /L, it projects to a stationary measure pU
on V via the G-equivariant smooth injection p : G/L — V in the definition of L being an
H-envelope. Note that this is isometric since the metric on G/L is induced from that of V.

Now by Theorem 4.3.1(iii), the support of p47 is in the subspace W. Since W is T'y-
invariant, it is also Fi—invariant. In particular, if p(z) ¢ W, then by G-equivariance of p,
fﬁp(x) = p(rfx) has empty intersection with W, and hence p«7 cannot be supported on W,
a contradiction. Hence p(z) € W and ffp(x) = p(fﬁm) C W. Theorem 4.3.1 tells us that
p either acts compactly on W or there exists a proper subspace W/ C W such that p acts
compactly on W/W’ and has negative top exponent on W’ in both cases we have that for
pN-a.e. w, the orbit {T7p(z)} e is inside a compact subset Ky = Ky (w,z) € W~ {0},
therefore the orbit {T"x},cn is in a compact subset K = K(w,z) C G/L, thus assumption
(ii) in Proposition 4.8.3 is satisfied. Therefore by Proposition 4.8.3, for all 2’ € fﬁxoL/L,

F=0(2/) = {0}. The last assertion is immediate from this. O

Corollary 4.8.5. If  is uniformly expanding on L/H at z € G/L, and there is a p-stationary
measure v on fﬁxH/H, then for all z € fﬁazHo/Ho, for all 2/ € fﬁﬂ?oL/L, the intersection

of F é?H [2] and 2’ L/H® contains at most one point; the intersection of F g?H [2]H and 2'L/H

contains at most one point.

=0 [z] N 2/L/H®, then we also have 2" € F=0 [2].

: ‘o 1N
Proof. If there exists distinct 2', 2" € F G/H

G/H
Moreover, since 2/, 2" are in the same coset of L/H®, there exists a nonzero vector v € (I/h),

0

/H[z’], v € F=0(z). Since v projects to a p-stationary

such that 2" = exp(v)z’. Since 2" € .7-'5
measure 7 on ff:r;gL/ L, this contradicts Lemma 4.8.4. The same argument shows the last

statement as well. O
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4.8.3 Inert subbundle E()
Define the inert subbundle E by
E(i) = @ Ei(#) C W%(@), where Af; := {i : E;(2) # {0} for a.e. & and \; > 0}.
i€

Notice E1(2) = WA (&) = WM (2) # {0}. We may have E;(2) = {0} if j # 1.

The following lemma follows immediately from Lemma 4.5.9.

Lemma 4.8.6. [ELa, Lem. 5.1] For almost every & € 2 and almost every ud € U;" &, we have

4.8.4  Convergence to the inert bundle E(z)

The next proposition shows that for most g2 € €, and every v € (I/h)s,, we can take v
exponentially close to the inert bundle by going backwards sufficiently far, change to one of

most futures, and then go forward until the dynamical norm agrees with v.

Proposition 4.8.7. For every § > 0, there exists a subset K = K(0) C 2 with measure at
least 1 — & such that for all §; € K, ¢ > 0 and v € L~ (T~¢G;), there exists Q = Q(¢1,v) C Z/Ifr

such that ()¢; has measure at least 1 — 9 and for u € Q), t > 0,

A(quvu7€7 t)V At ) ot
d - JE(T 'y < C(8)e 0,
(!\A(ql,u,e,t)vn (T"uq) (%)

where a depends only on the Lyapunov spectrum.

The proof closely follows the second part of [ELa, Prop. 4.1] and [EM18, Prop. 8.5al. Since
the argument is not too long and this result is important to the main argument, we include
the proof here for completeness. In particular the proof clearly demonstrates how uniform

expansion on L/H (in the stronger form of Lemma 4.8.4) is used in the argument.
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We first quote a lemma from [ELa] which follows from the definitions of the equivari-
ant bundles E and F and Lemma 4.8.2(c). For j € Ag, let (F<%)L(&) be the orthogo-
nal complement of F<Y(#) in g/h; with respect to the dynamical inner product (-);. Let

F/(2) := (F<Y) 4 () NF=Y ().

Lemma 4.8.8. [ELa, Lem. 3.5] Given § > 0, there exists a compact set K7 = K7(0) C 2 with
measure at least 1 — 4, 3(6) > 0, /() > 0 and for every & € K1, j € Ag and v € (F<%)1(2),
a subset Q1 = Q1(z,v/|v]]) C u1+ such that Q12 has measure at least 1 — §, and for any

u € (Q1, we can write

vV = vy + Wy, vy € Wih)\j (uz), wy € W[;))\j (uz),
with [[vy| > B(9)||v]| and ||vy| > B(8)||wull. Furthermore, if j € Ag and v € F;(f), then

vy € Ej(ul).

Proof of Proposition 4.8.7. Let € > 0 be less than 1/3 of the smallest gap between consecutive
Lyapunov exponents on ([/h),. By Oseledets theorem, there exists a compact subset Ko C €2
with measure at least 1 — 62 and L > 0 such that for # € K and ¢ > L,

||(T£)*V|| <eNtet forve Wih)\j(i), and ||(T£)*V|| >Nt for v e Wih)\j (2).

By Fubini’s theorem, there exists K3 C €2 with measure at least 1 — 2§ such that for z € K3,
[{uz € U3 | ui € Ko}| > (1 —6/2)|U 3.

Let K := K1 N K3, where K1 = K1(0/2) is the compact set in Lemma 4.8.8.
Let ¢ := T %Gy. Tt is clear from the definition of F;(i) that (I/h)z = @jeng F;(i) For

v e L(q), let v/ := A(G1,u,£,0)v. We can write

v = Z vg-, \CRS F;-(cjl).
JEAE
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By Lemma 4.8.4, FSO@) = 0 almost surely. Therefore in the decomposition above, v; = 0 if
Jjé¢ AE. Thus we can take the sum over only the indices in AE.
Suppose §1 € K, u € Q1(41, V') and ugy € Ko, where Q1 is as in Lemma 4.8.8. By Lemma

4.8.8, we have
V=) (vit+wy), (4.8.1)

ATt
JEAL

where v; € E;(uqy), w; € W[;))\j (ugy), and for all j € A},
vl = B'(6/2) | w;]|.
Also we have

Iz,

Ai—e)t t A t
LVl = N v and (T ew || < e .

uqi

Thus for all j € A,

II(Tﬁql)*lel < e_()\j—)\j+1—2€)tﬁl(5/2)—l”(Tiql)*vj”_
Since (Tfujl)*vj € Ej(Ttucjl) for each j € A, and A(Gy,u, l,t)v = (Tl’iql)*A(cjl,u,é, 0)v =
(Tiql)*v’ , this implies the proposition by (4.8.1). O

4.8.5 Bilipschitz estimates

For ¢1 € O, ue Ll1+, ¢{>0andt>0,let q:= ngél and g 1= Ttucjl. Define
AGru, 61) = |l A(Gr w, €,0) - () using the operator norm from | - |4 to || -

H(iz'

Here m1 : (I/h); — W[J/rh(:f:) denote the orthogonal projection with respect to the dynamical

inner product (-,-); defined in subection 4.5.9.
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Fore >0, 1 EQ,UEL{;—, and £ > 0, let
7e(q1,u, 0) :==sup{t | t > 0 and A(G1,u,l,t) <e}.
By Proposition 4.7.3 and Proposition 4.8.7, 7:(q1, u, £) is finite almost surely.

There is a bilipschitz estimate on 7¢ in /.

Proposition 4.8.9. cf. [ELa, Prop. 7.2] There exist constants £+ > 1 depending only on the
Lyapunov spectrum on g/h; and on the cocycle V' such that for almost all §; € () and almost

all ugy € U Gy, alle >0,¢>0,s >0,
7o (d1,u, 0) + ks < 7e(G1,u, 0+ 8) < 7e(qr, u, €) + fors.

Proof. The proof is almost identical to the proof of [ELb, Prop. 4.2], [ELa, Prop. 7.2] and
[EM18, Lem. 7.2, 7.3]. The main input is Proposition 4.5.13 and Remark 4.5.14. For this
important result, we state precisely the modifications needed to be made to adapt the proof
from [ELa, Prop. 7.2].

ForiEQandt>0,let
o A (z,t): W[J/rb () — Wﬁ/—b (T'z) denote the restriction of (Té)* on (I/h); to W[J/rb(i),
o A (&,t): L7(2) = L (T*%) denote the restriction of the cocycle on V to £

In the definitions of A4 and A_ we have used the fact that WJ’](,%) C (I/b);z and L~ C V are
equivariant in their corresponding cocycle (the latter follows from Lem 4.7.1).
It follows from Proposition 4.7.2 that £ is in the stable bundle of V. Therefore by Propo-

sition 4.5.13 and Remark 4.5.14, we have
A @ < e e <A@ < e

—1 -1
eV ES|AL(2,0)]] > e RV, VU > || AZ(2, 1) > efv .
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Note that since ([/h); = Wﬁ/'b(i) @ W[?é) (2) is an orthogonal decomposition (with respect to
the dynamical inner product) that is equivariant under the dynamics, the equivariance property
of A(qq,u,¥,t) in Theorem 4.6.5(c) implies the following equivariance of 7 o A(qy,u, ¢, t): for

("> 0andt >0,

R t/ R g/
(ﬂ—"‘r © A) (QL u, C+ Ela t+ tl) = TTtuql © (7T+ © A) <Q1a u, gu t) © TT—(Z—}-E’)(jl‘

The rest then follows from the argument in [ELa, Prop. 7.2], with x; = ky k. [

4.8.6  Jordan Canonical Form of cocycle on E(Z): Invariant flag E;;(Z)

Now we restrict the Jordan Canonical form of the cocycle from Theorem 4.5.11 to the inert

subbundle E(z). For i € AE, define
E;;(2) := Wy (2) N E;(2)
to get an invariant flag
{0} = Ejp(2) CE;1(2) C -+ CEjyp,(2) = Ei(2).

Note that E;;(#) might be the same as E; ;#(2) for some j < 4. Remove redundant indices
and relabel. Let A% be the set of new indices 77.
The following equivariance properties follow immediately from the corresponding equivari-

ance properties of W;; and E;.

Lemma 4.8.10. For z € g, all t € R and a.e. uz € Z/{fLi,
(T3)+Eij(2) = Eij(T"2), Ejj(uz) = E;j(2).

In preparation for the tie-breaking procedure in the next section, we introduce the following

notions for the cocycle on the inert bundle E.
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4.8.7 Flow T and time changes 7;;(&,t)

For each ij € Alh, 2 € Q and t € R, define 7;j(#,t) be the unique number such that
Aij (2, 7i5(2,1)) = Ait.
Define the time changed flow T3 := T7ii (@0 5.

For each v € g, z € 2 and t € R, define 7 (Z,t) be the unique number such that

Tv(Z,t t
N ) gy = €IV

T

Define the time changed flow TV := T (1) 3.

4.8.8 Parallel transport R(z,2") and foliations F;; and Fy

Let Q' := ngp C Q, where (2, is the set of elements in {2 whose SZ component w is “eventually
backward periodic”, i.e. there exist some n > 0 and s > 0 such that w; s = w; for all j < —n.

Then € is conull in Q. For 2 € (V. let
H[i] = {T5uT "% :t,s > 0,u e U} c Q.
For &' = TSuT i € H[#], define R(z,2) : (I/b); — (/B) 4 by

R(i, 2"\ = (T%._, )s(T:)sv.

ul—t%

We remark that for & € O/ = ngp,

Recall that Bg[z] := Bo[z] = J[z] N Wér / 12] is the local unstable set defined by the

R(%, ") depends only on #,4" and not on s, u and t.

Markov partition J constructed in Proposition 4.5.12.

195



Define the local balls F;;[#, f] and the foliation ;7]
Fijla 0] = {&’ € H[z] | TV ' € B[ 4]} and  Fyli] = | ] Fyla. 0.
Similarly for v € E(Z), define the balls Fv [z, ¢] and the foliation Fy[Z]

Foli 0] = {2 e H[z] | TV—% € Bo[TV 3]} and Fold] = | Fvlz, 0.
>0

Recall from Proposition 4.5.13(e) that A\;;(Z, —t) = A;;(&’, —t) for almost every & € Q and

@' € By[z], therefore (cf. [ELa, Lem. 5.2])
Fijl#,0 C Fij[z, 0] and Fyla, 0] € Fyla, O] forall 0<¢</.

We also have the following properties which easily follow from the definitions (see [ELa,

Sect. 5.3])).

Proposition 4.8.11. For # € ' and &/ = T5uT !¢ € H[z], let Aij(&,87) = Nj(&,—t) +
)\ij(uT’%, s). Let Egj(:i“) = Ei%j_l(i') N E;j(2), where we take orthogonal complement using

the dynamical inner product (-, -);.

(a) R(z,2")v = Aif (@2 )y M where v € Egj(i), v e Eéj(il), v € E; j_1(#') and

VIl = [Ivllz-

(b) Aij(z,2") =0 if and only if i’ e Fijlz].

(c) [ELa, Lem. 5.3] Suppose & € Q and &’ € F;;[#]. Then for all ¢ large enough, F;;[&, (] =

Fijla',0).

(d) [ELa, Lem. 5.4] For ae. & € €, any v € E(2) and ae. 2/ € Fy[2], we have

|R(z, 2" )v oy

= lv
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4.9 The tie-breaking procedure: Bounded subspaces E;;,q4(Z) and

Synchronized exponents [i]]

In this section, we collect and summarize the statements necessary to perform a tie-breaking
procedure. The main statements are Proposition 4.9.1, Proposition 4.9.2 and Proposition 4.9.3.
Since the entire argument for these statements happen within the Lie algebra ([/h) ¢» the proofs
are identical to that in the case of G/I" considered in [ELa, Sect. 6]. Therefore this section
contains only the necessary definitions and statements without proofs. We refer the reader to
the corresponding statements in [ELa, Sect. 6].

Recall that A” is the indices of the fine Lyapunov spectrum on E. In this section, we define
an equivalence relation called “synchronization” on A”. The equivalence class of ij € A” is
denoted by [ij] and the set of equivalence class is denoted by Agync. For each ij € A” we define

an T'-equivariant and Z/l1+ -equivalent subbundle E;;1,3q of the bundle E; and we define

Ejjbad(®) = > Epppaald
krelij]

In fact it can be shown that there exists a subset [ij]" C [ij] such that

Ejjbad(®) = P Errpaa@
kre(ig)

The following are the main conclusions that will be used in future sections.

Proposition 4.9.1. [ELa, Prop. 6.1] There exists 61 € (0, 1) such that:
for all §,n > 0, there is K = K(§,n) C Q with g(K) > 1— 6 and Ly = Ly(d,n) > 0 such that:
If 2 €Q,vekE(),L>Ljsatisfy

TR A Ffd, L)) 2 (1 61)| Fold, L],
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then for at least 61-fraction of 2’ € Fy[Z, L],

R(z,7")v y
N\ TRG o U Eijpaa@) | <n
’ Z'jeAsync

=

Proposition 4.9.2. [ELa, Prop. 6.2] There exists a measurable function C' :  — R™ finite
a.e. such that

for all # € Q, v € Ej;;) qq(#) and i’ e Fijlzl,

ij
C@)~'e@) vl < 1R #)v] < C@)CE)|v]).

Proposition 4.9.3. [ELa, Prop. 6.3] There exists § > 0 (depending only on ) and a co-null

subset W C Q such that the following holds: Suppose € U, v € Wié) (%), and there exists

C > 0 such that for all £ > 0, and at least (1 — @)-fraction of 2’ € Fijlz, 4],
IRz, & )v] < C|lv].
Then v € E[medd(iIAf)

4.9.1 Synchronized exponents

Definition. Given 6 > 0 and E C Q with i(E) > 0, we say ij, kr € A" are
(E,0)—synchronized if: there exists C' < oo such that for all € E, ¢ > 0, for at least

1 — 0)-fraction of 2’ € F;;[z, (], we have
J
p(@', Freld]) < C.

We write ij ~ kr if ij and kr are (F,#)-synchronized for some E C 2 and some small 6 > 0.

Remark 4.9.4. Note that if ij and kr are (E, #)-synchronized, then they are (U\s\<t T9E, 0)-

synchronized for all ¢ > 0.
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For v € E(Z), we can decompose for some Iy C A

vV = Z Vij where Vij € Elj(f) ~ Ei,j—l(j:)-
1j€ly

Lemma 4.9.5. [ELa, Lem. 6.11°] For a.e. & € €, suppose there exists C' < oo and v € E(Z)
such that

for all £ > 0 and at least (1 — )-fraction of 2’ € Fy|[%, /],
p(#', F;j[2]) < C for all ij € Iy.

Then all of ij € Iy are synchronized.

Lemma 4.9.6. [ELa, Lem. 6.19’] Suppose ij and kr are synchronized, then there exists a

function C': @ — RY finite fi-a.e. such that for all & € Q, and all &’ € F;[#],

p(d', Fir[2]) < C(2)C(E").

4.9.2  Bounded subspaces E;;pqa(Z)
Fix a sufficiently small 8 > 0.
Definition. Given % € €2, we say a vector v € E;;(%) is (0,7j)-bounded if:
there exists C' < oo such that for all £ > 0 and (1 — )-fraction of 2’ € F;[%, (],

1R, &")v < Clivl.

Definition (E;;344(%)). Let n = dim E;;(2). Define
e E;;1,44(2) = {0} if there is no 6/n-bounded vector in E;;(%) N E; j_1(2),
o Otherwise, E;; ,qq(%) is generated by ¢/n-bounded vector in E;;(Z).

(The set of (6,ij)-bounded vectors does not form a vector space in general. )
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Lemma 4.9.7. [ELa, Lem. 6.17] Given 6 > 0.
Suppose for all § > 0, there exists K = K(§) C Q with @(K) > 1 -6 and C; = C1(d) < o©
such that

for all & € K, £ >0 and at least (1 — 0)-fraction of &’ € F;;[z, (], we have
IR(&,&")v| < C1lv]] for all v € E;;1,qq(2).

Then for all 6, ¢ > 0, there exists K (¢) C Q with i(K"(£)) > 1—c(5) where ¢(6) — 0 as § — 0,
and there exists 0" = 0"(0,6) > 0 with §/ — 0 as § — 0 and § — 0 such that

for all & € K" (f), for at least (1 — 6")-fraction of &' € Fj;[i, ],
Cr VI < 1R &) < Chllv] for all v € E;j;pqq(%).

Lemma 4.9.8. [ELa, Lem. 6.18] There exists C' : Q — R finite a.e. such that

for all # € Q, v € Ey;paq(#) and &/ € Fij[d],

C(@) ' o@) VIl IR, )v] < C@)C@)|v.

4.9.8  Synchronized bounded subspaces Ei;j paa(Z)
Let [ij] = {kr : kr is synchronized with ij}. Let

Ejibdd(@) = Y Epppdal
krelij)

Lemma 4.9.9. [ELa, Lem. 6.12] For ji-a.e. & € Q, if ij ~ ik, j < k and Ej, pqq(?) # {0},

then E;j 4a(2) C Ejg paa(2)-

Thus there is a subset [ij]" C [ij] with at most one ij for each i, such that

Ejibdd@) = D Eprpaa@
krelij)
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Let Agync be the equivalence classes in A%.

Lemma 4.9.10. [ELa, Lem. 6.19] Suppose for all 6 > 0, there exists K C Q with g(K) > 1—9
and C < oo s.t.

for all & € K, £ > 0 and at least (1 — @)-fraction of &’ € F;;[#, (], we have
e (2,2)) < C.

Then, ij and kr are synchronized, and there exists a function C' : Q — R™T finite fi-a.e. such
that

for all & € Q, and all &’ € Fy;[3],

p(@', Fi,[2]) < C(2)C(2").

4.9.4  Conditional Measures fi;(2) on £;(Z)

As a consequence of Proposition 4.9.3, Ej;;11,44(2) is in fact a nilpotent subalgebra of (I/h);
(see [ELa, Prop. 9.1]).

For ji-almost every # € Q with G//L component x, we define &;(Z) to be the subgroup of
#(L/H®)x~! such that By paq(®) = Lie(E5(2)).

Lemma 4.9.11. [ELa, Lem. 9.3] For z € Q, t € R and u € Uf',

For 2 = (w,2) € Q x G/H® with & = 7(2) for @ : Q) x G/H® — Qp x G/L, define
fij(2) to be a measure on &;;(Z) defined as the pullback of the conditional measure of © along
&;j(#)z. More precisely, we consider the conditional measure |, /H of U on the fiber zL/H,
then apply the leafwise measure construction in [EL10, Sect. 6] to the unipotent subgroup
&j(2) C x(L/H®)z~1 acting on zL/H to obtain a leafwise measure fij(2) on &(2). fij(2) is

well-defined for almost every z € ) x G/H.
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Lemma 4.9.12. [ELa, Lem. 9.4] We have for almost every Z € O, ue L{f_ and s,t € R,
Fij (Tl ™ 2) oc (TL)«(T5 )« fij ().

Proof. This follows by the equivariance of conditional measures and leafwise measures. See e.g.

[EL10, Thm. 6.3(iii)]. 0

4.9.5 General lemmas

We use the following general elementary lemma a few times in the main argument in subection

4.10.1.

Lemma 4.9.13. Let (X, ) be a Borel probability space with measurable partition A and the

corresponding conditional measures {v;},c x, so in particular

v = /ym dv ().

Let a > 0, and K C X be a measurable subset with v(K) > 1 — a. Let
Ko:={z€ X |vp(K)>1—-b}.

Then v(Ky) > 1 —a/b.

Proof. We have

(KC) = / ve(K°) dv(z) > /K (K dule) > /K bdv(x) = b ().

0

By assumption, v(K¢) < a, therefore b v(K§) < a and the result follows. O

Lemma 4.9.14. Let C' > 1. Let f : R>9 — R>( be an increasing C-bilipschitz function, i.e.
for all £ > 0 and s > 0,

Cls< fll+s)— f(0) < Cs.
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Let 0 > 0 and ¢y > 0. Let E C R be a measurable subset with density at most ¢ for all £ > ¢,
i.e.

Leb(EN0,4]) < ¢ for all £ > ¢y.
Then the set {¢ € Ry | f(¢) € E} has density at most C26 for all £ > C/y.

Proof. Since f is C-bilipschitz, both f and f~1 are almost surely differentiable with derivative

at most C. Also note that f(0) > 0, and f and f~! are increasing. Thus

t £(b) 1,
Leb({¢ € 0.]] 7(6) € EY) = [ 1p(7(6)) d = /f ) e LELLY

f(t) -1 S
</‘ hﬂgﬂd(%mgcmuEmmf@u
0

- S

For all t > Cly, we have f(t) > f(t) — f(0) > C~1t > ¢y. Since E has density at most & for
¢ >y, we have Leb(E N[0, f(t)]) < 6f(t) < Cdt. Therefore

Leb({£ € [0,4] | f(£) € E}) < CLeb(E N[0, f(1)]) < C26t.

4.10 Main argument of Case I

4.10.1 Fit eight points into a compact set

For each 0 < § < 1, let K, = K4(0) C Q be a compact subset with measure at least 1 — & such

that f;; is uniformly continuous on Ky for all ij € Async.

Proposition 4.10.1. [ELa, Prop. 10.2] There exist 0 < § < 0.1 and C' = C(K«(J)) > 1 such
that for every 0 < e < C'_l/ 100, there exists F C K, with measure at least ¢ such that

for all € E, there exists ij € Agync and ¢ € &;;[2] N K with

C7le <dgy(@,9) < Ce, and Fii @) o< fij(2).
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The proof mostly follows the scheme in [ELa, Prop. 10.2]. For expository purpose, we first
write a detailed outline using claims without proof (and sometimes vaguely stated), and then
prove the claims afterwards.

For the outline (and sometimes in proofs of the claims), we use the following shorthand
notations:

let @ denote a parameter (or a few parameters) and 6 > 0 is a distinguished parameter.

1. large A Cq,,5 B means A = A(a,d) is a measurable subset of B with measure (or
density if B = R™) at least 1 — ¢(d) for some ¢(§) — 0 as § — 0 (sometimes c(§) is more

explicitly specified).

2. for most a €, 5 B means there exists a large measurable subset A C, 5 B such that

for all a € A.
3. for t > 0 means there exists T' = T'(«) > 0 such that for all £ > T'(«).
4. a <q b means there exists C' = C(a) > 0 such that a < Cb.
5. a =q b means there exists C' = C'(«) > 1 such that C—ly<a<Ob.
6. £ = Oq(y) means z < C'(a)y for some constant C' = C(a) > 0.
Proof outline of Proposition 4.10.1. Given (4i,u,l) € Q x Z/{fr x Rsp, a Y-configuration
Yij = Y;j(q1,u, ) is a quadruple (¢, 41,2, 3,i5) s-t-

i) =T, aj)=a, @Oy =T,  d;;)="T"04,

where
t(Yij) = 7=(41, u, £) satisfies |7y 0 A(Gr,u, 0, t)|| =&,
tij(Yij) = ti;(Gr, u, ) satisfies Aij(ugr, t(Yig)) = Aij(d1, tij)-

Note that for fixed ¢; and u,

e (— t(Y};) is kr-bilipschitz by Proposition 4.8.9,
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o t > t;;(Y;) is r2-bilipschitz by Proposition 4.5.13 (c), so { — tij (Vi) is For 2-

bilipschitz.
We define

e A Y-configuration Y;; is good if §(Y;;), q1(Y55), G2(Yij), 43,45(Yij) € K (the compact set
K  Q will be defined in Step 4).

oV = Y;i(G1,u,f) and Y = Yz-j(cj’l,u/,f/) are coupled if ¢ = ¢/, u = o/, §(Y') €

~

We ld(Y)], and w = Fy(d') € L7(q), [[w]| ~5 1

17+ A(qr, u, £, )wl| =5 [[m+Alqr, w, 60wl =5 where ¢ = 7e(q1, u, £).

Recall that A(G1,u,¢,t) : L7(q) — (I/h)g, is a linear map defined in Theorem 4.6.5 and

then restricted to £7(§) in the beginning of Section 4.7. Here 7y : (I/h); — W%

note the orthogonal projection with respect to the dynamical inner product (-, -); defined

(2) de-

in subsection 4.5.9.

Fix 61 > 0 as in Proposition 4.9.1, then fix 6 > 0 later and then fix sufficiently small £, > 0.

The proof proceeds as follows:

1. Fix an arbitrary compact set Koy C 2 with v(Kog) > 1 — 2§ (See Step 19 for why we

start this way).

2. Recall that Ky = K«(0) Cg Q is a compact subset with measure at least 1 — § such that

Ji; is uniformly continuous on Ky for all ij € Agync.
3. Choose a large compact subset Ky Cg Q) such that

(a) Ko C Koo N K,

(b) for & € Ko, t 5. 0, v € W(2), we have e~ NF)|v]| < (T3 4).v| <
e_()‘i_sl)tHVH (Oseledets).
Here ¢’ is a constant to be chosen in Step 16 (see Claim 4.10.7), which depends

only on the Lyapunov spectrum.
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(c) for & € Ko, 2" € Fj[#] N Ko and v € E(;j1,paa(2), we have |R(z, 2"V ~5 ||v].

ij
(Prop. 4.9.2)

(d) for & € Ky, &' € W,

G/Lm NKy, t>0and g € exp(WEfO(f)) such that gzl = 2'L,

we have || P~ (T2, T"3) — Ad (7t ) 7t )-1 lo—0 <5 l9llaaiee™® (Lem. 4.5.10).
4. Choose a large compact subset K Cg €2 such that there exists C' = C(d,¢) > 1 with
(a) For & € K and T >>; 0, we have Leb({t € [-T/2,T/2] | T*z € Ky}) > 0.9T
(Birkhoff),
(b) Proposition 4.6.5(d) holds (d(g, ¢5) is exponentially close to [ A(G1, u, £, t) F4(q)]])

(c) Proposition 4.7.3 holds (the norm of 74 o A(G1,u,?,t) is lower bounded by >
e—m’ﬁ—knt)

(d) Proposition 4.8.7 holds (any v € E*(T%dl) gets close to E via A(q1,u,/,t) as

t — oo for most u).
(e) Proposition 4.9.1 holds (any v € E gets close to one of Ef;; 1,qq via R(z,2) for
many 2’ € Fy[]).

(f) For 4 € K, vegandt € R, we have O~ e el < [Vl 7,/ [[VIlo < Ceflll (Lemma

4.5.15).

(g) For i € K, 7' e W&/L

)\Z'j(i’/,t” < Cl(a,5). (Lem. 4.7.4)

[#]NK, T € K and T3 € TI-%% K we have |\ij(2,t) —

(h) For & € K,y € Fi;[2]N K, v € Ef;;) 1,qq(2), we have C Y| < |R(&, §)v] < C|v||

(Prop. 4.9.2).

(i) for & € K, ' € W&/L

have || P~ (7", T"%') = Ad(gt)y(rt)-1lo-0 <5 l9llaq(ye™" (Lem. 4.5.10).

[Z]NK,t>0and g€ exp(Wg<0(§c)) such that gxL = 2L, we

5. Claim 4.10.1. For most ¢1 €5 K C Q, most u €64 Z/lf' and most £ €54 ,, R, we
have ug; € K and ¢2(Y;;),q3(Y;;) € K for Y;; := Y;;(q1,u, () for all ij € Agynce. (Proof:

Pointwise ergodic theorem, and use bilipschitz estimates of £+ t,4;;. )
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10.

. Claim 4.10.2. For most £ €5 R~¢, most ¢ €5¢ K C Q and most u €65.0,41 Uf‘, we have

42(Yij),43(Yi;) € K for Yjj := Yi;(G1,u, ) for all ij € Agyne (Fubini).

Claim 4.10.3. For most £ €5 R, most q1 €5¢ K, there exists d’l = cj’l (¢,41) € K such
that for most u 5,041, Z/{1+, we have Y;;(q1,u, () and Yij((jll,u,ﬁ) are both good and

coupled for all ij € Agyne (Proposition 4.7.6).

. Choice of parameters 1: ¢,4qq, (ji, g, q’: From now on, £ and §; are chosen to satisfy

Claim 4.10.3, i.e. there exist ¢] = ¢|((,¢1) € K such that for most u S Z/lfr,

we have Y;;(q1,u, () and Y;j(cjll,u,ﬁ) are both good and coupled for all ij € Agync. Let

~

=T7"q,d =T,

(=Y

With these choices, for all ij € Agyne, let
T(u) = 7e(Gru 0),  7'(u) = 7(q,u,0),  v(u) = A(Gr, u, b T=(G1, u, 0) Fy(d),

tij(u) = ti;(q1, u, €), tii(u) = ti5(dy, u, 0).

Claim 4.10.4. For £ > 0, most 1 €5 K, most u €5.0.61.4. Z/{1+, we have (by Proposi-

7(jlaq1
tion 4.7.3, 4.8.7 and Theorem 4.6.5)

-~ V(u) mr(u), 4 —a't
T(u) =) £, d (||v(u)||’E(T UQ1)> <se 4,
deyr(T™Mugy, T ugh) =5 v (w)]| ~5 e,

where o/ > 0 and the bilipschitz constant in ) depend only on the Lyapunov spectrum.

. . _|_
Claim 4.10.5. For small enough ¢ > 0 (depending on 61), for ¢ > 0, u €65.0,41.4,m u,

there exists ij € Agync such that (by Proposition 4.9.1)

(P By u)) < 4
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11.

12.

13.

14.

Choice of parameters 2: 6,£,Ql,cji,(j,cj’,ij: Choose 6 > 0 to be a small enough
number so that Claim 4.10.1.5 holds. Choose /¢, q1,u such that Claim 4.10.3, Claim
4.10.4 and Claim 4.10.5 hold. Then choose §{,q,¢ as in Choice of parameters 1.

Fix 7j € Agync such that Claim 4.10.5 holds.

Claim 4.10.6. There exists some C(d) > 0 such that for £ >; 0, most ¢; €5, K, most

U €504, U, and all ij € Agyne, we have

41,4

IT(u) — 7' (u)| < C(0), and It (u) — th(u)| < O(9).

Choice of parameters 3: u, {2, 5,435, % ij» > Tij: Recall that by Choice of pa-
9
rameters 1, we have
~ !

T Wug ek, T ek, g ek, g e K.

Thus by Claim 4.10.6 and property (a) in the definition of K (Step 4), there exist
C(8) > 0 and s,s" € [-C(d), C(d)] such that

Go :=TTugy € Ko, @5 :=T"ug) € Ko, §345 :=T"uqy € Ko, G35 :=TTug) € Ko,
where 7 := s+ 7(u), 7;; = s+ ti(u).
Let R := R(43,ij,G2) = R(Qg i dh), since ¢, ¢’ have the same combinatorial future. Let
. . / N y
B By 1aa(43,ij) = Efij),paa(@2); B": Eji1dd(@3,i5) = Efij)bda(d2)

be the restrictions of R. By Proposition 4.9.2, there exists a constant C’(§) > 0 such

that

max([|BJ|, | B~]) < C'(5), and max(||B'l], |(B")7]) < C'(9).
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15.

16.

17.

18.

19.

By Lemma 4.5.10 and Claim 4.10.4,

. o p—(a ot
| P (@ﬂé)-AdnggH <sge “LIP (%,ij,qg,ij)—AdijgH <sge
a3

Here o/ > 0 depends only on the Lyapunov spectrum. Note that P*((}g,dé) is well-
defined since WSZXG/L(QQ) € Wé/L[WSzxg/L(Qé)] (by Proposition 4.4.7), even though go
and ¢, may not be stably related (i.e. ¢h may not be in Wé/H[QQ]). See Remark 4.5.8.

g€ exp(Wg<0(w)) C G is a choice of an element in eXp(Wg<0(w)) such that g1 L = ¢} L.

Claim 4.10.7. For all v € Ejj pqa(d3,ij): [|1B'P~(d3,i5,d5,)v — P~ (42, 43) BV <5

e~ (@2 v.

Claim 4.10.8. There exists ¢(6, ¢) with ¢(0,¢) — 0 as £ — oo such that

Take 7 — 0 in Claim 4.10.5 (this necessarily implies £ — 0), let G, ¢, € Ko be the limit

of ¢9, cjé, then by Claim 4.10.5 and Claim 4.10.8,
iy € &ijl), de (G2, ) ~s €, fij(@2) < fij ().

Going back to Step 1: in summary, we have shown that (recall that o(Ky) > 1 —9):
for arbitrary Kog C Q with #(Kyg) > 1 — 26, there exists & € Ky € Kop N Ky and

y € &;j[2] N Ky such that
de (2. 9) =5 €, fij(2) o< fi5(9).-

Thus there exists £ C Ky with ©(E) > 0 such that for every & € E, there exists
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Yy € &;j[2] N K« such that
dg (2. 9) ~5 €, fij () o< fi5(9).

]

We now continue with the precise statements and proofs of the claims in the outline. For
each claim, we assume all the choices of parameters (like ,¢,7) and sets (like Ky, Kg, K) in
the steps preceding the claim in the outline. We will also reuse the notations K’,Q,fy in
each claim with the understanding that unless otherwise stated, these letters mean different

objects in different claims. We also reuse the constants c(d), (), ¢’ (§) and they always satisfy

c(6),c(8),d"(6) = 0 as § — 0.
Claim 4.10.1. There exist
e a compact set K = K'(Kyg,d,e) C K of measure at least 1 — ¢(d),

e a subset @ = Q(q1, Koo, ,e,m) C Z/{1Jr with Qg1 of measure at least 1 — ¢/(§) for each

41 € K', and
e a real number ¢y = {o(Kqo,d,,m) > 0

such that if we let
E(qr,u) = {0 € R : G2(Y;j(G1,u,0)), 3(Yij(Gr,u.0)) € K for all ij € Agync},
then for all ¢ € K/, u € Q and £ > {,
ugy € K, and |E(G1,u) N[0,£)] > (1 —c"(8)).

Proof. The idea is that since K has almost full measure, by the pointwise ergodic theorem, for

a large set of points q1 € Q, thjl enters K for almost full density of ¢ > 0. Since {L{1+ i}j ca
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form a partition of Q, for a large set of 1 € Q) there is a large set of u € Z/lf', such that Ttuql
also enters K for almost full density of ¢ > 0. Since £ + 72(G1,u,£) and € > t;;(q1,u, () are
bilipschitz functions, using Lemma 4.9.14, we have that for almost full density of £, ¢;;(q1, u, ()
satisfies the first sentence, i.e. 3 € K, and 7:(q1, u, £) satisfies the second sentence, i.e. §o € K,
as desired.

Recall from Step 4 of the main argument that K C  has measure at least 1 — cr (6) for
some cg (0) — 0 as § — 0. By the pointwise ergodic theorem, there exists compact K1(6) C Q

with measure at least 1 — 9, and ¢; = ¢1(d) > 0 such that for all §; € K7 and L > /¢y,
Leb({t € [0,L] : T' € K}) > (1 — 2¢k(0))L.
By Lemma 4.9.13, we know that the set

Ky:={2eQ|NUinKinK)>1-/c(d) +6} cQ

has measure at least 1 — \/W Let K5 := Kj N K9, thus has measure at least 1 —
2ci(6) — /eg (0) + 9.

Suppose q1 € K3 and ug; € K.

Let By :={t >0 | Ttug, € K€}, Since ugy € Ky, for ¢ > {1, the density of F7 is at most
2ci (9).

Let Fo := {{ > 0] 7e(41,u,{) € E1}. Since £+ t(Y};) is x7-bilipschitz by Proposition 4.8.9,
by Lemma 4.9.14, for ¢ > k{1, the density of Fy is at most 2,%72-0[(((5).

Let Eg:={t > 0] Ttg € K€}. Since ¢ € K3 C Ky, for all £ > {1, the density of Fj is at
most 2cg (0).

Let E;j = {0 >0|t;;(q1,u,7(q1,u,€)) € E3} for each ij € Agync. Since
€= t5(q1,u, 7= (41, u, £))

is rrr2-bilipschitz by Proposition 4.8.9 and Proposition 4.5.13(c), by Lemma 4.9.14, for ¢ >
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kK201, the density of E;; is at most 2r2krep (6).
Since E(q1,u) is the complement of Ey U UijGAsync E;j;, for £ > krk201, the density of
E(G1,u) is at least 1 — 2r2cp (8) — 2H2H4|AsynC|CK(5).

Thus using the notations in the statement, we can take

K= Ksg with ¢(d) := 2¢ci(6) + \/cx () + 9,
e Q(G1) ={uce Z/{fr | L{frql N K1 N K} for each ¢1 € K/, with ¢(0) 1= \/cg (6) + 6,

lo = krk2ly

o (6) :=2k2ck(6) + 26284 Async|ex (6).-

Claim 4.10.2. There exist
e a real number ¢y = {y(Kog,d,e,m) > 0,
e aset D =D(Ky,d,¢e,1) CRT such that [DN[0,£]] > (1 — c(8))¢ for £ > £y,
e a compact set K’ = K'(¢, Ky, d,£,n7) C K of measure at least 1 — ¢/(§) for each £ € D,

e a subset Q = Q(¢,G1) C L{fr with Qg1 of measure at least 1 — ¢’ (d) for each ¢ € D and

each ¢ € K'

such that for all ¢; € K',u € Q,¢ € D, we have ug; € K and £ € E(41,u), i.e.
G2(Yii(q1,u, 0),  43(Yij(q1,u,0)) € K for all ij € Agync.

Proof. This is a direct application of Fubini’s theorem to the product {(Z,u#) | & € Q,ui €
Z/{fr 2} x R" using Claim 4.10.1. We just need to take care since we are using the density on
R™ here.

Let £g > 0 be as in Claim 4.10.1. Let L1 < Lo < L3 < --- be an arithmetic progression

with L1 = {5 + 1 and common difference 1. Now for each i, applying Fubini’s theorem to the
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product {(#,u#) | & € Q, ui € U &} x [0, L;] using Claim 4.10.1, we get a set D; C RT such
that the set of ¢ € D; satisfying the statement conditions has proportion at least 1 — ¢1(d) for
some ¢1(6) — 0 as § — 0, depending only on the constants ¢(4),c (§),c”(§) in Claim 4.10.1
(in particular does not depend on 7). Now take D := |J; D;, we have that D has density at

least 1 — 2¢q(9) for £ > ¢1(J), where ¢1(0) is some large enough constant depending only on

c1(9). O
Claim 4.10.3. Let D ¢ RT as in Claim 4.10.2. Then there exists

e a compact set K' = K'((, Ky, d,g,n7) C K of measure at least 1 — ¢(§),
e a point d’l = qul(ﬁ,cjl) € K for each ¢ € D and ¢ € K/,

e asubset Q = Q((,¢1,4),0) C M1+ with Qg1 of measure at least 1 — ¢/(§) for each ¢ € D
and each ¢ € K,
such that for all ; € K', u € Q, £ € D and ij € Agync, Y;i(G1,u,¢) and Y;j(cjll,u,f) are both
good and coupled. Also uqq, ucj’l € K.
Proof. The main idea is to apply Proposition 4.7.6. We just need to shrink K’ so that
§.4q' .41, qul € K, and then use Claim 4.10.2 (shrink K’ again) to get go, dé, qs, cjé, uqi, uq”l c K.
Let K1 C K and Q1 C L[f’ be the corresponding sets K’, () in Claim 4.10.2 respectively.

In particular, for all g1 € K1, u € Q1 and £ € D, we have
G@2(Yij(q1,u,0)), 43(Yij(d1,u,l)) € K for all ij € Async.

For any ¢; € K, u € Q1 and ¢ € D, we apply Lemma 4.7.5 to the linear map A := w4 o
A(Gou, € 7e(qru, 0) = £7(2) = Wy (@2) (here g == T4, G := T'ugy and 7 = (1/h); —
Wﬁ/_f) () denote the orthogonal projection with respect to the dynamical inner product (-,-);)

and let My (G) C £7(q) be the resulting proper subspace W’. Thus for any v € £~ (§) with

|vll; = 1 and d(v, My) > p, we have

g

|7+ A(Gr, u, £, 7= (1, u, O)v|| > c1(p)||m+A(G1, u, £, 7(G1, u, £))|| (4.10.1)
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for some c1(p) > 0 that depends only on p.

Now for each ¢ € D, we apply Proposition 4.7.6 with K/ := K N 7K, and the map
u = My(q) € L7(q§). Let Ky be the resulting subset K C K’, which has measure at least
1 — ¢9(9) for some constant co(§) — 0 as & — 0. Then by Proposition 4.7.6, for any ¢ € K>,

there exists ¢ € K N T {Ky with ¢ e W5, [q], F; 2(d") € L7(4), such that

Vauld
p(0) < dgyp(a.q) < 1/100, p(8) < [1F3(@)llg < C(9),
and
dq(Fq(Ql), Mu(q)) > p(9) for at least (1 — e1(d))-fraction of u € U;".

Here p(6), C(0) are constants with 0 < p(d) < C(d) < oo, and £1(9) is a constant with €1(6) — 0

as 0 — 0. This together with (4.10.1) for p = p(J) and the definition of 7. imply that

||7T+“4((j17ua£7 7~—E<Cj1au7€))FCj(Ql)H %5 ||7T+A((j1au7€a %E(dlvua é))” =

Therefore for all ¢ € D, for all §; € T*Ky C T*K N Ky, there exists ¢} := T%¢' € T'K N K
such that Y;;(gy,u,f) and Yj; (ql,u ¢) are coupled for most u S L{l for all ij € Agync.
Since q1, q1 € TEK we have ¢ := =T éql, =T f 1 € K. Since ¢, q1 € K1 C K, by Claim
4.10.2, we have (jl,udl,QQ,Qg,dl,udl,Qz,dg € K. Therefore both Y;;(q1,u, f) and Yj; (ql,u,f)
are good. Therefore we can take K’ := TEKQ in the statement, which has measure at least

1 — c2(9) with ¢9(0) — 0 as d — 0. O

Claim 4.10.4. Let D € RT as in Claim 4.10.2. Let K’ C K and Q as in Claim 4.10.3.

There exist
e a real number ¢y = {y(d,e) > 0,
e a constant C' = C(J) > 1,

e constants @ > 1 and o/ > 0 depending only on the Lyapunov spectrum,
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such that for all ¢; € K/, v € Q and ¢ € D with ¢ > (g, let ¢} = ¢|(¢,¢) as in Claim 4.10.3,

then we have

(a)

(b)
v(u) ()6 oot
d(wwwE” “0<C@ ’
(©)
CO) e < e (vl < C@e  and ) le < [v(w)]| < CE)e.
()

C(0) e < dgypr(T™Wugy, T7Wug)) < C(O)e.

Here we recall that v(u) := A(q1, u, ¢, %g(qﬁ?u,ﬁ))Fq(qA’) and 7(u) := 7=(q1, u, £).
Proof. Let £ € D, G; € K and u € @, where D, K’ and Q are as in Claim 4.10.3.

(a) It suffices to show that ay¢ < 7(u) < agl for some ap > a1 > 0 depending only on the
Lyapunov spectrum. In fact, for large enough ¢y := (y(d,e) > 0, the lower bound follows
from Proposition 4.5.13(d) and Remark 4.5.14 with a1 := (2ky%)~!, the upper bound
follows from Proposition 4.7.3 (recall from Step 4c that elements in K’ C K satisfy

Proposition 4.7.3) with a9 1= Ky k.

(b) Recall from Step 4d that elements in K’ C K satisfy Proposition 4.8.7. Therefore we

have

v(u) () o—a37(u)
d(wwwE” “OSC@ ’

where ag depends only on the Lyapunov spectrum. Now apply the lower bound in part

(a) to this inequality to get part (b).
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(c) For{ € D, ¢ € K" and u € Q, by Claim 4.10.3, Y;i(g1,u,¢) and Y}j(cjll,u,ﬁ) are coupled,

thus

I+ (v(w)|| =5 e

Here we recall that for 7 := TT(“)uél, 7+ : (I/h); — W[J/rh

projection with respect to the dynamical inner product (-, -); defined in subsection 4.5.9.

() denote the orthogonal

By part (b), v(u) is exponentially close to E(T™("ug;) C I/V[J/rh (T ug;), therefore there

exists g = {y(d) such that for all £ > ¢, we have

[[v(w)]

~§ €.

(d) Recall from Step 4a that elements in K/ C K satisfy the Factorization theorem (4.6.5(d)).
Take = a9 from part (a) in Theorem 4.6.5(d). Then dG/H(TT(“>ué1,TT(“)udi) is
exponentially close to ||[v(u)||. Thus using part (c), there exists ¢y = ¢y(d) such that for
all ¢ > ¢y, we have

lde £ (7 gy, T ugh) || ~ e.

]

Recall that B [z] := J[Z] F‘IVAVE / 71%] is the local unstable set defined by the Markov partition

J constructed in Proposition 4.5.12. Recall the parameter #; from Proposition 4.9.1.
Claim 4.10.5. There exist

e a real number oy = dg(f1) > 0,

e a real number ¢y = {o(Kq,d,e,m) > 0 for each 0 < § < dy,

e a compact subset K’ = K'(¢,Kyp,d,6,m) C K of measure at least 1 — ¢(d) for each

0 <9 <dgand £ > {y,

o asubset Q@ = Q((,q1,4(¢,d1), Koo, 8,6,m) C Uy such that Qg1 C Bo[g1] with Qg of

measure at least (67/4)-fraction of By[g;] for each 0 < § < g, £ > €y and ¢ € K,
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such that for all § < &y, 1 € K/, u € Q and ¢ > £, there exists ij € Agync such that
d v(u) E.. 77w 4
() Blighbaa T udy) ) <

Proof sketch. The proof is identical to [ELa, Claim 10.11]. See Choice of parameters #3 in
[ELa, Sect. 10] for the choice of dg(f1) (note that (10.20) in [ELa] is satisfied for all sufficiently

small ). The main idea is to apply Proposition 4.9.1. O
Claim 4.10.6. There exist

e a real number {5 = {y(d,e) > 0,

e a compact subset K’ = K'(¢, Ko, d,¢) C K of measure at least 1 — ¢(d) for each £ > £,

e a subset Q = Q((, 41,4, (¢, ¢1), Koo, 6,€) C lel+ with Qg1 of measure at least 1 — ¢(d) for

each ¢ > {y and each ¢; € K',
e a constant C'(§) > 0,

such that for all ij € Agyne, g1 € K, u € Q, £ € D with £ > {y, let ¢} = ¢{(¢,¢) as in Claim
4.10.3, then we have

(a)
I7(u) = 7'(u)] < C(9),

[tij(u) — ti;(u)| < C(0).

Proof. In this proof, we write 7 := 7(u), 7/ := 7/(u), ¢g := T7ug; and b = TTugy (note that

gh is not necessarily the same as qAQ(}/Z‘j<(j/1, u, l)) since we are using 7 instead of 7').

(a) We first show that |7(u) — 7/(u)| < C(6). The idea is that by the choices of 7 and 7/,
de/H((jg,(jé) and dg/H(TT/_T(jQ,TT,_T(jé) are both ~5 €. Now the exponential rate of

expansion (or contraction) by T7=7 should be bounded by constants that depend only
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on the Lyapunov spectrum, therefore |r' — 7| = Og(1). However to make this precise
requires more work. For instance d /H (TT,_Tqu, TT/_TQ’Q) ~s € may not necessarily hold
by the choices so far (we only have Fq(cj’ ) avoids a proper subspace with strictly lower
order growth using Proposition 4.7.6, but the same may not be true for Fg(q)). Also we
need to first factorize dg /H (¢2,¢h) and dg / H(TT,_TQQ, TT,_ché) to get the precise bounds
on exponential growth rates.

We first consider the case when 7/ > 7. Note that since 71 o A(d1,u, £, 7/ (u)) = 777 o
74+ o A(G1,u, ¢, 7(u)), by property (d) of the dynamical norm (Proposition 4.5.13(d)), we

have
T v )] < (Al u, €7 (W) Ey(d)]) < e v ().

By Claim 4.10.4(c), we know that ||[74+v(u)|| =5 . On the other hand, by the Factor-

ization theorem (Theorem 4.6.5),
I Al . 7 () Fy(@)| = dgyppr (B, 777 dh) + Og(e™ )
Therefore for large enough £ >>; . 0, we have
e <5 dgy (74, 777 d)).
By the choice of 7/(u), and the Factorization theorem (Theorem 4.6.5) for ¢’, we also have

e = [lm Algy, u, 6,7 ()| > llme Aldy, w, 6,7 (u) Fy (4)

Al N Al N _
= dg/p(T7 Taa, T7 7 dh) + Og(e™ ).

Thus for large enough /¢ 6. 0, we have 2¢ > dG/H(TT,_T(jQ;TT/_T(jé) >s e“_l(T/—T)57

which implies 7/ — 7 = Og(1).

Now we consider the case when 7/ < 7. Most of the above goes through by swapping the
218



role of ¢ and ¢’. The main issue is that we don’t necessarily have
I Ay, €7 () Fy ()] =5 m-Aldy, w, £, 7' (w)-

The remedy is to apply Proposition 4.7.6 to ¢’ and obtain another point ¢’ € WG / ld]-
More precisely, we let K1 = K1({) C K be the compact set K’ in Claim 4.10.3 for K,
Q C Z/I1+ be the subset in Claim 4.10.3, and let ¢} := ¢} (¢, §}) be the corresponding
point of cj’l € K. We then apply Claim 4.10.3 with K in place of K and let K9 C Kj be
the resulting compact set K. Then for §; € Ko, we have cj’l € Ky and cji’ € K. Moreover,
for each ¢ € D, and for a large set of u Cg Z/lf', we have that Y%j(ql,u,ﬁ),iﬁj(ﬁi,u,f)
and Y;j((j/l’,u,f) are good, Y;;(q1,u, () and Y,'j((j’l,u,é) are coupled, also Yij((j’l,u,f) and

Yij(cj’{, u, ¢) are coupled. For the rest of the proof, we let £ € D, §; € K9 and u € Q.

Then we have
7+ A(G) u, 6,7 () Fy (G| =5 [l A(G) u, £, 7 (w)) ]| = e

Let v/(u) := A(q], u,, T'(U))Fq/((jl’). The above shows that |74 v/(u)|| ~; €.

Since 710 A(qG1, u, 0, T(u)) = TT*TIOW_FoA(qu, u, £, 7' (u)), by property (d) of the dynamical
norm (Proposition 4.5.13(d)), we have
S . N /_
e T i ()| < i A w, () Fy (@] < €77 v (w))

q

Let ¢ := TTWyTt§". By the Factorization theorem (Theorem 4.6.5),
NN/ N N N/ —ol
dG/H(q27q2> _A<Q17u7€77-<u>>F(j/<q )+O(5(6 )

Since A(¢},u, , T(U))Fql((j//> gets exponentially close to E C Wﬁ/_f) (Proposition 4.8.7), we
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have for £ >; . 0,

A~ A~ 1 —1 _ -1 i,
d(dh d3) = 5 T fm v (W) 25 € 0T e

On the other hand, by the Factorization theorem, we have

e pr (i db) = llm Aldru, €7 () Fy(@")]) + Ogle).
Also by the choice of 7,

I+ A(Grs u, €. 7(w) Fy (@) < llmrAlGr, u, €, 7(w)|| = e

Thus for £ >4 . 0, dG/H(dg, gh) < 2. By the same reasoning, we also have dG/H(ég, gy) <

2e. Thus by the triangle inequality,

—1(-_ A A .
e e <5 dgyp(Ga, 65) < dgyp(da, ) + dgyr(dh, G5) < 4e.

Therefore 7 — 7/ = Og(1), as desired.

Recall that ¢;;(u) and t; j (u) are defined (see the beginning of the proof outline of Theorem

4.10.1) to satisfy

Aig(ugr, 7(w) = Aij(qu, tij(u)), and Nij(udy, 7' () = N (g, 1 (w).

The idea is to relate [A;j(udr, 7(u)) — Aij(ugy, 7'(w)| = [Aij (1, tij(w)) — N (@), b ()]
with |7(u) —7/(u)| and |t;;(u) —t;j (u)|, and then use the upper bound on the former from

part (a) to give an upper bound on the latter.

Let K7 be the compact set K/ € K in Claim 4.10.3 and @ C L[fr be the sub-
set in Claim 4.10.3, . For ¢{ € D,qg; € K;i and u € @, by Claim 4.10.3, we

have cjl,cjll,ucjl,ucj'l,TTucjl,TT/ucjll € K. By part (a), |7 — 7| < C(9), thus TATucjll €
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TI=C6).CON K. Note that since qi € Wé/H(Ql), by Proposition 4.4.7, we have

7TSZ><G/L(7~“2/1) = W&/L[WSZxG/L(Udl)]-

By Lemma 4.7.4, we have

[Xij(udi, 7(w)) — Ajj(udy, 7(u)| = Og(1).

On the other hand, by Proposition 4.5.13(c) (note that A;; is a cocycle), we have

[Niji(udy, 7(u) = Nij(udy, 7' (w))] < sl (w) = 7' (w)] = O5(1).

Therefore

Thus

Nij (@1, tig(w) = Aij (1, 5 (w)] < O5(1).

Now apply Proposition 4.5.13(c) again, we have
[ti(u) = ti; ()] < w|Xij(G1, i (w) = Xij(G1, 15 (w))] = Os(1).

]

Claim 4.10.7. Assume the choices of 6,4, u, 41,41, 4.4, G2, @, 43,45, 45 ij»T Tij as in Choice of

parameters 2 and 3. There exist
e a real number ¢y = {y(d,e,7m) > 0,

e a constant C'= C(d) > 0,

e a constant > 0 depending only on the Lyapunov exponents
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such that for all v € E[z‘j],bdd(di’),ij) and ¢ > (),

q3,i5°

—al
d < C(0)e " |lv

1R(35,45,32) P~ (43,15, d3.45)v — P~ (2, 43) RG34, G2)V

Proof. In this proof we will state the subscripts of the dynamical norm since it will play a role
later in the proof.

Since E;;) hqq is an equivariant bundle and Ep;j1 1,44(2) C (I/b)z, we have

Ejij,bdd = ?(E[zj},bdd N W[>’f,)
where k runs through the indices of the Lyapunov exponents (note that if E[z’j],bdd N W[/>’;) is
a nontrivial intersection, we must have A\ > 0). Moreover, since the bundle Efij,bda N Wé’é
is preserved by R(Z,4’) (since both are preserved by the dynamics) and P~ (#,4’) (by Lemma
4.5.9), it suffices to show the inequality for v € (Ef;5 1,99 N Wé’é)(cj&ij)_ Furthermore, since the
Lyapunov subspaces W[% are orthogonal to each other with respect to the dynamical norm, it
suffices to show that for all v € (E;] ,4q N Wéﬁ)((i&ij),

435>

(4.10.2)

A N —/a A —a A A N D YAV —
| R(G5 15+ 60) P (d3,47: 5,67)V — P~ (G2, h) B3, Go)v + Wi (@)1 gy < CS)e™ v

where we understand the norm on the left as the norm induced on the quotient space

>Nk A >SAL A .
W[/h (QQ)/W[/h (¢3) by the dynamical norm on g/f)%.

Let vg € V; C W;O(cj) be the unique vector in the normal form coordinate at ¢ such that

q' = exp(vg)q. Note that by Proposition 4.7.6, we have in particular that ||vg|| = O(5). Let
g = exp(vp). Then one can show that [|g||zq(q) = O(6) (using Lemma 4.5.15, see also Step
4f, to compare with the fixed norm || - ||p, then use smoothness of the exponential map and
Ad).

o

Recall that R(q3,j,G2) = R((jé i dy) = (qul)*(TqA_ngi?‘)*. By equivariance of the map P~
’ ) 2]
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we know that (4.10.2) can be written as

(T )P (@) (T, ) ev = P (G, @) Rl 1, 2w + Wi (@)l g, < COOY Vg,
(4.10.3)
Thus it remains to show that for all v € (E;j) ,qq N W%)(@&ij)a (4.10.3) holds.
Fix ¢/ > 0 that will be chosen in the end of the proof as a constant that depends only on
the Lyapunov spectrum. We first treat the first term on the left hand side of (4.10.3). By Step

3b, since v € W)"f(d&ij),

—Tii _ AV
1T, ) vllgy < AT v gy (4.10.4)
By Lemma 4.5.10 and that [|g||sq(q) = O(6), we have
1P~ (G1,4) — Ad(Tg)g(qu)—l”O—)O <s lgllaqye " <s e,

where oy > 0 is the constant a in Lemma 4.5.10 that depends only on the Lyapunov spectrum.

By the norm comparison lemma (Lemma 4.5.15) and (4.10.4), we have

A A —Tij —arl (=A+e')m;
(P (qwli)_Ad(Tf)g(Tf)‘l)(ngz’jj)*VHdi <p e el NN v,

By the norm comparison lemma (Lemma 4.5.15) again, the norm on the left hand side can be

taken with respect to || - || ud)’ Thus by taking a quotient by the subspace W[7f))\ *(ug}) on the

left hand side, we have

43ij

(A A —Tij >N/ 4 —arl (=Ap+eNT;;
1P (1, 61) = Ad ey ey ) (T, 7 )sv o+ W (ud) gy <5 €™M ey

Finally, we have the operator norm of (qul)* : ([/h)uﬁl/Wié\k (ugr) — ([/h)@2/W[7[])\k(Q2),

with respect to the dynamical norm on both the range and target, is at most e()‘kJrg/)T, therefore
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we have

T AN —Tij >Nl
(T3, )+ (P (@1,8) = Ad ey ey 1) (T oy + W (@) (4.10.5)
<s e—OdZe(>\k+5’)7'e(_>\k+5’)7'ijHVHQ&U' (4.10.6)

Now we treat the second term on the left hand side of (4.10.3). Since R(3,;,G2) has

operator norm O(d) on E;; 1,44(43,i5) by Proposition 4.9.2 (see also Step 3), we have

1R(d3,5: 42)V Il gy <6 1Vllgs.;;- (4.10.7)

Let ¢’ := (qule) (qule) 1 By Lemma 4.5.10 (here we are using that ugy, ucj’l are stably

related on G/L even though they are in general not stably related on G/H), we have
1P~ (G2, 65) — Adyllo—so <5 I(T)a(Th)  laaee ™7 (4.10.8)

Since [|glaa(e) = O(6) and g € exp(Wg0(q)), we have |(T})g(T}) | aq(c) = O(6) for large
enough ¢ >;5 0. By the norm comparison lemma (Lemma 4.5.15), (4.10.7) and (4.10.8), we

have

(P~ (G2, ¢5) — Ad ) R(G3,i5, @)Vlg <se”

By Claim 4.10.4a, for large enough ¢ >5 0, we have 7 > %az_lé, where a9 > 0 is the constant

in Claim 4.10.4. Therefore we have
1P~ (a2, d2) — Adg)R(d3,5, G2)V [l g, <5 ™3|Vl gy ., (4.10.9)

for the constant ag := ajay, 1 /2 > 0 that depends only on the Lyapunov spectrum. Combine

(4.10.5) and (4.10.9), using the fact that

(T,

Ady R(ds 57, d2) = Ady (T e(Tg, ™ )s = (T )<Ad ey 1 (T

uqi q3 K% UQ1
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(both sides are conjugation by the element Tha T; g(T (jf)_qu_3 1) € @), we have

1T )P~ (@1 @) (T 2 )ev = P (G, G5 RUds i d)v + W (d0) | (4.10.10)

<5 (7ol Mt (NFENTy o mastyy ), (4.10.11)

Thus to show (4.10.3), it remains to show that the right hand side of (4.10.10) is <j

6_0‘4EHVH(137U for some a4 > 0 that depends only on the Lyapunov spectrum.

To do so, note that on one hand, R(q3;,G2) = (T, (T,

Tiq . N A~
it )« satisfies | R(3,i5,G2)Vllg, <

q3,ij
C@)HVHQ&U by Proposition 4.9.2. On the other hand, apply Step 3b twice (since v €

Moo
Wi (@3,i5)), we have

(77, )T, )

A .. Ny ’ A N
ugy 3.0 g = e ¢ TH( ,])*VH(jl > eMe=e)T (=N E)TZ]”VH%M-

Therefore

eN=e)T (A —e")7i; <s 1.
Thus by Claim 4.10.4a, for large enough ¢ >; 0, we have

€(>\k+5/)T€(—>\k+6/)Tij <s €2€I(T+TZ‘]‘) < eSs’agﬁ’

where we recall g > 0 is the constant o > 0 in Claim 4.10.4 that depends only on the
Lyapunov spectrum. Now if we take ¢ > 0 small enough (depending only on the Lyapunov
spectrum) so that —aq + 8'ag < 0 (say €' := a1/(16a3) > 0), then the right hand side of

(4.10.10) is <; €_a4€”VH43 ;; With ay = min{aq/2, a3}, as desired. O

Claim 4.10.8. There exists ¢(0,¢) with ¢(d,¢) — 0 as £ — oo such that

d(fi5(q2), fi5(5)) < (6, ).
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Proof. By Lemma 4.9.12, we have
fij(G2) o< R(43,i5,G2)+fij(d3,i5), fij(@) o< R(G545,5)«fi5(d5.17)-
Since 3.5, (jéJ ;€ Ky C K, f;j 1s uniformly continuous, therefore
d(fij(@3.5): fij(d5,47)) = O as { — 0.

Let vi € V5 C W;O((jl) be the unique vector in the normal form coordinate at ¢; such that
¢] = exp(v1)q1. Note that by Proposition 4.7.6, we have in particular that ||v1]| = O(d) for
large enough £ >>5 0. Let g := exp(vi). Then one can show that [|g[laqq) = O(9) (using
Lemma 4.5.15, see also Step 4f, to compare with the fixed norm || - ||g, then use smoothness of
the exponential map and Ad).

By continuity of Ad _, and that 7;; — 0o as £ — oo, we also have

(qu )Q(qu )

d((Ad(TTij) (Tﬁj)_l)*fij(ds,ij), fij(d5,45)) = O as £ — oo.

a1 a1

By Lemma 4.5.10, we have
d(P™ (3,05, 05,4j)+Sij(d3,05), fij(@3.47)) = 0 asl— oo.

Apply R((jé ij>‘jé)* to both sides, noting that R((jé ij,cjé) has operator norm O(d) when re-

stricted to E[ij],bdd(qé,ij)v we get
d(R(35,45,32)« P~ (43,45, 83.45)+ Ji5(d3,6), fij(@5)) = O as { — oo.
By Claim 4.10.7, we have
d(P™ (G2, @) R(q3,i5, 42)+fij(3.05), fij(d3)) = 0 as £ — oo.
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By Lemma 4.5.10, we have

d((Ad(T;jl)g(TJql)—l)*R(QS,ija @)+ 1ij(G3.i5), fi;(@5)) = 0 as £ — oo.

By continuity of Ad(TT

)g(TT )_1)* and that Tij — 00 as { — oo, we have
uqq 9 ugq

d(R(G3,i5,G2)+fij(G3.i5), fij(G3)) = O as { — 0.

Thus

d(fi;(d2), fij(dh) =0 as {— oc.

4.10.2  From the drift to extra invariance in a unipotent direction

Assuming Proposition 4.10.1, one prove the following (recall that &;;(%) is a unipotent sub-

group of z(L/H®)z"1).

Proposition 4.10.2. [ELa, Prop. 10.1] In Case I, there exists ij € Agync such that for & := &;;,

for a.e. & = (w,z) € €1, there exists a nontrivial unipotent subgroup UL, () C £(#) such that:

(a) For a.e. & = (w,z) € Q, ae. u € Llfr and all t € R, & — U, (&) is T*-equivariant and

Z/{l+ -invariant.

(b) For a.e. & = (w,z) € , the conditional measure of & on {w} x (i)z is right invariant

under U, (2) C E(2).

Proof outline. The proof goes by applying Proposition 4.10.1, following the proof of [ELa,

Prop. 10.1]. Let § > 0 be the constant in Proposition 4.10.1.

1. Take €, — 0. For each ¢, take E,, C K« as in Proposition 4.10.1. We may assume

that ij € Agync is constant along this subsequence (by possibly replacing ¢ by 0/|Async|)-
(0.9] o0
2. Let F:= (] |J En C K« Then 2(F) > 4.
k=1n=k
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. For & = (w,z) € F, there exists a subsequence g, = (w, 7n7) € ({w} x &;;(x)g) N Kx such
that §n — 2 but g # 2 for all n, and f;;(2) o< f;;(9) = (r4,,)«fi;(2) for all n, where r

is the right multiplication by ¢ € G. This implies, v, — id but =, # id for all n.

. For & € F, let U, (&) be the maximal connected subgroup of &;;(&) such that f;;(2) o

(Tg)*fij([i') for all g € Ul ().

. We have the following properties of U, (%):

(i) For 2 € F, U}, () is non-trivial (Note that U,I,,,(2) is closed and not discrete by
Step 3).
(ii) Upew(#) is constant on &[] = {w} x &;(2)z by construction.

(ill) Uper (ud) = Uplor (&) for & € Fyu € UjF with ud € F (by U -invariance of f())

(iv) T%_thT%w(T_ti) = Uk, (%) for & € F,t > 0 with Tt € F (by T-equivariance of
f(#)).

. Since #(F) > dg > 0 and T is ergodic, for a.e. Z € €0, there exists t > 0 with 7% € F.

Define Uyl (&) := TtU (T ~t#). Then & — U, (2) is T-equivariant and U; -invariant

(this proves (a)).

. By definition of U,

new»

eﬁi’(g)fij(:%) for a.e. & e Q.

there exists homomorphism £; : Uy, (2) — R st gifij(2) =

. By Step 5(iv), for ae. & = (w,z) € Q, g € Ul () and t > 0, ﬁf,t@(Tw_thjtptw) =
Bi(9)-

. Since Tw_th%,tw — e for all g € U, (2), t > 0, by Poincaré recurrence, 3;(g) = 0 for

a.e. @ € Q) (this proves (b)).
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4.10.8  From extra invariance to the measure classification

Proposition 4.10.3. In Case I, there exist a Lie subgroup H' ¢ G with H° ¢ H' ¢ L ¢ G and
dim(H'/H®) > 0, an H'-homogeneous probability measure vy on L/H and finite u-stationary

measure Vg /g on G/H' such that

V=vg/ kv = / 9:0 dvy 1 (9)-

G/H
Proof. The proof follows the proof of [ELa, Thm. 1.13(a)] closely. See also [BQ11, Sect. 8].
1. Let P(G/H) be the space of probability measures on G/H.

2. For z € G/H, a € P(zL/H), let Sy be the connected component of the stabilizer
of @ wrt. z(L/H®°)z"! acting on zL/H. Recall that if Tq/(z) = WG/L(Z’), then
2L/H = 2'L/H and 2(L/H®)z"1 = 2/(L/H®)(")~ 1.

3. Let

F ={a € P(G/H) : supp « C zL/H for some z € G/L, Sy # {1}

and « supported on a Sy orbit}.

By the first condition, each « € F can be considered a probability measure on zL/H for
some z € G/L. By abuse of notation we let F, := FNP(zL/H). Then F =U,cq 1 F>

as sets. Note that G acts on F.

4. By Ratner’s theorem applied to the z(L/H®)z~!-homogeneous space zL/H for each
z € G/L, F, contains all measures invariant and ergodic under a connected non-trivial

unipotent subgroup of z(L/H®)z~1 for some z € G/L.

5. For ae. 2= (w,2) € S x G/H, take U}, () C £(2) C 2(L/H®)z~! as in Proposition
4.10.2. WLOG, assume U,1,,,(2) is the stabilizer in £(2) of Dlfwixe(z). (otherwise enlarge

Uﬁ;w(é) to the stabilizer - the equivariance properties in Proposition 4.10.2 still hold,
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10.

11.

12.

13.

and it is nontrivial).

. For 2 = (w,2) € S x G/H, let

Alw,2) ={/ € G/H: Ta/L(z) = WG/L(Z/) and U, (w, 2) = Uyt (w, 2)}.

Here 71, : G/H — G/L is the quotient map.
For 2 = (w,2) € 8% x G/H, let ; denote the conditional measure of  on {w} x zL/H.

Disintegrate 7 under (w,z) (w,wG/L(z),UTJ{ew(w,z)). Then for a.e. 2 = (w,2) €
SZ % G/H, we get a probability measure o; on zL/H supported on A(w, z) such that for
ae 2 cS%xG/H,

. For ae. 2€ 8% x L/H, vs is U, (?)-invariant.

Do simultaneous U, (2)-ergodic decomposition of 7; for a.e. 2 = (w,z) € S x G/H,

then

Vs =/ C(w, 2")ds ("),
zL/H
where ¢ : 8% x G/H — F is constant along A(w, z) for a.e. (w,z) € S& x G/H.
Integrate to get

Dy = /Z " C(w, 2 )dis ().

The T and Ui -equivariance of £(2) and U,f,,,(2) imply that for ¢ € R and u € U;",

A

(Tz?)*g(waz) = C(Tt(waz))a and C(uw,z) = C(wvz)'

Define ¢ : SZ x G/H — 8% x F by ((w, 2) := (w,(w, 2)). Then 7 := (40 is an ergodic

Tt invariant probability measure on SLx F.
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14.

15.

16.

17.

18.

By Ratner’s theorem (for nondiscrete quotients - see e.g. [Wit94, Thm. 1.2] for the
argument reducing this more general case to the version on discrete quotients in [Rat91,

Thm. 1.1]), the set G of G-orbits on F is countable.

Since T; acts trivially on G and 7) is ergodic, the pushforward of 7 on SZx G viaSLx F —
SZ x G is also ergodic and is supported on SZ times a single G-orbit, so 7 is supported

on 8% x Gy for some 1 € F.

Let H' C G be the stabilizer of 1y in G. By definition of F, 1 is supported on a single
H'-orbit. Moreover, vy € P(zL/H) for some z € G/L and zH°2~1 ¢ H' C zLz"1.

Write ((w, 2) = 0(w, 2)vp, where 0 : S x G/H — G/H'. Then 6 is T-equivariant and

L{1+ -invariant.

Define 0 : SZ x G/H — S x G/H' by 0(w,z) = (w,0(w,z)). Then A := 040 is a
T-invariant and u1+ “invariant measure on S% x G /H', therefore its projection v /' to

G/H' is p-stationary. Hence we have

o= [ g dugmto)
G/H'

where 1 is an H’-homogeneous measure on zL/H for some z € G/L.

4.11 Case I1

In Case II, much of the proof is similar to [ELa, Sect. 11]. However there are two key distinc-

tions. Firstly, in this setting, the stationary measure v is not necessarily I';-invariant, therefore

the analogue of [ELa, Prop. 11.1] cannot not hold. As a result, to adapt the Case I argument

of [ELa, Sect. 11], we will work mostly with v_— rather than v. A weaker analogue of [ELa,

Prop. 11.1] will be proved in subsection 4.11.5 to finish the proof. Secondly, unlike in [ELa,

Sect. 11], the measure v is not necessarily compactly supported. The reason the argument does
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not carrry over directly is because u acts compactly on Z in the case of [ELa, Sect. 11], but
for us, the analogous partition F, é?H does not have a compact p-action.

We first recall the assumption in Case II.
Case I Assumption: For p-almost every (w,z) € S x G /H, the conditional measure

7 y on the total stable subset of (w, z) in the two-sided skew product is supported on

Wé/H[(w,z

Wzlw] x fg})H [2].

Here we recall the definition of F, é?H [2]:

1
é?H[Z] = {z’ € G/H® | limsup — log dG/H(TJ}(Z),T(B(Z/)) <0 for almost every wt € SN}
n—oo N

—{Z eG/H° | 2 e WS(w,2)] for almost every wt € SNV},

Similarly define ]—"é?L[:c] C G/L for x € G/L.

The goal of this section is to prove the following theorem.

Theorem 4.11.1. Let G be a real linear algebraic group, and p be a Borel probability measure
on G with finite first moment. Let I';, be the (topological) closure of the subsemigroup generated
by the support of y in G, and ff be the Zariski closure of I',.

Let H C G be a closed unimodular subgroup. Suppose there exists an H-envelope L and
xg € G/L such that p is uniformly expanding on L/H at x.

Let v be an ergodic p-stationary probability measure on ffxoL/ H and 7 := 7w be its

pushforward on G/L. Suppose that Case IT holds. We also assume that

(t) There exists a closed normal subgroup U C fﬁ and some zg € G with zgL = x¢L such

that T aL = UzgH° and 25 'Uzg N H® = {id}.
Then the stationary measure v /H can be written as

VG/H:/G/L% dv(z),

where
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1. 7 is a generalized p-Bernoulli measure supported on ffng /L.

2. there exists a positive integer k such that for v-almost every x € G/L, v, is the uniform

measure on k points in 71 (z) € G/H,

3. there exist finitely many z1,...,2;m € T xOL/H such that for F := U2, G/H[ zi], we
have (i) supp v,y C F, (ii) F has finite intersection with = 'L/H for all o’ € T mQL/L

and (iii) F is invariant under I',.
Theorem 4.11.1 follows from Proposition 4.11.2 and 4.11.15.

Proposition 4.11.2. Under the assumptions of Theorem 4.11.1, there exist finitely many

points z1,..., zm € G/H such that v is supported on U G/H zi]-
=1

To show Proposition 4.11.2, we first establish the following proposition.

Proposition 4.11.3. Under the assumptions of Theorem 4.11.1, for u -almost every weSL

there exists finitely many points 21, ..., zn € G/H such that v ,— is supported on U G/H zi]-
1=1

The next few subsection will be dedicated to proving Proposition 4.11.3.

4.11.1  The wnert center-stable set G/H

. . . <0 <0 =4 o
In this subsection we record a few properties of the sets Fp (2] = (—;/H[z] NT,zol/H
under the assumption (}). Clearly it suffices to show Proposition 4.11.2 and 4.11.3 for fé?H[ 2]
replaced by F; SO[z] (recall that v is supported on ff:voL /H). See Proposition 4.4.5 for general

properties of fé H 2] even without the assumption (7).

Lemma 4.11.4. Under the assumption (}), there exists an algebraic subgroup .7:50 C U such

that
(a) FOl] = F5'% for all z € TowgL/HO.
(b) ]550 is normalized by I',.
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Proof. Using the assumption (1), we can identify
—1=:Z o -1 0 /770 ~v —1 -1 _ -1
zg Uyaol/H® = 2y UzgH" /H® = 2 Uz/ (2 Uzo N H) = 2y Uzp.

Using a right-invariant metric on 2, U zp and this identification, it is clear that zy 1F1§O[Zo]
is a closed subgroup of ZalUZQ, and that f;o[z] = ]-"Fgo[zo]zalz for all z € ffxOL/HO. Let
.7:50 = .7-"150[20]20_1. Then clearly (a) is satisfied.

Now by the definition of .7-"1;0[2] (see Proposition 4.4.5(a)), for p-a.e. g € G, g}"FSO[ZO] C
]:Féo[gzo]. By (a), this implies that gféog_l C .7:50. On the other hand, both sides are
Lie subgroups of U with same dimensions and same (finite) number of connected components,

therefore the containment is in fact an equality. Therefore (b) holds. O

Corollary 4.11.5. Under the assumption (1), we have the following properties of the inert

center-stable sets.
(a) g]:rgo[z] = f;o[gz] for all z € fﬁa:gL/Ho.

(b) Fgo[z]H is locally closed in foOL/H, thus the action of .7:50 on fooL/H is smooth
(in the sense of [Zim84, Def. 2.1.9]), i.e. the quotient space Fgo\ffxOL/H is countably

separated, so that ]-"FSO[Z] is a measurable partition of fﬁmQL /H.

Proof. (a) holds by Parts (a) and (b) of Lemma 4.11.4. To show part (b), by homogeneity it
suffices to verify that at z = z(, there exists a neighborhood O of 2gH in FﬁxoL /H such that
on FFO[zO]H =0n F;OZOH is closed in O. The key point here is to use the fact that this
holds on G/L, and that ]:FO[Z]H is homeomorphic to its image on G/L. More precisely, since
.7-"50 is an algebraic subgroup, any orbit on G/L is locally (Zariski) closed by [Zim84, Thm.
3.1.1]. In particular .FEOZOL is locally closed in GG/ L, i.e. there exists an open neighborhood Oy,
of zgL in G/L such that Oy N ]-"gonL is closed in Oy, Since ]-"FSO[ZO]H = ]:EOZOH intersects
2oL /H at at most one point by Corollary 4.8.5, the quotient map 7 : G/H — G/L restricts

to a bijective continuous open map on FgOZOH , therefore it is a homeomorphism. Therefore

234



71O} is an open neighborhood of z in ffxOL/H and 77107 N F;OZOH is closed in 7710y,

as desired. O

4.11.2 mod F=° local dimension

The goal of this subsection is to show Proposition 4.11.6, which shows that in Case II, under
the assumption of uniform expansion on L/H, the local dimension of the measure v in the L/H
direction is 0.

For z € G/H, ¢ > 0 and r > 0, define a local ball in the L/H fiber direction
Bru(z,r) = {/ € 2L/H° | dG/H(z,z/) <r},
and
Bp(z,1¢€) = (X" eq/H® | ¢ BL/H(Z/,T) for some 2’ € }"FSO[Z] with dg/H(z,z/) < e}

For w € 8% and z € G/H, define the mod F=Y lower local dimension as

logv, —(B/p(z,r e
dim (v, w, 2) = lim (hminf 8% (B )))_

e—=0\ r—=0 log r

By ergodicity, for -a.e. (w,z) € S& x G/H, dim (v, w, z) does not depend on (w, z). Define

this common value by dim x(v).

Proposition 4.11.6. In Case II with uniform expansion on L/H at z € G/L, and v a u-

stationary measure on Fsz/H for some z € G/H with x = w1 (2), we have dim p(v) = 0.

For positive integer n, w € 8%, 2 € G/H and e > 0, we define the Bowen balls as
B"(w,z,¢):={ € G/H®| for 0 <m <n, T2 € Bp(1'z,¢€,€)}.

We need the following consequence of uniform expansion on L/H, which has the same proof
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as [ELa, Lem. 11.9].

Lemma 4.11.7. Let € > 0 and « € G/L. Suppose that p is uniformly expanding on L/H at
2. Then for any unit vector v € (I/h),, there exists a positive measure set K (v) € S% such
that for all w € K(v), there exist n(v) > 0 and N(v) > 0 such that for all n > N(v), any unit

vector w € (I/h), with ||v — w||g < n(v) and any z € G/H that projects to =, we have
{t : exp(tw)z € B"(w, z,e)}| < e ",

where o > 0 depends only on the Lyapunov spectrum.
We also recall the definition of fiber entropy for the bundle S x @ /H — SZ.

Definition. Let ¢ be a finite measurable partition of G/H. Then the limit

o1 o 1
i L, (\/@;) 15) =dmoos Sy (losy()

=0 Ae\VIZ (T

exists and is constant for uZ-a.e. w. We denote this value by hg/ H(T, €), and define the fiber

entropy h G/H (T) to be the supremum over all finite measurable partition & of hG/ H(T £).

G ()

Note that in Case II, we have h =0.

We will use the following relative version of the Brin-Katok local entropy formula, which

computes the fiber entropy in terms of the Bowen balls.

Lemma 4.11.8. (cf. [Zhu09, Thm. 3.1]) Fore > 0,&' > 0,n € Nand w € 8%, let N(n,w,e,€’)
denote the smallest number of Bowen balls B (w, z,¢) C G//H needed to cover a set of v ,—-

measure at least 1 —e. Then for /LZ—a.e. w e SZ and any 0 < ¢/ < 1, we have

1 - 1 G/H o
lim lim inf — log N = lim 1 —log N ! T
lim liminf —log N(n,w,e &) lim lim sup — log N(n, w, 6,¢') = (T).

Now using this formula and that the fiber entropy is zero in Case II, we obtain the following

corollary.
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Corollary 4.11.9. (cf. [ELa, Cor. 11.11]) Let N(n,w,¢,€’) be as in Lemma 4.11.8. Then for
any € >0, any 0 < &’ < 1 and pZ-a.e. w € SZ, we have

.1 /
nlgréoﬁlogN(n,w,a,e ) =0.

Proof of Proposition 4.11.6. Using Lemma 4.11.7 and Corollary 4.11.9, one can establish Propo-
sition 4.11.6 as in the proof of [ELa, Prop. 11.8] (replacing v with v, - everywhere in the proof,
using critically the fact that v, ,— depends only on the past w™ of the word w and not the

future). O

4.11.83  Margulis function

Just like in [ELa, Sect. 11], We need the construction of a Margulis function. We only present
the proof (with the Margulis function) in the case when L/H is compact - the general case is
a similar adaptation of [ELa, Lem. 11.14].

For 7 > 0 and ¢ > 0, define the Margulis function f,5: G/H x G/H — R by

min{r, dg g (', FEC 2] N 2L/ H)}Y 0 if FROl N 2/L/H # 0
fr,é(zu Zl) =

r—0 otherwise.

Suppose that for p%-a.e. w € SZ, wa(}"rgo[z]) = 0fory—-a.c. z € G/H. Then f, 5(2,2') < 00
for v, x v,—-a.e. (z,2).

We have the following Margulis inequality of this Margulis function f; .

Proposition 4.11.10. Suppose H/H® is cocompact in L/H®. Assume that p is uniformly
expanding on L/H at some x € GG/L and there exists a u-stationary measure supported on
=7

I',zL/L.

Then there exists n = n(u) € N, § = 6(u,n) > 0, constants ¢ = ¢(u,n,d) < 1 and
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b=0b(u,n,d,r) >0 such that for all 2,2’ € G/H that project into fﬁxOL/L, we have

/G fr5(9297") du™ (g) < cfy 5(z, 2') +b.

Proof. Firstly, notice that if .7-"150[2] Nz'L/H consists of a single point 2’ € G/H, then ]-'Fgo[gz]ﬁ

g7’ L/H also consists of the single point gz” € G/H for all g € T');, and
de (2, F N2 L/ H) = dg g (2, 2").

Also ]—"FSO[Z] is an I',-equivariant partition by Corollary 4.11.5(a). Therefore it suffices to
consider the case when 2/ € zL/H. In this case, the proof is essentially [EM04, Lem. 4.2]
by applying uniform expansion on L/H at 7/ (z) (which follows from the assumptions by
Lemma 4.8.4).

[l

The following is a standard consequence of the Margulis inequality (Proposition 4.11.10).

Proposition 4.11.11. Suppose H/H® is cocompact in L/H®. Assume that p is uniformly
expanding on L/H at some z € G/L and v is a p-stationary measure supported on szH /H
for some z € G/H with 71 (2) = .

Suppose that Vw_(]:rgo[z]) = 0 for p-a.e. (w,2) € S x G/H. Then for any 1 > 0, there
exists K" ¢ 8% x G/H with 7(K") > 1 —n and a constant C' = C(n,r) such that for any
(w,2) € K",

/ fro(z.2) dy,—(2) < C.
G/H

Proof. By iterating Proposition 4.11.10, for any z, 2/ € G/H that project to ffxoL/L, we have

b
1—¢

lim sup / Frs(gz, 92 ) Atk (g) < (4.11.1)
G

k—o00
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Consider the probability measure 7 on St x @ /H x G/H defined by
dv(w, 2,2') = dy,—(2)dv,,- () dp (w).

This is invariant under the map T : 8% x G/H x G/H — S% x G/H x G/H by (w, z,2) —
(0(w), Twz, Tw?'). By the random ergodic theorem [Kif86, Cor. 1.2.2], there exists a measurable

function ¢ : S x G/H x G/H — R such that

/ P(w, 2,2 div(w, 2,2') = / frs(w, 2,2 div(w, 2, 2'),
G/HxG/H G/HxG/H
and for v-a.e. (w,z,2') € S x G/H x G/H,

P(w,z 7)) = lim —Zfr(g .wlz,wjn...wlz/).

—>ook

Integrating both sides with respect to 7 over S x G/H x G/H, using Fatou’s lemma and
(4.11.1), we have

frodv < ——.
/SZXG/HXG/H " l-c

This implies the lemma. O

4.11.4  Proof of Proposition 4.11.3

Suppose that l/wf(}"rgo[z]) = 0 for p-ae. (w,z) € S x G/H. By Proposition 4.11.11, for all

e >0 and v with r > 7' >0, and all (w, 2) € K",

V- (B/p(z,1",2)) < Cn)(r')°.

Thus
logv,- (Byp(z1",6) _ o [logCln)|
log ! N [log |
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Therefore dim g (v) > 6 > 0, contradicting Proposition 4.11.6.
Therefore v ,— (FFSO[,Z]) > 0 for a positive I-measure set of (w, z) € SZx G /H. Now consider

the measurable function on S% x G/H:

(w, 2) = v~ (F£U[2).

For (w,z) € 8% x G/H, recall by definition of v, that (wp)sv,— = Vg (w)—» and by Proposition
4.4.5(a), for p-a.e. g € G, g*}"FSO[Z] C ]-"Féo[gz]. Therefore ¢(T'(w, 2)) > ¢(w, z) for almost every
(w, z). Thus by ergodicity of # (applied to the level sets {(w, z) € S% x G/H | ¢(w,z) > ¢}
for 0 < ¢ < 1), there exists € > 0 such that wa(]-"rgo[z]) = ¢ for all (w,z) in a v-conull set
v cS%xG/H.

Let V(w) := {# € G/H | (w,2) € ¥} be the level sets of ¥. Then v, —(¥(w)) = 1 for
almost every w € SZ. Since € > 0, one can pick finitely many z1,..., 2, € ¥(w) such that
V- ( oy ]:lﬂgo[zi]> = 1. Hence v - is supported on finitely many }'Fgo[z], which proves
Proposition 4.11.3.

We remark that throughout the proof of Proposition 4.11.3, we really only use an assumption

weaker than the Case Il assumption, namely that the fiber entropy is zero.

4.11.5 Proof of Proposition 4.11.2

To deduce Proposition 4.11.2 from Proposition 4.11.3, we need a key lemma (Lemma 4.11.13),
whose proof is modelled on the proof of [ELa, Prop. 11.1] (see also [BRH17, Prop. 11.1]).

We first note that since WC_;/H[(w,z)] = Wy [w] x Wé/H[(w,z)} and by definition that

U= [0 x v,-dp?(w), we can write

~

V|Vv5/H[(w,z)] = /w—

u 5w_ X (Vw_’]/vé/H[(w,z)]) dT(w‘*‘,z) (w™) (4.11.2)
SZ

for some Borel probability measure T(wt,z) On Wgz [w], which we consider as a measure on & -N
via the identification W, W] =8 Nx{wt} + &N
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Firstly, we have the following description of v, ,— |W*

G/H[(‘”’Z)] in Case II.

Lemma 4.11.12. Under the Case II assumption, for v-a.e. (w,2), v, |~ = 0.

G/H[(w,z)}
Proof. Let m: G/H — G/L be the quotient map. Recall that 7 := (7q 1)« is a p-stationary

measure on GG/L. By Corollary 4.3.8, one can deduce that

Tuombwg  fwa) = %

for 7-a.e. (w,r) € SZ x G/L. Therefore v, |1 ) is supported on 7~ 1(z) for T-a.e.

(W&/L[(w#?
x. Note that Wg/H[(w,z)] C ﬁ_l(Wé/L[(w,x)]) if © = 7(2), therefore we also have that

VW*|W§/H[(MZ)] is supported on 71 (m(2)) = zL/H for v-a.e. z. On the other hand, by the

Case II assumption, we know that v - |W_
G/H

supported on zL/H N ]-"Fgo[z]. By Corollary 4.4.6, zL/H N }"FSO[,Z] = {z}. Therefore we get

[(w,2)] is supported on ]:Fgo[z], and therefore it is

that for r-a.e. (w,z),

oW i) = 9%

The key lemma is the following.

Lemma 4.11.13. For 7-ae. (w,2) € SZ x G/H, we have Tt z) = N

Proof. The idea is to use an argument similar to [Led84, Thm. 3.4] (see also [LY85, Sect. 6.1]
and [BRH17, Prop. 11.1]). Define partitions 7 on S% x G/H and 5 on SZ such that the atoms

are

i(w, 2)] = Wezlw] x FEO[), and nlw] = W [w]

It follows from Corollary 4.11.5(b) that 7 is a measurable partition. Note that since the par-
tition ]-"FSO[Z] is equivariant under p-a.e. g € G by Corollary 4.11.5(a), we have Th[(w, 2)] =
— <0
T(WS [w]) x Fr 2]
Under the Case II assumption, which in particular implies zero fiber entropy hg/ H(T ) =0,
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we have

h 2 (T) = hy(T) = Hy (T | ). (4.11.3)

Now using the Case II assumption, we compute that

ﬁ’wé/H[(%z)] (Tﬁ[(wa z)])

H TA n) = — 1 dv ) = = 1 T dv =
(00 ) = — [ oy e il 1) [ 10870 @l 2

and since 7 projects to ,uZ under the map S% x G/H — SZ we have

) == [logu™(Talel) di(w ).

Substituting both into (4.11.3), we have

pNTolw])
/log o) i) dv(w, z) = 0. (4.11.4)

For s € S, let Y[s] := {w e SN | w_; = s}. Now we note that for i-a.e. (w,z), we have

—N Tnlw' N ,
p (Tl / p (Tnw']) /
log -—~— 77 . _ 1 e (Tlw'])
/77[(0%2)] * T(w,z2) (T[w']) dulWG/H[(W’Z)] nlw] o8 T(w,z)(q n[w']) dT(w+’Z) e
— N({S})
Ys]) log ——+22 _ <0,
;T(w,z)( ) log T(w,z)(Y[SD B

where the last inequality follows from the convexity of log. But then the integral of the left hand
side over (w, z) with respect to © is 0 by (4.11.4), therefore the equality case holds for v-a.e.
(w, z). Thus we have T(wt,2) (Ys]) = pN(Y[s]) for t-a.e. (w,z) and s € S. Now repeating the

argument for Tk in lieu of T' yields the claim. O
Using this description, and the Case II assumption, we have the following corollary.

Corollary 4.11.14. Under the Case II assumption, for 7-a.e. (w, z), there exists ¢w+’z(w_) €
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W

o/l 20 F£O[2] such that

”’W;ZMx(wg/HKw,z)]mf%O[z]) = gl = /W

Proof. By Lemma 4.11.13 and (4.11.2), we can write, for p-a.e. (w, 2),

7. = 5 - dp N (w).
V‘WG/H[(W’Z)] /W ] w— X (Vw ’WG/H[(W’Z)]> 1% (w )

SZ

This in particular implies that for ,u_N—a.e. W, V- ’W‘
G/H

(w.2)] = 0. Hence for 7-a.e. (w, z), there exists ¢+ ,(w™) €

((,2)] is not the zero measure. By

Lemma 4.11.12, we have v - ’W‘
G/H

_ <0
WG/H[(WJF’ z)] N Fp (2] such that
P e = o B X oy T = i x e (),
W@/H[(Waz)} W,S_'Z w] Wtz ,
The first equality in the statement follows from the Case II assumption. n

Proof of Proposition 4.11.2. Let v be the pushforward of v via fﬁ:z:OL/H — Fgo\ffxoL/H,
and 7,7 be the corresponding measures on FEO\foOL/H and SZ x ]-"go\ffmoL/H as in

subsection 4.4.2. Corollary 4.11.14 implies that for -a.e. (w, [2]),

2 _ —N
ol fiy = H

where we identify W, W] x {[2]} «+ S™N. This implies that
dirw™,w*, [2]) = du~ N (w)do(w ™, [2])

for some measure 6 on SN x f;O\Ffa:OL /H. This implies that 7 = - for almost every w™.

Now this together with Proposition 4.11.3 implies Proposition 4.11.2. O]
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Proposition 4.11.15. Let p be a probability measure on G with finite first moment, let
[y = <sup—p,u) C G be the (topological) closure of the semigroup generated by the support of
v and Ff C G be the Zariski closure of I'y,.

Let L be an H-envelope such that p is uniformly expanding on L/ H at x for some xg € G/ L.
Let 7 : G/H — G/L be the quotient map. Suppose Case II and () holds.

Let v be an ergodic p-stationary probability measure on ffxoL/ H, and 7 := 7w be its

pushforward on G/L. We disintegrate v with respect to the map 7:

v = / vy dv(z).
G/L

Then there exists a positive integer k such that for T-almost every = € G/L, v, is the uniform

measure on k points in 7~ (z) ¢ G/H.

Proof. We disintegrate the stationary measure v into {vz},cq /L with respect to the partition

given by the fibers of the projection map 7 : G/H — G/L. Since U = myv, we have

V= / vy dv(z).
G/L

m
Moreover, by Proposition 4.11.2, v is supported on U Fgo[zi]. Since }"Iéo[z] intersects each
=1
fiber of 7 at at most one point by uniform expansion on L/H by Corollary 4.8.5, each v,
is finitely supported at k, points. Moreover, by ergodicity of 7, k; is constant for v-almost

every € G/L, and that each vy is the uniform measure on k points in 7 1(z) (see e.g.

Sargent-Shapira [SS19] Section 4). O
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