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ABSTRACT

In this thesis, we study the problem of stationary measure classification, equidistribution and

orbit closure classification in three different settings. We use tools from homogeneous dynamics,

smooth dynamics and random product of matrices to make progress in each setting.

In Chapter 2, we study the problem of classifying stationary measures and orbit closures for

non-abelian action on a surface with a given smooth invariant measure. Using a result of Brown

and Rodriguez Hertz, we show that under a certain finite verifiable average growth condition,

the only nonatomic stationary measure is the given smooth invariant measure, and every orbit

closure is either finite or dense. Moreover, every point with infinite orbit equidistributes on

the surface with respect to the smooth invariant measure. This is analogous to the results of

Benoist-Quint and Eskin-Lindenstrauss in the homogeneous setting, and the result of Eskin-

Mirzakhani in the setting of moduli spaces of translation surfaces. We then apply this result to

two concrete settings, namely discrete perturbation of the standard map and Out(F2)-action on

a certain character variety. We verify the growth condition analytically in the former setting,

and verify numerically in the latter setting.

In Chapter 3, we provide a self-contained proof of the classification of stationary measures

for linear actions on vector spaces. This will be a major input of the result in the next chapter.

In Chapter 4, we study the problem of classifying stationary measures on homogeneous

spaces of the form G/H, where G is a connected real Lie group, and H is a closed unimodular

subgroup of G. Under an assumption of relative uniform expansion, we show that the stationary

measures can be decomposed into homogeneous parts and generalized Bernoulli convolutions.

The main tools used are a relative version of the technique of Eskin-Lindenstrauss, and the

measure classification result of linear action on real vector spaces from Chapter 3.
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CHAPTER 1

INTRODUCTION

1.1 Background

One of the central themes in dynamical systems is to describe the orbits and invariant measures

of the system. One version of this question can be described as follows: given a topological space

M (or manifold, algebraic variety, {0, 1}N etc.), and a set S of self-maps f1, . . . , fk : M → M

with suitable regularity, let the orbit of a point x0 ∈ M under S be the set of all elements in

M obtained by applying compositions of finitely many maps (possibly with repetition) in S to

x0. For instance the orbit of x0 under S = {f} and {f, g} are, respectively,

Orbit({f}, x0) := {x0, f(x0), f(f(x0)), f(f(f(x0))), . . .},

Orbit({f, g}, x0) := {x0, f(x0), g(x0), f(g(x0)), g(f(x0)), f(f(x0)), f(g(f(x0))), . . .}.

It is often natural to consider the (topological) closures of orbits to capture the topological lim-

iting behaviors of such actions. We consider these topological and measure-theoretic questions:

Question 1. What are the possible (closures of) orbits of a given element x0 ∈M under S?

Question 2. Are there any Borel probability measures on M invariant under S? If so can they

be classified?

A “random walk” variant of such dynamical system is often considered if a probability

distribution µ on the finite set S is given: start with a point x0 ∈ M , at each stage take an

element fi in S according to the law µ and act on the current point xn to get a new point

xn+1 := fixn. Iterating this indefinitely, one obtains a countable set {xn} that is called the

random walk orbit of x0 under µ (which is a set-valued random variable). One may ask the

analogous topological question:

Question 3. Given x0 ∈M , what do the random walk orbits {xn} of x0 under µ look like?

1



In the random walk setting, a natural generalization of invariant measures is the so-called

µ-stationary measures. A measure ν on the space M is µ-stationary if ν = µ∗ ν :=
∫
g∗ν dµ(g)

- in other words, while the measure ν may not necessarily be invariant under any individual

element g in the support of µ, it is “invariant on average” if in each step of the action, a random

acting element is chosen according to the law given by µ. The corresponding measure-theoretic

question in the random walk setting is:

Question 4. What are the possible µ-stationary measures on M?

Since S-invariant measures are, in particular, µ-stationary, a classification of stationary

measures automatically yields a classification of invariant measures (thus Question 4 subsumes

Question 2).

As an example, consider the 2-torus M = T2 := R2/Z2. Any unimodular 2 × 2 integer

matrix A ∈ SL2(Z) acts naturally on M by left multiplication. One can ask, what are the orbit

closures under the self-maps given by, say,

A1 :=

2 1

1 1

 , A2 :=

1 1

1 2

?

We first notice that if x0 is a rational point of the form x0 = (p1/q, p2/q) ∈ R2/Z2, its orbit

is finite since the denominator does not increase (hence the orbit is contained in the finite

set (1
qZ/Z)2). On the other hand, if the starting point x0 is an irrational point (at least one

coordinate is irrational), the orbit is infinite. In fact, it can be shown using Birkhoff’s pointwise

ergodic theorem that almost every point on T2 has dense orbit. In other words, if a point on

the torus T2 is chosen at random (with respect to the uniform probability measure), then with

probability 1, the orbit closure of that point is the entire space T2. However Birkhoff’s theorem

tells us nothing about any specific x0 ∈ T2. For instance, is the orbit of (π/5,
√

2/4) dense?

It turns out that if only the first matrix A1 is used, then there are orbit closures that are

neither finite, nor all of T2. In fact, there are orbit closures of arbitrary fractional Hausdorff

2



dimensions in (0, 2)! But if both matrices A1 and A2 are used, then the situation is more rigid,

in the sense that every orbit is either finite or dense. This is a special case of the following

recent breakthrough theorem, answering a conjecture of Furstenberg.

Theorem 1.1.1 (Bourgain-Furman-Lindenstrauss-Mozes [BFLM11], Benoist-Quint [BQ11]).

Let µ be a compactly supported probability measure on SLd(Z). If S = supp µ generates a

Zariski dense subsemigroup of SLd(R), then

� for all x ∈ Td, Orbit(S, x) is either finite or dense.

� Every µ-stationary probability measure ν on Td is a convex combination of the Lebesgue

measure on Td and invariant probability measures supported on finite orbits.

� For every x ∈ Td with infinite Orbit(S, x), the random walk orbit equidistributes on Td

almost surely.

Theorem 1.1.1 can then be applied to the previous example, by taking µ = 1
2(δA1

+ δA2
),

an atomic measure on SL2(Z), to show that the orbit of every irrational point equidistributes

on Td, thus is, in particular, dense.

The ability to promote the almost-sure statement from Birkhoff’s theorem to the every-

where statement of Benoist-Quint is crucial for applications - in practice one often concerns the

behavior of a specific orbit, which Birkhoff’s theorem says nothing about.

In fact, the result of Benoist-Quint applies not just to the torus Td, but also to more general

homogeneous spaces (will be described in Theorem 1.4.1 of Section 1.4).

Since the breakthrough work of Benoist-Quint, there has been a long list of work trying to

answer the following meta-theorem in different settings:

Main Question. Let M be a manifold, Γ be a semigroup acting on M , µ be a probability

measure on Γ and S := supp µ, the support of µ. Under what conditions on M and µ can we

� (Orbit closure classification) classify all the orbit closures under S?

� (Measure rigidity) classify all the µ-stationary measures?

3



� (Equidistribution) obtain equidistribution of typical random walk orbits of every point?

One theme of this circle of ideas is that even special cases of such theorems can have strong

applications in other areas of mathematics. For instance, the celebrated Ratner’s theorem

[Rat91] resolved these questions in the setting of the (deterministic) action of Lie groups gener-

ated by unipotent elements on homogeneous spaces, which in particular implies the half-century

old Oppenheim conjecture (proved by Margulis [Mar87]) when applied to the special case

of the SO(2, 1)-action on SL3(R)/SL3(Z). Eskin-Mirzakhani [EM18] and Eskin-Mirzakhani-

Mohammadi [EMM15] proved these results for the SL2(R)-action on moduli spaces of flat

surfaces, resolving a longstanding conjecture in the field of translation surfaces. In the case of

abelian actions, the work of Einsiedler-Katok-Lindenstrauss [EKL06] about positive diagonal

actions on SL3(R)/SL3(Z) made significant progress towards the century-old Littlewood conjec-

ture, and the work of Lindenstrauss [Lin06] proved the Arithmetic Quantum Unique Ergodicity

Conjecture of Rudnick-Sarnak [RS94]. In other settings, Simmons-Weiss [SW19] considered a

special class of locally homogeneous spaces and proved implications about diophantine approx-

imation on fractals. Sargent-Shapira [SS19] proved such results for a specific kind of projective

bundle and made progress towards a conjecture of Furstenberg about cubic irrational numbers.

In the following, we describe three settings where we made progress towards the Main

Question in this thesis, namely the case of volume-preserving C2-actions on closed Riemannian

surfaces (Section 1.2), linear actions on vector spaces (Section 1.3), and homogeneous actions

on locally homogeneous spaces assuming relative uniform expansion (Section 1.4).

4



1.2 Random walks on surfaces

As a start, we generalize Theorem 1.1.1 in the two-dimensional case to general Riemannian

manifolds when the action preserves a volume measure.

Theorem 1.2.1 (Proposition 2.3.1, 2.4.1 and 2.4.2 of this thesis). Let M be a closed surface

(compact connected two-dimensional Riemannian manifold without boundary) with volume

measure vol induced by the Riemannian metric. Let µ be a compactly supported probability

measure on Diff2
vol(M) that is uniformly expanding, and S := supp µ be the support of µ. Then

� for all x ∈M , Orbit(S, x) is either finite or dense.

� Every ergodic µ-stationary probability measure ν on M is either finitely supported or vol.

� For every x ∈ M with infinite Orbit(S, x), the random walk orbit equidistributes on M

almost surely.

Moreover, we proposed a finite algorithm to verify uniform expansion in explicit settings, and

verified it in two examples.

Here Diff2
vol(M) is the set of C2 diffeomorphisms onM that preserve the volume measure vol.

Note that it is a general theorem in ergodic theory that any µ-stationary measure is a convex

combination of ergodic stationary measures, hence it suffices to classify ergodic ones. Uniformly

expanding is an assumption that generalizes the Zariski density assumption of the homogeneous

setting considered in Theorem 1.1.1. In particular, Theorem 1.1.1 in the case when d = 2 is a

special case of Theorem 1.2.1. We remark that the method of Benoist-Quint for Theorem 1.1.1

needs substantial modification to be adapted in this non-homogeneous setting. Our main inputs

are the deep work of Brown-Rodriguez Hertz [BRH17], ideas of Dolgopyat-Krikorian [DK07] to

prove ergodicity, and ideas of Margulis functions originated from Eskin-Margulis [EM04].
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1.3 Random walks for linear actions on vector spaces

In this section, we consider the linear action of GL(V ) on a finite dimensional real vector space V

driven by a finitely supported probability measure µ on GL(V ). The reason for considering this

setting is twofold: on one hand, linear actions on vector space are special cases of homogeneous

actions on homogeneous spaces where Main Question can be answered completely. On the

other hand, this result is used critically in the result described in the next section.

Theorem 1.3.1 (Theorem 3.1.1 and 3.1.2 of this thesis). Let V be a nonzero finite dimensional

real vector space, µ be a finitely supported probability measure on GL(V ) and Γµ be the closed

subsemigroup of GL(V ) generated by the support of µ. Then there exist Γµ-invariant vector

subspaces W ′ ( W ⊂ V such that

1. every µ-stationary probability measure on V is supported in W ,

2. the map ν 7→ supp π∗ν gives a one-to-one correspondence between

{ergodic µ-stationary measure on V } ↔ {compact Γµ-orbit in W/W ′},

where π : W → W/W ′ is the quotient map,

3. every ergodic µ-stationary probability measure on V is the convolution of a compactly

supported Γµ-invariant probability measure on W/W ′ and a “Bernoulli convolution”.

Here “Bernoulli convolution” is a generalization of a class of measures well studied in the

literature (see e.g. a survey by Peres-Schlag-Solomyak [PSS00]). In our context, the resulting

Bernoulli convolution can be computed explicitly using the measure µ. Rather than giving

the precise definition (the precise definition is in Chpater 4 Definition 4.3.9), we consider the

following example which illustrates the theorem. Consider G = SL2(R) acting on R2 by left

multiplication, and µ the probability measure on G that gives the following two elements equal
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probability 1/2: λ 1

0 1

 ,

λ −1

0 1

 ,

where λ is any real number in (0, 1). Then for any real number c, the random series

c


∑∞
n=0±λn

1


is a µ-stationary probability measure on R2, and is an example of a Bernoulli convolution.

At first sight the existence of such stationary measure may suggest that the situation is not

rigid - after all, these measures have fractional dimensions, and there are uncountably many

of them (one for each c ∈ R). However, the theorem states that these measures are unique up

to the scaling factor c (in particular they all have the same Hausdorff dimension). Using the

notations in Theorem 1.3.1, we take V = W = R2 and W ′ to be the x-axis. Then clearly Γµ

acts as the identity on W/W ′, and the ergodic µ-stationary probability measures on W/W ′ are

precisely the delta masses at each coset

0

c

+W ′ ∈ W/W ′. Now each such probability measure

corresponds to one of the Bernoulli convolutions described above. The theorem states that these

are the only ergodic µ-stationary probability measures on V . Corresponding equidistribution

and orbit closure classification theorems can also be appropriately stated.

1.4 Random walks on homogeneous spaces with nondiscrete

quotients

In a later work, Benoist-Quint generalized Theorem 1.1.1 to the following setting of a locally

homogeneous space.
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Theorem 1.4.1 (Benoist-Quint [BQ13a]). Let G be a connected real Lie group, Λ be a lattice

in G, µ be a compactly supported probability measure on G. If S = supp µ generates a sub-

semigroup Γµ of G whose Zariski closure is semisimple and Zariski connected with no compact

factors, then

� for all x ∈ G/Λ, the orbit closure Orbit(S, x) ⊂ G/Λ is homogeneous.

� Every ergodic µ-stationary probability measure ν on G/Λ is Γµ-invariant and homoge-

neous.

� For every x ∈ G/Λ, the random walk orbit equidistributes on Orbit(S, x) almost surely.

Here a orbit closure is homogeneous if Orbit(S, x) = Hx for some closed subgroup H ⊂ G.

A probability measure ν on G/Λ is homogeneous if the support of ν is Hx for some closed

subgroup H ⊂ G and some x ∈ G, and ν is the unique H-invariant probability measure on

Hx. Note that if the acting group is isomorphic to R or Z (corresponding to a flow and a single

invertible transformation), these notions coincide with the usual notion of a periodic orbit and

the uniform probability measure on the periodic orbit. Hence these can be considered as natural

generalization of periodicity.

The assumption that S generates a semigroup with semisimple Zariski closure is necessary

to guarantee that all the ergodic stationary measures are homogeneous. In Eskin-Lindenstrauss,

where they relaxed the assumptions to uniform expansion on G, they demonstrated examples

of non-homogeneous stationary measures when the Zariski closure is not semisimple (but uni-

form expansion still holds). In fact their main result is that assuming uniform expansion, any

stationary measure is the convolution of an H-homogeneous measure on G/Λ and a stationary

probability measure on G/H for some nondiscrete closed unimodular subgroup H ⊂ G. Since

their statement focuses on homogeneous spaces of the form G/Λ with discrete Λ, their results

do not apply directly to G/H. This motivates the following question.

Question. Under what conditions can we classify all the stationary measures on G/H, where

H is a closed unimodular subgroup of the Lie group G?
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It turns out that under suitable assumptions, we can study this question using the results

from both the vector space case as studied in Chapter 3 and the semisimple case studied by

Benoist-Quint (and the more general case by Eskin-Lindenstrauss [ELa]). To do so, we consider

L = N1
G(H◦) := {g ∈ NG(H◦) | Ad(g) preserves the Haar measure of H◦}, where H◦ is the

connected component of identity of H, NG(H◦) is the normalizer of H◦ in G.

Such L is one way to construct the so-calledH-envelope (see Section 1 of Eskin-Lindenstrauss

and Chapter 4 of this thesis for the precise definition and other constructions). The key prop-

erties of an H-envelope L are:

1. L/H = (L/H◦)/(H/H◦) is the quotient of a real Lie group L/H◦ by a discrete subgroup

H/H◦ (hence in the setting of Eskin-Lindenstrauss).

2. there is a G-equivariant continuous injection G/L → V into a vector space V , thus any

µ-stationary measure on G/L is a µ-stationary measure on the vector space V .

Now we consider G/H as the total space of the fiber bundle

(L/H◦)/(H/H◦) = L/H // G/H

��
G/L �

� // V

We then apply the technique of Eskin-Lindenstrauss for G/Λ to obtain extra invariance in

the fiber direction. The main assumption is a “relative” version of their uniform expansion

assumption. The following result summarizes the conclusion.

Theorem 1.4.2 (Theorem 4.1.1 of this thesis). Let G be a real linear algebraic group, and

µ be a Borel probability measure on G with finite first moment. Let Γµ be the (topological)

closure of the subsemigroup generated by the support of µ in G, and Γ
Z
µ be the Zariski closure

of Γµ.

Let H ⊂ G be a closed unimodular subgroup, and H◦ be the connected component of the

identity in H. Suppose there exists an H-envelope L and x0 ∈ G/L such that µ is uniformly

expanding on L/H at x0.
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Let νG/H be an ergodic µ-stationary probability measure on Γ
Z
µ x0L/H. We also assume

an algebraic condition (†) (see Chapter 4). Then one of the following holds:

(I) there exist a Lie subgroup H ′ ⊂ G with H◦ ⊂ H ′ ⊂ L ⊂ G and dim(H ′/H◦) > 0,

an H ′-homogeneous probability measure νL/H on L/H and finite µ-stationary measure

νG/H ′ on Γ
Z
µ xL/H

′ such that

νG/H = νG/H ′ ∗ νL/H :=

∫
G/H ′

g∗νL/H dνG/H ′(g).

(II) the stationary measure νG/H can be written as

νG/H =

∫
G/L

νx dν(x),

where

(a) ν is a generalized µ-Bernoulli measure (see Definition 4.3.9) supported on Γ
Z
µ x0L/L,

(b) there exists a positive integer k such that for ν-almost every x ∈ G/L, νx is the

uniform measure on k points in π−1(x) = xL/H, where π : G/H → G/L is the

natural quotient map,

(c) there exists a Γµ-invariant locally Zariski closed subset F such that supp νG/H ⊂ F ,

and F has finite intersection with xL/H for all x ∈ Γ
Z
µ x0L/L (the set F is defined

dynamically and can be made more explicit and computable - see Theorem 4.4.9).

We remark that if H is a discrete subgroup of G, this statement recovers [ELa, Thm. 1.7]

for trivial Z (in this case (†) is always satisfied).

Theorem 1.4.2 together with Theorem 1.7 of Eskin-Lindenstrauss form one step of an in-

duction, which allows us to say more about measure rigidity even in the cases considered in

Eskin-Lindenstrauss (with extra assumptions in the form of relative uniform expansion). See

Section 4.2 for one such example (and it will be clear how to generalize the example to a family

of such) in which all the ergodic stationary measures can be classified.
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CHAPTER 2

STATIONARY MEASURES AND ORBIT CLOSURES OF

UNIFORMLY EXPANDING RANDOM DYNAMICAL SYSTEMS

ON SURFACES

2.1 Introduction

Given a Riemannian manifold M and an acting semigroup Γ, the closure of the Γ-orbit of some

points of M may exhibit fractal-like structure. For instance in the case when M is a compact

manifold and Γ is generated by a single Anosov diffeomorphism, there are orbit closures with

fractional Hausdorff dimension. A one-dimensional example is the action of N on the circle

S1 = R/Z generated by

x 7→ 3x mod 1.

By the Birkhoff ergodic theorem, we know that (Lebesgue-)almost every point on the circle

has dense orbit. Nonetheless the orbit of every rational number is clearly finite, and one can

get orbit closures that are neither finite nor the whole circle, for instance the standard Cantor

middle third set.

It turns out that if one consider instead the action of a larger group, the situation becomes

more rigid. Furstenberg [Fur67] showed that the orbits of the action of N2 generated by

x 7→ 2x mod 1 and x 7→ 3x mod 1,

are either finite or dense. Moreover, he famously asked whether all the ergodic invariant Borel

probability measures are either finitely supported or the Lebesgue measure on S1. Major

progress on this conjecture was made by Rudolph [Rud90], who showed that the ergodic invari-

ant measures either have zero-entropy for the action of every one-parameter subgroup or is the

Lebesgue measure on S1.

In two or higher dimensions, similar phenomena have been observed. For example, the
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action of Z on the 2-torus T2 = R2/Z2 generated by the matrix

2 1

1 1


has orbits that are neither finite nor dense. In fact using the theory of Markov partitions

[Bow75], one can conjugate this system to a subshift of finite type to obtain orbit closures of

any Hausdorff dimension between 0 and 2. If one consider instead the nonabelian action on T2

generated by, say, 2 1

1 1

 and

1 1

1 2

 ,

then it follows from a result of Bourgain, Furman, Lindenstrauss and Mozes [BFLM11] that

the orbits are either finite or dense (for this particular example, the orbit closure classification

statement was already shown in [GS04] and [Muc05], in [BFLM11] measure rigidity, orbit closure

classification and quantitative equidistribution were shown). In fact Benoist and Quint has

proved in a series of papers [BQ11, BQ13a, BQ13b] a number of such orbit closure classifications

and the corresponding measure rigidity results. A special case of their result is the following:

let µ be a finitely supported measure on SL(n,Z) and let Γµ ⊂ SL(n,Z) be the closed subgroup

generated by the support of µ. If Γµ is “large enough”, in this case this means that every

finite-index subgroup of Γµ acts irreducibly on Rn, then every ergodic µ-stationary probability

measure on Tn is either finitely supported or the Haar measure on Tn. In particular every µ-

stationary probability measure is SL(n,Z)-invariant. They used this measure rigidity result to

show that every orbit closure is either finite or dense, by first showing a stronger equidistribution

result.

The results of Benoist and Quint are in the setting of homogeneous dynamics, where one

considers the natural action of a Lie group G acting on a homogeneous space G/Λ. In [BQ11],

it was proved that if µ is a compactly supported measure on a simple real Lie group G, and
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the subgroup Γ ⊂ G generated by the support of µ is Zariski dense in G, then every Γ-orbit is

either finite or dense. Moreover, the corresponding µ-stationary probability measures are either

finitely supported or the Haar measure on G/Λ, hence in particular are Γ-invariant. The result

was extended to a general real Lie group G in [BQ13a], where they showed that assuming the

Zariski closure of Γ is semisimple, Zariski connected with no compact factor, any µ-stationary

measure is homogeneous. This result was further generalized by Eskin-Lindenstrauss [ELa]

where they relaxed the assumption on Γ to the “uniform expansion” assumption to include

many cases where the Zariski closure of Γ is not semisimple. In contrast with the case of

abelian actions (for instance Rudolph’s theorem mentioned above), the measure classification

has no entropy assumption, and the orbit closure classification follows as a corollary of the

measure rigidity theorem.

In this paper, we study the question of measure rigidity and orbit closure classification in

the setting of smooth dynamics, i.e. the action of a subgroup of diffeomorphisms on a manifold

M . In particular, we shall prove positivity of Lyapunov exponent, measure rigidity and orbit

closure classification theorems in the following two settings.

� Discrete random perturbation of the standard map.

� Outer automorphism group action on the character variety Hom(F2, SU(2))//SU(2).

The first setting was studied by Blumenthal, Xue and Young [BXY17], where they considered

a “continuous” random perturbation of the standard map and obtained positivity of Lyapunov

exponent, even though positivity of exponent for the standard map is notoriously hard. Their

method, however, does not apply to discrete perturbations that we consider in this paper, as it

is no longer clear that any stationary measure is absolutely continuous with respect to Lebesgue.

This will be explained in Section 2.6.

The second setting was studied by Goldman [Gol07], which is based on his earlier work

[Gol97]. In [Gol07], the ergodic decomposition of the Out(F2)-action on the character variety

Hom(F2, SU(2))/SU(2) is given. The topological dynamics was studied by Previte and Xia

[PX00], who proved that on each ergodic component, every Out(F2)-orbit is either finite or
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dense. Their method uses crucially the fact that Out(F2) is generated by Dehn twists. In this

paper, we shall prove that for some finite set of generators S of Γ := Out(F2) that does not

contain any nontrivial powers of Dehn twist, every Γ-orbit on each ergodic component is either

finite or dense. This will be explained in Section 2.8.

Both results are part of a more general theorem concerning the volume-preserving action of

a group Γ ⊂ Diff2(M) on a closed surface M . The measure rigidity problem in this setting was

studied by Brown and Rodriguez-Hertz [BRH17]. Based on the “exponential drift” technique

first introduced in [BQ11] and some ideas in [EM18], they proved that in this setting, if “the

stable distribution is not nonrandom” (see Section 2.3 for the precise definition), then the

stationary measures are either finitely supported, or the restriction of the volume on a positive

volume subset. In this paper, we will build on the work of [BRH17] to give a more verifiable

(but stronger) criterion on the acting group Γ so that the stationary measures and orbit closures

can be classified. Such a criterion should, on one hand, be strict enough to rule out the case of

a one-parameter acting group (in which case we can see from above that there can be measures

of arbitrary Hausdorff dimension in general), and, on the other hand, be flexible enough to

include many larger group Γ. We will then verify this criterion in both of the aforementioned

settings.

Our measure rigidity result relies heavily on the result of Brown and Rodriguez-Hertz

[BRH17], hence only works in the two-dimensional case. The assumption we introduce will

be stronger than that of [BRH17], in order to give us the proof of the orbit closure classifica-

tion. Nonetheless, such an assumption is a finite criterion and hence can be checked, at least

in principle, in concrete settings.

2.1.1 Main results

In this paper, we shall prove positivity of Lyapunov exponent, measure rigidity and orbit closure

classification in the following two settings.

1. Discrete random perturbation of the standard map
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Theorem A. Let T2 := R2/(2πZ)2 be the 2-torus. For L > 0, ε > 0 and positive integer

r, let

� FL : T2 → T2 be the standard map FL(x, y) = (L sinx+ 2x− y, x),

� FL,ω : T2 → T2 be the perturbation FL,ω(x, y) := FL(x + ω, y) by ω ∈ Ω := {kε :

k = 0,±1,±2, . . . ,±r},

Let δ ∈ (0, 1). There exists an integer r0 = r0(δ) > 0 such that if r ≥ r0 and ε ∈

[L−1+δ, 1/(2r + 1)), then for all large enough L,

(a) the random dynamical system defined by FL,Ω := {FL,ω : ω ∈ Ω} ⊂ Diff2(T2) has

positive Lyapunov exponent with respect to the Lebesgue measure on T2,

(b) every orbit of the system defind by FL,Ω is either finite or dense.

2. Outer automorphism group action on character variety

Theorem B. Let Xs := Homs(F2, SU(2))//SU(2) be the relative character variety cor-

responding to the boundary conjugacy class s ∈ [−2, 2]. Each Xs has a natural finite

measure λs inherited from the natural measure on Hom(F2, SU(2)) that is invariant under

the natural action of Out(F2) (see Section 2.8 for the precise definitions and motivations).

There exists a finite set S ⊂ Out(F2) without any nontrivial powers of Dehn twists such

that for the semigroup Γ generated by S, and for s = 1.99,

(a) the only Γ-invariant measure ν on Xs that is not finitely supported is the natural

finite measure λs.

(b) Every orbit of Γ on Xs is either finite or dense,

(c) Each dense Γ-orbit equidistributes (with respect to S) on Xs (in the precise sense

defined in Proposition 2.4.1).

In [BXY17], Theorem A(a) was proved when Ω = [−ε, ε], and ε > e−L
2−δ

. However, in

this paper, we shall prove a stronger condition (called uniform expansion), and we are only
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able to show this for ε > L−1+δ. In fact, in a subsequence paper [BXY18], the same authors

essentially showed uniform expansion in the case when Ω = [−ε, ε] and ε > L−1+δ [BXY18,

Prop. 9]. Their method, however, does not apply in this discrete setting, since their approach

relies heavily on the fact that any stationary measure is absolutely continuous with respect to

Lebesgue measure (see [BXY17, Lem. 5] and [BXY18, Lem. 8]), which is not necessarily true

in the discrete setting.

In [PX00], the orbit closure classification in Theorem B was proved for Γ = Out(F2) without

going through a measure rigidity result. Instead, the topological dynamics was analyzed directly

using critically the fact that Out(F2) is generated by two Dehn twists. These Dehn twists take

a particularly simple form on the space, which allow an explicit analysis of the orbits generated

by them. In this paper, we shall prove uniform expansion for generators S of Out(F2) that

does not have any nontrivial powers of Dehn twists, hence does not admit such explicit analysis.

The difference between these two results is analogous to the classical setting of the action on

the 2-torus T2 generated by 1 1

0 1

 ,

1 0

1 1

 ,

where the action by each individual generator is rotation on a circle, versus the action generated

by hyperbolic elements in SL(2,Z) that generate a subgroup Zariski dense in SL(2,R), where

the generic orbit (though certainly not all orbit) of each individual generator is dense in T2.

Our method in the proof of Theorem B goes through a numerical verification using a com-

puter program. We demonstrate such verification on one particular shell s = 1.99 and for one

particular set of generators S, though just by some derivative bounds (to be made explicit in

Section 2.8) the same result can be extended to nearby shells. Such verification is faster for s

close to 2, though there is no theoretical obstruction in applying the same verification to any

shells Xs with s ∈ (−2, 2) (just the computation time grows as s → −2). There is also no

theoretical obstruction in applying it to other finite subsets S that generate a non-elementary

subgroup Γ ⊂ Out(F2).
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2.1.2 Uniform expansion

As mentioned in the introduction, both theorems are special cases of a more general result. In

this section, we shall introduce a general criterion called uniform expansion, and state that this

criterion implies positivity of Lyapunov exponents, measure rigidity and orbit closure classifi-

cation.

Given a Riemannian manifold M , let Diffk(M) be the group of Ck diffeomorphisms on

M . Given a measure m on M , let Diffkm(M) be the group of Ck diffeomorphisms on M that

preserve m, i.e.

Diffkm(M) := {f ∈ Diffk(M) : f∗m = m}.

Throughout this paper, any measure is assumed to be a Borel probability measure on the

corresponding topological space.

Definition. A probability measure ν on M is called µ-stationary if

µ ∗ ν = ν, where µ ∗ ν =

∫
Diff2(M)

f∗ν dµ(f).

Definition. Let M be a Riemannian manifold, µ be a measure on Diff2(M). We say that µ is

uniformly expanding if there exists C > 0 and N ∈ N such that for all x ∈M and v ∈ TxM ,

∫
Diff2(M)

log
‖Dxf(v)‖
‖v‖

dµ(N)(f) > C.

Here µ(N) := µ∗µ∗· · ·∗µ is the N -th convolution power of µ. We remark that if M is compact,

this is equivalent to the weaker formulation where we allow C and N to depend on x and v (see

e.g. [LX, Lem. 4.3.1], where such weaker criterion is called “weakly expanding”).

Sometimes we say that a finite subset S ⊂ Diff2(M) is uniformly expanding if the uniform

measure supported on S is uniformly expanding in the above sense. Note that in this case the

integral in the uniform expansion condition reduces to a finite sum.

The goal of the first half of the paper is to classify µ-stationary measures on a closed

17



surface M and the corresponding orbit closures if µ is uniformly expanding and supported on

Diff2
mM for some smooth measure m on M , i.e. a Borel probability measure m equivalent to

the Riemannian volume on M .

Theorem C. Let M be a closed surface (compact connected two-dimensional C∞ Riemannian

manifold without boundary) and m be a smooth measure on M . Let µ be a uniformly expanding

probability measure on Diff2
m(M) with

∫
Diff2

m(M)
log+(|f |C2) + log+(|f−1|C2) dµ(f) <∞. (*)

Let ν be an ergodic, µ-stationary Borel probability measure on M . Then

(a) ν has positive Lyapunov exponent;

(b) either ν is finitely supported, or ν = m.

This result was proved in [LX, Thm. 4.1.4], where they used this statement to prove a large

deviation result. We shall recall the proof in Section 2.2 and 2.3 for completeness.

Here we are more concerned with the following orbit closure classification which follows from

Theorem C, and its applications in concrete settings.

Theorem D. Let M be a closed surface, m be a smooth measure on M , and S ⊂ Diff2
m(M)

be a finite subset of diffeomorphisms that preserve m. Let Γ ⊂ Diff2
m(M) be the subsemigroup

generated by S. If S is uniformly expanding, then

(a) every orbit of Γ is either finite or dense,

(b) every dense Γ-orbit equidistributes on M (in the precise sense defined in Proposition

2.4.1).

Note that we could have replaced the word “subsemigroup” with “subgroup” to get a weaker

statement. Also if S is uniformly expanding, then Γ cannot be cyclic (see Lemma 2.3.3 below).

An analogous statement has been proved in greater generality in the homogeneous setting by

Eskin and Lindenstrauss [ELa].
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In the setting of homogeneous dynamics, uniform expansion has been verified in some cases.

For instance, let G be a real semisimple Lie group with no compact factors and Λ be a discrete

subgroup of G. Let µ be a countably supported probability measure on G whose support

generates a Zariski dense subgroup of G. Then µ is uniformly expanding, see e.g. [EM04,

Lem. 4.1], the idea of which goes back to Furstenberg [Fur63]. As a second example, one

may consider the case of the SL(n,Z)-action on the n-torus Tn := Rn/Zn. Let µ be a finitely

supported probability measure on SL(n,Z) such that the support of µ generates a Zariski dense

subgroup of SL(n,R). Using the classical theory of product of random matrices (for instance

in Goldsheid and Margulis [GM89]), one can show that µ is uniformly expanding (see e.g. the

proof of Theorem 4.1.3 in [LX] for the precise argument). Clearly uniform expansion is a C1-

open property, therefore any small C1-perturbations of these examples also support uniformly

expanding measures.

2.1.3 Verification of Uniform Expansion

Theorem A and B are both proved by verifying uniform expansion and then applying Theorem

C and D. Theorem A will be proved in Section 2.6 by verifying uniform expansion analytically.

Theorem B will be proved in Section 2.8 by verifying uniform expansion numerically, using

an algorithm described in Section 2.7. The context and motivation will be provided in the

respective sections.

Other than the fact that these examples are interesting in their own right, they are also

chosen to illustrate how to overcome two difficulties in the verification of uniform expansion.

First of all, as we saw in Theorem C, uniform expansion is a stronger criterion than positivity

of Lyapunov exponent, and the latter is notoriously difficult to verify for one-parameter group

actions without some sort of uniform hyperbolicity. The reason is that even strong expansion

in the early stages of the dynamics can be cancelled out by strong contraction in the future, for

instance when the dynamics hit a region where it behaves like a rotation, such “backtracking”

phenomenon may occur. In our examples, there are small rotation regions for each individual
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map. Nonetheless we show that as long as the random dynamics enter these rotation regions

with small enough probability, the overall dynamics is expanding on average.

Secondly, it is clear that if the dynamics is generated by a single volume-preserving hy-

perbolic diffeomorphism, then uniform expansion never holds, since the stable direction is

contracted by the dynamics. For higher rank actions, it is still possible that the contract-

ing directions of the maps may overlap for some subset of points but not all. Note that this

does not happen in the homogeneous setting, in the sense that if the contracting directions are

separated at one point, then by homogeneity, they are separated at every point of the space. In

our examples, the contracting directions may overlap in a codimension one subset, and again

we show that uniform expansion occurs as long as the random dynamics enter a neighborhood

of such subset with small enough probability. Proposition 2.5.4 illustrates that rotation regions

and overlapping contracting directions are essentially the only two obstructions to uniform

expansion.

For Theorem A, we are able to verify uniform expansion directly since at each point, with

high probability, the map has strong expansion in the same (horizontal) direction. Moreover,

one can compute with high accuracy the separation of the contracting directions of the maps.

These allow us to understand exactly where the rotation regions and overlapping contracting

directions occur. In particular, for each point and each direction, we can obtain an upper bound

on the probability that the map contracts in that direction after n steps. Depending on how

small the separation of the contracting directions is, one can then choose a suitable N so that

uniform expansion occurs.

For Theorem B, however, the contracting directions of each map vary for different points

on the space. In particular, we can no longer prove explicitly that backtracking occur with

low probability (though we expect so). Therefore we can only check unifom expansion at each

point on a fine enough grid, and then show that such expansion still occur at neighboring points

using a C2-bound.

The paper is structured as follows:

� In Section 2.2, positivity of Lyapunov exponents for uniformly expanding systems (The-
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orem C (a)) is proved (Proposition 2.2.2).

� In Section 2.3, classification of stationary measures of uniformly expanding systems (The-

orem C (b)) is proved using a result of Brown and Rodriguez-Hertz [BRH17] (Proposition

2.3.1).

� In Section 2.4, using the measure rigidity result in Section 2.3, an equidistribution result

(Proposition 2.4.1) will be proved. The orbit closure classification (Theorem D) is then

obtained as a corollary (Proposition 2.4.2).

� In Section 2.5, we introduce a geometric way to view uniform expansion and prove a

general criterion for uniform expansion (Proposition 2.5.4).

� In Section 2.6, the setting of perturbation of the standard map is introduced, and uniform

expansion is verified analytically in this setting (Proposition 2.6.1). This proves Theorem

A.

� In Section 2.7, an algorithm to check uniform expansion is presented.

� In Section 2.8, the setting of the Out(F2) action on character variety is introduced, and

uniform expansion is verified using the algorithm introduced in Section 2.7. This proves

Theorem B.

2.2 Positive exponent

We first recall the celebrated Oseledets theorem in the setting of random dynamical systems.

Here we adopt the notation in [BRH17] and define fnω := ωn−1 ◦ ωn−2 ◦ · · · ◦ ω1 ◦ ω0 for

ω = (ω0, ω1, ω2, . . .) ∈ Diff2(M)N. Let σ : Diff2(M)N → Diff2(M)N be the left shift map given

by (ω0, ω1, ω2, . . .) 7→ (ω1, ω2, ω3, . . .).

Proposition 2.2.1 (Random Oseledets multiplicative ergodic theorem). Let M be a closed

smooth Riemannian manifold, µ be a measure on Diff2(M) satisfying the moment condition

(*). Let ν be an ergodic, µ-stationary Borel probability measure. Then there are numbers
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λ1(ν) > λ2(ν) > · · · > λ`(ν) such that for µN-almost every sequence ω ∈ Diff2(M)N and

ν-almost every x ∈M , there is a filtration

TxM = V 1
ω (x) % V 2

ω (x) % · · · % V `ω(x) % V `+1
ω = 0

such that for v ∈ V kω (x) r V k+1
ω (x),

lim
n→∞

1

n
log
‖Dxfnω (v)‖
‖v‖

= λk(ν).

The subspaces V iω(x) are invariant in the sense that

DxfωV
k
ω (x) = V kσ(ω)(fω(x)).

For a proof of the theorem, see e.g. [LQ95, Prop. I.3.1].

Proposition 2.2.2 (Uniform positive exponent). Let M be a closed surface, µ be a uniformly

expanding probability measure on Diff2(M) satisfying (*). Then there exists a uniform constant

λµ > 0, depending only on µ, such that for all x ∈ M , and µN-almost every ω ∈ Diff2(M)N,

there exists λ(ω, x) ≥ λµ such that

lim inf
n→∞

1

n
log ‖Dxfnω‖ = λ(ω, x).

In particular for all ergodic, µ-stationary probability measure ν, for ν-almost every x ∈M and

µN-almost every ω, the top Lyapunov exponent λ1(ν) = λ(ω, x) ≥ λµ > 0.

Sketch of Proof. The point of this proposition is that assuming uniform expansion, Oseledets

theorem holds for every point x ∈ M and almost every sequence ω ∈ Diff2(M)N, and the top

exponent is positive. See Lemma 4.3.5 of [LX] for a more refined version of this proposition,

where it is shown that there is an Oseledets splitting for every point. Here we only need

positivity of exponent. We include a sketch of the proof here for completeness.

Let T 1M be the unit tangent bundle of M . By definition of uniform expansion, there exists
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C > 0 and N ∈ N such that for all (x, v) ∈ T 1M ,

∫
log ‖Dxf(v)‖dµ(N)(f) > C.

Let (x, v0) ∈ T 1M . For each ω ∈ Diff2(M)N and n ∈ N, let

(xn, vn) = (xn(ω), vn(ω)) :=

(
fnω (x),

Dxf
n
ω (v0)

‖Dxfnω (v0)‖

)

be the image of (x, v0) in T 1M after n steps of the random dynamics following the sequence ω.

For k ≥ 1, consider the event

Xk(ω) := log ‖Dx(k−1)N
fN
σ(k−1)Nω

(v(k−1)N )‖ −
∫

log ‖Dx(k−1)N
f(v(k−1)N )‖dµ(N)(f).

Notice that

Xk(ω) = log
‖DxfkNω (v0)‖

‖Dxf
(k−1)N
ω (v0)‖

−
∫

log ‖Dx(k−1)N
f(v(k−1)N )‖dµ(N)(f).

Let Sj =
∑n
k=1Xk. Then

Sj(ω) = log ‖Dxf jNω (v0)‖ −
j∑

k=1

∫
log ‖Dx(k−1)N

f(v(k−1)N )‖dµ(N)(f).

Thus by uniform expansion,

log ‖Dxf jNω (v0)‖ = Sj(ω) +

j∑
k=1

∫
log ‖Dx(k−1)N

f(v(k−1)N )‖dµ(N)(f) ≥ Sj(ω) + jC.

The main observation is that the family {Sn}n∈N form a square integrable martingale. Then

by the strong law of large numbers for square integrable martingales, for µN-almost every

ω ∈ Diff2(M)N, we have the limit

lim
n→∞

Sn
n

= 0.
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Thus if we write j = bn/Nc, then lim
n→∞

j/n = 1/N , and we have for almost every ω,

lim inf
n→∞

1

n
log ‖Dxfnω (v0)‖ = lim inf

n→∞
1

n
log ‖DxjN f

n−jN
σjNω

(vjN )‖+ lim inf
n→∞

1

n
log ‖Dxf jNω (v0)‖

≥ lim inf
n→∞

(
0 +

Sj(ω)

n
+
jC

n

)
≥ C

N
> 0.

Hence we can take λµ := C/N .

2.3 Measure rigidity

We prove the measure rigidity result in this section. The precise statement was already proved

in [LX, Thm. 4.1.4]. We include the proof here for completeness.

The main input of the proof is a result of Brown and Rodriguez-Hertz [BRH17, Thm. 3.4].

This result provides a trichotomy for the ergodic µ-stationary Borel probability measures ν:

either the stable distribution is non-random, ν is finitely supported or ν is an ergodic component

of the volume on M . The uniform expansion condition eliminates the possibility that the stable

distribution is non-random. The same condition also implies that the volume is Γ-ergodic using

a refined version of the classical Hopf argument inspired by [DK07, Sect. 10], as detailed in

[LX, Prop. 4.4.1].

2.3.1 Main statement

Proposition 2.3.1 (Measure Rigidity). Let M be a closed surface, Γ ⊂ Diff2(M) be a subgroup

that preserve a smooth measure m on M . Let µ be a uniformly expanding probability measure

on Diff2(M) with µ(Γ) = 1 satisfying (*). Let ν be an ergodic, µ-stationary Borel probability

measure on M . Then either ν is finitely supported or ν = m.

Following [BRH17], we write

Esω(x) :=
⋃
λj<0

V
j
ω (x) =

{
v ∈ TxM : lim sup

n→∞

1

n
log
‖Dxfnω (v)‖
‖v‖

< 0

}
.
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for the stable Lyapunov subspace for the word ω at the point x ∈ M . We say that the stable

distribution is non-random if there exists µ-almost surely invariant ν-measurable subbundle

V̂ ⊂ TM such that V̂ (x) = Esω(x) for (µN×ν)-almost every (ω, x), i.e. Df(Esω(x)) = Esω(f(x))

for µ-a.e. f ∈ Diff2(M) and ν-a.e. x ∈M .

Given a smooth probability measure m on M , let Diff2
m(M) := {f ∈ Diff2(M) | f∗m = m}.

We recall the theorem of Brown and Rodriguez Hertz.

Theorem 2.3.2. [BRH17, Thm. 3.4] Let M be a closed surface, Γ ⊂ Diff2(M) be a subgroup

that preserve a smooth measure m on M . Let µ be a uniformly expanding probability measure

on Diff2
m(M) with µ(Γ) = 1 satisfying (*). Let ν be an ergodic, hyperbolic µ-stationary Borel

probability measure on M . Then either

(1) ν has finite support,

(2) the stable distribution Esω(x) is non-random, or

(3) ν is - up to normalization - the restriction of m to a positive volume subset.

It remains to refine the conclusion of this theorem using the condition of uniform expansion.

We will eliminate the second possibility in the next lemma, and refine the third possibility in

the next subsection.

Lemma 2.3.3. If µ is uniformly expanding, then the stable distribution is not non-random.

Proof. Assume that the stable distribution Esω(x) is non-random, i.e. there is a µ-almost

surely invariant subbundle V̂ ⊂ TM with V̂ (x) = Esω(x) for (µN × ν)-a.e. (ω, x). By defi-

nition of the stable distribution, for ν-almost every x ∈ M , for all large enough n, we have

log(‖Dxfnw(v)‖/‖v‖) < 0 for all nonzero v ∈ Esω(x). Hence by taking average, for ν-almost all

x ∈M , and for all nonzero v ∈ V̂ (x), we have

∫
Diff2(M)

log
‖Dxf(v)‖
‖v‖

dµ(n)(f) < 0
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for all large enough n. However, this contradicts the uniform expansion property of µ, as it is

striaghtforward from definition that there exists C > 0 and N ∈ N such that for all x ∈ M ,

nonzero v ∈ TxM and k ∈ N,

∫
Diff2(M)

log
‖Dxf(v)‖
‖v‖

dµ(kN)(f) > kC.

2.3.2 Ergodicity

The main theorem of [BRH17, Thm. 3.1] did not assume the existence of a smooth invariant

measure, in which case the third possibility is that the stationary measure is SRB (see [BRH17,

Def. 6.8] for a precise definition). The existence of a smooth invariant measure m allows the

authors to refine the third possibility to being a restriction of m to a positive volume subset

using a local ergodicity argument (see [BRH17, Ch. 13]), as stated above.

In this section, using uniform expansion, we further refine the third possibility to show that

the stationary measure has to be the smooth invariant measure m.

Proposition 2.3.4. Let M be a closed (connected) surface, µ be a Borel probability measure

on Diff2
m(M). Suppose there exists a positive volume subset A ⊂ M such that ν := 1

m(A)
m|A

is an ergodic µ-stationary Borel probability measure. If µ is uniformly expanding, then in fact

ν = m.

This is proved in [LX, Prop. 4.4.1] based on ideas from [DK07, Sect. 10]. For completeness

we give a detailed outline of the proof.

The main idea of the proof is to perform a version of the classical Hopf argument. Rather

than transversing along the stable and unstable leaves as in the setting of Anosov systems, the

argument goes by transversing along the stable leaves W s
ω(x) and W s

ω′(x) of two distinct words

ω, ω′ with suitable geometric and dynamical properties.
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Classical facts about the stable manifolds of a random system

We first collect some standard facts about stable manifolds of a random dynamical system.

Given x ∈M and ω ∈ Diff2(M)N, let

W s
ω(x) :=

{
y ∈M | lim sup

n→∞

1

n
log d(fnω (x), fnω (y)) < 0

}
.

There exists a (µN × vol)-co-null set Λ ⊂ Diff2(M)N ×M such that W s
ω(x) is a C2-embedded

curve in M for all (ω, x) ∈ Λ. We call W s
ω(x) the global stable manifold at x for ω.

We define local stable manifolds using the classical stable manifold theorem (we only list

properties needed for our purpose).

Theorem 2.3.5 (Local stable manifold theorem). Let λµ > 0 be the constant from Proposition

2.2.2. For every 0 < ε < λµ/200, for µN-almost every word ω ∈ Diff2(M)N, there exists a full

volume set Λω ⊂ M and a measurable family of local stable manifolds {W s
ω,loc(x)}x∈Λω with

the following properties:

(a) W s
ω,loc(x) is a C2 embedded curve, i.e. the image of a C2 embedding ψ : (−1, 1)→M .

(b) TxW
s
ω,loc(x) = Esω(x).

(c) for n ≥ 0, fnω (W s
ω,loc(x)) ⊂ W s

ω,loc(fnω (x)).

(d) for y, z ∈ W s
ω,loc(x) and n ≥ 0,

d(fnω (y), fnω (z)) ≤ L(ω, x)e(−λµ+ε)nd(y, z),

where L : Diff2(M)N × M → [1,∞) is a Borel measurable function such that for all

x ∈ Λω and n ≥ 0,

L(σn(ω), fnω (x)) ≤ enεL(ω, x).

Here σ : Diff2(M)N → Diff2(M)N is the left shift given by σ(ω)n := ωn+1.
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(e) W s
ω(x) =

⋃
n≥0

(fnω )−1(W s
σn(ω),loc(fnω (x))).

We refer to [BP13, Ch. 7] for a treatment in the deterministic setting, and [LQ95, Ch. III.3]

in the random setting.

Definition (Measures on stable leaves). We recall the following notions related to the induced

volume measure on the local stable manifolds.

1. Given r > 0 and (ω, x) ∈ Λ, let W s
ω,r(x) := {y ∈ W s

ω(x) | dW s(x, y) < r}, where dW s is

the Riemannian distance along the C2-curve W s
ω(x).

2. Given a C1-curve γ on M , there is a natural measure on γ induced by the restriction of

the Riemannian metric on M to γ. We call this measure the leaf-volume of γ, denoted

volγ .

3. Given a measurable subset T ⊂ W s
ω(x) for some word ω and point x ∈M , we write

volW s(T ) := volW s
ω(x)(T ),

as the dependence on ω and x is clear from the definition of T .

4. Unless otherwise specified, “almost every” point on γ means almost every point with

respect to the leaf-volume.

We will also need the standard fact that for (µN × vol)-almost every (ω, x), the stable

manifold W s
ω(x) satisfies two versions of absolute continuity that we will describe in the next

lemma.

By Lusin theorem and Theorem 2.3.5 (a), for all δ > 0, there exists a measurable subset

Q ⊂ M with vol(Q) > 1 − δ such that W s
ω,loc(y) varies continuously in y ∈ Q in the C2

topology.

Lemma 2.3.6 (Absolute Continuity). For (µN × vol)-almost every (ω, x) ∈ Diff2(M)N ×M ,

for sufficiently small R > 0, the family of local stable manifolds F := {W s
ω,loc(y)}y∈Q∩B(x,R)

satisfies the following properties:
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1. For all y ∈ Q ∩B(x,R), W s
ω,loc(y) intersects ∂B(x,R) at two points.

2. For y, y′ ∈ Q∩B(x,R), if y′ ∈ W s
ω,loc(y), then W s

ω,loc(y)∩B(x,R) = W s
ω,loc(y′)∩B(x,R).

Then the following two versions of absolute continuity hold (we write F(y) for the element in

F containing the point y).

(AC1) Let γ1 and γ2 be two C1-curves in B(x,R) everywhere uniformly transverse to F . Let

T1 := γ1 ∩
⋃
y∈γ2

F(y), and T2 := γ2 ∩
⋃
y∈T1

F(y).

Define the holonomy map hF : T1 → T2 given by “sliding” along the leaves in F , i.e.

hF (y) is the only point in γ2 ∩ F(y) for all y ∈ T1.

Then on T2, we have

volγ2 � (hF )∗volγ1 .

(AC2) For any Borel subset A ⊂M , we have

vol(A) = 0 ⇔ volW s
ω(y)(A ∩W

s
ω(y)) = 0 for vol-a.e. y ∈M.

See [BP13, Ch. 8] for a statement in the case of deterministic systems, [LY88, Sect. 4.2] or

[LQ95, Sect. III.5] for a statement in the case of random systems.

Implications of uniform expansion

One consequence of uniform expansion is uniform control on the angles between stable directions

of different words.

Lemma 2.3.7 (Uniform avoidance of the stable direction). [LX, Prop. 4.4.4] [Zha19, Prop. 3]

If µ is uniformly expanding, then there exists α > 0 with the following property:

for any (x, v) ∈ T 1M , there exists a subset Γx,v ⊂ Diff2(M)N with µN(Γx,v) > 0.99 such that,
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for any ω ∈ Γx,v,

](Esω(x), v) > α.

Another property of uniformly expanding systems is that for every point on the surface, the

dynamics exhibit uniform hyperbolicity for a large proportion of words. This implies uniform

control on the lengths and curvatures of the local stable manifolds.

Lemma 2.3.8 (Uniform control of the local stable manifolds). [LX, Prop. 4.4.9] [Zha19, Prop.

3] If µ is uniformly expanding, then there exist a constant ` = `(µ) > 0 with the following

properties:

for any x ∈ M , there exists a subset Λx ⊂ Diff2(M)N with µN(Λx) > 0.99 such that for all

ω ∈ Λx,

(i) W s
ω,`(x) ⊂⊂ W s

ω,loc(x),

(ii) the angle change of the curve exp−1
x (W s

ω,`(x)) is less than α/100.

Here α is as in Lemma 2.3.7, and for a C1-curve γ : [a, b]→ R2, the angle change of γ is

max
t,s∈[a,b]

](γ′(t), γ′(s)).

The notation A ⊂⊂ B in (i) means A is compactly contained in B, i.e. the closure of A is

compact and is contained in B. Note that (i) implies that the leaf-volume of W s
ω,`(x) is at least

2` since the condition implies, in particular, that W s
ω,`(x) ( W s

ω(x).

We say that W s
ω,loc(x) is a nice curve if ω ∈ Λx.

We shall use these constants α and `, which depend only on µ, later in the proof. The set

Λx of words in Lemma 2.3.8 will also appear a few times in the proof.

Basin of ν

We will consider the classical notion of a basin of ν in this random setting, and remark that to

show that ν = m, it suffices to show that the basin B(ν) has full volume. This will be used in
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Step 1 below.

Definition. Given x ∈ M , ω ∈ Diff2(M)N and a continuous function ϕ : M → R, define the

ω-Birkhoff average of ϕ at x as

Sω(ϕ)(x) := lim
n→∞

1

n

n−1∑
j=0

ϕ(f
j
ω(x))

if the limit on the right exists.

Definition. Given an ergodic µ-stationary measure ν on M , define the basin of ν, denoted

B(ν) ⊂ M , as the set of points x ∈ M such that for any continuous function ϕ : M → R and

µN-almost every ω ∈ Diff2(M)N,

Sω(ϕ)(x) =

∫
M
ϕ dν.

Lemma 2.3.9. If vol(B(ν)) = 1, then ν = m.

Proof. Assume that vol(B(ν)) = 1. Then m(B(ν)) = 1. Let ϕ ∈ C0(M). By the pointwise

ergodic theorem (and the argument in the proof of Lemma 2.3.12), there exists a function ϕ(x)

such that for (µN ×m)-a.e. (ω, x),

Sω(ϕ)(x) = ϕ(x) and

∫
ϕ(x) dm(x) =

∫
ϕ(x) dm(x).

On the other hand, by definition of the basin B(ν), for all x ∈ B(ν), we have

Sω(ϕ)(x) =

∫
ϕ dν.

Therefore ϕ(x) =
∫
ϕ dν for all x ∈ B(ν). But since m(B(ν)) = vol(B(ν)) = 1, we have

∫
ϕ(x) dm(x) =

∫
ϕ(x) dm(x) =

∫
B(ν)

ϕ(x) dm(x) =

∫
ϕ(x) dν(x).

Since ϕ is arbitrary, we have ν = m.
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Reduction to a local argument via Lebesgue density theorem

By Lemma 2.3.9, it suffices to argue that the basin has full volume. In this section, we argue

that it suffices to show that in every (uniformly) small enough ball, the basin either has zero

density or has density bounded from below by a positive uniform constant. This allows us to

reduce the problem to a local argument in a small ball. This will be used in Step 2 below.

Definition (Density). Given a Borel measurable subset U ⊂ M , a point x ∈ M and r > 0,

define the density of U in the ball B(x, r) as

vol(U : B(x, r)) :=
vol(U ∩B(x, r))

vol(B(x, r))
.

Lemma 2.3.10. Assume that a measurable subset U ⊂ M satisfies the following: there exist

c > 0 and R0 > 0 such that for all x ∈M and positive r < R0, either

vol(U : B(x, r)) = 0 or vol(U : B(x, r)) > c.

Then vol(U) = 0 or 1.

Proof. Assume the contrary that vol(U) ∈ (0, 1). Clearly the assumption continues to hold if

we decrease c. Thus without loss of generality assume that 0 < c < 1/2.

Since vol(U) and vol(Uc) are both positive by assumption, by Lebesgue density theorem,

there exist y ∈ U , z ∈ Uc and r ∈ (0, R0) such that

vol(U : B(y, r)) > 1− c and vol(U : B(z, r)) < c/4.

Now observe that the function x 7→ vol(U : B(x, r)) is continuous in x ∈M for fixed U ⊂M

and r > 0. Since M is connected, there exists x ∈ M such that vol(U : B(x, r)) = c/2. This

yields a contradiction.

In the rest of this section, we shall find uniform constants c > 0 and R0 > 0 so that the

assumptions of Lemma 2.3.10 hold for the basin U = B(ν).
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Regular points

Similar to the proof of ergodicity in [DK07, Sect. 10], we define a notion of regular points,

and show that almost every point on M is regular. This will be used in Step 3 of the main

argument.

Informally, the notions of regular points can be summarized as follows: for x ∈ M and

ω ∈ Diff2(M)N,

1. x is ω-regular if the ω-Birkhoff averages at x agree with the ω′-Birkhoff averages at x for

µN-a.e. ω′.

2. x is regular if for µN-a.e. ω, x is ω-regular and almost every y ∈ W s
ω(x) is ω-regular.

Definition. For ω ∈ Diff2(M)N, a point x ∈ M is called ω-regular if for µN-almost every

ω′ ∈ Diff2(M)N, for any continuous function ϕ : M → R, we have

Sω(ϕ)(x) = Sω′(ϕ)(x)

(in particular the Birkhoff averages exist).

Remark 2.3.11. Note that if x is ω-regular, then for µN-almost every ω′ ∈ Diff2(M)N, x is

ω′-regular.

Lemma 2.3.12. [Kif86, Cor. I.2.2, Page 24] For µN×vol-almost every (ω, x) ∈ Diff2(M)N×M ,

x is ω-regular.

Definition. A point x ∈ M is called regular if for µN-almost every word ω ∈ Diff2(M)N, x is

ω-regular and almost every point y ∈ W s
ω(x) is ω-regular.

It can be shown using Lemma 2.3.12 and absolute continuity of the stable manifolds that

almost every point on M is regular.

Lemma 2.3.13. [LX, Lem. 4.4.18] vol-almost every point x ∈M is regular.
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Proof. We need to show that the set

B1 = {(ω, x) ∈ Diff2(M)N ×M | volW s({y ∈ W s
ω(x) | y is not ω-regular}) > 0}

has µN × vol-measure zero. By Lemma 2.3.12, for µN-almost every word ω, we have

vol({y ∈M | y is not ω-regular}) = 0.

By absolute continuity of the foliation W s
ω (Lemma 2.3.6 (AC2), ignore a null set of words ω if

necessary), for vol-almost every point x ∈M , we have

volW s({y ∈ W s
ω(x) | y is not ω-regular}) = 0.

This is enough to show that B1 has measure zero.

The following lemma is a direct consequence of the definitions, and will be used repeatedly

in Step 6.

Lemma 2.3.14. [LX, Lem. 4.4.19] Given an ergodic µ-stationary measure ν on M and ω ∈

Diff2
m(M)N, if x, y ∈ M are both ω-regular and y ∈ W s

ω(x), then x ∈ B(ν) if and only if

y ∈ B(ν).

Proof. For any continuous function ϕ : M → R, and for µN-almost every ω′ ∈ Diff2(M)N, we

have

Sω′(ϕ)(x) = Sω(ϕ)(x) = Sω(ϕ)(y) = Sω′(ϕ)(y),

where the second equality uses the fact that y ∈ W s
ω(x), and M is compact so that ϕ is

uniformly continuous. The first and third equalities use the fact that x and y are ω-regular.

Therefore the leftmost term equals
∫
ϕ dν if and only if the rightmost term equals

∫
ϕ dν.
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Basic setup of the Hopf argument

Using Lemma 2.3.7 and 2.3.8, we can set up the Hopf argument in a small local ball B(x0, r)

containing a regular point x by finding two words ω, ω′ ∈ Diff2(M)N whose local stable mani-

folds through x have nice geometric and dynamical properties. Throughout this subsection we

shall fix x0 ∈ M and r > 0. We first give an outline of the main argument (see Figure 2.1 for

an illustration).

Step 1: By Lemma 2.3.9, to show that ν = m, it suffices to show that vol(B(ν)) = 1.

Step 2: By Lemma 2.3.10, to show that vol(B(ν)) = 1, it suffices to show that for some uniform

constants R0 > 0 and c > 0, for all x0 ∈ M and r < R0, either vol(B(ν) : B(x0, r)) = 0

or vol(B(ν) : B(x0, r)) > c. We will choose R0 in subsection 2.3.2. We fix x0 ∈ M and

r < R0 in the rest of the outline.

Step 3: Assume that vol(B(ν) : B(x0, r)) > 0. Choose a regular point x in B(ν) ∩B(x0, r).

Step 4: Choose words ω, ω′ and a subset T ⊂ W s
ω,loc(x)∩B(x0, r) with positive leaf-volume such

that for all y ∈ T ,

(i) W s
ω,loc(x) and W s

ω′,loc(y) are nice curves (in the sense of Lemma 2.3.8) and uniformly

transverse;

(ii) x and y are ω-regular;

(iii) y and almost every z ∈ W s
ω′,loc(y) are ω′-regular.

We will choose ω, ω′ and T in subsection 2.3.2.

Step 5: Construct a good set U ′ ⊂ B(x0, r) with (uniformly) positive density in B(x0, r), a word

ω′′, and a subset T ′ ⊂ T with positive leaf-volume such that for all p ∈ U ′,

(i) W s
ω′′,loc(p) is a nice curve, and is uniformly transverse to the family {W s

ω′,loc(y)}y∈T ′ .

(ii) p is ω′′-regular,
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(iii) the set of intersection points between W s
ω′′,loc(p) and {W s

ω′,loc(y)}y∈T ′ that are both

ω′-regular and ω′′-regular has positive leaf-volume in W s
ω′′,loc(p).

We will choose T ′ in subsection 2.3.2. We will choose the word ω′′, the set U ′ and the

uniform positive lower bound c3 on the density of U ′ in subsection 2.3.2.

Step 6: Apply Lemma 2.3.14 to show that U ′ ⊂ B(x0, r) is contained in the basin B(ν). In fact,

for p ∈ U ′,

(i) x ∈ B(ν) by Step 3.

(ii) Let y ∈ T ′ ⊂ T ⊂ W s
ω,loc(x). Both x and y are ω-regular, so by (i) and Lemma

2.3.14, y ∈ B(ν).

(iii) Let z ∈ W s
ω′,loc(y) for some y ∈ T ′. Suppose that z is both ω′-regular and ω′′-regular.

By (ii), y ∈ B(ν). Since y is ω′-regular, by Lemma 2.3.14, z ∈ B(ν).

(iv) By Step 5, a positive leaf-volume set of points z in W s
ω′′,loc(p) are in W s

ω′,loc(y)

for some y ∈ T ′, and are ω′-regular and ω′′-regular. By (iii), z ∈ B(ν). Since p is

ω′′-regular, by Lemma 2.3.14, p ∈ B(ν).

This concludes the argument, since U ′ ⊂ B(x0, r) ∩ B(ν) and has (uniformly) positive

density in B(x0, r).

In the rest of this section, we shall make Step 4-6 precise by choosing the appropriate param-

eters.

Choice of the radius R0

We choose R0 = R0(α, `) > 0 with the following properties: for positive r < R0 and y ∈

B(x0, r),

1. (Angle between off center tangent vectors)

� for v, w ∈ TyM , if ](v, w) > α, then ](Dy exp−1
x0

v,Dy exp−1
x0

w) > α/2.
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B(x0, r)

B(y0, c2r)

E

x0

x

y

z

p

W s
ω,loc(x)

W s
ω′′,loc(p)

W s
ω′,loc(y)

Figure 2.1: Illustration of the main argument (U ′ is a subset of the shaded region B(y0, c2r)
with positive density; × ∈ T ⊂ W s

ω,loc(x))

� for v, w ∈ TyM , if ](v, w) > α/4, then ](Dy exp−1
x0

v,Dy exp−1
x0

w) > α/8.

2. (Angle change of curves) given a C2-curve γ1 ⊂ B(x0, r) through y, if exp−1
y γ1 has angle

change less than α/100, then exp−1
x0

γ1 has angle change less than α/99.

3. Also choose R0 < `/10, where ` = `(µ) is the constant from Lemma 2.3.8.

Such conditions hold for small enough r such that for y ∈ B(x0, r), the map Dy exp−1
x0

:

TyM → TTx0M is close enough to the identity (using the C2 assumption and compactness of

the manifold, the appropriate constants depend only on α, ` and the geometry of the smooth

Riemannian manifold M , in particular R0 can be taken independent of x0).
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Choice of the words ω, ω′, the set T ⊂ W s
ω,loc(x) and the constant c1 (for Step

4)

Lemma 2.3.15. [LX, Lem. 4.4.20] For any x0 ∈M and positive r < R0 (from subsection 2.3.2),

let x ∈ B(x0, r) ∩ B(ν) r {x0} be a regular point. Then there exist words ω, ω′ ∈ Diff2(M)N,

a subset T ⊂ W s
ω,loc(x) ∩ B(x0, r) and a constant 0 < c1 = c1(α) < 1 with the following

properties.

1. x is ω-regular,

2. W s
ω,loc(x) is a nice curve, i.e. ω ∈ Λx as in Lemma 2.3.8,

3. the set of ω′-regular points has full volume in M ,

4. the leaf-volume of T ⊂ W s
ω(x) is at least c1r,

5. for any y ∈ T ,

(a) y is ω-regular and ω′-regular,

(b) W s
ω′,loc(y) is a nice curve.

(c) d(y, ∂B(x0, r)) > c1r,

(d) ](Esω(y), Esω′(y)) > α,

Proof. We have the following properties of x:

(i) for µN-a.e. ω, x is ω-regular and almost every y ∈ W s
ω(x) is ω-regular since x is regular.

(ii) for at least 99% of the words ω (with respect to µN), W s
ω,loc(x) is a nice curve by Lemma

2.3.8.

Note that x 6= x0. Let v be the initial vector in TxM of the geodesic from x to x0, and

v⊥ ∈ P(TxM) be the orthogonal complement of v in TxM .

(iii) for at least 99% of the words ω (with respect to µN), ](Esω(x), v⊥) > α by Lemma 2.3.7.
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Choice of ω: Let ω be one of the 99% words that satisfy (i), (ii) and (iii). Since W s
ω,loc(x) is

a nice curve, it contains an `-neighborhood of x with ` > 10r, and we have a uniform bound

on angle change of exp−1
x (W s

ω,`(x)).

Choice of c1: Using Euclidean geometry, (iii) implies that there exist c1 = c1(α) > 0 and a

C2-segment γ ⊂ W s
ω,loc(x) such that

(iv) volW s(γ) > 2c1r,

(v) for all y ∈ γ, d(y, ∂B(x0, r)) > c1r.

Now for the almost every y ∈ γ that is ω-regular, we have the following properties of y:

(viy) for µN-a.e. ω′, y is ω′-regular by Remark 2.3.11.

(viiy) for at least 99% of the words ω′ (with respect to µN), W s
ω′,loc(y) is a nice curve by Lemma

2.3.8.

(viiiy) for at least 99% of the words ω′ (with respect to µN), ](Esω(y), Esω′(y)) > α by Lemma

2.3.7.

Now consider the set

G := {(ω′, y) ∈ Diff2(M)N × γ | y is ω-regular, and ω′ satisfies (viy), (viiy), (viiiy)}.

Almost every y ∈ γ is ω-regular by (i). For each y ∈ γ, at least 98% of the words ω′ satisfy

(viy), (viiy), (viiiy). Thus by Fubini’s theorem,

µN × volW s(G) ≥ 0.98 volW s(γ).

By Fubini’s theorem again,

(ix) for at least 96% of the words ω′,

volW s({y ∈ γ | y is ω-regular, and ω′ satisfies (viy), (viiy), (viiiy)}) > 0.5 volW s(γ) > c1r.
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Here in the last inequality, we have used (iv). Recall that

(x) for µN-almost every word ω′, vol({z ∈M | z is ω′-regular}) = 1 by Lemma 2.3.12.

Choice of ω′ and T : Let ω′ be one of at least 96% words that satisfy (ix) and (x). Let

T := {y ∈ γ | y is ω-regular, and ω′ satisfies (viy), (viiy), (viiiy)}.

We can verify each property:

1. This follows from (i).

2. This follows from (ii).

3. This follows from (x).

4. This follows from (ix).

5. for y ∈ T ,

(a) This follows from the definition of T and (viy).

(b) This follows from (viiy).

(c) This follows from (v).

(d) This follows from (viiiy).

Choice of the direction E ∈ P(Tx0M), the ball B(y0, c2r), and the set T ′ ⊂ T ⊂

W s
ω,loc(x)

Let r < R0. Now lift the ball B(x0, r) to the tangent space at x0 via the inverse of the

exponential map exp−1
x0

. Let x ∈ B(x0, r). Recall that

1. since W s
ω,loc(x) is a nice curve by Lemma 2.3.15 (2), the angle change of exp−1

x W s
ω,`(x)

is less than α/100.
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2. Also by Lemma 2.3.15 (5d), for any y ∈ T , ](Esω(y), Esω′(y)) > α.

By the choice of R0, we have

1. the angle change of exp−1
x0
W s
ω,`(x) is less than α/99,

2. for all y ∈ T , ](exp−1
x0
W s
ω(y), exp−1

x0
W s
ω′(y)) > α/2.

Choice of E: By compactness of P(Tx0M) and volW s(T ) > 0, there exists a direction E ∈

P(Tx0(M)) such that

1. volW s({y ∈ T | ](E, exp−1
x0
W s
ω′(y)) < α/100}) > 0, and

2. for each E′ ∈ P(Tx0(M)) with ](E,E′) < α/100, and each tangent vector v to the curve

exp−1
x0

W s
ω,loc(x) on Tx0M , we have ](E′, v) > α/4.

Choice of c2: Now take a constant c2 = c2(α, c1) > 0 small enough so that c2 < c1/2 and the

following property holds: for any y0 ∈ M and z1, z2 ∈ B(y0, c2r), if two C1-curves γ1 and γ2

on M satisfy the following properties:

1. z1 ∈ γ1 and z2 ∈ γ2,

2. γi contains an (c1r/2)-neighborhood (within the curve) of zi for i = 1, 2,

3. the angle changes of exp−1
y0
γ1 and exp−1

y0
γ2 are less than α/99,

4. ](exp−1
y0

γ1, exp−1
y0

γ2) > α/8,

then γ1 and γ2 intersect at least once.

Choice of y0: Take y0 ∈ T such that

volW s({y ∈ T ∩B(y0, c2r) | ](E, exp−1
x0

W s
ω′(y)) < α/100}) > 0.

Choice of T ′: Let T ′ := {y ∈ T ∩ B(y0, c2r) | ](E, exp−1
x0

W s
ω′(y)) < α/100}. Then

volW s(T ′) > 0.
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Choice of the good set U ′ ⊂ B(x0, r), the word ω′′ and the constant c3 (for Step

5)

Lemma 2.3.16. Define R0 as in subsection 2.3.2, the words ω, ω′ as in subsection 2.3.2, and

E, y0, c2, T
′ as in subsection 2.3.2. Let r < R0. Then there exists a uniform constant c3 =

c3(c2) > 0, a measurable set U ′ ⊂ B(x0, r) with vol(U ′) > c3vol(B(x0, r)) and a word ω′′ such

that for all p ∈ U ′,

(a) W s
ω′′,loc(p) is a nice curve.

(b) almost every z ∈ W s
ω′′(p) is ω′-regular, where ω′ is the chosen word in subsection 2.3.2.

(c) p is ω′′-regular and almost every point in W s
ω′′(p) is ω′′-regular.

(d) The angle

](Dp exp−1
x0

Esω′′(p), E) > α/2,

where E ∈ P(Tx0M) is the direction chosen in subsection 2.3.2.

Proof. We first collect a few facts that hold for vol-almost every points p ∈ M and a large set

of words ω′′.

(a) By Lemma 2.3.8, for any p ∈ M , for at least 99% of the words ω′′, W s
ω′′,loc(p) is a nice

curve.

(b) By (AC2) and Lemma 2.3.15(3), for vol-almost every p ∈ M and µN-a.e. ω′′, almost

every z ∈ W s
ω′′(p) is ω′-regular.

(c) By Lemma 2.3.13, vol-almost every point p ∈ M is regular, i.e. for µN-a.e. ω′′, p is

ω′′-regular and almost every point in W s
ω′′(p) is ω′′-regular.

(d) By Lemma 2.3.7 and the choice of R0, for any p ∈ B(x0, r), for at least 99% of the words

ω′′,

](Dp exp−1
x0
Esω′′(p), E) > α/2,

where E ∈ P(Tx0M) is the direction in subsection 2.3.2.
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Hence for vol-a.e. p ∈ B(x0, r), there are at least 98% of the words ω′′ such that (a)-(d)

hold. Now consider the small ball B(y0, c2r) chosen in subsection 2.3.2. Since c2 < c1 and

d(y0, ∂B(x0, r)) > c1r (since y0 ∈ T ), B(y0, c2r) ⊂ B(x0, r).

Choice of U ′ and ω′′: By Fubini’s theorem, there exists a word ω′′ such that the subset

U ′ := {p ∈ B(y0, c2r) | (a)-(d) hold for p with respect to ω′′} ⊂ B(x0, r)

has volume vol(U ′) > 0.5 vol(B(y0, c2r)), where B(y0, c2r) is the ball from subsection 2.3.2.

Choice of c3: Now we can take a uniform constant c3 = c3(c2) > 0 such that vol(U ′) >

c3vol(B(x0, r)).

The set U ′ and the word ω′′ are related to the ω′-local stable curves through T ′ in the

following manner.

Lemma 2.3.17. Define T ′ ⊂ W s
ω,loc(x) as in subsection 2.3.2. Let U :=

⋃
y∈T ′W

s
ω′,loc(y).

Then for all p ∈ U ′,

volW s({z ∈ W s
ω′′,loc(p) ∩ U | z is ω′-regular and ω′′-regular}) > 0.

Proof. Let p ∈ U ′ and y ∈ T ′. Note that p, y ∈ B(y0, c2r). Let z1 = p and z2 = y. We verify

properties 1-4 in the choice of c2 in subsection 2.3.2 for the local stable curves

γ1 := W s
ω′′,c1r/2

(p) ⊂ W s
ω′′,loc(p) and γ2 := W s

ω′,c1r/2
(y) ⊂ W s

ω′,loc(y).

Note that since c2 < c1/2, d(y0, ∂B(x0, r)) > c1r (since y0 ∈ T ) and p, y ∈ B(y0, c2r), we have

γ1, γ2 ⊂ B(x0, r).

1. Clearly p ∈ γ1 and y ∈ γ2.

2. By definition of γ1 and γ2, γi is the (c1r/2)-neighborhood of zi in the local stable curve.
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3. Note that W s
ω′′,loc(p) and W s

ω′,loc(y) are nice curves by Lemma 2.3.16(a) and Lemma

2.3.15 (5b), so γ1 and γ2 have bounded angle change in their respective tangent spaces.

Now using the choice of R0 applied to the tangent space at y0, we conclude the bound on

angle changes in Ty0M .

4. By the choice of R0, E and T ′, one can readily verify that ](exp−1
x0

γ1, exp−1
x0
γ2) > α/4.

Apply the choice of R0 again, ](exp−1
y0

γ1, exp−1
y0

γ2) > α/8.

Therefore properties 1-4 in the choice of c2 are satisfied, thus W s
ω′′,loc(p) intersects W s

ω′,loc(y)

for all y ∈ T ′, with angle at least α/4 on Tx0M .

Now W s
ω,loc(x) is uniformly transverse to W s

ω′,loc(y) for y ∈ T ′ by Lemma 2.3.15 (5d). Apply

(AC1) to the holonomy hW s between the transversals W s
ω′′,loc(p) and W s

ω,loc(x) along the family

of local stable curves {W s
ω′,loc(y)}y∈T ′ . By the previous paragraph, hW s is a bijection from

W s
ω′′,loc(p) ∩ U to T ′ ⊂ W s

ω,loc(x). Since T ′ has positive leaf-volume in W s
ω,loc(x), by (AC1),

W s
ω′′,loc(p) ∩ U has positive leaf-volume.

Now the conclusion holds since almost every point in W s
ω′′,loc(p) is ω′-regular and ω′′-regular

by Lemma 2.3.16 (b, c).

Conclude the proof of Proposition 2.3.4 and Proposition 2.3.1

Proof of Proposition 2.3.4. The proof goes by performing the Hopf argument in a local ball

B(x0, r) with r < R0, combining the pieces built in previous sections.

Step 1: It suffices to show that the basin B(ν) has full volume.

By Lemma 2.3.9, to show that ν = m, it suffices to show that vol(B(ν)) = 1.

Step 2: It suffices to show that the basin has nontrivial density in each small local ball

B = B(x0, r).

Note that vol(B(ν)) ≥ vol(A) > 0 since a full volume subset of A is in the basin B(ν) by

the pointwise ergodic theorem and that ν = 1
m(A)

m|A. By Lemma 2.3.10, to show that

B(ν) has full volume, it suffices to show that there exist c > 0 and R0 > 0 such that for
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all x0 ∈M and positive r < R0 that satisfy vol(B(x0, r) ∩B(ν)) > 0, we have

vol(B(x0, r) ∩B(ν)) > c vol(B(x0, r)).

We choose R0 as in subsection 2.3.2, and will choose c = c3 from subsection 2.3.2 in Step

6. In particular R0 < `/10.

In the rest of the proof we fix x0 ∈M and r ∈ (0, R0). Let B := B(x0, r).

Step 3: Choose a regular point x in the local ball B.

By Lemma 2.3.13, the set of regular points in M has full volume. Thus for fixed x0 ∈M

and r < R0 with vol(B(x0, r)∩B(ν)) > 0, one can choose a regular point x ∈ B(x0, r)∩

B(ν) r {x0}.

Step 4: Choose two words ω, ω′ with transverse local stable manifolds in B.

Choose words ω, ω′ ∈ Diff2(M)N as in subsection 2.3.2 and a subset T ′ ⊂ W s
ω,loc(x) as in

subsection 2.3.2.

Let

U :=
⋃
y∈T ′

W s
ω′,loc(y).

Step 5: Choose a good set U ′ with positive density in B, a word ω′′ and a subset T ′ ⊂ T

with positive leaf-volume.

We choose the good set U ′ ⊂ B, the word ω′′ and the subset T ′ ⊂ T as in subsection

2.3.2.

Step 6: The good set U ′ is contained in the basin B(ν).

Let p ∈ U ′. Now we claim that p ∈ B(ν). In fact

(i) x ∈ B(ν) by the choice in Step 3.

(ii) For all y ∈ T ′, note that T ′ ⊂ W s
ω(x) and x, y are ω-regular by Lemma 2.3.15 (1,

5a). Therefore by Lemma 2.3.14, y ∈ B(ν).
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(iii) Suppose z ∈ W s
ω′′,loc(p)∩U is ω′-regular. By the definition of U , there exists y ∈ T ′

such that z ∈ W s
ω′,loc(y). Recall that y ∈ T ′ is ω′-regular from Lemma 2.3.15 (5a).

Therefore by Lemma 2.3.14, z ∈ B(ν).

(iv) By Lemma 2.3.17, the set of points in W s
ω′′,loc(p) ∩ U that are ω′-regular and ω′′-

regular has positive leaf-volume. Let z be one such point. Note that p ∈ W s
ω′′(z),

and p is ω′′-regular by Lemma 2.3.16(c). Therefore by Lemma 2.3.14, p ∈ B(ν).

Therefore U ′ ⊂ B ∩B(ν), hence

vol(B ∩B(ν)) ≥ vol(U ′) > c3 vol(B)

by Lemma 2.3.16, as desired.

Proof of Proposition 2.3.1. Since µ is uniformly expanding, by Proposition 2.2.2, any ergodic µ-

stationary measure ν has positive Lyapunov exponent. Hence in the case of volume-preserving

diffeomorphisms on surfaces, it is hyperbolic. Now by [BRH17, Thm. 3.4], either ν is finitely

supported, the stable distribution is non-random, or ν is the restriction of m to a positive

volume subset. By Lemma 2.3.3, the second possibility is eliminated. In the third possibility,

by Proposition 2.3.4, we have ν = m. The result follows.

2.3.3 Comparison with Brown-Rodriguez Hertz

The following proposition may be viewed as a motivation for the assumption of uniform expan-

sion, in view of the theorem [BRH17, Thm. 3.4].

Proposition 2.3.18. Let M be a closed surface, µ be a Borel probability measure on Diff2(M).

If µ is not uniformly expanding, then there exists an ergodic µ-stationary measure ν on M and

a µ-almost surely invariant ν-measurable subbundle V̂ ⊂ TM in which the top Lyapunov

exponent is nonpositive.
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In particular, if µ is supported on Diff2
m(M) for some smooth measure m on M , then µ is

uniformly expanding if and only if every ergodic µ-stationary measure ν on M has a positive

Lyapunov exponent and the stable distribution is not non-random with respect to ν.

To prove this proposition, we first note that each map f ∈ Diff2(M) induces the projective

action on the unit tangent bundle T 1M by

f · (x, v) =

(
f(x),

Dxf(v)

‖Dxf(v)‖

)
.

From now on we shall abuse the notation and write f(x, v) := f · (x, v).

In the case that µ is uniformly expanding, we first construct an ergodic stationary measure

on T 1M which does not exhibit exponential growth on average.

Lemma 2.3.19. If µ is not uniformly expanding, then there exists an ergodic µ-stationary

measure ν′ on T 1M such that

∫∫
log ‖Dxf(v)‖dµ(f)dν′(x, v) ≤ 0.

Proof. Fix ε > 0. Since µ is not uniformly expanding, for all positive integer N , there exists

(xN , vN ) ∈ T 1M such that

∫
log ‖DxN f(vN )‖dµ(N)(f) < ε. (2.3.1)

Let

νN :=
1

N

N−1∑
n=0

∫
δf(xN ,vN )dµ

(n)(f),

and let ν be any weak-* limit point of {νN}. Note that ν is a µ-stationary measure on T 1M

since

µ ∗ νN =
1

N

N−1∑
n=0

∫
µ ∗ δf(xN ,vN )dµ

(n)(f) =
1

N

N−1∑
n=0

∫
δf(xN ,vN )dµ

(n+1)(f)
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and hence as N →∞,

µ ∗ νN − νN =
1

N

(∫
δf(xN ,vN )dµ

(N)(f)− δ(xN ,vN )

)
→ 0.

For f ∈ Diff2(M) and (x, v) ∈ T 1M , let

Φ(f, (x, v)) := log ‖Dxf(v)‖.

Note that for each N ∈ N and ω = (ω0, ω1, ω2, . . .) ∈ Diff2(M)N,

log ‖DxfNω (v)‖ =
N−1∑
n=0

Φ(ωn, f
n
ω (x, v)). (2.3.2)

Since the first argument of Φ(ωn, f
n
ω (x, v)) depends only on the (n+ 1)-th coordinate of ω, and

the second argument depends only on the first n coordinates of ω, we have

∫
log ‖DxfNω (v)‖dµN(ω) =

N−1∑
n=0

∫
Φ(ωn, f

n
ω (x, v))dµN(ω) =

N−1∑
n=0

∫
Φ(g, f(x, v))dµ(g)dµ(n)(f).

On the other hand, the left hand side is

∫
log ‖Dxf(v)‖dµ(N)(f). Therefore if we set (x, v) =

(xN , vN ), by the definition of νN and (2.3.1), for all N ∈ N,

∫ ∫
Φ(g, (x, v)) dµ(g) dνN (x, v) <

ε

N
.

By continuity of Φ and weak-* convergence, we have upon taking limit

∫ ∫
Φ dµ dν ≤ 0.

Let ν′ be an ergodic component of ν such that

∫ ∫
Φ dµ dν′ ≤ 0,
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which exists since ν is a convex combination of its ergodic components. This measure ν′ satisfies

the desired properties.

Proof of Proposition 2.3.18. Assume that µ is not uniformly expanding. Consider the measure

ν′ given by Lemma 2.3.19. Let ν := π∗ν′, where π : T 1M →M is the natural projection. Then

note that ν is an ergodic µ-stationary measure on M since π is equivariant with respect to the

action by Diff2(M). Let {ν′x} be a family of conditional measures of ν′ along the partition of

T 1M into fibers over M .

Let F be the skew product map on Diff2(M)N × T 1M defined by F (ω, x) = (σ(ω), ω0(x)).

Recall that ν′ is an ergodic µ-stationary measure on T 1M if and only if µN × ν′ is an ergodic

F -invariant measure on Diff2(M)N × T 1M ([Kif86, Lem. I.2.3, Thm. I.2.1]). Consider the

following map on Diff2(M)N × T 1M ,

Ψ(ω, (x, v)) := log ‖Dxω0(v)‖.

By the pointwise ergodic theorem, for ν-a.e. x ∈M and ν′x-a.e. v ∈ T 1
xM ,

lim
N→∞

1

N

N−1∑
n=0

Ψ(σn(ω), fnω (x, v)) =

∫ ∫
Ψ dµN dν′ for µN-a.e. ω. (2.3.3)

Note that since Ψ depends only on the first coordinate of ω, by Lemma 2.3.19,

∫ ∫
Ψ dµN dν′ =

∫ ∫
log ‖Dxf(v)‖dµ(f) dν′(x, v) ≤ 0. (2.3.4)

Now the support of ν′ spans a µ-a.s. invariant ν-measurable subbundle V̂ ⊂ TM (not

necessarily proper). Apply (2.3.3) again, we have that the top Lyapunov exponent in V̂ is

nonpositive.

Finally, to show the second assertion, assume that µ is supported on Diff2
m(M) for some

smooth measure m on M and µ is not uniformly expanding.

In the volume preserving case, for each ergodic µ-stationary measure ν, either all exponents
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are zero for ν-a.e. x, or there is a positive and a negative exponent for ν-a.e. x. If all the

Lyapunov exponents of ν are zero, we are done. Hence we may assume that ν has a positive

exponent. By Oseledets theorem, for µN× ν-a.e. (ω, x) ∈ Diff2(M)N×M , the tangent vectors

in TxM outside of Esω(x) have exponential growth. Since vectors in V̂ (x) have nonpositive

top exponent, V̂ (x) ⊂ Esω(x) for ν-a.e. x ∈ M . Since Esω(x) is one-dimensional, we have

V̂ (x) = Esω(x). Since V̂ is µ-a.s. invariant, we have that the stable distribution Esω(x) is

non-random. This shows the “if” direction. The “only if” direction follows from Proposition

2.2.2 and Lemma 2.3.3.

2.4 Equidistribution and Orbit closures

We now prove an equidistribution statement from the measure rigidity result using the exis-

tence of a Margulis function, which follows from uniform expansion. We follow the strategy in

[EMM15], the idea of which goes back to [EM04] and [EMM98]. The orbit closure classification

then follows. The assumptions we make in this section are slightly weaker than Theorem D,

though Theorem D suffices for the applications in the subsequent sections.

Proposition 2.4.1 (Equidistribution). Let M be a closed surface, Γ ⊂ Diff2(M) be a subsemi-

group that preserves a smooth measure m on M . Let µ be a uniformly expanding probability

measure on Diff2
m(M) with µ(Γ) = 1 satisfying

∫
Diff2(M)

|f |δ
C2 + |f−1|δ

C2 dµ(f) <∞ for all sufficiently small δ > 0. (**)

Suppose x ∈M has infinite Γ-orbit. Then for any continuous function ϕ ∈ C(M),

lim
n→∞

1

n

n∑
k=1

∫
Diff2(M)

ϕ(f(x)) dµ(k)(f) =

∫
M
ϕ dm.

Clearly if µ is finitely supported, then (**) is satisfied. Also assumption (**) is stronger than

(*).
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Proposition 2.4.2 (Orbit Closures). Let M be a closed surface, Γ ⊂ Diff2(M) be a subsemi-

group that preserves a smooth measure m on M . Let µ be a uniformly expanding probability

measure on Diff2
m(M) with µ(Γ) = 1 satisfying (**). Then every orbit of Γ is either finite or

dense.

The following lemma shows that if µ is uniformly expanding, then there exists a so-called

Margulis function.

Lemma 2.4.3. Suppose µ is a uniformly expanding measure. Then there exists a proper

continuous function u : M ×M r∆→ R+, c < 1, b > 0 and a positive integer n0 such that for

all (x, y) ∈M ×M r ∆,

∫
u(f(x), f(y))dµ(n0)(f) ≤ cu(x, y) + b.

Proof. The proof is similar to Lemma 10.8 of [Via14]. We can take

u(x, y) := d(x, y)−δ,

where δ ∈ (0, 1) is a small number to be determined. Fix x ∈ M and v ∈ TxM . Consider the

function

φn(δ) :=

∫
Diff2(M)

(
‖Dxf(v)‖
‖v‖

)−δ
dµ(n)(f).

This is a differentiable function in δ, with

φ′n(δ) = −
∫

Diff2(M)

(
‖Dxf(v)‖
‖v‖

)−δ
log

(
‖Dxf(v)‖
‖v‖

)
dµ(n)(f).

By uniform expansion, there exists C > 0 and N ∈ N (independent of x and v) such that

φ′N (0) = −
∫

Diff2(M)
log

(
‖Dxf(v)‖
‖v‖

)
dµ(N)(f) < −C.

Since φN (0) = 1, for small enough δ > 0 (can be chosen independent of x and v using the
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compactness of M and T 1M), we have

φN (δ) =

∫
Diff2(M)

(
‖Dxf(v)‖
‖v‖

)−δ
dµ(N)(f) < 1− Cδ

2
.

Take such a δ in the definition of u, and let n0 = N . Then we have

∫
Diff2(M)

(
‖Dxf(v)‖
‖v‖

)−δ
dµ(n0)(f) < 1− Cδ

2
.

Let c = 1−Cδ/4. Take ε > 0 small enough such that for all x, y ∈M×Mr∆ with d(x, y) < ε,

∫
d(f(x), f(y))−δ

d(x, y)−δ
dµ(n0)(f) < 1− Cδ

4
= c.

For 0 < d(x, y) < ε,

∫
u(f(x), f(y))dµ(n0)(f) =

∫
d(f(x), f(y))−δdµ(n0)(f) < cd(x, y)−δ = cu(x, y).

Now using the moment condition (**) (take a smaller δ > 0 if necessary), we can take some

b > 0 so that for all x, y ∈M with d(x, y) ≥ ε,

∫
d(f(x), f(y))−δdµ(n0)(f) ≤ b.

Hence for all (x, y) ∈M ×M r ∆,

∫
u(f(x), f(y))dµ(n0)(f) ≤ cu(x, y) + b.

Corollary 2.4.4. Suppose µ is a uniformly expanding measure and N ⊂M is a finite Γ-orbit.

Then there exists a proper continuous function fN : M rN → R+, c < 1, b > 0 and a positive
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integer n0 such that for all x ∈M rN ,

∫
fN (f(x))dµ(n0)(f) ≤ cfN (x) + b.

Here c and b depend only on the size of N . Moreover, for each x ∈ M r N , there exists a

positive integer n(x) such that for all n > n(x),

(µ(n) ∗ δx)(fN ) =

∫
fN (f(x))dµ(n)(f) ≤ b1,

where b1 = b1(b, c). For each compact subset F ⊂ M r N , we can take n(x) such that

supx∈F n(x) <∞.

Proof. Let u : M ×M r ∆ → R+ be the function as in Lemma 2.4.3 with the corresponding

c < 1 and b > 0, and define the function fN : M rN → R by

fN (x) :=
1

|N |
∑
y∈N

u(x, y).

Take the positive integer n0 as in Lemma 2.4.3. Then for all x ∈M rN ,

∫
fN (f(x))dµ(n0)(f) =

1

|N |

∫ ∑
y∈N

u(f(x), y)dµ(n0)(f)

=
1

|N |

∫ ∑
y∈N

u(f(x), f(y))dµ(n0)(f) ≤ cfN (x) + b.

Here we used that N is Γ-invariant in the second equality. This gives the first assertion.

For the second assertion, from the above, for all positive integer k and x ∈M rN ,

(µ(kn0) ∗ δx)(fN ) =

∫
fN (f(x))dµ(kn0)(f) ≤ ckfN (x) +

b

1− c
.
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Therefore for all n ≥ 0,

(µ(n) ∗ δx)(fN ) =

∫
fN (f(x))dµ(n)(f) ≤ cbn/n0cµ(i) ∗ δx(fN ) +

b

1− c
,

where i := n− n0bn/n0c < n0. Now for any compact F ⊂ M rN , there exists some positive

integer mF such that for all n > mF ,

cbn/n0cµ(i) ∗ δx(fN ) <
b

1− c
for all 0 ≤ i ≤ n0, x ∈ F.

Then for any n > mF and x ∈ F ,

(µ(n) ∗ δx)(fN ) ≤ 2b

1− c
=: b1.

Corollary 2.4.5. Suppose µ is a uniformly expanding measure and N ⊂M is a finite Γ-orbit.

Take fN , c, b as in Corollary 2.4.4. Suppose ν is an ergodic µ-stationary measure on M with

ν({fN <∞}) > 0. Then ∫
fN (x)dν(x) ≤ B,

where B depends only on b, c.

Proof. For each positive integer n, let fN ,n := min{fN , n}. By the Birkhoff ergodic theorem,

for µN × ν-a.e. (ω, x) ∈ ΓN ×M ,

lim
m→∞

1

m

m∑
k=1

fN ,n(fkω(x)) =

∫
fN ,n(x)dν(x),

where for ω = (ω0, ω1, . . .) ∈ ΓN, fkω := ωk−1 ◦ ωk−2 ◦ · · · ◦ ω0. Pick a point x0 ∈ M r N

such that the convergence holds for µN-a.e. ω ∈ ΓN (note that we can pick such x0 /∈ N since

ν({fN < ∞}) = ν(M r N ) > 0). By Egorov’s theorem, we can take a subset Γ′ ⊂ ΓN with

µN(Γ′) ≥ 1/2 such that at x = x0, the convergence is uniform on ω ∈ Γ′. Then there exists a
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positive integer mn such that for all m > mn and ω ∈ Γ′,

1

m

m∑
k=1

fN ,n(fkω(x0)) ≥ 1

2

∫
fN ,n(x)dν(x).

Integrating over ω ∈ ΓN, we have for all m > mn,

1

m

m∑
k=1

∫
fN ,n(f(x0))dµ(k)(f) ≥ 1

4

∫
fN ,n(x)dν(x).

By Corollary 2.4.4, for large enough m, the left hand side is at most some constant B′ = B′(b, c).

Therefore for all n, ∫
fN ,n(x)dν(x) ≤ 4B′.

Taking the limit n→∞, we have the assertion.

Proposition 2.4.6. The number of points with finite Γ-orbit is countable.

Proof. It suffices to show that for each positive integer n, there are finitely many Γ-orbits of size

n. Suppose the contrary that there are infinitely many Γ-orbits of size n. Then by compactness

of M , they have an accumulation point x ∈M , hence there exists a sequence of points xi ∈M

with finite Γ-orbit of size n such that d(xi, xi+1)→ 0 as i→∞. Fix an ε = ε(B, n, δ) > 0 (to

be determined later), and a large enough j such that d(xj , xj+1) < ε. By deleting finitely many

points from the sequence if necessary, we may assume xj and xj+1 are in different Γ-orbits. For

each i ∈ N, let νi be the ergodic Γ-invariant (hence µ-stationary) measure on M supported on

the Γ-orbitNi of xi with uniform distribution, i.e. νi(x) = 1/n for each x ∈ Ni, and let fi := fNi

be the function defined in Corollary 2.4.4 with the corresponding upper bound B = B(b, c) as

in Corollary 2.4.5. As xj+1 /∈ Nj , fj(xj+1) < ∞. Hence νj+1(fj < ∞) ≥ 1/n > 0. Therefore

by Corollary 2.4.5, ∫
fj(x)dνj+1(x) ≤ B. (***)

On the other hand, recall from definition that fj(x) = 1
|Nj |

∑
y∈Nj u(x, y) where u(x, y) =
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d(x, y)−δ for some δ > 0 chosen in the proof of Lemma 2.4.3. Thus

∫
fj(x)dνj+1(x) =

1

n2

∑
x∈Nj+1

∑
y∈Nj

u(x, y) ≥ 1

n2
u(xj+1, xj) >

1

n2
ε−δ.

Taking ε small enough such that ε−δ ≥ 2Bn2, this leads to a contradiction to (***).

Define

µ(n) :=
1

n

n∑
k=1

µ(k).

Lemma 2.4.7. Let N be a finite Γ-orbit in M . The for any ε > 0, there exists an open set

ΩN ,ε containing N with (ΩN ,ε)
c compact such that for any compact F ⊂M rN there exists

a positive integer nF , such that for all x ∈ F and n > nF , we have

(µ(n) ∗ δx)(ΩN ,ε) < ε.

Proof. The proof follows that of Proposition 3.3 in [EMM15]. Take the function fN : MrN →

R+ as in Corollary 2.4.4 with the corresponding c < 1, b > 0 and positive integer n0. Let

ΩN ,ε :=

{
x ∈M : fN (x) >

1

ε

(
2b

1− c
+ 1

)}
.

By Corollary 2.4.4, for each compact subset F ⊂ M rN , there exists b1 = 2b/(1− c) > 0

and positive integer mF such that for all n > mF and x ∈ F ,

(µ(n) ∗ δx)(fN ) ≤ b1.

Therefore there exists a positive integer nF ≥ mF such that for all n > nF and x ∈ F ,

(µ(n) ∗ δx)(fN ) ≤ b1 + 1.
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Thus for all n > nF , x ∈ F and L > 0, we have

(µ(n) ∗ δx)({p ∈M : fN (p) > L}) < b1 + 1

L
.

Therefore by the choice of ΩN ,ε, we know that (µ(n) ∗ δx)(ΩN ,ε) < ε. Moreover, it is clear from

the definition of fN and the choice of u in Lemma 2.4.3 that

(ΩN ,ε)
c =

{
x ∈M : fN (x) ≤ 1

ε

(
2b

1− c
+ 1

)}

is compact.

Proof of Proposition 2.4.1. Assume that the conclusion of the assertion does not hold. Then

there exists ϕ ∈ C(M), ε > 0, x ∈ M with infinite Γ-orbit and a subsequence nk → ∞ such

that

|(µ(nk) ∗ δx)(ϕ)−m(ϕ)| ≥ ε.

By compactness of the space of probability measures on M with the weak-* topology, we may

assume that µ(nk) ∗ δx → ν for some probability measure ν.

First note that ν is a µ-stationary measure. By Proposition 2.4.6, there are at most countably

many finite Γ-orbits. Therefore by Proposition 2.3.1, we have the ergodic decomposition of ν:

ν =
∑
N⊂M

aN νN + am,

where the sum is over all finite Γ-orbit N . Here a, aN ∈ [0, 1], and νN is the probability

measure supported on the finite Γ-orbit N with uniform distribution. It remains to show that

aN = 0 for all finite Γ-orbit N .

For each finite Γ-orbit N , as x /∈ N by assumption, we may apply Lemma 2.4.7 with N

and compact F = {x}. Then for any ε > 0, there exists a positive integer nx such that for all

n > nx, (µ(n) ∗ δx)((ΩN ,ε)
c) ≥ 1− ε. Passing to the limit along the subsequence nk →∞, we
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have

ν((ΩN ,ε)
c) ≥ 1− ε.

As ε > 0 is arbitrary, we have ν(N ) = 0. Hence aN ≤ ν(N ) = 0.

Proof of Proposition 2.4.2. This is an immediate consequence of Proposition 2.4.1, as every

nonempty open subset of M has positive volume.

2.5 Geometric interpretation of uniform expansion

In the rest of the paper, we study how to verify uniform expansion in concrete settings. In this

section, we give a geometric perspective of uniform expansion by visualizing it on the hyperbolic

disk.

2.5.1 Cartan decomposition and hyperbolic geometry

Let F ∈ SL2(R). Throughout we identify the real projective line P1 = P1(R) with R/πZ as

metric spaces, i.e. we identify each line in R2 through the origin with the angle it makes with

the positive horizontal axis. Recall that the Cartan decomposition of F is given by

F = r−ϕaλrθ, where rθ =

 cos θ sin θ

− sin θ cos θ

 and aλ =

λ 0

0 λ−1

 ,

for some λ ≥ 1 and ϕ, θ ∈ S1 = R/2πZ. Moreover,

λ = ‖F‖ := sup
v∈R2r{0}

‖Fv‖
‖v‖

is the (operator) norm of the matrix F . We remark that if λ = ‖F‖ > 1, then ϕ and θ are

uniquely defined modulo π, i.e. correspond to a unique element in P1. We call θ ∈ P1 the
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expanding direction of F since

‖F (θ)‖ = sup
θ′∈P1

‖F (θ′)‖ = λ,

where F (θ) is the vector F

cos θ

sin θ

. It is easy to see that if we let θF := θ + π/2 ∈ P1, then

‖F (θF )‖ = inf
θ′∈P1

‖F (θ′)‖ = λ−1.

Hence for ‖F‖ > 1, we call θF = θ + π/2 ∈ P1 the contracting direction of F . Notice also that

ϕ ∈ P1 and ϕ+ π/2 ∈ P1 are the contracting and expanding directions of F−1.

In certain computation we find it helpful to have an explicit formula to compute the con-

traction direction and the norm given the matrix F ∈ SL2(R). This is given by the following

simple lemma.

Lemma 2.5.1. Let F =

a b

c d

 ∈ SL2(R) with ‖F‖ > 1. Then

(a) the contracting direction θF ∈ P1 satisfies

tan 2θF =
2(ab+ cd)

a2 + c2 − b2 − d2
,

here we follow the convention that 1/0 =∞ and that tanϕ =∞ implies ϕ = π/2 ∈ P1.

(b) The norm λ := ‖F‖ satisfies

λ2 + λ−2 = a2 + b2 + c2 + d2.
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In particular, if a2 + b2 + c2 + d2 � 1, then

λ ∼
√
a2 + b2 + c2 + d2.

Proof. Part (a) is a straightforward computation by considering the function

f(θ) := ‖F (θ)‖2 =

∥∥∥∥∥∥∥∥∥

a b

c d


cos θ

sin θ


∥∥∥∥∥∥∥∥∥

2

.

Notice that for ‖F‖ > 1, f is not a constant function, and the expanding and contracting

directions are precisely the critical points of f , i.e. when f ′(θ) = 0.

For part (b), we observe that

tr(FTF ) = a2 + b2 + c2 + d2.

On the other hand, if we write F = r−ϕaλrθ, then

FTF = (r−θaλrϕ)(r−ϕaλrθ) = r−θa
2
λrθ.

Hence its trace equals λ2 + λ−2.

We also find it helpful to think of each F ∈ SL2(R) as a point of the unit tangent bundle of

the hyperbolic plane in the disk model T 1D, using the identification T 1D ↔ PSL2(R) :=

SL2(R)/{±I} (Figure 2.2). Recall that the group PSL2(R) is the group of orientation-

preserving isometries of the hyperbolic plane H2 := {z ∈ C : Im(z) > 0}, which can be identified

isometrically with the hyperbolic disk D := {w ∈ C : |w| < 1} via the map z 7→ (z − i)/(z + i).

PSL2(R) acts simply transitively on the unit tangent bundle T 1D, hence one can identify

PSL2(R) with T 1D so that the identity element e corresponds to the unit vector based at

the origin pointing rightward. Moreover the identification is such that the isometry g on T 1D
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corresponds to the right multiplication by the inverse g−1 on PSL2(R). We visualize the base

point on the disk model D↔ SO(2)\SL2(R). For instance, the matrix F = r−ϕaλrθ ∈ SL2(R)

corresponds to the point PF ∈ D with polar coordinates (2 log λ, 2θ) (the first coordinate mea-

sured in hyperbolic distance) and the unit tangent vector with angle 2(θ−ϕ) from the positive

real axis.

2θ

−2ϕ
PF

2 log λ

D

Figure 2.2: The matrix F = r−ϕaλrθ ∈ SL2(R) in the hyperbolic disk

Hence one can read off the norm of F from the distance between PF and the origin, and

read off the contracting direction from the angle from the positive axis.

Now we relate this picture with uniform expansion. From now on, we assume that µ is finitely

supported, so that the uniform expansion condition reduces to a finite sum. For simplicity, for

the moment we also assume that the maps in the support of µ have the same mass. Let

Ω := {f1, f2, . . . , fd} ⊂ Diff2(M) be the support of µ. Then µ is uniformly expanding if there

exists C > 0 and N ∈ N such that for all x ∈M and v ∈ TxM ,

∑
ω∈ΩN

log
‖DxfNω (v)‖
‖v‖

> C.

Here we recall that for ω = (ω1, ω2, . . . , ωN ) ∈ ΩN and 1 ≤ i ≤ N , f iω := ωi ◦ ωi−1 ◦ · · · ◦ ω1.
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Note that by picking a measurably varying basis for the tangent bundle TM , we can identify

Dxf
N
ω as an element in SL2(R). Note that if θ ∈ P1 is the contracting direction of Dxf

N
ω ,

then log ‖DxfNω (θ)‖ < 0. In particular if for some x ∈ M , θ ∈ P1 is close to the contracting

direction of Dxf
N
ω for many words ω ∈ ΩN , then uniform expansion cannot hold. Hence

verifying uniform expansion amounts to checking that the contracting directions of Dxf
N
ω are

“spread out” enough. On the hyperbolic disk, for each x ∈M , we can draw the matrices Dxf
N
ω

as endpoints of a tree from the origin, where each node with graph distance i from the origin

corresponds to a matrix Dxf
i
ω (Figure 2.3, the dashed lines indicate the contracting directions

of Dxf
N
ω for N = 3). Hence verifying uniform expansion reduces to studying the geometry of

the contracting directions.

Figure 2.3: The tree representing the random walk after 3 steps

2.5.2 Estimates on changes of the contracting directions

The following lemma provides a lower bound on the expansion of a given matrix F ∈ SL2(R)

in the direction θ, depending on the norm of F and how far θ is from the contracting direction

of F .

62



Lemma 2.5.2. For all F ∈ SL2(R) with norm ‖F‖ > 1 and contracting direction θF ∈ P1, we

have

‖F (θ)‖ ≥ 2

π
‖F‖ · d(θ, θF ) for all θ ∈ P1.

Here we recall that the metric d on P1 is given by the identification P1 ↔ R/πZ.

Proof. By the Cartan decomposition one may assume that F is a diagonal matrix with entries

λ and λ−1, with λ = ‖F‖. The lemma now follows from a direct calculation.

For matrices M1,M2 ∈ SL2(R), the following lemma shows that if M2 has large norm λ2,

then as long as the contracting direction of M1 is far away from the contracting direction of

M−1
2 , as we vary the contracting direction of M1, the contracting direction of the product

M1M2 changes by 1/λ2
2 of that amount.

Lemma 2.5.3. Let M1,M2 ∈ SL2(R). Let λi = ‖Mi‖ > 1 for i = 1, 2 and ϕ = θM1
+

π/2− θ
M−1

2
, i.e. ϕ is the distance between the contracting direction of M1 and the expanding

direction of M−1
2 .

(a) If ‖M1M2‖ > 1, then
dθM1M2

dθM2

= 1,

where we treat θM1M2
as a function of θM2

by fixing M1, θ
M−1

2
and λ2.

(b) If λ2 � 1 and d(ϕ, π/2) & λ−1
2 , then

dθM1M2

dθM1

∼ 2(1 + k cos 2ϕ)

(k + cos 2ϕ)2

1

λ2
2

, where k =
λ2

1 + λ−2
1

λ2
1 − λ

−2
1

= 1 +
2

λ4
1 − 1

.

Here we treat θM1M2
as a function of θM1

by fixing θ
M−1

1
, λ1 and M2. Furthermore, if

λ1 � 1 and d(ϕ, π/2) & λ−1
1 as well, then

dθM1M2

dθM1

∼ 2

(1 + cos 2ϕ)

1

λ2
2

.
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Proof. For (a), write M2 in its Cartan decomposition M2 = r−ϕ2aλ2
rθ2

, and write M1r−ϕ2aλ2

in its Cartan decomposition

M1r−ϕ2aλ2
= r−ϕ′aλ′rθ′ .

Then

M1M2 = M1r−ϕ2aλ2
rθ2

= r−ϕ′aλ′rθ′+θ2
.

By the uniqueness of the Cartan decomposition (up to ±I), we have θM1M2
= θM2

+ θ′, where

θ′ depends only on M1, ϕ2 = θ
M−1

2
and λ2, hence the result of (a). This statement can be

visualized on the hyperbolic disk (Figure 2.4).

dθM2

dθM1M2

2 log λ2

2 log λ1

2 log λ1

D

Figure 2.4: The change of θM1M2
as θM2

varies.

For (b), the assumptions d(ϕ, π/2) & λ−1
2 and λ1, λ2 > 1 imply that ‖M1M2‖ > 1. Thus

θM1M2
is well-defined. By applying the Cartan decomposition, we may, without loss of gener-

ality, assume that θ := θM1M2
is the contracting direction of

λ1 0

0 λ−1
1


 cosϕ sinϕ

− sinϕ cosϕ


λ2 0

0 λ−1
2

 .

Note that
dθM1M2

dθM1

=
dθ

dϕ
.
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The statement can be illustrated on the hyperbolic disk (Figure 2.5).

dθ dϕ

2 log λ2

2 log λ1

2 log λ1

2ϕ

D

Figure 2.5: The change of θ as ϕ varies.

Using Lemma 2.5.1(a), one computes directly that

cot 2θ =
1

2
(λ2

2 + λ−2
2 ) cot 2ϕ+

1

2

(λ2
1 + λ−2

1 )(λ2
2 − λ

−2
2 )

λ2
1 − λ

−2
1

csc 2ϕ.

Hence upon taking derivative, one gets

dθ

dϕ
=

(λ2
1+λ−2

1 )(λ2
2−λ

−2
2 )

λ2
1−λ

−2
1

cos 2ϕ+ (λ2
2 + λ−2

2 )

2 sin2 2ϕ+ 1
2

(
(λ2

1+λ−2
1 )(λ2

2−λ
−2
2 )

λ2
1−λ

−2
1

+ (λ2
2 + λ−2

2 ) cos 2ϕ

)2
.

Thus for λ2 � 1, let k = (λ2
1 + λ−2

1 )/(λ2
1 − λ

−2
1 ), then

dθ

dϕ
∼ 2(1 + k cos 2ϕ)

(k + cos 2ϕ)2

1

λ2
2

.

In addition, by taking λ1 � 1, we have k ∼ 1, so

dθ

dϕ
∼ 2

(1 + cos 2ϕ)

1

λ2
2

.

It is clear from Figure 2.5 that when ϕ is close to π/2, the random walk “backtracks” towards
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the origin, so we do not expect a good estimate on dθ/dϕ.

2.5.3 A general criterion for uniform expansion

We finish this section with a sufficient condition for uniform expansion on one step of the

random dynamics. As mentioned in the introduction, this criterion illustrates that overlap

of contraction directions and maps close to rotations are essentially the two obstructions to

uniform expansion. Even though we will not use this criterion in the rest of the paper, one may

consider the verification in the next few sections as proving a more refined version of Proposition

2.5.4 (depending on the specific features of each application) and the verification of this more

refined criterion.

Given F ∈ SL2(R), recall that we define λF := ‖F‖ to be the norm of F with λF > 1, and

θF ∈ P1 to be the contracting direction.

Proposition 2.5.4. For all λcrit > 0, λmax > 0 and small enough ε > 0 satisfying
1

sin ε

√
2 +

1

ε
<

λcrit ≤ λmax, there exists η = η(λcrit, λmax, ε) ∈ (0, 1) such that if for all (x, θ) ∈ T 1M ,

µ({f : d(θDxf , θ) > ε and λDxf > λcrit}) > η, and λDxf ≤ λmax for µ-a.s. f,

then µ is uniformly expanding. Furthermore, η can be made explicit.

We think of ε as measuring the separation of the contracting directions at each point x ∈M ,

λcrit as measuring how far Dxf is from a rotation, and λmax as the maximum norm over all

the points x ∈M and all the possible maps f in the support of µ.

The idea of the proposition is that if at every point, the contracting directions of the

diffeomorphisms are spread out enough and most of the diffeomorphisms are far from being

a rotation, then with high probability the random walk does not backtrack. Lemma 2.5.3(b)

and the next two lemma then tell us that the contracting directions of the random walk will

eventually be spread out as well. In this case, as long as none of the norms dominate the others

(bounded by λmax), we can obtain uniform expansion. In particular, as we will see, η is an
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increasing function of λmax and a decreasing function of λcrit and ε.

Lemma 2.5.5. Fix m > 1. Let M1,M2 ∈ SL2(R). Let λ := ‖M1‖ > 1 and τ := ‖M2‖ > 1

be the norm of M1 and M2, ϕ = θM1
+ π/2− θ

M−1
2

be the difference between the contracting

direction of M1 and the expanding direction of M−1
2 . Then the norm of the product M1M2 is

at least λτ/m if and only if

cos 2ϕ ≥ 2((λτ/m)2 + (λτ/m)−2)

(λ2 − λ−2)(τ2 − τ−2)
− λ2 + λ−2

λ2 − λ−2
· τ

2 + τ−2

τ2 − τ−2
.

In particular, if λ >
√
m, τ >

√
m and | cosϕ| ≥ 1/m, then the norm of M1M2 is at least

λτ/m.

Proof. The first equivalence is a calculation using the Cartan decomposition. Note that the

norm λ of a matrix

a b

c d

 ∈ SL2(R) is the unique root of

λ2 + λ−2 = a2 + b2 + c2 + d2

with λ ≥ 1. In particular λ is an increasing function of a2 + b2 + c2 + d2. Now the norm of

M1M2 is the same as that of

λ 0

0 λ−1


 cosϕ sinϕ

− sinϕ cosϕ


τ 0

0 τ−1

 =

 λτ cosϕ λτ−1 sinϕ

−λ−1τ sinϕ λ−1τ−1 cosϕ

 .

Thus ‖M1M2‖ ≥ λτ/m if and only if

(λτ cosϕ)2 + (λτ−1 sinϕ)2 + (λ−1τ sinϕ)2 + (λ−1τ−1 cosϕ)2 ≥
(
λτ

m

)2

+

(
λτ

m

)−2

. (2.5.1)

Rearranging (2.5.1) gives the first assertion. Finally, the left hand side of (2.5.1) is an increasing

function of cos2 ϕ for λ > 1 and τ > 1. One can verify directly that (2.5.1) holds when λ >
√
m,
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τ >
√
m, cos2 ϕ = 1/m2, therefore it also holds for cos2 ϕ ≥ 1/m2.

The next lemma controls the contracting direction of M1M2 assuming no backtracking.

Lemma 2.5.6. Fix m > 1 large (an explicit lower bound will be obtained in the proof). Let

M1,M2 ∈ SL2(R). Let λ := ‖M1‖ > 1 and τ := ‖M2‖ > 1, ϕ = θM1
+ π/2 − θ

M−1
2
∈ P1 =

R/πZ as in the previous lemma. If | cosϕ| ≥ 1/m and τ ≥ m,

d(θM2
, θM1M2

) ≤ m2

τ2
.

If we further assume that τ ≥
√

2m, the conclusion holds for all m > 1.

Proof. Note that if ϕ = 0, d(θM2
, θM1M2

) = 0. Therefore we need to give an upper bound on the

increment of θM1M2
as we vary ϕ within the given range. Again by the Cartan decomposition,

it suffices to consider the matrix

λ 0

0 λ−1


 cosϕ sinϕ

− sinϕ cosϕ


τ 0

0 τ−1

 =

 λτ cosϕ λτ−1 sinϕ

−λ−1τ sinϕ λ−1τ−1 cosϕ

 ,

and give an upper bound on the absolute value of its contracting direction θ. By Lemma 2.5.1

(a), one obtains,

tan 2θ =
(λ2 − λ−2) sin 2ϕ

1
2(λ2 + λ−2)(τ2 − τ−2) + 1

2(λ2 − λ−2)(τ2 + τ−2) cos 2ϕ
.

Since |2θ| ≤ | tan 2θ|, and also the right hand side is an odd function of ϕ, it remains to show

that for ϕ ∈ [0, π/2] with | cosϕ| ≥ 1/m,

f(ϕ) :=
(λ2 − λ−2) sin 2ϕ

(λ2 + λ−2)(τ2 − τ−2) + (λ2 − λ−2)(τ2 + τ−2) cos 2ϕ
≤ m2

τ2
. (2.5.2)

Clearly | cosϕ| ≥ 1/m if and only if cos 2ϕ ≥ −1 + 2/m2.
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Case 1: λ ≤ τ . Then

(λ2 + λ−2)(τ2 − τ−2) ≥ (λ2 − λ−2)(τ2 + τ−2).

Using the fact that cos 2ϕ ≥ −1 + 2/m2, the denominator of f(ϕ) has a lower bound

(λ2 + λ−2)(τ2 − τ−2) + (λ2 − λ−2)(τ2 + τ−2) cos 2ϕ ≥ (λ2 − λ−2)(τ2 + τ−2)(1 + cos 2ϕ)

≥ 2

m2
(λ2 − λ−2)τ2,

and (2.5.2) holds.

Case 2: λ ≥ τ . We let k := (λ2 + λ−2)/(λ2 − λ−2) > 1 and write

f(ϕ) =
sin 2ϕ

k(τ2 − τ−2) + (τ2 + τ−2) cos 2ϕ
.

Since λ ≥ τ ,

(λ2 + λ−2)(τ2 − τ−2) ≤ (λ2 − λ−2)(τ2 + τ−2),

and therefore k(τ2 − τ−2) ≤ (τ2 + τ−2). Now compute

f ′(ϕ) = 2
k(τ2 − τ−2) cos 2ϕ+ (τ2 + τ−2)

(k(τ2 − τ−2) + (τ2 + τ−2) cos 2ϕ)2
> 0.

On the other hand, note that the denominator of f(ϕ) is positive for ϕ ∈ [0, π/2] with | cosϕ| ≥

1/m:

(λ2 + λ−2)(τ2 − τ−2) + (λ2 − λ−2)(τ2 + τ−2) cos 2ϕ

> (λ2 − λ−2)[(τ2 − τ−2) + (τ2 + τ−2) cos 2ϕ]

≥ (λ2 − λ−2)[(τ2 − τ−2) + (τ2 + τ−2)(−1 + 2/m2)]

≥ (λ2 − λ−2)

(
2

m2
(τ2 + τ−2)− 2τ−2

)
.
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Since τ ≥ m, 2τ2/m2 ≥ 2τ−2, and hence the right hand side is positive. Therefore within

the given range of ϕ, f(ϕ) is a smooth increasing function of ϕ, hence its maximum occurs for

ϕ = ϕ0, where ϕ0 ∈ [0, π/2] is such that cos 2ϕ0 = −1 + 2/m2, or equivalently | cosϕ0| = 1/m.

Now

sin 2ϕ0 = 2 sinϕ0 cosϕ0 <
2

m
.

Therefore recalling that k > 1,

f(ϕ0) =
sin 2ϕ0

k(τ2 − τ−2) + (τ2 + τ−2) cos 2ϕ0
<

2/m

(τ2 − τ−2) + (τ2 + τ−2)(−1 + 2/m2)

=
m2

τ2

(
1/m

1− (m2 − 1)τ−4

)
.

Finally, as τ ≥ m, we have

1/m

1− (m2 − 1)τ−4
≤ 1/m

1− (m2 − 1)m−4
=

m3

m4 + 1−m2
.

As m→∞, the right hand side goes to 0, therefore for large enough m, it is less than 1, hence

for large enough m (can take, say, m > 1.4),

f(ϕ0) ≤ m2/τ2,

and the result follows. If we assume that τ ≥
√

2m, then we have instead

1/m

1 + (1−m2)τ−4
≤ 1/m

1 + (1−m2)m−4/4
=

m3

m4 + (1−m2)/4
.

The right hand side is a smooth decreasing function for all m > 1 and is exactly 1 at m = 1,

hence it is at most 1 for all m ≥ 1, and so f(ϕ0) ≤ m2/τ2 for all m ≥ 1.

Proof of Proposition 2.5.4. Let m0 := 1/ sin ε. Clearly λcrit > m0. Fix x ∈ M and θ ∈ T 1
xM .
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Consider n maps f1, f2, . . . , fn ∈ Diff2(M) satisfying

λDfi−1fi−2···f1(x)fi
> λcrit and λDfi−1fi−2···f1(x)fi

≤ λmax for all i,

(2.5.3)

and

d(θDxf1
, θ) > ε, d(θDfi−1fi−2···f1(x)fi

, θ(Dxfi−1fi−2···f1)−1) > ε for all i. (2.5.4)

For each i > 1, we apply Lemma 2.5.5 with M1 = Dfi−1fi−2···f1(x)fi, M2 = Dxfi−1fi−2 · · · f1

and m = m0. Then M1M2 = Dxfifi−1 · · · f1. Note that the corresponding

ϕ = θDfi−1fi−2···f1(x)fi
+ π/2− θ(Dxfi−1fi−2···f1)−1

satisfies | cosϕ| = | sin(θDfi−1fi−2···f1(x)fi
− θ(Dxfi−1fi−2···f1)−1)| ≥ | sin ε| = 1/m0. Also

‖Dfi−1fi−2···f1(x)fi‖ > λcrit > m0 >
√
m0

for all i, thus by induction using Lemma 2.5.5 we have

λfifi−1···f1
≥

λicrit

mi−1
0

(note that the right hand side is greater than λcrit > m0 >
√
m0.) Since λcrit >

√
2m0, by

Lemma 2.5.6, we get that

d(θDxfi−1fi−2···f1
, θDxfifi−1···f1

) ≤ m2
0

(
λicrit

mi−1
0

)−2

=

(
m0

λcrit

)2i

.
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Since d(θDxf1
, θ) > ε, we have

d(θDxfnfn−1···f1
, θ) > ε−

((
m0

λcrit

)2

+

(
m0

λcrit

)4

+ · · ·+
(
m0

λcrit

)2n
)
> ε− (m0/λcrit)

2

1− (m0/λcrit)
2
.

As
1

sin ε

√
2 +

1

ε
< λcrit, we have

(m0/λcrit)
2

1− (m0/λcrit)
2
< ε/2 (recall that m0 = 1/ sin ε). Thus

d(θDxfnfn−1···f1
, θ) > ε/2. By Lemma 2.5.2,

log ‖Dxfnfn−1 · · · f1(θ)‖ ≥ log

(
2

π
λfnfn−1···f1

d(θDxfnfn−1···f1
, θ)

)
> log

λncrit

mn−1
0

ε

π
.

By assumption we know that the µ(n)-probability that the chosen f1, . . . , fn satisfy (2.5.3) and

(2.5.4) is at least ηn. Moreover for µ(n)-almost every f , log ‖Dxf(θ)‖ ≥ −n log λmax. Hence

∫
log ‖Dxf(θ)‖dµ(n)(f) ≥ ηn

(
log

λncrit

mn−1
0

ε

π

)
+ (1− ηn)(−n log λmax). (2.5.5)

Take n large enough so that

log
λncrit

mn−1
0

ε

π
> 0.

Now fix such n, as the right hand side of (2.5.5) increases to log
λncrit

mn−1
0

ε

π
as η → 1, there is

some η ∈ (0, 1) such that the right hand side of (2.5.5) is positive.

2.6 Discrete random perturbation of the standard map

In this section, we show an example of a random dynamical system satisfying uniform expansion.

Let L ∈ R be a parameter. The standard map ΦL of the 2-torus T2 = R2/(2πZ)2, given by

ΦL(I, θ) = (I + L sin θ, θ + I + L sin θ),

is a well-known example of a chaotic system for which it is hard to show positivity of Lyapunov

exponents (with respect to the Lebesgue measure on T2). For L � 1, it has strong expansion
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and contraction on a large but non-invariant region. Nonetheless on two narrow strips near

θ = ±π/2, vectors can be arbitrarily rotated. The area of these “bad regions” goes to zero as

L → ∞, so one expect the Lyapunov exponent to be roughly logL, reflecting the expansion

rate in the rest of the phase space. However, positivity of Lyapunov exponents has not been

shown for any single L.

In [BXY17], the authors considered a kind of random perturbations of a family of maps

including the standard map, and showed positivity of Lyapunov exponents for this perturbation

for sufficiently large L. More precisely, under a linear change of coordinates x = θ, y = θ − I,

the standard map is conjugate to the map

F (x, y) = (L sinx+ 2x− y, x) (2.6.1)

on T2 = R2/(2πZ)2. Note that F preserves the Lebesgue measure on T2. They considered the

composition of random maps

Fnω = Fωn ◦ · · · ◦ Fω1 for n = 1, 2, 3, . . . ,

where

Fω = F ◦ Sω, Sω(x, y) = (x+ ω, y),

and the sequence ω = (ω1, ω2, . . .) ∈ ΩN is chosen with the probability measure µN, where

µ = Leb[−ε,ε] is the uniform distribution on the interval [−ε, ε] for some ε > 0.

For this Markov chain, any stationary measure is absolutely continuous with respect to

Lebesgue measure. Hence they were able to use this in the subsequent estimates of the Lyapunov

exponents, using the fact that the Lebesgue measure of the “bad regions” goes to zero as L→∞.

In this section, we consider a discrete version of the random perturbation, where at each

step, one can choose from only finitely many maps with equal probability. In this case it is not

a priori clear that every stationary measure is absolutely continuous with respect to Lebesgue.

In particular it is possible that the stationary measure may have positive measure concentrated
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in the bad region. In fact, one of our results is a classification of the ergodic stationary measures

of this perturbation.

We shall show that this random dynamical system satisfies uniform expansion. As a corollary

we show that the maps have a Lyapunov exponent ∼ logL. Moreover, from the previous

sections, it follows that the stationary measures are either finitely supported or Lebesgue, and

the orbits are either finite or dense.

Let r ∈ N and Ω := {kε : k = 0,±1,±2, . . . ,±r}. We consider the composition of random

maps

Fnω = Fωn ◦ · · · ◦ Fω1 for n = 1, 2, 3, . . . ,

where

Fω = F ◦ Sω, Sω(x, y) = (x+ ω, y),

and the sequence ω = (ω1, ω2, . . .) ∈ ΩN is chosen with the probability measure µN := 1

|Ω|
∑
ω∈Ω

δω

N

. Here δkε is the delta mass on Diff2(T2) at the map Fkε.

The main proposition in this section is the following.

Proposition 2.6.1. Let δ ∈ (0, 1). There exists an integer r0 = r0(δ) > 0 such that if r ≥ r0

and ε ∈ [L−1+δ, 1/(2r + 1)), then the measure µ =
1

|Ω|
∑
ω∈Ω

δω is uniformly expanding on T2

for all large enough L.

Throughout this section, estimates containing �,& and ∼ are with respect to L → ∞. More

precisely, we write

� f(L)� g(L) if |f(L)/g(L)| → ∞ as L→∞.

� f(L) & g(L) if lim inf
L→∞

|f(L)/g(L)| > 0 (possibly infinite).

� f(L) ∼ g(L) if f(L)/g(L)→ 1 as L→∞.

For A ∈ R, let G(A) :=

A −1

1 0

 ∈ SL2(R). Note that DF(x,y) =

L cosx+ 2 −1

1 0

 =
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G(L cosx+ 2). Let n ∈ N to be determined. By Lemma 2.5.1, we observe that if A� 1, then

‖G(A)‖ ∼ A, θG(A) ∼
π

2
, and θG(A)−1 ∼ 0.

The next lemma estimates the change of the contracting direction of products of G(Ai) as

we vary one of Ai and fix the rest, assuming Aj is large for all j 6= i.

Lemma 2.6.2. Let θn be the contracting direction of G(An)G(An−1) · · ·G(A2)G(A1). If

Ai � 1 for all i = 1, 2, . . . n, then for each i with 1 ≤ i ≤ n,

dθn
dAi
∼ 1

A2
1A

2
2 · · ·A

2
i

.

More precisely, let θ′n be the contracting direction of G(A′n)G(A′n−1) · · ·G(A′2)G(A′1).

For each i = 1, 2, . . . , n, if Aj = A′j � 1 for all j 6= i, and Ai, A
′
i � 1, then

θ′n − θn ∼
1

A2
1A

2
2 · · ·A

2
i−1

(
1

Ai
− 1

A′i

)
.

Proof. By Lemma 2.5.1(a), we know that

tan 2θG(A) = − 2

A
.

By differentiating in A,
dθG(A)

dA
=

1

A2 + 4
.

By Lemma 2.5.3 (a), for all 1 ≤ i ≤ n,

dθG(An)G(An−1)···G(Ai)

dAi
=
dθG(Ai)

dAi
=

1

A2
i + 4

.

Moreover, using Lemma 2.5.1(b), one can show that for all 1 ≤ i ≤ n,

‖G(Ai)G(Ai−1) · · ·G(A1)‖ ∼ A1A2 · · ·Ai
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since the top left corner of G(Ai)G(Ai−1) · · ·G(A1) is A1A2 · · ·Ai and the other three entries

are of strictly lower order if Ak � 1 for all 1 ≤ k ≤ i. Also notice that

θG(An)G(An−1)···G(Ai)
∼ π/2 and θ(G(Ai−1)G(Ai−2)···G(A1))−1 ∼ 0.

Apply Lemma 2.5.3(b) with M1 = G(An)G(An−1) · · ·G(Ai) and

M2 = G(Ai−1)G(Ai−2) · · ·G(A1), we have

dθn
dθG(An)G(An−1)···G(Ai)

∼ 1

(A1A2 · · ·Ai−1)2
.

Hence

dθn
dAi

=
dθn

dθG(An)G(An−1)···G(Ai)

dθG(An)G(An−1)···G(Ai)

dAi

∼ 1

(A1A2 · · ·Ai−1)2

1

A2
i + 4

∼ 1

A2
1A

2
2 · · ·A

2
i

.

The next lemma estimates the change of the contracting direction of DFnω if we fix the first

i− 1 letters in ω and change ωj for all j ≥ i.

Lemma 2.6.3. Let ω, ω′ ∈ ΩN, ε > L−1. Given (x, y) ∈ T2, for i = 0, 1, 2, . . . , n, let

� (xi, yi) := F iω(x, y) and (x′i, y
′
i) := F iω′(x, y),

� Ai := L cosxi−1 + 2 and A′i := L cosx′i−1 + 2 for i = 1, 2, 3, . . .,

� θ, θ′ be the contracting directions of G(An)G(An−1) · · ·G(A2)G(A1) and

G(A′n)G(A′n−1) · · ·G(A′2)G(A′1).

For each i = 1, 2, . . . , n, suppose Aj = A′j � 1 for all j < i, Aj , A
′
j � 1 for all j ≥ i and

Ai − A′i & εL/2. Then

θ − θ′ & 1

A2
1A

2
2 · · ·A

2
i−1

εL/2

AiA
′
i

. (a)
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As a result,

‖DFnω (θ′)‖ & Ai+1Ai+2 · · ·An
A1A2 · · ·Ai−1

εL/2

A′i
. (b)

Proof. Without loss of generality, assume that Ai > A′i. For all j ≥ i, let θj be the contracting

direction of

G(A′n)G(A′n−1) · · ·G(A′j)G(Aj−1)G(Aj−2) · · ·G(A1).

Then θ′ = θi. We also use the notation θn+1 := θ, the contracting direction of

G(An)G(An−1) · · ·G(A1). By Lemma 2.6.2, for all i ≤ j ≤ n,

θj − θj+1 ∼
1

A2
1A

2
2 · · ·A

2
j−1

(
1

Aj
− 1

A′j

)
.

For all j > i, since Aj , A
′
j � 1, Ai > A′i and ε > L−1, we have

θj − θj+1 ∼
1

A2
1A

2
2 · · ·A

2
j−1

(
1

Aj
− 1

A′j

)
� 1

A2
1A

2
2 · · ·A

2
i−1

εL/2

AiA
′
i

.
1

A2
1A

2
2 · · ·A

2
i−1

(
1

Ai
− 1

A′i

)
∼ θi − θi+1.

Therefore θj − θj+1 is dominated by θi − θi+1 for all i < j ≤ n. Hence

θ′−θ = θi−θn+1 = (θi−θi+1)+(θi+1−θi+2)+ · · · (θn−θn+1) ∼ 1

A2
1A

2
2 · · ·A

2
i−1

(
1

Ai
− 1

A′i

)
.

The second statement follows from the first by Lemma 2.5.2 since ‖G(An)G(An−1) · · ·G(A1)‖ ∼

AnAn−1 · · ·A1 by Lemma 2.5.1(b).

Proof of Proposition 2.6.1. We are now ready to prove the main proposition of the section. The

idea is as follows: for each point (x, y) ∈ T2, since the elements in Ω are of distance at least

ε ≥ L−1+δ apart, for each kε ∈ Ω, for all k′ε ∈ Ωr{kε}, all except possibly one of them satisfy

(let A(x) := L cosx+ 2 for x ∈ R/2πZ)

|A(x+ k′ε)− A(x+ kε)| & εL/2 and |A(x+ k′ε)| & Lδ. (2.6.2)
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Geometrically, this means that firstly, all except one of them has norm growing to infinity with

L, and the contracting directions of the corresponding differential maps

DF(x+ω,y) =

L cos(x+ ω) + 2 −1

1 0


are all pointing in roughly the vertical direction. Moreover, each of the contracting direction

is separated from all others (except one) by a significiant amount (∼ ε/‖F(x+ω,y)‖). Hence

after n steps, for many of the words ω ∈ Ωn, the contracting directions are close to the vertical

direction and yet well separated (Figure 2.6). Thus each θ ∈ P1 has distance from all but

one of these contracting direction bounded from below. From Lemma 2.6.3, we know that

the distance between the contracting directions of two words are dominated by their distance

at the first letter they differ, and yet the norm grows by at least Lδ after every step. Using

Lemma 2.5.2, as long as the word does not enter a bad region (where the contracting direction

is rotated drastically), the log expansion log ‖DFnω ‖ will eventually be large. Since most words

do not enter a bad region, and those that do enter a bad region admit a trivial lower bound

log ‖DFnω ‖ ≥ −n logL, eventually we will obtain positive expansion on average.

We now make the above discussion precise using the previous lemmas. For x ∈ R/2πZ, let

A(x) = L cosx+ 2. Recall that at each point (x, y) ∈ T2 = R2/(2πZ)2, the differential map of

F (x, y) = (L sinx+ 2x− y, x) is

DF =

L cosx+ 2 −1

1 0

 = G(A(x)).

Let ε ∈ [L−1+δ, 1/(2r + 1)). For each ω ∈ Ω = {kε : k = 0,±1,±2, . . . ,±r},

Fω = F ◦ Sω = (L sin(x+ ω) + 2(x+ ω)− y, x+ ω).
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θ

Figure 2.6: The random walk after 3 steps. The bold directions form a well-separated ”tree”.

Hence the differential DFω is

L cos(x+ ω) + 2 −1

1 0

 = G(A(x+ ω)).

Fix a point (x, y) ∈ T2. For ω, ω′ ∈ Ωn and 0 ≤ i ≤ n, let

(xi, yi) := F iω(x, y) and (x′i, y
′
i) := F iω′(x, y).

Let

Ai := L cosxi−1 + 2, and A′i := L cosx′i−1 + 2.
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We say that a word ω ∈ Ωn is long (with respect to (x, y) ∈ T2) if

|Ai| & Lδ for all 1 ≤ i ≤ n.

For each word ω ∈ Ωn, let

θω := θDFnω

be the contracting direction of the matrix DFnω .

Observe by (2.6.2) that for each long ω ∈ Ωn, there are at least (|Ω| − 2)(|Ω| − 1)n−1 long

words ω′ ∈ Ωn such that

|A1 − A′1| &
εL

2
.

By Lemma 2.6.3(a), since A1 ≤ L+ 2,

|θω − θω′ | &
εL/2

A′1A1
&
ε/2

A′1
.

Similarly, for all 1 ≤ i ≤ n, there are at least (|Ω| − 2)(|Ω| − 1)n−i long words ω′ ∈ Ωn such

that

ωj = ω′j for all j < i, and |Ai − A′i| &
εL

2
.

Thus again by Lemma 2.6.3(a),

|θω − θω′ | &
1

A2
1A

2
2 · · ·A

2
i−1

εL/2

AiA
′
i

&
1

A2
1A

2
2 · · ·A

2
i−1

ε/2

A′i
.

For all θ ∈ P1, take a long word ω ∈ Ωn that minimizes |θω − θ| (among long words). Then

from above, we know that for each 1 ≤ i ≤ n, there are at least (|Ω|−2)(|Ω|−1)n−i long words

ω′ ∈ Ωn such that

|θω′ − θ| &
1

2

1

A2
1A

2
2 · · ·A

2
i−1

ε/2

A′i
=

1

A2
1A

2
2 · · ·A

2
i−1

ε/4

A′i
.
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Hence by Lemma 2.5.2 (note that Aj = A′j for j < i since ωj = ω′j),

‖DFnω′(θ)‖ &
1

A2
1A

2
2 · · ·A

2
i−1

ε/4

A′i
· ‖DFnω′‖ &

1

A2
1A

2
2 · · ·A

2
i−1

ε/4

A′i
(A′1A

′
2 · · ·A

′
n)

&
A′i+1A

′
i+2 · · ·A

′
n

A1 · · ·Ai−1

ε

4
&

(Lδ)n−i

Li−1

L−1+δ

4

& Lδ(n−i+1)−i.

Thus for each direction θ ∈ P1, for each i = 1, 2, . . . , n, we have at least (|Ω|−2)(|Ω|−1)n−i

words ω in Ωn such that

log ‖DFnω (θ)‖ & (δ(n− i+ 1)− i) logL.

For the remaining |Ω|n − (|Ω| − 1)n + 1 words ω, we have

log ‖DFnω (θ)‖ ≥ −n logL.

Hence ∫
log ‖DFnω (θ)‖dµ(n)(ω) &

Ξ(|Ω|, n, δ)
|Ω|n

logL,

where Ξ(|Ω|, n, δ) =
n∑
i=1

(|Ω| − 2)(|Ω| − 1)n−i(δ(n− i+ 1)− i)− (|Ω|n − (|Ω| − 1)n + 1)n.

The coefficient of |Ω|n in Ξ(|Ω|, n, δ) is nδ−1, hence is positive if n > 1/δ. The coefficient of

|Ω|n−1 is −(δ+1)(n2 +1)+n. If n > 1/δ, for large enough r (hence large enough |Ω| = 2r+1),

we have Ξ(|Ω|, n, δ) > 1. Hence µ is uniformly expanding for all large enough r (depending only

on δ) and large enough L, with N := d1/δe and C = |Ω|−N logL. Moreover, for δ ∈ (1/3, 1),

we can take n = 3, and |Ω| ≥ 10δ + 7

3δ − 1
.
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2.7 Computer-assisted verification of uniform expansion

In this section we outline an algorithm to verify uniform expansion numerically, when µ is

finitely supported on Diff2(M). Uniform expansion is a priori an infinite condition in the sense

that there are infinitely many points on the manifold and infinitely many directions on each

fiber of the unit tangent bundle. Nonetheless since the maps in the support of µ are C2 and

the left hand side of the uniform expansion condition is Lipschitz in v, using the fact that the

unit tangent bundle T 1M is compact, one can take a finite grid on T 1M , verify the uniform

expansion at each grid point, and then prove uniform expansion on the whole T 1M by the

Lipschitz condition.

This algorithm checks a sufficient condition of uniform expansion when N = 1. Nonetheless,

by replacing µ(N) with µ, one may in principle apply the same algorithm to verify uniform

expansion for any N .

Let f1, . . . fd be the maps in the support of µ and µ = c1δf1
+ · · ·+ cdδfd for ci ∈ (0, 1]. For

each i = 1, 2, . . . , d, P ∈M and θ ∈ P1, we consider the function

Fi(P, θ) := log ‖DP fi(θ)‖.

Our goal is to verify that

F (P, θ) :=
d∑
i=1

ciFi(P, θ) > C (UE)

for some C > 0.

We now outline the algorithm.

Step 1: Choose local coordinates t1, t2 on M , and find CM , Cθ > 0 such that

∣∣∣∣∂Fi∂t
∣∣∣∣ < CM ,

∣∣∣∣∂Fi∂θ

∣∣∣∣ < Cθ

for t = t1, t2. Such constants exist since Fi is C1 and M is compact.
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Step 2: Fix some C > 0.

Step 3: Pick r, ρ > 0 such that rCM < C/4 and ρCθ < C/4.

Step 4: Take a finite grid G on the unit tangent bundle T 1M that is r-dense on the manifold and

ρ-dense on the unit tangent space T 1
PM for each grid point P ∈M .

Step 5: Verify (UE) for each grid point (P, θ) ∈ G.

Step 6: From the derivative bounds in Step 1 and the choices of r and ρ in Step 3, one can

conclude that (UE) holds with C replaced by C/4.

2.8 Outer automorphism group action on character variety

2.8.1 Introduction

In this section, we consider an example of a random dynamical system where the uniform

expansion property can be checked numerically using the algorithm outlined in Section 2.7.

Let Fn be a free group of rank n > 1, G be a compact Lie group. The natural volume form

on Hom(Fn, G) is invariant under Aut(Fn). This form descends to a natural finite measure λ

on the character variety Hom(Fn, G)//G that is invariant under Out(Fn). We refer the reader

to [Gol07] for more details about ergodic properties of this system, and the celebrated work of

Goldman [Gol97] for a detailed account in the case when Fn is replaced by the mapping class

group of a surface.

Goldman [Gol07] proved that in the case when G = SU(2) and n > 2, the Out(Fn)-action

on Hom(Fn, G)//G is ergodic. On the other hand, the action is not ergodic when n = 2, since

it preserves the surjective function

κ : Hom(Fn, G)//G→ [−2, 2]

[ρ] 7→ tr(ρ([X, Y ]))
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where X, Y is a pair of free generators of F2, and [X, Y ] := XYX−1Y −1 is the commutator of

X and Y . The ergodic components are the disintegration λs of λ on the fibers Xs := κ−1(s) of

κ for s ∈ [−2, 2].

In the case when n = 2, the topological dynamics of this action was studied by Previte

and Xia [PX00], who proved, in particular, that on each shell Xs, the Out(F2)-invariant sets

are either finite or dense. In fact, they classified all the finite Out(F2)-invariant sets, and

gave a condition for when the invariant set is dense. On the other hand, Brown [Bro98]

showed using standard KAM techniques that for any nontrivial cyclic subgroup Γ ⊂ Out(F2)

and s close enough to −2, there is a Γ-invariant set with positive measure on Xs that is not

dense. We refer our readers to [Gol97] and [PX02] for analogous analysis of the measurable and

topological dynamics of the mapping class group Out(π1(M))-action on the character variety

Hom(π1(M), SU(2))/SU(2).

The analysis in [PX00] relies crucially on the fact that Out(F2) is generated by Dehn twists.

In fact with minor modification their method also applies to the action of a subsemigroup

Γ ⊂ Out(F2) generated by at least two powers of distinct Dehn twists. In this section, we

consider a set of generators S of a semigroup Γ ⊂ Out(F2) that does not contain any Dehn

twists or powers of Dehn twists, and attempt to show that the Γ-invariant sets are finite or

dense by showing uniform expansion on S and applying Theorem D. The uniform expansion

property is checked using a computer program. For s close to 2, the expansion is large enough

that uniform expansion is observed after 1 iteration. However, for s close to −2, the expansion

cannot be checked numerically due to the limitation of computational power. We will verify

uniform expansion for a specific s as a proof of concept, though the same algorithm carries for

other s close to 2 as well.

More precisely, consider the following two elements of Out(F2):

τX : X 7→ X, Y 7→ XY, τY : X 7→ Y X, Y 7→ Y.

Note that τX and τY generate a subgroup 〈τX , τY 〉 that has index 2 in Out(F2). Let τABC :=
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τA ◦ τB ◦ τC where A,B,C ∈ {X, Y }. Define the subsemigroup

Γ = 〈fi : i = 1, 2, . . . , 16〉 ⊂ Out(F2),

where

� f1 = τXXXXY

� f2 = τXXXY Y ,

� f3 = τXXY Y Y ,

� f4 = τXY Y Y Y ,

� f5 = τY XXXX ,

� f6 = τY Y XXX ,

� f7 = τY Y Y XX ,

� f8 = τY Y Y Y X ,

and fi = f−1
17−i for i = 9, 10, . . . , 16. Now define the measure µ :=

1

16

(
16∑
i=1

δfi

)
on Out(F2).

The result of this section is the following.

Proposition 2.8.1. For s = 1.99, the measure µ is uniformly expanding as an action on the

surface Xs.

Corollary 2.8.2. For s = 1.99, the Γ-invariants sets on Xs are either finite or dense.
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2.8.2 Character variety as a subvariety of R3

We now describe the character variety Hom(F2, SU(2))//SU(2) in more explicit terms. The

character variety Hom(F2, SU(2))//SU(2) injects into R3 under the trace coordinates

Hom(F2, SU(2))//SU(2)→ R3

[ρ] 7→



tr(ρ(X))

tr(ρ(Y ))

tr(ρ(XY ))


.

This is injective, with image

X := {(x, y, z) ∈ R3 : −2 ≤ x2 + y2 + z2 − xyz − 2 ≤ 2}.

Hence we may identify Hom(F2, SU(2))//SU(2) with X. In these coordinates, the map κ :

Hom(F2, SU(2))//SU(2)→ [−2, 2] described in the introduction is then

κ(x, y, z) = x2 + y2 + z2 − xyz − 2.

For s ∈ [−2, 2], the ergodic components are

Xs := κ−1(s) = {(x, y, z) ∈ R3 : x2 + y2 + z2 − xyz − 2 = s}.

In trace coordinates, the maps τX and τY are

τX :



x

y

z


7→



x

z

xz − y


, τY :



x

y

z


7→



z

y

yz − x


.
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At each point P = (x, y, z), a normal vector is given by n(P ) = (2x − yz, 2y − zx, 2z − xy),

with the unit normal v3(P ) =
n(P )

‖n(P )‖
.

From [Gol07, Sect. 5.3], a cosymplectic structure on Xt can be given explicitly by (up to a

multiplicative constant)

(2x− yz)
∂

∂y
∧ ∂

∂z
+ (2y − zx)

∂

∂z
∧ ∂

∂x
+ (2z − xy)

∂

∂x
∧ ∂

∂y
.

Since Γ preserves the symplectic structre, if we take the metric ‖ · ‖P := ‖n(P )‖−1/2‖ · ‖

on TPXs, where ‖ · ‖ is the restriction of the Euclidean metric from R3 to the tangent space

TPXs, then for each f ∈ Out(F2), we have the area-preserving linear map

DP f : TPXs → Tf(P )Xs.

Note that each element f ∈ Out(F2) is the restriction of a map f0 : R3 → R3 to Xs in

terms of the trace coordinates. Therefore DP f can be expressed as the restriction of a volume-

preserving linear map DP f0 : R3 → R3, i.e. an element of SL3(R), to TPXs. For instance,

writing P = (x, y, z),

DP τX =



1 0 0

0 0 1

z −1 x


, DP τY =



0 0 1

0 1 0

−1 z y


,

both restricted to the tangent space TPXs.

2.8.3 Choice of metric

We will choose a convenient metric to work with. To do so, it suffices to give an orthonormal

basis at each point. For each P = (x, y, z) ∈ Xs, let n(P ) = (n1(P ), n2(P ), n3(P )) := (2x −

yz, 2y − zx, 2z − xy) be the normal vector. Consider the following three tangent vectors in
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TP (Xs)

v1(P ) =



0

n3(P )

−n2(P )


, v2(P ) =



−n3(P )

0

n1(P )


, v3(P ) =



n2(P )

−n1(P )

0


.

Clearly these are tangent vectors at P . Moreover since the normal vector

n(P ) = (n1(P ), n2(P ), n3(P ))

is nonzero, at least one of ni(P ), i = 1, 2, 3 is nonzero, thus at least two of v1(P ),v2(P ),v3(P )

are linearly independent. In fact, for s < 2, there is a positive lower bound c = c(s) such that

maxi=1,2,3 |ni(P )| ≥ c(s) for all P ∈ Xs, so at least two of v1(P ),v2(P ),v3(P ) have Euclidean

norm larger than c(s).

Now at each P ∈ Xs, we define a positive definite inner product 〈·, ·〉P on TPXs such that

{
vi(P )√
nk(P )

,
vj(P )√
nk(P )

}

form an orthonormal basis, where k ∈ {1, 2, 3} is the index that maximizes |nk(P )|, and {i, j, k}

form an even permutation of {1, 2, 3} (we will comment on the normalizing factor
√
nk(P ) in

the next section). The map P 7→ 〈·, ·〉P is smooth except along the curves on Xs where at

least two of x, y, z are equal. Therefore strictly speaking they do not form a smooth metric.

Nonetheless from the end of the previous paragraph, we know that there exists a constant

c′(s) > 0 such that

c′(s)−1〈·, ·〉 ≤ 〈·, ·〉P ≤ c′(s)〈·, ·〉,

where 〈·, ·〉 is the Euclidean inner product induced from R3. It is evident from the definition of

uniform expansion that it is invariant under change of equivalent metrics, so it suffices to verify
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uniform expansion with respect to {〈·, ·〉P }P∈Xs .

The advantage of considering this metric is that, with respect to this metric and the specific

orthonormal basis chosen above, DP τX and DP τY (and hence the compositions) are 2 × 2

matrices such that up to the factor nk(P ), the entries are polynomials in x, y, z. For instance,

DP τXv1(P ) = v1(τX(P )),

DP τXv2(P ) =
n1(P )

n3(τX(P ))
v1(τX(P )) +

n3(P )

n3(τX(P ))
v2(τX(P )),

DP τY v1(P ) =
n3(P )

n3(τY (P ))
v1(τY (P )) +

n2(P )

n3(τY (P ))
v2(τY (P )),

DP τY v2(P ) = v2(τY (P )).

The matrices with respect to other bases can be found using the identity

n1(P )v1(P ) + n2(P )v2(P ) + n3(P )v3(P ) = 0.

2.8.4 Derivative bounds

To choose the bounds CM and Cθ in the algorithm, it is necessary to compute bounds on

|∂Fi/∂t| and |∂Fi/∂θ| for Fi(P, θ) = log ‖DP fi(θ)‖ and local coordinates t = t1, t2 near P . If

we treat fi as a function R3 → R3, we can compute DP fi as an element Li of SL3(R).

With respect to the metric and the corresponding orthonormal basis chosen above, DP fi

can be written as a 2×2 matrix with entries being the square root of rational functions of x, y, z,

say DP fi =

ai,P bi,P

ci,P di,P

. For instance, if the orthonormal basis for P is
{v1(P ),v2(P )}√

n3(P )
and
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that of fi(P ) is
{v1(fi(P )),v2(fi(P ))}√

n3(fi(P ))
, we can write explicitly that

DP fi =
1√

n3(P )n3(fi(P ))

 (Liv1)2 (Liv2)2

−(Liv1)1 −(Liv2)1

 .

In particular,
√
n3(P )n3(fi(P ))DP fi has polynomial entries and

detDP fi = 1

(the primary reason to have the normalizing factor
√
nk(P ) is to ensure this matrix has de-

terminant 1.) Similar expressions can be obtained for the other points where the other two

orthonormal bases are chosen. Hence if we choose x and y to be the local coordinates near P

(corresponding to the v1 and v2 directions), the derivatives with respect to x and y can be

explicitly computed and bounded.

More explicitly, for M =

a b

c d

 ∈ SL2(R), let FM (θ) = log ‖M(θ)‖. Then

FM (θ) =
1

2
log

(
1

2
(a2 + b2 + c2 + d2) +

1

2
(a2 − b2 + c2 − d2) cos 2θ + (ab+ cd) sin 2θ

)
.

Thus ∂FM (θ)/∂t can be represented explicitly in terms of a, b, c, d, a′, b′, c′, d′ and θ, where

a′ = ∂a/∂t etc. Since for all P = (x, y, z) ∈ Xs, the coordinates x, y, z are in [−2, 2], while

a, b, c, d are polynomials in x, y, z divided by
√
n3(P )n3(fi(P )), all these can be explicitly

bounded. Furthermore by the choice of the orthonormal bases at P and fi(P ) we know that

|n3(P )| > |n1(P )|, |n2(P )| and similarly for |n3(fi(P ))|, we have that
√
n3(P )n3(fi(P )) is

bounded below by an explicit positive number depending only on s. We shall omit the explicit

expressions here as they are written in the program (see Program 1).
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2.8.5 Choice of Parameters in the verification

In this section we choose the parameters in the algorithm to check that µ is uniformly expanding.

Proof of Proposition 2.8.1. We verify uniform expansion using the algorithm from the previous

section. Let fi be the maps in the support of µ with i = 1, 2, . . . , d, where d = 16. We choose

the grid G in the following process: recall that

Xs = {(x, y, z) ∈ R3 : x2 + y2 + z2 − xyz − 2 = s}.

Let n(P ) = (n1(P ), n2(P ), n3(P )) = (2x − yz, 2y − zx, 2z − xy). Within the region {P ∈

M | |n3(P )| = maxk=1,2,3 |nk(P )|}, we use the x and y directions as local coordinates. This

corresponds to using v1 and v2 as an orthonormal coordinate system. Similarly for the other

two regions where |n1(P )| and |n2(P )| dominate. We verify uniform expansion for s = 1.99.

Step 1: We take CM = 600 and Cθ = 600.

(these are computed using the explicit expressions of ∂FM (θ)/∂t on a grid (Program 1)

and then a näıve bound on second derivatives of FM (θ). ).

Step 2: Fix C = 0.25.

Step 3: Let r = 0.0001 < C/(4CM ) and ρ = 0.0001 < C/(4Cθ).

Step 4: Take an r-dense grid on Xs using the specified local coordinates. We fix a ρ-grid in the

unit tangent space direction.

Step 5: We verify with Program 2 that (UE) holds on the grid with C = 0.25 as in Step 2.

Step 6: From the derivative bounds in Step 1 and the choices of r and ρ in Step 3, one can

conclude that (UE) holds on the whole surface with C replaced by C/4.

The programs were run on the University of Chicago Midway compute cluster partition broadwl.

Specification: 28 cores of Intel E5-2680v4 2.4 GHz. Memory: 64 GB. Runtime: 47714 seconds.
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Program 1 (C2 bounds in Step 1):

� Code: http://math.uchicago.edu/~briancpn/derivative_single.cpp

� Output: http://math.uchicago.edu/~briancpn/secondderivative.txt

Program 2 (C1 bounds and (UE) in Step 5):

� Code: http://math.uchicago.edu/~briancpn/actual.cpp

� Output: http://math.uchicago.edu/~briancpn/character_variety_test.txt
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CHAPTER 3

STATIONARY MEASURES ON VECTOR SPACES

3.1 Introduction

Let µ be a Borel probability measure on G = GL(V ), and let Γµ := 〈supp µ〉 ⊂ G be the

(topological) closure of the semigroup generated by the support of µ.

In this note, we are interested in studying the µ-stationary measures on the vector space V

with respect to the Γµ-action on V by left multiplication.

Definition. We say that a Borel probability measure ν on V is µ-stationary if µ ∗ ν = ν, i.e.

ν =

∫
GL(V )

g∗ν dµ(g).

Clearly if ν is Γµ-invariant then it is µ-stationary. Also note that since supp µ acts linearly

on V , the origin of V is a fixed point, so the delta mass δ0 at the origin of V is always a

µ-stationary probability measure on V . We would like to understand when there are other

µ-stationary probability measures on V , and if so whether we can classify all of them. In the

rest of this note, we say that a µ-stationary measure ν on V is nontrivial if ν 6= δ0.

In order to state our main classification result, we need the following two notions.

Definition. A Borel probability measure µ on GL(V ) has finite first moment if

∫
GL(V )

log max(‖g‖, ‖g−1‖)dµ(g) <∞.

Here ‖ · ‖ := ‖ · ‖GL(V ) is the operator norm on GL(V ) with respect to a fixed norm on V .

Definition. We define the top Lyapunov exponent of µ on a Γµ-invariant subspace W ⊂ V as

λ1,W = λ1,W (µ) := lim
n→∞

1

n

∫
GL(V )

log ‖g‖GL(W )dµ
(n)(g),
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where µ(n) := µ ∗ µ ∗ · · · ∗ µ is the n-th convolution power of µ, and for g ∈ GL(V ), ‖g‖GL(W )

denotes the operator norm of the restriction g|W in GL(W ).

The following result gives a necessary and sufficient condition for the existence of a nontrivial

µ-stationary measure on V .

Theorem 3.1.1. Let µ be a Borel probability measure onGL(V ) with finite first moment. Then

there exists a nontrivial µ-stationary measure ν on V if and only if there exist Γµ-invariant

subspaces W ′ ( W ⊂ V such that

(i) Γµ acts compactly on W/W ′, i.e. the image of ρW/W ′ : Γµ → GL(W/W ′) is compact,

(ii) either W ′ = 0, or the top Lyapunov exponent of µ on W ′ is negative,

(iii) the support of every µ-stationary probability measure on V is in W .

The author only knew afterwards that the main proposition (Proposition 3.5.5) was already

proved in the necessity direction of [Bou87, Thm. 5.1]. Theorem 3.1.1 follows directly from

Proposition 3.5.5 (see Section 3.6) (can be shown that (i) in [Bou87, Thm. 5.1] can be improved

to ensure d2 > 0 if d > 0).

The following result classifies the stationary measures on V in terms of the compact Γµ-

orbits on W/W ′.

Theorem 3.1.2. Suppose there is a nontrivial µ-stationary measure on V and let W ′ ( W ⊂ V

be the Γµ-invariant subspaces from Theorem 3.1.1. Then the map ν 7→ supp π∗ν gives a one-

to-one correspondence between

{ergodic µ-stationary measure on V } ↔ {compact Γµ-orbit in W/W ′},

where π : W → W/W ′ is the quotient map.

We can describe the inverse map in a more explicit way in terms of the asymptotic behavior

in law of the random walk on V induced by µ.
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Theorem 3.1.3. For any compact Γµ-orbit C in W/W ′, let mC be the Haar (probability)

measure supported on C. Let s : W/W ′ → W be a linear section, i.e. a linear map such that

π ◦ s = id. Then the weak-∗ limit

νC := lim
n→∞

µ(n) ∗ (s∗mC)

exists and does not depend on the choice of the section s. Moreover, the map C 7→ νC is the

inverse map of the bijection in Theorem 3.1.2.

Using the classification of stationary measures, we can obtain the following equidistribution

result.

Theorem 3.1.4. For all x ∈ W , let C is the compact Γµ-orbit of x+W ′ in W/W ′. Then

1. we have the weak-∗ convergence

1

n

n−1∑
i=0

µ(i) ∗ δx → νC .

2. For µN-almost every word b = (b1, b2, . . .) ∈ GL(V )N, we have the convergence of the

empirical measures

1

n

n−1∑
i=0

δbibi−1...b1x → νC as n→∞.

The following definition is standard when considering stationary measures.

Proposition 3.1.5. [BL85, Lem. II.2.1] Let µ be a Borel probability measure on G = GL(V )

and ν be a µ-stationary measure on V . Then for µN-almost every b = (b1, b2, . . .) ∈ GN, there

exists a probability measure νb on V such that for all g ∈ Γµ,

νb = lim
n→∞

(b1b2 . . . bng)∗ν.

Moreover, we have

ν =

∫
GN

νb dµ
N(b).
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The measure νb is sometimes called the limit measure of ν with respect to the word b.

We can describe the limit measures of any stationary measures on V .

Theorem 3.1.6. For each compact Γµ-orbit C in W/W ′, for µN-almost every word b ∈

GL(V )N, the limit measure

νb = lim
n→∞

(b1b2 . . . bn)∗νC

is supported on the compact subset pb(C) ⊂ W for some linear section pb : W/W ′ → W . In

particular, νb is compactly supported on W .

If Γµ acts trivially on W/W ′, then νb is a delta mass δξ(b) for µN-almost every word b, and

thus ν is µ-proximal (cf. [BQ16, Sect. 2.7]).

The note is structured as follows.

1. In section 3.2, we recall a few preliminary facts about stationary measures and top expo-

nents.

2. In section 3.3, we recall the situation when the action is irreducible, which will form the

building blocks of the general case.

3. In section 3.4, we list a few properties of Γµ-actions that satisfy (i) and (ii) of Theorem

3.1.1. In particular most of Theorem 3.1.2, 3.1.3, 3.1.4 and 3.1.6 will be proved in this

section.

4. In section 3.5, we study properties of the action on the span of the support of any given

stationary measure on V . The main result in this section is Proposition 3.5.5, when we

show that the action on this span satisfies (i) and (ii) of Theorem 3.1.1.

5. In section 3.6, we conclude by proving Theorem 3.1.1 using results from the previous

sections.
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3.2 Preliminary facts

We first recall that, in the case of a compact action, we have the standard fact that any

stationary measure is invariant.

Proposition 3.2.1. [BQ11, Lem. 8.4] Let µ be a Borel probability measure on G = GL(V )

and ν be a µ-stationary measure on V . If Γµ acts compactly on V , then ν is Γµ-invariant.

Moreover, if ν is ergodic, then the support of ν is a single compact Γµ-orbit in V , and ν is the

unique µ-stationary measure supported on this orbit.

We recall the following general theorem by Furstenberg and Kesten, which follows from

Kingman’s subadditive ergodic theorem and the ergodicity of the Bernoulli shift.

Theorem 3.2.2. [FK60, Thm. 2], see also [BQ16, Lem. 4.27].

Let µ be a Borel probability measure on GL(V ) with finite first moment. For µN-a.e. b =

(b1, b2, . . .) ∈ GN, one has

lim
n→∞

1

n
log ‖bn · · · b1‖ = lim

n→∞
1

n
log ‖b1 · · · bn‖ = λ1,V (µ).

In particular, if λ1,V < 0, then ‖b1 · · · bn‖ → 0 for µN-almost every word b.

To simplify notation, given a vector space V ′ with a homomorphism ρV ′ : Γµ → GL(V ′),

we say that µ has negative top exponent on V ′ if the top Lyapunov exponent λ1,V ′ of ρV ′ with

respect to µ is negative.

We need the following two lemmas that allow us to carry certain properties to invariant

subspaces and quotients.

Lemma 3.2.3. Let µ be a Borel probability measure on GL(V ) with finite first moment. Let

W ⊂ V be a Γµ-invariant subspace of V . Then the following are equivalent:

(i) µ has negative top exponent on V .
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(ii) µ has negative top exponent on W and V/W .

Proof. In fact the top exponent on V is the maximum of the top exponents on W and V/W .

This is standard. See, for instance, [FK83, Lem. 3.6].

We also need the following elementary result about boundedness.

Lemma 3.2.4. Let µ be a Borel probability measure on GL(V ). Let W ⊂ V be a Γµ-invariant

subspace of V . Given a subset B ⊂ Γµ, if B is bounded from above in GL(V ), then B is

bounded from above in GL(W ) and GL(V/W ).

3.3 The irreducible case

We first recall the classification of stationary measures for irreducible Γµ-actions, i.e. the only

Γµ-invariant subspaces of V are 0 and V .

Proposition 3.3.1. Let µ be a Borel probability measure on GL(V ). Suppose that Γµ acts

irreducibly on V . Then there exists a nontrivial µ-stationary probability measure ν on V if and

only if Γµ is compact in GL(V ).

Proof. If Γµ is compact in GL(V ) then clearly there is a nontrivial Γµ-invariant measure on V

(by averaging via the finite Haar measure on Γµ), hence in particular µ-stationary.

The opposite direction was proved in [BL85, Prop. V.8.1].

We will also need another proposition that shows that for irreducible actions, assuming a

boundedness condition, the only two options are negative top exponent and compact action.

Proposition 3.3.2. Let µ be a Borel probability measure on G = GL(V ) with finite first

moment. Assume that Γµ is irreducible. If for µN-almost every b = (b1, b2, . . .) ∈ GN, the

sequence

{bnbn−1 . . . b1 | n ≥ 1}
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is bounded from above (with respect to the operator norm on GL(V )), then either µ has

negative top exponent on V , or Γµ is compact in GL(V ).

Proof. The assumption implies that the top exponent is nonpositive by Theorem 3.2.2. Hence

it suffices to consider the case when λ1,V = 0.

Let C : GN → R+ ∪ {∞} be a measurable function such that

‖bnbn−1 . . . b1‖ ≤ C(b) for all n.

Then by assumption, we can take C to be finite µN-almost surely. If we take C ′ large enough,

there is a subset B ⊂ GN with µN(B) > 1/2 such that C(b) < C ′ for all b ∈ B. Now fix a

µ-stationary measure νP on P(V ), and consider the dynamical system on GN × P(V ) with the

map

T (b, v) :=

(
σ(b), log

‖b1v‖
‖v‖

)
,

where σ : GN → GN is the left shift map. Note that µN × νP is a T -invariant probability

measure on GN × P(V ).

By the proof of the Atkinson’s lemma ([Atk76], [Kes75], see e.g. [BQ16, Lem. 3.18]), for

µN × νP-almost every (b, v) ∈ GN × P(V ), there is an infinite sequence {nk}k such that

∣∣∣∣log
‖bnk . . . b1v‖
‖v‖

∣∣∣∣ ≤ 1. (3.3.1)

Fix a nonzero v ∈ V such that (3.3.1) holds for µN-almost every b ∈ GN. For each such word

b ∈ GN, for each n ≥ 1, take k large enough so that nk > n. Then

log
‖bn . . . b1v‖
‖v‖

= log
‖bnk . . . b1v‖
‖v‖

− log
‖bnk . . . b1v‖
‖bn . . . b1v‖

.

Now on the right hand side, the first term is at least −1 by (3.3.1), and the second term is at
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least − logC(σn(b)) by definition of C. Therefore

log
‖bn . . . b1v‖
‖v‖

≥ −1− logC(σn(b)).

However note that C(σn(b)) does not depend on b1, b2, . . . , bn. Therefore we can replace b by

one of the words that starts with b1, b2, . . . , bn and satisfies σn(b) ∈ B so that C(σn(b)) < C ′

for the uniform constant C ′ chosen above. Thus for µN-almost every word b, for all n ≥ 1,

log
‖bn . . . b1v‖
‖v‖

≥ −1− logC ′.

Now consider the sequence of measures on V

1

N

N−1∑
n=0

δbnbn−1...b1v.

Then any weak-∗ limit ν is a µ-stationary measure on V by Breiman’s Law of Large Numbers

([Bre60], also see e.g. [BQ16, Cor. 3.4]), and is a probability measure since there is a uniform

bound from above on the sequence {bnbn−1 . . . b1 | n ≥ 1} by assumption. Since

‖bn . . . b1v‖
‖v‖

≥ C ′′ for all n ≥ 1

for some uniform C ′′, ν is not δ0, so it is a nontrivial µ-stationary probability measure on V .

By Proposition 3.3.1, Γµ is compact in GL(V ).

The same is true if the order of the matrix product b1b2 . . . bn is reversed.

Corollary 3.3.3. Let µ be a Borel probability measure on G = GL(V ) with finite first moment.

Assume that Γµ is irreducible. If for µN-almost every b = (b1, b2, . . .) ∈ GN, the sequence

{b1b2 . . . bn | n ≥ 1}

is bounded from above (with respect to the operator norm on GL(V )), then either µ has
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negative top exponent on V , or Γµ is compact in GL(V ).

Proof. Apply Proposition 3.3.2 to the pushforward µT of µ via the adjoint map GL(V ) →

GL(V ∗) defined by g 7→ gT (i.e. the matrix transpose). Note that ‖g‖GL(V ) = ‖gT ‖GL(V ∗),

so the first moments of µ and µT are the same. Similarly the top exponents of µ and µT are

the same. Finally Γµ is irreducible if and only if ΓµT is, and Γµ is compact if and only if ΓµT

is.

3.4 Properties of a contracting-by-compact action

In this section, we list a few properties of subspaces with a contracting-by-compact action by

µ, i.e. there is a proper subspace (possibly zero) with negative top exponent with respect to µ

and Γµ acts compactly on the quotient.

The following proposition shows that for such action, almost every word is bounded from

above with respect to the operator norm (though this bound may depend on the word).

Proposition 3.4.1. Let µ be a Borel probability measure on GL(W ) with finite first moment.

Moreover there exists a proper Γµ-invariant subspace W ′ ( W such that

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

Then there exists a measurable map C : GN → R+ such that for µN-almost every word

b = (b1, b2, . . .),

‖b1b2 . . . bn‖ < C(b) for all n ≥ 1.

Proof. By choosing suitable basis, we can write each bi ∈ supp µ as

xi yi

0 zi

 ,
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where xi ∈ GL(W ′), zi ∈ GL(W/W ′) and yi ∈ Hom(W/W ′,W ′).

Now we expand b1b2 . . . bn in terms of xi, yi, zi,

b1b2 . . . bn =

Xn Yn

0 Zn

 ,

where

Xn = x1x2 . . . xn, Yn =
n∑
k=1

x1 . . . xk−1ykzk+1 . . . zn, Zn = z1z2 . . . zn.

Since µ has negative top exponent on W ′, x1x2 . . . xn → 0 for µN-almost every word b by

Theorem 3.2.2. Since Γµ acts compactly on W/W ′, Zn is uniformly bounded by some constant

C ′. Hence it remains to find a bound on Yn that is independent of n (but may depend on the

word b).

If W ′ = 0, we are done. If W ′ 6= 0, let λ1,W ′ < 0 be the top exponent of µ on W ′. Then for

µN-almost every word b,

lim
k→∞

1

k
log ‖x1x2 . . . xk‖ = λ1,W ′ < 0.

Since µ has finite first moment in GL(W ), in particular, we have

∫
G

log+(‖g‖) dµ <∞,

where log+(x) := max(log(x), 0). This implies that (since ‖bk‖ ≥ ‖yk‖)

∞∑
k=1

µ

(
log+(‖yk‖) > −

kλ1,W ′

2

)
≤
∞∑
k=1

µ

(
log+(‖bk‖) > −

kλ1,W ′

2

)
<∞.
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By Borel-Cantelli Lemma, for µN-almost every word b,

lim sup
k

1

k
log+ ‖yk‖ ≤ −

λ1,W ′

2
.

This implies that

lim sup
k

1

k
log ‖x1 . . . xk−1yk‖ ≤ lim sup

k

1

k
log(‖x1 . . . xk−1‖‖yk‖) <

λ1,W ′

2
.

Since λ1,W ′ < 0, and zi is in a compact subgroup of GL(W/W ′) with a uniform upper bound

C ′, there exist n0 = n0(b) and C ′′ = C ′′(b) such that for all large enough n,

‖Yn‖ ≤
n∑
k=1

‖x1 . . . xk−1ykzk+1 . . . zn‖ ≤ C ′′ + C ′
n∑

k=n0

e
kλ1,W ′/2 ≤ C ′′ +

C ′

1− eλ1,W ′/2
<∞,

as desired.

The following proposition shows that there is at least one nontrivial stationary measure in

the subspace W .

Proposition 3.4.2. Let µ be a Borel probability measure on G = GL(W ) with finite first

moment. Suppose there exists a proper Γµ-invariant subspace W ′ ( W such that

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

Then for all x ∈ W rW ′, any weak-∗ limit point of the sequence of probability measures

νx,n :=
1

n

n−1∑
i=0

µ(i) ∗ δx

is a nontrivial µ-stationary probability measure on W .

Proof. Let Ŵ := W ∪ {∞} be the one-point compactification of W . Then the space of prob-

ability measures M(Ŵ ) is compact, hence there exists a subsequence {nk} such that νx,nk
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converges to a probability measure ν ∈M(Ŵ ). Moreover,

µ ∗ νx,nk − νx,nk =
1

nk
(µ(nk) ∗ δx − δx)→ 0.

Hence ν is µ-stationary. Since∞ is a fixed point, we may consider ν as a µ-stationary measure

on W (a priori may not be a probability measure). It remains to show that ν(W r {0}) = 1.

Let π : W → W/W ′ be the quotient map.

First of all since Γµ acts compactly on W/W ′ and x ∈ W rW ′, Γµπ(x) ⊂ W/W ′ is compact

and does not contain the origin in W/W ′. Therefore there exists a compact subset Cx ⊂ WrW ′

such that Γµx ⊂ Cx+W ′. Note that 0 /∈ Cx+W ′. Now clearly the support of νx,n is contained

in Γµx ⊂ Cx + W ′ for all n and hence the support of ν is also contained in the closed set

Cx +W ′. In particular ν({0}) = 0.

It remains to show that for all ε > 0, there exists C ′′ = C ′′(ε, x) > 0 such that

ν({w ∈ W | ‖w‖ < C ′′}) > 1− ε.

Since νx,nk → ν, applying this convergence to the indicator function 1{w∈W |‖w‖<C ′′}, we have

lim
k→∞

1

nk

nk−1∑
i=0

µi({(b1, b2, . . . , bi) ∈ Gi | ‖b1b2 . . . bix‖ < C ′′}) = ν({w ∈ W | ‖w‖ < C ′′}).

But the left hand side can be bounded from below using Fatou’s lemma:

lim
k→∞

1

nk

nk−1∑
i=0

µi({(b1, b2, . . . , bi) ∈ Gi | ‖b1b2 . . . bix‖ < C ′′})

= lim
k→∞

1

nk

nk−1∑
i=0

∫
1‖b1b2...bix‖<C ′′(b) dµ

N(b)

≥
∫

lim inf
k→∞

1

nk

nk−1∑
i=0

1‖b1b2...bix‖<C ′′(b) dµ
N(b)

Moreover, by Proposition 3.4.1, there exists a measurable function C : GN → R+ such that,
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for µN-almost every word b = (b1, b2, . . .),

‖b1b2 . . . bn‖ < C(b).

Now take a subset Bε ⊂ GN and large enough C ′ε > 0 such that µN(Bε) > 1− ε and C(b) < C ′ε

for all b ∈ Bε. Let C ′′ = C ′′(ε, x) := C ′ε‖x‖. Then for all b ∈ Bε,

lim inf
k→∞

1

nk

nk−1∑
i=0

1‖b1b2...bix‖<C ′′(b) = 1.

Thus

ν({w ∈ W | ‖w‖ < C ′′}) ≥
∫

lim inf
k→∞

1

nk

nk−1∑
i=0

1‖b1b2...bix‖<C ′′(b) dµ
N(b) ≥ µN(Bε) > 1− ε.

The following proposition shows that any stationary measure in such subspace W is uniquely

determined by its pushforward on the quotient W/W ′.

Proposition 3.4.3. Let µ be a Borel probability measure on G = GL(W ) with finite first

moment. Let W ′ ( W be a Γµ-invariant flag. Suppose

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

Suppose that we have two µ-stationary measures ν and ν′ on W that satisfy π∗ν = π∗ν′ for

the quotient map π : W → W/W ′, then ν = ν′.

Proof. By Proposition 3.4.1, there exists a measurable map C : GN → R+ such that for µN-

almost every word b = (b1, b2, . . .) ∈ GN, we have

‖b1b2 . . . bn‖GL(W ) < C(b).

105



Also for almost every word b, we have the limit measure

νb = lim
n→∞

(b1b2 . . . bn)∗ν.

Therefore we can take a limit point b∞ of the sequence {b1b2 . . . bn | n ≥ 1} in End(W ), and

νb = (b∞)∗ν.

Similarly, we have, for almost every word b,

ν′b := lim
n→∞

(b1b2 . . . bn)∗ν′ = (b∞)∗ν′.

Now since µ has negative top exponent on W ′, for almost every word b,

lim
n→∞

b1b2 . . . bnv = 0 for every vector v ∈ W ′.

Therefore W ′ ⊂ ker b∞, hence the map b∞ : W → W factors through W/W ′, i.e. there exists

a linear map b′∞ : W/W ′ → W such that b∞ = b′∞ ◦ π, where π : W → W/W ′ is the quotient

map. Since π∗ν = π∗ν′, for µN-almost every word b, we have

νb = (b∞)∗ν = (b′∞)∗π∗ν = (b′∞)∗π∗ν′ = (b∞)∗ν′ = ν′b.

Thus by Theorem 3.1.5,

ν =

∫
GN

νbdµ
N(b) =

∫
GN

ν′bdµ
N(b) = ν′.

In particular the above proof shows that each limit measure νb is supported on a compact

subset of W . We record this in the following proposition (which proves Theorem 3.1.6).
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Proposition 3.4.4. Let µ be a Borel probability measure on G = GL(W ) with finite first

moment. Let W ′ ( W be a Γµ-invariant flag. Suppose

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

Given an ergodic µ-stationary measure ν on W , for µN-almost every word b, the limit measure

νb = lim
n→∞

(b1b2 . . . bn)∗ν

is supported on the pushforward of a single compact Γµ-orbit on W/W ′ via a linear injection

pb : W/W ′ → W . In particular, νb is compactly supported on W .

Proof. Take pb to be the linear map b′∞ defined in the proof of Proposition 3.4.3. Since π∗ν is

an ergodic µ-stationary measure on W/W ′ and µ acts compactly on W/W ′, π∗ν is an ergodic

Γµ-invariant measure and is supported on a single compact Γµ-orbit in W/W ′ by Proposition

3.2.1. Thus νb = (b′∞)∗π∗ν is also compactly supported on W .

Using Proposition 3.4.3, one can refine Proposition 3.4.2.

Proposition 3.4.5. Let µ be a Borel probability measure on G = GL(W ) with finite first

moment. Suppose there exists a proper Γµ-invariant subspace W ′ ( W such that

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

For all x ∈ W rW ′, let

νx,n :=
1

n

n−1∑
i=0

µ(i) ∗ δx.

Then the weak-∗ limit

νx := lim
n→∞

νx,n

exists and is a nontrivial µ-stationary probability measure on W .
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Proof. By Proposition 3.4.2, we know that any limit point of the sequence {νx,n}n is a non-

trivial µ-stationary measure on W . Moreover, since the projection of νx,n on W/W ′ lies in

the compact Γµ-orbit of x + W ′ ∈ W/W ′, any weak-∗ limit point projects to a µ-stationary

measure supported on the single compact orbit Γµx+W ′ ⊂ W/W ′, hence is in fact the unique

invariant measure supported on the compact set Γµx + W ′. In particular, any limit point of

{νx,n}n is a µ-stationary probability measure that projects to the same measure on W/W ′. By

Proposition 3.4.3, all such limit points agree, so the sequence {νx,n}n converges.

In fact, if we start with any initial measure that projects to the Haar measure supported on

a compact Γµ-orbit in W/W ′, then the convolution powers are not just Cesáro summable, but

themselves converge.

Proposition 3.4.6. Let µ be a Borel probability measure on G = GL(W ) with finite first

moment. Suppose there exists a proper Γµ-invariant subspace W ′ ( W such that

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

For all x ∈ W rW ′, let Cx be the Γµ-orbit of the image x in W/W ′, and mx be the Haar

(probability) measure on W/W ′ supported on Cx. Then for any linear section s : W/W ′ → W ,

i.e. a linear map such that π ◦ s = id, we have the following weak-∗ convergence

νx := lim
n→∞

µ(n) ∗ (s∗mx).

Moreover, νx is a nontrivial µ-stationary probability measure on W that does not depend on

the choice of the linear section s. The map x 7→ νx is constant along the orbit Cx.

Proof. By Proposition 3.4.2, for all x ∈ W rW ′, there exists a nontrivial µ-stationary measure

νx on W that projects to mx on W/W ′.

Similar to the proof of Proposition 3.4.3, there exists a measurable function C : GN → R+
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such that for µN-almost every word b = (b1, b2, . . .), we have

‖b1b2 . . . bn‖GL(W ) < C(b), and νb = lim
n→∞

(b1 . . . bn)∗νx

exists. Moreover, for any limit point b∞ of {b1b2 . . . bn | n ≥ 1} in End(W ), there exists a linear

map b′∞ : W/W ′ → W such that b∞ = b′∞ ◦ π. Let {nk}k be the indices of the subsequence

such that

lim
k→∞

b1b2 . . . bnk = b∞ = b′∞ ◦ π.

Now for any linear section s : W/W ′ → W , we have

lim
k→∞

(b1 . . . bnk)∗(s∗mx) = (b′∞)∗π∗s∗mx = (b′∞)∗mx

since π ◦ s = id. On the other hand since the stationary measure νx projects to mx on W/W ′,

we also have

νb = lim
n→∞

(b1 . . . bn)∗νx = (b∞)∗νx = (b′∞)∗π∗νx = (b′∞)∗mx.

Thus

νb = (b′∞)∗mx = lim
k→∞

(b1 . . . bnk)∗(s∗mx)

for any convergent subsequence {b1 . . . bnk | k ≥ 1}. Since the left hand side does not depend

on the subsequence, we have the convergence

νb = lim
n→∞

(b1 . . . bn)∗(s∗mx).

Since this holds for µN-almost every b, we have

νx =

∫
νbdµ

N(b) =

∫
lim
n→∞

(b1 . . . bn)∗(s∗mx)dµN(b) = lim
n→∞

µ(n) ∗ (s∗mx).
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3.5 Properties of the span of the support of a stationary measure

In this section, we prove a few properties of the action on the span of the support of a given

stationary measure. The main statement is that the span of the support of a given stationary

measure must have a contracting-by-compact action by µ (Proposition 3.5.5). An important

auxiliary proposition leading towards this fact is Proposition 3.5.2.

Lemma 3.5.1. Let µ be a Borel probability measure on GL(V ), ν be a µ-stationary probability

measure on V . Let W be the linear span of the support of ν. Then

(i) W is Γµ-invariant.

(ii) For µN-almost every word b = (b1, b2, . . .) ∈ GN, the sequence {b1b2 . . . bn | n ≥ 1} is

bounded from above in GL(W ).

Proof. (i) is clear since supp ν is Γµ-invariant. The proof of (ii) is similar to the proof of [BP13,

Lem. 3.3], using ideas of [Fur63, Thm. 1.2]. By considering the restriction of the action to W

we may assume that V = W and thus G = GL(W ) without loss of generality. For b ∈ GN for

which the limit measure νb exists, assume the contrary that the sequence {b1b2 . . . bn | n ≥ 0}

is not bounded from above in GL(W ). Then we can find a subsequence {nk | k ∈ N} and

b∞ ∈ End(W ) with ‖b∞‖End(W ) = 1 such that

lim
n→∞

‖b1b2 . . . bnk‖GL(W ) =∞, and lim
k→∞

b1b2 . . . bnk
‖b1b2 . . . bnk‖GL(W )

= b∞.

Let Wb := ker b∞ ⊂ W . For v ∈ W rWb, we have

lim
k→∞

‖b1b2 . . . bnkv‖W =∞.

Thus for any continuous function φ : W → R with compact support, for all v ∈ W rWb,

φ(b1b2 . . . bnkv)→ 0 as k →∞.

110



Therefore

∫
φ(v)dνb(v) = lim

k→∞

∫
φ(v)d(b1b2 . . . bnk)∗ν(v)

= lim
k→∞

∫
φ(b1b2 . . . bnkv)dν(v)

= lim
k→∞

∫
1Wb

(v)φ(b1b2 . . . bnkv)dν(v)

≤ ν(Wb) sup
v∈W

|φ(v)|.

Since φ is an arbitrary continuous function on W with compact support, by taking a sequence

of such φ supported on balls of radius n→∞ and takes value 1 within a slightly smaller open

ball, we can conclude that ν(Wb) = 1. Since Wb is closed, we have supp ν ⊂ Wb.

Since Wb is a subspace of W and supp ν spans W , we have ker b∞ = Wb = W , i.e. b∞ is

the zero map. But this is a contradiction since ‖b∞‖End(W ) = 1.

We shall show the following important auxiliary proposition.

Proposition 3.5.2. Let µ be a Borel probability measure µ on G = GL(V ) with finite first

moment. Suppose there exists a µ-stationary measure ν on V such that V is the span of supp ν.

Suppose there exist Γµ-invariant subspaces 0 ⊂ W ′ ⊂ W ( V such that

(i) Γµ acts compactly on W ′;

(ii) if W ′ 6= W , µ has negative top exponent on W/W ′;

(iii) Γµ acts compactly on V/W .

Then there is a Γµ-invariant splitting of V :

V = W ′ ⊕W ′′

for some Γµ-invariant subspace W ′′ ⊂ V .

We first prove a lemma which allows us to reduce the proposition to the case when the

acting group Γµ is uniformly bounded from above in GL(V ).
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Lemma 3.5.3. Under the assumptions of Proposition 3.5.2, if in addition, Γµ is unbounded

from above with respect to the operator norm on GL(V ), i.e. there exists a sequence {gk} ⊂ Γµ

such that ‖gk‖GL(V ) →∞, then there is a nonzero Γµ-invariant subspace W0 ⊂ W such that

W ′ ∩W0 = 0.

Proof. The proof is similar to that of Lemma 3.5.1(ii). By Lemma 3.5.1(ii), for µN-almost every

word b ∈ GN, the sequence

{b1b2 . . . bn | n ≥ 1}

is bounded from above in GL(V ). Let b∞ be a limit point of this sequence in End(V ). Moreover,

by Lemma 3.1.5, for all g ∈ Γµ and each positive integer k, we have

νb = lim
n→∞

(b1b2 . . . bnggk)∗ν = (b∞ggk)∗ν.

Let g∞ be a limit point of the sequence {gk/‖gk‖}k in End(V ). Then by the same argument

as the proof of Lemma 3.5.1(ii), using the fact that ‖gk‖ → ∞, one can conclude that

b∞gg∞ ≡ 0,

the zero map on V . Hence for all g ∈ Γµ,

gg∞V ⊂ ker b∞.

Let W0 be the span of {gg∞V | g ∈ Γµ}. Then W0 ⊂ ker b∞. Since ‖g∞‖ = 1, g∞V is nonzero,

so W0 is a nonzero Γµ-invariant subspace of V . Moreover, since Γµ acts compactly on W ′ and

b∞ is in the closure of Γµ in End(V ), W ′ ∩ ker b∞ = 0.

On the other hand, we claim that ker b∞ ⊂ W . In fact, for v /∈ W , since b∞ ∈ Γµ acts

compactly on V/W , we have b∞v /∈ W , in particular b∞v 6= 0, so v /∈ ker b∞.

Now since W0 ⊂ ker b∞, we have that W0 ⊂ W and W ′ ∩W0 = 0, as desired.
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We also need an algebraic fact about compact subsemigroups of End(V ).

Lemma 3.5.4. [HM66, A.1.22] Let S ⊂ End(V ) be a nonempty compact subsemigroup. Then

there exists h ∈ S such that

(a) h is idempotent, i.e. h2 = h,

(b) hSh := {hgh | g ∈ S} has the structure of a compact group with identity element h,

(c) there is a group action by hSh on hV .

For completeness we include a sketch of the proof here.

Sketch of Proof. Let r be the smallest rank among elements in S, and let S0 := {g ∈ S |

rank(g) = r}. Then S0 is itself a compact subsemigroup of End(V ) since the rank cannot

increase when taking products and limits. By Ellis-Numakura lemma ([HM66, A.1.16]), any

nonempty compact semigroup has an idempotent element, so there exists h ∈ S0 with h2 = h.

Then hSh is a compact semigroup with h acting as the identity element.

We claim that h is the only idempotent element in hSh. In fact let h′ be another idempotent

element in hSh. Then the image of h′ is contained in the image of h. But h has minimal rank

in S and hSh is contained in S, so the images of h and h′ are the same. Moreover, since h and

h′ are idempotents in End(V ), we have the decompositions

V = im h⊕ kerh = im h′ ⊕ kerh′.

Since h′ ∈ hSh, kerh ⊂ kerh′. But since im h = im h′, the dimensions of kerh and kerh′

agree, so kerh = kerh′. Any idempotent in End(V ) is determined by its image and kernel, so

h = h′.

On the other hand, one can check that if a compact semigroup K with identity has no other

idempotent, then it is a compact group. In fact, for any t ∈ K, tK and Kt are nonempty

compact subsemigroups of K, so they also have idempotent elements. But by assumption, this
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idempotent element must be the identity, so t has left and right inverses for all t ∈ K, as

desired.

Thus we have shown that K = hSh is a compact group with identity h. hSh acts on hV

since the identity element h acts trivially on hV .

Now we are ready to prove Proposition 3.5.2.

Proof of Proposition 3.5.2. We prove the statement by induction on dimV .

Base case: dimV = 1.

Since W is a proper subspace of V , we have W ′ = W = 0. Therefore we can take W ′′ = V .

Induction step.

If Γµ is unbounded from above in GL(V ), by Lemma 3.5.3, there exists a nonzero Γµ-invariant

subspace W0 ⊂ W with W ′ ∩W0 = 0. Now consider the Γµ-invariant flag

0 $ W ′ ⊂ W/W0 $ V/W0.

Since W0 is nonzero, dimV/W0 < dimV , so by the induction hypothesis, there exists a Γµ-

invariant subspace W2 ⊂ V with W0 ⊂ W2 such that there is the Γµ-invariant splitting

V/W0 = W ′ ⊕W2/W0.

Thus we can take W ′′ = W2.

Hence in the remaining part of the proof we assume also that there exists C > 0 such that

‖g‖ ≤ C for all g ∈ Γµ. Let Γµ be the (topological) closure of Γµ in End(V ), then Γµ is

a compact semigroup in End(V ). By Lemma 3.5.4, there exists an idempotent h ∈ Γµ (i.e.

h2 = h) such that

K := hΓµh
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is a compact group with identity h. Moreover K acts on hV , and preserves W ′ (note that

hW ′ = W ′ since Γµ acts compactly on W ′). Since K is compact, there exists a K-invariant

complementary subspace W1 ⊂ hV of W ′, i.e.

hV = W ′ ⊕W1.

Note that hW1 = W1 since h ∈ K. Now let W ′′ be the span of {ghW1 | g ∈ Γµ}. Then W ′′ is

Γµ-invariant.

Let v ∈ W ′′ ∩W ′. On one hand, hv ∈ hW ′ = W ′, on the other hand,

hv ∈ span({hghW1 | g ∈ Γµ}) = W1

since hgh ∈ K for g ∈ Γµ and W1 is K-invariant. Thus hv ∈ W ′ ∩W1 = 0, i.e. v ∈ kerh.

Now since Γµ acts compactly on W ′, kerh ∩W ′ = 0. But v ∈ kerh ∩W ′, so v = 0. Therefore

W ′′ ∩W ′ = 0.

Hence we have found a Γµ-invariant subspace W ′′ with trivial intersection with W ′. It

remains to show that W ′′ +W ′ = V .

We first observe that kerh ⊂ W . In fact, consider v /∈ W . Since h acts compactly on V/W ,

hv 6= 0 in V/W , so hv 6= 0 in V , thus v /∈ kerh.

Since h is idempotent, we have that

V = im h⊕ kerh = W ′ ⊕W1 ⊕ kerh.

Since W1 ⊂ W ′′ and W ′ ⊕ kerh ⊂ W , we have

V = W ′′ +W.

If W ′ = W , we are done. If W ′ 6= W , by assumption, µ has negative top exponent on W/W ′.
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Now

V/W ′′ = (W ′′ +W )/W ′′ = W/(W ′′ ∩W ).

Since W ′ is Γµ-invariant, W ′ ⊂ W and W ′ ∩W ′′ = 0, we have the following Γµ-equivariant

identification

V/(W ′′ ⊕W ′) = W/((W ′′ ∩W )⊕W ′) = (W/W ′)/(W ′′ ∩ (W/W ′)).

Since µ has negative top exponent onW/W ′, it also has negative top exponent on (W/W ′)/(W ′′∩

(W/W ′)), thus on V/(W ′′ ⊕W ′). Therefore the only µ-stationary measure on V/(W ′′ ⊕W ′)

is δ0. On the other hand, since ν is a µ-stationary measure on V with span(supp ν) = V ,

the pushforward of ν on V/(W ′′ ⊕W ′) also spans. But this pushforward is µ-stationary on

V/(W ′′ ⊕W ′), so it equals δ0. Therefore V = W ′′ ⊕W ′, as desired.

Now we are ready to prove that the µ-action on the span of the support of a stationary

measure is contracting-by-compact.

Proposition 3.5.5. [Bou87, Thm. 5.1 necessity direction] Let µ be a Borel probability measure

µ on G = GL(V ) with finite first moment, and ν be a nontrivial µ-stationary measure on V .

Let W be the linear span of supp ν. Then there exists a Γµ-invariant proper subspace W ′ ( W

such that

(i) Γµ acts compactly on W/W ′, and

(ii) if W ′ 6= 0, µ has negative top exponent on W ′.

Proof. We prove this by induction on dimW .

Base case: dimW = 1.

In this case, Γµ acts irreducibly on W . By Proposition 3.3.1, Γµ acts compactly on W and we

can take W ′ = 0.
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Induction step.

If Γµ acts irreducibly on W , then again by Proposition 3.3.1, Γµ acts compactly on W and we

can take W ′ = 0.

If Γµ does not act irreducibly on W , take a minimal nonzero Γµ-invariant proper subspace

0 ( W0 ( W . The pushforward of ν under the map W → W/W0 is a stationary measure on

W/W0 whose support spans W/W0. Since dimW/W0 < dimW , by the induction hypothesis,

we know that there exists a Γµ-invariant proper subspace W1 ( W such that

(i) 0 ( W0 ⊂ W1 ( W ,

(ii) Γµ acts compactly on W/W1, and

(iii) either W1 = W0 or µ has negative top exponent on W1/W0.

By minimality of W0, we know that Γµ acts irreducibly on W0. Since W is the linear span of

supp ν, by Lemma 3.5.1, for µN-almost every word b ∈ GN, the sequence {b1b2 . . . bn | n ≥ 1}

is bounded from above in GL(W ). By Lemma 3.2.4, {b1b2 . . . bn | n ≥ 1} is also bounded from

above in GL(W0). Thus by Corollary 3.3.3, either µ has negative top exponent on W0 or Γµ

acts compactly on W0.

Case 1: µ has negative top exponent on W0.

We claim that in this case, µ has negative top exponent on W1. The claim is clear if W1 = W0.

If W0 ( W1, since µ has negative top exponent on W1/W0, by Lemma 3.2.3, µ also has negative

top exponent on W1. Thus we can take W ′ = W1.

Case 2: µ acts compactly on W0.

In this case, by Proposition 3.5.2, there exists a proper Γµ-invariant subspace W2 ( W such

that

W = W0 ⊕W2.

Let W ′2 := W1 ∩ W2. Then we can Γµ-equivariantly identify W ′2 and W1/W0. Thus either
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W ′2 = 0 or µ has negative top exponent on W ′2, and Γµ acts compactly W2/W
′
2. Moreover,

since

W/W ′2 = W0 ⊕W2/W
′
2,

and Γµ acts compactly onW0 andW2/W
′
2, we have that Γµ acts compactly onW/W ′2. Therefore

we can take W ′ = W ′2.

3.6 Proofs of the main theorems

Using properties proved in the previous two sections, we can now prove the main theorems.

Proof of Theorem 3.1.1. Let W ⊂ V be the Γµ-invariant subspace of maximal dimension such

that W = span(supp ν0) for some µ-stationary measure ν0 on V .

We now claim that every µ-stationary measure ν satisfies supp ν ⊂ W . In fact, assume that

there is some stationary measure ν′ such that supp ν′ 6⊂ W . Let U = span(supp ν′). Now let

ν′′ = 1
2ν+ 1

2ν
′. Then W +U = span(supp ν′′). Since W +U has strictly larger dimension than

W , this contradicts the maximality of dimW , hence condition (i) in the theorem holds.

By Proposition 3.5.5, there exists a Γµ-invariant proper subspace W ′ ( W such that Γµ

acts compactly on W/W ′, and if W ′ 6= 0, µ has negative top exponent on W ′. Thus (ii) and

(iii) in the theorem hold.

Proof of Theorem 3.1.2. Let π : W → W/W ′ be the quotient map. By Theorem 3.1.1 and

Proposition 3.2.1, the map

Φ : {ergodic µ-stationary measure on V } → {compact Γµ-orbit in W/W ′},

defined by Φ(ν) := supp π∗ν is well-defined.

� Φ is injective.
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This follows from Proposition 3.4.3 and the uniqueness of the Γµ-invariant measure sup-

ported on a single compact Γµ-orbit.

� Φ is surjective and determine Φ−1

The origin 0 of W/W ′ is a compact invariant subset of W/W ′, and is the image of the

invariant measure δ0 on V . Now given a compact Γµ-invariant subset C 6= {0} in W/W ′,

let x ∈ π−1(C) ⊂ WrW ′. By Proposition 3.4.6, νx = lim
n→∞

µ(n)∗(s∗mx) is a µ-stationary

probability measure on V such that supp π∗νx is C, where as we recall, s : W/W ′ → W

is any linear section and mx is the unique Γµ-invariant measure supported on C. Thus

C 7→ νx is the inverse of Φ.

Proof of Theorem 3.1.3. The first claim was proved in Proposition 3.4.6. The second claim was

shown in the proof of Theorem 3.1.2.

Proof of Theorem 3.1.4. The convergence of the limit in the first claim was shown in Proposi-

tion 3.4.5. That the limiting measure is νC follows from the injectivity of Φ in Theorem 3.1.2.

The second claim is true since by Breiman’s law of large number [Bre60], for µN-almost every

word b ∈ GN, every weak-* limit point of the empirical measures is a µ-stationary probability

measure. Now the rest follows from the same argument as Proposition 3.4.5 and the injectivity

of Φ in Theorem 3.1.2.

Proof of Theorem 3.1.6. This follows from Proposition 3.4.4.
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CHAPTER 4

RANDOM WALKS ON HOMOGENEOUS SPACES WITH

NONDISCRETE QUOTIENTS

4.1 Introduction

Let G be a (real) Lie group, H ⊂ G is a closed unimodular subgroup. Let µ be a Borel

probability measure on G, and let Γµ := 〈supp µ〉 ⊂ G be the (topological) closure of the

semigroup generated by the support of µ.

In this paper, we are interested in studying the µ-stationary measures on a homogeneous

space G/H with respect to the Γµ-action by left multiplication. We first recall the definition

of stationary measures.

Definition. Suppose G acts on a Borel space X. We say that a Borel probability measure ν

on X is µ-stationary if µ ∗ ν = ν, i.e.

ν =

∫
G
g∗ν dµ(g).

Clearly if ν is Γµ-invariant then it is µ-stationary. On the other hand, if Γµ is abelian

(for instance if Γµ is isomorphic to R, R+, Z or N), then every µ-stationary measure is Γµ-

invariant by the classical Choquet-Deny theorem ([CD60], see [BQ16, Cor. 2.22] for a short

proof). Therefore stationary measures can be considered a natural generalization of invariant

measures, which is a major object of interest in dynamics.

It has long been observed in the literature that while the space of invariant measures of a

typical dynamical system given by an R or Z-action is rich and flexible (for instance there can

be invariant measures whose support has arbitrary Hausdorff dimension up to the dimension of

the space), the space of stationary measures of a random dynamical system given by a “large

enough” semigroup Γµ is quite rigid. One of the first instances of such phenomena was observed

by Furstenberg ([Fur67]), who famously conjectured that the only Borel probability measures
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on the circle S1 invariant and ergodic under ×2 and ×3 are either finitely supported or the

Lebesgue measure.

The first result that is close to our setting was given by Bourgain, Furman, Lindenstrauss

and Mozes [BFLM11]. They considered the action of a semigroup Γ ⊂ SLn(R) on the n-

torus Tn such that Γ acts strongly irreducibly on Rd is proximal, and showed using techniques

from Fourier analysis and additive combinatorics that for any probability measure µ that is

supported on a set of generators of Γ and satisfies a suitable moment condition, the only

ergodic µ-stationary measures on Tn are either finitely supported or the Lebesgue measure.

Later, Benoist and Quint [BQ11] gave another proof of this result without the proximality

assumption using techniques from ergodic theory. Moreover, their proof also applies to the

µ-action on homogeneous spaces of the form G/Λ, where G is a simple real Lie group, Λ is a

lattice in G, and µ is a probability measure on G whose support is Zariski dense in G. They

showed that in this case, the only ergodic µ-stationary measures are either finitely supported or

the Haar measure. In a later paper [BQ13a], they generalized the result to the setting where G

is a real Lie group (they also have analogous statements for S-arithmetic groups), Λ is a discrete

subgroup of G, and µ is a compactly supported measure on G such that the Zariski closure of

its support is semisimple, Zariski connected and has no compact factors. They showed that in

this case, every ergodic µ-stationary measure on G/Λ is homogeneous.

This result was extended by Eskin and Lindenstrauss [ELa] using slightly different tech-

niques in ergodic theory inspired by the ideas of Eskin and Mirzakhani [EM18] in the context

of Teichmüller dynamics. They also considered the G-action on G/Λ, but they relaxed the

assumption that the support of µ has semisimple Zariski closure to an assumption they called

“uniform expansion”. We state a special case of their main result as it will be relevant to our

main statement.

Theorem (Eskin-Lindenstrauss). [ELa, Thm. 1.7] Let G be a real Lie group and Γ be a

discrete subgroup of G. Suppose that µ is a probability measure on G with finite first moment

(to be defined in the next section), and let Γµ be the (topological) closure of the semigroup

generated by the support of µ.
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Let ν be an ergodic µ-stationary probability measure on G/Γ. Suppose that µ is uniformly

expanding on g. Then one of the following holds.

(a) There exists a closed subgroup H ⊂ G with dim(H) > 0 and an H-homogeneous prob-

ability measure ν0 on G/Γ such that the unipotent elements of H act ergodically on ν0,

and there exists a finite µ-stationary measure λ on G/H such that

ν = λ ∗ ν0 :=

∫
G
g∗ν0 dλ(g).

(b) The measure ν is Γµ-invariant and finitely supported.

We record a few remarks about H in the statement. First, it is a nondiscrete closed subgroup

of G since dim(H) > 0. Second, H is unimodular by the existence of an H-homogeneous

probability measure, i.e. a translate of an H-invariant probability measure on H/H ∩ gΓg−1

for some g ∈ G, which implies that H admits a lattice subgroup H ∩ gΓg−1. Third, H may

have infinitely many connected components. Fourth, it follows easily from [BQ11, Prop. 6.7]

that if G is connected and simple, and Γµ is Zariski dense in G, then the only possible H in

(a) is G. Using this observation, the theorem of Eskin-Lindenstrauss easily implies the main

statement of [BQ11] that every ergodic stationary measure is either finitely supported or Haar

(this was already observed and used in the last step of [BQ11] - see [BQ11, Lem. 8.2]). A similar

restriction on H was also observed in the case when the Zariski closure of Γµ is semisimple (see

the proof of [BQ13a, Thm. 2.7], using [BQ13a, Prop. 5.19]), which allows one to conclude, for

instance, that every ergodic stationary measure is homogeneous.

However, in the setting of Eskin-Lindenstrauss, without assuming that the Zariski closure of

Γµ is semisimple, the possibility of H such that G/H admits a µ-stationary measure is much less

restrictive. In particular there is not enough restriction on H to conclude that the stationary

measure on G/Γ is homogeneous, unlike in the situation of [BQ13a]. In fact, it was already

observed in [ELa] that there exists an example of µ and G/Γ that satisfies the assumptions of

[ELa, Thm. 1.7] and admits a non-homogeneous stationary measure. This prompts the natural

question:
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Question. What are the possible stationary measures on G/H when H is a closed nondiscrete

unimodular subgroup of G?

The purpose of this paper is threefold:

1. Generalize the result of Eskin-Lindenstrauss to study the possible µ-stationary measures

on G/H, where H is a closed nondiscrete unimodular subgroup of G, under suitable easily

verifiable assumptions on µ that is analogous to the “uniform expansion” assumption

introduced in [ELa].

2. Combine such an understanding of stationary measures on G/H with [ELa, Thm. 1.7] to

understand a clearer picture of stationary measures on G/Γ under suitable assumptions.

3. Demonstrate how to apply the technique of Eskin-Lindenstrauss, the main ideas of which

first introduced in Eskin-Mirzakhani [EM18], to a fiber bundle where stationary measures

on the base are classified and well-understood, to generate extra invariance in the fiber

direction.

4.1.1 Main Statement

We will need the following definitions to state the main results.

Definition. A Borel probability measure µ on G has finite first moment if

∫
G

log max(‖g‖, ‖g−1‖)dµ(g) <∞.

As in [ELa], we shall use the following definition of an H-envelope.

Definition. Given a Lie group G and H ⊂ G a closed subgroup, let H◦ be the connected

component of the identity in H. A subgroup L ⊂ G is called an H-envelope if the following

holds:

(i) L ⊃ H and H◦ is normal in L.
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(ii) The image of H in L/H◦ is discrete.

(iii) There exists a representation ρ : G → GL(W ) and a vector vL ∈ W such that the

stabilizer of vL is L.

The point of this definition is that (i) and (ii) imply that L/H = (L/H◦)/(H/H◦) is

a discrete quotient of a real Lie group L/H◦, while (iii) implies that there is a G-equivariant

smooth injection from G/L to a vector space W (by sending g 7→ ρ(g)vL), therefore a stationary

measure on G/L can be considered a stationary measure on W . For unimodular H, there are

at least two common constructions of an H-envelope L.

1. Let ρH be a nonzero element in
∧dimH h ⊂

∧dimH g. Define

L := {g ∈ NG(H◦) | g∗ρH = ρH}.

In words, L contains elements in the normalizer of the connected component H◦ that

preserves the Haar measure on H. Since H is unimodular, H ⊂ L. The other conditions

are satisfied, as can be readily checked.

2. If G is an algebraic group and Γ an arithmetic lattice, one can take

L = Zariski closure of Γ ∩NG(H◦) in G.

On one hand, by a theorem of Chevalley (e.g. [Hum75, Thm. 11.2]), there exists a

representation ρ : G → GL(W ) and a one dimensional subspace ` ⊂ W such that L is

the stabilizer of `. On the other hand, L has no nontrivial character , therefore L fixes `

pointwise, hence we can take vL to be any nonzero vector in `.

Definition. Let µ be a Borel probability measure on G. Suppose H ⊂ G is a closed subgroup

and L is an H-envelope. We say that µ is uniformly expanding on L/H at x if for all
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v ∈ lx := Lie(xLx−1), for µN-a.e ω+ ∈ GN, n ∈ N,

lim
n→∞

1

n
log ‖Ad(Tnω )v‖(l/h)Tnω x

> 0,

where Tnω := ωn · · ·ω1 ∈ G, and ‖ · ‖lx/hx is a norm on (l/h)x̂ induced by a fixed norm on

g. For instance, define ‖v‖(l/h)x̂
:= ‖v ∧ ρhx‖g/‖ρhx‖g, where ρhx is a nonzero element in the

one-dimensional subspace
∧dimH hx ⊂

∧dimH g, and ‖ · ‖g is a fixed norm on
∧dimH+1 g.

Theorem 4.1.1. Let G be a real linear algebraic group, and µ be a Borel probability measure

on G with finite first moment. Let Γµ be the (topological) closure of the subsemigroup generated

by the support of µ in G, and Γ
Z
µ be the Zariski closure of Γµ.

Let H ⊂ G be a closed unimodular subgroup, and H◦ be the connected component of the

identity in H. Suppose there exists an H-envelope L and x0 ∈ G/L such that µ is uniformly

expanding on L/H at x0.

Let νG/H be an ergodic µ-stationary probability measure on Γ
Z
µ x0L/H. We also assume

that

(†) There exists a closed normal subgroup U ⊂ Γ
Z
µ and some z0 ∈ G with z0L = x0L such

that Γ
Z
µ x0L = Uz0H

◦ and z−1
0 Uz0 ∩H◦ = {id}.

Then one of the following holds:

(I) there exist a Lie subgroup H ′ ⊂ G with H◦ ⊂ H ′ ⊂ L ⊂ G and dim(H ′/H◦) > 0,

an H ′-homogeneous probability measure νL/H on L/H and finite µ-stationary measure

νG/H ′ on Γ
Z
µ xL/H

′ such that

νG/H = νG/H ′ ∗ νL/H :=

∫
G/H ′

g∗νL/H dνG/H ′(g).

(II) the stationary measure νG/H can be written as

νG/H =

∫
G/L

νx dν(x),
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where

(a) ν is a generalized µ-Bernoulli measure (see Definition 4.3.9) supported on Γ
Z
µ x0L/L,

(b) there exists a positive integer k such that for ν-almost every x ∈ G/L, νx is the

uniform measure on k points in π−1(x) = xL/H, where π : G/H → G/L is the

natural quotient map,

(c) there exists a Γµ-invariant locally Zariski closed subset F such that supp νG/H ⊂ F ,

and F has finite intersection with xL/H for all x ∈ Γ
Z
µ x0L/L (the set F is defined

dynamically and can be made more explicit and computable - see Theorem 4.4.9).

We remark that if H is a discrete subgroup of G, this statement recovers [ELa, Thm. 1.7]

for trivial Z (in this case (†) is satisfied with U = Γ
Z
µ ).

Remark 4.1.2. We have the following remarks regarding the assumptions of the theorem.

1. The assumption of uniform expansion on L/H is the main assumption of the theorem,

and is analogous to the uniform expansion assumption in [ELa]. Note that we only require

uniform expansion in the fiber direction above a single point x ∈ G/L, in particular it is

readily verifiable. However the tradeoff is that we can only consider stationary measures

supported on Γ
Z
µ x0L/H.

2. The reason to assume that νG/H is a stationary measure on Γ
Z
µ x0L/H rather than on

G/H is twofold: firstly a simple ergodicity argument shows that any ergodic measure on

G/L is supported on a single Γ
Z
µ -orbit. Now any ergodic stationary measure ν on G/H

induces a ergodic stationary measure π∗ν on G/L, so π∗ν is supporte on Γ
Z
µ x0L/L for

some x ∈ G/L, and hence ν is supported on π−1(Γ
Z
µ x0L/L) = Γ

Z
µ x0L/H. On the other

hand, the assumption of uniform expansion on L/H at x0 ensures uniform expansion on

L/H at x′ for all x′ ∈ Γ
Z
µ x0L/L, thus focusing only on measures supported on Γ

Z
µ x0L/H

ensures that the assumption on that one fiber above x0 is relevant to ν-almost every point.

3. The assumption (†) is only used in Case II (see Theorem 4.4.9). In particular it is only
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used in Section 4.11. It is our intention to remove this assumption in the final version.

Subsection 4.11.1 records all the conseqeuences we need from assumption (†).

Theorem 4.1.1 together with [ELa, Thm. 1.7] form one step of an induction scheme, which

allows one to obtain more information about measure rigidity even in the special case considered

in [ELa] (with extra assumptions in the form of uniformly expanding on L/H). In some

cases this would be enough to completely classify the ergodic stationary measures, and we will

demonstrate one such example (and it will be clear how to generalize the example to a family

of such) in Section 4.2 where all the ergodic stationary measures can be classified.

4.1.2 Ideas of the proof

As mentioned in the introduction, the main idea is to apply a bundle version of the technique

of Eskin-Lindenstrauss. More precisely, we consider the bundle π : G/H → G/L given by the

natural quotient map, where L is an H-envelope. We have the following observations based on

the definition of an H-envelope.

1. Let ν be an ergodic µ-stationary measure on G/H, then ν := π∗ν is an ergodic µ-

stationary measure on G/L. By the remarks following the definition of an H-envelope,

we know that there is an algebraic homomorphism ρ : G → GL(V ) that induces a G-

equivariant injection ρ : G/L → GL(V ) given by g 7→ ρ(g)v, where L is the stabilizer

of v. Thus ν induces an ergodic µ-stationary measure ρ∗ν on V r {0}. We will see

that (Theorem 4.3.1) unless Γµ ⊂ L, the existence of such stationary probability measure

imposes severe restrictions on Γµ. Furthermore such ergodic stationary measures on V can

be completely classified and explicitly described (see Section 4.3) as self-affine measures on

V . The pullback of such measures on G/L will be called generalized µ-Bernoulli measures.

2. The definition of an H-envelope implies that L/H ∼= (L/H◦)/(H/H◦) is a homogeneous

space of the Lie group L/H◦ (since H◦ is normal in L) with the discrete subgroup H/H◦ ⊂

L/H◦. Since each fiber of the bundle π : G/H → G/L is a translate of L/H, each

fiber falls in the setting of Eskin-Lindenstrauss. Furthermore, the assumption of uniform
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expansion on L/H at some x ∈ G/L is the same as the uniform expansion assumption of

Eskin-Lindenstrauss applied to the fiber xL/H.

The second remark suggest a simple way to adapt the drift method of Eskin-Lindenstrauss -

one performs the drift argument by taking two points in the same L/H-fiber, and run the drift

to gain extra invariance in the fiber direction. In fact, this was the approach taken by [SS19]

in adapting the method of Benoist-Quint to the bundle of interest in their case. However, this

adaptation will not give the Case II conclusion (c) in our main statement, since it does not

relate the conditional measures on nearby L/H-fibers at all.

Our method, instead consider two starting points that may be in different fibers (though still

stably related as in the method of Eskin-Lindenstrauss). This, however, imposes extra difficulty

since unlike in the case of G/Γ, where there is a natural identification of the tangent spaces at

every point on G/Γ with the Lie algebra g := Lie(G) via right multiplication, in the case of

G/H where H has nontrivial identity component (that is also not normal in G in general), the

tangent spaces at different points of G/H cannot be canonically identified. Such identification

was used in certain constructions in Eskin-Lindenstrauss (for instance the P− map in [ELa,

Sect. 2.2] and linear map A(q̂1, u, `, t) in [ELa, Sect. 4]) in a crucial way. Therefore to adapt

their method in this situation, we need to apply a factorization technique, pioneered in the work

of Eskin-Mirzakhani, to our setting. This is the content of Section 4.6 and is the main new

ingredient of this work. We will also need to use the natural holonomy maps H−i (subsection

4.5.6) in this context to construct the P− maps (subsection 4.5.7) and other constructions.

4.1.3 Outline

The outline of the paper is as follows:

� In Section 4.2, we will discuss an example where we can use Theorem 4.1.1 to completely

classify the stationary measures, and where not all ergodic stationary measures are ho-

mogeneous. This is a canonical example of cases where measure classification can be done

using Theorem 4.1.1.
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� In Section 4.3, we summarize the results about the classification of stationary measures

on finite-dimensional real vector spaces from Chapter 3 of this thesis. Most of the results

are consequences of [Bou87, Thm. 5.1]. The main result that will be used in the future

sections is Corollary 4.3.8, which gives a description of the Γµ-action on G/L and the

possible stationary measures on G/L.

� In Section 4.4, we discuss the basic setup of our setting, and recall a few basic facts

from [ELa]. This includes the general construction of a two-sided skew product from a

stationary measure, a choice of metric on G/H, the stable and unstable manifolds, and

how we split the two cases in the main argument.

� In Section 4.5, we recall the decomposition of the tangent spaces using Oseledets theorem

and Zimmer’s amenable reduction theorem. In particular we will discuss the relationship

between the Lyapunov spaces of G/H, G and L/H. We also discuss the construction of

the suspension space, the holonomy maps, the equivariant measurable flat connections

P−, and the dynamically defined norm on the tangent spaces.

� In Section 4.6, we describe the factorization procedure in the case of G/H, which is the

main new ingredient of our paper. In particular we define the linear map A(q̂1, u, `, t)

which plays an important role in the main argument. The main result of this section is

Theorem 4.6.5.

� In Section 4.7, we discuss a key divergence estimate (Proposition 4.7.2) of the norm

of A(q̂1, u, `, t) under the assumption of Case I and uniform expansion on L/H. We

also record a general lemma on conditional measures (Lemma 4.7.6) already appeared in

[ELa] which allows us to choose points appropriately in a good compact set in the main

argument.

� In Section 4.8, we describe the inert subbundle E of the tangent bundle. The main result

is that under the assumption of Case I and uniform expansion on L/H, the image of

A(q̂1, u, `, t) converges to the inert bundle (Proposition 4.8.7) as `→∞.
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� In Section 4.9, we cite the necessary theorems from [ELa] that describe the tie-breaking

procedure. Since the entire procedure happens in a single L/H fiber, the corresponding

theorems can be quoted direclty from [ELa].

� In Section 4.10, we describe the main argument of case I using the Eskin-Mirzakhani

scheme. We first give a detailed outline of the procedure, including how the main results

in the previous section fit into the procedure, and then prove the claims afterwards.

� In Section 4.11, we prove Theorem 4.4.9, which describes the conclusion under the as-

sumption of Case II.

4.2 Example with non-homogeneous stationary measures

Before presenting the proofs of the main theorem, we present an explicit example of a random

walk where the classification of stationary measures can be done using Theorem 4.1.1 and (as

far as we can tell) does not follow from previous results in the literature. One feature of this

example is that the ergodic stationary measures are non-homogeneous.

Let G = SL4(R),

H =

SL2(R) ∗

0 SL2(Z)

 , H◦ =

SL2(R) ∗

0 I

 , L =

SL2(R) ∗

0 SL2(R)

 .

Note that L/H ∼= SL2(R)/SL2(Z) and L is an H-envelope. Define the acting elements (i.e. the

support of µ)

g+ =



4 0 0 0

0 1/4 0 0

0 0 2 1

4 0 1 1


, g− =



4 0 0 0

0 1/4 0 0

0 0 1 1

−4 0 1 2


.
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Then

Γ
Z
µ =





x 0 0 0

0 y 0 0

∗ 0 ∗ ∗

∗ 0 ∗ ∗


∈ G : xy = 1


.

If we let

U :=



1 0 0 0

0 1 0 0

∗ 0 ∗ ∗

∗ 0 ∗ ∗


,

then one can check that (†) is satisfied with x0 = L ∈ G/L and z0 = id ∈ G (i.e. U is normal

in Γ
Z
µ , Γ

Z
µL = UH◦ and U ∩ H◦ = {id}). Furthermore µ is uniformly expanding on L/H at

x0 = L.

Our goal is to classify the µ-stationary measures on Γ
Z
µL/H. We first remark that the

µ-action on U/(U ∩H) ∼= UH/H = Γ
Z
µL/H is given by the following calculation: for A,X ∈

SL2(R),b,v ∈ R2, λ ∈ R,



λ 0 0

0 λ−1 0

b 0 A





1 0 0

0 1 0

v 0 X


H =



1 0 0

0 1 0

v′ 0 AX





λ 0 0

0 λ−1 0

0 0 I


H =



1 0 0

0 1 0

v′ 0 AX


H

where

v′ := λ−1(Av + b). (4.2.1)

Thus for any ergodic µ-stationary measure ν on Γ
Z
µL/H, via the natural map Γ

Z
µL/H =
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UH/H ∼= U/(U ∩H)→ U/(U ∩L), one obtains a µ-stationary measure ν on U/(U ∩L), where

g± acts on U/(U ∩ L) by (4.2.1), explicitly written as:

g+ : v 7→ 1

4

2 1

1 1

v +

0

1

 , g− : v 7→ 1

4

1 1

1 2

v +

 0

−1

 .

(Here we are using the identifications U/(U ∩ L) ↔



1 0 0

0 1 0

v 0 X


L ↔ v. ) Note that 4 is

greater than the top Lyapunov exponent of the random walk given by the matrices

2 1

1 1

 and

1 1

1 2

 (for instance it is larger than the norm of both matrices), therefore g± are contractions

on U/(U∩L), hence the ergodic µ-stationary measures ν on Γ
Z
µL/L can be completely classified

(in terms of generalized µ-Bernoulli measures) using the statements in Section 4.3.

Now we apply Theorem 4.1.1. If Case I holds with H ′ = L, then we are done - there

is only on L-homogeneous probability measure νL/H on L/H, namely the Haar measure

HaarSL2(R)/SL2(Z) on L/H ∼= SL2(R)/SL2(Z) in our case, and we have a complete classifi-

cation of stationary measures νG/L on G/L, therefore any µ-stationary probability measure ν

on Γ
Z
µL/H is of the form

ν =

∫
G/L

g∗HaarSL2(R)/SL2(Z) dνG/L(g).
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If Case II holds, let

F≤0
U =



1 0 0 0

0 1 0 0

∗ 0 1 0

∗ 0 0 1


.

It can be computed that F≤0
G/H

[z] ∩ Γ
Z
µL/H = F≤0

U z for all z ∈ Γ
Z
µL/H. Thus by the Case II

conclusion of Theorem 4.1.1 (in the form of Theorem 4.4.9), ν is supported on finitely many

cosets of F≤0
U permuted by Γµ, moreover it projects to a stationary measure on Γ

Z
µL/L that

was classified in Section 4.3. (There is a third possibility where Case I holds with H ′ ⊂ L such

that H ′/H◦ is a one-parameter unipotent subgroup of L/H◦, in which case one applies the

theorem again to conclude that there is no µ-stationary measure that is not already included

in the previous two cases. We omit this straightforward but tedious analysis in this expository

section. )

4.3 Stationary measures on vector spaces

In this section, we summarize the statements about classifying stationary measures of linear

actions on a vector space from Chapter 3, and deduce Corollary 4.3.8 from them. The results

in this section will be a crucial input to the general statement. The key statements for the

purpose of the future sections are Theorem 4.3.1, 4.3.2 and Corollary 4.3.8.

Let µ be a Borel probability measure on G = GL(V ) for some finite dimensional (real) vector

space V . Let Γµ := 〈supp µ〉 ⊂ G be the (topological) closure of the semigroup generated by

the support of µ.

Consider the action of GL(V ) on V by left multiplication. In this section we classify the

µ-stationary probability measures on V with respect to this action. The main input is the

result [Bou87, Thm. 5.1].
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Since the origin of V is a fixed point of this linear action, the delta mass δ0 at the origin is

always an Γµ-invariant measure (hence in particular µ-stationary). We say that a µ-stationary

measure ν on V is nontrivial if ν 6= δ0.

Definition. We define the top Lyapunov exponent of µ on a Γµ-invariant subspace W ⊂ V as

λ1,W = λ1,W (µ) := lim
n→∞

1

n

∫
GL(V )

log ‖g‖GL(W )dµ
(n)(g),

where µ(n) := µ ∗ µ ∗ · · · ∗ µ is the n-th measure power of µ, and for g ∈ GL(V ), ‖g‖GL(W )

denotes the operator norm of the restriction g|W in GL(W ).

The following result, which follows immediately from [Bou87, Thm. 5.1], gives a necessary

and sufficient condition for the existence of a nontrivial µ-stationary measure on V .

Theorem 4.3.1 (Theorem 3.1.1 of this thesis). Let µ be a Borel probability measure on GL(V )

with finite first moment. Then there exists a nontrivial µ-stationary measure ν on V if and

only if there exist Γµ-invariant subspaces W ′ ( W ⊂ V such that

(i) Γµ acts compactly on W/W ′, i.e. the image of ρW/W ′ : Γµ → GL(W/W ′) is compact,

(ii) either W ′ = 0, or the top Lyapunov exponent of µ on W ′ is negative,

(iii) the support of every µ-stationary probability measure on V is in W .

The following result classifies the stationary measures on V in terms of the compact Γµ-

orbits on W/W ′.

Theorem 4.3.2 (Theorem 3.1.2 of this thesis). Suppose there is a nontrivial µ-stationary

measure on V and let W ′ ( W ⊂ V be the Γµ-invariant subspaces from Theorem 4.3.1. Then

the map ν 7→ supp π∗ν gives a one-to-one correspondence between

{ergodic µ-stationary measure on V } ↔ {compact Γµ-orbit in W/W ′},

where π : W → W/W ′ is the quotient map.
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We can describe the inverse map in a more explicit way in terms of the asymptotic behavior

in law of the random walk on V induced by µ.

Theorem 4.3.3 (Theorem 3.1.3 of this thesis). For any compact Γµ-orbit C in W/W ′, let mC

be the Haar (probability) measure supported on C. Let s : W/W ′ → W be a linear section, i.e.

a linear map such that π ◦ s = id. Then the weak-∗ limit

νC := lim
n→∞

µ(n) ∗ (s∗mC)

exists and does not depend on the choice of the section s. Moreover, the map C 7→ νC is the

inverse map of the bijection in Theorem 4.3.2.

Using the classification of stationary measures, we can obtain the following equidistribution

result.

Theorem 4.3.4 (Theorem 3.1.4 of this thesis). For all x ∈ W , let C is the compact Γµ-orbit

of x+W ′ in W/W ′. Then

1. we have the weak-∗ convergence

1

n

n−1∑
i=0

µ(i) ∗ δx → νC .

2. For µN-almost every word b = (b1, b2, . . .) ∈ GL(V )N, we have the convergence of the

empirical measures

1

n

n−1∑
i=0

δbibi−1...b1x → νC as n→∞.

The following definition is standard when considering stationary measures.

Proposition 4.3.5 (Proposition 3.1.5 of this thesis). [BL85, Lem. II.2.1] Let µ be a Borel

probability measure on G = GL(V ) and ν be a µ-stationary measure on V . Then for µN-

almost every b = (b1, b2, . . .) ∈ GN, there exists a probability measure νb on V such that for all

135



g ∈ Γµ,

νb = lim
n→∞

(b1b2 . . . bng)∗ν.

Moreover, we have

ν =

∫
GN

νb dµ
N(b).

The measure νb is sometimes called the limit measure of ν with respect to the word b.

We can describe the limit measures of any stationary measures on V .

Theorem 4.3.6 (Theorem 3.1.6 of this thesis). For each compact Γµ-orbit C in W/W ′, for

µN-almost every word b ∈ GL(V )N, the limit measure

νb = lim
n→∞

(b1b2 . . . bn)∗νC

is the pushforward of mC via a linear injection pb : W/W ′ → W , where mC is the Haar (proba-

bility) measure supported on C. In particular, νb is compactly supported on W . Moreover, the

family {pb}b∈GN is equivariant, in the sense that

b1 ◦ pb = pTb ◦ b1,

where T : GN → GN is the left shift map given by (Tb)n = bn+1.

If Γµ acts trivially on W/W ′, then νb is a delta mass δξ(b) on V for µN-almost every word

b, and thus any ergodic µ-stationary measure ν on V is µ-proximal (cf. [BQ16, Sect. 2.7]). In

general, we have the following classification, which follows immediately from Proposition 3.1.5

and Theorem 3.1.6.

Theorem 4.3.7. There exists a single compact Γµ-orbit C on W/W ′ and an equivariant family

of sections {pb : W/W ′ → W}b∈GN}, i.e. for µN-a.e. b = (b1, b2, . . .) ∈ GN,

b1 ◦ pb = pTb ◦ b1,
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where T : GN → GN is the left shift map defined by (Tb)n = bn+1, such that

ν =

∫
GN

(pb)∗mC dµ
N(b),

where mC is the Haar (probability) measure on W/W ′ supported on C.

Corollary 4.3.8. Let ρ : G → GL(V ) be a finite dimensional representation. Let X be a

G-homogeneous space with a G-equivariant injection ιV : X → V , and inherit a metric dX on

X from the Euclidean metric on V .

Let ν be a µ-stationary measure on X and ν̂ be the corresponding invariant measure on

SZ ×X. There exist

(i) a partition W of X (use W [x] to denote the atom of W containing x ∈ X),

(ii) a compact Γµ-homogeneous space C with its (unique) Γµ-invariant measure mC ,

(iii) a measurable map p̂ : SZ × C → SZ × X (let p : SZ × C → X be the composition

of p with the projection onto X) that projects to the identity on the SZ factor, i.e.

p̂(ω, x) = (ω, p(ω, x)),

such that

(a) p̂ is T̂ -equivariant, i.e. T̂ (p̂(ω, x)) = p̂(T̂ (ω, x)),

(b) p̂∗(µZ ×mC) = ν̂, so p∗(µZ ×mC) = ν,

(c) for µZ-a.e. ω ∈ SZ, x 7→ p(ω, x) is a continuous injection, thus p({ω} × C) is compact in

X,

(d) for all x ∈ C, for µZ-a.e. ω ∈ SZ, p(SZ × {x}) ⊂ W [p(ω, x)].

(e) for µZ-a.e. ω, for all x ∈ X and x′ ∈ W [x],

lim sup
n→∞

1

n
log dX(Tnω (x), Tnω (x′)) < 0.
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Proof. Take p̂(ω, x) := (ω, pω−(x)), where pω− is the map defined in Theorem 4.3.7, and for

each z ∈ X, take W [z] := ι−1
V (ιV (z) +W ′), where W ′ is the Γµ-invariant subspace in Theorem

4.3.1. We verify each property here.

(a) This follows from the equivariance of pω− in Theorem 4.3.7.

(b) This follows from Theorem 4.3.7 that νω− = (pω−)∗mC and ν =
∫
νω− dµ

Z(ω).

(c) Since pω− is a linear injection, so in particular continuous.

(d) Since pω− is a section for the projection W → W/W ′, for fixed x ∈ C, for µZ-a.e. ω,

pω−(x) ∈ x+W ′, therefore p(ω, x) is in the same atom of W for µZ-a.e. ω.

(e) Since x′ ∈ W [x] if and only if ιV (x′)− ιV (x) ∈ W ′ by the definition of W , this property

follows from the fact that W ′ is exponentially contracted by µZ-a.e. word ω since the top

Lyapunov exponent of µ on W ′ is negative.

We use Corollary 4.3.8 to give a precise definition of “generalized µ-Bernoulli measure”

stated in the main Theorem 4.1.1.

Definition 4.3.9. We say that a Borel probability measure ν on a locally compact Borel G-

space X is a generalized µ-Bernoulli measure if there exists a compact Γµ-space C with its

(unique) uniform probability measure mC and a measurable map p : SZ × C → X such that

ν = p∗(µZ × mC), and the map p̂ : SZ × C → SZ × X defined by p̂(ω, x) := (ω, p(ω, x)) is

T̂ -equivariant: p̂(T̂ (ω, x)) = T̂ (p̂(ω, x)).

We note that this definition includes the classical self-affine measures on Rn (for the appro-

priate measure µ) and uniform measures on compact Γµ-spaces. If µ is finitely supported, C

is trivial, and the elements in S form a contracting similarity IFS, then this also include the

Bernoulli measures defined in [SW19, Sect. 8] (hence for specific choices of µ this also include

the classical Hausdorff measures on certain fractal sets).
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4.4 Setup

In this section, we lay down the foundations of the proof. In particular, towards the end of this

section, we will state precisely the Case I and II assumptions, and the precise conclusions we

will prove in Theorem 4.4.8 and 4.4.9. These two theorems together imply Theorem 4.1.1.

We record the following setup from Eskin-Lindenstrauss [ELa], which form the basis of the

modified exponential drift argument in the fiber direction L/H.

4.4.1 The acting group Γ
Z
µ

Let S := supp µ, and Γµ := 〈supp µ〉 ⊂ G be the (topological) closure of the semigroup

generated by S. Let Γ
Z
µ ⊂ G be the Zariski closure of Γµ in G. In cases that this paper

considers, Γ
Z
µ will not be the whole group G, nor semisimple.

4.4.2 Skew Product SZ ×G/H

Consider the two-sided shift (SZ, µZ, T ) with the map

T : SZ → SZ

defined by the left shift (Tω)n = ωn+1 for ω = (. . . , ω−1, ω0, ω1, . . .) ∈ SZ.

Given a locally compact Borel G-space X (for instance X = G/L,G/H◦, G/H), define the

skew product map

T̂ : SZ ×X → SZ ×X by (ω, x) 7→ (Tω, ω0x).

For ω ∈ SZ and nonnegative integer n, if we let

Tnω := ωn−1 · · ·ω0, and T−nω := (TnT−nω)−1.
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then for any integer n, x̂ = (ω, x) ∈ SZ ×X,

T̂n(ω, x) = (Tnω, Tnωx).

Given a µ-stationary measure ν on X and ω = (. . . , ω−1, ω0, ω1, . . .) ∈ SZ, let

νω− := lim
n→∞

(ω−1 . . . ω−n)∗ν.

The existence of the limit follows from the martingale convergence theorem (cf. [BL85, Lem.

II.2.1]). Hence νω− is a probability measure on X.

Moreover, one can define a T̂ -invariant probability measure ν̂ on SZ ×X by

dν̂(ω−, ω+, x) := dµZ(ω−, ω+) dνω−(x). (4.4.1)

Proposition 4.4.1. If ν is an ergodic µ-stationary measure on X, then ν̂ is an ergodic T̂ -

invariant measure on SZ ×X.

Proof. This follows from [Kif86, Lem. I.2.4, Thm. I.2.1, P.19-20], as in [ELa, Prop. 1.12].

As in [ELa], we also introduce a group U+
1 acting on SZ so that the U+

1 -orbit of (ω−, ω+) ∈

SZ is {ω−} × SN, and extend to an U+
1 -action on SZ × X by acting trivially on the second

factor. In particular for any x̂ ∈ SZ × X, U+
1 x̂ is naturally identified with SN, thus can be

endowed with the probability measure µN. We similarly define the group U−1 that changes ω−

in ω ∈ SZ. Then

Proposition 4.4.2. A measure ν̂ on SZ ×X is T̂ -invariant and U+
1 -invariant if and only if ν̂

is constructed from a µ-stationary measure ν on X as in (4.4.1).

Now we apply the above constructions to X = G/H and G/L. Let ν be an ergodic µ-

stationary measure on G/H. Let πG/L : G/H → G/L be the natural quotient map. Let

ν := (πG/L)∗ν. Then ν is an ergodic µ-stationary measure on G/L. We construct the ergodic

T̂ -invariant measures ν̂ and ν̂ on SZ ×G/H and SZ ×G/L respectively.
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It can be verified that

1. The pushforward of ν̂ via SZ ×G/H → SZ is µZ.

2. The pushforward of ν̂ via SZ ×G/H → G/H is ν.

3. The pushforward of ν̂ via SZ ×G/H → SZ ×G/L is ν̂.

4. The pushforward of ν̂ via SZ ×G/H → SN ×G/H is µN × ν.

5. ν̂ = µZ × ν if and only if ν is S-invariant.

4.4.3 Notational Remark 1

To make our notations more suggestive, we will adopt a number of notational rules.

Throughout this paper, we will consider a number of spaces, each with their natural Borel

probability measure, and have a T t-action and U+
1 -action that are measure-preserving. The

ones we have seen so far are:

(SZ, µZ), (SZ ×G/L, ν̂), (SZ ×G/H, ν̂).

We will also consider cocycle actions over these dynamical systems (and some others introduced

in future sections). For instance Tnω is a cocycle action on the trivial bundle SZ ×X over SZ

for X = G/L and G/H.

Elements

For an element in a measure-preserving system with SZ as a factor,

� we use a letter with a hat to denote that element, for instance x̂, ŷ, ẑ, q̂ etc.

� we use the same letter without the hat to denote the component in a G-space, for instance

x, y, z, q etc.

141



� we use ω with sub/superscripts to denote the component in the SZ factor, for instance

ω, ω′, ω′′ etc.

Dynamics

Rather than using a different notation for the dynamics on various spaces, we use the following

rules.

� We use Tn for the action on (SZ, µZ).

� We use T̂n (for Z-action) and T̂ t (for R-action) for the dynamics of any system except

(SZ, µZ).

� We use T tx̂ (for Z-action) or Tnx̂ (for R-action) for any cocycle action over any measure-

preserving system, where x̂ is an element in the underlying space of the system.

Manifolds and vector spaces

We will consider various dynamically defined submanifolds and vector bundles.

� We use curly letters for submanifolds of a G-space or subsets of SZ, often (though not

always) with a subscript to indicate the manifold it is embedded in, and a superscript

related to the exponential growth rate. For instance W+
G/H

,W−
G/L

, F−
G/H

etc.

� We use curly letters with a hat for subsets of a system with a SZ component and a

G-space component. For instance Ŵ+
G/H

, Ŵ−
G/L

etc.

� We use straight letters for vector bundles, sometimes with a superscript related to the

exponential growth rate, or in boldface. For instance W<λi , F, E etc.

� We use straight letters for subgroups of G, for instance G,H,L etc.

See Notational Remark 2 in the end of Section 4.5 for other remarks on the notation.
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4.4.4 Metric on G/H

Let H◦ be the connected component of identity in H.

Definition (Metric). Fix a representation ρ : G → GL(V ) s.t. L ⊂ G is the stabilizer of a

nonzero vector v ∈ V . Then there is an injection G/L→ V given by g 7→ gv. Let

1. dL/H be a right invariant Riemannian metric on L/H◦,

2. dG/L be the metric on G/L induced by the injection G/L→ V from the Euclidean metric

on V ,

We need to choose a convenient metric on G/H to control the drift of points in different

fibers. We use a metric similar to that in Sargent-Shapira [SS19, Sect. 6.1].

Let g := Lie(G) and h := Lie(H◦). For x ∈ G/L, let hx := xhx−1 (note that this is

well-defined since L normalizes H◦). Consider the orthogonal projection

Πx : g→ (hx)⊥ =: mx

with respect to a fixed K-invariant inner product on g. Let π : G/H◦ → G/L be the quotient

map. Now for z ∈ G/H◦, define hz := hπ(z) = zhz−1.

We then define a metric on G/H◦ as follows:

� for z ∈ G/H◦, define rz : G→ G/H◦ by g 7→ gz.

� The derivative at the identity derz : g → Tz(G/H
◦) has kernel hz, hence gives a well-

defined linear isomorphism derz : mπ(z) → Tz(G/H
◦) = g/(hz).

� We pushforward the metric on mπ(z) inherited from g via this isomorphism to obtain a

metric on Tz(G/H
◦) = g/(hz).

� Doing this for all z ∈ G/H◦ we obtain a metric dG/H on G/H◦.

� We use ‖ · ‖0 for the norm on g/hz induced by this metric to distinguish this from the

dynamically defined norm to be constructed in subection 4.5.9.
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A convenient way to view the dynamics is to use the following diagrams: for all γ ∈ G,

z ∈ G/H◦,

G
cγ //

rz
��

G

rγz
��

G/H◦ z 7→γz
// G/H◦

g
Adγ //

derz
��

g

derγz
��

TzG/H
◦

dzγ
// TγzG/H

◦

where cγ : G→ G is conjugation by γ, i.e. cγ(g) = γgγ−1.

The vertical maps restrict to an isometry (by definition of the metric) on mπ(z) and mπ(γz)

respectively, and has norm at most 1 on all of g. The top horizontal map induces a map

Adγ : g/hz → g/hγz. Note that this map does not map mπ(z) to mπ(γz) in general.

Proposition 4.4.3. The metric dG/H on G/H◦ defined above has the following properties.

(a) dG/H is invariant under right multiplication by L/H◦, i.e. dG/H(zg, z′g) = dG/H(z, z′)

for z, z′ ∈ G/H◦ and g ∈ L/H◦.

(b) On each fiber xL/H◦ for x ∈ G/L, if z, z′ ∈ xL/H◦, then right multiplication gives an

isometry on tangent spaces TzG/H
◦ → Tz′G/H

◦. Under the identification above, it is

an isometry g/hz → g/hz′ , hence we can identify the tangent spaces with g/hx for all

z ∈ xL/H◦.

(c) dG/H(gz, gz′) ≤ ‖g‖Ad(G)dG/H(z, z′) for all g ∈ G and z, z′ ∈ G/H◦.

(d) dG/L(π(z), π(z′)) ≤ cρ dG/H(z, z′), where cρ is the Lipschitz constant of the map ρ : G→

GL(V ).

Here ‖ · ‖Ad(G) is the operator norm on G given by the adjoint action Ad : G→ Ad(g).

For (z, z′) ∈ G/H◦ ×G/H◦ close enough, define the orthogonal displacement vector oz,z′ ∈

mπ(z) as the unique vector v ∈ mπ(z) such that z′ = exp(v)z.

Proposition 4.4.4. For any compact set E ⊂ G, and all 0 < c < 1, there exists a neighborhood

of the diagonal U ⊂ G/H◦ × G/H◦ such that for all (z, z′) ∈ U , and g ∈ E ∪ E−1 ∪ {e}, we

have
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(a) The vector ogz,gz′ ∈ mπ(gz) is well-defined.

(b) c‖ogz,gz′‖0 ≤ dG/H(gz, gz′) ≤ c−1‖ogz,gz′‖0.

(c) For all nonzero ρH ∈
∧dimH h, we have

c‖ogz,gz′‖0 ≤
‖g(oz,z′ ∧ ρH)‖0
‖gρH‖0

≤ c−1‖ogz,gz′‖0.

4.4.5 Stable and Unstable manifolds

We consider stable and unstable manifolds for the dynamics on both SZ×G/L and SZ×G/H◦.

Stable and unstable manifolds on SZ ×G/L

For (ω, x) ∈ SZ ×G/L, define the stable manifolds

W−SZ [ω] := {ω′ ∈ SZ | (ω′)+ = ω+},

Ŵ−
G/L

[x̂] :=

{
(ω′, x′) ∈ SZ ×G/L | (ω′)+ = ω+ and lim sup

n→∞

1

n
log dG/L(Tnωx, T

n
ωx
′) < 0

}
,

Similarly define the unstable manifolds W+
SZ [ω], Ŵ+

G/L
[x̂].

Stable and unstable manifolds on SZ ×G/H◦

Let π = πG/L : G/H◦ → G/L be the quotient map. For ẑ = (ω, z) ∈ SZ × G/H◦, define the

stable manifolds

Ŵ−
L/H

[ẑ] :=

{
(ω′, z′) ∈ SZ ×G/H◦ | (ω′)+ = ω+, πG/L(z′) = πG/L(z), and

lim sup
n→∞

1

n
log dG/H(Tnω z, T

n
ω z
′) < 0

}
,

Ŵ−
G/H

[ẑ] :=

{
(ω′, z′) ∈ SZ ×G/H◦ | (ω′)+ = ω+, and lim sup

n→∞

1

n
log dG/H(Tnω z, T

n
ω z
′) < 0

}
.
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Similarly define the unstable manifolds Ŵ+
L/H

[ẑ] and Ŵ+
G/H

[ẑ]. We remark that the manifolds

are local in the SZ component and global in the G-space component.

Then for almost every (ω, x) ∈ SZ × G/L, there exist unipotent subgroups N+
f (ω, x) =

N+
f (ω−, x) and N−f (ω, x) = N−f (ω+, x) of x(L/H◦)x−1 such that for almost every ẑ = (ω, z) ∈

SZ ×G/H◦, the fiberwise stable set

Ŵ±
L/H

[ẑ] =W±SZ [ω]× {πG/L(z)} ×N±f (ω∓, π(z))z.

Also write the total stable set

Ŵ−
G/H

[ẑ] =W−SZ [ω]×W−
G/H

[ẑ].

where W−
G/H

[ẑ] ⊂ G/H◦ denotes the stable manifold of z with respect to the combinatorial

future ω+, i.e.

W−
G/H

[ẑ] :=

{
z′ ∈ G/H◦ | lim sup

n→∞

1

n
log dG/H(Tnω z, T

n
ω z
′) < 0

}
.

Note that πG/L(W−
G/H

[(ω, z)]) ⊂ W−
G/L

[(ω, πG/L(z))] by Proposition 4.4.3(d). We can also

describe W−
G/H

[ẑ] in terms of the stable unipotent subgroup N−(ω) ⊂ G of G with respect to

the word ω, namely

W−
G/H

[ẑ] = N−(ω)zH◦.

This will be proved in Lemma 4.5.3.

Inert center-stable set

Definition. Define the inert center-stable set by, for z ∈ G/H◦,

F≤0
G/H

[z] :=

{
z′ ∈ G/H◦ | lim sup

n→∞

1

n
log dG/H(Tnω (z), Tnω (z′)) ≤ 0 for a.e. ω+ ∈ SN

}
.
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For x ∈ G/L, define

F≤0
G/L

[x] :=

{
x′ ∈ G/L | lim sup

n→∞

1

n
log dG/L(Tnω (x), Tnω (x′)) ≤ 0 for almost every ω+ ∈ SN

}
.

In words, z′ ∈ F≤0
G/H

[z] if for almost every future ω+, z and z′ do not diverge exponentially.

Proposition 4.4.5. We have the following equivariance properties: for all z ∈ G/H◦,

(a) for µ-a.e. g ∈ G, we have gF≤0
G/H

[z] ⊂ F≤0
G/H

[gz]; Similar for F≤0
G/L

[x].

(b) for all h ∈ L/H◦, we have F≤0
G/H

[zh] = F≤0
G/H

[z]h, where L/H◦ acts on G/H◦ by right

multiplication.

(c) π(F≤0
G/H

[z]) ⊂ F≤0
G/L

[π(z)] where π : G/H◦ → G/L is the quotient map.

Proof. For µ-a.e. g ∈ G, we have gF≤0
G/H

[z] ⊂ F≤0
G/H

[gz] basically by definition. For part (b),

the equivariance follows from the right invariance of the metric dG/H by L/H◦. Part (c) follows

from Proposition 4.4.3(d).

Proposition 4.4.6. If µ is uniformly expanding on L/H at x ∈ G/L, and there is a µ-stationary

measure ν on Γ
Z
µ xH/H, then for all z ∈ Γ

Z
µ xH

◦/H◦, the intersection of F≤0
G/H

[z] and x′L/H◦

contains at most one point for all x′ ∈ Γ
Z
µ x0L/L.

Proof. We defer the proof of this proposition to Section 4.8.2, as it will be a corollary of

Proposition 4.8.4 (see Corollary 4.8.5).

Proposition 4.4.7. For almost every x̂ = (ω, x) ∈ SZ ×G/L, we have W−
G/L

[x̂] = F−
G/L

[x] =

W [x], where W is the partition in Corollary 4.3.8.

Proof. This follows from Corollary 4.3.8 (e).

4.4.6 Two cases

We distinguish two cases, depending on the shape of the conditional measure ν̂|Ŵ−
G/H

[(ω,z)]
on

Ŵ−
G/H

[(ω, z)] = W−SZ [ω]×W−
G/H

[(ω+, z)]: For ν̂-almost every (ω, z) ∈ SZ ×G/H,
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Case I: the conditional measure ν̂|Ŵ−
G/H

[(ω,z)]
is not supported on W−SZ [ω]×F≤0

G/H
[z].

Case II: the conditional measure ν̂|Ŵ−
G/H

[(ω,z)]
is supported on W−SZ [ω]×F≤0

G/H
[z].

By ergodicity of ν̂, Case I and II are complementary. In Case I, we apply the modified exponen-

tial drift argument to pairs of points (ω, z), (ω′, z′) in Ŵ−
G/H

[(ω, z)] such that the basepoints

z, z′ ∈ G/H have different inert stable sets F≤0
G/H

[z] 6= F≤0
G/H

[z′]. In Case II, a separate argu-

ment will be needed. In particular, the main theorem follows from the following two statements:

Suppose G,H, µ satisfying the conditions of Theorem 4.1.1 and there exists an H-envelope

L that satisfying the conditions of Theorem 4.1.1. Let ν be an ergodic µ-stationary probability

measure on G/H, which projects to a µ-stationary probability measure ν̄ := π∗ν on G/L.

Theorem 4.4.8. If Case I holds, then there exist a Lie subgroup H ′ ⊂ G with H◦ ⊂ H ′ ⊂

L ⊂ G and dim(H ′/H◦) > 0, an H ′-homogeneous probability measure νL/H on L/H and finite

µ-stationary measure νG/H ′ on G/H ′ such that

νG/H = νG/H ′ ∗ νL/H =

∫
G/H ′

g∗νL/H dνG/H ′(g).

Theorem 4.4.9. Assume that

(†) There exists a closed normal subgroup U ⊂ Γ
Z
µ and some z0 ∈ G with z0L = x0L such

that Γ
Z
µ x0L = Uz0H

◦ and z−1
0 Uz0 ∩H◦ = {id}.

If Case II holds, then the stationary measure νG/H can be written as

νG/H =

∫
G/L

νx dν(x),

where

1. ν is a generalized µ-Bernoulli measure supported on Γ
Z
µ x0L/L.

2. there exists a positive integer k such that for ν-almost every x ∈ G/L, νx is the uniform

measure on k points in π−1(x) ⊂ G/H,
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3. there exist finitely many z1, . . . , zm ∈ Γ
Z
µ x0L/H such that for F :=

⋃m
i=1F

≤0
G/H

[zi], we

have (i) supp νG/H ⊂ F , (ii) F has finite intersection with x′L/H for all x′ ∈ Γ
Z
µ x0L/L,

and (iii) F is invariant under Γµ.

4.5 Refined Lyapunov Subspaces Wij(ω, z)

In this section, we will apply Oseledets multiplicative ergodic theorem and Zimmer’s amenable

reduction theorem to write the cocycle in a specific form, as was done in [ELa].

4.5.1 Suspension flow T t : Ωb → Ωb on Ωb = SZ × [0, 1]

In the process of the exponential drift, it would be convenient consider the G
Z
S -action not just

as a Z-action, but an R-action. This motivates the use of a suspension flow.

It will be evident by definition that the dynamics between two times t < t′ is the identity

map unless there is an integer between t and t′. Nonetheless, in subection 4.5.9, we will define

a dynamical norm that varies for different times in the suspension. In particular, the operator

norm of a certain linear map A(q̂1, u, `, t) with respect to these dynamical norms will vary

continuously with respect to t (rather than a nondecreasing step function in t that changes

only at integer times, as in the usual norm). This will help us determine a stopping time t by

setting ‖A(q̂1, u, `, t)‖ = ε for some constant ε > 0.

Let Ωb = SZ × [0, 1], let T t be the suspension flow on Ωb, obtained by descending the flow

(ω, s) 7→ (ω, s + t) on SZ × R onto Ωb with respect to the identification (ω, s + 1) ∼ (Tω, s).

Let Leb[0,1] be the Lebesgue (probability) measure on [0, 1]. Then the probability measure

µZ × Leb[0,1] on Ωb is invariant under the flow.

With this in mind we can extend the definitions of iteration of maps defined in Section 4.4.2

to a flow: for ω ∈ Ωb and z ∈ G/H, define

� T tω : G/H → G/H for any real number t, not just for integers t = n, by setting T tω := T
btc
ω .

� T̂ t : Ωb ×G/H → Ωb ×G/H by (ω, z) 7→ (T tω, T tωz).
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� T̂ t : Ωb × T (G/H)→ Ωb × T (G/H) by (ω, z,v) 7→ (T tω, T tωz, (T
t
ω)∗v), where T (G/H) is

the tangent bundle on G/H.

Analogous notations are used to extend the base dynamics on SZ ×G/L to Ωb ×G/L.

Similarly, define Ω0 := SZ ×G/L× [0, 1] with the natural measure ν̂ × Leb[0,1] and let T t

be the suspension flow on Ω0 by the same construction.

4.5.2 Lyapunov subspaces W λi(ω, z)

Apply Oseledets theorem to the cocycle T̂ t : Ωb × T (G/H)→ Ωb × T (G/H) over the base Ωb:

Proposition 4.5.1. There exists real numbers λ1 > λ2 > · · · > λn such that for almost every

ẑ = (ω, z, s) ∈ SZ ×G/H, there exists a T t-invariant splitting

Tz(G/H) =
n⊕
i=1

Wλi(ω, z)

with the property that v ∈ Wλi(ω, z) r {0} if and only if

lim
t→±∞

1

t
log
‖(T tω)∗v‖0
‖v‖0

= λi.

Here we think of each Wλi(ω, z) as a subspace of g/hz using the identification Tz(G/H) =

g/hz from subsection 4.4.4. The numbers λi are called the Lyapunov exponents, Wλi(ω, z) are

called the Lyapunov subspaces of g/hz with respect to the cocycle T̂ t.

Also for any real number λ, define the vector bundles

W≤λ(ω, z) := {0} ∪
{

v ∈ g/hz r {0} | lim sup
t→∞

1

t
log
‖(T tω)∗v‖0
‖v‖0

≤ λ

}
,

W≥λ(ω, z) := {0} ∪
{

v ∈ g/hz r {0} | lim sup
t→∞

1

t
log
‖(T−tω )∗v‖0
‖v‖0

≤ −λ
}
.

And similarly define the bundles W<λ and W>λ. Then by Oseledets theorem, for each i, for

almost every (ω, z) ∈ SZ×G/H, the lim sup in the definition of W≤λ and W≥λ can be replaced
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by lim, and furthermore, we have

W≥λi(ω, z) :=
⊕
j≤i

Wλj (ω, z), W≤λi(ω, z) :=
⊕
j≥i

Wλj (ω, z),

W>λi(ω, z) :=
⊕
j<i

Wλj (ω, z), W<λi(ω, z) :=
⊕
j>i

Wλj (ω, z).

The filtration

0 ( W≤λn ( W≤λn−1 ( · · · ( W≤λ1 = T (G/H)

is called the forward Lyapunov flag. The filtration

0 ( W≥λ1 ( W≥λ2 ( · · · ( W≥λn = T (G/H)

is called the backward Lyapunov flag. Note that for almost every (ω, z) ∈ SZ ×G/H,

Wλi = W≥λi ∩W≤λi .

We also define the unstable and stable bundles

W+(ω, z) :=
⊕
λj>0

Wλj (ω, z), W−(ω, z) :=
⊕
λj<0

Wλj (ω, z).

Note that W≥λ(ω, z) = W≥λ(ω′, z) for ω′ ∈ W+
SZ [ω], and W≤λ(ω, z) = W≤λ(ω′, z) for ω′ ∈

W−SZ [ω].

Also Wλi(ω, z) = Wλi(ω, z′) if πG/L(z) = πG/L(z′). Thus for x ∈ G/L, sometimes we write

Wλi(ω, x) := Wλi(ω, z) for any z ∈ G/H such that πG/L(z) = x.
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4.5.3 Fiberwise Lyapunov subspaces W λi
l/h(ω, x)

Now for each x ∈ G/L, define lx := xlx−1. Consider the Oseledets splitting on the fiberwise

subspace

lx/hx =
n⊕
i=1

Wλi
l/h

(ω, x)

defined by Wλi
l/h

(ω, x) := Wλi(ω, x) ∩ (lx/hx) (possibly trivial).

Now since H◦ is a normal subgroup of L, lx/hx is a Lie algebra. In particular, we can

now define the unipotent subgroups N±f (ω, x) claimed in Section 4.4.5: they are the unipotent

subgroups of the Lie group x(L/H◦)x−1 such that

Lie(N+)(x̂) = W+
l/h

(ω, x) :=
⊕
λj>0

W
λj
l/h

(ω, x), Lie(N−)(x̂) = W−
l/h

(ω, x) :=
⊕
λj<0

W
λj
l/h

(ω, x).

Here we are using the fact that the right hand sides are nilpotent subalgebras of (l/h)x̂.

4.5.4 Relationship with Lyapunov subspaces on g

Recall from subsection 4.4.4 that under the identification Tz(G/H
◦) = g/hz, the differential

map of left multiplication by γ on G/H◦ is given by Adγ : g/hz → g/hγz, where we recall

hz := Adzh = zhz−1. Thus we can consider the dynamics using the short exact sequence of

cocycles over SZ ×G/H

hz → g→ g/hz

where the action on all three are given by conjugation by elements in G. Recall that the

Lyapunov subspaces and exponents are canonical with respect to short exact sequences.

Proposition 4.5.2. Let

W ↪→ V � V/W

be a short exact sequence of cocycles over an ergodic base (Ω, µΩ, T
t). More precisely, for each
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bundle E = W,V, V/W , for ω ∈ Ω, label the cocycle by

T tω : Eω → ET tω,

where Eω is the fiber of E above ω ∈ Ω. Then these cocycles are compatible with the bundle

maps in the short exact sequence.

For each real number λ, let

E≤λω := {0} ∪
{

v ∈ Eω r {0} | lim sup
t→∞

1

t
log
‖T tωv‖
‖v‖

≤ λ

}
.

Define the subbundle E≤λ ⊂ E over Ω with fibers E≤λω . Then E≤λ is a T t-invariant subbundle

of E, and

W≤λ = V ≤λ ∩W, (V/W )≤λ = V ≤λ/W≤λ

over µΩ-a.e. ω ∈ Ω.

Here we interpret V ≤λ/W≤λ as a subspace of V/W via the natural isomorphism V ≤λ/W≤λ ∼=

(V ≤λ +W )/W once we have established W≤λ = V ≤λ ∩W . The analogous statements hold if

we replace ≤ λ by < λ, ≥ λ or > λ everywhere.

Proof. The first two claims are clear from definition. It remains to show the third claim that

(V/W )≤λ ⊂ (V ≤λ +W )/W, (4.5.1)

i.e. for each v ∈ (V/W )≤λω , there is a representative v′ ∈ V ≤λω +Wω that is in the coset v+Wω.

The key is to apply [Fil19, Lem. 2.3.3], which states that “unusually large growth in invariant

subbundle implies splitting”.

Let q : V → V/W be the natural quotient map of bundles over Ω, and consider the

subbundle q−1(V/W )≤λ ⊂ V . By T t-equivariance of q and T t-invariance of (V/W )≤λ, we

know that q−1(V/W )≤λ is a T t-invariant subbundle of V that contains W as an invariant
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subbundle. Thus for the purpose of showing (4.5.1), we may assume that V = q−1(V/W )≤λ

by restricting to this subbundle and show that V = V ≤λ + W . We may further assume that

λ = λ
V/W
1 , the top exponent of V/W .

Let λW1 > λW2 > · · · > λWn be the Lyapunov exponents of W . If the top exponent of W is

at most λ = λ
V/W
1 , then we are done. Otherwise, let λWk be the smallest exponent such that

λWk > λ
V/W
1 . Now apply [Fil19, Lem. 2.3.3] (see also [Mn87, Lem. 11.6]) successively to the

Oseledets filtration of V/W and of W/W<λWk , we have an invariant splitting of the short exact

sequence

0→ W/W<λWk → V/W<λWk → V/W → 0,

i.e. a section σ : V/W → V/W<λWk such that there is a T t-invariant decomposition

V/W<λWk = σ(V/W )⊕W/W<λWk (4.5.2)

and the exponents of σ(V/W ) coincide with the exponents of V/W (since σ is tempered). In

particular the top exponent of σ(V/W ) is λ = λ
V/W
1 .

Let V ′ ⊂ V be the preimage of σ(V/W ) under the quotient map V → V/W<λWk . Then the

top exponent of V ′ is the maximum of the top exponents of σ(V/W ) and W<λWk . Note that

either k = n, in which case W<λWk is trivial, or the top exponent of W<λWk is λWk+1, which is

at most λ by the choice of k. In both cases, we can conclude that the top exponent of V ′ is λ,

so V ′ ⊂ V ≤λ. On the other hand, from the decomposition (4.5.2), we have

V = V ′ +W.

Therefore V = V ≤λ +W , as desired.

In particular, we can read off the Lyapunov flags on g/hz from the Lyapunov flags on g
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using this exact sequence. Namely, for ω ∈ SZ and real number λ, let

W≤λg (ω) := {0} ∪
{

v ∈ g | lim sup
t→∞

1

t
log
‖(T tω)∗v‖0
‖v‖0

≤ λ

}
.

Then for ẑ = (ω, z) ∈ SZ ×G/H, the forward flag on TzG/H = g/hz is given by

W≤λi(ẑ) := W≤λig (ω)/(W≤λig (ω) ∩ hz) ∼= (W≤λig (ω) + hz)/hz. (4.5.3)

In particular, the successive quotient is given by

W≤λi(ẑ)/W<λi(ẑ) =
W≤λig (ω) + hz

W<λi
g (ω) + hz

∼=
W≤λig (ω)

W≤λig (ω) ∩ (W<λi
g (ω) + hz)

.

4.5.5 Description of stable manifolds on G/H

We now describe the (un)stable manifolds on G/H◦ with respect to a given word ω in terms

of the (un)stable unipotent subgroup of G with respect to ω, as claimed in Subsection 4.4.5.

Lemma 4.5.3. For all zH◦ ∈ G/H◦ and µZ-a.e. ω ∈ SZ, the stable manifold on G/H◦

through zH◦ ∈ G/H◦ along the word ω is N−(ω)zH◦, where N−(ω) is the (unipotent) stable

subgroup of G with respect to the word ω.

More precisely, let

W−
G/H

[(ω, z)] :=

{
z′ ∈ G/H◦ | lim sup

n→∞

1

n
log dG/H(Tnω z, T

n
ω z
′) < 0

}
.

Then for all zH◦ ∈ G/H◦ and µZ-a.e. ω ∈ SZ, we have W−
G/H

[(ω, z)] = N−(ω)zH◦ and in

particular is algebraic. The analogous statement holds for the unstable manifold.

Remark. It will be clear from the proof that the analogous statement is true for the strong

(un)stable manifolds

W≤λ
G/H

[(ω, z)] :=

{
z′ ∈ G/H◦ | lim sup

n→∞

1

n
log dG/H(Tnω z, T

n
ω z
′) ≤ λ

}
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for all λ < 0, though we will not need this fact. However, it is not true in general for the

center-stable set W≤0
G/H

[(ω, z)].

We first prove the following (elementary) lemma.

Lemma 4.5.4. Let V be a finite-dimensional real inner product space, and Λ ∈ GL(V ) be a

self-adjoint real operator on V with all eigenvalues (real and) positive. Let V ≥0 ⊂ V be the

direct sum of the eigenspaces corresponding to the eigenvalues at least 1.

Let {vn}n∈N ⊂ V ≥0 be a sequence of nonzero vectors such that

lim sup
n→∞

1

n
log ‖vn‖ < 0. (4.5.4)

Then

lim
n→∞

Λ−nvn → 0.

Proof. Let eλ1 > eλ2 > · · · > eλm be the set of eigenvalues of Λ, and let V λi ⊂ V be

the eigenspace of eλi . Note that the assumption (4.5.4) does not depend on the choice of a

(equivalent) norm ‖ ·‖ on V , thus we may use the equivalent norm ‖ ·‖′ on V defined as follows:

for each v ∈ V , decompose v :=
∑m
i=1 vλi as a sum of eigenvectors vλi with eigenvalue eλi ,

and define ‖v‖′ := max1≤i≤m ‖vλi‖.

If we write the eigenvector decomposition of vn =
∑m
i=1 vλin , then (4.5.4) (with the norm

‖ · ‖′) implies that for all 1 ≤ i ≤ m,

lim sup
n→∞

1

n
log ‖vλin ‖ < 0.

Since Λ−nvλin = e−nλivλin , we have

lim sup
n→∞

1

n
log ‖Λ−nvλin ‖ = lim sup

n→∞

1

n
log e−nλi‖vλin ‖ = −λi + lim sup

n→∞

1

n
log ‖vλin ‖ < −λi.
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Since vn ∈ V ≥0, vλin = 0 for all λi < 0. Thus we have

lim sup
n→∞

1

n
log ‖Λ−nvn‖′ = lim sup

n→∞

1

n
log max

1≤i≤m,λi≥0
‖Λ−nvλin ‖ < 0.

Hence Λ−nvn → 0 as n→∞, as desired.

Proof of Lemma 4.5.3. First of all since the metric dG/H on each tangent space g/hz is defined

by pullback from the restriction of a fixed inner product on g to mz := (hz)
⊥ ⊂ g, we have for

all z, z′ ∈ G,

dG/H(zH◦, z′H◦) ≤ dG(z, z′).

In particular, we have

N−(ω)zH◦ ⊂ W−
G/H

[(ω, z)].

For the other direction, let z′ ∈ W−
G/H

[(ω, z)]. Then by definition, there exists a sequence

{δn}n∈N ⊂ G and {hn}n∈N ⊂ H◦ such that Tnω z
′ = δnT

n
ω zhn and lim supn→∞

1
n log dG(δn, e) <

0.

Now consider the adjoint action of µ on g. By assumption µ has finite first moment.

Therefore we can apply [GM89, Thm. 1.2] to this random action, and get for µZ-a.e. ω ∈ SZ,

an element Λ(ω) ∈ G such that

1. Λ(ω) = lim
n→∞

((Tnω )T (Tnω ))1/2n, in particular the adjoint action of Λ(ω) on g is self-adjoint

with positive eigenvalues,

2. lim
n→∞

1

n
log ‖Λ(ω)n(Tnω )−1‖ = lim

n→∞
1

n
log ‖(Tnω )Λ(ω)−n‖ = 0,

3. let g<0(ω) ⊂ g be the direct sum of the eigenspaces of Ad(Λ(ω)) on g with eigenvalue

less than 1. Then

g<0(ω) =

{
v ∈ g

∣∣∣∣ lim sup
n→∞

1

n
log ‖Ad(Tnω )v‖ < 0

}
.

Thus exp(g<0(ω)) = N−(ω).
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Let g≥0(ω) ⊂ g be the direct sum of the eigenspaces of Ad(Λ(ω)) with eigenvalue at least

1. Then g = g≥0(ω) ⊕ g<0(ω). Moreover, there exists an open neighborhood U ⊂ G of the

identity such that U ⊂ exp(g≥0(ω)) exp(g<0(ω)), i.e. for all g ∈ U , there exist wg ∈ g≥0(ω) and

vg ∈ g<0(ω) such that g = exp(wg) exp(vg) (the existence of such a neighborhood U follows,

for instance, from the inverse function theorem applied to the map g≥0(ω) ⊕ g<0(ω) → G

defined by (w,v) 7→ exp(w) exp(v)).

Since lim supn→∞
1
n log dG(δn, e) < 0 and limn→∞ 1

n log ‖Λ(ω)n(Tnω )−1‖ = 0, we have in

particular

lim sup
n→∞

1

n
log dG(Λ(ω)n(Tnω )−1δn(Tnω )Λ(ω)−n, e) < 0.

Take a large enough N > 0 such that for all n > N , Λ(ω)n(Tnω )−1δn(Tnω )Λ(ω)−n ∈ U , and

write

Λ(ω)n(Tnω )−1δn(Tnω )Λ(ω)−n = exp(wn) exp(vn) with wn ∈ g≥0(ω) and vn ∈ g<0(ω).

Then

δn = exp(Ad((Tnω )Λ(ω)−n)wn) exp(Ad((Tnω )Λ(ω)−n)vn) with wn ∈ g≥0(ω) and vn ∈ g<0(ω).

Moreover, we have

lim sup
n→∞

1

n
log ‖wn‖ < 0,

and analogously for vn. By definition,

z′ = (Tnω )−1δnT
n
ω zhn = exp(Ad(Λ(ω))−nwn) exp(Ad(Λ(ω))−nvn)zhn. (4.5.5)

Now apply Lemma 4.5.4 to the adjoint action of Λ(ω) on g and the sequence of vectors {wn} ⊂

g≥0(ω), we have Ad(Λ(ω))−nwn → 0 as n→∞. Therefore by (4.5.5),

z′ = lim
n→∞

exp(Ad(Λ(ω))−nvn)zhn.
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Since vn ∈ g<0(ω), we have Ad(Λ(ω))−nvn ∈ g<0(ω). Since exp(g<0(ω)) = N−(ω) and

hn ∈ H◦, we conclude that z′ is in the closure of N−(ω)zH◦.

Finally, by Chevalley’s theorem and that H◦ has no nontrivial character , there exists

a representation G → GL(V ) such that H◦ is the stabilizer of an element v ∈ V . Thus

N−(ω)zH◦ can be identified with a single N−(ω)-orbit in V , namely N−(ω)zv ⊂ V , via the

injection G/H◦ → V by g 7→ gv. Since N−(ω) is a unipotent algebraic group, any orbit

of N−(ω) on V is Zariski closed by Kostant-Rosenlicht theorem (see e.g. [Ros61, Thm. 2]).

Therefore N−(ω)zH◦ is algebraic (and in particular, closed), and thus z′ ∈ N−(ω)zH◦. Since

z′ ∈ W−
G/H

[(ω, z)] is arbitrary, we have W−
G/H

[(ω, z)] = N−(ω)zH◦.

Remark 4.5.5. In several occasions, we would want an “identification” map between the

tangent spaces of two points z, z′ ∈ G/H, i.e. a linear map I(z, z′) : g/hz → g/hz′ . Since G/H

is homogeneous, there exists g ∈ G such that z′ = gz, thus one can define

I(z, z′, g) : g/hz → g/hz′

by v 7→ Adgv := gvg−1 for such an identification map. However, this map is not canonical -

it depends on the choice of such g ∈ G. In particular there is no canonical way to define them

that is compatible with the dynamics. We will used it several times to define more canonical

constructions, like the holonomy map in the next subsection.

4.5.6 Holonomy maps H−i (ẑ, ẑ′)

Proposition 4.5.6. For ν̂-almost every ẑ = (ω, z) ∈ SZ × G/H and almost every ẑ′ :=

(ω′, z′) ∈ Ŵ−
G/H

[ẑ], for each i, there exist a linear map H−i (ẑ, ẑ′) : W≤λi(ẑ)/W<λi(ẑ) →

W≤λi(ẑ′)/W<λi(ẑ′) such that

1. H−i (ẑ, ẑ) = id and H−i (ẑ, ẑ′′) = H−i (ẑ′, ẑ′′) ◦H−i (ẑ, ẑ′).

2. (T tω′)∗ ◦H
−
i (ẑ, ẑ′) = H−i (T tẑ, T tẑ′) ◦ (T tω)∗.

3. (ẑ, ẑ′) 7→ H−i (ẑ, ẑ′) varies continuously.
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4. H−i (ẑ, ẑ′) is the identity map if πG/L(z) = πG/L(z′), where πG/L : G/H → G/L is the

quotient map.

Proof. Let ẑ′ := (ω′, z′H) ∈ Ŵ−
G/H

[ẑ]. By Lemma 4.5.3 (and that the exponential map

is a diffeomorphism on the unipotent group N−(ω)), there exists v ∈ W<0
g (ω) such that

exp(v)zH = z′H.

Recall from Remark 4.5.5 the map

I(z, z′, exp(v)) := Adexp(v) : g/hz → g/hz′ .

Since v is exponentially contracted, I(z, z′, exp(v)) induces a map

H−i (ẑ, ẑ′) : W≤λi(ẑ)/W<λi(ẑ)→ W≤λi(ẑ′)/W<λi(ẑ′).

Now recall from subsection 4.5.4 that

W≤λi(ẑ)/W<λi(ẑ) =
W≤λig (ω)

W≤λig (ω) ∩ (W<λi
g (ω) + hz)

.

For each w ∈ W≤λig (ω), since v ∈ W<0
g (ω), we have

Adexp(v)(w)−w ∈ W<λi
g (ω) ⊂ W≤λig (ω) ∩ (W<λi

g (ω) + hz′). (4.5.6)

In particular Adexp(v)W
≤λi
g (ω) = W≤λig (ω) and Adexp(v)W

<λi
g (ω) = W<λi

g (ω). Also clearly

Adexp(v) maps hz to hz′ as exp(v)zH = z′H (recall that hz := Adzh). Therefore H−i (ẑ, ẑ′) is

well-defined and does not depend on the choice of representative v in the coset v+hz ∈ W<0(ẑ)

as along as it satisfies exp(v)zH = z′H.

In particular since H−i (ẑ, ẑ′) does not depend on the choice of v, one can readily verify

properties 1-3. Property 4 holds since if πG/L(z) = πG/L(z′), then hz = hz′ and furthermore

ẑ′ ∈ Ŵ−
G/H

[ẑ] then W≤λi(ω, z) = W≤λi(ω′, z′) (see the end of subsection 4.5.2). By (4.5.6),

the restriction of the identity map g/hz → g/hz′ coincides with H−i (ẑ, ẑ′) on each successive
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quotient.

4.5.7 Equivariant measurable flat connections P−(ẑ, ẑ′)

For ν̂-almost every ẑ = (ω, z) ∈ SZ ×G/H and almost every ẑ′ := (ω′, z′) ∈ Ŵ−
G/H

[(ω, z)], we

can define P−i (ẑ, ẑ′) : Wλi(ω, z)→ Wλi(ω′, z′) by the composition

Wλi(ω, z)→ W≤λi(ω, z)/W<λi(ω, z)
H−i (ẑ,ẑ′)
−−−−−−→ W≤λi(ω′, z′)/W<λi(ω′, z′)→ Wλi(ω′, z′),

where we use the natural isomorphism Wλi(ω, z)→ W≤i(ω, z)/W<λi(ω, z) given by injection

and then quotient.

Define P−(ẑ, ẑ′) : g/hz → g/hz′ be the unique linear map that restricts to P−i (ẑ, ẑ′) on each

subspaces Wλi(ω, z). The following properties of P− are clear from definition and Proposition

4.5.6.

Lemma 4.5.7. cf. [ELa, Lem. 2.1] For ν̂-almost every ẑ = (ω, z) ∈ SZ × G/H and almost

every ẑ′ = (ω′, z′) ∈ Ŵ−
G/H

[(ω, z)],

(a) P−(ẑ, ẑ′)Wλi(ω, z) = Wλi(ω′, z′),

(b) P−(ẑ, ẑ′) = (T−t
T tω′

)∗ ◦ P−(T tẑ, T tẑ′) ◦ (T tω)∗,

(c) P−(ẑ, ẑ′′) = P−(ẑ′, ẑ′′) ◦ P−(ẑ, ẑ′).

(d) P−(ẑ, ẑ′) = id if πG/L(z) = πG/L(z′) and ω = ω′.

Similarly define P+(ẑ, ẑ′) for ẑ′ ∈ Ŵ+
G/H

[ẑ].

Remark 4.5.8. Due to property 3 and 4, for x̂ = (ω, x) ∈ SZ × G/L and x̂′ = (ω′, x′) ∈

Ŵ−
G/L

[x̂], we may sometimes write P−(x̂, x̂) := P−(ẑ, ẑ′) for ẑ = (ω, z) and ẑ′ = (ω′, z′) with

πG/L(z) = x and πG/L(z′) = x′. Conversely, we may extend the definition of P−(ẑ, ẑ′) to

all ẑ = (ω, z), ẑ′ = (ω′, z′) ∈ SZ × G/H such that (ω′, πG/L(z′)) ∈ Ŵ−
G/L

[(ω, πG/L(z))] (note

that it follows from Lemma 4.5.3 that in this case,W−
G/H

[ẑ] has nonempty intersection z′′ with
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z′L/H, and we have ẑ′′ := (ω′, z′′) ∈ Ŵ−
G/H

[ẑ]. Thus we can first define P−(ẑ, ẑ′′), then post-

compose with the identity map P−(ẑ′′, ẑ′) to define P−(ẑ, ẑ′)). We will need this extension in

the proof of Theorem 4.10.1 (see Step 15 in the proof outline in subsection 4.10.1).

The following lemma is an important property of the map P− (and the corresponding map

P+). The proof in [ELa, Lem. 2.5] applies in our setting. The main input is a theorem of

Ledrappier [Led86, Thm. 1].

Lemma 4.5.9. cf. [ELa, Lem. 2.5] Let {M(x̂) ⊂ g/hx}x̂∈SZ×G/L be a T̂ -equivariant subbun-

dle over SZ ×G/L. Then, up to a null set, for x̂′ ∈ Ŵ−
G/L

[x̂],

M(x̂′) = P−(x̂, x̂′)M(x̂).

The analogous property holds for x̂′ ∈ Ŵ+
G/L

[x̂] and the map P+(x̂, x̂′).

Lemma 4.5.10. [ELa, Lem. 2.2] There exists α > 0 depending only on the Lyapunov expo-

nents, and for all δ > 0 there exists a subset K ⊂ Ω with measure at least 1− δ such that for

all x̂ = (ω, x) ∈ K, x̂′ = (ω′, x′) ∈ Ŵ−
G/L

[x̂] ∩K, t > 0 and any g ∈ exp(W<0
g (ω)) ⊂ G such

that gxL = x′L, we have

‖P−(T̂ tx̂, T̂ tx̂′)− I(T̂ tx̂, T̂ tx̂′, (T tω)g(T tω)−1)‖0→0 ≤ ‖g‖Ad(G)C(δ)e−αt.

Here ‖ · ‖0→0 is the operator norm on a linear operator g/h
T̂ tx̂′ → g/h

T̂ tx̂′ with respect to the

norm ‖ · ‖0 defined in subsection 4.4.4. The identification map I(x, x′, g) := Adg was defined

as in Remark 4.5.5. Also ‖g‖Ad(G) is the operator norm of the image of g via the adjoint

representation Ad : G → GL(g) given by g 7→ Adg, with the norm of g chosen in subsection

4.4.4.

Proof. Let ε > 0 be smaller than one third the smallest gap between consecutive Lyapunov

exponents. Then by Oseledets theorem, for any δ > 0, there exists K ⊂ Ω of measure at least

1− δ and constants σ = σ(δ) > 0, ρ = ρ(δ) > 0 such that for all x̂ ∈ K and t ≥ 0, we have
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(a) for any subset S of Lyapunov exponents,

d0

⊕
i∈S

Wλi(T̂ tx̂),
⊕
j /∈S

Wλj (T̂ tx̂)

 ≥ σe−εt.

(b) for any i and wi ∈ Wλi(x̂),

ρe(λi−ε)t‖wi‖0 ≤ ‖(T tω)∗wi‖0 ≤ ρ−1e(λi+ε)t‖wi‖0.

By (a), it suffices to show that for v ∈ Wλi(T̂ tx̂) for some i, we have

‖P−(T̂ tx̂, T̂ tx̂′)v − Ad(T tω)g(T tω)−1v‖0
‖v‖0

≤ C(δ)e−αt

for any g ∈ exp(W<0
g (ω)) ⊂ G such that gxL = x′L.

Let w ∈ Wλi(x̂) be such that (T tω)∗w = v. Then by (b),

‖v‖0 ≥ ρe(λi−ε)t‖w‖0. (4.5.7)

Now we recall the definition of P− and the construction of the holonomy map H−i (x̂, x̂′) that

P−(x̂, x̂′)w = Adgw +
∑
j>i

wj , wj ∈ Wλj (x̂′), (4.5.8)

where g is any element in exp(W<0
g (ω)) with gxL = x′L (it was for gxH = x′H but since the

holonomy map is the identity along xL/H, we can relax to requiring gxL = x′L. The vectors

wj will depend on the choice of g). By equivariance of the P− map (Proposition 4.5.7(b)), we

have

P−(T̂ tx̂, T̂ tx̂′)v = (T tω′)∗P
−(x̂, x̂′)w.
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Therefore

P−(T̂ tx̂, T̂ tx̂′)v = (T tω′)∗Adgw +
∑
j>i

(T tω′)∗wj .

Note that (T tω′)∗Adgw = Ad(T tω)g(T tω)−1v since (T tω′)∗ acts by conjugation on g/hx̂′ (note that

T tω = T tω′ since x̂′ ∈ Ŵ−
G/L

[x̂], i.e. ω and ω′ have the same combinatorial future). Therefore we

have

P−(T̂ tx̂, T̂ tx̂′)v − Ad(T tω)g(T tω)−1v =
∑
j>i

(T tω′)∗wj . (4.5.9)

By (a) and (4.5.8), for all j > i, we have (note that P−(x̂, x̂′) ∈ Wλi(x̂′) and wj ∈ Wλj (x̂′))

‖wj‖0 ≤ C1(δ)‖Adgw‖0 ≤ C1(δ)‖g‖Ad(G)‖w‖.

Thus by (b),

‖(T tω′)∗wj‖0 ≤ ρ−1e(λj+ε)t‖wj‖0 ≤ C1(δ)ρ−1e(λj+ε)t‖g‖Ad(G)‖w‖.

By (4.5.7) and (4.5.9), we have

‖P−(T̂ tx̂, T̂ tx̂′)v − Ad(T tω)g(T tω)−1v‖0 ≤
∑
j>i

C1(δ)ρ−2e(λj−λi+2ε)t‖g‖Ad(G)‖v‖0.

This implies the statement since λj < λi for all j > i.

4.5.8 Jordan Canonical Form of a cocycle

Recall that Ω0 := SZ × G/L × [0, 1]. We recall Zimmer’s amenable reduction theorem in the

case of a cocycle in GL(n,R).

Theorem 4.5.11. cf. [ELa, Lem. 2.3] Suppose T t is a linear cocycle over an ergodic action of

R on Ω0. Then there exists a finite set Σ and an extension of the flow T t to Ω = Ω0 × Σ s.t.:
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For each i, for ν̂-a.e. x̂ = (ω, x), there exists an invariant flag

{0} = Wi,0(ω, x) ⊂ Wi,1(ω, x) ⊂ · · · ⊂ Wi,ni(ω, x) = Wλi(ω, x),

and on each Wij(ω, x)/Wi,j−1(ω, x), there exists a nondegenerate quadratic form 〈·, ·〉ij,x̂ and

a cocycle λij : Ω× R→ R such that for all u,v ∈ Wij(ω, x)/Wi,j−1(ω, x),

〈((T tω)∗u, (T tω)∗v〉ij,T tx̂ = eλij(x̂,t)〈u,v〉ij,x̂.

The space Ω has a natural probability measure, defined as the product of the measure

ν̂ × Leb[0,1] on Ω0 and the uniform measure UnifΣ on the finite set Σ.

In summary, we have the following spaces, each with their natural measure, and has a T̂ -

action and a U+
1 -action that are measure-preserving.

Space Probability measure

Ωb = SZ × [0, 1] µZ × Leb[0,1]

Ω0 = SZ ×G/L× [0, 1] ν̂ × Leb[0,1]

Ω = SZ ×G/L× [0, 1]× Σ ν̂ × Leb[0,1] × UnifΣ

Ω̂0 = SZ ×G/H × [0, 1] ν̂ × Leb[0,1]

Ω̂ = SZ ×G/H × [0, 1]× Σ ν̂ × Leb[0,1] × UnifΣ

Recall that U+
1 acts on ω ∈ SZ by changing the future of ω, i.e. if ω′ := uω, then (ω′)− = ω−

and (ω′)+ is an arbitrary. Extend this to an action on Ωb,Ω0,Ω, Ω̂0, Ω̂ by acting trivially on

the extra factors and we again have a natural measure on U+
1 x̂ for any x̂ in any of these spaces

using its natural identification with SN.

Notational remark 2: there are obvious projection maps between various spaces defined
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above that are compatible with the dynamics and the measures. From now on, objects defined

on a certain factor will be automatically lifted as objects defined on spaces with a projection

onto this factor.

For instance there is a projection map π : Ω̂ → SZ × G/L defined by projecting onto the

first two factors, and then apply the quotient map G/H → G/L on the second factor. Then if

we define an object f(x̂) for x̂ ∈ SZ×G/L, we may sometimes write f(ẑ) := f(π(ẑ)) for ẑ ∈ Ω̂

without referencing the projection map.

4.5.9 Dynamically defined norms ‖ · ‖x̂

We would like to construct a norm on the tangent spaces of the bundle Ω̂ → Ω so that the

exponentially growth rate given by Oseledets theorem does not just hold asymptotically, but

hold for all time t. To do so, we first recall a choice of Markov partition on the base as in [ELa],

and then the proof in [ELa] applies.

A Markov partition

Proposition 4.5.12. [ELa, Prop. 2.8] Suppose C ⊂ Ω is a set with positive measure, and

T0 : C → R+ is a measurable function that is finite a.e. Then there exists x̂0 ∈ Ω, a subset

C1 ⊂ Ŵ−G/L[x̂0]∩ C and for each ĉ ∈ C1 a subset B+[ĉ] ⊂ Ŵ+
G/L

[ĉ] depending measurably on ĉ,

and a number t(ĉ) > 0 such that if we let

Jĉ :=
⋃

0≤t<t(ĉ)
T̂−tB+[ĉ],

then the following holds:

(a) B+[ĉ] is relatively open in Ŵ+
G/L

[ĉ], and µ̃|Ŵ+
G/L

[ĉ]
(B+[ĉ]) > 0.

(b) Jĉ ∩ Jĉ′ = ∅ if ĉ 6= ĉ′.

(c)
⋃
ĉ∈C1 Jĉ is conull in Ω.
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(d) For every ĉ ∈ C1, there exists ĉ′ ∈ C1 such that T̂−t(ĉ)B+[ĉ] ⊂ B+[ĉ′].

(e) t(ĉ) > T0(ĉ) for all ĉ ∈ C1.

For x̂ ∈ Ω, let J [x̂] denote the set Jĉ containing x̂. Let B0[x̂] := J [x̂] ∩ Ŵ+
G/L

[x̂].

Dynamical inner product 〈·, ·〉x̂

Using the partition given by B0[x̂], the proof of [ELa, Prop. 2.14] holds in our setting.

Proposition 4.5.13. cf. [ELa, Prop. 2.14.] There exists a T t-invariant full measure set

Ω′ ⊂ Ω such that for all x̂ ∈ Ω′, there exists an inner product 〈·, ·〉x̂ on g/hx and cocycles

λij : Ω× R→ R with the following properties:

(a) For all x̂ ∈ Ω′, the distinct eigenspaces Wλi(x̂) are orthogonal.

(b) Let W ′ij(x̂) := W⊥i,j−1 ⊂ Wij(x̂). Then for all x̂ ∈ Ω′, t ∈ R and v ∈ W ′ij(x̂) ⊂ g/hx,

(T tx̂)∗v = eλij(x̂,t)v′ + v′′,

where v′ ∈ W ′ij(T̂
tx̂), v′′ ∈ Wi,j−1(T̂ tx̂) and ‖v′‖

T̂ tx̂
= ‖v‖x̂. In particular,

‖(T tx̂)∗v‖T̂ tx̂ ≥ eλij(x̂,t)‖v‖x̂.

(c) There exists κ > 1 such that for all x̂ ∈ Ω′, t > 0 and i with λi > 0, κ−1t ≤

λij(x̂, t) ≤ κt.

(d) There exists κ > 1 such that for all x̂ ∈ Ω′,

eκ
−1t‖v‖x̂ ≤‖(T tx̂)∗v‖T̂ tx̂ ≤ eκt‖v‖x̂ for all t ≥ 0, v ∈ W+(x̂),

e−κt‖v‖x̂ ≤‖(T tx̂)∗v‖T̂ tx̂ ≤ e−κ
−1t‖v‖x̂ for all t ≥ 0, v ∈ W−(x̂),

e−κ|t|‖v‖x̂ ≤‖(T tx̂)∗v‖T̂ tx̂ ≤ eκ|t|‖v‖x̂ for all t ∈ R, v ∈ g/hx.
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In particular, the map t 7→ ‖(T tω)∗v‖T̂ tx̂ is continuous.

(e) For all x̂ ∈ Ω′, x̂′ ∈ B0[x̂] ∩ Ω′ and t ≥ 0, λij(x̂,−t) = λij(x̂
′,−t).

(f) For a.e. x̂ ∈ Ω′, a.e. x̂′ ∈ B0[x̂]∩Ω′ and v,w ∈ g/hx, 〈P+(x̂, x̂′)v, P+(x̂, x̂′)w〉x̂′ =

〈v,w〉x̂.

Remark 4.5.14. We remark that the proof of [ELa, Prop. 2.14] applies more generally to any

finite dimensional linear cocycle V over Ω for the corresponding Lyapunov subspaces W
λV,i
V ,

refined Lyapunov subspaces WV,ij and corresponding maps P+
V for some constant κV > 1 using

the same partition B0[x̂] on the base.

From now on, we may drop the subscript when we refer to the dynamical norm

‖ · ‖ := ‖ · ‖x̂, and will always use ‖ · ‖0 to denote the norm defined in subsection

4.4.4.

At times we may need to compare the dynamical norm ‖ · ‖x̂ with the fixed norm ‖ · ‖0 on

g/hx defined in Section 4.4.4.

Lemma 4.5.15. cf. [ELa, Lem. 2.16] For every δ > 0 and ε > 0, there exists a compact set

K(δ) ⊂ Ω with measure at least 1 − δ and C1(δ, ε) < ∞ such that for all x̂ ∈ K(δ), v ∈ g/hx

and t ∈ R,

C1(δ)−1e−ε|t| ≤
‖v‖T tx̂
‖v‖0

≤ C1(δ)eε|t|.

Proof. The proof is identical to that of [ELa, Lem. 2.16].

4.6 Factorization

4.6.1 Normal forms

In this subection, we briefly discuss the theory of normal forms in our particular setting, where

a much simpler construction is available. The main purpose for us is to build the necessary

tool for the factorization theorem in the next subsection. The general theory of normal forms

has been studied extensively in the smooth ergodic theory literature (see for instance [KS17]).
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In our particular setting, a choice of normal forms can be more explicitly chosen with extra

properties (in particular it is a subspace in g). The main result of this section is Proposition

4.6.3.

Lemma on nilpotent Lie groups

The key to the construction of normal forms in the setting of G/H is the following elementary

lemma about nilpotent Lie groups.

Lemma 4.6.1. Let N be a nilpotent real Lie group, and U ⊂ N be a Lie subgroup. Let

u = Lie(U) and n = Lie(N). Let the lower central series of n be n = n0 ⊃ n1 ⊃ · · · ⊃ nk = 0

(i.e. ni+1 = [n, ni]).

If a complementary subspace v of u in n satisfies

(u ∩ ni)⊕ (v ∩ ni) = ni for all 0 ≤ i ≤ k − 1,

then for V := exp(v), the map V ×U → N defined by (v, u) 7→ vu is bijective with polynomial

inverse.

Proof. For each 0 ≤ i ≤ k − 1, define a complementary subspace ui of u ∩ ni+1 in u ∩ ni.

Similarly define the subspaces vi. Thus

ui ⊕ (u ∩ ni+1) = u ∩ ni, vi ⊕ (v ∩ ni+1) = v ∩ ni.

By assumption, we have (u ∩ ni)⊕ (v ∩ ni) = ni. Therefore this implies (ui ⊕ vi)⊕ ni+1 = ni.

Let n′i := ui ⊕ vi. Then we have

ni = n′i ⊕ · · · ⊕ n′k−1. (4.6.1)

Now note that the exponential map exp is polynomial with polynomial inverse log on

nilpotent Lie algebra, therefore it suffices to show that the map ψ : v × u → n defined by
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ψ(v, u) = log(exp(v) exp(u)) has polynomial inverse.

By (a weak form of) the Baker-Campbell-Hausdorff formula, ψ(v, u) = v + u+ iterated Lie

brackets of v and u. Now given n ∈ n, we need to find v ∈ v and u ∈ u such that ψ(v, u) = n.

Write n = n0 +n1 + · · ·nk−1 using the decomposition in (4.6.1) so that ni ∈ n′i. Similarly write

u = u0 + u1 + · · ·+ uk−1 and v = v0 + v1 + · · ·+ vk−1.

Since [vi, uj ] ∈ nmax{i+j}+1 (setting nt = 0 if t ≥ k), by comparing the n′0-component of

both sides of n = ψ(v, u), we have n0 = v0 + u0, and thus we can obtain u0, v0 as the u0

and v0 components of n0 respectively. Inductively, if we already know uj , vj for j < i, we can

decompose n using the decomposition n = n′0⊕n′1⊕· · ·⊕n′i−1⊕ni. Let ñi be the ni component

of n. Then we have ñi ∈ vi + ui + ε(uj , vj′ : j, j′ < i) + ni+1, where ε is a linear combination

of repeated Lie brackets of the terms uj , v
′
j . Thus we can extract ui and vi inductively by

computing the remainder term ε using the induction hypothesis, extract its n′i component εi

so that ni = vi + ui + εi (recall that ni+1 = n′i+1 ⊕ · · · ⊕ n′k−1). Since εi can be computed

using the induction hypothesis, and ni is given, we can compute vi + ui ∈ n′i = ui ⊕ vi, and

then set ui, vi to be its ui and vi components respectively. Since ε is a polynomial, ui and vi

are computed as polynomials of components of n0, n1, . . . , ni. Thus ψ has polynomial inverse.

The following proposition shows that for Lie subgroup U of a nilpotent Lie group N , there

exists v that satisfies the assumption of the Lemma.

Proposition 4.6.2. Let N be a nilpotent real Lie group, and U ⊂ N be a Lie subgroup. Let

u = Lie(U) and n = Lie(N).

Then there exists a complementary subspace v of u in n such that for V := exp(v), the map

V × U → N defined by (v, u) 7→ vu is bijective with polynomial inverse.

Proof. Let ui := u ∩ ni. One can construct a flag of subspaces

v0 ⊃ v1 ⊃ · · · ⊃ vk = 0
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such that ni = ui ⊕ vi for all 0 ≤ i ≤ k − 1. This can be done inductively by, for instance,

pick a finite set Bi of independent vectors in nir (ni+1 + ui) such that ni = (ni+1 + ui)⊕ 〈Bi〉,

and then set vi := vi+1 + 〈Bi〉. Note that it follows from the defining property of vi that

vi = v0 ∩ ni for all i: on one hand we have the containment v0 ∩ ni ⊃ vi. On the other hand

(v0 ∩ ni) ∩ ui ⊂ v0 ∩ u0 = 0, and thus dim(v0 ∩ ni) ≤ dim ni − dim ui = dim vi. Therefore the

containment cannot be strict.

Thus we have obtained a complementary subspace v := v0 such that (u ∩ ni) ⊕ (v ∩ ni) =

ui ⊕ vi = ni for all i. Now apply Lemma 4.6.1 to get the result.

Stable normal form

Given two (real) vectors spaces V1 and V2, a polynomial map p : V1 → V2 is an element in

Sym•(V ∨1 )⊗ V2. In more explicity terms, it is a map so that if we fix a basis on V1 and on V2,

the coordinates of the map are polynomial in the coordinates on V1 with respect to this basis

on V1. Clearly this notion does not depend on the choice of basis (since pre-/post-composing a

polynomial with a linear map is still polynomial).

We say that a (real) vector space V is filtered if there is a filtration

0 =: V ≤λn+1 ( V ≤λn ( V ≤λn−1 ( · · · ( V ≤λ1 = V,

and we say that v ∈ V has weight (or Lyapunov exponent) λi if v ∈ V ≤λi rV ≤λi−1 , and write

λV (v) := λi. For our purpose, all the weights will be negative (as we will only apply such

notion to the stable subspaces).

Given two filtered vector spaces V1 and V2, we say that a map p : V1 → V2 is subresonant

if λV2
(p(v)) ≤ λV1

(v) for all v ∈ V1. In other words, the map p does not increase the weights

of the vectors in V1.

With these definitions, we can define the following notion of a stable normal form. We

remark that this is a much simpler case than the general theory of normal form, which we refer
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the readers to, say, [KS17].

Proposition 4.6.3. For almost every q̂ = (ω, q) ∈ SZ ×G/H. there exists a subspace Vq̂ ⊂ g

and a diffeomorphism Nq̂ : Vq̂ →W−G/H [q̂] such that:

(i) Vq̂ can be made a filtered vector space where for all nonzero v ∈ Vq̂, λVq̂(v) is the

exponential growth rate of dG/H(Tnω q, T
n
ω exp(v)q) as n→∞.

(ii) For all q̂ where Vq̂ is defined, for all t, the map

N−1
T̂ tq̂
◦ T̂ t ◦ Nq̂ : Vq̂ → V

T̂ tq̂

is a subresonant polynomial map (with respect to the filtration defined in (i)).

(iii) For all q̂′ ∈ Ŵ−
G/H

[q̂] =W−SZ [ω]×W−
G/H

[q̂], such that Vq̂ and Vq̂′ are defined, we have

N−1
q̂′ ◦ Nq̂ : Vq̂ → Vq̂′

is a subresonant polynomial map (with respect to the filtration defined in (i)).

Proof. Recall that for q̂ := (ω, qH) ∈ SZ ×G/H, W−
G/H

[q̂] = N−(ω)qH, where N−(ω) ⊂ G is

the stable unipotent subgroup with respect to the word ω ∈ SZ by Lemma 4.5.3.

Let n−(ω) ⊂ g be the nilpotent subalgebra such that exp(n−(ω)) = N−(ω). Then n−(ω) ∩

qhq−1 ⊂ g is also a nilpotent subalgebra. Now apply Proposition 4.6.2 to n−(ω) ∩ qhq−1

and n−(ω), we have a complementary subspace Vq̂ ⊂ g such that the multiplication map

exp(Vq̂)× (N−(ω) ∩ qHq−1)→ N−(ω) is bijective with polynomial inverse.

Now define Nq̂ : Vq̂ → W−
G/H

[q̂] = N−(ω)qH by v 7→ exp(v)qH. Nq̂ is a diffeomor-

phism since exp(Vq̂) × (N−(ω) ∩ qHq−1) → N−(ω) is bijective with polynomial inverse .

Recall that T̂ t acts by left multiplication by some element g ∈ G. Then N−1
T̂ tq̂
◦ T̂ t ◦ Nq̂

maps v ∈ Vq̂ to the unique element w in V
T̂ tq̂

such that exp(w)gqH = g exp(v)qH, i.e.

exp(w) ∈ exp(gvg−1)(gq)H(gq)−1. Thus it suffices to find the unique elements w ∈ V
T̂ tq̂
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and u′ ∈ (gq)H(gq)−1 such that exp(w)u′ = exp(gvg−1). From the choice of V
T̂ tq̂

using Propo-

sition 4.6.2, we know that the map exp(gvg−1) 7→ exp(w) is polynomial. Since gvg−1 and w are

nilpotent, the exponential map and its inverse are polynomial. Thus v 7→ w is also polynomial,

as desired. Subresonance follows from the fact that the dynamics preserve the stable manifolds

with exponent at most ≤ λ for all λ < 0. This shows the first property.

For the second property, recall that if q̂′ ∈ Ŵ−
G/H

[q̂], there exists n′ ∈ N−(ω) such that

n′q′H = qH. Now note that N−1
q̂′ ◦ Nq̂ maps v ∈ Vq̂ to the unique vector w ∈ Vq̂′ such that

exp(w)q′H = exp(v)qH = exp(v)n′q′H. Thus it suffices to find the unique element w ∈ Vq̂′

and u′ ∈ q′H(q′)−1 such that exp(w)u′ = exp(v)n′. But v 7→ w is polynomial by Proposition

4.6.2. Subresonance is clear. This shows the second property.

Remark 4.6.4. From now on we shall fix a choice of stable normal form. In particular some

constants may implicitly depend on such a choice (in additional to dependence on µ, G/H

and other parameters explicitly stated). Any other choice differ by a measurable family of

subresonant automorphisms.

4.6.2 Factorization

Theorem 4.6.5. Fix a constant β > 0. There exist a linear cocycle V = V (β) over SZ×G/H,

a measurable family of smooth maps Fq̂ : Ŵ−
G/H

[q̂] → Vq̂ for each q̂ ∈ SZ × G/H and linear

maps A(q̂1, u, `, t) : V
T̂−`q̂1

→ (l/h)
T̂ tuq̂1

for q̂1 ∈ SZ×G/H and u ∈ U+
1 , ` ≥ 0 and t ≥ 0 such

that

(a) (Fq̂ is centered) Fq̂(q̂) = 0.

(b) (Equivariance of Fq̂) Fq̂ is equivariant:

F
T̂ tq̂
◦ T̂ t = T tq̂ ◦ Fq̂.

Here T tq̂ : Vq̂ → V
T̂ tq̂

is the cocycle action on V .
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(c) (Equivariance of A(q̂1, u, `, t)) A(q̂1, u, `, t) are linear maps and satisfy: for all `′ > 0

and t′ > 0,

A(q̂1, u, `+ `′, t+ t′) = T t
′

T̂ tuq̂1
◦ A(q̂1, u, `, t) ◦ T `

′

T̂−(`+`′)q̂1
.

Here the cocycle action T tq̂ : (l/h)q̂ → (l/h)
T̂ tq̂

on (l/h)q̂ is given by conjugation by

ωbtc−1 . . . ω0 ∈ G for q̂ = (ω, q) ∈ SZ×G/H (i.e. the restriction of the derivative cocycle

on the tangent bundle g/hq̂).

(d) (Factorization) For all δ > 0, there exists a compact set K = K(δ) ⊂ SZ × G/H of

measure at least 1− δ and constants C = C(K, β) > 0 and α > 0 depending only on the

Lyapunov spectrum such that if q̂, q̂′, q̂1 := T̂ `q̂, q̂′1 := T̂ `q̂′ are all in K, q̂′ ∈ Ŵ−
G/H

[q̂],

and 0 < t ≤ β`, let q̂2 := T̂ tuq̂1, q̂
′
2 := T̂ tuq̂′1, then

|dG/H(q̂2, q̂
′
2)− ‖A(q̂1, u, `, t)Fq̂(q̂

′)‖| ≤ Ce−α` (4.6.2)

Proof. The steps of the proof are as follows:

Step 0: Reduction to polynomial cocycle V and polynomial maps A(q̂1, u, `, t)

We first show that it suffices to construct a subresonant polynomial cocycle V and polyno-

mial maps A(q̂1, u, `, t) that are polynomial maps up to a fixed degree (the degree bound

depends only on G/H).

Subresonant polynomial cocycle V : Suppose that we have a measurable family of

smooth maps Fq̂ : Ŵ−
G/H

[q̂]→ Vq̂ and a cocycle V where the cocycle action T tq̂ : Vq̂ → V
T̂ tq̂

is subresonant polynomial. Then we claim that we can find a linear cocycle V ′ over

SZ ×G/H with an equivariant smooth embedding V ↪→ V ′.

The idea is to consider PVq̂ := Sym•(V ∨q̂ )≤λ1 , the space of polynomial functions on

Vq̂ with weight at most λ1, the top exponent of the dynamics on G/H, and then take
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V ′q̂ := (PVq̂)
∨. The embedding V ↪→ V ′ is given by the evaluation map:

Vq̂
ev−→ PV ∨q̂ =: V ′q̂

v 7→ ev(v)(p) = p(v)

The cocycle action on V ′q̂ is given by the following: given a subresonant polynomial map

f : V → W , it induces a map f∗ : PW → PV by pullback. Since f is subresonant

polynomial, the pullback of a polynomial in PW indeed does give an element in PV

(with the same weight upper bound λ1). This induces the dual map (f∗)∨ : V ′ → W ′.

By construction this is linear. It is immediate that this is compatible with the evaluation

map Vq̂ → V ′q̂ and therefore gives a smooth embedding of cocycles V → V ′. Finally we

post-compose the original maps Fq̂ with this embedding to get the new maps F ′q̂.

Polynomial maps A(q̂1, u, `, t): Suppose we already have a measurable family of

smooth maps Fq̂ : Ŵ−
G/H

[q̂]→ Vq̂, a linear cocycle V over SZ ×G/H, and polynomial

maps A(q̂1, u, `, t) of degree at most d (that depends only on G/H) that satisfy the given

properties. Then we claim that we can find a new linear cocycle V ′ and linear maps

A′(q̂1, u, `, t) that satisfy the given properties with an embedding of cocycles V → V ′.

In fact, any polynomial map f : V → W of degree at most d factors through the symmetric

power:

V
Sym≤d−−−−→ Sym≤dV

f ′−→ W,

where Sym≤d can be thought of as the Veronese embedding (a polynomial map but not

linear in general), and f ′ is a linear map.

Thus we can take V ′q̂ := Sym≤dVq̂, and then take A′(q̂1, u, `, t) to be the map V ′
T̂−`q̂1

=

Sym≤dV
T̂−`q̂1

→ (l/h)
T̂ t(uq̂1)

factored from A(q̂1, u, `, t). Now any linear map f : V → W

induces naturally a linear map Sym≤df : Sym≤dV → Sym≤dW , therefore we have an

embedding of linear cocycles V → V ′. The new maps F ′q̂ is then given by post-composing

the original maps Fq̂ with Sym≤d.
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Centering of Fq̂: Note that after the previous two procedures, Fq̂ may not be centered

(even if they were originally). Therefore we need to take F ′q̂(q̂
′) := Fq̂(q̂

′)− Fq̂(q̂).

Step 1: Construction of Fq̂.

For each q̂ = (ω, q) ∈ SZ × G/H, we consider the normal form Nq̂ : Vq̂ → W−G/H [q̂] =

N−(ω)qH of its stable manifold as described in Proposition 4.6.3, and define Fq̂ :=

N−1
q̂ ◦π2 : Ŵ−

G/H
[q̂]→ Vq̂, where π2 : Ŵ−

G/H
[q̂] =W−SZ [ω]×W−

G/H
[q̂]→W−

G/H
[q̂] is the

projection map onto the second factor.

The normal forms give a measurable vector bundle V over SZ×G/H where each fiber is

Vq̂. The cocycle on V is given by

Vq̂
Nq̂−−→W−

G/H
[q̂]

q′H 7→ω0q
′H−−−−−−−−→W−

G/H
[T̂ q̂]

N−1

T̂ q̂−−−→ V
T̂ q̂
,

which is subresonant polynomial by a property of normal form coordinates. By the

definition of the cocycle on V , Fq̂ = N−1
q̂ ◦ π2 is equivariant. Note that using this

definition, Fq̂(q̂) = 0.

Step 2: Construction of the analytic map A′(q̂1, u, `, t)

We first construct an analytic mapA′(q̂1, u, `, t) that satisfies all the properties ofA(q̂1, u, `, t)

except being only analytic (rather than polynomial). In future steps, we shall explain how

to construct a polynomial map A(q̂1, u, `, t) that approximates A′(q̂1, u, `, t) with appro-

priate error and still satisfies the desired properties.

To construct the map A′(q̂1, u, `, t), the key is to first lift the stable manifold on G/L

with respect to the new future in uq̂1 to an algebraic section of the bundle G/H → G/L,

and then use the projection along this stable section to the fiber q′1(L/H)(q′1)−1 through

q′1.

q′1H

A(q̂1,u,0,0)Fq̂1(q̂′1)∈q′1(L/H)(q′1)−1

��
q1H

exp(v)
//

exp(Fq̂1(q̂′1)) 55

exp(v)q1H
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To describe the construction more precisely, we first describe the map A′(q̂1, u, 0, 0) (and

then we extend this to other ` and t using the equivariance property).

Let Nq̂,G/L : VG/L,q̂ → W
−
G/L

[q̂] = N−(ω)qL be a stable normal form coordinate on

G/L as described in Proposition 4.6.3 (but for the space G/L rather than G/H). Then

VG/L,q̂ ⊂ G gives a (algebraic) section VG/L,q̂qH of the bundle G/H → G/L above

W−
G/L

[q̂]. Now we consider the map

πq̂1,uq̂1 : Vq̂1
Nq̂1−−→ N−(ω)q1H

q′H 7→q′L−−−−−−→ N−(ω)q1L = N−(uω)q1L
N−1
uq̂1,G/L−−−−−−→ VG/L,uq̂1 .

Here we use the key property about the base dynamics on G/L that two points that are

stably related with respect to one future are also stably related with respect to almost

every future by Proposition 4.4.7, so N−(ω)q1L = N−(uω)q1L holds almost surely (even

though generically N−(ω) 6= N−(uω)).

In other words, πq̂1,uq̂1 maps Fq̂1(q̂′1) to a vector v such that

(a) v ∈ VG/L,uq̂1 ⊂ log(N−(uω)) ⊂ g,

(b) exp(v)q1H ∈ q′1L/H.

Note that this is a polynomial map . Now for w ∈ Vq̂1 , we take

A′(q̂1, u, 0, 0)w := log(exp(πq̂1,uq̂1(w)) exp(w)−1) ∈ (l/h)q̂′1
.

Note that the map before taking log is polynomial since w and πq̂1,uq̂1(w) are both nilpo-

tent matrices in g. Finally, log : q′1(L/H◦)(q′1)−1 → (l/h)q̂′1
:= q′1(l/h)(q′1)−1 is well-

defined and analytic since H◦ is normal in L (so L/H◦ is itself a Lie group with Lie

algebra l/h).

Both the domain and image of A′(q̂1, u, 0, 0) : Vq̂1 → (l/h)uq̂1 have natural dynamics (V

is a polynomial cocycle, (l/h)uq̂1 has dynamics given by conjugation), so we can extend
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the definition to other `, t > 0 by

A′(q̂1, u, `, t) := T tuq̂1 ◦ A
′(q̂1, u, 0, 0) ◦ T `

T̂−`q̂1
.

In particular the equivariance property of A′(q̂1, u, `, t) is satisfied by construction.

Step 3: Factorization using A′(q̂1, u, `, t)

Here we show that A′(q̂1, u, `, t) satisfies the factorization property in the theorem. The

point is that since the vector v ∈ VG/L,uq̂1 is a nilpotent matrix in g that is contracted

by the future in uq̂1, the image of A′(q̂1, u, `, t) gets exponentially close to the distance

between q2H = T tuq̂1
q1H and q′2H = T t

uq̂′1
q′1H (note that uq̂1 and uq̂′1 have the same

future).

q′1H

��
q1H

exp(v)
//

55

exp(v)q1H

⇒ q′2H = gq′1H

��
q2H = gq1H

exp(gvg−1)
//

55

g exp(v)q1H

More precisely, let v := πq̂1,uq̂1(Fq̂1(q̂′1)) ∈ VG/L,uq̂1 . For all ε > 0, take a compact set

K ′ ⊂ SZ×G/H of measure at least 1−ε and diameter at most some constant C ′(K ′) > 0.

Assume that q̂ := T̂−`q̂1 and q̂′ := T̂−`q̂′1 are both in K ′. Then by Oseledets’ theorem,

there exists α′ > 0 depending only on the Lyapunov spectrum, and C ′ = C ′(K) > 0 such

that dG/H(q1H, q
′
1H) ≤ C ′e−α

′` (since q̂, q̂′ are stably related. Shrink K if necessary).

Therefore v = πq̂1,uq̂1(Fq̂1(q̂′1)) has norm at most C ′e−α
′`. Moreover, since v is contracting

under the future of uq̂1, in particular we have ‖(T tuq̂1)∗v‖ ≤ C ′′‖v‖ for some C ′′(K ′) > 0

(shrink the compact set K ′ if necessary). Thus by the triangle inequality,

|dG/H(q2H, q
′
2H)− ‖A(q̂1, u, 0, t)Fq̂1(q̂′1)‖| ≤ ‖(T tuq̂1)∗v‖ ≤ C ′′C ′e−α

′`.

Finally by the equivariance of Fq̂ and the construction of A(q̂1, u, `, t), we know that for
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q̂ := T̂−`q̂1 and q̂′ := T̂−`q̂′1, we have

A(q̂1, u, `, t)Fq̂(q̂
′) = A(q̂1, u, 0, t)Fq̂1(q̂′1).

Combining this with the previous inequality yields the result. Note that so far we have

not used the constant β > 0 at all (this will appear in later steps). In particular the

factorization property holds for A′(q̂1, u, `, t) for all t ≥ 0 (without the upper bound β`).

Step 4: Construction of the polynomial map A(q̂1, u, `, t)

Now we explain how to obtain a polynomial map A(q̂1, u, `, t) from the analytic map

A′(q̂1, u, `, t) constructed in the previous step. Note that as mentioned before the only

intermediate map that is not polynomial in the construction of A′(q̂1, u, 0, 0) is the

last map log : q′1(L/H◦)(q′1)−1 → (l/h)q̂′1
:= q′1(l/h)(q′1)−1. Nonetheless, we can ap-

proximate it using the Taylor expansion of log up to degree k by a polynomial map

log |k : q′1(L/H◦)(q′1)−1 → (l/h)q̂′1
:= q′1(l/h)(q′1)−1 such that

‖ log(v)− log |k(v)‖ ≤ Ok(‖v‖k+1).

Define

A(q̂1, u, 0, 0)w := log |k(exp(w) exp(πq̂1,uq̂1(w))−1) ∈ (l/h)q̂′1

for some k = k(β) to be chosen in the last step.

Now again defineA(q̂1, u, `, t) = T tuq̂1
◦A(q̂1, u, 0, 0)◦T `

T̂−`q̂1
. We will show thatA(q̂1, u, `, t)

is still factorizable for large enough choices of k = k(β).

Step 5: Factorization using A(q̂1, u, `, t)

Here we show that A(q̂1, u, `, t) satisfies the factorization property in the theorem. Using

Step 3, it suffices to show that

‖A(q̂1, u, 0, t)Fq̂1(q̂′1)−A′(q̂1, u, 0, t)Fq̂1(q̂′1)‖ ≤ OK,β(e−α
′′`)
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for some constant α′′ > 0 depending only on the Lyapunov spectrum. In Step 3 we have

shown that we can take a large compact set K ⊂ SZ × G/H such that if q̂ := T̂−`q̂1

and q̂′ := T̂−`q̂′1 are in K and are stably related, then ‖Fq̂1(q̂′1)‖ ≤ OK(e−α
′`) for some

α′ > 0 depending only on the Lyapunov spectrum. Thus we can use the error term in the

approximation of log by log |k to get

‖A(q̂1, u, 0, 0)Fq̂1(q̂′1)−A′(q̂1, u, 0, 0)Fq̂1(q̂′1)‖ ≤ Ok,K(e−α
′(k+1)`).

Finally, let λmax > 0 be the top exponent of the dynamics on (l/h)q̂1 . Then we have

‖A(q̂1, u, 0, t)Fq̂1(q̂′1)−A′(q̂1, u, 0, t)Fq̂1(q̂′1)‖ ≤ Ok,K(eλmaxt−α′(k+1)`).

Finally, take k = k(β) large enough such that λmaxβ − α′(k + 1) < 0. Since t ≤ β`,

the error term still decays exponentially with respect to ` (with rate at least α′′ :=

−λmaxβ + α′(k + 1) > 0) and we have the desired result.

We have the following contraction property of Fq̂. We will use it later to prove Proposition

4.7.2 that certain equivariant subbundle in V is exponentially contracting.

Proposition 4.6.6 (Contraction of Fq̂). There exists a constant κ′ > 0 depending only on the

Lyapunov spectrum such that the following holds: for all δ > 0, there exists a compact set

K = K(δ) ⊂ SZ × G/H of measure at least 1− δ and real number C(δ) > 0 such that for all

q̂, q̂′ ∈ K and ` > 0 with q̂′ ∈ Ŵ−
G/H

[q̂] and T̂ `q̂, T̂ `q̂′ ∈ K, then

‖F
T̂ `q̂

(T̂ `q̂′)− F
T̂ `q̂

(T̂ `q̂)‖ ≤ C(δ)e−κ
′`.

Proof. Given δ > 0, take a compact set K = K(δ) ⊂ SZ ×G/H of measure at least 1− δ and

a real number C1(δ) > 0 with the following properties:

1. K has diameter at most C1(δ).
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2. For all q̂ ∈ K, the Lipschitz constant ‖Fq̂‖ := sup
q̂′∈B(q̂,1/100)

‖Fq̂(q̂′)− Fq̂(q̂)‖
d(q̂, q̂′)

is at most

C1(δ).

3. If q̂, q̂′, T̂ `q̂, T̂ `q̂′ ∈ K and q̂′ ∈ Ŵ−
G/H

[q̂] for some ` > 0, we have d(T̂ `q̂, T̂ `q̂′) ≤

C1(δ)e−κ
′`d(q̂, q̂′), where κ′ is 1/3 the largest negative Lyapunov exponent of the tan-

gent bundle on SZ ×G/H.

Here the first property holds since the entire space SZ × G/H can be exhausted by compact

sets of increasing finite diameter. The second property can be obtained since Fq̂ is smooth.

The third property can be obtained by Oseledets theorem.

With these three properties, the result follows:

‖F
T̂ `q̂

(T̂ `q̂′)− F
T̂ `q̂

(T̂ `q̂)‖ ≤
by 2

C1(δ)d(T̂ `q̂′, T̂ `q̂) ≤
by 3

C1(δ)2e−κ
′`d(q̂, q̂′) ≤

by 1
C1(δ)3e−κ

′`.

4.7 Preliminary divergence estimate

Throughout this section, we assume uniform expansion on L/H.

Define

� For ẑ = (ω, z) ∈ SZ ×G/H◦, let Ŵ−loc[ẑ] = {(ω′, z′) ∈ Ŵ−
G/H

[ẑ] | dG/H(z, z′) < 1}.

� Define L−(ẑ) ⊂ Vẑ as the smallest subspace of Vẑ such that the pushforward of ν̂|Ŵ−loc[ẑ]

via the map Fẑ ◦ π2 : Ŵ−
G/H

[ẑ] → Vẑ is supported on L−(ẑ). Here π2 : Ŵ−
G/H

[ẑ] =

W−SZ [ω]×W−
G/H

[ẑ]→W−
G/H

[ẑ] is the projection map onto the second factor.

� In Case I, L−(ẑ) is not contained in Fẑ(W−SZ [ω] × (F≤0
G/H

[z] ∩ W−
G/H

[ẑ])) since Fẑ is

injective. Here, we recall that F≤0
G/H

[z] is the set of elements z′ ∈ G/H that is in the

center-stable manifold of z for almost every future word ω+.

� In particular, since z ∈ F≤0
G/H

[z] ∩W−
G/H

[ẑ], dimL−(ẑ) > 0 almost surely in Case I.
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From now on, we restrict the domain of the map A(q̂1, u, `, t) defined in subection

4.6.2 to L−(T̂−`q̂1), so it is a linear map A(q̂1, u, `, t) : L−(T̂−`q̂1)→ (l/h)
T̂ tuq̂1

.

We first show that the family of subspaces {L−(q̂)}q̂ form an equivariant subbundle of V .

Lemma 4.7.1. (cf. [ELa, Lem. 7.1]) For almost every q̂ ∈ SZ ×G/H, and all t ∈ R,

L−(T̂ tq̂) = T tq̂L
−(q̂).

Proof. Note that by definition and equivariance of Fq̂, for t > 0, we have T tq̂L
−(q̂) ⊂ L−(T tq̂).

Therefore q̂ 7→ dimL−(q̂) is a bounded integer-valued function on SZ × G/H that is non-

decreasing under T̂ t. By ergodicity, this function is constant almost surely. Therefore the

statement holds.

We then show that the cocycle restricted to L−(q̂) is exponentially contracting. This follows

from Proposition 4.6.6.

Proposition 4.7.2. There exists a constant κ′ > 0 depending only on the Lyapunov spectrum

of the dynamics on SZ ×G/H such that: the top Lyapunov exponent on the linear cocycle V

restricted to L−(q̂) is at most −κ′.

Proof. Recall that since Fq̂ is centered, F
T̂ `q̂

(T̂ `q̂) = 0. Since Fq̂ is equivariant, F
T̂ `q̂

(T̂ `q̂′) =

T̂ `q̂Fq̂(q̂
′). Therefore the inequality in Proposition 4.6.6 simplifies to ‖T̂ `q̂Fq̂(q̂

′)‖ ≤ C(δ)e−κ
′`.

Now note that for large enough `0, at least (1− 2δ) portion of ` in [0, `0] satisfies T̂ `q̂ ∈ K

by the pointwise ergodic theorem. Therefore along a subsequence of ` in R+,
1

`
log ‖T̂ `q̂Fq̂(q̂

′)‖

tends to a limit at most −κ′. Now by Oseledets theorem, the limit lim
`→∞

1

`
log ‖T̂ `q̂Fq̂(q̂

′)‖ exists

for almost every q̂, and thus this limit agrees with the limit along the previous subsequence,

and hence is at most −κ′. Thus for all δ > 0, there exists a compact set Kδ ⊂ SZ×G/H with

measure at least 1− δ such that if q̂, q̂′ ∈ Kδ and q̂′ ∈ Ws[q̂], then

lim
`→∞

1

`
log ‖T̂ `q̂Fq̂(q̂

′)‖ ≤ −κ′.

182



Finally, if we take δ → 0, we obtain this inequality for almost every q̂ and q̂′ ∈ Ŵ−
G/H

[q̂]. Since

L−(q̂) is the span of Fq̂(supp ν̂|Ŵ−loc[q̂]
), we conclude that the restriction of the cocycle to L−(q̂)

has top exponent at most −κ′.

Proposition 4.7.3. cf. [ELa, Prop. 5.1] Recall the constants κ, κV > 0 from Proposition

4.5.13 and Remark 4.5.14 which depend only on the Lyapunov spectrum. For every δ > 0,

there exists a subset K ⊂ Ω with measure at least 1− δ such that for all q̂1 ∈ K, there exists

Q = Q(q̂1) ⊂ U+
1 such that Qq̂1 has measure at least 1− δ, and for u ∈ Q, ` > 0 and t > 0, we

have

‖π+ ◦ A(q̂1, u, `, t)‖ ≥ C(δ)e−κV `+κ
−1t.

Here the operator norm is with respect to the dynamical norms ‖ · ‖
T̂−`q̂1

on the domain and

‖ · ‖
T̂ tuq̂1

on the target. π+ : (l/h)x̂ → W+
l/h

(x̂) is the orthogonal projection with respect to

the dynamical inner product 〈·, ·〉x̂ defined in subection 4.5.9. In particular, since (l/h)x̂ =

W+
l/h

(x̂)⊕W≤0
l/h

(x̂) is an orthogonal decomposition, we also have

‖A(q̂1, u, `, t)‖ ≥ C(δ)e−κV `+κ
−1t.

Remark. This statement is considerably different from the first part of [ELa, Prop. 5.1] since

the analogous statement of [ELa, Prop. 5.1] does not hold if v is in the image of F≤0
G/H

[q̂] via Fq̂.

In particular we only have a lower bound on the norm rather than the conorm of A(q̂1, u, `, t).

We will see that this does not affect the main argument since we can apply Lemma 4.7.5 and

Proposition 4.7.6, so that we can focus on points q̂′ such that Fq̂(q̂
′) grow roughly at the rate

of ‖A(q̂1, u, `, t)‖ under A(q̂1, u, `, t).

Proof. Let q′1 ∈ supp ν̂|Ŵ−
G/H

[q̂1]
that is not in F≤0

G/H
[q1] (which exists for almost every q̂1 in

Case I), and let v := Fq̂1(q̂′1). Since q′1 /∈ F
≤0
G/H

[q1], for almost every u ,

‖π+(A(q̂1, u, 0, 0)v)‖ > 0.
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In particular, we have the operator norm ‖π+ ◦ A(q̂1, u, 0, 0)‖ > 0 for almost every q̂1 and

almost every u. Thus for all δ > 0, there exists a subset K ⊂ Ω with measure at least 1 − δ

such that for all q̂1 ∈ K, there exists Q = Q(q̂1) ⊂ U+
1 with measure at least 1 − δ such that

for u ∈ Q, ‖π+ ◦ A(q̂1, u, 0, 0)‖ ≥ C1(δ).

By Proposition 4.6.6 and the fact that the dynamics on V is bijective, this implies ‖π+ ◦

A(q̂1, u, `, 0)‖ ≥ C2(δ)e−κ
′`. Finally Proposition 4.5.13(d) implies that for some v ∈ L−(T̂−`q̂1),

‖T tuq̂1 ◦ π+ ◦ A(q̂1, u, `, 0)v‖ ≥ C2(δ)e−κ
′`+κt.

Finally, since the dynamics T tuq̂1
restricts to W+

l/h
(uq̂1) → W+

l/h
(T̂ tuq̂1) and W≤0

l/h
(uq̂1) →

W≤0
l/h

(T̂ tuq̂1), T tuq̂1
◦ π+ = π+ ◦ T tuq̂1 . Since A(q̂1, u, `, t) = T tuq̂1

◦ A(q̂1, u, `, 0), we have

‖π+ ◦ A(q̂1, u, `, t)v‖ ≥ C2(δ)e−κ
′`+κt.

Lemma 4.7.4. [ELa, Lem. 5.6] For all δ > 0, there exists a compact set K ⊂ Ω with measure

at least 1− δ such that: for t > 0, let x̂ ∈ K, x̂′ ∈ Ŵ−
G/L

[x̂]∩K, T̂ tx̂ ∈ K and T̂ tx̂′ ∈ T̂ [−a,a]K

for some a ≥ 0. Then

|λij(x̂, t)− λij(x̂′, t)| ≤ C = C(a, δ).

Proof. The proof is the same as that of [ELa, Lem. 5.6], using Lemma 4.5.10, Lemma 4.5.15,

and Proposition 4.5.13 (b).

We will need the following elementary linear algebra fact (see e.g. [ELa, Lem. 8.1]).

Lemma 4.7.5. For any ρ > 0, there exists a constant c(ρ) > 0 with the following property: let

A : W1 → W2 be a linear map between Euclidean spaces. Then there exists a proper subspace

W ′ ⊂ W1 such that for any v with ‖v‖ = 1 and d(v,W ′) > ρ, we have

‖A‖ ≥ ‖Av‖ ≥ c(ρ)‖A‖.
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We also need a general lemma on conditional measures.

Proposition 4.7.6. cf. [ELa, Prop. 8.2] Let B be an arbitrary finite measure space.

For every δ > 0, there exists constants c1(δ) > 0, ε1(δ) > 0 with c1(δ) → 0 and ε1(δ) → 0 as

δ → 0, and also constants 0 < ρ(δ) < C(δ) <∞ and ρ′(δ) > 0 such that:

For any subset K ′ ⊂ Ω̂ with ν̂(K ′) > 1−δ, there exists a subset K ⊂ K ′ with ν̂(K) > 1−c1(δ)

such that:

suppose for each q̂ ∈ Ω̂, there is a measurable map from B to proper subspaces of L−(q̂), written

as u 7→ Mu(q̂). Then for any q̂ ∈ K there exists q̂′ ∈ K ′ with q̂′ ∈ Ŵ−
G/H

[q̂], Fq̂(q̂
′) ∈ L−(q̂)

such that

ρ(δ) ≤ dG/H(q, q′) ≤ 1/100, ρ(δ) ≤ ‖Fq̂(q̂′)‖q̂ ≤ C(δ),

and

dq̂(Fq̂(q̂
′),Mu(q̂)) > ρ′(δ) for at least (1− ε1(δ))-fraction of u ∈ B.

Proof. The proof can be adapted from the proof of [EM18, Prop. 5.3] (see also [ELa, Prop.

8.2]). In the proof, we define the measure ν̃x̂ := (Fx̂)∗(ν̂|Ŵ−
G/H

[x̂]
). By definition of L−(x̂), ν̃x̂

restricted to a sufficiently small ball (say of diameter 1/10) is supported on L−(x̂).

The rest of the proof follows from adapting the analogous statements of [EM18, Lem. 5.4,

5.5, 5.6], where we replace Lext[x](r) by L−(x̂) and F (x) by Fx̂(x̂) = 0, and then follow the

rest of the proof of [EM18, Prop. 5.3].

4.8 Inert Subbundle E(x̂)

In this section, we define an T̂ t and U+
1 -equivariant subbundle of (l/h)x̂. In the end we will

show that all the extra invariance is obtained within this bundle.
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4.8.1 Inert subspaces Ej(x̂)

For x̂ = (ω, x) ∈ SZ ×G/L, for a real number λ, define

F≤λ(x̂) := {v ∈ (l/h)x̂ : for a.e. ux̂ ∈ U+
1 x̂, v ∈ W≤λ(ux̂)}.

Similarly define F<λ. In particular,

F≤0(x̂) := {v ∈ (l/h)x̂ : for a.e. ux̂ ∈ U+
1 x̂, v ∈ W≤0(ux̂)},

so for almost every future, vectors in F≤0(ux̂) does not grow exponentially. Note that F≤λ(x̂)

depends only on the point x ∈ G/L and not the word ω, hence we will sometimes write

F≤λ(x) := F≤λ(x̂).

By definition, for x ∈ G/L, F≤0(x) = 0 if and only if µ is uniformly expanding on L/H at

x0. Then we have a flag

{0} ⊂ F≤λn(x̂) ⊂ · · · ⊂ F≤λ2(x̂) ⊂ F≤λ1(x̂) = (l/h)x̂.

Define

Ej(x̂) = F≤λj (x̂) ∩W≥λj (x̂).

Define

ΛE = {i : Ei(x̂) 6= {0} for a.e. x̂}.

We quote the following basic properties from [ELa].

Lemma 4.8.1. [ELa, Lem. 3.1] For almost every x̂ ∈ Ω, for all v ∈ Ej(x̂) r {0} and almost

every ux̂ ∈ U+
1 x̂, we have

lim
t→±∞

1

t
log
‖(T tux̂)∗v‖0
‖v‖0

= λj .

In particular Ej(x̂) ⊂ Wλj (x̂), hence Ej(x̂) ∩ Ek(x̂) = {0} for j 6= k.

Lemma 4.8.2. [ELa, Lem 3.2, 3.4] For almost every x̂ ∈ Ω,
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(a) For any t ∈ R, (T tx̂)∗Ej(x̂) = Ej(T
tx̂), and (T tx̂)∗F≤λj (x̂) = F≤λj (T tx̂).

(b) For almost every ux̂ ∈ U+
1 x̂, Ej(ux̂) = Ej(x̂), and F≤λj (ux̂) =

F≤λj (x̂).

(c) For x̂ = (ω, x) ∈ SZ × G/L, v ∈ (l/h)x̂, let Qj(v) = {ux̂ ∈ U+
1 x̂ : v ∈ W≤λj (ux̂)} ⊂

W+
SZ [ω]×{x}. Then for each j, for a.e. x̂, Qj(v) is either null or conull in W+

SZ [ω]×{x}

(in the latter case, v ∈ F≤λj (x̂)).

4.8.2 Consequence of uniform expansion on L/H

Proposition 4.8.3. Let x0 ∈ G/L. Suppose that

(i) µ is uniformly expanding on L/H at x0, and

(ii) for all x ∈ Γ
Z
µ x0 ⊂ G/L, for µN-a.e ω+ ∈ GN, there exists a compact subset K =

K(ω+, x′) ⊂ G/L such that for all n ∈ N, Tnωx
′ ∈ K(ω+, x′).

Then for all x ∈ Γ
Z
µ x0 ⊂ G/L, µ is uniformly expanding on L/H at x, i.e. F≤0(x) = 0.

Proof. Let

NUE := {x ∈ G/L | F≤0(x) 6= 0}.

Then it suffices to show that NUE is Γ
Z
µ -invariant. By Lemma 4.8.2(a), F≤0 is an equivariant

bundle over G/H (and thus over G/L), in particular, g∗F≤0(x) = F≤0(gx) for µ-a.e. g ∈ G.

Therefore NUE is Γµ-invariant.

To show that NUE is Γ
Z
µ -invariant, it suffices to show that NUE is an algebraic subset of

G/L. Here we use the norm ‖v‖(l/h)x̂
:= ‖v ∧ ρhx‖g, where ρhx is a nonzero element in the

one-dimensional subspace
∧dimH hx ⊂

∧dimH g.

Using this norm, we have that v ∈ F≤0(x) if and only if for µN-a.e. ω+ ∈ SN,

lim sup
n→∞

1

n
log ‖(Ad(Tnω )v) ∧ ρhTnω x‖ ≤ 0.

187



Since µ is bounded on G/L at x0, it is also bounded on G/L at x for all x ∈ Γ
Z
µ x0 ⊂ G/L.

Since `∗ρh = ρh for all ` ∈ L, we have

lim
n→∞

1

n
log ‖Ad(Tnωx)ρh‖ = 0.

Since Ad(x)ρh and ρhx are both nonzero vectors in the one-dimensional space
∧dimH hx, we

also have

lim
n→∞

1

n
log ‖Ad(Tnω )ρhx‖ = 0.

Therefore

lim sup
n→∞

1

n
log ‖(Ad(Tnω )v) ∧ ρhTnω x‖ = lim sup

n→∞

1

n
log ‖Ad(Tnω )(v ∧ ρhx)‖.

Thus for v ∈ lx, v ∈ F≤0(x) if and only if for µN-a.e. ω+ ∈ SN,

lim sup
n→∞

1

n
log ‖Ad(Tnω )(v ∧ ρhx)‖ ≤ 0.

Now consider the action of µ on the wedge power
∧dimH+1 g, and consider the corresponding

subspace

F≤0∧
g

:=

{
w ∈

∧dimH+1
g | lim sup

n→∞

1

n
log ‖Ad(Tnω )w‖ ≤ 0

}
.

Note that this space depends only on µ (and not on any word or basepoint).

Then x ∈ NUE if and only if x(l ∧ ρh)x−1 ∩F≤0∧
g
6= 0. Now note that F≤0∧

g
is Γµ-invariant,

therefore it is also Γ
Z
µ -invariant. Thus NUE is also Γ

Z
µ -invariant. Therefore so is its complement,

as desired.

Lemma 4.8.4. Suppose µ is uniformly expanding on L/H at x ∈ G/L and there is a µ-

stationary measure ν on Γ
Z
µ x0L/L. Then for all x′ ∈ Γ

Z
µ x0L/L, F≤0(x′) = {0}. In particular,

for a.e. x̂ ∈ Ω, F≤0(x̂) = {0}.

Proof. It suffices to verify the second assumption of Proposition 4.8.3, assuming the existence
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of a stationary measure on Γ
Z
µ xH/H.

Since there is a stationary measure ν on Γ
Z
µ x0L/L, it projects to a stationary measure ρ∗ν

on V via the G-equivariant smooth injection ρ : G/L → V in the definition of L being an

H-envelope. Note that this is isometric since the metric on G/L is induced from that of V .

Now by Theorem 4.3.1(iii), the support of ρ∗ν is in the subspace W . Since W is Γµ-

invariant, it is also Γ
Z
µ -invariant. In particular, if ρ(x) /∈ W , then by G-equivariance of ρ,

Γ
Z
µ ρ(x) = ρ(Γ

Z
µ x) has empty intersection with W , and hence ρ∗ν cannot be supported on W ,

a contradiction. Hence ρ(x) ∈ W and Γ
Z
µ ρ(x) = ρ(Γ

Z
µ x) ⊂ W . Theorem 4.3.1 tells us that

µ either acts compactly on W or there exists a proper subspace W ′ ( W such that µ acts

compactly on W/W ′ and has negative top exponent on W ′, in both cases we have that for

µN-a.e. ω, the orbit {Tnω ρ(x)}n∈N is inside a compact subset KW = KW (ω, x) ⊂ W r {0},

therefore the orbit {Tnωx}n∈N is in a compact subset K = K(ω, x) ⊂ G/L, thus assumption

(ii) in Proposition 4.8.3 is satisfied. Therefore by Proposition 4.8.3, for all x′ ∈ Γ
Z
µ x0L/L,

F≤0(x′) = {0}. The last assertion is immediate from this.

Corollary 4.8.5. If µ is uniformly expanding on L/H at x ∈ G/L, and there is a µ-stationary

measure ν on Γ
Z
µ xH/H, then for all z ∈ Γ

Z
µ xH

◦/H◦, for all x′ ∈ Γ
Z
µ x0L/L, the intersection

of F≤0
G/H

[z] and x′L/H◦ contains at most one point; the intersection of F≤0
G/H

[z]H and x′L/H

contains at most one point.

Proof. If there exists distinct z′, z′′ ∈ F≤0
G/H

[z] ∩ x′L/H◦, then we also have z′′ ∈ F≤0
G/H

[z′].

Moreover, since z′, z′′ are in the same coset of L/H◦, there exists a nonzero vector v ∈ (l/h)x′

such that z′′ = exp(v)z′. Since z′′ ∈ F≤0
G/H

[z′], v ∈ F≤0(x′). Since ν projects to a µ-stationary

measure ν on Γ
Z
µ x0L/L, this contradicts Lemma 4.8.4. The same argument shows the last

statement as well.
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4.8.3 Inert subbundle E(x̂)

Define the inert subbundle E by

E(x̂) :=
⊕
i∈Λ+

E

Ei(x̂) ⊂ W+
l/h

(x̂), where Λ+
E := {i : Ei(x̂) 6= {0} for a.e. x̂ and λi > 0}.

Notice E1(x̂) = Wλ1(x̂) = W≥λ1(x̂) 6= {0}. We may have Ej(x̂) = {0} if j 6= 1.

The following lemma follows immediately from Lemma 4.5.9.

Lemma 4.8.6. [ELa, Lem. 5.1] For almost every x̂ ∈ Ω and almost every ux̂ ∈ U+
1 x̂, we have

P+(x̂, ux̂)E(x̂) = E(ux̂).

4.8.4 Convergence to the inert bundle E(x̂)

The next proposition shows that for most q̂2 ∈ Ω, and every v ∈ (l/h)q̂2 , we can take v

exponentially close to the inert bundle by going backwards sufficiently far, change to one of

most futures, and then go forward until the dynamical norm agrees with v.

Proposition 4.8.7. For every δ > 0, there exists a subset K = K(δ) ⊂ Ω with measure at

least 1− δ such that for all q̂1 ∈ K, ` > 0 and v ∈ L−(T̂−`q̂1), there exists Q = Q(q̂1,v) ⊂ U+
1

such that Qq̂1 has measure at least 1− δ and for u ∈ Q, t > 0,

d

(
A(q̂1, u, `, t)v

‖A(q̂1, u, `, t)v‖
,E(T̂ tuq̂1)

)
≤ C(δ)e−αt,

where α depends only on the Lyapunov spectrum.

The proof closely follows the second part of [ELa, Prop. 4.1] and [EM18, Prop. 8.5a]. Since

the argument is not too long and this result is important to the main argument, we include

the proof here for completeness. In particular the proof clearly demonstrates how uniform

expansion on L/H (in the stronger form of Lemma 4.8.4) is used in the argument.
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We first quote a lemma from [ELa] which follows from the definitions of the equivari-

ant bundles E and F and Lemma 4.8.2(c). For j ∈ ΛE, let (F<λj )⊥(x̂) be the orthogo-

nal complement of F<λj (x̂) in g/hx̂ with respect to the dynamical inner product 〈·〉x̂. Let

F′j(x̂) := (F<λj )⊥(x̂) ∩ F≤λj (x̂).

Lemma 4.8.8. [ELa, Lem. 3.5] Given δ > 0, there exists a compact set K1 = K1(δ) ⊂ Ω with

measure at least 1− δ, β(δ) > 0, β′(δ) > 0 and for every x̂ ∈ K1, j ∈ ΛE and v ∈ (F<λj )⊥(x̂),

a subset Q1 = Q1(x̂,v/‖v‖) ⊂ U+
1 such that Q1x̂ has measure at least 1 − δ, and for any

u ∈ Q1, we can write

v = vu + wu, vu ∈ W
≥λj
l/h

(ux̂), wu ∈ W
<λj
l/h

(ux̂),

with ‖vu‖ ≥ β(δ)‖v‖ and ‖vu‖ > β′(δ)‖wu‖. Furthermore, if j ∈ ΛE and v ∈ F′j(x̂), then

vu ∈ Ej(ux̂).

Proof of Proposition 4.8.7. Let ε > 0 be less than 1/3 of the smallest gap between consecutive

Lyapunov exponents on (l/h)x. By Oseledets theorem, there exists a compact subset K2 ⊂ Ω

with measure at least 1− δ2 and L > 0 such that for x̂ ∈ K1 and ` > L,

‖(T̂ tx̂)∗v‖ ≤ e(λj+ε)t for v ∈ W≤λj
l/h

(x̂), and ‖(T̂ tx̂)∗v‖ ≥ e(λj−ε)t for v ∈ W≥λj
l/h

(x̂).

By Fubini’s theorem, there exists K3 ⊂ Ω with measure at least 1− 2δ such that for x̂ ∈ K3,

|{ux̂ ∈ U+
1 x̂ | ux̂ ∈ K2}| ≥ (1− δ/2)|U+

1 x̂|.

Let K := K1 ∩K3, where K1 = K1(δ/2) is the compact set in Lemma 4.8.8.

Let q̂ := T̂−`q̂1. It is clear from the definition of F′j(x̂) that (l/h)x̂ =
⊕

j∈ΛE
F′j(x̂). For

v ∈ L−(q̂), let v′ := A(q̂1, u, `, 0)v. We can write

v′ =
∑
j∈ΛE

v′j , vj ∈ F′j(q̂1).
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By Lemma 4.8.4, F≤0(x̂) = 0 almost surely. Therefore in the decomposition above, vj = 0 if

j /∈ Λ+
E. Thus we can take the sum over only the indices in Λ+

E.

Suppose q̂1 ∈ K, u ∈ Q1(q̂1,v
′) and uq̂1 ∈ K2, where Q1 is as in Lemma 4.8.8. By Lemma

4.8.8, we have

v′ =
∑
j∈Λ+

E

(vj + wj), (4.8.1)

where vj ∈ Ej(uq̂1),wj ∈ W
<λj
l/h

(uq̂1), and for all j ∈ Λ+
E,

‖vj‖ ≥ β′(δ/2)‖wj‖.

Also we have

‖(T tuq̂1)∗vj‖ ≥ e(λj−ε)t‖vj‖, and ‖(T tuq̂1)∗wj‖ ≤ e(λj+1+ε)t‖wj‖.

Thus for all j ∈ Λ+
E,

‖(T tuq̂1)∗wj‖ ≤ e−(λj−λj+1−2ε)tβ′(δ/2)−1‖(T tuq̂1)∗vj‖.

Since (T tuq̂1
)∗vj ∈ Ej(T̂

tuq̂1) for each j ∈ Λ+
E, and A(q̂1, u, `, t)v = (T tuq̂1

)∗A(q̂1, u, `, 0)v =

(T tuq̂1
)∗v′, this implies the proposition by (4.8.1).

4.8.5 Bilipschitz estimates

For q̂1 ∈ Ω̂, u ∈ U+
1 , ` > 0 and t > 0, let q̂ := T̂−`q̂1 and q̂2 := T̂ tuq̂1. Define

A(q̂1, u, `, t) := ‖π+A(q̂1, u, `, t)|L−(q̂)‖, using the operator norm from ‖ · ‖q̂ to ‖ · ‖q̂2 .

Here π+ : (l/h)x̂ → W+
l/h

(x̂) denote the orthogonal projection with respect to the dynamical

inner product 〈·, ·〉x̂ defined in subection 4.5.9.
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For ε > 0, q̂1 ∈ Ω̂, u ∈ U+
1 , and ` > 0, let

τ̃ε(q̂1, u, `) := sup{t | t > 0 and A(q̂1, u, `, t) ≤ ε}.

By Proposition 4.7.3 and Proposition 4.8.7, τ̃ε(q̂1, u, `) is finite almost surely.

There is a bilipschitz estimate on τ̃ε in `.

Proposition 4.8.9. cf. [ELa, Prop. 7.2] There exist constants κτ > 1 depending only on the

Lyapunov spectrum on g/hx and on the cocycle V such that for almost all q̂1 ∈ Ω̂ and almost

all uq̂1 ∈ U+
1 q̂1, all ε > 0, ` > 0, s > 0,

τ̃ε(q̂1, u, `) + κ−1
τ s < τ̃ε(q̂1, u, `+ s) < τ̃ε(q̂1, u, `) + κτs.

Proof. The proof is almost identical to the proof of [ELb, Prop. 4.2], [ELa, Prop. 7.2] and

[EM18, Lem. 7.2, 7.3]. The main input is Proposition 4.5.13 and Remark 4.5.14. For this

important result, we state precisely the modifications needed to be made to adapt the proof

from [ELa, Prop. 7.2].

For x̂ ∈ Ω̂ and t > 0, let

� A+(x̂, t) : W+
l/h

(x̂)→ W+
l/h

(T̂ tx̂) denote the restriction of (T tx̂)∗ on (l/h)x̂ to W+
l/h

(x̂),

� A−(x̂, t) : L−(x̂)→ L−(T̂ tx̂) denote the restriction of the cocycle on V to L−.

In the definitions of A+ and A− we have used the fact that W+
l/h

(x̂) ⊂ (l/h)x̂ and L− ⊂ V are

equivariant in their corresponding cocycle (the latter follows from Lem 4.7.1).

It follows from Proposition 4.7.2 that L− is in the stable bundle of V . Therefore by Propo-

sition 4.5.13 and Remark 4.5.14, we have

eκ
−1t ≤ ‖A+(x̂, t)‖ ≤ eκt, e−κt ≤ ‖A+(x̂, t)‖ ≤ e−κ

−1t,

e−κ
−1
V t ≥ ‖A−(x̂, t)‖ ≥ e−κV t, eκV t ≥ ‖A−(x̂, t)‖ ≥ eκ

−1
V t.
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Note that since (l/h)x̂ = W+
l/h

(x̂)⊕W≤0
l/h

(x̂) is an orthogonal decomposition (with respect to

the dynamical inner product) that is equivariant under the dynamics, the equivariance property

of A(q̂1, u, `, t) in Theorem 4.6.5(c) implies the following equivariance of π+ ◦ A(q̂1, u, `, t): for

`′ > 0 and t′ > 0,

(π+ ◦ A)(q̂1, u, `+ `′, t+ t′) = T t
′

T̂ tuq̂1
◦ (π+ ◦ A)(q̂1, u, `, t) ◦ T `

′

T̂−(`+`′)q̂1
.

The rest then follows from the argument in [ELa, Prop. 7.2], with κτ = κV κ.

4.8.6 Jordan Canonical Form of cocycle on E(x̂): Invariant flag Eij(x̂)

Now we restrict the Jordan Canonical form of the cocycle from Theorem 4.5.11 to the inert

subbundle E(x̂). For i ∈ Λ+
E, define

Eij(x̂) := Wij(x̂) ∩ Ei(x̂)

to get an invariant flag

{0} = Ei0(x̂) ⊂ Ei1(x̂) ⊂ · · · ⊂ Ei,ni(x̂) = Ei(x̂).

Note that Eij(x̂) might be the same as Ei,j′(x̂) for some j < j′. Remove redundant indices

and relabel. Let Λ′′E be the set of new indices ij.

The following equivariance properties follow immediately from the corresponding equivari-

ance properties of Wij and Ei.

Lemma 4.8.10. For x ∈ Ω0, all t ∈ R and a.e. ux̂ ∈ U+
1 x̂,

(T tx̂)∗Eij(x̂) = Eij(T
tx̂), Eij(ux̂) = Eij(x̂).

In preparation for the tie-breaking procedure in the next section, we introduce the following

notions for the cocycle on the inert bundle E.
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4.8.7 Flow T ij,t and time changes τ̃ij(x̂, t)

For each ij ∈ Λ′′E, x̂ ∈ Ω and t ∈ R, define τ̃ij(x̂, t) be the unique number such that

λij(x̂, τ̃ij(x̂, t)) = λit.

Define the time changed flow T ij,tx̂ := T τ̃ij(x̂,t)x̂.

For each v ∈ g, x̂ ∈ Ω and t ∈ R, define τ̃v(x̂, t) be the unique number such that

‖(T τ̃v(x̂,t)
x̂ )∗v‖T̂ τ̃v(x̂,t)x̂

= et‖v‖x̂.

Define the time changed flow Tv,tx̂ := T τ̃v(x̂,t)x̂.

4.8.8 Parallel transport R(x̂, x̂′) and foliations Fij and Fv

Let Ω′ := Ωcebp ⊂ Ω, where Ωebp is the set of elements in Ω whose SZ component ω is “eventually

backward periodic”, i.e. there exist some n > 0 and s > 0 such that ωj+s = ωj for all j < −n.

Then Ω′ is conull in Ω. For x̂ ∈ Ω′, let

H[x̂] := {T̂ suT̂−tx̂ : t, s ≥ 0, u ∈ U+
1 } ⊂ Ω.

For x̂′ = T̂ suT̂−tx̂ ∈ H[x̂], define R(x̂, x̂′) : (l/h)x̂ → (l/h)x̂′ by

R(x̂, x̂′)v := (T s
uT̂−tx̂

)∗(T−tx̂ )∗v.

We remark that for x̂ ∈ Ω′ = Ωcebp, R(x̂, x̂′) depends only on x̂, x̂′ and not on s, u and t.

Recall that B0[x̂] := B0[x̂] := J [x̂] ∩ Ŵ+
G/H

[x̂] is the local unstable set defined by the

Markov partition J constructed in Proposition 4.5.12.
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Define the local balls Fij [x̂, `] and the foliation Fij [x̂]

Fij [x̂, `] := {x̂′ ∈ H[x̂] | T ij,−`x̂′ ∈ B0[T ij,−`x̂]} and Fij [x̂] :=
⋃
`≥0

Fij [x̂, `].

Similarly for v ∈ E(x̂), define the balls Fv[x̂, `] and the foliation Fv[x̂]

Fv[x̂, `] := {x̂′ ∈ H[x̂] | Tv,−`x̂′ ∈ B0[Tv,−`x̂]} and Fv[x̂] :=
⋃
`≥0

Fv[x̂, `].

Recall from Proposition 4.5.13(e) that λij(x̂,−t) = λij(x̂
′,−t) for almost every x̂ ∈ Ω and

x̂′ ∈ B0[x̂], therefore (cf. [ELa, Lem. 5.2])

Fij [x̂, `] ⊂ Fij [x̂, `′] and Fv[x̂, `] ⊂ Fv[x̂, `′] for all 0 ≤ ` ≤ `′.

We also have the following properties which easily follow from the definitions (see [ELa,

Sect. 5.3])).

Proposition 4.8.11. For x̂ ∈ Ω′ and x̂′ = T̂ suT̂−tx̂ ∈ H[x̂], let λij(x̂, x̂
′) := λij(x̂,−t) +

λij(uT
−tx̂, s). Let E′ij(x̂) := E⊥i,j−1(x̂) ∩ Eij(x̂), where we take orthogonal complement using

the dynamical inner product 〈·, ·〉x̂.

(a) R(x̂, x̂′)v = eλij(x̂,x̂
′)v′ + v′′, where v ∈ E′ij(x̂), v′ ∈ E′ij(x̂

′), v′′ ∈ Ei,j−1(x̂′) and

‖v′‖x̂′ = ‖v‖x̂.

(b) λij(x̂, x̂
′) = 0 if and only if x̂′ ∈ Fij [x̂].

(c) [ELa, Lem. 5.3] Suppose x̂ ∈ Ω and x̂′ ∈ Fij [x̂]. Then for all ` large enough, Fij [x̂, `] =

Fij [x̂′, `].

(d) [ELa, Lem. 5.4] For a.e. x̂ ∈ Ω, any v ∈ E(x̂) and a.e. x̂′ ∈ Fv[x̂], we have

‖R(x̂, x̂′)v‖x̂′ = ‖v‖x̂.
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4.9 The tie-breaking procedure: Bounded subspaces Eij,bdd(x̂) and

Synchronized exponents [ij]

In this section, we collect and summarize the statements necessary to perform a tie-breaking

procedure. The main statements are Proposition 4.9.1, Proposition 4.9.2 and Proposition 4.9.3.

Since the entire argument for these statements happen within the Lie algebra (l/h)q̂, the proofs

are identical to that in the case of G/Γ considered in [ELa, Sect. 6]. Therefore this section

contains only the necessary definitions and statements without proofs. We refer the reader to

the corresponding statements in [ELa, Sect. 6].

Recall that Λ′′ is the indices of the fine Lyapunov spectrum on E. In this section, we define

an equivalence relation called “synchronization” on Λ′′. The equivalence class of ij ∈ Λ′′ is

denoted by [ij] and the set of equivalence class is denoted by Λsync. For each ij ∈ Λ′′ we define

an T̂ t-equivariant and U+
1 -equivalent subbundle Eij,bdd of the bundle Ei and we define

E[ij],bdd(x̂) :=
∑

kr∈[ij]

Ekr,bdd(x̂).

In fact it can be shown that there exists a subset [ij]′ ⊂ [ij] such that

E[ij],bdd(x̂) =
⊕

kr∈[ij]′
Ekr,bdd(x̂).

The following are the main conclusions that will be used in future sections.

Proposition 4.9.1. [ELa, Prop. 6.1] There exists θ1 ∈ (0, 1) such that:

for all δ, η > 0, there is K = K(δ, η) ⊂ Ω with µ̃(K) > 1− δ and L0 = L0(δ, η) > 0 such that:

If x̂ ∈ Ω, v ∈ E(x̂), L ≥ L0 satisfy

|T [−1,1]K ∩ Fv[x̂, L]| ≥ (1− θ1)|Fv[x̂, L]|,

197



then for at least θ1-fraction of x̂′ ∈ Fv[x̂, L],

d

 R(x̂, x̂′)v
‖R(x̂, x̂′)v‖

,
⋃

ij∈Λsync

E[ij],bdd(x̂′)

 < η.

Proposition 4.9.2. [ELa, Prop. 6.2] There exists a measurable function C : Ω → R+ finite

a.e. such that

for all x̂ ∈ Ω, v ∈ E[ij],bdd(x̂) and x̂′ ∈ Fij [x̂],

C(x̂)−1C(x̂′)−1‖v‖ ≤ ‖R(x̂, x̂′)v‖ ≤ C(x̂)C(x̂′)‖v‖.

Proposition 4.9.3. [ELa, Prop. 6.3] There exists θ > 0 (depending only on ν̂) and a co-null

subset Ψ ⊂ Ω such that the following holds: Suppose x̂ ∈ Ψ, v ∈ W>0
l/h

(x̂), and there exists

C > 0 such that for all ` > 0, and at least (1− θ)-fraction of x̂′ ∈ Fij [x̂, `],

‖R(x̂, x̂′)v‖ ≤ C‖v‖.

Then v ∈ E[ij],bdd(x̂).

4.9.1 Synchronized exponents

Definition. Given θ > 0 and E ⊂ Ω with µ̃(E) > 0, we say ij, kr ∈ Λ′′ are

(E,θ)−synchronized if: there exists C < ∞ such that for all x̂ ∈ E, ` > 0, for at least

(1− θ)-fraction of x̂′ ∈ Fij [x̂, `], we have

ρ(x̂′,Fkr[x̂]) < C.

We write ij ∼ kr if ij and kr are (E, θ)-synchronized for some E ⊂ Ω and some small θ > 0.

Remark 4.9.4. Note that if ij and kr are (E, θ)-synchronized, then they are (
⋃
|s|<t T

sE, θ)-

synchronized for all t > 0.
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For v ∈ E(x̂), we can decompose for some Iv ⊂ Λ′′E

v =
∑
ij∈Iv

vij , where vij ∈ Eij(x̂) r Ei,j−1(x̂).

Lemma 4.9.5. [ELa, Lem. 6.11’] For a.e. x̂ ∈ Ω, suppose there exists C < ∞ and v ∈ E(x̂)

such that

for all ` > 0 and at least (1− θ)-fraction of x̂′ ∈ Fv[x̂, `],

ρ(x̂′,Fij [x̂]) < C for all ij ∈ Iv.

Then all of ij ∈ Iv are synchronized.

Lemma 4.9.6. [ELa, Lem. 6.19’] Suppose ij and kr are synchronized, then there exists a

function C : Ω→ R+ finite µ̃-a.e. such that for all x̂ ∈ Ω, and all x̂′ ∈ Fij [x̂],

ρ(x̂′,Fkr[x̂]) ≤ C(x̂)C(x̂′).

4.9.2 Bounded subspaces Eij,bdd(x̂)

Fix a sufficiently small θ > 0.

Definition. Given x̂ ∈ Ω, we say a vector v ∈ Eij(x̂) is (θ, ij)-bounded if:

there exists C <∞ such that for all ` > 0 and (1− θ)-fraction of x̂′ ∈ Fij [x̂, `],

‖R(x̂, x̂′)v‖ ≤ C‖v‖.

Definition (Eij,bdd(x̂)). Let n = dim Eij(x̂). Define

� Eij,bdd(x̂) = {0} if there is no θ/n-bounded vector in Eij(x̂) r Ei,j−1(x̂),

� Otherwise, Eij,bdd(x̂) is generated by θ/n-bounded vector in Eij(x̂).

(The set of (θ, ij)-bounded vectors does not form a vector space in general. )
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Lemma 4.9.7. [ELa, Lem. 6.17] Given θ > 0.

Suppose for all δ > 0, there exists K = K(δ) ⊂ Ω with µ̃(K) > 1 − δ and C1 = C1(δ) < ∞

such that

for all x̂ ∈ K, ` > 0 and at least (1− θ)-fraction of x̂′ ∈ Fij [x̂, `], we have

‖R(x̂, x̂′)v‖ ≤ C1‖v‖ for all v ∈ Eij,bdd(x̂).

Then for all δ, ` > 0, there exists K ′′(`) ⊂ Ω with µ̃(K ′′(`)) > 1−c(δ) where c(δ)→ 0 as δ → 0,

and there exists θ′′ = θ′′(θ, δ) > 0 with θ′′ → 0 as θ → 0 and δ → 0 such that

for all x̂ ∈ K ′′(`), for at least (1− θ′′)-fraction of x̂′ ∈ Fij [x̂, `],

C−1
1 ‖v‖ ≤ ‖R(x̂, x̂′)v‖ ≤ C1‖v‖ for all v ∈ Eij,bdd(x̂).

Lemma 4.9.8. [ELa, Lem. 6.18] There exists C : Ω→ R+ finite a.e. such that

for all x̂ ∈ Ω, v ∈ Eij,bdd(x̂) and x̂′ ∈ Fij [x̂],

C(x̂)−1C(x̂′)−1‖v‖ ≤ ‖R(x̂, x̂′)v‖ ≤ C(x̂)C(x̂′)‖v‖.

4.9.3 Synchronized bounded subspaces E[ij],bdd(x̂)

Let [ij] = {kr : kr is synchronized with ij}. Let

E[ij],bdd(x̂) :=
∑

kr∈[ij]

Ekr,bdd(x̂).

Lemma 4.9.9. [ELa, Lem. 6.12] For µ̃-a.e. x̂ ∈ Ω, if ij ∼ ik, j < k and Eik,bdd(x̂) 6= {0},

then Eij,bdd(x̂) ⊂ Eik,bdd(x̂).

Thus there is a subset [ij]′ ⊂ [ij] with at most one ij for each i, such that

E[ij],bdd(x̂) =
⊕

kr∈[ij]′
Ekr,bdd(x̂).
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Let Λsync be the equivalence classes in Λ′′E.

Lemma 4.9.10. [ELa, Lem. 6.19] Suppose for all δ > 0, there exists K ⊂ Ω with µ̃(K) > 1−δ

and C <∞ s.t.

for all x̂ ∈ K, ` > 0 and at least (1− θ)-fraction of x̂′ ∈ Fij [x̂, `], we have

λkr(x̂, x̂
′) ≤ C.

Then, ij and kr are synchronized, and there exists a function C : Ω → R+ finite µ̃-a.e. such

that

for all x̂ ∈ Ω, and all x̂′ ∈ Fij [x̂],

ρ(x̂′,Fkr[x̂]) ≤ C(x̂)C(x̂′).

4.9.4 Conditional Measures fij(ẑ) on Eij(x̂)

As a consequence of Proposition 4.9.3, E[ij],bdd(x̂) is in fact a nilpotent subalgebra of (l/h)x̂

(see [ELa, Prop. 9.1]).

For µ̃-almost every x̂ ∈ Ω with G/L component x, we define Eij(x̂) to be the subgroup of

x(L/H◦)x−1 such that E[ij],bdd(x̂) = Lie(Eij(x̂)).

Lemma 4.9.11. [ELa, Lem. 9.3] For x̂ ∈ Ω, t ∈ R and u ∈ U+
1 ,

Eij [T̂ tx̂] = T̂ tEij [x̂], and Eij [ux̂] = Eij [x̂].

For ẑ = (ω, z) ∈ Ωb × G/H◦ with x̂ = π̂(ẑ) for π̂ : Ωb × G/H◦ → Ωb × G/L, define

fij(ẑ) to be a measure on Eij(x̂) defined as the pullback of the conditional measure of ν̂ along

Eij(x̂)z. More precisely, we consider the conditional measure ν̂|zL/H of ν̂ on the fiber zL/H,

then apply the leafwise measure construction in [EL10, Sect. 6] to the unipotent subgroup

Eij(x̂) ⊂ x(L/H◦)x−1 acting on zL/H to obtain a leafwise measure fij(ẑ) on Eij(x̂). fij(ẑ) is

well-defined for almost every ẑ ∈ Ωb ×G/H.
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Lemma 4.9.12. [ELa, Lem. 9.4] We have for almost every ẑ ∈ Ω̂, u ∈ U+
1 and s, t ∈ R,

fij(T̂
tuT̂−sẑ) ∝ (T tuẑ)∗(T

−s
ẑ )∗fij(ẑ).

Proof. This follows by the equivariance of conditional measures and leafwise measures. See e.g.

[EL10, Thm. 6.3(iii)].

4.9.5 General lemmas

We use the following general elementary lemma a few times in the main argument in subection

4.10.1.

Lemma 4.9.13. Let (X, ν) be a Borel probability space with measurable partition A and the

corresponding conditional measures {νx}x∈X , so in particular

ν =

∫
νx dν(x).

Let a > 0, and K ⊂ X be a measurable subset with ν(K) > 1− a. Let

K0 := {x ∈ X | νx(K) > 1− b}.

Then ν(K0) > 1− a/b.

Proof. We have

ν(Kc) =

∫
νx(Kc) dν(x) ≥

∫
Kc

0

νx(Kc) dν(x) ≥
∫
Kc

0

b dν(x) = b ν(Kc
0).

By assumption, ν(Kc) ≤ a, therefore b ν(Kc
0) ≤ a and the result follows.

Lemma 4.9.14. Let C > 1. Let f : R≥0 → R≥0 be an increasing C-bilipschitz function, i.e.

for all ` ≥ 0 and s ≥ 0,

C−1s ≤ f(`+ s)− f(`) ≤ Cs.
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Let δ > 0 and `0 > 0. Let E ⊂ R be a measurable subset with density at most δ for all ` > `0,

i.e.

Leb(E ∩ [0, `]) < δ` for all ` > `0.

Then the set {` ∈ R+ | f(`) ∈ E} has density at most C2δ for all ` > C`0.

Proof. Since f is C-bilipschitz, both f and f−1 are almost surely differentiable with derivative

at most C. Also note that f(0) ≥ 0, and f and f−1 are increasing. Thus

Leb({` ∈ [0, t] | f(`) ∈ E}) =

∫ t

0
1E(f(`)) d` =

∫ f(t)

f(0)
1E(s)

df−1(s)

ds
ds

≤
∫ f(t)

0
1E(s)

df−1(s)

ds
ds ≤ CLeb(E ∩ [0, f(t)]).

For all t > C`0, we have f(t) ≥ f(t) − f(0) ≥ C−1t > `0. Since E has density at most δ for

` > `0, we have Leb(E ∩ [0, f(t)]) < δf(t) ≤ Cδt. Therefore

Leb({` ∈ [0, t] | f(`) ∈ E}) ≤ CLeb(E ∩ [0, f(t)]) ≤ C2δt.

4.10 Main argument of Case I

4.10.1 Fit eight points into a compact set

For each 0 < δ < 1, let K∗ = K∗(δ) ⊂ Ω̂ be a compact subset with measure at least 1− δ such

that fij is uniformly continuous on K∗ for all ij ∈ Λsync.

Proposition 4.10.1. [ELa, Prop. 10.2] There exist 0 < δ < 0.1 and C = C(K∗(δ)) > 1 such

that for every 0 < ε < C−1/100, there exists E ⊂ K∗ with measure at least δ such that

for all x̂ ∈ E, there exists ij ∈ Λsync and ŷ ∈ Eij [x̂] ∩K∗ with

C−1ε ≤ dG/H(x̂, ŷ) ≤ Cε, and fij(ŷ) ∝ fij(x̂).
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The proof mostly follows the scheme in [ELa, Prop. 10.2]. For expository purpose, we first

write a detailed outline using claims without proof (and sometimes vaguely stated), and then

prove the claims afterwards.

For the outline (and sometimes in proofs of the claims), we use the following shorthand

notations:

let α denote a parameter (or a few parameters) and δ > 0 is a distinguished parameter.

1. large A ⊂α,δ B means A = A(α, δ) is a measurable subset of B with measure (or

density if B = R+) at least 1− c(δ) for some c(δ)→ 0 as δ → 0 (sometimes c(δ) is more

explicitly specified).

2. for most a ∈α,δ B means there exists a large measurable subset A ⊂α,δ B such that

for all a ∈ A.

3. for t�α 0 means there exists T = T (α) > 0 such that for all t > T (α).

4. a ≤α b means there exists C = C(α) > 0 such that a ≤ Cb.

5. a ≈α b means there exists C = C(α) > 1 such that C−1b ≤ a ≤ Cb.

6. x = Oα(y) means x ≤ C(α)y for some constant C = C(α) > 0.

Proof outline of Proposition 4.10.1. Given (q̂1, u, `) ∈ Ω̂ × U+
1 × R>0, a Y -configuration

Yij = Yij(q̂1, u, `) is a quadruple (q̂, q̂1, q̂2, q̂3,ij) s.t.

q̂(Yij) = T̂−`q̂1, q̂1(Yij) = q̂1, q̂2(Yij) = T̂ tuq̂1, q̂3,ij(Yij) = T̂ tij q̂1,

where

t(Yij) = τ̃ε(q̂1, u, `) satisfies ‖π+ ◦ A(q̂1, u, `, t)‖ = ε,

tij(Yij) = tij(q̂1, u, `) satisfies λij(uq̂1, t(Yij)) = λij(q̂1, tij).

Note that for fixed q̂1 and u,

� ` 7→ t(Yij) is κτ -bilipschitz by Proposition 4.8.9,
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� t 7→ tij(Yij) is κ2-bilipschitz by Proposition 4.5.13 (c), so ` 7→ tij(Yij) is κτκ
2-

bilipschitz.

We define

� A Y -configuration Yij is good if q̂(Yij), q̂1(Yij), q̂2(Yij), q̂3,ij(Yij) ∈ K (the compact set

K ⊂ Ω̂ will be defined in Step 4).

� Y = Yij(q̂1, u, `) and Y ′ = Yij(q̂
′
1, u
′, `′) are coupled if ` = `′, u = u′, q̂(Y ′) ∈

Ŵ−
G/H

[q̂(Y )], and w := Fq̂(q̂
′) ∈ L−(q̂), ‖w‖ ≈δ 1

‖π+A(q̂1, u, `, t)w‖ ≈δ ‖π+A(q̂1, u, `, t)‖‖w‖ ≈δ ε where t = τ̃ε(q̂1, u, `).

Recall that A(q̂1, u, `, t) : L−(q̂) → (l/h)q̂2 is a linear map defined in Theorem 4.6.5 and

then restricted to L−(q̂) in the beginning of Section 4.7. Here π+ : (l/h)x̂ → W+
l/h

(x̂) de-

note the orthogonal projection with respect to the dynamical inner product 〈·, ·〉x̂ defined

in subsection 4.5.9.

Fix θ1 > 0 as in Proposition 4.9.1, then fix δ > 0 later and then fix sufficiently small ε, η > 0.

The proof proceeds as follows:

1. Fix an arbitrary compact set K00 ⊂ Ω̂ with ν̂(K00) > 1 − 2δ (See Step 19 for why we

start this way).

2. Recall that K∗ = K∗(δ) ⊂δ Ω̂ is a compact subset with measure at least 1− δ such that

fij is uniformly continuous on K∗ for all ij ∈ Λsync.

3. Choose a large compact subset K0 ⊂δ Ω̂ such that

(a) K0 ⊂ K00 ∩K∗,

(b) for x̂ ∈ K0, t �δ,ε′ 0, v ∈ Wλi(x̂), we have e−(λi+ε
′)t‖v‖ ≤ ‖(T̂−tx̂ )∗v‖ ≤

e−(λi−ε′)t‖v‖ (Oseledets).

Here ε′ is a constant to be chosen in Step 16 (see Claim 4.10.7), which depends

only on the Lyapunov spectrum.
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(c) for x̂ ∈ K0, x̂
′ ∈ Fij [x̂] ∩ K0 and v ∈ E[ij],bdd(x̂), we have ‖R(x̂, x̂′)v‖ ≈δ ‖v‖.

(Prop. 4.9.2)

(d) for x̂ ∈ K0, x̂′ ∈ Ŵ−
G/L

[x̂] ∩K0, t > 0 and g ∈ exp(W<0
g (x̂)) such that gxL = x′L,

we have ‖P−(T̂ tx̂, T̂ tx̂′)− Ad(T tω)g(T tω)−1‖0→0 ≤δ ‖g‖Ad(G)e
−αt (Lem. 4.5.10).

4. Choose a large compact subset K ⊂δ Ω̂ such that there exists C = C(δ, ε) > 1 with

(a) For x̂ ∈ K and T �δ 0, we have Leb({t ∈ [−T/2, T/2] | T̂ tx̂ ∈ K0}) ≥ 0.9T

(Birkhoff),

(b) Proposition 4.6.5(d) holds (d(q̂2, q̂
′
2) is exponentially close to ‖A(q̂1, u, `, t)Fq̂(q̂

′)‖)

(c) Proposition 4.7.3 holds (the norm of π+ ◦ A(q̂1, u, `, t) is lower bounded by ≥δ

e−κ
′`+κt)

(d) Proposition 4.8.7 holds (any v ∈ L−(T̂−`q̂1) gets close to E via A(q̂1, u, `, t) as

t→∞ for most u).

(e) Proposition 4.9.1 holds (any v ∈ E gets close to one of E[ij],bdd via R(x̂, x̂′) for

many x̂′ ∈ Fv[x̂]).

(f) For x̂ ∈ K, v ∈ g and t ∈ R, we have C−1e−ε|t| ≤ ‖v‖
T̂ tx̂

/‖v‖0 ≤ Ceε|t| (Lemma

4.5.15).

(g) For x̂ ∈ K, x̂′ ∈ Ŵ−
G/L

[x̂] ∩K, T̂ tx̂ ∈ K and T̂ tx̂′ ∈ T̂ [−a,a]K, we have |λij(x̂, t)−

λij(x̂
′, t)| ≤ C ′(a, δ). (Lem. 4.7.4)

(h) For x̂ ∈ K, ŷ ∈ Fij [x̂]∩K, v ∈ E[ij],bdd(x̂), we have C−1‖v‖ ≤ ‖R(x̂, ŷ)v‖ ≤ C‖v‖

(Prop. 4.9.2).

(i) for x̂ ∈ K, x̂′ ∈ Ŵ−
G/L

[x̂]∩K, t > 0 and g ∈ exp(W<0
g (x̂)) such that gxL = x′L, we

have ‖P−(T̂ tx̂, T̂ tx̂′)− Ad(T tω)g(T tω)−1‖0→0 ≤δ ‖g‖Ad(G)e
−αt (Lem. 4.5.10).

5. Claim 4.10.1. For most q̂1 ∈δ K ⊂ Ω̂, most u ∈δ,q̂1 U
+
1 and most ` ∈δ,q̂1,u R>0, we

have uq̂1 ∈ K and q̂2(Yij), q̂3(Yij) ∈ K for Yij := Yij(q̂1, u, `) for all ij ∈ Λsync. (Proof:

Pointwise ergodic theorem, and use bilipschitz estimates of ` 7→ t, tij . )
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6. Claim 4.10.2. For most ` ∈δ R>0, most q̂1 ∈δ,` K ⊂ Ω̂ and most u ∈δ,`,q̂1 U
+
1 , we have

q̂2(Yij), q̂3(Yij) ∈ K for Yij := Yij(q̂1, u, `) for all ij ∈ Λsync (Fubini).

7. Claim 4.10.3. For most ` ∈δ R>0, most q̂1 ∈δ,` K, there exists q̂′1 = q̂′1(`, q̂1) ∈ K such

that for most u ∈δ,`,q̂1,q̂′1 U
+
1 , we have Yij(q̂1, u, `) and Yij(q̂

′
1, u, `) are both good and

coupled for all ij ∈ Λsync (Proposition 4.7.6).

8. Choice of parameters 1: `, q̂1, q̂
′
1, q̂, q̂

′: From now on, ` and q̂1 are chosen to satisfy

Claim 4.10.3, i.e. there exist q̂′1 = q̂′1(`, q̂1) ∈ K such that for most u ∈δ,`,q̂1,q̂′1 U
+
1 ,

we have Yij(q̂1, u, `) and Yij(q̂
′
1, u, `) are both good and coupled for all ij ∈ Λsync. Let

q̂ := T̂−`q̂1, q̂′ := T̂−`q̂′1.

With these choices, for all ij ∈ Λsync, let

τ(u) := τ̃ε(q̂1, u, `), τ ′(u) := τ̃ε(q̂
′
1, u, `), v(u) := A(q̂1, u, `, τ̃ε(q̂1, u, `))Fq̂(q̂

′),

tij(u) := tij(q̂1, u, `), t′ij(u) := tij(q̂
′
1, u, `).

9. Claim 4.10.4. For `�δ 0, most q̂1 ∈δ,` K, most u ∈δ,`,q̂1,q̂′1 U
+
1 , we have (by Proposi-

tion 4.7.3, 4.8.7 and Theorem 4.6.5)

τ(u) ≈λ `, d

(
v(u)

‖v(u)‖
,E(T̂ τ(u)uq̂1)

)
≤δ e−α

′`,

dG/H(T̂ τ(u)uq̂1, T̂
τ(u)uq̂′1) ≈δ ‖v(u)‖ ≈δ ε,

where α′ > 0 and the bilipschitz constant in ≈λ depend only on the Lyapunov spectrum.

10. Claim 4.10.5. For small enough δ > 0 (depending on θ1), for `�δ,η 0, u ∈δ,`,q̂1,q̂′1,η U
+
1 ,

there exists ij ∈ Λsync such that (by Proposition 4.9.1)

d

(
v(u)

‖v(u)‖
,E[ij],bdd(T̂ τ(u)uq̂1)

)
< 4η.
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11. Choice of parameters 2: δ, `, q̂1, q̂
′
1, q̂, q̂

′, ij: Choose δ > 0 to be a small enough

number so that Claim 4.10.1.5 holds. Choose `, q̂1, u such that Claim 4.10.3, Claim

4.10.4 and Claim 4.10.5 hold. Then choose q̂′1, q̂, q̂
′ as in Choice of parameters 1.

Fix ij ∈ Λsync such that Claim 4.10.5 holds.

12. Claim 4.10.6. There exists some C(δ) > 0 such that for ` �δ 0, most q̂1 ∈δ,` K, most

u ∈δ,`,q̂1,q̂′1 U
+
1 , and all ij ∈ Λsync, we have

|τ(u)− τ ′(u)| ≤ C(δ), and |tij(u)− t′ij(u)| ≤ C(δ).

13. Choice of parameters 3: u, q̂2, q̂
′
2, q̂3,ij, q̂

′
3,ij, τ, τij: Recall that by Choice of pa-

rameters 1, we have

T̂ τ(u)uq̂1 ∈ K, T̂ τ
′(u)uq̂′1 ∈ K, T̂ tij(u)uq̂1 ∈ K, T̂

t′ij(u)
uq̂1 ∈ K.

Thus by Claim 4.10.6 and property (a) in the definition of K (Step 4), there exist

C(δ) > 0 and s, s′ ∈ [−C(δ), C(δ)] such that

q̂2 := T̂ τuq̂1 ∈ K0, q̂′2 := T̂ τuq̂′1 ∈ K0, q̂3,ij := T̂ τijuq̂1 ∈ K0, q̂′3,ij := T̂ τijuq̂′1 ∈ K0,

where τ := s+ τ(u), τij := s′ + tij(u).

14. Let R := R(q̂3,ij , q̂2) = R(q̂′3,ij , q̂
′
2), since q̂, q̂′ have the same combinatorial future. Let

B : E[ij],bdd(q̂3,ij)→ E[ij],bdd(q̂2), B′ : E[ij],bdd(q̂′3,ij)→ E[ij],bdd(q̂′2)

be the restrictions of R. By Proposition 4.9.2, there exists a constant C ′(δ) > 0 such

that

max(‖B‖, ‖B−1‖) ≤ C ′(δ), and max(‖B′‖, ‖(B′)−1‖) ≤ C ′(δ).
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15. By Lemma 4.5.10 and Claim 4.10.4,

‖P−(q̂2, q̂
′
2)− AdT τq̂2

g‖ ≤δ,g e−α
′`, ‖P−(q̂3,ij , q̂

′
3,ij)− Ad

T
τij
q̂3
g
‖ ≤δ,g e−α

′`.

Here α′ > 0 depends only on the Lyapunov spectrum. Note that P−(q̂2, q̂
′
2) is well-

defined since πSZ×G/L(q̂′2) ∈ Ŵ−
G/L

[πSZ×G/L(q̂′2)] (by Proposition 4.4.7), even though q̂2

and q̂′2 may not be stably related (i.e. q̂′2 may not be in Ŵ−
G/H

[q̂2]). See Remark 4.5.8.

g ∈ exp(W<0
g (ω)) ⊂ G is a choice of an element in exp(W<0

g (ω)) such that gq1L = q′1L.

16. Claim 4.10.7. For all v ∈ E[ij],bdd(q̂3,ij), ‖B′P−(q̂3,ij , q̂
′
3,ij)v − P−(q̂2, q̂

′
2)Bv‖ ≤δ

e−(α/2)`‖v‖.

17. Claim 4.10.8. There exists c(δ, `) with c(δ, `)→ 0 as `→∞ such that

d(fij(q̂2), fij(q̂
′
2)) ≤ c(δ, `).

18. Take η → 0 in Claim 4.10.5 (this necessarily implies `→ 0), let q̃2, q̃′2 ∈ K0 be the limit

of q̂2, q̂
′
2, then by Claim 4.10.5 and Claim 4.10.8,

q̃′2 ∈ Eij [q̃2], dG/H(q̃2, q̃
′
2) ≈δ ε, fij(q̃2) ∝ fij(q̃

′
2).

19. Going back to Step 1: in summary, we have shown that (recall that ν̂(K∗) > 1− δ):

for arbitrary K00 ⊂ Ω̂ with ν̂(K00) > 1 − 2δ, there exists x̂ ∈ K0 ⊂ K00 ∩ K∗ and

ŷ ∈ Eij [x̂] ∩K∗ such that

dG/H(x̂, ŷ) ≈δ ε, fij(x̂) ∝ fij(ŷ).

Thus there exists E ⊂ K∗ with ν̂(E) > δ such that for every x̂ ∈ E, there exists
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ŷ ∈ Eij [x̂] ∩K∗ such that

dG/H(x̂, ŷ) ≈δ ε, fij(x̂) ∝ fij(ŷ).

We now continue with the precise statements and proofs of the claims in the outline. For

each claim, we assume all the choices of parameters (like δ, ε, η) and sets (like K∗, K0, K) in

the steps preceding the claim in the outline. We will also reuse the notations K ′, Q, `0 in

each claim with the understanding that unless otherwise stated, these letters mean different

objects in different claims. We also reuse the constants c(δ), c′(δ), c′′(δ) and they always satisfy

c(δ), c′(δ), c′′(δ)→ 0 as δ → 0.

Claim 4.10.1. There exist

� a compact set K ′ = K ′(K00, δ, ε) ⊂ K of measure at least 1− c(δ),

� a subset Q = Q(q̂1, K00, δ, ε, η) ⊂ U+
1 with Qq̂1 of measure at least 1 − c′(δ) for each

q̂1 ∈ K ′, and

� a real number `0 = `0(K00, δ, ε, η) > 0

such that if we let

E(q̂1, u) := {` ∈ R+ : q̂2(Yij(q̂1, u, `)), q̂3(Yij(q̂1, u, `)) ∈ K for all ij ∈ Λsync},

then for all q̂1 ∈ K ′, u ∈ Q and ` > `0,

uq̂1 ∈ K, and |E(q̂1, u) ∩ [0, `]| > (1− c′′(δ))`.

Proof. The idea is that since K has almost full measure, by the pointwise ergodic theorem, for

a large set of points q̂1 ∈ Ω̂, T̂ tq̂1 enters K for almost full density of t > 0. Since {U+
1 x̂}x̂∈Ω̂
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form a partition of Ω̂, for a large set of q̂1 ∈ Ω̂ there is a large set of u ∈ U+
1 , such that T̂ tuq̂1

also enters K for almost full density of t > 0. Since ` 7→ τ̃ε(q̂1, u, `) and ` 7→ tij(q̂1, u, `) are

bilipschitz functions, using Lemma 4.9.14, we have that for almost full density of `, tij(q̂1, u, `)

satisfies the first sentence, i.e. q̂3 ∈ K, and τ̃ε(q̂1, u, `) satisfies the second sentence, i.e. q̂2 ∈ K,

as desired.

Recall from Step 4 of the main argument that K ⊂ Ω̂ has measure at least 1 − cK(δ) for

some cK(δ)→ 0 as δ → 0. By the pointwise ergodic theorem, there exists compact K1(δ) ⊂ Ω̂

with measure at least 1− δ, and `1 = `1(δ) > 0 such that for all q̂1 ∈ K1 and L ≥ `1,

Leb({t ∈ [0, L] : T̂ tq̂1 ∈ K}) ≥ (1− 2cK(δ))L.

By Lemma 4.9.13, we know that the set

K2 := {x̂ ∈ Ω̂ | µN(U+
1 x̂ ∩K1 ∩K) > 1−

√
cK(δ) + δ} ⊂ Ω̂

has measure at least 1 −
√
cK(δ) + δ. Let K3 := K1 ∩ K2, thus has measure at least 1 −

2cK(δ)−
√
cK(δ) + δ.

Suppose q̂1 ∈ K3 and uq̂1 ∈ K1.

Let E1 := {t > 0 | T̂ tuq̂1 ∈ Kc}. Since uq̂1 ∈ K1, for ` > `1, the density of E1 is at most

2cK(δ).

Let E2 := {` > 0 | τ̃ε(q̂1, u, `) ∈ E1}. Since ` 7→ t(Yij) is κτ -bilipschitz by Proposition 4.8.9,

by Lemma 4.9.14, for ` > κτ `1, the density of E2 is at most 2κ2
τ cK(δ).

Let E3 := {t > 0 | T̂ tq̂1 ∈ Kc}. Since q̂1 ∈ K3 ⊂ K1, for all ` > `1, the density of E3 is at

most 2cK(δ).

Let Eij := {` > 0 | tij(q̂1, u, τ̃ε(q̂1, u, `)) ∈ E3} for each ij ∈ Λsync. Since

` 7→ tij(q̂1, u, τ̃ε(q̂1, u, `))

is κτκ
2-bilipschitz by Proposition 4.8.9 and Proposition 4.5.13(c), by Lemma 4.9.14, for ` >
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κτκ
2`1, the density of Eij is at most 2κ2

τκ
4cK(δ).

Since E(q̂1, u) is the complement of E2 ∪
⋃
ij∈Λsync

Eij , for ` > κτκ
2`1, the density of

E(q̂1, u) is at least 1− 2κ2
τ cK(δ)− 2κ2

τκ
4|Λsync|cK(δ).

Thus using the notations in the statement, we can take

� K ′ := K3 with c(δ) := 2cK(δ) +
√
cK(δ) + δ,

� Q(q̂1) := {u ∈ U+
1 | U

+
1 q̂1 ∩K1 ∩K} for each q̂1 ∈ K ′, with c′(δ) :=

√
cK(δ) + δ,

� `0 := κτκ
2`1

� c′′(δ) := 2κ2
τ cK(δ) + 2κ2

τκ
4|Λsync|cK(δ).

Claim 4.10.2. There exist

� a real number `0 = `0(K00, δ, ε, η) > 0,

� a set D = D(K00, δ, ε, η) ⊂ R+ such that |D ∩ [0, `]| > (1− c(δ))` for ` > `0,

� a compact set K ′ = K ′(`,K00, δ, ε, η) ⊂ K of measure at least 1− c′(δ) for each ` ∈ D,

� a subset Q = Q(`, q̂1) ⊂ U+
1 with Qq̂1 of measure at least 1 − c′′(δ) for each ` ∈ D and

each q̂1 ∈ K ′

such that for all q̂1 ∈ K ′, u ∈ Q, ` ∈ D, we have uq̂1 ∈ K and ` ∈ E(q̂1, u), i.e.

q̂2(Yij(q̂1, u, `)), q̂3(Yij(q̂1, u, `)) ∈ K for all ij ∈ Λsync.

Proof. This is a direct application of Fubini’s theorem to the product {(x̂, ux̂) | x̂ ∈ Ω̂, ux̂ ∈

U+
1 x̂} × R+ using Claim 4.10.1. We just need to take care since we are using the density on

R+ here.

Let `0 > 0 be as in Claim 4.10.1. Let L1 < L2 < L3 < · · · be an arithmetic progression

with L1 = `0 + 1 and common difference 1. Now for each i, applying Fubini’s theorem to the
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product {(x̂, ux̂) | x̂ ∈ Ω̂, ux̂ ∈ U+
1 x̂} × [0, Li] using Claim 4.10.1, we get a set Di ⊂ R+ such

that the set of ` ∈ Di satisfying the statement conditions has proportion at least 1− c1(δ) for

some c1(δ) → 0 as δ → 0, depending only on the constants c(δ), c′(δ), c′′(δ) in Claim 4.10.1

(in particular does not depend on i). Now take D :=
⋃
iDi, we have that D has density at

least 1 − 2c1(δ) for ` > `1(δ), where `1(δ) is some large enough constant depending only on

c1(δ).

Claim 4.10.3. Let D ⊂ R+ as in Claim 4.10.2. Then there exists

� a compact set K ′ = K ′(`,K00, δ, ε, η) ⊂ K of measure at least 1− c(δ),

� a point q̂′1 = q̂′1(`, q̂1) ∈ K for each ` ∈ D and q̂1 ∈ K ′,

� a subset Q = Q(`, q̂1, q̂
′
1, δ) ⊂ U

+
1 with Qq̂1 of measure at least 1 − c′(δ) for each ` ∈ D

and each q̂1 ∈ K ′,

such that for all q̂1 ∈ K ′, u ∈ Q, ` ∈ D and ij ∈ Λsync, Yij(q̂1, u, `) and Yij(q̂
′
1, u, `) are both

good and coupled. Also uq̂1, uq̂
′
1 ∈ K.

Proof. The main idea is to apply Proposition 4.7.6. We just need to shrink K ′ so that

q̂, q̂′, q̂1, q̂′1 ∈ K, and then use Claim 4.10.2 (shrink K ′ again) to get q̂2, q̂
′
2, q̂3, q̂

′
3, uq̂1, uq̂

′
1 ∈ K.

Let K1 ⊂ K and Q1 ⊂ U+
1 be the corresponding sets K ′, Q in Claim 4.10.2 respectively.

In particular, for all q̂1 ∈ K1, u ∈ Q1 and ` ∈ D, we have

q̂2(Yij(q̂1, u, `)), q̂3(Yij(q̂1, u, `)) ∈ K for all ij ∈ Λsync.

For any q̂1 ∈ K1, u ∈ Q1 and ` ∈ D, we apply Lemma 4.7.5 to the linear map A := π+ ◦

A(q̂1, u, `, τ̃ε(q̂1, u, `)) : L−(q̂) → W+
l/h

(q̂2) (here q̂ := T̂−`q̂1, q̂2 := T̂ tuq̂1 and π+ : (l/h)x̂ →

W+
l/h

(x̂) denote the orthogonal projection with respect to the dynamical inner product 〈·, ·〉x̂)

and let Mu(q̂) ⊂ L−(q̂) be the resulting proper subspace W ′. Thus for any v ∈ L−(q̂) with

‖v‖q̂ = 1 and d(v,Mu) > ρ, we have

‖π+A(q̂1, u, `, τ̃ε(q̂1, u, `))v‖ ≥ c1(ρ)‖π+A(q̂1, u, `, τ̃ε(q̂1, u, `))‖ (4.10.1)
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for some c1(ρ) > 0 that depends only on ρ.

Now for each ` ∈ D, we apply Proposition 4.7.6 with K ′ := K ∩ T̂−`K1 and the map

u 7→ Mu(q̂) ⊂ L−(q̂). Let K2 be the resulting subset K ⊂ K ′, which has measure at least

1 − c2(δ) for some constant c2(δ) → 0 as δ → 0. Then by Proposition 4.7.6, for any q̂ ∈ K2,

there exists q̂′ ∈ K ∩ T̂−`K1 with q̂′ ∈ Ŵ−
G/H

[q̂], Fq̂(q̂
′) ∈ L−(q̂), such that

ρ(δ) ≤ dG/H(q, q′) ≤ 1/100, ρ(δ) ≤ ‖Fq̂(q̂′)‖q̂ ≤ C(δ),

and

dq̂(Fq̂(q̂
′),Mu(q̂)) > ρ(δ) for at least (1− ε1(δ))-fraction of u ∈ U+

1 .

Here ρ(δ), C(δ) are constants with 0 < ρ(δ) < C(δ) <∞, and ε1(δ) is a constant with ε1(δ)→ 0

as δ → 0. This together with (4.10.1) for ρ = ρ(δ) and the definition of τ̃ε imply that

‖π+A(q̂1, u, `, τ̃ε(q̂1, u, `))Fq̂(q̂
′)‖ ≈δ ‖π+A(q̂1, u, `, τ̃ε(q̂1, u, `))‖ = ε.

Therefore for all ` ∈ D, for all q̂1 ∈ T̂ `K2 ⊂ T̂ `K ∩K1, there exists q̂′1 := T̂ `q̂′ ∈ T̂ `K ∩K1

such that Yij(q̂1, u, `) and Yij(q̂
′
1, u, `) are coupled for most u ∈`,q̂1,q̂′1 U

+
1 for all ij ∈ Λsync.

Since q̂1, q̂
′
1 ∈ T̂

`K, we have q̂ := T̂−`q̂1, q̂′ := T̂−`q̂′1 ∈ K. Since q̂1, q̂
′
1 ∈ K1 ⊂ K, by Claim

4.10.2, we have q̂1, uq̂1, q̂2, q̂3, q̂
′
1, uq̂

′
1, q̂
′
2, q̂
′
3 ∈ K. Therefore both Yij(q̂1, u, `) and Yij(q̂

′
1, u, `)

are good. Therefore we can take K ′ := T̂ `K2 in the statement, which has measure at least

1− c2(δ) with c2(δ)→ 0 as δ → 0.

Claim 4.10.4. Let D ⊂ R+ as in Claim 4.10.2. Let K ′ ⊂ K and Q as in Claim 4.10.3.

There exist

� a real number `0 = `0(δ, ε) > 0,

� a constant C = C(δ) > 1,

� constants α > 1 and α′ > 0 depending only on the Lyapunov spectrum,
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such that for all q̂1 ∈ K ′, u ∈ Q and ` ∈ D with ` > `0, let q̂′1 = q̂′1(`, q̂) as in Claim 4.10.3,

then we have

(a)

α−1` ≤ τ(u) ≤ α`,

(b)

d

(
v(u)

‖v(u)‖
,E(T̂ τ(u)uq̂1)

)
≤ C(δ)e−α

′`,

(c)

C(δ)−1ε ≤ ‖π+(v(u))‖ ≤ C(δ)ε and C(δ)−1ε ≤ ‖v(u)‖ ≤ C(δ)ε,

(d)

C(δ)−1ε ≤ dG/H(T̂ τ(u)uq̂1, T̂
τ(u)uq̂′1) ≤ C(δ)ε.

Here we recall that v(u) := A(q̂1, u, `, τ̃ε(q̂1, u, `))Fq̂(q̂
′) and τ(u) := τ̃ε(q̂1, u, `).

Proof. Let ` ∈ D, q̂1 ∈ K and u ∈ Q, where D, K ′ and Q are as in Claim 4.10.3.

(a) It suffices to show that α1` ≤ τ(u) ≤ α2` for some α2 > α1 > 0 depending only on the

Lyapunov spectrum. In fact, for large enough `0 := `0(δ, ε) > 0, the lower bound follows

from Proposition 4.5.13(d) and Remark 4.5.14 with α1 := (2κV κ)−1, the upper bound

follows from Proposition 4.7.3 (recall from Step 4c that elements in K ′ ⊂ K satisfy

Proposition 4.7.3) with α2 := κV κ.

(b) Recall from Step 4d that elements in K ′ ⊂ K satisfy Proposition 4.8.7. Therefore we

have

d

(
v(u)

‖v(u)‖
,E(T̂ τ(u)uq̂1)

)
≤ C(δ)e−α3τ(u),

where α3 depends only on the Lyapunov spectrum. Now apply the lower bound in part

(a) to this inequality to get part (b).
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(c) For ` ∈ D, q̂1 ∈ K ′ and u ∈ Q, by Claim 4.10.3, Yij(q̂1, u, `) and Yij(q̂
′
1, u, `) are coupled,

thus

‖π+(v(u))‖ ≈δ ε.

Here we recall that for x̂ := T̂ τ(u)uq̂1, π+ : (l/h)x̂ → W+
l/h

(x̂) denote the orthogonal

projection with respect to the dynamical inner product 〈·, ·〉x̂ defined in subsection 4.5.9.

By part (b), v(u) is exponentially close to E(T̂ τ(u)uq̂1) ⊂ W+
l/h

(T̂ τ(u)uq̂1), therefore there

exists `0 = `0(δ) such that for all ` > `0, we have

‖v(u)‖ ≈δ ε.

(d) Recall from Step 4a that elements inK ′ ⊂ K satisfy the Factorization theorem (4.6.5(d)).

Take β = α2 from part (a) in Theorem 4.6.5(d). Then dG/H(T̂ τ(u)uq̂1, T̂
τ(u)uq̂′1) is

exponentially close to ‖v(u)‖. Thus using part (c), there exists `0 = `0(δ) such that for

all ` > `0, we have

‖dG/H(T̂ τ(u)uq̂1, T̂
τ(u)uq̂′1)‖ ≈δ ε.

Recall that B0[x̂] := J [x̂]∩Ŵ+
G/H

[x̂] is the local unstable set defined by the Markov partition

J constructed in Proposition 4.5.12. Recall the parameter θ1 from Proposition 4.9.1.

Claim 4.10.5. There exist

� a real number δ0 = δ0(θ1) > 0,

� a real number `0 = `0(K00, δ, ε, η) > 0 for each 0 < δ < δ0,

� a compact subset K ′ = K ′(`,K00, δ, ε, η) ⊂ K of measure at least 1 − c(δ) for each

0 < δ < δ0 and ` > `0,

� a subset Q = Q(`, q̂1, q̂
′
1(`, q̂1), K00, δ, ε, η) ⊂ U+

1 such that Qq̂1 ⊂ B0[q̂1] with Qq̂1 of

measure at least (θ1/4)-fraction of B0[q̂1] for each 0 < δ < δ0, ` > `0 and q̂1 ∈ K ′,
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such that for all δ < δ0, q̂1 ∈ K ′, u ∈ Q and ` > `0, there exists ij ∈ Λsync such that

d

(
v(u)

‖v(u)‖
,E[ij],bdd(T̂ τ(u)uq̂1)

)
< η.

Proof sketch. The proof is identical to [ELa, Claim 10.11]. See Choice of parameters #3 in

[ELa, Sect. 10] for the choice of δ0(θ1) (note that (10.20) in [ELa] is satisfied for all sufficiently

small δ). The main idea is to apply Proposition 4.9.1.

Claim 4.10.6. There exist

� a real number `0 = `0(δ, ε) > 0,

� a compact subset K ′ = K ′(`,K00, δ, ε) ⊂ K of measure at least 1− c(δ) for each ` > `0,

� a subset Q = Q(`, q̂1, q̂
′
1(`, q̂1), K00, δ, ε) ⊂ U+

1 with Qq̂1 of measure at least 1 − c(δ) for

each ` > `0 and each q̂1 ∈ K ′,

� a constant C(δ) > 0,

such that for all ij ∈ Λsync, q̂1 ∈ K ′, u ∈ Q, ` ∈ D with ` > `0, let q̂′1 = q̂′1(`, q̂) as in Claim

4.10.3, then we have

(a)

|τ(u)− τ ′(u)| ≤ C(δ),

(b)

|tij(u)− t′ij(u)| ≤ C(δ).

Proof. In this proof, we write τ := τ(u), τ ′ := τ ′(u), q̂2 := T̂ τuq̂1 and q̂′2 := T̂ τuq̂1 (note that

q̂′2 is not necessarily the same as q̂2(Yij(q̂
′
1, u, `)) since we are using τ instead of τ ′).

(a) We first show that |τ(u) − τ ′(u)| ≤ C(δ). The idea is that by the choices of τ and τ ′,

dG/H(q̂2, q̂
′
2) and dG/H(T̂ τ

′−τ q̂2, T̂ τ
′−τ q̂′2) are both ≈δ ε. Now the exponential rate of

expansion (or contraction) by T̂ τ
′−τ should be bounded by constants that depend only
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on the Lyapunov spectrum, therefore |τ ′ − τ | = Oδ(1). However to make this precise

requires more work. For instance dG/H(T̂ τ
′−τ q̂2, T̂ τ

′−τ q̂′2) ≈δ ε may not necessarily hold

by the choices so far (we only have Fq̂(q̂
′) avoids a proper subspace with strictly lower

order growth using Proposition 4.7.6, but the same may not be true for Fq̂′(q̂)). Also we

need to first factorize dG/H(q̂2, q̂
′
2) and dG/H(T̂ τ

′−τ q̂2, T̂ τ
′−τ q̂′2) to get the precise bounds

on exponential growth rates.

We first consider the case when τ ′ ≥ τ . Note that since π+ ◦ A(q̂1, u, `, τ
′(u)) = T̂ τ

′−τ ◦

π+ ◦ A(q̂1, u, `, τ(u)), by property (d) of the dynamical norm (Proposition 4.5.13(d)), we

have

eκ
−1(τ ′−τ)‖π+v(u)‖ ≤ ‖π+A(q̂1, u, `, τ

′(u))Fq̂(q̂
′)‖ ≤ eκ(τ ′−τ)‖π+v(u)‖.

By Claim 4.10.4(c), we know that ‖π+v(u)‖ ≈δ ε. On the other hand, by the Factor-

ization theorem (Theorem 4.6.5),

‖π+A(q̂1, u, `, τ
′(u))Fq̂(q̂

′)‖ = dG/H(T̂ τ
′−τ q̂2, T̂

τ ′−τ q̂′2) +Oδ(e
−α`).

Therefore for large enough `�δ,ε 0, we have

eκ
−1(τ ′−τ)ε ≤δ dG/H(T̂ τ

′−τ q̂2, T̂
τ ′−τ q̂′2).

By the choice of τ ′(u), and the Factorization theorem (Theorem 4.6.5) for q̂′, we also have

ε = ‖π+A(q̂′1, u, `, τ
′(u))‖ ≥ ‖π+A(q̂′1, u, `, τ

′(u))Fq̂′(q̂)‖

= dG/H(T̂ τ
′−τ q̂2, T̂

τ ′−τ q̂′2) +Oδ(e
−α`).

Thus for large enough ` �δ,ε 0, we have 2ε ≥ dG/H(T̂ τ
′−τ q̂2, T̂ τ

′−τ q̂′2) ≥δ eκ
−1(τ ′−τ)ε,

which implies τ ′ − τ = Oδ(1).

Now we consider the case when τ ′ < τ . Most of the above goes through by swapping the
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role of q̂ and q̂′. The main issue is that we don’t necessarily have

‖π+A(q̂′1, u, `, τ
′(u))Fq̂′(q̂)‖ ≈δ ‖π+A(q̂′1, u, `, τ

′(u))‖.

The remedy is to apply Proposition 4.7.6 to q̂′ and obtain another point q̂′′ ∈ ŴG/H [q̂′].

More precisely, we let K1 = K1(`) ⊂ K be the compact set K ′ in Claim 4.10.3 for K,

Q ⊂ U+
1 be the subset in Claim 4.10.3, and let q̂′′1 := q̂′1(`, q̂′1) be the corresponding

point of q̂′1 ∈ K. We then apply Claim 4.10.3 with K1 in place of K and let K2 ⊂ K1 be

the resulting compact set K ′. Then for q̂1 ∈ K2, we have q̂′1 ∈ K1 and q̂′′1 ∈ K. Moreover,

for each ` ∈ D, and for a large set of u ⊂δ U+
1 , we have that Yij(q̂1, u, `), Yij(q̂

′
1, u, `)

and Yij(q̂
′′
1 , u, `) are good, Yij(q̂1, u, `) and Yij(q̂

′
1, u, `) are coupled, also Yij(q̂

′
1, u, `) and

Yij(q̂
′′
1 , u, `) are coupled. For the rest of the proof, we let ` ∈ D, q̂1 ∈ K2 and u ∈ Q.

Then we have

‖π+A(q̂′1, u, `, τ
′(u))Fq̂′(q̂

′′)‖ ≈δ ‖π+A(q̂′1, u, `, τ
′(u))‖ = ε.

Let v′(u) := A(q̂′1, u, `, τ
′(u))Fq̂′(q̂

′′). The above shows that ‖π+v′(u)‖ ≈δ ε.

Since π+◦A(q̂1, u, `, τ(u)) = T̂ τ−τ
′◦π+◦A(q̂1, u, `, τ

′(u)), by property (d) of the dynamical

norm (Proposition 4.5.13(d)), we have

eκ
−1(τ−τ ′)‖π+v′(u)‖ ≤ ‖π+A(q̂′1, u, `, τ(u))Fq̂′(q̂

′′)‖ ≤ eκ(τ ′−τ)‖π+v′(u)‖.

Let q̂′′2 := T̂ τ(u)uT̂ `q̂′′. By the Factorization theorem (Theorem 4.6.5),

dG/H(q̂′2, q̂
′′
2 ) = A(q̂′1, u, `, τ(u))Fq̂′(q̂

′′) +Oδ(e
−α`).

Since A(q̂′1, u, `, τ(u))Fq̂′(q̂
′′) gets exponentially close to E ⊂ W+

l/h
(Proposition 4.8.7), we
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have for `�δ,ε 0,

d(q̂′2, q̂
′′
2 ) ≥ 1

2
eκ
−1(τ−τ ′)‖π+v′(u)‖ ≥δ eκ

−1(τ−τ ′)ε.

On the other hand, by the Factorization theorem, we have

dG/H(q̂2, q̂
′
2) = ‖π+A(q̂1, u, `, τ(u))Fq̂(q̂

′′)‖+Oδ(e
−α`).

Also by the choice of τ ,

‖π+A(q̂1, u, `, τ(u))Fq̂(q̂
′)‖ ≤ ‖π+A(q̂1, u, `, τ(u))‖ = ε.

Thus for `�δ,ε 0, dG/H(q̂2, q̂
′
2) ≤ 2ε. By the same reasoning, we also have dG/H(q̂2, q̂

′′
2 ) ≤

2ε. Thus by the triangle inequality,

eκ
−1(τ−τ ′)ε ≤δ dG/H(q̂2, q̂

′′
2 ) ≤ dG/H(q̂2, q̂

′
2) + dG/H(q̂′2, q̂

′′
2 ) ≤ 4ε.

Therefore τ − τ ′ = Oδ(1), as desired.

(b) Recall that tij(u) and t′ij(u) are defined (see the beginning of the proof outline of Theorem

4.10.1) to satisfy

λij(uq̂1, τ(u)) = λij(q̂1, tij(u)), and λij(uq̂
′
1, τ
′(u)) = λij(q̂

′
1, t
′
ij(u)).

The idea is to relate |λij(uq̂1, τ(u)) − λij(uq̂′1, τ
′(u))| = |λij(q̂1, tij(u)) − λij(q̂′1, t

′
ij(u))|

with |τ(u)− τ ′(u)| and |tij(u)− t′ij(u)|, and then use the upper bound on the former from

part (a) to give an upper bound on the latter.

Let K1 be the compact set K ′ ⊂ K in Claim 4.10.3 and Q ⊂ U+
1 be the sub-

set in Claim 4.10.3, . For ` ∈ D, q̂1 ∈ K1 and u ∈ Q, by Claim 4.10.3, we

have q̂1, q̂
′
1, uq̂1, uq̂

′
1, T̂

τuq̂1, T̂
τ ′uq̂′1 ∈ K. By part (a), |τ − τ ′| ≤ C(δ), thus T̂ τuq̂′1 ∈
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T [−C(δ),C(δ)]K. Note that since q̂′1 ∈ Ŵ
−
G/H

(q̂1), by Proposition 4.4.7, we have

πSZ×G/L(uq̂′1) ∈ Ŵ−
G/L

[πSZ×G/L(uq̂1)].

By Lemma 4.7.4, we have

|λij(uq̂1, τ(u))− λij(uq̂′1, τ(u))| = Oδ(1).

On the other hand, by Proposition 4.5.13(c) (note that λij is a cocycle), we have

|λij(uq̂′1, τ(u))− λij(uq̂′1, τ
′(u))| ≤ κ|τ(u)− τ ′(u)| = Oδ(1).

Therefore

|λij(q̂1, tij(u))− λij(q̂′1, t
′
ij(u))| = |λij(uq̂1, τ(u))− λij(uq̂′1, τ

′(u))| ≤ Oδ(1).

Thus

|λij(q̂1, tij(u))− λij(q̂1, t′ij(u))| ≤ Oδ(1).

Now apply Proposition 4.5.13(c) again, we have

|tij(u)− t′ij(u)| ≤ κ|λij(q̂1, tij(u))− λij(q̂1, t′ij(u))| = Oδ(1).

Claim 4.10.7. Assume the choices of δ, `, u, q̂1, q̂
′
1, q̂, q̂

′, q̂2, q̂′2, q̂3,ij , q̂
′
3,ij , τ, τij as in Choice of

parameters 2 and 3. There exist

� a real number `0 = `0(δ, ε, η) > 0,

� a constant C = C(δ) > 0,

� a constant α > 0 depending only on the Lyapunov exponents
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such that for all v ∈ E[ij],bdd(q̂3,ij) and ` > `0,

‖R(q̂′3,ij , q̂
′
2)P−(q̂3,ij , q̂

′
3,ij)v − P

−(q̂2, q̂
′
2)R(q̂3,ij , q̂2)v‖q̂′2 ≤ C(δ)e−α`‖v‖q̂3,ij .

Proof. In this proof we will state the subscripts of the dynamical norm since it will play a role

later in the proof.

Since E[ij],bdd is an equivariant bundle and E[ij],bdd(x̂) ⊂ (l/h)x̂, we have

E[ij],bdd =
⊕
k

(E[ij],bdd ∩W
λk
l/h

)

where k runs through the indices of the Lyapunov exponents (note that if E[ij],bdd ∩W
λk
l/h

is

a nontrivial intersection, we must have λk > 0). Moreover, since the bundle E[ij],bdd ∩W
λk
l/h

is preserved by R(x̂, x̂′) (since both are preserved by the dynamics) and P−(x̂, x̂′) (by Lemma

4.5.9), it suffices to show the inequality for v ∈ (E[ij],bdd∩W
λk
l/h

)(q̂3,ij). Furthermore, since the

Lyapunov subspaces W
λk
l/h

are orthogonal to each other with respect to the dynamical norm, it

suffices to show that for all v ∈ (E[ij],bdd ∩W
λk
l/h

)(q̂3,ij),

‖R(q̂′3,ij , q̂
′
2)P−(q̂3,ij , q̂

′
3,ij)v − P

−(q̂2, q̂
′
2)R(q̂3,ij , q̂2)v +W

>λk
l/h

(q̂′2)‖q̂′2 ≤ C(δ)e−α`‖v‖q̂3,ij ,

(4.10.2)

where we understand the norm on the left as the norm induced on the quotient space

W
≥λk
l/h

(q̂′2)/W
>λk
l/h

(q̂′2) by the dynamical norm on g/hq̂′2
.

Let v0 ∈ Vq̂ ⊂ W<0
g (q̂) be the unique vector in the normal form coordinate at q̂ such that

q′ = exp(v0)q. Note that by Proposition 4.7.6, we have in particular that ‖v0‖ = O(δ). Let

g := exp(v0). Then one can show that ‖g‖Ad(G) = O(δ) (using Lemma 4.5.15, see also Step

4f, to compare with the fixed norm ‖ · ‖0, then use smoothness of the exponential map and

Ad).

Recall that R(q̂3,ij , q̂2) = R(q̂′3,ij , q̂
′
2) = (T τuq̂1

)∗(T
−τij
q̂3,ij

)∗. By equivariance of the map P−,
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we know that (4.10.2) can be written as

‖(T τuq̂1)∗P−(q̂1, q̂
′
1)(T

−τij
q̂3,ij

)∗v − P−(q̂2, q̂
′
2)R(q̂3,ij , q̂2)v +W

>λk
l/h

(q̂′2)‖q̂′2 ≤ C(δ)e−α`‖v‖q̂3,ij ,

(4.10.3)

Thus it remains to show that for all v ∈ (E[ij],bdd ∩W
λk
l/h

)(q̂3,ij), (4.10.3) holds.

Fix ε′ > 0 that will be chosen in the end of the proof as a constant that depends only on

the Lyapunov spectrum. We first treat the first term on the left hand side of (4.10.3). By Step

3b, since v ∈ Wλk(q̂3,ij),

‖(T−τijq̂3,ij
)∗v‖q̂1 ≤ e(−λk+ε′)τij‖v‖q̂3,ij . (4.10.4)

By Lemma 4.5.10 and that ‖g‖Ad(G) = O(δ), we have

‖P−(q̂1, q̂
′
1)− Ad(T `q̂ )g(T `q̂ )−1‖0→0 ≤δ ‖g‖Ad(G)e

−α` ≤δ e−α1`,

where α1 > 0 is the constant α in Lemma 4.5.10 that depends only on the Lyapunov spectrum.

By the norm comparison lemma (Lemma 4.5.15) and (4.10.4), we have

‖(P−(q̂1, q̂
′
1)− Ad(T `q̂ )g(T `q̂ )−1)(T

−τij
q̂3,ij

)∗v‖q̂′1 ≤δ e
−α1`e(−λk+ε′)τij‖v‖q̂3,ij .

By the norm comparison lemma (Lemma 4.5.15) again, the norm on the left hand side can be

taken with respect to ‖ · ‖uq̂′1 . Thus by taking a quotient by the subspace W
>λk
l/h

(uq̂′1) on the

left hand side, we have

‖(P−(q̂1, q̂
′
1)− Ad(T `q̂ )g(T `q̂ )−1)(T

−τij
q̂3,ij

)∗v +W
>λk
l/h

(uq̂′1)‖uq̂′1 ≤δ e
−α1`e(−λk+ε′)τij‖v‖q̂3,ij .

Finally, we have the operator norm of (T τuq̂1
)∗ : (l/h)uq̂1/W

>λk
l/h

(uq̂1) → (l/h)q̂2/W
>λk
l/h

(q̂2),

with respect to the dynamical norm on both the range and target, is at most e(λk+ε′)τ , therefore
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we have

‖(T τuq̂1)∗(P−(q̂1, q̂
′
1)− Ad(T `q̂ )g(T `q̂ )−1)(T

−τij
q̂3,ij

)∗v +W
>λk
l/h

(q̂′2)‖q̂′2 (4.10.5)

≤δ e−α1`e(λk+ε′)τe(−λk+ε′)τij‖v‖q̂3,ij . (4.10.6)

Now we treat the second term on the left hand side of (4.10.3). Since R(q̂3,ij , q̂2) has

operator norm O(δ) on E[ij],bdd(q̂3,ij) by Proposition 4.9.2 (see also Step 3), we have

‖R(q̂3,ij , q̂2)v‖q̂2 ≤δ ‖v‖q̂3,ij . (4.10.7)

Let g′ := (T τuq̂1
T `q̂ )g(T τuq̂1

T `q̂ )−1. By Lemma 4.5.10 (here we are using that uq̂1, uq̂
′
1 are stably

related on G/L even though they are in general not stably related on G/H), we have

‖P−(q̂2, q̂
′
2)− Adg′‖0→0 ≤δ ‖(T `q̂ )g(T `q̂ )−1‖Ad(G)e

−α1τ . (4.10.8)

Since ‖g‖Ad(G) = O(δ) and g ∈ exp(W<0
g (q̂)), we have ‖(T `q̂ )g(T `q̂ )−1‖Ad(G) = O(δ) for large

enough ` �δ 0. By the norm comparison lemma (Lemma 4.5.15), (4.10.7) and (4.10.8), we

have

‖(P−(q̂2, q̂
′
2)− Adg′)R(q̂3,ij , q̂2)v‖q̂′2 ≤δ e

−α1τ‖v‖q̂3,ij .

By Claim 4.10.4a, for large enough `�δ 0, we have τ > 1
2α
−1
2 `, where α2 > 0 is the constant

in Claim 4.10.4. Therefore we have

‖(P−(q̂2, q̂
′
2)− Adg′)R(q̂3,ij , q̂2)v‖q̂′2 ≤δ e

−α3`‖v‖q̂3,ij (4.10.9)

for the constant α3 := α1α
−1
2 /2 > 0 that depends only on the Lyapunov spectrum. Combine

(4.10.5) and (4.10.9), using the fact that

Adg′R(q̂3,ij , q̂2) = Adg′(T
τ
uq̂1

)∗(T
−τij
q̂3,ij

)∗ = (T τuq̂1)∗Ad(T `q̂ )g(T `q̂ )−1(T
−τij
q̂3,ij

)∗
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(both sides are conjugation by the element T τuq̂1
T `q̂ g(T `q̂ )−1T

−τij
q̂3

) ∈ G), we have

‖(T τuq̂1)∗P−(q̂1, q̂
′
1)(T

−τij
q̂3,ij

)∗v − P−(q̂2, q̂
′
2)R(q̂3,ij , q̂2)v +W

>λk
l/h

(q̂′2)‖q̂′2 (4.10.10)

≤δ (e−α1`e(λk+ε′)τe(−λk+ε′)τij + e−α3`)‖v‖q̂3,ij . (4.10.11)

Thus to show (4.10.3), it remains to show that the right hand side of (4.10.10) is ≤δ

e−α4`‖v‖q̂3,ij for some α4 > 0 that depends only on the Lyapunov spectrum.

To do so, note that on one hand, R(q̂3,ij , q̂2) = (T τuq̂1
)∗(T

−τij
q̂3,ij

)∗ satisfies ‖R(q̂3,ij , q̂2)v‖q̂2 ≤

C(δ)‖v‖q̂3,ij by Proposition 4.9.2. On the other hand, apply Step 3b twice (since v ∈

W
λk
l/h

(q̂3,ij)), we have

‖(T τuq̂1)∗(T
−τij
q̂3,ij

)∗v‖q̂2 ≥ e(λk−ε′)τ‖(T−τijq̂3,ij
)∗v‖q̂1 ≥ e(λk−ε′)τe(−λk−ε′)τij‖v‖q̂3,ij .

Therefore

e(λk−ε′)τe(−λk−ε′)τij ≤δ 1.

Thus by Claim 4.10.4a, for large enough `�δ 0, we have

e(λk+ε′)τe(−λk+ε′)τij ≤δ e2ε′(τ+τij) ≤ e8ε′α2`,

where we recall α2 > 0 is the constant α > 0 in Claim 4.10.4 that depends only on the

Lyapunov spectrum. Now if we take ε′ > 0 small enough (depending only on the Lyapunov

spectrum) so that −α1 + 8ε′α2 < 0 (say ε′ := α1/(16α2) > 0), then the right hand side of

(4.10.10) is ≤δ e−α4`‖v‖q̂3,ij with α4 := min{α1/2, α3}, as desired.

Claim 4.10.8. There exists c(δ, `) with c(δ, `)→ 0 as `→∞ such that

d(fij(q̂2), fij(q̂
′
2)) ≤ c(δ, `).
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Proof. By Lemma 4.9.12, we have

fij(q̂2) ∝ R(q̂3,ij , q̂2)∗fij(q̂3,ij), fij(q̂
′
2) ∝ R(q̂′3,ij , q̂

′
2)∗fij(q̂

′
3,ij).

Since q̂3,ij , q̂
′
3,ij ∈ K0 ⊂ K∗, fij is uniformly continuous, therefore

d(fij(q̂3,ij), fij(q̂
′
3,ij))→ 0 as `→∞.

Let v1 ∈ Vq̂1 ⊂ W<0
g (q̂1) be the unique vector in the normal form coordinate at q̂1 such that

q′1 = exp(v1)q1. Note that by Proposition 4.7.6, we have in particular that ‖v1‖ = O(δ) for

large enough ` �δ 0. Let g := exp(v1). Then one can show that ‖g‖Ad(G) = O(δ) (using

Lemma 4.5.15, see also Step 4f, to compare with the fixed norm ‖ · ‖0, then use smoothness of

the exponential map and Ad).

By continuity of Ad
(T

τij
q̂1

)g(T
τij
q̂1

)−1 and that τij →∞ as `→∞, we also have

d((Ad
(T

τij
q̂1

)g(T
τij
q̂1

)−1)∗fij(q̂3,ij), fij(q̂
′
3,ij))→ 0 as `→∞.

By Lemma 4.5.10, we have

d(P−(q̂3,ij , q̂
′
3,ij)∗fij(q̂3,ij), fij(q̂

′
3,ij))→ 0 as `→∞.

Apply R(q̂′3,ij , q̂
′
2)∗ to both sides, noting that R(q̂′3,ij , q̂

′
2) has operator norm O(δ) when re-

stricted to E[ij],bdd(q̂′3,ij), we get

d(R(q̂′3,ij , q̂
′
2)∗P−(q̂3,ij , q̂

′
3,ij)∗fij(q̂3,ij), fij(q̂

′
2))→ 0 as `→∞.

By Claim 4.10.7, we have

d(P−(q̂2, q̂
′
2)∗R(q̂3,ij , q̂2)∗fij(q̂3,ij), fij(q̂

′
2))→ 0 as `→∞.
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By Lemma 4.5.10, we have

d((Ad(T τuq̂1
)g(T τuq̂1

)−1)∗R(q̂3,ij , q̂2)∗fij(q̂3,ij), fij(q̂
′
2))→ 0 as `→∞.

By continuity of Ad(T τuq̂1
)g(T τuq̂1

)−1)∗ and that τij →∞ as `→∞, we have

d(R(q̂3,ij , q̂2)∗fij(q̂3,ij), fij(q̂
′
2))→ 0 as `→∞.

Thus

d(fij(q̂2), fij(q̂
′
2))→ 0 as `→∞.

4.10.2 From the drift to extra invariance in a unipotent direction

Assuming Proposition 4.10.1, one prove the following (recall that Eij(x̂) is a unipotent sub-

group of z(L/H◦)z−1).

Proposition 4.10.2. [ELa, Prop. 10.1] In Case I, there exists ij ∈ Λsync such that for E := Eij ,

for a.e. x̂ = (ω, x) ∈ Ω̂, there exists a nontrivial unipotent subgroup U+
new(x̂) ⊂ E(x̂) such that:

(a) For a.e. x̂ = (ω, x) ∈ Ω̂, a.e. u ∈ U+
1 and all t ∈ R, x̂ 7→ U+

new(x̂) is T̂ t-equivariant and

U+
1 -invariant.

(b) For a.e. x̂ = (ω, x) ∈ Ω̂, the conditional measure of ν̂ on {ω} × E(x̂)x is right invariant

under U+
new(x̂) ⊂ E(x̂).

Proof outline. The proof goes by applying Proposition 4.10.1, following the proof of [ELa,

Prop. 10.1]. Let δ > 0 be the constant in Proposition 4.10.1.

1. Take εn → 0. For each εn, take En ⊂ K∗ as in Proposition 4.10.1. We may assume

that ij ∈ Λsync is constant along this subsequence (by possibly replacing δ by δ/|Λsync|).

2. Let F :=
∞⋂
k=1

∞⋃
n=k

En ⊂ K∗. Then ν̂(F ) > δ.
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3. For x̂ = (ω, x) ∈ F , there exists a subsequence ŷn = (ω, γnx) ∈ ({ω}×Eij(x)g)∩K∗ such

that ŷn → x̂ but ŷn 6= x̂ for all n, and fij(x̂) ∝ fij(ŷ) = (rγn)∗fij(x̂) for all n, where rg

is the right multiplication by g ∈ G. This implies, γn → id but γn 6= id for all n.

4. For x̂ ∈ F , let U+
new(x̂) be the maximal connected subgroup of Eij(x̂) such that fij(x̂) ∝

(rg)∗fij(x̂) for all g ∈ U+
new(x̂).

5. We have the following properties of U+
new(x̂):

(i) For x̂ ∈ F , U+
new(x̂) is non-trivial (Note that U+

new(x̂) is closed and not discrete by

Step 3).

(ii) U+
new(x̂) is constant on Eij [x̂] = {ω} × Eij(x̂)x by construction.

(iii) U+
new(ux̂) = U+

new(x̂) for x̂ ∈ F, u ∈ U+
1 with ux̂ ∈ F (by U+

1 -invariance of f(x̂))

(iv) T̂ t
T−tωU

+
new(T̂−tx̂) = U+

new(x̂) for x̂ ∈ F, t > 0 with T̂−tx̂ ∈ F (by T̂ -equivariance of

f(x̂)).

6. Since ν̂(F ) > δ0 > 0 and T̂ t is ergodic, for a.e. x̂ ∈ Ω̂, there exists t > 0 with T̂−tx̂ ∈ F .

Define U+
new(x̂) := T̂ tU+

new(T̂−tx̂). Then x̂ 7→ U+
new(x̂) is T̂ -equivariant and U+

1 -invariant

(this proves (a)).

7. By definition of U+
new, there exists homomorphism βx̂ : U+

new(x̂) → R s.t. g∗fij(x̂) =

eβx̂(g)fij(x̂) for a.e. x̂ ∈ Ω̂.

8. By Step 5(iv), for a.e. x̂ = (ω, x) ∈ Ω̂, g ∈ U+
new(x̂) and t > 0, β

T̂−tx̂(T−tω gT t
T−tω) =

βx̂(g).

9. Since T−tω gT t
T−tω → e for all g ∈ U+

new(x̂), t > 0, by Poincaré recurrence, βx̂(g) = 0 for

a.e. x̂ ∈ Ω̂ (this proves (b)).
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4.10.3 From extra invariance to the measure classification

Proposition 4.10.3. In Case I, there exist a Lie subgroup H ′ ⊂ G with H◦ ⊂ H ′ ⊂ L ⊂ G and

dim(H ′/H◦) > 0, an H ′-homogeneous probability measure ν0 on L/H and finite µ-stationary

measure νG/H ′ on G/H ′ such that

ν = νG/H ′ ∗ ν0 =

∫
G/H ′

g∗ν0 dνG/H ′(g).

Proof. The proof follows the proof of [ELa, Thm. 1.13(a)] closely. See also [BQ11, Sect. 8].

1. Let P(G/H) be the space of probability measures on G/H.

2. For z ∈ G/H, α ∈ P(zL/H), let Sα be the connected component of the stabilizer

of α w.r.t. z(L/H◦)z−1 acting on zL/H. Recall that if πG/L(z) = πG/L(z′), then

zL/H = z′L/H and z(L/H◦)z−1 = z′(L/H◦)(z′)−1.

3. Let

F ={α ∈ P(G/H) : supp α ⊂ zL/H for some z ∈ G/L, Sα 6= {1}

and α supported on a Sα orbit}.

By the first condition, each α ∈ F can be considered a probability measure on zL/H for

some z ∈ G/L. By abuse of notation we let Fz := F ∩P(zL/H). Then F =
⋃
z∈G/LFz

as sets. Note that G acts on F .

4. By Ratner’s theorem applied to the z(L/H◦)z−1-homogeneous space zL/H for each

z ∈ G/L, Fz contains all measures invariant and ergodic under a connected non-trivial

unipotent subgroup of z(L/H◦)z−1 for some z ∈ G/L.

5. For a.e. ẑ = (ω, z) ∈ SZ × G/H, take U+
new(ẑ) ⊂ E(ẑ) ⊂ z(L/H◦)z−1 as in Proposition

4.10.2. WLOG, assume U+
new(ẑ) is the stabilizer in E(ẑ) of ν̂|{ω}×E(ẑ)z (otherwise enlarge

U+
new(ẑ) to the stabilizer - the equivariance properties in Proposition 4.10.2 still hold,
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and it is nontrivial).

6. For ẑ = (ω, z) ∈ SZ ×G/H, let

∆(ω, z) := {z′ ∈ G/H : πG/L(z) = πG/L(z′) and U+
new(ω, z) = U+

new(ω, z′)}.

Here πG/L : G/H → G/L is the quotient map.

7. For ẑ = (ω, z) ∈ SZ ×G/H, let ν̂ẑ denote the conditional measure of ν̂ on {ω} × zL/H.

8. Disintegrate ν̂ under (ω, z) 7→ (ω, πG/L(z), U+
new(ω, z)). Then for a.e. ẑ = (ω, z) ∈

SZ×G/H, we get a probability measure ν̃ẑ on zL/H supported on ∆(ω, z) such that for

a.e. ẑ ∈ SZ ×G/H,

ν̂ẑ =

∫
zL/H

ν̃(ω,z′)dν̂ẑ(z
′).

9. For a.e. ẑ ∈ SZ × L/H, ν̃ẑ is U+
new(ẑ)-invariant.

10. Do simultaneous U+
new(ẑ)-ergodic decomposition of ν̃ẑ for a.e. ẑ = (ω, z) ∈ SZ × G/H,

then

ν̃ẑ =

∫
zL/H

ζ(ω, z′)dν̃ẑ(z
′),

where ζ : SZ ×G/H → F is constant along ∆(ω, z) for a.e. (ω, z) ∈ SZ ×G/H.

11. Integrate to get

ν̂ẑ =

∫
zL/H

ζ(ω, z′)dν̂ẑ(z
′).

12. The T̂ and U+
1 -equivariance of E(ẑ) and U+

new(ẑ) imply that for t ∈ R and u ∈ U+
1 ,

(T tẑ)∗ζ(ω, z) = ζ(T̂ t(ω, z)), and ζ(uω, z) = ζ(ω, z).

13. Define ζ̂ : SZ × G/H → SZ × F by ζ̂(ω, z) := (ω, ζ(ω, z)). Then η̂ := ζ̂∗ν̂ is an ergodic

T̂ t-invariant probability measure on SZ ×F .
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14. By Ratner’s theorem (for nondiscrete quotients - see e.g. [Wit94, Thm. 1.2] for the

argument reducing this more general case to the version on discrete quotients in [Rat91,

Thm. 1.1]), the set G of G-orbits on F is countable.

15. Since T̂ tz acts trivially on G and η̂ is ergodic, the pushforward of η̂ on SZ×G via SZ×F →

SZ × G is also ergodic and is supported on SZ times a single G-orbit, so η̂ is supported

on SZ ×Gν0 for some ν0 ∈ F .

16. Let H ′ ⊂ G be the stabilizer of ν0 in G. By definition of F , ν0 is supported on a single

H ′-orbit. Moreover, ν0 ∈ P(zL/H) for some z ∈ G/L and zH◦z−1 ⊂ H ′ ⊂ zLz−1.

17. Write ζ(ω, z) = θ(ω, z)ν0, where θ : SZ × G/H → G/H ′. Then θ is T̂ -equivariant and

U+
1 -invariant.

18. Define θ̂ : SZ × G/H → SZ × G/H ′ by θ̂(ω, z) := (ω, θ(ω, z)). Then λ̂ := θ̂∗ν̂ is a

T̂ -invariant and U+
1 -invariant measure on SZ × G/H ′, therefore its projection νG/H ′ to

G/H ′ is µ-stationary. Hence we have

ν =

∫
G/H ′

g∗ν0 dνG/H ′(g),

where ν0 is an H ′-homogeneous measure on zL/H for some z ∈ G/L.

4.11 Case II

In Case II, much of the proof is similar to [ELa, Sect. 11]. However there are two key distinc-

tions. Firstly, in this setting, the stationary measure ν is not necessarily Γµ-invariant, therefore

the analogue of [ELa, Prop. 11.1] cannot not hold. As a result, to adapt the Case II argument

of [ELa, Sect. 11], we will work mostly with νω− rather than ν. A weaker analogue of [ELa,

Prop. 11.1] will be proved in subsection 4.11.5 to finish the proof. Secondly, unlike in [ELa,

Sect. 11], the measure ν is not necessarily compactly supported. The reason the argument does
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not carrry over directly is because µ acts compactly on Z in the case of [ELa, Sect. 11], but

for us, the analogous partition F≤0
G/H

does not have a compact µ-action.

We first recall the assumption in Case II.

Case II Assumption: For ν̂-almost every (ω, z) ∈ SZ × G/H, the conditional measure

ν̂|Ŵ−
G/H

[(ω,z)]
on the total stable subset of (ω, z) in the two-sided skew product is supported on

W−SZ [ω]×F≤0
G/H

[z].

Here we recall the definition of F≤0
G/H

[z]:

F≤0
G/H

[z] :=

{
z′ ∈ G/H◦ | lim sup

n→∞

1

n
log dG/H(Tnω (z), Tnω (z′)) ≤ 0 for almost every ω+ ∈ SN

}
= {z′ ∈ G/H◦ | z′ ∈ W≤0[(ω, z)] for almost every ω+ ∈ SN}.

Similarly define F≤0
G/L

[x] ⊂ G/L for x ∈ G/L.

The goal of this section is to prove the following theorem.

Theorem 4.11.1. Let G be a real linear algebraic group, and µ be a Borel probability measure

on G with finite first moment. Let Γµ be the (topological) closure of the subsemigroup generated

by the support of µ in G, and Γ
Z
µ be the Zariski closure of Γµ.

Let H ⊂ G be a closed unimodular subgroup. Suppose there exists an H-envelope L and

x0 ∈ G/L such that µ is uniformly expanding on L/H at x0.

Let ν be an ergodic µ-stationary probability measure on Γ
Z
µ x0L/H and ν := π∗ν be its

pushforward on G/L. Suppose that Case II holds. We also assume that

(†) There exists a closed normal subgroup U ⊂ Γ
Z
µ and some z0 ∈ G with z0L = x0L such

that Γ
Z
µ x0L = Uz0H

◦ and z−1
0 Uz0 ∩H◦ = {id}.

Then the stationary measure νG/H can be written as

νG/H =

∫
G/L

νx dν(x),

where
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1. ν is a generalized µ-Bernoulli measure supported on Γ
Z
µ x0L/L.

2. there exists a positive integer k such that for ν-almost every x ∈ G/L, νx is the uniform

measure on k points in π−1(x) ⊂ G/H,

3. there exist finitely many z1, . . . , zm ∈ Γ
Z
µ x0L/H such that for F :=

⋃m
i=1F

≤0
G/H

[zi], we

have (i) supp νG/H ⊂ F , (ii) F has finite intersection with x′L/H for all x′ ∈ Γ
Z
µ x0L/L,

and (iii) F is invariant under Γµ.

Theorem 4.11.1 follows from Proposition 4.11.2 and 4.11.15.

Proposition 4.11.2. Under the assumptions of Theorem 4.11.1, there exist finitely many

points z1, . . . , zm ∈ G/H such that ν is supported on
m⋃
i=1

F≤0
G/H

[zi].

To show Proposition 4.11.2, we first establish the following proposition.

Proposition 4.11.3. Under the assumptions of Theorem 4.11.1, for µZ-almost every ω ∈ SZ,

there exists finitely many points z1, . . . , zm ∈ G/H such that νω− is supported on
m⋃
i=1

F≤0
G/H

[zi].

The next few subsection will be dedicated to proving Proposition 4.11.3.

4.11.1 The inert center-stable set F≤0
G/H

In this subsection we record a few properties of the sets F≤0
Γ [z] := F≤0

G/H
[z] ∩ Γ

Z
µ x0L/H

◦

under the assumption (†). Clearly it suffices to show Proposition 4.11.2 and 4.11.3 for F≤0
G/H

[z]

replaced by F≤0
Γ [z] (recall that ν is supported on Γ

Z
µ x0L/H). See Proposition 4.4.5 for general

properties of F≤0
G/H

[z] even without the assumption (†).

Lemma 4.11.4. Under the assumption (†), there exists an algebraic subgroup F≤0
U ⊂ U such

that

(a) F≤0
Γ [z] = F≤0

U z for all z ∈ Γ
Z
µ x0L/H

◦.

(b) F≤0
U is normalized by Γµ.
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Proof. Using the assumption (†), we can identify

z−1
0 Γ

Z
µ x0L/H

◦ = z−1
0 Uz0H

◦/H◦ ∼= z−1
0 Uz0/(z

−1
0 Uz0 ∩H) = z−1

0 Uz0.

Using a right-invariant metric on z−1
0 Uz0 and this identification, it is clear that z−1

0 F
≤0
Γ [z0]

is a closed subgroup of z−1
0 Uz0, and that F≤0

Γ [z] = F≤0
Γ [z0]z−1

0 z for all z ∈ Γ
Z
µ x0L/H

◦. Let

F≤0
U := F≤0

Γ [z0]z−1
0 . Then clearly (a) is satisfied.

Now by the definition of F≤0
Γ [z] (see Proposition 4.4.5(a)), for µ-a.e. g ∈ G, gF≤0

Γ [z0] ⊂

F≤0
Γ [gz0]. By (a), this implies that gF≤0

U g−1 ⊂ F≤0
U . On the other hand, both sides are

Lie subgroups of U with same dimensions and same (finite) number of connected components,

therefore the containment is in fact an equality. Therefore (b) holds.

Corollary 4.11.5. Under the assumption (†), we have the following properties of the inert

center-stable sets.

(a) gF≤0
Γ [z] = F≤0

Γ [gz] for all z ∈ Γ
Z
µ x0L/H

◦.

(b) F≤0
Γ [z]H is locally closed in Γ

Z
µ x0L/H, thus the action of F≤0

U on Γ
Z
µ x0L/H is smooth

(in the sense of [Zim84, Def. 2.1.9]), i.e. the quotient space F≤0
U \Γ

Z
µ x0L/H is countably

separated, so that F≤0
Γ [z] is a measurable partition of Γ

Z
µ x0L/H.

Proof. (a) holds by Parts (a) and (b) of Lemma 4.11.4. To show part (b), by homogeneity it

suffices to verify that at z = z0, there exists a neighborhood O of z0H in Γ
Z
µ x0L/H such that

O ∩ F≤0
Γ [z0]H = O ∩ F≤0

U z0H is closed in O. The key point here is to use the fact that this

holds on G/L, and that F≤0
Γ [z]H is homeomorphic to its image on G/L. More precisely, since

F≤0
U is an algebraic subgroup, any orbit on G/L is locally (Zariski) closed by [Zim84, Thm.

3.1.1]. In particular F≤0
U z0L is locally closed in G/L, i.e. there exists an open neighborhood OL

of z0L in G/L such that OL ∩ F≤0
U z0L is closed in OL. Since F≤0

Γ [z0]H = F≤0
U z0H intersects

z0L/H at at most one point by Corollary 4.8.5, the quotient map π : G/H → G/L restricts

to a bijective continuous open map on F≤0
U z0H, therefore it is a homeomorphism. Therefore
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π−1OL is an open neighborhood of z0 in Γ
Z
µ x0L/H and π−1OL∩F≤0

U z0H is closed in π−1OL,

as desired.

4.11.2 mod F≤0 local dimension

The goal of this subsection is to show Proposition 4.11.6, which shows that in Case II, under

the assumption of uniform expansion on L/H, the local dimension of the measure ν in the L/H

direction is 0.

For z ∈ G/H, ε > 0 and r > 0, define a local ball in the L/H fiber direction

BL/H(z, r) := {z′ ∈ zL/H◦ | dG/H(z, z′) < r},

and

B/F (z, r, ε) := {z′′ ∈ G/H◦ | z′′ ∈ BL/H(z′, r) for some z′ ∈ F≤0
Γ [z] with dG/H(z, z′) < ε}.

For ω ∈ SZ and z ∈ G/H, define the mod F≤0 lower local dimension as

dim/F (ν, ω, z) := lim
ε→0

(
lim inf
r→0

log νω−(B/F (z, r, ε))

log r

)
.

By ergodicity, for ν̂-a.e. (ω, z) ∈ SZ ×G/H, dim/F (ν, ω, z) does not depend on (ω, z). Define

this common value by dim/F (ν).

Proposition 4.11.6. In Case II with uniform expansion on L/H at x ∈ G/L, and ν a µ-

stationary measure on Γ
Z
µ zH/H for some z ∈ G/H with x = πG/L(z), we have dim/F (ν) = 0.

For positive integer n, ω ∈ SZ, z ∈ G/H and ε > 0, we define the Bowen balls as

Bn(ω, z, ε) := {z′ ∈ G/H◦ | for 0 ≤ m ≤ n, Tmω z
′ ∈ B/F (Tmω z, ε, ε)}.

We need the following consequence of uniform expansion on L/H, which has the same proof
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as [ELa, Lem. 11.9].

Lemma 4.11.7. Let ε > 0 and x ∈ G/L. Suppose that µ is uniformly expanding on L/H at

x. Then for any unit vector v ∈ (l/h)x, there exists a positive measure set K(v) ⊂ SZ such

that for all ω ∈ K(v), there exist η(v) > 0 and N(v) > 0 such that for all n > N(v), any unit

vector w ∈ (l/h)x with ‖v −w‖0 < η(v) and any z ∈ G/H that projects to x, we have

|{t : exp(tw)z ∈ Bn(ω, z, ε)}| ≤ e−αn,

where α > 0 depends only on the Lyapunov spectrum.

We also recall the definition of fiber entropy for the bundle SZ ×G/H → SZ.

Definition. Let ξ be a finite measurable partition of G/H. Then the limit

lim
n→∞

1

n
Hνω−

(
n−1∨
i=0

(T iω)−1ξ

)
:= lim

n→∞
− 1

n

∑
A∈
∨n−1
i=0 (T iω)−1ξ

νω−(A) log νω−(A)

exists and is constant for µZ-a.e. ω. We denote this value by h
G/H
ν̂ (T̂ , ξ), and define the fiber

entropy h
G/H
ν̂ (T̂ ) to be the supremum over all finite measurable partition ξ of h

G/H
ν̂ (T̂ , ξ).

Note that in Case II, we have h
G/H
ν̂ (T̂ ) = 0.

We will use the following relative version of the Brin-Katok local entropy formula, which

computes the fiber entropy in terms of the Bowen balls.

Lemma 4.11.8. (cf. [Zhu09, Thm. 3.1]) For ε > 0, ε′ > 0, n ∈ N and ω ∈ SZ, let N(n, ω, ε, ε′)

denote the smallest number of Bowen balls Bn(ω, z, ε) ⊂ G/H needed to cover a set of νω−-

measure at least 1− ε. Then for µZ-a.e. ω ∈ SZ and any 0 < ε′ < 1, we have

lim
ε→0

lim inf
n→∞

1

n
logN(n, ω, ε, ε′) = lim

ε→0
lim sup
n→∞

1

n
logN(n, ω, ε, ε′) = h

G/H
ν̂ (T̂ ).

Now using this formula and that the fiber entropy is zero in Case II, we obtain the following

corollary.
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Corollary 4.11.9. (cf. [ELa, Cor. 11.11]) Let N(n, ω, ε, ε′) be as in Lemma 4.11.8. Then for

any ε > 0, any 0 < ε′ < 1 and µZ-a.e. ω ∈ SZ, we have

lim
n→∞

1

n
logN(n, ω, ε, ε′) = 0.

Proof of Proposition 4.11.6. Using Lemma 4.11.7 and Corollary 4.11.9, one can establish Propo-

sition 4.11.6 as in the proof of [ELa, Prop. 11.8] (replacing ν with νω− everywhere in the proof,

using critically the fact that νω− depends only on the past ω− of the word ω and not the

future).

4.11.3 Margulis function

Just like in [ELa, Sect. 11], We need the construction of a Margulis function. We only present

the proof (with the Margulis function) in the case when L/H is compact - the general case is

a similar adaptation of [ELa, Lem. 11.14].

For r > 0 and δ > 0, define the Margulis function fr,δ : G/H ×G/H → R by

fr,δ(z, z
′) =


min{r, dG/H(z′,F≤0

Γ [z] ∩ z′L/H)}−δ if F≤0
Γ [z] ∩ z′L/H 6= ∅

r−δ otherwise.

Suppose that for µZ-a.e. ω ∈ SZ, νω−(F≤0
Γ [z]) = 0 for νω−-a.e. z ∈ G/H. Then fr,δ(z, z

′) <∞

for νω− × νω−-a.e. (z, z′).

We have the following Margulis inequality of this Margulis function fr,δ.

Proposition 4.11.10. Suppose H/H◦ is cocompact in L/H◦. Assume that µ is uniformly

expanding on L/H at some x ∈ G/L and there exists a µ-stationary measure supported on

Γ
Z
µ xL/L.

Then there exists n = n(µ) ∈ N, δ = δ(µ, n) > 0, constants c = c(µ, n, δ) < 1 and

237



b = b(µ, n, δ, r) > 0 such that for all z, z′ ∈ G/H that project into Γ
Z
µ x0L/L, we have

∫
G
fr,δ(gz, gz

′) dµ(n)(g) ≤ cfr,δ(z, z
′) + b.

Proof. Firstly, notice that if F≤0
Γ [z]∩z′L/H consists of a single point z′′ ∈ G/H, then F≤0

Γ [gz]∩

gz′L/H also consists of the single point gz′′ ∈ G/H for all g ∈ Γµ, and

dG/H(z′,F≤0
Γ [z] ∩ z′L/H) = dG/H(z′, z′′).

Also F≤0
Γ [z] is an Γµ-equivariant partition by Corollary 4.11.5(a). Therefore it suffices to

consider the case when z′ ∈ zL/H. In this case, the proof is essentially [EM04, Lem. 4.2]

by applying uniform expansion on L/H at πG/H(z) (which follows from the assumptions by

Lemma 4.8.4).

The following is a standard consequence of the Margulis inequality (Proposition 4.11.10).

Proposition 4.11.11. Suppose H/H◦ is cocompact in L/H◦. Assume that µ is uniformly

expanding on L/H at some x ∈ G/L and ν is a µ-stationary measure supported on Γ
Z
µ zH/H

for some z ∈ G/H with πG/L(z) = x.

Suppose that νω−(F≤0
Γ [z]) = 0 for ν̂-a.e. (ω, z) ∈ SZ × G/H. Then for any η > 0, there

exists K ′′ ⊂ SZ × G/H with ν̂(K ′′) > 1 − η and a constant C = C(η, r) such that for any

(ω, z) ∈ K ′′, ∫
G/H

fr,δ(z, z
′) dνω−(z′) < C.

Proof. By iterating Proposition 4.11.10, for any z, z′ ∈ G/H that project to Γ
Z
µ x0L/L, we have

lim sup
k→∞

∫
G
fr,δ(gz, gz

′)dµ(kn)(g) ≤ b

1− c
. (4.11.1)
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Consider the probability measure ν̃ on SZ ×G/H ×G/H defined by

dν̃(ω, z, z′) := dνω−(z)dνω−(z′)dµZ(ω).

This is invariant under the map T̃ : SZ × G/H × G/H → SZ × G/H × G/H by (ω, z, z′) 7→

(σ(ω), Tωz, Tωz
′). By the random ergodic theorem [Kif86, Cor. I.2.2], there exists a measurable

function φ : SZ ×G/H ×G/H → R such that

∫
G/H×G/H

φ(ω, z, z′) dν̃(ω, z, z′) =

∫
G/H×G/H

fr,δ(ω, z, z
′) dν̃(ω, z, z′),

and for ν̃-a.e. (ω, z, z′) ∈ SZ ×G/H ×G/H,

φ(ω, z, z′) = lim
k→∞

1

k

k∑
j=1

fr,δ(ωjn . . . ω1z, ωjn . . . ω1z
′).

Integrating both sides with respect to ν̃ over SZ × G/H × G/H, using Fatou’s lemma and

(4.11.1), we have ∫
SZ×G/H×G/H

fr,δ dν̃ ≤
b

1− c
.

This implies the lemma.

4.11.4 Proof of Proposition 4.11.3

Suppose that νω−(F≤0
Γ [z]) = 0 for ν̂-a.e. (ω, z) ∈ SZ × G/H. By Proposition 4.11.11, for all

ε > 0 and r′ with r > r′ > 0, and all (ω, z) ∈ K ′′,

νω−(B/F (z, r′, ε)) ≤ C(η)(r′)δ.

Thus
log νω−(B/F (z, r′, ε))

log r′
≥ δ − | logC(η)|

| log r′|
.
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Therefore dim/F (ν) ≥ δ > 0, contradicting Proposition 4.11.6.

Therefore νω−(F≤0
Γ [z]) > 0 for a positive ν̂-measure set of (ω, z) ∈ SZ×G/H. Now consider

the measurable function on SZ ×G/H:

φ(ω, z) := νω−(F≤0
Γ [z]).

For (ω, z) ∈ SZ×G/H, recall by definition of νω− that (ω0)∗νω− = νσ(ω)− , and by Proposition

4.4.5(a), for µ-a.e. g ∈ G, g∗F≤0
Γ [z] ⊂ F≤0

Γ [gz]. Therefore φ(T̂ (ω, z)) ≥ φ(ω, z) for almost every

(ω, z). Thus by ergodicity of ν̂ (applied to the level sets {(ω, z) ∈ SZ × G/H | φ(ω, z) ≥ c}

for 0 ≤ c ≤ 1), there exists ε > 0 such that νω−(F≤0
Γ [z]) = ε for all (ω, z) in a ν̂-conull set

Ψ ⊂ SZ ×G/H.

Let Ψ(ω) := {z ∈ G/H | (ω, z) ∈ Ψ} be the level sets of Ψ. Then νω−(Ψ(ω)) = 1 for

almost every ω ∈ SZ. Since ε > 0, one can pick finitely many z1, . . . , zm ∈ Ψ(ω) such that

νω−
(⋃m

i=1F
≤0
Γ [zi]

)
= 1. Hence νω− is supported on finitely many F≤0

Γ [z], which proves

Proposition 4.11.3.

We remark that throughout the proof of Proposition 4.11.3, we really only use an assumption

weaker than the Case II assumption, namely that the fiber entropy is zero.

4.11.5 Proof of Proposition 4.11.2

To deduce Proposition 4.11.2 from Proposition 4.11.3, we need a key lemma (Lemma 4.11.13),

whose proof is modelled on the proof of [ELa, Prop. 11.1] (see also [BRH17, Prop. 11.1]).

We first note that since Ŵ−
G/H

[(ω, z)] = W−SZ [ω] × W−
G/H

[(ω, z)] and by definition that

ν̂ =
∫
δω × νω−dµZ(ω), we can write

ν̂|Ŵ−
G/H

[(ω,z)]
=

∫
W−
SZ

[ω]
δω− ×

(
νω− |W−

G/H
[(ω,z)]

)
dτ(ω+,z)(ω

−) (4.11.2)

for some Borel probability measure τ(ω+,z) onW−SZ [ω], which we consider as a measure on S−N

via the identification W−SZ [ω] = S−N × {ω+} ↔ S−N.
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Firstly, we have the following description of νω−|W−
G/H

[(ω,z)] in Case II.

Lemma 4.11.12. Under the Case II assumption, for ν̂-a.e. (ω, z), νω− |W−
G/H

[(ω,z)] = δz.

Proof. Let π : G/H → G/L be the quotient map. Recall that ν := (πG/L)∗ν is a µ-stationary

measure on G/L. By Corollary 4.3.8, one can deduce that

νω−|W−
G/L

[(ω,x)] = δx

for ν̂-a.e. (ω, x) ∈ SZ×G/L. Therefore νω− |π−1(W−
G/L

[(ω,x)]) is supported on π−1(x) for ν-a.e.

x. Note that W−
G/H

[(ω, z)] ⊂ π−1(W−
G/L

[(ω, x)]) if x = π(z), therefore we also have that

νω− |W−
G/H

[(ω,z)] is supported on π−1(π(z)) = zL/H for ν-a.e. z. On the other hand, by the

Case II assumption, we know that νω− |W−
G/H

[(ω,z)] is supported on F≤0
Γ [z], and therefore it is

supported on zL/H ∩ F≤0
Γ [z]. By Corollary 4.4.6, zL/H ∩ F≤0

Γ [z] = {z}. Therefore we get

that for ν̂-a.e. (ω, z),

νω− |W−
G/H

[(ω,z)] = δz.

The key lemma is the following.

Lemma 4.11.13. For ν̂-a.e. (ω, z) ∈ SZ ×G/H, we have τ(ω+,z) = µ−N.

Proof. The idea is to use an argument similar to [Led84, Thm. 3.4] (see also [LY85, Sect. 6.1]

and [BRH17, Prop. 11.1]). Define partitions η̂ on SZ×G/H and η on SZ such that the atoms

are

η̂[(ω, z)] =W−SZ [ω]×F≤0
Γ [z], and η[ω] =W−SZ [ω].

It follows from Corollary 4.11.5(b) that η̂ is a measurable partition. Note that since the par-

tition F≤0
Γ [z] is equivariant under µ-a.e. g ∈ G by Corollary 4.11.5(a), we have T̂ η̂[(ω, z)] =

T (W−SZ [ω])×F≤0
Γ [z].

Under the Case II assumption, which in particular implies zero fiber entropy h
G/H
ν̂ (T̂ ) = 0,
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we have

hµZ(T ) = hν̂(T̂ ) = Hν̂(T̂ η̂ | η̂). (4.11.3)

Now using the Case II assumption, we compute that

Hν̂(T̂ η̂ | η̂) = −
∫

log

ν̂|Ŵ−
G/H

[(ω,z)]
(T̂ η̂[(ω, z)])

ν̂|Ŵ−
G/H

[(ω,z)]
(η̂[(ω, z)])

dν̂(ω, z) = −
∫

log τ(ω+,z)(Tη[ω])dν̂(ω, z),

and since ν̂ projects to µZ under the map SZ ×G/H → SZ, we have

hµZ(T ) = −
∫

log µ−N(Tη[ω]) dν̂(ω, z).

Substituting both into (4.11.3), we have

∫
log

µ−N(Tη[ω])

τ(ω+,z)(Tη[ω])
dν̂(ω, z) = 0. (4.11.4)

For s ∈ S, let Y [s] := {ω ∈ S−N | ω−1 = s}. Now we note that for ν̂-a.e. (ω, z), we have

∫
η̂[(ω,z)]

log
µ−N(Tη[ω′])
τ(ω,z)(Tη[ω′])

dν̂|Ŵ−
G/H

[(ω,z)]
=

∫
η[ω]

log
µ−N(Tη[ω′])
τ(ω,z)(Tη[ω′])

dτ(ω+,z)(ω
′)

=
∑
s∈S

τ(ω,z)(Y [s]) log
µ({s})

τ(ω,z)(Y [s])
≤ 0,

where the last inequality follows from the convexity of log. But then the integral of the left hand

side over (ω, z) with respect to ν̂ is 0 by (4.11.4), therefore the equality case holds for ν̂-a.e.

(ω, z). Thus we have τ(ω+,z)(Y [s]) = µ−N(Y [s]) for ν̂-a.e. (ω, z) and s ∈ S. Now repeating the

argument for T̂ k in lieu of T̂ yields the claim.

Using this description, and the Case II assumption, we have the following corollary.

Corollary 4.11.14. Under the Case II assumption, for ν̂-a.e. (ω, z), there exists φω+,z(ω
−) ∈

242



W−
G/H

[(ω+, z)] ∩ F≤0
Γ [z] such that

ν̂|W−
SZ

[ω]×(W−
G/H

[(ω,z)]∩F≤0
Γ [z])

= ν̂|Ŵ−
G/H

[(ω,z)]
=

∫
W−
SZ

[ω]
δω− × δφω+,z(ω

−)dµ
−N(ω−)

= (id× φω+,z)∗(µ
−N).

Proof. By Lemma 4.11.13 and (4.11.2), we can write, for ν̂-a.e. (ω, z),

ν̂|Ŵ−
G/H

[(ω,z)]
=

∫
W−
SZ

[ω]
δω− ×

(
νω−|W−

G/H
[(ω,z)]

)
dµ−N(ω−).

This in particular implies that for µ−N-a.e. ω−, νω− |W−
G/H

[(ω,z)] is not the zero measure. By

Lemma 4.11.12, we have νω− |W−
G/H

[(ω,z)] = δz. Hence for ν̂-a.e. (ω, z), there exists φω+,z(ω
−) ∈

W−
G/H

[(ω+, z)] ∩ F≤0
Γ [z] such that

ν̂|Ŵ−
G/H

[(ω,z)]
=

∫
W−
SZ

[ω]
δω− × δφω+,z(ω

−)dµ
−N(ω−) = (id× φω+,z)∗(µ

−N).

The first equality in the statement follows from the Case II assumption.

Proof of Proposition 4.11.2. Let ν̃ be the pushforward of ν via Γ
Z
µ x0L/H → F≤0

U \Γ
Z
µ x0L/H,

and ν̃ω− ,
ˆ̃ν be the corresponding measures on F≤0

U \Γ
Z
µ x0L/H and SZ ×F≤0

U \Γ
Z
µ x0L/H as in

subsection 4.4.2. Corollary 4.11.14 implies that for ˆ̃ν-a.e. (ω, [z]),

ˆ̃ν|W−
SZ

[ω]×{[z]} = µ−N,

where we identify W−SZ [ω]× {[z]} ↔ S−N. This implies that

dˆ̃ν(ω−, ω+, [z]) = dµ−N(ω−)dθ(ω+, [z])

for some measure θ on SN ×F≤0
U \Γ

Z
µ x0L/H. This implies that ν̃ = ν̃ω− for almost every ω−.

Now this together with Proposition 4.11.3 implies Proposition 4.11.2.
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Proposition 4.11.15. Let µ be a probability measure on G with finite first moment, let

Γµ := 〈supp µ〉 ⊂ G be the (topological) closure of the semigroup generated by the support of

µ and Γ
Z
µ ⊂ G be the Zariski closure of Γµ.

Let L be anH-envelope such that µ is uniformly expanding on L/H at x0 for some x0 ∈ G/L.

Let π : G/H → G/L be the quotient map. Suppose Case II and (†) holds.

Let ν be an ergodic µ-stationary probability measure on Γ
Z
µ x0L/H, and ν := π∗ν be its

pushforward on G/L. We disintegrate ν with respect to the map π:

ν =

∫
G/L

νx dν(x).

Then there exists a positive integer k such that for ν-almost every x ∈ G/L, νx is the uniform

measure on k points in π−1(x) ⊂ G/H.

Proof. We disintegrate the stationary measure ν into {νx}x∈G/L with respect to the partition

given by the fibers of the projection map π : G/H → G/L. Since ν = π∗ν, we have

ν =

∫
G/L

νx dν(x).

Moreover, by Proposition 4.11.2, ν is supported on
m⋃
i=1

F≤0
Γ [zi]. Since F≤0

Γ [z] intersects each

fiber of π at at most one point by uniform expansion on L/H by Corollary 4.8.5, each νx

is finitely supported at kx points. Moreover, by ergodicity of ν, kx is constant for ν-almost

every x ∈ G/L, and that each νx is the uniform measure on k points in π−1(x) (see e.g.

Sargent-Shapira [SS19] Section 4).
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