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“There are five elementary arithmetical operations: addition, subtraction,

multiplication, division, and. .. modular forms.”

Martin Eichler (Apocryphal)
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ABSTRACT

This thesis is made up of 3 separate pieces of work in two themes. In the first half, we
prove a few cases of the Sato-Tate conjecture, which says that for an abelian surface
A over a totally real field F', the Frobenius elements Froby, acting on the /-adic
Tate module (or more precisely its dual) can be formed into a compatible system of
elements over all ¢, viewed (up to twist) as lying in a compact subgroup of GL4(C),
and have traces that are equidistributed according to the smallest such compact
subgroup possible. To do so, we use a result of [1] which proves automorphy of certain
(-adic representations, and in another case we construct a new decomposition of the /-
adic Tate module representation as a tensor product of a finite-image representation
and a 2-dimensional representation easily handled by earlier methods. Then we
consider the final remaining cases and prove some partial results on the distribution
of the traces of the Frobenii, and conversely explain precisely why we can’t say any
more without further automorphy theorems.

In the latter half of this thesis, we consider the question of how the odd-power
coefficients of a modular form control the even-power coefficients in the space of
modular forms of weight 2 level T'g(NN) with N prime, from two different angles. We
first study a question of Kedlaya and Medvedovsky about the number of modular
lifts of a mod 2 dihedral representation, and give lower bounds for the number of
such lifts depending on N mod 8 and whether the representation is totally real. We
use multiple different methods to construct lifts: in some cases, we are able to use
the connectedness of the real points of the Jacobian Jy(NN) of the modular curve

Xo(N) to double the dimension; in other cases, we are able to use the class group of

X



the fixed field of the representation to manually construct weight 1 forms that can
be multiplied by a lift of the Hasse Invariant to give weight 2 forms of the correct
level and Nebentypus.

We then prove that the difference between the anemic Hecke algebra that excludes
T and the full Hecke algebra including 75 is exactly described by the space of Katz
forms in characteristic 2, weight 1 and level I'g(/V). We prove first that the difference
is encompassed in the space of mod 2 forms with only even-power terms, which then
arise from weight 1 forms by squaring. We then prove that there are no weight
2 level I'g(V) Katz forms, so every form arising from weight 1 is a classical form,
completing the bijection between the Katz forms in weight 1 and the weight 2 forms
with only even-power monomials, and hence with the quotient T/T?". Finally, we
end with questions about the proportion of primes N for which T of level N is equal
to Ta"; if N = 3 mod 4 there are only finitely many examples, but for N = 1 mod 4
we observe that it’s probable there are a positive proportion of such primes.

This thesis is a compilation of three papers: [39], [38] and [40]. They have been
lightly edited to eliminate redundant or internal citations, and some irrelevant asides
have been removed, but otherwise they remain intact. In particular, notation is
introduced at the start of each chapter that corresponds to that particular chapter’s
usage; while it has mostly been synchronized, in case of discrepancy we shall refer

to the specific notations of the chapter.
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CHAPTER 1
SATO-TATE DISTRIBUTIONS ON ABELIAN SURFACES

1.1 Introduction

Let C' be a genus g curve over a number field F'. Given a prime v of F', with residue
field F,, of size gy, a theorem of Hasse says that the number N, of F,, points on C' is

between ¢, + 1 — 29./qy, and g, + 1 + 29,/qy, so that

L Q+1—Ny

Qy -
v s

€ [—2g,29].

The Sato-Tate conjecture asks for the distribution of the a, in [—2g,2¢] as ¢, — oo,
and predicts that they are equidistributed (after passing to a finite extension F’/F)
with respect to a measure depending on the Mumford-Tate group of the Jacobian of
C. For example, if E is an elliptic curve with CM, the distribution is given either
by the pushforward of the Haar measure of SO(2) or of O(2) under the trace map.
It has also been proven in [19] and [5] that if F' is totally real and E does not have
CM, then the distribution is the pushforward of the Haar measure of SU(2).

We look at genus g = 2 curves and 2-dimensional abelian surfaces. In complete
analogy with the elliptic curve case, [15] describes 52 possible subgroups of USp(4)
whose pushforwards describe the normalized point counts a, for a genus 2 curve, and
notes that it is likely possible to prove the Sato-Tate conjecture in many cases with
a similar method to that of the elliptic curve case. [20] uses the powerful potential

automorphy theorem of [4] to prove the conjecture for all but five of the non-generic
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cases that occur over totally real fields. In this paper we will use a more powerful
potential automorphy theorem of [1] to extend the proof in [20], and then we extend
[20]’s work to prove the conjecture for four other subgroups. Of course, given the
Jacobian J(C') of a genus 2 curve C, we can obtain the numbers a, directly from
J(C), by taking the normalized trace of the action of Frob,, so we may forget about
the curve C entirely and work directly with abelian surfaces.

The theorems we prove are as follows:

Theorem 1.3.4. If A/F is an abelian surface, F a totally real field, which has a
two-dimensional real endomorphism ring defined over a quadratic extension of F

which is either totally real or CM, then the Sato-Tate conjecture holds for A.

Theorem 1.3.6. If A/F is a (not necessarily simple) abelian surface, F' a totally
real field, which has quaternionic multiplication defined over a dihedral extension,

then the Sato-Tate conjecture holds for A.

These two theorems are equidistribution results, so we know the exact distribu-
tions of the a,. However, we cannot currently prove the Sato-Tate conjecture for A if
the endomorphism ring of A is Z, or if the quadratic extension described in Theorem

1.3.4 is neither totally real or CM. In these cases, we prove lesser results:

Theorem 1.4.1. If A/F is an abelian surface, F a totally real field, then for any
2 . : , 2
e >0, ay < —3 + ¢ for a positive proportion of primes v, and a, > 3~ e for a

positive proportion of primes v.

Theorem 1.4.3. If A/F is an abelian surface over a totally real field which has a

two-dimensional real endomorphism ring defined over a quadratic extension of F,
2



then ay < —2.47 for a positive proportion of primes and a, > 2.47 for a positive

proportion of primes.

The paper is divided as follows: In section 1.2, we set up the terminology and
state the Sato-Tate conjecture precisely. Section 1.3 is devoted to proving Theorems
1.3.4 and 1.3.6 above, and the goal of section 1.4 is to prove the asymptotics in

Theorems 1.4.1 and 1.4.3, as well as others in Theorems 1.4.2 and 1.4.4.

1.2 Setup

1.2.1 The Conjecture

To set up the Sato-Tate conjecture, we follow [15, Section 2]. Fix a number field F,
an embedding into Q, and an embedding of Q into C. Let A be an abelian variety
of dimension 2 over F. We choose a polarization of A. Given a prime ¢, this allows

the identification of the f-adic Tate module with the etale and singular homologies

Vi(A) = H ot(Ag, Q) = Hi et (Ag, Qp) = Hi(AZP, Q) ~ Hi(AEP, Q) ©g Q.

—

The Weil pairing on the dual of the Tate module Vj(A) corresponds to the cup
product pairing on the cohomologies, so it is a nondegenerate alternating pairing and,
given a symplectic basis of m, induces a continuous map py ¢ : Gp — GSpy (Qp).
We let Gy be the image of this map, and G%ar be the Zariski closure in GSp4(Qy).
Then we let G}; be the kernel of the cyclotomic character x, : Gp — Z?, so that

g € G%—a acts trivially on the Weil pairing. Then G% is the image of G}; under

3



% is the Zariski closure. Because G}; acts trivially on the Weil pairing,

PAL and Gé’z
reconsidering it as a pairing on the vector space, Gé’zar is the kernel of the similitude
character

U GEY — 2 (ho, ) = ¥ (h) (v, w).

Fix an isomorphism ¢ : Q; — C for this £. We then define G = G%ar ®q, C and

Gl = G}’Zar ®a, C; then G/G! ~ C via the similitude character. We look at the

image of Frob, in this quotient for v a prime of F' with residue field Fg,. Certainly

Froby (¢m) = Cg}{ so Frob, maps to ¢,. An argument of Deligne, summarized in [33,

Section 8.3.2], shows that the center of the original GSp(4) lies in the center of G,
1

so we may divide p4 ¢(Froby) by g2 to get an element ¢, in G! whose eigenvalues

have norm 1 because of the Weil conjectures.

Definition 1.2.1. The Sato-Tate group STy of A is a maximal compact Lie sub-

group of G inside USp(4), which depends on ¢ and the embedding ¢.

The element g, has eigenvalues of norm 1 so its semisimple component (and even
itself, because as described in the errata to [15], gy is already semisimple) lies in some
conjugate of STy; we let s(v) denote its conjugacy class. The Sato-Tate conjecture

is as follows:

Conjecture 1.2.2. The elements s(v) are equidistributed among the conjugacy classes

of STy, under the pushforward of the Haar measure from STy.

We record that the Sato-Tate group has a common model over QQ over all ¢, as in
[15, Theorem 2.16], but it’s not known whether the conjugacy classes s(v) themselves

are independent of /.



1.2.2  Proof strategy

Suppose S is the set of primes outside of which p4 ¢ is unramified. The general idea

for proof is laid out in [32]; therein the following theorem is shown.

Theorem 1.2.3. Suppose that, for any irreducible representation r of STy, the L-

function

S(r,s) = !
P =11 e =owe

vgS

has a meromorphic extension to the half-plane Re(s) > 1, with no poles or zeroes
except possibly at s = 1. Then the elements s(v) are equidistributed in the conjugacy
classes of ST 4 if and only if the L-functions LS(T, s) for irreducible nontrivial r have

no zero or pole at s = 1.

We denote the property of having no zeroes or poles on a region invertibility.
The L-function has factors at primes of S as well, but their factors do not add poles
or zeroes so we ignore them. To show invertibility of these L-functions, the only
known method is to equate them to L-functions of automorphic forms, a la [41], [19].
[20] covers most cases using [4, Theorem 5.4.1]; we introduce a new more widely
applicable theorem of [1]. We refer to [4, Section 5.1] for the definition of a weakly

compatible system.

Definition 1.2.4. A weakly compatible system of representations of G is a 5-tuple
(M, S, {Qu(z)},{r\}, {H+}) with S a finite set of F-primes satisfying

e M is a number field, and {r) : Gy — GL, (M)} is a set of representations of
G indexed over the primes A of M. If v € S is a prime of F', then for A not

over the same rational prime p as v, r) is unramified at v.
5



e The polynomials @, (x) have rational coefficients and the characteristic poly-

nomial of ry (Froby) is equal to Qy(x), independent of A.

e If v and A are over the same rational prime p, then 7y is de Rham at v;

furthermore, if v € S, then r) is crystalline at v.

e For each embedding 7 : F — M, the Hodge-Tate weights of ry are given by

the multiset H;, and are in fact independent of .

Theorem 1.2.5 ([1, Corollary 7.1.11]). Suppose that F' is a CM field and that the 5-
tuple R = (M, S, {Quv ()}, {r\}, {Hr}) is a rank 2 weakly compatible system of l-adic
representations of Gg such that Hy = {0,1} for all 7 and such that R is strongly
irreducible. If m is a nonnegative integer, then there exists a finite CM extension
Fo/F with Fip /Q Galois such that the weakly compatible system Symm™R|q . = is

automorphic.

We recall that a strongly irreducible system is one where each representation is

irreducible even after restricting to finite-index subgroups of G .

Remark 1.2.6. The difference between this theorem and [4, Theorem 5.4.1] that we
take advantage of is that [4, Theorem 5.4.1] requires all towers to be either CM
or totally real. In contrast, [1, Corollary 7.1.11] allows us to base-change from our
totally real field F to a CM field F', find an extension Fj;, over which the compatible
system SymmmR|GFm is automorphic, and be allowed the added condition that
Fp,/F is Galois. This is not possible with the theorem of [4]; in asking that Fy,/F

be Galois, we are only allowed base-change to totally real F”.



1.3 Sato-Tate for certain ST,

We introduce the cases of the Sato-Tate conjecture we will prove. Let A be an
abelian surface defined over a field F. If L is the smallest field over which all
endomorphisms of A are defined, we define the Galois type of A to be the pair
(Endz(A) @ R, Gal(L/F)) of a real algebra and a group with an action on the alge-
bra. [15, Theorem 4.3] proves that there is a correspondence between the Sato-Tate
group and the Galois type of an abelian surface with the following property: if the
type (F,G) corresponds to the Sato-Tate group K, then the algebra E corresponds
bijectively to the identity component K of K, and G is isomorphic to the component
group K/Kj.

Therefore, we can equivalently divide the conjecture into cases indexed by the con-
nected component of the Sato-Tate group or by the endomorphism algebra Endj (A)®
R, which can then be further subdivided by including the component group. There
are 6 possible endomorphism algebras laid out in [15, Theorem 4.3] listed below,
along with the corresponding Sato-Tate connected component and its embedding

into USp(4):
e A: Endj(A) ® R =R, corresponding to STg = USp(4)

e B: End;(A) ® R =R x R, corresponding to STg = SU(2) x SU(2) via M7 x
Moy — <Agl ]\22)
e C: Endy(A)®R =R xC, corresponding to STBL =SU(2) x U(1) via M x z —

(%<2



e D: End;(A) ® R =C x C, corresponding to STBl =U(1) x U(1) via z x w —

()

e E: End;(A) @ R = Ms(R), corresponding to STQ = SU(2) via M — (J\(;‘[ %)

e F: Endj(A) ® R = M3(C), corresponding to STg =U(1) via z — (ZOIQ 20[2)
Further subdividing this list, we obtain 52 distinct Galois types, corresponding to 52
distinct Sato-Tate groups. Of these, 35 arise as the Sato-Tate group of an abelian
surface defined over a totally real field, and 34 of those arise from an abelian surface
defined over Q. Almost nothing is known about the single group of type A; in [20],
the Sato-Tate conjecture was fully proven for all groups of types D and F, for all
totally real abelian surfaces giving rise to groups of type C, and for all totally real
abelian surfaces giving rise to one of two groups of type B and six of ten groups
of type E. In addition, assuming that L was also totally real, all other cases were
proven. We describe the remaining cases and prove them with a weakened hypothesis

on L.

1.5.1 Preliminaries

Before we discuss specific Sato-Tate groups, let us recall standard facts about Galois

representations coming from the abelian varieties we study.

Definition 1.3.1. Suppose A is an abelian variety defined over F'. We say A is of
GLa-type if it is isogenous over F' to a product A x Ao x ... A; of simple abelian
varieties, each also defined over F, and with a field K; — Endp(4;) ® Q with
[ Q] = dim(4;).



Given a simple abelian surface A/F of GLo-type with field K and a rational prime
¢, the dual of the /-adic Tate module T} gives rise to an ¢-adic Galois representation
Gr — GL4(Qy), isomorphic to the f-adic etale cohomology of A. The image lands
in GLo(Qy ® K). For each embedding \ : K — Q, we get a map from this image to
GLo(K ) for Ky the completion of K at A\. Thus for each embedding of K into Q
for each ¢ we obtain a representation py ) : Gp — GL2(K)). These form a weakly

compatible system (p4 )\

Theorem 1.3.2 ([30, Theorems 3.1, 3.2]). The weakly compatible system (pa x)x
is reqular of Hodge-Tate weights 0 and 1, totally odd and pure of weight 1. If K
is a real quadratic field, then detpg \ = xy, the L-adic cyclotomic character; if K
is @maginary quadratic, then detpy \ = € ® xy for some finite-image character €

independent of £.

In each case below, we will consider the irreducible representations of the Sato-
Tate group. We will extend these in a natural way to representations of G1. These
will be algebraic representations of G, so that we get compatible systems of repre-
sentations of Gé’zar. We can then obtain representations of G%ar by extending to the
central Gy,. Finally obtaining this, we get a compatible system of representations
of the Galois group G, and we can thus use Theorem 1.2.5 above, combined with

Rankin-Selberg theory, to show that the original L-function is invertible, as required.

This method will be detailed further in the subsections below.



1.3.2 B[Cy

When we discuss B[C3], the Sato-Tate group is (SU(2) x SU(2),J) where J =
( 1 -1 1). This corresponds to either the case where A is isogenous to a direct
suin of nonisogenous elliptic curves, each without CM, or when A is simple but has
multiplication by a real quadratic field. In these cases, Q ® End@(A) is either Q x Q
or real quadratic. Conjecture 1.2.2 in the first case has been proven as [18, Theorem
5.4] assuming a few “Expected Theorems”. These have been proven since the writing
of the paper; see [5] for a discussion. We henceforth assume Q ® End@(A) =Kisa
real quadratic field. Because we're in the B[C5] case, A is not of GLg type over F,
but is of GLg type over a quadratic extension.

We look first at representations of STg = SU(2) x SU(2) which is an index 2
subgroup of ST4. The irreducible representations of SU(2) are Sym¥(St) for St the
standard 2-dimensional representation and k£ > 0; hence the irreducible representa-
tions of SU(2) x SU(2) are 1, ; = Sym¥(St) ® Sym!(St) for k,1 > 0. We deduce the
representations of ST4 using the following standard theorem of Clifford theory (in

this form found as [20, Lemma 23], the proof being the author’s own):

Theorem 1.3.3. If H < G is an index 2 subgroup, and r is a finite-dimensional
wrreducible representation of H, then r extends to a representation of G if and only if r
is isomorphic to %, where r* is the representation of H defined as r®(h) = r(xhz™1)
for x € G\H. If this is the case, then r extends to exactly two nonisomorphic
irreducible representations ro and ro®yx for x the nontrivial character G/H — {£1}.
The irreducible representations are exactly those arising from such r, along with the

inductions Ind% p of all representations p of H that do not satisfy the above property.
10



Proof. Suppose r ~ r*. This means that there is some endomorphism U with

r%(h) = Ur(h)U~! for each h € H; we can clearly set () = U and ro(h) = r(h),
giving a representation of G. Conversely, if r extends to o, ro(z)r(h)ro(z) ™1 = r%(h)
shows that r ~ r*. If these two conditions hold, Frobenius Reciprocity shows that
there can be at most two distinct representations that restrict to » on H, and we
have found two already, rg and rg ® x.

Now given any irreducible representation s of G, either s|g is irreducible or not.
If so we're in the case above; if not, say sy is a subrepresentation of s|g. Then by
the universal property of Ind, since we have an H-equivariant map from sy into s,
there must be a G-equivariant map Ind% s1 — s; by Schur’s lemma and counting

dimensions, we must have Indg 51 = S. O]

We apply this theorem with G = STy = (SU(2) x SU(2),J) and H = SU(2) x

SU(2). Given the representation rj, ; we choose = J and find that
J(A,B)J ™Y = (= JoBo, = JoAdy) = (JoBJg . JoAJg ) = (Jo. Jo) (B, A)(Jo. Jo) ™!

0 1 0 Jy Jy O
where Jy = so that J = . Because e SU(2) x
-1 0 —Jg 0 0 Jy
SU(2), we find that rtk] ; = 71k The representations rj; are nonisomorphic for
distinct pairs (k,[) so the representation 1, extends only for k£ =, say to 7’%: and

r]%; otherwise we obtain only the induced representation, which makes no distinction

11



between (k,[) and (I, k). Hence all irreducible representations of ST are

STy

7’]16 and r]% for £k > 0 and IndSTg

g, for k> 12>0.

As discussed above and by [15, Proposition 2.17|, because STy has two compo-
nents, the field L over which all endomorphisms are defined, End@(A) = Endj(A),
is a quadratic extension of F', and ST}y, , the Sato-Tate group of A as a variety over

L, is just the identity connected component STQ = SU(2) x SU(2) of STy4.

Theorem 1.3.4. If L is either a totally real field or a CM field, then Conjecture

1.2.2 is true for A over F.

Proof. 1f L is a totally real field, this was proven already in [20, Proposition 24], so
suppose L is a CM field; we proceed in a similar fashion. We must show that for
each representation given above, the L-function in Theorem 1.2.3 is invertible at 1.
Let us first look at a representation Indggﬁ 7,1+ 1t follows from a theorem of Artin

that if s’(v') denotes the normalized image of Frobenius for prime v" in G7,, then

1
LSy, 9) = [
»? ST —
o ozs det(L = Ind g i (s(0)ai )

1
- 11 det(1 —rg1(s'(v"))q, ")

'S’ v

!/

= L% (., )

so that we may prove invertibility of this new L-function.

From here, we cease mention of F’ and work solely with L. Let us extend ry ; from

12



a representation of SU(2) x SU(2) to a representation Ry ; of G(L), the algebraic
group coming from G instead of G p; we naturally do this by restricting Sym” (St)®
Sym!(St) from GL(2) x GL(2) to G(L). In fact, we get a representation of G%ar(L) C
GL2(Qy) x GL2(Qyp), which we can also call Ry ;. Thus finally we get a representation

of G, namely Ry jopy, ¢. Looking at where Frob,, is sent, the L-function is

! !
L (rig8) = L% (Ryy o pag 0,5+ (k+1)/2)
—(s+(k+1)/2)\—
= H det(l—Rk’lopAL’g(FrobU/)qv,(S (k+D)/ )) 1
v'gS’
As discussed before the statement of Theorem 1.3.2, the two embeddings \j, Ay of
K = EndOL(A) into Qy give the decomposition of PAL ¢ 0O pa, A B PA; Ny and

these give the further decomposition of the L-function into

LY (Sym®(pa, »,) @ Sym'(pa, x,)ss + (k+1)/2);

this is finally what we must prove to be holomorphic and invertible.

We look at the weakly compatible system (py4 I A)x- The Hodge-Tate weights of
these are all 0 and 1. Since the image of py, ) is open in G%ar = GLo(Qp), there is
no subgroup of Gy, for which p4, ) becomes reducible. So we may apply Theorem
1.2.5 to get some CM field L], over which the compatible system (Sym™(p4, 1))x
is automorphic.

The theory of cyclic base change in [2] shows that (Sym™(p4, 1)), is automorphic
over all E where L] /E is cyclic, and hence solvable; we can apply the Rankin-Selberg

method as in the proof of [18, Theorem 5.3] to the field L' = L} Lj, over which the
13



two compatible systems (Symk(pAL)\)))\ and (Syml(pALj)\)))\ are both automorphic,

to show that

LY (Sym*(pa, z lap) @ Sym'(pa, lag)s s + (k+1)/2)

is invertible along the central line, assuming that the representations Sym®(p4, »,lay)
and Sym'(p4 1 olGy) are not dual. But k # [, so a dimension count shows that they

cannot be dual. So

LY (Sym*(pa, xlap) © Sym! (04, s lag)ss + (k+1)/2)

is invertible for all £ solvable subfields of L’; Brauer’s theorem applies to the Galois
groups Gal(L'/E) C Gal(L'/L), and we get that the L-function for the representa-
tion over L is an integer power combination of those over E, and therefore is also
invertible.

Next, we look at the representations 7";; fori =1,2and k > 1. Recall that they are
the two distinct extensions of Sym” ® SymF to representations of N(SU(2)xSU(2)) =
(SU(2) x SU(2),J). As before, let us extend r,i to an algebraic representation of
G C (GL(2) x GL(2),J) by restricting Sym* @ Sym* and leaving the image of .J
alone. This again gives us a representation Rl of Gzar, and then composing with

p 4, finally gives us a Galois representation. The L-function attached to r,i is

S, i B 1 1
s =11 det(1 — i (s()a*) =11

+h
vgS vgs det(1 — Ri o py ¢(Froby)g, )

14



This L-function being invertible follows if the L-functions for R,i opaslay for L'/E
solvable are, where L' = L;C is the field from Theorem 1.2.5. For a given F, either
LCEor LZE. If L CE,then R opy gla, = Sym*(pa lay,) @Sym*(pan,lay)
as before. Then we can apply Rankin-Selberg, except dimension count doesn’t work.

We want

L(Sym®(pa ) ® SymF(pan,lcp) s + k)

=L(Sym* (pax o) © SymF(par,lap) © x; ", s)

to be invertible, so we require that Symk/’(pA,/\1 ) and Symk(pA’)\2 Gp) ® sz not
be dual. But pg y, |q, 1s essentially self-dual via the Weil pairing; in fact, p4 y,|lg, =~
pjvq)\1 |, ® x¢- Therefore, we require that Sylrnk(pA,/\2 Gg) ®X€_k not be isomorphic
to Symk(pA,/\llgE) ® Xg_k. But if this happened, then PA,/\2|GE/ o~ PA,AJGE/ for
some finite extension E’. This contradicts the fact that End@(A) = K, so we're
done in this case.

Otherwise, L € E., and E is therefore a totally real subfield of L. But if
L = F(y/a), then let E' = E(y/a) to get a degree 2 CM extension containing
L. (Sym*(p AN G ) is cuspidal automorphic as before, and the L-function of the
G representation is just the Asai L-function of the associated automorphic repre-
sentation of this system, in the terminology of [17]. By [17, Theorem 4.3], this Asai
L-function is nonzero and holomorphic on the right half-plane, if the automorphic
representation is not self-dual. In fact, it’s always nonzero, so it’s holomorphic for

both r}c and 'r’,% if and only if the product of the two Asai L-functions is holomorphic.

15



But the product is

1 2
L(rtlay $) L0l Gy s) = LSYM* (pala,) @ Sym™ (panlay, ) s + k),

which as before is holomorphic. So each of these two Asai L-functions is holomorphic.
Finally, we look at the nontrivial finite representation 7"8. This takes J to —1 and

the connected component of the identity ST 2 to 1. But the L-function is

1
vl;!q 1— X(Frobv)qgs’

where x is the Hecke character coming from Gal(L/F'), and this is hence its L-
function. It’s thus clear that this L-function is invertible. So we’ve shown that, for
every representation, the L-function is invertible along the line &8s = 1, so we're

done. O]

Remark 1.3.5. Notice that this proves the Sato-Tate conjecture in this case when

F = Q because all quadratic extensions are either totally real or CM.

1.3.3 E[Ds,], n=2,3,4,6

We look now at the Sato-Tate groups

B e 1dy
STA — o y En = i y J y
B e n Idg

BeSU(2)

16



with identity component ST 191 the embedded copy of SU(2) and component group
Ds,,. These arise from abelian varieties A whose endomorphism ring End(])\/[(A) is a
quaternion algebra for a large enough field extension M/F. Either A is potentially
the sum of two elliptic curves without CM whose (-adic representations are twists
of each other by a finite-order character, or A is simple with quaternionic multipli-
cation. If we view A as defined over L, where GG is the index-2 subgroup of the
Galois group G corresponding to the cyclic subgroup of the component group Do,
under the correspondence given in [15, Theorem 2.17], the endomorphism ring is
not yet a quaternion algebra. It is, however, a quadratic field K, as proven in [15,
Theorem 4.7]; we note that while the statement in [15] is constructed for the direct
sum of elliptic curves case, there is no use of this in the proof, so we may apply it
here as well.

To prove Conjecture 1.2.2 in this case, our strategy is to decompose the repre-
sentation p4 ¢ into a tensor s ®  where ¢ is a finite-image dihedral representation
and s is a two-dimensional representation. We do this by manually constructing a
2-cocycle in a certain cohomology group that obstructs a representation lift from G,
to G, then use the fact that the cohomology is 0 to obtain a coboundary description,
which allows us to lift. Then we check that s acts solely on the identity component
and J acts on the component group times =+ Id, and finally use Rankin-Selberg and
Theorem 1.2.5 again.

As in the previous case, we may decompose the representation p A,E‘GL into two
2-dimensional pieces p4 ) and p AN via the two embeddings of K into Qy, and as

in the previous case, Theorem 1.3.2 says that (p A, Maeg is a compatible system of

17



representations. But unlike the previous case, we get the isomorphism p 4 \®e ~ p AN
for some finite-image character e. We notice that Indgf PAN = PAy¢ by Frobenius
reciprocity, and so pa ¢lq, = par D p‘i)\ for g € Gp\Gp; therefore, pg \ @ € ~
PAX = pil, \: (Notationally, from here we will assume that any group element g
with or without subscript is in Gp\G, and any group element h is in G, so as to
repeatedly omit this statement.)

Because of [15, Proposition 2.17], we know that if M is the smallest field with
End(])w(A) being the full quaternion algebra, then Gal(M/F) = Dy,, and that
Gal(M/L) = Cy,. Because

(PAN® (par®))lay = Payr D (Pay, ) @€la,,)

has a four-dimensional real endomorphism ring only if €| A 18 trivial, we must have
€ being a character of Gal(M/L). In particular, e(h) = 1 if h € G ;. But because of
the structure of Dy, we know that ¢ € Gp\GJ has g% € Gs. So e(gQ) =1.

In addition, we know

Pha = PAN@E 50 par=pl @l =py e e

and hence we conclude that e(ghg™1)e(h) = 1.

We let ¢ be such that

c(h1,ha) = c(g1,ha) = 1,¢(h1, 92) = c(g'h1, g2) = e(hq)

18



for all g1, g2, h1, ho, and fixed ¢’ € Gp\G . Then the above statements are enough
to exhaustively prove that ¢ is a cocycle in H2(Gp, Ky ) with K having the
trivial action and discrete topology. But it’s a theorem of Tate that H 2(G F K_)\x) is

trivial, so this cocycle must be a coboundary. That means there is a continuous (i.e.

7(91)7(g2)

finite-image) cochain v : Gp — K~ with c(g1,g2) = 7(9192)

, and so on through
all combinations of g; and h;.

We can check via the above the following equations:

y(Id) =1

/—lg)

Yg(g ) =clg.g) =€y
Yg)v(hg™h) = v(ghg™Helg, hg™h) = y(ghg ™ e(d " g) = v(ghg™Hv(g)v(g ™)

Y(h)v(gY) = y(hg™He(h, g ) = 7 (hg Ve(h) = v(ghg )y (g™ He(h)

so that v(h) = v(ghg~1)e(h) for every pair (g,h). Further, v is a character of

Gp,; from here we only remember the domain of v being Gj. Therefore, if we let

SAN = PAN® 7, then
SAN=PAA @Y = AN ® @7 2 py @y =54

so that we may extend s 4 ) to be a representation of G'g, by Theorem 1.3.3, with ba-
sis {s1,52}. And there is a clear G'f-equivariant map py \ — SA7)\®Indgf ~~1 given
by sending v to v®1; therefore, there is a G p-equivariant map p4 ¢ = Indgf PAN —

1

SAN® Indgf ~~*. By dimension count, they must be isomorphic. Therefore, we

are able to write py ¢ as s4 \ ® 0, where ¢ is finite-image with vector space having
19



basis {v1,v9}, and in fact has image isomorphic to a dihedral group. Notice that
the way we devised v, we didn’t use anything about A, and € is independent of A
by Theorem 1.3.2; so v is independent of A as is V/, so since (pq 1)y is a weakly

compatible system, so too is (54 ).

Theorem 1.3.6. If F' is a totally real field and A is an abelian variety defined over
F which has Galois type E[Dy,] for n = 2,3,4,6, then the Sato-Tate conjecture holds
for A.

Proof. As before, we must show that for each representation r of the Sato-Tate
group, the L-function J[,zg det(1 —r(s(v))g, * )~1 is holomorphic and invertible for
Rs > 1 where s(v) is the conjugacy class given by dividing the image of Frob, by
qé/? The Sato-Tate group STy is given by SU(2) x Dy, /{((—1ds, E}})), so that
any representation of STy is given by a representation of SU(2) tensored with a
representation of Dy, whose signs agree on their centers. Of course the irreducible
representations of SU(2) are Sym¥(St) and there are 4 one-dimensional and n — 1
two-dimensional representations of Dy,,.

Our goal now is to describe where s 4 ) and § send Frob, inside ST4. As written

before, the Sato-Tate group is represented as the matrices in

B e 1dy
-~ , y JY
B e n Idg

BeSU(2)

1
These are inside Sp(4) where the alternating form is (_1 1). However, we
-1
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-1
instead view it with the alternating form ( 1 1 ) That is, we conjugate the
1

1
Sato-Tate group by ( 1 1) to get the new group
-1

< B e 1dy Idy >
B e ldy | \1dy

BeSU(2)

Writing it in this form, because the Zariski closure of SU(2) is SL(2), we know that
G must contain all matrices (A 1) where A € SL(2). But as above, the theorem of
Deligne says that the scalar multiples of the identity must be in the Zariski closure of
the image of p4 ¢, so that means that G must contain all matrices of the form above,
where A is now in GL(2). Now G is the image under ¢ of G%ar, the Zariski closure of
the image of p 4 ¢, which is the Kronecker product of the Zariski closure of the image
of 54, with the image of 0. If we look at the closure of py ¢(kerd), this is a finite
index subgroup of G%ar. Because the connected component of the identity G?ar’o is
isomorphic to GL(2) and thus is Zariski irreducible, the closure of p4 ¢(ker d) cannot
be smaller than this.

But also it cannot be larger than this: it is contained in the centralizer of a 4-

dimensional vector space inside My(Qy), namely (‘Cl%g 2%) in the basis s1 ® v1, S2 ®

0 a-1d b-1d )

V1, 81 ® V9, S9 ® v9, but G?ar is already such a centralizer: it centralizes ( “1d d1d

in the usual basis. Therefore the closure of py g(kerd) is equal to this connected
component {(A 4) A€ GL(2)}.

On the other hand, G can act on the vector space for the representation p4
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solely through 6. The image of this representation commutes with the kernel of §
above, but as we observed, all such matrices are of the form (‘c‘%g 3%) So the
image of G acting via 0 alone lands in this vector space. In order for the image to
land in GSp(4), we can calculate that either b = ¢ = 0 or a = d = 0. Recall also
that its image is dihedral and irreducible, so it must essentially give some dihedral
representation. Each matrix in a 4-dimensional finite-image representation is unitary,
so each of them already appears in the Sato-Tate group. But the only matrices of
this form in the Sato-Tate group were in the group (Ej, J), so this must be the image
of G acting through §.

We have therefore shown that the image of § is exactly Dy,,, and the closure of
the image of s4 ) is GL(2). Recall from above that a representation of the Sato-Tate
group is given by the tensor product of a representation of Dy, with a representation
of SU(2) with the same sign. Given such a representation, say n ® Sym*(St), the

L-function is

[ det(@ — Sym®(s(v)) @ n(s(v))g, ")~
veS

— H det(1 — (Sym* os 0 sa.) (Froby) @ (n o 5)(Fr0bv)qv_s_k/2)_1.
veS
We may apply Theorem 1.2.5 to (s4 1)y, or in fact we may even apply [4, The-
orem 5.4.1] to find a field F’/F for which (SA7)\|GF/))\ is cuspidal automorphic,
assuming k > 1. Then as before, cyclic base change tells us that (sg x|lg,)\ 18
cuspidal automorphic where F’/E is solvable so that L(Sym”|q 0 8) s invertible,

and then Brauer’s theorem tells us that L(Symk, s) is invertible as well. We know
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that 1 o4 is cuspidal automorphic already if 7 is nontrivial, because 1 o d is either a
1-dimensional representation, a nontrivial Hecke character, or a 2-dimensional dihe-
dral representation, which is induced from a nontrivial Hecke character of G and
whose automorphy and cuspidality is established in [2, Theorem 6.2]. So L(n, s) is
invertible and the Rankin-Selberg method as before tells us that the L-function we

wanted,

L(Sym” @n, s) = H det(1 — (Sym” 054 ))(Froby) @ (1o 5)(Frobv)qv_8_k/2)_1,
veES
is invertible as long as Sym” and n are not dual. For £ > 1 this is obvious by
cardinality, and for £ = 0 and 7 nontrivial, this is just the Artin L-function for a
representation of Gal(L'/F) where L' is the fixed field of the kernel of §. Since this

is a solvable group, we know the L-function is invertible. [

1.4 Other asymptotics

So far our goal has been to show that the normalized Frobenius conjugacy classes
are equidistributed within the Sato-Tate group, and from this we can deduce the
distributions of the normalized traces of Frobenius in the interval [—4,4]. We have
done this by proving that all nontrivial irreducible representations’ L-functions are
invertible. Unfortunately, the current state of affairs does not allow this in the two
cases A or B[C3], so we set our sights a little lower. We’d like to be able to show
that for some positive fraction of primes, the trace of Frobenius is positive (resp.
negative), but even this is beyond our elementary methods. A theorem of Boxer,
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Calegari, Gee and Pilloni helps us in this regard, as well as a theorem of Taibi and
Gee. Let A be any abelian surface over a totally real field F', and suppose that for
some good prime v, the characteristic polynomial of the normalized Frobenius FTL\/%

in its compatible system of representations is

Charprob, (X) = (X —a)(X —a DX =B)(X -8 = X =1 X3+ apX? —a; X +1.
NG

We first define aj yyi, as the number for which zero proportion of primes v have
a1 < aj min but for any € > 0 a positive proportion of v have a; < aj ypin — €. Let
us define aj max; @2 min and a2 max similarly. We’ll be able to prove the following

theorems:

Theorem 1.4.1. If A/F is a generic abelian surface, i.e. End(A@) = Z, then

2 2
a1 min < —3 and a1 max = §-

Theorem 1.4.2. If A/F is a generic abelian surface, then ag yin < % and as max >
4

3.
Theorem 1.4.3. If A/F is an abelian surface of type B[C3], then ay yin < —2.47

and ay max = 2.47.

Theorem 1.4.4. If A/F is an abelian surface of type B[Cs], then Fag i, < 0.43

and ag max > 3.57.

The first two theorems above are the “best of their kind”, so to speak; that
is, given the L-functions we currently know to be invertible, there are probability
distributions of a and /8 on the unit circle for which a; > —%, and yet the Tauberian

statistics of these L-functions are not violated.
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1.4.1 The generic case

Let us state the results of Boxer-Calegari-Gee-Pilloni and Gee-Taibi.

Theorem 1.4.5 ([7, Theorem 9.2.8]). Let A be a challenging abelian surface over a

totally real field F'. Then A is potentially modular.

Challenging in the above theorem just means being in case A or B[C5].

Suppose that (p Al V') is the dual of the f-adic Tate module representation of A.
Suppose that vy, vo,v3,v4 are a symplectic basis of V' under the Weil pairing; that
is, (v1,v9) = (v3,v4) = 1 and all other pairs of vectors are 0 under the pairing. The

Weil pairing on V then becomes a direct-sum split of A2V

A2V =Qu(1) W

where Qp(1) is spanned by vy A vg + v3 A vy. It is not difficult to show that if A is

generic, then W is irreducible.

Theorem 1.4.6 ([16]). If p4 ¢ is strongly irreducible, there is a cuspidal automorphic

form I on GL(5) corresponding to the W abowve.

Sketch. Suppose that 7 is the automorphic representation corresponding to A. By
[25, Theorem A], we know that A7 s automorphic, and is the induction of the
tensor product of cuspidal automorphic representations of GLy, for ) n; = 6. We
know further that 7 is symplectic, so we may take ny = 1.

It then suffices to show that ny = 1 and ny = 5. The occurrence of more than
one n; = 1 is ruled out by [34, Theorem 1.1], and the possibility that ny = 1, no = 2,

and ng = 3 is ruled out by [3, Prop 4.2]. Therefore, IIy = II is cuspidal. O
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To prove Theorems 1.4.1 and 1.4.2, it suffices to prove them when looking at A/E
where E/F is any field extension. This is for the following reasons: if a prime v of F
splits in F/, the Frobenius element does not change, and neither does the size of the
residue field, so that the normalized trace of Frobenius is unchanged. Also, a set of
primes of E of density 1 lie above split primes of F', so looking at the set of primes
of E described in 1.4.1 or 1.4.2; almost all of them lie above a split prime of F. So
a positive proportion of the split primes of F', which is a positive proportion of all
primes of F',| satisfy the inequalities.

Thus after Theorem 1.4.5 we may assume that A/F is modular, and so pg g
corresponds to a cuspidal automorphic representation. We continue to assume F'
totally real, as this is a further allowance in [7]. We also assume that we are in the
generic case A. Therefore, as usual we know L(Vs) is holomorphic and nonzero on
R(s) > 1 (where the L-function is shifted so that the critical line is R(s) = % and
all the eigenvalues have norm 1, as in the previous section). In addition, since W
corresponds to a cuspidal representation, L(W, s) is also holomorphic and nonzero on
the same set. And by Rankin-Selberg, since V ~ V* @ Qy(1) and so V ® V' contains
one copy of the cyclotomic character, L(V ® V, s) has a simple pole at s = 1 and is
holomorphic everywhere else on $(s) > 1 (where again the L-function is normalized
in the standard way). The same holds for W; that is, since W is irreducible and
essentially self-dual, L(W ® W, s) has a simple pole at s = 1 and is holomorphic
nonzero everywhere else on the half-plane. And finally, since V and W are distinct
irreducible representations, L(V ® W, s) is holomorphic nonzero everywhere on the

half plane, again by Rankin-Selberg.
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Now that we have these five L-functions and their poles at 1, we look back at

Serre.

Theorem 1.4.7 ([32]). Given a Dirichlet series

1
P(xv)%_s)

Lip.s) = H det(1 —

with a pole of order ¢ at s = 1 and holomorphic nonzero elsewhere on R(s) > 1, then

3 Trp(ey) =c (107;”) +o(n/logn).

Q<n

We apply this to the five L-functions above, with the normalized image of Frob,,

in V' having eigenvalues ay, oy, L By 1 to get

Z (v +oz;1 + By —I—Bv_l) = o(n/logn)

q<n

and four other asymptotic equations. Combining with the statement of Serre’s the-

orem for the trivial representation (namely, Z 1 = n/logn + o(n/logn)), and
Gw<n
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letting sy = oy + L and ty = Bv + By L for convenience, we find the system

Z Sy + ty = o(n/logn)

Gu<n

Z sty + 1 =o(n/logn)

Q<n

s2 4+ 2spty + 12 —1=o0(n/logn) = Z s2 4+ 12— 3 =o(n/logn)
q=n Q=n

Z $2ty + syt + sy +ty = o(n/logn) = Z $2ty + spt2 = o(n/logn)

qQ<n qusn
Z s2t2 4 25ty = o(n/ logn) = Z s2t2 — 2 = o(n/ logn)
qu<n Q<n

Proof of Theorem 1.4.1. The identity
(2—5)(2—1)(3543t+2—¢) = (8—4e)+(842¢)(s541)—6(s>+t2) —(10+¢) st+3(s*t+st>)
holds, so

D (2= 50)(2—ty)(3sy + 3ty +2—¢)
qu<n

- Z (8 — 4e) 4 (8 4 2¢)(sp + ) — 6(s2 + t2) — (10 + &) sty + 3(s2ty + spt2)
Q<n

= ) B(spte + suty) — (104 ) (suty + 1) — 6(s5 + 5 — 3) + (8 4 2¢)(sy + 1) — 3¢
qu<n

= (—3e+ 0(1))10gn.

So if —% < a1 min = —%—I—%, then a zero proportion of primes v have a; = s,+t, <
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—% + % And the Weil bounds on the eigenvalues hold, meaning that the sum of the
left side should be positive for large enough n, but the right side is negative for large
enough n. So it’s impossible for aj i, > —%. The same idea holds for aj max; the
asymptotics above are invariant under the transformation (sy,ty) — (—sy, —ty), SO
if it’s impossible for most primes to have their a;’s lie above —% + %, then it’s also

impossible for most primes to have their a;’s lie below % — % [

Proof of Theorem 1.4.2. Similarly, the following two equations hold:
(3st 4+ 2+ &)(st +4) = 35%t? + (14 + ) st + (8 + 4e)

(5st 46 — &) (4 — st) = =55t + (14 + ) st + (24 — 4e),

SO

Z (Bspty + 2+ ¢€)(spty +4) = Z (8 + 4) + (14 + )spty + 352t2

Q<n qu<n
= > 3(sity —2) + (14 +&)(sutv + 1) + 3¢
Gu<n
n
=(3 1
(3e + of ))logn
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and

> (Bsuty +6—e)(4—suty) = Y (24— 4e) + (14 + €)spty — Bsits,

Q<n qGu<n
= ) —5(spty —2) + (14 +&)(suty + 1) — Be
Qu<n
n
— (=5 1
(—=5¢ + of ))logn

If syty < —% — % for all but a density zero set of primes v, then in the first
equation the left side would be negative for large n, but the right side is positive for
large n, impossible. So syt, > —% — 5 a positive proportion of the time for every
positive €, and hence ag = 2 + syty > % — % for a positive proportion of the time.
Thus a9 max > %

And if sty > —g +% for all but a density zero set of primes v, then in the second

equation the left side would be positive for large n, but the right side is negative for
large n, impossible. So syt, < —g + £ a positive proportion of the time for every
positive €, and hence ag = 2 + syty < % + % for a positive proportion of the time.

4
Thus a2 min < 5- O]

As stated in the introduction, these are the best possible theorems we may obtain
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with the asymptotics arising from Serre’s method; namely, if

1
sy =0 and t, = 2 for G of all primes,
3 4 .
Sy = —3 and t, = 2 for 71 of all primes, and

—1-VT ~1+V7 . 9

Sy = —3 and t, = 3 for 1 of all primes,

then

Z 5y &ty = (1+ 0(1é)n/logn(0 L9+ (4 + o(lz)in/logn (_g N 2)

Q<n

(9+o(1))n/logn [ —1—V7 —1+7
* 14 ( 3 + 3 )

2 i 2 6 +o(1) n n
6 21 14 logn logn

and similar equalities hold for the other four asymptotics as well. Because a1, can
only ever be —%, % or 2, a1 min 18 —%, and we cannot prove anything stronger.
A mirror equality case holds in calculating aj mayx, and similar equality cases hold

in the cases of ag iy and ag max. If

1
Sy = —2 and t, = 2 for 0 of all primes,

9
Sy = —3 and t, = 2 for 3E of all primes, and

—1-7 —14+V7

Sy = —3 and t, = 3 for 1 of all primes,
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then the equalities all hold as above, and a9 jmax = % for this set. And if

1
Sy = 2 and t, = 2 for 5 of all primes,
1
sy = —2 and t, = —2 for ) of all primes,
125
Sy = —x and t, = 2 for &7 of all primes, and
—5 — /1495 —5 4+ /1495 1225 .
Sy = —————— and t, = for of all primes,
35 35 1534

it is not difficult to again check that all asymptotics above hold, and a9 iy = % for
this set.
Therefore, with our current knowledge of modularity lifting theorems, we cannot

say more than these theorems.

Remark 1.4.8. While Theorems 1.4.1 and 1.4.2 do the job of bounding aq iy, etc.,
from above or below, they are rather weak. We expect aj iy to be equal to —4,
yet we can only currently show that aq min < —%, and similarly for aj max. We
also expect ag max = 6, but we can only show that agmax > %; and we expect
a2 min = —2, but we can only show that ag iy < %

Notice also that we used heavily the fact that A was generic, because if it were
not, neither the 4-dimensional representation V' nor the 5-dimensional representation
W would need be irreducible. Because we know the Sato-Tate conjecture in all
cases except A and B[C5], we can calculate 41 min / max and ag i, / max for abelian
surfaces of these types; for any abelian surface in cases E or F', where the normalized
cigenvalues of Frobenius are always 2 copies of o and 2 copies of a1, a9 max is still

6 as expected, but ag = 4 + a® + a2, so we expect (and deduce) that a2 min = 2,
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so Theorem 1.4.2 doesn’t hold if our abelian surface is not generic.

1.4.2  The case B|C5]

We now suppose our abelian variety A over totally real field F' has Sato-Tate group
(SU(2) x SU(2),J). We may still apply Theorem 1.4.5, so that A is potentially
modular. We base change to a totally real field extension F/ where A is modular and
the Tate module representation is cuspidal. Then, as before, the representation pg4 ¢
is induced from a representation p4, ). This means that pyp >~ pg o ® XL/K- On
the level of automorphic representations, this means that the cuspidal representation
IT coming from p also satisfies Il ~ Il ® XL/K- But this means that II is the base
change of some cuspidal representation 7 of GL(2) over L.

This representation 7 arises from the compatible system of representations (p4 1),
and since these have big image because we're in case B[C5], we know that the repre-
sentations p 4 ), and more generally Symk pa for any k > 1, are not induced from
any character. This means that Sym* p AN P Sym” p A\ @ x for any character x.
We recall theorems of Kim-Shahidi:

Theorem 1.4.9 ([26] Theorem 2.2.2). Let w be a cuspidal automorphic representa-
tion of GL(2,Ar), let wy denote the central character, and let A'(m) = Sym‘(r) ®
w;l. Then A3(7T) 15 not cuspidal if and only if there exists a nontrivial gréssencharac-

ter p such that A%(m) ~ A?(1) ® p.

Theorem 1.4.10 ([26] Theorem 3.3.7). With notation as above, A*(r) is a cuspidal

representation of GL(5,Ar) unless
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(1) There is some nontrivial grossencharacter n with m @ n ~ m
(2) A3(m) is not cuspidal

(3) A3(7r) is cuspidal, but there is some nontrivial quadratic gréssencharacter n
with

Ad(m) = A%(m) @

Therefore, A2(7), A3(x) and A*(n) are all automorphic. And because Sym” p AN
is not isomorphic to its own twist, neither is Sym* 7. So we obtain that A%(x), A3(r)

and A*(r) are cuspidal.
1/2

In the same way as above, if oy, ! are the eigenvalues of py ., A (Froby)qy

1/2

for primes v of L, and f,, 3, 1 are the eigenvalues of Pa, X(Frobv)qv_ , and for

simplicity we denote x, = oy + Land vy = By + By 1 then via Rankin-Selberg we

find that if 0 < k,1 < 4 or if one of k,[ equals 0 and the other is at most 8, then

Cl/2Cry2 +0(1)) g5, k1 both even

k,l (

Z LoYy =
qo<n o(1)n
Inn >

one of k,[ odd

where C,, = n+—1<277) is the n’th Catalan number.
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Proof of Theorem 1.4.3. Let

Q(z,y) = —12.543(z + ) + 53.838(z2 + %) — 12.954(> + y3) — 13.063(z* + ¢*)
—7.914(z5 4+ ¢°) — 2.9(2% + %) + 3.607(27 + ") + 1.575(2% + %)
+124.68zy — 183.789(22%y + y2z) + 1.878(2y + y°x) + 50.255(xty + yia)
+117.6282%y2 + 73.149(23y? + y32?) — 48.646(xty? + y1a?) — 65.92823y°

+8.734(x 3 + yt2?) + 1.098z%y*

(All decimals are exact, unless otherwise noted.) It’s easy to check that the minimum
of Q(z,y) on the set {z,y € [-2,2] : x +y > —2.47} is when = ~ —1.81913 and
y ~ 0.644208, giving a minimum of approximately —1.93656, and yet the sum

(—2.04 +o(1))n
Inn )

Z Q@v, yo) =

Go<n

So it is impossible for xy, + y, to always be > —2.47, and therefore aj i, < —2.47.
And each asymptotic above is invariant under (z,y) — (—x, —y), so a mirror poly-
nomial proves that aj max > 2.47. (A more precise polynomial proves that aj i, <
—2.4763827913319, and as in Theorem 1.4.1 we can find points (x,y) and probabili-

ties that prohibit any further improvements.) O
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Proof of Theorem 1.4.4. Let

R(z,y) = —24.04(2® + y?) + 39.64(z* + y*) — 13.14(2® + %)
+3.82(z% 4 o8) — 15.762y — 119.88(23y + y3z) + 484.322%y>

—153.28(z%y? + y*2?) + 192442393 + 8.2z%y*

It’s easy to check that the minimum of R(z,y) on the set {z,y € [-2,2] : zy >
—1.57} is when x ~ 0.907648 and y ~ 0.188967, for a minimum of approximately

—8.32369, and yet the sum

™ Ao, o) — (~9.96 + o(1)n

Inn
qu<n

So it is impossible for z,y, to always be > —1.57, and therefore ag i, < —1.57+2 =
0.43. And each asymptotic above is invariant under (z,y) — (—z,y), so a mirror
polynomial proves that agax > 3.57. (A more precise polynomial proves that
a2 min < 0.421451779353951, and as in Theorem 1.4.1 we can find points (z,y) and

probabilities that prohibit any further improvements.) ]

36



CHAPTER 2
FORMS COMING FROM DIHEDRAL
REPRESENTATIONS

2.1 Introduction

Let p: Gg — GL(2,F9) be a finite-image two-dimensional mod 2 Galois represen-
tation. (Here and for the rest of this thesis, we assume all representations, finite or
not, are continuous.) We say p is dihedral if the image of mop : Gg — PGL(2, Fo) is
isomorphic to a finite dihedral group, where 7 : GL(2) — PGL(2) is the usual pro-
jection. We say p is modular of level NV if it is the reduction of a representation p s
associated to a modular eigenform f € So(Ig(N),Zs) mod the maximal ideal of Zo
(call this ideal 9t). Here, p is associated to a normalized eigenform f if, for all £ { 2NV,
the coefficient ay equals the trace Tr p(Froby). (When we write So(I'g(N), R) we will
always mean So(I'g(N),Z) ® R, so for example we exclude Katz forms that are not
reductions of characteristic 0 forms.) Additionally, reduction of a representation mod
O makes sense because given a characteristic 0 representation p : Gg — GLa(V)
where V is a vector space over Qy, we may choose an invariant lattice isomorphic
to Z% inside V, so that the image of p is inside GLo(Zso) and reduction mod 9 is
defined (independent of the choice of lattice up to semisimplification).

We say that p is ordinary at 2 if its restriction to the inertia at 2 is reducible. We
also say a normalized eigenform f with coefficients in Zs is ordinary if the coefficient
as of ¢2 in its g-expansion is a unit mod M. The terminology is consistent, because

by theorems of Deligne and Fontaine, if p = ps is modular, then p¢ is ordinary if
37



and only if f is ordinary.

In [23], Kedlaya and Medvedovsky prove that if a characteristic 2 representation
is dihedral, modular and ordinary of prime level N, then it must be the induction of
a nontrivial odd-order character of the class group CI(K) of a quadratic extension
K = Q(v£N)/Q to Q [23, Section 5.2]. They then analyze all cases of N mod 8
to determine how many distinct mod 2 representations arise from this construction.
Finally, they conjecture lower bounds for the number of Zs eigenforms whose mod
90 representations py are isomorphic to each of the representations obtained above
[23, Conjecture 13]. The purpose of the current chapter is to prove this conjecture,
reproduced below.

We let T" denote the anemic Hecke algebra inside End(S2(To(IN), Z2)) generated
as a Zs-algebra by the Hecke operators T}, for (k,2N) = 1, and we let Ty denote
the full Hecke algebra, namely Ty = T§" [T, Uy]. Ring homomorphisms T§" — Fy
correspond to classes of mod 2 eigenforms, up to the coefficients of even and divisible-
by-N powers of g, where the image of 7T}, is mapped to the coefficient aj of the
form. The kernel of such a map is a maximal ideal which determines the map up to
Galois conjugation of the image. Thus maximal ideals of T§" correspond to Galois-
conjugate classes of modular representations via the Eichler-Shimura construction,
and we attach properties of the representation such as ordinariness or reducibility
to the maximal ideal, which are invariant under Galois-conjugation and hence well-
defined properties of the ideal. We say that m is K-dihedral if the representation
corresponding to m is dihedral in the above sense, and the quadratic extension from

which it is an induction is K. (Notice that given p, K is uniquely determined as the
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quadratic extension of Q inside the fixed field of the kernel of p that is ramified at
all primes at which p is ramified.) We write So(N)m = S2(Tg(N),Fo)m to denote

the space of all mod 2 modular forms on which m acts nilpotently.

Theorem 2.1.1 ([23, Conjecture 13]). Let N be an odd prime and m a mazimal
ideal of T5"(N).

1. Suppose N =1 mod 8.
(a) If m is Q(v/N)-dihedral, then dim So(N)y > 4.

(b) If m is Q(v/—N)-dihedral, then dim So(N )y, > h(—N )V,

(¢) If m is reducible, then dim S (N )y, > Mﬁ

2. Suppose N =5 mod 8.

(a) If m is ordinary Q(v/N)-dihedral, then dim Sg(N)m > 4.

(b) If m is Q(v/—N)-dihedral, then dim So(N)m > 2.
3. Suppose N =3 mod 4 and K = Q(v/£N).

(a) If m is ordinary K-dihedral, then dim So(N)m > 2.

2.1.1 Reduction

Given a maximal ideal m of T5", we wish to count the dimension of the space A of

Zo-module maps

¢ : Ty — Fy so that mk(¢|T3n) = 0 for some k£ > 0
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as an Fa-vector space, where 5" acts on ¢ by zé(y) = ¢(zy). We know that Ty and
5" are finite and flat over Zg, and thus complete semilocal rings. It then follows

that we can write

To= P T

a maximal

and a similar statement for T3", where Ty is the localization (or equivalently com-
pletion) of Ty at the ideal a. We thus study T4" and remove the restriction that m

is nilpotent.

Proposition 2.1.2. The dimension of A equals

> " [ka : Fy] dimy, Ta/(2),

mCa

where the sum runs over all mazimal ideals a of To containing m, and kq is the

residue field corresponding to a.

Proof. The inclusion of T5" into Tg induces an inclusion Ty into @ Tq, and so
mCa
the dimension of A is the dimension of the Fo-space of maps ¢ : EB Tq — Fy. Any

mCa
such map can be split into separate maps ¢q4, and all ¢4 factor through Tq/(2). So

the dimension of A is

dimg, Homg, (€D Ta, F2) = ) _ dimg Homp,(Ta/(2),F2) = )  dimg, Ta/(2)

mCa mCa mCa

= 3" [ka : Fo] dimy, To/(2).

mCa
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The trivial lower bound dimy, Tq/(2) > 1 gives a lower bound on the dimension
of A. In the case that p arising from m is totally real and absolutely irreducible, we
prove a better bound dimy, Tq/(2) > 2. This happens when m is Q(v/N)-dihedral
for N > 0. Let Jy(N) denote the Jacobian of the modular curve Xy(N), so that p
appears as a subrepresentation of the 2-torsion points Jo(V)[2]. For some maximal
ideal a containing m, let A = Jy(N)[a] be the subscheme of points that are killed
by a. By the main result of [6], if 7 is absolutely irreducible, A is the direct sum of

copies of p.

Proposition 2.1.3. If m is a mazimal ideal of T§" for which the corresponding
representation p is absolutely irreducible and totally real, then for any mazimal ideal

a of To containing m, we have the inequality
dimy, Tq/(2) > 2 - multiplicity of p inside A.

Proof. Since p is a representation of the Galois group of a totally real field, we know
that the points of A are all real. Since A also has a Ty-action with annihilator a, A
is a kg-vector space, whose dimension is twice the multiplicity of p. We prove the

inequality below, from which the proposition follows quickly.

Lemma 2.1.4. If W denotes the Witt vector functor, then
dimy, (A) < rankyy(;,)(Ta).

Proof. We follow [9, Section 3.2]. A proposition of Merel states that the real variety
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Jo(N)(R) is connected if N is prime [29, Proposition 5]. If g is the genus of Xy(N),
then we know that Jo(N)(C) = (R/Z)?9, and therefore Joy(N)(R) = (R/Z)9. And

we also know that

Jo(N)[2(R) = (Z/2Z)7.

Additionally, as we know that Ty = @, Tqa, and all T are free Zo-modules, say of

rank g(a), we know that
> g(a) = rankg, (Ts) = g.
a

A lemma of Mazur shows that the a-adic Tate module, PLHJO(N )[a'], is a Tq-
module of rank 2 [28, Lemma 7.7, and therefore a free Zo-module of rank 2¢g(a),
so Jo(N)[a®)(C) = (Q9/Z2)29(%). We therefore know that the 2-torsion points of

this scheme are

Jo(N)[a*,2)(C) = (2,/22)%).

If o acting on Jo(N)(C) denotes complex conjugation, then (o — 1)% = 2 —
20 kills all 2-torsion, and o — 1 itself kills all real points. So within the scheme
Jo(N)[a®?, 2](C), applying o — 1 once kills all real points and maps all points to real

points, and so
. m 1 . m
dimz, 9z Jo(N)[a™, 2](R) = 5 dimg, j97 Jo(N)[a™, 2](C) = g(a).

But Jo(V)[2](R) breaks up into its a® pieces, Jo(N)[2](R) = @, Jo(N)[a>, 2](R).
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Taking dimensions on both sides gives

g = dimg o7 Jo(N)[a®, 2J(R) > > g(a) =g,

so equality must hold everywhere.

Since all points of A = Jy(N)[a] are real, we find that
dimg, /97 A < dimg, 97, Jo(N)[a™, 2](R) = g(a) = rankz, (Ta).

Dividing both sides by [kq : Z/2Z] = rank(W (kq)/Z3), we have the result.

Returning to the proof of Proposition 2.1.3, we therefore know that

dimy, Ta/(2) = dimyy(g,) Ta > 2 - multiplicity of 7.

For reference, we recall a theorem of Wiles that describes the characteristic 0

representation p restricted to the decomposition group at 2:

Theorem 2.1.5 ([45, Theorem 2]). If p; is an ordinary 2-adic representation cor-

responding to a weight 2 level Uo(N) form f, then p¢|p,, the restriction of py to the

decomposition group at a prime above 2, is of the shape

XA~
0 A

plDy ~
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for X the unramified character Gg, — Z; taking Froby to the unit root of X% —

as X + 2, and x is the 2-adic cyclotomic character.

2.2 N =1mod?&

2.2.1 K =Q(VN)

Theorem 2.2.1. If N = 1mod8, and m is a mazimal ideal of T§"(N) that is
Q(V/'N)-dihedral, then dim So(N)m > 4.

Proof. Let K = Q(v/N) and denote the fixed field of the kernel of 7 as L. In this
K, the prime (2) factors as pq for distinct p and g, and p must be unramified at 2
so Frobg, as a conjugacy class containing Froby and Frobg, must lie in Gal(L/K).
Moreover, p must be semisimple at 2, because if p = Ind%y for ¥ a character
of the unramified extension Gal(L/K), then plgaz/x) = X © X7 for some fixed
g € Gal(L/Q)\ Gal(L/K) and X9(h) = X(ghg™!) for h € Gal(L/K).

Theorem 2.1.5 and this semisimplicity statement tell us that the decomposition

)\—1
group at 2 in the mod 2 representation looks like , because the cyclotomic

0 A
character is always 1 mod 2. So we find that the polynomial det(zIdy —p) has

coefficients that are unramified at 2, and ag is a root of P(x) := det(x Idg —p(Frobsg)).
There are thus three cases: either P has no roots already in k := T®"/m, or it has
distinct roots lying in k, or it has a repeated root.

If P has no roots in k, then [kq : k| > 2 for a the extension of m, so Proposi-
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tions 2.1.2 and 2.1.3 say that the dimension of the space is at least

If P has distinct roots in k, then there are at least 2 extensions of m to T9. Namely,
if x1 and xg are lifts of the roots of P to T%, the two ideals a1 = (m,T5 — z1) and

ag = (m,Th — x9) are two maximal ideals. So in this case the dimension is at least

[k;al . FQ] dimkal Tul/(Q) + [kaz . FQ] dimkGQ Ta2/<2)

> dimy, Tay /(2) + dimy, Tay/(2) > 2+2 = 4.

Finally, suppose P has a double root. There is at least one maximal ideal a
of Ty above m. Because we know that p|p, is semisimple with determinant 1, the
double root must be 1 and p|p, is trivial. Then Wiese proves that since all dihedral
representations arise from Katz weight 1 modular forms (as Wiese proves in [42]),
the multiplicity of p in A is 2 [43, Corollary 4.5]. In this case the dimension is at

least

[kq : Fo] dimy, Tq/(2) > dimp, Tq,/(2) > 2 - multiplicity of 5 > 4.
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2.2.2 K =Q(vV=N)

Theorem 2.2.2. If N = 1mod8, and m is a mazimal ideal of T§"(N) that is
Q(vV—=N)-dihedral, then dim So(N)m > 2¢ where 2¢ = | C1(K)[2°°]|.

Proof. We first recall a well-known proposition of genus theory:

Proposition 2.2.3. Let K = Q(v/—d) be an imaginary quadratic field with d > 0

squarefree.

(a) The Fo-dimension of the 2-torsion of the class group of K is one less than the

number of primes dividing the discriminant A g Q-

(b) If d = 5 mod 8 is a prime, then the 2-part of the class group of K is cyclic of

order 2.

(¢) If d =1 mod 8 is a prime, then the 2-part of the class group of K is cyclic of

order at least 4.

A proof of the final two parts can be found as [8, Proposition 4.1].

We return to the case N = 1 mod 8. Proposition 2.2.3 tells us that the 2-part
of the class group is cyclic so there is an unramified Z/(2¢)-extension L'/K, say
Gal(L'/K) = (g) with ¢*° = Id. If we as before denote by L the fixed field of the
kernel of p, and we let M = L - L', the character X of Gal(L/K) whose induction
equals p, and which is nontrivial by definition of a dihedral ideal, can be extended
to a character Y : Gal(M/K) — Folz]/(z2" — 1)* given by mapping g to 2. This
can be done because L N L' = K, because [L : K] is odd and [L' : K] is a power

of 2. Then the induction of ¥ to p also extends from X' to p' : Gal(M/Q) —
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GLa(Fylz] /(22 = 1)). We will prove this representation is modular by describing
a g-expansion with coefficients in Zs[z]/(22” — 1) whose reduction mod 2 gives the
desired Frobenius traces as coefficients, and proving that the expansion is modular
via the embeddings of this coefficient ring into C. Then by the g-expansion principle
we will have the result.

Let us suppose we have chosen a primitive 2°th root of unity 7 := (ge inside Zo.
We may lift ¥ to a character y : Gal(L/K) — ZIZH’X. We may therefore also lift Y’
to a character ' : Gal(M/K) — Zgr[yc]/(ac26 — 1)*. We may tensor with Q9, and
identifying Q4" [z]/(z2° — 1) with Di_y Q4" (¢y:) by sending = to n26_i gives us e + 1

representations
xi : Gal(M/K) — Q3" ((yi) ™ and p; = Ind% xi : Gal(M/Q) — GLa(Q5 (Cyi)).

These are all finite image odd dihedral representations whose coefficients are alge-
braic and therefore may be compatibly embedded in C. All twists of p; are dihedral or
nontrivial cyclic, and therefore all have analytic L-functions. So by the converse the-
orem of Weil and Langlands (see [31, Theorem 1], for instance), each p; corresponds
to a weight 1 eigenform f; with level equal to the conductor of the representation and
nebentypus equal to its determinant. Here, the conductor is 4N and the nebentypus
is the nontrivial character of Gal(K/Q). This nebentypus, because K has discrimi-
nant 4N, is the character Ay := A\ A where A4 and Ay are the nontrivial order 2
characters of (Z/4Z)* and (Z/NZ)*; Agn(p) = 1 if and only if Frob, is the identity
in Gal(K/Q) if and only if p splits in K.

Each f; is a simultaneous eigenvector for the entirety of the weight 1 Hecke algebra
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T(4N), with coeflicients in Q§"({yi), so by returning to Q&' [z]/(z2° — 1) we obtain
a weight 1 form f with coefficients in this ring, which is therefore an eigenform by
multiplicity 1 results. (Remember that we defined S1(I'g(4N), Q5*[z]/ (22° = 1)) to
equal S1(I'g(4N),Z) @ QY [x]/ (z2° — 1), so this eigenform is only a formal linear
combination of holomorphic weight 1 forms with coefficients in Q§*[z]/ (z2° —1), and
may be better understood as corresponding to a ring map T(4N) — Q4" []/(z2"—1).)
We can easily check that the traces of the representation p’ = Ind% X Gal(M/Q) —
GLo(Q5[x]/ (22°—1)) correspond to the coefficients of f, and so since y' and therefore
p' are defined over ZY'[x]/ (z2° — 1), f also has coefficients in 75" x|/ (22" = 1).
Now we take the characteristic 0 form f and multiply by a modular form of weight
1, level I'1(4N) and nebentypus Aqny whose g-expansion is congruent to 1 mod 2.
That will give us a weight 2 level I'g(4N) form whose mod 2 reduction is equal to

the g-expansion of a form coming from 7’. We find such a form:
Lemma 2.2.4. The g-expansion meez qm2+N”2 describes a (non-cuspidal) mod-
ular form g in M(T'1(4N), Za, \yn)-

Proof. This follows from properties of the Jacobi theta function ¥(7) = Z qu, but

keZ
we give a different proof. Let ¢ range over all characters of the class group H of K, or

equivalently over all unramified characters of Gal(Q/K). By Weil-Langlands, Ind% 4]
as a representation of Gg gives us a weight 1 modular form. The determinant of
this induction is always equal to x g Qs the nontrivial character of the Galois group
Gal(K/Q), and the conductor is always equal to 4N. For two of the characters, &

trivial and 0 the nontrivial character of Gal(K(:)/K), Ind% d is reducible and the
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weight 1 modular forms are the Eisenstein series

BMN(q) = LAy, 0)/2+ Y ¢™ Y (~)TD2 (%>

m=1 d odd, d|m

and

WM =" Y ()l ()

m=1  dodd, de=m
respectively. The constant term of the former is, by the class number formula,
equal to h(—N)/2 where h(—N) = |C1(Q(v/—N))| is the class number of Q(v/—N).
Otherwise, the forms are cusp forms f5 with no constant term.
Lemma 2.2.5. The g-expansion of fs is given by f5 = Z q" Z 5(I).
m>1  ICO[:N(I)=m

Proof. 1f p is a prime inert in K, then there is no I with N(I) = p. In the represen-
tation Ind(% 9, Frob,, is antidiagonal, so it has trace 0, which is therefore the Hecke
eigenvalue. So for p inert in K, the coefficient is correct. If p = pypo for distinct
primes py and pg of K, then ZIQOK:N(I):p d(I) = 6(p1) + d(p2), and the trace of
Frob), in the representation is also d(p1) + d(p2) because the restriction of Ind% )
to G is diagonal with characters 6 and 69 for g a lift of the nontrivial element
of Gal(K/Q) and 69(h) meaning §(ghg™'). Since all primes over p are conjugate,
d9(p1) = d(p2) and so the trace of Froby, is d(p1) + 6(p2) as we needed.

If p = N, the ideal over N is principal, and so splits completely in M/K; on
inertia invariants, therefore, its Frobenius is trivial and the coefficient of ¢%V is 1, as
is necessary since 6((v/—N)) = 1 because ¢ is a character of the class group. And

if p = 2, the ideal p over 2 has order 2 in the class group. The inertia subgroup
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for some prime over 2 in M is generated by some lift of the nontrivial element
of Gal(K/Q), and the decomposition group is the product of this group with the
subgroup of Gal(M/K) corresponding to the class of p. And so on inertia invariants,
the eigenvalue of the decomposition group is the eigenvalue of Froby, which is 6(p).
So the coefficient for ¢2 is correct as well.

Finally, we can check using multiplicativity of both Hecke operators and the norm
map, as well as the formula for the Hecke operators Tpk, that the coefficients of ¢""

for composite m are as described also. ]

We compute the sum ) s f5 over all characters §, cusp forms with their multi-
plicity (stemming from ¢ and 61 giving the same form) and the Eisenstein series
once. By independence of characters, for each ideal I where §(I) = 1 for all §, that is
I is in the identity of the class group, the corresponding term in the sum is h(—N),

and for each other nonzero ideal I, the term vanishes in the sum. The sum is thus

h(—N
e Y ol X @
o# @) K1 0a=a+by/=NeOg

_ h(_N) 1+ Z qaZ—t-Nb2
(0,0)#(a,b)eZ

Dividing by h(—N)/2 gives the required form, which we call g. O

So we take fg and reduce the coefficients mod the maximal ideal over 2 and
get a form h € So(To(4N), Folz]/(22° — 1)), and hence a corresponding Zso-module
map T(4N) — Fy[z]/(22° — 1), if T(4N) now represents the Hecke algebra acting

on weight 2 forms of level I'g(4N). We know that h remains an eigenform because
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for odd primes, p = 1 mod 2 so increasing the weight doesn’t change the Hecke
action on the coefficients, and for 2 increasing the weight does not change the action
of Uy on g-expansions. Because h is an eigenform, we get a ring homomorphism
5 : T(4N) — F[z]/ (22" —1). The image of this map tensored with Fy is the entirety
of Fy[z] /(22" —1): we have prime ideals of K in all elements of the class group, so if

1 is some nonzero element in the image of ¥ not equal to 1, then both pz 4+ p~tz~1

1

and pz~! 4+ p 1z are in the image of 7, so that

-1 -1 -1 —-1,.—1 2 -2
po(prT ) Fp(pr T ) = (u )
is in the Fy vector space generated by the image of 7, and hence z is also. And since

7 is a ring homomorphism, all powers of x lie in the filled out image.

As described in [9, Section 3.3], we may find a representation

Gg — GLa(Fala]/(2* — 1)),

x—1

in the following way: we let a’ denote the kernel of T(4N) uR Folz]/ (22" —1) 225 Ty,
and we let T(4N ), denote the completion of T(4N) with respect to that ideal. The
Galois action on Jy(4N)[a’] breaks into isomorphic 2-dimensional representations
Ggp — GLo(T(4N)/d), and Carayol constructs a lift Gg — GLo(T(4N)y) [10,
Theorem 3]. We pushforward this map along T(4N), — Fa[z]/(2%" — 1) which also
has full image to get a representation G — GLo(Fa[z]/(#2° —1)). It’s clear that this
representation is isomorphic to 7’ = Ind% X' by looking at traces. So 7 is modular

of level I'g(4N).
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We know that h is an eigenform for Uy, and the operator Us lowers the level from
AN to 2N. So h = Ush is an eigenform of level I'g(2V). We recall the level lowering
theorem of Calegari and Emerton; here A is an Artinian local ring of residue field k

of characteristic 2.
Theorem 2.2.6 ([9, Theorem 3.14]). If p : Gg — GLo(A) is a modular Galois
representation of level T'g(2N), such that

1. p is (absolutely) irreducible,

2. p is ordinary and ramified at 2, and

3. p is finite flat at 2,

then p arises from an A-valued Hecke eigenform of level N.

Our 7/, pushed forward through the map Fo[z]/(z2° — 1) — Fy and restricting
to its true image, is irreducible, ordinary and ramified. All that remains in order
to apply the theorem is to check that p’ is finite flat at 2. It’s enough to show
this after restricting to Gal(Qq/QY"). But the representation has only degree two
ramification, so the image of Gal(Qq/ Q4") is order 2. And furthermore, it’s easy to
see that it arises as the generic fiber of D2 gver Zy", where D is the nontrivial
extension of Z/27 by s discussed in [28, Proposition 4.2], represented for example

by Zs|x, y]/(.:za2 — 2,y + 22 — 1) with comultiplication

r — 1 +x9 — 2r1209 and y — y1y2 — 2x122Y1Y2.
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So we may apply Theorem 2.2.6, and deduce that our modular form A is a modular
form of level N.

We have therefore constructed a surjective map T ®7, Fy — Folz]/ (2% — 1), so
the Fo-dimension of So(I'g(N), Fo)m must be at least 2¢. Note that Proposition 2.2.3

shows that this dimension is at least 4. O]

2.2.83 m s reducible

Theorem 2.2.7. If N = 1 mod 8, and m is a maximal ideal of T5"(N) for which

P s reducible, then dim So(N)m > w

Proof. We know that m C T#" is generated by 7 and 2 for all primes ¢ { 2N. In
[8, Corollary 4.9] and the discussion after Proposition 4.11, Calegari and Emerton
prove that Ta"/(2) must be isomorphic to ]Fg[x]/(xQe_l), where 2¢ = h(—N)°ven,
They accomplish this by setting up a deformation problem, namely deformations
of (V,L,p) where p is the mod 2 representation ( (1) f), ¢ is the additive character
G — Fo that arises as the nontrivial character of Gal(Q(i)/Q), and L is a line in
V not fixed by Gq. With the conditions set on the deformation, they find that it is
representable by some Zso-algebra R.

Next, they prove an R = T-type theorem, namely that R = T where T is the
completion at the Eisenstein ideal of the Hecke algebra acting on all modular forms
of level T'g(N), including the Eisenstein series. Finally they study R/2 which repre-
sents the deformation functor to characteristic 2 rings, and show that if p™V is the

universal deformation, then p™V factors through the largest unramified 2-extension

of K. This combined with their fact that a map R — Fa[z]/(2") can be surjective if
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and only if n < 267! proves that R/2 = Fy [x]/(xf—l).
Therefore, the same holds for the Eisenstein Hecke algebra T/2. So we know that

(7N)even
—

T is a free Zo-module of rank h . But we may split off a one-dimensional

subspace corresponding to the Eisenstein series, so that the cuspidal Hecke algebra
T&" has rank one less, and therefore has rank w — 1. (In fact, the full Hecke
algebra is determined also, because in any reducible mod 2 representation, T and
Upn must both map to 1, as U is unipotent and 75 maps to the image of Frobenius
under a mod 2 character unramified at every prime not equal to 2. But there are
no nontrivial such characters.) And therefore the dimension of the space So(N)m

h(_N)even
2

is the dimension of the space Hom(T2", Fy), which is dimension — 1, as

desired. O]

[23] partially prove this theorem using [8], doing the case of N = 9 mod 16. As we
see, the method works equally well for N = 1 mod 16. The only difference between
the two cases is that [8] prove that for N = 9 mod 16, the Hecke algebra T4 is a

discrete valuation ring, and therefore a domain, but that plays no role here.

2.3 N =5modS38

2.3.1 K=Q(/N)

Theorem 2.3.1. If N = 5mod 8, and m is a mazimal ideal of T§"(N) that is
Q(V/N)-dihedral, then dim So(N)m > 4.

Proof. Because 2 is inert in Q(v/N), we know that 7| D, is of size 2. Then the image

of p is a subgroup of a 2-Sylow subgroup of GLo(Fs), and therefore is isomorphic
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to an upper-triangular idempotent representation p|p, ~ ((1) ’i‘) If we compare to

Theorem 2.1.5, we find that in an eigenform for all 7}, including 75 that corresponds
to this representation, ag = 1. So the three methods of section 2.2.1 do not work.
Recall Proposition 2.1.3 that says if the representation p is totally real, then
dimy, Tq/(2) > 2-multiplicity of p, so if this multiplicity is at least 2 inside Jo(N)[a]
for some a containing m, we're done. So we assume that p occurs once in every
Jo(N)[a]. However, we know by [43, Theorem 4.4] that since p comes from a Katz
modular form of weight 1 and level N, and the multiplicity of p on Jo(N)[a] is 1,
that the multiplicity of p in Jy(N)[m] is 2. So by Propositions 2.1.2 and 2.1.3, we
know the dimension of Ty /(2) has dimension at least twice 2, or dimension 4, and

so dim So(N)m > 4 as required. O

252 K =Q(/=N)

Theorem 2.3.2. If N = 5mod 8, and m is a mazimal ideal of T§"(N) that is
Q(v/—N)-dihedral, then dim So(N)m > 2.

This follows in a similar way to Theorem 2.2.2. Proposition 2.2.3 proves that
the 2 part of the class group of K is order 2, so applying the results of section 2.2.2
proves the theorem in this case. The only difficulties are in verifying the conditions
of Theorem 2.2.6; that is, p is absolutely irreducible, ordinary, and ramified, and
p itself is finite flat at 2. It’s clear that the first three conditions hold, and the
final condition holds because QY"(v/—N) = QY(i) even though N = 5 mod 8, as
Q2(VN) = Qo(V/5) is unramified over Q9. So the group scheme in this case is

the same as the group scheme in section 2.2.2, and we have verified all necessary
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conditions.

2.4 N =3mod14

2.4.1 K=Q(N)

Theorem 2.4.1. If N = 3mod 4, and m is a mazimal ideal of T"(N) that is
Q(V/'N)-dihedral, then dim So(N)m > 2.

Proof. We let a be a prime of Ty containing m. Then again recalling Proposi-
tion 2.1.3, since K and therefore p are totally real, we calculate that the dimension
is at least

dimy, Tq/(2) > 2 - multiplicity of p > 2

as required. O

2.4.2 K=Q(K—N)

Theorem 2.4.2. If N = 3mod 4, and m is a mazimal ideal of T"(N) that is

Q(v/—N)-dihedral, then dim So(N)m > 4.

Proof. This was shown in [23, Proposition 14] using essentially the same method as
we use in sections 2.2.2 and 2.3.2. The only differences are that K/Q is unramified at
2 so the Artin conductor of 7 is N, not 4N, so no level-lowering is required; and that

we obtain a second eigenspace from our modular form f coming from the reduction

of f2. O
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2.5 The effect of Uy

In none of our proofs did we ever exploit the fact that Uy is not defined to be in

T5" as we did with 75, and the following gives an explanation why.
Lemma 2.5.1. There is an inclusion Uy € T5", so Ty = T5"[T3].

Proof. Since T§" = @, Tq', it suffices to prove that Uy € T for each maximal
ideal m. Let

P = Pm : Gg — GLa(Tg'/m) C GLa(F2)

denote the residual representation associated to m. If p is not irreducible, then it is
Eisenstein. The Eisenstein ideal J C Tg is generated by 1+ ¢ — Ty for £ # N and
by Uy — 1. Let a = (2,7) denote the corresponding maximal ideal of Ty. By [28,
Proposition 17.1], the ideal a is actually generated by 7, := 14 ¢ — T for a suitable
good prime ¢ # 2, N. But this implies that T4 = Ty and that Uy (and T3) lie in
TZ'. Hence we assume that p is irreducible.

If p is irreducible but not absolutely irreducible, then its image would have to be
cyclic of degree prime to 2. Since the image of inertia at N is unipotent it has order
dividing 2. Thus this would force p to be unramified at N. There are no nontrivial
odd cyclic extensions of Q ramified only at 2, and thus this does not occur, and we
may assume that p is absolutely irreducible.

Tate proved in [37] the following theorem:

Theorem 2.5.2 (Tate). Let G be the Galois group of a finite extension K/Q which

is unramified at every odd prime. Suppose there is an embedding p : G — Sla(k),
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where k is a finite field of characteristic 2. Then K C Q(v/—1,v/2) and Tr p(c) = 0

for each o € G.

If p is unramified at N, then detp is a character of odd order unramified out-
side 2, which by Kronecker-Weber must be trivial, so 7 maps to SLo(k). We may
apply Theorem 2.5.2 to determine that p has unipotent image, which therefore is
not absolutely irreducible. Hence we may assume that p is ramified at N. By local-
global compatibility at N, the image of inertia at N of p is unipotent. Because it is
nontrivial, it thus has image of order exactly 2.

Let {f;} denote the collection of Qg-eigenforms such that P, = p- Associated
to each f; is a field E; generated by the eigenvalues 7j for [ # 2, N. There exists a

corresponding Galois representation:
p:Gg — GLy(Ty' ® Q) = | [ GLa(E;

The traces of p at Frobenius elements land inside T4, and hence the traces of all
elements land inside T4'. By a result of Carayol, there exists a choice of basis so that
p is valued inside GLgo(T4"); that is, there exists a free Tq'-module of rank 2 with a
Galois action giving rise to p. Each representation py, has the property that, locally
at IV, the image of inertia is unipotent. In particular, p’G@N is tamely ramified.
Let (o, 7) denote the Galois group of the maximal tamely ramified extension of Qpy,

where o is a lift of Frobenius and 7 a pro-generator of tame inertia, so oro b =7V,

o8



We claim that there exists a basis of (T2")2 such that

B 11
Plag,, (T) = .

Note, first of all, that it is true modulo m by assumption (because p is ramified).

Choose a lift es € (T2M)2 of a vector which is not fixed by 7(7), and then let

e1 = (p(1)—1)es. Since the reduction of 1 and eg generate (T2 /m)?, by Nakayama’s

lemma they generate (T2)2. Finally we have (p(7) —1)% = 0 since (pg, (1) — 1)2=0

for each i.

Now consider the image of 0. Writing

a b
plo) = € GLy(Tg),
c d

the condition that p(c)p(r) = p(7)N p(c) forces ¢ = 0. But then if

* *
plo) = € GLao(T3),
0 =z

then for every specialization py,, the action of Frobenius on the unramified quotient
is x. But for each py,, the action of Frobenius on the unramified quotient is the

image Uy (f;) of Un. Hence this implies that x = Upy, and thus that Uy € Ta'. O
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CHAPTER 3
THE INDEX OF T*" IN T

3.1 Introduction

Let N be a prime number and let Sy(I'g(/V),Z) denote the modular forms of weight
2 and level I'g(IV) with integer coefficients, and for any other ring R, we denote
So(To(N), R) = S9(I'g(N),Z) ® R. If R is a characteristic p ring, we define the
space So(Lg(N), R)¥2¥ to be the R-module of Katz forms as defined in [21, Section
1.2], and define similar notation for the spaces of weight 1 forms. For N { n, let
T, denote the nth Hecke operator inside End(So(Tg(N),Z)), and let Uy denote the
Nth Hecke operator. We let T?" denote Z|[T3,T5, .. .|, the algebra generated by T,
for (2N,n) = 1, and we denote T[Ty, Un| by T. The goal of this chapter is to

compute the index of T?" inside T. Specifically, we prove the following theorem in

sections 3.3 and 3.4:

Theorem 3.1.1. The quotient T /T?" is purely 2-torsion, and
dimp, T/T* = dimp, Sy (To(N), Fa) K%,

In other words, if c = dimp, S1(T'o(N), Fo) K82 s the dimension of the weight 1 level

To(N) Katz forms over Fo, then the index of T* in T is equal to 2°.

The setup of this chapter is as follows. In section 3.2, we introduce some facts
from the literature about modular forms and establish a duality theorem between

modular forms and Hecke algebras. In section 3.3 we prove the first half of the
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theorem, that T#" contains 2T as submodules of T, so the quotient T /T?" is purely
2-torsion. Then in section 3.4 we use a theorem of Katz to relate the extra elements
of T to weight 1 modular forms using the duality, and finally establish the equality of
Theorem 3.1.1 between dimensions. In section 3.5 we conclude with some examples,
and some theorems and conjectures we propose based on the work of Cohen-Lenstra

and Bhargava.

3.2 Preliminaries

3.2.1 From Z to Zs

We start by proving that Uy € T thereby reducing our work to considering
Tan C Tan [TQ].

Theorem 3.2.1. Uy € T?".

Proof. It is enough to check that Uy € T*" ® Zj for every p: if T*" and T*"[Uy]
have different ranks as Z-modules, then the Zj-ranks of T*" ® Z;, and T*"[Uy]| ®
Zp = T @ ZplUn] are also different for every p, contradiction. On the other
hand, if rank(T?") = rank(T*"'[Uy]), then the quotient T*"[Ux|/T?" is finite. If
it’s nontrivial, then for any prime p dividing its order, there is a surjective map
(TMUN] ® Zp) /(T @ Zp) — (T*"[Uy]/T*) ® Zjp with nontrivial image. So for
this p, T*"[Un] ® Zp # T*" ® Zy. Therefore, we will only check whether T?" ® Zj,
contains Up. Further, as T*" ® Zj is a complete semi-local ring, it splits as a direct
sum of its completions at maximal ideals, so it’s further enough to check that Up; is

in T%' for the completion Tg" at each maximal ideal m.
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We proved as Lemma 2.5.1 that Uy € T*" ® Zo = T5", so the statement is true
for all maximal ideals over 2. So let £ be an odd prime, m be a maximal ideal of T?"
over ¢, and a be a maximal ideal of T containing m.

Let Ty be the completion of T with respect to a, and let A be the integral closure
of Ty over Zy, which can be written as A = @;0; for O; finite extensions of Z,. The
maps

T —Tqg—A— O,

produce conjugacy classes of eigenforms with coefficients in O;, with the coefficient
aj j of ¢ equal to mi(T;) if (5, N) = 1, or m;(U;) if N|j. These are newforms as N
is prime, and there are no weight 2 level 1 forms. By Eichler-Deligne-Shimura-Serre
there are representations p; : Gg — GL2(0;), unramified away from (N, so that
Tr(p;(Froby)) = a; ), for all primes p { {N.

[12, Theorem 3.1(e)] describes the shape of the local-at-N representation:

| €x  *
P Go N 0 &

where y is the unramified representation taking Froby to a; x and € is the N-adic

cyclotomic character. Additionally, det p; = ¢, so v2 is identically 1 and a; N 1s equal

to 1 or —1 for each i. We show that a; y is equal among all i over all a containing

m, so that the image of Upy in Tq is constantly 1 or —1 over all a, and hence, in

Twm = ®mcaTa, is inside T

By the Chebotarev density theorem, a representation is determined up to semisim-
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plification and conjugation by its trace on the Frobenius elements of unramified
primes. The p;(Froby) have trace equal to a; j, which is the image of T} under ;.
Because m is contained in a for all a, the image of 7}, under reduction of T*" mod m
is the same as the reduction of a; ;, mod a. Therefore, the semisimplifications of the
reductions of p; over all ¢ and all a are all isomorphic. But we can deduce the value
of a; y from the reduction of p; mod a, because pi|GQN has an unramified quotient
and a ramified subspace, and the same is true for the reduction mod a as ¢ # 2. So
the image of the Frobenius on the unramified quotient is either 1 or —1 for one (and
hence every) p;, and therefore a; ) does not depend on i or a, only on m. So Uy lies

in T4 for all m, and we’re done. [

We can now reduce from forms over Z to forms over Zo. With a similar argument
to the proof of Theorem 3.2.1, we can check that 75 is contained in all completions at
maximal ideals of T#* [%} . This is true as 2 is unramified in, and 75 is a trace of, the
modular representations over primes other than 2, so Chebotarev and completeness
of T4 show that Ty € Ta. So only at the prime 2 are T and T*" different. We can
calculate the index of T?" ® Zs inside T ® Zo, and by abuse of notation begin to call
these T?" and T instead. We know that T and T#" are semi-local rings, and as such,

they can be written as a direct sum of their completions:
T=T,, and T"= FH O
acT mCTan

Additionally, because the Zo-ranks of T and T?" are equal, Th € T ® Q9 =

T @ Qg = TaM [%] , and hence maps T?" — K where K is a finite extension of Q9
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can be uniquely extended to maps T — K. This means that modular forms are rigid
in characteristic 0: we can determine the image of T5 from the image of the remaining
operators, and hence from any modular representation p; : Gg — GLo(K) we may
determine the entire form f. We say that p is ordinary if the restriction p|p, of p to
the decomposition group at 2 is reducible, and we say that an eigenform is ordinary

if ag is a unit mod 2.

3.2.2 A Duality Theorem

In this section, we will compute the Pontryagin dual of one of the summands in T

with the following lemma. Let a be any maximal ideal of T and let
52<F0(N)7 ZQ)CI =e€- SQ(FO(N>7 Z?)

where e is the projector T — T4.

Lemma 3.2.2. The Pontryagin dual of Tq is M = li_n>1Sg(F0(N),ZQ)a/(2”) where

the transition maps are multiplication by 2.

Proof. First, we note that Ty acts on M because Tq acts compatibly on each level.
If any element T" € Ty acts trivially on M, then on any given modular form in
So(Tg(N),Z2)a, it acts by arbitrarily high powers of 2, and hence acts as 0. Then T’
acts trivially on the rest of So(I'g(N),Zs2), so T is the 0 endomorphism. Therefore,
M is a faithful Tg-module.

We also know that M[a], the elements of M killed by all of a, is a subspace

of S9(T'0(N),Z29)a/(2) = So(I'g(IN),Fa)q. It is a vector space over T/a, although
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through the action of T, not by multiplication on the coefficients. We explain why

it’s a 1-dimensional T/a-vector space. The map
So(Tg(N),F9) — Hom(T,Fs), f ¢f Ty — an

is injective by the g-expansion principle. The forms killed by a must correspond
to maps factoring through T/a, so the space of forms is at most the dimension of
Hom(T/a,F9) = dimg, T/a. So the dimension as a T/a-vector space is at most 1.

On the other hand, there is at least 1 form in M][a], because we may take the
form Tiq + Taq® + T3¢ + ... € So(I'op(N), T/a) and consider its image under the
trace map T/a — Fo. This is nonzero because the trace map is nondegenerate, and
because the Hecke operators generate T additively. This is in the kernel of a because
the trace of a form is just the sum of its conjugates, and for any expression in a in
terms of the Hecke operators with coefficients in F9, because its application to the
original form is 0 by definition, its application to any of the form’s conjugates must
also be 0 (because the Hecke operators act Fa-linearly on a form’s coefficients and
hence commute with Galois conjugation), and so too must its application to the sum.
Because the trace form has coefficients in F9, we’ve found a nontrivial form in M[a],
and this must be dimension 1 as required.

We consider the Pontryagin dual of M: as M is a Zg-module, the image of
any map M — Q/Z must land in Q9/Zs. So let MV = Homg, (M,Qo/Z2). We
endow this with a Tg-module structure by letting (T'¢)(f) = ¢(T'f). Because
So(To(N),Z9o)q = Zg for some k because it is torsion free, M ~ (Qq/Z2)" as a

Zo module. So if ¢(f) = 0 for all ¢ € MV, we know that f = 0. If T'¢ = 0 for all ¢,
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then ¢(Tf) = 0 for all ¢ and f, and so Tf = 0 for all f, and T = 0. So M" is also
a faithful Ty-module.
Further, Tq injects into MY: we can rewrite

1
M =lim —

— 2

So2(To(N), Z2)a/S2(To(N), Z2)a

where the transition maps are inclusion. Then the Tq x M — Qo/Z9 as (T, f) —
a1(Tf) defines the injection. By Nakayama’s lemma and the duality of M[a] and
MY /a, the minimal number of generators of MV as a Tg-module is 1. So we've

proven that MY ~ T,. ]

We may use Pontryagin Duality to find that the dual to T,/2 = M"Y /2 is M|[2],
which is exactly So(I'g(N),Z2)a/(2) = S2(I'g(N),F2)q. Thus we obtain a perfect
pairing

Ta/2 x So(Lo(N),F2)a — Fo, (T, f) = a1 (Tf).

We may sum these pairings over all a, because Hecke operators and forms with
incompatible maximal ideals annihilate each other. Therefore we obtain a perfect

pairing T/2 x So(I'g(N),Fo) — Fa.

3.3 275 is integral

In this section we prove the following lemma:

Lemma 3.3.1. For any element T € T, the element 2T € T lies inside T3,
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First we prove a lemma describing the image of the representation corresponding

to a non-Eisenstein ideal.

Lemma 3.3.2. Suppose m does not contain the Fisenstein ideal. Then there is a

representation

P GQ — GLQ(T%?).
that is unramified outside 2N, and which satisfies Tr(p(Froby)) = Ty for £ 2N.

Proof. Let A = T3 and A’ is its integral closure over Zo, which can be written
as the product [[; O; of a collection of integer rings. We know that there exist
representations p;- 1 Gg — [I; GL2(0;), by Eichler-Shimura-Deligne-Serre. The
image is GLo(Q;), because G is compact, and we may choose an invariant lattice

on which it acts. These p; combine to give a representation
o =1]ri: Go— []GL20).
1 1

We know that the traces of the representations at Froby are the images of T} for
all £ 1 pN, so the trace of p/ by Chebotarev Density always lands in T22. We assumed
m did not contain the Eisenstein ideal, so we know that each p;, and therefore the
full p/, is residually irreducible. By [10, Theorem 2] we find that p’ is similar to a

representation

P GQ — GLQ(T%H).
]

To prove Lemma 3.3.1, we look at the three different possible cases and deduce
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that the projection of 275 to Tq lies in T&' for each m C a. Further, we prove that
T22 lies in T&" - To + T&Y, so that any 7' € T, being an element in T?"[T3], lies in

TaY - To + T3 also, and hence is half of an element in Tg".

3.3.1 p ordinary irreducible

We first assume that the residual representation Gg — GLo(Ty!/m) is irreducible
but the local residual representation at 2 is reducible. We will show that 275, as an
element of T4 (T3], actually lies in T3'. This will be done by proving it is in the
ring generated over Zo by the traces of p. Equivalently, we will look at the traces
of p ®z, Q2. This breaks the representation into a direct sum D; pg ®Q2: Gg —
[1; GLa(E;). Each of the p! themselves have the same residual representation which
is reducible when restricted to the decomposition group, so all these representations
are ordinary.

Looking at a given p;, we may apply Theorem 2.1.5 to it to obtain a shape of
pi| Dy~ In particular, the trace of an element p(g) is equal to (A H(g)+M(g) with A
the unramified character whose image of Frobenius is the unit root of X2 —T5X +2,
and Y is the cyclotomic character. If a denotes the unit root of 22 —ag;r+2 = 0, then
letting g be an element of Gal(@%b /Q2) which both is a lift of Frobenius and acts
trivially on the 2-power roots of unity (so x(g) = 1), then we know Tr(g) = a+a L.
If we let h be a lift of Frobenius with y(h) = —1, we find that Tr(h) = o — a~ L.
And by definition, we know a + % = ag, 50 2ag; = 2a + 40~ = 3Tr(g) — Tr(h).

We now look at the product of representations. The elements g and h were

independent of the coefficient field, so we know that the element of Tq' ® Q2 that

68



is 2ag ; in each coordinate, namely 275 ® 1, is equal to 3Tr(g) — Tr(h). So 275 is in
the ring generated by the traces of elements, and thus in T

Similarly, we can prove that 7. 22 is in T3 + T5 - T4 in each coordinate, we can
calculate that

a3; = Tr(g)ag,; + (Tr(gh) — Tr(g?) — 1).

So in T[Ty, we find that T3 = Tr(g)Ty + (Tr(gh) — Tr(g?) — 1). So T2 C Tal +
Ty - T and therefore so is every power of Th. So we know that 2Ta*[T5] C Tar,
and the T4'-module quotient T4 [T5]/Ta! is an Fy vector space. In section 3.4 we

will calculate its dimension.

3.3.2 p reducible

We now suppose T corresponds to a reducible residual representation, so that m
is the Eisenstein ideal generated by 2 and Ty for £t N (including ¢ = 2). We claim
that Th is already in T%'. This is because by [28, Proposition 17.1], the Eisenstein
ideal of the full Hecke algebra is generated by 1 4 ¢ — T} for any good prime. So by

completeness, To — 3 and therefore 7 can be written as a power series in Ty — ¢ — 1.

3.3.8 p non-ordinary

We now assume that the residual local representation at 2 is irreducible, or equiva-
lently that in Ty, T5 is not a unit, where a is some ideal of T above m corresponding
to p. We claim that 75 is already in T4, so that a = m is actually unique, and the

index is 1.
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Theorem 3.3.3. If p is non-ordinary with corresponding map T** — F with maximal
ideal m, then for any a C T containing m, Ty € Ty is already contained in the image

of T&.

Proof. The T&'-module T&[T5] requires the same generators as the T?"/m-vector
space T/mT by Nakayama’s Lemma, so it’s enough to prove that T/mT is one-
dimensional over T?" /m. If it’s not, then all of T#"/m and T5 are independent over
Fa, so there is a homomorphism ¢ € Hom(T/mT, Fs) sending all of T#" /m to 0, and
T to 1. Recalling the perfect pairing after Lemma 3.2.2, we find a nonzero modular
form g € Sy(I'g(N),Fo)[m] with all odd coefficients equal to 0.

By part (3) of the main result of [22], we know that there is some nonzero form
f e S1(To(N),Fo)Katz with f2 = g. (Here, we're considering weight 1 Katz forms,
and so the weight 2 forms we construct may be Katz forms as well. So if necessary we
enlarge the spaces we're considering, but it doesn’t affect the conclusion.) As forms
with coefficients in Fo commute with the Frobenius endomorphism, f (q2) has the

T1a1 are the weight 1 Hecke algebras, it is quick

same g-expansion as ¢g. If T! and
to check that the corresponding Hecke actions on g-expansions of TLan are identical
to those of T#. Therefore f € S1(I'g(N ),]FQ)KatZ [m]. Further, we know that f is
alone in this space, by part (2) of [22]: any other form in S;(To(N), Fo)K8t%[m] has
the same odd coefficients, so the difference between it and f has only even-power
coefficients, and hence must be 0 by Katz’s theorem. So f is also an eigenform for
T in weight 1, say with eigenvalue by.

So we've discovered that So(Io(N), F2)%#2[m] is at most 2 dimensional, spanned

by Vf and Af. Here, V acts as V (300 ang") = > 0oy ang®™ on power series, so

70



that Vf = g, and can either be a weight-doubling operator, as used in [22], or a
level-doubling operator. Additionally, Af is the multiplication of f with the Hasse
invariant A, which preserves g-expansions. We can hence calculate the action of T5
on this space: we know that 75 acts in weight 2 via U +2V, where U (302 ang™) =
o2 agpq™, and in weight 1 as U + (2)V with (2) the diamond operator, which
is identically 1 on mod 2 forms. Further, we can compute that UV f = Af, as V
doubles each exponent and U halves it.

So we find

(V) =UVf=Af

L(Af) = UAf) = AUf) = A(Taf = 2V f) = Albaf) = 2V f

by —(2)

and the matrix for the 75 action is . (In these computations, the distinc-
1 0

tion between the level-raising V' and the weight-raising V' has been blurred, because
on g-expansions they are equal; we view both lines as equalities of weight 2 level
['o(N) forms.) As (2) is trivial, the determinant of this matrix is 1, so T» is invert-
ible. This is impossible because the form was non-ordinary. So there cannot be such

a form g, and T4'[T»] requires only one generator as a Ta'-module, as required. [

3.4 Dimension of T/T*"

In this section we prove the second half of Theorem 3.1.1. It is enough to look locally,

so we will localize at a maximal ideal m of T?". Because completion at only ordinary
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non-Eisenstein ideals have Th not immediately in T4, we assume that m is such an

ideal.

3.4.1 Relating T/T*" to S

We first recall the perfect pairing So(I'g(N),Fy) x T/2 — Fo, given by (f,T) —
a1 (T f). While proving this, we proved perfect pairings So(I'g(N),Fo)qxTq/2 — Fo,
and we now combine all a that contain m, to get a perfect pairing So(I'g(V), Fo)m X
Tm/2 — Fy where we denote Ty as the localization of T at the (not necessarily
maximal) ideal mT, and So(T'o(V),Fo)m = e - So([g(N),Fa) for e the projection
from T to Ty,. Considering the subspace of forms killed by Af, the operator defined
in [22] which acts as qdiq on g-expansions and raises the weight by 3, it’s clear
that the entirety of T&' annihilates it under the pairing, and we wish to prove

that this is the full annihilator. For ease of notation, let us write V' = Ty /2T,

Lemma 3.4.1. So(I'g(N),Fo)m N Ker A and T3 /2Tw are mutual annihilators in

this perfect pairing.

Proof. We've seen that they annihilate each other. Now suppose f = Y 72 aiqi €
W is annihilated by all of V/. By the usual formula for the Hecke action on g¢-
expansions, the coefficient of ¢! in Ty f is apn, so an = 0 for all odd n. Therefore
f € So(To(N),Fo)m N Ker A, and we can call this space Ann(V’). This is enough
to show they are mutual annihilators by dimension count, but we’ll prove the other

direction as well.
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The space W/ Ann(V") is represented by sequences of odd-power coefficients that
appear in forms in W. We first prove that the map V' — Hom(W/ Ann(V’),Fs)
induced by the pairing is surjective. Given a map ¢ € Hom(W/ Ann(V’), Fy) whose
input is sequences of odd-power coefficients, we can define a map ¢’ in the double

dual of V’ taking maps

X : V' = Fy to o(x(T1), x(T3), x(T5), . . .).

This is the definition of ¢ when (x(T}), x(73), . ..) appears as the odd-power coeffi-
cients of a form. And then if we've not defined ¢’ on all of the dual of V/, we can just
extend it any way we want. But because V' is finite dimensional, this ¢’ determines

an element T}, € V! for which

X(Ty) = ¢'(x) = o(x(T1), x(T3), . ..).

Then because any sequence of coefficients (ag,as,...) is given by a character X(a;) *
Tn, — ap (the restriction of such a x from Ty, for example), the pairing truly does
send Ti, to o.

Now given T that sends all of Ann(V’) to 0, T'f must only depend on the odd
coefficients of f. But then ¢ : f — a1(Tf) is an element of Hom(W/ Ann(V'), Fs).
So by surjectivity there is some element T' of V' with a1 (Tf) = o(f) = a1 (T’ f) for
all f € W/ Ann(V’). Then a1 ((T — T")f) is 0 for all f either in Ann(V’) or a lift
of an element of W/ Ann(V’), and so in all of W. Because the pairing is perfect,
T =T € V' as we needed. [
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Now that we know these are mutual annihilators, we obtain an isomorphism

V/V' — Hom(Ann(V'), Fy),

and taking dimensions and reinterpreting, we've proven that

dim Ty /T = dim Sa(To(N), Fo)m N Ker A6.

So we have proven the following.

Lemma 3.4.2. The indez of T4 in Tm equals the order of So(Ig(N),Fo)mNKer Af.

3.4.2  Lifting from weight 1 to weight 2

Now we use the main theorem of [22] to find a subspace of S1(Io(NN), Fg)Xa¥ that
maps under V' to Sy(I'g(N),Fo)m N Ker Af. As in Section 3.3.3, we have T#"-

Than and we

equivariance, and so the maximal ideal m has an exact analogue in
land in the subspace S1(I'g(N), IE‘Q)EW. We may not obtain the whole subspace be-
cause, while V' f is in the kernel of A# for all f € Sl(FO(N),]FQ)lITEatZ, we don’t know
that it’s a form that is the reduction of a Zg form, which is what T%" parametrizes.
In this section we will prove that the space of Katz forms of weight 2 actually are all

standard forms.

The first case is N =3 mod 4, which was taken care of Edixhoven:

Theorem 3.4.3 ([14, Theorem 5.6]). Let N > 5 be odd and divisible by a prime
number ¢ = —1 modulo 4 (hence the stabilizers of the group I'g(N) /{1, —1} acting on
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the upper half plane have odd order). Then So(To(N),Fo)K8% and Fo® Sy (Co(N), Z)
are equal, and the localizations at non-Eisenstein mazimal ideals of the algebras of
endomorphisms of So(Lo(N), Fo)XatZ gnd Héar(Fo(N),IFg) generated by all Ty, (n >

1) coincide: both are equal to that of So(T'g(N),Z) tensored with Fo.

So for primes N = 3 mod 4, we’ve proven the equality in Theorem 3.1.1. For
the remainder of this section we therefore assume N =1 mod 4. Further, up until
this point we’ve only worked with Fo-forms, but we change coefficients to Fo so that
we can find eigenforms associated to each maximal ideal. Theorem 3.4.3 still applies

as its proof in [14] can be extended to all finite extensions of Fa.

Theorem 3.4.4. There are no Katz forms that are not the reduction of a form in

SQ(F()(N),ZQ). That s,
So(To(N), Fa) Kot = Go(T(N), Fa).

Proof. Let ¢ be an arbitrary prime that is 3 mod 4, and we will look at the space
So(To(NC),Fg)Kat2 We can apply Theorem 3.4.3 to it and conclude that this space
is exactly the characteristic 0 forms tensored with Fs, so we may drop the Katz
superscript. Further, we know that all Katz forms of level I'g(V) lie in this space.
So we just need to know there are no extra level I'g(/V) forms within this space.

As TKatz g Fy can be broken into a direct sum of Fo-vector spaces on which
the semi-simple action of each operator is by multiplication by a constant, we know
So(To(N),Fo)K8t% can be written as a direct sum of generalized eigenspaces. If we

show every generalized eigenform in So(I'g(N), F9)¥8% ig the reduction of a modular
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form from So(Ig(N),Zs), then we're done. So suppose f is a generalized Katz
eigenform for all 77, including 75. Let the eigenvalue corresponding to 7y equal ay;
we will prove that if f & So(Ig(N),Fg), then a; = 0.

There are two maps from So(To(N), Fo)Kat% to So(To(N),Fa): the plain em-
bedding with equality on g-expansions, and the map Vj sending f(q) to f (qg). We

know Ty = Uy + £V, on g-expansions, so we find that
Ui(Ty — ag) = Up(Uyp + €Vy — ag) = U} — agUy + CU,Vy = U — agUp + £

as operators from So(T'g(N), Fg)Xat to So(Tg(N?),Fy). Then because f is a gener-

alized eigenform, we find
0= (U (Ty—ap)*) f = U NU} = apUy+0)(Ty—ap)* ' f = ... = (U —agUp+ O)F f.

If we factor X2 — ayX + £ as (X — a)(X — B) for some lift of ay, we've proven
that (Up — «)(Up — B) acts topologically nilpotently on any lift of f (which exists by
Theorem 3.4.4). This will eventually be used to prove that one of o or 3, and hence

both, reduce to 1 mod the maximal ideal of Z,.

Lemma 3.4.5. For any characteristic 0 newform g of level N¢, Uy — 1 acts topolog-

weally nilpotently.

Proof. The eigenform g gives us a representation p : Gg — GLg2 (Qy). The shape of

this representation at the decomposition group at ¢ is given by [12, Theorem 3.1(e)],
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as we recalled in the proof of Theorem 3.2.1, which says that

XE %
plp, =
0 X
where x is the unramified representation that sends Frob, to the Uj-eigenvalue of
g, and ¢ is the 2-adic cyclotomic character. Because the determinant is the 2-adic

cyclotomic character as well, we know that y2 = 1, so the Uy-eigenvalue of g is £1.

So Up — 1 is either 0 or —2, which both act nilpotently. ]

If « —1 and 8 —1 have valuation 0, then (Uy — «)(Uy — /) will not act nilpotently
on any linear combination of eigenforms which includes at least one newform, by
Lemma 3.4.5. As (U; — a)(Up — B) acts nilpotently on a lift of f, we know that
this lift is a linear combinaton of only oldforms, and hence f lifts to So(I'o(N), Zs).
Otherwise, one of « and 3, and hence both, are 1 mod the maximal ideal of Zy, and
soa+ B =0=ay.

Therefore, we have proven that if f is a generalized eigenform in So(I'g(V), Fg)KatZ
that has no lift to characteristic 0, then ay = 0 for any prime ¢ = 3 mod 4, as our
choice of ¢ was arbitrary. Letting g be a true eigenform in the same eigenspace as
f, we obtain a representation p, : Ggp — GL2(F2) with Tr(pg(Froby)) = ap. We
showed that p, has trace 0 on all Froby, so it must be the induction of a character
from GQ(i) to Gip. But such a representation is dihedral in the terminology of [23],
and [23, Theorem 12(1)] proves that it’s impossible for a dihedral representation on
Gg(s) to give rise to a form of level Co(N). So there can be no Katz eigenforms of

level T'g(V) that don’t lift, and hence no generalized eigenforms and therefore no
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forms at all. O]

From this, we conclude that all the forms V5 f, where f is a weight 1 form of level
N, are classical forms, and so the dimension of the space Sa(I'g(NV), Fo)m NKer A0 is
exactly the dimension S1(Ig(N),Fo)Kat  And so from Lemma 3.4.2, taking a direct

sum over all m, we obtain Theorem 3.1.1.

3.5 Examples

In this section we use Theorem 3.1.1 to make nontrivial observations about the index

of T2 inside T.

3.5.1 N =3mod4

Lemma 3.5.1. If N = 3 mod 4 is prime, the anemic Hecke algebra T is equal to

the full algebra T if and only if the class group Cl(Q(v/—N)) is trivial.

Proof. If K = Q(v/—N) has class number greater than 1, by Proposition 2.2.3(a),
since the discriminant of K is —N which is divisible by only a single prime, the 2-part
of the class group of K is trivial, so CI(K') has a nontrivial mod 2 multiplicative char-
acter which translates to an unramified mod 2 character y of Gal(Q/K). Inducing
this to Gal(Q/Q), we get a dihedral representation with Artin conductor equal to
N. Wiese proves in [42] that all dihedral representations give rise to Katz modular
forms, and so the space S1(Io(N ),]Fg)Katz is nontrivial, and hence T?" C T.

This shows that if N is not 3,7,11,19,43,67 or 163 (and is still a 3 mod 4 prime),

T*(N) € T(N). On the other hand, for N = 3 and N = 7 there are no modular
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forms of weight 2, and for the other N, computer verification using the techniques

of modular symbols, such as described in [35], provides the following table:

N Ty

11 —2Ty

19 0

43 —oTy — 2T + Ty

67 T — Ty

6 30T — 1673 — 23T5 — 9T + 18Ty + 3Ty — 2473

+12T15 + 40117 — 16719 — 14151 — 91n3 + 2155 + 32157

Table 3.1: Ty values in T?" for remaining N

These each prove that there are no Katz eigenforms of weight 1 and level N for any

of these N, and in turn that there are no Galois representations that could provide

such forms. Of course, we knew a priori there were no dihedral representations, as

they would need to arise from the class group, but we now know that there are no

larger-image representations. O

3.5.2 N =1mod4

Question 3.5.2. Is it true that for a positive proportion of prime N = 1 mod 4,

the anemic Hecke algebra T?" is not equal to the full algebra T, and for a positive

proportion of N, T?" is equal to T?

We cannot immediately claim anything about the class group, because the Cohen-
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Lenstra heuristics [11, C11] claim that approximately 75.446% of positive prime-
discriminant quadratic extensions have trivial class group, so that there can be no
dihedral modular forms.

The strong form of Serre’s conjecture due to Edixhoven [13, Conjecture 1.8] is
not known, where the strong form differs from the form proven by Khare and Win-
tenberger in [24] in this weight 1 case. A result of Wiese for dihedral representations
[42] is known, and a converse (that the corresponding representation 7 is unramified
at 2) has been proven [44, Corollary 1.3]. We may also use Theorem 3.1.1 to con-
struct weight 1 forms in the case that the eigenvalues of Frobg in the characteristic
2 representation are distinct, because there are two possible values for ao, implying
that Ty # T

We also know the subgroups of SLo(Fs), by Dickson, of four types: cyclic, upper-
triangular, dihedral, and full-image (see [36, Chapter 3, Theorem 6.17]). We know a
modular representation must be absolutely irreducible: if not, say f is a weight 1 form
for which py is reducible. Then Af is a weight 2 form with the same representation,
along with V f in the same generalized eigenspace. But in Section 3.3.2 we proved
that Ty is already contained in the Hecke algebra corresponding to any eigenform with
reducible representation, meaning that the dimension of So(I'g(N), F2)m is dimension
1, not 2. Therefore only absolutely irreducible representations can be modular,
so only dihedral and full-image representations can exist. So assuming the strong
version of Serre’s conjecture, we know that for any weight 1 forms to exist at level
N, we need either a dihedral extension of Q, which must arise from inducing from

the class group of Q(\/N ), or we need an extension of Q unramified outside N with
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Galois group isomorphic to SLg(F,x) for some k.

Work has been done by Lipnowski [27] to interpret Bhargava’s heuristics for
the Galois group GLa(IF)) for p a prime, in order to count elliptic curves by their
conductors through their p-adic representations. Although not done in this thesis, it
appears tractable to similarly analyze the groups SLg(F,x) and obtain a heuristic,
explicit or not, on how many primes p have an elsewhere-unramified extension with
each of these as their Galois groups. Because of the Cohen-Lenstra heuristics, it
appears likely that infinitely many, even a positive proportion, of primes 1 mod 4
have no weight 1 forms, so T = T?", and a positive proportion of primes have some

weight 1 form so T*"* C T.

Explicit example: N = 653

An instructive example is that of N = 653. Of course this is 1 mod 4, and so any
dihedral representation that would give a weight 1 form would have to come from an
induction of the class group of @(\/@), but the Minkowski bound is %\/@ ~ 12.77,
and 2, 3,5 are inert and 7 = 230% — 653 - 92 and —11 = 512 — 653 - 22 are norms of
principal ideals. So Q(v/653) has class number 1. But the Galois closure L of the
field Q[z]/(x° + 323 — 622 + 22 — 1) has Galois group As = SLa(FF4), and is ramified
only at 653 with ramification degree 2 and inertial degree 2. Therefore, Edixhoven
predicts that the tautological Galois representation gives rise to a weight 1 level
['p(653) modular form. This is not a classical form, as SLo(F4) does not embed into
GL2(C), where all weight 1 characteristic 0 eigenforms must arise from.

On the other hand, SLy(F4) does embed into PGLy(C), and by a theorem of Tate,
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all projective Galois representations lift. We can follow the proof given by Serre in
[31] to obtain a lift, unramified away from 653, and with Artin conductor 6532. The
fixed field of the kernel of this representation is a quadratic extension of

Llz]/(x* — 23 + 8222 — 1102z + 13537), which is itself the compositum of L and the
quartic subfield of the 653rd roots of unity. Locally at 653 it is a faithful represen-
tation of Gal(Qgs3(3/653,v/2)/Qgs3), a Galois group isomorphic to (z, y|z® = % =
e, yr = TOY).

We therefore find that, as the Artin conjecture for odd representations has been
proven in [24], an eigenform of weight 1 and level 653° that reduces to the char-
acteristic 2 form of level 653 we found above. We can additionally twist by the
nontrivial character of Q(v/653)/Q, not changing the determinant or level, to get a
second Artin representation, and hence a second modular form of the same weight
and nebentypus. These two eigenforms are congruent mod 2, so their average is also
an integral form, and there is therefore a nilpotent element of the weight 1 mod 2
Hecke algebra, in a similar sense to [9, Lemma 3.8]. And conjugating the F4-forms,
we obtain 2 more weight 1 forms of level 653. So the index of T?" in T must be at

least 16.
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Indeed, we can find the following four (non-eigen)forms of weight 2 and level 653:

f1= 0q1 —Hq2 +2q3 —4q4 +Oq5 +2q6 -I—Oq7
+4q8 +Oq9 +4q10 +Oq11 +1q12 —6q13 +
fo=0¢" 0%  +24° —3¢* +0g° +24° +2¢"
—|—2q8 +4q9 —3q10 —1—4q11 —6q12 +0q13 +...
fs=0¢"  +0¢  +03 +4q* +0g° +14° +2¢"
+2¢8  +4¢  +5¢10  424YY 4042 44 4+
fa= Oq1 —2q2 —6q3 +2q4 +Oq5 —|—2q6 +2q7
58 4047 +0q 2q11 6412 203 4

each of whose odd-power coefficients are all even, proving that none of Th, Ty, Tg
or Tg are in T?" plus the other 3. But a calculation up to the Sturm bound of
109 proves that there are no other modular forms with all odd-power coefficients
and coefficients of ¢2, ¢*, ¢%, ¢® all even but some other coefficient is odd. Therefore
T =T + 2T + (T5, Ty, Tg, T3), so T/(2T + T?") is generated as an Fo-vector space
by T5,T4,Tg,173. By Lemma 3.3.1, T?" contains 2T, but from the above forms
Ty, Ty, Tg, Ty are independent in T/T?" so the index of T?" in T must be exactly

24 — 16.
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