
THE UNIVERSITY OF CHICAGO

LIFTS OF MODULAR FORMS COMING FROM MOD 2 GALOIS

REPRESENTATIONS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

BY

NOAH TAYLOR

CHICAGO, ILLINOIS

JUNE 2021



Copyright © 2021 by Noah Taylor

All Rights Reserved



To my parents.



“There are five elementary arithmetical operations: addition, subtraction,

multiplication, division, and. . . modular forms.”

Martin Eichler (Apocryphal)
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ABSTRACT

This thesis is made up of 3 separate pieces of work in two themes. In the first half, we

prove a few cases of the Sato-Tate conjecture, which says that for an abelian surface

A over a totally real field F , the Frobenius elements Frobλ acting on the `-adic

Tate module (or more precisely its dual) can be formed into a compatible system of

elements over all `, viewed (up to twist) as lying in a compact subgroup of GL4(C),

and have traces that are equidistributed according to the smallest such compact

subgroup possible. To do so, we use a result of [1] which proves automorphy of certain

`-adic representations, and in another case we construct a new decomposition of the `-

adic Tate module representation as a tensor product of a finite-image representation

and a 2-dimensional representation easily handled by earlier methods. Then we

consider the final remaining cases and prove some partial results on the distribution

of the traces of the Frobenii, and conversely explain precisely why we can’t say any

more without further automorphy theorems.

In the latter half of this thesis, we consider the question of how the odd-power

coefficients of a modular form control the even-power coefficients in the space of

modular forms of weight 2 level Γ0(N) with N prime, from two different angles. We

first study a question of Kedlaya and Medvedovsky about the number of modular

lifts of a mod 2 dihedral representation, and give lower bounds for the number of

such lifts depending on N mod 8 and whether the representation is totally real. We

use multiple different methods to construct lifts: in some cases, we are able to use

the connectedness of the real points of the Jacobian J0(N) of the modular curve

X0(N) to double the dimension; in other cases, we are able to use the class group of
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the fixed field of the representation to manually construct weight 1 forms that can

be multiplied by a lift of the Hasse Invariant to give weight 2 forms of the correct

level and Nebentypus.

We then prove that the difference between the anemic Hecke algebra that excludes

T2 and the full Hecke algebra including T2 is exactly described by the space of Katz

forms in characteristic 2, weight 1 and level Γ0(N). We prove first that the difference

is encompassed in the space of mod 2 forms with only even-power terms, which then

arise from weight 1 forms by squaring. We then prove that there are no weight

2 level Γ0(N) Katz forms, so every form arising from weight 1 is a classical form,

completing the bijection between the Katz forms in weight 1 and the weight 2 forms

with only even-power monomials, and hence with the quotient T/Tan. Finally, we

end with questions about the proportion of primes N for which T of level N is equal

to Tan; if N ≡ 3 mod 4 there are only finitely many examples, but for N ≡ 1 mod 4

we observe that it’s probable there are a positive proportion of such primes.

This thesis is a compilation of three papers: [39], [38] and [40]. They have been

lightly edited to eliminate redundant or internal citations, and some irrelevant asides

have been removed, but otherwise they remain intact. In particular, notation is

introduced at the start of each chapter that corresponds to that particular chapter’s

usage; while it has mostly been synchronized, in case of discrepancy we shall refer

to the specific notations of the chapter.
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CHAPTER 1

SATO-TATE DISTRIBUTIONS ON ABELIAN SURFACES

1.1 Introduction

Let C be a genus g curve over a number field F . Given a prime v of F , with residue

field Fv of size qv, a theorem of Hasse says that the number Nv of Fv points on C is

between qv + 1− 2g
√
qv and qv + 1 + 2g

√
qv, so that

av :=
qv + 1−Nv√

qv
∈ [−2g, 2g].

The Sato-Tate conjecture asks for the distribution of the av in [−2g, 2g] as qv →∞,

and predicts that they are equidistributed (after passing to a finite extension F ′/F )

with respect to a measure depending on the Mumford-Tate group of the Jacobian of

C. For example, if E is an elliptic curve with CM, the distribution is given either

by the pushforward of the Haar measure of SO(2) or of O(2) under the trace map.

It has also been proven in [19] and [5] that if F is totally real and E does not have

CM, then the distribution is the pushforward of the Haar measure of SU(2).

We look at genus g = 2 curves and 2-dimensional abelian surfaces. In complete

analogy with the elliptic curve case, [15] describes 52 possible subgroups of USp(4)

whose pushforwards describe the normalized point counts av for a genus 2 curve, and

notes that it is likely possible to prove the Sato-Tate conjecture in many cases with

a similar method to that of the elliptic curve case. [20] uses the powerful potential

automorphy theorem of [4] to prove the conjecture for all but five of the non-generic
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cases that occur over totally real fields. In this paper we will use a more powerful

potential automorphy theorem of [1] to extend the proof in [20], and then we extend

[20]’s work to prove the conjecture for four other subgroups. Of course, given the

Jacobian J(C) of a genus 2 curve C, we can obtain the numbers av directly from

J(C), by taking the normalized trace of the action of Frobv, so we may forget about

the curve C entirely and work directly with abelian surfaces.

The theorems we prove are as follows:

Theorem 1.3.4. If A/F is an abelian surface, F a totally real field, which has a

two-dimensional real endomorphism ring defined over a quadratic extension of F

which is either totally real or CM, then the Sato-Tate conjecture holds for A.

Theorem 1.3.6. If A/F is a (not necessarily simple) abelian surface, F a totally

real field, which has quaternionic multiplication defined over a dihedral extension,

then the Sato-Tate conjecture holds for A.

These two theorems are equidistribution results, so we know the exact distribu-

tions of the av. However, we cannot currently prove the Sato-Tate conjecture for A if

the endomorphism ring of A is Z, or if the quadratic extension described in Theorem

1.3.4 is neither totally real or CM. In these cases, we prove lesser results:

Theorem 1.4.1. If A/F is an abelian surface, F a totally real field, then for any

ε > 0, av < −
2

3
+ ε for a positive proportion of primes v, and av >

2

3
− ε for a

positive proportion of primes v.

Theorem 1.4.3. If A/F is an abelian surface over a totally real field which has a

two-dimensional real endomorphism ring defined over a quadratic extension of F ,
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then av < −2.47 for a positive proportion of primes and av > 2.47 for a positive

proportion of primes.

The paper is divided as follows: In section 1.2, we set up the terminology and

state the Sato-Tate conjecture precisely. Section 1.3 is devoted to proving Theorems

1.3.4 and 1.3.6 above, and the goal of section 1.4 is to prove the asymptotics in

Theorems 1.4.1 and 1.4.3, as well as others in Theorems 1.4.2 and 1.4.4.

1.2 Setup

1.2.1 The Conjecture

To set up the Sato-Tate conjecture, we follow [15, Section 2]. Fix a number field F ,

an embedding into Q, and an embedding of Q into C. Let A be an abelian variety

of dimension 2 over F . We choose a polarization of A. Given a prime `, this allows

the identification of the `-adic Tate module with the etale and singular homologies

V`(A) ' H1,et(AQ,Q`) ' H1,et(AC,Q`) ' H1(A
top
C ,Q`) ' H1(A

top
C ,Q)⊗Q Q`.

The Weil pairing on the dual of the Tate module V̂`(A) corresponds to the cup

product pairing on the cohomologies, so it is a nondegenerate alternating pairing and,

given a symplectic basis of V̂`(A), induces a continuous map ρA,` : GF → GSp4(Q`).

We let G` be the image of this map, and GZar
` be the Zariski closure in GSp4(Q`).

Then we let G1
F be the kernel of the cyclotomic character χ` : GF → Z×` , so that

g ∈ G1
F acts trivially on the Weil pairing. Then G1

` is the image of G1
F under

3



ρA,` and G
1,Zar
` is the Zariski closure. Because G1

F acts trivially on the Weil pairing,

reconsidering it as a pairing on the vector space, G
1,Zar
` is the kernel of the similitude

character

ψ : GZar
` → Z×` , 〈hv, hw〉 = ψ(h)〈v, w〉.

Fix an isomorphism ι : Q` → C for this `. We then define G = GZar
` ⊗Q`

C and

G1 = G
1,Zar
` ⊗Q`

C; then G/G1 ' C via the similitude character. We look at the

image of Frobv in this quotient for v a prime of F with residue field Fqv . Certainly

Frobv(ζ`n) = ζ
qv
`n so Frobv maps to qv. An argument of Deligne, summarized in [33,

Section 8.3.2], shows that the center of the original GSp(4) lies in the center of G,

so we may divide ρA,`(Frobv) by q
1
2
v to get an element gv in G1 whose eigenvalues

have norm 1 because of the Weil conjectures.

Definition 1.2.1. The Sato-Tate group STA of A is a maximal compact Lie sub-

group of G1 inside USp(4), which depends on ` and the embedding ι.

The element gv has eigenvalues of norm 1 so its semisimple component (and even

itself, because as described in the errata to [15], gv is already semisimple) lies in some

conjugate of STA; we let s(v) denote its conjugacy class. The Sato-Tate conjecture

is as follows:

Conjecture 1.2.2. The elements s(v) are equidistributed among the conjugacy classes

of STA, under the pushforward of the Haar measure from STA.

We record that the Sato-Tate group has a common model over Q over all `, as in

[15, Theorem 2.16], but it’s not known whether the conjugacy classes s(v) themselves

are independent of `.
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1.2.2 Proof strategy

Suppose S is the set of primes outside of which ρA,` is unramified. The general idea

for proof is laid out in [32]; therein the following theorem is shown.

Theorem 1.2.3. Suppose that, for any irreducible representation r of STA, the L-

function

LS(r, s) =
∏
v 6∈S

1

det(1− r(s(v))q−sv )

has a meromorphic extension to the half-plane Re(s) ≥ 1, with no poles or zeroes

except possibly at s = 1. Then the elements s(v) are equidistributed in the conjugacy

classes of STA if and only if the L-functions LS(r, s) for irreducible nontrivial r have

no zero or pole at s = 1.

We denote the property of having no zeroes or poles on a region invertibility.

The L-function has factors at primes of S as well, but their factors do not add poles

or zeroes so we ignore them. To show invertibility of these L-functions, the only

known method is to equate them to L-functions of automorphic forms, a la [41], [19].

[20] covers most cases using [4, Theorem 5.4.1]; we introduce a new more widely

applicable theorem of [1]. We refer to [4, Section 5.1] for the definition of a weakly

compatible system.

Definition 1.2.4. A weakly compatible system of representations of GF is a 5-tuple

(M,S, {Qv(x)}, {rλ}, {Hτ}) with S a finite set of F -primes satisfying

� M is a number field, and {rλ : Gf → GLn(Mλ)} is a set of representations of

GF indexed over the primes λ of M . If v 6∈ S is a prime of F , then for λ not

over the same rational prime p as v, rλ is unramified at v.
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� The polynomials Qv(x) have rational coefficients and the characteristic poly-

nomial of rλ(Frobv) is equal to Qv(x), independent of λ.

� If v and λ are over the same rational prime p, then rλ is de Rham at v;

furthermore, if v 6∈ S, then rλ is crystalline at v.

� For each embedding τ : F ↪−→ M , the Hodge-Tate weights of rλ are given by

the multiset Hτ , and are in fact independent of λ.

Theorem 1.2.5 ([1, Corollary 7.1.11]). Suppose that F is a CM field and that the 5-

tuple R = (M,S, {Qv(x)}, {rλ}, {Hτ}) is a rank 2 weakly compatible system of l-adic

representations of GF such that Hτ = {0, 1} for all τ and such that R is strongly

irreducible. If m is a nonnegative integer, then there exists a finite CM extension

Fm/F with Fm/Q Galois such that the weakly compatible system SymmmR|GFm is

automorphic.

We recall that a strongly irreducible system is one where each representation is

irreducible even after restricting to finite-index subgroups of GF .

Remark 1.2.6. The difference between this theorem and [4, Theorem 5.4.1] that we

take advantage of is that [4, Theorem 5.4.1] requires all towers to be either CM

or totally real. In contrast, [1, Corollary 7.1.11] allows us to base-change from our

totally real field F to a CM field F ′, find an extension Fm over which the compatible

system SymmmR|GFm is automorphic, and be allowed the added condition that

Fm/F is Galois. This is not possible with the theorem of [4]; in asking that Fm/F

be Galois, we are only allowed base-change to totally real F ′.
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1.3 Sato-Tate for certain STA

We introduce the cases of the Sato-Tate conjecture we will prove. Let A be an

abelian surface defined over a field F . If L is the smallest field over which all

endomorphisms of A are defined, we define the Galois type of A to be the pair

(EndL(A)⊗R,Gal(L/F )) of a real algebra and a group with an action on the alge-

bra. [15, Theorem 4.3] proves that there is a correspondence between the Sato-Tate

group and the Galois type of an abelian surface with the following property: if the

type (E,G) corresponds to the Sato-Tate group K, then the algebra E corresponds

bijectively to the identity component K0 of K, and G is isomorphic to the component

group K/K0.

Therefore, we can equivalently divide the conjecture into cases indexed by the con-

nected component of the Sato-Tate group or by the endomorphism algebra EndL(A)⊗

R, which can then be further subdivided by including the component group. There

are 6 possible endomorphism algebras laid out in [15, Theorem 4.3] listed below,

along with the corresponding Sato-Tate connected component and its embedding

into USp(4):

� A: EndL(A)⊗ R = R, corresponding to ST 0
A = USp(4)

� B: EndL(A)⊗ R = R× R, corresponding to ST 0
A = SU(2)× SU(2) via M1 ×

M2 →
(
M1 0
0 M2

)
.

� C: EndL(A)⊗R = R×C, corresponding to ST 0
A = SU(2)×U(1) via M × z →(

M
z
z

)
7



� D: EndL(A)⊗ R = C× C, corresponding to ST 0
A = U(1)× U(1) via z × w →( z

z
w
w

)
� E: EndL(A)⊗ R = M2(R), corresponding to ST 0

A = SU(2) via M →
(
M 0
0 M

)
� F: EndL(A)⊗ R = M2(C), corresponding to ST 0

A = U(1) via z →
(
z·I2 0
0 z·I2

)
Further subdividing this list, we obtain 52 distinct Galois types, corresponding to 52

distinct Sato-Tate groups. Of these, 35 arise as the Sato-Tate group of an abelian

surface defined over a totally real field, and 34 of those arise from an abelian surface

defined over Q. Almost nothing is known about the single group of type A; in [20],

the Sato-Tate conjecture was fully proven for all groups of types D and F, for all

totally real abelian surfaces giving rise to groups of type C, and for all totally real

abelian surfaces giving rise to one of two groups of type B and six of ten groups

of type E. In addition, assuming that L was also totally real, all other cases were

proven. We describe the remaining cases and prove them with a weakened hypothesis

on L.

1.3.1 Preliminaries

Before we discuss specific Sato-Tate groups, let us recall standard facts about Galois

representations coming from the abelian varieties we study.

Definition 1.3.1. Suppose A is an abelian variety defined over F . We say A is of

GL2-type if it is isogenous over F to a product A1 × A2 × . . . Ak of simple abelian

varieties, each also defined over F , and with a field Ki ↪−→ EndF (Ai) ⊗ Q with

[Ki : Q] = dim(Ai).
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Given a simple abelian surface A/F of GL2-type with field K and a rational prime

`, the dual of the `-adic Tate module T` gives rise to an `-adic Galois representation

GF → GL4(Q`), isomorphic to the `-adic etale cohomology of A. The image lands

in GL2(Q`⊗K). For each embedding λ : K → Q`, we get a map from this image to

GL2(Kλ) for Kλ the completion of K at λ. Thus for each embedding of K into Q`

for each ` we obtain a representation ρA,λ : GF → GL2(Kλ). These form a weakly

compatible system (ρA,λ)λ.

Theorem 1.3.2 ([30, Theorems 3.1, 3.2]). The weakly compatible system (ρA,λ)λ

is regular of Hodge-Tate weights 0 and 1, totally odd and pure of weight 1. If K

is a real quadratic field, then det ρA,λ = χ`, the `-adic cyclotomic character; if K

is imaginary quadratic, then det ρA,λ = ε ⊗ χ` for some finite-image character ε

independent of `.

In each case below, we will consider the irreducible representations of the Sato-

Tate group. We will extend these in a natural way to representations of G1. These

will be algebraic representations of G1, so that we get compatible systems of repre-

sentations of G
1,Zar
` . We can then obtain representations of GZar

` by extending to the

central Gm. Finally obtaining this, we get a compatible system of representations

of the Galois group GF , and we can thus use Theorem 1.2.5 above, combined with

Rankin-Selberg theory, to show that the original L-function is invertible, as required.

This method will be detailed further in the subsections below.
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1.3.2 B[C2]

When we discuss B[C2], the Sato-Tate group is 〈SU(2) × SU(2), J〉 where J =( 1
-1

-1
1

)
. This corresponds to either the case where A is isogenous to a direct

sum of nonisogenous elliptic curves, each without CM, or when A is simple but has

multiplication by a real quadratic field. In these cases, Q⊗EndQ(A) is either Q×Q

or real quadratic. Conjecture 1.2.2 in the first case has been proven as [18, Theorem

5.4] assuming a few “Expected Theorems”. These have been proven since the writing

of the paper; see [5] for a discussion. We henceforth assume Q⊗ EndQ(A) = K is a

real quadratic field. Because we’re in the B[C2] case, A is not of GL2 type over F ,

but is of GL2 type over a quadratic extension.

We look first at representations of ST 0
A = SU(2) × SU(2) which is an index 2

subgroup of STA. The irreducible representations of SU(2) are Symk(St) for St the

standard 2-dimensional representation and k ≥ 0; hence the irreducible representa-

tions of SU(2)× SU(2) are rk,l = Symk(St)⊗ Syml(St) for k, l ≥ 0. We deduce the

representations of STA using the following standard theorem of Clifford theory (in

this form found as [20, Lemma 23], the proof being the author’s own):

Theorem 1.3.3. If H ≤ G is an index 2 subgroup, and r is a finite-dimensional

irreducible representation of H, then r extends to a representation of G if and only if r

is isomorphic to rx, where rx is the representation of H defined as rx(h) = r(xhx−1)

for x ∈ G\H. If this is the case, then r extends to exactly two nonisomorphic

irreducible representations r0 and r0⊗χ for χ the nontrivial character G/H → {±1}.

The irreducible representations are exactly those arising from such r, along with the

inductions IndGH ρ of all representations ρ of H that do not satisfy the above property.
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Proof. Suppose r ' rx. This means that there is some endomorphism U with

rx(h) = Ur(h)U−1 for each h ∈ H; we can clearly set r0(x) = U and r0(h) = r(h),

giving a representation of G. Conversely, if r extends to r0, r0(x)r(h)r0(x)−1 = rx(h)

shows that r ' rx. If these two conditions hold, Frobenius Reciprocity shows that

there can be at most two distinct representations that restrict to r on H, and we

have found two already, r0 and r0 ⊗ χ.

Now given any irreducible representation s of G, either s|H is irreducible or not.

If so we’re in the case above; if not, say s1 is a subrepresentation of s|H . Then by

the universal property of Ind, since we have an H-equivariant map from s1 into s,

there must be a G-equivariant map IndGH s1 → s; by Schur’s lemma and counting

dimensions, we must have IndGH s1 = s.

We apply this theorem with G = STA = 〈SU(2) × SU(2), J〉 and H = SU(2) ×

SU(2). Given the representation rk,l we choose x = J and find that

J(A,B)J−1 = (−J0BJ0,−J0AJ0) = (J0BJ
−1
0 , J0AJ

−1
0 ) = (J0, J0)(B,A)(J0, J0)−1

where J0 =

 0 1

−1 0

 so that J =

 0 J0

−J0 0

. Because

J0 0

0 J0

 ∈ SU(2) ×

SU(2), we find that rJk,l ' rl,k. The representations rk,l are nonisomorphic for

distinct pairs (k, l) so the representation rk,l extends only for k = l, say to r1k and

r2k; otherwise we obtain only the induced representation, which makes no distinction

11



between (k, l) and (l, k). Hence all irreducible representations of STA are

r1k and r2k for k ≥ 0 and Ind
STA
ST 0

A

rk,l for k > l ≥ 0.

As discussed above and by [15, Proposition 2.17], because STA has two compo-

nents, the field L over which all endomorphisms are defined, EndQ(A) = EndL(A),

is a quadratic extension of F , and STAL , the Sato-Tate group of A as a variety over

L, is just the identity connected component ST 0
A = SU(2)× SU(2) of STA.

Theorem 1.3.4. If L is either a totally real field or a CM field, then Conjecture

1.2.2 is true for A over F .

Proof. If L is a totally real field, this was proven already in [20, Proposition 24], so

suppose L is a CM field; we proceed in a similar fashion. We must show that for

each representation given above, the L-function in Theorem 1.2.3 is invertible at 1.

Let us first look at a representation Ind
STA
ST 0

A

rk,l. It follows from a theorem of Artin

that if s′(v′) denotes the normalized image of Frobenius for prime v′ in GL, then

LS(Ind
STA
ST 0

A

rk,l, s) =
∏
v 6∈S

1

det(1− Ind
STA
ST 0

A

rk,l(s(v))q−sv )

=
∏
v′ 6∈S′

1

det(1− rk,l(s′(v′))q−sv′ )

= LS
′
(rk,l, s)

so that we may prove invertibility of this new L-function.

From here, we cease mention of F and work solely with L. Let us extend rk,l from
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a representation of SU(2) × SU(2) to a representation Rk,l of G(L), the algebraic

group coming from GL instead of GF ; we naturally do this by restricting Symk(St)⊗

Syml(St) from GL(2)×GL(2) to G(L). In fact, we get a representation of GZar
` (L) ⊆

GL2(Q`)×GL2(Q`), which we can also call Rk,l. Thus finally we get a representation

of GL, namely Rk,l ◦ ρAL,`. Looking at where Frobv′ is sent, the L-function is

LS
′
(rk,l, s) = LS

′
(Rk,l ◦ ρAL,`, s+ (k + l)/2)

=
∏
v′ 6∈S′

det(1−Rk,l ◦ ρAL,`(Frobv′)q
−(s+(k+l)/2)
v′ )−1.

As discussed before the statement of Theorem 1.3.2, the two embeddings λ1, λ2 of

K = End0L(A) into Q` give the decomposition of ρAL,` into ρAL,λ1 ⊕ ρAL,λ2 , and

these give the further decomposition of the L-function into

LS
′
(Symk(ρAL,λ1)⊗ Syml(ρAL,λ2), s+ (k + l)/2);

this is finally what we must prove to be holomorphic and invertible.

We look at the weakly compatible system (ρAL,λ)λ. The Hodge-Tate weights of

these are all 0 and 1. Since the image of ρAL,λ is open in GZar
λ = GL2(Qp), there is

no subgroup of GL for which ρAL,λ becomes reducible. So we may apply Theorem

1.2.5 to get some CM field L′m over which the compatible system (Symm(ρAL,λ))λ

is automorphic.

The theory of cyclic base change in [2] shows that (Symm(ρAL,λ))λ is automorphic

over all E where L′m/E is cyclic, and hence solvable; we can apply the Rankin-Selberg

method as in the proof of [18, Theorem 5.3] to the field L′ = L′kL
′
l, over which the
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two compatible systems (Symk(ρAL,λ))λ and (Syml(ρAL,λ))λ are both automorphic,

to show that

LS
′
(Symk(ρAL,λ1 |GE )⊗ Syml(ρAL,λ2|GE ), s+ (k + l)/2)

is invertible along the central line, assuming that the representations Symk(ρAL,λ1 |GE )

and Syml(ρAL,λ2 |GE ) are not dual. But k 6= l, so a dimension count shows that they

cannot be dual. So

LS
′
(Symk(ρAL,λ1 |GE )⊗ Syml(ρAL,λ2|GE ), s+ (k + l)/2)

is invertible for all E solvable subfields of L′; Brauer’s theorem applies to the Galois

groups Gal(L′/E) ⊆ Gal(L′/L), and we get that the L-function for the representa-

tion over L is an integer power combination of those over E, and therefore is also

invertible.

Next, we look at the representations rik for i = 1, 2 and k ≥ 1. Recall that they are

the two distinct extensions of Symk ⊗ Symk to representations ofN(SU(2)×SU(2)) =

〈SU(2) × SU(2), J〉. As before, let us extend rik to an algebraic representation of

G ⊆ 〈GL(2) × GL(2), J〉 by restricting Symk ⊗ Symk and leaving the image of J

alone. This again gives us a representation Rik of GZar
` , and then composing with

ρA,` finally gives us a Galois representation. The L-function attached to rik is

LS(rik, s) =
∏
v 6∈S

1

det(1− rik(s(v))q−sv )
=
∏
v 6∈S

1

det(1−Rik ◦ ρA,`(Frobv)q
−(s+k)
v )

.
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This L-function being invertible follows if the L-functions for Rik ◦ ρA,`|GE for L′/E

solvable are, where L′ = L′k is the field from Theorem 1.2.5. For a given E, either

L ⊆ E or L 6⊆ E. If L ⊆ E, then Rik ◦ρA,`|GE = Symk(ρA,λ1|GE )⊗Symk(ρA,λ2 |GE )

as before. Then we can apply Rankin-Selberg, except dimension count doesn’t work.

We want

L(Symk(ρA,λ1 |GE )⊗ Symk(ρA,λ2|GE ), s+ k)

=L(Symk(ρA,λ1 |GE )⊗ Symk(ρA,λ2|GE )⊗ χ−k` , s)

to be invertible, so we require that Symk(ρA,λ1|GE ) and Symk(ρA,λ2 |GE )⊗χ−k` not

be dual. But ρA,λ1 |GE is essentially self-dual via the Weil pairing; in fact, ρA,λ1|GE '

ρ∨A,λ1|GE ⊗χ`. Therefore, we require that Symk(ρA,λ2|GE )⊗χ−k` not be isomorphic

to Symk(ρA,λ1 |GE ) ⊗ χ−k` . But if this happened, then ρA,λ2|GE′ ' ρA,λ1|GE′ for

some finite extension E′. This contradicts the fact that EndQ(A) = K, so we’re

done in this case.

Otherwise, L 6⊆ E, and E is therefore a totally real subfield of L′. But if

L = F (
√
α), then let E′ = E(

√
α) to get a degree 2 CM extension containing

L. (Symk(ρA,λ|GE′ ))λ is cuspidal automorphic as before, and the L-function of the

GE representation is just the Asai L-function of the associated automorphic repre-

sentation of this system, in the terminology of [17]. By [17, Theorem 4.3], this Asai

L-function is nonzero and holomorphic on the right half-plane, if the automorphic

representation is not self-dual. In fact, it’s always nonzero, so it’s holomorphic for

both r1k and r2k if and only if the product of the two Asai L-functions is holomorphic.
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But the product is

L(r1k|GE , s)L(r2k|GE , s) = L(Symk(ρA,λ1|GE′ )⊗ Symk(ρA,λ2|GE′ ), s+ k),

which as before is holomorphic. So each of these two Asai L-functions is holomorphic.

Finally, we look at the nontrivial finite representation r20. This takes J to −1 and

the connected component of the identity ST 0
A to 1. But the L-function is

∏
v 6∈S

1

1− χ(Frobv)q
−s
v
,

where χ is the Hecke character coming from Gal(L/F ), and this is hence its L-

function. It’s thus clear that this L-function is invertible. So we’ve shown that, for

every representation, the L-function is invertible along the line <s = 1, so we’re

done.

Remark 1.3.5. Notice that this proves the Sato-Tate conjecture in this case when

F = Q because all quadratic extensions are either totally real or CM.

1.3.3 E[D2n], n = 2, 3, 4, 6

We look now at the Sato-Tate groups

STA =

〈B
B


B∈SU(2)

, En :=

eπin Id2

e−
πi
n Id2

 , J

〉
,
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with identity component ST 0
A the embedded copy of SU(2) and component group

D2n. These arise from abelian varieties A whose endomorphism ring End0M (A) is a

quaternion algebra for a large enough field extension M/F . Either A is potentially

the sum of two elliptic curves without CM whose `-adic representations are twists

of each other by a finite-order character, or A is simple with quaternionic multipli-

cation. If we view A as defined over L, where GL is the index-2 subgroup of the

Galois group GF corresponding to the cyclic subgroup of the component group D2n

under the correspondence given in [15, Theorem 2.17], the endomorphism ring is

not yet a quaternion algebra. It is, however, a quadratic field K, as proven in [15,

Theorem 4.7]; we note that while the statement in [15] is constructed for the direct

sum of elliptic curves case, there is no use of this in the proof, so we may apply it

here as well.

To prove Conjecture 1.2.2 in this case, our strategy is to decompose the repre-

sentation ρA,` into a tensor s ⊗ δ where δ is a finite-image dihedral representation

and s is a two-dimensional representation. We do this by manually constructing a

2-cocycle in a certain cohomology group that obstructs a representation lift from GL

to GF , then use the fact that the cohomology is 0 to obtain a coboundary description,

which allows us to lift. Then we check that s acts solely on the identity component

and δ acts on the component group times ± Id, and finally use Rankin-Selberg and

Theorem 1.2.5 again.

As in the previous case, we may decompose the representation ρA,`|GL into two

2-dimensional pieces ρA,λ and ρA,λ via the two embeddings of K into Q`, and as

in the previous case, Theorem 1.3.2 says that (ρA,λ)λ∈S′ is a compatible system of
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representations. But unlike the previous case, we get the isomorphism ρA,λ⊗ε ' ρA,λ

for some finite-image character ε. We notice that Ind
GK
GL

ρA,λ = ρA,` by Frobenius

reciprocity, and so ρA,`|GL = ρA,λ ⊕ ρ
g
A,λ for g ∈ GF \GL; therefore, ρA,λ ⊗ ε '

ρA,λ ' ρ
g
A,λ. (Notationally, from here we will assume that any group element g

with or without subscript is in GF \GL and any group element h is in GL, so as to

repeatedly omit this statement.)

Because of [15, Proposition 2.17], we know that if M is the smallest field with

End0M (A) being the full quaternion algebra, then Gal(M/F ) = D2n, and that

Gal(M/L) = Cn. Because

(ρA,λ ⊕ (ρA,λ ⊗ ε))|GM = ρAM ,λ ⊕ (ρAM ,λ ⊗ ε|GM )

has a four-dimensional real endomorphism ring only if ε|GM is trivial, we must have

ε being a character of Gal(M/L). In particular, ε(h) = 1 if h ∈ GM . But because of

the structure of D2n, we know that g ∈ GF \GL has g2 ∈ GM . So ε(g2) = 1.

In addition, we know

ρ
g
A,λ ' ρA,λ ⊗ ε, so ρA,λ ' ρ

g
A,λ ⊗ ε

g ' ρA,λ ⊗ ε⊗ εg

and hence we conclude that ε(ghg−1)ε(h) = 1.

We let c be such that

c(h1, h2) = c(g1, h2) = 1, c(h1, g2) = c(g′h1, g2) = ε(h1)
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for all g1, g2, h1, h2, and fixed g′ ∈ GF \GL. Then the above statements are enough

to exhaustively prove that c is a cocycle in H2(GF , Kλ
×

) with Kλ
×

having the

trivial action and discrete topology. But it’s a theorem of Tate that H2(GF , Kλ
×

) is

trivial, so this cocycle must be a coboundary. That means there is a continuous (i.e.

finite-image) cochain γ : GF → Kλ
×

with c(g1, g2) =
γ(g1)γ(g2)
γ(g1g2)

, and so on through

all combinations of gi and hi.

We can check via the above the following equations:

γ(Id) = 1

γ(g)γ(g−1) = c(g, g−1) = ε(g′−1g)

γ(g)γ(hg−1) = γ(ghg−1)c(g, hg−1) = γ(ghg−1)ε(g′−1g) = γ(ghg−1)γ(g)γ(g−1)

γ(h)γ(g−1) = γ(hg−1)c(h, g−1) = γ(hg−1)ε(h) = γ(ghg−1)γ(g−1)ε(h)

so that γ(h) = γ(ghg−1)ε(h) for every pair (g, h). Further, γ is a character of

GL; from here we only remember the domain of γ being GL. Therefore, if we let

sA,λ = ρA,λ ⊗ γ, then

s
g
A,λ = ρ

g
A,λ ⊗ γ

g ' ρA,λ ⊗ ε⊗ γg ' ρA,λ ⊗ γ = sA,λ

so that we may extend sA,λ to be a representation of GF , by Theorem 1.3.3, with ba-

sis {s1, s2}. And there is a clear GL-equivariant map ρA,λ → sA,λ⊗Ind
GF
GL

γ−1 given

by sending v to v⊗1; therefore, there is a GF -equivariant map ρA,` = Ind
GF
GL

ρA,λ →

sA,λ ⊗ Ind
GF
GL

γ−1. By dimension count, they must be isomorphic. Therefore, we

are able to write ρA,` as sA,λ ⊗ δ, where δ is finite-image with vector space having
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basis {v1, v2}, and in fact has image isomorphic to a dihedral group. Notice that

the way we devised γ, we didn’t use anything about λ, and ε is independent of λ

by Theorem 1.3.2; so γ is independent of λ as is V , so since (ρA,λ)λ is a weakly

compatible system, so too is (sA,λ)λ.

Theorem 1.3.6. If F is a totally real field and A is an abelian variety defined over

F which has Galois type E[Dn] for n = 2, 3, 4, 6, then the Sato-Tate conjecture holds

for A.

Proof. As before, we must show that for each representation r of the Sato-Tate

group, the L-function
∏
v 6∈S det(1− r(s(v))q−sv )−1 is holomorphic and invertible for

<s ≥ 1 where s(v) is the conjugacy class given by dividing the image of Frobv by

q
1/2
v . The Sato-Tate group STA is given by SU(2) × D4n/〈(− Id2, E

n
n)〉, so that

any representation of STA is given by a representation of SU(2) tensored with a

representation of D4n whose signs agree on their centers. Of course the irreducible

representations of SU(2) are Symk(St) and there are 4 one-dimensional and n − 1

two-dimensional representations of D4n.

Our goal now is to describe where sA,λ and δ send Frobv inside STA. As written

before, the Sato-Tate group is represented as the matrices in

〈B
B


B∈SU(2)

,

eπin Id2

e−
πi
n Id2

 , J

〉
.

These are inside Sp(4) where the alternating form is

(
1
1

−1
−1

)
. However, we

20



instead view it with the alternating form

(
−1

1
−1

1

)
. That is, we conjugate the

Sato-Tate group by

( 1
1

1
−1

)
to get the new group

〈B
B


B∈SU(2)

,

eπin Id2

e−
πi
n Id2

 ,

 Id2

Id2

〉 .
Writing it in this form, because the Zariski closure of SU(2) is SL(2), we know that

G1 must contain all matrices
(
A
A

)
where A ∈ SL(2). But as above, the theorem of

Deligne says that the scalar multiples of the identity must be in the Zariski closure of

the image of ρA,`, so that means that G must contain all matrices of the form above,

where A is now in GL(2). Now G is the image under ι of GZar
` , the Zariski closure of

the image of ρA,`, which is the Kronecker product of the Zariski closure of the image

of sA,λ with the image of δ. If we look at the closure of ρA,`(ker δ), this is a finite

index subgroup of GZar
` . Because the connected component of the identity G

Zar,0
` is

isomorphic to GL(2) and thus is Zariski irreducible, the closure of ρA,`(ker δ) cannot

be smaller than this.

But also it cannot be larger than this: it is contained in the centralizer of a 4-

dimensional vector space inside M4(Q`), namely
(
a·Id b·Id
c·Id d·Id

)
in the basis s1⊗ v1, s2⊗

v1, s1⊗ v2, s2⊗ v2, but G
Zar,0
` is already such a centralizer: it centralizes

(
a·Id b·Id
c·Id d·Id

)
in the usual basis. Therefore the closure of ρA,`(ker δ) is equal to this connected

component
{(

A
A

)
: A ∈ GL(2)

}
.

On the other hand, GF can act on the vector space for the representation ρA,`
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solely through δ. The image of this representation commutes with the kernel of δ

above, but as we observed, all such matrices are of the form
(
a·Id b·Id
c·Id d·Id

)
. So the

image of GF acting via δ alone lands in this vector space. In order for the image to

land in GSp(4), we can calculate that either b = c = 0 or a = d = 0. Recall also

that its image is dihedral and irreducible, so it must essentially give some dihedral

representation. Each matrix in a 4-dimensional finite-image representation is unitary,

so each of them already appears in the Sato-Tate group. But the only matrices of

this form in the Sato-Tate group were in the group 〈En, J〉, so this must be the image

of GF acting through δ.

We have therefore shown that the image of δ is exactly D4n, and the closure of

the image of sA,λ is GL(2). Recall from above that a representation of the Sato-Tate

group is given by the tensor product of a representation of D4n with a representation

of SU(2) with the same sign. Given such a representation, say η ⊗ Symk(St), the

L-function is

∏
v 6∈S

det(1− Symk(s(v))⊗ η(s(v))q−sv )−1

=
∏
v 6∈S

det(1− (Symk ◦ι ◦ sA,λ)(Frobv)⊗ (η ◦ δ)(Frobv)q
−s−k/2
v )−1.

We may apply Theorem 1.2.5 to (sA,λ)λ, or in fact we may even apply [4, The-

orem 5.4.1] to find a field F ′/F for which (sA,λ|GF ′ )λ is cuspidal automorphic,

assuming k ≥ 1. Then as before, cyclic base change tells us that (sA,λ|GE )λ is

cuspidal automorphic where F ′/E is solvable so that L(Symk |GE , s) is invertible,

and then Brauer’s theorem tells us that L(Symk, s) is invertible as well. We know
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that η ◦ δ is cuspidal automorphic already if η is nontrivial, because η ◦ δ is either a

1-dimensional representation, a nontrivial Hecke character, or a 2-dimensional dihe-

dral representation, which is induced from a nontrivial Hecke character of GL and

whose automorphy and cuspidality is established in [2, Theorem 6.2]. So L(η, s) is

invertible and the Rankin-Selberg method as before tells us that the L-function we

wanted,

L(Symk ⊗η, s) =
∏
v 6∈S

det(1− (Symk ◦sA,λ)(Frobv)⊗ (η ◦ δ)(Frobv)q
−s−k/2
v )−1,

is invertible as long as Symk and η are not dual. For k ≥ 1 this is obvious by

cardinality, and for k = 0 and η nontrivial, this is just the Artin L-function for a

representation of Gal(L′/F ) where L′ is the fixed field of the kernel of δ. Since this

is a solvable group, we know the L-function is invertible.

1.4 Other asymptotics

So far our goal has been to show that the normalized Frobenius conjugacy classes

are equidistributed within the Sato-Tate group, and from this we can deduce the

distributions of the normalized traces of Frobenius in the interval [−4, 4]. We have

done this by proving that all nontrivial irreducible representations’ L-functions are

invertible. Unfortunately, the current state of affairs does not allow this in the two

cases A or B[C2], so we set our sights a little lower. We’d like to be able to show

that for some positive fraction of primes, the trace of Frobenius is positive (resp.

negative), but even this is beyond our elementary methods. A theorem of Boxer,
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Calegari, Gee and Pilloni helps us in this regard, as well as a theorem of Täıbi and

Gee. Let A be any abelian surface over a totally real field F , and suppose that for

some good prime v, the characteristic polynomial of the normalized Frobenius Frobv√
qv

in its compatible system of representations is

CharFrobv√
qv

(X) = (X−α)(X−α−1)(X−β)(X−β−1) = X4−a1X3+a2X
2−a1X+1.

We first define a1,min as the number for which zero proportion of primes v have

a1 < a1,min but for any ε > 0 a positive proportion of v have a1 < a1,min − ε. Let

us define a1,max, a2,min and a2,max similarly. We’ll be able to prove the following

theorems:

Theorem 1.4.1. If A/F is a generic abelian surface, i.e. End(AQ) = Z, then

a1,min ≤ −2
3 and a1,max ≥ 2

3 .

Theorem 1.4.2. If A/F is a generic abelian surface, then a2,min ≤ 4
5 and a2,max ≥

4
3 .

Theorem 1.4.3. If A/F is an abelian surface of type B[C2], then a1,min ≤ −2.47

and a1,max ≥ 2.47.

Theorem 1.4.4. If A/F is an abelian surface of type B[C2], then Fa2,min ≤ 0.43

and a2,max ≥ 3.57.

The first two theorems above are the “best of their kind”, so to speak; that

is, given the L-functions we currently know to be invertible, there are probability

distributions of α and β on the unit circle for which a1 ≥ −2
3 , and yet the Tauberian

statistics of these L-functions are not violated.

24



1.4.1 The generic case

Let us state the results of Boxer-Calegari-Gee-Pilloni and Gee-Täıbi.

Theorem 1.4.5 ([7, Theorem 9.2.8]). Let A be a challenging abelian surface over a

totally real field F . Then A is potentially modular.

Challenging in the above theorem just means being in case A or B[C2].

Suppose that (ρA,`, V ) is the dual of the `-adic Tate module representation of A.

Suppose that v1, v2, v3, v4 are a symplectic basis of V under the Weil pairing; that

is, 〈v1, v2〉 = 〈v3, v4〉 = 1 and all other pairs of vectors are 0 under the pairing. The

Weil pairing on V then becomes a direct-sum split of ∧2V :

∧2V = Q`(1)⊕W

where Q`(1) is spanned by v1 ∧ v2 + v3 ∧ v4. It is not difficult to show that if A is

generic, then W is irreducible.

Theorem 1.4.6 ([16]). If ρA,` is strongly irreducible, there is a cuspidal automorphic

form Π on GL(5) corresponding to the W above.

Sketch. Suppose that π is the automorphic representation corresponding to A. By

[25, Theorem A], we know that ∧2π is automorphic, and is the induction of the

tensor product of cuspidal automorphic representations of GLni for
∑
ni = 6. We

know further that π is symplectic, so we may take n1 = 1.

It then suffices to show that n1 = 1 and n2 = 5. The occurrence of more than

one ni = 1 is ruled out by [34, Theorem 1.1], and the possibility that n1 = 1, n2 = 2,

and n3 = 3 is ruled out by [3, Prop 4.2]. Therefore, Π2 = Π is cuspidal.
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To prove Theorems 1.4.1 and 1.4.2, it suffices to prove them when looking at A/E

where E/F is any field extension. This is for the following reasons: if a prime v of F

splits in E, the Frobenius element does not change, and neither does the size of the

residue field, so that the normalized trace of Frobenius is unchanged. Also, a set of

primes of E of density 1 lie above split primes of F , so looking at the set of primes

of E described in 1.4.1 or 1.4.2, almost all of them lie above a split prime of F . So

a positive proportion of the split primes of F , which is a positive proportion of all

primes of F , satisfy the inequalities.

Thus after Theorem 1.4.5 we may assume that A/F is modular, and so ρA,`

corresponds to a cuspidal automorphic representation. We continue to assume F

totally real, as this is a further allowance in [7]. We also assume that we are in the

generic case A. Therefore, as usual we know L(V, s) is holomorphic and nonzero on

<(s) ≥ 1 (where the L-function is shifted so that the critical line is <(s) = 1
2 and

all the eigenvalues have norm 1, as in the previous section). In addition, since W

corresponds to a cuspidal representation, L(W, s) is also holomorphic and nonzero on

the same set. And by Rankin-Selberg, since V ' V ∗⊗Q`(1) and so V ⊗ V contains

one copy of the cyclotomic character, L(V ⊗ V, s) has a simple pole at s = 1 and is

holomorphic everywhere else on <(s) ≥ 1 (where again the L-function is normalized

in the standard way). The same holds for W ; that is, since W is irreducible and

essentially self-dual, L(W ⊗ W, s) has a simple pole at s = 1 and is holomorphic

nonzero everywhere else on the half-plane. And finally, since V and W are distinct

irreducible representations, L(V ⊗W, s) is holomorphic nonzero everywhere on the

half plane, again by Rankin-Selberg.
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Now that we have these five L-functions and their poles at 1, we look back at

Serre.

Theorem 1.4.7 ([32]). Given a Dirichlet series

L(ρ, s) =
∏
v

1

det(1− ρ(xv)q
−s
v )

with a pole of order c at s = 1 and holomorphic nonzero elsewhere on <(s) ≥ 1, then

∑
qv≤n

Tr ρ(xv) = c

(
n

log n

)
+ o(n/ log n).

We apply this to the five L-functions above, with the normalized image of Frobv

in V having eigenvalues αv, α
−1
v , βv, β

−1
v , to get

∑
qv≤n

(αv + α−1v + βv + β−1v ) = o(n/ log n)

and four other asymptotic equations. Combining with the statement of Serre’s the-

orem for the trivial representation (namely,
∑
qv≤n

1 = n/ log n + o(n/ log n)), and
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letting sv = αv + α−1v and tv = βv + β−1v for convenience, we find the system

∑
qv≤n

sv + tv = o(n/ log n)

∑
qv≤n

svtv + 1 = o(n/ log n)

∑
qv≤n

s2v + 2svtv + t2v − 1 = o(n/ log n) ⇒
∑
qv≤n

s2v + t2v − 3 = o(n/ log n)

∑
qv≤n

s2vtv + svt
2
v + sv + tv = o(n/ log n) ⇒

∑
qv≤n

s2vtv + svt
2
v = o(n/ log n)

∑
qv≤n

s2vt
2
v + 2svtv = o(n/ log n) ⇒

∑
qv≤n

s2vt
2
v − 2 = o(n/ log n)

Proof of Theorem 1.4.1. The identity

(2−s)(2−t)(3s+3t+2−ε) = (8−4ε)+(8+2ε)(s+t)−6(s2+t2)−(10+ε)st+3(s2t+st2)

holds, so

∑
qv≤n

(2− sv)(2− tv)(3sv + 3tv + 2− ε)

=
∑
qv≤n

(8− 4ε) + (8 + 2ε)(sv + tv)− 6(s2v + t2v)− (10 + ε)svtv + 3(s2vtv + svt
2
v)

=
∑
qv≤n

3(s2vtv + svt
2
v)− (10 + ε)(svtv + 1)− 6(s2v + t2v − 3) + (8 + 2ε)(sv + tv)− 3ε

= (−3ε+ o(1))
n

log n
.

So if−2
3 < a1,min = −2

3+ ε
3 , then a zero proportion of primes v have a1 = sv+tv <
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−2
3 + ε

3 . And the Weil bounds on the eigenvalues hold, meaning that the sum of the

left side should be positive for large enough n, but the right side is negative for large

enough n. So it’s impossible for a1,min > −2
3 . The same idea holds for a1,max; the

asymptotics above are invariant under the transformation (sv, tv) → (−sv,−tv), so

if it’s impossible for most primes to have their a1’s lie above −2
3 + ε

3 , then it’s also

impossible for most primes to have their a1’s lie below 2
3 −

ε
3 .

Proof of Theorem 1.4.2. Similarly, the following two equations hold:

(3st+ 2 + ε)(st+ 4) = 3s2t2 + (14 + ε)st+ (8 + 4ε)

(5st+ 6− ε)(4− st) = −5s2t2 + (14 + ε)st+ (24− 4ε),

so

∑
qv≤n

(3svtv + 2 + ε)(svtv + 4) =
∑
qv≤n

(8 + 4ε) + (14 + ε)svtv + 3s2vt
2
v

=
∑
qv≤n

3(s2vt
2
v − 2) + (14 + ε)(svtv + 1) + 3ε

= (3ε+ o(1))
n

log n
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and

∑
qv≤n

(5svtv + 6− ε)(4− svtv) =
∑
qv≤n

(24− 4ε) + (14 + ε)svtv − 5s2vt
2
v

=
∑
qv≤n

−5(s2vt
2
v − 2) + (14 + ε)(svtv + 1)− 5ε

= (−5ε+ o(1))
n

log n

If svtv ≤ −2
3 −

ε
3 for all but a density zero set of primes v, then in the first

equation the left side would be negative for large n, but the right side is positive for

large n, impossible. So svtv > −2
3 −

ε
3 a positive proportion of the time for every

positive ε, and hence a2 = 2 + svtv >
4
3 −

ε
3 for a positive proportion of the time.

Thus a2,max ≥ 4
3 .

And if svtv ≥ −6
5 + ε

5 for all but a density zero set of primes v, then in the second

equation the left side would be positive for large n, but the right side is negative for

large n, impossible. So svtv < −6
5 + ε

5 a positive proportion of the time for every

positive ε, and hence a2 = 2 + svtv <
4
5 + ε

5 for a positive proportion of the time.

Thus a2,min ≤ 4
5 .

As stated in the introduction, these are the best possible theorems we may obtain
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with the asymptotics arising from Serre’s method; namely, if

sv = 0 and tv = 2 for
1

6
of all primes,

sv = −3

2
and tv = 2 for

4

21
of all primes, and

sv =
−1−

√
7

3
and tv =

−1 +
√

7

3
for

9

14
of all primes,

then

∑
qv≤n

sv + tv =
(1 + o(1))n/ log n

6
(0 + 2) +

(4 + o(1))n/ log n

21

(
−3

2
+ 2

)

+
(9 + o(1))n/ log n

14

(
−1−

√
7

3
+
−1 +

√
7

3

)

=

(
2

6
+

2

21
− 6

14
+ o(1)

)
n

log n
= o

(
n

log n

)

and similar equalities hold for the other four asymptotics as well. Because a1,v can

only ever be −2
3 , 1

2 or 2, a1,min is −2
3 , and we cannot prove anything stronger.

A mirror equality case holds in calculating a1,max, and similar equality cases hold

in the cases of a2,min and a2,max. If

sv = −2 and tv = 2 for
1

10
of all primes,

sv = −1

3
and tv = 2 for

9

35
of all primes, and

sv =
−1−

√
7

3
and tv =

−1 +
√

7

3
for

9

14
of all primes,
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then the equalities all hold as above, and a2,max = 4
3 for this set. And if

sv = 2 and tv = 2 for
1

52
of all primes,

sv = −2 and tv = −2 for
1

52
of all primes,

sv = −3

5
and tv = 2 for

125

767
of all primes, and

sv =
−5−

√
1495

35
and tv =

−5 +
√

1495

35
for

1225

1534
of all primes,

it is not difficult to again check that all asymptotics above hold, and a2,min = 4
5 for

this set.

Therefore, with our current knowledge of modularity lifting theorems, we cannot

say more than these theorems.

Remark 1.4.8. While Theorems 1.4.1 and 1.4.2 do the job of bounding a1,min, etc.,

from above or below, they are rather weak. We expect a1,min to be equal to −4,

yet we can only currently show that a1,min ≤ −2
3 , and similarly for a1,max. We

also expect a2,max = 6, but we can only show that a2,max ≥ 4
3 ; and we expect

a2,min = −2, but we can only show that a2,min ≤ 4
5 .

Notice also that we used heavily the fact that A was generic, because if it were

not, neither the 4-dimensional representation V nor the 5-dimensional representation

W would need be irreducible. Because we know the Sato-Tate conjecture in all

cases except A and B[C2], we can calculate a1,min /max and a2,min /max for abelian

surfaces of these types; for any abelian surface in cases E or F, where the normalized

eigenvalues of Frobenius are always 2 copies of α and 2 copies of α−1, a2,max is still

6 as expected, but a2 = 4 + α2 + α−2, so we expect (and deduce) that a2,min = 2,
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so Theorem 1.4.2 doesn’t hold if our abelian surface is not generic.

1.4.2 The case B[C2]

We now suppose our abelian variety A over totally real field F has Sato-Tate group

〈SU(2) × SU(2), J〉. We may still apply Theorem 1.4.5, so that A is potentially

modular. We base change to a totally real field extension F ′ where A is modular and

the Tate module representation is cuspidal. Then, as before, the representation ρA,`

is induced from a representation ρAL,λ. This means that ρA,` ' ρA,` ⊗ χL/K . On

the level of automorphic representations, this means that the cuspidal representation

Π coming from ρ also satisfies Π ' Π ⊗ χL/K . But this means that Π is the base

change of some cuspidal representation π of GL(2) over L.

This representation π arises from the compatible system of representations (ρA,λ)λ,

and since these have big image because we’re in case B[C2], we know that the repre-

sentations ρA,λ, and more generally Symk ρA,λ for any k ≥ 1, are not induced from

any character. This means that Symk ρA,λ 6' Symk ρA,λ ⊗ χ for any character χ.

We recall theorems of Kim-Shahidi:

Theorem 1.4.9 ([26] Theorem 2.2.2). Let π be a cuspidal automorphic representa-

tion of GL(2,AL), let ωπ denote the central character, and let Ai(π) = Symi(π) ⊗

ω−1π . Then A3(π) is not cuspidal if and only if there exists a nontrivial grössencharac-

ter µ such that A2(π) ' A2(π)⊗ µ.

Theorem 1.4.10 ([26] Theorem 3.3.7). With notation as above, A4(π) is a cuspidal

representation of GL(5,AL) unless
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(1) There is some nontrivial grössencharacter η with π ⊗ η ' π

(2) A3(π) is not cuspidal

(3) A3(π) is cuspidal, but there is some nontrivial quadratic grössencharacter η

with

A3(π) ' A3(π)⊗ η

Therefore, A2(π), A3(π) and A4(π) are all automorphic. And because Symk ρA,λ

is not isomorphic to its own twist, neither is Symk π. So we obtain that A2(π), A3(π)

and A4(π) are cuspidal.

In the same way as above, if αv, α
−1
v are the eigenvalues of ρAL,λ(Frobv)q

−1/2
v

for primes v of L, and βv, β
−1
v are the eigenvalues of ρAL,λ

(Frobv)q
−1/2
v , and for

simplicity we denote xv = αv +α−1v and yv = βv +β−1v , then via Rankin-Selberg we

find that if 0 ≤ k, l ≤ 4 or if one of k, l equals 0 and the other is at most 8, then

∑
qv<n

xkvy
l
v =


(Ck/2Cl/2 + o(1)) n

lnn , k, l both even

o(1)n
lnn , one of k, l odd

where Cn = 1
n+1

(2n
n

)
is the n’th Catalan number.
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Proof of Theorem 1.4.3. Let

Q(x, y) = −12.543(x+ y) + 53.838(x2 + y2)− 12.954(x3 + y3)− 13.063(x4 + y4)

− 7.914(x5 + y5)− 2.9(x6 + y6) + 3.607(x7 + y7) + 1.575(x8 + y8)

+ 124.68xy − 183.789(x2y + y2x) + 1.878(x3y + y3x) + 50.255(x4y + y4x)

+ 117.628x2y2 + 73.149(x3y2 + y3x2)− 48.646(x4y2 + y4x2)− 65.928x3y3

+ 8.734(x4y3 + y4x3) + 1.098x4y4

(All decimals are exact, unless otherwise noted.) It’s easy to check that the minimum

of Q(x, y) on the set {x, y ∈ [−2, 2] : x + y ≥ −2.47} is when x ≈ −1.81913 and

y ≈ 0.644208, giving a minimum of approximately −1.93656, and yet the sum

∑
qv<n

Q(xv, yv) =
(−2.04 + o(1))n

lnn
.

So it is impossible for xv + yv to always be ≥ −2.47, and therefore a1,min ≤ −2.47.

And each asymptotic above is invariant under (x, y) → (−x,−y), so a mirror poly-

nomial proves that a1,max ≥ 2.47. (A more precise polynomial proves that a1,min ≤

−2.4763827913319, and as in Theorem 1.4.1 we can find points (x, y) and probabili-

ties that prohibit any further improvements.)
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Proof of Theorem 1.4.4. Let

R(x, y) = −24.04(x2 + y2) + 39.64(x4 + y4)− 13.14(x6 + y6)

+ 3.82(x8 + y8)− 15.76xy − 119.88(x3y + y3x) + 484.32x2y2

− 153.28(x4y2 + y4x2) + 192.44x3y3 + 8.2x4y4

It’s easy to check that the minimum of R(x, y) on the set {x, y ∈ [−2, 2] : xy ≥

−1.57} is when x ≈ 0.907648 and y ≈ 0.188967, for a minimum of approximately

−8.32369, and yet the sum

∑
qv<n

R(xv, yv) =
(−9.96 + o(1))n

lnn
.

So it is impossible for xvyv to always be ≥ −1.57, and therefore a2,min ≤ −1.57+2 =

0.43. And each asymptotic above is invariant under (x, y) → (−x, y), so a mirror

polynomial proves that a2,max ≥ 3.57. (A more precise polynomial proves that

a2,min ≤ 0.421451779353951, and as in Theorem 1.4.1 we can find points (x, y) and

probabilities that prohibit any further improvements.)

36



CHAPTER 2

FORMS COMING FROM DIHEDRAL

REPRESENTATIONS

2.1 Introduction

Let ρ : GQ → GL(2,F2) be a finite-image two-dimensional mod 2 Galois represen-

tation. (Here and for the rest of this thesis, we assume all representations, finite or

not, are continuous.) We say ρ is dihedral if the image of π ◦ρ : GQ → PGL(2,F2) is

isomorphic to a finite dihedral group, where π : GL(2) → PGL(2) is the usual pro-

jection. We say ρ is modular of level N if it is the reduction of a representation ρf

associated to a modular eigenform f ∈ S2(Γ0(N),Z2) mod the maximal ideal of Z2

(call this ideal M). Here, ρ is associated to a normalized eigenform f if, for all ` - 2N ,

the coefficient a` equals the trace Tr ρ(Frob`). (When we write S2(Γ0(N), R) we will

always mean S2(Γ0(N),Z)⊗ R, so for example we exclude Katz forms that are not

reductions of characteristic 0 forms.) Additionally, reduction of a representation mod

M makes sense because given a characteristic 0 representation ρ : GQ → GL2(V )

where V is a vector space over Q2, we may choose an invariant lattice isomorphic

to Z2
2 inside V , so that the image of ρ is inside GL2(Z2) and reduction mod M is

defined (independent of the choice of lattice up to semisimplification).

We say that ρ is ordinary at 2 if its restriction to the inertia at 2 is reducible. We

also say a normalized eigenform f with coefficients in Z2 is ordinary if the coefficient

a2 of q2 in its q-expansion is a unit mod M. The terminology is consistent, because

by theorems of Deligne and Fontaine, if ρ = ρf is modular, then ρf is ordinary if
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and only if f is ordinary.

In [23], Kedlaya and Medvedovsky prove that if a characteristic 2 representation

is dihedral, modular and ordinary of prime level N , then it must be the induction of

a nontrivial odd-order character of the class group Cl(K) of a quadratic extension

K = Q(
√
±N)/Q to Q [23, Section 5.2]. They then analyze all cases of N mod 8

to determine how many distinct mod 2 representations arise from this construction.

Finally, they conjecture lower bounds for the number of Z2 eigenforms whose mod

M representations ρf are isomorphic to each of the representations obtained above

[23, Conjecture 13]. The purpose of the current chapter is to prove this conjecture,

reproduced below.

We let Tan
2 denote the anemic Hecke algebra inside End(S2(Γ0(N),Z2)) generated

as a Z2-algebra by the Hecke operators Tk for (k, 2N) = 1, and we let T2 denote

the full Hecke algebra, namely T2 = Tan
2 [T2, UN ]. Ring homomorphisms Tan

2 → F2

correspond to classes of mod 2 eigenforms, up to the coefficients of even and divisible-

by-N powers of q, where the image of Tk is mapped to the coefficient ak of the

form. The kernel of such a map is a maximal ideal which determines the map up to

Galois conjugation of the image. Thus maximal ideals of Tan
2 correspond to Galois-

conjugate classes of modular representations via the Eichler-Shimura construction,

and we attach properties of the representation such as ordinariness or reducibility

to the maximal ideal, which are invariant under Galois-conjugation and hence well-

defined properties of the ideal. We say that m is K-dihedral if the representation

corresponding to m is dihedral in the above sense, and the quadratic extension from

which it is an induction is K. (Notice that given ρ, K is uniquely determined as the
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quadratic extension of Q inside the fixed field of the kernel of ρ that is ramified at

all primes at which ρ is ramified.) We write S2(N)m = S2(Γ0(N),F2)m to denote

the space of all mod 2 modular forms on which m acts nilpotently.

Theorem 2.1.1 ([23, Conjecture 13]). Let N be an odd prime and m a maximal

ideal of Tan
2 (N).

1. Suppose N ≡ 1 mod 8.

(a) If m is Q(
√
N)-dihedral, then dimS2(N)m ≥ 4.

(b) If m is Q(
√
−N)-dihedral, then dimS2(N)m ≥ h(−N)even.

(c) If m is reducible, then dimS2(N)m ≥ h(−N)even−2
2 .

2. Suppose N ≡ 5 mod 8.

(a) If m is ordinary Q(
√
N)-dihedral, then dimS2(N)m ≥ 4.

(b) If m is Q(
√
−N)-dihedral, then dimS2(N)m ≥ 2.

3. Suppose N ≡ 3 mod 4 and K = Q(
√
±N).

(a) If m is ordinary K-dihedral, then dimS2(N)m ≥ 2.

2.1.1 Reduction

Given a maximal ideal m of Tan
2 , we wish to count the dimension of the space Λ of

Z2-module maps

φ : T2 → F2 so that mk(φ|Tan
2

) = 0 for some k ≥ 0
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as an F2-vector space, where Tan
2 acts on φ by xφ(y) = φ(xy). We know that T2 and

Tan
2 are finite and flat over Z2, and thus complete semilocal rings. It then follows

that we can write

T2 =
⊕

a maximal

Ta,

and a similar statement for Tan
2 , where Ta is the localization (or equivalently com-

pletion) of T2 at the ideal a. We thus study Tan
m and remove the restriction that m

is nilpotent.

Proposition 2.1.2. The dimension of Λ equals

∑
m⊆a

[ka : F2] dimka Ta/(2),

where the sum runs over all maximal ideals a of T2 containing m, and ka is the

residue field corresponding to a.

Proof. The inclusion of Tan
2 into T2 induces an inclusion Tan

m into
⊕
m⊆a

Ta, and so

the dimension of Λ is the dimension of the F2-space of maps φ :
⊕
m⊆a

Ta → F2. Any

such map can be split into separate maps φa, and all φa factor through Ta/(2). So

the dimension of Λ is

dimF2 HomZ2
(
⊕
m⊆a

Ta,F2) =
∑
m⊆a

dimF2 HomF2(Ta/(2),F2) =
∑
m⊆a

dimF2 Ta/(2)

=
∑
m⊆a

[ka : F2] dimka Ta/(2).
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The trivial lower bound dimka Ta/(2) ≥ 1 gives a lower bound on the dimension

of Λ. In the case that ρ arising from m is totally real and absolutely irreducible, we

prove a better bound dimka Ta/(2) ≥ 2. This happens when m is Q(
√
N)-dihedral

for N > 0. Let J0(N) denote the Jacobian of the modular curve X0(N), so that ρ

appears as a subrepresentation of the 2-torsion points J0(N)[2]. For some maximal

ideal a containing m, let A = J0(N)[a] be the subscheme of points that are killed

by a. By the main result of [6], if ρ is absolutely irreducible, A is the direct sum of

copies of ρ.

Proposition 2.1.3. If m is a maximal ideal of Tan
2 for which the corresponding

representation ρ is absolutely irreducible and totally real, then for any maximal ideal

a of T2 containing m, we have the inequality

dimka Ta/(2) ≥ 2 ·multiplicity of ρ inside A.

Proof. Since ρ is a representation of the Galois group of a totally real field, we know

that the points of A are all real. Since A also has a Ta-action with annihilator a, A

is a ka-vector space, whose dimension is twice the multiplicity of ρ. We prove the

inequality below, from which the proposition follows quickly.

Lemma 2.1.4. If W denotes the Witt vector functor, then

dimka(A) ≤ rankW (ka)(Ta).

Proof. We follow [9, Section 3.2]. A proposition of Merel states that the real variety
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J0(N)(R) is connected if N is prime [29, Proposition 5]. If g is the genus of X0(N),

then we know that J0(N)(C) = (R/Z)2g, and therefore J0(N)(R) = (R/Z)g. And

we also know that

J0(N)[2](R) = (Z/2Z)g.

Additionally, as we know that T2 =
⊕

a Ta, and all Ta are free Z2-modules, say of

rank g(a), we know that

∑
a

g(a) = rankZ2
(T2) = g.

A lemma of Mazur shows that the a-adic Tate module, lim
←−

J0(N)[ai], is a Ta-

module of rank 2 [28, Lemma 7.7], and therefore a free Z2-module of rank 2g(a),

so J0(N)[a∞](C) = (Q2/Z2)2g(a). We therefore know that the 2-torsion points of

this scheme are

J0(N)[a∞, 2](C) = (Z/2Z)2g(a).

If σ acting on J0(N)(C) denotes complex conjugation, then (σ − 1)2 = 2 −

2σ kills all 2-torsion, and σ − 1 itself kills all real points. So within the scheme

J0(N)[a∞, 2](C), applying σ− 1 once kills all real points and maps all points to real

points, and so

dimZ/2Z J0(N)[a∞, 2](R) ≥ 1

2
dimZ/2Z J0(N)[a∞, 2](C) = g(a).

But J0(N)[2](R) breaks up into its a∞ pieces, J0(N)[2](R) =
⊕

a J0(N)[a∞, 2](R).
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Taking dimensions on both sides gives

g =
∑
a

dimZ/2Z J0(N)[a∞, 2](R) ≥
∑
a

g(a) = g,

so equality must hold everywhere.

Since all points of A = J0(N)[a] are real, we find that

dimZ/2ZA ≤ dimZ/2Z J0(N)[a∞, 2](R) = g(a) = rankZ2
(Ta).

Dividing both sides by [ka : Z/2Z] = rank(W (ka)/Z2), we have the result.

Returning to the proof of Proposition 2.1.3, we therefore know that

dimka Ta/(2) = dimW (ka) Ta ≥ 2 ·multiplicity of ρ.

For reference, we recall a theorem of Wiles that describes the characteristic 0

representation ρ restricted to the decomposition group at 2:

Theorem 2.1.5 ([45, Theorem 2]). If ρf is an ordinary 2-adic representation cor-

responding to a weight 2 level Γ0(N) form f , then ρf |D2
, the restriction of ρf to the

decomposition group at a prime above 2, is of the shape

ρ|D2
∼

χλ−1 ∗
0 λ


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for λ the unramified character GQ2
→ Z×2 taking Frob2 to the unit root of X2 −

a2X + 2, and χ is the 2-adic cyclotomic character.

2.2 N ≡ 1 mod 8

2.2.1 K = Q(
√
N)

Theorem 2.2.1. If N ≡ 1 mod 8, and m is a maximal ideal of Tan
2 (N) that is

Q(
√
N)-dihedral, then dimS2(N)m ≥ 4.

Proof. Let K = Q(
√
N) and denote the fixed field of the kernel of ρ as L. In this

K, the prime (2) factors as pq for distinct p and q, and ρ must be unramified at 2

so Frob2, as a conjugacy class containing Frobp and Frobq, must lie in Gal(L/K).

Moreover, ρ must be semisimple at 2, because if ρ = IndQK χ for χ a character

of the unramified extension Gal(L/K), then ρ|Gal(L/K) = χ ⊕ χg for some fixed

g ∈ Gal(L/Q)\Gal(L/K) and χg(h) = χ(ghg−1) for h ∈ Gal(L/K).

Theorem 2.1.5 and this semisimplicity statement tell us that the decomposition

group at 2 in the mod 2 representation looks like

λ−1 0

0 λ

, because the cyclotomic

character is always 1 mod 2. So we find that the polynomial det(x Id2−ρ) has

coefficients that are unramified at 2, and a2 is a root of P (x) := det(x Id2−ρ(Frob2)).

There are thus three cases: either P has no roots already in k := Tan/m, or it has

distinct roots lying in k, or it has a repeated root.

If P has no roots in k, then [ka : k] ≥ 2 for a the extension of m, so Proposi-
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tions 2.1.2 and 2.1.3 say that the dimension of the space is at least

[ka : F2] dimka Ta/(2) ≥ [ka : k] dimka Ta/(2) ≥ 2 · 2 = 4.

If P has distinct roots in k, then there are at least 2 extensions of m to T2. Namely,

if x1 and x2 are lifts of the roots of P to Tan
m , the two ideals a1 = (m, T2 − x1) and

a2 = (m, T2 − x2) are two maximal ideals. So in this case the dimension is at least

[ka1 : F2] dimka1
Ta1/(2) + [ka2 : F2] dimka2

Ta2/(2)

≥ dimka1
Ta1/(2) + dimka2

Ta2/(2) ≥ 2 + 2 = 4.

Finally, suppose P has a double root. There is at least one maximal ideal a

of T2 above m. Because we know that ρ|D2
is semisimple with determinant 1, the

double root must be 1 and ρ|D2
is trivial. Then Wiese proves that since all dihedral

representations arise from Katz weight 1 modular forms (as Wiese proves in [42]),

the multiplicity of ρ in A is 2 [43, Corollary 4.5]. In this case the dimension is at

least

[ka : F2] dimka Ta/(2) ≥ dimka1
Ta1/(2) ≥ 2 ·multiplicity of ρ ≥ 4.
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2.2.2 K = Q(
√
−N)

Theorem 2.2.2. If N ≡ 1 mod 8, and m is a maximal ideal of Tan
2 (N) that is

Q(
√
−N)-dihedral, then dimS2(N)m ≥ 2e where 2e =

∣∣Cl(K)[2∞]
∣∣.

Proof. We first recall a well-known proposition of genus theory:

Proposition 2.2.3. Let K = Q(
√
−d) be an imaginary quadratic field with d > 0

squarefree.

(a) The F2-dimension of the 2-torsion of the class group of K is one less than the

number of primes dividing the discriminant ∆K/Q.

(b) If d ≡ 5 mod 8 is a prime, then the 2-part of the class group of K is cyclic of

order 2.

(c) If d ≡ 1 mod 8 is a prime, then the 2-part of the class group of K is cyclic of

order at least 4.

A proof of the final two parts can be found as [8, Proposition 4.1].

We return to the case N ≡ 1 mod 8. Proposition 2.2.3 tells us that the 2-part

of the class group is cyclic so there is an unramified Z/(2e)-extension L′/K, say

Gal(L′/K) = 〈g〉 with g2
e

= Id. If we as before denote by L the fixed field of the

kernel of ρ, and we let M = L · L′, the character χ of Gal(L/K) whose induction

equals ρ, and which is nontrivial by definition of a dihedral ideal, can be extended

to a character χ′ : Gal(M/K) → F2[x]/(x2
e − 1)× given by mapping g to x. This

can be done because L ∩ L′ = K, because [L : K] is odd and [L′ : K] is a power

of 2. Then the induction of χ to ρ also extends from χ′ to ρ′ : Gal(M/Q) →
46



GL2(F2[x]/(x2
e − 1)). We will prove this representation is modular by describing

a q-expansion with coefficients in Z2[x]/(x2
e − 1) whose reduction mod 2 gives the

desired Frobenius traces as coefficients, and proving that the expansion is modular

via the embeddings of this coefficient ring into C. Then by the q-expansion principle

we will have the result.

Let us suppose we have chosen a primitive 2eth root of unity η := ζ2e inside Z2.

We may lift χ to a character χ : Gal(L/K) → Zur,×
2 . We may therefore also lift χ′

to a character χ′ : Gal(M/K) → Zur
2 [x]/(x2

e − 1)×. We may tensor with Q2, and

identifying Qur
2 [x]/(x2

e − 1) with
⊕e

i=0Qur
2 (ζ2i) by sending x to η2

e−i
gives us e+ 1

representations

χi : Gal(M/K)→ Qur
2 (ζ2i)

× and ρi = IndQK χi : Gal(M/Q)→ GL2(Qur
2 (ζ2i)).

These are all finite image odd dihedral representations whose coefficients are alge-

braic and therefore may be compatibly embedded in C. All twists of ρi are dihedral or

nontrivial cyclic, and therefore all have analytic L-functions. So by the converse the-

orem of Weil and Langlands (see [31, Theorem 1], for instance), each ρi corresponds

to a weight 1 eigenform fi with level equal to the conductor of the representation and

nebentypus equal to its determinant. Here, the conductor is 4N and the nebentypus

is the nontrivial character of Gal(K/Q). This nebentypus, because K has discrimi-

nant 4N , is the character λ4N := λ4λN where λ4 and λN are the nontrivial order 2

characters of (Z/4Z)× and (Z/NZ)×; λ4N (p) = 1 if and only if Frobp is the identity

in Gal(K/Q) if and only if p splits in K.

Each fi is a simultaneous eigenvector for the entirety of the weight 1 Hecke algebra
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T(4N), with coefficients in Qur
2 (ζ2i), so by returning to Qur

2 [x]/(x2
e − 1) we obtain

a weight 1 form f with coefficients in this ring, which is therefore an eigenform by

multiplicity 1 results. (Remember that we defined S1(Γ0(4N),Qur
2 [x]/(x2

e − 1)) to

equal S1(Γ0(4N),Z) ⊗ Qur
2 [x]/(x2

e − 1), so this eigenform is only a formal linear

combination of holomorphic weight 1 forms with coefficients in Qur
2 [x]/(x2

e−1), and

may be better understood as corresponding to a ring map T(4N)→ Qur
2 [x]/(x2

e−1).)

We can easily check that the traces of the representation ρ′ = IndQK χ′ : Gal(M/Q)→

GL2(Qur
2 [x]/(x2

e−1)) correspond to the coefficients of f , and so since χ′ and therefore

ρ′ are defined over Zur
2 [x]/(x2

e − 1), f also has coefficients in Zur
2 [x]/(x2

e − 1).

Now we take the characteristic 0 form f and multiply by a modular form of weight

1, level Γ1(4N) and nebentypus λ4N whose q-expansion is congruent to 1 mod 2.

That will give us a weight 2 level Γ0(4N) form whose mod 2 reduction is equal to

the q-expansion of a form coming from ρ′. We find such a form:

Lemma 2.2.4. The q-expansion
∑
m,n∈Z q

m2+Nn2 describes a (non-cuspidal) mod-

ular form g in M1(Γ1(4N),Z2, λ4N ).

Proof. This follows from properties of the Jacobi theta function ϑ(τ) =
∑
k∈Z

qk
2
, but

we give a different proof. Let δ range over all characters of the class group H of K, or

equivalently over all unramified characters of Gal(Q/K). By Weil-Langlands, IndQK δ

as a representation of GQ gives us a weight 1 modular form. The determinant of

this induction is always equal to χK/Q, the nontrivial character of the Galois group

Gal(K/Q), and the conductor is always equal to 4N . For two of the characters, δ

trivial and δ the nontrivial character of Gal(K(i)/K), IndQK δ is reducible and the
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weight 1 modular forms are the Eisenstein series

Eλ4N ,1(q) = L(λ4N , 0)/2 +
∞∑
m=1

qm
∑

d odd, d|m
(−1)(d−1)/2

(
d

N

)

and

EλN ,λ4(q) =
∞∑
m=1

qm
∑

d odd, de=m

(−1)(d−1)/2
( e
N

)
respectively. The constant term of the former is, by the class number formula,

equal to h(−N)/2 where h(−N) = |Cl(Q(
√
−N))| is the class number of Q(

√
−N).

Otherwise, the forms are cusp forms fδ with no constant term.

Lemma 2.2.5. The q-expansion of fδ is given by fδ =
∑
m≥1

qm
∑

I⊆OK :N(I)=m

δ(I).

Proof. If p is a prime inert in K, then there is no I with N(I) = p. In the represen-

tation IndQK δ, Frobp is antidiagonal, so it has trace 0, which is therefore the Hecke

eigenvalue. So for p inert in K, the coefficient is correct. If p = p1p2 for distinct

primes p1 and p2 of K, then
∑
I⊆OK :N(I)=p δ(I) = δ(p1) + δ(p2), and the trace of

Frobp in the representation is also δ(p1) + δ(p2) because the restriction of IndQK δ

to GK is diagonal with characters δ and δg for g a lift of the nontrivial element

of Gal(K/Q) and δg(h) meaning δ(ghg−1). Since all primes over p are conjugate,

δg(p1) = δ(p2) and so the trace of Frobp is δ(p1) + δ(p2) as we needed.

If p = N , the ideal over N is principal, and so splits completely in M/K; on

inertia invariants, therefore, its Frobenius is trivial and the coefficient of qN is 1, as

is necessary since δ((
√
−N)) = 1 because δ is a character of the class group. And

if p = 2, the ideal p over 2 has order 2 in the class group. The inertia subgroup
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for some prime over 2 in M is generated by some lift of the nontrivial element

of Gal(K/Q), and the decomposition group is the product of this group with the

subgroup of Gal(M/K) corresponding to the class of p. And so on inertia invariants,

the eigenvalue of the decomposition group is the eigenvalue of Frobp, which is δ(p).

So the coefficient for q2 is correct as well.

Finally, we can check using multiplicativity of both Hecke operators and the norm

map, as well as the formula for the Hecke operators Tpk , that the coefficients of qm

for composite m are as described also.

We compute the sum
∑
δ fδ over all characters δ, cusp forms with their multi-

plicity (stemming from δ and δ−1 giving the same form) and the Eisenstein series

once. By independence of characters, for each ideal I where δ(I) = 1 for all δ, that is

I is in the identity of the class group, the corresponding term in the sum is h(−N),

and for each other nonzero ideal I, the term vanishes in the sum. The sum is thus

L(χ4N , 0)/2 + h(−N)
∑

0 6=I=(α)

qN(I) = h(−N)/2 +
h(−N)

|O×K |

∑
06=α=a+b

√
−N∈OK

qN(α)

=
h(−N)

2

1 +
∑

(0,0)6=(a,b)∈Z
qa

2+Nb2

 .

Dividing by h(−N)/2 gives the required form, which we call g.

So we take fg and reduce the coefficients mod the maximal ideal over 2 and

get a form h ∈ S2(Γ0(4N),F2[x]/(x2
e − 1)), and hence a corresponding Z2-module

map T(4N) → F2[x]/(x2
e − 1), if T(4N) now represents the Hecke algebra acting

on weight 2 forms of level Γ0(4N). We know that h remains an eigenform because
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for odd primes, p ≡ 1 mod 2 so increasing the weight doesn’t change the Hecke

action on the coefficients, and for 2 increasing the weight does not change the action

of U2 on q-expansions. Because h is an eigenform, we get a ring homomorphism

γ : T(4N)→ F2[x]/(x2
e−1). The image of this map tensored with F2 is the entirety

of F2[x]/(x2
e − 1): we have prime ideals of K in all elements of the class group, so if

µ is some nonzero element in the image of χ not equal to 1, then both µx+ µ−1x−1

and µx−1 + µ−1x are in the image of γ, so that

µ−1(µx−1 + µ−1x) + µ(µx+ µ−1x−1) = (µ2 + µ−2)x

is in the F2 vector space generated by the image of γ, and hence x is also. And since

γ is a ring homomorphism, all powers of x lie in the filled out image.

As described in [9, Section 3.3], we may find a representation

GQ → GL2(F2[x]/(x2
e
− 1)),

in the following way: we let a′ denote the kernel of T(4N)
γ−→ F2[x]/(x2

e−1)
x 7→1−−−→ F2,

and we let T(4N)a′ denote the completion of T(4N) with respect to that ideal. The

Galois action on J0(4N)[a′] breaks into isomorphic 2-dimensional representations

GQ → GL2(T(4N)/a′), and Carayol constructs a lift GQ → GL2(T(4N)a′) [10,

Theorem 3]. We pushforward this map along T(4N)a′ → F2[x]/(x2
e − 1) which also

has full image to get a representation GQ → GL2(F2[x]/(x2
e−1)). It’s clear that this

representation is isomorphic to ρ′ = IndQK χ′ by looking at traces. So ρ′ is modular

of level Γ0(4N).
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We know that h is an eigenform for U2, and the operator U2 lowers the level from

4N to 2N . So h = U2h is an eigenform of level Γ0(2N). We recall the level lowering

theorem of Calegari and Emerton; here A is an Artinian local ring of residue field k

of characteristic 2.

Theorem 2.2.6 ([9, Theorem 3.14]). If ρ : GQ → GL2(A) is a modular Galois

representation of level Γ0(2N), such that

1. ρ is (absolutely) irreducible,

2. ρ is ordinary and ramified at 2, and

3. ρ is finite flat at 2,

then ρ arises from an A-valued Hecke eigenform of level N .

Our ρ′, pushed forward through the map F2[x]/(x2
e − 1) → F2 and restricting

to its true image, is irreducible, ordinary and ramified. All that remains in order

to apply the theorem is to check that ρ′ is finite flat at 2. It’s enough to show

this after restricting to Gal(Q2/Qur
2 ). But the representation has only degree two

ramification, so the image of Gal(Q2/Qur
2 ) is order 2. And furthermore, it’s easy to

see that it arises as the generic fiber of D⊕2
e

over Zur
2 , where D is the nontrivial

extension of Z/2Z by µ2 discussed in [28, Proposition 4.2], represented for example

by Z2[x, y]/(x2 − x, y2 + 2x− 1) with comultiplication

x→ x1 + x2 − 2x1x2 and y → y1y2 − 2x1x2y1y2.
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So we may apply Theorem 2.2.6, and deduce that our modular form h is a modular

form of level N .

We have therefore constructed a surjective map Tm⊗Z2
F2 → F2[x]/(x2

e − 1), so

the F2-dimension of S2(Γ0(N),F2)m must be at least 2e. Note that Proposition 2.2.3

shows that this dimension is at least 4.

2.2.3 m is reducible

Theorem 2.2.7. If N ≡ 1 mod 8, and m is a maximal ideal of Tan
2 (N) for which

ρm is reducible, then dimS2(N)m ≥ h(−N)even−2
2 .

Proof. We know that m ⊆ Tan is generated by T` and 2 for all primes ` - 2N . In

[8, Corollary 4.9] and the discussion after Proposition 4.11, Calegari and Emerton

prove that Tan
m /(2) must be isomorphic to F2[x]/(x2

e−1
), where 2e = h(−N)even.

They accomplish this by setting up a deformation problem, namely deformations

of (V , L, ρ) where ρ is the mod 2 representation
(
1 φ
0 1

)
, φ is the additive character

GQ → F2 that arises as the nontrivial character of Gal(Q(i)/Q), and L is a line in

V not fixed by GQ. With the conditions set on the deformation, they find that it is

representable by some Z2-algebra R.

Next, they prove an R = T-type theorem, namely that R = T where T is the

completion at the Eisenstein ideal of the Hecke algebra acting on all modular forms

of level Γ0(N), including the Eisenstein series. Finally they study R/2 which repre-

sents the deformation functor to characteristic 2 rings, and show that if ρuniv is the

universal deformation, then ρuniv factors through the largest unramified 2-extension

of K. This combined with their fact that a map R→ F2[x]/(xn) can be surjective if
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and only if n ≤ 2e−1 proves that R/2 = F2[x]/(x2
e−1

).

Therefore, the same holds for the Eisenstein Hecke algebra T/2. So we know that

T is a free Z2-module of rank
h(−N)even

2 . But we may split off a one-dimensional

subspace corresponding to the Eisenstein series, so that the cuspidal Hecke algebra

Tan
m has rank one less, and therefore has rank

h(−N)even

2 − 1. (In fact, the full Hecke

algebra is determined also, because in any reducible mod 2 representation, T2 and

UN must both map to 1, as UN is unipotent and T2 maps to the image of Frobenius

under a mod 2 character unramified at every prime not equal to 2. But there are

no nontrivial such characters.) And therefore the dimension of the space S2(N)m

is the dimension of the space Hom(Tan
m ,F2), which is dimension

h(−N)even

2 − 1, as

desired.

[23] partially prove this theorem using [8], doing the case of N ≡ 9 mod 16. As we

see, the method works equally well for N ≡ 1 mod 16. The only difference between

the two cases is that [8] prove that for N ≡ 9 mod 16, the Hecke algebra Tan
m is a

discrete valuation ring, and therefore a domain, but that plays no role here.

2.3 N ≡ 5 mod 8

2.3.1 K = Q(
√
N)

Theorem 2.3.1. If N ≡ 5 mod 8, and m is a maximal ideal of Tan
2 (N) that is

Q(
√
N)-dihedral, then dimS2(N)m ≥ 4.

Proof. Because 2 is inert in Q(
√
N), we know that ρ|D2

is of size 2. Then the image

of ρ is a subgroup of a 2-Sylow subgroup of GL2(F2), and therefore is isomorphic
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to an upper-triangular idempotent representation ρ|D2
'
(
1 ∗
0 1

)
. If we compare to

Theorem 2.1.5, we find that in an eigenform for all Tp including T2 that corresponds

to this representation, a2 = 1. So the three methods of section 2.2.1 do not work.

Recall Proposition 2.1.3 that says if the representation ρ is totally real, then

dimka Ta/(2) ≥ 2 ·multiplicity of ρ, so if this multiplicity is at least 2 inside J0(N)[a]

for some a containing m, we’re done. So we assume that ρ occurs once in every

J0(N)[a]. However, we know by [43, Theorem 4.4] that since ρ comes from a Katz

modular form of weight 1 and level N , and the multiplicity of ρ on J0(N)[a] is 1,

that the multiplicity of ρ in J0(N)[m] is 2. So by Propositions 2.1.2 and 2.1.3, we

know the dimension of Tm/(2) has dimension at least twice 2, or dimension 4, and

so dimS2(N)m ≥ 4 as required.

2.3.2 K = Q(
√
−N)

Theorem 2.3.2. If N ≡ 5 mod 8, and m is a maximal ideal of Tan
2 (N) that is

Q(
√
−N)-dihedral, then dimS2(N)m ≥ 2.

This follows in a similar way to Theorem 2.2.2. Proposition 2.2.3 proves that

the 2 part of the class group of K is order 2, so applying the results of section 2.2.2

proves the theorem in this case. The only difficulties are in verifying the conditions

of Theorem 2.2.6; that is, ρ is absolutely irreducible, ordinary, and ramified, and

ρ itself is finite flat at 2. It’s clear that the first three conditions hold, and the

final condition holds because Qur
2 (
√
−N) = Qur

2 (i) even though N ≡ 5 mod 8, as

Q2(
√
N) = Q2(

√
5) is unramified over Q2. So the group scheme in this case is

the same as the group scheme in section 2.2.2, and we have verified all necessary
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conditions.

2.4 N ≡ 3 mod 4

2.4.1 K = Q(
√
N)

Theorem 2.4.1. If N ≡ 3 mod 4, and m is a maximal ideal of Tan
2 (N) that is

Q(
√
N)-dihedral, then dimS2(N)m ≥ 2.

Proof. We let a be a prime of T2 containing m. Then again recalling Proposi-

tion 2.1.3, since K and therefore ρ are totally real, we calculate that the dimension

is at least

dimka Ta/(2) ≥ 2 ·multiplicity of ρ ≥ 2

as required.

2.4.2 K = Q(
√
−N)

Theorem 2.4.2. If N ≡ 3 mod 4, and m is a maximal ideal of Tan
2 (N) that is

Q(
√
−N)-dihedral, then dimS2(N)m ≥ 4.

Proof. This was shown in [23, Proposition 14] using essentially the same method as

we use in sections 2.2.2 and 2.3.2. The only differences are that K/Q is unramified at

2 so the Artin conductor of ρ′ is N , not 4N , so no level-lowering is required; and that

we obtain a second eigenspace from our modular form f coming from the reduction

of f2.
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2.5 The effect of UN

In none of our proofs did we ever exploit the fact that UN is not defined to be in

Tan
2 as we did with T2, and the following gives an explanation why.

Lemma 2.5.1. There is an inclusion UN ∈ Tan
2 , so T2 = Tan

2 [T2].

Proof. Since Tan
2 =

⊕
m Tan

m , it suffices to prove that UN ∈ Tan
m for each maximal

ideal m. Let

ρ = ρm : GQ → GL2(Tan
m /m) ⊆ GL2(F2)

denote the residual representation associated to m. If ρ is not irreducible, then it is

Eisenstein. The Eisenstein ideal I ⊆ T2 is generated by 1 + ` − T` for ` 6= N and

by UN − 1. Let a = (2, I) denote the corresponding maximal ideal of T2. By [28,

Proposition 17.1], the ideal a is actually generated by η` := 1 + `− T` for a suitable

good prime ` 6= 2, N . But this implies that Tan
m = Ta and that UN (and T2) lie in

Tan
m . Hence we assume that ρ is irreducible.

If ρ is irreducible but not absolutely irreducible, then its image would have to be

cyclic of degree prime to 2. Since the image of inertia at N is unipotent it has order

dividing 2. Thus this would force ρ to be unramified at N . There are no nontrivial

odd cyclic extensions of Q ramified only at 2, and thus this does not occur, and we

may assume that ρ is absolutely irreducible.

Tate proved in [37] the following theorem:

Theorem 2.5.2 (Tate). Let G be the Galois group of a finite extension K/Q which

is unramified at every odd prime. Suppose there is an embedding ρ : G ↪−→ SL2(k),
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where k is a finite field of characteristic 2. Then K ⊆ Q(
√
−1,
√

2) and Tr ρ(σ) = 0

for each σ ∈ G.

If ρ is unramified at N , then det ρ is a character of odd order unramified out-

side 2, which by Kronecker-Weber must be trivial, so ρ maps to SL2(k). We may

apply Theorem 2.5.2 to determine that ρ has unipotent image, which therefore is

not absolutely irreducible. Hence we may assume that ρ is ramified at N . By local-

global compatibility at N , the image of inertia at N of ρ is unipotent. Because it is

nontrivial, it thus has image of order exactly 2.

Let {fi} denote the collection of Q2-eigenforms such that ρfi = ρ. Associated

to each fi is a field Ei generated by the eigenvalues Tl for l 6= 2, N . There exists a

corresponding Galois representation:

ρ : GQ → GL2(Tan
m ⊗Q) =

∏
GL2(Ei).

The traces of ρ at Frobenius elements land inside Tan
m , and hence the traces of all

elements land inside Tan
m . By a result of Carayol, there exists a choice of basis so that

ρ is valued inside GL2(Tan
m ); that is, there exists a free Tan

m -module of rank 2 with a

Galois action giving rise to ρ. Each representation ρfi has the property that, locally

at N , the image of inertia is unipotent. In particular, ρ|GQN
is tamely ramified.

Let 〈σ, τ〉 denote the Galois group of the maximal tamely ramified extension of QN ,

where σ is a lift of Frobenius and τ a pro-generator of tame inertia, so στσ−1 = τN .
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We claim that there exists a basis of (Tan
m )2 such that

ρ|GQN
(τ) =

1 1

0 1

 .

Note, first of all, that it is true modulo m by assumption (because ρ is ramified).

Choose a lift e2 ∈ (Tan
m )2 of a vector which is not fixed by ρ(τ), and then let

e1 = (ρ(τ)−1)e2. Since the reduction of e1 and e2 generate (Tan
m /m)2, by Nakayama’s

lemma they generate (Tan
m )2. Finally we have (ρ(τ)− 1)2 = 0 since (ρfi(τ)− 1)2 = 0

for each i.

Now consider the image of σ. Writing

ρ(σ) =

a b

c d

 ∈ GL2(Tan
m ),

the condition that ρ(σ)ρ(τ) = ρ(τ)Nρ(σ) forces c = 0. But then if

ρ(σ) =

∗ ∗
0 x

 ∈ GL2(Tan
m ),

then for every specialization ρfi , the action of Frobenius on the unramified quotient

is x. But for each ρfi , the action of Frobenius on the unramified quotient is the

image UN (fi) of UN . Hence this implies that x = UN , and thus that UN ∈ Tan
m .
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CHAPTER 3

THE INDEX OF Tan IN T

3.1 Introduction

Let N be a prime number and let S2(Γ0(N),Z) denote the modular forms of weight

2 and level Γ0(N) with integer coefficients, and for any other ring R, we denote

S2(Γ0(N), R) = S2(Γ0(N),Z) ⊗ R. If R is a characteristic p ring, we define the

space S2(Γ0(N), R)Katz to be the R-module of Katz forms as defined in [21, Section

1.2], and define similar notation for the spaces of weight 1 forms. For N - n, let

Tn denote the nth Hecke operator inside End(S2(Γ0(N),Z)), and let UN denote the

Nth Hecke operator. We let Tan denote Z[T3, T5, . . .], the algebra generated by Tn

for (2N, n) = 1, and we denote Tan[T2, UN ] by T. The goal of this chapter is to

compute the index of Tan inside T. Specifically, we prove the following theorem in

sections 3.3 and 3.4:

Theorem 3.1.1. The quotient T/Tan is purely 2-torsion, and

dimF2 T/T
an = dimF2 S1(Γ0(N),F2)Katz.

In other words, if c = dimF2 S1(Γ0(N),F2)Katz is the dimension of the weight 1 level

Γ0(N) Katz forms over F2, then the index of Tan in T is equal to 2c.

The setup of this chapter is as follows. In section 3.2, we introduce some facts

from the literature about modular forms and establish a duality theorem between

modular forms and Hecke algebras. In section 3.3 we prove the first half of the
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theorem, that Tan contains 2T as submodules of T, so the quotient T/Tan is purely

2-torsion. Then in section 3.4 we use a theorem of Katz to relate the extra elements

of T to weight 1 modular forms using the duality, and finally establish the equality of

Theorem 3.1.1 between dimensions. In section 3.5 we conclude with some examples,

and some theorems and conjectures we propose based on the work of Cohen-Lenstra

and Bhargava.

3.2 Preliminaries

3.2.1 From Z to Z2

We start by proving that UN ∈ Tan, thereby reducing our work to considering

Tan ⊆ Tan[T2].

Theorem 3.2.1. UN ∈ Tan.

Proof. It is enough to check that UN ∈ Tan ⊗ Zp for every p: if Tan and Tan[UN ]

have different ranks as Z-modules, then the Zp-ranks of Tan ⊗ Zp and Tan[UN ] ⊗

Zp = Tan ⊗ Zp[UN ] are also different for every p, contradiction. On the other

hand, if rank(Tan) = rank(Tan[UN ]), then the quotient Tan[UN ]/Tan is finite. If

it’s nontrivial, then for any prime p dividing its order, there is a surjective map

(Tan[UN ] ⊗ Zp)/(Tan ⊗ Zp) � (Tan[UN ]/Tan) ⊗ Zp with nontrivial image. So for

this p, Tan[UN ] ⊗ Zp 6= Tan ⊗ Zp. Therefore, we will only check whether Tan ⊗ Zp

contains UN . Further, as Tan ⊗Zp is a complete semi-local ring, it splits as a direct

sum of its completions at maximal ideals, so it’s further enough to check that UN is

in Tan
m for the completion Tan

m at each maximal ideal m.
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We proved as Lemma 2.5.1 that UN ∈ Tan ⊗ Z2 = Tan
2 , so the statement is true

for all maximal ideals over 2. So let ` be an odd prime, m be a maximal ideal of Tan

over `, and a be a maximal ideal of T containing m.

Let Ta be the completion of T with respect to a, and let A be the integral closure

of Ta over Z`, which can be written as A = ⊕iOi for Oi finite extensions of Z`. The

maps

πi : T→ Ta → A→ Oi

produce conjugacy classes of eigenforms with coefficients in Oi, with the coefficient

ai,j of qj equal to πi(Tj) if (j,N) = 1, or πi(Uj) if N |j. These are newforms as N

is prime, and there are no weight 2 level 1 forms. By Eichler-Deligne-Shimura-Serre

there are representations ρi : GQ → GL2(Oi), unramified away from `N , so that

Tr(ρi(Frob`)) = ai,p for all primes p - `N .

[12, Theorem 3.1(e)] describes the shape of the local-at-N representation:

ρi|GQN
=

εχ ∗

0 χ


where χ is the unramified representation taking FrobN to ai,N and ε is the N -adic

cyclotomic character. Additionally, det ρi = ε, so χ2 is identically 1 and ai,N is equal

to 1 or −1 for each i. We show that ai,N is equal among all i over all a containing

m, so that the image of UN in Ta is constantly 1 or −1 over all a, and hence, in

Tm = ⊕m⊆aTa, is inside Tan
m .

By the Chebotarev density theorem, a representation is determined up to semisim-
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plification and conjugation by its trace on the Frobenius elements of unramified

primes. The ρi(Frobp) have trace equal to ai,p, which is the image of Tp under πi.

Because m is contained in a for all a, the image of Tp under reduction of Tan mod m

is the same as the reduction of ai,p mod a. Therefore, the semisimplifications of the

reductions of ρi over all i and all a are all isomorphic. But we can deduce the value

of ai,N from the reduction of ρi mod a, because ρi|GQN
has an unramified quotient

and a ramified subspace, and the same is true for the reduction mod a as ` 6= 2. So

the image of the Frobenius on the unramified quotient is either 1 or −1 for one (and

hence every) ρi, and therefore ai,N does not depend on i or a, only on m. So UN lies

in Tan
m for all m, and we’re done.

We can now reduce from forms over Z to forms over Z2. With a similar argument

to the proof of Theorem 3.2.1, we can check that T2 is contained in all completions at

maximal ideals of Tan
[
1
2

]
. This is true as 2 is unramified in, and T2 is a trace of, the

modular representations over primes other than 2, so Chebotarev and completeness

of Tan
m show that T2 ∈ Tan

m . So only at the prime 2 are T and Tan different. We can

calculate the index of Tan⊗Z2 inside T⊗Z2, and by abuse of notation begin to call

these Tan and T instead. We know that T and Tan are semi-local rings, and as such,

they can be written as a direct sum of their completions:

T =
⊕
a⊂T

Ta, and Tan =
⊕

m⊂Tan

Tan
m .

Additionally, because the Z2-ranks of T and Tan are equal, T2 ∈ T ⊗ Q2 =

Tan ⊗Q2 = Tan
[
1
2

]
, and hence maps Tan → K where K is a finite extension of Q2
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can be uniquely extended to maps T→ K. This means that modular forms are rigid

in characteristic 0: we can determine the image of T2 from the image of the remaining

operators, and hence from any modular representation ρf : GQ → GL2(K) we may

determine the entire form f . We say that ρ is ordinary if the restriction ρ|D2
of ρ to

the decomposition group at 2 is reducible, and we say that an eigenform is ordinary

if a2 is a unit mod 2.

3.2.2 A Duality Theorem

In this section, we will compute the Pontryagin dual of one of the summands in T

with the following lemma. Let a be any maximal ideal of T and let

S2(Γ0(N),Z2)a = e · S2(Γ0(N),Z2)

where e is the projector T→ Ta.

Lemma 3.2.2. The Pontryagin dual of Ta is M = lim
−→

S2(Γ0(N),Z2)a/(2
n) where

the transition maps are multiplication by 2.

Proof. First, we note that Ta acts on M because Ta acts compatibly on each level.

If any element T ∈ Ta acts trivially on M , then on any given modular form in

S2(Γ0(N),Z2)a, it acts by arbitrarily high powers of 2, and hence acts as 0. Then T

acts trivially on the rest of S2(Γ0(N),Z2), so T is the 0 endomorphism. Therefore,

M is a faithful Ta-module.

We also know that M [a], the elements of M killed by all of a, is a subspace

of S2(Γ0(N),Z2)a/(2) = S2(Γ0(N),F2)a. It is a vector space over T/a, although
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through the action of T, not by multiplication on the coefficients. We explain why

it’s a 1-dimensional T/a-vector space. The map

S2(Γ0(N),F2)→ Hom(T,F2), f 7→ φf : Tn → an

is injective by the q-expansion principle. The forms killed by a must correspond

to maps factoring through T/a, so the space of forms is at most the dimension of

Hom(T/a,F2) = dimF2 T/a. So the dimension as a T/a-vector space is at most 1.

On the other hand, there is at least 1 form in M [a], because we may take the

form T1q + T2q
2 + T3q

3 + . . . ∈ S2(Γ0(N),T/a) and consider its image under the

trace map T/a→ F2. This is nonzero because the trace map is nondegenerate, and

because the Hecke operators generate T additively. This is in the kernel of a because

the trace of a form is just the sum of its conjugates, and for any expression in a in

terms of the Hecke operators with coefficients in F2, because its application to the

original form is 0 by definition, its application to any of the form’s conjugates must

also be 0 (because the Hecke operators act F2-linearly on a form’s coefficients and

hence commute with Galois conjugation), and so too must its application to the sum.

Because the trace form has coefficients in F2, we’ve found a nontrivial form in M [a],

and this must be dimension 1 as required.

We consider the Pontryagin dual of M : as M is a Z2-module, the image of

any map M → Q/Z must land in Q2/Z2. So let M∨ = HomZ2
(M,Q2/Z2). We

endow this with a Ta-module structure by letting (Tφ)(f) = φ(Tf). Because

S2(Γ0(N),Z2)a ' Zk2 for some k because it is torsion free, M ' (Q2/Z2)k as a

Z2 module. So if φ(f) = 0 for all φ ∈M∨, we know that f = 0. If Tφ = 0 for all φ,
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then φ(Tf) = 0 for all φ and f , and so Tf = 0 for all f , and T = 0. So M∨ is also

a faithful Ta-module.

Further, Ta injects into M∨: we can rewrite

M = lim
−→

1

2n
S2(Γ0(N),Z2)a/S2(Γ0(N),Z2)a

where the transition maps are inclusion. Then the Ta ×M → Q2/Z2 as (T, f) →

a1(Tf) defines the injection. By Nakayama’s lemma and the duality of M [a] and

M∨/a, the minimal number of generators of M∨ as a Ta-module is 1. So we’ve

proven that M∨ ' Ta.

We may use Pontryagin Duality to find that the dual to Ta/2 = M∨/2 is M [2],

which is exactly S2(Γ0(N),Z2)a/(2) = S2(Γ0(N),F2)a. Thus we obtain a perfect

pairing

Ta/2× S2(Γ0(N),F2)a → F2, (T, f)→ a1(Tf).

We may sum these pairings over all a, because Hecke operators and forms with

incompatible maximal ideals annihilate each other. Therefore we obtain a perfect

pairing T/2× S2(Γ0(N),F2)→ F2.

3.3 2T2 is integral

In this section we prove the following lemma:

Lemma 3.3.1. For any element T ∈ T, the element 2T ∈ T lies inside Tan.
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First we prove a lemma describing the image of the representation corresponding

to a non-Eisenstein ideal.

Lemma 3.3.2. Suppose m does not contain the Eisenstein ideal. Then there is a

representation

ρ : GQ → GL2(Tan
m ).

that is unramified outside 2N , and which satisfies Tr(ρ(Frob`)) = T` for ` - 2N .

Proof. Let A = Tan
m and A′ is its integral closure over Z2, which can be written

as the product
∏
iOi of a collection of integer rings. We know that there exist

representations ρ′i : GQ →
∏
i GL2(Oi), by Eichler-Shimura-Deligne-Serre. The

image is GL2(Oi), because GQ is compact, and we may choose an invariant lattice

on which it acts. These ρ′i combine to give a representation

ρ′ =
∏
i

ρ′i : GQ →
∏
i

GL2(Oi).

We know that the traces of the representations at Frob` are the images of T` for

all ` - pN , so the trace of ρ′ by Chebotarev Density always lands in Tan
m . We assumed

m did not contain the Eisenstein ideal, so we know that each ρ′i, and therefore the

full ρ′, is residually irreducible. By [10, Theorem 2] we find that ρ′ is similar to a

representation

ρ : GQ → GL2(Tan
m ).

To prove Lemma 3.3.1, we look at the three different possible cases and deduce
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that the projection of 2T2 to Ta lies in Tan
m for each m ⊆ a. Further, we prove that

T 2
2 lies in Tan

m · T2 + Tan
m , so that any T ∈ T, being an element in Tan[T2], lies in

Tan
m · T2 + Tan

m also, and hence is half of an element in Tan
m .

3.3.1 ρ ordinary irreducible

We first assume that the residual representation GQ → GL2(Tan
m /m) is irreducible

but the local residual representation at 2 is reducible. We will show that 2T2, as an

element of Tan
m [T2], actually lies in Tan

m . This will be done by proving it is in the

ring generated over Z2 by the traces of ρ. Equivalently, we will look at the traces

of ρ ⊗Z2
Q2. This breaks the representation into a direct sum

⊕
i ρ
′
i ⊗ Q2 : GQ →∏

i GL2(Ei). Each of the ρ′i themselves have the same residual representation which

is reducible when restricted to the decomposition group, so all these representations

are ordinary.

Looking at a given ρ′i, we may apply Theorem 2.1.5 to it to obtain a shape of

ρ′i|D2
. In particular, the trace of an element ρ(g) is equal to χ(g)λ−1(g)+λ(g) with λ

the unramified character whose image of Frobenius is the unit root of X2−T2X+ 2,

and χ is the cyclotomic character. If α denotes the unit root of x2−a2,ix+2 = 0, then

letting g be an element of Gal(Qab
2 /Q2) which both is a lift of Frobenius and acts

trivially on the 2-power roots of unity (so χ(g) = 1), then we know Tr(g) = α+α−1.

If we let h be a lift of Frobenius with χ(h) = −1, we find that Tr(h) = α − α−1.

And by definition, we know α + 2
α = a2,i, so 2a2,i = 2α + 4α−1 = 3 Tr(g)− Tr(h).

We now look at the product of representations. The elements g and h were

independent of the coefficient field, so we know that the element of Tan
m ⊗ Q2 that

68



is 2a2,i in each coordinate, namely 2T2 ⊗ 1, is equal to 3 Tr(g)− Tr(h). So 2T2 is in

the ring generated by the traces of elements, and thus in Tan
m .

Similarly, we can prove that T 2
2 is in Tan

m + T2 · Tan
m : in each coordinate, we can

calculate that

a22,i = Tr(g)a2,i + (Tr(gh)− Tr(g2)− 1).

So in Tan
m [T2], we find that T 2

2 = Tr(g)T2 + (Tr(gh) − Tr(g2) − 1). So T 2
2 ⊆ Tan

m +

T2 · Tan
m , and therefore so is every power of T2. So we know that 2Tan

m [T2] ⊆ Tan
m ,

and the Tan
m -module quotient Tan

m [T2]/Tan
m is an F2 vector space. In section 3.4 we

will calculate its dimension.

3.3.2 ρ reducible

We now suppose Tan
m corresponds to a reducible residual representation, so that m

is the Eisenstein ideal generated by 2 and T` for ` - N (including ` = 2). We claim

that T2 is already in Tan
m . This is because by [28, Proposition 17.1], the Eisenstein

ideal of the full Hecke algebra is generated by 1 + `− T` for any good prime. So by

completeness, T2− 3 and therefore T2 can be written as a power series in T`− `− 1.

3.3.3 ρ non-ordinary

We now assume that the residual local representation at 2 is irreducible, or equiva-

lently that in Ta, T2 is not a unit, where a is some ideal of T above m corresponding

to ρ. We claim that T2 is already in Tan
m , so that a = m is actually unique, and the

index is 1.
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Theorem 3.3.3. If ρ is non-ordinary with corresponding map Tan → F with maximal

ideal m, then for any a ⊆ T containing m, T2 ∈ Ta is already contained in the image

of Tan
m .

Proof. The Tan
m -module Tan

m [T2] requires the same generators as the Tan/m-vector

space T/mT by Nakayama’s Lemma, so it’s enough to prove that T/mT is one-

dimensional over Tan/m. If it’s not, then all of Tan/m and T2 are independent over

F2, so there is a homomorphism φ ∈ Hom(T/mT,F2) sending all of Tan/m to 0, and

T2 to 1. Recalling the perfect pairing after Lemma 3.2.2, we find a nonzero modular

form g ∈ S2(Γ0(N),F2)[m] with all odd coefficients equal to 0.

By part (3) of the main result of [22], we know that there is some nonzero form

f ∈ S1(Γ0(N),F2)Katz with f2 = g. (Here, we’re considering weight 1 Katz forms,

and so the weight 2 forms we construct may be Katz forms as well. So if necessary we

enlarge the spaces we’re considering, but it doesn’t affect the conclusion.) As forms

with coefficients in F2 commute with the Frobenius endomorphism, f(q2) has the

same q-expansion as g. If T1 and T1,an are the weight 1 Hecke algebras, it is quick

to check that the corresponding Hecke actions on q-expansions of T1,an are identical

to those of Tan. Therefore f ∈ S1(Γ0(N),F2)Katz[m]. Further, we know that f is

alone in this space, by part (2) of [22]: any other form in S1(Γ0(N),F2)Katz[m] has

the same odd coefficients, so the difference between it and f has only even-power

coefficients, and hence must be 0 by Katz’s theorem. So f is also an eigenform for

T2 in weight 1, say with eigenvalue b2.

So we’ve discovered that S2(Γ0(N),F2)Katz[m] is at most 2 dimensional, spanned

by V f and Af . Here, V acts as V (
∑∞
n=1 anq

n) =
∑∞
n=1 anq

2n on power series, so
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that V f = g, and can either be a weight-doubling operator, as used in [22], or a

level-doubling operator. Additionally, Af is the multiplication of f with the Hasse

invariant A, which preserves q-expansions. We can hence calculate the action of T2

on this space: we know that T2 acts in weight 2 via U+2V , where U (
∑∞
n=1 anq

n) =∑∞
n=1 a2nq

n, and in weight 1 as U + 〈2〉V with 〈2〉 the diamond operator, which

is identically 1 on mod 2 forms. Further, we can compute that UV f = Af , as V

doubles each exponent and U halves it.

So we find

T2(V f) = UV f = Af

T2(Af) = U(Af) = A(Uf) = A(T2f − 〈2〉V f) = A(b2f)− 〈2〉V f

and the matrix for the T2 action is

b2 −〈2〉
1 0

. (In these computations, the distinc-

tion between the level-raising V and the weight-raising V has been blurred, because

on q-expansions they are equal; we view both lines as equalities of weight 2 level

Γ0(N) forms.) As 〈2〉 is trivial, the determinant of this matrix is 1, so T2 is invert-

ible. This is impossible because the form was non-ordinary. So there cannot be such

a form g, and Tan
m [T2] requires only one generator as a Tan

m -module, as required.

3.4 Dimension of T/Tan

In this section we prove the second half of Theorem 3.1.1. It is enough to look locally,

so we will localize at a maximal ideal m of Tan. Because completion at only ordinary
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non-Eisenstein ideals have T2 not immediately in Tan
m , we assume that m is such an

ideal.

3.4.1 Relating T/Tan to S2

We first recall the perfect pairing S2(Γ0(N),F2) × T/2 → F2, given by (f, T ) →

a1(Tf). While proving this, we proved perfect pairings S2(Γ0(N),F2)a×Ta/2→ F2,

and we now combine all a that contain m, to get a perfect pairing S2(Γ0(N),F2)m×

Tm/2 → F2 where we denote Tm as the localization of T at the (not necessarily

maximal) ideal mT, and S2(Γ0(N),F2)m = e · S2(Γ0(N),F2) for e the projection

from T to Tm. Considering the subspace of forms killed by Aθ, the operator defined

in [22] which acts as q ddq on q-expansions and raises the weight by 3, it’s clear

that the entirety of Tan
m annihilates it under the pairing, and we wish to prove

that this is the full annihilator. For ease of notation, let us write V = Tm/2Tm,

W = S2(Γ0(N),F2)m, and V ′ = Tan
m /2Tm.

Lemma 3.4.1. S2(Γ0(N),F2)m ∩ KerAθ and Tan
m /2Tm are mutual annihilators in

this perfect pairing.

Proof. We’ve seen that they annihilate each other. Now suppose f =
∑∞
i=1 aiq

i ∈

W is annihilated by all of V ′. By the usual formula for the Hecke action on q-

expansions, the coefficient of q1 in Tnf is an, so an = 0 for all odd n. Therefore

f ∈ S2(Γ0(N),F2)m ∩ KerAθ, and we can call this space Ann(V ′). This is enough

to show they are mutual annihilators by dimension count, but we’ll prove the other

direction as well.
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The space W/Ann(V ′) is represented by sequences of odd-power coefficients that

appear in forms in W . We first prove that the map V ′ → Hom(W/Ann(V ′),F2)

induced by the pairing is surjective. Given a map ϕ ∈ Hom(W/Ann(V ′),F2) whose

input is sequences of odd-power coefficients, we can define a map ϕ′ in the double

dual of V ′ taking maps

χ : V ′ → F2 to ϕ(χ(T1), χ(T3), χ(T5), . . .).

This is the definition of ϕ′ when (χ(T1), χ(T3), . . .) appears as the odd-power coeffi-

cients of a form. And then if we’ve not defined ϕ′ on all of the dual of V ′, we can just

extend it any way we want. But because V ′ is finite dimensional, this ϕ′ determines

an element Tϕ ∈ V ′ for which

χ(Tϕ) = ϕ′(χ) = ϕ(χ(T1), χ(T3), . . .).

Then because any sequence of coefficients (a1, a3, . . .) is given by a character χ(ai) :

Tn → an (the restriction of such a χ from Ta, for example), the pairing truly does

send Tϕ to ϕ.

Now given T that sends all of Ann(V ′) to 0, Tf must only depend on the odd

coefficients of f . But then ϕ : f → a1(Tf) is an element of Hom(W/Ann(V ′),F2).

So by surjectivity there is some element T ′ of V ′ with a1(Tf) = ϕ(f) = a1(T ′f) for

all f ∈ W/Ann(V ′). Then a1((T − T ′)f) is 0 for all f either in Ann(V ′) or a lift

of an element of W/Ann(V ′), and so in all of W . Because the pairing is perfect,

T = T ′ ∈ V ′ as we needed.

73



Now that we know these are mutual annihilators, we obtain an isomorphism

V/V ′ → Hom(Ann(V ′),F2),

and taking dimensions and reinterpreting, we’ve proven that

dimTm/Tan
m = dimS2(Γ0(N),F2)m ∩KerAθ.

So we have proven the following.

Lemma 3.4.2. The index of Tan
m in Tm equals the order of S2(Γ0(N),F2)m∩KerAθ.

3.4.2 Lifting from weight 1 to weight 2

Now we use the main theorem of [22] to find a subspace of S1(Γ0(N),F2)Katz that

maps under V to S2(Γ0(N),F2)m ∩ KerAθ. As in Section 3.3.3, we have Tan-

equivariance, and so the maximal ideal m has an exact analogue in T1,an and we

land in the subspace S1(Γ0(N),F2)Katz
m . We may not obtain the whole subspace be-

cause, while V f is in the kernel of Aθ for all f ∈ S1(Γ0(N),F2)Katz
m , we don’t know

that it’s a form that is the reduction of a Z2 form, which is what Tan
m parametrizes.

In this section we will prove that the space of Katz forms of weight 2 actually are all

standard forms.

The first case is N ≡ 3 mod 4, which was taken care of Edixhoven:

Theorem 3.4.3 ([14, Theorem 5.6]). Let N ≥ 5 be odd and divisible by a prime

number q ≡ −1 modulo 4 (hence the stabilizers of the group Γ0(N)/{1,−1} acting on
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the upper half plane have odd order). Then S2(Γ0(N),F2)Katz and F2⊗S2(Γ0(N),Z)

are equal, and the localizations at non-Eisenstein maximal ideals of the algebras of

endomorphisms of S2(Γ0(N),F2)Katz and H1
par(Γ0(N),F2) generated by all Tn (n ≥

1) coincide: both are equal to that of S2(Γ0(N),Z) tensored with F2.

So for primes N ≡ 3 mod 4, we’ve proven the equality in Theorem 3.1.1. For

the remainder of this section we therefore assume N ≡ 1 mod 4. Further, up until

this point we’ve only worked with F2-forms, but we change coefficients to F2 so that

we can find eigenforms associated to each maximal ideal. Theorem 3.4.3 still applies

as its proof in [14] can be extended to all finite extensions of F2.

Theorem 3.4.4. There are no Katz forms that are not the reduction of a form in

S2(Γ0(N),Z2). That is,

S2(Γ0(N),F2)Katz = S2(Γ0(N),F2).

Proof. Let ` be an arbitrary prime that is 3 mod 4, and we will look at the space

S2(Γ0(N`),F2)Katz. We can apply Theorem 3.4.3 to it and conclude that this space

is exactly the characteristic 0 forms tensored with F2, so we may drop the Katz

superscript. Further, we know that all Katz forms of level Γ0(N) lie in this space.

So we just need to know there are no extra level Γ0(N) forms within this space.

As TKatz ⊗ F2 can be broken into a direct sum of F2-vector spaces on which

the semi-simple action of each operator is by multiplication by a constant, we know

S2(Γ0(N),F2)Katz can be written as a direct sum of generalized eigenspaces. If we

show every generalized eigenform in S2(Γ0(N),F2)Katz is the reduction of a modular
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form from S2(Γ0(N),Z2), then we’re done. So suppose f is a generalized Katz

eigenform for all Tn, including T2. Let the eigenvalue corresponding to T` equal a`;

we will prove that if f 6∈ S2(Γ0(N),F2), then a` = 0.

There are two maps from S2(Γ0(N),F2)Katz to S2(Γ0(N`),F2): the plain em-

bedding with equality on q-expansions, and the map V` sending f(q) to f(q`). We

know T` = U` + `V` on q-expansions, so we find that

U`(T` − a`) = U`(U` + `V` − a`) = U2
` − a`U` + `U`V` = U2

` − a`U` + `

as operators from S2(Γ0(N),F2)Katz to S2(Γ0(N`),F2). Then because f is a gener-

alized eigenform, we find

0 = (Uk` (T`−a`)k)f = Uk−1` (U2
` −a`U`+`)(T`−a`)k−1f = . . . = (U2

` −a`U`+`)kf.

If we factor X2 − a`X + ` as (X − α)(X − β) for some lift of a`, we’ve proven

that (U`−α)(U`− β) acts topologically nilpotently on any lift of f (which exists by

Theorem 3.4.4). This will eventually be used to prove that one of α or β, and hence

both, reduce to 1 mod the maximal ideal of Z2.

Lemma 3.4.5. For any characteristic 0 newform g of level N`, U`− 1 acts topolog-

ically nilpotently.

Proof. The eigenform g gives us a representation ρ : GQ → GL2(Q2). The shape of

this representation at the decomposition group at ` is given by [12, Theorem 3.1(e)],
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as we recalled in the proof of Theorem 3.2.1, which says that

ρ|D` =

χε ∗
0 χ


where χ is the unramified representation that sends Frob` to the U`-eigenvalue of

g, and ε is the 2-adic cyclotomic character. Because the determinant is the 2-adic

cyclotomic character as well, we know that χ2 = 1, so the U`-eigenvalue of g is ±1.

So U` − 1 is either 0 or −2, which both act nilpotently.

If α−1 and β−1 have valuation 0, then (U`−α)(U`−β) will not act nilpotently

on any linear combination of eigenforms which includes at least one newform, by

Lemma 3.4.5. As (U` − α)(U` − β) acts nilpotently on a lift of f , we know that

this lift is a linear combinaton of only oldforms, and hence f lifts to S2(Γ0(N),Z2).

Otherwise, one of α and β, and hence both, are 1 mod the maximal ideal of Z2, and

so α + β ≡ 0 ≡ a`.

Therefore, we have proven that if f is a generalized eigenform in S2(Γ0(N),F2)Katz

that has no lift to characteristic 0, then a` = 0 for any prime ` ≡ 3 mod 4, as our

choice of ` was arbitrary. Letting g be a true eigenform in the same eigenspace as

f , we obtain a representation ρg : GQ → GL2(F2) with Tr(ρg(Frobp)) = ap. We

showed that ρg has trace 0 on all Frob`, so it must be the induction of a character

from GQ(i) to GQ. But such a representation is dihedral in the terminology of [23],

and [23, Theorem 12(1)] proves that it’s impossible for a dihedral representation on

GQ(i) to give rise to a form of level Γ0(N). So there can be no Katz eigenforms of

level Γ0(N) that don’t lift, and hence no generalized eigenforms and therefore no
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forms at all.

From this, we conclude that all the forms V2f , where f is a weight 1 form of level

N , are classical forms, and so the dimension of the space S2(Γ0(N),F2)m∩KerAθ is

exactly the dimension S1(Γ0(N),F2)Katz
m . And so from Lemma 3.4.2, taking a direct

sum over all m, we obtain Theorem 3.1.1.

3.5 Examples

In this section we use Theorem 3.1.1 to make nontrivial observations about the index

of Tan inside T.

3.5.1 N ≡ 3 mod 4

Lemma 3.5.1. If N ≡ 3 mod 4 is prime, the anemic Hecke algebra Tan is equal to

the full algebra T if and only if the class group Cl(Q(
√
−N)) is trivial.

Proof. If K = Q(
√
−N) has class number greater than 1, by Proposition 2.2.3(a),

since the discriminant of K is −N which is divisible by only a single prime, the 2-part

of the class group of K is trivial, so Cl(K) has a nontrivial mod 2 multiplicative char-

acter which translates to an unramified mod 2 character χ of Gal(Q/K). Inducing

this to Gal(Q/Q), we get a dihedral representation with Artin conductor equal to

N . Wiese proves in [42] that all dihedral representations give rise to Katz modular

forms, and so the space S1(Γ0(N),F2)Katz is nontrivial, and hence Tan ( T.

This shows that if N is not 3, 7, 11, 19, 43, 67 or 163 (and is still a 3 mod 4 prime),

Tan(N) ( T(N). On the other hand, for N = 3 and N = 7 there are no modular

78



forms of weight 2, and for the other N , computer verification using the techniques

of modular symbols, such as described in [35], provides the following table:

N T2

11 −2T1

19 0

43 −2T1 − 2T3 + T5

67 T3 − T11

163
30T1 − 16T3 − 23T5 − 9T7 + 18T9 + 3T11 − 24T13

+12T15 + 40T17 − 16T19 − 14T21 − 9T23 + 2T25 + 32T27

Table 3.1: T2 values in Tan for remaining N

These each prove that there are no Katz eigenforms of weight 1 and levelN for any

of these N , and in turn that there are no Galois representations that could provide

such forms. Of course, we knew a priori there were no dihedral representations, as

they would need to arise from the class group, but we now know that there are no

larger-image representations.

3.5.2 N ≡ 1 mod 4

Question 3.5.2. Is it true that for a positive proportion of prime N ≡ 1 mod 4,

the anemic Hecke algebra Tan is not equal to the full algebra T, and for a positive

proportion of N , Tan is equal to T?

We cannot immediately claim anything about the class group, because the Cohen-
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Lenstra heuristics [11, C11] claim that approximately 75.446% of positive prime-

discriminant quadratic extensions have trivial class group, so that there can be no

dihedral modular forms.

The strong form of Serre’s conjecture due to Edixhoven [13, Conjecture 1.8] is

not known, where the strong form differs from the form proven by Khare and Win-

tenberger in [24] in this weight 1 case. A result of Wiese for dihedral representations

[42] is known, and a converse (that the corresponding representation ρ is unramified

at 2) has been proven [44, Corollary 1.3]. We may also use Theorem 3.1.1 to con-

struct weight 1 forms in the case that the eigenvalues of Frob2 in the characteristic

2 representation are distinct, because there are two possible values for a2, implying

that Tm 6= Tan
m .

We also know the subgroups of SL2(F2), by Dickson, of four types: cyclic, upper-

triangular, dihedral, and full-image (see [36, Chapter 3, Theorem 6.17]). We know a

modular representation must be absolutely irreducible: if not, say f is a weight 1 form

for which ρf is reducible. Then Af is a weight 2 form with the same representation,

along with V f in the same generalized eigenspace. But in Section 3.3.2 we proved

that T2 is already contained in the Hecke algebra corresponding to any eigenform with

reducible representation, meaning that the dimension of S2(Γ0(N),F2)m is dimension

1, not 2. Therefore only absolutely irreducible representations can be modular,

so only dihedral and full-image representations can exist. So assuming the strong

version of Serre’s conjecture, we know that for any weight 1 forms to exist at level

N , we need either a dihedral extension of Q, which must arise from inducing from

the class group of Q(
√
N), or we need an extension of Q unramified outside N with
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Galois group isomorphic to SL2(F2k) for some k.

Work has been done by Lipnowski [27] to interpret Bhargava’s heuristics for

the Galois group GL2(Fp) for p a prime, in order to count elliptic curves by their

conductors through their p-adic representations. Although not done in this thesis, it

appears tractable to similarly analyze the groups SL2(F2k) and obtain a heuristic,

explicit or not, on how many primes p have an elsewhere-unramified extension with

each of these as their Galois groups. Because of the Cohen-Lenstra heuristics, it

appears likely that infinitely many, even a positive proportion, of primes 1 mod 4

have no weight 1 forms, so T = Tan, and a positive proportion of primes have some

weight 1 form so Tan ( T.

Explicit example: N = 653

An instructive example is that of N = 653. Of course this is 1 mod 4, and so any

dihedral representation that would give a weight 1 form would have to come from an

induction of the class group of Q(
√

653), but the Minkowski bound is 1
2

√
653 ≈ 12.77,

and 2, 3, 5 are inert and 7 = 2302 − 653 · 92 and −11 = 512 − 653 · 22 are norms of

principal ideals. So Q(
√

653) has class number 1. But the Galois closure L of the

field Q[x]/(x5 + 3x3− 6x2 + 2x− 1) has Galois group A5 = SL2(F4), and is ramified

only at 653 with ramification degree 2 and inertial degree 2. Therefore, Edixhoven

predicts that the tautological Galois representation gives rise to a weight 1 level

Γ0(653) modular form. This is not a classical form, as SL2(F4) does not embed into

GL2(C), where all weight 1 characteristic 0 eigenforms must arise from.

On the other hand, SL2(F4) does embed into PGL2(C), and by a theorem of Tate,
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all projective Galois representations lift. We can follow the proof given by Serre in

[31] to obtain a lift, unramified away from 653, and with Artin conductor 6532. The

fixed field of the kernel of this representation is a quadratic extension of

L[x]/(x4 − x3 + 82x2 − 1102x+ 13537), which is itself the compositum of L and the

quartic subfield of the 653rd roots of unity. Locally at 653 it is a faithful represen-

tation of Gal(Q653( 8
√

653,
√

2)/Q653), a Galois group isomorphic to 〈x, y|x8 = y2 =

e, yx = x5y〉.

We therefore find that, as the Artin conjecture for odd representations has been

proven in [24], an eigenform of weight 1 and level 6532 that reduces to the char-

acteristic 2 form of level 653 we found above. We can additionally twist by the

nontrivial character of Q(
√

653)/Q, not changing the determinant or level, to get a

second Artin representation, and hence a second modular form of the same weight

and nebentypus. These two eigenforms are congruent mod 2, so their average is also

an integral form, and there is therefore a nilpotent element of the weight 1 mod 2

Hecke algebra, in a similar sense to [9, Lemma 3.8]. And conjugating the F4-forms,

we obtain 2 more weight 1 forms of level 653. So the index of Tan in T must be at

least 16.
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Indeed, we can find the following four (non-eigen)forms of weight 2 and level 653:

f1 = 0q1 +1q2 +2q3 −4q4 +0q5 +2q6 +0q7

+4q8 +0q9 +4q10 +0q11 +1q12 −6q13 + . . .

f2 = 0q1 +0q2 +2q3 −3q4 +0q5 +2q6 +2q7

+2q8 +4q9 −3q10 +4q11 −6q12 +0q13 + . . .

f3 = 0q1 +0q2 +0q3 +4q4 +0q5 +1q6 +2q7

+2q8 +4q9 +5q10 +2q11 +0q12 +4q13 + . . .

f4 = 0q1 −2q2 −6q3 +2q4 +0q5 +2q6 +2q7

−5q8 +0q9 +0q10 −2q11 −6q12 −2q13 + . . .

each of whose odd-power coefficients are all even, proving that none of T2, T4, T6

or T8 are in Tan plus the other 3. But a calculation up to the Sturm bound of

109 proves that there are no other modular forms with all odd-power coefficients

and coefficients of q2, q4, q6, q8 all even but some other coefficient is odd. Therefore

T = Tan + 2T + 〈T2, T4, T6, T8〉, so T/(2T + Tan) is generated as an F2-vector space

by T2, T4, T6, T8. By Lemma 3.3.1, Tan contains 2T, but from the above forms

T2, T4, T6, T8 are independent in T/Tan so the index of Tan in T must be exactly

24 = 16.
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Boston, Inc., Boston, MA, 2009.

[19] Michael Harris, Nick Shepherd-Barron, and Richard Taylor. A family of Calabi-
Yau varieties and potential automorphy. Ann. of Math. (2), 171(2):779–813,
2010.

[20] Christian Johansson. On the Sato-Tate conjecture for non-generic abelian sur-
faces. Trans. Amer. Math. Soc., 369(9):6303–6325, 2017. With an appendix by
Francesc Fité.
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[29] Löıc Merel. L’accouplement de Weil entre le sous-groupe de Shimura et le sous-
groupe cuspidal de J0(p). J. Reine Angew. Math., 477:71–115, 1996.

[30] Kenneth A. Ribet. Abelian varieties over Q and modular forms. In Algebra and
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