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ABSTRACT

In his work on crystal bases [13], Kashiwara introduced a certain degeneration of the quan-
tized universal enveloping algebra of a semisimple Lie algebra g, which he called a quantum
boson algebra. In this work, we construct Kashiwara operators associated to all positive
roots and use them to define a variant of Kashiwara’s quantum boson algebra. We show
that a quasi-classical limit of the positive half of our variant is a Poisson algebra of the form
(P ~ C[n*],{ , }p), where n is the positive part of g and { , }p is a Poisson bracket
that has the same rank as, but is different from, the Kirillov-Kostant bracket { , }xx
on n*. Furthermore, we prove that, in the special case of type A, any linear combination
a{ , tp+a{ , }kk, ai,as € C, is again a Poisson bracket. In the general case,
we establish an isomorphism of P and the Poisson algebra of regular functions on the open
Bruhat cell in the flag variety. In type A, we also construct a Casimir function on the open

Bruhat cell, together with its quantization, which may be thought of as an analog of the

linear function on n* defined by a root vector for the highest root.



CHAPTER 1
INTRODUCTION

Let g be a complex semisimple Lie algebra and g =n@®h®n~ a triangular decomposition of
g. Using this data, one can define the quantized universal enveloping algebra U ([5], [12, 4.3])
deforming the usual universal enveloping algebra U of g. In [13], Kashiwara defines, for each
simple root «, an operator e, acting on the negative half U~ of U. These operators allow
Kashiwara to define what he calls the quantum boson algebra, which plays an important
role in his theory of crystal bases (see [13]).

In this work, we construct Kashiwara operators r/)\ : U~ — U~ for each A € &1, where
®T is the set of positive roots. These operators generate the positive half C(j of a version
of the so called quantum boson algebra Cy. It turns out that the quasi-classical limit P
of a certain integral form of C’j is a commutative algebra. In fact, we will prove that (see

Proposition 4.1.1 below)

Theorem 1.0.1. There is a C-algebra isomorphism P ~ C[F’A A € ®T], where T stands for

the specialization of r € Cq+ at q=1.

It follows from Theorem 1.0.1 that one can identify P with C[n*]. So, by the Hayashi
construction, n* comes equipped with a Poisson structure 7 via the identification SpecP ~
n*. Recall that two Poisson structures 7y, 9 on a variety X are called compatible if their sum
is again a Poisson structure, equivalently, {a1m + aoms : a1,a9 € C} is a pencil of Poisson
structures. Regarding the relation between 7 and the Kirillov-Kostant Poisson structure

T on n*, we prove that (see Theorem 4.2.15 below)

Theorem 1.0.2. Let g be of type A. Then the Poisson structures m and wg g on n* are

compatible.

Let G be a connected algebraic group whose Lie algebra is g. The classical r-matrix

gives G the structure of a Poisson Lie group [1, 5, 6, 7, 8, 10, 17, 20]. The flag variety G/B
1



inherits a Poisson structure w4 making the natural quotient map G — G/B Poisson. mg is
usually referred to as the standard Poisson structure. Let wq be the longest element of the
Weyl group of (g, ), so BwyB/B is the open Bruhat cell in G/B. It turns out (see Theorem
4.2.19 below) that

Theorem 1.0.3. There is a Poisson isomorphism (w*,7) ~ (BwyB/B, mgt).

In [6], Elek and Lu have proved that C[BwyB/B] has a natural structure of a cluster
algebra, c.f. [10]. One advantage of our approach is that the structure of symmetric Poisson
CGL extension [10] on C[n*] is very transparent.

In the next two results, we assume that g ~ sl 1 and let aq,-- -, ap be the simple roots
of g. For each A € ®T, we will construct a vector field F'y on n* using our version of the
quantum boson algebra Cy. These vector fields can be used to deform the Poisson structure

7. The following result is a combination of Theorems 4.2.12 and 4.2.13 of the main text.

Theorem 1.0.4. For any 1 < i < 5 < n, the bivector L',Faﬁerajw 1s Poisson, where
L stands for the Lie derivative. Moreover, the Poisson structures m and Efai+...+aj7r are
compatible.

It follows from Theorem 1.0.3 and Theorem 1.0.4 that, in type A, the standard Poisson
structure on the open Bruhat cell fits into a pencil of compatible Poisson structures. It would
be interesting to find an interpretation of the vector field Fai+...+aj in the context of the
flag variety.

Theorem 1.0.3 also sheds some light on the Poisson center of the coordinate ring of

BwyB/B. To simplify notation, in type Ay, for 1 <i < j <n, we write 7; ; for F/oz¢+-~-+ozj

and T for T&iJr.,,jLaj. For a partition

E={1<K| <kyg<--<Kp=n} (1.1)



of n, we write 7 for the monomial

Tl,lilflil-i-l,lig e 'Flik_l—l-l,lik' (1~2)

We prove the following result in Propositions 4.2.7 and 4.2.8.

Theorem 1.0.5. (a) The element ¢ := (3 7x)T1, € C[n*], where k runs over all partitions

of n, 1s a Casimir function with respect to .

(b) The element

V.= Z qn*|l€|r17,{17',£1+17ﬂ2 o Trp_ 41,6710 (13)
KkFn

1s a central element of C’;.

This work is organized as follows. In chapter 2 we generalize the construction of Kashi-
wara in the case of simple roots and associate a certain Kashiwara operator rf\ to every
A\ € ®T. For this, we make use of the coalgebra structure on U and Lusztig’s braid group
action on U [18]. Most of the preparatory material is taken from [12]. The quantum boson
algebra Cy is defined in the same section.

In chapter 3 we construct a PBW basis for C’q+ and prove certain Levendorskii-Soibelman
and Leibiz type properties for Kashiwara operators. Some of these properties will be key
technical tools for the study of quasi-classical limits.

In chapter 4 we introduce the quasi-classical limit C,; and study the Poisson bracket on
the positive half Cj ~ P of C; that comes from the Hayashi construction.

In chapter 5 we present the proof of a technical result, Theorem 3.2.2.



CHAPTER 2
BASIC DEFINITIONS

2.1 Review of Quantized Universal Enveloping Algebras

Let g be a complex semisimple Lie algebra and g =n@®h®n~ a triangular decomposition of
g. Thusb:=ndbhand b~ :=n" @b is a pair of opposite Borel subalgebras of g. Associated
to this data, we have a root system (® = & U &~ II), where ® is the set of all roots, &
(resp. @) is the set of positive (resp. negative) roots and II C & is the set of simple roots.

Consider the field C(gq) of rational functions in the variable q. For n € N, we write

[n] = q:__qq__ln € C(gq). We fix a symmetric invariant nondegenerate bilinear form ( , ) on
h*, the dual vector space of b, such that (A, \) = 2 for each short root A. If \ is a positive
root, then we write [n]y = Cﬁ:g}?, where ¢y = q(/\’)‘)/Q. Define the quantum factorials
as [n]l:= [i1q[i] and [n]')\ := [[i2q[i]n. By convention, we put [0]!:= 1 and [O}')\ = 1L
The quantum binomial coefficients are defined as follows: [] := % and "] N
%, for m € N and n € Z>g with n < m. The subring C[qil}m!, the localization of

C[¢T!] at the element [3]!, of C(¢) will be denoted by A. It is worth pointing out that the
quantum integers [n| and [n]y, quantum factorials and quantum binomial coefficients defined

in this paragraph are all elements of A.

Remark. Our choice of the ‘integral form’ A of C(g) is not standard. The standard choice
for A is C[g*!]. We make our non-standard choice only because we need to take care of the
situation where there are more than one root lengths in the root system (&, II). See section

3.2 for more details.

Recall that the quantized universal enveloping algebra U = U(g) is the C(g)-algebra



generated by Ey, F, Ko and K&l for all a € II, subject to the relations

KoKy' = K3 Ko =1, KoK = KgKa (2.1)
KoBEgKyt = ¢ P By (2.2)
KoFsKy' = (P Ry (2.3)

Ko— K1
EoFg — FgEq = 0 g———2 (2.4)
da — 4o
1—cap ] ‘
3 (- { _Z_C“ﬂ} Ey T BBl =0, (2.5)
i=0 a
1_Caﬁ 1 . _
> (=) { Z,Caﬂ Fo P RgFL =0, (2.6)
i=0 a
where ¢, g is the Kronecker delta and ¢, := 2%.

Let UT (resp. U~™) be the C(g)-subalgebra of U generated by E, (resp. Fy), for all
o € TI. We call Ut (resp. U~) the positive (resp. negative) half of U. Let UY be the
C(q)-subalgebra of U generated by K, éc, for all a € II. One has a triangular decomposition:
U~Ut®@UY® U™ of vector spaces over C(q), c.f. [12, Theorem 4.21].

Definition 2.1.1. Define Ujl' to be the A-subalgebra of U™ generated by E&n) for all a € 11

and n € Z>(, where E&n) = %

Similarly, define U 4 to be the A-subalgebra of U™ generated by Fo(én) for all a € II and

n € Z>(, where F .- [1;_?’;

Write Z® for the root lattice, and (Z®)" (resp. (Z®)~) for those Z-linear combinations
of simple roots all of whose coefficients are non-negative (resp. non-positive) integers. For

p € (Z®), define ‘root spaces’ in U:

U/f ={zeUT: KuaK,! = ¢ @Mz forall o€ 11}, (2.7)

UZ,={yelU : KoyK, ' = g @My forall o€ I1}. (2.8)



We call UJ (resp. UZ,,) the p- (vesp. (—p)-) root space of U. It is clear that there are

C(q)-vector space direct sum decompositions

vt= @ v ad U= & U, (2.9)
He(Zd)* pe(Z®)+

Using the direct sum decompositions above, we make U~ a (Z®)"-graded algebra by
putting U:M in degree pu.
Remark. This grading of U™ is not standard. The negative half U™ is positively graded.

In [13], for each a € II, Kashiwara defines C(q)-linear maps e,,, el : U~ — U~ , which

satisfy the equation

Kaep(y) — Kq'lel(y)
do — Gar |

Eoy —yEq = (2.10)

for all y € U~. In the literature, the maps e/, e/ are usually referred to as Kashiwara

operators associated to a € II. In what follows, we wish to present another perspective on
the Kashiwara operators.

Recall that U has a Hopf algebra structure where the coproduct A : U — U ® U is
defined by

A(Ey) =Ea®1+ Ko ® Eq, A(Fo)=Fa@ K1 +1@ Fy, A(Ky) = Ko ® Ko (211)

for all @ € II. If v = Y gcqpepB € ZO, we write Ky = []Jgep K;ﬂ. For yu € (Z®)' and

y € UZ,,, it is known, c.f. [12, 4.13], that A(y) € @ U, ® U:( _V)Ky_l, where < is the
0<v<p H

standard partial order on the root lattice, i.e. A\; < Ay if and only if Ay — A1 € (Z®)". For

a € 11, since Fy, generates U_,, over C(q), for each u € (Z®)T, there is a unique C(g)-linear



map 1y, : u_,— U:( such that

p—a)

Aly) =10y + Z Fo @7l (y) K51 + other terms, (2.12)
a€ll

where ‘other terms’ stands for summands in UZ, ® U:( K1 for v e (Z®)t, v+#0 and

p—v)
v ¢ II. Using the direct sum decomposition (2.9), we extend the r/,’s by C(q)-linearity to

C(q)-linear endomorphisms of U~

Definition 2.1.2. For each a € II, the C(g)-linear endomorphism 7/, of U~ is called the

Kashiwara operator associated to «.
An important property of the Kashiwara operators is

Lemma 2.1.1. [12, Lemma 6.17] For each o € 11, there is a unique C(q)-linear endomor-

phism rq of U™ satisfying the equation

Koﬂ"oz(y) - T&(Q)Kojl
do — Gar |

Eqy —yFEqo = (2.13)

forally e U™.

In view of formula (2.10) and Lemma 2.1.1, on each root space of U™, !, differs from
Kashiwara’s original €/, only by a power of q. Hence, at the level of quasi-classical limits
(g =1), rl, and €], coincide. The interested readers should consult [12] for details.

We are going to construct Kashiwara operators associated to all positive, not necessarily
simple, roots. This will be done via Lusztig’s braid group action [18] on U. We will follow
the presentation in [12, 8.14].

Let W be the Weyl group for (g,h), and B the corresponding braid group. W acts on
the root lattice Z®. For w € W and pu € Z®, we write w(u) for the action of w on p. For a

simple root «, we write Ty, for the corresponding generator of B. Lusztig defines in [18] an



action of B on U by C(g)-algebra automorphisms by the following formulas:

To(Ky) = K () Vo € 11 and p € Z; (2.14)
Ta(Ea) = —FaKq,
To(Fo) = —K, ' E, Vo € IT; (2.15)
Tu(Ep) =Y (1) g2 ES 7 B4EY,
j=0
Ta(Fg) = (1) g Y Fyr{ ™) Vo, 3 € T and a # 5, (2.16)
§=0
2(8,2)

where 7 := —

(@a)”

Write s, for the simple reflection associated to the simple root . Let wg € W be the

longest element of W and fix a reduced expression
WO = Say, Sa, - Sajy (2.17)

for wg. Here N is the length of wq, equivalently, the number of positive roots in ®. It is
known, c.f. [2, 11, 12] and references therein, that such a reduced expression gives rise to an

enumeration

AL = gy, A2 = Say, (Qiy), - AN = Sy, Sag,  Saqy (iy) (2.18)

of all positive roots. One also obtains a total linear order on the set of all positive roots
defined by A; = A; if and only if ¢ < j.

Now, for each 1 <k < N, define E, (= E,) == Toy, Ty, (E%'k) and call it the root



vector for the positive root A. For a vector d € (ZZO)N, d=(dy, -, dy), we define

—

d d
B =B B (2.19)

Similarly, define F) (= Fj) = Toy, "'Taik,l(Faik) and F9 .= F]CffN : F1d1 The PBW

theorem [12, Theorem 8.24] for U states

Theorem 2.1.2. (a) The elements EJK,LFg, where d, é € (Z>0)N, u € Z®, form a C(q)-
basis for the quantized universal enveloping algebra U .

(b) The elements Ed (resp. F€), where d € (Zs0)N (resp. € € (Zso)N), form a
C(q)-basis for the positive (resp. negetive) half Ut (resp. U~ ) of the quantized universal

enveloping algebra U.

There is also a version [19] of the PBW theorem for Uj:

= -

Theorem 2.1.3. The elements E@ (resp. F(D)), where

g ._ E%N)..,Eidl):< 1! E%N)...(L!Efl) (2.20)
[dN])\N [dlb\l
(resp. Fl) .= ](\;ZN)---Fl(dl) = (=% F]%N)( L Fldl)) and d € (Zx0)™, form an
[dNT\y ldaly, -

A-basis for the free A-module UI (resp. Uy ).

2.2 Construction of Kashiwara Operators Associcated to a

(Non-simple) Positive Root

Let 4 € (Z®)" and y € UZ,. One knows that A(y) € @ UZ, ® U:( B )Ky_l. Using
0<v<p p=v

that the F%s with Aj= v, where A 7:= Zévzl di Ay, form a C(g)-basis for U_,,, we conclude

—1



that there exist unique C(g)-linear maps r’.: U~ — U~ such that
d 1 —(u=Ap)
— d / -1
Aly) = Y FP@riy)Ky (2.21)
d

for all y € U—_u' Using the direct sum decomposition (2.9), we extend the maps T;f by

C(qg)-linearity to C(q)-linear endomorphisms of U~

Definition 2.2.1. (a) For each d € (ZZO)N, the C(g)-linear endomorphism rzi of U™ is
called the Kashiwara operator associated to d.
(b) If d = &, for some 1 < k < N, i.e. d is the vector with a 1 in the kth component
/

and 0’s elsewhere, we also write r\ (= 7) for r’_and refer to 7\ (= r}) as the Kashiwara
AT TE J AT TE

operator associated to the (possibly non-simple) positive root Aj.

Remark. If A\ = « for some 1 < k < N and o € II, then ri\k coincides with 'r”a from

Definition 2.1.2, because F = F,.

For each « € II, left multiplication by Fy, gives a C(g)-linear endomorphism of U~. The

following definition is a slight modification of the one introduced by Kashiwara in [13].

Definition 2.2.2. (a) The C(q)-subalgebra of End(c(q)U ~ generated by the operators of left
multiplication by Fy, for all a € II, and the Kashiwara operators 7’;{/,, forall 1 <k <N, is
called the quantum boson algebra. This algebra will be denoted by Cy = Cy(g).

(b) Define C(;r to be the C(g)-subalgebra of Cy generated by 7“2, forall 1 < k < N.
Define ¢ to be the C(g)-subalgebra of Cy generated by the operators of left multiplication

by Fy, for all o € II. We will call C’(j (resp. Cy ) the positive (resp. negative) half of Cy.

We make Cy a Z®-graded algebra in the following way. For all o € II, we put the operator
of left multiplication by F}, in degree —a; for all 1 < k£ < N, we put ’I“;C in degree \j.
The above definition of Cy depends, a priori, on the choice of reduced expression (2.17)

for wg. This is because the definition of the Kashiwara operators 7’;{, 1 <k < N, depends

10



on the reduced expression. We will show in Proposition 3.1.6 below that C’; is in fact
independent of (2.17).
We now proceed to define an integral form of Cy. Let p € (Z®)" and y € UZ,,- Recall

that A(y) € @ U_,®U~, K, ! and that {F(‘j) : Ay =v}is a C(q)-basis for UZ,, by
0<r<p (n—v)

Theorem 2.1.3. Hence there exist unique C(g)-linear maps /. : U~ — U~ so that
(d) " TH T T
_ ) @ ()L
A(y) ZF @ri (y)K)\J. (2.22)
d
Remark. We emphasize that here we have used the C(q)-basis {F(J) tAp=v}for U,

while at the beginning of this section we used the C(g)-basis {F‘i: Ag=v}for UZ,. So,

formula (2.22) is not to be confused with formula (2.21).

Lemma 2.2.1. The A-module Uy is TIJ -stable. Thus, 1’ - gives rise to an A-linear endo-

(d) (d)
morphism of U 4.

Proof. Let y,y' € Uy Write

Aly) = ZF@ @l WKy and AY) = ZF@ ©r(p WKy (2.23)
d e

Since A is an algebra morphism, we have

Alwy') = AW)AW) =D FOFD @ o' 5 (w)ris (K, (2.24)

where q? denotes a power of ¢ that is not going to matter for the rest of the proof. Note

that, by Theorem 2.1.3, F(J), F@) ¢ Uy, so F(‘I)F(éj € U, hence, again by Theorem 2.1.3,

- —

F(d) F) can be expressed as an A-linear combination of F(/) for all f e (ZZO)N . It follows
/ / - : / / / - 7> N
that r(f) (yy') € Uy, provided that r I (v), @ (y') € Uy forall d,€ € (Z>p)". Recall that

(d)
U, is generated by Fé”), for all o € Il and n € Z>(. So to prove the lemma it suffices to

11



prove that 7/ (F(S”)) €Uy forall @ € I, n € Z>p, and de (Z>0)V.

(d)

By an easy induction argument, one shows that

A(FS) =3P @ gl R i (2.25)

n
1
1=0
The statement follows. O]

Corollary. For 1 < k < N, T;C maps U, to itself. Thus 7’;{/, gies rise to an A-linear

endomorphism of U 4.
In view of the corollary above, we define the integral form of Cy as

Definition 2.2.3. The A-subalgebra of End 4(U ) generated by the operators of left mul-
tiplication by F(gén), for a € I, n € Z>(, and the Kashiwara operators T;C, for1<k<N,is

called the integral form of the quantum boson algebra Cy. This algebra will be denoted by
Cy.

12



CHAPTER 3
BASIC PROPERTIES OF THE QUANTUM BOSON ALGEBRA
Co(®)

3.1 PBW Property and Independence of Reduced Expression

In this section we will construct a PBW type basis for the algebra C&" and prove that Cé"
is independent of (2.17). To this end, we need to make use of the Drinfeld-Killing bilinear
form [5, 12], which we now recall. Let UZ0 (resp. US=Y) denote the C(g)-subalgebra of U

generated by E,, (resp. Fy), Kq and Kojl, for all o € II.

Proposition 3.1.1. [5] [12, Proposition 6.12] There exists a unique C(q)-bilinear pairing
< , >US0xpyz0 C(q) such that, for all x,2' € UT, all y,y' € U™, all p,v € Zd

and all o, B € 11, the following equations hold

< Klu/, Ky >= q—(/_]/’ll)’ < KM,Ea >= O, < Fa,Klu >= 0, (31)
< Fa,Bg >= —0,4(d0 — a57) ", (3.2)
<y, zr >=<A(y), 7 x>, <y, z>=<yy, Al)>. (3.3)

Here, for z, 2’ € U=Y and v,y € U= we write < 11, yey >=<z,y><a,y >

Proposition 3.1.2. [12, 6.13, Proposition 8.29, 8.30] (a) Forx € U, y € U™ and \, u €
7.9, we have

<yKy),zK, >= q*(’\’“) <y, T >. (3.4)

(b) For d,é e (Zs0)N, < F1, E€ > is nonzero only when d = &, in which case

N
I -~ d; d;
<FLE >= [ < R EY > (3.5)
1=1
13



(c) Let X\ be a positive root and d a non-negative integer, then

- d’
< P, B >= (—1)dgd ”/2—(% [_];_l)d. (3.6)
A

The following lemma follows readily from Proposition 3.1.1 and coassociativity of A.

Lemma 3.1.3. For every d € (Z>0)N, one has
—ddy(d1-1) —dn(dy—1) ! -
=g 2 g PV ] ) T ) N oo )T (3)

Lemma 3.1.4. Let d, & € (Z>0)" be such that Az = \z. Then

!

1 if
0 f

o
—~
@
0]
~—

! (mE\ _
T’J(F)—

4
H
oy

Proof. By Proposition 3.1.1, noticing that rii(F 5) € C(q) whenever A i= Az, we have

<FERl s —c AF) Elo1>
:<...+Fd®r£i(F5)K;;+~--,Ed®1>

=< Fi E?> rzi(Fg), (3.9)

where the displayed summand in the second line of the equality above is the only one whose
first tensor factor is a nonzero multiple of F%. Now the conclusion follows easily. m

Lemma 3.1.4 will be a key ingredient in the construction of PBW type bases for C(;L )

Notice that part (b) of Theorem 2.1.2 already gives a PBW basis for the negative half

Cy of Cg. For a PBW basis for the positive half C’; of Cy, we have

Proposition 3.1.5. The elements (T/)\N)dN e (r&l)dl, for all dy,---,dn € Z>q, form a

C(q)-basis for the algebra C’(;r.
14



Proof. The assertion that the elements (r’)\N)dN e (rl)\l)dl, for all dy,---,dy € Z>(, span
C(;r over C(q) follows from Lemma 3.1.3 and Lemma 3.2.3 below.

For linear independence we recall that U~ is a Z®-graded algebra: for each p € (Z®)™,
the root space U__,u has degree p. The Z®-gradings on C’; and U™ are compatible in the
following sense. If A\, i € (Z®)T,r € C;r is homogeneous of degree A\, y € U™ is homogeneous
of degree p, then, r(y), the action of r on y, is homogeneous of degree p — .

Nowlet R =) ad(ri\N)dN e (rl)\l)dl, where a 7 € C(q) for each de (Z>0)", be such that
R=0in C’;’ . Let R=) “ Ry, where R, is homogeneous of degree u, be a decomposition

R according to the grading by Z®. For any homogeneous element y € U™, we have
0=R(y) =Y Ruly) (3.10)
I

By compatibility of the gradings on C’;r and U™ in the previous paragraph, the degree of
Ry, (y) for different p’s are different. It follows that R, (y) = 0 for all 4 € Z®. Upon replacing
R with R, we may assume that R is homogeneous of degree p.

Now we can write R = Z)\fﬂ ad«(r’)\N)dN e (T;\l)dl. For any € € (Z>)Y with Az = p,
consider the element R(F é) in U~. On the one hand, since R is equal to zero in C.F, it

-,

is zero as an endomorphism of U~. Hence, R(F®) must also be 0. On the other hand, by
Lemma 3.1.3 and Lemma 3.1.4, R(F g) is a nonzero multiple of az. Consequently, az must
be 0. As € runs over all vectors in (ZZO)N with Az = u, we conclude that all coefficients in

the relation R are 0. OJ

We now prove that C’; is independent of the reduced expression (2.17), as promised.
Proposition 3.1.6. C’(;L does not depend on the choice (2.17) of reduced expression for wy.

Proof. Since every reduced expression for wg can be transformed to any other one by re-
peatedly applying the braid relations a finite number of times, it suffices to show that if we
apply one single braid relation to the reduced expression (2.17), the algebra C; does not

change.
15



We carefully work out the following simple case. The proofs for all other cases are similar
and will be omitted.

Suppose that in the reduced expression (2.17) there is a segment that reads
wy =---SaSgSa """, (3.11)

where «, § € II and the rank two root system generated by o and § is of type As. Applying

the braid relation SaSgSa = SgSasg to (3.11), we get a new reduced expression for wy:
wy =" S4SaSz - (3.12)

Here, the only differences between the reduced expressions (3.11) and (3.12) are in the
displayed portions.

Recall that (see formula (2.18)) (3.11) and (3.12) induce enumerations
ALy 5 AN (3.13)
and
PVIRERID VY (3.14)

of positive roots, respectively. Moreover, the reduced expressions (3.11) and (3.12) give rise
to root vectors Fy , -, F>\N and FXI, S F)\/N, respectively, as in section 2.1.

Let the integer i, 1 < i < N — 2, be the index of the first displayed « in (3.11), so the
indices for # and the second « in (3.11) are i 4+ 1 and i + 2, respectively. Thus, Aj = )\} and

F/\j = F)\; whenever j # 7,7 + 1,7 + 2. For the indices 7,7 4+ 1,7 + 2, an easy computation

16



shows that

-1
FAz‘:F)\;Hv F)\i+2:F>\;7 Py =4 F)\;H—F(q —q)Fy

B (3.15)

For every integer j satisfying 1 < 7 < N, let rs\j be defined as in Definition 2.2.1.
Replacing the C(q)-basis {F? : d € (Z>0)N} for U~ that we have used in Definition
2.2.1 with the C(g)-basis {(Fy,, )dN---(FXl YA o d = (dy,---,dy) € (Zz0)N}, one defines

Kashiwara operators 7’ corresponding to the reduced expression (3.12). More

/
A&j D s TA/]V
precisely, let p € (Z®)t. For each d € (Z>0)"N, one has a unique C(g)-linear map

/ — —
U-, = U h that
S0 T Y (e d Ny =) ST R

Aly) = D o(Fx )™ (B @ G g (3.16)

for all y € UZ,. Extending by C(g)-linearity one obtains C(g)-linear endomorphisms Sif of

U™ Ifd= ¢; for some j satisfying 1 < j < N, we also write rl)\g for Slgj' The analysis of root

!/ : co . / / /
vectors above shows that ™ = TAS whenever 7 # 4,1+ 1,7+ 2. To compare " i "

with 7“)\,, )\, , i\, we let y € U™ and compute
i+1 42

v =Y P oK

Z dN N z+3 dit2,  —1 dit1
oy 1+3 F)\’ (—q F)‘;+1 ! )F)‘;+2F)‘;‘)
i—1 dy / -1
- F z+2F/\2 1 ..FA,l ® rg(y)K)\J. (3.17)

From this we see that to compute 7, X )\, , /\, , we only need to look at those summands

i+1 7,+2
in the very last expression whose first tensor factor is of the form F A F Y F Y —q F N +
7 (2
(¢! —qF v Fyor Fy, . Call these four summands the relevant summands.
i+2 N i+2

17



It is easy to see that the first relevant summand is

-1
Fy ® Miva WK, - (3.18)
It follows that r;\,' = TS\AJFQ. Similarly, by looking at the last relevant summand, we conclude
that 7, =7, .
P42 Ai
| ~1 :
Note that F)\;F)\;H = —q F>‘/i+1 +q FAQHF)\Q' So the sum of the second and third

relevant summands is equal to

-1 -1 d -1
(—q F/\§+1 +a F>‘§+2F)‘§) O & +eita (y)K)\iJF)‘iJr?

(=g Fy  +@ —agFy Fuery WK
-1 1
— F/\;Jrl ® (—q )(TS\HQ o rf\i + 7‘3\”1)(y)K/\ngl .-, (3.19)

where we have used Lemma 3.1.3, and - - - stands for summands whose first tensor factor is

not a constant multiple of F, . From this computation it follows that 7\, = —q_l(r’ o
Ai-i—l )\,H_l >\’L+2
).

Therefore, the C(q)-subalgebra of Endg() U™ generated by r

/ /
"\ T "N

S balgeb

X, ,r)\,N is a subalgebra
of the C(gq)-subalgebra of Endg()U™ generated by rf\l, e ’TIAN' By symmetry, the C(q)-
subalgebra of Endc(q)U_ generated by 1"/)\1, e ,T‘S\N is, in turn, a subalgebra of the C(q)-

/

!/
ot O
Xy

subalgebra of Endc(q>U ~ generated by r

More generally, fix an arbitrary element w € W. It is known that every reduced expres-
sion for w is a subword of some reduced expression for wq, c.f. [2] [11, Theorem 1.8]. Hence,

we may assume that w has a reduced expression of the form w = sq, sq; .
J

<+ S , for some
J+1 iy ?

1 <j<k<N. We define C’(j [w] to be the C(g)-vector subspace of C;’ spanned by the

monomials (r')\k)dk e (ri\j)dﬂ', where dj, -+, dj, range over all non-negative integers. Simi-

larly to the proof of Proposition 3.1.6, one shows that the vector space C’; [w] is independent

of the reduced expression w = sq,

Savs -+ Sq, , 1.e. we have
i 741 i,

18



Corollary. The vector space C'(j [w] only depends on the element w in the Weyl group W.

Remark. We shall see in the next section that C’j [w] is in fact a C(g)-subalgebra of Endg (U™
(or of C’; ). In the literature of quantum groups, a C(g)-vector subspace U™ [w] of U™ has
attracted considerable interest, c.f. [2]. It is known that U™ [w] is in fact a C(q)-subalgebra of
U™. In this sense, our theory of quantum boson algebra parallels the classical and well-known

theory of quantized universal enveloping algebra.

Definition 3.1.1. (a) Let le be the A-subalgebra of End U generated by T’;C, for all
1<k<N.
(b) Let C" be the A-subalgebra of End AU 4 generated by the operators of left multipli-

cation by Fo([n), for all @ € Il and n € Z>y.

We will show (see Proposition 3.2.5 below) that various results in this section admit

integral counterparts. In particular, by inspecting the proof of Proposition 3.1.6, one obtains

Proposition 3.1.7. The A-module C:{ does not dependent on the choice (2.17) of reduced

expression for w.

As above, if w = Saij Sy s where 1 < 7 < k < N, is a subword of wg =

Say .
l]+1
Saj, " Sagy, We define Cj [w] to be the A-submodule of C’Z spanned by the monomials

dk /

(r')\k) e (r)\,)dj, where d;, - - -, dj, range over all non-negative integers. We also have
J

Corollary. The A-module le_ [w] depends only on w.

3.2 Levendorskii-Soibelman Type Properties for Kashiwara

Operators

In order to study quasi-classical limits, we need some information about the commutator of

a pair of Kashiwara operators. Recall the following result of Levendorskii and Soibelman.
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Theorem 3.2.1. /2, 16] For 1 <i < j < N, one has

E/\iE)\j — q(Ai’)\j)E)\jE)\i = Z CJ*Ed and (320)
JE(ZZ())N

F)\iF)\j — q()\i’Aj)FAjF)\Z. = Z EJFd, (3.21)
JE(ZZ())N

where ¢z, ¢z € A and ¢z, ¢ 7= 0 whenever dy, # 0 for some k € [1,i] U [j, N].

Remark. This version of the ‘Levendorskii-Soibelman straightening law’ is due to De Concini
and Procesi [2]. It is claimed in loc. cit. that the coefficients ¢ 7> €7in the theorem above are
in C[gT!]. However, we believe that this is not quite the case. One needs the localization

A= C[qil]m! of Clg™1] for the statement to hold, as can be seen in the examples where g

is of type By or Go. This is one of the reasons for our choice of A as an integral form for
Cla)-

For our purpose of studying quasi-classical limits, we need the following stronger version
of Theorem 3.2.1. The proof will be postponed to the last chapter. Our argument is inspired

by the proof of Theorem 3.2.1 in [2].

Theorem 3.2.2. Retain the notations in Theorem 3.2.1. If CJ'# 0 (resp. EJ»# 0), then cy

N
(resp. ¢7) is divisible by (1 — @) Zi=19) =1 in the unique factorization domain A.

For the rest of this work, we will only use the statement in Theorem 3.2.2 involving the

E’s. So, whenever two positive roots \; and A; (1 <4 < j < N) are given, we write ¢y for

the coefficient for E% in EAiE)\j — q(/\i’/\J')E)\jE)\Z. = > cd»Ed as in Theorems 3.2.1 and
(ZE(ZZ())N
3.2.2. To simplify notation, for 1 <17 < j < N, we write ng for Té,,+é,,.
) 1T €5

The following result will play a crucial role in the study of Poisson geometry of the
quasi-classical limit of Cj. The proof is based on the fact that the coproduct A on U is

coassociative [12, Proposition 4.11].
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Lemma 3.2.3. For 1 <i < j < N, the following formula holds for the commutator [ré,r}]

n Endc@U_ of the Kashiwara operators rg and 7’"7 :

[l = (M) — 1y
~1 ~1 d pd .
+ < Py, By, >7'< Py By, > Y e;<FLE >l (3.22)
/\J‘:/\i+)‘j

Proof. Let y € U~. Our strategy is to use coassociativity of A, namely the equality (1 ®
A)oAy) = (A®1)oA(y). We isolate terms of the form

~1 ~1
Py, © Py Ky o XKL (3.23)

on the two sides, where X is an element of U™ that we would like to compute.
For the left-hand side we have A(y) = ---+ F A © 7“3. (y)K/\f1 + -+, where the displayed
J

summand is the only one whose first tensor factor is a constant multiple of F A So we have

(1@A) o Aly) =+ F), @ A () K 1) + -+

J

. .
:'“+F>\j®F>\iK)\j ®Tgor3-(y)[()\i+>\j+~-. (3.24)

It follows that the relevant term X is equal to 7} o r;(y).

For the right-hand side we compute as follows. First note that if
A(FAjF)\i) = ---+F)\j ®aF>\iK/\_j1+--- (3.25)

for some a € C(q), where the displayed summand is the only one which is a constant multiple
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of F)\j ® F)\iK)le’ then we have

a < F)\i’E)‘i >< F)\j’E)\j >= < A(F)\jF/\i),E)\j ® E)\Z. >
=< FAjF)\i’E)\iEAj >
=< FAjF)\i,q(Ai’)\j)E)\jE)\i + ZCJ’Ed >

= < F), By, >< Fy,, By, >, (3.26)

where the second equality follows from Proposition 3.1.1 and the last equality follows from
Proposition 3.1.2. This implies that a = q()‘i’/\j). Similarly, let d e (ZZO)N be such that

dj. = 0 whenever k < i or k> j. If

-

A(FY) =+ Fy @ bFAiK;jl S (3.27)

for some b € C(q), where the displayed summand is the only one which is a constant multiple

of F)\j ® F)\Z.Kil, then we have

J

-

b< Fy,E), >< F\, By, >= < A(F),E\, ® B, >
— < F'E\E), >
=< Fd—; q()%)\j)E)\jE/\i + ZCé' €>

=cy< P B> (3.28)

This implies that b =< F) , E >"!< F); ), >tez< P4 B>
Let z € U™. By Proposition 3.1.2, a nonzero multiple of F>\j ® F/\J()T1 occurs as a
vy

summand in A(z) if and only if < A(z), E); ® E); > is nonzero. From the equation

< A(2), By, ® By, >=< 2, B\ Ey, >=< 2, %M E) By +> ;B >, (3.29)
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we see that to determine the summand in A(z) which is a multiple of F' N ® Fy, K;l’ we
j
only need to concentrate on the summands in z which are constant multiples of F)\j F), or

F9 for some d € (Z>0)N with dj, = 0 whenever k < i or k > j. Hence, we get

(A®1) o Ay)
=(A@1)(---+ F\ Fy, @717 5(y )K—+A +ZFd®uy)K +-)
:~--+A(F>\jF>\Z.)®7’ Ai-/\ +ZA ®r—(y) —|—~~
=4 By @ Byt e (g0 ()

-1 d d
+Y < Fy, By, >T'< Fy By > ep< FLE >r{y))KHA +- (3.30)

where in the last step we have used our computation in the previous paragraph. Therefore,

the relevant term X on the right hand side is given by:
X =N s(y) + > < By, By > By By > ep< FLEY > rdy). (331)
Comparing the two sides, we get

riory =N 1N < By By ST Ry By > T e FLE >l (3.32)

By Lemma 3.1.3, we have ré j= 7’3 o r So the last equality is equivalent to

rg o 7“9 — r} o r; = (q(/\ia/\j) _ 1)%
+Y < B\ By >TI<Ey By > T o< FLEd s o (3.33)

proving the desired formula. O

Corollary. For each w € W, the C(q)-vector subspace C'q+ [w] of C’q+ is a C(q)-subalgebra of
+
Cq -
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Proof. This follows easily from the definition of C’; [w], Lemma 3.1.3, Theorem 3.2.1 and

Lemma 3.2.3. O

For r,r' € C;’, write [r,7’] for the commutator 7 o ' — 7' o r of r and 7’ in C’;. For

1 <i<j <N, by Proposition 3.1.5, we can write

i =Y h AT )N - (1) ™, b€ C(g). (3.34)

Proposition 3.2.4. Fxcept for the case where d= € + €}, hj = 0 whenever dj. # 0 for

some k € [1,i] U [, N]. Moreover, all h7’s are elements of A and are divisible by 1 — q.

Proof. We rewrite the Levendorskii-Soibelman straightening law using the C(q)-basis { E (d) :

d e (Z>0)N} of UT as follows:
E)Ey, — NN Ey By = Zc@ﬂ ). (3.35)

According to Theorem 3.2.1, each () is in A and is, moreover, divisible by the product
! ! o ! !
[dl]')\i e [dN]')\N. In fact, it is easy to see that = [dl]'/\i e [dN]')\NCJ' It follows from the

proof of Lemma 3.2.3 that

il = (NN = 1) o]
+ <P\, E\ > '<Fy By >0 Y ep < F@ pld) > (3.36)
)‘J':)‘i+>\j

By Proposition 3.1.2, we know that

< F(@’E(Cf) >=(—1)d1+'"+qu;li(dl_1)/2 _ ._qg\ljj\v[(dN—l)ﬂ
gy, — q;f)_dl oy — q;ﬁ)_dN([dﬂ!Al e [dN]!)\N)_l- (3.37)

Hence, for the coefficient < F) , Ey, >"1< F)\j,E)\j >—1 ¢ < F( ),E( ) > of o/
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(3.36), we have

-

< Fy, By, >l F)\j,E/\j >-1 0 < F(d),E( ) >

di4-~dr di1(d1—1)/2 dn(dy—1)/2
—(—1)ht +Nq/\1(1 )/ ,__q)\x(N )/

_ _ 1\ — “1\—
oy = o)y — )y — gD (ay —ay) T Neg (3.38)

By Theorem 3.2.2, ¢ >is an element of A divisible by (1 — q)d1+"'+dN —1 1t follows from our
last formula that the coefficient of TE d in (3.36) is an element of A; moreover this element

is divisible by 1 — ¢. Lemma 3.1.3 clearly implies that

—3di(di-1)  —ddy(dx—1), s \d p

TECZ») = q)\12 q/\]\? (705\7) No...o <r1> 1 (339)

The result follows by plugging this into formula (3.36). O
It follows from Proposition 3.2.4 that operators of the form (T?V)dNo . -o(r’l)all7 di,--,dy €

Z>(, span C’j as an A-submodule of C(j . Since these operators are linearly independent
over C(q) by Proposition 3.1.5, they are also linearly independent over A. Thus we have

proved the following PBW theorem for C’z.

Proposition 3.2.5. The elements (rg\,)dN 0---0 (r’l)dl, for alldy,---,dy € Z>q, form an

A-basis for the integral form C’j of C’;.
Another consequence of Proposition 3.2.4 is
Corollary. For each w € W, the A-submodule Cj [w] of C’Z is an A-subalgebra of C’j.

Proof. This follows easily from Lemma 3.2.3, Proposition 3.2.4 and the definition of Cj [w].

O]
Corollary. The C-algebra Cj/(l - q)C’z is commutative.

Proof. Note that C:{/(l — q)Cj is generated as a C-algebra by 7, for all 1 < i < N,

where 7, stands for the image of r/ in C’:{ /(1— q)C’j. By Proposition 3.2.4, each coefficient
25



in the commutator [r/, 7“3] is divisible by 1 — ¢. It follows that in C’j/(l — q)C’Z we have
7, 7] = 0. O

77?

3.3 Leibniz Rule for Kashiwara Operators

The primary goal of this section is to study commutation relations between Kashiwara
operators and the operators of left multiplication by a root vector in the negative half of the
quantized universal enveloping algebra. Material in this section will be used in section 4.1
to see that, for all 1 <7 < N, commutating with the root vector Fj gives rise to a derivation
on the quasi-classical limit of the integral form of the positive half of the quantum boson
algebra.

We need some notations. For CZ €€ (ZZO)N, the product F(J) F(© is an element of Uy

hence it can be written as an A-linear combination

-

d) (@) _ Zn‘}ng(f>, nf;é' e A (3.40)

If f = ¢; for some 1 < i < N, we put ngl\’ = n‘}e for simplicity.

Recall that U~ is a (Z®)"-graded algebra. The A-subalgebra Uy of U™ inherits a

(Z®)*-grading whose degree y component is Uynu-,

Lemma 3.3.1. (Leibniz rule for Kashiwara operators) Let A be a positive root and

v,y € U,Z homogeneous elements. Then, we have

Z gty e)”f’gﬁcr)(y)’”?a(y'% (3.41)

where wi(y') € (Z®)t stands for the degree of the homogeneous element y' € Uy

Proof. One equates the summand of the form F\ ® X K ;1 on the two sides of the equation

A(yy') = A(y)A(y'). The statement follows easily from this. O
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Let d € (ZZO)N and 1 < j < N, by Theorem 2.1.3 and Lemma 2.2.1, we have

o)=Y p), (3.42)

>\A
where ¢ . € A.
d,f

)

Lemma 3.3.2. For all1<i,j <N, p € (Z®)" andy € Uynu_,, we have

I/ 7 Aapi—As) d.@ A W
ri(Fjy) — Fri(y) = Z q( d )n)\i c(f?fF(f)r(é»)(y). (3.43)
d£0
Proof. In Lemma 3.3.1 take A = A; and y = F};. Note that the summand corresponding to
d = 0 on the right-hand side of formula (3.41) is nothing but F;r/(y’). Moving this summand

to the left-hand side, we get
Awwty' —Ag) d,€
HEY) - Frie) = Y TS (s (). (3.44)
dA0 7+ Ae=);
The result follows by replacing ' with y and plugging in formula (3.42). ]

Introduce the notation |d|:= Zfil d;, for d € (ZZO)N . The following lemma is helpful

to simplify formula (3.43).

Lemma 3.3.3. For all1 < j < N and CZ:f € (ZZO)N, the element c;\ﬁf is divisible by
(1— @11 i A,

)

The proof of the lemma is tedious and will be omitted.

Taking quasi-classical limit of formula (3.43), we deduce that

Corollary. For1 < i,j < N, the image of the commutator [r}, F;] in the algebra End(Uy)/(1-
q)End (U ) belongs to C’Z/(l — q)Cj.
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Proof. By Lemma 3.3.3, (1 — q)‘d|+‘ﬂ_1 divides C;\jf" Suppose f # 0. Since d # 0 for

all summands on the right-hand side of formula (3.43), the coefficient q()‘tf’“ Aé')ni"éac;l]f of
F(JF)rEé»)(y) must be divisible by (1 — q)|‘ﬂ+|ﬂ_1. Since we have |d|+|f]-1>1+1-1=1,

=\ d.e A
we see that q()‘d’” /\e)nc)l\’ec ngf is divisible by (1 — ¢). Therefore, after quotienting out by

the (2-sided) ideal generated by 1 — ¢ in End4U 7, the only summands in the image of the
commutator [r}, ;] in End AU L)/ (1—¢q)End 4(U ) that can possibly survive are those with

—

f=o. O

In words, for 1 < 57 < N, taking commutator with the operator of left multiplication by
F; gives rise to a well-defined operator on C’I /(1 — q)Cj. These operators will be studied

in detail in section 4.2.4 below.
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CHAPTER 4
QUASI-CLASSICAL LIMIT OF THE QUANTUM BOSON
ALGEBRA

In this chapter we study algebraic and Poisson-geometric properties of the quasi-classical
limit C; of the quantum boson algebra Cy, using facts we collected in previous chapters.
Recall our definition of the quantum boson algebra Cy, its positive half C’j (resp. negative

half C;") and their integral forms C 4 and C} (resp. C'y).

Definition 4.0.1. Let C; := C4/(1 — q)Cy, C;? = C’Z/(l - q)CjL{ and C; == C /(1 -
q)C - Cy (resp. C’;l' and C ) is called the quasi-classical limit of Cy (resp. C’q+ and C; ).

The quasi-classical limit C’;E of C'(;L will also be denoted by P.

Remark. Here, by definition we have C'; = U™, a non-commutative algebra.

4.1 Algebraic Aspects

In this section we will construct a PBW basis for C; and give a presentation of C; by
generators and relations. We will also prove that C; is a simple C-algebra whose center is
C.

Let F; be the image of F;, 1 <7 < N, under the natural quotient map C 4 — C,;. Let

F(d), 7, and F/(J), for d e (Z>0)", be defined similarly.

We have the following analog of Proposition 3.1.5.

—

Proposition 4.1.1. (a) The elements 7 (F)EL- - (Fy )N, for all d,é e (Zso)N, form a
C-basis for Cy. Similarly, the elements (7)°L - - - (FN)eNf(d), for all d,é e (Z>0)N, form a
C-basis for C,;.

(b) The elements (T’l)dl e (F?V)dN, for all d e (Z>0)N, form a C-basis for P.

Proof. (a) We prove that the elements 7 (P (TN, d,é e (Z>0)"N, form a C-basis

for C;. The proof for the other statement is similar.
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d

~—

It is clear that F\ (P (T )N, d,é e (Z>0)"N, span C, over C. We must prove
that they are linearly independent over C.

Recall that Cy a Z®-graded algebra. This grading induces a Z®-grading on C,;. Namely,
for each 1 < i < N, F; has degree —\; and Fé has degree )\;. Recall that we have the
standard partial order < on the root lattice Z®.

Assume that a nontrivial linear combination R = 3 a7 J’ @( )L (TN equals
zero in C. Without loss of generality, we may assume that R is homogeneous. Write
R’ for the sum of the summands az f(3( ) -+ (Fy)®N in R such that Az # 0 and
deg((7))€1 -+ (F\)N) is minimal with respect to the partial order < on the root lattice.

Define

p1 = min{deg((7})! - - - (Fy)N) : 3d such that adjej(d) (FEL - (P )N

is a summand of R and az . # 0}. (4.1)
Write R” for R — R'.
For any f € (ZZO) such that 7' ) ~ satisfies degF( ) _ = pu, we have
R'(FY)y =0 (4.2)

— —

by degree considerations. It follows that 0 = R(F( )) = R’(F( )). By Lemma 3.1.3 and

Lemma 3.1.4, it is clear that for all & € (Z>()" with deg((7))€1 - -+ (Fy)°N) = p, we have
F)r - N E) =3, 7 (13)

=

where (5€ - is the Kronecker delta. Therefore, it follows from the equality R’ (F(f )) = 0 that
0= Z ar ~F (4.4)
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Since the F(d)’s, for d € (ZZO)N , are linearly independent over C, a if must be 0 for all

d e (ZZO)N. Varying f, we see that agf= 0 for all ci;j?E (ZZO)N such that F(f) eu

satisfies degf(f ) _ p. It follows that all coefficients in R’ are zero. This contradicts our

—

choice of R/.
(b) That the elements (F’l)dl e (Ff,v)dN, for all d € (Z>0)", span P over C follows easily
from Proposition 3.2.5.
Let R=)" ad~(7’1)d1 e (FfN)dN, az € C, bea C-linear relation among the (F’l)dl e (F&V)dN’s.
)N

For any € € (Z>p)", we have by Lemma 3.1.3 and Lemma 3.1.4 that

0=RFD) = a. (4.5)

Hence, all coefficients in R are zero. Therefore, the elements (T’l)dl e (F?V)dN, for d €

(ZZO)N , are linearly independent over C. O

We have an analog of Propositions 3.1.6 and 3.1.7.

Proposition 4.1.2. The C-algebras C; and P are independent of the reduced expression
(2.17).

Proof. This follows easily from Proposition 3.1.7. O

As a C-algebra, C; (resp. P) is generated by Fy,---, Fp, T, ,F?V (resp. T, ,F;V).

The F;’s satisfy their usual relations in U ~:
FiFj— FjF; = N j[Fi, Fjl,

where the square bracket on the right hand side is the Lie bracket on n™ and the N; ;’s are
the Chevalley coefficients. The Fg’s, according to our discussion at the end of section 3.2,
commute. (See the last corollary of section 3.2.) Commutation relation between F;- and Fj
can be derived easily from formula (3.43) and discussions at the end of section 3.3. Putting

these together, we have obtained a presentation of the C-algebras C,; and P.
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Proposition 4.1.3. (a) As a C-algebra, Cy; is generated by Fq,---, Fy, T 77§V subject

to the relations

FZ j— F]FZ — NZJ‘[FZ‘,FJ] =0, (4 6)

i — T =0, (4.7)

= dé

PE = Fm =) Afcﬂ )g=17(z) = (4.8)
d+#0

o 1e N . e N .
foralll <i,j < N, where (ngl\’iecdﬁo)\qzl stands for the image ofng\l’iecdﬁo inA/(1—q)A ~C.

(b) P is the polynomial algebra over C with F’l, e ,F?V as generators.

Recall the discussion at the end of section 3.3, in particular the last corollary of section
3.3. From there we know that, for 1 <i,j < N, the commutator [Fi,f’j] is a polynomial in

T'l, e ,FQ\,. Namely,

= - de d i _
[Fi, 7)== (n ABC~ Ng=1T(e) = — > _(n Aem Ng=1 ()7 (). (4.9)
A0 d#0
For each 1 < i < N, define an action of F; on P by derivations so that, for 1 < j < N,
the action of F; on Fg- is given by (4.9). The following lemma clearly follows from Theorem

3.2.2.
Lemma 4.1.4. The relation (4.6) in Proposition 4.1.3 acts on P by 0.

Remark. It follows from Lemma 4.1.4 that P has a structure of a &/~ -module. Recall that
U™ is a Hopf algebra, where comultiplication on U~ is given by A(y) = y® 1+ 1 ® y for all
y € n~. What we have done so far in this section implies that P is a module algebra over
the Hopf algebra &/~ and C\; is isomorphic to P x U™, the smash product of A/~ with the
U -module algebra P.

Since we know quite a lot about representations of nilpotent Lie algebras, c.f. the work

of Dixmier [3, 4] and Kirillov [14], it is an interesting problem to look for interpretations of
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the n™ representation P which arise naturally in other contexts.

Observe that P is very far from being irreducible as an n™ representation. In fact, recall
that P is a (Z®)"-graded algebra where, for 1 < j < N, F} has degree A;. For each
1 < i < N, the action of the root vector F; in n~ decreases the degree of every homogeneous
element of P by \;. Hence, for any non-zero f € P, the smallest sub-representation of P
containing f is a non-trivial finite dimensional sub-representation.

Define an action of P on itself by left multiplication, so the two halves CCJr = Pand C,

of C; both act on P. One evidently has the following

Proposition 4.1.5. The relation (4.8) in Proposition 4.1.8 acts by 0 on P. In particular,

P has a structure of a module over the algebra C,;.
Next we prove
Theorem 4.1.6. P is a simple C.-module.

Proof. Let M be a nonzero C,-submodule of P. We choose a nonzero element v € M in
the following way. For each 0 # m € M, let D, be the set of degrees of homogeneous
components of m. Dy, as a subset of Z®, is partially ordered by the standard partial order
< on Z®. Write Hy, for the subset of D), consisting of all those elements that are maximal
in Dy, with respect to <. Consider the set |J  Hp,. This is a subset of Z® and, hence,
is partially ordered by <. By the Well—order?g;n Ef"\iinciple, this set has a minimal element .
1 belongs to Hy, for some v € M. This is our choice of v. Assume that v is not a scalar, i.e.
v is a non-constant polynomial in 7, - - -, 7y

Since p € H,, among all homogeneous components of v, there is one whose degree is
maximal with respect to the partial order <, and this maximal degree is u. Up to a nonzero
constant, the homogeneous component of v whose degree equals ;1 has a summand of the
form (F’l)dl e (F?V)dN for some d € (Z>0)N with A= I

Let j be the last nonzero component of d. We compute Fj- ((F’l)d1 e (F?V)dN ). Note

that this amounts to computing the commutator of F; with (r’l)dl e (TEV)dN in Cy, by our
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definition of the action of Fj on P. For this we compute in a similar way as in the proof of

Lemma 3.3.1. The result we get is

= _ _ Aj,€. _
By ()™ ) ) = = S0 il (110
where nj‘z"e = nZJ’e and (n /1 e)|q 1 is the image in A/(1 — ¢)A ~ C of nﬂ’e. We will

not present the details of the computation. Instead, let us demonstrate a special case.
. . . . . o . . . = _/ _
The computation in general is similar. By Proposition 4.1.3, for 1 < i, < N, F; -7, =
£\ 5 .
- > (nf\’, cf o) lg= F( 3 Recall that 'r’( (Fj) = Zc A F ) for all @€ (Z>g)N and 1 < j <
e£0 " B

N. So we have

< FjE©) >= < A(F),E¥ 21>
=< r@ p@ s rzg)(Fj), 1>

— < F@ g@ 5 A

@. (4.11)

o oA 5 oA
It follows that when € = ¢, Cé'JO = 1 and when € # ¢}, ca]O = 0. Consequently, we get

'T;' =->(n J7f)|q 17"(]‘7) as desired.

Define h := (dy,--+,dj—1,d; —1,0,---,0). It is clear that n}’h = d; and nj\i;"h = 0 for

all other d' with deg((?’l)dll e (ﬂv)dﬁv) = p. It follows that

>

. _ _ .= Aj .
and the coefficient of (r’l)hl e (r?v)hN in F';-v equals — Z( J;] )]q 1= —d;. In particular,
d/
Fj-v # 0. By construction, ;1 — A; is a maximal element, with respect to the usual partial

order <, in the set of degrees of homogeneous components of Fj -v. S0 p— Aj is an element
of theset |J Hp. But g — A; < p. This contradicts minimality of y. It follows that v

0£meM
must be a nonzero constant.
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Note that the C-submodule M of P is, in particular, an ideal in P. Since M contains

a nonzero constant v, it must be all of P. Therefore, the C,;-module P is simple. O

The structures of C,; that we have explained so far have a strong linear-algebraic or
representation-theoretic flavor. We next explore some structures of C,; that are purely

algebraic in nature.
Theorem 4.1.7. C,; s a simple C-algebra.

Proof. Let I C C,; be a 2-sided ideal. We must prove that [ is either 0 or C.

Note first that I N P is an ideal in P. Moreover, I N P is stable under the action of U™ .
In fact, for f € INPand 1 <i < N, we have F; - f = F;f — fF;. Since I is a 2-sided ideal
and f € I, both F;f and fF; are in I. So, we must have F; - f € I. We already know that
F;-feP. Hence, F; - f € INP.

It follows from our argument in the previous paragraph that I N P is a C-submodule of
P. By Theorem 4.1.6, I N P is either P or 0.

IfINP =P, thenle P CI. It follows that I = C,, since [ is a 2-sided ideal in C.
We are done with this case.

For the rest of the proof we assume that I N P = 0.

Suppose that I € P. Let f € I be such that f ¢ P. By the PBW theorem for C

(Proposition 4.1.1), we can expand f as
E :—(d_i)

where, for each d' € (ZZO)N, fd; is an element in P. Define S := {J) L d #£0, fCZ; #0}. Sis
partially ordered by declaring that d < d" if and only if A 7S Agr Since S is a finite set,
it must have a maximal element with respect to <. Let d be one such. Write j for the first
nonzero component of d and define h := 0,---,0,dj —1,djq1,---,dn).

Since [ is a 2-sided ideal in C,;, we have [F;., fl= F;.f — f?‘"} € I. By Proposition 4.1.1,
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we can write

7 =S F g, (4.14)

ol

(h)

where, for each = (ZZO)N » Ir is an element in P. We analyze the coefficient 97 of F

=yl

—(J _
in [F;, f]- Suppose that the summand F(d )fj,, where d’ € (ZZO)N, in f contributes to F( )

after taking commutator with F}. Then we must have )\C? — )\j > )‘H' So )‘d7 > )‘fi + )\j =
A 7 Since d is chosen to be maximal in S , the last inequality implies that A 7= A 7 Let

d € (ZZO)N satisfy A7 = Az By Lemma 3.3.1, we have

—d s 3
[F;-,F(d)] — Z(ni’lrzg)(F(d)>>|q:17/(f)~ (4.15)

Since A 7= A i~ )‘fi + A, to compute the coefficient of F(h), we only need to concentrate

on those summands in the last displayed expression with Az = A;. If ke (Z>0)"N satisfies

Az = Aj, then for n];\’l to be nonzero, we must have [ = 0. Note that n];’o equals 1 if k= €;
J J

k
and equals 0 in all other cases. So to compute the coefficient of F(h) in [F}-, f], we need only
compute r;(F(J)). Note that
d h d h
< Fj,E; >< r}(F( )),E( ) >= < A(F( )),Ej ® EM >
o .
= < F(d),E(h)E] >
1 7 %
= < pld) pld) > (4.16)

The last expression is nonzero if and only if d = d. Tt follows that for the purpose of

computing the coefficient of F(h) in [T;., f], we only need to concentrate on the summand

7 f7of f. Moreover, the coefficient of F* i [797 flis

([dl] <Py B > e 0 gl w-1_ pd) pd) g1 f 7 (4.17)
JIA;
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which is nonzero.

From the argument in the last paragraph it follows that, for all f € I such that f & P,
there exists a natural number j between 1 and N such that [F;-, f] # 0 and [F;-, fl el
Moreover, the procedure of taking commutator with F} increases the degree in the F’s.

Now, take an element f € I. If f happens to be in P, then nothing needs to be done.
Otherwise, find j; such that 1 < j; < N and 0 # [?gl,f] el If [Fg-l,f] happens to be in
P, then we stop here. Otherwise, find jg such that 1 < j9 < N and 0 # [F}Q, [F}l, fl] € 1.
We iterate this procedure. Since taking commutator with the 7'’s increases the degree in the
s, this procedure terminates in finitely many steps, producing a nonzero element in I N P.

This contradicts our assumption that I N P = 0. Hence, I must be contained in P. It then

follows that I = I NP = 0. OJ

The following theorem describes the center of the C-algebra C,;. Its proof uses techniques
very similar to those that have been used in the proof of Theorem 4.1.7. So we omit the

proof.

Theorem 4.1.8. The natural inclusion map C — C,; is an isomorphism from C to the

center Z(Cpy) of Cy.

4.2 Poisson-Geometric Aspects

In this section we study various Poisson geometric properties of the quasi-classical limit P.

4.2.1 Hayashi Construction and the Poisson Bracket on P

To define the Poisson bracket on P, let us first recall the Hayashi construction.

Let R be a commutative C-algebra of Krull dimension 1. Assume that there exists an
element t € R such that C ~ R/tR via the natural inclusion of C into R followed by the
natural quotient map from R to R/tR. Left multiplication by ¢ defines an endomorphism of

R. It is easy to see that this endomorphism induces maps R/tR — tR/t?R and tR/t>R —
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t?R/t3R. Assume, furthermore, that the maps R/tR — tR/t>?R and tR/t?R — t’R/t3R
are isomorphisms.

Let A be an associative R-algebra. Left multiplication by ¢ € R defines an endomorphism
of A. This endomorphism induces maps A/tA — tA/t?A and tA/t?A — t2A/t3A. Assume
that the two maps A/tA — tA/t?A and tA/t?A — t>A/t3 A are isomorphisms.

Given the data as above, the Hayashi construction equips the center Z := Z(A/tA) of
the C(~ R/tR)-algebra A/tA with a Poisson algebra structure in the following way. For any

@,b € Z, choose representatives a,b € A of the classes @,b € A/tA. Since

ab —ba =0 (4.18)
in A/tA, we must have

ab — ba € tA. (4.19)

Since multiplication by ¢ is an isomorphism from A/tA to tA/ t2A, and ab — ba represents a
classin tA/ 2 A, there exists a unique class, denoted by %(ab —ba), in A/tA which is mapped

to the class of ab — ba under the isomorphism A/tA — tA/t? A. We define
T
{a,b} := ;(ab — ba). (4.20)

The Hayashi construction says that this is a well-defined Poisson bracket on Z.

Applying this construction to R = A, t = 1—g and A = C'}, we obtain a Poisson bracket
{, }onZ(P). Note that the conditions on A = C’Z in the Hayashi construction are satisfied
because of Proposition 3.2.5. Since P is a commutative algebra, we have Z(P) = P. Thus
the Hayashi construction equips P with a Poisson bracket { , }. The goal of this section
is to study the Poisson-geometric properties of the Poisson algebra (P,{ , }) in detail.

We first work out explicitly the Poisson bracket in the case where g is of type Aj. In this
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case the Weyl group W is isomorphic to the symmetric group S),+1, which we identify with
the group of permutations of the integers {1,2,---,n+1}. Let us label the simple refections
so that s;, for 1 < i < n, swaps ¢ and ¢ + 1 and fixes all the other integers. The longest

element wq in this case has

(5152 sn)(s152 - sp—1) -~ - (5152)51 (4.21)
as one of its reduced expressions. To simplify notation, for 1 < < j < n, we write z; ; for
F&i +otay Then we have the following formulas for the Poisson bracket in type Aj,.

Proposition 4.2.1. For 1 <i<j<nand 1 <k <[ <n, the Poisson bracket on P in the

case where g is of type Ay is given by

0 ifj <k-—2

T T |+ 21’” ifj=k—1

_2xk,jxi,l ifi<k<j<l

{wij, g} = (4.22)

0 fk<i<j<l

—Xj Tk ifi=k,j<l

T jTh ifk <i,5 =1

\

Proof. This follows from Proposition 3.1.2, Lemma 3.2.3 and the Hayashi construction re-
viewed above. Computation of the structure constants in Lemma 3.2.3 is not illuminating

and is omitted. O
To make this proposition more accessible, we give a few examples.

Example 4.2.1. In the case where n = 2, we write x for x1, y for z9 and u for x1 9. The
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Poisson bracket is given explicitly as follows

{z,y} =2y + 2u, {z,u} = —zu, {y,u} = yu. (4.23)

Let GG be a connected algebraic group whose Lie algebra is g and B the Borel subgroup of
G whose Lie algebra is b. The flag variety G/B has a Poisson structure called the standard
Poisson structure. Basic definitions about the standard Poisson structure on G/B will be
reviewed in section 4.2.5 below. Explicit formulas for the standard Poisson structure on the
open Bruhat cell BwyB/B in the flag variety G/B has been computed by Elek and Lu in

[6]. In the case where the root system is of type Asg, their formulas read

{z1,20} = —z120, {71, 23} = 2123 — 229, {22, 23} = —2223. (4.24)

It is easy to see that the C-algebra map sending x to —z1, y to 23 and u to zo is a Pois-
son isomorphism from P to the coordinate ring of BwgB/B, thus establishing a Poisson

isomorphism BwgB/B — SpecP of Poisson varieties.

Example 4.2.2. In the case where n = 3, we write x, y, z for x1, 9, r3, respectively. Also,
we write u,v for 1 9,9 3, respectively, and s for x1 3. Then the Poisson bracket on P is

given explicitly as follows

{z,y} =2y +2u, {x,2} =0, {z,u} = —2u, {z,v} =20+ 28, {x,s} = —uws,
{y, 2} =yz+2v, {y,u} = yu, {y,v} = —yv, {y,s} =0,

{z,u} = —uz —2s, {z,v} = zv, {z,s} = zs,

{u,v} = =2ys, {u,s} = —us,

{v,s} = vs. (4.25)

We proceed to write down explicit formulas for the Poisson bracket on P in the case
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where g is of type G9. In this case we write a1, ag for the two simple roots, with aq shorter

than ag. For the reduced expression (2.17) for wgy, we choose

W0 = Sy SanSayg SagSay Sas- (4.26)
Then the induced enumeration of the set of positive roots is

M =0a1 R =301 +az 2 A3 =201+

<A =301 +2a9 2 A5 =a1 + a2 X \g = as. (4.27)

Write z; for Fg for 1 <7 < 6. Then we have the following explicit formulas for the Poisson

bracket on P.

Proposition 4.2.2. The Poisson bracket on P in the case where g is of type Go is given by

{21,209} = —3w129, {21,723} = —w123 + 219, {1, 24} = —6a3,

{z1,25} = m125 + 43, {1, 26} = 3v126 + 625, {72, 73} = —3w913,

{x9, 24} = —3woxy + 6x§, {z9, 25} = —6x§, {x9, 26} = 3woxg — 182315 — Gy,
{z3, 24} = —3x324, {23,705} = —w335 + 214, {23, 76} = —623,

{24,725} = —3waxs, {z4,76} = —Bwawg + 623, {5, 76} = —3w576. (4.28)

Proof. This again follows from Proposition 3.1.2, Lemma 3.2.3 and the Hayashi construction
reviewed above. Computation of the structure constants in Lemma 3.2.3 involves less work
than in the case where g is of type Aj, but is still unpleasant. This computation is also

omitted. O

Remark. Observe that the C-algebra map sending x1 to —z1, x9 to 29, x3 to 23, T4 to —z4,

x5 to 25, rg to zg is an isomorphism of Poisson algebras from P to the coordinate ring of

BwgB/B. Here, z1,---, zg are the Bott-Samelson coordinates used by Elek and Lu in [6].
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Hence, we again have a Poisson isomorphism BwyB/B = SpecP of Poisson varieties.

In general, using Proposition 3.1.2, Lemma 3.1.3 and Lemma 3.2.3, for the Poisson bracket

on P, we have the following

Proposition 4.2.3. For any 1 <1 < j < N, the Poisson bracket ofF; with F;- i P s given

by
Ty = = amr+ Y [ —a) Hay, —ay)(ay,
)\J:>\1+)\2
N N (4.29)
= VD [Tty — a3 Mllg=r [T ™.
k=1 k=1

Recall that, according to Proposition 4.1.2, the C-algebra P is independent of the choice
of the reduced expression (2.17). It is natural to ask whether or not the Poisson algebra
(P,{ , }) depends on the reduced expression for wgy. The following result is an answer to

this question.

Proposition 4.2.4. Let f’l, e ’7:5\7 be Kashiwara operators defined by a choice of reduced

expression for wy which is different than (2.17). Let { , } be the corresponding Poisson

bracket on P and 7, = F;(E, e ,a) € (C[E, e ,a] be the induced coordinate changes.

Then, for all1 <i,5 < N, we have

4.2.2  Generic Rank of P: Comparison with the Kirillov-Kostant Poisson

Bracket
We first recall the Kirillov-Kostant Poisson bracket on n*, the dual vector space of n, in the
case where g is of type Ay. Abstractly, n* can be identified with the affine space An(n+1)/2,

For any pair (i,j) satisfying 1 < i < j < n, we have a coordinate function y; ; on the

algebraic variety n*. Specifically, choose n to be the Lie subalgebra of sl consisting of
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strictly upper triangular matrices. Then, for M € n, y; ;(M) equals the (i, j)th entry of M.

The Kirillov-Kostant Poisson bracket is given explicitly by the following formulas.

(

Wigromay = -y iti=1+1 (4.31)

0 else.

\

Recall that, by Proposition 4.1.3, P is a polynomial algebra in /N variables, where, when g
is of type A, N equals n(n+1)/2. It follows that SpecP can be identified abstractly with the

n+1)/2 Thus we identify SpecP with n* as algebraic varieties. Comparing

affine space AN
the formula above for the Kirillov-Kostant Poisson bracket and the formula in Proposition
4.2.1, one sees readily that the Poisson bracket on P degenerates to the Kirillov-Kostant

Poisson bracket in the case where g is of type A;, in the sense that the Kirillov-Kostant

Poisson bracket is the linear term of the Poisson bracket on P.

Definition 4.2.1. (a) The generic rank grg of (P,{ , }) is the maximum of the dimension
of the symplectic leaves in (SpecP, { , }).
(b) The generic rank gI'/g of the Kirillov-Kostant Poisson bracket is the maximum of the

dimension of the symplectic leaves in n* equipped with the Kirillov-Kostant Poisson bracket.

In the case where g is of type Ap, we write gr;, for gry and gr), for grg. Our observation
that the Kirillov-Kostant Poisson bracket is a degeneration of the Poisson bracket on P

readily implies
Lemma 4.2.5. gr,, > gr’,.

In fact, for a general g, one has the following much stronger statement.
Theorem 4.2.6. gry = gﬂg.

We will be able to prove Theorem 4.2.6 after we identify (SpecP,{ , }) with a more

familiar Poisson algebra in Theorem 4.2.19. For now we just remark that gr/, has been
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computed by Panov in [21]. According to him, gr], = BnQJ , where | | is the standard floor

function. Using computer programs, one can verify that gr,, = L%nﬂ for small n.

4.2.83 Poisson Center

Definition 4.2.2. The Poisson center Zpgys(P) of P is the set of all f € P such that

{f,9} =0 for all g € P. Elements of Zp;s(P) are called Casimir functions.
We start with two examples.

Example 4.2.3. Consider the example where g is of type Ay. In this case, P is a polynomial
algebra with one single generator x. So P is Poisson commutative, i.e. the Poisson center

Zpois(P) is a polynomial algebra with = as its generator.

Example 4.2.4. Consider the example where g is of type Ag. Let us use the same notations
as in Example 4.2.1. It is easy to verify that ¢ := (zy + u)u € Zpys(P). In fact, one can
prove that Zpgis(P) is freely generated by 1, i.e. the Poisson center Zpg;s(P) is a polynomial

algebra with 1 as its generator.

In general, to write down Casimir functions in P for g of type A;,, we need some notations.

Let
k={1<kK| <kKy<---<Kp=n} (4.32)

be a partition of n. For such a partion x, we say that k is the size of k and denote the size
of k by |k|. The intervals [1, k1], [k1 + 1, k2], -, [kr—1 + 1, k] are called the parts of k. We

write z, for the monomial

L1,k1Tr1+1,k0 """ Trp_1+1,K5Es (433)
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and define 1) € P by
o= w)zin, (4.34)
KN

where k - n indicates that « is a partition of n.

Proposition 4.2.7. If g is of type Ay, then ¢ € Zp,;s(P).

Proof. Note that P is Poisson-generated by x1,-- -, zy, i.e. the smallest Poisson subalgebra
of P containing x1,---,zn is P. Hence, to prove that ¢ is a Casimir function, it suffices to
prove that ¢ Poisson-commutes with x1,---, zp.
Define 91 := ) xx. So ¢ = 1 ,91.
AFn

We first compute {z1,1}. For this purpose we define T := {k F n : k1 > 1} and

T' .= {kFn: k1 = 1}. By Proposition 4.2.1, we have

{z1,¥} ={z1, 21,091}
={z1, 210101 + 21 {21, 91}

= —z121 1 + 21 0{x1, 91} (4.35)

By our definition of T, T" and Proposition 4.2.1, we have

{er, 1} = fzneal + ) {w1, 20}

keT keT’

=—1 Z Tk + (21 Z Ty + 211 Z T), (4.36)

k€T keT! keT’

where kK is obtained from s by merging its first two parts into one. More concretely, if
k={1<kK| < kg <- - <K =n},then & is the partition {1 < K| < Rg < -+ < Rp_1 = n},

where k; = k41 for all 1 <7 <k — 1. Noticing that the function

T —T:k—Fk (4.37)
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is a bijection, we see that > zz = > x. It follows that
keT' kT

{$17¢1}:_$1Z$H+$1 Z Jff<;+2xlz$f<a

keT keT'! keT
=r1 Za:,i+:)31 Z Ty
keT keT’
Y e
kkn
=119 (4.38)

Therefore, {z1,9} = 0.
Using a similar argument as in the previous paragraph, one can show that {z,,¥} = 0.
Let i be an integer satisfying 1 < ¢ < n. We prove that {z;,9} = 0. Note that, by

Proposition 4.2.1, we have

{z4, 0} = {zs, 21 001} = 21 0{2i 01} (4.39)

It thus suffices to prove that {x;, 11} = 0. We do this by induction on n.

The base case n = 3 can be verified easily by hand, using Proposition 4.2.1.

Now assume that n > 3. A close look at the formula in Proposition 4.2.1 tells us that we
have six different cases for the Poisson bracket of z; ; with zy, ; because we have six different
‘relative positions’ of the two intervals [z, j| and [k, [].

Suppose ¢ > 2. Notice that the relative position of the intervals [i,] and [1, k1] is the
same as the relative position of the intervals [i,i] and [2, k1], whenever k; > 1. So, in order
to compute {z;, 71 4, }, for K1 > 1, we can first replace the index 1 by 2, then compute the

Poisson bracket {x;,z9 ,,} as if we are in type A,_1, and finally replace the index 2 by 1.
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Using this observation, we compute

{w 1} => Ao} + Y {wi vx}

keT keT’

=0+ Z {xi’ IL‘H}

keT’

= > wr{wg g}

keT’

=0, (4.40)

where & is obtained from s by deleting its first part. More concretely, if kK = {1 < k] <
Ko < -+» < K =n}, then & = {1 < k] < kg < -+ < Rp_1 = n}, where §; = ;4 for all
1 <i < k—1. Here, in the second and last steps of the computation, we have used our
observation above and the induction hypothesis.

Suppose i < n—1. Notice that the relative position of the intervals [i, 7] and [kj_1+1, K]
is the same as the relative position of the intervals [i,7] and [kj_1 + 1, K, — 1], whenever
Kp_1+ 1 < n. So, in order to compute {z;, ‘Tﬁk—l"‘laffk}’ we can first replace the index n by
n — 1, then compute the Poisson bracket {xi,x,ﬁk71+1,n_1} as if we are in type A, _1, and
finally replace the index n — 1 by n. This observation allows us to use a similar argument as
in the previous paragraph to show that {z;,¥1} =0 when i <n — 1.

The last two paragraphs cover all possible cases. So the induction step is finished. O

Remark. For the Kirillov-Kostant Poisson bracket on n*, the function y ,, is Casimir, as can

be easily verified using formula (4.31). Our ¢ is meant to be a replacement of y ,,.

The two examples above are clearly special cases of the last proposition. We point out

here that, for a general n, 1) does not generate Zp,is(P), as the next example shows.

Example 4.2.5. Let g be of type A3. An easy computation shows that v’ := 12723 —
rox1 3 is also a Casimir function. It is clear that ¢ and Y are algebraically independent.

The phenomenon that is worth noticing about this example is that yj 3 and yj 2y2 3 —
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y2y1,3 are Casimir functions with respect to the Kirillov-Kostant Poisson bracket. For a
general n, we know that y 5, and y1 ,—1y2.n — Y2,n—1¥1,n are Casimir functions with respect
to the Kirillov-Kostant Poisson bracket. We also know that ¢ is a replacement of yq ;. Now
the question is: what is a reasonable replacement of y1 ,_1y2. 5 — y2,n—1Yy1,n7 When n =3
this example tells us that v’ is a good candidate. It would be very interesting to find the
answer to this question for a general n. It would also be interesting to look for deeper reasons
that explain the similarity of the Casimir functions for our Poisson bracket and those for the

Kirillov-Kostant Poisson bracket.

Let (Q,{ , }) be a Poisson algebra over C. Recall that a quantization of (Q,{ , })isan
A-algebra D satisfying the conditions in the Hayashi construction, such that when we apply
the Hayashi construction to the data (R = A,t =1 — ¢, A = D), the C-Poisson algebra we
get is Poisson isomorphic to (Q,{ , }). Let D be a quantization of (Q,{ , }) and f € @
be a Casimir function. A quantization of the Casimir function f is a lift of f € D/(1 —q)D
to an element in the center Z(D) of D.

Now we quantize the Casimir function v in Proposition 4.2.7. For 1 < i < 57 < n, to

simplify notation, we write 7; ; for the Kashiwara operator r&i tetay
Proposition 4.2.8. If g is of type Ay, then the element
U= ; qn_lﬁ|7"1,/<c17’/<;1+1,/<;2 e '7“/<;|,{‘_1+1,/<;|,$|7"1,n (4'41)
RN

1s a quantization of the Casimir function 1.

4.2.4  Compatible Poisson Brackets

Recall our formula (3.43) and discussions following Lemma 3.3.3. For each 1 < i < N,
commuting with F; defines a derivation on P. These derivations make P a representation
of the Lie algebra n~ (Lemma 4.1.4). In other words, we have a Lie algebra morphism

n~ — X(SpecP), where X (SpecP) stands for the Lie algebra of vector fields on SpecP
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equipped with the standard commutator Lie bracket. By abuse of notation, forall1 <¢ < N,
we write F; also for the image of the root vector F; under this Lie algebra morphism. The

following general formula is an easy consequence of formula (3.43) or Proposition 4.1.3.

Proposition 4.2.9. For all 1 <i,j < N, the action of the vector field F; on the coordinate

function T; 1s given by the formula

= AisE _
Fi-7=-— Z(nAjeﬂq:lr’(g). (4.42)

It is natural to ask how the vector field F; (1 <14 < N) changes if one chooses a different

reduced expression for wg than the one we fixed in (2.17). To answer this question, we have

Proposition 4.2.10. For all positive roots A, let F'\, F)\ € U™ be root vectors corresponding
to the positive root A defined by two different choices of reduced expressions for wgy. Then

the vector fields Fy and F)\ on SpecP are the same, up to a sign.

Proof. (Sketch.) One proves that the root vectors Iy and f)\ differ at most by a sign. To

this end one uses similar arguements as in the proof of Proposition 3.1.6. O

In the case where g is of type A, formula (4.42) can be made much more concrete. Recall
our notations and conventions for Proposition 4.2.1. In this situation, for 1 <17 < 7 <n, we
write 0; ; for the partial derivative with respect to the variable z; ;. The following proposition

is not hard to prove.

Proposition 4.2.11. Let g be of type Ay,,. For 1 < i < j <mn, the vector field Fai+...+aj 18

given by

n
Fai"‘"""@j = —82'7]' + Z $j+1,kai’k. (4.43)
k=j+1

For convenience, we write 7 for the Poisson bivector on SpecP. Namely, for f,g € P, we
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have

{f,9} =7(df,dg). (4.44)

Let [ , | be the Schouten bracket of multi-vector fields on SpecP. Motivated by the
infinitesimal criterion for Poisson action of Poisson-Lie groups of Semenov-Tian-Shansky
[22] (see also [17]), we study in type Aj, the ‘deformed bivector’ [F;, ], for all 1 < i < N.
Concretely, for f,g € P, [F;, 7|(df, dg) = Fi.{f, g} — {F;.f, 9} — {f, F;.g}, which should be
familiar to readers in the field of Poisson-Lie groups.

Note that, a priori, the deformed bivector [F;, 7], 1 <14 < N, need not be Poisson, i.e.

Jacobi identity [[F;, 7], [F;, 7]] = 0 need not hold.

Example 4.2.6. Let g be of type As. Recall our notations in Example 4.2.1. We have

[Fy,7)(dz, dy) =y, [F1,7|(dz,du) = =22y —u, [F1,7)(dy,du) = y2;
[Fo, n](dz,dy) = —z, [Fa,x](dz,du) = 0, [Fa,x](dy, du) = —u;

[Fa1+a2,7r](dx,dy) =2, [Fa1+a2,7r](dx,du) =T, [Fa1+a2,7r](dy,dU) =Y. (4.45)

It is then easy to verify that all of [F'y, 7], [F'9, 7] and [Fo,+a,, 7| are indeed Poisson bivec-

tors.

This example is a manifestation of a much more general fact. In fact, if g is of type A,

for an arbitrary n, we have

Theorem 4.2.12. Let g be of type A,. For 1 < i < j < n, the deformed bivector

[Fajttaj: ) is Poisson, i.e. Jacobi identity [[Fo;+...4a;, 7], [Faj4-4a;, 7] = 0 holds.

The proof of Theorem 4.2.12 is computational in nature. It is omitted.
Recall that two Poisson bivectors 7 and 7’ on a variety X are called compatible if 7 + 7/

is (equivalently, all linear combinations of 7 and 7’ are) again Poisson. By general properties
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of the Schouten bracket, it is easy to verify that 7= and 7’ are compatible if and only if the

equation [, 7] = 0 holds.

Example 4.2.7. By an easy computation, one verifies that all three Poisson brackets [F'1, 7],

[F9, 7] and [Fo,+ay, 7] on SpecP in Example 4.2.6 are compatible with .
Example 4.2.7 is a manifestation of the following general result.

Theorem 4.2.13. Let g be of type Ap. For any 1 < i < j < n, the Poisson bracket

[Fqj4taj: T] is compatible with .

Let X be a variety and ¢ : X — X an isomorphism of varieties. Suppose that the source

is equipped with a Poisson bracket { , } whose Poisson bivector is w. Then there is a
unique Poisson bracket { , } on the target such that ¢ is a Poisson isomorphism. The
Poisson bivector corresponding to { , } is the push forward of 7 along ¢. Concretely, for

any functions f and g on X,

{f.9Y = (6~ H{o" [, 0" g}. (4.46)

Suppose that an algebraic group K acts on X. Let € be the Lie algebra of K. For v € £
and t € C, consider the push forward of 7 along the isomorphism exp (tv) : X — X, where
exp : £ — K is the exponential map and the map exp (tv) sends x € X to exp (tv) -z € X.

For functions f and g on X, the push forward of 7 along exp (tv) takes the value

w(df, dg) — t[o, 7] (df, dg) + t2[0, [0, 7])(df, dg) + - - - (4.47)

on the pair (df,dg) of 1-forms, where v stands for the vector field on X generated by the
infinitesimal action of v € £, and --- stands for terms containing the factor ¢ for some

m > 3.

o1



Suppose it happens to be the case that [0, [0, 7]] = 0. Then the formula above reduces to

Jacobi identity for the push forward of 7 along the isomorphism exp (tv) then implies that

0 =[r —t[o, w], m — t[v, 7]

=[m, 7] — 2t[m, [0, 7] + ¢2[[D, 7], [0, 7). (4.49)

Since t € C is arbitrary, it follows in particular that [m, [0, 7]] = 0, i.e. the two Poisson
bivectors 7 and [0, 7] are compatible.

By this argument, Theorem 4.2.13 follows from the following theorem whose proof is an
unilluminating case-by-case computation. The proof of the theorem will be omitted for lack

of space.

Theorem 4.2.14. Let g be of type Ap. For any 1 <1 < j < n, we have
[Fai+"'+0‘j7 [Fai+"'+aj7 7TH =0. (450)

We write 7 for the Poisson bivector of the Poisson bracket on SpecP(~ n*) and np j for

the Poisson bivector for the Kirillov-Kostant Poisson bracket on n*.

Theorem 4.2.15. Let g be of type Ap. On n*, the two Poisson bivectors m and wg e are

compatible.

Proof. One proves that for functions f, g on n*, the bracket { , }’ defined by

{f.9Y ={f.g9} —2{f . 9}kK (4.51)

is Poisson, where { , } g stands for the Kirillov-Kostant Poisson bracket on n*. One proves

this by induction on n. The base case n = 1 is trivial because m = 7w ¢ = 0 in this situation.
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For the induction step one only needs to compute, for 1 < <7< n,1 <k <[ <n and

1 <r < s <n, the Jacobiator

J(@ijowp g, wrs) ={{zij o} orst + Lo ors} v}

+{rs, 25}, xk,l}l (4.52)

in the case where at least one of j, [, s is equal to n. This can be done by another case-by-case

analysis. This analysis is tedius and unilluminating. It is omitted. O]

Many interesting results in this section work only in type A. It is very interesting to ex-
plore whether or not analogous statements hold in other types. Another interesting question
that is worth thinking about is how to interpret the compatibility results (at least in type
A) in terms of the geometry of the variety of Lagrangian subalgebras of Evens and Lu [7, 8].

Before closing this section, let us very quickly point out a way in which the vector fields
F;, 1 <i < N, may potentially help us determine the Poisson center Zp;s(P) of P. Recall

our notations prior to Proposition 4.2.7.

Lemma 4.2.16. Let g be of type A,. Then the Poisson center of P equipped with the

deformed Poisson bivector [Fo,+...+ay,, T is freely generated as a C-algebra by x; ; for 1 <

1 < j <n and the function

() @)+ 2a1, (4.53)

kEno
Kk non-trivial

In particular, the Poisson center for the deformed Poisson bivector [Fa1+~'+an> 7| is a poly-

nomaial algebra.

Note that the Casimir function ¢ in Proposition 4.2.7 is an anti-derivative of (> xk)+

kkn o
Kk non-trivial

2z, with respect to the variable xq ;. It is interesting to study what the anti-derivatives

of other functions in the Poisson center for [Fo,+...4q,, 7] tell us about the Poisson center
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for . If we can determine the Poisson center for [Fai+...+aj, 1] for some arbitrary 7, j with

1 <i < j <mn,itisinteresting to ask what we can say about Zpy;s(P) using this information.

4.2.5 Relation to the Open Bruhat Cell in the Flag Variety

Recall that G is a connected semisimple algebraic group whose Lie algebra is g and B C G
be the Borel subgroup of G whose Lie algebra is b. Using the so-called Bott-Samelson
coordinates, the standard Poisson bracket on the open Bruhat cell BwgB/B in the flag
variety G/B has been computed explicitly by Elek and Lu in [6]. They have also shown that
the coordinate ring of the open Bruhat cell has a structure of a symmetric Poisson CGL
extension in the sense of Goodearl and Yakimov [10]. In this section, we first show that
(P,{ , }) also has a structure of a symmetric Poisson CGL extension. Then we establish a
Poisson isomorphism from (P, { , }) to the coordinate ring of the open Bruhat cell equipped
with the standard Poisson structure.

To see the symmetric Poisson CGL extension structure on P, we need a torus action on
P. Let t be the abelian Lie algebra with basis {hy : A € ®T}, where the h\’s are formal
symbols. For A\, u € &+, we make h) act on F;J by multiplication by (A, u). Write T' for the
torus whose Lie algebra is t. The t-action on P integrates to a T-action on P. The following

lemma is obvious.
Lemma 4.2.17. The action of T on P is Poisson.

Proposition 4.2.18. With the action of T on P described above, P has a structure of a

symmetric Poisson CGL extension.

Proof. (Sketch.) Most of the proof is routine. The only nontrivial part is that P is an
iterated Poisson-Ore extension. For this one uses the formula in Proposition 4.2.3, the
Levendorskii-Soibelman straightening law (Theorem 3.2.1) and the paragraph in [10] after
Definition 2.9. [

Corollary. P has a structure of a cluster algebra.
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Proof. This follows from Propostion 4.2.18 and the main theorem of [10]. [

Write x for the Killing form on g. For A € ¢, write g) for the A-root space of g. Choose,
for all A € T nonzero vectors ey € gy and f\ € g_, such that x(ey, f\) = 1. Then we get

an element

1
R = 5 D exAfr €Nty (4.54)
Aedt

R’ gives rise to a bivector m¢ on G defined by

mt(9) == (Lg)s(R)) — (Rg)(R), (4.55)

for all g € G, where Ly (resp. Ry) stands for left (resp. right) multiplication by g. It turns
out that, c.f. [1,6, 7, 8,17, 20, 22], mg is a Poisson bivector on G. 7y is called the standard
Poisson bivector on G.

Let p : G — G/B be the natural projection map. It is known that, c.f. [1, 6, 7, 8, 17,
20, 22|, there is a unique Poisson bivector on G/ B, also denoted by 7g, making the map p
Poisson. This Poisson bivector is called the standard Poisson bivector on G/B.

Example 4.2.1, Proposition 4.2.2 and Proposition 4.2.18 are consequences of the following

Theorem 4.2.19. There exists a Poisson isomorphism between the open Bruhat cell BwyB/B

in the flag variety G/B equipped with the standard Poisson structure and (SpecP,{ , }).

The proof of Theorem 4.2.19 is postponed to the end of this section.
In [2], De Concini and Procesi have defined an A subalgebra AT of the quantized universal
enveloping algebra U. By definition, AT is the smallest A subalgebra of U containing

(¢a — g5 ') Eo which is stable under the action of the braid group. Recall our notation in
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Theorem 3.2.1. Notice that, for 1 <i < j < N, we have

(ar, = a3, DB (ar, — 4y DEy ] = (¢M) = 1><<qA. —a, VBN (4, — 03, )E,)

-1 -1
(o — a4y, Ny, —ay,)
+Z d Ai J )‘J_l v ((q)\N (4.56)
(an = @y, )T (ary — a5 )N
— 4y D EA)™ - ((an, — a3 D Ex) ™

By Proposition 3.1.2 and Lemma 3.2.3, we have

[=rhs =rh ] =@ = 1) (= ) (=)

-1 -1
(an — 4y, )(qxj—qA )
+) e d 4

T (77
oy —ay) N

)N (= )R (457)
AT Q)\l )

Write AZE for the C-algebra A" /(1 — q)A". The Hayashi construction equips A;? with
a Poisson bracket. We remark here that in [2], when constructing the Poisson bracket for @

and b, where a,b € A, De Concini and Procesi have used the formula

(@8} = (=0l (4.58)

as opposed to our convention

{a,b} = (fq[a, b)lg=1- (4.59)

o —1 -1
Define a C-algebra map P — A;; by sending r&i to —(qy, — q, )E),, where —(qy, — a, VE),

stands for the image of —(qy, — q;.l)E)\i in AZ}.
1

Proposition 4.2.20. The map P — AZE 1s an anti-Poisson isomorphism of Poisson alge-

bras.

Proof. That the map P — A;? is an algebra isomorphism follows from our PBW theorem

for P (Proposition 4.1.1 or Proposition 4.1.3) and the PBW basis for A;? constructed in [2].
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That the map P — AZE is anti-Poisson follows from formulas (4.56), (4.57) and the

Hayashi construction. O

Let B~ C G be the Borel subgroup of G opposite to B and define H := BN B~. Write
N* (resp. N7) for the unipotent radical of B (resp. B~). Equip G with the standard

Poisson structure. So the Poisson dual group G* of G can be concretely realized as
G ={(tu_,t ') te Hue Nt u_e N} (4.60)

With this presentation of G*, it is easy to see that N~ can be identified with a subgroup
of G* via the injective map u— +— (u—,e). It is clear that N~ is in fact a normal subgroup
of G* and the quotient group can be identified with B. So we get a short exact sequence of

algebraic groups
1N = G"—B—1, (4.61)

where the map G* — B is given by (tu_,t ') — t~u.

Recall that N~ is an almost Poisson subgroup of G* in the sense of, for example, [1].
This in particular implies that B ~ G*/N~ has a unique Poisson structure such that the
natural quotient map G* — G* /N~ ~ B is Poisson. We write mgyo for the unique Poisson
structure and call it the quotient Poisson structure on B. Recall also that B is a Poisson
subgroup of G. So B has a Poisson structure such that the natural inclusion map B — G is
Poisson. Let us call this Poisson structure on B the standard Poisson structure, and write

mgt for it. To compare the two Poisson structures on B, we have

Lemma 4.2.21. The identity map of B is an anti-Poisson isomorphism from the Poisson

variety (B, mst) to (B, Tquot)-

Proof. Let D := G x G be the Drinfeld double of G. So the Lie algebra of D is the direct sum

0:= g @ g. Recall the notations we used in the definition of the standard Poisson structure
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mst on GG. Choose a basis hy,-- -, h, for the Cartan subalgebra h of g such that

2k(h;, h;) =0

ir hj (4.62)

INE

for all 1 <4,j <r, where 0; ; is the Kronecker delta.
Notice that the Poisson dual group G* is a subgroup of D. Its Lie algebra g* can thus

be realized as the following Lie subalgebra of 0:

g"={(h+n_,~h+n):hebhnenn_ cn} (4.63)

Write ga for the diagonal {(z,z) € 0 : 2 € g} of 9. Then we have a basis

{(ex,ex)s (fas ), (hishy) s A € T, 1 <i <7} (4.64)
for ga and a basis
{(£\,0),(0,—e)), (hy, —h;) - A€ ®T 1 <i <r} (4.65)
for g*.
Let
Ro= 2 370 0) Alensen) + (0, —ex) A (o )+ 5 S (s —hi) A (hihi) (4:66)

be an element in A20. For d € D, let Ry: D — D (vesp. Ly: D — D) be the map sending

d' to d'd (vesp. dd’). Tt is well-known, c.f. [6, 7, 8, 17, 22|, that the bivector

WD(d) = (Rd)*R — (Ld)*R, de D (467)

is a Poisson bivector on D and the inclusion G* < D is anti-Poisson.
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Let prg : D — G be the second projection map. We prove that (prg)s«mp is a well-defined
Poisson bivector. For this we fix g € G and compute the value of (pry)«mp at g. Let ¢’ € G

and write d for (¢/,g). Then we have

(pra)«(mp(d)) =(pro)«(Bq)«R — (pra)«(Lg)«R

=(Rg)«(pra)« R — (Lg)«(pra)sR, (4.68)

since prg o Ry = Ry o prg and prgo Ly = Lg o pry. Here Ry : G — G (resp. Ly : G — G)
stands for the map sending ¢’ to ¢'g (resp. gg’). Recall that R/ = %Ze)\ A fy € A2g, so

that (prg)«R = —R’. Hence we have
(pra)+(mp(d)) = —(Rg)« R + (Lg)« R (4.69)

From this it is clear that (pry)«(mp(d)) is independent of the choice of ¢/, hence (prg).mp is

well-defined. Recall that the standard Poisson bivector mg¢ on G is given by
Tst(9) = (Lg)« R — (Rg)«R', g€ G. (4.70)

So we conclude that (pry)s«mp = mg. Therefore, (pro)«mp is a well-defined Poisson bivector,
and is equal to mgt.

Consider the composition
¢t p 2% q. (4.71)

It is anti-Poisson because it is the composition of an anti-Poisson map with a Poisson map.
For (tu_,t ') € G*, the composition sends (tu_,t 1u) € G* to t~1u. Hence we see that
the image of the composition is the Borel subgroup B of G and the composition, viewed as

a map from G* to B, is nothing but the natural quotient map from G* to B in our exact
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sequence (4.61). Consequently, the composition G* — B is Poisson for the quotient Poisson
structure on B and anti-Poisson for the standard Poisson structure on B. Therefore, the

quotient and standard Poisson structures on B differ only by a minus sign. ]

Proof of Theorem 4.2.19. For this proof we will use notations in [2] freely.

Recall the De Concini and Procesi have constructed in [2] a Poisson algebra Zy over C
and proved that it is Poisson isomorphic to the coordinate ring C[G*| of the Poisson dual
group G*. They have also constructed a C-vector space isomorphism 7 ~ Za' ® Zg ® Zy -
The subgroup N~ of G* acts on G* by multiplication on the right. This action induces an
action of N™ on Zj by algebra isomorphisms via the isomorphism Zy ~ C[G*]. Analyzing
the construction of De Concini and Procesi, one can prove that the N~ -invariant part of Z
is Z8 ® Z . De Concini and Procesi have also shown that Z8 ® Z is a Poisson subalgebra

of Zy. Hence, by the exact sequence (4.61), we have a Poisson isomorphism
CB] ~ClG*)N ~Z) w77, (4.72)

where B is equipped with the quotient Poisson structure mgqot-
Now let us use notations in De Concini and Procesi [2]. In particular, J stands for the
reduced expression (2.17) for wq. Also, there is a bijection = : IT — II defined by & = —wg(«).

Then
wp = 8072'1 T SdiN (473)

is also a reduced expression for wg. This reduced expression will be denoted by .J. Let the

x, y and z’s be defined as in [2]. For 1 < k < N, one verifies that

-1 1
v = —K; Nan, — a3V Ex, (4.74)

where K;kl (@, — q;kl)E)\k stands for the image of K)Tkl(q)\k — q;kl)E)\k after quotienting out
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by the ideal generated by (1 — ¢). Comparing with Proposition 4.2.20, we see that F?ﬂ maps
to z /\ka:;g under the anti-Poisson isomorphism in Proposition 4.2.20, so that P is anti-Poisson
isomorphic to the Poisson subalgebra of Z8 ® Z, generated by zAkxi forall 1 <k < N.

Recall that W = Ng(H)/H, where Ng(H) is the normalizer of H in G. Let wy be
a lift of wg € W = Ng(H)/H to Ng(H) € G. It is not hard to show that the map
(B,mst) — (BwgB/B,ms) defined by b +— buwyB/B is Poisson. Thus the composition
SpecZg ® Z, — B — BwyB/B is anti-Poisson, where B ane BwyB/B are equipped with
the standard Poisson structures. The isomorphism SpecZ8 ® Zy =~ SpecZ(()) X SpecZ of
varieties allows us to decompose a point p € SpecZ8®ZO_ as p = (pg, p—), where pg € Sp6028
and p— € SpecZ;, . Analyzing the argument of De Concini and Procesi in [2], we see that
the composition above sends p € SpecZg ® Z, to (Z(po)X (p—)Z 1 (pg))woB/B, where the
maps X : SpecZ, — N and Z : SpecZg — H are defined in [2].

Again, for the meaning of all the undefined notations in this paragraph, the readers are

referred to [2]. Define X,jc] = TwO(ij) for 1 <k < N. Using facts in [2], we have

X/;] :Two (ij)
=T, (exp (y;{f;;f))
=t exp (T (yi)f;f)%?l
—toexp (o] )t

=exp (—miei), (4.75)

where exp : g — G is the exponential map. Notice that X7 = TwO(Yj) = TwO(Y]g- » Yl']) =

TwO(ng) > -TwO(Ylj) = X]‘{] > 'Xi]' Hence, for p = (pg,p—) € SpecZg ® Z , we have

Z(po)X (=) Z " (po) =(Z(po) X% (p=)Z " (p0)) - - - (Z(p0) X{ (p=)Z (o))

=exp (—2) 5 (P0)x % (p=)ed) -~ exp (=2, (po)x{ (p-)ef).  (4.76)
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Recall that the map N* — BwyB/B sending u to uwyB/B is an isomorphism of va-
rieties. Recall also that, for 1 < k < N, we have a coordinate function aj : N + 5 Con
N sending exp (tANGJN) -+ - exp (t)\le‘lj) in Nt to ty, Here, we have used the fact that the
J) J

map AN — N7 sending (ta;> 5 tay) to exp (tyyen) - exp(ty,eq) is an isomorphism of

varieties. Our arguments above imply that, for all 1 < k£ < N, under the composition
SpecZ) ® Zy — (B, mst) — (BwoB/B,7s), (4.77)

the coordinate function aj, pulls back to —z /\ka:;g , which is the image of —F;ﬁ under the anti-
Poisson isomorphism in Proposition 4.2.20. Hence, the injection C[BwyB/B] — 28 ® Zy
sends C[BwyB/B], where BwyB/B is equipped with the standard Poisson structure, Poisson

isomorphically to P. O

Remarks. 1. A consequence of Theorem 4.2.19 is that C:{ is a quantization of the open
Bruhat cell BwyB/B in the flag variety G/B equipped with the standard Poisson structure.
Hence, Lemma 3.2.3 can be viewed as a quantization of the explicit formulas for the standard
Poisson bracket on the open Bruhat cell BwgB/B in [6]. This answers the question of Elek
an Lu in [6] about how to quantize their formulas.

2. An interesting question is to compare C:Z with the ‘preferred’ quantization of the
coordinate ring of BwyB/B constructed by Mi in [20]. Our quantum algebra C’j has the
advantage that it is very explicit, at least representation-theoretically, while Mi’s approach
is very general but abstract. The hope is that this comparison will provide a concrete un-
derstanding of Mi’s abstract approach towards quantizing Poisson CGL extensions. Compu-
tation in type G9 suggests that there is no obvious A-algebra isomorphism between C’Z and
Mi’s ‘preferred’ quantization of the coordinate ring of BwyB/B equipped with the standard
Poisson structure.

3. Another interesting consequence of Theorem 4.2.19 is that the Poisson brackets con-

structed in Theorem 4.2.13 are now compatible with the standard Poisson bracket on the
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open Bruhat cell. It would be very interesting to interpret these Poisson brackets, or the
vector fields Fai+...+aj, for all 1 <i < j < n, in terms of the geometry of the flag variety
and explain compactibility of 7 with [Fai+...+aj,7r] using this interpretation. We point out
that the vector fields Fai+...+aj, for 1 <i < j < n, are in general not Hamiltonian.

4. Recall that B is a Poisson subgroup of G and the induced Poisson structure on B
is referred to as the standard one. The action of B on G by left multiplication induces an
action of B on the open Brahut cell BwgB/B, making it a B-homogeneous Poisson space,
where B is equipped with the standard Poisson structure. Hence, by Theorem 4.2.19, SpecP
can then be identified with a B-orbit in the variety £ of Lagrangian subalgebras of the
Drinfeld double of the Lie bialgebra b corresponding to the standard Poisson structure on B
(see [7, 8]). Note that if we equip B with the zero Poisson bracket, and make B act on n*
by the coadjoint action, then each B-orbit in n* is a B-homogeneous Poisson space for the
Kirillov-Kostant Poisson bracket on n*. Hence, each B-orbit in n* embeds into the variety
L' of Lagrangian subalgebras of the Drinfeld double of the Lie bialgebra b corresponding

to the zero Poisson structure on B. It is interesting to study what our compatibility result

Theorem 4.2.15 tells us about the geometry of £ and £’

Proof of Theorem 4.2.6. By Theorem 4.2.19, gry equals the maximum of the dimension of the
symplectic leaves in BwyB/B equipped with the standard Poisson structure. By Example
4.9 of [8], the latter quantity equals the dimension of H~"0  where h~"0 stands for the vector
subspace of b fixed by the action of —wg. By Proposition 1.10 of [15], grg equals the same

number. O

Remark. This argument is largely due to S. Evens. The author would like to thank him for

generously sharing this proof.
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CHAPTER 5
PROOF OF THEOREM 3.2.2

In this chapter we give a proof of our stronger version of the Levendorskii-Soibelman straight-
ening law (Theorem 3.2.2). We prove a version slightly different than Theorem 3.2.2. Tt is
not hard to check that Theorem 3.2.2 follows from this slightly different version. Also, we
will only prove the statement in Theorem 3.2.2 involving the F’s. The proof of the statement
involving the E’s is similar. Our proof is adapted from the proof of Theorem 3.2.1 in [2].

For this chapter, when we write FJ, for d € (ZZO)N, we mean F{il e F]C\lfN. It is known
that {F‘i: d e (Z>0)N} is also a C(q)-basis for U™, c.f. [2, 12]. The advantage of this
basis is that we do not have to reverse the natural order of the root vectors Fi,--- Fy. This
makes the computation slightly easier.

We shall prove

Theorem 5.0.1. For 1 <i < j < N, we have

i\ _ pd
F\Fy, —¢M B Py = Y g, (5.1)

de(Zso)N
where c> € A and ¢y =0 whenever dj # 0 for some k € [1,i] U [j, N|. Moreover, if cj# 0,

d
N
(22 di)-1
then it is divisible by (1 — q) k=1 in A

Proof. We first note that when the root system & is of rank 2, the statement can be verified
by a straightforward computation. In particular, we may assume that in the root system &,
there is no irreducible component of type Go.

We prove Theorem 5.0.1 by induction on j —i. Without loss of generality, we may assume
that ¢ =1 and j = r for some 1 < r < N. The base case r = 2 can be verified by the same
computation in a root system of rank 2 as in the previous paragraph. Assume that r > 2
and Theorem 5.0.1 has been verified for j =2,3,---,7 — 1. We have a number of cases.

Case 1. The roots «; , and «;, generate a root system of type A1 x Aj.
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It follows from the assumption that

Ay = Say, "t Say S () = Say, " Say (a,) (5.2)

and

F, = Tail . 'Tair_QTair_l(Fair) = Tail . 'Tair_2(Faz'r)' (5.3)
Also, the assumption implies that

Sa, (5.4)

Sall ... SaZT_Q

is a reduced expression. So this reduced expression can be completed to a reduced expression
for wg. Write F {, e F ]/\7 for the root vectors defined by this new reduced expression for wy.
They correspond to positive roots A, -, )‘fN' Then our computation above tells us that

Fj, = Fy fork=1,---,r -2, and ;- = F]_,. By induction hypothesis, we get
/Y 7
R F— MM ER =FF - MNDR F = > cd{F’)d, (5.5)

where ¢ has the properties stated in Theorem 5.0.1. Since [y = Fy, - Fr_g = F_,,

(F’)J — Fd for all d € (ZZO)N such that the coefficient ¢z in formula (5.5) is nonzero. It

follows that F Fj. — q()‘l’)‘f)FrFl =>c d—F d, where ¢ 7 has the properties claimed in Theorem

5.0.1.

Case 2. The roots «; , and o, generate a root system of type Ay and Say, " Say ., Say,
_

is a reduced expression.
Write u for the element Sag, T Soy in the Weyl group W. By abuse of notation, when
-

we write u, we also mean the reduced expression Sag, T Say - The assumptions of this

ip_2
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case imply that
USO(Z'T (5 6)

is a reduced expression. So it can be completed to a reduced expression forwg. Write
F {, cee FJ’\, for the root vectors defined by this new reduced expression for wq. They corre-
spond to positive roots )\’1, e 7)‘/N' It is easy to see that Fj. = F]:: fork=1,---,r—2 and

Tu(Fa;,) = F)_;. By induction hypothesis, we have

Fi(Tu(Foy,)) — q(ail’u(air))(Tu(Fair))Fl =F{F_y - q(ail’u(air))F;—lF{

Nt (5.7)

where ¢ 7 has the properties claimed in Theorem 5.0.1. Note that (F’ )j = I d for all
d e (Z>0)" such that the coefficient ¢ in formula (5.7) is nonzero. We have F1(Ty(Fa;,)) —
q(ail’u(ai’"))(Tu(Fair))F1 => CJ'FJ; where ¢z has the properties claimed in Theorem 5.0.1.
For notational simplicity we write 821,7’71) for Iy (Ty(Fy;,.)) —q(ail i) (Tu(Fy,,))Fr. Sim-

ilarly, our induction hypothesis also implies that
FyFq — ¢MA=DF Ry =", (5.8)

where ¢ 7 has the properties claimed in Theorem 5.0.1. Again for notational simplicity, we
write S(l,r—l) for F1F,_1 — q(/\l’AT_l)Fr_lFl.

Since

Fr =TuTo, ,(Fay)
=Tu(Fu,, Foy | —aFo; _ Fuo,,
:Tu(Fair)Tu(Fair_l) - un(Fair_l )Tu(Foy,.)
=Tu(Foy, ) Fr—1 — aFr—1Tu(Foy,), (5.9)

66



it follows that
FF = Tu(Faz VEr 181 — qFra Tu(Foy, ) B
Tu(Fay )4~ S W ) R (/\1,>\r71)5(17r_1))
—qF_1(q (Al’u(a”»FlTu(Fair) _ q_()\bu(air))SELT_l))
— q_(/\la)\r—l)_()‘17u(air))(FlTu(FaiT) _ 5217r_1))pr_1 _ q_()\la)\r—l)Tu(FaiT)S(Lril)
— g~ Grlen)-CA—)(m FL_ Str1)Tu(Fay,) + ql_()\bu(air))Fr_lsél,r_l)
— ¢ Avdr—rtulaq)) py Ry
_ q_()‘la)\r—1+u(air))(SELT‘_DFT_I _ q1+(/\1,U(air))Fr_lgzm_l))

+ ql_()\l’)\r_1+u(air))(S(l,r—l)Tu(FaiT) - q_1+()\1’u(air))Tu(Fair)S(lﬂ’—l))'
(5.10)

We analyze Sél r—l)Fr_l — q1+()‘1’“(air))Fr_1Sél o1y It follows from induction hypoth-

esis and the definition of S’ that
(1I,r=1)
SEl7r_1)FT_1 _ q1+()\1+Ar—1;u(air)) T 15 1 — 1 Za Fd <511)

where ay€ A, acﬁé 0 only when dj. = 0 for all £ <2 and k > r — 1. Moreover, if acz»# 0, it

N
> d)—1
is divisible by (1 — q) *=! . Hence, we have

Sél,r—l)FT—l _ q1+(>\1,u(az‘r))Fr_lsgLr_l)

=g~ r—vul@iy)) ((Pr—rulai)) 7

(1r—1)fr-1- gttt Ao g g

(1,r—1))
:q_(/\r—lau(air))((qO‘T—lvu(air)) — 1)SEI,T—1)FT_1 + Z CLd—*Fd). (512)

Recall that each coefficient in SEl r—1) is divisible a power of (1 —¢q) as predicted by Theorem

5.0.1. Since ¢ r-1:u(@i)) — 1 ig divisible by (1 — q), each coefficient in S/

(1,r—1)F7”—1 is also

divisible by a power of (1 — ¢) as predicted by Theorem 5.0.1.

The analysis of and conclusion about

Sar—1)Tu(Fay,) — CJ_H(M’U(%))Tu(FaiT)5(1,%1)
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is exactly the same. Note that

(A1 + A1, u(ay,)) =(A +ulag, ), uly,))
=(A1, u(ay,)) + (ulog, ), u(ag,))
=1, uley,)) + (04, ;)

=(A, u(ay,)) — 1. (5.13)
So the summand S(l,r—l)TU(FOZiT) will not appear in
S 1)Tu(Fay,) — ¢ T 0T (Fy )8, ),
In other words, F;—l will not appear in
Sur—1)Tu(Fay,) =g~ OO )T (Fo, )81,y

Notice that (A1, Ar) = (A1, usa; (@) = (A1, Ar—1 + u(a;,)). So, combining the for-
mulas in the last three paragraphs, we are done in this case.

Case 3. The roots «; , and o, generate a root system of type As and Say, " Say ., Say,
.

is not a reduced expression.

Let u be the same as in Case 2. The assumptions imply that there exists a reduced
expression v such that vsq; is a reduced expression for u. By abuse of notation, we write v
also for the product of the simple reflections in the reduced expression v. Observe that the
length l(vsaipl) of vsq; _ is great than the length I(v) of v. In fact, if this is not the case,

then
l(u)+2= l(usair_lsair) = l(vsay, sair_lsair) = l(vsair_lsair So‘ir—1) <lw)+2, (5.14)

which contradicts the assumption that Sag, T Sa S0y is not a reduced expression.

1r—2 r
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By the exchange lemma (c.f. [11, Section 1.7]), there exists k € {1,---,r — 2} such that

Sy T Say y Sa T S,y (5.15)
is a reduced expression for v and
Sa'il e Salkfl SaZkJrl e Sair_Q Sai,’,, <516)
is a reduced expression for u. Consequently, we must have
Fr=TyTo; | (Fo,,) = ToTo, To; | (Fa,,) = To(Fa, ) (5.17)
Since l(vsair_l) > 1(v),
Sail ce Saikflsai].ﬁkl o Sair—? SaiT—l (518)

is a reduced expression of length » — 2. Hence, if k is not equal to 1, we can compute
F, — q()‘l’)"")FrFl using this reduced expression and the induction hypothesis. The rest

of the argument is the same as in Case 2. If k is equal to 1, then we have a;; = ;. Tt

1

follows that vsy, = Sq. v, i.e. Sq, = VSq, UV~ = S So the roots «; . and v(q;
ir i) ir ir ir ir

U(air) ’

are proportional. Since Sagy " Sy Sy, 1S @ reduced expression, v(a; ) is a positive root.

r—2

Hence, v(a; ) = «; . As a consequence, we have
T T
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It follows that

FlF’I" :TU (Fair )T’U(Fairfl)
_ q_lTvTair (Foy; )+ ¢ 'FFy

=—q 'F 1 +q 'R (5.20)
Notice that (A, A\r) = (v(ay,), v(a;, ;) = (@, ;) = —1. So, we conclude that
B — MM E R = ¢ lE . (5.21)

We are done for this case.

Case 4. The roots «; _, and «;, generate a root system of type Bo, a; , is longer and

is a reduced expression.

Again let u be the same as before. Since
Fy = TUTOéiT,l (Fair) = Tu(Fair)Fr—l - QQFT—ITU(FaiT)
and

USay, = Say, T Saq S (5.23)

is a reduced expression, exactly the same argument as in Case 2 works in this case. We omit

the details.
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Case 5. The roots «; , and «;, generate a root system of type Bo, «;,_ is longer and

is a reduced expression.

Let u be the same as before. The assumptions imply that usqa,, Sa; is a reduced
expression. So it can be completed to a reduced expression for wg. Write Fll, e F ]/V for
the root vectors defined by this new reduced expression for wgy. They correspond to positive
roots A, -, )\3\,. Write S<1’T_1) for Iy Fr_1 — q()‘l’/\f‘—l)F,_lFl. By induction hypothesis,
the coefficients in 5(1’7_1) have the properties claimed in Theorem 5.0.1. Similarly, define

/ . ! N /
Sp—1) = F1lrg — ¢ M F
Coefficients in Sél 1) have the properties claimed in Theorem 5.0.1. By a lengthy calcula-

tion, we have

FrFy = [_q_Q—()‘l7)\r—1)_(/\1’)‘;")F1F7{F7°—1 + q_Q_()\l’)\r_l)_()\l,A;)FlFT_lF;
T O B R Y)W MY S DN
_ (q—2 B q2)q—(/\172/\r—1+)‘;‘—1)F1FT2_1F7{—1]
+ =g 2ES g gy + M5 L F)
n q—2—(>\1,/\r_l)SELr_l)Fr_l + q_2Fr_1SELT_1)]
(g2 = ) Pi) Fr1S(y ey Fr1 = FraS{ )
L2 qg)[q—(Al,Ar,ﬁ)\;,l)5(17T_1)F7{_1F7,_1 + Fr_1Fr’_1S(1,r—1)

— / - ,
_yq ()\1’)\7‘714»)\7'71)5(1,7"—1)FT_lF’f/'—]_ _gq (>\1,Ar71)Fr_1S(17T_1)F;_1].

(5.25)

Each of the five summands above (note that the first two lines is one single summand, the
last two lines is also one signle summand) can be analyzed in the same way as in Case 2.
The details will take too much space to be written down. It is omitted.

Case 6. The roots «; _, and o, generate a root system of type By and Sag, T Say _,Sa,
.

is not a reduced expression.
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Let u be the same as before. This case has two subcases. The first subcase is where
l(usq,, So‘ir—l) < l(usq,, ). The second subcase is where [(usq,;, So‘ir—1> > (usq,, ). In both
subcases, the analysis is a combination of the analysis in Case 2 and Case 3. More specifically,

non-reducedness of the expression

is dealt with in the same way as in Case 3; counting the power of (1 — ¢) in each coefficient,

as always, is done in the same way as in Case 2. The details are omitted. O]
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