
THE UNIVERSITY OF CHICAGO

MANIPULATING SURFACES AND ARCHITECTURES IN BLOCK COPOLYMER

SELF-ASSEMBLY FOR NANOLITHOGRAPHY AND THERMOPLASTIC

ELASTOMERS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE PRITZKER SCHOOL OF MOLECULAR ENGINEERING

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

CODY THOMAS BEZIK

CHICAGO, ILLINOIS

JUNE 2021



Copyright © 2021 by Cody Thomas Bezik

All Rights Reserved



For Amanda



Constantly regard the universe as one living being, having one substance and one soul; and

observe how all things have reference to one perception, the perception of this one living

being; and how all things act with one movement; and how all things are the cooperating

causes of all things which exist; observe too the continuous spinning of the thread and the

contexture of the web.

- Marcus Aurelius, Meditations
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ABSTRACT

The self-assembly of classic diblock copolymers has been known to produce ordered mesophases

at the nanoscale. Tailoring this self-assembly for engineering applications, however, requires

more than relying on the natural behavior of these systems. The careful manipulation of

the geometry and chemistry of surfaces can help guide diblock self-assembly into application

relevant morphologies, leading to the potential for the use of block copolymers in nanolithog-

raphy to produce semiconductor devices. Furthermore, the architecture of the polymer itself

can be manipulated beyond the classic diblock to include multi-block and nonlinear motifs,

leading to mesophases with larger domains and less regular structure. Such mesophases open

the potential for extremely tough yet flexible thermoplastic elastomers. Using simulations,

we probe key examples of these phenomena, including the use of diblock copolymers to pat-

tern contact-hole morphologies for lithography and the critical influence of surface chemistry,

the role of surface geometry and chemistry in determining the formation and annihilation of

defects in line-and-space patterns for lithography, and the behavior of block copolymer ther-

moplastic elastomers formed from blends of star miktoarm copolymers and homopolymer

assembled into the unique “bricks-and-mortar” mesophase.

xviii



CHAPTER 1

INTRODUCTION

Linear diblock copolymers (essentially two linear polymer chains of different chemistries co-

valently bonded together) have a rich phase behavior, by which the balance between the

enthalpic incompatibility between the A and B constituents of the chains repel each other,

but the overall chain resists adopting overly extended or constrained configurations. This

results in microphase separation, typically featuring a periodic structure with a nanoscale

dimension. By tailoring the degree of incompatibility and the relative proportion of A and

B, different morphologies can be obtained, including spheres, cylinders, gyroids, and lamel-

lae. While this phase behavior is relatively well understood, additional constraints (such as

the block copolymers assembling in a thin film and/or in the presence of a surface with its

own chemistry) or features (such as multi-block or nonlinear copolymers) can rapidly expand

the range of possible phase behavior. Simulations of the phase behavior provide a way to

obtain detailed information about the self-assembly process, and help predict or explain pos-

sibly experimental behavior, or help design surfaces or architectures to achieve a particular

engineering goal. In this dissertation, we explore a variety of specific problems relating to

the assembly of block copolymers, and also highlight the phase behavior of nonlinear block

copolymers. In particular, we focus on problems of block copolymer self-assembly in or over

a pattern defined by optical lithography, a key problem for semiconductor device manufac-

turing, as well as the problem of making block copolymer thermoplastic elastomers out of

nonlinear block copolymers.

In Chapter 2, we explore the thermodynamics and kinetics of block copolymer self-

assembly in a cylindrical confinement, often known as a "contact-hole". In the patterning of

semiconductor devices, a frequent motif necessary to pattern is a vertical metal connection

between two horizontal layers. The adaptation of block copolymer materials to this task

involves using conventional lithography to pattern a large "hole", filling the hole with block

1



copolymer, and letting the block copolymer form a cylinder of much reduced dimensions

(the "shrink"). As in most block copolymer lithography, defectivity is of chief concern, as

semiconductor devices can tolerate almost no mistakes in the patterning process in order to

function properly. Experimental observations, however, suggested that, dependent particu-

larly on the chemical patterning of the substrates of the "hole", defectivity could persist at

high rates during the block copolymer assembly process. We explored both thermodynamic

aspects (in particular, what type of defective structure might be expected to form based on

the patterning of the substrates of the "hole") and kinetic aspects of the assembly process

in contact holes. The analysis reveals that tailoring the chemistry of contact hole sidewalls

play a dominant role over influencing the likelihood of observing defects after self-assembly.

Furthermore, we also find that the most likely transition pathway from a disordered state to

an assembled cylinder may contain defects at certain substrate conditions, emphasizing the

critical role of designing substrates for avoiding defect formation and subsequent annihila-

tion opposed by large free energy barriers. This work is reproduced from [10]; additionally,

portions of the work have been reproduced in the dissertation of co-author Grant Garner

[29]. Reproduced figures are noted in the main text here; I place particular emphasis on

Figures 2.7-2.9 as my original work of particular novelty.

In Chapter 3, we study the uniquely defective "stitched" morphology formed from lamellae-

forming diblock copolymers. When diblock copolymers are self-assembled over some litho-

graphic guiding pattern, small misalignments to the underlying pattern are not uncommon.

By contrast, the stitched morphology consists of lamellae completely misaligned to the under-

lying substrate, and not uniformly aligned throughout the film (see Chapter 3 for a visual

representation). We explore both the annihilation and formation of this unique defective

morphology. In particular, we emphasize that the annihilation of these misaligned grains is

significantly enhanced by contact with aligned lamellae, corroborating experimental obser-

vations that large regions of stitched lamellae annihilate primarily from their edges, where
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they contact aligned lamellae, and less frequently from their interior. From pseudo-dynamic

Monte Carlo simulations where we place upon the system only the assumption that the

early dynamics are strongly surface dominated, we find that morphologies strongly resem-

bling the experimentally observed stitched morphology appear naturally. Thus we highlight

the importance of surface design in avoiding the appearance of complex defects. This work

is reproduced from [9].

In Chapter 4, we explore the unique "bricks-and-mortar" phase. Prior experimental and

theoretical work has claimed that a blend of A− b− (BA′)3 miktoarm star block copolymers

and A homopolymers will, at certain blend fractions and molecular weights, form a phase

combining discrete, irregularly shaped and sized, aperiodic A domains in a continuous matrix

of B. We utilize three dimensional dynamic simulations to expand upon the understanding

of the structure of this phase and is mechanical properties. While we do find a phase closely

resembling the bricks-and-mortar phase at conditions matching experiment and theory, we

predict the A domains to form a single percolating cluster, which can be disrupted into

multiple clusters with the application of shear. However, the phase also displays many of

the properties expected of a non-entangled rubber phase, confirming the prominent role

molecular bridging between portions of the A domain plays on the mechanical properties.

This work serves as a deeper understanding of the morphology of the "bricks-and-mortar"

phase while also serving as a platform for future dynamic calculations incorporating the role

of glassy A-domains, which our dissipative-particle dynamics simulations do not capture.

This work is reproduced from [11] (in preparation).
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CHAPTER 2

MECHANISMS OF DIRECTED SELF-ASSEMBLY IN

CYLINDRICAL HOLE CONFINEMENTS

2.1 Abstract

The directed self-assembly of block copolymers in cylindrical holes is a promising technol-

ogy for lithographic patterning, particularly in the context of vertical interconnect accesses.

While the hole-shrink process for single cylinders has been extensively explored, the pro-

liferation of morphological defects remains a significant technological barrier. We use a

coarse-grained model to explore morphologies that form within cylindrical confinements for

combinations of template surface energies. We identify metastable defect morphologies, in

addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We

use our coarse-grained model and the string method to identify transition pathways between

defective morphologies and the cylindrical morphology to elucidate the mechanism of defect

annihilation within the confinements; the transition pathway from a disordered state is also

identified. This work demonstrates that the minimum free energy path for the formation of a

cylinder goes through defective morphologies, and that designing confinements can eliminate

these undesirable transition states.

2.2 Introduction

As conventional optical lithographic techniques reach their resolution limit, and with many

of the proposed replacements growing in cost, the directed self-assembly (DSA) of block

copolymers has attracted considerable industrial interest as a means to achieve cost-efficient,

high-resolution patterning at the nanoscale[49, 13, 14, 52, 114, 77]. The DSA process re-

lies on utilizing confinement design and chemically functionalized surfaces, referred to as
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graphoepitaxy [113, 111, 112, 110] and chemoepitaxy [121, 122, 55, 106, 73], respectively, in

order to coerce a block copolymer morphology into a desired structure. These strategies have

proven capable of yielding the assembly of lines[12] and cylinders [94] over large patterned

areas [96]. Of particular interest for the fabrication of device-oriented structures is the as-

sembly of cylindrical-phase block copolymers within cylindrical confinements (or “holes"),

known as the hole-shrink process [136]. Such a process offers an inexpensive route towards

efficient production of vertical interconnect accesses (VIAs) or cut masks [128, 130].

Cylindrical confinements have two unique surfaces: the sidewall of the holes and the

circular bottom. The interfacial energy between each surface and each copolymer block

needs to be carefully tuned, in concert with the template diameter, to induce the assembly

of a desired cylinder. It has been demonstrated that cylinders can successfully form in smaller

template diameters if the sidewall preference is for the majority block [129, 34]. However,

most theoretical work has focused on cylindrical templates where the sidewall surface is

preferentially wet by the minority block of a cylinder-forming block copolymer [47, 46, 59,

135]. Peters et al., using a theoretically informed coarse-grained model, demonstrated that

increasing the affinity of the sidewall for the minority block leads to a stabilization of the

desired through-film cylinder morphology over other metastable structures[99]. Laachi et al.,

utilizing a field-theoretic model, have also provided insights into the morphological, kinetic,

and thermodynamic differences that exist between non-preferential sidewalls and sidewalls

that are preferentially wet by the minority block [57]. These studies collectively support the

conclusion that a sidewall that is preferentially wet by the minority block provides a critical

boundary condition for obtaining the desired cylindrical morphology. However, given that

smaller template diameters have been found to stabilize well ordered cylinders when the

sidewall is preferentially wet by the majority block - a reduction from approximately twice

the bulk domain spacing to a single bulk domain spacing - additional theoretical study is

needed in order to understand assembly under such conditions.
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Previous theoretical and simulation studies on such systems has confirmed the stability of

a through-film cylinder at templates of approximately one bulk domain spacing in diameter

[137, 67, 68, 75], though in general little attention has been paid to optimizing the strength

of the sidewall attractiveness for the majority block to produce DSA relevant morphologies.

There has also been extensive work on characterizing the phase diagram of block copolymers

confined to cylindrical holes with respect to varying strength of sidewall interactions [69],

though at template dimensions larger than a single bulk domain spacing.

Recent experimental work by Doise et al. has shown that it is possible to experimentally

control the wetting behavior of both the sidewalls and the bottom substrate independently,

through random block copolymer brushes [20]. This control has allowed for the modification

of the wetting behavior of the sidewalls and bottom of the cylindrical confinements separately;

furthermore, the random block copolymer brushes allowed for the surfaces to be preferential

for either the majority block or the minority block. Through manipulation of the brush

composition, these authors demonstrated the ability to use prepattern holes with smaller and

larger critical dimensions (confinements with diameters of approximately one and two times

the natural domain spacing, respectively) to drive the assembly of cylindrical morphologies.

Doise et al. achieved successful assembly at an open hole rate greater than 95% in some

cases (as verified via top down SEM after pattern transfer); this relatively high threshold,

however, does not meet the defectivity requirements for industrial applications, prompting

further questions about how to optimize a prepattern to reduce or avoid defect formation in

contact hole-shrink experiments.

The results reported by Doise et al. were generally in good agreement with predictions

by Peters et al. but, at the experimental level, confinement still led in some cases to defective

assembly. The work of Peters et al. provided a qualitative understanding of which design

rules are necessary for stabilizing a cylindrical morphology, but only considered the final

-equilibrium- states reached in a simulation, without addressing how defective states form
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and remain stable, or how transitions between defective states occur. Recent work by Li et

al., Hur et al. and Laachi et al. has shown that a string method can be used in coarse grained

[66, 44] and field theoretic models [57, 58, 46], respectively, to analyze transition pathways

in block copolymer systems. These works provided an understanding of transitions between

competitive structures in thin films and in cylindrical confinement, but did not address how

the formation of competitive, metastable states might interfere with morphology formation.

In addition, in the context of exploring the transition between defective states and through

film cylinders in contact holes, the work of Laachi et al. only explored a limited number of

pre-pattern configurations, and did not consider how optimization of the prepattern might

influence defectivity.

Here, we utilize a theoretically informed coarse grained model for block copolymers,

which has been shown to be in good agreement with experiment in past work, to explore

the emergence of metastable states within cylindrical confinements with a critical dimension

of approximately one domain spacing. Subsequently, we use the string method to analyze

the transition between competitive states, uncovering the free energy barriers opposing the

transition from metastable defects to through-film cylinders. The influence of the strength

of the affinity of the sidewall and bottom substrates on these free energy barriers is also

considered. Additionally, the transition from a disordered state to a through-film cylinder is

investigated at varying template conditions.

We find that in a large sample of simulations repeated at the same set of conditions,

different final morphologies appear, including defects and through film cylinders, indicating

template conditions which stabilize various morphologies. Transition pathways calculated at

prepattern conditions in the vicinity of these regions, where several different morphologies

occur, reveal that significant free energy barriers exist that oppose the annihilation of defects,

even if the defective states have a significantly higher free energy. The formation of these

defects is associated with the fact that they are part of the most probable transition pathway
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from a disordered state to a through film cylinder; that is, at certain conditions, a “direct”

pathway from order to disorder is less favored than one in which defects occur.

2.3 Results and discussion

The cylindrical confinement for guiding the DSA process utilizes chemoepitaxy and graphoepi-

taxy to drive the assembly of cylindrical features that span the height of the confinement.

The simulations in this work focus on perfectly cylindrical confinements that are filled

with poly-styrene-b-(methylmethacrylate), PS-b-PMMA, with a styrene volume fraction of

fPMMA = 0.3. The match between the simulated polymer and real PS-b-PMMA is provided

by confirming that the simulated polymer reproduces the bulk periodicity of PS-b-PMMA;

additionally, the chosen χN value is commensurate with PS-b-PMMA. We assume that the

surfaces that produce the confinement, the vertical sidewall and the circular bottom, are

unique in terms of their affinity for the polymer; thus, the block copolymer that is deposited

inside the hole is assumed to have an independent interfacial energy with each surface. The

strength of these interfacial energies is governed by the constants ΛSW and ΛB for the side-

wall and bottom surfaces, respectively, and the surfaces interact with the polymer via the

potential described below, where z is the distance between a polymer bead and the closest

(normal) point on the given surface. A negative value indicates a preference for the minor

block, poly-(methyl methacrylate), PMMA, and a positive value indicates a preference for

the major block, poly-styrene, PS.

We performed a number of independent Monte Carlo simulations to investigate the impact

of the combination of these parameters on a predicted morphology for constant confinement

dimensions. A height of 62 nm, 1.67L0 and diameter of 43 nm, 1.16L0, were chosen in

order to be in agreement with the experimental conditions used by Doise et al.[20]. These

values were well in the region of the design space that resulted in the desired cylindrical

morphology (at least when viewed from a top down perspective, experimentally). Using this
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Figure 2.1: A compilation of the well-defined morphologies that were stabilized from independent Monte
Carlo simulations of cylinder forming block copolymers. The dark, red phase represents the minority-block
rich domain, while the light blue phase is the majority-block rich domain. The morphologies observed were
(a) the double donut, 2D, (b) the donut-bar, DB, (c) the double bar, 2B, (d) the disconnected cylinder, DC,
and (e) the cylinder. Also reproduced in [29].

Table 2.1: Stable morphologies that exist at intersections in design space

ΛSW ΛB Stable Morphologies
0.1 -0.1 2B, 2D
0.1 -0.6 DB, 2B
0.4 -0.2 2B, C, DC
0.3 -0.6 2B, DC
0.6 -0.5 C, DC

geometrical confinement, we set the interfacial energy constants to be 0.0 ≤ ΛSW ≤ 1.0 and

−1.0 ≤ ΛB ≤ 0.0. In this work, the sidewall is assumed to be preferential for PS (or neutral)

and the bottom for PMMA (or neutral); again, this is in qualitative agreement with the

experimental setup of Doise et al. [20] The simulations were run for 500,000 Monte Carlo

sweeps to find the stable morphologies at each interfacial energy combination.
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Figure 2.2: A phase diagram that shows which morphologies were most likely to form at a given combination
of sidewall preference for the majority block, ΛSW , and bottom preference for the minority block, ΛB .
Each combination of interfacial energies is given a marker that identifies which morphology was observed
most often after 10 independent Monte Carlo simulations. The large beige circles denote interfacial energy
combinations that resulted in multiple stable morphologies. The absence of a beige circle means that only
one type of morphology was stabilized. The morphologies observed can be seen in Figure 2.1, and include
the double donut (2D) denoted by orange upward pointing triangles, the donut-bar (DB) denoted by green
squares, the double bar (2B) denoted by blue diamonds, the disconnected cylinder (DC) denoted by the red
circles, and the cylinder (C) denoted by the violet downward facing triangles. Also reproduced in [29].

The results of these simulations revealed that five unique, well-defined morphologies were

stable within this range of parametric combinations. A 3D rendering of those morphologies

can be seen in Figure 2.1, which includes the double donut (2D), the donut-bar (DB), the

double bar (2B), the disconnected cylinder (DC), and the full cylinder (C). In some con-

finements, only one of these morphologies was stable across the set of simulations; however,

there were many cases where more than one morphology was stable. This implies that ei-

ther the states have comparable free energies, or that the stabilized morphologies represent

kinetically trapped metastable states. Figure 2.2 shows a diagram that illustrates which

morphologies were stable at each parametric combination of interfacial energies. The in-
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terfacial energy combinations that stabilize multiple morphologies are denoted by the large

beige circles surrounding the markers in Figure 2.2 - these combinations are seen at the

intersection of the areas of parameter space that stabilize only one structure. The points

at these intersections have as potentially stable states the morphologies that are singularly

stable in the adjacent areas of design space. Examples of these intersections exist at the

combinations of (ΛSW ,ΛB) listed in Table 2.1. One of the interesting combinations of in-

terfacial energies occurs around the “triple point", where the conditions that stabilize the

double bar, the disconnected cylinder, and the cylinder morphologies coincide. At the values

of ΛSW = 0.4,ΛB = −0.2 the Monte Carlo simulations yield formation of all three of the

aforementioned morphologies.

At this "triple point", where multiple possible stable states result arise in simulations,

we can extract useful thermodynamic and kinetic information about their relative stability

using the string method. We chose to analyze the transition pathway between a defective

morphology and a cylinder beginning at the "triple point" (ΛSW = 0.4 and ΛB = −0.2),

then subsequently in its immediate vicinity in parameter space. This provided the oppor-

tunity to analyze the annihilation pathway for two different defects, the double-bar and the

disconnected cylinder within a single confinement design.

First, we investigated the transition pathway between the double-bar and cylindrical

morphologies using the string method. Figure 2.3 shows the MFEP calculated from the

string between a double-bar structure (α = 0) and the through-film cylinder (α = 1) within

a cylindrical confinement with ΛSW = 0.4 and ΛB = −0.2. Two clear transition states can

be identified along this pathway. The first transition state is approximately 30kBT higher

in free energy compared to the metastable defect, and it corresponds to the formation of a

PMMA bridge linking the upper and middle bars. For this bridge to form, a certain number

of PMMA chains must diffuse through a layer of PS, a highly unfavorable and unlikely event -

hence, the large barrier. Following the initial bridge formation, however, polymer can diffuse
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Figure 2.3: The transition pathway along the reaction coordinate α between a double bar morphology and
a cylinder with ΛSW = 0.4,ΛB = −0.2. The green triangles identify the end nodes of the string, the red
squares identify the nodes of the string where the transition states occur, and the blue circles identify the
location of the metastable states along the pathway. Graphics of the morphologies corresponding to the
labeled nodes are included. Also reproduced in [29].

more easily through the bridge, corresponding to the downhill descent in free energy. The

second transition state is approximately 15kBT higher in free energy compared to the nearby

metastable state, and it corresponds to the formation of a second PMMA bridge between the

layer of polymer at the bottom and the growing PMMA structure in the middle. Just as was

the case for the first bridge, the diffusion of the first few PMMA chains through the layer

of PS is unfavorable, and so the free energy barrier is large. Once that process is initiated,

however, there are no more free energy barriers, and polymer simply diffuses through the

established bridges to form a well-ordered, complete cylinder. We note the similarity in the

connection of these domains to the merging of disconnected lamellae observed in previous

studies of defect annihilation [66, 64, 44].

It is of interest to consider why the opposite pathway is not favored - that is, the bottom
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bridge forming first, followed by the upper bridge. If the bottom bridge formation occurred

first, it is expected that the first free energy barrier would be even higher because, in addition

to requiring the same number of chains to diffuse the same distance, PS would be forced

(due to the volume-filling nature of the model) to occupy space near the bottom substrate,

a situation that is enthalpically unfavorable. This presumably large free energy barrier is

circumvented when the system first forms the upper bridge; this also creates a bulge in the

PMMA in the center of the system. Thus, when the bottom bridge does form, it need not

traverse as great a distance, making up for the enthalpic penalty of forcing PS onto the

bottom substrate. While this effect would likely be observed in the opposite pathway as

well, it is the avoidance of the first very large barrier that is expected to be most critical.

Figure 2.4: The transition pathway along the reaction coordinate α between a disconnected cylinder mor-
phology and a cylinder with ΛSW = 0.4,ΛB = −0.2. The green triangles identify the end nodes of the string,
the red squares identify the nodes of the string where the transition states occur, and the blue circles identify
the location of the metastable states along the pathway. Graphics of the morphologies corresponding to the
labeled nodes are included. Also reproduced in [29].

Next, we fixed the end states of the string to be the disconnected cylinder and the
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complete cylinder morphologies. The calculated MFEP for the annihilation of this defective

morphology can be seen in Figure 2.4. The MFEP for annihilation of the disconnected

cylinder is similar to the last half of the annihilation of the double-bar, including a transition

state that is approximately 20kBT higher than the metastable defect. Likewise, this free

energy barrier corresponds to the formation of a PMMA bridge between the bottom layer

and the disconnected cylinder, requiring the unfavorable diffusion of PMMA through a PS

layer. Indeed, it can be observed in Figure 2.3 that a metastable morphology very much like

that corresponding to the disconnected cylinder exists in the middle of the pathway.

Figure 2.5: Three transition pathway along the reaction coordinate α between a double bar morphology and
a cylinder with ΛB = −0.2 where the sidewall interfacial energy is varied between ΛSW = {0.3, 0.4, 0.5}.
Also reproduced in [29].

It is now clear that these defective morphologies are not competitive at equilibrium, but

instead represent long lived kinetically trapped states. Despite the fact that a confinement

design can be conceived to thermodynamically favor formation of a complete cylinder, there

can simultaneously exist significant barriers that must be overcome if the assembly process
14



initially leads to an undesirable, meta-stable structure. In an attempt to understand how

design parameters affect these barriers, we performed string calculations for several interfacial

energy combinations.

Figure 2.5 shows the effect that the sidewall interfacial energy has on the transition bar-

riers by varying the value of ΛSW = {0.3, 0.4, 0.5} while ΛB = −0.2. There is a significant

reduction in the free energy barriers associated with both transition states as the sidewall be-

comes more preferential for the majority block, PS. Meanwhile, the free energy barriers grow

much larger if the interaction parameter on the sidewall becomes more weakly preferential

for PS.

Figure 2.6: Three transition pathway along the reaction coordinate α between a double bar morphology and
a cylinder with ΛSW = 0.4 where the bottom interfacial energy is varied between ΛB = {−0.1,−0.2,−0.3}.
Also reproduced in [29].

Figure 2.6 also shows how the MFEP changes when the interfacial energy corresponding

to the interaction between the bottom of the confinement and the polymer changes if we

use ΛB = {−0.1,−0.2,−0.3} while ΛSW = 0.4. In contrast to the sidewall interfacial
15



energy, the bottom of the confinement has only a small effect on the barrier heights of the

transition states. The first transition is virtually unaffected, and there is a minor influence

on the height of the second free energy barrier. As discussed previously, part of the barrier

associated with this latter transition is the forcing of PS to the bottom substrate as PMMA

diffuses to the center. If the bottom substrate is less hostile to PS, there is less of a penalty

associated with this transition. Furthermore, this observation also explains the reduction in

the thermodynamic free energy difference between the two-bar structure and the full cylinder.

The volume of PS wetting the bottom surface is greater in the full cylinder morphology than

the two-bar morphology; increasing the preference for PMMA of the bottom surface therefore

causes a greater perturbation to the free energy of the full cylinder morphology, resulting in

the reduction in thermodynamic preference.

The simulation results in Figure 2.5 and Figure 2.6 show that the two unique surfaces

comprising the guiding confinement have different effects on the thermodynamics and kinet-

ics of the hole shrink process. These results indicate that it is more important to control

the sidewall surface characteristics when trying to minimize the kinetic barriers that exist

between defective states such as the two-bar structure and the desired full cylinder morphol-

ogy. This follows intuition, as the full cylinder morphology needs the majority phase to wet

the entirety of the sidewalls of the confinement for the cylinder to exist.

The previous discussion helps us understand why, for a given set of conditions, defective

morphologies such as the double-bar or disconnected cylinder structures might persist in a

cylindrical confinement; however, it does not completely clarify why such structures may

appear in the first place, especially given the thermodynamic free energy difference between

the defective structure and the through film cylinder. To address this issue, a series of strings

were calculated that connect a disordered state and a through-film cylinder in confinements

having varying sidewall energy strengths; the resulting MFEPs are shown in Figures 2.7, 2.8,

and 2.9. The disordered states were produced by performing Monte Carlo simulations of a

16



block copolymer with identical parameters to the polymer used for all other calculations in

this work, except with χN = 0.0. This provided a realistic configuration corresponding to a

disordered state, as the MC simulation allowed bond lengths to equilibrate, while the lack

of any driving force for segregation between the polymers allowed them to mix freely.

Unsurprisingly, the free energy difference between the disordered state and the through

film cylinders is large, on the order of 2000kBT , regardless of sidewall wetting behavior (these

differences do grow larger as the sidewall preference grows stronger for PS). However, the

MFEP for the neutral sidewall (ΛSW = 0.0), shown in Figure 2.7 has eight distinct transition

states, labeled by the red squares along the plotted transition pathway, with barriers on the

order of 10kBT . Each of these transition states can be linked to a diffusion event that results

in a compression of an existing minority-rich domain, as seen in T1, T5, T6, and T8, or the

bridging of two nearby minority-rich domains, as seen in T2, T3, T4, and T7. The relative

magnitudes of the energy barriers associated with these two types of phenomena show that

the diffusion events that bridge two domains require more energy. This can be explained

by the increase in interfacial area resulting from the bridging event, and the reduction of

interfacial area of a compression event. A larger interfacial area simultaneously increases

the entropy and enthalpy of the system, resulting in a considerable activation barrier for the

event. These large barriers, along with the fact that a number of the metastable states along

this path are lower in free-energy than the desired cylinder structure, provide insights into

the difficulty of assembling cylinders within confinements that are not preferentially wet by

the majority block.

At a greater sidewall preference for the majority block (ΛSW = 0.3) the transition states

such as the donut morphologies disappear from the MFEP towards a cylinder structure, as

shown in Figure 2.8. This increased preference for the majority block also stabilizes the

desired morphology relative to the other metastable states, making the cylinder the lowest

energy structure along the pathway. However, there still exist multiple barriers - on the
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Figure 2.7: The transition pathway along the reaction coordinate α between a disordered block copolymer
and a cylinder with ΛSW = 0.0,ΛB = −0.2. (b) and (c) are zoomed-in segments of the pathway that
are included to visualize the features of the calculated minimum free-energy pathway. The green triangle
identifies the end node of the string that corresponds to the cylindrical morphology, the red squares identify
the nodes of the string where the transition states occur, and the blue circles identify the location of the
metastable states along the pathway. Graphics of the morphologies corresponding to the labeled nodes are
included.
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Figure 2.8: The transition pathway along the reaction coordinate α between a disordered block copolymer
and a cylinder with ΛSW = 0.3,ΛB = −0.2. (b) is a zoomed-in segment of the pathway that is included to
visualize the features of the calculated minimum free-energy pathway. The green triangle identifies the end
node of the string that corresponds to the cylindrical morphology, the red squares identify the nodes of the
string where the transition states occur, and the blue circles identify the location of the metastable states
along the pathway. Graphics of the morphologies corresponding to the labeled nodes are included.
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order of 10kBT - that must be overcome to assemble the cylinder.

These barriers and transition states can be completely eliminated from the transition

pathway to a cylinder by further increasing the interfacial energy of the sidewall, as shown

in Figure 2.9 where ΛSW = 0.5. In fact, for this more strongly preferential sidewall, the path

from disorder to a cylindrical structure proceeds downhill for the entirety of the formation

of a cylinder, with no transition states or metastable states along the way.

Figure 2.9: The transition pathway along the reaction coordinate α between a disordered block copolymer
and a cylinder with ΛSW = 0.5,ΛB = −0.2. There is no zoomed-in segment of the pathway included as the
calculated minimum free-energy pathway is absent of other metastable sates. The green triangle identifies
the end node of the string that corresponds to the cylindrical morphology. A graphic of the cylindrical
morphology corresponding to the labeled node is included.

This provides evidence that if a sidewall surface can be designed that exhibits a sufficiently

strong preference for the majority block, then the MFEP towards the desired cylindrical

morphology is void of unwanted meta-stable morphologies. It is likely that continuing to

increase the sidewall preference for the majority block will improve dynamics of assembly,

as well as the thermodynamics. It is our belief that many pathways, including those that
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pass through defects and those which do not, remain competitive regardless of which is most

probable. Therefore, continued increase of the sidewall preference for the majority block is

likely to give rise to defect-free pathways progressively less probable. Quantifying this effect

is a future direction of interest.

Furthermore, we acknowledge that increasing the wetting behavior within a simulation

is different than what can be done in experimental systems. While there are kinetic and

thermodynamic benefits to using highly preferential sidewalls for the majority block, there

is no guarantee that an experimental confinement can be designed to be selective enough

to realize the elimination of metastable states along the most probable path for cylinder

formation. Lastly, we acknowledge that experimental assembly may not begin entirely from

disorder; assembly may already have begun at an earlier stage of an experimental assembly

process.

2.4 Conclusions

The systematic study of the single-hole shrink process where the sidewalls are wet by the ma-

jority block of a cylinder forming block copolymer have allowed for the identification of the

metastable states that may arise depending on confinement design. Subsequent application

of the string method has enable a detailed analysis of the transition pathways between defec-

tive states and the desirable through-film cylindrical morphology; specifically, the study of

a single design chemistry where three different morphologies were stabilized in independent

Monte Carlo simulations: a double-bar, a disconnected cylinder, and a complete cylinder.

The complete cylinder was identified to be the morphology with the lowest free-energy of

the three; however, the transition pathway between the desired morphology and the defects

was found to exhibit significant energetic barriers of approximately 30kBT . This finding

provides insights into the challenges associated with reaching industrial defect standards,

as the diffusion events necessary to transition from a defect to a cylinder are unlikely to
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occur if the system ends up in a defective state. Altering the sidewall chemistry has been

shown to have a much more significant impact on these pathways than the chemistry of the

bottom surface. To complete the understanding of defectivity, we demonstrated a method to

identify the most likely transition pathway for forming a cylinder from a disordered melt. In

confinements with low preference for the majority block, the minimum free-energy path for

forming a cylinder goes through numerous metastable states separated by large barriers. We

demonstrated that this MFEP is fundamentally changed in confinements with preferential

sidewalls. As the sidewall becomes more preferential for the majority block, the number of

metastable states that exist in the pathway is reduced until, for a sufficiently strong pref-

erence, the MFEP proceeds downhill, going straight to the desired cylindrical morphology.

We note that the string method used to find this pathway is only able to identify a single,

most probable transition path, and does not speak to the relative probability of proceeding

down this path. However, the demonstrated ability to fundamentally change the most prob-

able path using confinement design is promising, as it implies that if the sidewalls of these

confinements can be created to be highly preferential for the majority block, the resulting

hole-shrink process will be better suited to meet industrial defect standards.

2.5 Methods

The simulation results presented in this work are based on the standard theoretically in-

formed coarse-grained model[83, 27, 19], which represents n block copolymer Gaussian chains

discretized into N beads connected by harmonic springs in a fixed volume V at a fixed tem-

perature T . This model has previously been shown to be in quantitative with experimental

results [17, 18]. In this model, the energy associated with the polymer bonds is expressed as

Hb[{ri(s)}]
kBT

=
3

2b2

n∑
i=1

N−1∑
s=1

[ri(s+ 1)− ri(s)]2 (2.1)
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where the sth bead on the ith chain has position ri(s). Re is the end-to-end distance of the

polymer chains; typically, a unit system is adopted for the simulations where the end-to-end

distance is unity. Additionally, kB is the Boltzmann constant. The energy associated with

non-bonded interactions is given as

Hnb[φA, φB ]

kBT
=

√
N

R3
e

∫
V

dr[χABNφAφB +
κN

2
(1− φA − φB)2] (2.2)

where
√
N =

ρ0R
3
e

N , the interdigitation number, is an estimate of the number of chains a

given chains interacts with (ρ0 is the average bulk number density of beads). The parameter

χN is the Flory-Huggins parameter governing the incompatibility of the two blocks, and κ−1

is proportional to the melt compressibility. Each term φ(r) is a function of the local density

of each type of bead; these densities are calculated by a particle-to-mesh (PM0) scheme,

where the underlying grid is comprised of cubic cells with side length ∆L.

The cylindrical confinement is imposed by hard walls; the sidewall and bottom substrate

interact with the polymer according to

HS
kBT

=
nN∑
i=1

fs(x, y,K)
ΛK

Nds
exp(
−z2

2d2
s

) (2.3)

where K is the type of monomer bead; the term fs(x, y,K) adopts a value of either −1

or 1, depending on the value of K and the position of the bead. ΛK defines the strength

of interaction between the surface and the bead; when a bead of type A is in a position

preferable to type B, the overall energy contribution should be positive, and ΛA = −ΛB .

Lastly, z is the distance to the surface, and ds is the decay length of the potential. Both the

sidewall and the bottom surface contribute a term of this form. The model is implemented

in the context of a Monte Carlo simulation. Configurations are sampled according to the

Metropolis criterion, where the probability of accepting a trial configuration is given by
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pacc = exp(−∆H/(kBT )). Trial configurations are proposed using two different Monte

Carlo moves; single bead displacement and chain reptation.

To find the minimum free energy pathways between two states of interest, we make use of

the string method as described by Maragliano et al. [22, 24, 23, 131, 78, 79, 85, 15, 127, 90, 66]

A string of points is constructed to connect two end states; each point along the string, or

image, represents a unique morphology. The string is mathematically described as m(α)

where α is the reaction coordinate (0 ≤ α ≤ 1). The images are vectors, each component mi

of which is a function of an order parameter constructed from the local densities on a grid.

At each point ri in the grid, mi =
φA(ri)−φB(ri)
φA(ri)+φB(ri)

. This quantity represents the normalized

density differences between beads of type A and B in a volume ∆L3 around each point ri in

a grid that spans the entire simulation box.

The condition for the string to be the MFEP is that the perpendicular component of the

gradient of the mean force along the string must be zero everywhere. The potential of mean

force on the string, defined at each image, is given by

F (m) = −kBT ln

∫
d{rnN} exp(− H

kBT
)δ[m− m̂]. (2.4)

In this equation, m̂ indicates the order parameter vector constructed from the particle

coordinates {rnN}. The MFEP satisfies ∇⊥F (m) = 0, which means that the variation

perpendicular to the path is zero everywhere along the path. The mean force is numerically

calculated via umbrella sampling with a harmonic restraint; the total Hamiltonian has the

additional term
Hc
kBT

=
λ

2

∫
V

dr[m− m̂]2 (2.5)

where λ is a spring constant that controls the strength of the restraining potential. In

the limit of an infinitely large spring constant, the free energy of the restrained system

converges to the free-energy functional F (m). Using a spatial grid to evaluate the integral
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in the umbrella potential, the differential of free energy with respect to m goes to δF
δm =

λ∆L3kBT [m− 〈m̂〉c], where 〈m̂〉 is averaged over many MC steps. Therefore, the string is

updated every iteration according to mk+1 = mk − τλ∆L3[mk − 〈m̂〉c], where τ is a time

constant controlling the frequency at which the string is updated. As described in Maragliano

et al., the images are redistributed after every iteration to keep them from falling into the

minima of the free energy landscape [78].

In our work the string is discretized into 128 nodes, each of which is an independent

MC simulation used to estimate the mean force along the string. Note that preliminary

calculations showed that 64 images are insufficient, and more than 128 images do not change

the final pathway appreciably. The free energy along the string can be determined from the

free energy estimation method outlined in Maragliano et al. [78] The strings were initialized

as linear interpolations in collective variable space between a defective morphology (or a

disordered melt), α = 0, and a perfect, through-film cylinder, α = 1. These states were

chosen from independent MC simulations. When calculating pathways between defects and

ordered cylinders, the ends of the string are free to move, ensuring the ends represent local

minima. When calculating pathways between disorder and ordered cylinders, the first string

node is fixed, while the others move in accordance with the string method (in anticipation

that the disordered state will not represent a local free energy minimum, but instead an

unstable state).
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CHAPTER 3

FORMATION, STABILITY, AND ANNIHILATION OF THE

STITCHED MORPHOLOGY IN BLOCK COPOLYMER THIN

FILMS

3.1 Abstract

The directed self-assembly of block copolymer thin films offers promise for next generation

lithography, providing access to small feature dimensions for electronic devices. Defective

assembly, wherein the block copolymer does not assemble in alignment with an underlying

template, is a well known and enduring problem facing this technology. Resolving this

challenge requires detailed understanding of the kinetics of defective assembly as well as the

three-dimensional structure of defects. Recent experiments in this direction have revealed the

existence of a unique "stitched" morphology and have examined the kinetics of its assembly

and annihilation. However, a computational perspective has not yet been provided. In

this work we analyze the formation of the stitched morphology from a disordered state,

provide understanding as to its genesis and stability, and explore its annihilation into aligned

lamellae. We find that the topography of the guiding template in conjunction with the

thickness of the film provide stability to this unique morphology. Furthermore, we find that

the stitched morphology’s annihilation is significantly enhanced by the presence of nearby

aligned lamellae, consistent with experiments. Lastly, we demonstrate that the stitched

morphology is predicted to form from unbiased simulations, lending validity to experimental

observations of this peculiar morphology.
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3.2 Introduction

Block copolymers consist of two or more chemically distinct polymer blocks joined to one

another by covalent bonds. A melt of block copolymers is driven to phase separate by unfa-

vorable enthalpic interactions between the different blocks, but is unable to macrophase sepa-

rate because of the ensuing entropic penalties associated with stretching the block copolymer

chains. Consequently, block copolymers microphase separate into a rich variety of ordered

nanostructured phases [60, 25]. The scale of the resulting microdomains (on the order of 10

nm) has led to their consideration as an approach to templating lithographic patterns for

electronic device fabrication [95, 123, 16, 54, 50, 6, 51].

The production of such devices demands control over the long-range orientational order of

the nanostructures, achieved through directed self-assembly (DSA) of the block copolymers.

In DSA, the block copolymer melt is assembled atop a lithographically defined template

which may exhibit chemical preference for one of the blocks (chemoepitaxy [55, 121, 122,

106, 73, 72]), a topographic contrast with the background substrate (graphoepitaxy [113,

111, 112, 110, 124]), or both. The lithographic template may exhibit a lower resolution than

the desired final pattern; in this case, the block copolymer material serves to interpolate

between the template features, resulting in a process of "pattern multiplication" or "density

multiplication", and achieving the target resolution [14, 71].

In this context, any feature of the self-assembled nanostructure that is not "guided" by

the underlying lithographic template is deemed a defect. A significant challenge facing DSA

is the extremely low defect density (0.01/cm2) that must be attained for industrial device

fabrication. Previous theoretical and simulation studies of defects in DSA indicate they rep-

resent kinetically trapped metastable structures [93, 66, 44, 65, 64, 63, 45]. Consequently,

insight into the kinetics of the formation and annihilation of defects in DSA is critical to

reducing defect density in block copolymer thin films. Recent reports have provided a deeper

understanding of the kinetics of DSA through high-speed atomic force microscopy (AFM)
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measurements, to visualize the pattern evolution in real time[103] and using TEM (trans-

mission electron microscope) tomography to visualize the three-dimensional structures that

form during DSA[104].

These studies have revealed that a unique defective morphology emerges when a block

copolymer melt is assembled over a common type of lithographic template combining chemo-

and grapho-epitaxy, and when the block copolymer thin film is coated to certain thicknesses,

roughly corresponding to 1.25 to 1.5 L0 (where L0 is the bulk lamellar periodicity of the

block copolymer). This morphology, termed the "stitched" morphology, is defective and

does not occur in bulk assembly of block copolymers, yet is also metastable and appears

to be an integral part of the pathway of evolution towards aligned lamellae. This complex

morphology has not been investigated computationally before.

Here, we utilize a theoretically informed coarse-grained model for block copolymers to

probe the nature of the stitched morphology. We compare the free energies of a variety of

structures under different constraints (including the film thickness, the template topography,

and the chemical guiding stripes), finding that the template topography alone helps stabilize

orthogonal and "sandwich" type morphology, while the introduction of chemical guiding

stripes dominate these interactions and stabilize aligned lamellae at equilibrium, suggesting

the appearance of the stitch morphology is a fundamentally kinetic phenomenon. Further, we

use the string method to reveal the kinetic pathways of assembly under the aforementioned

constraints, seeking to understand the annihilation of the stitched morphology into aligned

lamellae. We find that the stitched morphology may annihilate into lamellae directly, but

that free energy barriers to annihilation are reduced when the system is in contact with

already formed lamellae, consistent with the experimental results of Raybin et. al[103].

Lastly, we perform unbiased Monte Carlo simulations - making only the assumption that

the early dynamics are surface driven - and find that a morphology greatly resembling the

stitched morphology emerges, helping validate experimental observations of this unique state.
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Overall, we conclude that the influence of the guiding template in the earliest stages of

assembly not only guides the overall assembly to aligned lamellae, but can produce such

metastable states as the stitched morphology, and suggest that more complex template

design may achieve the desired goal of aligned phases while avoiding spurious defects.

3.3 Results and discussion

We begin with a brief summary of experimental observations relevant to the stitched mor-

phology from the recent literature[103, 104]. The stitched morphology is observed for a

lamellae-forming polystyrene-block -poly(methyl methacrylate) (PS-b-PMMA) block copoly-

mer melt (L0 = 28 nm) when assembled over a lithographic template at small thicknesses.

The chemical pattern consists of cross-linked polystyrene guiding stripes that also exhibit a

slight topographic contrast with the substrate; the contrast can be varied, and the stitched

morphology was first observed for a guiding stripe height of 0.14 L0. Subsequent processing

causes these guiding stripes to retain sidewalls that become oxidized. The background region

consists of a random PS-PMMA brush. Consequently, the template is three-toned - the tops

of the guiding stripes are PS-preferential, while the sidewalls of the guiding stripes as well as

the background region are PMMA-preferential; the sidewalls are more strongly preferential

to PMMA than the background is. The fine details of the patterns have been characterized

in recent X-ray measurements [53]. The pattern is designed for 3X density multiplication -

there is a stripe present on the substrate every 3L0, with the block copolymer expected to

interpolate the intermediate lamellae. When the block copolymer is coated at a thickness

of 1.25 L0, the stitched morphology is observed. In Ren et. al, various aspects of the film

thickness and template topography were varied, exploring the impact of these parameters

on the stitched morphology stability; in this work, we focus on the condition where the ge-

ometry of the template and film are fixed, to better understand the fundamental origins of

the stitched morphology.

29



The expected, ideal morphology would consist of alternating PS-PMMA lamellae aligned

perfectly to the guiding stripes. The stitched morphology, which is observed over large por-

tions of the thermally annealed samples after a few minutes of annealing, is instead composed

of a region of lamellae oriented orthogonally to the guiding stripes, laying atop those guiding

stripes, and a region of lamellae oriented parallel to the substrate in a "sandwich" structure,

laying atop the background region. Interestingly, it is observed that PS wets the nominally

PMMA-wetting substrate over the background region. The boundary of these two regions

resembles a Scherk’s first surface[104], which has been observed at lamellar grain bound-

aries in the past [31, 74]. We include STEM images representing the stitched morphology in

Figure 3.1.

Figure 3.1: STEM tomography of the 3D structure formed after 3 minutes of annealing at 190 ◦C. PS domains
appear dark, while PMMA domains appear light. Three cross sections taken at different film heights are
represented. The location of guiding stripes is indicates with red trapezoids. The propagation of the stitched
grains over the guiding stripes can be seen clearly. A cross section taken over the background region (indicated
by the orange dashed lines) shows the PS-PMMA-PS parallel lamellae formed over the background, with
the small inset arrows pointing out the different domains. The yellow dashed circle indicates a region of
oriented lamellae already formed. The scale bar in both images represents 50 nm. Reprinted (adapted) with
permission from Ren et al.[104]. Copyright 2018 American Chemical Society.

In this work we study the behavior of a coarse-grained polymer melt, with model parame-
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ters (specifically, L0 and χN) chosen to match PS-b-PMMA, assembled under the constraints

as described above; see below for further detail. The guiding stripes are parameterized such

that the three-toned nature of the experimental template is captured, with the top surface

weakly PS-preferential, the substrate weakly PMMA-preferential, and the sidewall strongly

PMMA-preferential, following experimental descriptions[104]. Representations of the lamel-

lae and stitched morphologies as density fields (using the order parameter Φ; see below) are

shown in Figure 3.2.
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Figure 3.2: Density field visualizations of the key morphologies of relevance - in a the lamellar morphology
is represented, and in b the stitched morphology is represented, from a view looking down the y-axis from
a slight angle, so that the top of the film can also be observed. From the same angle, a full film of parallel
lamellae is represented in d and a full film of lamellae oriented orthogonally to the guiding stripe is represented
in e. In c the interface between the lamellae oriented orthogonally to the guiding stripe and the lamellae
oriented parallel to the substrate is shown, with the x-axis coming out of the plane of the image (the white
dashed line in b corresponds to this slice). This interface resembles Scherk’s first surface. In f, the internal
AB interface of the stitched morphology is presented. In all images, red domains are PS and blue domains
are PMMA, and interfaces are colored gray. In a and b the elevated guiding stripe is weakly visible as a
region where the order parameter Φ is zero (and therefore colored gray), visible under the first and fourth
PS lamella (from the left) in a and under the domains oriented orthogonally to the guiding stripe in b; the
guiding stripes are visible at the same corresponding locations in d and e.

As has been noted, the stitched morphology is only observed under confinement and

under the influence of a 3X density multiplication guiding pattern. The specific nature of

how each of these factors contributes to stabilizing the stitched morphology has not yet been

made clear. We consider first the relative free energy of different morphologies in systems

which possess different aspects of the experimental confinement. To do so, we use the string
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Structure 1 Structure 2 Constraints ∆F/kBT (per chain)
Parallel "Aligned" Confined, no topography, nonpreferential substrate -0.14 ± 0.016

Orthogonal Aligned Confined, with topography, nonpreferential substrate 0.021 ± 0.017
Parallel Aligned Confined, with topography, nonpreferential substrate -0.023 ± 0.018
Stitched Aligned Confined, with topography, lamellae-guiding substrate -0.18 ± 0.012
Stitched Parallel Confined, with topography, lamellae-guiding substrate -0.094 ± 0.049
Stitched Orthogonal Confined, with topography, lamellae-guiding substrate -0.14 ± 0.0059

Table 3.1: The free energy differences, ∆F = F2−F1, between states under particular geometric and chemical
constraints. ∆F is reported as the averaged value across a number of iterations of the string method, with
the error reported as one standard deviation from the mean. Note that in the system without topography
there is slightly more available volume, and so free energies are reported per chain in the simulation box.

method only to find the free energy difference between states, not yet being concerned

with pathways between metastable morphologies. Using the string method in this way (as

opposed to conventional thermodynamic integration[88, 18, 92]) yields a thermodynamically

reversible path along with one can obtain free-energy differences.

In addition to the system analogous to the experimental case described above, we consider

a system which has a flat, non-preferential substrate, confined to a specific thickness, as well

as a system which has the topography of the guiding stripes but no chemical preference at the

substrate. In the system with a flat substrate we compare a parallel lamellae structure, with

three lamellae layers stacked parallel to the substrate. Since there is no chemical preference

at any substrate, it is immaterial which block wets the bottom surface. We also consider

lamellae oriented as if they were aligned to the guiding stripes, though the stripes are not

actually present. Since the substrate is flat and non-preferential, this structure is invariant

to any rotation of the lamellar orientation about the z-axis. The structures used are identical

to those in Figure 3.2, with the exception that there are no guiding stripes, and therefore the

bottom substrate is flat and homogeneous. In Table 3.1, we show the free energy difference;

the "aligned" lamellae are lower in free energy than the parallel structure, consistent with

theoretical predictions[81, 102, 30].

Next we consider a system that is confined to the experimental thickness and has the

guiding stripes, but in which the guiding stripes have no preference for either block. In this

case, the only additional interaction comes from the excluded volume of the stripes. We com-
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pare the parallel lamellae to the aligned lamellae, as well as to lamellae oriented orthogonally

to the guiding stripes. Theoretical results suggest that orthogonally oriented lamellae ought

to be lower in free energy, as polymer chains must stretch to align to the topographically

contrasted guiding stripes[101]. Indeed, we find that the orthogonally oriented morphology

is lower in free energy than the aligned morphology. Interestingly, free energy difference

between the "sandwich" morphology and the aligned lamellae has been reduced by an order

of magnitude; within error, the two states are approximately equal in free energy. The free

energies are all somewhat close, suggesting that, experimentally, a film assembled under such

conditions could be expected to, at least transiently, feature all three morphologies to some

degree in a mixed morphology.

Next, we consider directly the free energy of the stitched morphology compared to aligned

lamellae. It is clear from Table 3.1 that, despite the mitigating influence of the confinement

and the template topography, the lamellae-guiding substrate interactions make the aligned

lamellae morphology preferred over the stitched morphology at equilibrium. We also directly

compare the stitched morphology to a sample of fully orthogonal lamellae and a sample of

fully parallel lamellae; the stitch is higher in free energy than both of theses, suggesting it is

a purely metastable state. The free energy difference in Table 3.1 comes from a converged

string method calculation; the full minimum free energy pathway (MFEP) resulting from

this calculation is presented in Figure 3.3. Taken together, these calculations suggest that in

general the guiding substrate introduces a fairly strong preference for producing morphologies

aligned to the template. Later, we will turn toward dynamically observing the formation of

ordered phases under the expected real conditions of assembly to understand how, therefore,

a stitched morphology may form.

From the MFEP between a stitched morphology and aligned lamellae, we seek an under-

standing of the kinetic pathway leading to the annihilation of the stitched morphology into

aligned lamellae; however, from observation of the in-situ AFM data in Raybin et. al [103],
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we note that one generally observes stitched grains annihilating in contact with already

aligned lamellae. Setting aside for the moment the question of how stitched and aligned

grains might come to coexist during the assembly process, we focus on understanding the

difference between annihilation of stitched grains in contact with and not in contact with

aligned lamellae. We therefore compute the MFEP starting from a box which contains half

a stitched morphology and half an aligned lamellae morphology; this starting morphology

is represented in Figure 3.5, which shows all the key morphologies along the MFEP for the

half-stitched to fully aligned annihilation.
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Figure 3.3: The minimum free energy pathways from the fully stitched to the fully aligned lamellae mor-
phology (red), from the half-stitched / half-lamellae morphology (blue), and from the fully stitched to the
fully aligned lamellae morphology with an intermediate state at α = 0.5 of the orthogonally aligned lamellae
(green). The value F at each value of α sampled from several iterations of the string method after conver-
gence is averaged; the shaded region represents the region in which the strings included in the averaging
lie.
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First, we note that in both cases, the provided initial morphology is not strictly speak-

ing the metastable stitched morphology, and the provided state at α = 0 relaxes into the

appropriately metastable morphology by α ≈ 0.14 for the stitched to fully aligned pathway

(the stitched morphology in Figure 3.2 corresponds to α = 0; the morphology at α = 0.14

undergoes some minor rearrangements); for the half-stitched to fully aligned pathway, as

discussed below, the provided half-stitch does not have an exactly metastable analog. It is

important to emphasize that the large free energy declines in the early stages of the pathway

are not considered a physical part of the true pathway, but are an artifact of our choice to not

allow the first image of the string to move – as described below, this improves the accuracy

of the calculation without changing the physical pathway after this initial rearrangement.

From this point forward, however, the MFEP represents the (most likely) pathway that each

metastable morphology takes toward annihilation.

The fully stitched morphology begins annihilating by first displacing PMMA directly in

contact with the guiding stripe, leading to the stripe being fully wet by PS. Despite the

presence of the preferential guiding stripe, the growth of PS bridges between the orthogonal

lamellae over the stripe is associated with a free energy barrier of 0.024 ± 0.0082 kBT per

chain; the top of this barrier occurs at α ≈ 0.24. The system reaches a local free energy

minimum at α ≈ 0.34, associated with the upward propagation of the layer of PS wetting

the guiding stripe. By this point, one can also observe a degree of "buckling" in the middle

PMMA layer of the parallel lamellae over the background region. The buckling becomes

more pronounced until the PMMA layer breaks through to the top of the film in several

places, associated with the second, larger free energy barrier of 0.049± 0.011kBT per chain;

the top of this barrier occurs at α ≈ 0.56. After a sufficient amount of PMMA has broken

through to the surface of the film, it becomes possible for those layers to begin merging with

one another, while at the same time the orthogonal PMMA domains over the guiding stripe

begin to divide and merge with buckling domains of PMMA nearby. After the transition
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state at α ≈ 0.56, there are no (significant) free energy barriers or local free energy minima;

representative snapshots of the system at α ≈ 0.64, 0.72, and 0.79 are provided. Finally, at

α = 1, through-film aligned lamellae are formed. The events are depicted in Figure 3.4. The

animations are presented from the full-film view, looking down the y-axis at a slight angle,

as well as a view over a guiding stripe and from a slice over the middle of a background

region, looking down the x-axis.

Figure 3.4: Representative morphologies of the MFEP from a fully stitched morphology to a fully aligned
morphology. In a the view is looking down the y-axis at a slight angle, so that the top of the film in addition
to a representative side view may be seen simultaneously. The transition that occurs from α ≈ 0.14 to
α ≈ 0.34 cannot be adequately visualized from this view, so a representative slice of the image over a guiding
stripe is represented in b. This view looks down the x-axis.

The half-stitched, half-lamellar morphology follows a similar mechanism, beginning its

pathway of annihilation by displacing PMMA directly in contact with the guiding stripe so

that PS will wet the guiding stripe entirely. Likewise, before further significant rearrange-
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ments take place, this PS-layer grows upward. In contrast to the fully-stitched to fully aligned

pathway, however, this process occurs with no significant free energy barriers. In the fully

stitched to aligned pathway, the displaced PMMA must enter the horizontal PMMA layers

over the background regions; however, when in contact with already formed lamellae, some

of the displaced PMMA may instead enter a fully aligned PMMA lamellae. Furthermore,

in the fully stitched to aligned case, the growth of the aligned PS-regions over the guiding

stripes suggests the growth of interfacial area in contact with the horizontal PMMA-layers,

and since it occurs throughout the entire film, four such interfaces grow simultaneously. By

contrast, only one such interface grows when the half-stitch annihilates in contact with the

aligned lamellae. Consequently this process occurs with far less significant free energy barri-

ers. After the growth of an aligned PS region at the guiding stripe, the system enters a local

free energy minimum at α ≈ 0.41. At this point, the horizontal PMMA domain has buckled,

similar to the fully stitched system, and a small amount of PMMA has broken through to the

free surface. The remainder of the buckling event entails climbing up a modest free energy

barrier until the transition state at α ≈ 0.57; the barrier is of height 0.0099 ± 0.005 kBT

per chain. During this time, the buckling motion continues, while simultaneously orthogonal

lamellae break up over the guiding stripe and begin to merge into nascent aligned lamellae.

After sufficient growth in the direction of aligned lamellae has occurred, the process is entirely

downhill in free energy, similar to the previous case, with representative snapshots of the

system at α ≈ 0.64, 0.72, and 0.79 provided in the figure. As before, at α = 1, through-film

aligned lamellae are formed. Snapshots of the process are included in Figure 3.5.
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Figure 3.5: Representative morphologies of the MFEP from a half-stitched, half-aligned morphology to a
fully aligned morphology. In a the view is looking down the y-axis at a slight angle, so that the top of the
film in addition to a representative side view may be seen simultaneously. The transition that occurs from
α ≈ 0.14 to α ≈ 0.34 cannot be adequately visualized from this view, so a representative slice of the image
over a guiding stripe is represented in b. This view looks down the x-axis.

We now consider one additional pathway. Recent work[45] in the space of block copolymer

defect annihilation has highlighted the importance of the initial path on determining the

resulting MFEP. We therefore consider an additional string which has been initialized in

the following way. The first half of the string is initialized as a linear interpolation in CV-

space between the stitched morphology and orthogonally-oriented lamellae. The second half

is initialized as a linear interpolation in CV-space between orthogonally-oriented lamellae

and aligned lamellae. The two halves are joined together and updated as one string to

an MFEP which includes as an intermediate state the orthogonally-oriented lamellae. The

results suggest that more than one pathway competes by which stitches can annihilate into
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aligned lamellae, with the possibility of forming a long-lived orthogonally oriented lamellae

state via a barrier of similar size to the main barrier on the pathway proceeding directly from

a stitched to fully aligned state. The presence of a larger barrier separating orthogonally

oriented lamellae suggests this state would be long-lived once formed. The MFEP also

presents different transition states as it annihilates (Figure 3.6). Of particular interest is that

the first free energy barrier (0.047± 0.01kBT per chain) is of comparable value, or perhaps

slightly smaller, than the main free energy barrier present on the pathway directly linking

the stitched morphology to the fully aligned morphology. This first barrier is associated with

the merging of stitched grains into orthogonal lamellae at the top of the film, as opposed to

the buckling motion evident in the pathway proceeding directly from a stitched morphology

to lamellae. The orthogonal lamellae, however, is quite stable compared to other metastable

minima, and a free energy barrier of 0.19±0.014kBT per chain separates it from the aligned

lamellae. This second, larger barrier is associated with connections forming between the

orthogonal lamellae and slowly reorienting into aligned lamellae. Considering that there are

at least two pathways with similar free energy barriers, we should expect the possibility of the

stitched morphology annihilating via more than one mechanism. The experimental results

also support this notion, as there is evidence for the stitch converting first into orthogonal

lamellae before converting into aligned lamellae in the in-situ AFM data [103].
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Figure 3.6: Representative morphologies of the MFEP from a fully stitched morphology to a fully aligned
morphology, with an orthogonally-oriented lamellae intermediate at α ≈ 0.5. The view is looking down the
y-axis at a slight angle, so that the top of the film in addition to a representative side view may be seen
simultaneously.

From this detailed view, we can briefly comment on the in-situ AFM data presented in

Raybin et. al[103]. First, we note that at the experimental temperature of 210 ◦C, the only

(apparent) energy barrier on the half-stitched to fully-aligned MFEP can be converted to a

value of 730 ± 370 kJ/mol (to convert, we take the numerical value of the energy barrier

in absolute kBT , substitute the numerical value of Boltzmann’s constant in kJ/K, multiply

by the temperature in Kelvin, and multiply by Avogadro’s number). We note the order-of-

magnitude agreement between our obtained average value and the experimental barrier of

360 ± 80 kJ/mol. Furthermore, we believe the detailed view of the qualitative nature of the

transition sheds light on how aligned grains grow in experimental films. It is not immediately

clear from the AFM data if each lamellae must grow one by one, each catalyzing the formation

of the next; from the obtained MFEP, it seems that cooperative growth can occur at least

one period into the stitched region, although of our observation of the cooperative growth

is limited by the finite size of our periodic simulation box. Lastly, we note that the free

energy barriers of a fully stitched morphology annihilating to a fully aligned morphology are

an order of magnitude higher than if the system is already in contact with aligned lamellae,

supporting the experimental observation that the stitched regions always annihilate from the
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edges in contact with already aligned regions, never spontaneously from within.

At this point, we consider the formation of a stitched morphology from disorder. We

have noted above that the presence of the chemical guiding stripes favors the formation of

an aligned phase by about 0.04−0.09 kBT (per chain) compared to an orthogonally aligned or

"sandwich" type morphology ; we therefore consider the appearance of the stitched morphol-

ogy, which contains elements of both, to be kinetic in nature. Consequently, we generate a

pseudo-dynamical trajectory initialized from a disordered state, with all constraints included,

via a slightly modified Monte Carlo procedure in which the only Monte Carlo moves allowed

are single-bead displacements. Additionally, we adjust the parameters of the model to enforce

certain assumptions. Primarily, we enforce that the earliest dynamics are primarily surface

driven, in accordance with the theoretical results of Müller et al. [89]. To do so, we initially

set χN = 0 and
√
N = 5000, the latter parameter being set high enough to dampen thermal

fluctuations and approximate the mean-field limit. As we now consider pseudo-dynamical

simulations, we also calculate the Rouse time (the time constant of the exponential decay of

the end-to-end distance autocorrelation function for a melt of N = 32 homopolymers) and

find that τR ≈ 1000 MC moves; we will quote simulations time henceforth in terms of τR.

It should be noted that the computational speed of the simulations is linearly proportional

to
√
N , and so this modification significantly slows down the calculations. Consequently, this

state is simulated only for 20τR. After this, the system is quenched to χN = 20. While this

is below the value of χN used to model the experimental system, it is above the ODT - we

choose this value to allow the calculations to converge in a reasonable amount of time while

simulation at such large
√
N . After this initial quench (lasting 1τR), the system is simulated

for an additional 20τR before
√
N is reduced to 100 (approximately the value used elsewhere

in this work, the value 100 chosen to simplify the procedure of deleting chains at random

until the desired
√
N is reached). Finally, the system is simulated for 100τR. Structures

at various points along the amalgamated trajectory are analyzed below and presented in
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Figures 3.7, 3.8, and 3.9.

Figure 3.7: Morphologies along an amalgamated trajectory according to the procedure defined in the text.
In these images, the y-axis runs into the plane of the figure, and the view is presented at a slight tilt so that
the top of the film and the side may be viewed simultaneously.

Figure 3.8: Morphologies along an amalgamated trajectory according to the procedure defined in the text.
In these images, the x-axis runs into the plane of the figure, and the view is presented of a 2D slice taken
over a guiding stripe.
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Figure 3.9: Morphologies along an amalgamated trajectory according to the procedure defined in the text.
In these images, the x-axis runs into the plane of the figure, and the view is presented of a 2D slice taken
over the background.

In the initial part of the trajectory, where χN = 0, a clear alignment of the block

copolymer to the surface can be seen. In particular, around the guiding stripes, a layer

of PS wets the top of the stripe and a layer of PMMA wets the guiding stripe sidewalls

within 20τR. Meanwhile, some weak alignment of PMMA to the background layer can be

observed just before the system is quenched. 1τR after the quench to χN = 20 takes place,

fairly strong alignment to the surface is seen in the lower half of the film. In particular,

a well defined layer of PS wets the top of the stripe, while a well defined layer of PMMA

wets the background layer, and even a well defined layer of PS can be seen to lay atop the

PMMA on the background layer. Additionally, strong alignment of PMMA to the guiding

stripe sidewalls can be seen in Figure 3.7. About 10τR later, significant phase separation

has occurred and the structures have become more well defined. Over the guiding stripe,

there remains a layer of PS wetting the top of the stripe, but some structures resembling

orthogonally oriented lamellae can be observed above this layer. The background layer

continues to stratify into well defined parallel-oriented lamellae, and this continues until the
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structure at 41τR.

At this point, parallel lamellae over the background are very well defined, and over

the stripe, the structure resembling orthogonally oriented lamellae have grown. At this

point,
√
N is reduced to 100, and the system evolves more dramatically because the free-

energy barriers that are proportional to
√
N̄ are reduced. After a further 50τR, over the

guiding stripe, a clear region of fully orthogonally oriented lamellae have developed. Rather

interestingly, PS has been displaced from wetting the guiding stripe in a few places in order

to accommodate this orthogonal structure. A possible explanation for this phenomenon is

that the orthogonally oriented lamellae over the guiding stripe can form an interface with the

lamellae oriented parallel to the background which has the form of Scherk’s first minimally

periodic surface, which minimizes the interfacial area of the boundary. Lamellae which

remained oriented aligned to the guide stripe would instead form a "T-junction" boundary,

which is higher in interfacial energy [118]. Consequently, as it appears that the kinetics of the

assembly process favor the formation of the parallel oriented lamellae over the background,

it follows that the orthogonally oriented lamellae over the stripe form as the system tries

to minimize the interfacial energy. By the final configuration shown, several orthogonally

oriented regions are clearly visible, which extend down to the guiding stripe, with PMMA in

direct contact with the stripe. Meanwhile, the background layer has remained well defined

in a parallel orientation, with a small PS connection between the layers visible in Figure 3.9.

What is most remarkable about these results is simply that a morphology strikingly sim-

ilar to the stitched morphology emerges in a simulation with only one assumption - that

the early dynamics be surface driven. After making this assumption, the system naturally

evolves into a state that combines aspects of the parallel, orthogonal, and aligned morpholo-

gies. Interestingly, at the end of the portion of the trajectory with χN = 0, the most

noticeable feature is PMMA aligning to the guiding stripe sidewalls, suggesting this may be

a key precursor to the stitched morphology. From this, it is clear that the formation of the

45



stitched morphology is consistent with theory, and should be regarded as an essential mor-

phology along the pathway to fully aligned lamellae, given the topographical and chemical

constraints of the system’s pattern. Additionally, it can be noticed that some regions of the

film appear to be aligning to the guiding patterns, suggesting that a mixture of stitched and

aligned regions can be expected, consistent with experiments.

We do note one difference between the morphology which develops from this simulation

and the one described experimentally [104]; here, we predict the background layer to be wet

by PMMA (as the surface is attractive to PMMA), while experiments have suggested the

background is wet by PS. We suggest that, if indeed the experimental surface is wet by PS,

there must be some additional effect or unknown modification at the surface in experiments

driving PS to wet the background substrate; however, this does not alter the fundamental

result that the stitched morphology’s formation is consistent with theoretical predictions.

Alternatively, it may be that the experimental surface is wet by PMMA; further imaging

experiments may reveal this to be so. Lastly, we comment that while PMMA wets the

bottom substrate in our simulations, PS is in contact with air, consistent with experiments,

and this occurs without making the the upper surface of the simulation box attractive to

either block, as has been suggested [103] might be the case.

To summarize, after making the assumption that the early dynamics are surface driven,

a morphology in which lamellae are found simultaneously in the parallel, orthogonal, and

aligned orientation emerges from a pseudo-dynamical Monte Carlo simulation. This mor-

phology bears a striking resemblance to the experimentally observed stitched morphology

in contact with aligned lamellae. We consider this as essential validation that the stitched

morphology cannot be considered an aberration arising from any experimental flaws but is

instead predicted by a straightforward application of block copolymer theory. Furthermore,

our results highlight the role of surface interactions in the early stages of structure formation,

and suggest the possibility of tailoring the morphology induced by the surface interactions
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in the earliest stages of DSA in order to template a defect-free morphology initially, rather

than optimizing pathways of defect annihilation in the later stages.

3.4 Conclusions

We have simulated the experimentally observed stitched morphology as well as closely re-

lated morphologies with the aim of understanding how this morphology forms, why it is

stable, and how it annihilates. By comparing the free energies of differently aligned phases

under different constraints, we find that the template topography alone greatly reduces the

preference for aligned lamellae over "sandwich" type lamellae and overall favors orthogonally

oriented lamellae; however, the introduction of a chemical preference at the guiding stripes

globally favors aligned lamellae by about 0.04 − 0.09 kBT (per chain) as compared to the

orthogonally aligned or "sandwich" morphology, respectively, suggesting the formation of

the stitched morphology is a purely kinetic phenomenon. We find that the stitched mor-

phology faces substantially reduced free energy barriers toward annihilation when in contact

with already aligned lamellae. These findings are in close agreement with the experiments

of Raybin et. al[103] and Ren et al.[104]. We predict the stitched morphology to form

from unbiased, pseudo-dynamical simulations resting only on the assumption that the early

dynamics are surface driven, thus establishing the stitched morphology as a theoretically

expected morphology given the constraints present in the system.

These results are expected to be highly dependent on the particular film thickness, as

well as the particular guiding stripe topography used. The experimental observation of

these relationships has been pointed out recently[104]. Further simulation work could focus

on understanding how the assembly is affected by changing the film thickness as well as

changing the height of the guiding stripes. Additionally, more complex guiding films could

be considered which induce the global preference for alignment without seemingly inducing a

preference for stitched-type morphologies to appear during the kinetic process of assembly. In

47



general, this work also underscores the need for carefully examining all sources of frustration

to self-assembling materials. As the introduction of three different constraints on the self-

assembly process of block copolymers gives rise to the unique stitched morphology, the

addition of more or alternative constraints could further stabilize surprising, unexpected

morphologies.

3.5 Methods

The theoretically informed coarse-grained (TICG) model for block copolymers used in this

study has been detailed in prior literature [17]. In this model, the Hamiltonian of the

system, H, consists of a term for the bonded energy (Hb), capturing interactions along the

polymer backbone, as well as a term for the non-bonded energy (Hnb), capturing longer

ranger intermolecular interactions. The bonded energy is given by:

Hb[{ri(s)}]
kBT

=
3

2b2

n∑
i=1

N−1∑
s=1

[ri(s+ 1)− ri(s)]2 (3.1)

where the sth bead on the ith chain has position ri(s). b2 = Re2/(N −1) is the mean square

bond length and R2
e is the mean squared end-to-end distance of the polymer chains; typically,

a unit system is adopted for the simulations where the end-to-end distance is unity. kB is

Boltzmann’s constant.

The non-bonded energy is given by:

Hnb[φA, φB ]

kBT
=

√
N

R3
e

∫
V

dr[χABNφAφB +
κN

2
(1− φA − φB)2] (3.2)

where
√
N =

ρ0R
3
e

N is the interdigitation number, a measure of the number of chains each

chain interacts with (ρ0 is the average bulk number density of beads). The parameter χN

is the Flory-Huggins parameter governing the incompatibility of the two blocks, and κ−1 is
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proportional to the melt compressibility. Each term φ(r) is the local density of each type of

bead. An order parameter Φ = φA−φB
φA+φB

can be calculated in order to visualize a density field

of the system using the software Paraview[2].

Additionally, substrate interactions may be added through terms of the form:

HS
kBT

=
nN∑
i=1

fs(x, y,K)
ΛK

Nds
exp(
−z2

2d2
s

) (3.3)

where K is the type of monomer bead; the term fs(x, y,K) adopts a value of either −1

or 1, depending on the value of K and the position of the bead. ΛK defines the strength

of interaction between the surface and the bead; when a bead of type A is in a position

preferable to type B, the overall energy contribution should be positive, and ΛA = −ΛB .

ds is the decay length of the potential. In this work, we have three substrates - the PS-

preferential guiding stripes, the PMMA-preferential sidewalls, and the PMMA-preferential

background. Each polymer bead interacts with the surface which it is vertically above; z is

therefore the vertical distance to the corrugated substrate.

Systems evolve via a Monte Carlo simulation; samples are generated and accepted or

rejected based on the Metropolis criterion.

We chose the parameters
√
N = 83, N = 32, fA = 0.5, χN = 35, and κN = 25 to

describe symmetric PS-PMMA of approximate molecular weight 22K-22K g/mol and a bulk

periodicity of 28 nm, annealed at 190 ◦C, following previous work with the model[53]. We find

the bulk periodicity of the simulated system to be L0 = 1.72 Re, establishing a conversion

between real units and simulation units. The substrate is modeled with ΛNstripe = −0.1,

ΛNsidewall = 0.5, and ΛNbackground = 0.1 to capture a weakly PS-preferential top of the

guiding stripe, a strongly PMMA-preferential sidewall, and a weakly PMMA-preferential

background. The substrate is corrugated to capture the effect of guiding stripe topography;

the tops of the stripes are 0.7L0 and are raised 0.14L0 off the background. Sidewalls are

formed by adding right triangular prisms to the edges of the guiding stripes, the base of
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which is 0.14L0, the hypotenuse meeting the top of the guiding stripe at a 45 ◦ angle. The

system is simulated with periodic boundary conditions in the x and y directions, but not in

the z direction, to incorporate the effects of a real confinement on the system.

We use the string method in collective variables (CVs) [78, 90, 66] to compute minimum

free energy pathways (MFEPs) from one state to another. A string is a series of images

parameterized by α, the reaction coordinate - mathematically, m(α) describes the string.

Each m is a vector of CVs; our chosen CVs are the values of the order parameter Φ at each

grid site defined on an identical but separate grid to the one used to calculate the non-bonded

Hamiltonian. An image placed in CV-space experiences a force to reduce its free energy F .

This free energy is defined as:

F (m) = −kBT ln

∫
d{rnN} exp(− H

kBT
)δ[m− m̂]. (3.4)

With m̂ indicating the vector was constructed from the particle coordinates, while m

is the value of the CVs associated with the string image. The condition for a path to be

a MFEP is that ∇⊥F (m) = 0. The string method algorithmically minimizes ∇⊥F (m);

first, a simulation system is constructed with the CVs associated with each string image

and the system is simulated with a harmonic restraint (adding to the system Hamiltonian
Hc
kBT

= λ
2

∫
V

dr[m − m̂]2; λ is a spring constant) to estimate the mean force on the image.

The CVs of the image are updated in the direction that minimizes the force; the gradient of

the free energy is δF
δm = λ∆L3kBT [m− 〈m̂〉c], where 〈m̂〉 is a thermal average. The string

is updated every iteration according to mk+1 = mk− τλ∆L3[mk−〈m̂〉c], where τ is a time

constant controlling how aggressively the string is updated. Finally, a reparameterization

algorithm is used, requiring that the images remain an equal arc length apart (in CV-space),

preventing all the images from simply falling into a local free energy minimum. We make

one adjustment to the method in this work; typically all images are free to move in CV-

space. We find it useful to restrict the first image from moving. In the case of strings from
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(meta)stable to states to other (meta)stable states, we find this improves the accuracy of the

free energy calculation while not altering any of the information on the pathway, instead only

adding a small (unphysical) region of the path where the provided morphology relaxes into a

(meta)stable one. It is somewhat non-intuitive that this should be the case - we hypothesize

that fixing the starting point in the initial stage of the calculation, when the string is not

converged, may prevent string updates which "accidentally" move the string over the barrier

that stabilizes the metastable state, leading to more consistent replicas of the string from

iteration to iteration.

As a final note, we comment on estimating error within our string method calculations.

We report all strings as the average of a set of strings obtained after the method has con-

verged. In the main text, we provide a sense of the range of this set of strings by shading

the region which encapsulates all strings within the set the averaging is performed over.

In Figure 3.10, we provide another, more quantitative view of the error with an expanded

discussion of possible sources of error. When we report differences in free energy in the main

text, it is with this quantitative estimate of the error.
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Figure 3.10: The minimum free energy pathways from the fully stitched to the fully aligned lamellae mor-
phology (red), from the half-stitched / half-lamellae morphology (blue), and from the fully stitched to the
fully aligned lamellae morphology with an intermediate state at α = 0.5 of the orthogonally aligned lamel-
lae (green). The value F at each value of α sampled from several iterations of the string method after
convergence is averaged; the error bars are the standard deviation of the free energy from that same sample.

As discussed in the main text, we represent the MFEP as the average MFEP over a

series of iterations run after the string has converged. Even post-convergence, there are

small fluctuations iteration to iteration about some mean free energy profile, hence our

decision to average the profile. Representing the error is a more challenging task. In the

plot above, we have plotted the standard deviation of these free energy profiles. However,

one could consider several other sources of error. For example, the value of free energy

calculated at each image is dependent on the value calculated at the prior image; hence,

there could be some propagation of error throughout the numerical integration process.
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There are also such sources of error as finite sampling providing uncertainty to the free

energy values obtained, as well as the finite spring constant used as a matter of practicality.

As a general recommendation we advise against interpreting small free energy differences

between different strings as meaningful but do point out the shape of each MFEP is quite

consistent iteration-to-iteration, lending credibility to the interpretation of the features of

each string.
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CHAPTER 4

DYNAMIC SIMULATIONS OF THE "BRICKS-AND-MORTAR"

MESOPHASE IN MIKTOARM BLOCK

COPOLYMER/HOMOPOLYMER BLENDS

4.1 Abstract

A new mesophase in binary blends of A− b− (BA′)3 miktoarm star block copolymers and A

homopolymers has recently been discovered experimentally and explored with field theoretic

simulations. This mesophase evidently consists of aperiodic, visually discrete domains of

A embedded in a continuous matrix of B up to very high concentrations of A. Because of

the material’s immense potential as a thermoplastic elastomer, deeper understanding of its

dynamic properties, including its linear rheological behavior, response to shear, and response

to uniaxial tension, is warranted. These properties are explored herein using dissipative par-

ticle dynamics in three dimensions, first establishing that the so-called "bricks-and-mortar"

is predicted to form in such a simulation and then probing the dynamic and mechanical

properties of the mesophase. It is established that the role of molecular bridging dominates

the mechanical behavior and outweighs the influence of microphase segregation even at the

highest homopolymer concentrations we study. Additionally, it appears that the bricks-

and-mortar phase is destroyed by the application of sufficiently high shear, which may have

ramifications for the processability of such materials.

4.2 Introduction

The self-assembly of block copolymers has attracted significant attention owing to their

ability to form a rich variety of microphases at the nanoscale. Classically, the self-assembly

of linear diblock copolymers has been studied for decades; the canonical phases formed
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by such polymers include spheres, cylinders, gyroids, and lamellae [83]. More recently,

increasing attention has been paid toward the self-assembly of block copolymers with multiple

blocks or advanced architectures [7]. Precise control of these architectures enables continued

engineering of block copolymers for a variety of applications [5], including photolithography

[117, 86], photonic crystals [125], single molecule templates for nanofabrication [138], and

thermoplastic elastomers [76, 116] (TPEs).

A key design goal for block copolymer TPEs is embedding a strong (glassy) reinforc-

ing material in a flexible (rubbery) matrix for a material which is both strong and flexible

[98, 76, 116]. Such a material would have both a high Young’s modulus and high elastic

recovery. At the microstructural level, these two quantities are most directly related to

the overall volume fraction of the glassy phase in the material and the overall fraction of

block copolymer chains which bridge evidently discrete microstructural domains, creating

a physically cross-linked network [107, 97]. The simplest molecular architecture capable of

producing the required microstructure is an ABA triblock copolymer; such an architecture is

used for styrene-butadiene-styrene rubber, a common industrial product. Symmetric ABA

triblock copolymers assemble into spherical, cylindrical, gyroidal, and lamellar mesophase

(transitioning from one to the next with increasing fA). The spherical and cylindrical phases

(with visually A domains) are viable as elastomeric materials; the highest concentration at

which a cylindrical phase with discrete A domains is observed is fA ≈ 0.3 [84]. The intro-

duction of molecular asymmetry (up to a critical threshold above which the shorter A block

is extracted from the A domains due to entropic considerations) to ABA triblocks leads to a

deflection of the phase diagram such that the spherical and cylindrical phases with discrete

A domains persist to higher fA, up to fA ≈ 0.4 [82]. Fundamentally, this deflection is driven

by the fact that a small bidispersity of the A blocks enables segregating more A polymer

away from the AB interface without stretching the chains. It is also possible to deflect

the phase boundaries through the introduction of non-linear architectures; for example, a
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six-arm star polymer with one A block and five B blocks is predicted to yield a cylindrical

phase with discrete A domains up to fA ≈ 0.55[33]. In this case, the deflection is driven

by steric hindrance at the junction of the star polymers, which is eased in microstructures

with curved interfaces. The results of combining these effects in A(BA′)3 was found[76] to

yield cylindrical phases with discrete A domains up to fA ≈ 0.6 at extremely high asymme-

try ratios between A and A′; the extraction of the A′ block is suppressed by the increased

preference for curved interfaces due to the star architecture.

Recently, it has been shown that blending this miktoarm copolymer with A type ho-

mopolymer which is intermediate in molecular weight between the short and long A blocks

of the miktoarm yields a unique mesophase, dubbed the "bricks-and-mortar" (B&M) phase

[115, 75], in which very high volume fractions of a dispersed phase remain evidently (vi-

sually) discrete in a continuous matrix of the low volume fraction phase, up to fA ≈ 0.8.

That the homopolymer be intermediate in molecular weight between the short and long A

blocks of the miktoarm is evidently essential to the phase behavior [115], which is attributed

to the ability of the homopolymer to blend with the long blocks (wet-brush like [80]) while

sequestering the shorter A blocks to the interface (dry-brush like [61]). The results of [75]

suggest these two effects create an extremely close competition in terms of free energy for the

lamellar and cylindrical phases; the coexistence between the two is destroyed by fluctuations,

yielding the B&M phase. As a fluctuation stabilized mesophase, the B&M phase is similar

to the more well known bicontinuous microemulsion [8, 41, 133, 87, 134, 28, 21, 26].

The architecture of this mesophase has considerable appeal as a TPE, necessitating de-

tailed understanding of its structure and properties. The prior work reveals the existence and

explores the thermodynamics of this phase while raising further questions. In particular, the

existing experimental, theoretical, and simulated evidence regarding the B&M phase con-

tains scarce information about three-dimensional structure. The experimental results rely

primarily on cross-sectional TEM, while the existing theoretical and simulation results are
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conducted in two dimensions. Through the use of dissipative particle dynamics, we explore

the three-dimensional structure of the B&M phase, confirming its existence and approxi-

mate phase boundaries, exploring qualitative and quantitative properties of static structures

(in particular, the fraction of bridging chains, a key quantity for elastomers, is calculated).

Lastly, we explore a variety of dynamic properties of the phase, including the dynamic struc-

ture factor, its linear rheological behavior, response to nonequilibrium shear, and its response

to uniaxial tension. We highlight the role of molecular bridging on the mechanical properties,

and show that it plays a significant role up to the highest concentrations of homopolymer

in the blend that we study. We also demonstrate the B&M phase is evidently destroyed by

shear, an important consideration for processing such materials.

4.3 Results and discussion

The first essential task in exploring the properties of the B&M phase is to demonstrate that

the phase exists using the chosen model in a 3D simulation. To this end, we simply allow

large systems simulated using DPD (see below for full simulation details) to equilibrate in

order to reveal the phase that exists at a variety of blend conditions.

Previous works studying the B&M phase [115, 75] demonstrate that the phase behavior

of the miktoarm-homopolymer blends is most sensitive to the concentration of homopolymer

(φh; in our work, the number density); hence, we study blend compositions from φh = 0.0

to φh = 0.8, in increments of ∆φh = 0.1. We also consider a slightly modified system in

which the short A ends of the (BA’) arms of the mitkoarm are replaced with B, resulting

in a system with similar fA yet which cannot form bridges (see below for further discussion

of bridging and looping). We label this system 0.0, NB for non-bridging. Anticipating that

as φh grows larger, so too will the domain sizes will grow quite large, we use a very large

cubic simulation box (≈ 394 nm3 per side, containing ≈ 3, 000, 000 particles). Liu et al. [75]

suggest that for a reference linear experimental polymer, the radius of gyration Rg ≈ 13.6
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nm; in our simulations we map a linear homopolymer of N = 65 to this reference linear

polymer, and find that in simulation units Rg = 3.56. We can therefore relate all simulation

units to experimental units through this correspondence. In particular, our estimate of the

simulation box being ≈ 394 nm3 per side is based on this measurement (in simulation units,

the length per side is ≈ 103.5). The results of equilibrating for 1, 500, 000 timesteps are

presented in Figure 4.1 for representative homopolymer concentrations of φh = 0.0, 0.3, and

0.6. The full range of φh values simulated is presented in Figure 4.2.
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Figure 4.1: The phases resulting from long equilibration of selected blend compositions, as a function of the
number density of homopolymer beads, φh. Bead identities are distinguishable by color - homopolymer beads
are orange, long miktoarm tail beads are red, short miktoarm ends are yellow, and all type B beads are blue.
The scale bar at the top of the figure indicates the dimension of the cubic simulation box, approximately
394 nm.
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Figure 4.2: The phases resulting from long equilibration of all tested blend compositions, as a function of
the number density of homopolymer beads, φh. Bead identities are distinguishable by color - homopolymer
beads are orange, long miktoarm tail beads are red, short miktoarm ends are yellow, and all type B beads
are blue.

4.3.1 Morphology classification

The first step is to understand the morphology of the self-assembled microphase separated

melt. For mechanical properties there are two aspects to consider a) the connections es-

60



tablished via the network of chemical bonds and b) the load-bearing properties of the bulk

phases. The diblock copolymer setup features two bulk phases with potentially different

mechanical properties. The A phase is expected to be glassy and supports significantly more

mechanical load as a result. If there is a continuous connection of the A phase through the

entire system, the mechanical response of the system is dominated by this glassy component.

Since this is pure bulk property perform the analysis with particle densities on a grid. For

this purpose, we map the simulation configurations on a grid with the dimensions 50×50×50.

For each of the grid sites, the number of particles and their type is counted. The average

number of particles per grid site is ≈ 26.59 and the fluctuations are small enough that none

of the grid sites is empty. Subsequently, we can determine for each grid if it is dominated

by A particles or by B particles.

To determine if the system exhibits structures of the glassy A material that can be load-

bearing, we determine clusters of A grid sites. Sites that are A rich and are connected

face-to-face are considered part of the same cluster. A cluster that connects through the

simulation box along one of the axis is considered percolating and thus load-bearing in

that direction. Further analysis can remove dead-ends from these clusters, which do not

contribute to the mechanical response. The method employed here for this analysis is very

similar to the method described in ref. [108].

Figure 4.3 plots the results of the percolation analysis. All morphologies investigated here

feature a macroscopic cluster the is load-bearing in all three directions. Hence, the "bricks"

are not truly disconnected from each other, but rather build a bicontinuous network that is

load-bearing. The size of the percolating cluster is also large enough to contain almost all

A particles of the system. This is reflected in the figure with the almost linear increase of

the volume fraction with the fraction of A homopolymers. Only for the homopolymer free

system, φh = 0, shows a significantly smaller sized cluster. This indicates that the system

indeed bricks from glassy A material but is still dominated by the percolating cluster. This
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Figure 4.3: Size of percolating cluster of the glassy A phase in all three orthogonal directions. Results
with dashed lines correct the volume fraction of the percolating cluster by subtracting dead-end that are
not load-bearing. All morphologies have percolating clusters in all directions independent of homopolymer
swelling φh. Hence, the "bricks" of the B&M phase are connected and do not form a true B&M phase, which
does not necessarily impede the beneficial mechanical properties.

is consistent with early findings with simpler diblock copolymer architecture but similar

volume fraction [108].

Even with the percolating clusters, the true load-bearing potential of these clusters is

yet unclear. The DPD model we employ is soft and thus unable to form a glassy state.

Instead, we use further analysis of the previously identified clusters by a bottleneck analysis.

The mechanical response in one direction is dictated by the amount of glassy material that

can support the load. Dividing the percolating cluster into slaps perpendicular to the load

direction can identify the smallest amount of load-bearing material limiting the load-bearing.

This bottleneck can be a single strand or it can be composed of multiple strands as long the

strand forms a continuous connection in the direction of the load.

Figure 4.4 presents the results as a function of the fraction of the filling homopolymer
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Figure 4.4: Area fraction of the smallest load-bearing connection perpendicular to the load direction of the
glassy A material. Varying fraction of homopolymer φh leads to a linear increase of the bottle-neck size.

φh. The bottle-neck size increases with the homopolymer, hence the homopolymer not only

swell the bricks in the morphology but also contribute to the strength of the glassy material.

We expect the strength of the material to be proportional to the Young’s-modulus of the

bulk A material times the area fraction. Hence, we are predicting an increase in strength

with the inclusion of the homopolymer to the miktoarm system.

The pure miktoarm melt (φh = 0.0) assembles into a (defective) hexagonally packed

cylinder phase. We validate that this is a regularly ordered, periodic phase through the

calculation of the structure factor (considering only type A beads), S(q) (see Figure 4.5 and

Figure 4.6). The structure factor computed for φh = 0.0 has a clear peak around q = 0.18

nm−1 (corresponding to a domain spacing D = 2π
q = 35 nm). The same is true when a

small amount of homopolymer (φh = 0.1; Figure 4.6) is introduced into the blend, with

the peak shifting to smaller q, consistent with the average domain size increasing. The low

q peak flattens and becomes indistinct at (φh = 0.2; Figure 4.6), and disappears entirely
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for φh = 0.3 and above, suggesting the lack of a regularly ordered periodic domain. It is

also possible that, if a peak did exist, it has shifted too far to the left to be resolved using

the current system size (the smallest value of q that can be probed is the linear system

dimension). We therefore acknowledge the possibility that finite size effects could set in as

early as φh = 0.3. However, visual inspection of the phases that appear for φh = 0.3 are

consistent with prior observations of the B&M phase, with large, evidently (visually) discrete,

irregularly shaped domains of bead type A embedded in a continuous matrix of bead type

B. The above percolation analysis suggests, however, that while visually discrete, the A

domains in fact form a percolating cluster. Such behavior persists up to φh = 0.7 (Figure

4.6), at which point the A domains are so large the simulation box boundaries are certainly

too small to properly capture these phases - hence, we will limit quantitative analysis of

these phases to blends at or below φh = 0.6. We note there is some visual suggestion of the

appearance of micelles with a core of type B appearing at φh = 0.8 (Figure 4.6), consistent

with Liu et al.[75]
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Figure 4.5: The structure factor S(q) (computed from only type A beads) corresponding to the phases
represented in Figure 4.1, as a function of the number density of homopolymer beads, φh, for selected φh.
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Figure 4.6: The structure factor S(q) (computed only from type A beads) corresponding to the phases
represented in Figure 4.1, as a function of the number density of homopolymer beads, φh. Each new
structure factor is plotted in succession over the prior curves for comparison. Our analysis is limited up to
φh = 0.6 to avoid finite size effects.

In addition to the low q peaks in S(q) present at low φh, there is also consistently a

plateau region centered on q = 0.45 nm−1 (corresponding to ≈ 14 nm) present for all blend

compositions. This suggests the existence of a common universal length scale associated

with the miktoarm chains (as it is present at the φh = 0.0 condition as well). We associate

this plateau, or very diffuse peak, with the thickness of B domains. We can quantify this

notion by calculating
√
〈Re〉2 associated with the B blocks only; at φh = 0,

√
〈Re〉2B =

3.39 rcut = 12.9 nm, corresponding to q = 0.49 nm−1, agreeing well with the approximate
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center of the plateau.

We also probe the distribution of miktoarm chain conformations (see below for details).

As noted in our discussion of the calculation, we can identify both a bridging fraction based

on the fraction of arms bridging (νb) and a different bridging fraction based on the fraction

of chains with at least one arm bridging (νb,chains). The latter quantity is most often cited

as the "bridging fraction" for multiarm copolymers, though we note the former may be more

relevant for understanding the impact of a bridge on the elastic properties. We show both

quantities in Figure 4.7.
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Figure 4.7: Relative bridging fractions consider as a fraction of arms bridging (above) and as a fraction of
chains with at least one arm bridging (below), for each studied value of φh.

Interestingly, we find that there is a significant gap between νb and νb,chains, suggesting

there are many chains in which some arms bridge and some arms do not. If we consider

νb,chains, we find that for all phases, whether cylindrical or B&M, the relative proportion of
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bridging chains is at least 70%; the absolute proportion of course decreases with increasing

φh, as miktoarm chains are replaced by homopolymer chains. Some comparisons (at φh =

0.0) can be made to calculations made for other block copolymer architectures; for four-

arm star diblock copolymers forming lamellae, Hart et al. [40] found a bridging fraction of

≈ 80 %, quite similar to our estimate for the cylindrical phase formed from the miktoarms

considered in this work. We note that the decrease in relative bridging proportion as the

B&M phase forms may be considered similar to the trend previously shown in the literature[4]

in which the bridging proportion decreases in copolymer mesophases as the interfaces flatten.

Recently, using field theoretic simulations, the bridging fraction for two-dimensional bricks

and mortar phases was computed by Lequieu et al. [62]; our results agree quite well, with

similar values of the bridging fraction and the same trend of a slight decrease with the onset

of the bricks and mortar phase. Of most importance, we note that the high relative bridging

proportion that persists to the highest volume fraction we consider suggests that even at

high φh the B&M should be expected to display significant elasticity.

Next, we also consider the discreteness of the A domains from a quantitative perspective.

As noted above, for each φh considered, we perform a cluster analysis to determine the

number of unique clusters. Interestingly, for each condition considered, we find only one

cluster, suggesting the A domains are not discrete but are in fact continuous. While this

observation contradicts prior understanding of the phase, it is worth considering the origins

of this evident continuity further. Visual inspection (Figure 4.8) of the phases, in particular

slice by slice visualization of thin, pseudo two-dimensional slices of the material, reveal that in

any given 2D slice of the morphology, the "brick" domains are indeed visually discontinuous;

which is compatible with the prior literature [115, 75]. However, our cluster analysis suggests

that this two-dimensional picture is insufficient, and that in three domains there is one

percolating cluster. We note that experimental stress-strain experiments on the bricks-

and-mortar phase reveal some amount of plastic deformation at any blend composition;
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we suggest this plastic deformation represents the breaking of the single large cluster into

multiple smaller clusters. Furthermore, we also suggest that a mesoscopically continuous

A domain does not prevent molecular bridging between locally discontinuous A domains,

enabling the bulk behavior of an elastomer. From this perspective, we consider an analysis

of the B&M phase dynamics with a special attention on the role of bridging to be critical.

As a note, from this point forward, we continue to refer the B&M phase as such, despite the

existence of a single percolating cluster suggesting that the "bricks" embedded in "mortar"

picture is not quite accurate. We maintain this notation for simplicity and continuity with

prior work.

Figure 4.8: Pseudo-2D slices in the xy-plane of a bricks-and-mortar morphology at φh = 0.4, starting from
the middle of the morphology (z = 0) and moving upward in 20 nm increments. Red ellipses indicate a
region where in one slice, two domains may appear disconnected, but in another slice, it is revealed that
they were in fact connected by a homopolymer-depleted connection. Bead identities are distinguishable by
color - homopolymer beads are orange, long miktoarm tail beads are red, short miktoarm ends are yellow,
and all type B beads are blue. The x and y dimension of the slices is the same as the total x and y length
of the simulation box.

Having established the existence of the B&M phase in our 3D model and having calculated

some important (static) structural quantities of the B&M phase, we now consider its dynamic

properties. We begin by calculating the viscosity of both the ordered phase as well as of

blends in which χN = 0, to allow an understanding of the impact of microstructure formation

on dynamic properties. As noted above, we also consider one additional system - a neat

miktoarm blend in which the terminal A ends of the miktoarm are replaced by B, resulting

in a miktoarm of the same architecture and similar fA but incapable of bridging; This allows

70



φh
χN = 0 χN ≈ 160

ηMüller-Plathe ηGreen-Kubo ηMüller-Plathe ηGreen-Kubo

0.0 11.9 12.1 24.4 80.6
0.1 11.1 11.5 22.0 65.2
0.2 10.7 9.8 19.0 32.8
0.3 10.0 8.7 17.0 30.3
0.4 9.3 8.2 13.8 29.9
0.5 8.6 7.8 11.5 27.6
0.6 8.0 7.7 9.2 12.7

0.0, NB - - 19.8 53.4
1.0 - 5.1 - -

Table 4.1: Viscosities calculated for various blend conditions with and without microphase separation.
For viscosity calculated via nonequilibrium simulations with the MP method, a consistent shear rate
(≈ 0.005 τ−1) is applied (τ is the unit of DPD time). We note that the velocity profile resulting from
the applied momentum flux is, in all cases, well fit to a linear function. Lastly, note that in the absence of
microphase separation, the properties of 0.0 and 0.0, NB are identical.

us to probe the role of molecular bridges on the dynamic properties independent of the

effects of molecular architecture or microphase separation. As described below, we obtain

the viscosity η in two ways - via nonequilibrium simulations using the Müller-Plathe (MP)

method [91] and via equilibrium simulations using the Green-Kubo (GK) method [70, 48].

This enables an understanding of the possible role of shear thinning. The viscosities obtained

using both methods for both blends are included in Table 4.1.

In Figure 4.9, we provide representative velocity profiles and linear fits as well as raw

auto-correlation function data with fits (see discussion below) to provide a qualitative rep-

resentation of the errors associated with fitting and therefore the viscosity values presented

here. The linear fit agrees excellently with the data, and thus obtained viscosities are pre-

cise. There are two sources of discrepancy between the fit and the raw data. First, the raw

autocorrelation function displays oscillatory behavior in the time range between t = 10−1

and t = 100 = 1. This oscillatory behavior is often associated with bond-length relaxation

in systems where inertia is significant (underdamped dynamics). This is not typically the

case in DPD simulations; in disordered melts, we do not observe these oscillations. We

71



therefore associate this behavior with the relaxation of bonds at interfaces. In any event,

fitting this behavior is not expected to be important for estimating the viscosity, and so we

fit to a purely multi-exponential model. The other source of potential error is in the long

time relaxation beyond t = 102; there are progressively fewer and fewer samples separated

by such long times from which to calculate the autocorrelation function, and the uncertainty

in the autocorrelation function value grows. It is therefore difficulty to accurately fit in this

region, and this will impact the accuracy with which viscosity can be estimated. Therefore

our discussion of viscosities in the main text should be understood in the context of some

uncertainty associated with fitting the long time relaxation modes.
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Figure 4.9: Above, a velocity profile of the upper half of the simulation box (both raw data and a fitted
linear function) obtained from a Muller-Plathe simulation for the blend composition φh = 0.0 and below the
order-disorder temperature. Below, G(t) (the autocorrelation function of the off-diagonal components of the
stress tensor) both as raw data and a fit to the Generalized Maxwell Model is presented for the φh = 0.5
blend at the same temperature.

We begin by noting there is a larger uncertainty associated with the Green-Kubo vis-

cosities, as they are obtained by fitting to noisy data (especially at long times); we could

also obtain the viscosity by direct numerical integration, but the noise would still create
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uncertainty[132]. Therefore, when shear plays little to no role on the calculated quantity, we

prefer the MP method. This is the case for the blends at χN = 0, where the influence of

shear appears negligible; the value of viscosity of viscosity obtained from GK is sometimes

higher, sometimes lower than the value obtained via MP. In either case, there is a clear

trend toward decreasing viscosity as an increasing proportion of homopolymer constitutes

the blend; this is natural, as DPD polymers essentially behave as Rouse polymers [120]. The

observed Rouse behavior suggests the decomposition of shear-stress relaxation — a collective

quantity — in terms of independent single-chain contributions. The viscosity will therefore

scale with the longest relaxation time of the constituent polymers weighted by their rela-

tive proportions. Ergo, a higher proportion of (shorter) homopolymers in the blend leads

to increasingly lower viscosity. We also include in our Green-Kubo based analysis the pure

homopolymer case (φh = 1.0) and note that the blend viscosities at χN = 0 agree very well

with a standard mixing rule of log η = φh log ηhomopolymer + (1− φh) log ηmiktoarm.

By contrast, the influence of shear is, evidently, highly non-negligible for the case of the

ordered mesophases. Visual inspection (Figure 4.11 and Figure 4.12) of the morphology

of the blends after the application of shear quickly reveals why this is so. The cylindrical

phases which form at low φh align to the direction of the shear; hence, the viscosity becomes

anisotropic with respect to the shear direction. As we, of necessity, measure the viscosity

parallel to the shear (or alignment) direction, this is associated with a significant reduction

in the viscosity compared to the cylindrical phase we measure at equilibrium, in which the

domains lack a regular alignment direction. Another phenomenon entirely seems to underlie

the reduction in viscosity for at higher φh. Beginning at φh = 0.2 (Figure 4.12), after the

application of shear, the phases no longer resemble a B&M morphology at all, but instead

a bicontinuous phase. This phenomenon fits into a broader category of shear induced phase

transitions that has been observed in other systems, including blends of block copolymer

and homopolymer [38]. That the B&M phase is apparently quite sensitive to shear may bear
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relevance to the processability of materials trying to exploit this microstructure. Also of

interest is that the role of bridging is apparently fairly weak for the viscosity of the ordered

phases undergoing significant shear, as the viscosity of the 0.0, NB phase is nearly the same

as the viscosity of the 0.0 phase. On the other hand, as discussed in more detail below, the

equilibrium (or zero-shear) properties are strongly affected by molecular bridging.

To further contextualize these results, we calculate the dynamic structure factor S(q, t)

for the φh = 0.0 blend at χN ≈ 160 at |q| ≈ 2π
10 = 0.63 (in simulation units), corresponding

to the peak in the static structure factor near q = 0.18 nm−1. By fitting the structure

factor to a sum of exponential functions, we calculate a morphological relaxation time from

this function of τr ≈ 1800τ , that is, a time scale on which composition fluctuations of the

morphology relax (see Figure 4.10). In the case of φh = 0.0, we can then contextualize

the shear calculations as taking place at a Weissenberg number (Wi = τrγ̇)) of Wi ≈

10. As there is no peak in the static structure factor for most blend compositions, we

do not calculate a morphological relaxation time for other compositions, but we can make

some scaling arguments; the relaxation time should go as τr ≈ ν
q2
, where q is the domain

size. While the domain size becomes ill-defined, it certainly increases by up to an order of

magnitude at the higher φh values. At the same time, the viscosity decreases by nearly an

order of magnitude. We therefore expect that, as an upper bound, τr could increase by an

order of magnitude overall for intermediate to high φh values. Consequently,Wi ≈ 100 serves

as an upper bound for contextualizing these dynamic calculations. From this we conclude

our shear calculations are in a hypothetically experimentally accessible regime, though we

note (with further discussion below) that the morphological relaxation time is likely higher

in experiments due to the glassiness of the dispersed domains.

75



Figure 4.10: The fitted dynamic structure factor for the φh = 0.0 blend at χN ≈ 160. The fit is a sum
of three exponential functions; the longest time constant of the fit is taken as the morphological relaxation
time.

Interestingly, performing a cluster analysis similar to the one performed above, but now

using the post-sheared configurations, reveals that there are now multiple truly discrete A

domains. This is no surprise for the aligned cylindrical morphologies, where the shear has

aligned them and annealed defects out such that discrete cylinders are now hexagonally

packed. At higher blend compositions, the A domains appear visually somewhat more meso-

scopically continuous; however, up to φh = 0.5, there remain multiple A domains. We

suggest this is mainly a function of the shear flow created a preferred aligned direction; as

the A domains are driven to align to the shear direction, they will have difficulty maintaining

complete percolation.
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Figure 4.11: The phases resulting from long application of shear to select blend compositions, as a function
of the number density of homopolymer beads, φh. The images are sliced along a plane perpendicular to the
shear direction. Bead identities are distinguishable by color - homopolymer beads are orange, long miktoarm
tail beads are red, short miktoarm ends are yellow, and all type B beads are blue.
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Figure 4.12: The phases resulting from long application of shear to all tested blend compositions, as a function
of the number density of homopolymer beads, φh. The images are sliced along a plane perpendicular to the
shear direction. Bead identities are distinguishable by color - homopolymer beads are orange, long miktoarm
tail beads are red, short miktoarm ends are yellow, and all type B beads are blue.

Just as was done for nonequilibrium shear, to begin understanding the equilibrium dy-

namic properties of the B&M phase, we consider it important to establish the equilibrium

behavior of the blends when phase separation has not occurred. In Figure 4.13 and in Figure

4.14, we present the relaxation modulus G(t) over several decades of time, as well as the

storage and loss moduli, G′(ω) and G′′(ω), obtained from Fourier transforms of G(t), over

several decades of frequency.
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Figure 4.13: Upper, the relaxation moduli G(t) for selected blend composition (we present here the final,
fitted curves; see below for full details). Lower, the storage (G′(ω)) and loss (G′′(ω)) moduli obtained for
each blend composition. Both plots are for the labeled blend composition at an effective χN = 0.
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Figure 4.14: Upper, the relaxation moduli G(t) for each blend composition (we present here the final, fitted
curves; see below for full details). Lower, the storage (G′(ω)) and loss (G′′(ω)) moduli obtained for each
blend composition. Both plots are for the labeled blend composition at an effective χN = 0.

From G(t) the viscosity can be obtained simply as the area under the curve. We have

already discussed above that there is a clear decrease in the viscosity associated with an
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increasing proportion of shorter chains in the blend. For the same reasons, there is a notice-

able trend of decreasing G′(ω) at low ω as φh increases. We also note that, generally, each

polymer blend shows the characteristic behavior of Rouse polymers; G′(ω) increases with ω

with a slope of ≈ 2 at low frequency, while G′′(ω) does so with a slope of ≈ 1; they approach

each other in value and both begin to increase with a slope of ≈ 1
2 at intermediate ω. There

are essentially three timescales of relaxation - of order 0.1τ , 10τ , and 100τ . We associate the

smallest relaxation time scale with the relaxation of individual harmonic bonds. From inde-

pendent simulations, we can fit a single exponential to the decay of the end-to-end distance

autocorrelation function for either the individual arms of the miktoarm star or for the longest

linear distance in the miktoarm (i.e. N = 35) (the longest single-molecule relaxation time

we should observe). We find the average relaxation time of the individual arms of the stars

is 32.5τ and the average relaxation time of the longest linear distance in the miktoarm is

130τ . We therefore associate the former with the intermediate relaxation mode of order 10τ

and the latter with the longest relaxation mode of order 100τ . We also note the possibility

that multiple relaxation modes of similar timescales are compressed into a single mode in

the G(t) fit.

Next we consider the equilibrium (linear) dynamic properties of the assembled mesophases.

Just as above, in Figure 4.15 and in Figure 4.16, we present G(t), G′(ω), and G′′(ω).
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Figure 4.15: Upper, the relaxation moduli G(t) for selected blend composition (we present here the final,
fitted curves; see below for full details). Lower, the storage (G′(ω)) and loss (G′′(ω)) moduli obtained for
each blend composition; we note the slight expansion of the frequency axis to include lower frequencies, as the
modes below ω = 10−3τ are important to the mesophases. Both plots are for the labeled blend composition
at an effective χN ≈ 160.
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Figure 4.16: Upper, the relaxation moduli G(t) for each blend composition (we present here the final, fitted
curves; see below for full details). Lower, the storage (G′(ω)) and loss (G′′(ω)) moduli obtained for each
blend composition; we note the slight expansion of the frequency axis to include lower frequencies, as the
modes below ω = 10−3τ are important to the mesophases. Both plots are for the labeled blend composition
at an effective χN ≈ 160.

The results included in Figure 4.13, Figure 4.15, Figure 4.14, Figure 4.16, and Table 4.1

can be compared together for an understanding of the dynamic behavior of the B&M phase.
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As the results obtained via equilibrium simulation faithfully represent the properties of the

B&M phase in a way the results obtained via nonequilibrium shear do not, the trend across

these data points to a clear picture of the overall behavior. Compared to the disordered

blends, the ordered phases (at φh = 0.0 and φh = 0.1 (see SI), a cylindrical phase, and at

other conditions, the B&M phase) exhibit significantly higher viscosity, significantly longer

relaxation times (the relaxation time being inferred from the time required for G(t) to decay

to zero), and significantly higher G′(ω) at low frequencies (a direct measure of the solid-like

behavior or elasticity of the system). We note that this trend continues even to the highest

blend concentration we study, though the effect of an increasing proportion of homopolymer

and a lower absolute proportion of bridging chains is observable as the effect does weaken

at high φh. As noted above, some of this effect could be attributed simply to the formation

of a microphase separated phase even in the absence of molecular bridging, and therefore

we also study the properties of the ’NB’ system. That the longest relaxation time and low

frequency G′ are much lower than the comparable neat blend of miktoarms which are capable

of bridging is clear from Figure 4.15; we also calculate the viscosity of the phase to be 53.4

(simulation units), comparable to a B&M phase with as much as 10-20% homopolymer in

the blend. This last point underscores an important general point - that the B&M phases

with significant amounts of homopolymer perform similarly to a mesophase composed solely

of miktoarms which cannot bridges is clear evidence of the significant role that bridging plays

on the dynamic properties of the B&M even at the highest homopolymer concentrations.

As a last perspective on the mechanical properties, we perform stress-strain simulations

(see below for details) to understand the linear response of the B&M phase to strain. The

curves are presented in Figure 4.17 and Figure 4.19. Additionally, representative images of

the systems as they are being strained are presented in Figure 4.18.
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Figure 4.17: Stress strain curves up to a true strain of ε = 0.8 for select blend compositions.
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Figure 4.18: Visual representations of the phases having undergone strain up to ε = 0.90. In both cases, the
strain has not fundamentally altered the nature of the phase, merely deformed it.
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Figure 4.19: Stress strain curves up to a true strain of ε = 0.8 for all tested blend compositions.

We first note that all the curves have the essential qualitative behavior of a classic unen-

tangled rubber[105], with a two-slope behavior in the linear regime (a higher slope at low ε

and a lower slope at larger ε). Furthermore, it is evident that the Young’s modulus (the slope

in the linear regime) consistently decreases with increasing φh. This agrees well with the

data presented so far - that the increasing proportion of homopolymer in the blends and the

decreasing absolute number of bridges decreases viscosity and the storage modulus, for ex-

ample. On the other hand, the 0.0, NB case - which cannot bridge - has comparable Young’s

modulus to the 0.0 case which bridges significantly. We therefore consider that the molecu-

lar weight of the constituent polymers is also a significant factor in setting properties of the

materials, especially, evidently, the Young’s modulus. For example, the 0.6 case bridges but

is composed of a majority of much lower molecular weight homopolymers as compared to the

higher molecular weight miktoarms. The 0.0, NB case is entirely composed of miktoarms

and has a higher Young’s modulus, pointing toward the important role of molecular weight.
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We suggest, however, that in such systems the elastic recovery would be significantly lower

for the 0.0, NB case due to its lack of bridging. Our results also underscore an important

limitation of the model used here. The experimental results of Shi et al.[115] shows exactly

the opposite trend of what we present here - that an increasing proportion of homopolymer

increases the Young’s modulus (without a concomitant sacrifice in elasticity). The difference

is easily understood by the fact that the experimental system is one in which polymer type

A is polystyrene (a glassy polymer at the temperatures of interest) and polymer type B

is polyisoprene (a rubbery polymer at the temperatures of interest). Hence, an increasing

proportion of a strong, glassy reinforcing material like polystyrene has a significant role in

increasing the Young’s modulus of the material which overwhelms the decreasing absolute

number of bridges and the lower molecular weight of the homopolymer. This effect cannot

be captured by the DPD model, in which the friction coefficient (which would determine

whether the polymers behave like rubbers or like glasses) is equal for both type A and type

B polymer and is of necessity quite low[37]; our polymers will therefore all behave generally

like rubbers. While computer simulations including the effect of glassiness in the type A do-

mains are of great interest[4, 39], we note two important advantages of the current approach.

Firstly, an approach such as ours based on pure DPD allows for faster simulation equilibra-

tion, providing access to the information contained herein on a meaningfully shorter time

scale than a study conducted with a model accounting for glassiness. Secondly, through this

work, we can isolate the purely morphological effects of the microstructure (e.g., bridging)

on the dynamical properties of the phase, whereas including glassiness in the model would

obscure all of the effects we have described herein. Hence, we consider it an interesting

first step in understanding the behavior of these polymers to approach the problem with the

present model, and note our future work will address the role of glassiness in the type A

domains for comparison.
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4.4 Conclusions

Using dissipative particle dynamics, the dynamic properties of the bricks-and-mortar phase,

recently unveiled with experimental[115] and theoretical/simulation [75] studies, have been

explored. We have first established that the B&M phase emerges in three-dimensional par-

ticle based simulations, expanding upon prior results which predicted it in two-dimensional

field theoretic simulations. That the B&M phase observed in our simulations is aperiodic

is confirmed via the calculation of structure factors, which show no peak indicating a reg-

ular domain spacing. The structure factors for all assembled phases, however, do show a

common length scale associated with the thickness of the B domains. We calculate relative

bridging fractions for each homopolymer concentration and find that all B&M phases display

significant amounts of molecular bridging between domains. The influence of this bridging

is clearly seen over the dynamic properties, including significant enhancement in viscosity

and low frequency G′(ω) (a measure of elasticity) in the mesophases compared to disordered

blends. In particular, we highlight that an ordered phase of non-bridging miktoarms with

no homopolymer in the blend behaves similarly to a B&M phase with as much as 10-20%

homopolymer in the blend, highlighting that even the decreasing relative proportions of

bridges in these phases dominate the mechanical behavior. The calculation of stress-strain

curves yields results consistent with these trends, but comparison to experiment highlights

an important aspect of the chosen model - that the DPD method as implemented herein

will not account for relative glassiness or rubberiness of the chains. Nonetheless, precisely

because of these limitations, we are able to isolate the purely morphological influence on the

dynamic properties, and demonstrate that molecular bridging dominates up to the highest

φh values we study. Finally, we also note that the B&M phase is evidently destroyed by

shear, which may have important ramifications for the processibility of such mesophases.
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4.5 Methods

To efficiently simulate the very large systems required to capture the bricks-and-mortar

domains, we turn to coarse grained dissipative particle dynamics [42, 56]. The dissipative

particle dynamics (DPD) potential is composed a (purely repulsive) interaction potential, a

pairwise drag force, and a pairwise random force. The force, F , on each coarse-grained bead

is calculated as

F = FC(r) + FR,ij(rij) + FD,ij(vij) (4.1)

. rij is the inter-particle distance and vij is the inter-particle velocity. The conservative

force, FC , accounts for inter-particle interactions and is calculated as

FC(r) = Aij · w(rij) (4.2)

, with

w(rij) =

(
1− r

rcut

)
r < rcut

0 r ≥ rcut

. Aij scales the strength of the interaction and be tailored for each pair type. In our

work, AAA = ABB = 25 kBT following Groot et al. [35, 36] We also follow Groot et al.

and choose the system density ρ = 3; our choice of AAB = 40 kBT therefore corresponds to

a choice of χABN ≈ 160, putting our results firmly in the strong segregation limit. As is

typical in DPD simulations, we choose rcut = kBT = m = 1, where m is the particle mass

(the unit of time, therefore, is τ = rcut
√

m
kBT

). The random and drag forces, FR,ij(rij) and

FD,ij(vij), respectively, are calculated as
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FR,ij(rij) = −θij
√

3

√
2kBγT

∆t
· w(rij) (4.3)

FD,ij(vij) = −γw2(rij)
(
r̂ij ◦ vij

)
(4.4)

. θij is a uniformly distributed random number in the range [−1, 1], γ is a friction

parameter for which we use a typical value of 4.5, and ∆t is the simulation time-step, for

which we typically use a value of 0.04 unless otherwise noted; r̂ij is the inter-particle distance

normalized to magnitude unity. Bonded beads are connected by a harmonic potential V (r) =

1
2k (r)2, with the spring constant k = 4. We perform all simulations using the HOOMD-blue

software package [3, 32, 100]; visualizations are performed using Visual Molecular Dynamics

(VMD) [43].

We choose the number of beads N of each block of the A(BA′)3 miktoarm polymer

with NA = 20, NB = 12, and NA′ = 3, in approximate accordance with the experimental

proportions [115, 75]. For blends, the appropriate proportion of N = 16 homopolymers of

bead type A are inserted into the blend. To compare to field-theoretic approaches [75], it

is also useful to note that, from the above parameters, the term
√
N̄ =

ρR3
e

N ≈ 4;
√
N̄ is,

roughly speaking, a Ginzburg parameter (the mean field limit applies as
√
N̄ → ∞ [27]);

therefore, our simulations are performed in a limit far from the mean-field condition and are

able to capture thermal fluctuations well.

A summary of all of the parameter choices made for our DPD model is provided in Table

4.2.

1. Groot and Madden[35] discuss the correspondence of χNeff from DPD simulation with finite-length
chains to the mean field χN corresponding to infinite molecular weight. Their calculation shows that
χNeff ≈ χN

1+3.9N−0.51 . As a point of reference, therefore, the mean-field result that χNc = 10.5 for symmetric
linear diblocks should be reproduced in the model used herein for, say, N = 35 (the longest end-to-end length
in a miktoarm) at a value of χN = 17.2. That our choice of χN exceeds χNc by an order of magnitude
is solely to establish our calculations well into the strong segregation limit such that any phase behavior is
well defined; we find that at χN of similar magnitude to χNc, the phase boundaries can be ill defined for
the fluctuation-stabilized bricks and mortar phase. The dynamics are not unduly inhibited as the viscosity
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Parameter Symbol Numerical Value Notes
Density ρ 3 Standard [35, 36]
Type A-Type A self-interaction AAA 25 Standard [35, 36]
Type B-Type B self-interaction ABB 25 Standard [35, 36]
Type A-Type B cross-interaction AAB 40 χN ≈ 160 [35]; see note 1

Friction parameter γ 4.5 HOOMD default

Table 4.2: DPD model parameter choices, with notes if necessary. Note that rcut = kBT = m = 1 and the
DPD unit of time is τ = rcut

√
m
kBT

To help quantify the nature of assembled structures, we calculate the structure factor,

S(q), using the following equation[109]:

S(q) =

(∑
j cos

(
q · rj

))2
+
(∑

j sin
(
q · rj

))2

N
(4.5)

The index j runs over all type A particles in the system; q is the wave vector (for each

magnitude of q we sample 100 randomly generated possible realizations of q and compute

the average value of S(q)); rj are the particles positions; lastly, N is the total number of

particles.

In addition to static structure factors, we calculate the dynamic structure factor (the van

Hove function), using the following equation:

S(q, t) =
〈ψ(q, t)ψ∗(q, 0)〉

V
(4.6)

As before, q is the wave vector; t is time, and V is the system volume. The function

ψ(q, t) is given as:

ψ(q, t) =
∑
i

cα exp(iq · rj) (4.7)

As before, the index j runs over all particles in the system. In our prior calculation of

of a DPD fluid absent of phase separation (and therefore, the primary relaxation time of the chains) is
determined by γ rather than A [37].
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the static structure factor, we only considered type A beads. Here, we let the coefficient cα

equal 1 for type A beads and −1 for type B beads. We implement this calculation using the

Simpatico software package [1].

We also quantify the distribution of conformations of miktoarm chains following the

method of Tang et al. [126] In brief, we consider that each junction on the miktoarm

polymers should be relatively localized to the interface; we identify the positions of the four

A beads associated with these junctions as Rk, k = 1, 2, 3, 4. By defining a cutoff radius

Rc = 1.25 (in simulation units), we can identify the center of mass of B-beads in the vicinity

of the junction. Then a unit normal nk of the interface can be calculated. We identify n1

as the unit normal associated with the long A tail and the center junction, whereas n2, n3,

and n4 are associated with the short A ends terminating the B −A′ arms. It is possible for

each arm of the star to independently bridge or loop, and so we calculate the dot product

between n1 and each of n2, n3, and n4. This quantity, ζij essentially measures whether the

interfacial normals are parallel (ζij > 0) or anti-parallel (ζij < 0). If they are anti-parallel,

this is indicative that the arm is forming a bridge. A bridging fraction can then be computed

in two ways; the total fraction of arms which are bridging is νb, whereas the total number of

chains with at least one arm bridging is νb,chains. The latter is the quantity most frequently

cited as the "bridging fraction" for multi-arm copolymers. We refer to Tang et al. for full

details of the calculation and justification of the methodology.

We calculate a variety of viscoelastic properties using equilibrium and non-equilibrium

simulations. From equilibrium sampling of the stress tensor, information about the storage

and loss moduli, G′(ω) and G′′(ω) can be obtained. The auto-correlation function of the

off-diagonal components of the stress tensor (σ) is, according to a Green-Kubo relation,

equivalent to the relaxation modulus G(t):

G(t) =
V

kBT
〈σα,β(t)σα,β(0)〉 (4.8)
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with α 6= β (V is the system volume). We find it necessary to reduce the time-step ∆t

to 0.004 (an order of magnitude reduction) to obtain fine enough sampling to accurately

resolve G(t); we further find that approximately 107 time-steps are necessary to suppress

noise sufficiently. We fit the auto-correlation function to a sum of exponentially decaying

terms (the generalized Maxwell model) [70, 48]:

G(t) =
∑
n

Gn exp

(
− t

tn

)
(4.9)

where Gn and tn represent the amplitude and the relaxation time of the nth mode,

respectively. The Fourier transform of G(t) into the frequency domain yields the dynamic

modulus G∗(ω), and the real and imaginary component of G∗(ω) are G′(ω) and G′′(ω),

respectively.

We apply shear using the HOOMD-blue implementation of the Müller-Plathe method

[91]. A flow is induced in the following way: the system is divided into a number (100) of

slabs and a desired flow magnitude and direction is chosen. The "bottom" slab is searched

for the particle with the largest magnitude velocity component opposite the desired flow

direction; the "middle" slab is searched for the particle with the largest magnitude velocity

component in the desired flow direction. These velocity components are then swapped,

inducing a flux of momentum (up to a desired target). The flux of momentum induces a

shear flow; we target a shear rate of approximately 0.005 τ−1 for all blends to account for

possible shear thinning effects. As the momentum flux is known exactly, the velocity gradient

need only be measured (provided the velocity profile is linear) to determine the viscosity.

Lastly, we apply uniaxial tension by affinely deforming the box length L in the z-direction

(at constant volume) according to[119] Lz(t) = L0,ze
ε̇dt, where dt represents the total elapsed

time up to time t. We choose a true strain rate ε̇ = 10−4 following Sirk et al. (we note

the relaxation time of the longest linear part of the star is O (100τ) and the morphological

relaxation time is O (1000τ), ergo the entirety of the curve in Figure 4.17 takes place in
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about a single morphological relaxation time. The nonzero stress response is a consequence

of the strain being too fast for the system to easily equilibrate.) The elongation stress σe is

calculated from the stress tensor as

σe = −σzz +
1

2

(
σxx + σyy

)
(4.10)

.
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