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ABSTRACT

In order to guide future behavior, nervous systems need to make predictions. This problem is

so fundamental the we find evidence of predictive phenomena even in the retina. This thesis

explores the hypothesis that prediction is a potential “design principle” for understanding

the structure and function of the retina. We approach this hypothesis in several ways: First,

we characterize statistically the motion of objects in a collection of natural movies, allowing

us to quantify predictability in a natural setting. Then we test the predictive capabilities of

the retina by recording population responses to artificial stimuli whose statistics are informed

by natural object motion statistics; we find that responses are close to optimal when the

stimulus statistics are in a naturalistic range. Finally, we examine neural responses to natural

movie stimuli to determine if their structure is in line with our theory. A few mathematical

derivations related to our theory are given in the appendices.
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CHAPTER 1

INTRODUCTION

If the ultimate goal of neuroscience is to “reverse-engineer” the brain, then an important

step will be to identify the design principles important to the “engineer.” This is a rather

coarse analogy to the true situation: The brain’s engineer is the process of evolution itself,

in which random variations, piled onto existing forms, persist according to the fitness they

confer. We therefore expect the products of evolution to be idiosyncratic, reflecting their

paths through the evolutionary tree, but also nearly optimal (or, at least, “good enough”) in

terms of this abstract notion of fitness, through what amounts to a stochastic optimization

process. The design principles in our analogy are educated guesses as to what constitutes

fitness for a given biological system under study; a suitable theory can help us assess the

validity of these principles by defining optimality in terms of experimentally measurable

quantities. The following is an application of this approach to a particular candidate design

principle—optimal prediction—in the context of the neural code of retinal ganglion cells.

Information theory provides a suitably general language for discussing neural design

principles. First formulated by Shannon in the context of communication systems [49], it

has proven to be an invaluable tool in neuroscience research [45], allowing us to quantify

the amount of information (in bits), a sensory system conveys to the brain. Information is

a statistical quantity that summarizes the dependance of two variables based on their joint

probability distribution; it is therefore of the utmost importance to take these statistics into

account when asking questions about coding.

A key insight is that information comes at a cost, namely, the metabolic energy required

to maintain a population of neurons and to generate action potentials. This is particularly

salient in the retina, where photoreceptors (the input cells) outnumber ganglion cells (the

output cells) by a factor of ∼ 100 in the periphery, reflecting the high metabolic cost of

sending signals through the optic nerve to the central brain. Minimizing this metabolic cost

while achieving a given rate of information (or, equivalently, maximizing information rate
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given a fixed amount of resources) forms the basis for the classic efficient coding hypothesis

[6], which has proven remarkably successful in predicting the response properties of sensory

neurons in the early visual system [50] and beyond [31] from first principles, using only

knowledge about the statistics of natural stimuli.

Efficient coding is incomplete as a theory of sensory systems because it does not take

into account the relevance of the incoming sensory information to the animal. More recent

theoretical work [9] demonstrates how to take relevance into account using the information

bottleneck method [53]. The information bottleneck method is a technique for (lossily)

compressing incoming data as much as possible while retaining as much information as

possible about a given relevance variable. In doing so it extracts only the relevant bits of

information.

Many aspects of the environment are potentially relevant to the animal and could be

incorporated into an information bottleneck framework. A particularly parsimonious choice

of relevance comes from considering the fact that the world we live in is causal. By this we

mean that sensory information is always about the past, yet its utility is always in guiding

future behavior. For this reason we hypothesize that sensory systems selectively encode

the predictive information in the stimulus [10], those features which allow us to predict the

future stimulus. The past-future information bottleneck problem tells us how to navigate

the tradeoff between efficiently encoding the past and maximizing information about the

future. Importantly, it tells that an optimal solution must take into account not only the

statistics of the past stimulus, but also the statistical linkage between past and future that

makes prediction possible.

Most of our behaviors involve prediction in one form or another. Prediction is particularly

important to sensorimotor behaviors because of the significant delays involved phototrans-

duction, subsequent neural processing, and finally motor output. While prediction can, in

principle, be performed at any stage of neural processing, compelling evidence from the

retina literature suggests that prediction starts at the sensory periphery.
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Far from acting as a simple signal transducer and pre-filter, the retina contains sophis-

ticated circuitry to sift out behaviorally relevant information from the barrage of incoming

photons [24]. The responses of the ganglion cells, the output cells of the retina whose axons

form the optical nerve, are already highly processed reports of the input signals from the

photoreceptor layer, and seem to reflect the complex structure of natural input—namely that

it is composed of coherently moving objects. For example, one RGC subtype responds selec-

tively to local motion but is suppressed by motion on a larger spatial scale, which separates

the motion of objects from the self-generated motion caused by the animal’s own movement

[41, 4].

Even more strikingly, the retina seems to be able to anticipate the future position of

moving objects. In [8], the authors demonstrate that flashing a bar of light onto a population

of retinal ganglion cells produces a response with an appreciable delay of ∼ 50 ms, while

moving the bar at a constant velocity to the same position leads to population responses that

are spatially peaked at that position with zero delay. Thus, the representation of predictably

moving objects in the retina appears to be compensated for the significant delay due to

signal transduction. Similar results have been found in primary visual cortex [26, 51], and

a perceptual analog called the flash-lag illusion has been studied psychophysically [37, 38].

When the moving bar violates its predictable motion by abruptly reversing directions, this

triggers a rapid burst of spikes in the retina [48]; thus, the retina seems to convey both

explicit predictions of the future and errors in those predictions. Other observations, such

as the omitted stimulus response, in which some cells respond vigorously to a violation in a

periodic pattern of stimulation [47], attest to the fact that the retina performs sophisticated

computations in the context of prediction.

We would like to make clear the distinction between selectively encoding predictive infor-

mation and predictive coding, which is a particular instantiation of efficient coding. Inspired

by successful data compression algorithms from the signal processing literature [19, 20],

predictive coding achieves an efficient representation of the stimulus by, at each time step,
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making a model-based prediction of the stimulus from its history, comparing this to the

actual stimulus, and transmitting only the error, which will be small if the model is accu-

rate; a downstream decoder can then reconstruct the stimulus from the stream of errors. In

the most elaborate theories of predictive coding, the cortex is envisioned as a hierarchical

Bayesian generative model, in which predictions are sent down the hierarchy while errors

propagate upward [44, 7]. Despite its name, predictive coding does not actually solve the

problem of finding an efficient representation of the future stimulus–it compresses the current

stimulus (i.e., what is available to the encoder at a given time step) without regard to timing.

For example, changing the signal transduction delay would lead to identical responses in a

predictive coding framework, just shifted in time. In contrast, we argue that the retina must

selectively encode the features of the past that are predictive of the future, and, in general,

these optimal features change as a function of delay.

In this thesis we explore the problem of optimal prediction from several different angles.

In Chapter 2, we introduce a method to extract the trajectories of moving objects from

natural scenes, allowing us to empirically measure the statistics of natural motion which

form the basis for prediction. In Chapter 3, we directly test the retina’s ability to extract

predictive information from a simplified moving bar stimulus, using two different statistical

environments informed by these natural motion statistics. In Chapter 4, we address the

more challenging problem of assessing optimal prediction in responses to complex natural

movie stimuli, which requires a more indirect approach based in theoretical considerations.

Finally, in Chapter 5, we draw these results together and make suggestions for future work.
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CHAPTER 2

NATURAL OBJECT MOTION STATISTICS

2.1 Introduction

In order to make predictions in a visual world consisting of moving objects, we need to

understand how objects move. At first this problem would appear to be solved by classical

mechanics—given complete knowledge of all of the forces and masses involved in a given

system, we can make extremely accurate predictions by applying the laws of physics. But the

situation faced by animals in natural environments is rarely, if ever, so simple. It is impossible

in practice to have complete knowledge of all of the relevant variables. Furthermore, we do

not expect our system of interest, the retina, to contain elaborate physical models. Rather,

it may take advantage of the statistical regularities caused by physical motion. Objects do

not teleport; they move continuously from place to place, and due to their mass they exhibit

inertia, the tendency to continue moving in the same direction (or remain stationary). We

hypothesize that, over evolutionary time, the retina has evolved to take advantage of these

kinds of regularities in order to efficiently encode information that is useful for prediction.

In this chapter, we present an approach to quantifying the motion contained in natural

movies. The basis of our approach is a computer vision algorithm called the optical flow,

which describes how one frame of a movie is transformed into the next by local translation

of pixel intensities. Linking these translations through time results in trajectories that we

can analyze statistically. These natural motion statistics are used in subsequent chapters to

inform the construction of artificial stimuli and to help us interpret the results of experiments

using natural movies as stimuli.
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2.2 Results

We would like to build up a statistical description of how objects move. In particular, since

objects move in a continuous fashion, we would like to characterize how correlated that

motion is over time. To this end, we analyzed natural movies from the Chicago Motion

Database, which consists of a variety of natural scenes collected for statistical analysis and

for use as visual stimuli in experiments. All movies were recorded using a fixed camera, at

high frame rates of 60 or 120 Hz, with subjects chosen to produce consistent motion within

the field of view for minutes at a time. Subjects included flowing water, plants moving in

the wind, and groups of animals like insects and fish (Figure 2.1). A forthcoming paper

will contain a detailed description of the database.

2.2.1 Kurtotic motion distributions

The first step in our analysis was to compute the optical flow for all pairs of adjacent frames

in our dataset using a standard optical flow algorithm [52] (Figure 2.2). The algorithm

produces a continuous-valued estimate of horizontal and vertical image velocity (u, v) (in

units of pixels/frame) at each pixel location (x, y). Each movie clip was 50 s long with a

frame rate of 60 Hz (we subsampled movies filmed at 120 Hz), yielding 2, 999 optical flow

frames per movie, or 47, 984 total. From these we estimated the probability distribution

of object velocities by calculating histograms (using 0.25 pix/frame bins), shown in Figure

2.3a. Optical flow is measured in terms of pixels on our camera sensor (or degrees of

visual angle) rather than objective physical units; an object moving at the same physical

velocity viewed at two different depths will lead to different image velocities. Given that the

image velocity is somewhat arbitrary, we scaled the velocity by its peak absolute value for

each movie to facilitate comparisons across movies (Figure 2.3b). We performed the same

analysis for the speed (taking the magnitude of each velocity vector) (Figure 2.3b,c).

Since all of the movies contain a significant amount of stationary background pixels, the
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a b c d

e f g h

i j k l

m n o p

Figure 2.1: Natural movie ensemble. a-p. Example frames from 16 movies in the Chicago
Motion Database. Border colors serve as a legend for subsequent figures. The movies depict
(a,b) ants, (c) bees, (d) butterflies, (e,f) larvae, (g) baby octopuses, (h) geese, (i,j,k,l)
plants blowing in wind, (m) floating ice, and (n,o,p) water.
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a

b

c

Figure 2.2: Optical flow schematic. a. Two subsequent frames from a natural movie in
the Chicago Motion Database, depicting a bee hive with a glass cover. b. The optical flow
for the two frames, depicted in vector form. Each arrow represents the optical flow vector
in that location. Only a subset of pixel locations are used for display purposes. c. The
same optical flow displayed using a colormap (right) in which hue corresponds to the angle
of the optical flow vector at a given pixel location and saturation corresponds to magnitude
(scaled by the maximum value). Both b and c were generated using the optical flow Matlab
package described in [52].
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probability distributions are heavily zero-inflated. They are best viewed on a logarithmic

scale, which is an indication of kurtotic behavior. We find that velocity and speed distri-

butions are nearly log-linear for a wide range of values, away from the inflated peak and

noisy tails. Log-linearity is a signature of the exponential function, so we conclude that

speed follows an approximately exponential distribution and velocity components follow an

approximately Laplace distribution (two exponential functions decaying away from zero).

These distributions tell us something fundamental about motion: Compared to the Gaus-

sian distributions we often find in nature, motion distributions are kurtotic. This means

that small and large values are more common while intermediate values are less common

compared to the Gaussian. In other words, natural motion is a sparse feature of natural

movies.

2.2.2 The timescales of velocity correlations

The optical flow between consecutive frames offers a snapshot of the motion contained in

a natural scene; a more complete description should include how this motion evolves over

time. Simply analyzing how the optical flow at a given pixel location changes over time is not

particularly informative since, by definition, a moving object does not stay in one location

for very long. Rather, in order to measure meaningful statistics of object motion we must

compute them along the trajectories of moving objects. In short, to describe object motion

we need to track moving objects.

Object tracking has a long history within the field of computer vision [60]. While many

good tracking algorithms exist, their performance depends heavily on the specific applica-

tion (e.g., single objects which are well-isolated are much easier to track than a clutter of

multiple overlapping objects), and finding a general, all-purpose solution is still an area of

active research. Fortunately, since we are interested in a statistical description of object mo-

tion rather than tracking objects per se, we can largely ignore many of the challenges that

traditional tracking algorithms face, and instead focus on extending our pixel-level optical

9
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Figure 2.3: Optical flow histograms. Colors correspond to movies in Figure 2.1. a.
Histogram of pooled horizontal and vertical velocity components. b. As in a, normalized by
the peak velocity for each movie. c. Histogram of speed (magnitude of velocity). d. As in
c, normalized by the peak speed for each movie.
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flow description through time.

To this end we developed a simple pixel tracking algorithm that essentially links optical

flow vectors across frames. Similar approaches have been taken in [1, 29, 14]. Inspired by

fluid dynamics experiments in which easily tracked particles are used to measure complex

fluid flows, we instead apply our estimated optical flow fields to an initial grid of fictive

“particles” in an iterative fashion (Figure 2.4).

400
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200

0400

200

x (pixels)

0

200

0

100

300

t (
fra

m
es

)

movie frames flow fields trajectories
a b c

Figure 2.4: Particle tracking schematic. a. A stack of movie frames. b. A stack of
optical flow fields, computed for each pair of consecutive frames. c. A set of trajectories
obtained by applying flow fields sequentially to a set of “particles” then subsampling, as
described in the text.

Once we have some pixel trajectories, how should we analyze them? In the Langevin de-

scription of a diffusion process, the velocity of a particle is given by an Ornstein-Uhlenbeck

(O-U) process—a stationary Gauss-Markov process characterized by an exponential correla-

tion function (see [22] for a review). This captures the physical scenario of a massive particle,

subject to drag, undergoing random velocity kicks. The temporal extent of the correlation

function summarizes how predictable the process is. We estimated the velocity, speed, and

angle correlation functions of trajectories from each movie clip, shown in Figure 2.5a-c.

Correlation functions vary dramatically from movie to movie. Some take on negative values,

which is inconsistent with a simple O-U process model and suggests an oscillatory compo-

nent to the motion. In this case, a better model would be the damped harmonic oscillator

driven by noise [39], as we describe in Chapter 3. Zooming in on the first several hundred
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milliseconds, we see significant correlations for at least 100 ms. Since errors in tracking

likely lead to an underestimate of correlation, we conclude that natural motion trajectories

are highly predictable on a timescale of hundreds of milliseconds.

We also characterized these sets of trajectories as we would a 2-D diffusion process. This

kind of analysis has been applied to describe the motion of particles within cells, to infer,

for example, whether a particle is undergoing active transport [16, 13] or is being slowed

down due to crowding [23]. While the absolute location of such a process is arbitrary—we

assume objects positions are equally likely across space (an assumption that may not hold

when incorporating behaviors like eye movements)—the displacement over time relative to

an initial position provides a compact description of the process. In particular, the mean

squared displacement grows as a power law function with time, the exponent of which (corre-

sponding to the slope on a log-log plot) measures the diffusivity of the process. An exponent

of one is predicted for ideal Brownian motion, in which the velocity is uncorrelated over

time. An exponent lower than one indicates a subdiffusive process (analogous to crowding),

while an exponent greater than one indicates a superdiffusive process (analogous to active

transport). In the limit of constant velocity, called ballistic motion, displacement grows lin-

early with time, so the exponent will be two. We find mean squared displacement lines with

slopes between one and two (Figure 2.5d), indicating that natural object motion is in the

superdiffusive regime.

2.3 Methods

2.3.1 Movie database collection

We analyzed natural movies from the Chicago Motion Database, which was created for the

purposes of statistical analysis and for use as stimuli in neuroscience experiments. Subjects

were chosen not only to provide a broad sampling of different moving objects encountered

in the natural world, but also to provide sustained motion for relatively long periods of
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time within a fixed field of view. Subjects the met these criteria tended to be groups of

insects and other animals, plants blowing in the wind, and moving water. We chose a subset

of movies from the larger database for which our tracking algorithm performed reasonably

well. Movies were filmed at either 60 or 120 Hz; we subsampled the 120 Hz movies to 60 Hz

to facilitate comparison. Though some movies had three color channels, this information

was not used by the optical flow algorithm, which simply converts color inputs to grayscale.

2.3.2 Optical flow algorithm

We calculated the optical flow between pairs of frames using a standard algorithm [52]. The

algorithm is a modern implementation of the classic gradient-based optical flow method

introduced by Horn and Schunk [25]. Briefly, the aim of the optical flow algorithm is to find

a vector field describing the local translation of image intensity that satisfies the brightness

constancy constraint, the assumption that the luminance at a given point on a moving object

does not change over time. Let E(x, y, t) be a continuous, differentiable function of space

and time representing the image; x and y are to be interpreted as the position of a point on

a moving texture, so that they also depend upon t. Brightness constancy means that the

total derivative of E with respect to t at a given point should be zero:

dE

dt
=
∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0. (2.1)

The time derivatives of horizontal and vertical position introduced above are the optical flow

at that position:

u =
dx

dt
and v =

dy

dt
. (2.2)

Since brightness constancy gives us only one constraint with two unknown variables, we

must introduce additional constraints to solve for u and v. Optical flow fields are expected

to vary smoothly in space except at discontinuities caused by edges, so a natural constraint
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is to minimize the Laplacian of the optical flow,

∂2u

∂x2
+
∂2u

∂y2
and

∂2v

∂x2
+
∂2v

∂y2
. (2.3)

In practice, the algorithm minimizes of an objective function consisting of discrete ap-

proximations to the brightness constancy and local smoothness constraints (appropriately

weighted) and an additional nonlocal smoothness constraint that acts as a median filter. It

finds the minimum by jointly varying u and v at each grid location, using a hierarchical

pyramid and other techniques from the optical flow literature. See Sun, Roth, and Black

(2010) [52] for further details. We used the freely available Matlab code on default settings

(‘Classic+NL’).

2.3.3 Velocity statistics

We computed the speed, s, and direction, θ, by taking the polar transformation of the

velocity:

s =
√
u2 + v2 and θ = atan2(v, u). (2.4)

The function atan2(y, x) returns the angle in radians between the positive x-axis and the

coordinates (x, y):

atan2(y, x) =



arctan
(y
x

)
if x > 0

arctan
(y
x

)
+ π if x < 0 and y ≥ 0

arctan
(y
x

)
− π if x < 0 and y < 0

+π
2 if x = 0 and y > 0

−π2 if x = 0 and y < 0

undefined if x = 0 and y = 0.

(2.5)
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Velocity and speed histograms were calculated using 0.25 pix/frame bin sizes and nor-

malized by the total number of samples.

2.3.4 Pixel tracking algorithm

Starting from a grid of initial horizontal and vertical positions (x0,y0) (bold face indicates

vectors where each element corresponds to a different trajectory), the position of each particle

is updated recursively according to

(xt,yt) = (xt−1,yt−1) + (ut(xt−1,yt−1),vt(xt−1,yt−1)), (2.6)

where (ut(xt−1,yt−1),vt(xt−1,yt−1)) is the optical flow between frames t − 1 and t (with

frame indices starting at zero) evaluated at the previous positions (xt−1,yt−1). Since the

optical flow takes continuous values, so do the positions, and we must estimate the optical

flow off of grid locations using bilinear interpolation. Trajectories end when particles exit the

field of view. This method also tracks the stationary background, which will only decrease

the statistics we measure. We remove stationary trajectories by detecting runs of 5 or more

frames with no motion (speed less than 0.1 pix/frame) and eliminating them (keeping only

the first segment of the trajectory if it is interrupted). We are left with a dense covering

of the moving objects in the scene. These trajectories are highly spatially correlated and

therefore redundant, so we subsample them, weighting each by the total distance traveled to

encourage long, continuous trajectories. Since errors in this integration process accumulate

over time, we limit ourselves to time windows of 300 frames (note that trajectories may end

sooner), and repeat the process in increments of 150 frames, covering the length of each clip

with 50% overlap to ensure that all moving objects are well-sampled.

In addition to the inevitable accumulation of measurement errors from the optical flow,

more catastrophic errors can occur when particles “fall off” of or are “picked up” by moving

objects, so that a trajectory no longer corresponds to the motion of a single object. The
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algorithm works best for moderate speeds and relatively large objects; objects that move too

quickly or are too small tend not to be linked properly across successive frames. There is also

conceivably an “aperture effect” due to the fact that faster objects simply do not remain

in the frame as long as slower objects. For these reasons we suspect that this algorithm

generally leads to underestimation of the statistics we calculate, especially at longer time

delays, which should be considered as a lower bound of the true values.

2.3.5 Trajectory statistics

The mean squared displacement is simply the average Euclidean distance between some

initial position at time t and the position along the same trajectory τ seconds later:

MSD(τ) = 〈
√

[x(t)− x(t+ τ)]2 + [y(t)− y(t+ τ)]2〉, (2.7)

where the average is taken over trajectories and time.

The autocorrelation function of a time-varying (linear) quantity q(t) with mean µq is

Cq(τ) = 〈[q(t)− µq][q(t+ τ)− µq]〉. (2.8)

We use this formula to calculate the velocity (pooling horizontal and vertical components)

and speed autocorrelation functions.

For the angle θ, which is a circular quantity, we use the formula

Cθ(τ) = 〈cos[θ(t)− θ(t+ τ)]〉. (2.9)

2.4 Discussion

Optical flow distributions have previously been measured in the context of camera motion

applied to range images in [46, 15]; like object motion, this self-generated motion also follows
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a kurtotic distribution. Kurtotic distributions are a surprisingly common feature of natural

image statistics. For example, Gabor filters, a classic model of the edge-detector-like recep-

tive field properties of V1 simple cells, produce a kurtotic distribution of responses when

applied to natural images; this fact underlies the influential theory of sparse coding [21, 40].

Intuitively, motion corresponds to a spatiotemporal edge, and spatiotemporal edge-detector

filters, such as those derived from independent component analysis of natural movies [55],

also yield kurtotic response distributions.

The chief contribution of our work, showing that object velocity tends to be highly

correlated for (conservatively) hundreds of milliseconds, is potentially relevant to a number

of research areas within neuroscience. Our primary aim was to inform the design of object

localization experiments in the retina [33, 42] such as those described in the next chapter.

Beyond sensory encoding, realistic object trajectories with natural statistics could be useful

in sensorimotor tasks, such as prey capture [11, 35], object tracking, or reach and grasp

tasks. By extension of the efficient coding argument, we expect sensorimotor systems should

be tuned to natural trajectories as well.

Our sample of movies is by no means exhaustive, and we do not attempt to find average

statistics describing the entire ensemble of natural movies. Rather, we highlight the diversity

of autocorrelation functions found across subjects. Depending on an animal’s behavioral and

ecological niche, it may be tuned to different motion statistics, which future work could help

to disentangle. We emphasize that natural motion seems to be correlated for minimum of

100 ms, which should be broadly applicable to neural systems.
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CHAPTER 3

OPTIMAL PREDICTION OF A MOVING BAR

3.1 Introduction

Ultimately we would like to test whether the retina is optimized for prediction of the natural

stimuli it evolved to encode. However, natural movies are complex and potentially contain

many different moving features, in addition to a rich and complicated spatial structure. Here

we simplify matters considerably by using artificial stimuli consisting of a single feature—

the position of a moving bar. Our precise control of the stimulus allows us to calculate

the information neural responses contain about past and future trajectories. We can then

compare these values to the theoretical optimum using the information bottleneck method

to directly test whether the retina is optimized for prediction.

In [42], the authors demonstrated optimality for a particular set of stimulus statistics.

We follow up on this result by presenting two sets of stimulus statistics to the same retina for

direct comparison. We find qualitatively different results for the two sets of stimuli, attesting

to the importance of the natural motion statistics described in the previous in shaping the

predictive capabilities of the retina.

3.2 Results

Not all features of visual input are predictable, and optimal prediction requires selectively

encoding predictable features to make the most efficient use of limited resources. For this

reason, we use a carefully designed stimulus that contains both predictable and unpredictable

components. The stimulus consisted of a white bar 100µm wide and stretching the length

of the array on a black background (Figure 3.1a). The position xt and velocity vt were
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updated according to the following stochastic difference equations:

vt+∆τ = [1− Γ∆τ ] vt − ω2xt∆τ + ξt
√
D∆τ , (3.1)

xt+∆τ = xt + vt∆τ, (3.2)

where ∆τ = 1/120 s is the update time of the display, D = 2.7 × 106 pixel2/s3 is a fixed

diffusion constant, ξt is a Gaussian white noise process with unit variance, and Γ and ω are

parameters controlling the drag and spring force. Taken together, the equations simulate

the one dimensional position of a massive particle undergoing diffusive motion, but tethered

to the center of the display. By fixing Γ1 = 20 s−1, Γ2 = 4 s−1 and ω1 = 1.5 × 2π

rad s−1, ω2 = 0.67 × 2π rad s−1, we define two statistical environments, characterized

by their position and velocity autocorrelation functions (Figure 3.1b,c). Intuitively, the

time it takes the autocorrelation functions to decay to zero determines how far into the

future one could predict the stimulus given perfect knowledge of its current position and

velocity. Examples of bar position trajectories for the two statistical environments are shown

in Figure 3.1e,f, which also illustrate the trial structure of the experiment: In each trial a

unique past trajectory converges onto one of a collection of common future trajectories. This

allows us to calculate the information the neural responses contain about the future before

it happens, based on responses to past trajectories that are all unique yet statistically linked

to the common future trajectory. We presented 100 unique pasts for each of 30 common

futures for a total of 3,000 trials for each statistical environment. For visualization purposes

we show only 2 common futures with 10 unique pasts each. The midpoint of each trial,

designated t = 0, marks the point of convergence of past and future.

3.2.1 Stimulus dependence of bound saturation

We calculate the amount of information small groups of cells, randomly sampled from the

population, carry about the identity of the common future trajectory as a function of time

20



t (ms)
0 500 1000

C
xx

(t)

0

0.5

1 statistics 1
statistics 2

t (ms)
0 500 1000

C
vv

(t)

0

0.5

1 statistics 1
statistics 2

t (ms)
-500 0 500

po
si

tio
n 

(p
ix

el
s)

-150

-100

-50

0

50

100

150

t (ms)
-500 0 500

po
si

tio
n 

(p
ix

el
s)

-150

-100

-50

0

50

100

150

a b c

d e f

Figure 3.1: Stimulus design. a. Example stimulus frame. b. Position autocorrelation
functions. c. Velocity autocorrelation functions. d. Image of a 252-channel multi-electrode
array, courtesy of Olivier Marre. e,f. Example stimulus position traces for statistics 1 (e)
and 2 (f), illustrating the common future experimental design: 20 unique past trajectories
converge onto 2 common future trajectories (10 each). The experiment contained 30 common
futures each with 100 unique pasts for each statistical environment; only a subset are shown
for display purposes.
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relative to the convergence time t = 0. We take positive ∆t to represent time before conver-

gence. Hence, large negative values correspond to time points long after convergence, and

we average the last 25 time points to calculate the “information about the past” (Ipast). For

“information about the future” (I future) we use the information calculated using responses

just before the convergence, at ∆t = 8.33 ms. In Figure 3.2a,b we plot these information

values for a single 4-cell group. For statistics 1, we see a steep decline in information with

delay, while for statistics 2 the decline is more gradual. This trend is confirmed when we

calculate the average information for 1000 such randomly sampled 4-cell groups (Figure

3.2c,d). When we compare information values directly across statistical environments, the

results are clear: We almost always find more information about the past for statistics 1

(Figure 3.2e), yet more information about the future for statistics 2 (Figure 3.2f).

To place these information values in context we compare them to the theoretical bound

on information about the future (a function of information about the past) that is set by

the stimulus statistics. In the region of small values of Ipast this bound is approximately

the unity line, reflecting the simple fact that the response cannot contain more information

about the future than the past. We find that information values for all group sizes cluster

just below the bound for the second statistical environment, but fall significantly short for

first (Figure 3.3a,b). We can also find individual groups of cells (an example group is

denoted by a red circle in Figure 3.3a,b) that saturate the bound calculated for a fixed

value of Ipast with a delay ∆t, again for the second statistical environment but not the first

(Figure 3.3c,d). This is a very robust indication that the retina optimally encodes the

predictive features of the stimulus for statistics 2, allowing it to predict the stimulus into

the future as far as the stimulus statistics will allow. On the other hand, for statistics 1, the

retina is still informative about the past stimulus (in fact, moreso than for statistics 2), but

this information is not useful for predicting the future.
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3.2.2 Shifts in effective delay

How is it that the retina is capable of optimal prediction in one statistical environment and

not the other? To gain some insight, we calculated the amount of information the neural

response contains about the instantaneous bar position as function of delay, rather than

entire past and future trajectories. Across group sizes, we find a robust shift in the peaks of

these curves (which we interpret as the effective delay of the system) as we change statistical

environments (Figure 3.4a,b). In particular, the distribution of effective delays for statistics

two is broader and its median shifted forward from -100 ms to -66.7 ms (Figure 3.4c).
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Figure 3.4: Instantaneous information and effective delay. a,b. Instantaneous posi-
tion information as a function of delay for different group sizes for statistics 1 (a) and 2 (b).
c. Histogram of effective delays calculated for 1000 4-cell groups.

3.2.3 Biphasic filter model

What can account for the robust shift in effective delay with stimulus statistics? It seems

reasonable that mechanisms underlying motion anticipation are engaged more in the second

statistical environment, but which elements are affected? Are adaptation effects required?

To answer this, we started with the most basic model of ganglion cell responses, the linear

filter. Temporal linear filters, calculated either as a function of contrast from a white noise

checkerboard stimulus or as a function of stimulus position using ridge regression, tended to

have a biphasic shape, illustrated for an example neuron in Figure 3.5a. Note that for a
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space-time separable linear filter, the transformation from position to filter output consists of

a spatial activation (the overlap of the bar with the spatial receptive field) convolved with the

temporal filter, so the overall transformation from bar position to neural response inherits

this biphasic shape. This example neuron also shows a shift in delay for different statistics,

in this case achieving zero effective delay for statistics 2 (Figure 3.5b). We can easily

achieve a similar shift in delay with a model biphasic filter (Figure 3.5d,e). The intuition

for constructing such a filter, and why it produces a shift in delay, is as follows: We can

conceptualize a filter consisting of a Gaussian bump at some delay as reporting the position

at that delay, with some temporal smoothing to eliminate noise (Figure 3.5d, red curve).

This results in an information curve with peak at that delay (Figure 3.5c, red curve).

Similarly, a sum of Gaussians with opposite signs gives us the change in the two delayed

positions, which is proportional to the velocity (Figure 3.5d, green curve). This tells us

nothing about the position at the midpoint of the two delays, but it is informative about

future and past positions because, e.g., a positive velocity means that the future position is

more likely to be positive and the past negative (Figure 3.5c, green curve). Taking a linear

combination of these “position” and “velocity” filters with an appropriate scaling (Figure

3.5d, black curve), which can be thought of intuitively as finding the position and adding the

velocity multiplied by the time step, results in a filter with zero effective delay for statistics

2 and a nonzero delay for statistics 1 (Figure 3.5e). Thus, the basic phenomenology of

effective delay changing with stimulus statistics can be accounted for by the biphasic nature

of the neural encoding, although we do not rule out the possibility of adaptation or other

nonlinear effects playing a role.
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3.3 Methods

3.3.1 Experimental protocol

Experiments were carried out at Institut de la Vision in Paris, France, under the supervision

of Olivier Marre, and in accordance with institutional animal care and use requirements.

Adult Long-Evans rats were rendered unconscious using a CO2 chamber, then killed via

cervical dislocation. The eyes were removed and transferred to a bath of Ames’ solution. In

a dark room using low red light illumination, eyes were hemisected and cleared of vitreous

to expose the ganglion cell layer of the retina. A piece of retina slightly larger than the

recording array was cut using a scalpel and transferred from the sclera to a perforated

dialysis membrane stretched over a small ring, with the ganglion cell layer up. This ring

was then attached to a shaft and carefully lowered onto a multi-electrode array (MEA) for

recording. The MEA is embedded in glass with cylindrical dish on top, allowing the retina

to be perfused with oxygenated Ames’ solution during recording.

3.3.2 Recording and spike sorting

The MEA (Multi Channel Systems) consists of 252 electrodes, arranged in a 16 by 16 grid

with 4 corners missing, with 60µm spacing between electrodes. The raw voltage was digitized

and saved at a rate of 20 kHz. Spikes from individual neurons were inferred from the data

using the spike sorting algorithm described in [32]. Due to the short distance between elec-

trodes, action potentials from individual retinal ganglion cells cause voltage changes across

multiple electrode; if two cells spike simultaneously, the resulting waveform will be an ap-

proximate sum of the waveforms produced by individual spikes. Spiking events are detected

by simple thresholding. The algorithm first identifies well-isolated spikes and clusters their

waveforms (across all electrodes) into a set of templates representing putative neurons. The

templates are then fit to overlapping spikes in a greedy fashion: the best fitting template is

assigned first and is subtracted from the data, then another template is fit to the residuals
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and subtracted, and the process is iterated until no spikes remain.

Spikes from putative neurons were post-processed by hand to remove spurious low-

amplitude spikes fit by the algorithm. Cells were rejected if they had a high number of

refractory period violations (interspike intervals less than 5 ms) or were unstable across the

recording. A total of 48 neurons were included in the data set.

3.3.3 Stimulus design

The stimulus was presented using a digital micromirror device (DMD), illuminated by a

white light source with an ND3 filter, and projected onto the photoreceptor layer of the

retina. We used a minimal amount of light in order to avoid bleaching of photopigments and

achieve longer recording times. Each pixel of the DMD corresponded to ∼ 3.3 µm on the

retina. Stimulus frames were updated at a rate of 120 Hz.

The stimulus consisted of a white bar, 29 pixels wide and extending the length of the

recording area, on a black background. It was animated according to the equation above,

which corresponds to a physical model of a damped harmonic oscillator driven by noise [39].

3.3.4 Mutual information

We used the Bayesian entropy estimator described in [3] to calculate the mutual information

between stimulus and response. The estimator is similar to the NSB estimator [36] but uses

a prior distribution that is more appropriate for sparse neural data. We used the formula

I(X;Y ) = H(X) +H(Y )−H(X, Y ), rather than calculating the conditional entropy, since

it shows better convergence properties in simulations [2]. Here, the response consisted of

binarized neural “words”—patterns of spikes and silences for a group of neurons in a given

8.33 ms time bin (using stimulus frame times as bin edges). The stimulus was either the

identity of the common future for a trial, to calculate Ipast and I future, or the position

of the bar, quantized to 32 approximately uniformly distributed values, to calculate the

instantaneous information. 1000 groups of N cells, where N is one to five, were randomly
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subsampled from the population. We limited ourselves to five cell groups, since larger groups

lead to nonzero information values after shuffling to break the association between stimulus

and response—an indication of bias due to limited data.

3.3.5 Information bottleneck

The information bottleneck method [53] allows us to calculate the maximum amount of infor-

mation about the future that neural responses can contain for a given amount of information

about the past. Since the stimulus positions are jointly Gaussian, we can use the analytic

solution derived in [17]. The solution is just a function of the covariance matrix of past and

future positions, which we calculate from the simulated trajectory.

3.4 Discussion

These results provide strong evidence for the hypothesis that the retina is optimized for

prediction, reinforcing the results of [42], but with the caveat that optimal prediction de-

pends crucially on the statistics of motion governing the stimulus. While [42] demonstrated

saturation of the bound for some groups of cells, the results presented here for statistics

2 are more robust, with the bulk of randomly sampled groups sitting close. Notably, the

stimulus used in [42] followed statistics 1, here. This is suggestive of a species difference

between salamanders and rats, in which salamanders are tuned to motion correlations on

shorter time scales than rats, reflecting their different environments and behaviors. However,

the difference may also be attributed to subtle differences in the stimulus, namely the overall

light level and the polarity of the bar ([42] used a black bar on a gray background rather

than the white bar on black background used here). Further experiments will be required to

determine whether this is in fact a species difference, as well as to determine precisely what

statistics lead to optimal prediction.

In the past, motion anticipation in the retina (the deterministic equivalent to the statis-
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tical results shown here), has been attributed, phenomenologically, to a contrast gain control

mechanism [8, 30]. More biologically realistic models implicate shunting inhibition [27] and,

for a particular RGC subtype capable of accommodating a wide range of velocities, gap

junctions [54]. Regardless of the details of the mechanism, we emphasize that, from a statis-

tical point of view, the essential features of prediction are captured by a biphasic linear filter.

Above we give an intuitive explanation for how biphasic filters can lead to prediction; a more

rigorous treatment of this phenomenon involves calculating the group delay (the derivative

of the phase with respect to frequency) of the filter [58]. Surprisingly simple circuit elements

can give rise to a negative group delay and hence prediction; in [57] the author uses a simple

leaky integrator with delayed feedback inhibition, but we suspect that the largely feedfor-

ward elements of the retina, with different delays, could achieve similar results. This will be

the subject of future work.

One limitation of our results is that, for the fairly small information values we can

calculate directly for small groups of cells, the bound given by the information bottleneck

for the stimulus is just the unity line. For larger values of past information, the slope

gradually decreases, until it plateaus at some maximum value. More convincing evidence of

bound saturation would come from observing values near the “knee” of this curve (values at

the plateau would indicate that the retina is investing too many bits of information about

the past without gaining any additional information about the future). Future work could

address this issue by approximating the information for larger groups of cells, using, for

example, linear decoding [59, 33].
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CHAPTER 4

INTERNAL PREDICTIVE INFORMATION

4.1 Introduction

The difference between efficient coding and optimal prediction boils down to specifying

an optimization problem for the retina to solve. Efficient coding is formulated simply as

maximizing stimulus information given limited neural resources (the total entropy of the

response). Optimal prediction can be formulated as an information bottleneck (IB) problem,

which seeks to compress the stimulus as much as possible while retaining information about

a second relevance variable, in this case the future stimulus. In both cases, the solution

depends critically on the statistical structure of the stimulus.

How do we differentiate between these two coding schemes, particularly for the complex

natural stimuli the brain has evolved to process? We approach this problem by examining

both the statistical structure of a set of natural movies, with an emphasis on their motion

content, and the responses of a population of retinal ganglion cells being stimulated with

these movies. In doing so, we hope to shed light on the statistical dependencies between

past and future stimulus and response.

4.2 Theory

4.2.1 Experimental predictions of competing theories

Given the complexity of both the structure of natural movies and their transformation into

neural spike trains, how can we hope to determine whether the retina is optimized for

prediction or merely efficiency? One approach is to analyze the correlation structure of the

RGC responses and compare it to what would be expected from an idealized model. The

details of this analysis are given in Appendix A. We use the simplest possible model, in

which the response R to a Gaussian stimulus X is the convolution of X with a linear filter
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A with additive Gaussian noise N . In the frequency domain this is simply:

R = AX +N. (4.1)

The filter A is then optimized for a particular objective function. For efficient coding,

we’d like to minimize the overall magnitude of the response (its variance) while maximizing

information transmission. This gives us the objective function

min
|A|2
L = Var(R)− βI(R;X) (4.2)

where β is a parameter that determines how much information is transmitted. Because of

our simplifying assumptions, this problem has an analytic solution:

|A|2 =
β − SN
SX

, (4.3)

where SX and SN are the power spectra of the input and noise, respectively. This solution

is known as a whitening filter because it leads to a flat response power spectrum:

SR = β. (4.4)

For the information bottleneck problem, we instead wish to minimize the information

about the stimulus while maximizing information about a relevance variable Y :

min
|A|2
L = I(X;R)− βI(R;Y ). (4.5)

This leads to the solution

|A|2 =
SN
SX

βγ2
XY − 1

1− γ2
XY

. (4.6)

Here, A is similar to a whitening filter in that the first term inverts the stimulus power
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spectrum. However, the second term scales frequencies according the the coherence between

X and Y , γ2
XY , leaving an output spectrum that is not flat:

SR = SN

(
βγ2

XY − 1

1− γ2
XY

+ 1

)
. (4.7)

In the case of prediction of natural movies, Y is the future stimulus, and we expect γ2
XY to

be large at low frequencies, and hence the the responses should be significantly correlated.

Technically, the analysis above is incomplete for the past-future information bottleneck

problem because it does not require that the solution be causal. A causal solution is one in

which the filter is only a function of past input. This requirement makes the analysis much

less straightforward (although it can still be solved numerically). Since our goal is simply

to provide intuition for what to expect in the correlation structure of neural responses for

the two theories, we end here with the conclusion that efficient coding leads to decorrelated

responses, while for optimal prediction the responses should have correlations that reflect

the predictable features of the stimulus.

4.2.2 Autoinformation

In what follows we make use of the autoinformation, the mutual information between neural

responses in two time bins separated by a delay τ . To better understand this quantity, we

derive an analytical approximation for it that is valid for sufficiently small bin sizes under

suitable assumptions. The details are given in Appendix B. We assume the spikes of each

neuron i are generated by an inhomogeneous Poisson process with rate ri(t), with mean

rate r̄i and auto- and cross-correlation functions ρij(τ). The mutual information I between

binned population spike counts n(t) decreases with the square of the bin size ∆t. We define

the limit of the ratio of mutual information to squared bin size:

I(τ) = lim
∆t→0

I(N(t); N(t+ τ))

∆t2
. (4.8)
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For sufficiently small but finite ∆t, this allows us to recover the autoinformation by multi-

plying I by ∆t2. We take an approach similar to [43] to eliminate terms involving more than

two spikes, and hence any higher-order correlation structure. This yields the surprisingly

simple result,

I(τ) =
∑
i,j

Iij(τ), (4.9)

where

Iij(τ) = ρij(τ) log
ρij(τ)

r̄ir̄j
− (ρij(τ)− r̄ir̄j). (4.10)

Rearranging, we have

I(τ) =
∑
i

[Iii(τ) +
∑
j 6=i
Iij(τ)]. (4.11)

This tells us that, for small bin sizes, the autoinformation for a single neuron is a simple

function of its firing rate autocorrelation; for groups of neurons, the individual autoinfor-

mations sum, along with pairwise contributions that are a function of the cross-correlation.

Thus, it is always easier to predict the activity of groups of neurons than it is to predict

each neuron’s activity individually; the predictability individual neurons add together, and

correlations between cells can only add further predictability.

Applying this approximation to neural data will be the subject of future work. Pre-

liminary results suggest that it fits the autoinformation of individual neurons quite well

at ∆t = 16.7 ms, but overestimates the autoinformation of small groups, suggesting that

higher-order correlations still play a large role at this timescale.

4.3 Results

4.3.1 A conserved autoinformation timescale across stimuli

Now that we have gained some intuition about the predictions of competing theories and the

autoinformation quantity we will use to assess them, it is time to apply these ideas to neural
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data. We make use of a data set consisting of 93 retinal ganglion cells from the larval tiger

salamander responding to 5 different natural movie stimuli (Figure 4.1). In order to learn

about the temporal structure of these movies, we apply two different measures: the contrast

autocorrelation and the novel velocity autocorrelation described in Chapter 2. We find that

contrast correlations extend well beyond 500 ms (Figure 4.2a), while velocity correlations

are significant for approximately 200 to 500 ms (Figure 4.2b).

a b c

d e

Figure 4.1: Stimulus frames. a-e. Example frames from the five natural movie clips used
as stimuli. The movies depict (a) branches, (b) water, (c) leaves, (d) fish, and (e) camera
motion through a wooded environment.

We calculate the autoinformation for 1000 5 cell groups, randomly sampled from the

population, in response to each of the 5 movies. The average autoinformation is different

for each movie (Figure 4.3a), but this is only due to the fact that different movies drive

responses to different degrees; when we normalize by the overall response entropy for each

movie, the curves collapse (Figure 4.3b), suggesting that a common level of predictability in

the responses is maintained despite drastic changes in the input. We rule out the possibility
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Figure 4.2: Statistics of natural movie stimuli. a. Contrast autocorrelation functions.
b. Velocity autocorrelation functions.

that this predictability is due to the internal dynamics of the retina by calculating the

autoinformation in response to a random checkerboard stimulus, which is uncorrelated across

frames; we find that in this case the autocorrelation falls off quickly after 33.3 ms, the frame

duration of this stimulus. Thus, the response autoinformation seems to reflect the structure

of the natural movie input; the timescale of about 200 ms is much shorter than that of

the measured contrast autocorrelation, but roughly agrees with the timescale of velocity

autocorrelation.

Further evidence that the response autoinformation corresponds to the structure of the

input comes from the observation of strong correlations between autoinformation and stim-

ulus information; that is, groups of cells with higher autoinformation also tend to carry

more information about the stimulus (Figure 4.4a). Is this information actually useful for

predicting the future stimulus? While we cannot measure information about the future for

natural movies, we can for the common future stimulus paradigm described in Chapter 3.

We find that the autoinformation is also highly correlated with information about the fu-

ture in this data set (Figure 4.4b). This is an important consideration given that neurons

downstream of retina need to make predictions based entirely on the structure of their input,

37



0 100 200 300 400 500

I(W
t;W

t+
∆

t) 
(b

its
)

0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

branches
water
leaves
fish
camera motion
combined
checkerboard

0 100 200 300 400 500

I(W
t;W

t+∆
t)/

H
(W

t)

0

0.02

0.04

0.06

0.08

0.1
branches
water
leaves
fish
camera motion
combined
checkerboard

33
∆t (ms)∆t (ms)

a b

Figure 4.3: Autoinformation functions. a. Average autoinformation of 1000 5 cell groups
in response to 5 different natural movies and a random checkerboard stimulus. b. As in a,
normalized by entropy.

since they cannot observe the stimulus directly [42].

4.3.2 Competing notions of efficiency

In addition to making different predictions about the correlation structure of responses,

efficient coding and optimal prediction also lead different notions of efficiency by which we

can measure the performance of the retina. The classical definition of efficiency is simply

the fraction of the total response entropy that carries information about the stimulus:

EC =
I(R;X)

H(X)
. (4.12)

On the other hand, the information bottleneck suggests that, given an appropriately defined

relevance variable Y , efficiency should measure how close the relevant information I(R;Y )

comes to the theoretical maximum I(R∗;Y ),

EIB =
I(R;Y )

I(R∗;Y )
, (4.13)
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Figure 4.4: Autoinformation and stimulus information. a. The autoinformation at
different delays plotted against stimulus information for the natural movie experiment. b.
The autoinformation at different delays plotted against I future for the moving bar experiment
in Chapter 2 (statistics 2).

where I(R∗;Y ) is a function of the stimulus information I(R;X).

We find that classical efficiency values for natural movie stimuli are modest (0.32± 0.07

SD) (Figure 4.5a). Once again, we cannot measure the information bottleneck efficiency

for natural movies, so we return to the moving bar experiment. There, we find even smaller

values for the classical efficiency (0.10 ± 0.05 SD), and substantially higher values for the

information bottleneck efficiency (0.52± 0.07 SD) (Figure 4.5b)

4.4 Methods

4.4.1 Experimental protocol

The population recording of retinal ganglion cells responding to natural movies was collected

by Stephanie Palmer and Olivier Marre in the lab of Michael Berry at Princeton University.

The procedure was similar to that described in Chapter 3, using larval tiger salamanders.

See [42] for further details.
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Figure 4.5: Efficiency histograms. a. Histogram of the classical efficiency for 1000 5 cell
groups for the natural movie experiment. b. Histograms of the classical and information
bottleneck efficiency for 1000 5 cell groups for the moving bar experiment.

4.4.2 Natural movie stimuli

Natural movies had a framerate of 60 Hz and were all 20 s long, with the exception of the

‘branches’ movie, which was 10 s long and repeated twice for each trial. All movies were

recorded with a fixed camera with the exception of the ‘camera motion’ movie. Movies were

presented in pseudorandom order. There were a total of about 90 trials for each stimulus.

4.5 Discussion

Our results are consistent with the idea that the retina extracts predictive information from

the stimulus, and that this leads to predictability in the neural responses. However, this may

not be the only reason to find some correlation in the responses. In the scenario where input

noise is high (that is, the input to R is contaminated with noise in addition to the output)

the optimal efficient coding filter should do some smoothing in order to mitigate the effects

of noise [56, 18].

The fact that the internal predictive information is highly correlated with information
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about the future suggests that prediction is indeed at odds with the decorrelation of neural

responses expected from efficient coding. Our formulation of the information bottleneck

problem captures precisely this trade-off between efficiency and prediction. The resulting

optimal filter has a nice interpretation in terms of this trade-off: The first term decorrelates

the stimulus and hence leads to efficiency, while the second amplifies predictive components

by an amount controlled by the trade-off parameter β.

Overall, the results in this chapter are much more indirect than those presented in the

previous chapter, owing to the fact that prediction of arbitrary natural movies is a much

more difficult problem than prediction of the one dimensional motion of a moving bar. We

argue only that our results are consistent with our theory without constituting direct proof.

Future theoretical work will be required to sharpen the predictions of our theory so that it

can be more rigorously compared to efficient coding using experimental data.
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CHAPTER 5

DISCUSSION

Is the retina optimized for prediction? The most direct evidence comes from Chapter 3, in

which we actually measure the information the retina contains about the future trajectory

of a simplified stimulus and compare this to the theoretical optimum. The results depend

strongly on the statistics of the stimulus, which can be summarized by the velocity auto-

correlation function. When the correlation time is short (less than 100 ms) prediction is far

from optimal, and the retina can only tell us about the past stimulus, whereas when the

correlation time is long (about 300 ms), prediction is very close to optimal. These results

make sense in light of the empirical velocity autocorrelation functions we measure in Chapter

2. There we find velocity correlation times of at least 100 ms, with many subjects falling

in the range of several hundred milliseconds. This timescale of several hundred milliseconds

appears to be very important in the context of prediction, since this is also the timescale

on which responses to natural stimuli are correlated, as shown in Chapter 4. While this

does not constitute direct proof of optimal prediction of natural stimuli, it is consistent with

our hypothesis, whereas efficient coding suggests that responses should be as decorrelated as

possible.

Future work will attempt to find what range of stimulus parameters the retina is op-

timized for with finer granularity, in order to determine exactly where optimal prediction

breaks down. Comparison of our results with [42] suggests an interesting species difference,

in which the salamander retina is tuned to motion on a significantly shorter timescale. A

more direct comparison, showing identical stimuli at a range of timescales to the two retinas,

will be needed. We could also attempt to collect and analyze more ethologically relevant

natural movies for the salamander and rat, respectively, in order to determine the source of

this potential species difference.

We have focused here on prediction based on a particularly simple kind of motion—the

translation of objects. While it is true that, locally, any kind of motion can be approximated
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by translation, more complex motions, such as the expansion and contraction caused by

movement through depth, could be identified on a larger spatial scale and used as a powerful

tool for prediction. This would require a more complex model for motion that may be less

applicable to the retina, but selectivity for complex motion has been found, for example, in

the medial superior temporal area of primate cortex [34].

One approach to making more complex predictions is to take advantage of machine

learning techniques. A neural network could be trained to make predictions with a large

database of natural movies. The reduced representation that it learns could then be used

to estimate the amount of predictive information in a natural stimulus, which could then be

compared to neural recordings.

Predicting the future is certainly not the only task of the visual system. The immense

diversity of ganglion cell types in the retina [5] speaks to the range of computational functions

it can perform, and it is worth investigating other choices of relevance variables in the same

framework introduced in Chapter 1. Prediction may be one of the most fundamental tasks

sensory systems perform, and the results presented here suggest that it should be taken

seriously as a design principle for the retina.
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APPENDIX A

THE FREQUENCY DOMAIN INFORMATION BOTTLENECK

Here we solve a constrained version of the information bottleneck (IB) problem [53] in the

frequency domain. Let x(t), y(t) be two zero-mean Gaussian processes with power spectra

SX(f), SY (f) and coherence γ(f). The goal of the IB problem is to find a compressed

representation r(t) of x(t) which retains as much information as possible about y(t). We

restrict ourselves to linear mappings with additive Gaussian noise, n(t) with spectrum SN (f),

i.e.,

r(t) = (a ∗ x)(t) + n(t), (A.1)

where a(t) is the impulse response of the encoding filter and ∗ denotes convolution. The

power spectrum SR(f) of the compressed representation is just

SR(f) = |A(f)|2SX(f) + SN (f). (A.2)

We would like to find the filter a(t) which minimizes the information theoretic cost

function

L = I(x; r)− βI(r; y). (A.3)

To gain some intuition about the results, let’s first solve the simpler problem of maximizing

the information r contains about x while minimizing the entropy of the r, i.e.,

min
a
L = H(r)− βI(r;x). (A.4)

This is a formulation of the classic efficient coding hypothesis that highlights its similarity

to the IB problem. It is a simplified version of a problem solved by van Hateren [56], who
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used a more realistic encoding model with multiple filtering stages and noise sources. Since

the entropy of a continuous variable can be difficult to work with, we use the total power of

r as a proxy for H(r), as in [56], and use the formula for information in a Gaussian channel

[12],

I(X;R) = −
∫

log(1− γXR(f))df, (A.5)

where

γXR =
|SXR|2

SXSR
(A.6)

=
|A|2SX
SR

(A.7)

is the coherence of x and r (SXR = |A|2SX is the cross-spectrum of x and r). The mini-

mization problem becomes

min
|A|2
L =

∫
SRdf + β

∫
log

SN
SR

df. (A.8)

Taking the derivative and setting it to zero, we obtain

∂L
∂|A|2

=

∫
SX − β

SR
SN

SNSX
S2
R

df (A.9)

0 = SX − β
SX

|A|2SX + SN
(A.10)

|A(f)|2 =
β − SN
SX(f)

. (A.11)

We verify this is a minimum by showing that the second derivative is positive:

∂2L
∂|A|4

= β

∫
S2
X

(|A|2SX + SN )2
df (A.12)

> 0. (A.13)
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Thus, the optimal filter is a whitening filter which perfectly decorrelates the input, leaving

filter output that is constant at all frequencies:

SR(f) = (
β − SN
SX(f)

)SX(f) + SN (f) (A.14)

= β. (A.15)

We now return to IB problem, A.3. Using

γRY =
|A|2γSXSY
SRSY

(A.16)

=
|A|2SXγ
SR

(A.17)

we have

min
|A|2
L = −

∫
log

SN
SR

df + β

∫
log

SR − |A|2SXγ
SR

df. (A.18)

We differentiate L and set it to zero:

∂L
∂|A|2

=

∫
SR
SN

SNSX
S2
R

+ β
SR

SR − |A|2SXγ
SRSX(1− γ)− SX(SR − |A|2SXγ)

S2
R

df(A.19)

=

∫
SX
SR

+ β(
SX(1− γ)

SR − |A|2SXγ
− SX
SR

)df (A.20)

0 = (1− β)
SX
SR

+ β
SX(1− γ)

|A|2SX(1− γ) + SN
. (A.21)

Since 0 ≤ γ ≤ 1, 1 − γ ≥ 0. Hence, all of the terms except for 1 − β are non-negative, so
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∂L
∂|A|2

= 0 implies β ≥ 1. Solving for |A|2, we find

(β − 1)
SX
SR

= β
SX(1− γ)

|A|2SX(1− γ) + SN
(A.22)

β

β − 1
SRSX(1− γ) = SX [|A|2SX(1− γ) + SN ] (A.23)

β

β − 1
(|A|2SX + SN )(1− γ) = |A|2SX(1− γ) + SN (A.24)

(
β

β − 1
− 1)(1− γ)|A|2SX = SN [1− β

β − 1
(1− γ)] (A.25)

|A|2 =
SN
SX

1− β

β − 1
(1− γ)

(
β

β − 1
− 1)(1− γ)

(A.26)

|A|2 =
SN
SX

1

1− γ
− β

β − 1
β

β − 1
− 1

(A.27)

|A|2 =
SN
SX

β − 1

1− γ
− β

β − (β − 1)
(A.28)

|A|2 =
SN
SX

β − 1− β(1− γ)

1− γ
(A.29)

|A(f)|2 =
SN

SX(f)

βγ(f)− 1

1− γ(f)
(A.30)

Thus the optimal filter that solves the IB problem is the product (in the frequency do-

main) of a whitening filter and a second relevance filter that is a function of the coherence.

Specifically, the relevance filter amplifies the informative frequencies and attenuates the un-

informative frequencies. For |A|2 to have a positive real solution at a given frequency, we

require β > γ−1(f); otherwise that frequency should be filtered out completely. This is anal-

ogous to the structural phase transitions encountered in the non-dynamical multidimensional

Gaussian case [17]: Increasing β allows us to smoothly capture more and more information

about the relevance variable, starting with the most informative frequencies and working our

way downward. Notably, the response spectrum is no longer white—it is a monotonically
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increasing function of the coherence, subject to a threshold set by β:

SR(f) =


SN

βγ(f)− 1

1− γ(f)
+ SN if γ(f) > β−1,

SN if γ(f) ≤ β−1.

(A.31)
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APPENDIX B

THE AUTOINFORMATION OF A NEURAL POPULATION

A great deal of theoretical and experimental neuroscience research has emphasized the im-

portance of predictive neural computation. Central to the problem of prediction is identifying

the temporal structure in the sequence of action potentials that constitute the input to a

given downstream population. The most general measure of this structure is the mutual in-

formation between population spiking patterns in two non-overlapping bins. Here we study

the behavior of the mutual information in the limit of small bin sizes, assuming that spiking

is an inhomogeneous Poisson process with correlated rates.

Let r(t) =

[
r1(t) . . . rk(t)

]ᵀ
denote the instantanous firing rates of the population

of k neurons, and let n(t) =

[
n1(t) . . . nk(t)

]ᵀ
be their spike counts in the interval

[t − ∆t/2, t + ∆t/2]. We assume the firing rates are stationary and have (unnormalized)

auto- and cross-correlation functions given by

ρij(τ) = E[ri(t)rj(t+ τ)]. (B.1)

Note that these correlation functions are identical to the limiting values of the binned spike

train correlation functions, normalized by ∆t2 (Theorem 1 in [28]),

lim
∆t→0

E[ni(t)nj(t+ τ)]

∆t2
= ρij(τ) (B.2)

(except where the limit diverges at τ = 0 for i = j), which provides a means of estimating

them from data. The normalization by ∆t2 is necessary because lim∆t→0 E[ni(t)nj(t+τ)] =

0. The same is true of the mutual information; thus, we are interested in examining the

behavior of the following function, which we call the autoinformation:

I(τ) = lim
∆t→0

I(N(t); N(t+ τ))

∆t2
(B.3)
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where

I(N(t); N(t+ τ)) =
∑

n(t),n(t+τ)

p(n(t),n(t+ τ)) log
p(n(t),n(t+ τ))

p(n(t))p(n(t+ τ))
. (B.4)

Our approach to solving (B.3) is similar to that of [43]. Note that in [43], the authors find

a second order expansion of the mutual information that holds for sufficiently small ∆t;

here we equivalently find the limit (B.3), from which we can recover the mutual information

(B.4) at sufficiently small ∆t simply by multiplying by ∆t2. When ∆t is small, Ni(t) will

be approximately a Bernoulli distributed binary variable with p(Ni(t) = 1) = ri(t)∆t and

p(Ni(t) = 0) = 1 − ri(t)∆t, which we will use to calculate the distributions in terms of the

rates, r. We denote the binary vector in which a subset of neurons S ⊆ K = {1, . . . , k}

spikes and all others are silent by eS . The joint probability of two such vectors is

p(eS1 , eS2) = . . .

E[
∏
i∈S1

ri(t)∆t
∏

i∈K\S1

(1− ri(t)∆t)
∏
i∈S2

ri(t+ τ)∆t
∏

i∈K\S2

(1− ri(t+ τ)∆t)]. (B.5)

For s = |S1|+ |S2| total spikes, the joint distribution is a sum of terms scaling with power of

∆t, from ∆ts to ∆tk. When s > 2, lim∆t→0 p(eS1 , eS2)/∆t2 = 0. Thus, the only response

patterns that will contribute to the autoinformation are those with zero, one, or two spikes.

We denote these patterns 0 = e∅, ei = e{i}, and eij = e{i,j}. We see that the two spike

patterns also do not contribute: using O(x) to denote terms of order x and smaller, the

probabilities are

p(eij ,0) = ρij(τ)∆t2 +O(∆t3), (B.6)

p(eij)p(0) = ρij(τ)∆t2 +O(∆t3), (B.7)

so

lim
∆t→0

p(eij ,0)

∆t2
log

p(eij ,0)

p(eij)p(0)
= 0. (B.8)
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The remaining terms of the autoinformation converge to finite values as follows. For the

case of zero spikes in both bins we have

p(0,0) = 1− 2
∑
i

r̄i∆t+ 2
∑
i<j

ρij(0)∆t2 +
∑
i,j

ρij(τ)∆t2 +O(∆t3), (B.9)

p(0)p(0) = 1− 2
∑
i

r̄i∆t+ 2
∑
i<j

ρij(0)∆t2 +
∑
i,j

r̄ir̄j∆t
2 +O(∆t3), (B.10)

where r̄i = E[ri]. To calculate the limit, we begin by using the approximation

log (1− x) ≈ −x. (B.11)

which holds for small x. Here,

x = 1− p(0,0)

p(0)p(0)
=

∑
i,j [r̄ir̄j − ρij(τ)]∆t2

p(0)p(0)
+O(∆t3) (B.12)

which leads to

lim
∆t→0

p(0,0)

∆t2
log

p(0,0)

p(0)p(0)
=
∑
i,j

[ρij(τ)− r̄ir̄j ]. (B.13)

For a spike in the first time bin and not the second, we have

p(ei,0) = r̄i∆t−
∑
j 6=i

ρij(0)∆t2 −
∑
j

ρij(τ)∆t2 +O(∆t3), (B.14)

p(ei)p(0) = r̄i∆t−
∑
j 6=i

ρij(0)∆t2 −
∑
j

r̄ir̄j∆t
2 +O(∆t3), (B.15)

which, by the same procedure, yields

lim
∆t→0

p(ei,0)

∆t2
log

p(ei,0)

p(ei)p(0)
=
∑
j

[r̄ir̄j − ρij(τ)]. (B.16)

The same equation holds for a spike in the second time bin and not the first. Finally, for
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one spike in each time bin,

p(ei, ej) = ρij(τ)∆t2 +O(∆t3), (B.17)

p(ei)p(ej) = r̄ir̄j∆t
2 +O(∆t3), (B.18)

and calculation of the limit is straightforward:

lim
∆t→0

p(ei, ej)

∆t2
log

p(ei, ej)

p(ei)p(ej)
= ρij(τ) log

ρij(τ)

r̄ir̄j
. (B.19)

Finally, to calculate B.3, we must take the sum over all the contributing patterns, i.e., B.13,

plus two copies of B.16, summed over neurons i, plus B.19, summed over all combinations

of neurons i, j. All of the terms are double sums over i and j, yielding

I(τ) =
∑
i,j

Iij(τ). (B.20)

where

Iij(τ) = ρij(τ) log
ρij(τ)

r̄ir̄j
− (ρij(τ)− r̄ir̄j). (B.21)

After some rewriting, we see that each cell contributes its own autoinformation plus the

information it carries about each other cell in the population:

I(τ) =
∑
i

[Iii(τ) +
∑
j 6=i
Iij(τ)]. (B.22)

The fact that the total autoinformation decomposes this way tells us something about the

redundancy of the population autoinformation in this limit. Redundancy is the difference

between the sum of the information that the individual cells carry about the population and

the total autoinformation, but as we see above, these two quantities are identical, so the

redundancy must go to zero in the limit.
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