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ABSTRACT

For a variant to have a causal effect on an organism-level trait, there must be a chain of causal
events starting with the DNA-sequence, proceeding through one (or more often many) molec-
ular intermediates in a functional pathway before it is observable at the organism level. The
causal influence of a variant on a trait is, unfortunately, neither necessary nor sufficient for a
variant to appear to be statistically associated with a trait in an association study, and spurious
association of genotype and phenotype is not uncommon. It is for this reason that much of
the hard work of a genetic association study begins after the association statistics have been
generated. The true goal of the genetic association study is not simply to identify the genetic
variation that most correlates with phenotype, but to try to identify the set of variants whose
correlation with the trait of interest are driven by causal relationships, rather than by coin-
cidence or confounding. In this dissertation I discuss three strategies for relating genotype
to phenotype based on the results from genetic association studies. I first discuss the method
FGEM, which combines the output from gene-based association tests with gene-level annota-
tion data to both estimate the enrichment of the annotations and re-prioritize genes based on
those enrichment estimates. I find that FGEM’s joint modeling of gene-level association data
with gene-level annotation data is a powerful approach for identifying enriched pathways.
Furthermore, I find that identification of enriched pathways can be used to identify additional
causal genes. Next I describe my method for heritability estimation from summary statistics,
RSSp. RSSp uses GWAS summary statistics and an estimate of pairwise Linkage Disequilib-
rium (LD) to estimate narrow-sense heritability (1?). 1 find that RSSp estimates heritability
in polygenic traits from GWAS summary statistics and a reference LD panel with accuracy
comparable to in-sample methods. Finally, I discuss my efforts in discovering risk genes for
preterm birth via fine-mapping GWAS summary statistics. I find that disease-relevant func-
tional genomic annotations are useful for improving statistical fine-mapping. Using this ap-
proach I identified new genes not (directly) implicated from GWAS alone.
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CHAPTER 1

INTRODUCTION

Decades of population genetics theory and statistical genetics evidence have demonstrated
that for any complex human trait, common sequence-level variation at the vast majority of
genetic loci has a small effect on that trait. As a consequence, the statistical association signal
at the majority of these loci, taken individually, is difficult to distinguish from random noise. At
the same time, countless loci have been identified, through rigorous statistical genetics and in-
creasingly, through functional validation, as containing variants causally-linked to hundreds
if not thousands of traits[11]. For a variant to have a causal effect on an organism-level trait,
there must be a chain of causal events starting with the DNA-sequence, level change, proceed-
ing through one (or more often many) molecular intermediates in a functional pathway[1],
before it is observable at the organismal level. The first link in this chain connects the causal
variant to the gene. We can broadly categorize variant to gene causal relationships, coding
and non-coding. By virtue of the mapping of the human genome and our knowledge of the
central dogma of molecular biology [23], by knowing the position and sequence of a variant
one can immediately know with the variant lies within an exon (or splice-site boudary) of a
characterized gene. If so, it is a simple bioinformatic exercise to ascertain the consequence
of the change in DNA sequence on primary (and increasingly secondary and tertiary) amino
acid structure[2]. The functional consequence of the majority of human genetic variation falls
into the second category of variant to molecular-intermediate causal relationships[58]. This
second category consists of all other mechanisms of causality, perhaps the best understood
of which are the "regulatory variants”. Unlike the relationship between protein coding DNA,
RNA and protein, which is essentially universal among living things[22], the relationship be-
tween a variant outside of a coding region and the gene through which the variant acts can
be extremely variable[30]. Indeed, the ability for the cell to regulate gene expression relies on

the dynamic nature of gene regulatory elements[82], and in multi-cellular organisms, the ac-
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tivity of gene-regulatory elements varies not just across time, but also across tissue[30]. Con-
structing a putative path from genotype to a phenotype with a cell-type specific etiology for a
non-coding variant (or set of variants) requires accounting for this complexity.

The causal influence of a variant on a trait is, unfortunately, neither necessary nor suffi-
cient for a variant to be associated with a trait. It is not uncommon for variants that appear
highly correlated with a trait to be spuriously associated[48]. It is for this reason that much of
the hard work of a genetic association study begins after the association statistics have been
generated. The true goal of the genetic association study is not simply to identify the genetic
variation that most correlates with phenotype, but to try to identify the set of variants whose
correlation with the trait of interest are driven by causal relationships, rather than by coinci-
dence or confounding. A common first step in the identification of the genetic variants that
contribute to variation in a trait is a Genome-wide association study (GWAS). In a GWAS, tens
of thousands, or increasingly, hundreds of thousands of individuals are genotyped and phe-
notyped, and the millions of loci that commonly vary in the sample are queried for their as-
sociation with a trait of interest. To identify variants causally related to a trait of interest it is
necessary that such variants exist, which is to say that the trait must be heritable. GWAS, and
the summary statistics they generate, provide a genome-wide view of individual variant-gene
association, but as a consequence of the correlation between variants induced by linkage dis-
equilibrium (LD), it can be difficult to pinpoint the individual causal variants, the genes these
causal variants act through, as well as the total genetic contribution of causal variants to vari-
ation in the trait of interest.

In this dissertation I will discuss three strategies for relating genotype to phenotype. In
the second chapter I outline the method FGEM, which combines the output from gene-based
association tests with gene-level annotation data to both estimate the enrichment of the an-
notations and re-prioritize genes based on those enrichment estimates. I then employ FGEM

to the task of identifying mutational cancer driver genes, using gene-level Bayes factors from



the recently published driverMAPS method[96], combined with gene-level annotation from
the Gene Ontology[83]. Taken together, the recurrently enriched biological processes identi-
fied by FGEM recapitulate the hallmarks of cancer[37]. FGEM further implicates several bi-
ological processes as being relevant in a subtype-specific manner. Using these enrichment
estimates, FGEM identifies cancer genes that are either known cancer genes from the litera-
ture, but missed by driverMAPS, known cancer genes in other cancer types but implicated in
a new cancer type, and a few genes not previously known to be cancer genes in any cancer
type.

In the third chapter I describe my method for heritability estimation from summary statis-
tics, RSSp. RSSp uses GWAS summary statistics and an estimate of pairwise Linkage Disequi-
librium (LD) to estimate narrow-sense heritability (h?). RSSp is based on the previously pub-
lished Regression with Summary Statistics (RSS) likelihood[98] — by using an infinitesimal
prior and by modeling z-scores rather than regression coefficients, a form of the marginal-
ized likelihood is revealed that is very fast to compute, and thus, to optimize. To evaluate
the performance of RSSp compared to existing methods for heritability estimation I employ
a large-scale GWAS simulation. In simulations across a variety of genetic architecture, based
on real genotypes from the UK biobank[81], I show that RSSp estimates h? better than the
widely used LD score regression[10] — outperforming in terms of both bias and variance —
and I show how RSSp performs comparably to a method for heritability estimation based on
individual-level data (i.e GCTA). I additionally discuss considerations in matching a reference
LD panel to a GWAS.

In the fourth chapter I describe my efforts at incorporating functional annotations with
GWAS data to identify causal genes in the context of preterm birth (PTB). PTB is believed to
be responsible for approximately 1 million deaths globally, and is believed to be the leading
cause of death for children under 5[50]. While several loci have been associated with the risk

of PTB, the causal variants in these loci remain unknown. I first assessed enrichment of GWAS



signals of gestational duration in functional annotations of variants in pregnancy related cell
types. I then took advantage of this enrichment to perform Bayesian statistical fine-mapping
using susie[85]. Using this strategy we are able to identify new gestational duration associ-
ated variants that would not have been identified without the functional information. The
fine-mapped causal variants were then linked to genes using a combination of promoter-
capture HiC from the cell type(s) of interest, variant locations relative to genes (e.g. inside
coding or UTR sequences), and distance information. The genes we identified were signif-
icantly enriched both for genes differentially expressed between endometrial mesenchymal

stem/stromal cells and differentiated decidual stromal cells.



CHAPTER 2
FGEM: A BAYESIAN METHOD FOR GENE DISCOVERY THAT INTEGRATES

FUNCTIONAL INFORMATION ABOUT GENES

2.1 Introduction

Geneticists often aggregate genetic evidence of variants within a gene to test if the gene is re-
lated to a trait of interest. These gene-level tests are among the most powerful and commonly
used tools in the geneticists’ toolkit for relating genotype to phenotype. Gene-based tests have
been used in many contexts, including Genome-wide association studies[26], Transcriptome-
wide association studies[33], rare variant analysis from exome sequencing studies[44, 90], rare
variant analysis in family data[39], and cancer driver gene discovery using somatic mutations[96].
In fact, almost all methods for genetic analysis that use very rare mutations, including de novo
germline and somatic mutations, are gene-based, as it is almost impossible to identify indi-
vidual causative mutations[51, 59].

There are several advantages to performing gene-level tests using a Bayesian framework.
Variants inside a gene often have very different functionalities, e.g. nonsense mutations can
be highly deleterious while missense mutations can have very different effects depending on
where they are located. Similarly, for tests that combine different types of variants in a gene,
such as common and rare variants, it is important to consider different effects of these vari-
ants, with rare variants generally having more deleterious effects. While frequentist methods
in theory can use different weights for different groups of variants in the test[44], it is diffi-
cult in practice to know what weights should use. Bayesian statistical framework allows re-
searchers to effectively combine evidence of different sets of variants, by using different effect
size distributions. Importantly, these distributions can be estimated from data using Empir-
ical Bayes methods or by fully Bayesian Inference with MCMC[63]. The power of a Bayesian

approach to gene-based analysis has been demonstrated in very different contexts. Transmis-
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sion and De novo Association test (TADA) and its extensions[39] are widely used to analyze
variants from sequencing studies in parent-child trios, by effectively combining de novo and
inherited variants to improve the power. DriverMAPS is a recently developed method for iden-
tifying signatures of positive selection in cancer driven genes, with the strength of selection
varying across positions in a gene depending on functional information of the positions[96].
The results of Bayesian gene-based analysis are often summarized as Bayes factors, which
compares the model where the gene has an effect on phenotype (causal model) vs. non-causal
model.

A common follow-up after identifying a set of putative causal genes is pathway analysis,
which tests if certain biological pathways are enriched in these genes[99][15][49]. This ap-
proach is supported by the evidence that the functions of genes underlying complex traits,
including cancer, often converge on certain biological processes[86]. In the simplest form,
pathway analyses apply a cutoff on trait-associated genes, and then use Fisher’s enrichment
test for pathways overrepresented in the genes that pass the cutoff. More sophisticated anal-
yses compare the distribution of trait associations in genes in a pathway to those outside the
pathway. Pathway analysis is an important tool for geneticists to learn possible biological
mechanisms by which the putative causal genes may act to influence the trait of interest. This
information can provide guidance in deciding on which genes are the most likely to replicate,
and most worthy of follow-up[42].

Gene-level tests and pathway analysis are generally treated as separate problems. There
are compelling reasons to combine the two, using the pathway enrichment results to set infor-
mative priors in Bayesian gene-level tests. Conceptually, if a gene belongs to a disease-related
pathway, then a priori, the gene is more likely to be a disease gene. Incorporating this prior
would thus improve our power to identify disease risk genes. This possibility has been demon-
strated in earlier work on GWAS variant-level analysis. In fgwas, for example, a variant is an-

notated by functional information such as conservation and enhancer marks, and the method



learns the enrichment of these annotations in putative causal variants and uses these results
to set prior probabilities of association of variants[66]. Similar ideas have also been used for
gene-based analysis in GWAS, where gene annotations are based on pathways[15][100]. All
these methods, however, are specifically designed for GWAS, and cannot be used for other
gene-based analysis, e.g. those based on rare variants or somatic mutations. Additionally, for
the gene-based GWAS analysis, they can only incorporate a prior derived from a single anno-
tation, while in reality, multiple pathways/annotations may be informative.

We propose a method for combining gene-level evidence, as summarized by Bayes fac-
tors, with one or more gene-level annotations to jointly estimate the global enrichment of the
annotations, and to re-estimate a gene-level posterior conditional on the estimated enrich-
ment. We call this method FGEM. The method is easy to use, requiring only a set of Bayes factors
from gene-level analysis and functional annotations of the genes. This generality makes the
method, and our software, useful for a wide variety of settings. FGEM is related to frequentist
methods that control false discovery rate or family-wise error rate while weighing different
hypothesis using external information[91][92][94]. However, these methods cannot be ap-
plied to the Bayesian setting, which, as we argued, has advantages in gene-based tests. We
demonstrate the power of the FGEM model by applying it to the problem of identifying muta-
tional cancer driver genes. We use the gene-based Bayes factors generated by the driverMAPS
method, as applied to 18 cancer types from The Cancer Genome Atlas (TCGA) data[8][96], and

use the Gene Ontology Biological Processes as gene-level annotations.

2.2 Method

2.2.1 FGEM Model

FGEM uses an empirical Bayes approach to construct the a priori probability that a gene is

causal, based on the annotations of genes. The method uses genetic data (summarized as



gene-level Bayes factors or likelihood ratios) and a set of gene-level annotations to inform
which annotations are relevant and to what extent.

For each gene g € {1... G}, let the indicator variable z, = 1 denote that gene g is causally
related to the trait or disease of interest. The evidence for and against the hypothesis that

zg =1 can be summarized using a Bayes factor:

nepoe)
§'°8

where x is the subset of a length G vector of genetic data corresponding to the g-th gene.

Let F be the number of features for which functional annotations are available for each of
our G genes. Let ag denote the length F vector of annotations for gene g, and A denote the
matrix with F rows and G columns consisting of a;...ag We define the prior probability of z¢
as a logistic function of the annotations of g, and we include a parameter we will refer to as
the "intercept”, fy:

1

n(B,ay) = P(zy = 1|ag, fB) = (2.1)
4 4 4 1+ e_(ﬁ0+Z]F“:1Afvgﬁf)

The likelihood of § is computed by treating the data from each gene as coming from a two-

component mixture model (where zg = 1 and where z, = 0) and marginalizing over the two

components:
G G
PxIB,A) = [] PlxglB) = [] n(B,ag)P(xglzg = 1)+ (1 -7 (B,ag))P(xglzg = 0)]
g=1 g=1

By factorizing out the term ngl P(xglzg = 0) (which does not depend on ), the likeli-

hood for B (up to a constant of proportionality) can be expressed in terms of B:



G
PxIB,A) o [][m(B,ag)Bg +(1—m(B,ag))] (2.2)
g=1

Given a particular value of §, and a bayes factor Bg, the posterior probability that zg = 1is

given by:

n(p,ag)Bg
Jt(,B,ag)Bg +1- Jt(,B,ag)

P(Zg = llBg)ﬁ’ ag) = (23)

The goal of the FGEM method is to simultaneously estimate the enrichment f for a rel-
evant set of features and the gene-level posterior probability P(Zg = 1lag, f,xg) that each
gene is causally related to the trait of interest. FGEM estimates § by maximizing the log-
likelihood, given by Equation 2.2. Given an estimate of f it is straightforward to compute
P(Zg = 1|ag, B, xg) based on Equation 2.3.

When the number of annotations is large, it is impossible, from both a computationally
and interpretability standpoint, to include all features in the model. Furthermore, as the num-
ber of features in the model increases, the probability that some subset of features will be
collinear with one-another increases, which can complicate model-fitting, as f becomes uniden-
tifiable. This is especially important when a binary, hierarchical feature set like the Gene
Ontology. To avoid these issues, FGEM maximizes the penalized log-likelihood, in a multi-
stage feature-selection and model fitting procedure. In the first step, all single-feature-plus-
intercept models are fit, and a p-value is obtained for each model by comparing the single-
feature-plus-intercept model to the intercept-only model via the likelihood ratio test. From
this set of single-feature models, all of the nonsignificant (i.e. features with Benjamini-Hochberg
adjusted $p$-values greater than 0.05) features were removed from the analysis.

In the second step, significant features passing the filter were combined in a joint model
and fit by maximizing the log-likelihood, penalized with an elastic-net penalty. The Limited

Memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LM-BFGS)[13] is among the most pop-



ular algorithms for unconstrained optimization over scalar, differentiable functions, and while
suitable for the un-penalized single-feature plus intercept models, cannot be used in the pe-
nalized setting without modification. One limitation of LM-BFGS, is that the function that
is being optimized must be differentiable. Unfortunately, sparsity-inducing [; -regularized

models of the form:

fO) =p@x)+Clol,

are not differentiable when any of the elements of the parameter vector (0) are 0[35]. The
Orthant-wise limited-memory quasi-Newton method is a variant of LM-BFGS which is de-
signed precisely for fitting L, -regularized, sparsity inducing models. FGEM utilizes the Orthant-
wise LM-BFGS algorithm to maximize the marginalized likelihood in the presence of a non-
zero [} penalty.

One well-known problem with L; penalty is that it encourages both sparse models and
shrinks the parameters. The two goals may conflict with each other. When the number of fea-
tures/parameters is large, a large L; penalty may be needed to remove noisy features, but then
it may shrink the parameters of the true features too much, leading to sub-optimal parameter
estimates and prediction performance. This has motivated the relaxed lasso procedure[38],
and has been adopted by the widely used R glmnet package. The relaxed Lasso procedure
typically starts with standard Lasso to select feature, but in the next step, refit the model us-
ing only selected features with a smaller (or no) penalty to shrink parameters. Our procedure
here is a relaxed version of elastic net. Specifically, in the first step, the objective function
corresponding to the negative of the elastic-net penalized log-likelihood:

l-a & ul
~ZL(B;AX) + A T];,sz +a ; 161

J
is minimized, where Z(5;A,X) = Zgzl [log (n(ﬁ, ag)Bg + (1 -7m(B, ag)))].
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The overall level of sparsity in the model is controlled by the parameter A, while the pro-
portion of /; vs I, penalty is determined by a. For this first step FGEM uses a default value of
a = 0.95, corresponding to a higher /; penalty relative to the I, penalty, which has the effect
of encouraging sparsity in the model.

In the second step, features with fy = 0 are removed from the analysis, and the model is

refit with an /5, penalty only.

F
~L(B;AX) + A (y Z ﬁ]z)

j=1

The hyperparameter y allows for a stronger or weaker /, penalty in the second step as com-
pared to the first step, but by default is set to 1 — «, yielding the same [/, penalty as in the first
step.

The optimal value of A is chosen using 10-fold cross-validation over 100 values of A, starting
atzero, and ending at A,,,x, equally spaced on alogscale. A,,,,x is defined as the smallest value
of A which yields a = 0 (excluding the intercept) from the elastic-net fit. For each of the 10
training-testing cross-validation splits, the two stage FGEM model is fit for each of 100 values
of A on the training set. The B from the two-stage fit is used to calculate the (unpenalized) log-
likelihood on the testing set. The optimal A is the A with the highest testing-set log-likelihood

summed over all 10 cross-validation folds.

Comparison with Fisher’s Exact test

In the case of a single binary feature, one can apply a Bayes Factor cutoff to obtain a contin-
gency table and assess the enrichment of the feature using Fisher’s Exact test. We compared
FGEM with Fisher’s exact test, using an FDR cutoff 0of 0.1, and compared the p-values to those

obtained from the single-feature, likelihood ratio test FGEM p-values.
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2.2.2 Genetic Data from The Cancer Genome Atlas and driverMAPS

The Cancer Genome Atlas (TCGA) is a resource consisting of data on over 20 cancer types,
gathered from thousands of individuals[8]. For several cancer types TCGA data include high
coverage, whole-exome sequencing data for both the patient’s solid tumor and matched adja-
cent normal tissue. By aggregating the somatic mutation data across multiple individuals with
a particular cancer type, one can identify a set of genes that undergo somatic mutation at a
frequency higher than expected by chance. For each of 18 TCGA cancer types, we used 20,848
gene-level Bayes factors obtained from running the statistical method driverMAPS, a recently
developed Bayesian method for identifying driver genes, as input to the FGEM model. After
obtaining the total set of gene-level Bayes factors, we eliminated “blacklisted” genes known to
have mapping problems[74], as well as Olfactory Receptors, which are known to have mappa-
bility problems — one survey assessing the mappability of genes in the human genome found
that the fraction of mappable reads for genes in the olfactory receptor family is at least 10%

lower than the average-protein coding gene.[27].

2.2.3 Gene-Level Annotations using Gene Ontology

The "Biological Process” gene sets from the Gene Ontology were obtained using the Biocon-
ductor package GO.db[16]. Of the 10,930 possible biological process gene ontology terms, the
2,198 terms that include 10 or more genes were deemed eligible for incorporation in this anal-
ysis, so as to reduce the multiple testing burden, and to ensure that we were well powered to
accurately estimate the enrichment of each term included in the analysis. Each gene ontol-
ogy term was encoded as a binary, gene-level feature using an indicator variable to indicate a

gene’s association with the corresponding term.
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2.2.4 Validation of predicted cancer genes using external resources

IntOGen is a database of cancer driver genes[36]. It is populated by an ensemble method
that incorporates seven different methods for identifying cancer driver genes. It weights each
of the 7 methods according to their ability to predict membership in the The Catalogue of
Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC)[75], making it a useful
resource for benchmarking methods for identifying cancer genes. The database provides the
dataset in which the driver gene was identified. After removing IntOGen driver genes that
were identified in TCGA, we evaluated the performance of FGEM by computing the average
increase in the gene-level posterior of the FGEM functionally informed model as compared to
the uniform model for IntOGen driver genes and compared it to the average increase in genes

not in the IntOGen database.

2.2.5 FGEM Software Package

Our method is distributed as a freely available R package[68] FGEM, which is available at the
GitHub repository https://github.com/CreRecombinase/FGEM. In addition to the imple-
menting an optimized version of the FGEM likelihood itself, the package also has functional-
ity for both single-feature (single-annotation) and multi-feature (multiple annotation) model
fitting. FGEM relies on both the ReppEigen[3] and StanHeaders R packages for efficient com-

putation of the likelihood and its gradients, which are passed to the optimizer routine.
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2.3 Results

2.3.1 A probabilistic framework for gene-set enrichment and gene

prioritization applied to cancer gene discovery

Our approach is outlined in Figure 2.1. In brief, we combine gene-level Bayes factors sum-
marizing the hypothesis that a gene is causally related to a trait of interest with gene-level
annotations about that gene to identify the properties causal genes are likely to have, and si-
multaneously re-estimate the gene-level posterior probability that the gene is causal. Let Zg
be and indicator variable with Z, = 1 indicating that gene g is causally related to the trait of in-
terest, and Zg = O indicating thatitis not. While Zg is unobserved, the evidence for and against
Zg =1, as calculated by a gene-based test on some body of genetic evidence, is summarized
by the Bayes factor for that gene Bg. FGEM incorporates gene-level annotation, represented
as an F (the total number of gene-level features) by G (the total number of genes) matrix A.

FGEM relates Zg to A through a length F enrichment parameter f. For a particular gene g,

P(zg = llag,p) = ) -(ﬁo+21]’f=1Af,gﬁf)' This relationship between feature and and response is
analogous to a logi;t‘iec regression on a latent variable (Z). The procedure for model fitting is
described in the Methods section 2.2.

Under the single-feature FGEM model, in which each feature is considered one at at time,
if the value of 5 for a binary gene-level annotation is greater than 0, this indicates that genes
with this annotation have a higher probability of being causal to the trait of interest than back-
ground genes. It is also possible for the estimate of § to be less than 0, indicating that the
genes with the annotation have a lower probability of causal association than random genes.
The statistical significance of a single feature is assessed using the likelihood ratio test, testing
if B = 0, from which p-values were calculated.

For a particular value of § (and A), we can compute a new value for P (Zg = 1|A, p). We refer

to the value of 3, as the enrichment of feature a. For each of the 18 TCGA cancer types, we fit
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a single-feature model for each of the 2,657 Biological Process related GO terms. We refer to
the value of § for each feature when fit one at a time as single-feature enrichment. Significant
features for each cancer type were then jointly fit for each cancer type. The estimated value of
B for each feature under this model is referred to as the multi-feature enrichment, and the pro-
cedure for obtaining multi-feature enrichment estimates is described in the Methods section

2.2.1.

2.3.2 Recurrent enriched annotations reflect the hallmarks of cancer

After removing Gene Ontology Biological Process features with a small number of annotated
genes, there were 2,657 features. Evaluating the enrichment of each of these features in a
single-feature fashion with the 18 TCGA cancer types resulted 47,826 single-feature enrich-
ment estimates. We first evaluated the number of significantly enriched features, stratified by
cancer type. With a false discovery rate (FDR) of 0.01, all cancer types but KIRP and UCS had
at least one (i.e. 16 out of 18) significant association, with HNSC having the most, at 38 (Table
2.1). With a relaxed FDR of 0.15, all 18 cancer types had at least one significantly associated
feature (Table 2.1). In all cancer types analyzed, all features with enrichments significantly
different from 0 (at all tested FDR) were positively enriched.

We next compare our single feature analysis with a simple Fisher’s exact test, which uses
a cutoff to define candidate genes, and tests enrichment of a pathway in all genes passing the
cutoff. Overall, we see clear correlation of the results of these two tests (Figure 2.3), however,
one notable difference is that a number of features with small p-values by FGEM single feature
model have p-values equal to 1 under FET - see the data points close to the vertical y-axis in
Figure 2.3. This counter-intuitive results can be explained by the fact that with a hard cutoff,
many gene sets will have no genes passing the cutoff, so will be missed by FET, having p = 1
under FET. Since FGEM treats gene status z, aslatent variable to be marginalized out, avoiding

the hard cutoff, it is possible to identify these gene sets.
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cancer | FDR=0.01 | FDR=0.05 | FDR=0.1 | FDR=0.2
HNSC 38 95 122 209
LUAD 31 77 111 190
BLCA 26 51 67 110
UCEC 22 52 92 141
GBM 20 42 55 99
CESC 14 36 67 115
PAAD 11 22 32 54
BRCA 8 26 37 82
LIHC 8 33 55 95
LUSC 4 11 24 53
PRAD 3 15 50 131
SKCM 3 8 14 26
KIRC 2 2 14 53
ESCA 1 13 31 54
SARC 1 8 14 29
TGCT 1 8 15 27
KIRP 0 0 0 6
UCS 0 4 20 23

Table 2.1: Number of significantly enriched features in single-feature enrichment test at four
False Discovery Rates.

We identified a set of recurrent features: features that were significantly enriched in more
than one cancer type. We characterized 161 Gene Ontology features as significantly enriched
in more than one cancer type, and 50 features were significantly enriched in 5 or more cancer
types. The top features ranked by the number cancer types in which the feature was enriched
2.2 recapitulates almost all of the 10 “Hallmarks of cancer” [37]. The feature with the high-
est mean (and median) enrichment is GO:2000774, positive regulation of cellular senescence,
with a median enrichment estimate of 5.458, and a mean enrichment estimate of 7.91. This
feature is important for tumorigenesis: mutations in genes that prevent cells from entering
oncogene induced cellular senescence (especially those related to the ARF/TP53 pathway)
are essential for progression of almost all cancers[18]. Two most recurrent features, those en-
riched in the largest number of cancers, include: GO:0007265 (Ras protein signal transduc-

tion) and GO:0008285, negative regulation of cell population proliferation (Table 2.2). Onco-
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genic Ras, and members of the Ras signaling pathway, have been implicated in several other

cancer hallmarks[67]. Negative regulation of cell population proliferation, like positive regu-

lation of cellular senescence, is key to preventing uncontrolled cell growth, a defining feature

of cancer|[37].

GOTerm Average S No. significant Description
GO:0007265 3.28 12 Ras protein signal transduction
GO:0008285 229 12 negative regulation of

cell population proliferation
GO0:0019221 2.63 11 cytokine-mediated signaling pathway
G0:0010628 2.34 11 positive regulation of gene expression
GO0:0032228 5.60 10 regulation of synaptic transmission, GABAergic
GO:0010666 422 10 positive regulationof

cardiac muscle cell apoptotic process
G0:0051402 3.17 9 neuron apoptotic process
GO:2000134 294 9 negative regulation of G1/5

transition of mitotic cell cycle
G0:0007050 2.51 9 cell cycle arrest

) positive regulation of transcription,

G0:0045893 2.02 9 DNA-templated
G0:0043276 5.25 8 anoikis
GO:2000379 4.92 3 positive regu.latlon of regctlve

oxygen species metabolic process
GO0O:0043491 3.57 8 protein kinase B signaling
GO:0043542 3.07 8 endothelial cell migration
G0:0000165 2.66 8 MAPK cascade

Table 2.2: Top features of mutational cancer driver genes from single-feature enrichment anal-
ysis. Features are ranked by the number of cancer types in which the feature was significant at
(FDR-adjusted) p < 0.1, and then by the average enrichment estimate among all cancer types.
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2.3.3 FGEM integrates multiple gene-level annotations to re-prioritize

mutational driver genes

We applied the full FGEM model to 18 cancer types, and used the estimated parameters to
compute posterior probabilities of all genes. To evaluate the results, we take advantage of
IntOGen, a database of cancer driver genes that is populated by an ensemble method that
incorporates seven different methods for identifying mutational driver cancer genes. To check
whether FGEM re-prioritization improved prediction of cancer driver genes, we compared
the posterior probabilities of IntOGen validated genes vs. the posterior probabilities under
the uniform model (intercept only). In every cancer type, validated cancer genes have higher
posterior under the functional model as compared to the uniform model, and genes that were
not previously identified as cancer genes in IntOGen had on average lower functional posterior
compared to uniform (Table 2.2).

Aftervalidating that FGEM improves the power to detect mutational driver genes we turned
our attention to which genes increased the most as a consequence of the functional prior. The
gene with the largest average increase in posterior probability between the functional and uni-
form posterior, across cancer types, was Transforming Growth Factor Beta 1, or TGFB1. The
posterior for TGFB1 increased by an average of 0.503. While TGFB1 is not characterized by
IntOGen as a mutational cancer driver (due to the relatively lower number of somatic point
mutations observed in tumors), the role of TGFB1 in metastasis, and the role of the TGF- § sig-
naling pathway more generally in cancer progression is widely known and studied[95]. After
TGFB1, the gene with the largest increase in posterior probability that is not a known muta-
tional cancer driver is SMAD3, a crucial regulator of the TGF- f signalling pathway([60].

We highlighted the results of two cancer types, breast cancer (BRCA) and uterine cancer
(UCEC). We compared the posterior probabilities of genes for these two cancer types, under
functional (FGEM) vs. uniform prior (Figure 2.4). In both genes, we see a similar overall trend,
with a number of genes showing higher posterior under the FGEM prior model comparing
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with the uniform prior (the genes above the diagonal line). Many of these genes are known
cancer driver genes, according to IntOGen, as labeled in Figure 2.4. To better understand how
these genes are prioritized by FGEM, we plot the top 22 enriched GO processes in Figure 2.5
and Figure2.6 for both cancer types. The majority of these pathways are supported by earlier
research. For example, the highest enriched pathways of UCEC includes RAS signaling and

cell migration, the processes well known to be important for cancer.

2.4 Discussion

We have developed a statistical model for integrating gene-level Bayes factors with gene-level
annotations to simultaneously re-prioritize the genes and estimate the enrichment of the fea-
tures. In our analysis of gene-level Bayes factors generated from driverMAPS run on TCGA
data, we find that the addition of gene-level features pushes 208 genes previously below a sta-
tistical significance threshold be novel driver genes across 18 cancer types. One of the most
salient features of FGEM as compared to other enrichment methods like Fisher’s Exact test is
that FGEM does not binarize data into significant vs insignificant. This may have some advan-
tage in identifying gene sets where the number of genes passing stringent statistical cutoff is
small.

That the previously identified oncogenes JUN and TGFB1 showed a much high posterior
probability under the functional model than the uniform models, and that these genes were
not previously identified in IntOGen demonstrates the value that a method capable of com-
prehensive integration of all forms of somatic mutation might provide in identifying cancer
genes. Both JUN and TGFBI rely on mechanisms other than accumulation of point muta-
tion to operate as oncogenes. As a consequence, they will be missed by methods that rely
exclusively on somatic point mutation. It should be noted that although the FGEM analy-
sis employed for this paper used binary gene-level features, there is nothing inherent in the
method precluding inclusion of categorical or even continuous annotations. For categorical
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variables (e.g encoding which, of several possible tissues, a gene is known to be expressed in)
this would be trivial: by using a reference level[17] and a treatment encoding (an additional
indicator variable for k — 1 of the categorical variable’s k levels, with the k-th level being an
implicit reference level), the enrichment estimates would have the same interpretation as log
odds ratios over the “intercept” model.

One important caveat of the FGEM model is that it does not account for errors or uncer-
tainty in the gene-level annotations. While the Gene Ontology has a formal process for gene
annotation, as well as a controlled vocabulary for describing the evidence underlying every
gene-annotation pair, this is not true of most gene-level annotations, and even if it were, it
is not clear how one might incorporate this evidence. It is also worth considering the extent
to which publication bias, or the “file-drawer effect” might contribute to systematic errors in
gene-level annotation. It is impossible to know the number of genes that have been tested
for a particular biological process or molecular function. Gene Ontology maintains a blacklist
of disallowed gene-feature relationships[43], but it captures only the most commonly mis-
reported gene-feature relationships. Binary gene-level annotation of a GO term ablates the
distinction between a gene that has not been assessed for a particular biological process and

a gene for which there is strong evidence against it being involved in the process.
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Figure 2.1: Overview of the FGEM procedure for gene-set enrichment and gene mapping. In
the preliminary feature pre-selection phase, all single-feature models are fit, and p-values are
obtained for each model. Features with FDR-adjusted p-value less than a significance cut-
off (0.1) are incorporated in the multi-feature model. The multi-feature model is fit with an
elastic-net penalty with a user-specified proportion of /; to I penalty () (Elastic-net FGEM),
then the subset of features with non-zero enrichment are refit with the /; penalty set to O(Re-
laxed FGEM). K -fold cross-validation is used to determine the optimal penalty parameter
(Aopt)- The multi-feature enrichment estimates are then used to generate gene-level poste-
riors.
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POSterior(punctional) ~ POStETiOr Uniform) |

Cancer | IntOGen Genes | Non-IntOGen Genes
PAAD 0.0480582 -0.0077148

SARC 0.0356362 -0.0038287

CESC 0.0354395 -0.0031413

ESCA 0.0305561 -0.0049400

PRAD 0.0291863 -0.0060090

BLCA 0.0270332 -0.0026782

LIHC 0.0278445 -0.0017952

GBM 0.0285302 0.0002752

KIRC 0.0249977 -0.0032255

UCEC | 0.0245470 -0.0030566

HNSC | 0.0194032 -0.0028055

LUAD 0.0196972 -0.0004134

UCS 0.0073904 -0.0039279

KIRP 0.0080442 -0.0024497

BRCA 0.0074382 -0.0010199

TGCT 0.0041605 -0.0036802

SKCM | 0.0067283 -0.0008418

LUSC 0.0018588 -0.0023163

Figure 2.2: Average increase in gene-level posterior of the functionally informed posterior as
compared to posterior computed from uniform model, computed in validated IntOGen can-
cer genes and genes not in the IntOGen database. For every cancer type, IntOGen cancer
genes on had on average posterior a higher posterior under the functional model than under
the uniform. Genes not in the IntOGen database had on average lower posterior under the
functional model.
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Figure 2.3: Comparison of single-feature FGEM and Fisher’s exact test p-values for 18 TCGA
cancer types.
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Figure 2.4: Comparison of gene-level posterior under uniform and functional models for
Breast Invasive Carcinoma (BRCA) and Uterine Corpus Endometrial Carcinoma (UCEC).
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Figure 2.5: Joint enrichment estimate of the features ranked by enrichment for BRCA.
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Figure 2.6: Joint enrichment estimate of the top 22 features (by absolute enrichment) for
UCEC. There were in total 62 features with nonzero enrichment estimates in the final joint
model for UCEC
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CHAPTER 3
RSSP: COMPUTATIONALLY EFFICIENT, LIKELIHOOD-BASED

ESTIMATION OF HERITABILITY FROM GWAS SUMMARY STATISTICS

3.1 Introduction

There is no concept more central to the study of genetics than that of heritability. In the sim-
plest definition, a trait is heritable if some component of the phenotypic variation in the pop-
ulation is attributable to genetic variation[25]. Narrow-sense heritability, or h? is the pro-
portion of a trait’s variance that can be attributable to additive genetic variance. h? has tra-
ditionally been measured by studying twins or pedigrees, but can be biased when assump-
tions about the sources of phenotypic covariance are violated[47]. Over the last decade or
so, SNP-based methods have been developed[89] and widely applied to the problem of h?
estimation, based on large scale genome-wide association studies (GWAS). These methods
leverage information of variants across the genome, rather than only strongly associated vari-
ants, which explain only a small fraction of heritability estimated from twin studies. The state
of art method for estimating heritability using genotype and phenotype data of unrelated in-
dividuals is Genome-based restricted maximum likelihood (GREML)[89]. GREML has been
used to great effect to explain a large proportion of heritability found by family studies [89].
These methods, however, requires individual-level data, which can be difficult to access, as
well as the construction of an n x n relatedness matrix (with n being the number of individu-
als). The size of this matrix increases quadratically as sample size increases, raising substantial
computational burden. The latest methods for heritability estimation often use GWAS sum-
mary statistics, in the form of the estimated effect sizes and standard errors, and p-values,
of marginal association of each variant. Summary statistics have become the most common
method for summarizing and storing estimated relationships between genotype and pheno-

type [56]. There are many advantages of working with summary statistics, comparing with in-
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dividual level data, including: easier comparison of genetic-association signal across traits at
alocus[12], across loci for a trait[64], and the comparison of patterns of genotype-phenotype
associations across populations[69]. LD score regression is the most widely used method for
estimating heritability from GWAS summary statistics. LD score regression uses GWAS sum-
mary statistics and an estimate of the linkage disequilibrium (LD) between those variants to
estimate the heritability of the trait as well as the extent of confounding in the GWAS[10]. Other
summary statistics based methods, e.g. LDAK-SumHer, allows more complex relationship of
the effect sizes of variants and their minor allele frequencies (MAF) and LD structure.

All the summary statistics based methods for heritability estimation, however, are essen-
tially method-of-moment estimators. These methods often use ad-hoc procedures to deal
with dependency of nearby variants due to LD. A full likelihood based model for parameter
estimation, while accounting for LD among variants, would be statistically optimal. Our work
takes advantages of the likelihood model developed by our collaborators, known as Regression
with Summary Statistics (RSS)[98], in modeling the relationship between marginal associa-
tions of single variants and the true effect sizes of all variants. Here we present a model with
RSS likelihood with a normal prior distribution of effect sizes, which we call polygenic RSS,
or RSSp, and we demonstrate a computationally efficient technique to make inference under
RSSp. Additionally, we estimate heritability, not as a single unknown parameter, but using the
sum of Percent of Variance Explained (PVE) of all individual SNPs, a strategy that makes the re-
sults less sensitive to the prior assumption. Using simulation, we show under truly polygenic
genetic architectures, RSSp is able to better estimate heritability than LD score regression,
even matching the performance of GREML that uses individual level data. We also explore
the consequences of using an out-of-sample reference LD from external data to demonstrate
the importance of accurate estimation of linkage disequilibrium and explore how shrinkage

estimators of LD can improve estimates of heritability.
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3.2 Methods

3.2.1 Background

The most common method for associating genotype with phenotype is through an additive

model:

y=XB+e

where y is the length n vector of phenotypes, X is an (n by p) matrix representing geno-
type, (which we will assume is centered for mathematical convenience, and without loss of
generality), f is a vector (length p) of variant-level effects and € is noise/error. In this model,

the narrow sense heritability is defined as h? = V\g;arﬁ(elf ). With current GWAS sample sizes the

number of variants is much larger than the number of samples i.e.p >> n, so it is difficult or
even impossible to estimate f; for each variant j, so f§ is often treated as a random variable,
following some prior distribution. In a GWAS context X and y are fixed, which means that es-
timating h?, for the population from which the sample is drawn can be reduced to estimating
the distribution parameter(s) of .

The most common means of summarizing the results of a GWAS is to use GWAS summary
statistics. The summary statistics we will be interested in are the marginal effect size at a par-
ticular variant (j), which we will denote as ,6}, and the standard error of that estimate, which
we will denote as 0}.2. The estimates and standard errors are usually from simple regression of
Y against X;, genotype of variant j:

A

-1
Bi=X"X) X'y

(7;.2 = (anTXj)_l(y —Xjﬁj)T(y —Xjﬁj)
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3.2.2 Regression with Summary Statistics (RSS)

RSS relates marginal association statistics to effect sizes by using the LD matrix:

BB ~ NSRS, SRS)

where f is the length p vector of GWAS effect size estimates, S is a diagonal matrix where
S}, ji= 0;.2, and R is the sample correlation matrix, (otherwise known as the LD matrix), assum-
ing variants are normalized (i.e. mean 0, variance 1).

In the original RSS paper there were two priors on f that were discussed. The first is based
on the Bayesian Sparse Linear Mixed Model (BSLMM)[97] where true effects () come from a

mixture of sparse and polygenic components:

Bj ~ N (0,05 +05) +(1-m)N(0,05)

Here Ul% represents the variance of the sparse component, while 012) represents the vari-
ance of the polygenic component. Fitting the RSS model with this prior is quite computation-
ally demanding, as the MCMC requires computing the multivariate normal density function,
which itself requires cholesky decomposition of a p x p matrix, an O(p?’) operation. If one

assumes that 0}2) = 0, i.e that there is no polygenic component, one arrives at the BVSR model:

Bj ~ N (0,05) + (1 - m)8

The posterior for the BVSR model can be still difficult to compute, despite efforts using
MCMC or Variational Bayes. If instead of assuming that 0}2, = 0, one assumes that og = 0 (or

equivalently that 7 = 0) we arrive at the following model:

Bj ~N(0,0p)
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With a normal prior (rather than a mixture of two normal distributions) and multivari-
ate normal likelihood, we can write down the analytic form of the marginalized likelihood as

shown below.
We start with some statistical background of multivariate normal distribution. If we know
that the marginal Gaussian distribution for some variable x and a conditional Gaussian distri-

bution for some y|x of the forms:

px) = N x|y, A7)

p(ylx) = N(ylAx+b, L}
then the marginal distribution of y and the conditional distribution of x given y are given by
[6]:
— -1 —1,T
py)=N(ylAu+b, L™ +AANTAY)
pxly) = N(x|z{ATL(y— b) + Au},Z)

where :

S=A+ATLA)™!

Given this result, we can derive the marginal distribution of B and the posterior of 8. Given
the prior for as f ~ N (0, Ipal%), and that the RSS likelihood is B|8 ~ N (SRS™18,8RS), we can

replace 8 with x and 8 with y by making the following substitutions:
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Symbol Replacement

u 0
b 0

-1 2
A Ipaﬁ
A SRS™!
L1 SRS

We then see that the distribution of j after marginalizing over g is:

Blos~ N, oﬁSRS‘IS‘lf{S +SR$)
We can rewrite this as:
AnA—DAn

Computing the marginalized likelihood in this case, though involving only a single param-
eter, requires an expensive recalculation of the multivariate normal probability density func-
tion, in particular the re-computation of the determinant and inverse of UESRS_ZRS + SRS
for each value of UE. A common computational trick for recomputing a multivariate normal
density is to precompute a Cholesky decomposition of the covariance matrix, as the com-
putationally expensive aspects of computing the multivariate normal density (in particular
computing the determinant and inverse of the covariance matrix) have efficient implementa-
tions when the covariance matrix has been Cholesky-decomposed. This trick is unfortunately
SRSZRS and SRS *RS were factored separately,

there is no way to add the two matrices to maintain the Cholesky form.
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3.2.3 Polygenic RSS (RSSp)

If instead of modeling B and B, we model @ and u, where 12]- = ﬁ%, and uj = ﬁfz . This is ef-
(o o

j j

fectively the same as effect-size in terms of standardized genotypes, and leads to the same

(implicit) prior as LD score regression[10] and GCTA[89]. With the prior u ~ .4 (0,03), the

likelihood in terms of u becomes:

aju~ A (Ru,R),

the marginal distribution of @ is:

|02 ~ N(0,02R? +R)

Now we can show that computation under this model can be made very efficient. If we take
the eigenvalue decomposition of R, R = QDQ’, with Q being the p by p matrix of eigenvec-
tors, and D being the diagonal matrix of eigenvalues (such that D;; = A;, where A; is the i-th
eigenvalue), we can rewrite the marginalized likelihood as &t ~ N (0, aﬁQDzQ +QDQ). Letting
V= QTu, and V = QT i1, and exploiting the property of the multivariate normal distribution
that an affine transformation of a multivariate normal random variable has a multivariate nor-
mal distribution, the likelihood for V is f/labzt ~ (0, ULZ,D2 + D). As all the off-diagonal terms
of the covariance matrix for v are 0, we can equivalently write the likelihood for ¥ as the joint

probability of p independent univariate normal variables where:

D ~ N(o,oﬁﬂtj? + 1)

Computing the marginalized-likelihood estimate of o2 in terms of ¥ and D can be done
without the costly covariance inverse or determinant calculations required in the original mul-
tivariate probability density function. We estimate 0,% by the “Brent” 1D optimization routine

in R[7]. While this procedure requires a costly eigendecomposition of R, it only needs to be
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done once, without the need of updating it during optimization. Furthermore, R would be the
same across all complex traits, so the eigendecomposition can be pre-computed and stored,
further saving computational time.

Heritability is closely related to the parameter 05, which is interpreted as average Percent
of Variance Explained (PVE) by a single SNP. We obtain the point estimate by maximizing
P(ﬁlaﬁ). Instead of using this point estimate, we estimate h? by summing over the estimated
PVE of each SNP. This estimate, introduced by Zhu and Stephens [98], was known as “sum-
mary PVE” (SPVE). Specifically, given true effect sizes of all SNPs, it is defined as:

Var(X ) 1 1

- | 1
= VarXu)= —ulXTXu==-uRu=-vT'Dv (3.1)
nVar(y) n n n n

SPVE(v) =
where 7 is sample size and X stands for normalized genotypes. Furthermore, we assume the
variance of y is 1. Of course, we cannot use this formula since v is unknown. But we can
compute its posterior expectation. Suppose we know 0,‘% (using point estimate by maximizing

marginal likelihood), we can derive the posterior distribution of v using properties of multi-

variate normal distribution:

-1
1
v|D,02 ~ N (i, %) where = £9,% = (D + —21) (3.2)
Ou

The posterior mean of SPVE is then given by:

) 1 1 T
E(SPVE(W)|D,0y) = Etr(DZ) + ;p Du (3.3)

We can now plug in p and X, we have:

~2
. 9 112 1 p vj
E(SPVE(W)|D,0;) = — Z—1+Z—2 (3.4)
TlEI T 2 E ()
ulj i\ oz
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3.2.4 Linkage disequilibrium

RSSp requires the LD matrix of variants. When individual level data is available, we can com-
pute the “in-sample” LD using individual genotype data. When this is not available, it is com-
mon to compute the out-of-sample LD from the “reference-panel”, which is the set of individ-
uals not used in generating GWAS summary statistics, but from the same population as the
samples where GWAS summary statistics were derived. Rather than computing and storing 8
million by 8 million genome-wide LD matrix, a blockwise diagonal approximation to the LD
matrix was made. LD between variants was only estimated for variants within 1,703 approx-
imately independent LD blocks. The boundaries of independent LD blocks were previously

identified in the 1000 genomes EUR population using the method ldetect[5].

3.2.5 LD shrinkage estimators

To attempt to improve the estimate of LD, I used the LD shrinkage estimator developed by Wen
and Stephens[88], which uses an estimate of the recombination rate, as well an estimate of
the effective population size to improve the estimate of correlation between variants. [ imple-
mented a standalone version of this shrinkage estimator in an R package called LDshrink[80].

If X is a n x p matrix of genotype dosages, such that X; ; represents the number of effect
alleles at the $j$th variant in the $i$th individual, and £ is the p x p the estimate of covariance

between variants, where:

2:(1—9)Zs+g(1—g)1
2 2

, Where
Cov(X.j,X.k),ifj =k

Sjk = Pik

e 2n Cov(X j,X ), otherwise
and pj is an estimate of the population-scaled recombination rate between variants j and k.
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After shrinkage, the covariance matrix is converted to a correlation matrix, and values below
a given threshold (by default 0.001), are rounded down to 0 to induce sparsity in the resulting
LD matrix.

Populating the p parameter requires an estimate of the population-scaled recombination
rate at the the sites in the simulation. The method pyrho[78] is a fast, demography-aware
method for inference of fine-scale recombination rates, and is based on the fused-LASSO. The
pyrho method applied to the British in England and Scotland (GBR) individuals from the 1000
genomes project[19] were used in the estimation of the local recombination rate for the UK

biobank simulations.

3.3 Results

3.3.1 Assessing heritability estimate using GWAS simulations under

infinitesimal model

To estimate the effectiveness of RSSp at estimating heritability, we simulated phenotypes and
estimated GWAS summary statistics. We then employed state of the art individual-level data-
based (GCTA[89]) and GWAS summary statistics-based (1dsc[10]) heritability estimation meth-
ods. To make the simulations as realistic as possible, real individual-level genotypes were
used.

Genotype data from individuals from the UK biobank were used as the basis of simula-
tions. Two random non-overlapping subsets of 10,000 unrelated individuals were randomly
drawn (without replacement) from the 487,409 total individuals in the UK biobank dataset.
Both datasets were subset to include only the variants with allele frequency > 1% in both sub-
sets, resulting in 8,327,757 variants in total. Causal variant effects and phenotypes traits were
simulated using a modified version of the simu software[21], a tool for simulating GWAS phe-

notypes based on real genotype data. simu simulates causal effects from a normal distribution
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and uses the GCTA model of scaled genotypes. For the infinitesimal simulation, 80 traits were
simulated for 8 h? values from 0.1 to 0.8 in increments of 0.1, with 10 trait replicates being
simulated at each level of heritability. After simulating the phenotype, GWAS summary statis-
tics for each simulated phenotype were then generated using GCTA's implementation of the
fastGWA mixed linear model-based GWAS method[45], with the first 10 principle components
used as quantitative covariates.

Heritability was estimated using GCTA's GCTA-GREML analysis, using a GRM constructed
using the 8,327,757 variants and using 10 principal components as quantitative covariates.
To estimate heritability using LD score regression, LD scores were generated on the 8,327,757
variants. This step either uses the genotypes of individuals used for the GWAS simulation (“in-
sample”), or the second, equally-sized, samples (the LD reference panel) not used in simula-
tions. LD scores were estimated using 1dsc, using a 1 centimorgan sliding window, as per the
1dsc tutorial on the 1dsc website[9]. The pyrho method applied to the British in England and
Scotland (GBR) individuals from the 1000 genomes project[19] was used in the estimation of
the local recombination rate. As we also wished to test for the effect of out-of-sample LD vs
in-sample LD, and test LD score regression with a varying intercept and without a varying in-
tercept, we reran LD score regression with and without a varying intercept, and with in-sample
LD scores and with reference panel LD scores. Finally, RSSp was fit on the data. One LD ma-
trix per independent block of the genome was estimated(in-sample and out-of-sample) and
diagonalized as per described in Section 3.2.4.

Estimates of h? from the individual-level data method GCTA were on average the clos-
est to the true value of /2, and is largely unbiased across every simulated value of h? (Fig-
ure 3.1). RSSp estimates are close to GCTA estimates with only slightly larger standard errors
(Figure 3.1). In contrast, 1dsc estimates, with fixed or free intercept term, show significant bias
across all settings, and are much worse than both GCTA and RSSp (Figure 3.1). We evaluated

the results of summary statistics using out-of-sample LD. The results of RSSp remain largely
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Figure 3.1: h2 across 10 replicates across 8 values of h? for 4 methods of heritability estima-
tion, estimated using either in-sample LD (left panel), or an external reference LD (right).
The light grey line along the diagonal represents a perfect 1 to 1 relationship between h2
and h?. The heritability estimation methods are as follows: GCTA is the individual-level data
single-component GREML, with 10 principal components used as continuous covariates (As
GCTA requires individual level data, there can be no out-of-sample result); LDSC_INT is LD
score regression [10] run with the default setting where the intercept term is allowed to vary;
LDSC_NOINT is LD score regression run with a fixed intercept of 1; RSSP is RSSp (fit without a
shrinkage estimator of LD)

unbiased and similar to the results using in-sample LD, while 1dsc performs more poorly (Fig-
ure 3.1, right). We further quantified the performance of each method under each setting by
both bias and mean squared error (MSE) of h? estimates. These results show clearly that RSSp

performance is comparable to GCTA and significantly better than 1dsc. (Table 3.1).
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Figure 3.2: AhA2 across 8 values of 12 with 10 replicates each for for methods of heritability es-
timation. h2 was estimated using either in-sample information (top panels), or an external
reference LD panel (bottom panels). Two sparse genetic architectures are represented along
side the original infinitesimal model. From left to right, causal variants contributing to h?
numbered 1 million — for a sparsity of 87.5%, 4 million — for a sparsity of 50%, or 8 million,
for a sparsity of 0%.
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LD Method Bias RMSE
In-sample GCTA -0.0027508 | 0.0388235
In-sample RSSP_NOSHRINK | 0.0122161 | 0.0483802
Out-of-sample | RSSP_NOSHRINK | 0.0161776 | 0.0506190
In-sample RSSP_LDSHRINK | 0.0240206 | 0.0553949
Out-of-sample | RSSP_LDSHRINK | 0.0260170 | 0.0568414
In-sample LDSC_NOINT -0.1280450 | 0.1461858
Out-of-sample | LDSC_NOINT -0.1280562 | 0.1461914
In-sample LDSC_INT -0.1413375 | 0.1587786
Out-of-sample | LDSC_INT -0.1416675 | 0.1591236

Table 3.1: Comparison of methods for heritability estimation on 8M variant simulation. Bias

was calculated over all simulated values of h? Bias(hz, h?) = % Z%gl Z?:l (hAzi’ i h? j).

3.3.2 Assessing heritability estimation under varying levels of causal variant
sparsity

To assess the robustness of RSSp to model misspecification, we performed simulations which
relaxed the infinitesimal assumption. Using the 8,327,757 variant, 10,000 sample UK biobank
dataset, we expanded our simulations to include sparse genetic architectures. Starting with
the original 8,327,757 variants, we created two randomly selected causal variant subsets, con-
taining 4,163,878 and 1,040,970 variants. Using these causal variant subsets, we simulated
phenotypes under values of h? from 0.1 to 0.8 in increments of 0.1, from which we generated
GWAS summary statistics on the original 8,327,757 variants. For each value of hz, and each
of the two causal variant subsets we ran 10 simulations. We then estimated heritability with
each of the methods described previously.

We found RSSp, and indeed all three methods to be quite robust to varying levels of spar-
sity at the three levels simulated (Figure 3.2). These results are consistent with earlier papers,
which reported that models based on infinitesimal assumption can often produce unbiased

estimates despite the violation of this assumption [10].
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Figure 3.3: Replicate of original simulation scheme using the approximately 1 million HapMap
3variants. From left to right, simulations with decreasinglevels of sparsity with the proportion
of variants contributing to h? ata sparsity of 87.5%, 50% and 0%. Note that for this simulation
GCTA results are only shown for 0% sparsity.

Assessing heritability under simulations with a smaller number of total vari-

ants

We hypothesized that the relatively poor performance of LD score regression was due to the
simulation involving a very large number of variants in the GWAS relative to the sample size.
It is recommended that users of 1dsc subset their GWAS summary statistics to the variants
in the HapMap 3 reference panel, which contains only approximately 1 million common (in
Europeans) variants[20][9]. To test this hypothesis we repeated our simulation scheme on a
reduced total number of variants; an approximately 1 million variant subset of our original
8 million variant subset that overlapped with the HapMap3 variants. We simulated GWAS,

recomputed LD, LD scores, and recomputed the GRM using only the HapMap3 variants, and
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used the same range of h? for our phenotype simulations. We simulated GWAS where 150,000
of the ~ 1M variants were causal, and GWAS where 500K of the ~ 1M variants were causal,
in addition to our infinitesimal simulation where all 1M variants were causal. We found that
while the performance of LD score regression improved under the 1M total variant simulation,
it still showed a slight downard bias, and underperformed both GCTA and RSSp in terms of
bias and variance (Figure 3.3). Similar to the previous simulation with 8 million total variants,
none of the three methods showed a marked decrease in performance when the proportion

of causal variants decreased.

3.4 Discussion

In this study we show how SNP-heritability can be estimated using GWAS summary statistics
and an out-of-sample reference LD panel with accuracy comparable to individual-level data
methods, even when the number of variants exceeds the number of samples by several orders
of magnitude.

While we have shown that accurate estimation of SNP-heritability from GWAS summary
statistics using an out-of-sample reference LD panel, there are some important caveats and
future directions. First, though there was no sample overlap between the GWAS cohort and
the LD reference panel, both the cohort and the panel were randomly sampled from the same
set of individuals. The set of variants used to simulate the GWAS were selected so that they
were above 1 percent frequency in both the GWAS sample and in the LD reference panel, and
the size of the reference panel was the same size as the GWAS panel. If, for example, the 503
individuals in the European subset of the 1000 genomes dataset were used as a reference LD
panel, the match between the datasets would have likely been poorer.

In our simulations, we found that LD score regression is biased under truly infinitesimal
genetic architectures. Even with the intercept fixed at 1, we found in our simulations that LD
score regression consistently underestimates h?, and the amount LD score regression under-
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estimates h? increases as h? increases. This is consistent with a previous study that showed
through simulation a downward bias in LD score regression heritability estimates[29]. Other
studies[76], including the original LDSC paper, however, have not reported such downward
bias. It is unclear what may explain such inconsistent findings, and this may depend on spe-
cific simulation settings. Our study has a large number of variants (8M) comparing with ear-
lier studies. This reduces per SNP heritability/effect and may pose challenge to LDSC. We did
find that the bias tends to be smaller with fewer variants at a given h? (data not shown). Al-
ternatively, the downward bias may be related to estimation of LD scores. One possibility is
that by using only variants within 1cM to calculate LD (the default setting in LDSC), we may
miss some longer-range LD. However, we found that changing 1cM to 10cM makes no differ-
ence (data not shown). Another possible explanation is that the estimation errors, instead of
bias, of LD scores may lead to reduced h? estimates. It is well known from statistical litera-
ture that measurement errors in explanatory variables, LD scores in the case of LDSC, lead to
downward bias, known as attenuation bias, in the estimate of regression coefficient. While
estimation of LD involving common variants (AF > 5%) is generally accurate, the errors may
be higher for rarer variants (AF from 1% to 5%), which constitute the majority of variants in
our simulation data. The small sample size (10K) in our simulation likely makes the problem
worse. Additional simulations would be needed to test these possible explanations.
Previously studies had found that chunking the genome into chunks can introduce upward
bias in heritability estimates, even when using in-sample LD estimates[41]. In our analysis,
the sub-chromosome, block-wise approximation to the full LD matrix did not introduce sig-
nificant upward bias in RSSp’s heritability estimates. In Hou et al, significant upward bias of
heritability estimates were observed with block sizes as large as 4.3 megabases (when analyz-
ing simulations based on a single 34 megabase chromosome). The median block size of the
ldetect LD blocks is much smaller, at approximately 1.5 megabases, and yet RSSp did not show

appreciable inflation. The fact that RSSp performs well under the block-diagonal approxima-
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tion to the genome-wide LD matrix allows for scalable estimate of SNP heritability on very
large numbers of variants, as the computational complexity of diagonalizing the LD matrix is
determined by the size of the largest LD block, not on the total number of variants. In addi-
tion, as diagonalization can be computed in parallel across independent LD blocks, and as it
only needs to be computed once per reference LD panel, We believe RSSp is especially well-
suited to analysis of bio-bank data where multiple phenotypes are measured in the same set

of individuals.
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CHAPTER 4
DISCOVERING RISK GENES OF PRE-TERM BIRTH VIA FINE-MAPPING

GENOME-WIDE ASSOCIATION STUDY SUMMARY STATISTICS *

4.1 Introduction

Spontaneous preterm birth (PTB), defined as spontaneous labor and birth before 37 weeks
of gestation, is a leading cause of infant mortality and morbidity. While PTB is widely be-
lieved to have a genetic component, the broad etiologic heterogeneity and contribution of
environmental factors have frustrated efforts to identify causal genes and characterize their
mechanisms[24]. Recently, several loci have been linked to the risk of PTB and gestation
length in a large genome-wide association study (GWAS)[93]. However, the causal variants
and their target genes remain to be detected.

Indeed, identifying causal variants driving association signals is a common problem in
post-GWAS analysis. Because of extensive linkage disequilibrium (LD) in human genome, a
single causal variant can generate associations in many nearby SNPs in LD. One way to ad-
dress this challenge is to identify functional variants in trait-associated loci, which are more
likely to be causal variants. This effort has been largely focused on annotating regulatory func-
tions of non-coding genome. Surveys of GWAS associations have found that the majority of
GWAS signals come from non-coding regions. It is believed that the majority of this functional
variation is regulatory in nature. Rather than modifying the function of a gene product directly
by modifying its structure, regulatory variants alter the activity of a gene-product by modulat-
ing the abundance of the gene-product through regulatory mechanisms — by increasing or
decreasing the baseline rate of transcription initiation of the gene’s DNA to RNA, or by acting

downstream of transcription initiation. Given genomic and epigenomic annotations, candi-

1. Much of this chapter contains material from the paper: Transcriptome and regulatory maps of decidua-
derived stromal cells inform gene discovery in preterm birth (doi.org/10.1101/2020.04.06.017079), which is cur-
rently in press in Science Advances.
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date variants in trait-associated loci can be prioritized based on their locations in regulatory
elements. A major challenge in this approach comes from the fact that the regulation of tran-
scription is highly dynamic across tissue, across cell-type, and across environmental stimuli.
To help bridge this gap, large consortia, such as ENCODE, have generated a wealth of annota-
tions of putative gene regulatory elements across a diverse set of human cell types and tissues.
Using these resources, methods have been developed to identify putative causal variants from
GWAS loci, and been successfully used to study traits ranging from type 2 diabetes[84] to blood
cell traits[57].

However, there is a paucity of genomic and epigenomic data available for tissues related to
pregnancy in general and to PTB in particular. To fill this gap in knowledge, we characterized
the transcriptional and chromatin landscapes of cultured mesenchymal stromal cells (MSCs)
collected from human placental membranes and decidualized MSCs, also known as decidual
stromal cells or DSCs. These cells — collected from women following both term and preterm
pregnancy — play critical roles in promoting successful pregnancy, interfacing with fetal cells
throughout pregnancy, and the timing of birth. We then built a computational framework that
integrated these decidua-derived stromal cell annotations with the results of a large GWAS of
gestational duration to facilitate discovery of PTB genes.

This integrated analysis revealed a significant enrichment of heritability estimates for ges-
tational duration in decidua-derived stromal cell genomic regions marked by open chromatin
or histone marks. Leveraging those functional annotations in a Bayesian statistical frame-
work, we discovered additional loci associated with gestational duration and improved fine
mapping in regions associated with gestational duration. Finally, using promoter capture Hi-
C (pcHi-C), we linked functionally-annotated gestational age-associated variants to their pu-
tative target genes. More generally, these functional annotations and our analytic pipeline
should prove a valuable resource for studying other pregnancy-related conditions, such as

preeclampsia and recurrent miscarriage, as well as conditions associated with endometrial
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dysfunction, such as endometriosis and infertility.

Statistical fine-mapping analyses, including our own, are focused on identifying individ-
ual causal variants. Despite the best efforts, it is generally difficult to narrow down to a single
or few causal variants in trait-associated regions. For example, in a high-powered GWAS of
type 2 diabetes (T2D), only in a quarter of associated loci, the credible sets (the union of all
SNPs that, with high probability, contains the causal signal), have less than 10 SNPs[57]. One
way to address this challenge is to combine signals from SNPs likely targeting the same genes.
The intuition is that, after fine-mapping a locus, we may still have a large uncertainty of exact
causal variant, but if most of candidate variants target the same gene, then that gene is likely to
be the risk gene at the locus. This strategy will both increase the statistical signal and provide
more interpretable results. We thus developed a computational procedure that summarizes
statistical evidence from GWAS fine-mapping at the level of genes. Applying this procedure
to GWAS of gestation length, we identified some highly plausible genes, such as HAND2 and
WNT4, the transcription factors that are believed to be important for differentiation of preg-
nancy related cell types. Interestingly, the genes from this analysis are significantly enriched
with those differentially expressed after treating cells with pregnancy related stimuli, includ-
ing cAMP and Trophoblast condition medium (TCM), providing evidence that disruption of
transcriptional response to these stimuli is one mechanism of gestation length variation and

pre-term birth.

4.2 Materials and Methods

4.2.1 Functional Genomic Data in MSCs

Placentas were collected from six African American women (= 18 years old) following sponta-
neous labor. Three of the women delivered at term (= 37 weeks), and three delivered preterm.

All were vaginal deliveries of singleton pregnancies. Within 1 hour of delivery, 5 x 5 cm pieces
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of the membranes were sampled from a distant location of the rupture site. Pieces were placed
in DMEM-HAMS F12 media containing 10% FBS and 1% pen/strep. Samples were kept at 4°C
and processed within 24 hours of tissue collection.

Primary MSC were derived from three women who delivered at term and three who de-
livered preterm using cells isolated from the decidua parietalis. To model the process of de-
cidualization, cells were treated with medroxyprogesterone acetate (MPA) and cAMP for 48
hours and a paired set of untreated samples was cultured in parallel for 48 hours. To model
the trophoblast invasion process, cells were treated with Trophoblast Conditioned Medium
(TCM).

Three replicates of of each cell line were studied to assess experimental variability in the
three conditions. Each of the 27 samples (3 individual lines x 3 replicates x 3 conditions) were
assayed to generate transcriptomes (RNA-seq). Open chromatin (ATAC-seq) was assayed for
the decidualized cells and the TCM treated samples, and histone modification (ChIP-seq)
maps for H3K27ac, H3K4mel and H3K4me3 marks were assayed in the control and decid-
ualized cells.

Chromatin interaction was measured using promoter capture Hi-C in cultured primary
decidua-derived mesenchymal stromal/stem cells (MSCs) and in vitro differentiated decidual

stromal cells (DSCs) as well as in TCM treated cells.

4.2.2 Detecting differential gene expression

We used the the pseudo-alignment tool salmon[65] to obtain transcript-level abundance es-
timates (using gencode 19 as a source of transcripts). The abundance estimates were loaded
into R using the tximeta package,[55] which was also used to summarize the transcript-level
abundance estimates into gene-level abundance estimates. Genes with counts lower than
10 were excluded from consideration for differential expression, as were genes for which the

gene level abundance estimate was above zero in less than 5 samples. We then used the R
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package DESeq2[54] to identify differentially expressed genes. To formally test the hypoth-
esis that individuals with term births respond differently to either decidualization media or
TCM as compared to individuals with preterm births, we test for an interaction between the
preterm effect and each of the two treatment effects. By coding the term vs preterm status us-
ing a "sum” coding, a nonzero estimate of either of these interaction terms indicates that the
response to treatment (i.e the change in gene expression) differs between term and preterm
samples. To capture the individual level effects, instead of comparing to a particular individ-
ual, we again used a sum coding, meaning for each term and preterm, 1 covariate captures the
difference between the individual 1 and individual three,and another captures the difference
between individual 2 and individual three. Like passage number,which was also included in
the DESeq2 model, individual-level effects were captured in the model, but the significance of
the effect-size estimates were not tested. For the main effect tests (i.e term vs preterm, con-
trol vs decidualized, and TCM vs decidualized) we used the Wald test functionality for null
hypothesis significance testing. DESeq2 includes composite null hypothesis testing function-
ality when using the Wald test; instead of testing against the null hypothesis that § = 0, one can
test against the hypothesis that | f| < 8 where 0 is some threshold value. Rather than adding a
fold-change cutoff on top of a test against an effect size of 0, with the composite test the FDR
results remain interpretable: p-values and adjusted p-values correspond to the specific null
hypothesis of interest. This composite null-hypothesis testing was used with a log fold-change

threshold of 0.2.

4.2.3 Fine-mapping GWAS summary statistics using functional annotations

Fine mapping proceeded in three stages. In the first stage we partitioned the genome into
1,703 regions approximately independent regions using breakpoints derived from the 1detect
method[5]. Next, we constructed a SNP-level prior probability of causality, informed by the

functional genomic data. To estimate the functionally informed SNP-level prior, We employed
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a Bayesian hierarchical model TORUS[87]. TORUS uses SNP-level annotations and GWAS
summary statistics to estimate the extent to which SNPs with functional genomic annotations
are likely to be causal for a trait of interest. TORUS takes as input GWAS summary statistics
and genomic annotations, and for each annotation outputs enrichment estimates that corre-
spond to estimates from a logistic regression: the additive change in log odds for a variant be-
ing causal, conditioned on all other annotations being held constant. We ran TORUS with the
gestational age GWAS summary statistics and the reproducible H3K27ac and H3K4mel peaks
from the dec-treated samples, the pcHi-C contact regions, and the union of all ATAC-seq peaks
to obtain enrichment estimates. A SNP-level prior was constructed from those enrichment es-
timates. Lastly, fine mapping was performed using a summary statistics-based version of the
“Sum of Single Effects” model (SuSiE[85]). In the summary statistics-based version of SuSiE,
the inputs are the GWAS summary statistics in a region, the SNP-level prior for every GWAS
variant, and an estimate of the LD between variants. As an estimate of LD, we used the un-
related European individuals from the 1000 Genomes project as a reference panel. SuSiE (as
implemented in the R package “susieR”) was run on the 33 regions most believed to have one
or more causal variants as estimated by TORUS. For each region, SuSiE was run with a uniform
prior (default setting of SuSiE) and with an informed prior learned by TORUS. The parameter
L of SuSiE (maximum number of causal variants) is set at 3 when running SuSiE. To be con-
servative, the pip for all SNPs in each region were multiplied by 1 — FDRgrys to approximate

the TORUS posterior probability that the region contained at least one causal variant.

4.2.4 Gene-level summary of fine-mapping results

We developed a method for summarizing our fine-mapping results at the gene level. SNP-
level PIPs were summarized as gene-level PIPs based on several possible mechanisms SNPs
can target genes, while accounting for uncertainty of SNP-to-gene mapping. Intuitively, if we

are confident that a SNP targets a gene, then we should assign the PIP of that SNP to that
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gene. In most cases, we will have uncertainty of the target genes, so we should allocate the PIP
of the SNP in a weighted fashion to putative target genes, with the weights specified according
to possible biological mechanisms.

To infer causal genes, we denote Z, as the indicator variable (unobserved) of whether gene
g is a causal gene. Also denote D as all the GWAS data. Our goal is to estimate P(Zg = 1|D). If
we assume there is a single causal variant in a region of interest, this probability can be related

to PIPs of all SNPs by summing over the possible causal variant:
P(Zg=1ID)=}) P(Zg =1ly;=1)-P(y; = 1ID) (4.1)
i

where y; is the indicator of whether SNP i is the causal variant. In the equation, P(y; = 1|D) is
simply the PIP of SNP i, p;, which is computed from fine-mapping analysis. The term P(Z, =
1ly; = 1) is the probability that gene g is the causal gene behind SNP i, assuming i is the
causal variant. It can also be interpreted as the proportion of the PIP of SNP i assigned into
gene g. To obtain this proportion, we denote wjg as the probability that SNP i perturbs gene
g. Intuitively, if a SNP is confidently assigned to a gene, e.g. it is in an exon, then w;g = 1.
We assume that each locus has a single causal gene, i.e. a causal SNP acts on the phenotype
through one causal gene, then we should have the constraint that ) ¢ P(Zg = 1]y; = 1) =1 for
all SNPs. This leads to the following “normalization”:

wig

PZ,=1ly;=1) =
g Yi Zgwig

(4.2)

Our weighting scheme specifies w;g based on several possible mechanisms a variant changes
gene function. Specifically, if a SNP is in the 5 UTR (or 2kb upstream of the 5' UTR), 3’ UTR,
or exon of a gene, then the weight is 1. A SNP that is within a promoter-capture HiC contact,
(as called by CHiCAGO [14]) of the promoter of a gene is also assigned weight of 1. Note that it

is possible that a SNP is in Hi-C contact with multiple genes, and at the same lies in the gene
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boy (UTR or exon) of another gene, then each gene will receive weight of 1, and the PIP of that
SNP will be equally partitioned among all genes, as described in Equation 4.2. For all variants
that lay outside genes or HiC contacts, we assign the SNPs to target genes based on SNP-gene
distances in a weighted fashion, with nearby genes receiving higher weights. This weighting
scheme is supported by the observation that most target genes of enhancers are located close
to the genes, typically within 100Kb[32]. For a given SNP, we consider all genes with 1Mb that
are inside the LD blocks defined in fine-mapping. The weight of a gene decays exponentially

with distance to the gene according to the following function

_di,g
wj,g = 100000 (4.3)

with d; ¢ being the distance between variant i and the TSS of gene g. We use a parameter
of 100kb here so that overall genes within 100kb of enhancers receiving most of the weights,
while still allowing long-range interactions. For example, a gene 50kb away from a SNP would
have weight of 0.6, and a gene 200kb away has a weight of 0.14. The PIP of a SNP would then

be partitioned among all nearby genes according to Equation 4.2.

4.3 Results

4.3.1 Fine-mapping Loci associated with Gestational Duration GWAS using

Functional Annotations in Decidualized Stromal Cells

We developed a computational procedure to integrate the decidua stromal cell functional
maps with genetic map of reproductive traits. We posited that integrating functional maps
in these pregnancy-relevant cells and leveraging statistical methods to fine-map associations
would result in 1) identifying candidate causal variants in each associated locus, 2) linking

those variants to their target genes, and 3) discovering additional loci and genes associated
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Figure 4.1: (a) Enrichment for gestational duration GWAS signal in regulatory maps of
decidua-derived stromal cells. TORUS was run on each annotation separate. (b) Joint en-
richment analysis for gestational duration GWAS signal in all annotations using TORUS.
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with gestational duration.

We first leveraged the enrichments of DSC annotations to create Bayesian prior proba-
bilities for a variant being causal. Using prior probabilities informed by functional annota-
tions of SNPs could increase the accuracy of fine-mapping, as shown in recent studies (8,
41). We chose H3K27ac, H3K4mel, and pcHi-C interactions from the decidualized cells, and
H3K4me3 from untreated cells, and ATAC-seq peaks from any of the cells as functional ge-
nomic annotations to create informative priors using TORUS[87]. To assign a prior to each
SNP, TORUS uses genome-wide summary statistics of GWAS and the functional annotations
to assess how informative each annotation is in predicting causal variants. TORUS analysis
shows that the functional annotations are often enriched with GWAS signals (Figure 4.1). SNPs
associated with functional annotations will then be assigned higher prior probabilities. Addi-
tionally, TORUS computes statistical evidence at the level of genomic blocks, defined as the
probability that a block (determined by LD) contains at least one causal SNP. Without includ-
ing any histone marks or chromatin accessibility annotations, TORUS implicated six autoso-
mal blocks in the genome at FDR < 0.05, including five of the six genome-wide significant
autosomal loci identified in the GWAS (p < 5x10-8). By including the functional genomic an-
notations from endometrial stromal cells, the number of high confidence blocks increased to
ten, including all six that were significant in the gestational duration GWAS and four that were
not significant in the GWAS.

We next performed computational fine mapping on the top these ten blocks, with the in-
formative priors learned by TORUS, using SuSiE[85]. Conceptually, SuSiE is a Bayesian version
of the step-wise regression analysis commonly used in GWAS (i.e. conditioning on one vari-
ant, and testing if there is any remaining signal in a region). SuSiE accounts for the uncertainty
of causal variants in each step, and reports the results in the form of posterior including prob-
abilities (PIPs). The PIP of a variant ranges from 0 to 1, with 1 indicating full confidence that

the SNP is a causal variant. If a region contains a single causal variant, the PIPs of all SNPs in
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the region should approximately sum to 1.

53



Reprioritization of GWAS Candidate SNPs
By Functional Annotation
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Figure 4.2: PIPs of SNPs using uniform vs. functional priors in SuSiE (each dot is a SNP). The

functional prior of a SNP is based on SNP annotations and is estimated using TORUS. Figure
originally published in Sakabe et al. 2020 [71].
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Table 4.1, continued: Most probable SNPs identified from computational fine-mapping of re-
gions associated with gestational duration. Functional annotations are based on data from
endometrial stromal cells. We list an annotation if the SNP is located in a sequence with that
annotation in either untreated or decidualized condition. We list the pcHi-C annotation if the
SNP is within 1 kb of a region involved in a pcHi-C interaction. We call a gene the target of
a SNP if (1) the SNP is located in the promoter (< 1 kb of TSS) of that gene; or (2) the pro-
moter of that gene has a pcHi-C interaction with a region within 1 kb of the SNP. In the case
of rs147843771 at the FOXL2 locus, the target was defined by literature evidence[28].

Including the priors defined by TORUS using DSC functional annotations significantly im-
proved fine-mapping (Table 4.1, Figure 4.2). For example, only one SNP reached PIP > 0.3
across all 10 blocks using the default setting under SuSiE (uniform prior, treating all SNPs in a
block equally). This reflects the general uncertainty of pinpointing causal variants due to LD:
e.g., a strong GWAS SNP in close LD with 9 other SNPs would have PIP about 0.1. By using
the annotation-informed priors, 8 SNPs in six different blocks reached PIP > 0.3 4.2. Table 4.1
summarizes the most probable causal variants in eight blocks (fine-mapping in the remain-
ing two blocks produced large credible sets with no high-PIP SNPs) as well as their likely target
genes based on promoter assignment or chromatin interactions from pcHi-C. We note that our
results of the WNT4 locus identified rs3820282 as the likely causal variant. This is consistent
with our previous results demonstrating experimentally that the T allele of this SNP disrupts
the binding of estrogen receptor 1 (ESR1)(5). This SNP was among the 3 most likely SNPs in
our fine-mapping study, with a PIP of 0.27 (Table 4.1).

We highlight the results from two regions. In the first, two adjacent SNPs (311 bp apart),
rs13141656 and rs7663453, on chromosome 4q34 did not reach genome-wide significance in
the GWAS (p = 3.9 x10-7 and 4.5 x10-7, respectively). After using functional annotations in
decidua-derived stromal cells, the block containing these SNPs was highly significant (TORUS
g-value = 0.02), suggesting the presence of at least one causal variant in this block. The two
SNPs together explained most of the PIP signal in the block (PIP 0.38 and 0.33, respectively,

Table 1). The two SNPs are located in a region of open chromatin in endometrial stromal cells,
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Figure 4.3: Likely causal variants near HAND2 and their functional annotations. The upper
panel shows the significance of SNP association in the GWAS and the middle panel shows
fine-mapping results (PIPs) in the region. The vertical yellow bar highlights the two SNPs with
high PIPs. These SNPs are located in a region annotated with ATAC-seq, H3K27ac, H3K4mel
and H3K4me3 peaks (bottom). This putative enhancer also had increased ATAC-seq, H3K27ac
and H3K4mel levels in decidualized samples and interacts with the HAND2 promoter (red
arc). Figure originally published in Sakabe et al. 2020 [71].
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Figure 4.4: Fine-mapping a GWAS locus of gestational duration: likely causal variants near
GATA2 and their functional annotations. The upper panel shows the significance of the SNPs
in the GWAS and the middle panel shows fine-mapping results (PIPs) in the region. The ver-
tical yellow bar highlights the four SNPs with high PIPs. These SNPs are located in a region
annotated with ATAC-seq,H3K27ac, H3K4mel and H3K4me3 peaks (lower panel). The se-
quences containing the four SNPs all interact with the GATA2 promoter (red arcs). rs2999048
is spanned by an H3K4mel peak in 3/129 tissues of the Epigenome Roadmap data set whereas
rs1554535 is not spanned by enhancer marks in any tissue. rs9879865 and rs9879866 are
spanned by H3K27ac or H3K4mel peaks in 24 and 26 tissues, respectively. Figure originally
published in Sakabe et al. 2020[71]
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with enhancer activity marked by both H3K27ac and H3K4mel (Figure 4.3). Only 9 of the 129
tissues from the Epigenome Roadmap(11) also had H3K27ac, H3K4mel or H3K4me3 peaks
spanning the rs13141656 locus and only 2 spanning the rs7663453 locus. In addition, this pu-
tative enhancer is bound by multiple transcription factors, including GATA2, FOXO1, NR2F2
and PGR, based on ChIP-seq data. The only physical interaction of this enhancer in the pcHi-
C data in decidualized stromal cells is with the promoter of the HAND?2 gene, located 277 kb
away (Figure 4.3). Summing over the PIPs of all SNPs whose nearby sequences interact with
HAND?2 via chromatin looping gives an even higher probability, 0.89, suggesting that HAND2
is very likely to be the causal gene in this region (Table 4.1). HAND2 is an important transcrip-
tion factor that mediates the effect of progesterone on uterine epithelium[52]. Thus, in this
example we identified a novel locus, the likely causal variant(s), the enhancers they act on,
and an outstanding candidate gene for gestational duration and PTB.

The second example focuses on the locus showing a strong GWAS association with gesta-
tional duration on chromosome 3q21. The lead SNP, rs144609957 (GWAS p = 4 x 10_13), islo-
cated upstream of the EEFSEC (Eukaryotic Elongation factor, Selenocysteine-TRNA Specific)
gene. There is considerable uncertainty of the causal variants in this region, with 50 SNPs in
the credible set and the lead SNP explaining only a small fraction of signal (PIP = 0.02). Among
all 12 SNPs with PIP > 0.01, 11 have functional annotations, most commonly H3K4mel and
pcHi-C interactions. Interestingly, for nine SNPs (first 3 shown in Table 4.1), the sequences
in which they are located physically interact with the promoter of GATA2 in the pcHi-C data,
but not with any other promoters in the region (Figure 4.4). The PIPs of all SNPs in the ge-
nomic regions that likely target GATA2 through chromatin looping sum to 0.68 (Table 4.1).
Thus, despite uncertainty of causal variants in this region, our results implicate GATA2 as a
candidate causal gene in endometrial stromal cells. GATA2 is a master regulator of embryonic
development and differentiation of tissue-forming stem cells[31]. As support for the possi-

ble role of GATA2 in pregnancy, GATA2 deficient mice show defects in embryo implantation
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Figure 4.5: Gene-level PIPs under the functionally informed model as compared to the uni-
form model. The same variant-gene assignment was used for both models. Genes above the

black diagonal line have a higher gene-level PIP under the functionally-informed model com-
pared to the uniform model.

and endometrial decidualization[70], making this another excellent candidate causal gene for

gestational duration and PTB.

4.3.2 Gene-level summary of variant fine-mapping suggests candidate genes

of gestation length

While our fine-mapping analysis highlights some putative causal variants and potential tar-
gets, in most cases, the PIPs of the variants are small, limiting our knowledge of the potential
mechanisms in most loci. Given that we are ultimately interested in the genes involved in
pregnancy phenotypes, we developed a computational procedure to summarize variant PIPs

from fine-mapping, at the level of genes (see Methods). These “gene PIPs” provide a conve-
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Differential Expression Test | Gene-level PIP/DE status No. Genes
Control vs Decidualized significantly DE,Not high PIP 4592
Control vs Decidualized significantly DE,High PIP 18
Control vs Decidualized not significantly DE,Not high PIP 16565
Control vs Decidualized not significantly DE,High PIP 31
TCM vs Decidualized significantly DE,Not high PIP 1439
TCM vs Decidualized significantly DE,High PIP 8
TCM vs Decidualized not significantly DE,Not high PIP 19718
TCM vs Decidualized not significantly DE,High PIP 41
Term vs Preterm significantly DE,Not high PIP 168
Term vs Preterm not significantly DE,Not high PIP 20989
Term vs Preterm not significantly DE,High PIP 49

Table 4.2: Intersection of differential expression results with gene-level fine mapping results.
A gene is considered "high PIP” if the gene-level PIP exceeded 0.15, and is considered signifi-
cantly differentially expressed if the FDR adjusted p-value is less than 0.1. A visual represen-
tation of these results can be seen in Figure 4.6

nient summary of the evidence of genes, and can be thought of as approximating the proba-
bility that a gene has an effect on the phenotype. Our procedure integrates genomic annota-
tions about where a SNP is located relative to the gene body, as well as promoter capture HiC
(PC-HiC) data that links variants to gene promoters. Meanwhile, the procedure accounts for
uncertainty of SNP-to-gene mapping, with a SNP potentially assigned to multiple genes.

We applied this procedure to an expanded set of GWAS loci of gestation length. Specifi-
cally, we used TORUS to compute the “region level” FDR (see Methods), which summarizes
how likely a block contains at least one causal variant. To include as many causal signals as
possible, we use aloose FDR cutoff of 0.5. Given that many regions may be false positives, the
SNP level PIPs from SuSIE may not be valid, or un-calibrated, since SuSiE assumes that there
is at least one causal signal per block. To address this issue, we multiply the SNP level PIPs
from SuSiE fine-mapping in any region, by (1 - FDR) of that region, which approximates the
probability that the region contains at least one causal signal. Using these “calibrated” PIPs
of all SNPs in a total of 33 regions, we computed gene-level PIPs of 756 genes in these regions.

For comparison, we also use the same procedure to compute gene PIPs but with SNP-level
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PIPs from SuSiE fine-mapping using uniform prior (i.e. no functional annotations used). We
found that this procedures leads to 7 genes with high confidence, PIP > 0.6, and a number
of genes with suggestive evidence with PIP between 0.2 and 0.6 (Figure 4.5). The results from
using SuSiE PIPs without any functional information include significantly fewer genes, with
only 2 genes having a PIP above 0.6.

Some of the candidate genes we found have plausible connections with gestation. One
top gene is HAND2 (PIP > 1), which as discussed earlier is an important transcription factor
mediates the effect of progesterone on uterine epithelium. GNAQ (PIP = 0.89) encodes Gua-
nine nucleotide-binding protein G(q) sub-unit alpha. In mice with GNAQ knockout, uterine
growth were significantly reduced. WNT4 (PIP = 0.5) is a transcription factor in the important
WNT signaling pathway, and it promotes female sex development and represses male sex de-
velopment. EBF1 (PIP = 0.02) is a transcription factor essential for B-cell development. Given
the close interaction between B cell development and pregnancy[101], the function of EBF1
in gestation length seems plausible and worthy of further investigation.

Taking advantage of PIP summaries of more than 700 genes, we next investigated whether
gestation length genes may be involved in transcriptional response of MSCs to fetal-derived
stimuli. Our hypothesis is that some of these candidate genes may be important for how cells
response to these stimuli, and then when disrupted by genetic variations, may lead to higher
risk of PTB. We perform differential expression analysis in three comparisons, cells treated
by decidualization signal (cCAMP) vs. control, cells treated by Trophoblast condition medium
(TCM) vs. dedidualized cells, and cells collected from preterm labor placental and from term
labor. Using DEseq2, we identified 4610, 1447 and 168 differentially expressed genes (DEGs),
in the decidualized vs control, TCM vs decidualized, and term vs preterm comparisons, re-
spectively, at FDR < 0.1.

We plotted the PIPs and p-values (after multiple testing adjustment) from DEG analysis of

all genes under three conditions in Figure 4.6. At gene PIP cutoff of 0.15 and p-value cutoff
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Figure 4.6: Differential expression adjusted -log10 p-value for each of three differential expres-
sion tests: control vs decidualized, decidualized vs TCM-treated, and term vs preterm, along
with the corresponding gene-level PIP. The vertical and horizontal lines indicated thresholds
that were used to test for the enrichment of high PIP genes for differentially expressed genes.
High PIP genes were significantly enriched for both differential control vs decidualized genes

(p = 0.0264), and for differential decidualized vs TCM-treated genes (p = 0.0344), by Fisher’s
exact test.
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of 0.05, we found significant enrichment of gestation length candidate genes from GWAS in
DEGs, in two comparisons. Among all 756 genes in gestation length GWAS regions, 14 genes
with PIP > 0.15 show differential expression in the decidualization condition, while 18 genes
with lower PIPs show evidence of DEG. This represents 2.2 fold enrichment, with p = 0.04
(Fisher’s exact test). In the TCM vs. decidulization comparison, 6 genes with PIP > 0.15 are
DEGs, representing 2.9 fold enrichment over genes with PIPs below the cutoff (p = 0.03).
Given that few genes show DEGs between pre-term and term labor, we did not find evidence
of enrichment of gestation genes in DEGs.

Take together, we have provided a large list of candidate genes of gestation length and PTB,
combining statistical fine-mapping and functional genomic data sets in relevant cell types.
The joint analysis with differential expression analysis provides support to the hypothesis that
disruptions of transcriptional responses to pregnancy relevant conditions, including decidu-
alization and response to TCM, are potential mechanisms of variation of gestation length and

PTB.

4.4 Discussion

Thelack of complete independence between our functional genomic annotations makes it dif-
ficult to delineate their individual effects but we have nonetheless highlighted the importance
of enhancers and of gene regulation in endometrial stromal cells in modulating the effects of
GWAS variants on gestational duration. This is consistent with both the known tissue-specific
roles of enhancers and the observation that over 90% of GWAS loci reside outside of the coding
portion of the genome and are enriched in regions of open chromatin and enhancers[61].
Integrating transcriptional and chromatin annotations of gene regulation from MSCs and
DSCs improved our ability to discover novel GWAS loci and identify likely causal SNPs and
genes associated with gestational duration. We illustrate how our integrated platform identi-
fied a novel causal locus and candidate gene (HAND2) associated with gestational duration,
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as well as refined the annotation of loci that had been previously identified. Our data suggest
that in endometrial stromal cells GATA2 is likely the target gene of enhancers harboring SNPs
associated with gestational duration. This does not exclude the possibility that the nearest
gene to the associated SNPs, EEFSEC, may be a target gene in other cell types.

Both of these examples highlight transcription factors that are essential for endometrial
development or decidualization. The fact that neither GATA2 nor HAND2 were identified as
potential candidate genes in previous GWASs of gestational duration or PTB supports our ap-
proach and the importance of using functional annotations from cell types relevant to preg-
nancy to fine map and identify candidate genes for the pregnancy-related traits. Overall, the
integrated analyses performed in this study resulted in the identification of both novel GWAS
loci and novel candidate genes for gestational duration, as well as maps of the regulatory ar-
chitecture of these cells and their response to decidualization.

However, there are some limitations. Our results are based on only a small number of in-
dividuals, which may not be enough to fully capture the regulatory landscape of endometrial
stromal cells. In addition, the individuals were African American and the GWAS results were
obtained from Caucasians individuals and therefore, it is possible that the GWAS results do
not match functional annotations in a different population, which could lead to erroneous
conclusions. Another limitation is the fact that we focused on only one cell type, albeit one
that plays a central role in pregnancy. Future studies that include fetal cells from the placenta
and uterine or cervical myometrial cells could reveal additional processes that contribute to
gestational duration and PTB, such as those related to fetal signaling and the regulation of la-
bor, respectively. Second, to maximize power we focused on a GWAS of gestational duration
and not PTB per se. While previous GWAS have shown that all PTB loci were among the gesta-
tional age loci[93], we realize that some of the loci that we identified could be related to nor-
mal variation in gestational duration and not specifically to PTB. Nonetheless, our findings

contribute to our understanding of potential mechanisms underlying the timing of human
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gestation, about which we still know little. Lastly, although our ChIP-seq results revealed an
association between GATA2 binding and decidualization, confirming the role of this transcrip-
tion factor in decidual cell biology([31], [70]), and studies in murines support its role in en-
dometrial processes[70], we do not yet have direct evidence showing that perturbations in the
expression of GATA2, or any of the other target genes identified, influence the timing of par-
turition in humans. Future studies will be needed to directly implicate the expression of these
genes in gestational duration or PTB. Our study highlights the importance of generating func-
tional annotations in pregnancy-relevant cell types to inform GWASs of pregnancy-associated
conditions. Our results suggest that the expression of two transcription factors, GATA2 and
HAND?2, in endometrial stromal cells may regulate transcriptional programs that influence
the timing of parturition in humans, which could lead to the identification of biomarkers of

or therapeutic targets for PTB.
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CHAPTER 5

CONCLUSION

The classical definition of a gene is a "unit of heredity” [46]. In the time before the central
dogma of molecular biology, the gene was defined as that which gave rise to (i.e caused) that
which was heritable — no distinction was made between that which was inherited and that
which “caused” the heritable trait. In light of the central dogma, we now distinguish between
that which is inherited, the gene, encoded in DNA, and that which gives rise to that which
is heritable, which is commonly referred to as the “gene product”. Rather than genes being
the agents of both heritability and causality, we consider the gene the heritable precursor to
the causal agent, which we dub the “gene product”. In this dissertation I have examined the
relationship between gene, gene product and phenotype from three perspectives.

With FGEM, I developed a statistical model that exploited the dual nature of the gene,
gene-product relationship to find new causal genes and enriched pathways. The FGEM model
assumes that if two gene products have similar characteristics they have similar prior proba-
bilities of being causally related to a trait of interest. It similarly assumes that the genes most
associated with a trait (by means of a gene-based test) causally influence the trait by a shared
set of mechanisms that are reflected in the gene’s characteristics. The study of cancer, in par-
ticular the problem of identifying mutational driver genes, provided ideal setting for the appli-
cation of FGEM. Cancer is a disease of unregulated cell growth, believed to be caused (at least
in part) by the accumulation of somatic mutations. The patterns of somatic point mutation
in cancer cells, as summarized at the gene level by driverMAPS[96], provided clear signal of
which genes are most likely to harbor an excess of somatic mutations. The biological process
GO annotations provide a rich yet precise language for characterizing gene products. FGEM
leveraged both of these datasets to identify new driver subtype-specific genes and pathways.

One caveat to consider when evaluation the results of FGEM, especially in the context of

identifying cancer genes, is the extent to which FGEM may impart a “status-quo bias” in its
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results. When embarking on an enrichment analysis of a gene-level association study for a
trait that has never previously been studied, one might assume that genes with a high level of
association with the trait are as likely to have gene-level annotations as genes with a low or
intermediate level of statistical association. Cancer is not such a trait. As cancer biology is a
major sub-discipline of biology, one must keep in mind that genes believed to be involved in
cancer are more likely to have annotation, and it is further possible that annotations reflecting
putative cancer mechanisms are in some sense “overrepresented” among annotations. As an
example, a gene with a driverMAPS FDR < 0.1 has on average 19 Gene Ontology annotations,
while a gene with a higher FDR has on average only 8.6 annotations. As a consequence, if a
true causal gene operates by a mechanism not reflected in its annotations, the gene will be
de-prioritized by FGEM.

Ibelieve FGEM could also be useful in other settings where gene-based tests are commonly
used, such as in the analysis of the contribution of rare and de novo variants to disease risk. It
requires only evidence of gene functions in a phenotype, as measured by Bayes factors (BFs),
as input. However, care needs to be taken to ensure that valid input data is given to FGEM. If
BFs are not properly calibrated, then FGEM may not produce correct result. For example, in a
recent study of de novo mutations in autism, the BFs of genes, when smaller than 1 (providing
evidence against being a risk gene), are automatically assigned to 1[72]. As a result, overall
BF distribution would be significantly inflated. It may be helpful thus, for a user of FGEM, to
check BF distribution first to check if there is any anomaly before running FGEM. When the
gene-based tests do not produce BFs, but p-values or other types of summary statistics (e.g.
estimated effects and standard errors), one cannot directly use FGEM. However, it is possible
to calculate BFs of genes using Empirical Bayes procedures developed for multiple testing, for
example, Adaptive Shrinkage (ASH) method[79].

With RSSp I explored the phenotype genotype relationship at its most diffuse. I demon-

strated how the infinitesimal model — a statistical model of inheritance that dates back over
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a century — remains highly relevant in relating phenotype to genotype. Using a Bayesian ap-
proach, I combined the RSS likelihood with a normal prior and developed a method for her-
itability from summary statistics that outperformed the state of the art, LD score regression,
across a variety of genetic architectures. In addition, we found that external LD reference pan-
els, when of the same approximate size and from the same population as the GWAS cohort,
can make suitable stand-ins when used for heritability estimation.

There are trade-offs to the fact that RSSp works with GWAS summary statistics and not
individual-level data. This means that the quality of the heritability inference is (almost) en-
tirely reliant on the quality of the summary statistics. If the original study suffered from pop-
ulation stratification, that bias will propagate into the heritability estimates of RSSp. In LDSC,
population structure induced inflation of GWAS statistics is captured by the intercept term in
the regression model. It is unclear, however, that this fully addressed the problem of popula-
tion structure. Indeed, the distortion of GWAS summary statistics by population structure can
be subtle. It was found, for example, that the polygenic risk scores (PRSs) based on summary
statistics of height are confounded by population structure and result in misleading findings
in the study of polygenic adaptation[4]. A future direction in RSSp is to generalize the model
to accommodate some level of population structure.

Of additional concern for me, even in the absence of studies with population stratifica-
tion, is the extent to which Europeans have become a de facto “model organism” in statistical
genetics, and how little my work has done to push in the opposite direction. I have built a
tool that 1) is most useful in combination with a large “reference” LD panel that is as similar
to the original dataset as possible and 2) provides no functionality for testing whether the ref-
erence LD panel is appropriate for the GWAS. My method is not alone in this regard, and it
is not irrational that scientists, without the tools to detect whether association is the result of
stratification or not, and without large reference panels of non-Europeans readily available,

try to avoid the issue by designing their study to only include European ancestry individuals.
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My hope is that incentives related to funding and publication will start to push towards the
creation of reference panels in less studied populations, so that this becomes less of an issue.

One main simplifying assumption of RSSp is the normal prior distribution of effect sizes of
all variants. Recent work has shown more complex relationship of effect sizes of variants and
their MAF and LD structure. For deleterious traits, higher MAF is generally associated with
lower effect sizes, because of negative selection against large effect variants. Importantly, this
dependency may vary across the traits, and can be learned for specific traits of interest[77].
The relationship of LD with effect size is more complex, but generally, low LD structure is as-
sociated with younger alleles, which tend to have bigger effects because of less time for natural
selection to work[34]. But regions with low recombination rates, on the other hand, tend to
harbor variants with larger effects because selection is less effective in such regions[34]. Meth-
ods have been developed to incorporate such dependency of effect sizes on MAF and LD into
the prior model of effect sizes, e.g. LDAK and Stratified LDSC[77][34]. All these methods, how-
ever, are all method-of-moment estimators. Likelihood based model is possible. In fact, it is
straightforward to extend RSSp so that effect sizes follow normal distribution with different
variance for each variant, based on its MAF and LD. The challenge is that the computational
technique of eigen-decomposition cannot be applied, so computational burden of full likeli-
hood inference is daunting.

Despite that simple prior distribution being a limitation of RSSp, we note that RSSp esti-
mated heritability is not the point estimate of the h? parameter, rather, it is the sum of the
mean posterior estimate of PVE of each SNP. This “summary PVE” approach is closely related
to the recently proposed Generalized Random Effect (GRE) estimator [41]. The GRE estima-
tor is essentially a frequentist estimator of summary PVE. As argued in the GRE paper, this
summary PVE approach is robust to the violation of the prior distribution. The GRE estima-
tor, however, requires the number of samples to be substantially larger than the number of

variants, which is a limitation in practice. RSSp does not have such limitation, and as we have
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shown, performs well with relatively small (10K) sample sizes.

With the preterm birth project I integrated functional genomic annotation with GWAS data
to identify new target genes. Applied to preterm birth, a trait thought to significant "missing
heritability”, we implicated the genes GATA2 and HAND2, genes that were not previously iden-
tified as contributing to gestational duration heritability. I found that through functionally-
informed fine mapping, gene-level integration of these fine mapping results, and intersection
with disease-relevant, tissue-specific differential expression results, pieces of the genotype-
phenotype map reveal themselves. AKAP13 was among the genes that benefitted the most
under the functionally informed fine-mapping, with a gene-level PIP of >0.5 with the func-
tional model and a gene-level PIP of only 0.153 under the uniform model. The top SNP for
AKAP13 has a GWAS p-value of only 1.185 x 10~5, which contributes 0.03013043 of the PIP
under the functional model, but with the contribution of other high-prior SNPs it obtains arel-
atively high gene-level PIP. We find that AKAP is significantly differentially expressed between
decidualized and control, with an FDR adjusted p-value of 2.07 x 1071, AKAP13 is further
interesting as it has been demonstrated to augment progesterone signaling in uterine fibroid
cells[62]. This is interesting is that fibroids are characterized by altered extracellular matri-
ces and increased stiffness. Mechanical stretch of the uterus is thought to be one of the key
mechanical signals that regulates uterine development during pregnancy[73].

I am left with the impression that the human genetics field is still grappling with the ”dis-
appointment” of GWAS: studies are summarized either in terms of the number of loci that
reach extremely stringent genome-wide significance threshold, or in terms of the polygenic
SNP-heritability. Due to LD, it is often not possible to identify with certainty the sparse "true”
set of causal variants that give rise to a GWAS signal. Even with sophisticated fine mapping
techniques, the credible set of variants can be quite large, as was the case with the GATA2 lo-
cus. Despite this uncertainty at the variant level, there may in fact be very little uncertainty as

to what the causal gene at the locus is, if there is strong evidence that all of the possible causal
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variants are in an enhancer that is only known to loop to one gene. It is my hope that in the
near future, genomic annotation, and methods for reporting uncertainty in genomic annota-
tion, will improve to the point where geneticists will be able to simultaneously integrate over
uncertainty in causal variant assignment, genomic annotation, and variant-to-gene assign-
ment to improve gene mapping.

In particular, I think there are two major opportunities to extend my current method of
gene-level fine-mapping summary. First, my variant-to-gene assignments are relatively sim-
ple and miss other important information. For instance, alternative splicing is one major
mechanism of regulating gene functions, and variants affecting splicing can be important for
complex traits[53]. Splicing variants are often located in intronic regions, and such variant-
gene relationship is missed in my current method. A recently proposed Activity-by-contact
(ABC) score is another example where SNP to gene function can be potentially assigned[32].
In the ABC score, the possible impact of a variant or DNA sequence on a gene is defined by
the product of the regulatory activity of the sequence and the physical contact frequency of
the sequence with a gene promoter from HiC data. My current assignment scheme only uses
a binary assignment using promoter-capture Hi-C data, and may miss many pairs that are
physically close in 3D. Secondly, when calculating the score of a gene, our method does not
explicitly model “allelic heterogeneity” (AH), which describes the phenomenon that a locus
may contain multiple risk variants. It has been reported that AH could be common, reaching
as high as 50% in some complex traits[40]. It is very likely that in the AH case, multiple risk
variants in a locus would target the same gene. With properly modeling of AH, I think it is

possible to further improve the accuracy of fine-mapping causal genes.
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