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Abstract

Optical matter assemblies, specifically nanoparticles that interact and are electrodynamically

bound into ordered structures, represent a new type of material that has novel structural

and dynamic properties that are of fundamental and practical interest. Polarizable (and/or

plasmonic) nano-particles exhibit strong interactions in optical fields (e.g., in optical traps)

that result in emergent structures and non-equilibrium phenomena such as non-reciprocal

forces and negative torques. Although these effects have been predicted and have begun to

be demonstrated experimentally, our understanding of these phenomena is still limited.

In this dissertation I will discuss findings concerning the properties of optical matter

systems. I will show that the long-range and periodic interactions between particles in optical

matter systems that are the result of the coherent light scattered by the particles in the

system have important electrodynamic and structural consequences. Symmetry also plays

an important role in the dynamics of optical matter systems, and I will show that broken

symmetry of several different types results in non-conservative dynamics. I will also show

that rearrangements in optical matter systems are similar to reactions in chemical systems.
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Chapter 1

Introduction

Over the last century, the fields of chemistry and material science have expanded to include

abstractions away from atoms, molecules, and ions as the elementary building blocks of

materials. Assemblies of microparticles or nanoparticles, biological molecules, and polymers

form functional materials with novel mechanical, electrical, and photonic properties [1, 2, 3,

4, 5, 6, 7, 8]. Furthermore, when self-assembly occurs in systems where a constant, external

source of energy is available new static and dynamic structures become accessible [9, 10, 11, 12].

Optical matter assemblies, specifically nanoparticles that interact and are electrodynamically

bound into ordered structures, represent a new type of material that has novel structural

and dynamic properties that are of fundamental and practical interest [13, 14, 15, 16, 17].

Polarizable (and/or plasmonic) nano-particles exhibit strong interactions in optical fields

(e.g., in optical traps) that result in emergent structures and non-equilibrium phenomena

such as non-reciprocal forces [18, 19] and negative torques [20, 21]. Although these effects

have been predicted and have begun to be demonstrated experimentally, understanding of

these phenomena is still limited.

The structure of optical matter is a result of the optical binding force [13, 14]. All optical

matter systems considered in this dissertation are two-dimensional and the relevant particle

correspond to a plane transverse to the direction of propagation of trapping laser. On a
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pairwise level, the optical binding force is the result of one particle in a strong optical field

interacting with the light scattered by another [15]. The optical binding force between two

particles that are separated by a small fraction of the incident wavelength is attractive if

the particles are separated along the polarization direction and repulsive if the particles are

separated perpendicular to the polarization direction [15, 17]. At larger separations, the phase

of the light scattered by each particle plays a role in the structure of an optical matter cluster.

Particles tend to prefer separations near integer multiples of the incident wavelength where

the polarization of one particle is in phase with the incident light, creating a region of high

intensity due to constructive interference [17]. For circular polarization, the optical binding

force is cylindrically symmetric (isotropic) and structures tend to have hexagonal symmetry.

A 2D optical matter cluster formed in a wide Gaussian beam is shown in Figure 1.1a. An

optical binding potential can be constructed by calculating the work required to separate

a pair of particles from some initial separation to a final separation R. An optical binding

potential between two 150nm diameter silver nanoparticles calculated from a generalized mie

theory simulation is shown in Figure 1.1b.

Figure 1.1: Optical matter cluster and optical binding potential. (b) 2D optical matter
cluster formed in a wide Gaussian beam. (b) Optical binding potential constructed by
calculating the work required in a generalized Mie theory simulation to separate two 150nm
diameter silver nanoparticles from an initial separation to a variable final separation.
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A constant flux of energy and momentum is required to maintain an optical matter system.

Consider a single 150nm diameter silver nanoparticle in an optical trap. Its scattering cross

section is roughly σsc = 5 ∗ 10−2µm2. If the trapping beam is focused down to a spot with

an area of 25µm2, then roughly 0.2% of the beam will be scattered by the particle. For

a typical laser power 50mW the particle will scatter approximately 0.1mW . This means

that in 1ms, the energy of the light scattered by the particle is on the order of 2 ∗ 1013kT .

While most of the light scattered by particles in an optical trap scatters isotropically, any

imbalance in the system that causes even a small fraction of the incident light to scatter

asymmetrically has the potential to drive the system far from equilibrium. An emerging body

of work demonstrates that broken symmetry in optical matter systems result in imbalances

in scattering that are accompanied by nonequilibrium phenomena [15, 21, 18, 22, 23].

1.0.1 Outlook

The work presented in this dissertation is focused on discovering and understanding the

basic properties of optical matter systems. It is my hope that future researchers will be

able to build on these basic properties to achieve new scientific and practical goals. All of

the work presented in this dissertation is focused on optical matter with wavelength-scale

separations. However, near-field interactions in optical matter systems have significantly

stronger electrodynamic coupling than wavelength-separated particles.

In Chapter 5 it is shown that electrodynamic coupling is responsible for many-body (3 or

more) nonreciprocal forces in asymmetric clusters of identical spherical particles. Therefore,

I expect that non-equilibrium behavior is significantly more pronounced in optical matter

systems when near-field pairs are present. However, studying optical matter systems with

near-field pair present poses a significant challenge because the size of the point-spread

function in our imaging system approaches relevant particle separations [20].

The experiments presented in this dissertation are done with relatively simple and static

optical traps (e.g. ring traps). However, it is possible to construct more intricate optical traps
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by using a spatial light modulator to shape the phase profile of the optical beam [24, 25, 26].

I believe that future work will show that a wide range of structures can be built by tuning the

shape, phase, intensity, and polarization profiles of optical traps. Furthermore, it has been

shown that time-varying interactions between particles lead to self-assembly of structures

that do not exist for static interactions [9].

The ejection of a newly formed physically bound dimer from an optical matter cluster is

shown in Chapter 5. I find this example particularly interesting because the trapping laser

transports single particles to a region of increased particle concentration, and nonreciprocal

forces transport the dimer away from that region once a dimer is formed. In other words,

single particles are brought to a ’reaction area’ via optical forces, and once a dimer is formed,

they are taken away from the ’reaction area’. I believe that this phenomenon could be

expanded upon to create other schemes where the nonequilibrium dynamics that are inherent

to optical matter systems induces useful context-dependent behavior that can be exploited to

perform useful tasks.

1.0.2 Structure of dissertation

In Chapter 3 the electrodynamics of optical matter systems is explored. I establish the

respective roles of interference and coupling in the coherent light scattered by OM arrays.

Experiments and simulations together demonstrate that the spatial profile and directionality

of coherent light scattered by optical matter arrays in the far-field is primarily due to

interference, while electrodynamic coupling has a quantitative wavelength-dependent effect

on the total amount of light scattered by the arrays. Furthermore, it is found that optical

matter arrays exist in a regime where electrodynamic coupling is significantly enhanced by

constructive interference; both the number of particles in the array as well as the particle

size have a significant effect on the strength of the coupling. The work in this section shows

that electrodynamic coupling in OM systems is significant due to constructive interference

and that OM arrays are an avenue for studying collective electrodynamic excitations in the
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limit where interaction and coupling are described on an element-by-element basis.

In Chapter 4 it is shown that the long-range periodic nature of the optical binding

interaction leads to unique structural features of optical matter arrays. I find that the

long-range and periodic characteristics of the optical binding interaction result in several

distinct structural features of optical matter clusters. It is also show that the periodic nature

of the optical binding interaction favors structures with more inter-particle separations near

integer multiples of the pairwise optical binding distance. Furthermore, I find significant

changes in nearest neighbor distance compared to the two-particle optical binding distance

and deviations from hexagonal symmetry. I construct a pairwise optical binding potential

by calculating the work done separating two particles in plane-wave illumination, and find

that summing the optical binding potential over particle pairs characterizes the stability of

the system. I derive an analytical expression for the distortion energy associated with the

symmetric stretching of small optical matter clusters and show that it correctly predicts the

most stable lattice constant. Finally, it is shown that as the size of OM clusters grow, the

lattice constant continues to increase as it approaches a value around 10% larger than the

pairwise optical binding distance.

In Chapter 5, the correspondence between broken symmetry and non-equilibrium phenom-

ena in optical matter systems is explored. Inter-particle forces in optical matter systems do

not obey Newton’s third law because conservation of momentum is only valid when the entire

system, including the particles, the surrounding medium, and the incident and scattered

light, are considered as a whole. Therefore, broken symmetry in an optical matter system

can manifest broken symmetry in the scattering of the trapping laser that is balanced by net

forces on the optical matter system.

The first considers spherical particles of unequal sizes[19]. It was previously shown

theoretically that electrodynamic interactions between dissimilar optically trapped particles

experience a force in a direction that is transverse to the light propagation direction, despite the

absence of an external driving force. The direct measurement of so-called nonreciprocal forces
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in electrodynamically interacting heterodimers that are confined to pseudo one-dimensional

geometries [27] in the absence of an external driving force. I show using equations in the

point-dipole approximation that the difference in the phase of the polarizability of the two

particles in the heterodimer is responsible for the non-reciprocal force. Experiments with

particles of unequal sizes to two-dimensional optical traps are also presented, where the

non-reciprocal forces result in the ejection of large particles from a cluster of smaller particles.

The second case considered is breaking the symmetry of the optical matter system by

inducing a transverse phase gradient [28]. I establish that the net driving force on homodimers

is modulated by a separation-dependent interference effect for small phase gradients. By

contrast, large phase gradients break the symmetry of the interaction between particles and

profoundly change the electrodynamic inter-particle energy landscape. The findings presented

in this section are particularly important for understanding multi-particle dynamics during

the self-assembly and rearrangement of optical matter.

To conclude Chapter 5, I utilize point-dipole equations to discuss other ways to break sym-

metry in optical matter systems. I show that anisotropic particles experience a configuration-

dependent net force and derive an equation for the net force that is a generalization of the

equation describing non-reciprocal forces on a heterodimer of spherical particles. I also show

that for optical matter clusters consisting of three or more particles, electrodynamic coupling

can break the symmetry and result in a net force on the cluster in the absence of an external

driving force. I present recent experiments where electrodynamic coupling-induced torque is

observed.

In chapter 6 structural rearrangements in optical matter systems are discussed. Bar-

rier crossing trajectories directly measured in an optical matter experiment using optical

microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i.e.

passing events, in an optical ring trap are analyzed. A two-step mechanism similar to

a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis

that combines detailed knowledge of each trajectory, a statistically significant number of

6



repetitions of the passing events, and the driving force-dependence of the process. It is found

one particle allowing the other to pass. This simple experiment can readily be extended to

study more complex barrier crossing processes bythat while the total event rate increases

with driving force, this increase is only due to increased rate of encounters. There is no

drive force-dependence on the rate of barrier crossing because the key motion for the process

involves a random (thermal) radial fluctuation of replacing the spherical metal nanoparticles

with anisotropic ones or by creating more intricate optical trapping potentials. It is also

demonstrated how the concept of a reaction in optical matter systems can be generalized

by analyzing the transition between two structural isomers of a six-particle optical matter

cluster. Chapter 5 is concluded by demonstrating that the internal degrees of freedom in an

optical matter system break detailed balance.
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Chapter 2

Methods

2.1 Experimental methods

2.1.1 Optical trapping set-up

The optical trapping set-up used in the experiments detailed in this dissertation is based

on the output beam from a titanium-sapphire (Ti:Sapphire) laser (Spectra-Physics 3900s)

operating at 800nm, pumped by a Spectra-Physics Millenia Vs 5 W laser. The output beam

of the laser is directed through a Faraday isolator and then spatially filtered using a 4f system

in conjunction with a diamond pinhole.

After the pinhole, the collimated Gaussian beam enters the section of the optical trapping

set-up is shown in Figure 2.1. The beam is first directed through a beam stabilization system

(Optics in Motion LLC) consisting of two beam splitters (BS), two quadrant photodiodes

(QPD), and two fast-steering mirrors (FSM). If the position or angle of the beam deviates,

the reflected spot on the QPD’s moves off center, and feedback from the QPD’s cause the

FSM’s to compensate. This configuration is necessary because the laser source sits on a

separate table from the rest of the optical trapping set-up and the tables tend to drift with

respect to one another slightly. After the beam stabilization system, the power of the beam

is adjusted using a half wave-plate (λ/2) and polarizing beam splitter (PBS).

8



Figure 2.1: Experimental set-up from laser to SLM. FSM - fast steering mirror; BS - beam
splitter; QPD - quadrant photodiode; λ/2 - half waveplate; PBS; polarizing beam splitter.

The second section of the optical trapping setup is shown in Figure 2.2. The phase and

intensity profile of the optical trap can be controlled by modulating the phase of the beam

using a spatial light modulator (SLM; BNS/Meadowlark HSPDM512-785nm). An example

phase mask, which will form a ring trap with an azimuthal phase gradient when focused by

the microscope objective (Nikon 60x Plan APO IR water immersion objective, NA=1.27), is

shown in Figure 2.2 inset i. Immediately after reflecting from the SLM at a small angle, the

collimated Gaussian beam maintains its intensity profile and takes on a phase profile dictated

by the computer-controlled phase mask on the SLM. The back aperture of the microscope

objective is situated at the opposite end of a 4f system from the SLM. The 4f system has

two purposes. The first is to relay the phase information from the SLM to the back aperture

of the microscope objective. This ensures that the spatial properties of the focused beam,

i.e. the optical trap, is related to the phase mask by a Fourier relationship. The second

is to resize the beam so that it fills the back aperture of the microscope objective. More

filling of the back aperture of the objective translates to increased control over the fine details

of the optical trap at the focus of the objective in the liquid sample cell that contains the

nanoparticles in solution.

After the lens marked L2 the beam enters the microscope body. It is then reflected toward
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Figure 2.2: Experimental set-up after SLM. PBS - polarizing beam splitter; SLM - spatial
light modulator; L - lens; DM - dichroic mirror; λ/4 - quarter waveplate; OBJ - objective;
PES - piezoelectric translation stage; DFC - dark field condenser.
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the objective by a dichroic mirror (DM). A quarter waveplate (λ/4) below the objective is

used to change the polarization of the light from linear to circular if needed. The beam then

enters the microscope objective and is focused to form the optical trap. The particles in the

optical trap are imaged using halogen lamp illumination that is directed through a darkfield

condenser (DFC). A schematic of the nanoparticle sample is shown in Figure 2.2 inset ii.

It consists of a dilute nanoparticle solution sandwiched between two glass cover-slips. The

optical trap is focused near the top cover-slip where radiation pressure acting on the particles

is balanced by electrostatic repulsion between the cover-slip and the charged ligands on the

particles. A piezoelectric stage (PES) is used to translate the sample in three dimensions.

The remaining scattered and reflected laser light is filtered out using a notch filter (NF)

placed below the DM and the darkfield image is relayed to the detector. An sCMOS (Andor

NEO) array detector is typically used. The experiments are recorded using the Andor SOLIS

software. Under normal experimental conditions an exposure time of ≈ 1ms is used and

videos of 1000-10000 frames are recorded at a framerate of ≈ 200Hz. The entire detector

does not have to be recorded at once; rather a 200x200 pixel region of interest is usually

appropriate for an optical matter experiment. Decreasing the size of the region of interest

allows for faster frame rates and decreases the size of the output files. Since the data is

streamed to the detector’s cache memorythis allows for accumulating more useful data videos

in rapid succession.

2.1.2 Aligning and correcting the optical trapping beam

Many of the results in this dissertation depend on precise alignment of the trapping beam

and elimination of optical aberrations. The rough alignment of the optical trapping beam

can be done by removing the notch filter before the detector, decreasing the laser power,

setting the exposure time to its minimum value, and viewing the reflection of the beam from

the surface of the top cover-slip. If the beam is correctly aligned, its reflection should not

move (shift) when the objective is moved up and down. The alignment of the beam can be
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Mode
Index

Mode Name Effect

Z0
0 piston None

Z−1
1 tilt particles go to one side of ring

Z−2
2 oblique astigmatism particles form two lobes on opposite sides of

ring
Z0

2 defocus particles become less tightly confined to ring
Z−3

3 vertical trefoil ring becomes slightly triangular

Table 2.1: Zernike modes and their effects on particles in a ring trap.

fine tuned by filling a ring-trap with particles. The trap will fill evenly only when the beam

is very precisely aligned.

Optical aberrations can be corrected by adding Zernike polynomials to the phase profile

of the SLM [29]. A ring trap is also convenient for fine-tuning the beam because each Zernike

mode has a specific effect on the shape and filling of the trap. Table 2.1 lists few relevant

Zernike modes and their effect on how particles fill a ring trap. Tilt, oblique astigmatism,

and vertical trefoil have corresponding counterparts tip, vertical astigmatism, and oblique

trefoil that differ only in orientation.

2.1.3 Creating wide Gaussian optical traps

A wide-diameter Gaussian optical trap can be created by focusing the beam onto the back

aperture of the microscope objective reducing the numerical aperture and if small enough

somewhat collimating the beam propagating through the sample. This is achieved by removing

the lens labeled L1. The disadvantage of this method is that the phase-pattern on the SLM

is not correctly transferred to the focus of the objective. Only simple phase masks are used

in this configuration and Zernike polynomials are adjusted heuristically to achieve the most

stable optical matter clusters.
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2.1.4 Coherent imaging

The trapping laser light scattered from optical matter clusters can be imaged by replacing

the dichroic mirror below the microscope objective with a 50:50 beam-splitter. The notch

filter below the dichroic mirror is also replaced with a filter with smaller optical density

(OD = 5). Dark-field illumination (for tracking particle positions) and scattered laser light

are simultaneously imaged by attaching a two-channel imaging system (Optical Insights,

DualView) between the microscope port and detector. The Dual View splits the image

into two spatially separated images according to wavelength using a detachable dichroic

beamsplitter with a cutoff wavelength of 560nm. The light source for the darkfield imaging is

switched to a 470nm LED (Thorlabs M470L3). A video in which a single particle fluctuated

in a Gaussian trap for > 1000 frames was used to define the coodinate shift between the

darkfield and backscattered laser images.

2.1.5 Sample preparation

The basic elements of the sample used in an optical matter experiment consists of a dilute

nanoparticle solution sandwiched between two glass cover-slips, as depicted in Figure 2.2 inset

ii. A thin spacer with a hole in the center is used to create the gap between the cover-slips

where the nanoparticle solution resides. It usually takes around 20µL of nanoparticle solution

to fill the sample. An adhesive spacer results in the most robust samples, but a thin silicone

sheet has been used in some cases.

The cover-slips are treated according to one of two procedures. The first is to wet with

methanol and dry using Nitrogen gas. This procedure ensures that the cover-slips are clean. A

more involved preparation involves plasma etching the cover-slips for approximately 5 minutes

with ozone. Plasma cleaning induces a negative charge on the cover-slip that enhances

electrostatic repulsion between the particles and the cover-slip and helps prevent particle

sticking. The cover-slip should be thoroughly cleaned and dried over-night before plasma

cleaning.
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The most commonly used nanoparticles are 150nm diameter spherical silver nanoparticles

with PVP ligands. Typical dilutions of stock nanoparticle solutions range from 1:100 to

1:1000, depending on the initial concentration and type of experiment. The dilution of

the solution is important for two reasons. First, the optical trap can fill to quickly or too

slowly to get good data for a particular experiment if the dilution is inappropriate. Second,

diluting the nanoparticle solution decreases the ionic strength of the solution and increases

the electrostatic screening length. This prevents particles from aggregating together in optical

traps, and also strengthens the repulsion between the top cover-slip and the particles to help

prevent the particles from sticking.

2.2 Data analysis methods

2.2.1 Particle tracking

Particle tracking is broken down into two steps: localization and linking. Localization is the

detection of particles in a particular frame, while linking is the formation of trajectories from

the detected positions in a sequence of frames. Particle tracking is done using the Mosaic

plugin in ImageJ [30], which uses the widely-known particle localization and linking methods

developed by Crocker and Grier [31]. The relevant input parameters in the Mosaic plugin

are the size of the particles, the threshold brightness for a detected particle (which can be

either absolute or relative to the brightest pixel), the number of frames to allow a particle to

’disappear’ before ending the trajectory, and the maximum amount a particle in a particular

trajectory is allowed to move from frame to frame. The relevant output of Mosaic is a data

table containing the frame number, trajectory number, coordinates, and brightness of each

particle detected in each frame. The data table can subsequently be imported into Matlab or

other data analysis software (see Appendix B for example).

14



2.2.2 Lattice fitting

I developed a lattice fitting algorithm that fits a set of particle positions to the best-fit

hexagonal lattice. The best-fit hexagonal lattice is used for aligning images for averaging,

cluster detection, and analysis of the correlated deviations of the particles from the lattice

sites. The algorithm is based on minimizing the sum of squared distances from the particle

positions to the nearest lattice sites. A range of evenly spaced lattice constants (dn) and lattice

angles (θm) are used to generate several test lattices. The test lattices are in turn centered

on each particle position (xi, yi) and the nearest lattice site to each particle is identified for

each test lattice. For each test lattice the sum of squared deviations (∆2 =
∑

i δ
2
i ) between

the particle positions and the corresponding nearest lattice sites is calculated. The set of

parameters (d, θ, xc, yc) that correspond to the best-fit lattice is

(d, θ, xc, yc) = arg min
(d,θ,xi,yi)

∑

i

δ2
i . (2.1)

Once the lattice assignment is obtained, the lattice parameters can be refined analytically

to obtain optimized lattice parameters denoted (d∗, θ∗, x∗c , y
∗
c ) [32]. Let

z1 =



xi + iyi

...




z2 =



xli + iyli

...




(2.2)

where (xli, y
l
i) are the coordinates of the lattice site assigned to the ith particle. The optimal

translation r∗ of the lattice matches the centers of mass of the particle positions with the

assigned lattice sites

r∗ = (re(〈z2 − z1〉), im(〈z2 − z1〉)) (2.3)
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where the angle brackets denote taking the mean value. After letting Z = (z1−〈z1〉)·(z2−〈z2〉)

optimal parameter values θ∗ and d∗ are

θ∗ = θ − arctan
(Im(Z)

Re(Z)

)

d∗ = d · |Z|
‖z1 − 〈z1〉‖2

.

(2.4)

Figure2.3a shows an experimental image of a hexagonal 7-particle optical matter cluster

with the corresponding best-fit lattice superimposed. The agreement between the particle

positions and the best-fit lattice is good. To quantitatively evaluate the effectiveness of the

lattice fitting procedure, I generated 10000 sets of particle coordinates based on a perfectly

ordered hexagonal cluster with identical and independently distributed (i.i.d.) Gaussian

deviations from each lattice site. The distribution of the total squared deviations before

lattice fitting should follow
∑14

i N(0, σ2)2 = σ2χ2(14) (χ2 with 14 degrees of freedom), and if

4 degrees of freedom are fully subtracted, we should have ∆2

σ2 = χ2(10). Figure 2.3b shows

a comparison of the distribution of scaled fitting error ∆2

σ2 to the χ2(10) distribution. The

two distributions are in excellent agreement and we can conclude that the optimal lattice

parameters (d∗, θ∗, x∗c , y
∗
c ) fully eliminate 4 degrees of freedom (2 translational, 1 rotational,

and 1 scale) from the particle positions.
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Figure 2.3: Fit lattice example and evaluation of fitting error. (a) Best-fit lattice superim-
posed on an experimental image. (b) Comparison between the distribution of scaled fitting
error ∆2

σ2 (brown bars) and the χ2(10) distribution (black curve).

Once the occupied lattice sites are defined, it is possible to detect certain cluster shapes by

counting the number of neighbors for each lattice site and then counting the number of sites

with a particular number of neighbors. For example, the hexagonal 7-particle cluster shown

in Figure 2.3a has 1 lattice site with 6 neighbors and 6 lattice sites with 3 neighbors. The

number of nearest neighbors is not sufficient to differentiate between every possible cluster

lying on a hexagonal lattice, but it is a sufficient to differentiate between several relevant

clusters such as the six-particle triangle, chevron, and parallelogram clusters discussed in

Chapter 4.

For specific cluster types the best-fit lattice can be used as a reference structure to

translate and orient the particle coordinates relative to the underlying lattice. Figure 2.4

shows the translated and oriented set of particle positions for frames when a specific cluster

was detected. The positions were translated so that the best-fit lattice site corresponding

to position A is at the origin and rotated so that the best-fit lattice site corresponding to

position B is on the y axis. This procedure is used to align images for averaging and to

visualize the deviations of particle positions from lattice sites.
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Figure 2.4: Translated and oriented set of particle positions for frames when a specific cluster
was detected. The positions were translated so that the best-fit lattice site corresponding
to position A is at the origin and rotated so that the best-fit lattice site corresponding to
position B is on the y axis. The image is a visualization of particle fluctuations about lattice
sites.

2.3 Theoretical methods

Our group has developed fast and accurate methods for simulating optical matter. However,

approximate but tractable equations in the Rayleigh limit (not accounting for higher-order

multipole modes) offer significant insight into the nature of several of the phenomena observed

in optical matter systems. The force in the xi direction acting on an oscillating dipole ppp

illuminated by an arbitrary source can be expressed as [15, 33]

〈Fxi〉 =
1

2
Re

[
ppp∗
∂EEE

∂xi

]
(2.5)

where EEE is the electric field at the position of the dipole. The polarization can be expressed

generally in terms of a polarizability tensor as ppp = αααEEE. The elements of the polarizability

matrix corresponding to the long (α‖) and short (α⊥) axes of an prolate spheroidal particle
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is [34]

α‖(⊥) = αuncorrected‖(⊥) H = V εmε0
εp − εm

εm + L‖(⊥)(εp − εm)
H

H =

[
1−

ikαuncorrected‖(⊥)

6πε0εm

]−1 (2.6)

where V is the volume of the particle, εm is the permittivity of the surrounding medium,

εp is the permittivity of the particle, εp is the vacuum permittivity, H is a correction that

accounts for radiative damping [35], and L are depolarization factors given by

L‖ =
1− e2

e2

(
− 1 +

1

2e
ln

1 + e

1− e
)

L⊥ =
1

2
(1− L‖)

(2.7)

where e is the eccentricity of the spheroidal particle. For the special case of a spherical

particle, L‖ = L⊥ = 1
3
and α‖ = α⊥ [34].

For an arbitrary collection of particles at positions rrrn the electric field at a position rrr is

EEE(rrr) = EEE0 +
∑

n

GGG(rrr, rrrn)αααnEEE(rrr = rrrn) (2.8)

where is the incndent electric field GGG(rrr, rrrn) is the dyadic Green’s tensor that propagates

the field due to an oscillating dipole at position rrrn to the position rrr. The elements of the

dyadic Green’s tensor (the xi component of the electric field due to the xj component of the

polarization) are given by [15]

Gxixj =
eikR

4πε0εmR3

[
(3− 3ikR− k2R2)

xixj
R2

+ (k2R2 + ikR− 1)δij

]
(2.9)

where R is the distance |rrr − rrrn|.

Equations 2.5-2.9 provide the general framework that I use to derive analytical expressions
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that help understand various phenomena in optical matter systems. Depending on the

situation, different approximations can be made to allow these equations to provide clear

insights into specific physical situations.

The first simplification that is possible is isotropic polarizabilities. The polarizability

of a spherical particle can be represented as a scalar instead of a tensor, which limits the

number of terms that appear. The second simplification is to choose a convenient geometry.

If two particles lie along a principal axis, Equation 2.9 becomes significantly more simple.

Finally, to fully solve Equation 2.8, a self-consistent solution needs to be found. However, the

field at each particle can be approximated by allowing only up to a certain order of multiple

scattering. This approximation also allows physical phenomena to be attributed to specific

orders of scattering.

I also use Equations 2.5-2.9 for analytical electrodynamic force calculations. I manually

solved for the relevant partial derivatives of the dyadic Green’s tensor and input the results

in Matlab. The Matlab code is printed in Appendix B.
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Chapter 3

Electrodynamics in optical matter

systems

3.1 Electromagnetic interference and coupling in

nanoparticle-based optical matter systems

3.1.1 Introduction

Particles in optical traps interact with one-another electrodynamically through optical

binding forces. As a result the particles tend to self-organize into ordered optical matter

(OM) arrays with preferred inter-particle separations near integer multiples of the incident

laser wavelength[13, 14, 36]. The optical binding forces arise from the interaction between

the polarization of each particle with the incident and scattered light[15]. OM arrays are

open, nonequilibrium systems because the coherent light source that mediates the optical

binding forces also establishes a constant flux of electromagnetic energy through the system.

Conversion or redirection of the momentum from the incident laser light makes phenomena

such as non-reciprocal[18, 19] forces and negative optical torque[37, 38, 20, 21] possible. A

full description of an OM array requires knowing the detailed properties of both the incident
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and scattered light in addition to the positions, sizes, shapes, and compositions of each of

the particles. While there has been steady progress toward understanding how tailoring the

phase and intensity profiles of the incident fields can affect the dynamics and structure of OM

arrays[27, 39, 40, 41, 28], the characteristics of coherent light scattered by OM arrays is an

area of current research[42, 43]. In particular, although both interference and electrodynamic

coupling (i.e. the polarization induced in one particle by the light scattered from neighboring

particles) have been shown to have distinct effects on the dynamics of OM arrays, their

respective influence on the coherent light scattered by OM arrays and interdependency has

received less attention.

Electrodynamic coupling can be categorized into two regimes[44, 45]. In near-field coupling

the interaction between particles with separations much smaller than the wavelength of light is

treated as a quasi-static interaction[46, 47]. In far-field coupling the in-plane dipolar scattering

from large 1D and 2D arrays of particles dramatically effects each particle’s polarization; the

interaction between particles is frequently treated with a self-consistent approach that invokes

the periodicity of the array[48, 49, 50, 51]. A commonality between both types of coupling is

modification of the polarization of a particle in the array or structure due to light scattered by

other nearby particles. The crossover from near-field to far-field coupling is usually defined in

terms of the particle diameter and the wavelength of incident light. Inter-particle separations

in OM arrays, typically close to the wavelength of light, are near this crossover distance.

However, the approaches typically used in the near- and far-field coupling regimes are not

suitable for describing coupling in small OM arrays. A quasi-static approach is inappropriate

because retardation is significant over the wavelength-scale distances characteristic of OM

arrays, and the finite size of the arrays precludes a self-consistent approach.

In this paper we show that optical matter arrays exist in an intermediate regime where

interference both determines the spatial profile of the light scattered by the array, and also

enhances electrodynamic coupling between the array’s constituent members. We show that

the images obtained with coherent backscattered light (termed coherent imaging) from OM
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arrays contrast strongly with those obtained with incoherent light. Diffraction and fringe

patterns visible in the coherent images characterize the electric field intensity surrounding

the OM arrays. More striking is the replacement of particle-centric images obtained with

incoherent light illumination with images where the intensity is shifted between particles

when visualized with coherent light. We investigate the directional scattering of coherent

light over polar angles by performing generalized Mie theory (GMT) calculations of ordered

OM arrays with 1-7 particles. In contrast to the largely dipolar scattering of a single particle

[52], the light scattered from ordered OM arrays develops a lobed structure with maxima in

specific sideways, forward, and backward directions. This scattering can also be described in

terms of collective modes[23].

We find that the total scattering of the OM arrays at the trapping laser wavelength

grows super-extensively when nanoparticles are added to the cluster. We show that the

super-extensive growth of the scattering is the result of electrodynamic coupling. We quantify

the strength of electrydynamic coupling in OM arrays at the trapping laser wavelength by

calculating the ratio of the total electric field intensity at a vacant site in the array to the

incident intensity, and find that the contribution from neighboring particles becomes significant

even for small (1-6 neighboring particles) OM arrays. Our spectroscopic investigation of

coherently illuminated OM arrays extends our investigation to multiple wavelengths and

establishes that a collective resonance develops at the expense of the single-particle Mie

resonance scattering from individual particles. We discuss our results in the context of

the point-dipole approximation and show that electrodynamic coupling in OM arrays is

strengthened by constructive interference. We suggest that OM arrays are analogous to an

avenue for studying surface lattice resonances (SLRs) but in the small array limit where

interaction and coupling is described on an element-by-element basis.
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3.1.2 Experimental setup

Our experiments were conducted with a single-beam optical tweezers in an inverted microscope

as described previously[17]. A schematic of the experimental set-up is shown in Figure 3.1. A

dilute solution of PVP-coated 150nm Ag nanoparticles was placed inside a fluid filled sample

chamber made from an adhesive spacer sandwiched between two glass cover-slips. A cw

Ti-sapphire laser focused at the back aperture of a 60x microscope objective (Nikon SAPO

60x water; NA = 1.27) created a collimated beam that pushes and traps a small number

of particles close to the top glass surface of the sample chamber Electrostatic repulsion

between the surface ligands on the nanoparticles and the charges on the glass cover-slip

balances the radiation pressure, resulting in a 2D trapping condition. The focus of the optical

trapping beam was adjusted with a spatial light modulator (SLM; Meadowlark) to create an

inward directed phase gradient at the trapping plane that increased the confinement of the

nanoparticles. The trapping laser was circularly polarized in all experiments and calculations.

To image the coherent back-scattered light, we employed a 2-channel configuration where

one channel accepted 475nm incoherent LED darkfield illumination, and the other channel

filtered out the LED light and accepted the backscattered laser light but with significant

attenuation (OD = 5). The two channels form spatially separated images on the same CMOS

detector (Andor Neo). The simultaneous measurements are necessary because the particle

positions are not obvious from the images of backscattered coherent light as can be seen in

Figure 3.1b-g. No additional field stops or aperature stops were introduced to the optical

path.

24



Figure 3.1: (a) Optical trapping setup with simultaneous video microscopy and backscat-
tered spectral measurements. HWP - half wave plate; QWP - quarter wave plate; SLM -
spatial light modulator; DBS - dichroic beam splitter; PBS - polarizing beam splitter; SP -
short-pass filter. (b-c) Incoherent (darkfield; NA = 1.27) images of a NP dimer at separations
of 1.5λ (b) and λ (c). (d-e) Coherent (backscattered; NA = 1.27) images of NP dimer at
separations of 1.5λ (d) and λ (e). (f-g) Simulated coherent (backscattered; NA = 1.00)
images of NP dimer at separations of 1.5λ (f) and λ (g). See videos 2 and 3 for a sequence of
images for different inter-particle separations obtained with incoherent and coherent light.

3.1.3 Coherent imaging of OM arrays

The optically trapped particles in our experiments rotate, translate, and dynamically reconfig-

ure in the water solution due to Brownian motion[39, 17]. Therefore, raw darkfield microscopy

videos typically show particles with fluctuating configurations where the probability of each

specific configuration depends on the inter-particle forces. Particle separations with integer

multiples of the trapping wavelength in the solvent medium λ = λlaser/n, where n is the
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index of refraction, are favored due to optical binding[13, 14, 15, 17]. The individual images

containing two randomly fluctuating particles in the optical trap are processed by the following

protocol: the particle pair is tracked using Mosaic (ImageJ) and centered with respect to

its "center of mass", rotated with respect to the orientation of the pair, and averaged in

bins conditioned on inter-particle separation to dramatically improve the signal-to-noise ratio

of the images. (see SI for further details; see video 1 for the raw data and videos 2, 3 for

averaged and aligned videos measured with incoherent and coherent light, respectively).

Figures 3.1b,c show averaged dark-field images measured with incoherent light where the

pair of particles is separated by λ and 1.5λ, respectively. The images show that the incoherent

light scattered from each of the particles is manifested as well-defined circular spots regardless

of inter-particle distance to separations of 300nm. Averaged images measured with coherent

light are shown for the same separations in Figures 3.1d,e. The images for particles separated

by r = 1.5λ show two distinct spots and a pattern of fringes around the dimer with bright

spots on the perpendicular bisector between the particles. The image for r = λ shows a single

elongated spot that is reminiscent of σ-bonding orbitals in diatomic molecules[53]. The fringe

pattern also changes at r = λ compared to r = 1.5λ with the first ring of fringes becoming

ellipsoidal. We performed GMT calculations to generate simulated images for the particle

configurations shown in Figure 3.1b-e (λ = 800nm). The simulated images closely match

each of our experimental results measured with coherent light scattered from the OM arrays

when the simulated numerical aperture (NA) is set to 1.00. We believe the Fresnel reflection

losses at high NA inside the objective reduces the effective NA of the experimental image.

Figure 3.1 demonstrates that the image of a pair of nanoparticles illuminated by coherent

light depends on the distance between them. We also recorded images of small 2D OM arrays

illuminated by spatially coherent light. Figure 3.2a-c shows aligned and averaged coherent

images for three different arrays; the associated averaged incoherent darkfield illumination

images are shown in the insets. A real-space lattice fitting procedure was employed to detect

ordered arrays and define the rotation and translation required for the averaging of each raw
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experimental image. The OM array in Figure 3.2a is a 6-particle triangular configuration, as

shown by the incoherent darkfield image in the inset. In the coherent image the positions of

the corner particles are bright, while the positions of the three interior particles are dimmer by

comparison. Moving away from the array, bright fringes are visible with maximum intensity

located outward from the three central particles in the triangle. The array in Figure 3.2b is a

different six-particle arrangement (termed a chevron) with a concave edge as shown in the

inset. Its coherent image contains a smooth bright fringe following the arc of positions of the

outer particles with the center particle appearing dark. There are exterior fringes projected

outward from the bisectors of each of the 5 exterior edges of the array, and a bright fringe

located between the two interior edges. Figure 3.2c shows the coherent image for the 7-particle

hexagonal array obtained by adding a particle to the array in Figure 3.2b. The coherent

image is annular with a dark center that resembles a benzene π-orbital[53]. There are fringes

located outward from the bisector of each edge of the hexagon. The arrays in Figure 3.2

a, b, and c have 3-fold, 2-fold, and 6-fold rotational symmetry, respectively, which matches

the symmetry of each array. Figures 3.2d-f show simulated coherent backscattering images

(λ = 800nm; NA = 1.00) for each of the experimentally measured arrays in Figure 3.2a-c.

The agreement between the measured and simulated images is very good.
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Figure 3.2: Coherently imaged OM arrays and comparison to the simulated electric field
intensity. (a-c) Experimental coherent backscattered images of OM arrays with 6 (a-b) and 7
(c) particles. The insets show the corresponding averaged incoherent (darkfield) images. (d-f)
Simulated coherent backscattered images each of the three OM arrays as panels a, b, and c,
respectively. (g-i) Simulated electric field intensity (color: red-blue) within and around each
of the OM arrays for comparison with the results of coherent imaging. The nanoparticle are
gray filled circles.

Figures 3.2g-i show the simulated electric field intensity within and around each of the

three arrays for comparison with the experimental and simulated coherent backscattering

images. Figure 3.2g exhibits two local intensity maxima outside each edge of the triangle

that are in a similar location to bright fringes in the simulated coherent image. In the

experimental image, the two bright fringes merge into a single fringe. In Figure 3.2h-i the

intensity maxima just outside the array are also coincident with fringes in the coherent
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images. The correspondence between the coherent images in Figures 3.2a-f and the simulated

near-field electric field intensity in Comparison of the coherent images in Figures 3.2a-c

(experimental) and d-f (simulated) and the electric field distributions in Figures 3.2g-i is

clearly different inside the OM array, but improves moving outward.

The relationship between the electric field intensity distribution and the coherent images

of OM arrays is due to far-field interference[54]. For plane-wave illumination with incident

electric field E0 the electric field intensity the at a point (ρ, φ) in the transverse plane is given

by[52]

I(ρ, φ) = E2
0 + 2E0|Ã|

cos(kρ+ ϕs)

kρ
(3.1)

where Ã is a complex constant related to the nanoparticle’s polarizability and ϕs is a phase

shift factor. Meanwhile, the field in the image plane scattered by a point dipole µi located at

the origin (in the paraxial limit) is[52]

E(ρ, φ) = B̃
J1[kρ sin(θobj)]

kρ
µ (3.2)

where B̃ is a complex constant and J1 is a Bessel function and θobj is the collection angle of

the microscope objective. Replacing the Bessel function by its asymptotic form and including

the electric field reflected off the water-glass interface Er, the intensity is

I(ρ, φ) ∝ E2
r + 2Er|B̃||µ|

cos(kρ sin(θobj) + π/4)

(kρ)3/2
(3.3)

Comparing Equation (3.3) to Equation (3.1) shows that for a perfect objective (sin(θobj) = 1;

N.A. = 1.33) the coherent images and the electric field intensity for a single particle have

identical features up to a constant phase shift, although the image intensity modulation

falls off faster as ρ3/2. Equations 3.1-3.3 apply to single particles. The difference between

the coherent images and the near-field intensity in the interior of the cluster are due to the

reduced NA of our experimental coherent images.
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Figure 3.3: Projections of the far-field angular scattering (λ = 800nm; 600nm in water)
onto the yz plane from NP arrays with 1-7 particles and effect of coupling on magnitude of
total scattering. (a) OM arrays (lattice spacing = 600nm) and color coding for (b-d). The
incident field propagates along the z direction (upward on the page). (b) Angular scattering
normalized by the number of particles in the array. (c) Angular scattering normalized to
unity. (d) The same as (b), but with interpaticle coupling disabled. (e) Total scattering
normalized by single particle scattering with coupling enabled (red) and disabled (blue).
Comparing (b) to (d) shows that coupling increases the strength of the far-field scattering.
On the other hand, coupling does not significantly change the shape of the angular fields.

3.1.4 Separating interference from coupling in OM arrays

Figures 3.1 and video 3 demonstrate that the separation between particles has a dramatic effect

on the images of coherent light scattered by a pair of particles, and Figure 3.2 demonstrates

that the size and shape of the OM array does as well. However, the relative importance of

interference and coupling needs to be established. We have carried out GMT calculations at

a wavelength of 800nm ( 600nm in water) for ordered OM arrays with a lattice spacing of

600nm with 1-7 particles to facilitate a quantitative comparison between the light scattered by

OM arrays with different numbers of particles. The simulated OM arrays have the structures
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and orientations shown in Figure 3.3a. Projections of the scattered intensity onto the y-z

plane are shown in Figure 3.3b-c when normalized to one (b), and by number of particles

(c). A single particle scatters in all directions, although there is a greater scattering intensity

in the forward and backward (±z; up/down) directions than in the sideways (y; left/right)

directions. The pattern is reminiscent of a dipole emitter, but is altered due to the high order

(e.g. quadrupole) modes of the GMT description of a single 150nm diameter Ag NP, and by

the broken symmetry between forward and backward scattering. As more particles are added

to the OM array, the scattering intensity develops a strong lobe-structure with maxima in

the forward (+z) and backward (−z)directions, and smaller maxima in the sideways (±y)

directions. The change going from 2 to 3 particles is particularly striking and notable because

this is the first cluster where a particle is added offset from the x axis.

Figures 3.3b-c show that the directional scattering from an OM array is altered significantly

compared to a single particle. We modified the calculations in Figure 3.3b-c by disabling

coupling between the particles so that the polarization induced in each particle is only due to

the incident field. The results are shown in Figure 3.3d-e. The shape of the angular scattering

profile is nearly identical, but the magnitude is twofold greater than when coupling is allowed.

Specifically, the total scattering cross section (at a wavelength matching the lattice spacing)

of an OM array with N particles σN is directly proportional to N as σN = Nσ1 with coupling

disabled, while σN grows super-extensively (i.e. faster than N) with coupling enabled.

We also repeated our calculations of coherent images with coupling disabled to determine

if the images are affected by coupling. We find that the resulting images are nearly identical

to the results shown in Figures 3.1-3.2 with coupling enabled (see SI).

The results in Figures 3.1 through 3.3 demonstrate that the imaging and directionality of

light scattered by OM arrays are primarily influenced by interference, and that electrodynamic

coupling changes the magnitude but not the spatial characteristics of the scattered coherent

light. There are two (limiting) cases where electrodynamic coupling between nanoparticles is

particularly important. When inter-particle separations are small compared to the wavelength
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of light, retardation can be neglected and the interaction between particles can be treated as

electrostatic; i.e. as between the surface charges of the two particles in a pair or dimer[46, 47].

On the other hand, large field enhancements can occur in extended, regularly spaced arrays

of particles at wavelengths near the array spacing due to constructive interference[50].

32



Figure 3.4: Electrodynamic coupling and emergence of a collective scattering mode in
OM arrays. (a) Electric field enhancement at the vacant location of the center particle in
a hexagonal OM array for varying number of particles at wavelengths of 800nm (violet),
760nm (blue), and 580nm (red). (b) Six-particle results from panel (a) repeated for varying
particle-size (radius) at wavelengths of 800nm (violet), 760nm (blue), and 580nm (red).
(c) Simulated scattering enhancement as a function of wavelength in OM arrays versus
number of particles. The inset shows the integral of the energy ranges corresponding to the
single-particle Mie resonance and the collective mode induced by electrodynamic coupling.
(d) Local density of (electromagnetic) states enhancement in OM arrays for 1-7 particles (e)
Simulated wavelength-dependent total scattering of the NP arrays normalized by particle
number. (f) Experimental back-scattering spectra of NP arrays normalized by a 1NP spectra
measured with spatially coherent light. Note the spectral range of the experiment corresponds
to that between the dashed vertical lines in (e).
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3.1.5 Spectral dependence on coupling

We have shown that electrodynamic coupling between particles leads to increased scattering

of coherent light at the trapping laser wavelength (800nm; 600nm in water) in OM arrays,

and now turn our attention to the origin of the coupling. We carried out GMT calculations

to study the effects of the number of particles, size of particles, and excitation wavelength on

the coherent light scattered by OM arrays. Figure 3.4a shows the ratio of the total field to the

incident field at the (empty) location of the center particle in a hexagonal 7-particle OM array

for wavelengths of 800nm (violet), 760nm (blue), and 580nm (red). For λ = 800nm and

λ = 760nm the enhancement is small (≈ 7 percent) with a single particle nearby. However,

every particle added to the array contributes to a growing enhancement so that the scattered

field is nearly half the magnitude of the incident field for 6 nearby particles, and the growth

from 1-6 is nonlinear. Conversely, at λ = 580nm the total field at the location of the

center particle diminisheds monotonically with particle number compared to the incident

field. Figure 3.4b shows the six-particle simulation repeated with variable particle radius

ranging from 20nm to 100nm for the same wavelengths as Figure 3.4a. The dependence

of the field enhancement at each wavelength is nonlinear, and the magnitude of the field

enhancement approaches 1 as the size of the particles decrease and increases with increasing

particle size for λ = 800nm and λ = 760nm (with a peak near 80nm) while it decreases with

increasing particle size for λ = 580nm. This result follows from changes in the scattering cross

sections as the volume decreases ∝ r3 and the dipolar resonance red-shifts with increasing

size. Figures 3.4a-b show that significant electrodynamic coupling occurs even in small arrays

( 2-7 particles) due to the combined scattering from several neighbors for particles larger than

50nm in radius.

So far we have focused on the scattering of coherent light at a few wavelengths by

OM arrays. We will now discuss the scattering of a spatially coherent broadband light

source by OM arrays. Figure 3.4c shows the scattering enhancement (compared to N-fold

multiplication of the single-particle scattering) as a function of wavelength for OM arrays with
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1-7 particles. Consistent with the results in Figure 3.3e, the scattering grows super-extensively

at wavelengths near the trapping wavelength. The dependence of this scattering enhancement

on electrodynamic coupling suggests that it is collective in nature. Figure 3.4c also shows that

the scattering near the single-particle Mie resonance decreases as the number of nanoparticle

constituents in the OM array increases. The inset in Figure 3.4c shows the integral of the

scattering enhancement for the collective and single-particle resonances. As the number of

particles is increased, the integral of the collective mode enhancement steadily increases while

the integral of the single-particle mode diminishes. Figure 3.4c shows that as more particles

are added to the OM array the scattering of coherent light becomes increasingly influenced

by the collective resonance coinciding with the diminishment of the Mie resonances of the

individual particles in the array.

The local density of (electromagnetic) states (LDOS) at a certain location within or near

an OM array controls the emission rate of a dipole emitter placed at that location[55, 56].

In the limit of large arrays of plasmonic particles the local density of states enhancement

for specific in-plane wave vectors occurs together with large field enhancements[51]. Small

ordered OM arrays are in the opposite limit, but the significant field enhancement shown

in Figures 3.4a-b suggest that some degree of LDOS enhancement is expected. Figure 3.4d

shows the measured local density of states enhancement (LDOS) in an OM array for 1-7

nanoparticles. As more particles are added to the OM array, LDOS enhancement becomes

increasingly prominent near the trapping laser wavelength.

To experimentally determine the wavelength-dependent scattering enhancement in OM

arrays, we measured backscattered spectra from a coherent broadband source. These results

can be used to establish the effects of electrodynamic coupling in OM arrays. A backscattering

geometry was chosen for excitation and detection so that the direction of propagation is normal

to the plane of the array because an in-plane component of the incident wave vector changes

the phase relationship between the particles in the array[50]. Surface lattice resonances

(SLR’s) that arise in extended arrays result in sharp resonances at wavelengths near the
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lattice spacing[48, 49, 50, 51]. Although we anticipate a similar enhancement at wavelengths

near the wavelength of the trapping laser because it defines characteristic optical binding

distance, the trapping laser wavelength needs to be filtered out because it is much more

intense than the coherent broadband source. To meet these technical constraints we employed

a pulsed supercontinuum fiber laser (Fianium WL400-4-PP), operating at maximum intensity

with a 5.00 MHz pulse repetition rate, coupled to a computer-controlled variable interference

filter (Fianium SuperChrome) set to its maximum bandwidth. As shown in Figure 3.1a, the

broadband beam was directed to travel collinear with the trapping laser into the optical

trap, and the back-scattered light was sent through a 50:50 beam splitter and notch filter

(Semrock StopLine NF03-785E-25) to remove the backscattered light from the trapping laser

intensity. 20% of the light was directed towards a CMOS array detector for imaging (Andor

DC-152Q-COO-F1) and the remaining 80% of light was directed towards a spectrograph

(Andor Shamrock SR-193i-B1-SIL). A pair of relay lenses (Thorlabs AC508-100-B-ML) with

focal length f=100mm were then used to bring the resulting spectrum from the spectrograph

to a second CMOS array detector (Andor NEO-5-5-CL3). The imaging and spectral CMOS

detectors were synchronized so that the spectral measurement would be taken at the same

frame rate and duration as the imaging. Once an OM array had formed both detectors were

started and 1000 images and spectra were acquired at 160 fps. The spectra were classified by

specific numbers of nanoparticles, and as arising from ordered vs. disordered arrays based

on the fitting error (i.e. deviations of the particle positions from the lattice) resulting from

real-space lattice fitting of the OM arrays in each frame.

Figure 3.4e shows simulated backscattered spectra for an OM array consisting of 1-7

particles normalized by the single particle spectrum. As particles are added to the array, peaks

in scattering enhancement emerge near 500nm and 800nm. The experimentally measurable

range of wavelengths is indicated by the black vertical dashed lines in Figure 3.4e. Figure 3.4f

shows the experimentally measured backscattered coherent spectra normalized by the single-

particle scattering spectrum. The experimental and simulated spectra of the OM arrays are
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in good agreement.

3.1.6 Discussion and Conclusions

We have shown that coupling and interference have distinct effects on the scattering of

coherent light by OM arrays. Figures 3.1 and 3.2 show that the images of the backscattering

of the coherent trapping laser from an OM array are dramatically different from the images

of the particles illuminated by an incoherent source. Furthermore, the coherent images of the

OM array have common features with the near-field intensity because both are controlled by

similar phase-dependent relationships. Figure 3.3 shows that coupling has a minimal effect

on the qualitative spatial characteristics of coherent light scattered by OM arrays. However,

coupling leads to an enhancement of the total scattering at the trapping laser wavelength.

Figure 3.4 demonstrates that while coupling enhances scattering at wavelengths near the

trapping laser wavelength, total scattering is not enhanced at all wavelengths.

However, our results also suggest that there is an important relationship between in-

terference and coupling that can be understood using a simplified model. Consider a

two-dimensional cluster of particles with isotropic polarizability α arranged in the transverse

plane of an electromagnetic plane-wave with wavelength λ0 . The polarization of particle i is

proportional to the total electric field at the location of particle i as pi = αEr=ri with

Er=ri = E0 + α
∑

j 6=i
G(ri, rj)Er=rj

≈ E0

[
1 + α

∑

j 6=i
G(ri, rj) + α2

∑

j 6=i

∑

l 6=j
G(ri, rj)G(rj, rl) + ...

] (3.4)

where E0 is the incident electric field and G(ri, rj) is the tensor that propagates the scattered

field at position rj resulting from a dipole at position ri

Glm =
eikR

4πε0εmR3

[
(3− 3ikR− k2R2)

RlRm

R2
+ (k2R2 + ikR− 1)δlm

]
(3.5)
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where l and m are polarization directions, R = |ri − rj| is the distance between the two

particles, and k is the wave-vector of the incident light. At single-wavelength distances

kR = 2π, so that the far-field terms in the propagator with 1
R
dependence give the largest

contribution, although all terms are significant. According to equations 3.4 and 3.5, the

polarization of a particle in an OM array will have the largest contribution from light scattered

by neighboring particles when all of the scattered contributions are in-phase, i.e. when they

are interfering constructively.

Figure 3.4a shows that each particle added to the OM array increases electric field strength

at the central particle near the trapping laser wavelength. In the context of equation 3.4, an

increasing portion of the polarization of the central particle is induced by scattered light from

neighboring particles as particles are added to the OM array. The scattered light from each

of the added particles is in phase at the location of the center particle because they are all the

same distance from the center particle and the circularly polarized excitation is isotropic in

the polar symmetry of the array. The relative phase between the incident and scattered light,

however, depends on the lattice spacing in comparison to the wavelength of the excitation.

For the trapping laser, the laser wavelength and lattice spacing are nearly equal and the

scattered light interferes constructively with the incident light. For other wavelengths the

interference can be destructive. At 560nm the interference is destructive and the field at the

location central particle is diminished.

The total strength of the coupling also depends on the size (and polarizability) of the

particles. Figure 3.4b shows that while the 150nm diameter particles used in our experiments

and most calculations are shown lead to significant coupling in OM arrays, particles with

diameters under 100nm lead to much smaller coupling. Therefore, the geometry, inter-particle

separations, and choice of particles in OM arrays contribute to the significant electrodynamic

coupling that we report here. Equation 3.4 is an approximate solution for the scattered

field at the location of a particle in an OM array expanded in orders of scattering. Each

scattering order is weaker by a factor of αG. Based on the results in Figure 3.4a, we can
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approximate that the terms in αG are of the magnitude ≈ 0.05 As an OM array grows, an

increasing number of terms contribute to higher-order scattering, giving rise to the nonlinear

enhancement shown in Figure 3.4a.

In this work we focused on the electrodynamic properties of small OM arrays. In the limit

of large regular arrays of nanoparticles one finds a sharp peak in their scattering spectra with

a central wavelength near the lattice spacing. This is known as a surface lattice resonance

(SLR)[48, 49, 50, 51]. The enhanced scattering associated with the SLR can be derived

analytically as a consequence of strong electrodynamic coupling by employing a self-consistent

solution in the limit of a large lattice[50].

Electrodynamic coupling in OM arrays is in a distinct regime compared to other typical

examples of coupling. Near-field electrodynamic coupling between pairs of particles is usually

significant for inter-particles separations much smaller than the wavelength of light. On the

other hand, constructive interference can lead to significant coupling in very large (extended)

arrays of particles. Electrodynamic coupling in OM arrays is near the crossover between

the two limits. While the magnitude of the field scattered from a single particle is small,

the combined contributions from several nearby particles, interfering constructively, leads to

significant field enhancement and coupling. Therefore, OM arrays are an avenue for studying

SLRs in the opposite, small array limit where interaction and coupling is described on an

element-by-element basis. These field enhancements and coupling could also be exploited

for applications in nonlinear optics, where the phenomena have an E2n dependence, with n

indicating the order of nonlinearity[57, 58].
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Chapter 4

Structure of optical matter systems

4.1 Structural Properties of Clusters Formed by the Long-

Range Periodic Optical Binding Interaction

4.1.1 Introduction

The stability and morphology of small clusters of particles are dictated by the nature of

their interactions. For pair interactions that are dominated by excluded volume and very

short-range attraction the energy of the cluster is directly proportional to the number of points

of contact between the particles, leading to a small number of structures with nearly the same

binding energy[59, 60, 61]. For pair interactions with multiple length scales (e.g. a short-range

attractive and long-range repulsive component), a rich variety of density dependent phases

and water-like anomalies have been observed[62, 63, 64].

Optical binding is a long-range periodic electrodynamic interaction between nano or

micro-scale particles that is generated by a coherent light source[13, 15]. It was recently

suggested that clusters of nanoparticles formed by optical binding (optical matter clusters)

have enhanced stability of extended periodic structures due to the periodic nature of the

optical biding forces[39]. However, phenomena reported in other systems with long-range
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pair potentials, including non-hexagonal packing and water-like anomalies, have not been

reported in optical matter systems.

In this paper we show that the long-range and periodic nature of the optical binding forces

result in several distinct structural features in optical matter clusters. We analyze a large

volume of experimental and simulated data of 2-dimensional optical matter structures to

deduce the structural properties and relative probabilities of the most stable structures. We

determine that the most stable structures of these clusters are the same as the ground state

structures of two-dimensional clusters with short-range attractive interactions[59, 60, 61]; the

binding energies of the latter structures are degenerate. However, the relative stability of

each optical matter structure as a function of laser power shows that the long-range optical

binding interactions lifts the energy degeneracy between the structures. Furthermore, we

measure significant increases in nearest neighbor distance compared to the two-particle optical

binding distance[15, 17]; the latter is λ/n whereλ is the trapping laser wavelength and n is the

index of refraction of the medium. We also find that the fully relaxed optical matter arrays

obtained in simulations with no thermal fluctuations are distorted relative to a reference

hexagonal lattice, including the existence of a five fold symmetric cluster that does not lie on

a hexagonal lattice.

We construct a pairwise optical binding potential by calculating the work done separating

two particles in plane-wave illumination, and find that summing the optical binding potential

over particle pairs characterizes the stabilities of the clusters. The success of this simplified

approach transcends the presence of non-conservative forces[65] and many-body electrody-

namic coupling (see chapter 3). We derive an analytical expression for the distortion energy

associated with the symmetric stretching of small optical matter clusters and show that it

correctly predicts the lattice constant of the most stable structures. Finally, as the size of

OM clusters grow, the nearest neighbor separation continues to increase as it approaches a

value around 10% larger than the pairwise optical binding distance.
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4.1.2 Long-range periodic potentials

We performed Langevin dynamics (LD) simulations for six-particle clusters with two different

analytical pair potentials and similar confining forces of the optical trap that allow contrast-

ing the structures formed with short-range single-well and long-range periodic potentials.

Figures 4.1a and b show Lennard-Jones (LJ) and optical binding (OB) potentials, respectively.

The LJ potential is defined so that the minimum matches the first minimum in the optical

binding potential and the depth matches the distance from the first minimum to the first

local maximum in the optical binding potential. The pairwise distances for two typical

six-particle clusters, the chevron (red) and the triangle (blue) are marked by circles with the

size of the circle denoting the number of occurrences distances that have a particular value.

Figures 4.1 a-b suggest that we should expect that the chevron is slightly more stable for

the LJ potential[66] because it has more pairwise distances with shorter values, while the

triangle is more stable for the OB potential because it has more pairwise distances at the

second optical binding distance.

To measure the stability of different arrangements we developed a cluster detection

algorithm based on the commonly observed hexagonal symmetry of the clusters when the

trapping laser is circularly polarized[67]. First, the hexagonal lattice that minimizes the

distance from each measured particle position to the nearest lattice site is found. This

minimization is carried out over four degrees of freedom: two translational, one rotational,

and one scale parameter. Next, each particle is assigned to a lattice site if it is within a

cutoff distance of that site. Once the occupation of each lattice site is known, the number of

neighboring occupied lattice sites are counted and the set of numbers of neighbors at each

occupied site is used to distinguish between common six-particle structures (e.g. trangle,

chevron, parallelogram). Figure 4.1c shows the detected probabilities for the three lowest

energy six-particle clusters. The triangle and parallelogram cluster (blue and magenta,

respectively) are relatively rare in the LJ potential, while the chevron cluster type makes up

the majority of the detected cluster types. The combined probability of all three cluster types
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(black) is close to 1 for the chosen temperature and potential well depth in our simulations,

meaning that other cluster types are rare. For the optical binding potential, the parallelogram

is no longer detected, the triangle increases in probability, and the chevron decreases in

probability, and other cluster types are similarly rare.

Figure 4.1: Comparison between LD simulations with the Lennard-Jones and optical
binding potentials. (a) Lennard-Jones potential. Inter-particle separations for triangle and
chevron configurations are marked with red and blue circles, respectively. (b) Lennard
Jones potential. (c) Detected cluster-type probability for the chevron (red), triangle (blue),
parallelogram (magenta), and combined (black) in LD simulations with the Lennard-Jones
and optical binding potentials. (d) Probability distributions of nearest neighbor distances in
LD simulations with the Lennard-Jones (black) and optical binding (red) potentials.

Figure 4.1d shows probability distributions of the nearest-neighbor distances in the LJ and

OB potential simulations. Both probability distributions reflect their underlying potential.

The distribution for the LJ potential is more narrow and skewed toward longer distances

while the distribution for the OB potential is wider and more symmetric. For the LJ potential
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(black) the maximum probability for nearest neighbor distance coincides with the location of

the minimum energy. However, for the OB potential the maximum probability is shifted to a

larger distances than the first local minimum in the OB potential.

4.1.3 Experimental observation of six-particle OM clusters

Figure 4.2: Analysis of experimentally observed optical matter clusters. (a) Experimental
still-frames. i. chevron cluster ii. triangle cluster iii. excited state iv. five-fold symmetric
cluster (b) Detected cluster-type probability for the chevron (red), triangle (blue), parallel-
ogram (magenta), and combined (black) in experiments at different trapping laser powers.
(c) Distribution of inter-particle separations conditioned on whether the cluster is ordered
(black) or disordered (red). (d) Distribution of angular order parameters ψ5 vs ψ6.
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Since our experiments are performed in solution at room temperature, and typical energy

barriers to rearrangements of clusters are usually on the order of a few kBT , clusters in our

optical binding experiments frequently rearrange over the time-scale of a typical experiment

and it is feasible to sample a large number of configurations. Figure 4.2a shows snap shots

of typical six-particle structures seen in an optical binding experiment. Panel i and ii show

the chevron and triangle arrangements, while panel iii shows a less compact higher energy

arrangement and panel iv shows a five-fold symmetric arrangement.

The relative probability of a certain cluster type in thermal equilibrium compared to

another depends on the free energy difference between those two configurations according to

PA
PB

= e
∆F
kBT = e

∆U−T∆S
kBT (4.1)

where PA and PB are the probabilities of states A and B, ∆U is the potential energy difference

between states A and B, T is the temperature of the system, ∆S is the entropy difference

between states A and B, and kB is the Boltzmann constant. The optical binding force is

directly proportional the intensity of the incident light, and therefore the potential energy

difference ∆U between two non-degenerate configurations can be tuned in optical matter

clusters. Therefore, we expect that the dependence of cluster type probability on laser power

characterizes the free energy relationships between the sates measured.

Figure 4.2b shows the detected probability of the six-particle clusters that are most

common as a function of laser power. The combined probability is plotted in black. The total

probability increases with power. If the three states detected are the lowest energy states,

the combined probability should approach 1 as the laser power increases. The probability of

the triangle cluster similarly increases with increasing power. However, while the probability

of the chevron cluster increases from 25mW to 40mW , it decreases from 40mW to 50mW .

The parallelogram only occurs with significant probability at 50mW . As power increases, the

ratio of probabilities of detecting the triangle compared to the chevron, Ptri

Pchev)
, also increases.

This suggests that the triangle cluster is lower in energy than the chevron, while the chevron
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is favored by entropy.

Figure 4.2c shows a comparison of the nearest neighbor distances in six particle 2D optical

matter clusters conditioned on lattice fitting error. The most probable nearest neighbor

distance for small lattice fitting error (black) is slightly smaller than the most probable

nearest neighbor distance for large lattice fitting error (red). This is related to the increased

nearest neighbor distance for clusters formed with the optical binding potential compared to

the LJ potential, as shown in Figure 4.1d.

To measure the prevalence of five-fold symmetric clusters compared to clusters with

hexagonal symmetry we developed two angular order parameters, ψ5 and ψ6. The five-fold

symmetric cluster is detected as a chevron by the cluster-type detection algorithm (with large

fitting error). For each frame where the chevron is detected we calculated the angle between

each pair of adjacent exterior particles with the vertex at the center of mass of the cluster for

ψ5 and the central lattice site for ψ6. The definitions of ψ5 and ψ6 are

ψ5 =
1

5

∑

i

Re[e2πθi∗5]

ψ6 =
1

5

∑

i

Re[e2πθi∗6]

(4.2)

where θi are the angles between adjacent exterior particles. The values for ψ5 and ψ6 for is 1

the ideal five-fold symmetric and chevron clusters, respectively.

Figure 4.2d the distribution of ψ6 versus ψ5 for an experiment performed at 50 mW. The

values of ψ5 for the ideal chevron cluster and ψ6 for the ideal five-fold symmetric cluster

are marked with red dashed lines. Concentrations of probability corresponding to both the

chevron and the five-fold symmetric cluster are visible. Figure 4.2d shows that both the

chevron and the five-fold symmetric cluster are stable states, although the five-fold symmetric

cluster is significantly more rare.
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Figure 4.3: Analysis of simulated optical matter clusters. (a) Distribution of inter-particle
separations conditioned on whether the cluster is ordered (black) or disordered (red). (b) De-
tected cluster-type probability for the chevron (red), triangle (blue), parallelogram (magenta),
and combined (black) in simulations at different trapping laser powers. (c) Ratio of probabil-
ity of the triangle cluster over the chevron cluster plotted vs power on a semi-logarithmic
scale.

Simulated observation of six-particle OM clusters

We performed coupled electrodynamics and Langevin mechanics simulations to compare

with our experimental findings in a controlled environment. Figure 4.3a shows shows a

comparison of the nearest neighbor distances in 2D six particle clusters conditioned on lattice

fitting error. As is the case for our experimental results shown in Figure 4.2c, the most
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probable nearest neighbor distance for small lattice fitting error (black) is slightly smaller

than the most probable nearest neighbor distance for large lattice fitting error (red).

Figure 4.3b shows a plot of detected cluster probability vs power. The magenta curve

corresponds to the parallelogram, the blue curve corresponds to the triangle, the red curve

is the chevron, and the black curve corresponds to the sum of all three cluster types. The

parallelogram is only detected at low powers. The probability of detecting the triangle

increases monotonically with power. The probability of detecting the chevron increases at

low power and then decreases at high power. These results (other than the parallelogram) are

consistent with our experiments. Figure 4.3c shows the ratio of the probability of detecting

the triangle and the probability of detecting the chevron as a function of power on a semi-

logarithmic scale. The plot falls on a straight line, indicating that the ratio of probabilities

has an exponential dependence in accordance with equation 4.1.

OM clusters are non-equilibrium systems because some of the optical forces involved

in their formation are non-conservative. Therefore, a particular configuration of an OM

cluster does not technically have an associated energy. However, the relative importance

of conservative and non-conservative forces has not been established, and several studies

treating OM clusters as equilibrium systems have shown reasonable results. We developed

a distortion energy parameter to evaluate how consistent our results are with a simplified

picture that only depends on pairwise potential energy. First we calculate the work done

separating a pair of optically bound particles from a starting distance r0 to another distance

r. For six particles, this work curve is used to map each of the 15 pairwise distances rij to a

particular energy Wij. We define distortion energy as

W =
∑

ij

W (rij)−Wref (4.3)

where Wref is a the total energy of a reference structure. We chose the ideal chevron with

a lattice constant equal to the wavelength of the trapping laser as our reference structure.

Since all optical binding forces are proportional to the intensity of the trapping laser, our the
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work curve only needs to be calculated at a single power and can be scaled with trapping

laser power.

Figure 4.4: Distortion energy in optical matter clusters. (a) Distortion energy for symmetric
stretching of chevron (black) and triangle (red) OM clusters (b) Fully relaxed triangle and
chevron OM clusters (c) Distortion energy distribution of six-particle simulation performed
at 100mW for the chevron (blue)and triangle (red) clusters. The total is plotted in black.
(d) Distortion energy distributions at three different trapping laser powers.

Figure 4.4a shows a plot of W vs lattice constant for perfect chevron (black) and triangle

(red) clusters. Both curves show that dilation of the lattice constant is energetically favorable,

and that lattice constants of around 620nm minimize energy. We performed simulations with

no thermal fluctuations to find the local energy minima for the triangle and chevron clusters.

The results are shown in Figure 4.4b with particle positions marked in red and best-fit lattice

sites marked as black circles. The lattice constant of the fully relaxed chevron is 630nm

and the lattice constant of the fully relaxed triangle is 620nm. Figure 4.4b also shows that

the fully relaxed chevron and triangle clusters are slightly distorted compared to a perfect
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hexagonal lattice.

Figure 4.4c shows the distribution of distortion energy for a simulation conducted at

100mW . The black curve represents the distortion energy regardless of cluster type. The

distribution of the total distortion energy has a sharp rise followed by a slower decay. The

peak of the distribution is at slightly negative distortion energy, indicating that on average

the cluster finds low-energy configurations compared to the perfect chevron with a lattice

constant equal to the optical binding distance. The red (triangle) and blue (chevron) curves

represent the distribution of distortion energy conditioned on cluster type. The triangle

configuration is on average lower in energy compared to the chevron configuration, and the

increase in the curve at low energy is significantly more steep. Figure 4.4d shows histograms

of the total energy for simulations performed at 20mW , 60mW , and 100mW . As power

increases the average distortion energy decreases and the distributions become more skewed.
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Figure 4.5: Analysis of five-fold symmetric clusters in simulated data (a) Distortion energy
for symmetric stretching of chevron (black) and triangle (red) OM clusters (b) Distribution
of angular order parameters ψ5 vs ψ6. (c) Schematic showing the distances in the five-fold
symmetric cluster and the optical binding potential for comparison.

We have shown that the most common stable configurations of 2D OM clusters have

deviations from hexagonal symmetry. Figure 4.2d shows that a five-fold symmetric cluster is

also stable. Figure 4.5a shows the fully relaxed five-fold symmetric cluster. The measured

value of the angular order parameter ψ5 = 1 confirms that this configuration is five-fold

symmetric. The distortion energy measured for this configuration is very close to 0, meaning
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that it is higher in energy than the fully relaxed triangle and chevron configurations, but still

energetically accessible according to the distributions shown in Figure 4.4c-d. Figure 4.5b

shows the distribution of ψ5 vs ψ6 for a simulation at 100mW . Similar to the experimental

result in Figure 4.2b, there are concentrations of points near ψ5 = 1 and ψ6 = 1.

Figure 4.5c marks each of the three inter-particle separations present in the five-fold

symmetric cluster with red dots. Each separation has 5 instances in the cluster. The shortest

distance is from the center particle to each of the five outer particles. This distance is slightly

smaller than the optical binding distance. The second distance is the spacing between each of

the particles around the perimeter of the cluster. It is slightly larger than the optical binding

distance. The third distance is the distance across the cluster. This is slightly shorter than

the second optical binding distance.
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Figure 4.6: Analysis of large OM clusters (a) Fully relaxed 61-particle cluster with the
Lennard-Jones potential. (b) Fully relaxed 61-particle cluster with GMT interactions. (c)
Distributions of nearest neighbor distances for simulated hexagonal OM clusters with 1-7
layers from GMT-LD simulations (d) Fit lattice constants of fully relaxed OM clusters with
1-7 layers (e) Experimentally observed 21-particle cluster (f) Distribution of inter-particle
separations conditioned on whether the cluster is ordered (black) or disordered (red).

We performed simulations and experiments to show how the long-range periodic optical

binding interaction manifests in larger clusters. Figure 4.6a and b show fully relaxed 61-particle

clusters formed in simulations without thermal fluctuations for LJ and GMT interactions,

respectively. Both clusters relax to similar hexagonal configurations. However, in conjunction

with the results for smaller clusters, the relaxed optical matter cluster has a dilated lattice
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constant and significantly larger deviations from the lattice sites than the LJ cluster.

Figure 4.6c shows the distribution of nearest neighbor distances obtained from GMT-LD

simulations of hexagonal clusters performed at 300K with 1-7 layers of particles. For the

smallest cluster (7 particles), the nearest neighbor distance is around 630nm, similar to

the six particle case. As layers are added to the cluster, two trends are apparent. First,

the width of the nearest neighbor distance distribution becomes more narrow. Second, the

peak of the nearest neighbor distribution increases and appears to asymptotically approach

approximately 680nm. Figure 4.6d shows a plot of best-fit lattice constant versus number of

layers for non-thermal simulations. Similar to the simulation results at 300K, the best-fit

lattice constant increases and appears to asymptotically approach 680nm. This is a significant

shift from the optical binding distance.

Figure 4.6e shows a still frame of an experimentally observed a 20-particle OM cluster.

The cluster continuously transitions between ordered configurations on a hexagonal lattice and

disordered configurations. Figure 4.6f shows histograms of the nearest neighbor separation

conditioned on whether the cluster has small (black) or large (red) fitting error with respect to

the best fit hexagonal lattice. Similar to the 6-particle results shown in Figures 4.2-Figure 4.3,

the nearest neighbor distance is shifted toward longer distances when the cluster is closer to

an underlying hexagonal lattice.

4.1.4 Discussion

Our results highlight several key features of small OM clusters. While the most common

configurations resemble the ground states of clusters formed with short-range attractive

interactions, the long-range periodic nature of the optical binding potential breaks the degen-

eracy between clusters with an equal number of nearest neighbor ’bonds’ and energetically

favors clusters with an increased number of occurrences of distances near the second pairwise

optical binding site. The resulting power-dependence of cluster-type probability reveals

the underlying competition between entropy and energy with respect to the stability of a
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particular configuration.

At high trapping laser power the probabilities of the chevron and triangle configurations

account for almost all experimental clusters observed, so it is reasonable to assume that they

are energetically favorable compared to other configurations. However, Figure 4.2c suggests

that for both the chevron and triangle configurations stretching of the nearest neighbor

distance is energetically favorable. Explicitly, the rate of change of potential energy achieved

by stretching or compressing the configuration is

∂U

∂a
=
∑

i

nr=ri
ri0
a0

∂Upair

∂ri

∣∣∣
r=ri

(4.4)

where a is the lattice constant of the cluster, ri are the unique inter-particle distances with

nr=ri copies in the cluster, and Upair(ri) is the pairwise optical binding potential. Equation 4.4

facilitates a qualitative understanding of the stretching of the nearest-neighbor distance shown

experimentally in Figure 4.1e and in simulation in Figure 4.2a. The slope of the pairwise

optical binding potential at r = λ and r = 2λ is zero, and negative at r =
√

3λ. Therefore, a

small stretching of the lattice constant is clearly energetically favorable for both the triangle

and chevron structures.

The quantitative dependence of the potential energy difference ∆U associated with

stretching the lattice constant by an amount ∆a starting from a0 can be obtained by

approximating the pairwise optical binding potential at the first and second optical binding

sites as harmonic with spring constants κ1 and κ2 and at
√

3λ as linear with slope m.

Integrating equation 4.4 yields

∆U(∆a) = (9κ1 + 8κ2)
∆a2

2
+ 4
√

3m∆a (4.5)

for the chevron and

∆U(∆a) = (9κ1 + 12κ2)
∆a2

2
+ 3
√

3m∆a (4.6)
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for the triangle. Equations 4.5 and 4.6 can be minimized to approximate the distance where

energy is minimized. Local fits of the optical binding potential at 100mW yield κ1 = 100 kT
µm2 ,

κ2 = 45 kT
µm2 , and m = −10 kT

µm
, giving ∆amin = .018µm for the triangle and ∆amin = .027µm

for the chevron.

The energetically favorable dialation of OM clusters does not fully account for the

lowest energy structures. Electrodynamics simulations performed in the absence of thermal

fluctuations (i.e. T = 0K) reveal that distortions compared to a hexagonal lattice are

energetically favorable. The amount of distortions present in the relaxed structures depends

on the shape of the cluster. The deviations of the triangle ground state structure from the

underlying hexagonal lattice are extremely small. The chevron features larger deviations

than the triangle, but they are still small compared to typical thermal fluctuations at room

temperature.

However, the stable five-fold symmetric cluster does not even lie on an underlying hexagonal

lattice. The five-fold symmetric six-particle cluster is stabilized by the long-range periodic

nature of the optical binding potential, and the inter-particle separations of that cluster are

consistent with Equation 4.4.

4.1.5 Conclusion

In this chapter we demonstrated the features of small clusters formed by the long-range

periodic optical binding potential. We found that compared to small clusters formed with the

single-well Lennard Jones potential, the probability of the most common structures for OM

clusters is power dependent and suggests that the dominant factor is competition between

energy and entropy. We found that the lattice constant in OM clusters dilates when the cluster

becomes more ordered, reminiscent of a water-like anomaly, and we created a simplified model

that elucidates the origins of this dilation for small clusters. We constructed a distortion

energy parameter that shows that while OM clusters are non-equilibrium systems where

electrodynamic coupling and many-body interactions cannot be discounted, the prevalence
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of structures of the system is well-described by treating the interactions as conservative

and pairwise. We showed that a five-fold symmetric cluster is stable and fairly common in

the plethora of structures formed. The details of both the first and second optical binding

wells contribute to the stability of the five-fold symmetric structure. Finally, we showed

that as OM clusters grow in size, the fully relaxed clusters have small distortions from a

hexagonal lattice who’s lattice constant approaches a value more than 10% larger than the

pairwise optical binding distance. Our work shows that many steady-state features of OM

clusters can be effectively explained by treating the interactions as pairwise and conservative,

i.e. with an optical binding potential. However, this perspective does not explain the

observed non-equilibrium phenomena and dynamics that have been previously reported such

as nonreciprocal forces [18, 19] and negative optical torque [38, 20, 21, 23].

Our findings are relevant to a number of other fields. There are both well-studied and

emerging systems with long-range interactions or interactions with competing length scales,

and the connection between the exact details of the potential and important phenomena

such as phase transitions are the subjects of past and current work[62, 63]. The advantage of

OM clusters compared to many other systems with multi-scale potentials is that the exact

coordinates of the system can be directly observed in experiments and transitions between

states are common enough to sample in a typical experiment while still being slow enough

to follow in detail. The presence of phenomena reminiscent of water-like anomalies and

the stability of five-fold symmetric clusters opens the possibility of directly observing phase

transitions with high spatial and time resolution.
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Chapter 5

Broken symmetry in optical matter

systems

5.1 Nonreciprocal forces in optical matter heterostruc-

tures

The following section is reproduced in part with permission from: Yifat, Yuval, Delphine

Coursault, Curtis W. Peterson, John Parker, Ying Bao, Stephen K. Gray, Stuart A. Rice, and

Norbert F. Scherer. Reactive optical matter: light-induced motility in electrodynamically

asymmetric nanoscale scatterers. Light: Science & Applications 7, no. 1 (2018): 1-7.

c©Springer Nature Limited
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From Newton’s third law, which is known as the principle of actio et reactio, we expect the

forces between interacting particles to be equal and opposite for closed systems. Otherwise,

“nonreciprocal” forces can arise [68]. This has been shown theoretically in the interaction

between dissimilar optically trapped particles that are mediated by an external field [18]. As

a result, despite the incident external field not having a transverse component of momentum,

the particle pair experiences a force in a direction that is transverse to the light propagation

direction [18, 69].

In this section, we directly measure the net nonreciprocal forces in electrodynamically

interacting asymmetric nanoparticle dimers and nanoparticle structures that are illuminated by

plane waves and confined to pseudo one-dimensional geometries. We show via electrodynamic

theory and simulations that interparticle interactions cause asymmetric scattering from

heterodimers. Therefore, the putative nonreciprocal forces are actually a consequence of

momentum conservation. Our study demonstrates that asymmetric scatterers exhibit directed

motion stemming from the breakdown of mirror symmetry in the electrodynamic interactions

that are induced by the incident light.

The development of light-driven nanomotors, which are devices that convert light energy

into autonomous motion, has attracted tremendous interest [70]. Various optical methods

can produce rotational motion [71] or, using primarily photoreactive materials, translational

motion [72]. A promising direction toward creating such nanomotors has arisen from recent

theoretical work that predicted that dissimilar particles that are illuminated by an electro-

magnetic plane wave will experience a “nonreciprocal” net force [18, 69]. This self-induced

motion occurs in the absence of an applied external driving force in the transverse plane.

Rather, the transverse motion of an electrodynamically bound particle pair arises in reaction

to its asymmetric scattering; i.e. the dimer acts as an asymmetrical object. Electrody-

namics simulations demonstrated that these nonreciprocal forces vary with interparticle

separation [18, 69]. However, there has not been a direct and straightforward experimental

demonstration of this phenomenon.
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In this letter, we experimentally demonstrate this optical self-motility phenomenon with

optically bound dimers of dissimilar-size metallic nanoparticles (NPs), thereby rectifying

the deficiency. Our experimental findings are quantitatively supported by electrodynamic

simulations. In addition, we demonstrate optical self-motility beyond particle pairs by

generating and measuring the translational motion of asymmetrical nanoparticle assemblies.

Our experiments were performed using a standard optical trapping setup with a Ti:Sapphire

laser operating at λ = 800nm [73, 20]. We used a tightly focused circularly polarized spatially

phase-modulated beam of light to form an optical ring trap [73, 74]. A schematic diagram of

the system is shown in Figure 5.1a. We trapped a mixture of 150-nm- and 200-nm-diameter

Ag NPs and measured their motion via dark-field microscopy at a high frame rate (290fps).

The particle positions were tracked [75, 76, 22] and their precisely determined positions were

used to calculate the angular position, namely, θi of particles i = 1, 2 on the ring. The

central angle of the pair, which is denoted as θc, was defined as the mean angular position

of the particles (Figure 5.1b). The particle radii were differentiated by their scattering

intensity (and image size) on the array detector (see SI). We observed directed motion of each

electrodynamically interacting pair of dissimilar particles, which is termed a heterodimer,

toward the larger particle (Figure 5.1c and Supplementary videos S2 and S3). By contrast,

when two particles of the same size come into close proximity, thereby creating a homodimer,

they do not exhibit directed motion. These observations are in agreement with forces that we

calculated using Generalized Mie Theory (GMT, see SI), which are shown in Figure 5.1d. For

a stable optically bound pair [13, 15, 39] (i.e., particles that are separated by ≈ λ/nb in water,

where nb is the refractive index) where FFF 2 −FFF 1 = 0 the transverse force on the pair satisfies

FFF net = FFF 2 +FFF 1 = 0 only when the two particles have identical radii [18, 69]. The homodimer

results can be interpreted as stemming from the conservation of linear momentum due to

mirror symmetry between the particles. This symmetry is broken for the heterodimer. While

this interpretation would suffice for linearly polarized light, our use of circularly polarized

light introduces an equal and opposite (i.e., anti-parallel) force on each nanoparticle that
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Figure 5.1: (a) A schematic diagram of the experiment: Two dissimilar particles in a ring
trap (top) experience a net force, namely, Fnet 6= 0 thereby resulting in observable motion.
Two identical particles experience Fnet = 0 (bottom). (b) An experimental image and the
coordinate system. The trap location is indicated by a dot-dashed yellow circle. The particle
locations in the trap are θ1 and θ2. Their mean angular position is θc. The scale bar is
1µm. (c) Image sequence of a directed motion event of a heterodimer. When 150nm and
200nm diameter Ag NPs are at optical binding distance, we observe directed motion toward
the larger particle. The time difference between the frames is 75ms and the scale bar is
500nm. (d)The sum and difference of the forces on both particles (calculated using GMT) as
a function of the separation for a heterodimer (top) and a homodimer (bottom). The particle
sizes and orientation are are identical to those in panel (a).

is directed perpendicular to the interparticle separation. These anti-parallel forces create a

torque on the dimer and cause it to rotate as a rigid body. However, full or free rotation was

not observed in our experiment because the ring trap is constricted in its radial direction. The

resulting optical gradient force counteracts particle displacements away from the maximal

intensity. Manifestations of this torque and its effect will be investigated in future work.

Figure5.2a shows representative time trajectories of θc for the homodimer and heterodimers

whose images are shown in the insets. The motion of the pair is directed toward the larger

particle and, therefore, can move clockwise or counterclockwise around the ring, depending

on the heterodimer orientation. The motion of the heterodimer cannot arise solely from

asymmetric hydrodynamic interactions. Hydrodynamic interaction between particles cannot

shift the center of the distribution of the Brownian displacements of each of the particles in

the heterodimer away from zero displacement without a source of transverse momentum.
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Figure 5.2: (a) Example trajectories for a homodimer (black) and a heterodimer (color)
that are moving in counterclockwise (green) and clockwise (blue) directions. Distribution
of instantaneous angular velocities (gray dots) and the mean angular velocities of the
homodimers. (b-c) Distribution of instantaneous angular velocities (gray dots) and the mean
angular velocities of the (b) homodimers and heterodimers (c) as a function of interparticle
separation. The bin size is 300nm. The mean angular velocity value was calculated by fitting
a Gaussian function to the instantaneous velocity distribution. The error bars are the 3σ
confidence intervals for fitted means of the distribution. Positive velocity is defined as motion
of the heterodimer toward the larger NP. (d) The calculated mean square displacement (MSD)
values for the homodimer data that are shown in (b) (black), the heterodimer data that
are shown in (c) (orange), and the subset of the heterodimer data where the interparticle
separation was ≤ 1.2µm. The exponents were obtained from a linear fit of the MSDs shown;
individual trajectories are shown in the Supporting Information. The error bars are 3σ
confidence intervals.
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We repeated the experiment many times with various nanoparticles and, hence, homod-

imers and heterodimers (see the Methods section and SI for full details) and combined the

results. Figures 5.2b and c show the angular velocity distributions and the mean angular

velocities of the dimer center, which is denoted ωc, as a function of the interparticle separation

for the full homodimer and a heterodimer data sets. The instantaneous angular velocity,

which is denoted ωc,n, is defined as the difference in the central angle of the pair in the

sequential frames n, n+ 1 (i.e. ωc,n = θn+1−θn
∆t

, where n is the frame number and ∆t is the

time step). In an overdamped system, ωc ∝ Fnet. To combine data with different heterodimer

orientations, we define positive velocity as the vector from the smaller particle toward the

larger particle. Heterodimers exhibit a positive mean angular velocity when the particles are

at optical binding separation 600± 150nm and a negative mean angular velocity when the

separation is 3
2
λ
nb

(i.e. 900±150nm). By contrast, the mean angular velocity for a homodimer

is zero for all separations. These observations are in accordance with our prediction from

GMT electrodynamics calculations (see Figure 5.1d). Both the change in the sign of the

mean velocity of particle pairs at optical binding and at 3
2
λ
nb

separations and the motion of

the pair toward the larger, thermally hotter particle, demonstrate that the driven motion is a

result of the electromagnetic field and not heating-induced self-thermophoresis [77] (see SI

for details).

Figure 5.2d shows the (average) mean square displacement (MSD) of θc for the homo and

heterodimer trajectories. The exponent, α, of MSD(∆t) = D∆tα (with diffusion coefficient

D and lag time ∆t) for the homodimer is α = 0.96±0.02, as expected for a diffusing Brownian

particle [78]. For heterodimers, we observe α > 1, which indicates driven motion [79], and an

even greater value, namely, α = 1.3± 0.03, when we only consider trajectories for which the

particle separation is less than 1.2µm; that is, two optical binding separations. This value

was chosen to allow longer trajectories for analysis (see SI for more details about the number

of experiments and the trajectories that were analyzed).

Our findings are related to recent publications that report the calculation and measurement
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of the dynamics resulting from an asymmetry in the linear or angular momentum of the

light that is scattered by optically trapped objects [80, 41] in a tractor beam configuration.

We extended previous theoretical work, which considered particles in a linearly polarized

beam [18], to circular polarization to explain the self-motility of electromagnetically interacting

dimers (see SI for a detailed discussion). We also simulated the dynamics of Ag NP dimers

using GMT [81, 82]. Each dimer, which consisted of two spherical Ag NPs with radii R1

and R2 that were separated by a distance d along the x-axis, was placed in a water medium

(nb = 1.33) with an incident right-handed-circularly (RHC) polarized plane wave (of 800nm

vacuum wavelength). Forces were calculated by integrating the Maxwell stress tensor over

a closed surface surrounding the particles. This calculation enforces conservation of linear

momentum. Simulations were performed in which R2 was varied for three values of R1 at

a separation of d = 600nm (Figure 5.3a). When R1 = R2, FFF net,x = 0 vanishes, as expected

for the homodimer. When R1 < R2, FFF net,x > 0 causing the heterodimer to move in the +x-

direction. If R1 > R2 the net force is reversed and the heterodimer moves in the –x-direction.

In both cases the motion is in the direction from the small particle to the larger one.

Additional simulations were performed for fixed nanoparticle radii with varying separation

from d = λ/2nb to d = 3λ/nb. Figure 5.3b shows the net force on the heterodimers as a

function of d:FFF net,x > 0 at separations near 600nm and 1200nm, i.e., at stable optical binding

configurations; and FFF net,x < 0 for particle separations near 900nm and 1500nm, where the

heterodimer is also in an unstable configuration. Increasing the size of the larger nanoparticle

increases FFF net,x, but does not otherwise change the functional form of the force curves.

For our total system (particle and fields) to conserve linear momentum, the total mo-

mentum that is carried by the electromagnetic field that is scattered from the particle pair

must be equal and opposite to the induced momentum of the dimer. Figure 5.3c–f shows a

separation-dependent imbalance of angular scattering due to dipolar interference, i.e., more

light is scattered in one direction than in the other. For d = λ/nb and d = 2λ/nb (stable

optical binding configurations), more light is scattered in the –x-direction and the net force
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Figure 5.3: (a)The net force on the dimer, FFF net,x, as a function of the radius of particle
2 with three different radius values for particle 1: 50nm, 75nm, and 100nm. The dashed
lines indicate the cases of the three homodimers, where FFF net,x vanishes. (b) FFF net,x vs.
separation for three heterodimers. (c-f) Angular scattering intensity in the xy-plane from
the R1 = 75nm and R1 = 100nm heterodimer for various dimer separations d. The black
triangle indicates the center of mass (“CM”) of the angular distribution. We define the positive
x-direction to be pointing from the smaller particle to the larger particle. Stable optical
binding configurations (d = λ, 2λ) scatter more in the negative x-direction, whereas unstable
configurations d = 1.5λ, 2.5λ) scatter more in the positive x-direction

that acts on the dimer is in the +x-direction. Similarly, for d = 3λ/2nb and d = 5λ/2nb

(unstable configurations; see Figure 5.1d), more light is scattered in the +x direction, which

corresponds to a net force in the −x-direction. This asymmetry in the far-field angular

scattering creates a force on the dimer, thereby setting it in motion. The simulation results

also confirm the switching of sign of the force observed in our experiments (Figure 5.2b) for

various particle separations. Note that asymmetric scattering has been reported for plasmonic

Yagi–Uda nanoantennas that were fabricated on a fixed substrate [83, 84].

An expression for the net optical force on a dimer (of spherical isotropic particles A and

B) in a plane transverse to the propagation of plane-wave illumination be obtained in the

point dipole approximation. The component of the electric field in the i direction at particles

A and B (at only the first order of scattering) [15] is

Ei
A = Ei

0 +GAB
ij E

j
0α

B; Ei
B = Ei

0 +GBA
ij E

j
0α

A (5.1)

where Ei
0 is the incident electric field, αA or αB is the polarizability of particle A or B, and
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GAB
ij are the elements of the dyadic Green’s function for the vector between particles A and

B. If we assume that the particles lie on the x axis, only the diagonal elements of GAB
ij are

non-zero. For a circularly polarized plane wave propagating in the z direction this leads to a

net force in the x direction F net
x on the dimer

Fnet,x =
E2

0

2
Re
[
(αA∗αB − αAαB∗) ∂

∂x
(Gxx +Gyy) +

(αA∗|αB|2 − |αA|2αB∗)
(
∂Gxx

∂x
G∗xx +

∂Gyy

∂x
G∗yy

)]
.

(5.2)

This equation extends the treatment derived in [18] from particles trapped in a linearly

polarized plane wave to a plane wave with circular polarization. Equation 5.2 equals zero

when αA = αB, in accordance with the experimental and simulation results presented in the

main text.

Equation 5.2 also vanishes if the two polarizabilities are proportional by a factor of a real

number (e.g. αA = CαB where C is a real number). The first term in Equation 5.2 can be

rewritten to directly depend on the phase difference ∆φ between the two polarizabilities αA

and αB. The first term can be rewritten as

Fnet,x =
E2

0

2
Re
[
2i ∗ (αA

′
αB
′′ − αA′′αB′) ∗ ∂

∂x
(Gxx +Gyy)

]
. (5.3)

where α′ and α′′ are the real and imaginary parts of α, respectively. Letting φA = |αA| ∗

tan−1 Im(αA)
Re(αA)

and φB = |αB| ∗ tan−1 Im(αB)
Re(αB)

and f(R) = Re
[
i ∗ ∂

∂x
(Gxx +Gyy)

]
gives

Fnet,x = E2
0 ∗ f(R)|αA||αB|

(
cos(φA)sin(φB)− sin(φA)cos(φB)

)
= E2

0 ∗ f(R)|αA||αB|sin(∆φ).

(5.4)

The dependence of the net nonreciprocal force on the phase difference between the two

polarizabilities allows us to better understand the nature of the phenomenon. Figure 5.4a
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Figure 5.4: (a) Forces on particles A (blue) and B (red) in a homodimer (solid; left axis)
and heterodimer (dashed; right axis). The phase difference between the polarizabilities αA
and αB in the case of a heterodimer results in a phase shift of the force curves for each
particle. (b) Phase of the polarizability of a spherical silver nanoparticle at 800nm with
variable radius calculated with (black) and without (red) the MLWA correction.

shows the forces on two particles A (blue) and B (red) in a homodimer (solid; left axis)

where rA = rB = 75nm and heterodimer (dashed; right axis) where rA = 100nm and

rB = 75nm. For the heterodimer, the force curves are shifted in opposite directions by

≈ 40nm, corresponding to a phase difference of 40nm
600nm

∗ 2π = 0.42 radians. The point at

600nm where the two curves corresponding to the homo-dimer cross is the first optical binding

site. They cross at a value of zero, reflecting the absence of a net force on the homodimer.

The two force curves still cross near 600nm for the heterodimer, but the point where they

cross is no longer at zero. This corresponds to the dynamic bound state with a non-zero net

force observed in the experiment.

Figure 5.4b shows the phase of the polarizability calculated using 2.6 with and without the

MLWA approximation [35]. For silver nanoparticles at 800nm, the phase of the polarizability

is very small regardless of particle size before the MLWA approximation is applied. However,

the MLWA approximation applies a significant size-dependent phase shift to the polarizability.

The imaginary contribution to the polarizability due to radiative damping outweights the

contribution due to the bulk dielectric properties of silver by several orders of magnitude.
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The phases of a 75nm and 100nm radius nanoparticle are marked on the plot. The phase

difference ∆φ is consistent with the 0.42 radians calculated from the ≈ 40nm shift of the

force curves.

So far, we have confined our study of nonreciprocal forces to pseudo-1D configurations.

We now turn our attention to two-dimensional clusters containing different types of particles.

Figure 5.5a-b show two possible configurations of a cluster containing 6 particles with

r = 75nm and one particle with r = 100nm. In Figure 5.5a the small particles are placed

symmetrically around the large particle and the pairwise non-reciprocal forces (directed

toward the large particle) cancel. Figure 5.5b shows a cluster with the small particles

arranged asymmetrically around the large particle. In this case, the pairwise nonreciprocal

forces do not cancel, and the total force on the large particle is directed toward a gap in the

smaller particles. In this scenario, the sum of non-reciprocal forces will tend to push the large

particle out of the cluster.

In experiments with particles of mixed sizes, large particles are typically observed outside

of clusters made up of smaller particles. Figure 5.5c shows a still-frame from an experiment

with a mixture of 150nm and 200nm particles. In this experiment, a large particle is

observed orbiting around a cluster of smaller particles. The orbital motion is due to spin-

to-orbital angular momentum conversion induced by the symmetry of the optical matter

cluster [23]. Figure 5.5d shows a plot of all particle positions observed in the experiment,

with the large particle marked as red and the small particles marked as black. Clearly, the

red particle is excluded from the cluster of smaller particles. This suggests that in two

dimensions, non-reciprocal forces result in the self-sorting of particles based on the phase of

their polarizability.

Experimentally, it is difficult to observe the ejection of a large particle in mixed-size optical

matter experiments because once the large particle is on the outside of the cluster, it has to

work against the nonreciprocal forces to re-enter. However, we have found that bound dimers

of particles, which can form due to the compressive optical forces within the cluster, are also
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Figure 5.5: Nonreciprocal forces in 2D heterostructures. (a) Diagram of the pairwise
nonreciprocal forces in a symmetric 2D optical matter heterostructure. The sum of the forces
is 0. (b) Diagram of the pairwise nonreciprocal forces in a asymmetric 2D optical matter
heterostructure. The sum of the forces points toward a gap in the structure. (c) Experimental
image of a 2D optical matter heterostructure. A large particle is excluded from a cluster
of smaller particles. (d) Scatter plot of the detected locations of the large (red) and small
(black) particles in the experiment shown in panel (c).
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Figure 5.6: Formation and escape of a dimer from a 2D optical matter cluster (a) Experi-
mental image of a 2D optical matter structure with several large objects on its periphery.
Red circles mark two particles that come together to form a dimer. (b) Experimental image
of a 2D optical matter structure at the moment where a dimer begins to form. The dimer
is marked by a red circle. (c) Experimental image of a 2D optical matter structure after a
dimer has been ejected. The dimer that recently formed is marked by a red circle.

ejected from optical matter clusters. Figure 5.6a-c shows a sequence of images demonstrating

the formation and ejection of a dimer from a 2D optical matter cluster. Figure 5.6a shows a

2D optical matter cluster with bright particles on the periphery. Two particles in the cluster

that fuse to become a bound dimer are marked by red circles. In Figure 5.6b the the two

particles come in close proximity due to thermal fluctuations. The two particles form a dimer

and are ejected from the cluster. The dimer is marked by a red circle in Figure 5.6c. The

number of particles counted before and after the event shown in Figure 5.6a-c reflect a net

loss of one particle, consistent with the formation of a bound dimer.

We also performed optical matter experiments with a mixture of 150nm gold and silver

nanoparticles. The experiments were recorded on a color camera so that we could differentiate

between gold and silver particles. A still-frame from the experiment is shown in Figure 5.7a.

The phase of the polarizability for gold and silver nanoparticles with variable size is plotted

in Figure 5.7b. The phase difference is much smaller, and consequentially the magnitude of
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Figure 5.7: 2D mixed gold-silver optical matter array. (a) Experimental image of a mixed
gold-silver optical matter array. (b) Phase of the polarizability of spherical silver (black)
and gold (red) nanoparticles with 800nm illumination for varying radius. (c) Distribution of
positions for particles detected as gold. (d) Distribution of positions for particles detected as
silver.
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non-reciprocal forces are expected to be much smaller. Figures 5.7c-d show the distributions

of particles detected as gold (c) and silver (d) (see Appendix A for detection method). There

is no clear bias for either of the particles to be excluded from the cluster.

In this section, we have experimentally demonstrated driven motion of both Ag NP

heterodimers and intrinsically asymmetric scatterers in optical ring traps, namely, 1-D

plane wave fields. Our electrodynamic simulations indicate that the net force on a dimer is

accompanied by a net asymmetric scattering in the opposite direction. Therefore, we attribute

the driven (reactive) motion of asymmetric optical matter systems to the conservation of

linear momentum. Fundamentally, this self-motility follows from Noether’s theorem and

the conservation of total momentum of particles and fields for systems with broken mirror

symmetry [85]. Analytical equations in the point-dipole approximation showed that the

non-reciprocal forces arise from the phase difference in the polarizability of dissimilar particles

in a hetero-dimer. The phase difference in the polarizability of the particles results in a

shift in the force curves of the two particles. The magnitude of the shift in the force curves

is consistent with the phase difference induced by radiative damping and described by the

MLWA approximation [35].

Generating directed motion at the nanoscale is challenging [86] due to the overdamped

nature of dynamics at low Reynolds number and the Brownian forces that are antithetical to

orientational control of nanoscale objects. Optical trapping offers a variety of solutions to

these challenges since it enables precise control over the positions and orientations of trapped

particles. Although systematic driving forces can be applied via the use of phase gradients,

apparent nonreciprocal forces, such as those that are explored above, create self-motile

particles that do not require specific chemical environments or chemical fuels [87] or complex

structures [88]. Therefore, optically controlled asymmetric nanoparticle assemblies, such

as those that are reported here, can be used as active colloids [87] and fully controllable

“nanoswimmers” for research in soft condensed matter and biophysics. In two dimensions,

nonreciprocal forces tend to separate particles in optical matter clusters based on size. Recent
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work has demonstrated the sorting of particles in optical matter systems using time-varying

fields [89, 90]. Our results, by contrast, show that it is possible to achieve passive sorting

in simple steady-state optical beams. The results shown in Figure 5.6 demonstrate that

nonreciprocal forces can even be used to create a passive optical matter ’factory’, where light

is used to gather single particles, and once the particles fuse to form a dimer, the same light

induces nonreciprocal forces that push the dimer to the periphery of the cluster.
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5.2 Controlling the dynamics and optical binding of nanopar-

ticle homodimers with transverse phase gradients

The following section is reproduced with permission from: Peterson, Curtis W., John Parker,

Stuart A. Rice, and Norbert F. Scherer. Controlling the dynamics and optical binding of

nanoparticle homodimers with transverse phase gradients. Nano letters 19, no. 2 (2019):

897-903. c©American Chemical Society
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5.2.1 Introduction

Particles in optical traps [91, 92] interact with one another via scattered electromagnetic

fields, and assemble into stable structures known as Optical Matter [13, 14] (OM). OM is

commonly compared to conventional chemically bonded materials because OM tends to

adopt periodic lattice structures [36, 16, 17, 40]. Since OM assemblies are maintained by

a constant flux of energy through the system, broken symmetry in the constituents of OM

assemblies can result in nonequilibrium driven dynamics [82, 93, 68, 94, 18, 69, 95, 96, 19].

Nonequilibrium dynamics in OM assemblies can also arise from the intrinsic momentum

of light [97, 98, 99, 20, 100, 71] or transverse phase gradients [101, 102, 103, 40, 73, 104].

However, the emergent forces and stable configurations arising from interacting particles in a

phase gradient have not been explained. Relevant recent work involving multiple particles in

tractor beam experiments has shown that unexpected changes to the sign and magnitude of

optical forces emerge when the trapped particles are close enough to interact via the trapping

light [41], but there has not been a detailed theoretical description of this effect.

In this letter we explore the pairwise interactions between 150nm Ag nanoparticles in

transverse phase gradients. We demonstrate experimentally and theoretically that the effects

of phase gradients are manifested in different ways depending on their strength. For small

phase gradients the net force on a pair of identical particles exhibits a separation-dependent

periodic modulation compared to isolated particles. By contrast, large phase gradients

break the symmetry of the interaction between particles. As a result, the location, strength,

and number of stable optical binding locations of a pair of electrodynamically interacting

nanoparticles depends on the strength of the incident gradient.

5.2.2 Forces from phase differences

The electromagnetic interaction between particles with separations on the wavelength scale

is greatly influenced by the phases of the incident field and the field scattered from other

nearby particles [15]. A schematic of two particles, A and B, separated by a distance R in the
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Figure 5.8: Electrodynamically interacting particles in a linear phase gradient. (a) Schematic
of two electrodynamically interacting particles A and B in a transverse phase gradient, ∂φ

∂R
.

(b-d) Electrodynamic forces on particles A (black) and B (red) along the inter-particle axis
for ∂φ

∂R
= 0, ∂φ

∂R
= 0.025k, and ∂φ

∂R
= 0.25k, where ξk = ∂φ

∂R
and k = 2π/λ is the magnitude of

the wavevector of the incident electromagnetic field. Blue arrows point to optical binding
locations (minima in the inter-particle energy landscape) and green arrows point to unstable
equilibrium separations (maxima in the inter-particle energy landscape). Note that the
position of the arrows changes significantly for (d) compared to (b) and (c).

76



presence of a linearly varying phase gradient ∂φ
∂R

is shown in Figure 5.8a. Setting the phase

of the incident field at particle A (φAI ) to zero, φBI = R ∂φ
∂R

. The phase of the field scattered

from A to B and from B to A is φBAsc = kR and φABsc = kR + R ∂φ
∂R

, respectively. Then the

phase difference between the incident and scattered fields at particles A and B is

∆φA = φABsc − φAI = R
[
k +

∂φ

∂R

]
;

∆φB = φBAsc − φBI = R
[
k − ∂φ

∂R

]
.

(5.5)

Equation 5.5 suggests two different regimes of interaction between particles A and B in

the presence of a phase gradient: an "interference regime" for small phase gradients where

∆φA ≈ ∆φB ≈ kR, and an "asymmetric regime" for large phase gradients where ∆φA 6= ∆φB.

Due to the form of Equation 5.5, it is convenient to introduce a dimensionless parameter

that describes the strength of the phase gradient ξ = ∂φ
∂R
/k, where k = 2π

λ
is the magnitude

of the wavevector and λ is the wavelength of the incident field of the trapping laser. See the

Supporting Information for further discussion.

Following the analysis of Dholakia et al. [15], the total force on Particle A along the R

direction in the point-dipole approximation (see the Supporting Information) is

FA
R =

1

2
Re

[(
α∗0E

A∗
0 + (α∗0)2E

B∗
0 G

AB∗)∂EA

0

∂R
+ |α0|2E

A∗
0

∂G
AB

∂R
E
B

0

]
(5.6)

where α0 is the polarizability of the identical isotropic particles, ∗ denotes complex conjugate,

E
A

0 and EB

0 are the incident electric field (vectors) at particle A and B, and G
AB

is the dyadic

Green’s function that propagates the scattered field from particle B to particle A. The force

on particle B can be obtained from Equation 5.6 by exchanging the labels A and B.

Figures 5.8b-d show the calculated values of the force in the R direction (i.e. along the

inter-particle axis) on particles A (red) and B (black) for phase gradients of ξ = 0, ξ = 0.025,
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and ξ = 0.25. See the Supporting Information for forces calculated for several other values of

ξ. Figure 5.8b for ξ = 0 shows that the net force Fnet = FA + FB is zero for all separations,

which occur at integer multiples of λ. With ξ = 0.025 (Figure 5.8c) Fnet is generally non-zero,

but the optical binding locations are not appreciably changed. However, for ξ = 0.25 the

difference between ∆φA and ∆φB is significant and the optical binding locations are shifted

away from R = mλ, where m = 1, 2, 3, ... is an integer.

5.2.3 Small phase gradient regime

As an experimental realization of the simple scheme depicted in Figure 5.8a we trapped

PVP-coated 150nm spherical Ag nanoparticles (NPs) with a cw Ti:Sapphire laser in water

(λ = 800nm in vacuum; 600nm in water). The trapping laser beam was modified by a spatial

light modulator SLM and was focused by a 60x objective to form an optical ring trap as

previously described [73, 105] (see the Supporting Information). The power of the laser

entering the microscope objective was 100mW , from which we estimated a local electric field

strength of 106V/m in the ring trap. An azimuthal phase gradient [102] that depends on the

topological charge of the beam, l, can be added to the ring. The effective strength of the

phase gradient, ξ, can be increased by decreasing the size of the ring. Therefore, different

combinations of the integer number of phase wrappings l and the ring radius r allow for a

large number of different phase gradients to study. An image from a video of the experiment

is shown in Figure 5.9a. The ring trap that the particles are confined to is indicated as a green

dashed circle. The actual ring trap is not observed due to optical filtering. Inter-particle

separations are calculated as Cartesian separation so that they are relevant to Equations 5.5

and 5.6. However, particle velocities are calculated in cylindrical coordinates (r, θ), v = r∆θ
∆t

,

to account for the curved path that the particles follow.

The net force on an electrodynamically interacting homo-dimer, Fnet = FA+FB, determines

the dynamics of the particle pair. Following from Stokes’ law [66] and the overdamped

conditions of the experiment, the average velocity of the center of mass of the homo-dimer,
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Figure 5.9: Experimental image and separation dependence of the driving force for small
phase gradients. (a) A darkfield microscopy image of three 150nm Ag NPs (white spots)
in a ring trap (green dashed circle). Also shown are the cylindrical coordinates employed
in the analysis. Separations are measured as Cartesian distance as shown in the inset. (b)
Conditional PDFs of vcm for R0 = λ (black) and R0 = 1.5λ (green) with ξ = 0.11. The
velocity correlation κ(v1, v2) at each separation is shown next to the corresponding curve. The
PDF of single-particle velocities for particles separated by > 3µm from their nearest neighbor
is shown in orange. (c) Plots of 〈vcm〉 as a function of R for ξ = 0.021 (black), ξ = 0.064 (blue),
and ξ = 0.11 (red). The horizontal dashed lines are the average single-particle velocities as in
panel (b). (d) Calculated values of the net force on a homo-dimer via Equation 5.6 (solid)
and GMT (dashed) in the ~R direction for phase gradients of ξ = 0.021 (black), ξ = 0.064
(blue), and ξ = 0.11 (red).
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〈vcm〉, in the absence of interactions is the same as the velocity of an isolated particle , viso,

under the same optical conditions. Hydrodynamic interactions require a relatively small

correction to the velocity that decays monotonically with R for our experimental conditions

(see the Supporting Information). [106] The predicted separation between the particles and

the coverglass surface (i.e., the upper boundary of the sample cell) is approximately one

particle radius[73], and the resulting modification of the Stokes’ drag force is expected to be

less than a factor of two.[107]

Figure 5.8c, for small phase gradients, suggests that a drifting electrodynamically bound

pair will exhibit an enhanced net force when the separation is R = λ; that is, Fnet > 2FA,iso.

When the separation is R = 1.5λ the pair will be unbound and exhibit diminished net force;

that is, Fnet < 2FA,iso. Since the separation between particles in a homo-dimer fluctuates

due to Brownian forces, we determine the separation dependence of vcm from conditional

probability distribution functions (PDFs) P (vcm|R0, δ) = P (vcm|R ∈ [R0 − δ, R0 + δ]), i.e.

the probability distribution of vcm given that R is within a certain range ±δ of a particular

value R0. Figure 5.9b shows the conditional PDFs of vcm for R0 = λ and R0 = 1.5λ with

δ = 0.125µm and ξ = 0.11 (as determined by the radius r of the ring trap and the topological

charge l). Note that δ is much larger than the error in particle localization. The PDFs have

a Gaussian shape where the mean value 〈vcm〉 depends on the deterministic driving force.

The width of the distribution depends both on the diffusion coefficient of the individual

particles and the degree to which their motion is correlated. Gaussian fits to each PDF yield

〈vcm〉 = 49µm/s for R0 = λ (black) and 〈vcm〉 = 24µm/s (green) for R0 = 1.5λ, matching

the behavior predicted for small phase gradients, i.e. Figure 5.8c. The correlation of v1 and

v2, κ(v1, v2), shows that the homo-dimers move as bound pairs when R0 = λ, while their

motion is uncorrelated when R0 = 1.5λ. The correlated motion at R0 = λ is a consequence

of optical binding and is the reason the Gaussian distribution for R0 = λ is wider than the

one for R0 = 1.5λ. Optical binding distances in small phase gradients has been discussed at

length in Figliozzi et al.[73] (see the Supporting Information). Figure 5.9b also shows the
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single-particle velocities viso for ξ = 0.11 (orange). The single-particle velocity distribution

is wider compared to vcm because it represents a single random variable as opposed to an

average of two.

Figure 5.9c shows plots of 〈vcm〉 as a function of R0 for different strengths of the phase

gradient: ξ = 0.021 (black), ξ = 0.064 (blue), and ξ = 0.11 (red). The velocity is measured

at each separation by fitting the conditional PDF with a Gaussian function; the mean of

the fit is the plotted value and the error bars are the 95% confidence interval of the mean.

The horizontal dashed lines are the average single-particle velocities for each phase gradient.

The single-particle driving force increases linearly with phase gradient [73, 102]. Figure 5.9c

shows that the driving forces for all three phase gradients are enhanced (Fnet > 2FA,iso) near

R0 = λ , and diminished (Fnet < 2FA,iso) near R0 = 1.5λ in agreement with Figure 5.9b. A

periodic behavior is more apparent for larger phase gradients; a second peak in 〈vcm〉 is visible

near R0 = 2λ and a second minimum is visible near R0 = 2.5λ for ξ = 0.064 and ξ = 0.11.

We evaluated Equation 5.6 for phase gradients matching our experimental values to

explain the separation dependence of the driving force. Figure 5.9d shows calculated values

of the net force on a homo-dimer along the inter-particle axis for phase gradients of ξ = 0.021

(black), ξ = 0.064 (blue), and ξ = 0.11 (red). The most apparent feature in these curves

is the periodic modulation of the net force with maximum and minimum values at integer

and half integer multiples of λ, respectively. It is also apparent that the strength of the

modulation increases with the magnitude of the phase gradient.

We also performed more rigorous generalized Mie theory (GMT) calculations (see the

Supporting Information for details). In addition to accounting for the finite size of particles

and infinite orders of scattering, our GMT simulations accurately model the experimental

ring-trap geometry and account for possible deviations from Eq 5.5 for large phase gradients.

The net forces from our GMT simulations are shown as dashed curves in Figure 5.9d. The

GMT results agree with our theoretical point-dipole calculations, validating the model in

Figure 5.8 and Equations 5.5 and 5.6. In water at 20C, Stokes’ law predicts that a spherical
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150nm particle will be pushed at 35µm/s by a constant 0.05pN force. 35µm/s is closest to

the single particle velocity for ξ = 0.11 in Figure 5.9c, and we can see from Figure 5.9d that a

constant force of 0.05pN is reasonable for this phase gradient. This agreement, within better

than an order of magnitude, shows that our theoretical parameters (e.g. E0 = 106V/m) are

in reasonable agreement with experiment. Therefore, Figures 5.9 c and d can be compared

directly using the conversion factor 0.1pN = 70µm/s.

The results shown in Figure 5.9 can be understood as interference effects that are a

consequence of the symmetric part of Equation 5.5; i.e., ∆φA = ∆φB ≈ kR. In the limit of no

phase gradient this phase difference gives rise to optical binding through the second term of

Equation 5.6 [15]. For small phase gradients, optical binding still occurs at separations where

kR = 2πm, but there is now a separation-dependent net force on the homo-dimer. The result

is a driven bound pair where the motion of the two particles is correlated. The first term in

Equation 5.6 can be interpreted as a periodic modification of the single-particle driving force.

The α0E
∗
0 part of the first term of equation 5.6 corresponds to the "single-particle" driving

force, while the (α∗0)2E
∗
0G
∗
part of the first term corresponds to a separation-dependent

modification of the driving force in the presence of another particle. When kR = 2πm

the two contributions are in-phase and constructive interference enhances the driving force.

Conversely, when kR = π(2m+ 1) destructive interference diminishes the driving force. Since

the modified driving force is proportional to ∂φ
∂R

, larger phase gradients will give rise to larger

modulation of the total force, as shown in Figure 5.9c and d.

5.2.4 Large phase gradient regime

For large phase gradients, i.e. where the phase gradient becomes comparable to the magnitude

of the wavevector of the trapping light, k, we expect that the symmetry of the interaction

between particles is broken, as described by Equation 5.5. We performed experiments in this

regime. The black curves in Figure 5.10a-c are experimentally measured PDFs of inter-particle

separations with ξ = 0.23 (a), ξ = 0.29 (b), and ξ = 0.34 (c). The maxima of probability
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Figure 5.10: Phase gradient dependence of optical binding for large phase gradients. (a)-
(c) Measured inter-particle separation PDFs (black curves, left axis) for ξ = 0.23, ξ =
0.29, and ξ = 0.34. The electrodynamic interaction potential is also plotted in units of
kBT (red curves, right axis). The vertical dashed lines mark the first two minima in the
electrodynamic interaction potential. (d)-(f) Measured inter-particle separation PDFs from
(a)-(c) replotted as −ln(PD) (black curves, left axis) to allow direct comparison to the
corresponding electrodynamic interaction potentials (red curves, right axis).

density are significantly shifted from the traditional locations of optical binding (i.e. optical

binding at R = mλ).

To compare the experimentally measured PDFs to theoretical predictions made from

Equation 5.6 we define the electrodynamic interaction potential, W , as the work needed to

separate two particles along the inter-particle axis from some minimum separation R1 to

another particular separation R2 (see the Supporting Information for discussion.)

W (R2, R2) = −
∫ R2

R1

(FB
R − FA

R ) dR′. (5.7)

Although optical forces are generally non-conservative [65, 108], W is a meaningful energy
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coordinate along a 1-dimensional path. Stable optical binding locations correspond to energy

minima and unstable equilibrium separations correspond to energy maxima.

The red curves in Figure 5.10a-c show plots of W as a function of separation starting

from R1 = 300nm for ξ = 0.23, ξ = 0.29, and ξ = 0.34. W is plotted in units of kbT where

kb is Boltzmann’s constant and T = 298K to emphasize that optical binding is comparable

with thermal energy under our experimental conditions. The vertical black dashed lines in

Figure 5.10a-c are located at the first two energy minima for each corresponding energy curve.

There are peaks in the experimental PDFs near the minima in energy (W), indicating optical

binding. A more direct comparison between the experimental PDFs of inter-particle separation

and W is possible through the relation G(x)/kbT = −ln(P (x)) where G(x) is a potential of

mean force and P (x) is the PDF of the coordinate x observed at temperature T . Figures 5.10d-

f show the experimental PDFs from Figures 5.10a-c replotted as −ln(PDF ). There is good

agreement between our theoretical predictions and experimental measurements, although

there are some deviations. There are two important factors that affect the correspondence

between our theoretical prediction for W and our experimentally measured PDFs. First,

the experiment is carried out at room temperature, while our analytical electrodynamics

calculations do not account for thermal motion of the particles. Second, the relationship

between a potential of mean force and a corresponding probability distribution function is

only valid for equilibrium systems, while our experiments are non-equilibrium. Therefore, we

represent the results as −ln(PDF ) as opposed to calling it a PMF.

Figure 5.11 further demonstrates the dependence of the energy landscape W on the phase

gradient. Figure 5.11a shows the experimental inter-particle separation PDF for ξ = 0.34

(black). The distribution is well fit with a sum of two Gaussian functions (red) up to 1.2µm.

The experimentally measured optical binding distances are defined as the mean values of

each of the two Gaussian terms in the fit, while the theoretical optical binding locations

(dashed lines) are the positions of the mimima in the energy curves shown in Figures 3a-c.

Figure 5.11b shows a direct comparison between the experimental and theoretical optical
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Figure 5.11: Quantitative comparison of theoretical and experimental optical binding
locations. (a) Fit of experimental inter-particle separation PDF (black) for ξ = 0.34 with a
sum of two Gaussian functions (red) up to R = 2.0λ. (b) Comparison of theoretical (dashed
lines) and experimental (black squares connected by solid lines) optical binding locations.(c)
Analytical (solid) and GMT (dashed) electrodynamic interaction potentials for ξ = 0 (black),
ξ = 0.11 (blue), and ξ = 0.23 (red). The GMT curves were shifted down by 0.5 kbT for clarity.
The energy required to escape the first optical binding location (toward larger separation) for
ξ = 0 and ξ = 0.11 is shown by the black and blue double-headed arrows, respectively.
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binding locations, where the error bars are the 95% confidence intervals for the mean values of

the fitted Gaussians (ROB) (black squares connected by solid lines). The agreement between

theory and experiment is very good, although the peaks the optical binding locations near

1.5λ are slightly shifted toward smaller separations than theory for all three measured phase

gradients.

Figure 5.11c shows a comparison of W (R) calculated with Equation 5.6 (solid lines) and

our GMT simulations (dashed lines) for no (ξ = 0; black), moderate (ξ = 0.11; blue), and

large (ξ = 0.23; red) phase gradients. The energy required to escape the first optical binding

locations (toward larger separation) for ξ = 0 and ξ = 0.11 is shown as the black and blue

double-headed arrows, respectively. In the limit of no phase gradient the energy minima

are at integer multiples of λ, as expected. For the intermediate value of ξ = 0.11 the first

optical binding location is at R = λ, but the work curve becomes increasingly irregular with

increasing separation. The red curve corresponds to ξ = 0.23 and is identical to the red curve

in Figure 5.10a. The location of optical binding and the magnitudes of features in the energy

curve are very different from the limit of no phase gradient due to the highly asymmetric

interactions predicted from Equation 5.5. In particular, the first two optical binding locations

occur at R ≈ 0.8λ and R ≈ 1.5λ, where the latter is in fact an unstable equilibrium separation

for small phase gradients. The more rigorous GMT simulations show excellent qualitative

agreement with the theoretical model, but the barrier heights are generally slightly smaller.

The results shown in Figures 5.10 and 5.11 demonstrate the symmetry-breaking effects of

strong phase gradients. Whereas optical binding locations are relatively unchanged for small

phase gradients, the energy landscape that embodies optical binding is dramatically changed

by large phase gradients. In the context of Equation 5.5, the separation dependences of the

phase difference at particles A and B diverge from one another. As ξ becomes a significant

fraction of 1 the effects of this splitting becomes dramatic, as shown in Figure 5.8d. As a

result, the typical periodic length-scale associated with optical binding (for no phase gradient

as in Figure 5.8b) is no longer relevant. While the net force on a homodimer in the large
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phase-gradient regime is still modulated with distance, the distance-dependence is no longer

periodic and the magnitude of the modulation is proportionally smaller due to the splitting

in Equation 5.5 (see Supporting Information for example).

Our study has fundamental and practical significance in the field of optical manipulation

and self-assembly [109, 96, 17]. In this letter, we addressed a fundamental question concerning

the formation of optical matter arrays: How is optical manipulation of multiple particles

different from optical manipulation of a single particle? Transverse phase gradients are a

tunable parameter in optical trapping experiments that allow specifically tailoring the optical

forces on a (trapped) particle. We have shown that these forces are dramatically altered by

the presence of another nearby particle. For small phase gradients, the net force is modulated

by a separation-dependent interference effect. When the phase gradient becomes strong

enough, the symmetry of the interaction between nanoparticles is broken and the distances

at which stable optical binding occurs change. Our findings show that tuning the phase of

the incident light allows accessing a broader range of stable structures, thereby enhancing

the versatility of optical binding as a means for self-assembly.

5.3 Other types of broken symmetry

In this section we will discuss two additional conditions in which symmetry is broken in optical

matter systems, and show that in both cases the broken symmetry results in a net force. The

first condition is for identical but anisotropic particles. Recent computational work [95] has

shown that pairs of nanowires in optical traps experience a configuration-dependent net force.

We will show that in the point-dipole approximation this net force is a direct consequence of

anisotropic polarizability. The second condition is where the polarization of the incident light

can break the symmetry between identical particles in an optical matter cluster. This effect

has been observed in the literature [82], but a mechanism was not proposed. We will show

that the net force arises due to electrodynamic coupling between the particles in the cluster.
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5.3.1 Anisotropic particles

Anisotropic particles are represented by a polarizability tensor ααα in the point-dipole approxi-

mation [34]. For an ellipsoidal particle aligned along one of the principal axes ααα has three

diagonal elements, αxixi , and the off-diagonal elements, αxixj , are zero. When the particle is

rotated in the (x, y) plane by an angle θ, the new polarizability tensor is given by

αααθ = QQQ(θ)ααα0QQQ(θ)T (5.8)

where QQQ(θ) is the rotation matrix corresponding to an angle θ. In this section We will only

consider rotations in the (x, y) plane. If the particle is rotated by an arbitrary angle, the

off-diagonal elements αxixj are no longer zero. Starting from Equation 2.8 and allowing one

order of scattering, the electric field at the location of two ellipsoidal particles labeled A and

B is

EEE(rrrA) = EEEI(rrrA) +GGG(rrrA, rrrB)αααBEEEI(rrrB)

EEE(rrrB) = EEEI(rrrB) +GGG(rrrB, rrrA)αααAEEEI(rrrA)

(5.9)

where EEEI is the incident electric field. Inserting the expression for the field at rrrA into equation

2.5 gives the following expression for the time-averaged electrodynamic force on particle A in

the xi direction:

〈FA
xi
〉 =

1

2
Re

[
ααα
∗
AEEEI(rrrA)∗

∂EEEI(rrrA)

∂xi
+

ααα
∗
AGGG
∗
(rrrA, rrrB)ααα

∗
BEEE
∗
I(rrrB)

∂EEEI(rrrA)

∂xi
+

ααα
∗
AEEE
∗
I(rrrA)

∂GGG(rrrA, rrrB)

∂xi
αααBEEEI(rrrB)

]
.

(5.10)

If we assume that the pair of particles lies in the (x, y) plane, and that the incident electric

88



field is a plane-wave propagating in the z direction, the first two terms in Equation 5.10

become zero for forces in the x and y directions. The force on particle B is given by exchanging

the labels A and B. If we further assume that the incident light is polarized along the x

direction Equation 5.10 simplifies to (written element-wise)

〈FA
xi
〉 =

E2
I

2

∑

xl=x,y,z

∑

xm=x,y,z

Re

[
αA∗x,xl

∂Gxl,xm(rrrA, rrrB)

∂xi
αBxm,x

]
. (5.11)

Equation 5.11 shows that new forces arise for anisotropic particles. If the polarizabilities

ααα
A and ααα

B only have diagonal elements, only the term corresponding to αAx,x and αBx,x

survives. Assume that the pair of particles is oriented along the y axis. In this configuration,
∂Gx,x(rrrA,rrrB)

∂y
= 0 and subsequently 〈FA

y 〉 = 0. However, if αααA and ααα
B have off-diagonal

elements, then other elements in the dyadic Green’s tensor become relevant and a force in

the y direction is possible.

The net force in the xi direction, obtained by inverting the labels A and B, and adding

the results to Equation 5.11. Using the fact that, due to symmetry,

GGG(rrrA, rrrB) = GGG(rrrB, rrrA) (5.12)

and
∂GGG(rrrA, rrrB)

∂xi
= −∂GGG(rrrA, rrrB)

∂xi
. (5.13)

The net force on a pair of anisotropic particles is

〈FA
xi
〉+ 〈FB

xi
〉 =

E2
I

2

∑

xl=x,y,z

∑

xm=x,y,z

Re

[
αA∗x,xl

∂Gxl,xm(rrrA, rrrB)

∂xi
αBxm,x−

αB∗x,xl
∂Gxl,xm(rrrA, rrrB)

∂xi
αAxm,x

]

=
E2
I

2

∑

xl=x,y,z

∑

xm=x,y,z

Im

[
∂Gxl,xm(rrrA, rrrB)

∂xi

]
∗ (αA

′

x,xl
αB
′′

x,xl
− αA′′x,xlα

B′

x,xl
).

(5.14)
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Figure 5.12: Orientation-dependent net forces on dimers of gold nanorods. (a) Net force in
the x (black) and y (red) directions for a pair of rods rotated by angles θ and −θ to form a
symmetric pair. (b) Net force in the x (black) and y (red) directions for a pair of rods where
only one rod is rotated by an angle θ.

Equation 5.14 is a generalization of Equation 5.2 to include anisotropic polarizabilities.

Non-reciprocal forces can arise either in a heterodimer (i.e. αααA0 6= ααα
B

0 ) or in a homodimer,

where the anisotropic particles have different orientations (i.e. αααA0 = ααα
B

0 but αααAθ 6= ααα
B

θ ).

Figure 5.12 shows the net force on a dimer of nanorods (gold; 100nm x 50nm) that are

separated by 600nm for variable relative orientations and polarization in the y direction. In

Figure 5.12a the rods are rotated by angles of θ and −θ so that the pair remains symmetric.

The net force in the x (black) and y (red) directions are plotted. The net force in the x

direction is zero regardless of the orientation of the rods. The net force in the y direction

is zero when the rods are aligned with the x and y axes. When 0 < θ < π/2 there is a net

force in the −y direction. In Figure 5.12b one rod is rotated by an angle of θ and the other

is stationary. As θ increases, the net force in the x direction increases toward a maximum at

θ = π/2, while a smaller net force in the −y direction decreases for 0 < θ < π/4 and then

increases back toward zero for π/4 < θ < π/2.
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5.3.2 Coupling-induced symmetry breaking

Nonreciprocal forces can also be the result of symmetry breaking that is induced by electro-

dynamic coupling depending on the symmetry of the cluster and incident field. Consider

a cluster of 3 identical spherical particles labeled A, B, and C, each with polarizability α,

situated arbitrarily in the transverse plane of plane-wave illumination. Allowing for one order

of scattering, the polarization and electric field gradient at the location of particle A is

pppA = α(1 + αGGG(rrrA, rrrB) + αGGG(rrrA, rrrC)

∂EEE

∂xi
= α

(
∂GGG(rrrA, rrrB)

∂xi
+
∂GGG(rrrA, rrrC)

∂xi

)
EEE.

(5.15)

Inserting Equations 5.15 into Equation 2.5 and summing over all particles yields the net force

on the trimer

〈FA
xi
〉+ 〈FA

xi
〉+ 〈FA

xi
〉 =
|α|2

2
Re

[
EEE
∗
(
∂GGG(rrrA, rrrB)

∂xi
+
∂GGG(rrrA, rrrC)

∂xi
+

∂GGG(rrrB, rrrA)

∂xi
+
∂GGG(rrrB, rrrC)

∂xi
+
∂GGG(rrrC , rrrB)

∂xi
+
∂GGG(rrrC , rrrA)

∂xi

)
EEE

]
+

|α|2
2
Re

[
α∗EEE

∗
[
GGG
∗
(rrrA, rrrB)

(
∂GGG(rrrA, rrrC)

∂xi
+
∂GGG(rrrB, rrrC)

∂xi

)
+

GGG
∗
(rrrB, rrrC)

(
∂GGG(rrrB, rrrA)

∂xi
+
∂GGG(rrrC , rrrA)

∂xi

)
+

GGG
∗
(rrrC , rrrA)

(
∂GGG(rrrA, rrrB)

∂xi
+
∂GGG(rrrC , rrrB)

∂xi

)]
EEE

]
.

(5.16)

The terms in Equation 5.16 that are proportional to |α|2 are two-body terms resulting from

the component of the polarization due to the incident field and the field gradient due to the

scattered field. The terms that are proportional to |α|2α∗ are three-body terms resulting

from the polarization due to the light scattered by a neighboring particle, and the field

gradient due to the light scattered from a different neighboring particle. While the two-body
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Figure 5.13: Angle-dependent net forces on trimers of silver nanoparticles. (a) Net force in
the x and y directions on a trimer with the angle θ from the central particle to the two outer
varying from 0 to π/3 with polarization along the x direction. (b)Net force in the x and y
directions on a trimer with the angle θ from the central particle to the two outer varying
from 0 to π/3 with polarization along the y direction.

terms cancel due to the symmetry of the dyadic Green’s function (Equations 5.12-5.13), the

three-body terms do not generally cancel. In other words, electrodynamic coupling can induce

nonreciprocal forces between identical spherical particles in optical matter systems.

Figure 5.13 shows calculations of the net force on a cluster of three identical spherical

particles in the point dipole approximation for x (a) and y (b) polarized incident light. The

trimer starts in a linear configuration along the x axis, and is bent by a variable angle θ until

it forms an equilateral triangle (at θ = π/3). The net force in the x direction is zero for both

polarizations and all angles. The net force in the y direction is 0 when θ = 0, which is a

consequence of the fact that rrrA − rrrB = rrrB − rrrC for this configuration. As θ increases the net

force in both the x and y directions is generally non-zero.

In this section we have seen that nonreciprocal forces can occur in optical matter clusters

of identical particles if their polarizabilities are orientation-dependent, or as a three-body

force induced by electrodynamic coupling. The multitude of ways that broken symmetry

results in nonreciprocal forces and other strange phenomena in optical matter systems reflects

the inherently non-equilibrium nature of optical matter systems. The work in this section
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approaches the problem of broken symmetry in a simplified context. However, in a real

system the consequences of the types of nonreciprocal forces demonstrated here are only

starting to be explored.
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Chapter 6

Rearrangement dynamics in optical

matter systems

6.1 Direct visualization of barrier crossing dynamics in a

driven optical matter system

The following section is reproduced with permission from: Figliozzi, Patrick, Curtis W.

Peterson, Stuart A. Rice, and Norbert F. Scherer. Direct visualization of barrier crossing

dynamics in a driven optical matter system. ACS nano 12, no. 6 (2018): 5168-5175.

c©American Chemical Society
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6.1.1 Introduction

Chemical and physical processes are commonly represented in terms of ensemble averages

that provide a link between microscopic and macroscopic dynamics. While the microscopic

details of a process may vary from one realization to another, one can obtain an ensemble

averaged macroscopic description of the process in the form of a kinetic rate law[66, 110].

These statistical interpretations of a process do not provide detailed descriptions of individual

particle motion and various deviations from an averaged macroscopic mechanism. The

development of new techniques that allow chemical and physical processes to be studied on

an individual event or molecule basis, together with growing realization of the ubiquity and

variety of important processes that are determined by single-molecule motion, have brought

"single-molecule" measurements to the forefront of the physical sciences[111, 112, 113, 114,

115, 116, 117, 118]. The many repetitions of identical experiments that characterize single

particle (e.g. molecule) measurements replace ensemble averages with probability distributions

and families of trajectories that can be used to link the single-molecule and macroscopic

properties of a process and separate the common and the fluctuating contributions to the

particle dynamics[119, 120].

Microscopic visualization of particles in an optical trap and the consequences of their

manipulation with external fields has had a large impact in single molecule biophysics[121,

122]. Whereas most such studies use a typically micron-scale visualized particle (or AFM

cantilever)[123] to report on or manipulate the molecule(s) it is attached to, nano- and meso-

scale particles can be systems of investigation in and of themselves[17, 40, 114, 124, 20, 71].

Both classes of experiments, i.e., reporting on cognate molecules or the particle systems

themselves, can be readily repeated under uniform conditions, allowing kinetic data to be

extracted. The high level of spatial and temporal detail combined with the potential to

obtain a statistically significant number of repetitions in optical trapping experiments makes

them an ideal system in which to study the link between the microscopic and macroscopic

dynamics and kinetic behavior of a system.
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In the present paper, we study the physical passing of particles in an optical ring trap

and do so for different driving forces. The positions and motion of single Ag nanoparticles

are measured by (darkfield) digital microscopy; precise tracking of each particle from frame

to frame allows their dynamics to be studied with nanoscale detail. The large number

of Ag nanoparticle trajectories measured allows obtaining a detailed kinetic description of

the process. Our studies involve plasmonic nanoparticles that are confined to quasi-one-

dimensional optical ring traps and subjected to a controlled driving force. These particles feel

a variety of forces that can all be leveraged to change the energy landscapes and driving forces.

The dynamics of particle passing, i.e. a sign change in the orientation of a particle pair, are

influenced by the combined effect of the electrodynamic forces confining the particles to the

ring trap[15], the random thermal forces expressed as Brownian motion of the particles[78],

and the electrodynamic driving force that propels the particles around the ring[102].

The present experiment involving the visualization of a driven optical matter system is

designed to mimic the steps of a bimolecular reaction[125]. The highly detailed experimental

data allowed us to recognize and validate a two-step mechanism analogous to an exchange

reaction or the Michaelis-Menten scheme for the particle passing process involving formation

of an encounter complex surrmounting an energy barrier, and progressing through a transition

state. The first step is found to depend on the driving force in the ring, while the second

step involves a thermally activated process without a driving force dependence. We created a

stochastic microscopic model that reproduces statistical distributions measured using input

data from a large number of independent trajectories in order to describe the second step.

The advantage offered by our system is that it allows full and explicit characterization of

particle dynamics vs. the dynamics that are presumed to take place on molecular size and

timescales[126].
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6.1.2 Ag nanoparticle trapping and passing

Ag nanoparticles were trapped and driven in a transverse plane over a glass coverslip using

an optical ring trap as described previously by Figliozzi et al.[73]. Briefly, an 800 nm laser

was reflected from a spatial light modulator (SLM) acquiring a suitable phase-encoded profile

i.e. Bessel function and an azimuthal phase gradient to create an optical ring trap when

focused by a microscope objective (Olympus 60x water). The power of the optical beam after

the SLM and before the back aperture of the objective was 40 mW. A strong scattering force

caused the 150 nm diameter Ag nanoparticles to be held close to the glass surface balanced by

electrostatic repulsion of the charged particles from the charged glass surface. An azimuthal

phase gradient in the optical ring trap caused the nanoparticles to be driven[102] around the

trap along a quasi-one-dimensional path. (Figure 6.1a). The driving force in the optical ring

trap was controlled by the topological charge l (the number of 2π phase wrappings in one

complete circuit around the ring) of the ring trap, which was varied from l = 1 to l = 5 in

the present experiment.

Figure 6.1a shows an image (raw data) of two Ag NPs in the trap. The arrow indicates

their direction of directed motion. The laser power was lower in the present experiments

compared to optimal trapping conditions in our previous study[73] to reduce the strength of

the radial confinement of the Ag NPs. As a result, particles in the trap travel around the

ring at a slower rate and have a wider radial distribution due to the diminished transverse

intensity gradient force. They can undergo Brownian fluctuations in the radial direction and

can pass each other due to radial position fluctuations, as shown in the inset to Figure 6.1a.

The trajectories of the Ag nanoparticles in the optical ring trap are naturally described in a

polar coordinate system, r and θ, as shown in Figure 6.1a. The polar coordinates for each

experiment were calculated by using a least squares routine to fit a circle of radius r0 to the

positions of all Ag NPs accumulated over a single experiment for a given value of l[127].

We define a passing event using a relative coordinate system, ∆r = r2−r1 and ∆θ = θ2−θ1

where the subscripts 1 and 2 refer to the particles that are initially leading and trailing,
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Figure 6.1: A pair of Ag nanoparticles in an optical ring trap and representative passing
events that can occur. (a) Two Ag nanoparticles in a ring trap (dashed circle) with radius
r0 = 4.5µm. The inset shows part of an image recorded at a slightly later time where one of
the particles has fluctuated off the ring. The coordinates r and θ are also shown in a. The
driving force is in the counter-clockwise direction. (b,c) Two examples of passing events (each
at L = 5 and ≈ 0.1s in duration) with the changing color on the particle path representing
time propagation. In (b) the leading particle fluctuates away from the radius r0 of the ring
trap, while in (c) the trailing particle fluctuates from the ring trap and simultaneously passes
the leading particle. (d,e) Trajectories of the passing events shown in (b) and (c), respectively,
in terms of relative coordinates ∆θ and ∆r.

respectively. A passing event occurs when there is a sign change in ∆θ. In general, a particle

pair takes a random path through the two dimensional coordinate space (∆r,∆θ) during

such an event. Figure 6.1b shows the trajectories of both particles in a pair during a passing

event. The chronological evolution of each particle’s motion is encoded in color (red to yellow

and magenta to blue for the trailing and leading particles, respectively). In this example the

leading particle (in the direction of the applied driving force) fluctuates radially away from

the mean radius r0 of the ring trap while the trailing particle remains near r0 and passes

the lead particles driven by the applied optical force. A second passing event, along with

individual particle motions, is shown in Figure 6.1c. Note that in this example the trailing

particle passes around the leading particle.

The trajectories of the passing events shown in Figures 6.1b,c are shown in terms of

(∆r,∆θ) in Figures 6.1d and e, respectively. The trajectories of passing events always start

with ∆θ < 0 and progress to ∆θ > 0 because the relative coordinate system is designed with
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the leading particle at the origin. The beginning and endpoints of the trajectory in (∆r,∆θ)

are indicated in Figure 6.1d and e by the time points t0 and t1, respectively.

If each passing event is defined as a particular trajectory through the two-dimensional

coordinate space (∆r,∆θ), the dynamics of the process will depend on the probability

P (∆r,∆θ) of finding the system at a specific point in this space. Figure 6.2a shows this

probability distribution for data aggregated over all experiments. We see that it is most

likely to find ∆r near zero for ∆θ > 0.1rad, which corresponds to a chord length of 600 nm.

This distance is associated with the expected separation for the electrodynamic interaction

known as optical binding at
√

∆r2 + (r∆θ)2 ≈ λincident/n,[13, 15, 16] where n is the index of

refraction of the medium (n = 1.33 in water). However, it becomes extremely unlikely to

find ∆r near zero for smaller values of ∆θ due to electrostatic and electrodynamic repulsion

between the charged Ag NPs[128]. Moreover, the particles never overlap in the images

(videos) meaning they do not pass over each other in the axial direction of laser propagation.

Therefore, for ∆θ to be near zero at least one of the particles must be displaced off the ring

(away from r0), and the passing process is 2-dimensional.

Figure 6.2b shows a subset of the total probability density function (PDF) Ppassing(∆r,∆θ)

obtained by selecting only trajectories from a 30 frame window centered on each passing event.

Applying this condition does not change the qualitative features of the PDF. The mean paths

of the passing events (aggregated over all experiments, which were separated depending on

whether ∆r is positive or negative at ∆θ = 0, are shown in red. These mean paths emphasize

that the Ag NP passing process involves changes in both ∆r and ∆θ. Figure 6.2c shows

a scatter plot of the points (∆r,∆θ) within a 30 frame window with the passing event at

the center with the mean path through (∆r,∆θ) separated according to low (blue), medium

(orange), and high (green) driving forces. The driving force appears to have, at most, a small

effect on the mean path the system takes through (∆r,∆θ) during a passing event.
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6.1.3 Mechanism for passing

We have discussed the nanoparticle passing process in terms of quantities averaged over many

trajectories. Because we have access to individual trajectories, however, it is possible to

deduce a mechanism or mechanisms by which the passing occurs. Since ∆r must deviate from

0 for a passing event to occur, it is important to determine the typical radial fluctuations of

both particles involved in the event. Figure 6.3a show two likely mechanisms for the passing.

In scheme I, the leading particle momentarily jumps away from the mean radius r0 of the

trap and the trailing particle then passes it. Conversely, in scheme II, the trailing particle

jumps away from the mean radius r0 of the trap while simultaneously passing the leading

particle. In both of these schemes, only one particle fluctuates radially away from r0. The

trajectories shown in Figure 6.1 b and c respectively reflect schemes I and II.

Figure 6.3b shows a conditional separation of the PDFs of particle pair deviations from

the ring trap at the time of passing combining events measured for all values of l. The PDFs

are separated into two groups corresponding to the particle in the pair that is closer to r0 and

the particle that is further from r0 at the time of the passing event. The particle closer to r0

is approximately Gaussian distributed in ∆r, while the particle further from the trap has no

probability density at r0. This result indicates that in the majority of passing events only

one particle fluctuates radially while the other remains confined to the mean radius, r0, of

the ring. Figure 6.3c shows a different conditional separation of the particle radial deviation

PDFs into two groups corresponding to the particles in the pair that are initially leading

and trailing. This alternative condition results in slightly different PDFs compared to those

shown in Figure 6.3a, implying that either the leading or trailing particle can be the one to

fluctuate radially away from r0, as depicted in schemes I and II in Figure 6.3a.

To estimate the prevalence of each schemes shown in Figure 6.1a, we re-mixed the PDFs

in Figure 6.3b in different proportions according to the relationship
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Figure 6.2: Probability density in relative coordinates (∆θ,∆r) and most probable paths
for passing. (a) Total probability density over all experiments for all driving forces. (b)
Conditional probability density in 30 frame windows centered on each passing event, over all
experiments for all driving forces. (c) Scatter plot of points obtained from the same condition
used in (b), with colored lines depicting the mean path of particles through (∆θ,∆r). Note
that ∆θ = 0.13rad = 600nm chord length so the regions of high point density correspond to
optical binding.
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Figure 6.3: Two possible passing schemes and their related probability distributions. (a)
Two possible schemes by which passing events take place. Scheme I is related to Figure 6.1b
where the leading particle fluctuates away from the ring trap while the trailing particle moves
past it. Scheme II is related to Figure 6.1c where the trailing particle fluctuates away from
the trap and passes the leading particle. (b) PDFs of particle pair deviations from the ring
trap during passing events for all values of l for the particle closer to (blue) and further from
(orange) r0 at the time of passing. (c) PDFs of particle pair deviations from the ring trap
during passing events for all values of l for the particle trailing (blue) and leading (orange) just
before the event. (d) Remixing of the PDFs in (b) via Equation 6.1 with C11 = C22 = 0.85
and C12 = C21 = 0.15.
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P ′1 = C11P1 + C12P2

P ′2 = C21P1 + C22P2

(6.1)

where P1 and P2 are the PDFs of the particles closer to and further from r0 in Figure 6.3b,

respectively, while P ′1 and P ′2 are the PDFs for the trailing and leading particles. The Cij are

the coefficients that determine the proportion of the mixing. Mechanistically, the diagonal

elements in Cij correspond to scheme I, while the off-diagonal elements correspond to scheme

II. Figure 6.3d shows the histograms obtained when C11 = C22 = 0.85 and C12 = C21 = 0.15,

which gives the best match between Figure 6.3c and d. Therefore, the passing events occur

85% of the time via scheme I and 15% of the time via scheme II .

6.1.4 Electrodynamic interactions and potentials of mean force

We now turn to the question of how passing events depend on the electrodynamic interactions

between particles, and the electrodynamic potential created by the ring trap. One important

type of electrodynamic interaction between trapped particles is optical binding [15, 13], which

results from the incident electric field interfering with the scattered electric field from each

particle. In our experiments the polarization state of the trapping beam is horizontal in the

laboratory frame aligned along the 0 to π coordinate of the ring shown in Figure 6.1a. The

optical binding interaction is strongest between nanoparticles oriented perpendicular to the

polarization.

We simulated the optical binding potential in the optical ring trap by starting from the

pair-wise electrodynamic potential[17] obtained from finite difference time domain (FDTD)

simulations and extending these results around a circle of the same radius as the experimental

ring trap and weighting it by the measured probability of finding a particle at each θ position

on the ring (this probability is modulated by varying speed in different sections of the ring for

linear polarization[73]). Figure 6.4a shows this estimated optical binding potential for a pair

of Ag NPs around the ring trap. The optical binding interaction is most likely to stabilize a

103



particle position away from the ring near π/2 and 3π/2, and the interaction is symmetric

about these points.

The actual tightness or looseness of single Ag NP confinement created by the optical

ring trap in the radial direction is visualized in Figure 6.4b, which shows all single particle

trajectories in an experiment (l = 5). It is apparent that deviations from r0 are much

more common near 2π/3 and 5π/3 compared to π/3 and 4π/3. The reason for diminished

confinement in these regions is a slight astigmatism introduced to the phase function on the

SLM used to create the optical trap[129, 29]. Therefore, recording the θ locations of all the

passing events allows ascertaining whether passing behaves as a concerted rotation of the

optically bound particle pair or as spontaneous radial fluctuations in the regions of reduced

confinement.

The distribution of passing events with respect to θ shown in Figure 6.4c indicates

that passing events have maximum probability density near 2π/3 and 5π/3 and minimum

probability density near π/3 and 4π/3. This distribution is clearly dominated by the reduced

radial confinement effect depicted in Figure 6.4b compared to the electrodynamic binding of

Figure 6.4a. Another experiment performed with clockwise (reversed) rotation (l = −5) shows

a very similar θ-dependent probability of passing to that shown in Figure 6.4c. This rules

out any possible memory-dependent effects on the location of passing. Therefore, somewhat

surprisingly given the obvious presence of optical binding in Figure 6.2c, the single particle

dynamics are much more important than interactions between particles with regard to the

passing mechanism.

The θ-dependent probability of passing reflects a barrier to the passing process whose

height depends on the angular position of the particles in the ring. We can construct a

potential of mean force (PMF) in the ∆θ coordinate in the vicinity of a particular value of θ,

denoted as θ0 by considering the conditional probability distribution P (∆θ|θ ∈ [θ0−δ, θ0 +δ]);

i.e., the probability distribution of the angular separation ∆θ given that the θ position of a

particle pair is within some range ±δ of θ0, the point of interest on the ring. Figure 6.4d

104



shows the conditional PMF with θ0 at the centers of the red (high passing probability) and

purple (low passing probability) regions in Figure 6.4c. The increased rate of passing near

2π/3 and 5π/3 compared to π/3 and 4π/3 corresponds to a barrier that is about 1.5 kBT

lower in the regions of high passing probability compared to the low probability regions.

Since this free energy landscape more closely resembles Figure 6.4b compared to Figure 6.4a

it is consistent with the second step in the mechanism for passing depending primarily on

the single-particle potential of the optical trap rather than on interactions between particles.

It is possible that at high enough laser intensity, a different mechanism that depends on

electrodynamic interaction between particles could become dominant. The single-particle

trapping potential will become steeper in the radial direction at higher laser intensity, thus

reducing the probability of large enough fluctuations from r0 to allow passing events to happen.

Conversely, optical interaction between particles will be stronger. However, exploring such a

crossover is beyond the scope of this paper.

6.1.5 Analogy to bimolecular mechanism

Since the particles are being driven around the ring trap, elucidation of the mechanism for

particle passing requires considering the effect of the electrodynamic driving force. Figure 6.5a

shows the rate of events (per second) for driving forces increasing from l = 1 to l = 5. Since

the data are collected from many experiments that have different numbers of particles n

(i.e. n = 2 − 6 particles in the ring at the same time), the rates are normalized by the

combinatorial number of possible particle pairs in a given experiment

(
n

2

)
=

n!

2!(n− 2)!
(6.2)

where n is the number of particles in a given experiment. Figure 6.5a shows that the total

event rate increases with with driving force. An increase in reaction rate with increasing

driving force is predicted by both Arrhenius (or transition state) theory [130] and Kramers
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Figure 6.4: Factors that can affect the passing event location and barrier height changes
for the passing process. (a) Simulated optical binding potential obtained by extending the
pair-wise electrodynamic potential for a particle with fixed optical polarization to the pair on
a circle of the same radius as the experimental ring trap, and weighting it by the probability
of finding a particle at each θ position on the ring. These θ-dependent electrodynamically
preferred orientations of Ag nanoparticle pairs are shown schematically. (b) Superposition
of single Ag NP trajectories for a representative experiment. Radial fluctuations away from
r0 are much more likely at 2π/3 and 5π/3 compared to π/3 and 4π/3. The red and purple
shading denotes regions of high and low passing event probability, respectively. (c) Probability
density of passing events vs. angular position on the ring trap. (d) Potential of mean force
(pmf) in coordinate ∆θ in areas of high (red) and low (purple) probability of passing event
occurrence.
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theory[131]. However, since these theoretical descriptions were formulated for simple reaction

mechanisms with single steps, it is necessary to establish a reaction mechanism to understand

the increase in the "reaction" rate in our experiments.

To do this, we introduce a two step process analogous to a bimolecular exchange reaction

or the Michaelis-Menten scheme

A+B
AB
AB‡→B + A (6.3)

where A + B are the two separated particles in their original (spatial) order, AB is the

particle pair once they are within a certain distance (i.e. an optically bound pair that is

analogous to an encounter complex), AB‡ is the structure at the transition state, and B + A

is the separated particle pair after the passing event with exchange of orientational order. In

this mechanism, the total rate depends both on the formation of a particle pair (encounter

complex), and an activated process to progress from the encounter complex to the reordered

pair (product). The rate of the first step, forming the complex, should depend on the total

number of particles, and we have accounted for it being proportional to the number of

possible particle pairs by using equation 6.2. In general, each particle is driven around the

ring at slightly different speeds because of the slight polydispersity of our nanoparticle sample

(d = 148nm± 5nm). The differential speed of each particle contributes to the total rate of

the first step. The particle-sizing measurements are detailed in the Supporting Information

of Sule et al.[20]

Although it is likely that the first step of the mechanism equation 6.3 is drive force-

dependent, it is not immediately obvious if the second step also has a driving force dependence.

To address this, we consider the kinetics of the second step more closely. Figures 6.5b-d shows

the distance traveled by a particle pair (within a certain threshold distance) from formation

to completion of the passing event, and Figures 6.5e-g show the corresponding distribution of

event times from pair formation to completion. The event time distributions show that once

the particle pair is formed the process follows an exponential rate law that is not affected by
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driving force.
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Figures 6.5e-g show exponential fits of experimentally measured lifetime distributions,

which indicates the second step is a first order kinetic process described by

dP (AB)

dt
∝ e−kt (6.4)

where k is the characteristic rate constant of the process and P (AB) is the survival probability

of the encounter complex. It is important to note that the distribution of ∆ti does not

appreciably change with drive force, and consequently ∆ti were sampled from the same

distribution obtained by averaging over results for all driving forces. To test the hypothesis

that once the encounter complex is formed the kinetics of the process no longer depend on

driving force, we created a simple stochastic model for travel distance

di(v(l), D,∆ti) = N(v(l)∆ti, 2D∆ti) = v(l)∆ti +
√

2D∆tiN(0, 1) (6.5)

where di is the distance traveled in a particular realization of the process, v is the driving

force-dependent drift speed of a particle in the ring trap measured from experimental data,

D is the diffusion constant of a particle in the ring trap, N(0, 1) is a random variable with a

normal distribution with zero mean and variance of 1, and ∆ti is the lifetime of the encounter

complex, which is an exponentially distributed random variable. We ran 10000 realizations

of this process. The resulting PDFs, shown as red curves in Figures 6.5b-d, closely match our

experimental data, validating our simple stochastic model.

While the total rate of the passing event process increases with driving force, our simula-

tions show that once the encounter complex, AB, is formed the driving force-dependence

disappears. This implies that the driving force-dependence is contained completely in the

first step in equation 6.3. In the language of chemical reactions, increasing the driving force

has an effect analogous to increasing the frequency of encounters between reactants (e.g.

enzyme and substrate) without affecting the energetics of the ensuing reaction. This is in

contrast to theories commonly employed to predict the effect of a driving force on the rate of
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Figure 6.5: Kinetics of passing events and relation to a two-step stochastic mechanism.
(a) Rate of passing events vs. driving force. (b-d) Distance traveled by a particle pair
from formation to completion of the passing event. The solid red curves are theoretical
histograms simulated via equation 6.5. (e-g) Distributions of event times from start to finish
corresponding to the events in (b-d). Fitted rate constants are given in each panel.
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a reaction, where the driving force induces a tilt in the free energy surface that lowers the

effective barrier of activation of the reaction[130, 131].

The mechanism of our Ag NP passing event process has now fully taken shape. In the first

step two particles must approach each other to form an encounter complex. This encounter

complex is at an optical binding separation of a particle pair. In fact, the dense collection of

points in Figure 6.2c at ∆θ = −0.12rad reflects this initial complex. The rate of formation

of the encounter complex depends both on the number of particles (through equation 6.2)

and the drive force at as seen in Figure 6.5a. Once the optically bound encounter complex is

formed, completion of the subsequent activated process obeys an exponential rate law. We

conclude from Figure 6.3 that typically only one particle fluctuates radially away from the

ring trap, and most (85%) of the time the front particle is the one which undergoes this

fluctuation. From the propensity for only a single particle to fluctuate radially away from r0

and the kinetic data in Figure 6.5, it is apparent that the rate of the first order kinetic process

is simply due to thermal forces pushing one of the particles out of the trap, as suggested in

the schemes of Figure 6.3.

6.1.6 Barrier Crossing and Recrossing

High time and spatial resolution in optical trapping experiments allows for determination

of detailed trajectories through a barrier region, as seen in Figure 6.6 a and b. While most

passing event trajectories resemble those shown in Figure 6.1 and Figure 6.6a,b, that is,

single barrier crossing events, we also observe barrier recrossing. Figure 6.6c,d shows a

passing event that involves multiple crossings before the process is complete. A number of

trajectories exhibit such barrier re-crossing, implying that a more accurate analysis of this

electrodynamically driven nanoparticle system should include a correction to transition state

theory.
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Figure 6.6: Barrier recrossing from detailed trajectory information available in optical
trapping experiments. (a,c) Two trajectories that show significant waiting times in coordinates
(∆θ,∆r). (b,d) Trajectories from (a,c) in coordinates (t,∆θ). Barrier recrossing about ∆θ = 0
is evident in (d).
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6.1.7 Conclusion

Transition paths in thermally activated processes such as protein and DNA folding have

only recently been related[118], but the reaction coordinate was inferred from the position of

beads connected to the molecule of interest using a handle (e.g. ds-DNA). The response of

both of these extraneous portions of the the experimental system are convoluted with the

molecular signal of interest, complicating the experimental analysis[132]. In experiments

where the system of interest is directly observed, dynamics and the reaction coordinate are

also directly determined, eliminating these complications. Optical trapping experiments have

the potential to explore questions regarding non-equilibrium transport at a single-particle

level due to their ability to shape both conservative and non-conservative force fields.

We studied individual passing events of pairs of Ag nanoparticles in an optical ring trap

with a controlled adjustable driving force. Our detailed and precisely localized trajectory

data measured over many realizations of this process along with stochastic model simulations

allowed identification of a detailed mechanism casting this problem in close analogy with

bimolecular exchange reactions in solution. The passing event process is also analogous to

a Michaelis-Menten scheme with an intermediate complex followed by barrier crossing as

described by equation 6.3 but where the rate of reaction (passing events) increases with

driving force. Our detailed trajectories reveal a two-step mechanism where the driving

force increases the rate of the first step, while the second step is independent of driving

force. Surprisingly, the second step is thermally activated barrier crossing of the encounter

complex formed in the first step. The exponentially distributed survival probability of the

encounter complex implies that the second step is a first order kinetic process, i.e. there is a

constant probability density at any given time that the reaction will progress to completion,

so the two-step characteristic of the passing process is crucial to the explanation of this

type of driving force-dependence. Furthermore, the decay rate of this survival probability

does not depend on the azimuthally directed driving force, which suggests that the reaction

coordinate for this step lies significantly in the radial (∆r) direction that is orthogonal to the
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θ and ∆θ aspect of passing. Finally, the level of detail available in nanoparticle visualization

experiments allowed direct observation of barrier recrossing. However, we do not treat this

phenomenon in detail in this paper.

The present paper is the initial report of this approach to study barrier crossing phenomena.

Many variations and interesting situations are envisioned for future studies. Optical traps

can be shaped with high precision to design conservative and nonconservative forces, and

strong inter-particle forces related to optical binding can be utilized to study the effects

of interaction in these potentials. Therefore, experiments can be designed to extend our

approach to other chemical and physical processes by tailoring specific forces and interactions

to reflect the behavior in an analogous system or to examine idealized theoretical scenarios.

6.1.8 Methods

Experimental The experiments were preformed with 150nm diameter Ag nanoparticles

(NanoXact Silver KJW1882 0.02 mg/ml) held and driven in an optical ring vortex as previously

described[39, 73]. The 800 nm beam from a Ti-Sapphire laser is phase modulated with a

spatial light modulator (SLM; Hamamatsu X10468-02) to produce the optical ring vortex

[27, 39]. The experiments used ∼45 mW beam power going into the back aperture of the

microscope objective. Citrate capped 150 nm Ag nanoparticles (NanoComposix) are diluted

200x in Nanopure water and placed into a sample chamber as described previously[73]. The

scattering force of the laser applied to the nanoparticles pushes them very close to the

glass-water interface of the top coverslip of the fluid well. The nanoparticles are held in

one plane perpendicular to the optical axis due to a balance of the scattering force and the

electrostatic repulsion the particles have with the electrically charged glass surface [73]. The

Ag nanoparticles are trapped and driven around the optical ring with a drive force determined

by the number of azimuthal phase wrappings, l, applied in the phase modulation pattern

on the SLM. The motion of the Ag nanoparticles is visualized via darkfield microscopy and

captured with a sCMOS camera (Andor Neo) at 110 frames per second. A variety of different
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experiments were performed at different l’s with each one consisting of 45 s–90 s (5000 to

10,000 frames) of video. In order to resolve distinct particle shapes without blurring or

distortion a camera exposure of 2× 10−3 s to 6× 10−4 s was used when capturing video.

Particle Tracking Particle trajectories were extracted from the video data using the

Python particle tracking software package TrackPy [127]. A cluster tracking algorithm in

TrackPy is used to accurately track the nanoparticles even when two or more nanoparticles

become part of a cluster [133]. The optimal parameters for each experiment were determined

by hand and were set so that the number of particles identified in each frame is consistent

with the number of particles in the experiment. Frames where the focus drifted were removed

from particle tracking as the particle tracking algorithm would find false positives in the

de-focused image of the particles. However, this method of particle localization uses the

center-of-mass method which can lead to significant errors especially when particles come

in close proximity, and the SPIFF algorithm was used to alleviate these errors[76, 22]. A

refinement algorithm was used that improves the accuracy of the positions of the particles by

performing a non-linear least-squares (NLLS) fit of a Gaussian function to each distribution

of pixel intensities for each nanoparticle. This allows extracting the particle positions with

much greater accuracy especially in the case of overlapping features.

6.2 Collective coordinates in optical matter systems

We saw in Section 6.1 that the process of one particle passing another in a driven ring trap

is analogous to a two-step chemical reaction. In this section we will show how the concept

of a reaction coordinate can be generalized to include structural transformations in optical

matter systems. Figure6.7 shows a common structural transformation for a 2D optical matter

cluster, namely the transition from the triangle configuration (a) through a transition state

(b) and to the chevron configuration (c).

To determine whether the transition shown in Figure 6.7 typically follows a well-defined
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Figure 6.7: Structural transition from the triangle cluster to the chevron cluster (a) Triangle
cluster. The distance between the particles labelled A and B serves as a reaction coordinate.
(b) Possible transition state between triangle and chevron clusters. (c) Chevron cluster.

path, we used the lattice fitting algorithm described in Section 2.2.2 to eliminate the

translational and rotational degrees of freedom from simulated and experimental trajectories

containing the transition. The first step is to detect the cluster types as described in

Section 2.2.2. Once the cluster types are detected, the set of all positions where the triangle

and chevron are detected have to be positioned and oriented so that they reflect changes in

the internal degrees of freedom, and not the translational or rotational degrees of freedom.

The translation freedom is eliminated by subtracting the center of mass of each frame or

timestep from all of the positions. The rotational freedom is eliminated by measuring the

angle between specific sites of the best-fit lattice in each frame, and rotating the particle

coordinates about their center of mass to compensate for the measured angle of the lattice.

For more details, see full analysis code in Appendix B.

Figure 6.8 shows the distributions of translated and rotated particle coordinates condi-

tioned on the distance between the two particles marked A and B in Figure 6.7 for a 55000

frame simulation (a-c) and a 1000 frame experiment (d-f). Figure 6.8 a and d show the

particle positions of the triangle configuration. The tightness of the spots verifies that the

rotation and translation of the particle coordinates worked properly. Figure 6.8 b and e

show the distribution of particle positions when the distance between the particles marked A

and B is near halfway between its value for the triangle and chevron configurations. The
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Figure 6.8: Translated and rotated particle positions for (a) the triangle, (b) the transition
state, and (c) the chevron clusters.

number of total counts is significantly lower in this region, consistent with the notion that the

distributions reflect a transition state. The positions of the particles are spread out compared

to the triangle configuration. Figure 6.8 c and f show the distribution of particle positions for

the chevron configuration. The blurring of the bottom two spots corresponds to the detection

of the five-fold symmetric cluster discussed in section 4.1.

Figure 6.8 suggests that the deviations of the particles from the corresponding lattice

sites are correlated. If the deviations are i.i.d. Gaussian the sum of squared deviations

(∆2 =
∑

i δ
2
i ) is expected to follow the χ2(2N − 4) distribution. Figure 6.9a shows the

cumulative distribution functions of ∆2

σ2 for 6-particle GMT-LD simulations conducted at

a range of laser powers conditioned on the triangle being detected. The CDF of χ2(8) is

plotted in black. The inset a plot of the CDF of ∆2

σ2 (red diamonds) and the CDF of χ2(8)

for comparison. For the simulation with 20mW (blue) the scaled error CDF is in excellent

agreement with the χ2(8) distribution. As laser power increases the tails of the scaled error

CDF’s extend toward larger and larger values. Figure 6.9b shows the cumulative distribution
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Figure 6.9: Squared deviations of particle positions from best-fit lattice sites. (a) Squared
deviations of particle positions from best-fit lattice sites in simulations at a range of laser
powers (blue-red) and the χ2(8) distribution when the triangle is detected. (inset) Comparison
between squared particel deviations for i.i.d. Gaussian deviations from lattice sites and the
χ2(8) distribution. (b) Squared deviations of particle positions from best-fit lattice sites in
simulations at a range of laser powers (blue-red), an experiment conducted at 60mW (black
dashed), and the χ2(8) distribution for all configurations.

functions of ∆2

σ2 for 6-particle GMT-LD simulations conducted at a range of laser powers

regardless of which cluster is detected. Compared to the results in Figure 6.9a, the deviations

from the χ2(8) CDF are larger. Simulations performed by Chatipat Lorpaiboon.

The results in Figure 6.8-6.9 suggest that optical matter systems fluctuate along collective

coordinates, and that as the trapping laser power increases correlated motion becomes

increasingly important. For equilibrium systems the movement along collective coordinates

is expected to obey detailed balance[111, 134], i.e. the forward and backward flux between

all regions in the phase space of the system is equal. However, optical matter systems are

nonequilibrium systems. While transfer of linear and angular momentum from the incident

field to optical matter systems has been shown to result in rotation and translation of the

system[82, 73, 20, 21], the question whether detailed balance is broken with respect to the

internal coordinates in an optical matter system remains.

We conducted GMT-LD simulations of an 8-particle optical matter cluster depicted in

Figure 6.10a. This particular 8-particle cluster has significant distortions compared to the
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hexagonal lattice. For a cluster that lies on an underlying hexagonal lattice with lattice

vector length a, the two edge-lengths of the cluster, depicted by red arrows, are
√

3a and 2a.

Histograms of the 4 edge lengths taken from a GMT-LD simulation are shown in Figure 6.10b.

The 4 distributions are nearly identical, and are centered at 1.2µm. Therefore, this cluster

deviates significantly from an underlying hexagonal lattice.

We can construct a simple phase space in terms of the edge-lengths of the cluster to

test whether detailed balance is broken. First, we label each distance + or − depending on

whether its value is larger or smaller than the mean value of 1.2µm. If we consider the two

distances depicted in Figure 6.11a, this defines a phase space that consists of 4 regions as

depicted in Figure 6.10c. The the elements of the total flux matrix Tij are the number of

observed transitions from state i to j (i.e. Tij = πjPij where πj is the probability of finding

the system in state j and Pij is the Markov transition matrix element from state j to state i).

A scaled color visualization of the total flux matrix is shown in Figure 6.10d. The total flux

matrix is slightly asymmetric, reflecting the possibility of broken detailed balance.

We compared the total flux matrix depicted in Figure 6.10d between simulations conducted

at three different laser powers. Figure 6.11a-c shows the three total flux matrices and

Figure 6.11d-f shows the values of the net flux, Tij − Tji. Across all three powers, the total

flux matrices and the net flux remain nearly identical. The values of the net flux define a

cycle through the constructed phase space. For the labels depicted in Figure 6.11c the net

flux moves (in a cycle) from 1 → 2 → 4 → 3 → 1. This type of cycle is only possible in a

nonequilibrium system, and is thus a direct consequence of the optical binding interaction

being mediated by an external energy source.
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Figure 6.10: Measuring detailed balance in an 8-particle optical matter cluster (a) Corner-
to-corner distances in an 8-particle optical matter cluster (red double arrows) (b) Distribution
of corner-to-corner distances. When one of the distances is less than its mean value the
variable is labeled - and when the distance is greater than its mean value the variable is
labeled +. (c) 4 possible states for the 8-particle cluster shown in panel (a) based on two
corner-to-corner separations: 1 (++), 2 (-+), 3 (+-), and 4 (–). (d) Scaled-color visualization
of the total flux matrix for the 8-particle cluster shown in panel (a). The initial state is
along the horizontal direction and the final state is along the vertical direction. Each count
represents one observed transition.
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Figure 6.11: Broken detailed balance in an 8-particel optical matter cluster (a-c) Total
flux matrices introduced in Figure 6.10d for GMT-LD simulations performed at low (a),
medium (b), and high (c) power. Each count represents on observed transition. (d-f) Net
flux (Tij − Tji) for the total flux matrices shown in (a-c).
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Appendix A

Detecting particle type by color

This section outlines the procedure for differentiation between gold and silver particles in

a color .tif video file separated into three channels. The first step is to track the particle

positions, as described in Section 2.2.1. The next step is to mask the three channels of each

image so that every pixel value outside a radius r = 3 from a tracked particle position is set

to zero. Examples of raw and masked images are shown in Figure A.1
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Figure A.1: Binary masking of color images based on particle positions. (a-c) Raw red (a),
blue (b), and green (c) channels of a color experimental image. (d-f) Red (a), blue (b), and
green (c) channels of a color experimental image that have been masked so that every pixel
value outside a radius r = 3 from a tracked particle position is set to zero.

Once the image is masked, the average of the sum of unmasked pixels around each

unmasked particle defines an RGB vector for that particle type

χR,G,B =

∑
pixels IR,G,B

nparticles ∗
∑

R,G,B

∑
pixels IR,G,B

(A.1)

where IR,G,B is the red, green, or blue intensity of a pixel. Figure A.2 shows histograms

of χR,G,B calculated over several frames for (a) gold particles and (b) silver particles. The

locations of the distributions corresponding to each color have distinct locations for the silver

and gold particles, and thus it is possible to differentiate between them. The average values

of each channel of χR,G,B, denoted χ̃R,G,B, will be used as reference values.
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Figure A.2: Histograms of χR,G,B calculated over several frames for (a) gold particles and
(b) silver particles.

In a video with an unknown particle type that has been masked the same way as the

reference videos, let Y R,G,B be the summed intensity values of the pixels surrounding a specific

particle location for the red, green, and blue channels. The projection of Y R,G,B onto ˜χR,G,B

F =
Y · χ̃R,G,B
|Y ||χ̃R,G,B|

. (A.2)

The reference χ̃R,G,B that yields the maximum F is taken as the particle identity. Two

examples from frames of a video containing a mixture of gold and silver particles is shown

below in Figure A.2. Particles detected as gold in (a-b) are plotted as red dots in (c-d).
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Figure A.3: Example of particle detection by color. Particles detected as gold in (a-b) are
plotted as red dots in (c-d).
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Appendix B

MATLAB code

B.1 Importing data

B.1.1 Function for importing tab-delineated .txt files from Mosaic

f unc t i on [ Trajectory , Frame , x , y ,m0] = import_data ( folder_path ,

↪→ f i le_name )

f i l ename = s t r c a t ( folder_path , fi le_name , ’ . txt ’ ) ;

Initialize variables.

%f i l ename = ’/ Users /Curt i s /Documents/MATLAB/Laser_bleedthrough/

↪→ Results_10122018_d . txt ’ ;

d e l im i t e r = ’\ t ’ ;

Read columns of data as strings:

For more information, see the TEXTSCAN documentation.

formatSpec = ’%q%q%q%q%q%q%[^\n\ r ] ’ ;
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Open the text file.

f i l e ID = fopen ( f i l ename , ’ r ’ ) ;

Read columns of data according to format string.

This call is based on the structure of the file used to generate this code. If an error occurs for

a different file, try regenerating the code from the Import Tool.

dataArray = text scan ( f i l e ID , formatSpec , ’ De l imiter ’ , d e l im i t e r ,

↪→ ’ ReturnOnError ’ , f a l s e ) ;

Close the text file.

f c l o s e ( f i l e ID ) ;

Convert the contents of columns containing numeric strings to num-

bers.

Replace non-numeric strings with NaN.

raw = repmat ({ ’ ’ } , l ength ( dataArray {1}) , l ength ( dataArray )−1) ;

f o r c o l =1: l ength ( dataArray )−1

raw ( 1 : l ength ( dataArray{ co l }) , c o l ) = dataArray{ co l } ;

end

numericData = NaN( s i z e ( dataArray {1} ,1) , s i z e ( dataArray , 2 ) ) ;

f o r c o l = [1 , 2 , 3 , 4 , 5 , 6 , 7 ]

% Converts s t r i n g s in the input c e l l array to numbers .

↪→ Replaced non−numeric

% s t r i n g s with NaN.
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rawData = dataArray{ co l } ;

f o r row=1: s i z e ( rawData , 1)

% Create a r e gu l a r exp r e s s i on to de t e c t and remove non−

↪→ numeric p r e f i x e s and

% s u f f i x e s .

r e g e x s t r = ’(?< pre f i x >.∗?) (?<numbers >([− ]∗(\d+[\ , ]∗ )

↪→ +[\ . ] {0 , 1}\d ∗ [ eEdD]{0 ,1}[−+]∗\d ∗ [ i ] { 0 , 1 } ) | ( [ − ]∗ ( \ d

↪→ +[\ , ]∗ ) ∗ [ \ . ] { 1 , 1 } \ d+[eEdD]{0 ,1}[−+]∗\d ∗ [ i ] { 0 , 1 } ) ) (?<

↪→ s u f f i x >.∗) ’ ;

t ry

r e s u l t = regexp ( rawData{row} , r egex s t r , ’ names ’ ) ;

numbers = r e s u l t . numbers ;

% Detected commas in non−thousand l o c a t i o n s .

inva l idThousandsSeparator = f a l s e ;

i f any ( numbers== ’ , ’) ;

thousandsRegExp = ’^\d+?(\ ,\d{3}) ∗\ .{0 ,1}\d∗$ ’ ;

i f isempty ( regexp ( numbers , thousandsRegExp , ’ once

↪→ ’ ) ) ;

numbers = NaN;

inva l idThousandsSeparator = true ;

end

end

% Convert numeric s t r i n g s to numbers .

i f ~ inva l idThousandsSeparator ;

numbers = text scan ( s t r r e p ( numbers , ’ , ’ , ’ ’ ) , ’%f ’ )

↪→ ;
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numericData ( row , c o l ) = numbers {1} ;

raw{row , c o l } = numbers {1} ;

end

catch me

end

end

end

Replace non-numeric cells with NaN

R = c e l l f u n (@(x ) ~i snumer ic ( x ) && ~ i s l o g i c a l ( x ) , raw ) ; % Find non−

↪→ numeric c e l l s

raw (R) = {NaN} ; % Replace non−numeric c e l l s

Allocate imported array to column variable names

Tra jec tory = ce l l 2mat ( raw ( : , 2) ) ;

Frame = ce l l 2mat ( raw ( : , 3) ) ;

x = ce l l 2mat ( raw ( : , 4) ) ;

y = ce l l 2mat ( raw ( : , 5) ) ;

m0 = ce l l 2mat ( raw ( : , 7 ) ) ;

Clear temporary variables

c l e a r v a r s f i l ename d e l im i t e r formatSpec f i l e ID dataArray ans raw

↪→ c o l numericData rawData row r e g ex s t r r e s u l t numbers

↪→ inva l idThousandsSeparator thousandsRegExp me R;

c l e a r v a r s VarName1

end
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B.1.2 Script for formatting output of import_data function

c l e a r v a r s Data x y

fo lder_path = ’/ Users /Curt i s /Documents/MATLAB/

↪→ l ong_range_interact ions /Datasets / ’ ;

f i le_name = ’ Results_8272020_4 ’ ;

[ Trajectory , Frame , x , y ,m0] = import_data ( folder_path , f i le_name ) ;

Frame2 = Frame ( 2 : end ) + 1 ;

Tra jec tory2 = Tra jec tory ( 2 : end ) ;

xtemp = x ( 2 : end ) ;

ytemp = y ( 2 : end ) ;

m0temp = m0( 2 : end ) ;

Data = [ Frame2 Tra jec tory2 xtemp ytemp m0temp ] ;

Data = sort rows (Data , 1 ) ;

c l e a r v a r s f i le_name fo lder_path Frame2 Tra jec tory2 xtemp ytemp

↪→ temp temp2 m0temp Tra jec tory m0 Frame x y

x = ze ro s (50 ,max(Data ( : , 1 ) ) ) ;

y = ze ro s (50 ,max(Data ( : , 1 ) ) ) ;

x_linked = ze ro s (50 ,max(Data ( : , 1 ) ) ) ;

y_linked = ze ro s (50 ,max(Data ( : , 1 ) ) ) ;

f o r n = 1 :max(Data ( : , 1 ) )
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temptraj = nonzeros ( ( Data ( : , 1 ) == (n) ) .∗Data ( : , 2 ) ) ;

tempx = nonzeros ( ( Data ( : , 1 ) == (n) ) .∗Data ( : , 3 ) ) ;

tempy = nonzeros ( ( Data ( : , 1 ) == (n) ) .∗Data ( : , 4 ) ) ;

temptraj2 = 1 : 1 : l ength ( tempx ) ;

x_linked ( temptraj , n ) = tempx ;

y_linked ( temptraj , n ) = tempy ;

x ( temptraj2 , n ) = tempx ;

y ( temptraj2 , n ) = tempy ;

end

c l e a r v a r s n

%temp = sort rows (Data , 2 ) ;

%temp2 = temp ( : , 5 ) ;

c l e a r v a r s temptraj temptraj2 tempx tempy

B.2 Lattice fitting and cluster detection

B.2.1 Function that takes (x, y) coordinates and returns best-fit

hexagonal lattice

f unc t i on [ x_si , y_si , l a t t i c e_pos i t i on s_cen t e r ed , order_param ,

↪→ l a t t i ce_ass ignment , d_latt i ce , the ta_ la t t i c e , cp ] =

↪→ l a t t i ce_ass ignment_algor i thm_vector i zed (x , y )

%This func t i on f i t s a l a t t i c e to tracked p a r t i c l e p o s i t i o n s .
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↪→ The requ i r ed

%inputs are x ( p a r t i c l e ) and y ( p a r t i c l e ) .

np = length ( nonzeros ( x ) ) ; %Spec i f y the number o f p a r t i c l e s

p i x e l s i z e = . 0 7 2 ; %Conversion f a c t o r between p i x e l s and

↪→ microns

x_si = nonzeros ( x )∗ p i x e l s i z e ; %Pa r t i c l e p o s i t i o n s in microns

y_si = nonzeros ( y )∗ p i x e l s i z e ;

l a t t i c e_ s i z e = 4 ; %Spec i f y the s i z e o f the l a t t i c e ( in terms

↪→ o f 2n+1 l a t t i c e v e c t o r s )

[ temp1 , temp2 ] = meshgrid(− l a t t i c e_ s i z e : l a t t i c e_ s i z e ) ;

coe f f_matr ix ( : , : , 1 ) = temp2 ;

coe f f_matr ix ( : , : , 2 ) = temp1 ;

%c l e a r v a r s temp1 temp2 d i s t

p a r t i c l e_ l i s t = 1 : 1 : np ; %Spec i f y which p a r t i c l e s to f i t (

↪→ de f au l t i s 1 : np )

Parameters

d_spacing = 0 . 0025 ; %Spec i f y which l a t t i c e vec to r l eng th s to

↪→ t ry

d_start = . 5 4 0 ;

d_end = . 6 3 0 ;

theta_spacing = . 0 5 ; %Spec i f y which l a t t i c e ang l e s l eng th s to
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↪→ t ry

theta_star t = pi /3 − pi /6 ; %Second l a t t i c e vec to r has de f ined

↪→ o f f s e t

theta_end = pi /3 + pi /6 ;

This section of the code creates lattice vectors for ALL specified

distances and angles.

\ begin { l s t l i s t i n g }

d_temp = d_start : d_spacing : d_end ;

theta1_temp = theta_star t : theta_spacing : theta_end ;

theta2_temp = theta1_temp + pi /3 ;

f o r n1 = 1 : l ength (d_temp)

x1_temp(n1 , : ) = d_temp(n1 )∗ cos ( theta1_temp ) ;

y1_temp(n1 , : ) = d_temp(n1 )∗ s i n ( theta1_temp ) ;

x2_temp(n1 , : ) = d_temp(n1 )∗ cos ( theta2_temp ) ;

y2_temp(n1 , : ) = d_temp(n1 )∗ s i n ( theta2_temp ) ;

end

num_params = length (d_temp)∗ l ength ( theta1_temp ) ;

x1_temp = reshape (x1_temp , 1 , 1 , 1 , num_params) ; %reshape the

↪→ array o f l a t t i c e v e c t o r s f o r v e c t o r i z ed mu l t i p l i c a t i o n

y1_temp = reshape (y1_temp , 1 , 1 , 1 , num_params) ;

x2_temp = reshape (x2_temp , 1 , 1 , 1 , num_params) ;
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y2_temp = reshape (y2_temp , 1 , 1 , 1 , num_params) ;

latt ice_vectors_temp ( : , : , : , 1 ) = x1_temp .∗ coe f f_matr ix ( : , : , 1 ) +

↪→ x2_temp .∗ coe f f_matr ix ( : , : , 2 ) ;

latt ice_vectors_temp ( : , : , : , 2 ) = y1_temp .∗ coe f f_matr ix ( : , : , 1 ) +

↪→ y2_temp .∗ coe f f_matr ix ( : , : , 2 ) ;

%matr ix_size = [ s i z e ( coef f_matr ix , 1 ) s i z e ( coef f_matr ix , 2 )

↪→ l ength (d_temp)∗ l ength ( theta1_temp ) 2 ] ;

This section centers ALL lattices on ALL particles and calculates the

sum the deviations from the lattice.

\ begin { l s t l i s t i n g }

x_reshaped = reshape ( x_si , 1 , 1 , 1 , ( l ength ( p a r t i c l e_ l i s t ) ) ) ; %x

↪→ and y need to be reshaped f o r v e c t o r i z ed mu l t i p l i c a t i o n

y_reshaped = reshape ( y_si , 1 , 1 , 1 , ( l ength ( p a r t i c l e_ l i s t ) ) ) ;

f o r n2 = 1 : l ength ( p a r t i c l e_ l i s t ) %This loop t r i e s c en t e r i ng

↪→ the t e s t− l a t t i c e s on each p a r t i c l e

par t i c l e_l i s t_temp = p a r t i c l e_ l i s t ( p a r t i c l e_ l i s t ~=

↪→ p a r t i c l e_ l i s t ( n2 ) ) ;

par t i c l e_l i s t_temp = reshape ( part i c l e_l i s t_temp , 1 , 1 , l ength

↪→ ( par t i c l e_l i s t_temp ) ) ;

lattice_dist_temp_x = x_reshaped ( par t i c l e_l i s t_temp ) − (

↪→ x_si ( p a r t i c l e_ l i s t ( n2 ) ) + latt ice_vectors_temp
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↪→ ( : , : , : , 1 ) ) ;

lattice_dist_temp_y = y_reshaped ( par t i c l e_l i s t_temp ) − (

↪→ y_si ( p a r t i c l e_ l i s t ( n2 ) ) + latt ice_vectors_temp

↪→ ( : , : , : , 2 ) ) ;

latt ice_dist_temp = lattice_dist_temp_x .^2 +

↪→ lattice_dist_temp_y .^2 ;

[ min_temp ] = min ( latt ice_dist_temp , [ ] , 1 ) ;

[ min_temp ] = min (min_temp , [ ] , 2 ) ;

min_temp = sum(min_temp , 4 ) ;

min_temp = reshape (min_temp , s i z e ( latt ice_vectors_temp , 3 )

↪→ , 1 ) ;

lattice_dist_sum_temp ( : , n2 ) = min_temp ; %This loop bu i l d s

↪→ a (num_params)X( num_particles ) array o f the sum of

↪→ suqred l a t t i c e d i s t an c e s

end

[ order_param_temp , particle_index_temp ] = min (

↪→ lattice_dist_sum_temp , [ ] , 2 ) ; %These four l i n e s f i n d s the

↪→ l a t t i c e parameters and c en t r a l

[ order_param , param_index ] = min ( order_param_temp ) ;

↪→ %pa r t i c l e that r e s u l t in the

↪→ sma l l e s t sum suqred d i s t anc e

c en t r a l_pa r t i c l e = particle_index_temp ( param_index ) ;

cp = [ x_si ( c e n t r a l_pa r t i c l e ) , y_si ( c e n t r a l_pa r t i c l e ) ] ;
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[ d_ind , theta_ind ] = ind2sub ( [ l ength (d_temp) l ength ( theta1_temp

↪→ ) ] , param_index ) ; %These three l i n e s unrave l the param

the t a_ l a t t i c e = [ theta1_temp ( theta_ind ) ; theta2_temp ( theta_ind

↪→ ) ] ; %index to r e cove r the best theta and d

d_la t t i c e = d_temp(d_ind ) ;

The best lattice is reconstructed

x1 = d_la t t i c e ∗ cos ( t h e t a_ l a t t i c e (1 ) ) ; %Reconstruct l a t t i c e

↪→ vec to r s

y1 = d_la t t i c e ∗ s i n ( t h e t a_ l a t t i c e (1 ) ) ;

x2 = d_la t t i c e ∗ cos ( t h e t a_ l a t t i c e (2 ) ) ;

y2 = d_la t t i c e ∗ s i n ( t h e t a_ l a t t i c e (2 ) ) ;

f o r n1 = 1 : s i z e ( coef f_matrix , 1 )

f o r n2 = 1 : s i z e ( coef f_matrix , 2 )

l a t t i c e_po s i t i o n s (n1 , n2 , 1 ) = x1∗ coe f f_matr ix (n1 , n2 , 1 )

↪→ + x2∗ coe f f_matr ix (n1 , n2 , 2 ) ;

l a t t i c e_po s i t i o n s (n1 , n2 , 2 ) = y1∗ coe f f_matr ix (n1 , n2 , 1 )

↪→ + y2∗ coe f f_matr ix (n1 , n2 , 2 ) ;

l a t t i c e_po s i t i on s_cen t e r ed (n1 , n2 , 1 ) =

↪→ l a t t i c e_po s i t i o n s (n1 , n2 , 1 ) + x_si (

↪→ c en t r a l_pa r t i c l e ) ;

l a t t i c e_po s i t i on s_cen t e r ed (n1 , n2 , 2 ) =

↪→ l a t t i c e_po s i t i o n s (n1 , n2 , 2 ) + y_si (
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↪→ c en t r a l_pa r t i c l e ) ;

end

end

Lattice assignment is recovered (each particle assigned to closest site;

duplicates possible

f o r n1 = 1 : np

x_dist_temp = ( l a t t i c e_po s i t i on s_cen t e r ed ( : , : , 1 ) − x_si ( n1

↪→ ) ) . ^ 2 ;

y_dist_temp = ( l a t t i c e_po s i t i on s_cen t e r ed ( : , : , 2 ) − y_si ( n1

↪→ ) ) . ^ 2 ;

sq_dist_temp = x_dist_temp + y_dist_temp ;

[ mindist_temp1 , ind1_temp ] = min ( sq_dist_temp , [ ] , 1 ) ;

[~ , ind2_temp ] = min (mindist_temp1 ) ;

l a t t i c e_ass i gnment (n1 , 1 ) = ind1_temp ( ind2_temp ) ;

l a t t i c e_ass i gnment (n1 , 2 ) = ind2_temp ;

end

end

B.2.2 Function that returns translations, rotation, and scale for

optimized lattice parameters

% Determine r

z1 = complex ( r1 ( : , 1 ) , r1 ( : , 2 ) ) ;
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z2 = complex ( r2 ( : , 1 ) , r2 ( : , 2 ) ) ;

az1 = mean( z1 ) ;

az2 = mean( z2 ) ;

z = az2−az1 ;

r = [ r e a l ( z ) imag ( z ) ] ;

%Determine other optimal parameters

z1 = z1−az1 ;

z2 = z2−az2 ;

a = norm( z1 ) ^2;

e r r = norm( z2 ) ^2;

zz1 = dot ( z1 , z2 ) ;

zz_1 = dot ( z1 , conj ( z2 ) ) ;

b1 = abs ( zz1 ) ;

b_1 = abs ( zz_1 ) ;

e r r 1 = −b1^2/a ;

err_1 = −b_1^2/a ;

i f ( err1<=err_1 )

mirr = 1 ;

e r r = e r r+er r1 ;

sc = b1/a ;

theta = −ang le ( zz1 ) ;

e l s e

mirr = −1;

e r r = e r r+err_1 ;

sc = b_1/a ;

theta = −ang le ( zz_1 ) ;
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end

e r r = e r r ^0 . 5 ;

end

B.2.3 Function that defines the occupation of lattice sites based on

a cutoff distance

f unc t i on [ number_neighbors , l a t t i c e_po s i t i o n s_c l u s t e r , hex_indicator

↪→ , occupied ] = la t t i c e_occupat i on ( x_si , y_si , l a t t i c e_po s i t i o n s )

d i s t_to l = . 2 5 ;

c l e a r v a r s occupied_temp occupied

occupied = ze ro s ( s i z e ( l a t t i c e_po s i t i o n s , 1 ) , s i z e ( l a t t i c e_po s i t i o n s

↪→ , 2 ) , s i z e ( l a t t i c e_po s i t i o n s , 4 ) ) ;

l a t t i c e_po s i t i o n s_c l u s t e r ( : , : , 1 , : ) = occupied ;

l a t t i c e_po s i t i o n s_c l u s t e r ( : , : , 2 , : ) = occupied ;

f o r n1 = 1 : s i z e ( l a t t i c e_po s i t i o n s , 4 )

f o r n2 = 1 : s i z e ( l a t t i c e_po s i t i o n s , 1 )

f o r n3 = 1 : s i z e ( l a t t i c e_po s i t i o n s , 2 )

[ dist_temp , indextemp ] = min ( sq r t ( ( x_si ( : , n1 ) −

↪→ l a t t i c e_po s i t i o n s (n2 , n3 , 1 , n1 ) ) .^2) + ( ( y_si ( : , n1

↪→ ) − l a t t i c e_po s i t i o n s (n2 , n3 , 2 , n1 ) ) .^2) ) ;

i f dist_temp < d i s t_to l

occupied (n2 , n3 , n1 ) = 1 ;

l a t t i c e_po s i t i o n s_c l u s t e r (n2 , n3 , 1 , n1 ) = x_si (

↪→ indextemp , n1 ) ;
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l a t t i c e_po s i t i o n s_c l u s t e r (n2 , n3 , 2 , n1 ) = y_si (

↪→ indextemp , n1 ) ;

end

end

end

end

c l e a r v a r s number_neighbors

hex_index = [1 0 ; 1 −1; 0 1 ; 0 −1; −1 0 ; −1 1 ] ;

number_neighbors = occupied ;

f o r n1 = 1 : s i z e ( occupied , 3 )

f o r n2 = 1 : s i z e ( hex_index , 1 )

neighbors_temp = c i r c s h i f t ( occupied ( : , : , n1 ) , hex_index (n2

↪→ , 1 ) , 1 ) ;

neighbors_temp = c i r c s h i f t ( neighbors_temp , hex_index (n2 , 2 )

↪→ , 2 ) ;

number_neighbors ( : , : , n1 ) = number_neighbors ( : , : , n1 ) +

↪→ neighbors_temp ;

end

end
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hex_indicator = number_neighbors == 7 ;

hex_s i tes = hex_indicator ;

f o r n1 = 1 : s i z e ( hex_index , 1 )

hex_sites_temp = c i r c s h i f t ( hex_indicator , hex_index (n1 , 1 ) ,1 ) ;

hex_sites_temp = c i r c s h i f t ( hex_sites_temp , hex_index (n1 , 2 ) ,2 ) ;

hex_s i tes = hex_si tes + hex_sites_temp ;

end

la t t i c e_pos i t i ons_c lus te r_tempx ( : , : , : ) = l a t t i c e_po s i t i o n s

↪→ ( : , : , 1 , : ) ;

l a t t i c e_pos i t i ons_c lus te r_tempy ( : , : , : ) = l a t t i c e_po s i t i o n s

↪→ ( : , : , 2 , : ) ;

%lat t i c e_pos i t i ons_c lus te r_tempx = lat t i c e_pos i t i ons_c lus te r_tempx

↪→ .∗ hex_si tes ;

%lat t i c e_pos i t i ons_c lus te r_tempy = lat t i c e_pos i t i ons_c lus te r_tempy

↪→ .∗ hex_si tes ;

%l a t t i c e_po s i t i o n s_c l u s t e r ( : , : , 1 , : ) =

↪→ l a t t i c e_pos i t i ons_c lus te r_tempx ;

%l a t t i c e_po s i t i o n s_c l u s t e r ( : , : , 2 , : ) =

↪→ l a t t i c e_pos i t i ons_c lus te r_tempy ;

number_neighbors = ( number_neighbors − 1) .∗ occupied ;

occupied = l o g i c a l ( occupied ) ;

c l e a r v a r s latt ice_posit ions_hex_tempx latt ice_posit ions_hex_tempy
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B.2.4 Function that detects common 6-particle clusters

f unc t i on [ c lus te r_type ] = c luster_detect ion_6p ( number_neighbors )

c l e a r v a r s neighbor_count cluster_type_temp c luste r_type

cluster_1_ind = [0 3 0 3 0 0 ] ’ ;

c luster_2_ind = [0 2 3 0 1 0 ] ’ ;

c luster_3_ind = [0 2 2 2 0 0 ] ’ ;

cluster_type_temp = ze ro s (1 , s i z e ( number_neighbors , 3 ) ) ;

f o r n1 = 1 : s i z e ( number_neighbors , 3 )

f o r n2 = 1 :6

neighbor_count (n2 , n1 ) = sum(sum( number_neighbors ( : , : , n1 )

↪→ == n2 ) ) ;

end

i f neighbor_count ( : , n1 ) == cluster_1_ind

cluster_type_temp (n1 ) = 1 ;

e l s e i f neighbor_count ( : , n1 ) == cluster_2_ind

cluster_type_temp (n1 ) = 2 ;

e l s e i f neighbor_count ( : , n1 ) == cluster_3_ind

cluster_type_temp (n1 ) = 3 ;
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% e l s e i f neighbor_count ( : , n1 ) == cluster_4_ind

% cluster_type_temp (n1 ) = 4 ;

%

% e l s e i f neighbor_count ( : , n1 ) == cluster_5_ind

% cluster_type_temp (n1 ) = 5 ;

end

end

c lus te r_type = cluster_type_temp ;

B.2.5 Script that fits hexagonal lattice to (x, y) trajectories with a

variable number of particles

%%This i s the s imp l e s t l a t t i c e f i t t i n g a lgor i thm ; the brute−f o r c e

%%assignment i s performed every frame . Input i s to ar rays x and y

↪→ with

%%dimensions [ num_particles num_frames ] .

min_frame = 1 ;

max_frame = 5000 ;

f o r n1 = min_frame : max_frame

n1
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np = length ( nonzeros ( x ( : , n1 ) ) ) ;

[ x_si_temp , y_si_temp , latt ice_pos i t ions_centered_temp ,

↪→ order_param_temp , lattice_assignment_temp , d_lattice_temp ,

↪→ theta_lattice_temp , cp_temp ] =

↪→ l a t t i ce_ass ignment_algor i thm_vector i zed (x ( : , n1 ) , y ( : , n1 ) )

↪→ ;

x_si ( 1 : l ength ( x_si_temp) , n1 ) = x_si_temp ;

y_si ( 1 : l ength ( x_si_temp) , n1 ) = y_si_temp ;

%Ana ly t i c a l minimizat ion minimizes the d i s t an c e s between two

↪→ s e t s o f

%points , r1 and r2 .

f o r n2 = 1 : np

r1 (n2 , 1 , n1 ) = x_si (n2 , n1 ) ;

r1 (n2 , 2 , n1 ) = y_si (n2 , n1 ) ;

r2 (n2 , 1 , n1 ) = latt i ce_pos i t ions_centered_temp (

↪→ latt ice_assignment_temp (n2 , 1 ) ,

↪→ latt ice_assignment_temp (n2 , 2 ) ,1 ) ;

r2 (n2 , 2 , n1 ) = latt i ce_pos i t ions_centered_temp (

↪→ latt ice_assignment_temp (n2 , 1 ) ,

↪→ latt ice_assignment_temp (n2 , 2 ) ,2 ) ;

end

[ r , mirr , d_theta , sc , e r r ] = l a t t_ f i t_ r e f i n e ( r1 ( : , : , n1 ) , r2 ( : , : , n1

↪→ ) ) ; %Ana ly t i c a l minimizat ion func t i on that g i v e s

↪→ t r an s l a t i on ,

e r r o r_re f i n ed ( n1 ) = e r r . ^2 ;

145



↪→ %rotat i on , and

↪→ s c a l e f a c t o r f o r best f i t

cp (n1 , : ) = cp_temp + r ;

s c a l e ( n1 ) = sc ;

d_la t t i c e_re f ined ( n1 ) = d_lattice_temp∗ s c a l e ( n1 ) ;

t h e t a_ la t t i c e_re f i n ed ( : , n1 ) = theta_latt ice_temp + d_theta ;

mirror ( n1 ) = mirr ;

l a t t i ce_pos i t i ons_temp ( : , : , 1 ) =

↪→ l a t t i ce_pos i t ions_centered_temp ( : , : , 1 ) − mean( r2 ( : , 1 , n1 )

↪→ ) ;

l a t t i ce_pos i t i ons_temp ( : , : , 2 ) =

↪→ l a t t i ce_pos i t ions_centered_temp ( : , : , 2 ) − mean( r2 ( : , 2 , n1 )

↪→ ) ;

l a t t i c e_po s i t i on s_ro t ( : , : , 1 ) = lat t i ce_pos i t ions_temp ( : , : , 1 ) ∗

↪→ cos ( d_theta ) − l a t t i ce_pos i t i ons_temp ( : , : , 2 ) ∗ s i n ( d_theta

↪→ ) ;

l a t t i c e_po s i t i on s_ro t ( : , : , 2 ) = lat t i ce_pos i t ions_temp ( : , : , 1 ) ∗

↪→ s i n ( d_theta ) + lat t i ce_pos i t i ons_temp ( : , : , 2 ) ∗ cos ( d_theta

↪→ ) ;

l a t t i c e_po s i t i on s_ro t_sca l e = l a t t i c e_po s i t i on s_ro t ∗ sc ;

l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 1 , n1 ) =

↪→ l a t t i c e_po s i t i on s_ro t_sca l e ( : , : , 1 ) + mean( r2 ( : , 1 , n1 ) ) ;

l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 2 , n1 ) =

↪→ l a t t i c e_po s i t i on s_ro t_sca l e ( : , : , 2 ) + mean( r2 ( : , 2 , n1 ) ) ;

%[ l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 1 : 2 , n1 ) ] =
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↪→ l a t t i c e_con s t r u c t i o n ( d_la t t i c e_re f i ned ( n1 ) ,

↪→ th e t a_ la t t i c e_re f i n ed ( : , n1 ) , cp (n1 , : ) ) ;

end

B.2.6 Script that translates and rotates clusters detected as trian-

gle

%This s c r i p t r o t a t e s and t r a n s l a t e s the images a s s o c i a t ed with a

↪→ 6−p a r t i c l e

%hexagonal c l u s t e r so that t h e i r p o s i t i o n and o r i e n t a t i o n are the

↪→ same , and

%averages those images togther

%Ca l l i ng t h i s func t i on takes f i t l a t t i c e p o s i t i o n s and re tu rn s the

%f o l l ow i n g :

%−Number o f hexagonal ne ighbors

%−The po s i t i o n s o f occupied hexagonal l a t t i c e s i t e s

%−An ind i c a t o r o f whether a hexagonal c l u s t e r e x i s t s in that frame

%−A binary matrix r ep r e s en t i ng occupat ion o f l a t t i c e s i t e s

[ number_neighbors , l a t t i c e_po s i t i o n s_c l u s t e r , hex_indicator , occupied

↪→ ] = l a t t i c e_occupat i on ( x_si , y_si ,

↪→ l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ) ;

%Ca l l i ng t h i s func t i on i d e n t i f i e s the c l u s t e r type in a g iven

↪→ frame and

%re tu rn s a c l u s t e r type va r i ab l e

[ c lus te r_type ] = c luster_detect ion_6p ( number_neighbors ) ;
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%A ro ta t i on matrix i s c r ea ted f o r every frame based on the f i t

↪→ l a t t i c e

%angle

%Find the frames where the s p e c i f i e d c l u s t e r e x i s t s

index1 = f i nd ( c lus te r_type == 1) ;

index2 = f i nd ( c lus te r_type == 2) ;

num_frames = s i z e ( l a t t i c e_pos i t i on s_cente r ed_re f i n ed , 4 ) ;

%Find that l a t t i c e s i t e s that d e f i n e the po s i t i o n and o r i e n t a t i o n

↪→ o f

%c l u s t e r type1 ( t r i a n g l e )

corner_index_temp = occupied ∗0 ;

int ir ior_index_temp = occupied ∗0 ;

corner_index_temp ( : , : , index1 ) = ( number_neighbors ( : , : , index1 ) ==

↪→ 2) ;

int i r ior_index_temp ( : , : , index1 ) = ( number_neighbors ( : , : , index1 ) ==

↪→ 4) ;

corner_index_temp = l o g i c a l ( corner_index_temp ) ;

int ir ior_index_temp = l o g i c a l ( int i r ior_index_temp ) ;

t r i_co rn e r s_ l a t t i c e ( : , : , 1 , index1 ) = reshape (

↪→ l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 1 , index1 ) , [ 9 9 l ength

↪→ ( index1 ) ] ) .∗ corner_index_temp ( : , : , index1 ) ;

t r i_co rn e r s_ l a t t i c e ( : , : , 2 , index1 ) = reshape (
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↪→ l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 2 , index1 ) , [ 9 9 l ength

↪→ ( index1 ) ] ) .∗ corner_index_temp ( : , : , index1 ) ;

t r i _ i n t i r i o r_ l a t t i c e ( : , : , 1 , index1 ) = reshape (

↪→ l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 1 , index1 ) , [ 9 9 l ength

↪→ ( index1 ) ] ) .∗ int i r ior_index_temp ( : , : , index1 ) ;

t r i _ i n t i r i o r_ l a t t i c e ( : , : , 2 , index1 ) = reshape (

↪→ l a t t i c e_pos i t i on s_cen t e r ed_re f i n ed ( : , : , 2 , index1 ) , [ 9 9 l ength

↪→ ( index1 ) ] ) .∗ int i r ior_index_temp ( : , : , index1 ) ;

t r i_co rne r s ( : , : , 1 , index1 ) = reshape ( l a t t i c e_po s i t i o n s_c l u s t e r

↪→ ( : , : , 1 , index1 ) , [ 9 9 l ength ( index1 ) ] ) .∗ corner_index_temp ( : , : ,

↪→ index1 ) ;

t r i_co rne r s ( : , : , 2 , index1 ) = reshape ( l a t t i c e_po s i t i o n s_c l u s t e r

↪→ ( : , : , 2 , index1 ) , [ 9 9 l ength ( index1 ) ] ) .∗ corner_index_temp ( : , : ,

↪→ index1 ) ;

t r i _ i n t i r i o r ( : , : , 1 , index1 ) = reshape ( l a t t i c e_po s i t i o n s_c l u s t e r

↪→ ( : , : , 1 , index1 ) , [ 9 9 l ength ( index1 ) ] ) .∗ int i r ior_index_temp

↪→ ( : , : , index1 ) ;

t r i _ i n t i r i o r ( : , : , 2 , index1 ) = reshape ( l a t t i c e_po s i t i o n s_c l u s t e r

↪→ ( : , : , 2 , index1 ) , [ 9 9 l ength ( index1 ) ] ) .∗ int i r ior_index_temp

↪→ ( : , : , index1 ) ;

d i s t an c e s_t r i_po s i t i on s = ze ro s (3 , 3 , num_frames ) ;

b i s e c t o r s = ze ro s (4 , num_frames ) ;

min_bisector = ze ro s (1 , num_frames ) ;

r e f_ l a t t i c e_ s i t e s = ze ro s (2 , 2 , num_frames ) ;
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f o r n1 = 1 : l ength ( index1 )

tri_corners_tempx = tr i_co rne r s ( : , : , 1 , index1 ( n1 ) ) ;

tri_corners_tempy = tr i_co rne r s ( : , : , 2 , index1 ( n1 ) ) ;

t r i_ int i r i o r_tempx = t r i _ i n t i r i o r ( : , : , 1 , index1 ( n1 ) ) ;

t r i_ int i r i o r_tempy = t r i _ i n t i r i o r ( : , : , 2 , index1 ( n1 ) ) ;

x1_temp = tri_corners_tempx ( corner_index_temp ( : , : , index1 ( n1 ) ) )

↪→ ;

x2_temp = tr i_int i r i o r_tempx ( int ir ior_index_temp ( : , : , index1 ( n1

↪→ ) ) ) ;

y1_temp = tri_corners_tempy ( corner_index_temp ( : , : , index1 ( n1 ) ) )

↪→ ;

y2_temp = tr i_int i r i o r_tempy ( int ir ior_index_temp ( : , : , index1 ( n1

↪→ ) ) ) ;

x1_temp_lattice = nonzeros ( t r i_co rn e r s_ l a t t i c e ( : , : , 1 , index1 ( n1

↪→ ) ) ) ;

x2_temp_lattice = nonzeros ( t r i _ i n t i r i o r_ l a t t i c e ( : , : , 1 , index1 (

↪→ n1 ) ) ) ;

y1_temp_lattice = nonzeros ( t r i_co rn e r s_ l a t t i c e ( : , : , 2 , index1 ( n1

↪→ ) ) ) ;

y2_temp_lattice = nonzeros ( t r i _ i n t i r i o r_ l a t t i c e ( : , : , 2 , index1 (

↪→ n1 ) ) ) ;

dist_tri_temp = di s tance_ca l cu la to r_subse t s (x1_temp , y1_temp ,

↪→ x2_temp , y2_temp) ;

d i s t anc e s_t r i_po s i t i on s ( : , : , index1 ( n1 ) ) = dist_tri_temp ;

bisectors_temp = nonzeros ( ( dist_tri_temp > 0 . 8 ) .∗ dist_tri_temp

↪→ ) ;
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b i s e c t o r s ( 1 : l ength ( bisectors_temp ) , index1 ( n1 ) ) =

↪→ bisectors_temp ;

min_bisector ( index1 ( n1 ) ) = min ( nonzeros ( b i s e c t o r s ( : , index1 ( n1 )

↪→ ) ) ) ;

[ index_temp1 , index_temp2 ] = f i nd ( dist_tri_temp == min_bisector

↪→ ( index1 ( n1 ) ) ) ;

r e f_ l a t t i c e_ s i t e s (1 , 1 , index1 ( n1 ) ) = x1_temp_lattice (

↪→ index_temp1 (1) ) ;

r e f_ l a t t i c e_ s i t e s (1 , 2 , index1 ( n1 ) ) = y1_temp_lattice (

↪→ index_temp1 (1) ) ;

r e f_ l a t t i c e_ s i t e s (2 , 1 , index1 ( n1 ) ) = mean( x1_temp_lattice ) +

↪→ mean( x2_temp_lattice ) ;

r e f_ l a t t i c e_ s i t e s (2 , 2 , index1 ( n1 ) ) = mean( y1_temp_lattice ) +

↪→ mean( y2_temp_lattice ) ;

end

outer_point ( 1 , : ) = reshape ( r e f_ l a t t i c e_ s i t e s ( 1 , 1 , : ) , [ 1 num_frames

↪→ ] ) ;

outer_point ( 2 , : ) = reshape ( r e f_ l a t t i c e_ s i t e s ( 1 , 2 , : ) , [ 1 num_frames

↪→ ] ) ;

f o r n1 = 1 : num_frames

centra l_po int (1 , n1 ) = mean( nonzeros ( x_si ( : , n1 ) ) ) ;

cent ra l_po int (2 , n1 ) = mean( nonzeros ( y_si ( : , n1 ) ) ) ;

end
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rotation_tempx = centra l_po int ( 1 , : ) − outer_point ( 1 , : ) ;

rotation_tempy = centra l_po int ( 2 , : ) − outer_point ( 2 , : ) ;

ro tat ion_ang le = −atan2 ( rotation_tempy , rotation_tempx ) ;

rotat ion_matr ix ( 1 , 1 , : ) = cos ( rotat ion_ang le ) ;

rotat ion_matr ix ( 1 , 2 , : ) = −s i n ( rotat ion_ang le ) ;

rotat ion_matr ix ( 2 , 1 , : ) = s i n ( rotat ion_ang le ) ;

rotat ion_matr ix ( 2 , 2 , : ) = cos ( rotat ion_ang le ) ;

%The images are cente red at the c en t r a l po int and rota ted by the

↪→ r o t a t i on

%angle in each frame

f o r n1 = 1 : l ength ( index1 )

x_cent ( : , index1 ( n1 ) ) = x_si ( : , index1 ( n1 ) ) − centra l_po int (1 ,

↪→ index1 ( n1 ) ) ;

y_cent ( : , index1 ( n1 ) ) = y_si ( : , index1 ( n1 ) ) − centra l_po int (2 ,

↪→ index1 ( n1 ) ) ;

x_cent ( : , index1 ( n1 ) ) = x_cent ( : , index1 ( n1 ) ) . ∗ ( x_si ( : , index1 ( n1

↪→ ) ) ~= 0) ;

y_cent ( : , index1 ( n1 ) ) = y_cent ( : , index1 ( n1 ) ) . ∗ ( y_si ( : , index1 ( n1

↪→ ) ) ~= 0) ;

x_cent_rot ( : , index1 ( n1 ) ) = x_cent ( : , index1 ( n1 ) )∗

↪→ rotat ion_matr ix (1 , 1 , index1 ( n1 ) ) + y_cent ( : , index1 ( n1 ) )∗

↪→ rotat ion_matr ix (1 , 2 , index1 ( n1 ) ) ;
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y_cent_rot ( : , index1 ( n1 ) ) = x_cent ( : , index1 ( n1 ) )∗

↪→ rotat ion_matr ix (2 , 1 , index1 ( n1 ) ) + y_cent ( : , index1 ( n1 ) )∗

↪→ rotat ion_matr ix (2 , 2 , index1 ( n1 ) ) ;

end

%The cente red and rota ted p a r t i c l e p o s i t i o n s are c o l l e c t e d and

↪→ reshaped

number_part ic les = 6 ;

x_cent_hist_temp ( : , index1 ) = x_cent_rot ( 1 : number_particles , index1 )

↪→ ;

y_cent_hist_temp ( : , index1 ) = y_cent_rot ( 1 : number_particles , index1 )

↪→ ;

x_hist_tr i = ze ro s ( number_particles , num_frames ) ;

y_hist_tr i = ze ro s ( number_particles , num_frames ) ;

x_hist_tr i ( : , index1 ) = x_cent_hist_temp ( : , index1 ) ;

y_hist_tr i ( : , index1 ) = y_cent_hist_temp ( : , index1 ) ;

min_dist = 0 . 7 8 ;

b i n s i z e = 0 . 0 1 ;

spac ing = 0 . 0 1 ;

max_dist = 1 . 0 5 ;

averag ing_dis tances = max_dist :(− spac ing ) : min_dist ;

c l e a r v a r s index_dist x_cent_hist y_cent_hist

vidObj = VideoWriter ( s t r c a t ( ’ t r an s i t i o n_t r i ’ , ’ . avi ’ ) ) ;
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open ( vidObj ) ;

%f o r n1 = 1:46

f o r n1 = 1 : l ength ( averag ing_dis tances )

index_dist_temp = f ind ( ( min_bisector > ( averag ing_dis tances (

↪→ n1 )− b i n s i z e /2) ) . ∗ ( min_bisector < ( averag ing_dis tances (

↪→ n1 ) + b i n s i z e /2) ) . ∗ ( min_bisector ~= 0) ) ;

index_dist (n1 , 1 : l ength ( index_dist_temp ) ) = index_dist_temp ;

x_cent_dist_hist_temp = x_cent_hist_temp ( : , nonzeros ( index_dist

↪→ ( n1 , : ) ) ) ;

y_cent_dist_hist_temp = y_cent_hist_temp ( : , nonzeros ( index_dist

↪→ ( n1 , : ) ) ) ;

n_frames_temp = s i z e ( x_cent_dist_hist_temp , 1 ) ∗ s i z e (

↪→ x_cent_dist_hist_temp , 2 ) ;

x_cent_hist ( 1 : n_frames_temp , n1 ) = reshape (

↪→ x_cent_dist_hist_temp , [ n_frames_temp 1 ] ) ;

y_cent_hist ( 1 : n_frames_temp , n1 ) = reshape (

↪→ y_cent_dist_hist_temp , [ n_frames_temp 1 ] ) ;

imagesc ( h i s t 3 ( [ nonzeros ( x_cent_hist ( : , n1 ) ) nonzeros (

↪→ y_cent_hist ( : , n1 ) ) ] , ’ Ctrs ’ , { −2 :0 . 025 : 2 −2 :0 .025 :2}) )

ax i s ( [ 5 0 115 50 115 ] )

ax i s o f f

ax i s square

%colormap gray
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currFrame = getframe ;

wr iteVideo ( vidObj , currFrame ) ;

end

c l o s e ( vidObj ) ;

f i g u r e

imagesc ( h i s t 3 ( [ nonzeros ( x_cent_hist ) nonzeros ( y_cent_hist ) ] , ’ Ctrs

↪→ ’ , { −2 :0 . 025 : 2 −2 :0 .025 :2}) )

%imagesc ( l og ( h i s t 3 ( [ x_cent_hist y_cent_hist ] , [ 1 0 0 100 ] ) ) , [ 0 7 ] )

c l e a r v a r s index_temp index_temp2 n1 x_cent_hist_temp

↪→ y_cent_hist_temp centra l_po int

B.3 Particle type detection by color

B.3.1 Function for masking images so only pixels near particles are

non-zero

f unc t i on mask = part ic le_mask (x , y , p ixe l_index )

np = length (x ) ;

mask = pixe l_index ( : , : , 1 ) ∗0 ;
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i f np ~= 0

f o r n1 = 1 : np

xdist_temp = pixe l_index ( : , : , 1 ) − x ( n1 ) ;

ydist_temp = pixe l_index ( : , : , 2 ) − y ( n1 ) ;

sq_dist_temp = xdist_temp .^2 + ydist_temp .^2 ;

mask_temp ( : , : , n1 ) = ( sq_dist_temp < 36) ;

end

mask = ( (mask + sum(mask_temp , 3 ) ) ~= 0) ;

end

end

B.3.2 Function for calculating RGB values for particles in masked

images

f unc t i on rgb_per_part ic le = rgb_values (x , y , pixel_index , img_temp)

np = length (x ) ;

c1_value_temp = 0 ;

c2_value_temp = 0 ;

c3_value_temp = 0 ;

i f np ~= 0

f o r n1 = 1 : np

xdist_temp = pixe l_index ( : , : , 1 ) − x ( n1 ) ;

ydist_temp = pixe l_index ( : , : , 2 ) − y ( n1 ) ;

sq_dist_temp = xdist_temp .^2 + ydist_temp .^2 ;

mask_temp = ( sq_dist_temp < 36) ;

c1_value_temp (n1 ) = sum(sum(mask_temp .∗ img_temp ( : , : , 1 )

↪→ ) ) ;
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c2_value_temp (n1 ) = sum(sum(mask_temp .∗ img_temp ( : , : , 2 )

↪→ ) ) ;

c3_value_temp (n1 ) = sum(sum(mask_temp .∗ img_temp ( : , : , 3 )

↪→ ) ) ;

end

end

rgb_per_part ic le = [ c1_value_temp ; c2_value_temp ; c3_value_temp ] ’ ;

end

B.3.3 Script for detecting particle type by color in color .tif videos

min_frame = 1 ;

max_frame = 2000 ;

f o r n1 = min_frame : max_frame

rgb_image ( : , : , : , n1 ) = imread ( ’Mov g . t i f ’ , n1 ) ;

end

pixel_index_temp1 = 1 : 1 : s i z e ( rgb_image , 2 ) ;

pixel_index_temp2 = 1 : 1 : s i z e ( rgb_image , 1 ) ;

[ pixel_index_temp3 , pixel_index_temp4 ] = meshgrid ( pixel_index_temp1

↪→ , pixel_index_temp2 ) ;

p ixe l_index ( : , : , 1 ) = pixel_index_temp3 ;

pixe l_index ( : , : , 2 ) = pixel_index_temp4 ;

c l e a r v a r s pixel_index_temp1 pixel_index_temp2 pixel_index_temp3
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↪→ pixel_index_temp4

rgb_image_masked = rgb_image ∗0 ;

f o r n1 = min_frame : max_frame

mask_temp = partic le_mask ( nonzeros ( x ( : , n1 ) ) , nonzeros ( y ( : , n1 ) ) ,

↪→ pixe l_index ) ;

mask ( : , : , n1 ) = uint8 (mask_temp) ;

rgb_image_masked ( : , : , 1 , n1 ) = rgb_image ( : , : , 1 , n1 ) .∗mask ( : , : , n1 )

↪→ ;

rgb_image_masked ( : , : , 2 , n1 ) = rgb_image ( : , : , 2 , n1 ) .∗mask ( : , : , n1 )

↪→ ;

rgb_image_masked ( : , : , 3 , n1 ) = rgb_image ( : , : , 3 , n1 ) .∗mask ( : , : , n1 )

↪→ ;

end

f o r n1 = min_frame : max_frame

np_temp = length ( nonzeros ( x ( : , n1 ) ) ) ;

sum_intensity (n1 , 1 ) = sum(sum( rgb_image_masked ( : , : , 1 , n1 ) ) ) ;

sum_intensity (n1 , 2 ) = sum(sum( rgb_image_masked ( : , : , 2 , n1 ) ) ) ;

sum_intensity (n1 , 3 ) = sum(sum( rgb_image_masked ( : , : , 3 , n1 ) ) ) ;

ave_intens i ty (n1 , 1 ) = sum(sum( rgb_image_masked ( : , : , 1 , n1 ) ) ) /

↪→ np_temp ;

ave_intens i ty (n1 , 2 ) = sum(sum( rgb_image_masked ( : , : , 2 , n1 ) ) ) /
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↪→ np_temp ;

ave_intens i ty (n1 , 3 ) = sum(sum( rgb_image_masked ( : , : , 3 , n1 ) ) ) /

↪→ np_temp ;

in t en s i ty_propor t i on (n1 , 1 ) = ave_intens i ty (n1 , 1 ) /sum(

↪→ ave_intens i ty (n1 , : ) ) ;

i n t en s i ty_propor t i on (n1 , 2 ) = ave_intens i ty (n1 , 2 ) /sum(

↪→ ave_intens i ty (n1 , : ) ) ;

i n t en s i ty_propor t i on (n1 , 3 ) = ave_intens i ty (n1 , 3 ) /sum(

↪→ ave_intens i ty (n1 , : ) ) ;

end

in t en s i ty_propor t i on ( i snan ( in t en s i ty_propor t i on ) ) = 0 ;

ave_proportion (1 ) = mean( nonzeros ( in t en s i ty_propor t i on ( : , 1 ) ) ) ;

ave_proportion (2 ) = mean( nonzeros ( in t en s i ty_propor t i on ( : , 2 ) ) ) ;

ave_proportion (3 ) = mean( nonzeros ( in t en s i ty_propor t i on ( : , 3 ) ) ) ;

np = sum(x ~= 0) ;

rgb_per_part ic le = ze ro s ( [max(np) ,3 , l ength (min_frame : max_frame) ] ) ;

proport ion_per_part i c l e = ze ro s ( [max(np) ,3 , l ength (min_frame :

↪→ max_frame) ] ) ;

pa r t i c l e_type = ze ro s ( [max(np) , l ength (min_frame : max_frame) ] ) ;

x = x ( 1 :max(np) , : ) ;

y = y ( 1 :max(np) , : ) ;
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b1 = load ( ’ ave_proportion_movf ’ ) ;

b1 = b1 . ave_proportion ;

b2 = load ( ’ ave_proportion_movh ’ ) ;

b2 = b2 . ave_proportion ;

f o r n1 = min_frame : max_frame

rgb_values_temp = rgb_values ( nonzeros ( x ( : , n1 ) ) , nonzeros ( y ( : , n1

↪→ ) ) , pixel_index , double ( rgb_image ( : , : , : , n1 ) ) ) ;

rgb_per_part ic le ( 1 : s i z e ( rgb_values_temp , 1 ) , 1 : s i z e (

↪→ rgb_values_temp , 2 ) , n1 ) = rgb_values_temp ;

proport ion_per_part i c l e ( 1 : s i z e ( rgb_values_temp , 1 ) , 1 : s i z e (

↪→ rgb_values_temp , 2 ) , n1 ) = rgb_values_temp ./ sum(

↪→ rgb_values_temp , 2 ) ;

a = proport ion_per_part i c l e ( : , : , n1 ) ;

score1_temp = sum(a .∗ b1 , 2 ) . / ( s q r t (sum( a .^2 ,2 ) )∗ s q r t (sum(b1 .^2)

↪→ ) ) ;

score2_temp = sum(a .∗ b2 , 2 ) . / ( s q r t (sum( a .^2 ,2 ) )∗ s q r t (sum(b2 .^2)

↪→ ) ) ;

type1_temp = score1_temp >= score2_temp ;

type2_temp = score2_temp > score1_temp ;

particle_type_temp = 1∗type1_temp + 2∗type2_temp ;

par t i c l e_type ( 1 :max(np) , n1 ) = particle_type_temp ;

160



end

type1_count = sum( par t i c l e_type == 1) ;

type2_count = sum( par t i c l e_type == 2) ;
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Experimental setup

A diagram of the setup used to trap the 150nm and 200nm Ag nanoparticles is shown in

Figure S1(a). The setup consisted of a continuous wave Ti:sapphire laser emitting linearly

polarized light at a wavelength of 790 nm. The beam was collimated and reflected off a

spatial light modulator (SLM; BNS/Meadowlark HSPDM512-785nm), which was used to

shape the beam by imparting the phase necessary for a ring trap. The phase mask used in

the experiment is shown in Figure S1(b). The beam was reflected from a dichroic mirror

and into an inverted optical microscope (Nikon Ti), through a quarter wave plate, which is

used to control its polarization (i.e. convert from linear to circular), and through a 60x IR

corrected water immersion objective (Nikon 60x Plan APO IR water immersion objective,

NA=1.27). The total optical power of the trapping laser measured before the dichroic mirror

was 150 mW, giving a power density of 1.5 MW cm−2 at the focus.

Figure S1(c) is an image of the ring trap. In order to measure the beam dimensions we

removed the near-IR filter before the sCMOS detector (Andor Neo; 6.5 µm pixel size) and

imaged the reflection of the beam off the coverslip. The beam was focused slightly beneath

the top coverslip. The ring was measured to have a radius of 3.4 µm and a 500 nm width

(i.e. FWHM) of the annulus. In addition to the ring trap that was used in the experiments,

there was a noticeable focused Gaussian beam in the center of the ring trap (i.e. a zero-

order reflection from the SLM) that had no effect on the experimental results due to its large

distance (R=3.4 µm) from the particle locations on the ring.

The beam was focused into a sample cell that was filled with a solution of 150 nm and

200 nm silver nanoparticles coated with polyvinylpyrrolidone (PVP). The stock solutions

were diluted in 18 MΩ DI water at a ratio of 1:200. The particles were illuminated using a

dark-field condenser, and the light they scattered was captured by the objective and imaged

onto a sCMOS detector with a total magnification of 90x, giving an effective pixel size of 72

nm. The particle motion was captured in a 120x120 pixel region of interest on the detector

with an exposure time of 1 ms at a frame rate of 289 frames per second.
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Figure S1: (a) Diagram of experimental trapping setup described in the text. SLM-Spatial
Light Modulator, DF Cond. - Dark-field condenser, DM - Dichroic mirror. QWP Quarter
wave plate. Trapping laser is reflected from the SLM which is used for beam shaping. Dark-
field (high N.A.) illumination that scatters from the Ag nanoparticles is collected by the
microscope objective, spectrally filtered and imaged to a sCMOS array detector. (b) The
phase mask used to create the ring trap used in our experiments. The phase mask only uses
two phase levels (black pixel level = 0 phase shift, gray pixel level = π phase shift). (c) Image
of the ring trap on the sCMOS detector. The Gaussian spot in the center is the zero-order
reflection of the trapping laser from the SLM. The spot did not affect our experiments due
to the large diameter of the trap. Scale bar is 1µm.
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Characteristics of Ag nanoparticles

The particles used for the trapping experiments described in the main text are an equal mix-

ture of 150 nm diameter and 200 nm diameter PVP coated silver nanoparticles (NanoCom-

posix; 150 nm diameter: NanoXact Silver KJW1882 0.02 mg ml−1; 200 nm diameter: NanoX-

act Silver DAC1326 0.02 mg ml−1). Each stock solution was diluted in DI water (at a ratio

of 1:200) and equal volumes were combined.

The identification of the different sized particles was achieved by analyzing their relative

brightness and size on the sCMOS detector. See Figure S2(a,c) for representative images of

a 150 nm (Fig S2(a)) and a 200 nm (Fig S2(c)) Ag nanoparticle imaged with our optical

setup. The visual difference between the two particle images was verified as being due to

their physical size by a spectroscopic measurement. Individual particles were captured in a

Gaussian trap and the light scattered from them was directed through the side port of the

microscope, into a spectrometer (Andor Shamrock 193 imaging spectrograph; SR 193i-B1-

SIL), and detected with an EM-CD array detector (Andor Newton).

Figure S2(b,d) shows the spectral measurement for the particles imaged in Figure S2(a,c)

along with the expected scattering cross-section calculated fromMie theoryS1. As can be seen

in Figure S2(b), the spectral measurement from a trapped 150 nm diameter Ag nanoparticle

is in agreement with the calculated Mie scattering spectrum. The abrupt decrease in signal

at 750 nm is due to a near-IR filter placed after the dichroic mirror to block the reflected

laser light. On the other hand, Figure S2(d) shows that the the spectral response of the

200 nm Ag nanoparticle is blue-shifted compared to the expected theoretical scattering for

a 200 nm particle, and is in closer agreement with the spectrum calculated for a 175 nm

Ag nanoparticle. Repeating this experiment for different particles showed a variance in the

measured spectral response from the 200 nm particles, and a consistent spectral result from

the 150 nm particles.

The plethora of spectra for 200 nm diameter Ag nanoparticles implies dispersion in size or

shape or both. This size (shape) dispersion was confirmed by electron microscopy imaging of
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Figure S2: (a) Representative image of a 150 nm diameter Ag nanoparticle trapped in a
Gaussian beam. (b) Measured scattering spectrum (blue) from the 150 nm diameter particle
shown in panel (a) as well as the calculated theoretical Mie scattering for 150 nm diameter
Ag nanoparticle suspended in water (red). Spectra were measured by directing the scattered
light through the side port of the inverted optical microscope to a spectrometer. The abrupt
drop in signal from 750 nm is due to a near-IR notch filter used to block scattered light
from and reflections of the trapping beam reaching the detector. Conversely, light from 500
- 750 nm was used to image the nanoparticles by dark-field microscopy. (c) Representative
image of a 200 nm diameter Ag nanoparticle trapped in a Gaussian beam. Intensity scales
of images (a) and (c) are identical. Scale bar is 500 nm and applies to (a) and (c). (d)
Measured scattering (blue) from the 200 nm diameter particle shown in panel (c) as well
as calculated theoretical Mie scattering for 175 nm (red) and 200 nm (green) diameter Ag
nanoparticles suspended in water.
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the different sized nanoparticles. The particles were drop cast on a copper grid and imaged

using a Transmission Electron Microscope (TEM; FEI Tecnai F30 300kV FEG) using a

magnification of 145,000x (see Fig S3(a,c)). The 150 nm Ag particles are uniform in size and

nearly spherical in shape (but with facets), whereas the 200 nm particles were noticeably

less spherical and less uniform in size.

Figure S3: Transmission electron microscopy (TEM) and spectral analysis of Ag nanopar-
ticles. (a) TEM images of 150 nm diameter Ag nanoparticles dispersed on a copper grid.
Scale bar is 50 nm. (b) Normalized extinction spectrum of 150nm diameter Ag nanoparticle
stock solution taken with a UV-Vis-IR spectrophotometer (blue curve). Peak maxima at
440 nm and 600 nm correspond to the dipole and quadrupole Mie scattering modes of a 150
nm diameter silver particle immersed in water (calculated values given as the red curve).
(c) TEM images of 200 nm diameter Ag nanoparticles dispersed on a copper grid. Note the
larger variance in size and shape. Scale bar is 50 nm. (d) Normalized extinction spectrum of
200nm diameter Ag nanoparticle stock solution taken with a UV-Vis-IR spectrophotometer
(blue curve). Peak maxima are at 475 nm and 700 nm. Green and red curves respectively
correspond to calculated Mie extinction spectra of a 175 nm and 200 nm diameter silver
particle immersed in water. Note the broad width of measured peak compared to that of
the the calculated values and the measured value from panel (b), implying a dispersion in
particle diameters (and shapes) in the stock solution.
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We also measured the ensemble extinction of the two stock solutions using a Cary 5000

UV/Vis/IR spectrophotometer (see Fig S3(b,d)). For the 150 nm diameter Ag nanoparticle

solution we observed peaks at 440 nm and at 600 nm (blue curve in Fig S3(b). As there is

good agreement between the measured and calculated resonance locations, these extinction

peaks are assigned as the dipole and quadrupole modes calculated from Mie extinction of

a silver particle of the same diameter immersed in water (red curve). However, for the 200

nm diameter Ag nanoparticle stock solution, we observed much broader extinction peaks at

475 nm and 700 nm (blue curve in Figure S3(d)). These peaks are wider than expected for

a monodisperse suspension of Ag nano particles with a diameter of 175 or 200 nm (compare

to red and green curves in Figure S3(d)). This implies that the solution is not monodisperse

and is an ensemble of many different particle diameters with a mean value of around 180 nm.

The reason for this non-uniformity results from the well-established difficulty in synthesis of

Ag nanoparticles larger than 150 nmS2.

Despite their non-uniformity, the "200 nm" Ag particles are consistently larger than their

150 nm counterparts and this size difference manifests itself in the non-reciprocal dynamics

shown in the main text.

Theoretical description of non-reciprocal forces

An expression for the net optical force on a dimer (of spherical isotropic particles A and

B) in a plane transverse to the propagation of plane-wave illumination can be obtained in

the point dipole approximation. The component of the electric field in the i direction at

particles A and B (at only the first order of scattering)S3 is

Ei
A = Ei

0 +GAB
ij E

j
0α

B; Ei
B = Ei

0 +GBA
ij E

j
0α

A (S1)

where Ei
0 is the incident electric field, αA or αB is the polarizability of particle A or B, and

GAB
ij are the elements of the dyadic Green’s function for the vector between particles A and
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B. If we assume that the particles lie on the x axis, only the diagonal elements of GAB
ij are

non-zero. For a circularly polarized plane wave propagating in the z direction this leads to

a net force in the x direction F net
x on the dimer

F net
x =

E2
0

2
Re
[
(αA∗αB − αAαB∗) ∂

∂x
(Gxx +Gyy) + (αA∗|αB|2 − |αA|2αB∗)

(
∂Gxx

∂x
G∗xx +

∂Gyy

∂x
G∗yy

)]
.

(S2)

This equation extends the treatment derived in Sukhov et. al.S4 from particles trapped in a

linearly polarized plane wave to a plane wave with circular polarization.

The corresponding result for a pair of particles (point dipoles) interacting in a beam

linearly polarized along the x-axis (inter-particle axis) is

F net
x =

E2
0

2
Re
[
(αA∗αB − αAαB∗)∂Gxx

∂x
+ (αA∗|αB|2 − |αA|2αB∗)

(
∂Gxx

∂x
G∗xx

)]
, (S3)

which after rearrangement is identical to the result in Sukhov et alS4 except for a factor

accounting for infinite-order interactions between the two particles. The additional factors of
∂Gyy

∂x
and ∂Gyy

∂x
G∗yy in equation S2 for the case of circular polarization affect the dependence of

the derived forces on interparticle separation. However, equations S2 and S3 are qualitatively

similar. Both equations equal zero when αA = αB, in accordance with the experimental

and simulation results presented in the main text. In fact, both expressions vanish if the

two polarizabilities are proportional by a factor of a real number (e.g. αA = CαB where

C is a real number). Therefore, it is necessary that the αA and αB have different angles

in the complex plane for the non-reciprocal forces to exist within this approximation. In

summary, our analytical results show that non-reciprocal forces arise in pairs of particles

with dissimilar polarizabilities under both linear and circular polarization, although the

exact spatial dependence of these forces is different for those two cases.
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Analysis of combined particle trajectories

We performed 11 independent experiments, each of which was 7,000 frames in length. Of

these experiments we limited our analysis to frames in which we observed two particles in

the trap without another particle nearby. We then used the intensity information from the

sCMOS detector to identify whether the particle pair was a homodimer (5 experimental

videos, 8,500 total frames) or a heterodimer (12 experimental videos, 18,900 total frames).

From each video frame we localized the particle centroids using particle-tracking al-

gorithms (e.g. Mosaic in ImageJS5)and used their positions to calculate the interparticle

separation θc. The motion of their mean angular position (or "center of geometry") ωc was

calculated by how much their mean angle changed between consecutive frames, i.e. for frame

n, we define ωc,n = ∆θn
∆t

= θc,n+1−θc,n
∆t

where θc,n is the mean angular position of the two par-

ticles in frame n, and ∆t is the time step. This data was binned by interparticle separation,

d12, and used to produce the plots of ωc as a function of d12 in Fig 2(b,c). By plotting the

motion of the central interparticle angle as a function of interparticle separation we found

the mean rotational velocity of a homodimer (Fig 2b in the main text) and a heterodimer

(Fig. 2c in the main text). Fig S4 shows the distribution of ωc along with the Gaussian

fit for the homodimers and the heterodimers. The FWHM of the Gaussian fits are due to

the thermal Brownian fluctuations inherent in the experiment. It is important to note that

the error bars shown in Figure 2(b,c) in the main text are the 3σ confidence interval for

the center of the Gaussian fits, and thus, despite the width of the Gaussian distribution, its

central ωc value is statistically significant.

The MSD results and the fitted transport exponents, α, for the entire homodimer and

heterodimer dataset (i.e. MSD(θc|∀d12), where d12 is the interparticle separation) were cal-

culated by aggregating the trajectories from the entirety of the experimental videos identified

above (i.e. all 8,500 homodimer video frames or 18,900 heterodimer video frames). These

MSD curves are shown in the main text as the black and orange curves in Fig. 2(d).

Calculation of the MSD for cases where the particles were optically bound (i.e. MSD(θc|d12 <
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Figure S4: Distributions and Gaussian fits to the homodimer (a-c) and heterodimer (d-f)
dimer velocity, ωc, data shown in the main text in Figure 2(c,d). Different columns represent
particles separated by one optical binding distance (a,d), 1.5 optical binding distance (b,e)
and two optical binding distances (c,f). (a) Histogram of instantaneous angular velocity, ωc,
for homodimers where the particles are at one optical binding separation (450 ≤ d12 < 750
nm). Center of the Gaussian curve is at −9 ± 26 deg s−1 (mean ± S.D). (b) Homodimer
velocity data for the first unstable separation ((750 ≤ d12 < 1050 nm). Center of Gaussian
fit is at 54 ± 130 deg s−1. (c) Homodimer velocity data for the second optical binding
separation ((1050 ≤ d12 < 1350 nm). Gaussian center is at 11± 52 deg s−1. (d) Histogram
of instantaneous angular velocity, ωc, for heterodimers where the particles are at one optical
binding separation (450 ≤ d12 < 750 nm). Center of the Gaussian fit (orange curve) is at
190 ± 50 deg s−1. (e) Heterodimers velocity data for the first unstable separation ((750 ≤
d12 < 1050 nm). Center of Gaussian fit is at −136 ± 70 deg s−1. (f) Heterodimers velocity
data for the second optical binding separation ((1050 ≤ d12 < 1350 nm). Center of Gaussian
fit is at 5 ± 40 deg s−1. The values of N in each panel indicate the total counts (events) in
each histogram.
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1.2 µm)) was done by selecting and analyzing the portions of the experimental trajectories

where the interparticle separation was small enough for the particles to interact electrody-

namically. Fig S5 shows the trajectories of 9 bound homodimers (a) and 12 bound het-

erodimers (b) from our experimental set. The start time of the trajectories was selected as

when the interparticle separation was less than two optical binding separations (1.2 µm), and

ended when the interparticle separation was greater than 1.5 µm for more than one time step.

These values were chosen to allow analysis of cases in which the particles fluctuated away

from optical binding separation for short periods of time. Fig S5(c,d) shows the calculated

MSD values of the trajectories shown in Fig S5(a,b), as well as the mean MSD (connected

grey diamonds) obtained by aggregating over the all the bound homodimer or heterodimer

trajectories. The aggregated MSD curve for the bound heterodimer is identical to the orange

curve shown in Figure 2(d) the main text. The Mean homodimer MSD shown in Fig S5(c)

has a slightly different exponent than that of the entire homodimer population regardless of

separation (black curve in Fig 2(d) in the main text). The reason for the slight difference

between the exponent values (α = 0.96 vs. α = 1.0) is that the MSD shown in Fig S5(c)

was fitted only to the trajectories in which the particles are at optical binding (i.e. d12 ≤ 1.2

µm). Conversely, the exponent shown in Fig 2(d) in the main text was obtained by fitting

the entire trajectory information. Trajectories that are shorter than 35 time steps (roughly

0.1s) are not shown in Figure S5. The value of α was unchanged whether or not the trajec-

tories shorter than 35 time steps were used to calculate the MSD in addition to the longer

trajectories.
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Figure S5: Experimental trajectories and MSD calculations for bound homodimers and het-
erodimers. (a-b) Time series of angular displacement for homodimers (a) and heterodimers
(b). Trajectories were started when the particles were separated by less than 1.2 µm, and
ended when the particles were separated by more than 1.5 µm for longer than one time step.
This was done to include trajectories in which the particles fluctuate out of optical binding
for short periods of time and to allow aggregation of long trajectories. Particle size was de-
termined from the scattering intensity recorded by the sCMOS detector. (c-d) MSD values
of trajectories for homodimer (c) and heterodimer (d). The different colors correspond to
the trajectories shown in panels (a,b). The mean MSD value (marked as gray connected
diamonds) is the mean MSD calculated from all the individual trajectories shown in (a,b).
The mean heterodimer MSD is identical to that shown in the Figure 2(d) in the main text.
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The MSD calculated from a single heterodimer trajectory demonstrates the driven nature

of the heterodimer motionS6. Figure S6 shows an example of the MSD calculated from a

single heterodimer trajectory (specifically the trajectory of the heterodimer driven in the

CW direction motion shown in Fig 2(a) in the main text), along with a quadratic fit that

signifies driven motion.

Figure S6: MSD calculated from a single heterodimer trajectory, specifically the CCW het-
erodimer trajectory shown in Fig 2(a) in the main text. The MSD was fitted with a quadratic
function, demonstrating the driven nature of the motion.
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Effect of nanoparticle heating

It is well established that micro- and nano-scale Janus particles exhibit driven motion through

self-thermophoresis.S7,S8 A Janus particle is usually designed so that half of its surface area

is coated with a material such as Au which absorbs the laser light. When such a particle

is illuminated it will heat the environment around the coated area and exhibit driven mo-

tion towards its cooler, uncoated side due to increased thermal fluctuations on the heated

side. The driven motion we observe in this manuscript is significantly different from self-

thermophoretic motion. In this section we will describe the observed differences between self

thermophoresis and electrodynamically driven motion.

The first important point: if the cause of the motion of the heterodimer were solely

due to self-thermophoresis, one would expect that increasing the interparticle separation

would cause a monotonic decrease in the driven component of the pair. Essentially, as the

inter-particle separation increases, they become less like a Janus particle and more like 2 in-

dependent particles so the driven component in their motion should decrease. However, as we

show in Fig. 2c in the main text, when the particles are separated by 3λ/2 we observe a sta-

tistically significant motion in the opposite direction (i.e. towards the smaller particle). This

change in the direction of the directed motion cannot be explained by self-thermophoresis,

and supports our observation that the motion is due to oscillatory electromagnetic interac-

tion.

Another distinction from self-thermophoresis is the direction of the directed motion.

We can calculate the heating of the particles in the trap using the methods described in

the literatureS9. The excess temperature of the environment, ∆TNP , around a nanosphere

trapped in water near the glass coverslip is defined as ∆TNP = σabsI/4πRκglass, where

σabs is the absorption cross section of the nanoparticles (1.96×103 nm2 and 3.09×103 nm2

for the 150 nm and 200 nm diameter nanoparticles respectively), I is the incident laser

intensity (1.5 MW cm−2), R is the particle radius and κ is the thermal permittivity of glass

(1.4 W (m ·K)−1), which is the dominant avenue for heat removal in our system. The result of
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this calculation is that the temperature difference between the particles is small (∆T200nm =

26.30, ∆T150nm = 22.30). This slight temperature difference leads to a slight difference

in dynamic viscosity of the water (0.52mPa for the 200nm nanoparticles, 0.56 mPa for

the 150 nm diameter nanoparticles). If we consider only water as the sink for thermal

energy from the nanoparticles (κ = 0.6 W (m ·K)−1), the particle temperature will be higher

(∆T200nm = 61.30, ∆T150nm = 52.00) and the viscosity will be lower (0.32mPa for the 200nm

nanoparticles, 0.36mPa for the 150 nm diameter nanoparticles). Even in this regime, the

temperature and viscosity difference between the two particles is not strikingly large.

Note that it is is not straightforward to consider our system as a Janus particle because the

particles are not physically bound to each other and the separation between them changes.

In addition, due to their separation (∼ 600 nm), the temperature around each individual

particle will be roughly uniform. The reason for this is that the gap between the particles is

significantly larger than their individual size and thus the medium directly around them will

be affected, to first approximation, by the heating of the individual particles (see treatment

of particle pairs in G. Baffou et alS9.

Nevertheless, even if we take the temperature difference between the particles as the

cause of the driven motion, the observed motion direction is the opposite to what is expected

for a Janus particle in water. The driven motion we have observed is towards the large

particle, which is the slightly warmer particle and experiences a smaller local viscosity. In

other words, based on the observed motion the Soret coefficient of our system (defined as

ST = DT/D, where D is the diffusion coefficient and DT is the thermodiffusion coefficient)

is negative. By contrast, previous papers reported a positive Soret constant (e.g. motion of

the Janus particle towards the cooler side) when the particle was placed in waterS8,S10,S11.

While it is possible to obtain a negative Soret coefficient by adding a surfactant to the water

or by decreasing the water temperature, we performed our experiment in pure DI water and

at room temperatures, and we do not anticipate a negative Soret coefficient.

Thus, the nature of the motion that we observe − the direction of the dimer motion
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towards the larger, hotter particle, and the dependence of the driven motion direction on

interparticle separation − suggest that the driving force is not thermophoretic in nature. We

conclude that the reason for the driven motion is the electrodynamic interaction between

the particles, in agreement with previous theoretical work and with our simulations.

Simulation methods

Force evaluation through Generalized Mie Theory

The electrodynamic interactions are computed using the Generalized Mie Theory (GMT)

method.S12,S13 In GMT, the incident and scattered fields are expanded into the vector spher-

ical harmonic (VSH) functions for each particle. The incident field is expanded into the

regular VSH’s N (1)
nm and M (1)

nm,

Ej
inc = −

Lmax∑

n=1

n∑

m=−n
iEmn

[
pjmnN

(1)
nm + qjmnM

(1)
mn

]
(S4)

where Lmax is the maximum number of multipole orders to expand in, Emn is a normalization

constant, and pmn and qmn are the expansion coefficients to be solved for. The scattered

field is expanded into the scattering VSH’s N (3)
nm and M (3)

nm,

Ej
scat = −

Lmax∑

n=1

n∑

m=−n
iEmn

[
ajnp

j
mnN

(3)
nm + bjnq

j
mnM

(3)
mn

]
(S5)

where ajn and bjn are the ordinary Mie coefficientsS14 of particle j.

The expansion coefficients are solved for a system of 2NLmax(Lmax + 2) equations,

pjmn = p(j→j)
mn −

(1,N)∑

l 6=j

Lmax∑

v=1

v∑

u=−v
Auvmn(l→ j)alvp

l
uv +Buv

mn(l→ j)blvq
l
uv

qjmn = q(j→j)
mn −

(1,N)∑

l 6=j

Lmax∑

v=1

v∑

u=−v
Buv
mn(l→ j)alvp

l
uv + Auvmn(l→ j)blvq

l
uv

(S6)
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where p(j→j)
mn and q(j→j)

mn are the expansion coefficients of the incident source and Auvmn(l→ j)

and Auvmn(l → j) are VSH translation coefficients from particle l to particle j. Solving this

system includes induced dipole interactions as well as many-body interaction terms.

Once the expansion coefficients are solved for, the force on each particle can be determined

by integrating the Maxwell stress tensor (MST) T over the surface of each sphere,

F =

∮

Ω

T · dΩ (S7)

Figure S7 shows the angular scattering from a heterodimer with the indicated separations.

The small triangles represent the centroid of the angular field distributions showing that the

centroid shifts to the −x or +x direction depending on the interparticle separation. That

is, the light scattering is asymmetrical due to the asymmetry of the heterodimer and its

separation.
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Figure S7: Angular scattering in the xy-plane for the hetero-dimer for different particle sep-
arations (integer and half integer multiples of the wavelength) and incident light polarization
(right hand circularly polarized and linearly polarized along the y-axis). The black triangle
is the centroid of the angular distribution and indicates the preferred direction of angular
scattering. For separations equal to an integer multiple of the wavelength, more light is
scattered in the −x direction while for half integer multiples more light is scattered in the
+x direction.

Langevin equation of motion

The equation of motion for a 2-particle system undergoing dissipation and thermal noise

is given by the Langevin equation

mi
d2ri
dt2

= F i(ri, t)− λi
dri
dt

+ ηi (S8)

where mi is the mass of each nanoparticle, F i is the electrodynamic force on each particle,

λi = 6πνRi is the friction coefficient (ν is the dynamic viscosity of water), and ηi is a

Gaussian noise term such that the fluctuation-dissipation theorem holds. Equation (S8)

is integrated in time using a leap-frog Verlet integratorS15 to give the trajectories of the

nanoparticles.

Figure S8 shows the results of GMT-LD simulations of a 150-100nm diameter Ag dimer
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pair in a medium with the viscosity of water at T=300 K. The particles initially move to a

separation of ∼ 600 nm (optical binding) and then the optically bound hetero-dimer moves

as a "rigid body" towards the larger particle as in experiment. The slight wiggles in the

trajectory reflect the Brownian (thermal) noise in the LD simulation.
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Figure S8: Trajectory snapshots of the simulated hetero-dimer using the GMT-LD
method.S16 The incident source is a y-polarized plane wave with no component of the Poynt-
ing vector in the xy-plane. The blue particle is 100 nm in diameter while the orange particle
is 150 nm in diameter. A temperature of T = 300 K is used in a water medium (index of
refraction nb = 1.33). The motion of the hetero-dimer is a manifestation of the non-zero
(non-reciprical) net electrodynamic force.
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Characteristics of Au nanostars

Figure S9: Characteristics of the gold nanostars. (a) Scanning electron microscopy image
(SEM) images of Au nanostars. (b) Nanoparticle sizes were determined by tracking analysis
(with Nanosight NS300-Malvern) reveal one major peak at 125nm diameter corresponding to
the average diameter of single particles, and peaks at 265nm and 350nm. The latter reveals
the significant presence of dimer and trimer aggregates in the solution. (c) Extinction spectra
of the Au nanostar solution.

Characteristics of Au nanoparticle cluster

Figure S10: Characteristics of the Au nanospheres that form the large aggregate shown
in Figure 4 of the main text. AFM image of the gold nanoparticles of 200nm diameter.
Individual Au nanospheres as shown here are also present in the ring trap of Figure 4.
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Driven motion of Au nano-star dimer and Au NP aggre-

gate

While circularly polarized light provides isotropic excitation anywhere within the ring trap,

we expect that the nanostar particles would spin (and a dimer would rotate) as has been

demonstrated for an anisotropic nanoparticle such as a nanorod or nanowire, or nanosphere

dimer in the near field interaction regimeS17,S18. However, the confinement of the ring trap

would hinder rigid-body type rotation. Therefore, since we want to focus on linear driven

motion, it is desirable to prevent the emergence of a confounding effect such as spinning;

even though understanding it will be an interesting separate study. Under linearly polarized

light, the isotropic optical field-dimer interaction within the ring trap is broken. We expect

the particles to align with the light polarization to minimize the induced torque, and to be

driven due to asymmetric scattering. However, as mentioned above, the dimer cannot rotate

as a rigid body, but thermal energy could cause internal rearrangements that essentially

reverse the direction of the anisotropic polarizability causing a reversal in the direction of

light scattering and of its motion. We observe that the dimer spends more time around

Θc = 2700 (with an orientation parallel to the polarization). The nanostar dimer is able to

rearrange because of the Brownian thermal noise.

We also studied the dynamics of an asymmetrical aggregate of spherical NPs. There is

a noticeable difference in the dynamics of the Au NP aggregate vs. that of the nanostar

dimer. We believe this to result from the intrinsic scattering properties of the aggregate and

the electrodynamic interactions between the aggregate and the many Au NPs present in the

ring trap. In the trajectory shown from A to B in Figure 4e in the main text, the mean

speed is as high as 384os−1 then decreases to 68os−1 from B to C and increases, after flipping

orientation, up to 267os−1 between C and D. Furthermore, as shown in Figure S11, the

aggregate is oriented perpendicular (near 270o) and parallel (near 180o) to the polarization

before it flips. Several frames from the video that demonstrate this change in orientation
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are shown in Figure S11 for a location of the aggregate near 180o in the ring. The speed

of the cluster is non-linear, it decreases near 245o which corresponds to the region where it

electrodynamically “contacts” the many single Au NPs also trapped in the ring. By contrast,

these interactions are negligible in the case of the nanostar dimer because of the lower particle

density in the ring.

Figure S11: Dark field images of the Au NP aggregate and Au NPs optically trapped in the
ring. Images are presented in chronological order showing the evolution of the cluster orien-
tation around 200o. Frame rate is 35fps. The dense groups of individual Au nanoparticles
in the < 1800 and > 2700 regimes are due to a slight astigmatism.

The difference in the dynamics between the dimer and the aggregate is thus not only due

the intrinsic scattering properties of the aggregates but also the result of the interaction of

the aggregate with the optically bound Au NPs in the ring trap. The interactions reduce

the net drift force even though the behavior of the aggregate is strongly super diffusive (see

Figure 4f). Conversely, the interaction and driven motion of the Au NP aggregate affect the

local NP density. As observed in the video, the Au cluster pushes the many single Au NPs

inducing a compression of Au NPs in these two regions (around 180o and 285o). Notably,

the aggregate does not proceed further presumably both because of the resistance of the Au

NPs to further compression and also its interaction with the linearly polarized beam. We

beleive the combination of factors cause the Au NP aggregate to rotate 180o at these "turning

points" and to then undergo the driven motion in the reverse direction until reaching the

other turning piing.
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Figure S12: Evolution of the Au nanoparticle (NP) density in the ring. We show the average
NP density depending on the two extreme positions of the aggregate in the ring trap. The
local NP density is increased near the Au NP aggregate (i.e. near the 200o and 270o loca-
tion). The error bars represent the standard deviation of the NP density.The Au NP density
increases at angular values beyond where the Au NP aggregate goes due to its "sweeping"
and forcing them into more compact angular regions of the ring.

As shown in Figure S12, our interpretation is supported by the average probability density

calculated for the extreme position of the cluster. At 200o (respectively 285o), there is

an increase (respectively a decrease) of the density of NPs around 180o and a decrease

(respectively an increase) of the density around 270o when the Au NP aggregate is at 200o

(285o) positions. Further investigation of the phenomenon is beyond the scope of the paper.

List of videos

Video S1 - video of homodimer in ring trap.

Video S2 - video of heterodimer in ring trap - motion in a CW direction

Video S3 - video of heterodimer in ring trap - motion in a CCW direction

Video S4 - video of the nanostar dimer in a ring trap.

Video S5 - video of Au nanoparticle cluster in the ring trap.
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Pavel Zemánek. Enhancement of the ‘tractor-beam’ pulling force on an optically bound
structure. Light: Science & Applications, 7(1):17135, 2018.
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