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Abstract

Optical matter assemblies, specifically nanoparticles that interact and are electrodynamically
bound into ordered structures, represent a new type of material that has novel structural
and dynamic properties that are of fundamental and practical interest. Polarizable (and/or
plasmonic) nano-particles exhibit strong interactions in optical fields (e.g., in optical traps)
that result in emergent structures and non-equilibrium phenomena such as non-reciprocal
forces and negative torques. Although these effects have been predicted and have begun to
be demonstrated experimentally, our understanding of these phenomena is still limited.

In this dissertation I will discuss findings concerning the properties of optical matter
systems. I will show that the long-range and periodic interactions between particles in optical
matter systems that are the result of the coherent light scattered by the particles in the
system have important electrodynamic and structural consequences. Symmetry also plays
an important role in the dynamics of optical matter systems, and I will show that broken
symmetry of several different types results in non-conservative dynamics. I will also show

that rearrangements in optical matter systems are similar to reactions in chemical systems.
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Chapter 1

Introduction

Over the last century, the fields of chemistry and material science have expanded to include
abstractions away from atoms, molecules, and ions as the elementary building blocks of
materials. Assemblies of microparticles or nanoparticles, biological molecules, and polymers
form functional materials with novel mechanical, electrical, and photonic properties [1, 2, 3,
4,5, 6,7, 8]. Furthermore, when self-assembly occurs in systems where a constant, external
source of energy is available new static and dynamic structures become accessible |9, 10, 11, 12].
Optical matter assemblies, specifically nanoparticles that interact and are electrodynamically
bound into ordered structures, represent a new type of material that has novel structural
and dynamic properties that are of fundamental and practical interest [13, 14, 15, 16, 17].
Polarizable (and/or plasmonic) nano-particles exhibit strong interactions in optical fields
(e.g., in optical traps) that result in emergent structures and non-equilibrium phenomena
such as non-reciprocal forces [18, 19] and negative torques |20, 21]. Although these effects
have been predicted and have begun to be demonstrated experimentally, understanding of
these phenomena is still limited.

The structure of optical matter is a result of the optical binding force [13, 14]. All optical
matter systems considered in this dissertation are two-dimensional and the relevant particle

correspond to a plane transverse to the direction of propagation of trapping laser. On a



pairwise level, the optical binding force is the result of one particle in a strong optical field
interacting with the light scattered by another [15]. The optical binding force between two
particles that are separated by a small fraction of the incident wavelength is attractive if
the particles are separated along the polarization direction and repulsive if the particles are
separated perpendicular to the polarization direction [15, 17]. At larger separations, the phase
of the light scattered by each particle plays a role in the structure of an optical matter cluster.
Particles tend to prefer separations near integer multiples of the incident wavelength where
the polarization of one particle is in phase with the incident light, creating a region of high
intensity due to constructive interference [17]. For circular polarization, the optical binding
force is cylindrically symmetric (isotropic) and structures tend to have hexagonal symmetry.
A 2D optical matter cluster formed in a wide Gaussian beam is shown in Figure 1.1a. An
optical binding potential can be constructed by calculating the work required to separate
a pair of particles from some initial separation to a final separation R. An optical binding
potential between two 150nm diameter silver nanoparticles calculated from a generalized mie

theory simulation is shown in Figure 1.1b.

0.5 1 15 2 25 3
Pair separation (R/))

Figure 1.1: Optical matter cluster and optical binding potential. (b) 2D optical matter
cluster formed in a wide Gaussian beam. (b) Optical binding potential constructed by
calculating the work required in a generalized Mie theory simulation to separate two 150nm
diameter silver nanoparticles from an initial separation to a variable final separation.



A constant flux of energy and momentum is required to maintain an optical matter system.
Consider a single 150nm diameter silver nanoparticle in an optical trap. Its scattering cross
section is roughly o, = 5* 1072um?. If the trapping beam is focused down to a spot with
an area of 25um?, then roughly 0.2% of the beam will be scattered by the particle. For
a typical laser power b50mW the particle will scatter approximately 0.1mW . This means
that in 1ms, the energy of the light scattered by the particle is on the order of 2 * 103kT.
While most of the light scattered by particles in an optical trap scatters isotropically, any
imbalance in the system that causes even a small fraction of the incident light to scatter
asymmetrically has the potential to drive the system far from equilibrium. An emerging body
of work demonstrates that broken symmetry in optical matter systems result in imbalances

in scattering that are accompanied by nonequilibrium phenomena [15, 21, 18, 22, 23].

1.0.1 Outlook

The work presented in this dissertation is focused on discovering and understanding the
basic properties of optical matter systems. It is my hope that future researchers will be
able to build on these basic properties to achieve new scientific and practical goals. All of
the work presented in this dissertation is focused on optical matter with wavelength-scale
separations. However, near-field interactions in optical matter systems have significantly
stronger electrodynamic coupling than wavelength-separated particles.

In Chapter 5 it is shown that electrodynamic coupling is responsible for many-body (3 or
more) nonreciprocal forces in asymmetric clusters of identical spherical particles. Therefore,
I expect that non-equilibrium behavior is significantly more pronounced in optical matter
systems when near-field pairs are present. However, studying optical matter systems with
near-field pair present poses a significant challenge because the size of the point-spread
function in our imaging system approaches relevant particle separations [20)].

The experiments presented in this dissertation are done with relatively simple and static

optical traps (e.g. ring traps). However, it is possible to construct more intricate optical traps



by using a spatial light modulator to shape the phase profile of the optical beam [24, 25, 26].
I believe that future work will show that a wide range of structures can be built by tuning the
shape, phase, intensity, and polarization profiles of optical traps. Furthermore, it has been
shown that time-varying interactions between particles lead to self-assembly of structures
that do not exist for static interactions [9].

The ejection of a newly formed physically bound dimer from an optical matter cluster is
shown in Chapter 5. I find this example particularly interesting because the trapping laser
transports single particles to a region of increased particle concentration, and nonreciprocal
forces transport the dimer away from that region once a dimer is formed. In other words,
single particles are brought to a 'reaction area’ via optical forces, and once a dimer is formed,
they are taken away from the 'reaction area’. I believe that this phenomenon could be
expanded upon to create other schemes where the nonequilibrium dynamics that are inherent
to optical matter systems induces useful context-dependent behavior that can be exploited to

perform useful tasks.

1.0.2 Structure of dissertation

In Chapter 3 the electrodynamics of optical matter systems is explored. I establish the
respective roles of interference and coupling in the coherent light scattered by OM arrays.
Experiments and simulations together demonstrate that the spatial profile and directionality
of coherent light scattered by optical matter arrays in the far-field is primarily due to
interference, while electrodynamic coupling has a quantitative wavelength-dependent effect
on the total amount of light scattered by the arrays. Furthermore, it is found that optical
matter arrays exist in a regime where electrodynamic coupling is significantly enhanced by
constructive interference; both the number of particles in the array as well as the particle
size have a significant effect on the strength of the coupling. The work in this section shows
that electrodynamic coupling in OM systems is significant due to constructive interference

and that OM arrays are an avenue for studying collective electrodynamic excitations in the



limit where interaction and coupling are described on an element-by-element basis.

In Chapter 4 it is shown that the long-range periodic nature of the optical binding
interaction leads to unique structural features of optical matter arrays. I find that the
long-range and periodic characteristics of the optical binding interaction result in several
distinct structural features of optical matter clusters. It is also show that the periodic nature
of the optical binding interaction favors structures with more inter-particle separations near
integer multiples of the pairwise optical binding distance. Furthermore, I find significant
changes in nearest neighbor distance compared to the two-particle optical binding distance
and deviations from hexagonal symmetry. I construct a pairwise optical binding potential
by calculating the work done separating two particles in plane-wave illumination, and find
that summing the optical binding potential over particle pairs characterizes the stability of
the system. I derive an analytical expression for the distortion energy associated with the
symmetric stretching of small optical matter clusters and show that it correctly predicts the
most stable lattice constant. Finally, it is shown that as the size of OM clusters grow, the
lattice constant continues to increase as it approaches a value around 10% larger than the
pairwise optical binding distance.

In Chapter 5, the correspondence between broken symmetry and non-equilibrium phenom-
ena in optical matter systems is explored. Inter-particle forces in optical matter systems do
not obey Newton’s third law because conservation of momentum is only valid when the entire
system, including the particles, the surrounding medium, and the incident and scattered
light, are considered as a whole. Therefore, broken symmetry in an optical matter system
can manifest broken symmetry in the scattering of the trapping laser that is balanced by net
forces on the optical matter system.

The first considers spherical particles of unequal sizes[19]. It was previously shown
theoretically that electrodynamic interactions between dissimilar optically trapped particles
experience a force in a direction that is transverse to the light propagation direction, despite the

absence of an external driving force. The direct measurement of so-called nonreciprocal forces



in electrodynamically interacting heterodimers that are confined to pseudo one-dimensional
geometries [27| in the absence of an external driving force. I show using equations in the
point-dipole approximation that the difference in the phase of the polarizability of the two
particles in the heterodimer is responsible for the non-reciprocal force. Experiments with
particles of unequal sizes to two-dimensional optical traps are also presented, where the
non-reciprocal forces result in the ejection of large particles from a cluster of smaller particles.

The second case considered is breaking the symmetry of the optical matter system by
inducing a transverse phase gradient [28|. I establish that the net driving force on homodimers
is modulated by a separation-dependent interference effect for small phase gradients. By
contrast, large phase gradients break the symmetry of the interaction between particles and
profoundly change the electrodynamic inter-particle energy landscape. The findings presented
in this section are particularly important for understanding multi-particle dynamics during
the self-assembly and rearrangement of optical matter.

To conclude Chapter 5, I utilize point-dipole equations to discuss other ways to break sym-
metry in optical matter systems. I show that anisotropic particles experience a configuration-
dependent net force and derive an equation for the net force that is a generalization of the
equation describing non-reciprocal forces on a heterodimer of spherical particles. I also show
that for optical matter clusters consisting of three or more particles, electrodynamic coupling
can break the symmetry and result in a net force on the cluster in the absence of an external
driving force. I present recent experiments where electrodynamic coupling-induced torque is
observed.

In chapter 6 structural rearrangements in optical matter systems are discussed. Bar-
rier crossing trajectories directly measured in an optical matter experiment using optical
microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i.e.
passing events, in an optical ring trap are analyzed. A two-step mechanism similar to
a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis

that combines detailed knowledge of each trajectory, a statistically significant number of



repetitions of the passing events, and the driving force-dependence of the process. It is found
one particle allowing the other to pass. This simple experiment can readily be extended to
study more complex barrier crossing processes bythat while the total event rate increases
with driving force, this increase is only due to increased rate of encounters. There is no
drive force-dependence on the rate of barrier crossing because the key motion for the process
involves a random (thermal) radial fluctuation of replacing the spherical metal nanoparticles
with anisotropic ones or by creating more intricate optical trapping potentials. It is also
demonstrated how the concept of a reaction in optical matter systems can be generalized
by analyzing the transition between two structural isomers of a six-particle optical matter
cluster. Chapter 5 is concluded by demonstrating that the internal degrees of freedom in an

optical matter system break detailed balance.



Chapter 2

Methods

2.1 Experimental methods

2.1.1 Optical trapping set-up

The optical trapping set-up used in the experiments detailed in this dissertation is based
on the output beam from a titanium-sapphire (Ti:Sapphire) laser (Spectra-Physics 3900s)
operating at 800nm, pumped by a Spectra-Physics Millenia Vs 5 W laser. The output beam
of the laser is directed through a Faraday isolator and then spatially filtered using a 4f system
in conjunction with a diamond pinhole.

After the pinhole, the collimated Gaussian beam enters the section of the optical trapping
set-up is shown in Figure 2.1. The beam is first directed through a beam stabilization system
(Optics in Motion LLC) consisting of two beam splitters (BS), two quadrant photodiodes
(QPD), and two fast-steering mirrors (FSM). If the position or angle of the beam deviates,
the reflected spot on the QPD’s moves off center, and feedback from the QPD’s cause the
FSM’s to compensate. This configuration is necessary because the laser source sits on a
separate table from the rest of the optical trapping set-up and the tables tend to drift with
respect to one another slightly. After the beam stabilization system, the power of the beam

is adjusted using a half wave-plate (\/2) and polarizing beam splitter (PBS).
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Figure 2.1: Experimental set-up from laser to SLM. FSM - fast steering mirror; BS - beam
splitter; QPD - quadrant photodiode; A/2 - half waveplate; PBS; polarizing beam splitter.

The second section of the optical trapping setup is shown in Figure 2.2. The phase and
intensity profile of the optical trap can be controlled by modulating the phase of the beam
using a spatial light modulator (SLM; BNS/Meadowlark HSPDM512-785nm). An example
phase mask, which will form a ring trap with an azimuthal phase gradient when focused by
the microscope objective (Nikon 60x Plan APO IR water immersion objective, NA=1.27), is
shown in Figure 2.2 inset i. Immediately after reflecting from the SLM at a small angle, the
collimated Gaussian beam maintains its intensity profile and takes on a phase profile dictated
by the computer-controlled phase mask on the SLM. The back aperture of the microscope
objective is situated at the opposite end of a 4f system from the SLM. The 4f system has
two purposes. The first is to relay the phase information from the SLM to the back aperture
of the microscope objective. This ensures that the spatial properties of the focused beam,
1.e. the optical trap, is related to the phase mask by a Fourier relationship. The second
is to resize the beam so that it fills the back aperture of the microscope objective. More
filling of the back aperture of the objective translates to increased control over the fine details
of the optical trap at the focus of the objective in the liquid sample cell that contains the
nanoparticles in solution.

After the lens marked L2 the beam enters the microscope body. It is then reflected toward
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Figure 2.2: Experimental set-up after SLM. PBS - polarizing beam splitter; SLM - spatial
light modulator; L - lens; DM - dichroic mirror; A/4 - quarter waveplate; OBJ - objective;

PES - piezoelectric translation stage; DFC - dark field condenser.
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the objective by a dichroic mirror (DM). A quarter waveplate (A/4) below the objective is
used to change the polarization of the light from linear to circular if needed. The beam then
enters the microscope objective and is focused to form the optical trap. The particles in the
optical trap are imaged using halogen lamp illumination that is directed through a darkfield
condenser (DFC). A schematic of the nanoparticle sample is shown in Figure 2.2 inset ii.
It consists of a dilute nanoparticle solution sandwiched between two glass cover-slips. The
optical trap is focused near the top cover-slip where radiation pressure acting on the particles
is balanced by electrostatic repulsion between the cover-slip and the charged ligands on the
particles. A piezoelectric stage (PES) is used to translate the sample in three dimensions.
The remaining scattered and reflected laser light is filtered out using a notch filter (NF)
placed below the DM and the darkfield image is relayed to the detector. An sCMOS (Andor
NEO) array detector is typically used. The experiments are recorded using the Andor SOLIS
software. Under normal experimental conditions an exposure time of ~ 1ms is used and
videos of 1000-10000 frames are recorded at a framerate of ~ 200H z. The entire detector
does not have to be recorded at once; rather a 200x200 pixel region of interest is usually
appropriate for an optical matter experiment. Decreasing the size of the region of interest
allows for faster frame rates and decreases the size of the output files. Since the data is
streamed to the detector’s cache memorythis allows for accumulating more useful data videos

in rapid succession.

2.1.2 Aligning and correcting the optical trapping beam

Many of the results in this dissertation depend on precise alignment of the trapping beam
and elimination of optical aberrations. The rough alignment of the optical trapping beam
can be done by removing the notch filter before the detector, decreasing the laser power,
setting the exposure time to its minimum value, and viewing the reflection of the beam from
the surface of the top cover-slip. If the beam is correctly aligned, its reflection should not

move (shift) when the objective is moved up and down. The alignment of the beam can be

11



Mode Mode Name Effect

Index

Z) piston None

zZt tilt particles go to one side of ring

Zy? oblique astigmatism particles form two lobes on opposite sides of
ring

Z9 defocus particles become less tightly confined to ring

738 vertical trefoil ring becomes slightly triangular

Table 2.1: Zernike modes and their effects on particles in a ring trap.

fine tuned by filling a ring-trap with particles. The trap will fill evenly only when the beam
is very precisely aligned.

Optical aberrations can be corrected by adding Zernike polynomials to the phase profile
of the SLM [29]. A ring trap is also convenient for fine-tuning the beam because each Zernike
mode has a specific effect on the shape and filling of the trap. Table 2.1 lists few relevant
Zernike modes and their effect on how particles fill a ring trap. Tilt, oblique astigmatism,
and vertical trefoil have corresponding counterparts tip, vertical astigmatism, and oblique

trefoil that differ only in orientation.

2.1.3 Creating wide Gaussian optical traps

A wide-diameter Gaussian optical trap can be created by focusing the beam onto the back
aperture of the microscope objective reducing the numerical aperture and if small enough
somewhat collimating the beam propagating through the sample. This is achieved by removing
the lens labeled LL1. The disadvantage of this method is that the phase-pattern on the SLM
is not correctly transferred to the focus of the objective. Only simple phase masks are used
in this configuration and Zernike polynomials are adjusted heuristically to achieve the most

stable optical matter clusters.
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2.1.4 Coherent imaging

The trapping laser light scattered from optical matter clusters can be imaged by replacing
the dichroic mirror below the microscope objective with a 50:50 beam-splitter. The notch
filter below the dichroic mirror is also replaced with a filter with smaller optical density
(OD = 5). Dark-field illumination (for tracking particle positions) and scattered laser light
are simultaneously imaged by attaching a two-channel imaging system (Optical Insights,
DualView) between the microscope port and detector. The Dual View splits the image
into two spatially separated images according to wavelength using a detachable dichroic
beamsplitter with a cutoff wavelength of 560nm. The light source for the darkfield imaging is
switched to a 470nm LED (Thorlabs M470L3). A video in which a single particle fluctuated
in a Gaussian trap for > 1000 frames was used to define the coodinate shift between the

darkfield and backscattered laser images.

2.1.5 Sample preparation

The basic elements of the sample used in an optical matter experiment consists of a dilute
nanoparticle solution sandwiched between two glass cover-slips, as depicted in Figure 2.2 inset
ii. A thin spacer with a hole in the center is used to create the gap between the cover-slips
where the nanoparticle solution resides. It usually takes around 20uL of nanoparticle solution
to fill the sample. An adhesive spacer results in the most robust samples, but a thin silicone
sheet has been used in some cases.

The cover-slips are treated according to one of two procedures. The first is to wet with
methanol and dry using Nitrogen gas. This procedure ensures that the cover-slips are clean. A
more involved preparation involves plasma etching the cover-slips for approximately 5 minutes
with ozone. Plasma cleaning induces a negative charge on the cover-slip that enhances
electrostatic repulsion between the particles and the cover-slip and helps prevent particle
sticking. The cover-slip should be thoroughly cleaned and dried over-night before plasma

cleaning.
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The most commonly used nanoparticles are 150nm diameter spherical silver nanoparticles
with PVP ligands. Typical dilutions of stock nanoparticle solutions range from 1:100 to
1:1000, depending on the initial concentration and type of experiment. The dilution of
the solution is important for two reasons. First, the optical trap can fill to quickly or too
slowly to get good data for a particular experiment if the dilution is inappropriate. Second,
diluting the nanoparticle solution decreases the ionic strength of the solution and increases
the electrostatic screening length. This prevents particles from aggregating together in optical
traps, and also strengthens the repulsion between the top cover-slip and the particles to help

prevent the particles from sticking.

2.2 Data analysis methods

2.2.1 Particle tracking

Particle tracking is broken down into two steps: localization and linking. Localization is the
detection of particles in a particular frame, while linking is the formation of trajectories from
the detected positions in a sequence of frames. Particle tracking is done using the Mosaic
plugin in ImageJ [30], which uses the widely-known particle localization and linking methods
developed by Crocker and Grier [31]. The relevant input parameters in the Mosaic plugin
are the size of the particles, the threshold brightness for a detected particle (which can be
either absolute or relative to the brightest pixel), the number of frames to allow a particle to
"disappear’ before ending the trajectory, and the maximum amount a particle in a particular
trajectory is allowed to move from frame to frame. The relevant output of Mosaic is a data
table containing the frame number, trajectory number, coordinates, and brightness of each
particle detected in each frame. The data table can subsequently be imported into Matlab or

other data analysis software (see Appendix B for example).
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2.2.2 Lattice fitting

I developed a lattice fitting algorithm that fits a set of particle positions to the best-fit
hexagonal lattice. The best-fit hexagonal lattice is used for aligning images for averaging,
cluster detection, and analysis of the correlated deviations of the particles from the lattice
sites. The algorithm is based on minimizing the sum of squared distances from the particle
positions to the nearest lattice sites. A range of evenly spaced lattice constants (d,,) and lattice
angles (6,,) are used to generate several test lattices. The test lattices are in turn centered
on each particle position (z;,y;) and the nearest lattice site to each particle is identified for
each test lattice. For each test lattice the sum of squared deviations (A% = > 67) between
the particle positions and the corresponding nearest lattice sites is calculated. The set of
parameters (d, 0, z.,y.) that correspond to the best-fit lattice is

(d,0,z.,y.) = argminZé-Q. (2.1)

(2
(d,0,@i,y:)

Once the lattice assignment is obtained, the lattice parameters can be refined analytically

to obtain optimized lattice parameters denoted (d*, 0%, z%, y*) [32]. Let

21 =

Z9 =

where (z1,y!) are the coordinates of the lattice site assigned to the ith particle. The optimal
translation r* of the lattice matches the centers of mass of the particle positions with the

assigned lattice sites

7" = (re({z2 — 21)),im({z2 — 21))) (2.3)
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where the angle brackets denote taking the mean value. After letting Z = (21— (21))- (22— (22))

optimal parameter values #* and d* are

. Im(2)
0" =60 — arctcm( Re(Z) ) o4
R SR U |

|21 — (z1)2

Figure2.3a shows an experimental image of a hexagonal 7-particle optical matter cluster
with the corresponding best-fit lattice superimposed. The agreement between the particle
positions and the best-fit lattice is good. To quantitatively evaluate the effectiveness of the
lattice fitting procedure, I generated 10000 sets of particle coordinates based on a perfectly
ordered hexagonal cluster with identical and independently distributed (i.i.d.) Gaussian
deviations from each lattice site. The distribution of the total squared deviations before
lattice fitting should follow 3" N(0,02)% = 0®x?(14) (x? with 14 degrees of freedom), and if
4 degrees of freedom are fully subtracted, we should have ﬁ‘—; = x?(10). Figure 2.3b shows
a comparison of the distribution of scaled fitting error ?—22 to the x?(10) distribution. The
two distributions are in excellent agreement and we can conclude that the optimal lattice
parameters (d*,0*, %, y*) fully eliminate 4 degrees of freedom (2 translational, 1 rotational,

and 1 scale) from the particle positions.
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Figure 2.3: Fit lattice example and evaluation of fitting error. (a) Best-fit lattice superim-
posed on an experimental image. (b) Comparison between the distribution of scaled fitting
error ﬁ—j (brown bars) and the x?(10) distribution (black curve).

Once the occupied lattice sites are defined, it is possible to detect certain cluster shapes by
counting the number of neighbors for each lattice site and then counting the number of sites
with a particular number of neighbors. For example, the hexagonal 7-particle cluster shown
in Figure 2.3a has 1 lattice site with 6 neighbors and 6 lattice sites with 3 neighbors. The
number of nearest neighbors is not sufficient to differentiate between every possible cluster
lying on a hexagonal lattice, but it is a sufficient to differentiate between several relevant
clusters such as the six-particle triangle, chevron, and parallelogram clusters discussed in
Chapter 4.

For specific cluster types the best-fit lattice can be used as a reference structure to
translate and orient the particle coordinates relative to the underlying lattice. Figure 2.4
shows the translated and oriented set of particle positions for frames when a specific cluster
was detected. The positions were translated so that the best-fit lattice site corresponding
to position A is at the origin and rotated so that the best-fit lattice site corresponding to
position B is on the y axis. This procedure is used to align images for averaging and to

visualize the deviations of particle positions from lattice sites.
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Figure 2.4: Translated and oriented set of particle positions for frames when a specific cluster
was detected. The positions were translated so that the best-fit lattice site corresponding
to position A is at the origin and rotated so that the best-fit lattice site corresponding to
position B is on the y axis. The image is a visualization of particle fluctuations about lattice
sites.

2.3 Theoretical methods

Our group has developed fast and accurate methods for simulating optical matter. However,
approximate but tractable equations in the Rayleigh limit (not accounting for higher-order
multipole modes) offer significant insight into the nature of several of the phenomena observed
in optical matter systems. The force in the x; direction acting on an oscillating dipole p

illuminated by an arbitrary source can be expressed as [15, 33|

(Fa,) = LRe [17* (E] (2.5)

where E is the electric field at the position of the dipole. The polarization can be expressed
generally in terms of a polarizability tensor as p = aE. The elements of the polarizability

matrix corresponding to the long (cy) and short (o)) axes of an prolate spheroidal particle
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is [34]

uncorrected p — tm
ajw) = iy O e + Ly (6 — €m)

uncorrected q —1

. (2.6)
ikl

H=|1-
6meqem,

where V' is the volume of the particle, €, is the permittivity of the surrounding medium,
€p is the permittivity of the particle, €, is the vacuum permittivity, H is a correction that

accounts for radiative damping [35], and L are depolarization factors given by

1 — e? 1 1+e
L”: (—1+—ln )
62 26 1_6 (27)
1 .
Li=501-1Ly)

where e is the eccentricity of the spheroidal particle. For the special case of a spherical
particle, Ly = L, = 5 and oy = or, [34].

For an arbitrary collection of particles at positions r,, the electric field at a position r is

E(r)=E,+ Y G(rr.)a.Er=r,) (2.8)

where is the incndent electric field 5(r,rn) is the dyadic Green’s tensor that propagates
the field due to an oscillating dipole at position r, to the position . The elements of the
dyadic Green’s tensor (the z; component of the electric field due to the x; component of the

polarization) are given by [15]

6ikR

Xyl j
drege,, R3

Gxifﬁj - R2

(3 — 3ikR — k*R?) + (K*R? + ikR — 1)4; (2.9)

where R is the distance |[r —r,|.

Equations 2.5-2.9 provide the general framework that I use to derive analytical expressions
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that help understand various phenomena in optical matter systems. Depending on the
situation, different approximations can be made to allow these equations to provide clear
insights into specific physical situations.

The first simplification that is possible is isotropic polarizabilities. The polarizability
of a spherical particle can be represented as a scalar instead of a tensor, which limits the
number of terms that appear. The second simplification is to choose a convenient geometry.
If two particles lie along a principal axis, Equation 2.9 becomes significantly more simple.
Finally, to fully solve Equation 2.8, a self-consistent solution needs to be found. However, the
field at each particle can be approximated by allowing only up to a certain order of multiple
scattering. This approximation also allows physical phenomena to be attributed to specific
orders of scattering.

I also use Equations 2.5-2.9 for analytical electrodynamic force calculations. I manually
solved for the relevant partial derivatives of the dyadic Green’s tensor and input the results

in Matlab. The Matlab code is printed in Appendix B.
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Chapter 3

Electrodynamics in optical matter

systems

3.1 Electromagnetic interference and coupling in

nanoparticle-based optical matter systems

3.1.1 Introduction

Particles in optical traps interact with one-another electrodynamically through optical
binding forces. As a result the particles tend to self-organize into ordered optical matter
(OM) arrays with preferred inter-particle separations near integer multiples of the incident
laser wavelength|[13, 14, 36]. The optical binding forces arise from the interaction between
the polarization of each particle with the incident and scattered light[15]. OM arrays are
open, nonequilibrium systems because the coherent light source that mediates the optical
binding forces also establishes a constant flux of electromagnetic energy through the system.
Conversion or redirection of the momentum from the incident laser light makes phenomena
such as non-reciprocal|18, 19| forces and negative optical torque|37, 38, 20, 21| possible. A

full description of an OM array requires knowing the detailed properties of both the incident
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and scattered light in addition to the positions, sizes, shapes, and compositions of each of
the particles. While there has been steady progress toward understanding how tailoring the
phase and intensity profiles of the incident fields can affect the dynamics and structure of OM
arrays|27, 39, 40, 41, 28], the characteristics of coherent light scattered by OM arrays is an
area of current research|42, 43|. In particular, although both interference and electrodynamic
coupling (i.e. the polarization induced in one particle by the light scattered from neighboring
particles) have been shown to have distinct effects on the dynamics of OM arrays, their
respective influence on the coherent light scattered by OM arrays and interdependency has
received less attention.

Electrodynamic coupling can be categorized into two regimes|44, 45]. In near-field coupling
the interaction between particles with separations much smaller than the wavelength of light is
treated as a quasi-static interaction[46, 47]. In far-field coupling the in-plane dipolar scattering
from large 1D and 2D arrays of particles dramatically effects each particle’s polarization; the
interaction between particles is frequently treated with a self-consistent approach that invokes
the periodicity of the array[48, 49, 50, 51]. A commonality between both types of coupling is
modification of the polarization of a particle in the array or structure due to light scattered by
other nearby particles. The crossover from near-field to far-field coupling is usually defined in
terms of the particle diameter and the wavelength of incident light. Inter-particle separations
in OM arrays, typically close to the wavelength of light, are near this crossover distance.
However, the approaches typically used in the near- and far-field coupling regimes are not
suitable for describing coupling in small OM arrays. A quasi-static approach is inappropriate
because retardation is significant over the wavelength-scale distances characteristic of OM
arrays, and the finite size of the arrays precludes a self-consistent approach.

In this paper we show that optical matter arrays exist in an intermediate regime where
interference both determines the spatial profile of the light scattered by the array, and also
enhances electrodynamic coupling between the array’s constituent members. We show that

the images obtained with coherent backscattered light (termed coherent imaging) from OM
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arrays contrast strongly with those obtained with incoherent light. Diffraction and fringe
patterns visible in the coherent images characterize the electric field intensity surrounding
the OM arrays. More striking is the replacement of particle-centric images obtained with
incoherent light illumination with images where the intensity is shifted between particles
when visualized with coherent light. We investigate the directional scattering of coherent
light over polar angles by performing generalized Mie theory (GMT) calculations of ordered
OM arrays with 1-7 particles. In contrast to the largely dipolar scattering of a single particle
[52], the light scattered from ordered OM arrays develops a lobed structure with maxima in
specific sideways, forward, and backward directions. This scattering can also be described in
terms of collective modes|23].

We find that the total scattering of the OM arrays at the trapping laser wavelength
grows super-extensively when nanoparticles are added to the cluster. We show that the
super-extensive growth of the scattering is the result of electrodynamic coupling. We quantify
the strength of electrydynamic coupling in OM arrays at the trapping laser wavelength by
calculating the ratio of the total electric field intensity at a vacant site in the array to the
incident intensity, and find that the contribution from neighboring particles becomes significant
even for small (1-6 neighboring particles) OM arrays. Our spectroscopic investigation of
coherently illuminated OM arrays extends our investigation to multiple wavelengths and
establishes that a collective resonance develops at the expense of the single-particle Mie
resonance scattering from individual particles. We discuss our results in the context of
the point-dipole approximation and show that electrodynamic coupling in OM arrays is
strengthened by constructive interference. We suggest that OM arrays are analogous to an
avenue for studying surface lattice resonances (SLRs) but in the small array limit where

interaction and coupling is described on an element-by-element basis.
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3.1.2 Experimental setup

Our experiments were conducted with a single-beam optical tweezers in an inverted microscope
as described previously[17]|. A schematic of the experimental set-up is shown in Figure 3.1. A
dilute solution of PVP-coated 150nm Ag nanoparticles was placed inside a fluid filled sample
chamber made from an adhesive spacer sandwiched between two glass cover-slips. A cw
Ti-sapphire laser focused at the back aperture of a 60x microscope objective (Nikon SAPO
60x water; NA = 1.27) created a collimated beam that pushes and traps a small number
of particles close to the top glass surface of the sample chamber Electrostatic repulsion
between the surface ligands on the nanoparticles and the charges on the glass cover-slip
balances the radiation pressure, resulting in a 2D trapping condition. The focus of the optical
trapping beam was adjusted with a spatial light modulator (SLM; Meadowlark) to create an
inward directed phase gradient at the trapping plane that increased the confinement of the
nanoparticles. The trapping laser was circularly polarized in all experiments and calculations.

To image the coherent back-scattered light, we employed a 2-channel configuration where
one channel accepted 475nm incoherent LED darkfield illumination, and the other channel
filtered out the LED light and accepted the backscattered laser light but with significant
attenuation (OD = 5). The two channels form spatially separated images on the same CMOS
detector (Andor Neo). The simultaneous measurements are necessary because the particle
positions are not obvious from the images of backscattered coherent light as can be seen in
Figure 3.1b-g. No additional field stops or aperature stops were introduced to the optical

path.

24



SLM
HWP PBS HWP o
From Ti:S Laser I . I % o

Pemsccpe

DBS2
J- sp

g—

Broadband Lase!

*%

80:20 BS

Periscope

Dual View

|

i g %

i

W CMOS Camera
CMOS Camera

Figure 3.1: (a) Optical trapping setup with simultaneous video microscopy and backscat-
tered spectral measurements. HWP - half wave plate; QWP - quarter wave plate; SLM -
spatial light modulator; DBS - dichroic beam splitter; PBS - polarizing beam splitter; SP -
short-pass filter. (b-c) Incoherent (darkfield; NA = 1.27) images of a NP dimer at separations
of 1.5A (b) and A (c). (d-e) Coherent (backscattered; NA = 1.27) images of NP dimer at
separations of 1.5\ (d) and A (e). (f-g) Simulated coherent (backscattered; NA = 1.00)
images of NP dimer at separations of 1.5\ (f) and A (g). See videos 2 and 3 for a sequence of
images for different inter-particle separations obtained with incoherent and coherent light.

3.1.3 Coherent imaging of OM arrays

The optically trapped particles in our experiments rotate, translate, and dynamically reconfig-
ure in the water solution due to Brownian motion[39, 17]|. Therefore, raw darkfield microscopy
videos typically show particles with fluctuating configurations where the probability of each
specific configuration depends on the inter-particle forces. Particle separations with integer

multiples of the trapping wavelength in the solvent medium A = A\ 4. /n, where n is the
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index of refraction, are favored due to optical binding|13, 14, 15, 17|. The individual images
containing two randomly fluctuating particles in the optical trap are processed by the following
protocol: the particle pair is tracked using Mosaic (ImageJ) and centered with respect to
its "center of mass", rotated with respect to the orientation of the pair, and averaged in
bins conditioned on inter-particle separation to dramatically improve the signal-to-noise ratio
of the images. (see SI for further details; see video 1 for the raw data and videos 2, 3 for
averaged and aligned videos measured with incoherent and coherent light, respectively).
Figures 3.1b,c show averaged dark-field images measured with incoherent light where the
pair of particles is separated by A and 1.5\, respectively. The images show that the incoherent
light scattered from each of the particles is manifested as well-defined circular spots regardless
of inter-particle distance to separations of 300nm. Averaged images measured with coherent
light are shown for the same separations in Figures 3.1d,e. The images for particles separated
by r = 1.5\ show two distinct spots and a pattern of fringes around the dimer with bright
spots on the perpendicular bisector between the particles. The image for » = A shows a single
elongated spot that is reminiscent of o-bonding orbitals in diatomic molecules|53]. The fringe
pattern also changes at » = A compared to » = 1.5\ with the first ring of fringes becoming
ellipsoidal. We performed GMT calculations to generate simulated images for the particle
configurations shown in Figure 3.1b-e (A = 800nm). The simulated images closely match
each of our experimental results measured with coherent light scattered from the OM arrays
when the simulated numerical aperture (NA) is set to 1.00. We believe the Fresnel reflection
losses at high NA inside the objective reduces the effective NA of the experimental image.
Figure 3.1 demonstrates that the image of a pair of nanoparticles illuminated by coherent
light depends on the distance between them. We also recorded images of small 2D OM arrays
illuminated by spatially coherent light. Figure 3.2a-c shows aligned and averaged coherent
images for three different arrays; the associated averaged incoherent darkfield illumination
images are shown in the insets. A real-space lattice fitting procedure was employed to detect

ordered arrays and define the rotation and translation required for the averaging of each raw
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experimental image. The OM array in Figure 3.2a is a 6-particle triangular configuration, as
shown by the incoherent darkfield image in the inset. In the coherent image the positions of
the corner particles are bright, while the positions of the three interior particles are dimmer by
comparison. Moving away from the array, bright fringes are visible with maximum intensity
located outward from the three central particles in the triangle. The array in Figure 3.2b is a
different six-particle arrangement (termed a chevron) with a concave edge as shown in the
inset. Its coherent image contains a smooth bright fringe following the arc of positions of the
outer particles with the center particle appearing dark. There are exterior fringes projected
outward from the bisectors of each of the 5 exterior edges of the array, and a bright fringe
located between the two interior edges. Figure 3.2¢ shows the coherent image for the 7-particle
hexagonal array obtained by adding a particle to the array in Figure 3.2b. The coherent
image is annular with a dark center that resembles a benzene m-orbital|53|. There are fringes
located outward from the bisector of each edge of the hexagon. The arrays in Figure 3.2
a, b, and ¢ have 3-fold, 2-fold, and 6-fold rotational symmetry, respectively, which matches
the symmetry of each array. Figures 3.2d-f show simulated coherent backscattering images
(A = 800nm; NA = 1.00) for each of the experimentally measured arrays in Figure 3.2a-c.

The agreement between the measured and simulated images is very good.

27



Figure 3.2: Coherently imaged OM arrays and comparison to the simulated electric field
intensity. (a-c) Experimental coherent backscattered images of OM arrays with 6 (a-b) and 7
(c) particles. The insets show the corresponding averaged incoherent (darkfield) images. (d-f)
Simulated coherent backscattered images each of the three OM arrays as panels a, b, and c,
respectively. (g-i) Simulated electric field intensity (color: red-blue) within and around each
of the OM arrays for comparison with the results of coherent imaging. The nanoparticle are
gray filled circles.

Figures 3.2g-i show the simulated electric field intensity within and around each of the
three arrays for comparison with the experimental and simulated coherent backscattering
images. Figure 3.2g exhibits two local intensity maxima outside each edge of the triangle
that are in a similar location to bright fringes in the simulated coherent image. In the
experimental image, the two bright fringes merge into a single fringe. In Figure 3.2h-i the

intensity maxima just outside the array are also coincident with fringes in the coherent
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images. The correspondence between the coherent images in Figures 3.2a-f and the simulated
near-field electric field intensity in Comparison of the coherent images in Figures 3.2a-c
(experimental) and d-f (simulated) and the electric field distributions in Figures 3.2g-i is
clearly different inside the OM array, but improves moving outward.

The relationship between the electric field intensity distribution and the coherent images
of OM arrays is due to far-field interference|[54]. For plane-wave illumination with incident
electric field Ey the electric field intensity the at a point (p, @) in the transverse plane is given
by|52]

cos(kp + )

I(p, ) = E§ + 2Ey| 4| (3.1)

where A is a complex constant related to the nanoparticle’s polarizability and ¢, is a phase
shift factor. Meanwhile, the field in the image plane scattered by a point dipole u; located at

the origin (in the paraxial limit) is[52]

~ Ji[kpsin(Gop;)] u

E(p,¢) =B ” (3.2)

where B is a complex constant and J; is a Bessel function and 6,,; is the collection angle of
the microscope objective. Replacing the Bessel function by its asymptotic form and including

the electric field reflected off the water-glass interface E,., the intensity is

cos(kpsin(fop;) + 7/4)

9 ~

(3.3)

Comparing Equation (3.3) to Equation (3.1) shows that for a perfect objective (sin(fo,) = 1;
N.A. = 1.33) the coherent images and the electric field intensity for a single particle have
identical features up to a constant phase shift, although the image intensity modulation
falls off faster as p*?. Equations 3.1-3.3 apply to single particles. The difference between
the coherent images and the near-field intensity in the interior of the cluster are due to the

reduced NA of our experimental coherent images.
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Figure 3.3: Projections of the far-field angular scattering (A = 800nm; 600nm in water)
onto the yz plane from NP arrays with 1-7 particles and effect of coupling on magnitude of
total scattering. (a) OM arrays (lattice spacing = 600nm) and color coding for (b-d). The
incident field propagates along the z direction (upward on the page). (b) Angular scattering
normalized by the number of particles in the array. (c) Angular scattering normalized to
unity. (d) The same as (b), but with interpaticle coupling disabled. (e) Total scattering
normalized by single particle scattering with coupling enabled (red) and disabled (blue).
Comparing (b) to (d) shows that coupling increases the strength of the far-field scattering.
On the other hand, coupling does not significantly change the shape of the angular fields.

3.1.4 Separating interference from coupling in OM arrays

Figures 3.1 and video 3 demonstrate that the separation between particles has a dramatic effect
on the images of coherent light scattered by a pair of particles, and Figure 3.2 demonstrates
that the size and shape of the OM array does as well. However, the relative importance of
interference and coupling needs to be established. We have carried out GMT calculations at
a wavelength of 800nm ( 600nm in water) for ordered OM arrays with a lattice spacing of
600nm with 1-7 particles to facilitate a quantitative comparison between the light scattered by

OM arrays with different numbers of particles. The simulated OM arrays have the structures
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and orientations shown in Figure 3.3a. Projections of the scattered intensity onto the y-z
plane are shown in Figure 3.3b-c when normalized to one (b), and by number of particles
(c). A single particle scatters in all directions, although there is a greater scattering intensity
in the forward and backward (£z; up/down) directions than in the sideways (y; left/right)
directions. The pattern is reminiscent of a dipole emitter, but is altered due to the high order
(e.g. quadrupole) modes of the GMT description of a single 150nm diameter Ag NP, and by
the broken symmetry between forward and backward scattering. As more particles are added
to the OM array, the scattering intensity develops a strong lobe-structure with maxima in
the forward (+z) and backward (—z)directions, and smaller maxima in the sideways (4y)
directions. The change going from 2 to 3 particles is particularly striking and notable because
this is the first cluster where a particle is added offset from the x axis.

Figures 3.3b-c show that the directional scattering from an OM array is altered significantly
compared to a single particle. We modified the calculations in Figure 3.3b-c by disabling
coupling between the particles so that the polarization induced in each particle is only due to
the incident field. The results are shown in Figure 3.3d-e. The shape of the angular scattering
profile is nearly identical, but the magnitude is twofold greater than when coupling is allowed.
Specifically, the total scattering cross section (at a wavelength matching the lattice spacing)
of an OM array with N particles o is directly proportional to N as oy = No; with coupling
disabled, while oy grows super-extensively (i.e. faster than N) with coupling enabled.

We also repeated our calculations of coherent images with coupling disabled to determine
if the images are affected by coupling. We find that the resulting images are nearly identical
to the results shown in Figures 3.1-3.2 with coupling enabled (see SI).

The results in Figures 3.1 through 3.3 demonstrate that the imaging and directionality of
light scattered by OM arrays are primarily influenced by interference, and that electrodynamic
coupling changes the magnitude but not the spatial characteristics of the scattered coherent
light. There are two (limiting) cases where electrodynamic coupling between nanoparticles is

particularly important. When inter-particle separations are small compared to the wavelength
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of light, retardation can be neglected and the interaction between particles can be treated as
electrostatic; i.e. as between the surface charges of the two particles in a pair or dimer|[46, 47].
On the other hand, large field enhancements can occur in extended, regularly spaced arrays

of particles at wavelengths near the array spacing due to constructive interference[50].
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Figure 3.4: Electrodynamic coupling and emergence of a collective scattering mode in
OM arrays. (a) Electric field enhancement at the vacant location of the center particle in
a hexagonal OM array for varying number of particles at wavelengths of 800nm (violet),
760nm (blue), and 580nm (red). (b) Six-particle results from panel (a) repeated for varying
particle-size (radius) at wavelengths of 800nm (violet), 760nm (blue), and 580nm (red).
(c) Simulated scattering enhancement as a function of wavelength in OM arrays versus
number of particles. The inset shows the integral of the energy ranges corresponding to the
single-particle Mie resonance and the collective mode induced by electrodynamic coupling.
(d) Local density of (electromagnetic) states enhancement in OM arrays for 1-7 particles (e)
Simulated wavelength-dependent total scattering of the NP arrays normalized by particle
number. (f) Experimental back-scattering spectra of NP arrays normalized by a INP spectra
measured with spatially coherent light. Note the spectral range of the experiment corresponds
to that between the dashed vertical lines in (e).
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3.1.5 Spectral dependence on coupling

We have shown that electrodynamic coupling between particles leads to increased scattering
of coherent light at the trapping laser wavelength (800nm; 600nm in water) in OM arrays,
and now turn our attention to the origin of the coupling. We carried out GMT calculations
to study the effects of the number of particles, size of particles, and excitation wavelength on
the coherent light scattered by OM arrays. Figure 3.4a shows the ratio of the total field to the
incident field at the (empty) location of the center particle in a hexagonal 7-particle OM array
for wavelengths of 800nm (violet), 760nm (blue), and 580nm (red). For A = 800nm and
A = 760nm the enhancement is small (= 7 percent) with a single particle nearby. However,
every particle added to the array contributes to a growing enhancement so that the scattered
field is nearly half the magnitude of the incident field for 6 nearby particles, and the growth
from 1-6 is nonlinear. Conversely, at A = 580nm the total field at the location of the
center particle diminisheds monotonically with particle number compared to the incident
field. Figure 3.4b shows the six-particle simulation repeated with variable particle radius
ranging from 20nm to 100nm for the same wavelengths as Figure 3.4a. The dependence
of the field enhancement at each wavelength is nonlinear, and the magnitude of the field
enhancement approaches 1 as the size of the particles decrease and increases with increasing
particle size for A = 800nm and A = 760nm (with a peak near 80nm) while it decreases with
increasing particle size for A = 580nm. This result follows from changes in the scattering cross
sections as the volume decreases o< 3 and the dipolar resonance red-shifts with increasing
size. Figures 3.4a-b show that significant electrodynamic coupling occurs even in small arrays
( 2-7 particles) due to the combined scattering from several neighbors for particles larger than
50nm in radius.

So far we have focused on the scattering of coherent light at a few wavelengths by
OM arrays. We will now discuss the scattering of a spatially coherent broadband light
source by OM arrays. Figure 3.4c shows the scattering enhancement (compared to N-fold

multiplication of the single-particle scattering) as a function of wavelength for OM arrays with
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1-7 particles. Consistent with the results in Figure 3.3e, the scattering grows super-extensively
at wavelengths near the trapping wavelength. The dependence of this scattering enhancement
on electrodynamic coupling suggests that it is collective in nature. Figure 3.4c also shows that
the scattering near the single-particle Mie resonance decreases as the number of nanoparticle
constituents in the OM array increases. The inset in Figure 3.4c shows the integral of the
scattering enhancement for the collective and single-particle resonances. As the number of
particles is increased, the integral of the collective mode enhancement steadily increases while
the integral of the single-particle mode diminishes. Figure 3.4c¢ shows that as more particles
are added to the OM array the scattering of coherent light becomes increasingly influenced
by the collective resonance coinciding with the diminishment of the Mie resonances of the
individual particles in the array.

The local density of (electromagnetic) states (LDOS) at a certain location within or near
an OM array controls the emission rate of a dipole emitter placed at that location[55, 56].
In the limit of large arrays of plasmonic particles the local density of states enhancement
for specific in-plane wave vectors occurs together with large field enhancements|[51]. Small
ordered OM arrays are in the opposite limit, but the significant field enhancement shown
in Figures 3.4a-b suggest that some degree of LDOS enhancement is expected. Figure 3.4d
shows the measured local density of states enhancement (LDOS) in an OM array for 1-7
nanoparticles. As more particles are added to the OM array, LDOS enhancement becomes
increasingly prominent near the trapping laser wavelength.

To experimentally determine the wavelength-dependent scattering enhancement in OM
arrays, we measured backscattered spectra from a coherent broadband source. These results
can be used to establish the effects of electrodynamic coupling in OM arrays. A backscattering
geometry was chosen for excitation and detection so that the direction of propagation is normal
to the plane of the array because an in-plane component of the incident wave vector changes
the phase relationship between the particles in the array|[50]. Surface lattice resonances

(SLR’s) that arise in extended arrays result in sharp resonances at wavelengths near the

35



lattice spacing[48, 49, 50, 51|. Although we anticipate a similar enhancement at wavelengths
near the wavelength of the trapping laser because it defines characteristic optical binding
distance, the trapping laser wavelength needs to be filtered out because it is much more
intense than the coherent broadband source. To meet these technical constraints we employed
a pulsed supercontinuum fiber laser (Fianium WL400-4-PP), operating at maximum intensity
with a 5.00 MHz pulse repetition rate, coupled to a computer-controlled variable interference
filter (Fianium SuperChrome) set to its maximum bandwidth. As shown in Figure 3.1a, the
broadband beam was directed to travel collinear with the trapping laser into the optical
trap, and the back-scattered light was sent through a 50:50 beam splitter and notch filter
(Semrock StopLine NF03-785E-25) to remove the backscattered light from the trapping laser
intensity. 20% of the light was directed towards a CMOS array detector for imaging (Andor
DC-152Q-COO-F1) and the remaining 80% of light was directed towards a spectrograph
(Andor Shamrock SR-193i-B1-SIL). A pair of relay lenses (Thorlabs AC508-100-B-ML) with
focal length f=100mm were then used to bring the resulting spectrum from the spectrograph
to a second CMOS array detector (Andor NEO-5-5-CL3). The imaging and spectral CMOS
detectors were synchronized so that the spectral measurement would be taken at the same
frame rate and duration as the imaging. Once an OM array had formed both detectors were
started and 1000 images and spectra were acquired at 160 fps. The spectra were classified by
specific numbers of nanoparticles, and as arising from ordered wvs. disordered arrays based
on the fitting error (i.e. deviations of the particle positions from the lattice) resulting from
real-space lattice fitting of the OM arrays in each frame.

Figure 3.4e shows simulated backscattered spectra for an OM array consisting of 1-7
particles normalized by the single particle spectrum. As particles are added to the array, peaks
in scattering enhancement emerge near 500nm and 800nm. The experimentally measurable
range of wavelengths is indicated by the black vertical dashed lines in Figure 3.4e. Figure 3.4f
shows the experimentally measured backscattered coherent spectra normalized by the single-

particle scattering spectrum. The experimental and simulated spectra of the OM arrays are
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in good agreement.

3.1.6 Discussion and Conclusions

We have shown that coupling and interference have distinct effects on the scattering of
coherent light by OM arrays. Figures 3.1 and 3.2 show that the images of the backscattering
of the coherent trapping laser from an OM array are dramatically different from the images
of the particles illuminated by an incoherent source. Furthermore, the coherent images of the
OM array have common features with the near-field intensity because both are controlled by
similar phase-dependent relationships. Figure 3.3 shows that coupling has a minimal effect
on the qualitative spatial characteristics of coherent light scattered by OM arrays. However,
coupling leads to an enhancement of the total scattering at the trapping laser wavelength.
Figure 3.4 demonstrates that while coupling enhances scattering at wavelengths near the
trapping laser wavelength, total scattering is not enhanced at all wavelengths.

However, our results also suggest that there is an important relationship between in-
terference and coupling that can be understood using a simplified model. Consider a
two-dimensional cluster of particles with isotropic polarizability a arranged in the transverse
plane of an electromagnetic plane-wave with wavelength Ao . The polarization of particle i is

proportional to the total electric field at the location of particle i as p; = aE,—,, with

ET:Ti = EO + « Z G(TZ', Tj)Er:rj
77 (3.4)
~ E ll +a Z G(ri,7j) +a® Z Z G(ri,rm;)G(rj,m) + ...
J#i i 1
where Ey is the incident electric field and G(r;,7;) is the tensor that propagates the scattered

field at position r; resulting from a dipole at position 7;
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where [ and m are polarization directions, R = |r; — r;| is the distance between the two
particles, and k is the wave-vector of the incident light. At single-wavelength distances
kR = 2, so that the far-field terms in the propagator with }% dependence give the largest
contribution, although all terms are significant. According to equations 3.4 and 3.5, the
polarization of a particle in an OM array will have the largest contribution from light scattered
by neighboring particles when all of the scattered contributions are in-phase, ¢.e. when they
are interfering constructively.

Figure 3.4a shows that each particle added to the OM array increases electric field strength
at the central particle near the trapping laser wavelength. In the context of equation 3.4, an
increasing portion of the polarization of the central particle is induced by scattered light from
neighboring particles as particles are added to the OM array. The scattered light from each
of the added particles is in phase at the location of the center particle because they are all the
same distance from the center particle and the circularly polarized excitation is isotropic in
the polar symmetry of the array. The relative phase between the incident and scattered light,
however, depends on the lattice spacing in comparison to the wavelength of the excitation.
For the trapping laser, the laser wavelength and lattice spacing are nearly equal and the
scattered light interferes constructively with the incident light. For other wavelengths the
interference can be destructive. At 560nm the interference is destructive and the field at the
location central particle is diminished.

The total strength of the coupling also depends on the size (and polarizability) of the
particles. Figure 3.4b shows that while the 150nm diameter particles used in our experiments
and most calculations are shown lead to significant coupling in OM arrays, particles with
diameters under 100nm lead to much smaller coupling. Therefore, the geometry, inter-particle
separations, and choice of particles in OM arrays contribute to the significant electrodynamic
coupling that we report here. Equation 3.4 is an approximate solution for the scattered
field at the location of a particle in an OM array expanded in orders of scattering. Each

scattering order is weaker by a factor of aG. Based on the results in Figure 3.4a, we can
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approximate that the terms in aG are of the magnitude =~ 0.05 As an OM array grows, an
increasing number of terms contribute to higher-order scattering, giving rise to the nonlinear
enhancement shown in Figure 3.4a.

In this work we focused on the electrodynamic properties of small OM arrays. In the limit
of large regular arrays of nanoparticles one finds a sharp peak in their scattering spectra with
a central wavelength near the lattice spacing. This is known as a surface lattice resonance
(SLR)[48, 49, 50, 51]. The enhanced scattering associated with the SLR can be derived
analytically as a consequence of strong electrodynamic coupling by employing a self-consistent
solution in the limit of a large lattice[50].

Electrodynamic coupling in OM arrays is in a distinct regime compared to other typical
examples of coupling. Near-field electrodynamic coupling between pairs of particles is usually
significant for inter-particles separations much smaller than the wavelength of light. On the
other hand, constructive interference can lead to significant coupling in very large (extended)
arrays of particles. Electrodynamic coupling in OM arrays is near the crossover between
the two limits. While the magnitude of the field scattered from a single particle is small,
the combined contributions from several nearby particles, interfering constructively, leads to
significant field enhancement and coupling. Therefore, OM arrays are an avenue for studying
SLRs in the opposite, small array limit where interaction and coupling is described on an
element-by-element basis. These field enhancements and coupling could also be exploited
for applications in nonlinear optics, where the phenomena have an E?" dependence, with n

indicating the order of nonlinearity[57, 58|.
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Chapter 4

Structure of optical matter systems

4.1 Structural Properties of Clusters Formed by the Long-

Range Periodic Optical Binding Interaction

4.1.1 Introduction

The stability and morphology of small clusters of particles are dictated by the nature of
their interactions. For pair interactions that are dominated by excluded volume and very
short-range attraction the energy of the cluster is directly proportional to the number of points
of contact between the particles, leading to a small number of structures with nearly the same
binding energy|[59, 60, 61|. For pair interactions with multiple length scales (e.g. a short-range
attractive and long-range repulsive component), a rich variety of density dependent phases
and water-like anomalies have been observed|[62, 63, 64].

Optical binding is a long-range periodic electrodynamic interaction between nano or
micro-scale particles that is generated by a coherent light source[13, 15]. It was recently
suggested that clusters of nanoparticles formed by optical binding (optical matter clusters)
have enhanced stability of extended periodic structures due to the periodic nature of the

optical biding forces|39]. However, phenomena reported in other systems with long-range
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pair potentials, including non-hexagonal packing and water-like anomalies, have not been
reported in optical matter systems.

In this paper we show that the long-range and periodic nature of the optical binding forces
result in several distinct structural features in optical matter clusters. We analyze a large
volume of experimental and simulated data of 2-dimensional optical matter structures to
deduce the structural properties and relative probabilities of the most stable structures. We
determine that the most stable structures of these clusters are the same as the ground state
structures of two-dimensional clusters with short-range attractive interactions|59, 60, 61]; the
binding energies of the latter structures are degenerate. However, the relative stability of
each optical matter structure as a function of laser power shows that the long-range optical
binding interactions lifts the energy degeneracy between the structures. Furthermore, we
measure significant increases in nearest neighbor distance compared to the two-particle optical
binding distance[15, 17]; the latter is A/n whereA is the trapping laser wavelength and n is the
index of refraction of the medium. We also find that the fully relaxed optical matter arrays
obtained in simulations with no thermal fluctuations are distorted relative to a reference
hexagonal lattice, including the existence of a five fold symmetric cluster that does not lie on
a hexagonal lattice.

We construct a pairwise optical binding potential by calculating the work done separating
two particles in plane-wave illumination, and find that summing the optical binding potential
over particle pairs characterizes the stabilities of the clusters. The success of this simplified
approach transcends the presence of non-conservative forces|65] and many-body electrody-
namic coupling (see chapter 3). We derive an analytical expression for the distortion energy
associated with the symmetric stretching of small optical matter clusters and show that it
correctly predicts the lattice constant of the most stable structures. Finally, as the size of
OM clusters grow, the nearest neighbor separation continues to increase as it approaches a

value around 10% larger than the pairwise optical binding distance.
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4.1.2 Long-range periodic potentials

We performed Langevin dynamics (LD) simulations for six-particle clusters with two different
analytical pair potentials and similar confining forces of the optical trap that allow contrast-
ing the structures formed with short-range single-well and long-range periodic potentials.
Figures 4.1a and b show Lennard-Jones (LJ) and optical binding (OB) potentials, respectively.
The LJ potential is defined so that the minimum matches the first minimum in the optical
binding potential and the depth matches the distance from the first minimum to the first
local maximum in the optical binding potential. The pairwise distances for two typical
six-particle clusters, the chevron (red) and the triangle (blue) are marked by circles with the
size of the circle denoting the number of occurrences distances that have a particular value.
Figures 4.1 a-b suggest that we should expect that the chevron is slightly more stable for
the LJ potential[66] because it has more pairwise distances with shorter values, while the
triangle is more stable for the OB potential because it has more pairwise distances at the
second optical binding distance.

To measure the stability of different arrangements we developed a cluster detection
algorithm based on the commonly observed hexagonal symmetry of the clusters when the
trapping laser is circularly polarized|67|. First, the hexagonal lattice that minimizes the
distance from each measured particle position to the nearest lattice site is found. This
minimization is carried out over four degrees of freedom: two translational, one rotational,
and one scale parameter. Next, each particle is assigned to a lattice site if it is within a
cutoff distance of that site. Once the occupation of each lattice site is known, the number of
neighboring occupied lattice sites are counted and the set of numbers of neighbors at each
occupied site is used to distinguish between common six-particle structures (e.g. trangle,
chevron, parallelogram). Figure 4.1c shows the detected probabilities for the three lowest
energy six-particle clusters. The triangle and parallelogram cluster (blue and magenta,
respectively) are relatively rare in the LJ potential, while the chevron cluster type makes up

the majority of the detected cluster types. The combined probability of all three cluster types
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(black) is close to 1 for the chosen temperature and potential well depth in our simulations,
meaning that other cluster types are rare. For the optical binding potential, the parallelogram
is no longer detected, the triangle increases in probability, and the chevron decreases in

probability, and other cluster types are similarly rare.
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Figure 4.1: Comparison between LD simulations with the Lennard-Jones and optical
binding potentials. (a) Lennard-Jones potential. Inter-particle separations for triangle and
chevron configurations are marked with red and blue circles, respectively. (b) Lennard
Jones potential. (c) Detected cluster-type probability for the chevron (red), triangle (blue),
parallelogram (magenta), and combined (black) in LD simulations with the Lennard-Jones
and optical binding potentials. (d) Probability distributions of nearest neighbor distances in
LD simulations with the Lennard-Jones (black) and optical binding (red) potentials.

Figure 4.1d shows probability distributions of the nearest-neighbor distances in the LJ and
OB potential simulations. Both probability distributions reflect their underlying potential.
The distribution for the LJ potential is more narrow and skewed toward longer distances

while the distribution for the OB potential is wider and more symmetric. For the LJ potential
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(black) the maximum probability for nearest neighbor distance coincides with the location of
the minimum energy. However, for the OB potential the maximum probability is shifted to a

larger distances than the first local minimum in the OB potential.

4.1.3 Experimental observation of six-particle OM clusters

—e—Chevron
—=—Triangle

—a—Parallelogram
—e—Combined

Figure 4.2: Analysis of experimentally observed optical matter clusters. (a) Experimental
still-frames. i. chevron cluster ii. triangle cluster iii. excited state iv. five-fold symmetric
cluster (b) Detected cluster-type probability for the chevron (red), triangle (blue), parallel-
ogram (magenta), and combined (black) in experiments at different trapping laser powers.
(c) Distribution of inter-particle separations conditioned on whether the cluster is ordered
(black) or disordered (red). (d) Distribution of angular order parameters 5 vs 1.
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Since our experiments are performed in solution at room temperature, and typical energy
barriers to rearrangements of clusters are usually on the order of a few kgT', clusters in our
optical binding experiments frequently rearrange over the time-scale of a typical experiment
and it is feasible to sample a large number of configurations. Figure 4.2a shows snap shots
of typical six-particle structures seen in an optical binding experiment. Panel i and ii show
the chevron and triangle arrangements, while panel iii shows a less compact higher energy
arrangement and panel iv shows a five-fold symmetric arrangement.

The relative probability of a certain cluster type in thermal equilibrium compared to

another depends on the free energy difference between those two configurations according to

— =eFsT =¢ *BT (4.1)

where P4 and Pg are the probabilities of states A and B, AU is the potential energy difference
between states A and B, T is the temperature of the system, AS is the entropy difference
between states A and B, and kg is the Boltzmann constant. The optical binding force is
directly proportional the intensity of the incident light, and therefore the potential energy
difference AU between two non-degenerate configurations can be tuned in optical matter
clusters. Therefore, we expect that the dependence of cluster type probability on laser power
characterizes the free energy relationships between the sates measured.

Figure 4.2b shows the detected probability of the six-particle clusters that are most
common as a function of laser power. The combined probability is plotted in black. The total
probability increases with power. If the three states detected are the lowest energy states,
the combined probability should approach 1 as the laser power increases. The probability of
the triangle cluster similarly increases with increasing power. However, while the probability
of the chevron cluster increases from 25mW to 40mW, it decreases from 40mW to 50mW.
The parallelogram only occurs with significant probability at 50mWW. As power increases, the
ratio of probabilities of detecting the triangle compared to the chevron, i, also increases.

’ Pchev)

This suggests that the triangle cluster is lower in energy than the chevron, while the chevron
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is favored by entropy.

Figure 4.2c shows a comparison of the nearest neighbor distances in six particle 2D optical
matter clusters conditioned on lattice fitting error. The most probable nearest neighbor
distance for small lattice fitting error (black) is slightly smaller than the most probable
nearest neighbor distance for large lattice fitting error (red). This is related to the increased
nearest neighbor distance for clusters formed with the optical binding potential compared to
the LJ potential, as shown in Figure 4.1d.

To measure the prevalence of five-fold symmetric clusters compared to clusters with
hexagonal symmetry we developed two angular order parameters, 15 and 4. The five-fold
symmetric cluster is detected as a chevron by the cluster-type detection algorithm (with large
fitting error). For each frame where the chevron is detected we calculated the angle between
each pair of adjacent exterior particles with the vertex at the center of mass of the cluster for

15 and the central lattice site for vs. The definitions of 15 and )4 are

1 .
¢5 _ SZRQ[G%& 5]

1 ) (4.2)
Ve = 5 Z Re[e*™]

where 6; are the angles between adjacent exterior particles. The values for 15 and v for is 1
the ideal five-fold symmetric and chevron clusters, respectively.

Figure 4.2d the distribution of 14 versus 15 for an experiment performed at 50 mW. The
values of 95 for the ideal chevron cluster and 1 for the ideal five-fold symmetric cluster
are marked with red dashed lines. Concentrations of probability corresponding to both the
chevron and the five-fold symmetric cluster are visible. Figure 4.2d shows that both the
chevron and the five-fold symmetric cluster are stable states, although the five-fold symmetric

cluster is significantly more rare.
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Figure 4.3: Analysis of simulated optical matter clusters. (a) Distribution of inter-particle
separations conditioned on whether the cluster is ordered (black) or disordered (red). (b) De-
tected cluster-type probability for the chevron (red), triangle (blue), parallelogram (magenta),
and combined (black) in simulations at different trapping laser powers. (c) Ratio of probabil-
ity of the triangle cluster over the chevron cluster plotted vs power on a semi-logarithmic

Simulated observation of six-particle OM clusters

We performed coupled electrodynamics and Langevin mechanics simulations to compare
with our experimental findings in a controlled environment. Figure 4.3a shows shows a
comparison of the nearest neighbor distances in 2D six particle clusters conditioned on lattice

fitting error. As is the case for our experimental results shown in Figure 4.2c¢, the most
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probable nearest neighbor distance for small lattice fitting error (black) is slightly smaller
than the most probable nearest neighbor distance for large lattice fitting error (red).

Figure 4.3b shows a plot of detected cluster probability vs power. The magenta curve
corresponds to the parallelogram, the blue curve corresponds to the triangle, the red curve
is the chevron, and the black curve corresponds to the sum of all three cluster types. The
parallelogram is only detected at low powers. The probability of detecting the triangle
increases monotonically with power. The probability of detecting the chevron increases at
low power and then decreases at high power. These results (other than the parallelogram) are
consistent with our experiments. Figure 4.3c shows the ratio of the probability of detecting
the triangle and the probability of detecting the chevron as a function of power on a semi-
logarithmic scale. The plot falls on a straight line, indicating that the ratio of probabilities
has an exponential dependence in accordance with equation 4.1.

OM clusters are non-equilibrium systems because some of the optical forces involved
in their formation are non-conservative. Therefore, a particular configuration of an OM
cluster does not technically have an associated energy. However, the relative importance
of conservative and non-conservative forces has not been established, and several studies
treating OM clusters as equilibrium systems have shown reasonable results. We developed
a distortion energy parameter to evaluate how consistent our results are with a simplified
picture that only depends on pairwise potential energy. First we calculate the work done
separating a pair of optically bound particles from a starting distance ry to another distance
r. For six particles, this work curve is used to map each of the 15 pairwise distances r;; to a

particular energy W;;. We define distortion energy as

W = Z W (rij) — Whes (4.3)

where W, is a the total energy of a reference structure. We chose the ideal chevron with
a lattice constant equal to the wavelength of the trapping laser as our reference structure.

Since all optical binding forces are proportional to the intensity of the trapping laser, our the
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work curve only needs to be calculated at a single power and can be scaled with trapping

laser power.
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Figure 4.4: Distortion energy in optical matter clusters. (a) Distortion energy for symmetric
stretching of chevron (black) and triangle (red) OM clusters (b) Fully relaxed triangle and
chevron OM clusters (c) Distortion energy distribution of six-particle simulation performed
at 100mW for the chevron (blue)and triangle (red) clusters. The total is plotted in black.
(d) Distortion energy distributions at three different trapping laser powers.

Figure 4.4a shows a plot of W vs lattice constant for perfect chevron (black) and triangle
(red) clusters. Both curves show that dilation of the lattice constant is energetically favorable,
and that lattice constants of around 620nm minimize energy. We performed simulations with
no thermal fluctuations to find the local energy minima for the triangle and chevron clusters.
The results are shown in Figure 4.4b with particle positions marked in red and best-fit lattice
sites marked as black circles. The lattice constant of the fully relaxed chevron is 630nm
and the lattice constant of the fully relaxed triangle is 620nm. Figure 4.4b also shows that

the fully relaxed chevron and triangle clusters are slightly distorted compared to a perfect
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hexagonal lattice.

Figure 4.4c shows the distribution of distortion energy for a simulation conducted at
100mW . The black curve represents the distortion energy regardless of cluster type. The
distribution of the total distortion energy has a sharp rise followed by a slower decay. The
peak of the distribution is at slightly negative distortion energy, indicating that on average
the cluster finds low-energy configurations compared to the perfect chevron with a lattice
constant equal to the optical binding distance. The red (triangle) and blue (chevron) curves
represent the distribution of distortion energy conditioned on cluster type. The triangle
configuration is on average lower in energy compared to the chevron configuration, and the
increase in the curve at low energy is significantly more steep. Figure 4.4d shows histograms
of the total energy for simulations performed at 20mW, 60mW, and 100mW. As power

increases the average distortion energy decreases and the distributions become more skewed.
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Figure 4.5: Analysis of five-fold symmetric clusters in simulated data (a) Distortion energy
for symmetric stretching of chevron (black) and triangle (red) OM clusters (b) Distribution
of angular order parameters 5 vs 1. (c) Schematic showing the distances in the five-fold
symmetric cluster and the optical binding potential for comparison.

We have shown that the most common stable configurations of 2D OM clusters have
deviations from hexagonal symmetry. Figure 4.2d shows that a five-fold symmetric cluster is
also stable. Figure 4.5a shows the fully relaxed five-fold symmetric cluster. The measured
value of the angular order parameter 15 = 1 confirms that this configuration is five-fold

symmetric. The distortion energy measured for this configuration is very close to 0, meaning
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that it is higher in energy than the fully relaxed triangle and chevron configurations, but still
energetically accessible according to the distributions shown in Figure 4.4c-d. Figure 4.5b
shows the distribution of 5 vs 14 for a simulation at 100mW . Similar to the experimental
result in Figure 4.2b, there are concentrations of points near ¥5 = 1 and g = 1.

Figure 4.5¢ marks each of the three inter-particle separations present in the five-fold
symmetric cluster with red dots. Each separation has 5 instances in the cluster. The shortest
distance is from the center particle to each of the five outer particles. This distance is slightly
smaller than the optical binding distance. The second distance is the spacing between each of
the particles around the perimeter of the cluster. It is slightly larger than the optical binding
distance. The third distance is the distance across the cluster. This is slightly shorter than

the second optical binding distance.
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Figure 4.6: Analysis of large OM clusters (a) Fully relaxed 61-particle cluster with the
Lennard-Jones potential. (b) Fully relaxed 61-particle cluster with GMT interactions. (c)
Distributions of nearest neighbor distances for simulated hexagonal OM clusters with 1-7
layers from GMT-LD simulations (d) Fit lattice constants of fully relaxed OM clusters with
1-7 layers (e) Experimentally observed 21-particle cluster (f) Distribution of inter-particle
separations conditioned on whether the cluster is ordered (black) or disordered (red).

We performed simulations and experiments to show how the long-range periodic optical
binding interaction manifests in larger clusters. Figure 4.6a and b show fully relaxed 61-particle
clusters formed in simulations without thermal fluctuations for LJ and GMT interactions,
respectively. Both clusters relax to similar hexagonal configurations. However, in conjunction

with the results for smaller clusters, the relaxed optical matter cluster has a dilated lattice
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constant and significantly larger deviations from the lattice sites than the LJ cluster.

Figure 4.6c shows the distribution of nearest neighbor distances obtained from GMT-LD
simulations of hexagonal clusters performed at 300K with 1-7 layers of particles. For the
smallest cluster (7 particles), the nearest neighbor distance is around 630nm, similar to
the six particle case. As layers are added to the cluster, two trends are apparent. First,
the width of the nearest neighbor distance distribution becomes more narrow. Second, the
peak of the nearest neighbor distribution increases and appears to asymptotically approach
approximately 680nm. Figure 4.6d shows a plot of best-fit lattice constant versus number of
layers for non-thermal simulations. Similar to the simulation results at 300K, the best-fit
lattice constant increases and appears to asymptotically approach 680nm. This is a significant
shift from the optical binding distance.

Figure 4.6e shows a still frame of an experimentally observed a 20-particle OM cluster.
The cluster continuously transitions between ordered configurations on a hexagonal lattice and
disordered configurations. Figure 4.6f shows histograms of the nearest neighbor separation
conditioned on whether the cluster has small (black) or large (red) fitting error with respect to
the best fit hexagonal lattice. Similar to the 6-particle results shown in Figures 4.2-Figure 4.3,
the nearest neighbor distance is shifted toward longer distances when the cluster is closer to

an underlying hexagonal lattice.

4.1.4 Discussion

Our results highlight several key features of small OM clusters. While the most common
configurations resemble the ground states of clusters formed with short-range attractive
interactions, the long-range periodic nature of the optical binding potential breaks the degen-
eracy between clusters with an equal number of nearest neighbor 'bonds’ and energetically
favors clusters with an increased number of occurrences of distances near the second pairwise
optical binding site. The resulting power-dependence of cluster-type probability reveals

the underlying competition between entropy and energy with respect to the stability of a
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particular configuration.

At high trapping laser power the probabilities of the chevron and triangle configurations
account for almost all experimental clusters observed, so it is reasonable to assume that they
are energetically favorable compared to other configurations. However, Figure 4.2¢ suggests
that for both the chevron and triangle configurations stretching of the nearest neighbor
distance is energetically favorable. Explicitly, the rate of change of potential energy achieved

by stretching or compressing the configuration is

. pair

da ag Or; lr=r;

where a is the lattice constant of the cluster, r; are the unique inter-particle distances with
Ny—r, copies in the cluster, and UP*"(r;) is the pairwise optical binding potential. Equation 4.4
facilitates a qualitative understanding of the stretching of the nearest-neighbor distance shown
experimentally in Figure 4.1e and in simulation in Figure 4.2a. The slope of the pairwise
optical binding potential at r = A and r = 2\ is zero, and negative at = v/3\. Therefore, a
small stretching of the lattice constant is clearly energetically favorable for both the triangle
and chevron structures.

The quantitative dependence of the potential energy difference AU associated with
stretching the lattice constant by an amount Aa starting from ag can be obtained by
approximating the pairwise optical binding potential at the first and second optical binding
sites as harmonic with spring constants x; and ko and at v/3\ as linear with slope m.

Integrating equation 4.4 yields

A 2
AU(Aa) = (9%1 + 8/4:2)7& + 4v3mAa (4.5)
for the chevron and

2

A
AU(Aa) = (95 + 12@)7“ +3v3mAa (4.6)
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for the triangle. Equations 4.5 and 4.6 can be minimized to approximate the distance where
energy is minimized. Local fits of the optical binding potential at 100mW yield xk; = 100%,
Ko = 45%, and m = —10%, giving Aay,i, = .018um for the triangle and Aa,,;, = .027um
for the chevron.

The energetically favorable dialation of OM clusters does not fully account for the
lowest energy structures. Electrodynamics simulations performed in the absence of thermal
fluctuations (i.e. T = 0K) reveal that distortions compared to a hexagonal lattice are
energetically favorable. The amount of distortions present in the relaxed structures depends
on the shape of the cluster. The deviations of the triangle ground state structure from the
underlying hexagonal lattice are extremely small. The chevron features larger deviations
than the triangle, but they are still small compared to typical thermal fluctuations at room
temperature.

However, the stable five-fold symmetric cluster does not even lie on an underlying hexagonal
lattice. The five-fold symmetric six-particle cluster is stabilized by the long-range periodic

nature of the optical binding potential, and the inter-particle separations of that cluster are

consistent with Equation 4.4.

4.1.5 Conclusion

In this chapter we demonstrated the features of small clusters formed by the long-range
periodic optical binding potential. We found that compared to small clusters formed with the
single-well Lennard Jones potential, the probability of the most common structures for OM
clusters is power dependent and suggests that the dominant factor is competition between
energy and entropy. We found that the lattice constant in OM clusters dilates when the cluster
becomes more ordered, reminiscent of a water-like anomaly, and we created a simplified model
that elucidates the origins of this dilation for small clusters. We constructed a distortion
energy parameter that shows that while OM clusters are non-equilibrium systems where

electrodynamic coupling and many-body interactions cannot be discounted, the prevalence
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of structures of the system is well-described by treating the interactions as conservative
and pairwise. We showed that a five-fold symmetric cluster is stable and fairly common in
the plethora of structures formed. The details of both the first and second optical binding
wells contribute to the stability of the five-fold symmetric structure. Finally, we showed
that as OM clusters grow in size, the fully relaxed clusters have small distortions from a
hexagonal lattice who’s lattice constant approaches a value more than 10% larger than the
pairwise optical binding distance. Our work shows that many steady-state features of OM
clusters can be effectively explained by treating the interactions as pairwise and conservative,
1.e. with an optical binding potential. However, this perspective does not explain the
observed non-equilibrium phenomena and dynamics that have been previously reported such
as nonreciprocal forces [18, 19] and negative optical torque [38, 20, 21, 23].

Our findings are relevant to a number of other fields. There are both well-studied and
emerging systems with long-range interactions or interactions with competing length scales,
and the connection between the exact details of the potential and important phenomena
such as phase transitions are the subjects of past and current work|62, 63]. The advantage of
OM clusters compared to many other systems with multi-scale potentials is that the exact
coordinates of the system can be directly observed in experiments and transitions between
states are common enough to sample in a typical experiment while still being slow enough
to follow in detail. The presence of phenomena reminiscent of water-like anomalies and
the stability of five-fold symmetric clusters opens the possibility of directly observing phase

transitions with high spatial and time resolution.
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Chapter 5

Broken symmetry in optical matter

systems

5.1 Nonreciprocal forces in optical matter heterostruc-
tures

The following section is reproduced in part with permission from: Yifat, Yuval, Delphine
Coursault, Curtis W. Peterson, John Parker, Ying Bao, Stephen K. Gray, Stuart A. Rice, and
Norbert F. Scherer. Reactive optical matter: light-induced motility in electrodynamically
asymmetric nanoscale scatterers. Light: Science & Applications 7, no. 1 (2018): 1-7.

(©Springer Nature Limited

58



From Newton’s third law, which is known as the principle of actio et reactio, we expect the
forces between interacting particles to be equal and opposite for closed systems. Otherwise,
“nonreciprocal” forces can arise [68]. This has been shown theoretically in the interaction
between dissimilar optically trapped particles that are mediated by an external field [18]. As
a result, despite the incident external field not having a transverse component of momentum,
the particle pair experiences a force in a direction that is transverse to the light propagation
direction [18, 69].

In this section, we directly measure the net nonreciprocal forces in electrodynamically
interacting asymmetric nanoparticle dimers and nanoparticle structures that are illuminated by
plane waves and confined to pseudo one-dimensional geometries. We show via electrodynamic
theory and simulations that interparticle interactions cause asymmetric scattering from
heterodimers. Therefore, the putative nonreciprocal forces are actually a consequence of
momentum conservation. Our study demonstrates that asymmetric scatterers exhibit directed
motion stemming from the breakdown of mirror symmetry in the electrodynamic interactions
that are induced by the incident light.

The development of light-driven nanomotors, which are devices that convert light energy
into autonomous motion, has attracted tremendous interest [70]. Various optical methods
can produce rotational motion [71] or, using primarily photoreactive materials, translational
motion [72]. A promising direction toward creating such nanomotors has arisen from recent
theoretical work that predicted that dissimilar particles that are illuminated by an electro-
magnetic plane wave will experience a “nonreciprocal” net force [18, 69]. This self-induced
motion occurs in the absence of an applied external driving force in the transverse plane.
Rather, the transverse motion of an electrodynamically bound particle pair arises in reaction
to its asymmetric scattering; ¢.e. the dimer acts as an asymmetrical object. Electrody-
namics simulations demonstrated that these nonreciprocal forces vary with interparticle
separation |18, 69]. However, there has not been a direct and straightforward experimental

demonstration of this phenomenon.
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In this letter, we experimentally demonstrate this optical self-motility phenomenon with
optically bound dimers of dissimilar-size metallic nanoparticles (NPs), thereby rectifying
the deficiency. Our experimental findings are quantitatively supported by electrodynamic
simulations. In addition, we demonstrate optical self-motility beyond particle pairs by
generating and measuring the translational motion of asymmetrical nanoparticle assemblies.

Our experiments were performed using a standard optical trapping setup with a Ti:Sapphire
laser operating at A = 800nm [73, 20|. We used a tightly focused circularly polarized spatially
phase-modulated beam of light to form an optical ring trap [73, 74]. A schematic diagram of
the system is shown in Figure 5.1a. We trapped a mixture of 150-nm- and 200-nm-diameter
Ag NPs and measured their motion via dark-field microscopy at a high frame rate (290fps).
The particle positions were tracked |75, 76, 22| and their precisely determined positions were
used to calculate the angular position, namely, 6; of particles ¢ = 1,2 on the ring. The
central angle of the pair, which is denoted as 6., was defined as the mean angular position
of the particles (Figure 5.1b). The particle radii were differentiated by their scattering
intensity (and image size) on the array detector (see SI). We observed directed motion of each
electrodynamically interacting pair of dissimilar particles, which is termed a heterodimer,
toward the larger particle (Figure 5.1c and Supplementary videos S2 and S3). By contrast,
when two particles of the same size come into close proximity, thereby creating a homodimer,
they do not exhibit directed motion. These observations are in agreement with forces that we
calculated using Generalized Mie Theory (GMT, see SI), which are shown in Figure 5.1d. For
a stable optically bound pair [13, 15, 39] (i.e., particles that are separated by ~ \/n; in water,
where ny, is the refractive index) where Fy — F; = 0 the transverse force on the pair satisfies
F,. = Fy+ F; =0 only when the two particles have identical radii [18, 69]. The homodimer
results can be interpreted as stemming from the conservation of linear momentum due to
mirror symmetry between the particles. This symmetry is broken for the heterodimer. While
this interpretation would suffice for linearly polarized light, our use of circularly polarized

light introduces an equal and opposite (i.e., anti-parallel) force on each nanoparticle that

60



M2 A 3M2 2k

o

25
a = 21 N Heterodimer
™ 72 ) . [\
R,=75nm C ) x [ % )R,=100 nm z 151 — Pyt Fy
- \ & 1
—_— p
Fre=0 g 0.5
Heterodimer w 0
05
/
4 Homodimer
z 3 1
Homodimer 5 L0 0 — sz"‘le
~ Fa=0 b3 \ ~ T Fou= Fiy
i/ \\,‘ N u‘C‘: 1 ‘ AR 2N
Ry=100mam( = ) * | = |B,=100 nm 0 S
._// - 1 \ / NS
- \_/

300 600 900 1200 1500 1800
Separation [nm]

Figure 5.1: (a) A schematic diagram of the experiment: Two dissimilar particles in a ring
trap (top) experience a net force, namely, F,.; # 0 thereby resulting in observable motion.
Two identical particles experience F; = 0 (bottom). (b) An experimental image and the
coordinate system. The trap location is indicated by a dot-dashed yellow circle. The particle
locations in the trap are #; and #;. Their mean angular position is #.. The scale bar is
lum. (c) Image sequence of a directed motion event of a heterodimer. When 150nm and
200nm diameter Ag NPs are at optical binding distance, we observe directed motion toward
the larger particle. The time difference between the frames is 75ms and the scale bar is
500nm. (d)The sum and difference of the forces on both particles (calculated using GMT) as
a function of the separation for a heterodimer (top) and a homodimer (bottom). The particle
sizes and orientation are are identical to those in panel (a).

is directed perpendicular to the interparticle separation. These anti-parallel forces create a
torque on the dimer and cause it to rotate as a rigid body. However, full or free rotation was
not observed in our experiment because the ring trap is constricted in its radial direction. The
resulting optical gradient force counteracts particle displacements away from the maximal
intensity. Manifestations of this torque and its effect will be investigated in future work.
Figureb.2a shows representative time trajectories of . for the homodimer and heterodimers
whose images are shown in the insets. The motion of the pair is directed toward the larger
particle and, therefore, can move clockwise or counterclockwise around the ring, depending
on the heterodimer orientation. The motion of the heterodimer cannot arise solely from
asymmetric hydrodynamic interactions. Hydrodynamic interaction between particles cannot
shift the center of the distribution of the Brownian displacements of each of the particles in

the heterodimer away from zero displacement without a source of transverse momentum.
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Figure 5.2: (a) Example trajectories for a homodimer (black) and a heterodimer (color)
that are moving in counterclockwise (green) and clockwise (blue) directions. Distribution
of instantaneous angular velocities (gray dots) and the mean angular velocities of the
homodimers. (b-c) Distribution of instantaneous angular velocities (gray dots) and the mean
angular velocities of the (b) homodimers and heterodimers (c) as a function of interparticle
separation. The bin size is 300nm. The mean angular velocity value was calculated by fitting
a Gaussian function to the instantaneous velocity distribution. The error bars are the 3o
confidence intervals for fitted means of the distribution. Positive velocity is defined as motion
of the heterodimer toward the larger NP. (d) The calculated mean square displacement (MSD)
values for the homodimer data that are shown in (b) (black), the heterodimer data that
are shown in (c) (orange), and the subset of the heterodimer data where the interparticle
separation was < 1.2um. The exponents were obtained from a linear fit of the MSDs shown;
individual trajectories are shown in the Supporting Information. The error bars are 3o
confidence intervals.
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We repeated the experiment many times with various nanoparticles and, hence, homod-
imers and heterodimers (see the Methods section and SI for full details) and combined the
results. Figures 5.2b and ¢ show the angular velocity distributions and the mean angular
velocities of the dimer center, which is denoted w,, as a function of the interparticle separation
for the full homodimer and a heterodimer data sets. The instantaneous angular velocity,
which is denoted w,,,, is defined as the difference in the central angle of the pair in the

. . Ont1—0n . .
sequential frames n,n + 1 (i.e. Wen, = "5, where n is the frame number and At is the

time step). In an overdamped system, w, o< Fy;. To combine data with different heterodimer
orientations, we define positive velocity as the vector from the smaller particle toward the
larger particle. Heterodimers exhibit a positive mean angular velocity when the particles are
at optical binding separation 600 + 150nm and a negative mean angular velocity when the
separation is %nib (i.e. 9004 150nm). By contrast, the mean angular velocity for a homodimer

is zero for all separations. These observations are in accordance with our prediction from

GMT electrodynamics calculations (see Figure 5.1d). Both the change in the sign of the

Ry
np

mean velocity of particle pairs at optical binding and at % separations and the motion of
the pair toward the larger, thermally hotter particle, demonstrate that the driven motion is a
result of the electromagnetic field and not heating-induced self-thermophoresis [77] (see SI
for details).

Figure 5.2d shows the (average) mean square displacement (MSD) of 6, for the homo and
heterodimer trajectories. The exponent, «, of M SD(At) = DAt* (with diffusion coefficient
D and lag time At) for the homodimer is a = 0.96+0.02, as expected for a diffusing Brownian
particle [78]. For heterodimers, we observe o > 1, which indicates driven motion [79], and an
even greater value, namely, « = 1.3 + 0.03, when we only consider trajectories for which the
particle separation is less than 1.2um; that is, two optical binding separations. This value
was chosen to allow longer trajectories for analysis (see SI for more details about the number

of experiments and the trajectories that were analyzed).

Our findings are related to recent publications that report the calculation and measurement
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of the dynamics resulting from an asymmetry in the linear or angular momentum of the
light that is scattered by optically trapped objects [80, 41] in a tractor beam configuration.
We extended previous theoretical work, which considered particles in a linearly polarized
beam [18], to circular polarization to explain the self-motility of electromagnetically interacting
dimers (see SI for a detailed discussion). We also simulated the dynamics of Ag NP dimers
using GMT (81, 82]. Each dimer, which consisted of two spherical Ag NPs with radii R;
and R, that were separated by a distance d along the x-axis, was placed in a water medium
(np = 1.33) with an incident right-handed-circularly (RHC) polarized plane wave (of 800nm
vacuum wavelength). Forces were calculated by integrating the Maxwell stress tensor over
a closed surface surrounding the particles. This calculation enforces conservation of linear
momentum. Simulations were performed in which Ry was varied for three values of R; at
a separation of d = 600nm (Figure 5.3a). When Ry = Ry, F .. = 0 vanishes, as expected
for the homodimer. When R; < Ry, F,.t, > 0 causing the heterodimer to move in the +x-
direction. If Ry > R5 the net force is reversed and the heterodimer moves in the —x-direction.
In both cases the motion is in the direction from the small particle to the larger one.

Additional simulations were performed for fixed nanoparticle radii with varying separation
from d = \/2ny, to d = 3\/ny. Figure 5.3b shows the net force on the heterodimers as a
function of d:F',.;, > 0 at separations near 600nm and 1200nm, i.e., at stable optical binding
configurations; and F',,.;, < 0 for particle separations near 900nm and 1500nm, where the
heterodimer is also in an unstable configuration. Increasing the size of the larger nanoparticle
increases F'p,e; », but does not otherwise change the functional form of the force curves.

For our total system (particle and fields) to conserve linear momentum, the total mo-
mentum that is carried by the electromagnetic field that is scattered from the particle pair
must be equal and opposite to the induced momentum of the dimer. Figure 5.3c-f shows a
separation-dependent imbalance of angular scattering due to dipolar interference, i.e., more
light is scattered in one direction than in the other. For d = \/n, and d = 2\/n; (stable

optical binding configurations), more light is scattered in the —x-direction and the net force
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Figure 5.3: (a)The net force on the dimer, F, ., as a function of the radius of particle
2 with three different radius values for particle 1: 50nm, 75nm, and 100nm. The dashed
lines indicate the cases of the three homodimers, where F,.,, vanishes. (b) F. . vs.
separation for three heterodimers. (c-f) Angular scattering intensity in the xy-plane from
the Ry = 75nm and R, = 100nm heterodimer for various dimer separations d. The black
triangle indicates the center of mass (“CM”) of the angular distribution. We define the positive
x-direction to be pointing from the smaller particle to the larger particle. Stable optical
binding configurations (d = A, 2)) scatter more in the negative x-direction, whereas unstable
configurations d = 1.5\, 2.5)) scatter more in the positive x-direction

that acts on the dimer is in the +x-direction. Similarly, for d = 3\/2n;, and d = 5\/2n,
(unstable configurations; see Figure 5.1d), more light is scattered in the +x direction, which
corresponds to a net force in the —z-direction. This asymmetry in the far-field angular
scattering creates a force on the dimer, thereby setting it in motion. The simulation results
also confirm the switching of sign of the force observed in our experiments (Figure 5.2b) for
various particle separations. Note that asymmetric scattering has been reported for plasmonic
Yagi-Uda nanoantennas that were fabricated on a fixed substrate [83, 84].

An expression for the net optical force on a dimer (of spherical isotropic particles A and
B) in a plane transverse to the propagation of plane-wave illumination be obtained in the
point dipole approximation. The component of the electric field in the 7 direction at particles

A and B (at only the first order of scattering) [15] is

E\y=E\+ G PEja”; Ej=E,+G'Eja” (5.1)
where Ej is the incident electric field, a?t or o is the polarizability of particle A or B, and
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G%B are the elements of the dyadic Green’s function for the vector between particles A and
B. If we assume that the particles lie on the x axis, only the diagonal elements of GZ-A]-B are
non-zero. For a circularly polarized plane wave propagating in the z direction this leads to a

net force in the z direction F* on the dimer

Eg Ax B A _ Bx (9
Fretz = 7Re (a™a” — o« )%(Gm +Gyy) +
oG oG (5:2)
Ax|  B|2 A2  Bx TL % YY vk
(™| |* = || )( o G, + 9 ny)}.

This equation extends the treatment derived in [18] from particles trapped in a linearly
polarized plane wave to a plane wave with circular polarization. Equation 5.2 equals zero

4 = aPB in accordance with the experimental and simulation results presented in the

when «
main text.

Equation 5.2 also vanishes if the two polarizabilities are proportional by a factor of a real
number (e.g. a* = Ca®? where C is a real number). The first term in Equation 5.2 can be

rewritten to directly depend on the phase difference A¢ between the two polarizabilities a4

and ap. The first term can be rewritten as

E2 /7 1! 17 ! a
Fretn = TORe 2i % (VP — o a?) x a—(GmC +Gyy)l - (5.3)
x

where o' and o are the real and imaginary parts of «, respectively. Letting ¢4 = |aa| *

tcmfllm(o”‘)) and ¢p = |ap| * tanil—;f(a’g)) and f(R) = Re[i * 2 (Gqy + Gyy)] gives

Re(aa (aB

Free = By x f(R)|aallap|(cos(da)sin(dp) — sin(¢a)cos(9p)) = Eg * f(R)|aallap|sin(Ad).
(5.4)
The dependence of the net nonreciprocal force on the phase difference between the two

polarizabilities allows us to better understand the nature of the phenomenon. Figure 5.4a
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Figure 5.4: (a) Forces on particles A (blue) and B (red) in a homodimer (solid; left axis)
and heterodimer (dashed; right axis). The phase difference between the polarizabilities aq
and ap in the case of a heterodimer results in a phase shift of the force curves for each
particle. (b) Phase of the polarizability of a spherical silver nanoparticle at 800nm with
variable radius calculated with (black) and without (red) the MLWA correction.

shows the forces on two particles A (blue) and B (red) in a homodimer (solid; left axis)
where 74 = rg = 75nm and heterodimer (dashed; right axis) where r4 = 100nm and
rg = 7hnm. For the heterodimer, the force curves are shifted in opposite directions by

~ 40nm, corresponding to a phase difference of glooo’;% x 2w = 0.42 radians. The point at

600nm where the two curves corresponding to the homo-dimer cross is the first optical binding
site. They cross at a value of zero, reflecting the absence of a net force on the homodimer.
The two force curves still cross near 600nm for the heterodimer, but the point where they
cross is no longer at zero. This corresponds to the dynamic bound state with a non-zero net
force observed in the experiment.

Figure 5.4b shows the phase of the polarizability calculated using 2.6 with and without the
MLWA approximation [35]. For silver nanoparticles at 800nm, the phase of the polarizability
is very small regardless of particle size before the MLWA approximation is applied. However,
the MLWA approximation applies a significant size-dependent phase shift to the polarizability.
The imaginary contribution to the polarizability due to radiative damping outweights the

contribution due to the bulk dielectric properties of silver by several orders of magnitude.
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The phases of a 75nm and 100nm radius nanoparticle are marked on the plot. The phase
difference A¢ is consistent with the 0.42 radians calculated from the =~ 40nm shift of the
force curves.

So far, we have confined our study of nonreciprocal forces to pseudo-1D configurations.
We now turn our attention to two-dimensional clusters containing different types of particles.
Figure 5.5a-b show two possible configurations of a cluster containing 6 particles with
r = 7bnm and one particle with » = 100nm. In Figure 5.5a the small particles are placed
symmetrically around the large particle and the pairwise non-reciprocal forces (directed
toward the large particle) cancel. Figure 5.5b shows a cluster with the small particles
arranged asymmetrically around the large particle. In this case, the pairwise nonreciprocal
forces do not cancel, and the total force on the large particle is directed toward a gap in the
smaller particles. In this scenario, the sum of non-reciprocal forces will tend to push the large
particle out of the cluster.

In experiments with particles of mixed sizes, large particles are typically observed outside
of clusters made up of smaller particles. Figure 5.5¢ shows a still-frame from an experiment
with a mixture of 150nm and 200nm particles. In this experiment, a large particle is
observed orbiting around a cluster of smaller particles. The orbital motion is due to spin-
to-orbital angular momentum conversion induced by the symmetry of the optical matter
cluster [23|. Figure 5.5d shows a plot of all particle positions observed in the experiment,
with the large particle marked as red and the small particles marked as black. Clearly, the
red particle is excluded from the cluster of smaller particles. This suggests that in two
dimensions, non-reciprocal forces result in the self-sorting of particles based on the phase of
their polarizability.

Experimentally, it is difficult to observe the ejection of a large particle in mixed-size optical
matter experiments because once the large particle is on the outside of the cluster, it has to
work against the nonreciprocal forces to re-enter. However, we have found that bound dimers

of particles, which can form due to the compressive optical forces within the cluster, are also
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Figure 5.5: Nonreciprocal forces in 2D heterostructures. (a) Diagram of the pairwise
nonreciprocal forces in a symmetric 2D optical matter heterostructure. The sum of the forces
is 0. (b) Diagram of the pairwise nonreciprocal forces in a asymmetric 2D optical matter
heterostructure. The sum of the forces points toward a gap in the structure. (c) Experimental
image of a 2D optical matter heterostructure. A large particle is excluded from a cluster
of smaller particles. (d) Scatter plot of the detected locations of the large (red) and small
(black) particles in the experiment shown in panel (c).
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Figure 5.6: Formation and escape of a dimer from a 2D optical matter cluster (a) Experi-
mental image of a 2D optical matter structure with several large objects on its periphery.
Red circles mark two particles that come together to form a dimer. (b) Experimental image
of a 2D optical matter structure at the moment where a dimer begins to form. The dimer
is marked by a red circle. (c¢) Experimental image of a 2D optical matter structure after a
dimer has been ejected. The dimer that recently formed is marked by a red circle.

ejected from optical matter clusters. Figure 5.6a-c shows a sequence of images demonstrating
the formation and ejection of a dimer from a 2D optical matter cluster. Figure 5.6a shows a
2D optical matter cluster with bright particles on the periphery. Two particles in the cluster
that fuse to become a bound dimer are marked by red circles. In Figure 5.6b the the two
particles come in close proximity due to thermal fluctuations. The two particles form a dimer
and are ejected from the cluster. The dimer is marked by a red circle in Figure 5.6¢c. The
number of particles counted before and after the event shown in Figure 5.6a-c reflect a net
loss of one particle, consistent with the formation of a bound dimer.

We also performed optical matter experiments with a mixture of 150nm gold and silver
nanoparticles. The experiments were recorded on a color camera so that we could differentiate
between gold and silver particles. A still-frame from the experiment is shown in Figure 5.7a.
The phase of the polarizability for gold and silver nanoparticles with variable size is plotted

in Figure 5.7b. The phase difference is much smaller, and consequentially the magnitude of
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Figure 5.7: 2D mixed gold-silver optical matter array. (a) Experimental image of a mixed
gold-silver optical matter array. (b) Phase of the polarizability of spherical silver (black)
and gold (red) nanoparticles with 800nm illumination for varying radius. (c¢) Distribution of

positions for particles detected as gold. (d) Distribution of positions for particles detected as
silver.
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non-reciprocal forces are expected to be much smaller. Figures 5.7c-d show the distributions
of particles detected as gold (c) and silver (d) (see Appendix A for detection method). There
is no clear bias for either of the particles to be excluded from the cluster.

In this section, we have experimentally demonstrated driven motion of both Ag NP
heterodimers and intrinsically asymmetric scatterers in optical ring traps, namely, 1-D
plane wave fields. Our electrodynamic simulations indicate that the net force on a dimer is
accompanied by a net asymmetric scattering in the opposite direction. Therefore, we attribute
the driven (reactive) motion of asymmetric optical matter systems to the conservation of
linear momentum. Fundamentally, this self-motility follows from Noether’s theorem and
the conservation of total momentum of particles and fields for systems with broken mirror
symmetry [85]. Analytical equations in the point-dipole approximation showed that the
non-reciprocal forces arise from the phase difference in the polarizability of dissimilar particles
in a hetero-dimer. The phase difference in the polarizability of the particles results in a
shift in the force curves of the two particles. The magnitude of the shift in the force curves
is consistent with the phase difference induced by radiative damping and described by the
MLWA approximation [35].

Generating directed motion at the nanoscale is challenging [86] due to the overdamped
nature of dynamics at low Reynolds number and the Brownian forces that are antithetical to
orientational control of nanoscale objects. Optical trapping offers a variety of solutions to
these challenges since it enables precise control over the positions and orientations of trapped
particles. Although systematic driving forces can be applied via the use of phase gradients,
apparent nonreciprocal forces, such as those that are explored above, create self-motile
particles that do not require specific chemical environments or chemical fuels [87] or complex
structures [88]. Therefore, optically controlled asymmetric nanoparticle assemblies, such
as those that are reported here, can be used as active colloids [87] and fully controllable
“nanoswimmers” for research in soft condensed matter and biophysics. In two dimensions,

nonreciprocal forces tend to separate particles in optical matter clusters based on size. Recent

72



work has demonstrated the sorting of particles in optical matter systems using time-varying
fields [89, 90]. Our results, by contrast, show that it is possible to achieve passive sorting
in simple steady-state optical beams. The results shown in Figure 5.6 demonstrate that
nonreciprocal forces can even be used to create a passive optical matter 'factory’, where light
is used to gather single particles, and once the particles fuse to form a dimer, the same light

induces nonreciprocal forces that push the dimer to the periphery of the cluster.
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5.2 Controlling the dynamics and optical binding of nanopar-
ticle homodimers with transverse phase gradients

The following section is reproduced with permission from: Peterson, Curtis W., John Parker,
Stuart A. Rice, and Norbert F. Scherer. Controlling the dynamics and optical binding of
nanoparticle homodimers with transverse phase gradients. Nano letters 19, no. 2 (2019):

897-903. (©American Chemical Society
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5.2.1 Introduction

Particles in optical traps [91, 92| interact with one another via scattered electromagnetic
fields, and assemble into stable structures known as Optical Matter [13, 14] (OM). OM is
commonly compared to conventional chemically bonded materials because OM tends to
adopt periodic lattice structures [36, 16, 17, 40]. Since OM assemblies are maintained by
a constant flux of energy through the system, broken symmetry in the constituents of OM
assemblies can result in nonequilibrium driven dynamics [82, 93, 68, 94, 18, 69, 95, 96, 19].
Nonequilibrium dynamics in OM assemblies can also arise from the intrinsic momentum
of light [97, 98, 99, 20, 100, 71| or transverse phase gradients [101, 102, 103, 40, 73, 104].
However, the emergent forces and stable configurations arising from interacting particles in a
phase gradient have not been explained. Relevant recent work involving multiple particles in
tractor beam experiments has shown that unexpected changes to the sign and magnitude of
optical forces emerge when the trapped particles are close enough to interact via the trapping
light [41], but there has not been a detailed theoretical description of this effect.

In this letter we explore the pairwise interactions between 150nm Ag nanoparticles in
transverse phase gradients. We demonstrate experimentally and theoretically that the effects
of phase gradients are manifested in different ways depending on their strength. For small
phase gradients the net force on a pair of identical particles exhibits a separation-dependent
periodic modulation compared to isolated particles. By contrast, large phase gradients
break the symmetry of the interaction between particles. As a result, the location, strength,
and number of stable optical binding locations of a pair of electrodynamically interacting

nanoparticles depends on the strength of the incident gradient.

5.2.2 Forces from phase differences

The electromagnetic interaction between particles with separations on the wavelength scale
is greatly influenced by the phases of the incident field and the field scattered from other

nearby particles [15]. A schematic of two particles, A and B, separated by a distance R in the
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Figure 5.8: Electrodynamically interacting particles in a linear phase gradient. (a) Schematic
of two electrodynamically interacting particles A and B in a transverse phase gradient, gf;.
(b-d) Electrodynamic forces on particles A (black) and B (red) along the inter-particle axis
for 8—¢ =0, g_j; 0.025k, and g—f; = 0.25k, where £k = and k = 27m/\ is the magnitude of
the Wavevector of the incident electromagnetic field. Blue arrows point to optical binding
locations (minima in the inter-particle energy landscape) and green arrows point to unstable
equilibrium separations (maxima in the inter-particle energy landscape). Note that the
position of the arrows changes significantly for (d) compared to (b) and (c).
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presence of a linearly varying phase gradient % is shown in Figure 5.8a. Setting the phase
of the incident field at particle A (¢%) to zero, ¢P = Rg—f%. The phase of the field scattered

from A to B and from B to A is ¢54 = kR and ¢ = kR + R%

55> respectively. Then the

phase difference between the incident and scattered fields at particles A and B is

A¢A:¢;“CB—¢?:R[k+%];
Ao =6~ oF = B[k~ oo

(5.5)

Equation 5.5 suggests two different regimes of interaction between particles A and B in
the presence of a phase gradient: an "interference regime" for small phase gradients where
Apa =~ App =~ kR, and an "asymmetric regime" for large phase gradients where A¢4 # A¢p.
Due to the form of Equation 5.5, it is convenient to introduce a dimensionless parameter
that describes the strength of the phase gradient & = g—g /k, where k = 27” is the magnitude
of the wavevector and A is the wavelength of the incident field of the trapping laser. See the
Supporting Information for further discussion.

Following the analysis of Dholakia et al. [15], the total force on Particle A along the R

direction in the point-dipole approximation (see the Supporting Information) is

—AB
—Ax aG —B

—A
1 wAx % — Bx—=ADB* 0E
Fﬁ = §R€ (OCOEO + (OCO)QEO G )a_RO + ‘Oéo’ZEO WEO (56)

where oy is the polarizability of the identical isotropic particles, * denotes complex conjugate,
Egl and EOB are the incident electric field (vectors) at particle A and B, and EAB is the dyadic
Green’s function that propagates the scattered field from particle B to particle A. The force
on particle B can be obtained from Equation 5.6 by exchanging the labels A and B.
Figures 5.8b-d show the calculated values of the force in the R direction (i.e. along the

inter-particle axis) on particles A (red) and B (black) for phase gradients of £ = 0, £ = 0.025,
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and £ = 0.25. See the Supporting Information for forces calculated for several other values of
&. Figure 5.8b for € = 0 shows that the net force F),.; = F4 + Fp is zero for all separations,
which occur at integer multiples of \. With & = 0.025 (Figure 5.8¢) F,,; is generally non-zero,
but the optical binding locations are not appreciably changed. However, for £ = 0.25 the
difference between A¢ 4 and A¢p is significant and the optical binding locations are shifted

away from R = mA\, where m = 1,2, 3, ... is an integer.

5.2.3 Small phase gradient regime

As an experimental realization of the simple scheme depicted in Figure 5.8a we trapped
PVP-coated 150nm spherical Ag nanoparticles (NPs) with a cw Ti:Sapphire laser in water
(A = 800nm in vacuum; 600nm in water). The trapping laser beam was modified by a spatial
light modulator SLM and was focused by a 60x objective to form an optical ring trap as
previously described [73, 105] (see the Supporting Information). The power of the laser
entering the microscope objective was 100mWW, from which we estimated a local electric field
strength of 10°V/m in the ring trap. An azimuthal phase gradient [102| that depends on the
topological charge of the beam, [, can be added to the ring. The effective strength of the
phase gradient, &, can be increased by decreasing the size of the ring. Therefore, different
combinations of the integer number of phase wrappings [ and the ring radius r allow for a
large number of different phase gradients to study. An image from a video of the experiment
is shown in Figure 5.9a. The ring trap that the particles are confined to is indicated as a green
dashed circle. The actual ring trap is not observed due to optical filtering. Inter-particle
separations are calculated as Cartesian separation so that they are relevant to Equations 5.5

and 5.6. However, particle velocities are calculated in cylindrical coordinates (r,0), v = "AAf,

to account for the curved path that the particles follow.
The net force on an electrodynamically interacting homo-dimer, F,,.; = Fa+ Fg, determines
the dynamics of the particle pair. Following from Stokes’ law [66] and the overdamped

conditions of the experiment, the average velocity of the center of mass of the homo-dimer,
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Figure 5.9: Experimental image and separation dependence of the driving force for small
phase gradients. (a) A darkfield microscopy image of three 150nm Ag NPs (white spots)
in a ring trap (green dashed circle). Also shown are the cylindrical coordinates employed
in the analysis. Separations are measured as Cartesian distance as shown in the inset. (b)
Conditional PDFs of v, for Ry = A (black) and Ry = 1.5\ (green) with £ = 0.11. The
velocity correlation k(vq,v9) at each separation is shown next to the corresponding curve. The
PDF of single-particle velocities for particles separated by > 3um from their nearest neighbor
is shown in orange. (c) Plots of (v.n,) as a function of R for £ = 0.021 (black), £ = 0.064 (blue),
and & = 0.11 (red). The horizontal dashed lines are the average single-particle velocities as in
panel (b). (d) Calculated values of the net force on a homo-dimer via Equation 5.6 (solid)
and GMT (dashed) in the R direction for phase gradients of & = 0.021 (black), & = 0.064
(blue), and & = 0.11 (red).
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(Vem), in the absence of interactions is the same as the velocity of an isolated particle , v;s,,
under the same optical conditions. Hydrodynamic interactions require a relatively small
correction to the velocity that decays monotonically with R for our experimental conditions
(see the Supporting Information). [106] The predicted separation between the particles and
the coverglass surface (i.e., the upper boundary of the sample cell) is approximately one
particle radius|73], and the resulting modification of the Stokes’ drag force is expected to be
less than a factor of two.[107]

Figure 5.8¢c, for small phase gradients, suggests that a drifting electrodynamically bound
pair will exhibit an enhanced net force when the separation is R = \; that is, et > 2F 4 iso-
When the separation is R = 1.5\ the pair will be unbound and exhibit diminished net force;
that is, Fjet < 2F4,s. Since the separation between particles in a homo-dimer fluctuates
due to Brownian forces, we determine the separation dependence of v, from conditional
probability distribution functions (PDFEs) P(ven|Ro,d) = P(ven|R € [Ro — 0, Ry + §]), i.e.
the probability distribution of v, given that R is within a certain range +4 of a particular
value Ry. Figure 5.9b shows the conditional PDFs of v, for Ry = A and Ry = 1.5\ with
d = 0.125pm and & = 0.11 (as determined by the radius r of the ring trap and the topological
charge [). Note that ¢ is much larger than the error in particle localization. The PDFs have
a Gaussian shape where the mean value (v.,) depends on the deterministic driving force.
The width of the distribution depends both on the diffusion coefficient of the individual
particles and the degree to which their motion is correlated. Gaussian fits to each PDF yield
(Vem) = 49um/s for Ry = A (black) and (ve,) = 24pum/s (green) for Ry = 1.5\, matching
the behavior predicted for small phase gradients, i.e. Figure 5.8c. The correlation of v; and
v, K(v1,v2), shows that the homo-dimers move as bound pairs when Ry, = A, while their
motion is uncorrelated when Ry = 1.5\. The correlated motion at Ry = A\ is a consequence
of optical binding and is the reason the Gaussian distribution for Ry = A is wider than the
one for Ry = 1.5\. Optical binding distances in small phase gradients has been discussed at

length in Figliozzi et al.[73| (see the Supporting Information). Figure 5.9b also shows the
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single-particle velocities v;4, for £ = 0.11 (orange). The single-particle velocity distribution
is wider compared to v., because it represents a single random variable as opposed to an
average of two.

Figure 5.9c¢ shows plots of (v.,) as a function of Ry for different strengths of the phase
gradient: £ = 0.021 (black), & = 0.064 (blue), and £ = 0.11 (red). The velocity is measured
at each separation by fitting the conditional PDF with a Gaussian function; the mean of
the fit is the plotted value and the error bars are the 95% confidence interval of the mean.
The horizontal dashed lines are the average single-particle velocities for each phase gradient.
The single-particle driving force increases linearly with phase gradient [73, 102]. Figure 5.9¢
shows that the driving forces for all three phase gradients are enhanced (F,; > 2F4 ;5,) near
Ry = X, and diminished (F,¢; < 2F4,5,) near Ry = 1.5\ in agreement with Figure 5.9b. A
periodic behavior is more apparent for larger phase gradients; a second peak in (v.,,) is visible
near Ry = 2\ and a second minimum is visible near Ry = 2.5\ for £ = 0.064 and £ = 0.11.

We evaluated Equation 5.6 for phase gradients matching our experimental values to
explain the separation dependence of the driving force. Figure 5.9d shows calculated values
of the net force on a homo-dimer along the inter-particle axis for phase gradients of £ = 0.021
(black), £ = 0.064 (blue), and & = 0.11 (red). The most apparent feature in these curves
is the periodic modulation of the net force with maximum and minimum values at integer
and half integer multiples of A, respectively. It is also apparent that the strength of the
modulation increases with the magnitude of the phase gradient.

We also performed more rigorous generalized Mie theory (GMT) calculations (see the
Supporting Information for details). In addition to accounting for the finite size of particles
and infinite orders of scattering, our GMT simulations accurately model the experimental
ring-trap geometry and account for possible deviations from Eq 5.5 for large phase gradients.
The net forces from our GMT simulations are shown as dashed curves in Figure 5.9d. The
GMT results agree with our theoretical point-dipole calculations, validating the model in

Figure 5.8 and Equations 5.5 and 5.6. In water at 20C', Stokes’ law predicts that a spherical
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150nm particle will be pushed at 35um/s by a constant 0.05pN force. 35um/s is closest to
the single particle velocity for & = 0.11 in Figure 5.9¢, and we can see from Figure 5.9d that a
constant force of 0.05pN is reasonable for this phase gradient. This agreement, within better
than an order of magnitude, shows that our theoretical parameters (e.g. Fy = 10°V/m) are
in reasonable agreement with experiment. Therefore, Figures 5.9 ¢ and d can be compared
directly using the conversion factor 0.1pN = 7T0um/s.

The results shown in Figure 5.9 can be understood as interference effects that are a
consequence of the symmetric part of Equation 5.5; i.e., Ap4 = App =~ kR. In the limit of no
phase gradient this phase difference gives rise to optical binding through the second term of
Equation 5.6 [15]. For small phase gradients, optical binding still occurs at separations where
kR = 2mm, but there is now a separation-dependent net force on the homo-dimer. The result
is a driven bound pair where the motion of the two particles is correlated. The first term in
Equation 5.6 can be interpreted as a periodic modification of the single-particle driving force.
The QOE; part of the first term of equation 5.6 corresponds to the "single-particle" driving
force, while the (ag)QESE* part of the first term corresponds to a separation-dependent
modification of the driving force in the presence of another particle. When kR = 27m
the two contributions are in-phase and constructive interference enhances the driving force.
Conversely, when kR = 7(2m + 1) destructive interference diminishes the driving force. Since

¢

the modified driving force is proportional to 77, larger phase gradients will give rise to larger

modulation of the total force, as shown in Figure 5.9c and d.

5.2.4 Large phase gradient regime

For large phase gradients, i.e. where the phase gradient becomes comparable to the magnitude
of the wavevector of the trapping light, k, we expect that the symmetry of the interaction
between particles is broken, as described by Equation 5.5. We performed experiments in this
regime. The black curves in Figure 5.10a-c are experimentally measured PDFs of inter-particle

separations with £ = 0.23 (a), £ = 0.29 (b), and £ = 0.34 (c¢). The maxima of probability
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Figure 5.10: Phase gradient dependence of optical binding for large phase gradients. (a)-
(c) Measured inter-particle separation PDFs (black curves, left axis) for £ = 0.23, £ =
0.29, and £ = 0.34. The electrodynamic interaction potential is also plotted in units of
kpT (red curves, right axis). The vertical dashed lines mark the first two minima in the
electrodynamic interaction potential. (d)-(f) Measured inter-particle separation PDFs from
(a)-(c) replotted as —In(PD) (black curves, left axis) to allow direct comparison to the
corresponding electrodynamic interaction potentials (red curves, right axis).

density are significantly shifted from the traditional locations of optical binding (i.e. optical
binding at R = mA).

To compare the experimentally measured PDFs to theoretical predictions made from
Equation 5.6 we define the electrodynamic interaction potential, W, as the work needed to
separate two particles along the inter-particle axis from some minimum separation R; to
another particular separation Ry (see the Supporting Information for discussion.)

Ry
W(Ry, Ry) = — /R (FB — F2) dR'. (5.7)
1

Although optical forces are generally non-conservative |65, 108], W is a meaningful energy
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coordinate along a 1-dimensional path. Stable optical binding locations correspond to energy
minima and unstable equilibrium separations correspond to energy maxima.

The red curves in Figure 5.10a-c show plots of W as a function of separation starting
from Ry = 300nm for £ = 0.23, £ = 0.29, and £ = 0.34. W is plotted in units of k, 7" where
k; is Boltzmann’s constant and 7" = 298 K to emphasize that optical binding is comparable
with thermal energy under our experimental conditions. The vertical black dashed lines in
Figure 5.10a-c are located at the first two energy minima for each corresponding energy curve.
There are peaks in the experimental PDFs near the minima in energy (W), indicating optical
binding. A more direct comparison between the experimental PDFs of inter-particle separation
and W is possible through the relation G(z)/k,T = —In(P(x)) where G(x) is a potential of
mean force and P(z) is the PDF of the coordinate x observed at temperature 7'. Figures 5.10d-
f show the experimental PDFs from Figures 5.10a-c replotted as —In(PDZF'). There is good
agreement between our theoretical predictions and experimental measurements, although
there are some deviations. There are two important factors that affect the correspondence
between our theoretical prediction for W and our experimentally measured PDFs. First,
the experiment is carried out at room temperature, while our analytical electrodynamics
calculations do not account for thermal motion of the particles. Second, the relationship
between a potential of mean force and a corresponding probability distribution function is
only valid for equilibrium systems, while our experiments are non-equilibrium. Therefore, we
represent the results as —In(PDF’) as opposed to calling it a PMF.

Figure 5.11 further demonstrates the dependence of the energy landscape W on the phase
gradient. Figure 5.11a shows the experimental inter-particle separation PDF for £ = 0.34
(black). The distribution is well fit with a sum of two Gaussian functions (red) up to 1.2um.
The experimentally measured optical binding distances are defined as the mean values of
each of the two Gaussian terms in the fit, while the theoretical optical binding locations
(dashed lines) are the positions of the mimima in the energy curves shown in Figures 3a-c.

Figure 5.11b shows a direct comparison between the experimental and theoretical optical
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Figure 5.11: Quantitative comparison of theoretical and experimental optical binding
locations. (a) Fit of experimental inter-particle separation PDF (black) for £ = 0.34 with a
sum of two Gaussian functions (red) up to R = 2.0\. (b) Comparison of theoretical (dashed
lines) and experimental (black squares connected by solid lines) optical binding locations.(c)
Analytical (solid) and GMT (dashed) electrodynamic interaction potentials for £ = 0 (black),
¢ =0.11 (blue), and & = 0.23 (red). The GMT curves were shifted down by 0.5 k,T" for clarity.
The energy required to escape the first optical binding location (toward larger separation) for
¢ =0 and ¢ = 0.11 is shown by the black and blue double-headed arrows, respectively.
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binding locations, where the error bars are the 95% confidence intervals for the mean values of
the fitted Gaussians (Rop) (black squares connected by solid lines). The agreement between
theory and experiment is very good, although the peaks the optical binding locations near
1.5 are slightly shifted toward smaller separations than theory for all three measured phase
gradients.

Figure 5.11c shows a comparison of W (R) calculated with Equation 5.6 (solid lines) and
our GMT simulations (dashed lines) for no (£ = 0; black), moderate (§ = 0.11; blue), and
large (£ = 0.23; red) phase gradients. The energy required to escape the first optical binding
locations (toward larger separation) for £ = 0 and £ = 0.11 is shown as the black and blue
double-headed arrows, respectively. In the limit of no phase gradient the energy minima
are at integer multiples of A\, as expected. For the intermediate value of ¢ = 0.11 the first
optical binding location is at R = A, but the work curve becomes increasingly irregular with
increasing separation. The red curve corresponds to £ = 0.23 and is identical to the red curve
in Figure 5.10a. The location of optical binding and the magnitudes of features in the energy
curve are very different from the limit of no phase gradient due to the highly asymmetric
interactions predicted from Equation 5.5. In particular, the first two optical binding locations
occur at R ~ 0.8\ and R = 1.5\, where the latter is in fact an unstable equilibrium separation
for small phase gradients. The more rigorous GMT simulations show excellent qualitative
agreement with the theoretical model, but the barrier heights are generally slightly smaller.

The results shown in Figures 5.10 and 5.11 demonstrate the symmetry-breaking effects of
strong phase gradients. Whereas optical binding locations are relatively unchanged for small
phase gradients, the energy landscape that embodies optical binding is dramatically changed
by large phase gradients. In the context of Equation 5.5, the separation dependences of the
phase difference at particles A and B diverge from one another. As £ becomes a significant
fraction of 1 the effects of this splitting becomes dramatic, as shown in Figure 5.8d. As a
result, the typical periodic length-scale associated with optical binding (for no phase gradient

as in Figure 5.8b) is no longer relevant. While the net force on a homodimer in the large
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phase-gradient regime is still modulated with distance, the distance-dependence is no longer
periodic and the magnitude of the modulation is proportionally smaller due to the splitting
in Equation 5.5 (see Supporting Information for example).

Our study has fundamental and practical significance in the field of optical manipulation
and self-assembly [109, 96, 17|. In this letter, we addressed a fundamental question concerning
the formation of optical matter arrays: How is optical manipulation of multiple particles
different from optical manipulation of a single particle? Transverse phase gradients are a
tunable parameter in optical trapping experiments that allow specifically tailoring the optical
forces on a (trapped) particle. We have shown that these forces are dramatically altered by
the presence of another nearby particle. For small phase gradients, the net force is modulated
by a separation-dependent interference effect. When the phase gradient becomes strong
enough, the symmetry of the interaction between nanoparticles is broken and the distances
at which stable optical binding occurs change. Our findings show that tuning the phase of
the incident light allows accessing a broader range of stable structures, thereby enhancing

the versatility of optical binding as a means for self-assembly.

5.3 Other types of broken symmetry

In this section we will discuss two additional conditions in which symmetry is broken in optical
matter systems, and show that in both cases the broken symmetry results in a net force. The
first condition is for identical but anisotropic particles. Recent computational work [95] has
shown that pairs of nanowires in optical traps experience a configuration-dependent net force.
We will show that in the point-dipole approximation this net force is a direct consequence of
anisotropic polarizability. The second condition is where the polarization of the incident light
can break the symmetry between identical particles in an optical matter cluster. This effect
has been observed in the literature [82], but a mechanism was not proposed. We will show

that the net force arises due to electrodynamic coupling between the particles in the cluster.
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5.3.1 Anisotropic particles

Anisotropic particles are represented by a polarizability tensor @ in the point-dipole approxi-
mation [34]. For an ellipsoidal particle aligned along one of the principal axes @ has three
diagonal elements, a,,,;, and the off-diagonal elements, ., are zero. When the particle is

rotated in the (z,y) plane by an angle 6, the new polarizability tensor is given by

@ = Q(0)@Q ()" (5.8)

where 5(9) is the rotation matrix corresponding to an angle #. In this section We will only
consider rotations in the (z,y) plane. If the particle is rotated by an arbitrary angle, the
off-diagonal elements ., are no longer zero. Starting from Equation 2.8 and allowing one
order of scattering, the electric field at the location of two ellipsoidal particles labeled A and

B is

E(TA) =E;(ra) + E(TA,TB)(ZXBEI(TB)
(5.9)

(rg) =E(rp) + 5(TB,7'A)3AEJ(TA)

&=

where E; is the incident electric field. Inserting the expression for the field at 7 4 into equation
2.5 gives the following expression for the time-averaged electrodynamic force on particle A in

the z; direction:

1 == LOE;(r
(L) = 3Re|[@Brlray 2L

—w—=, OG(ra,rp)= =
aAEI(rA)—(aA B)aBEI(TB) .

If we assume that the pair of particles lies in the (z,y) plane, and that the incident electric
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field is a plane-wave propagating in the z direction, the first two terms in Equation 5.10
become zero for forces in the x and y directions. The force on particle B is given by exchanging
the labels A and B. If we further assume that the incident light is polarized along the x

direction Equation 5.10 simplifies to (written element-wise)

E? aGw T )
(F ==L > Y Re {ai’;l 2 gi@ ’"B)afmvw . (5.11)
TI=T,Y,2 Tm=2T,Y,2 !

Equation 5.11 shows that new forces arise for anisotropic particles. If the polarizabilities

A

:A s . .
o and a only have diagonal elements, only the term corresponding to a;,

and of,
survives. Assume that the pair of particles is oriented along the y axis. In this configuration,
%’w = 0 and subsequently (F;') = 0. However, if a’ and @ have off-diagonal
elements, then other elements in the dyadic Green’s tensor become relevant and a force in
the y direction is possible.

The net force in the z; direction, obtained by inverting the labels A and B, and adding

the results to Equation 5.11. Using the fact that, due to symmetry,

G(ra,rs) =G(rp,ra) (5.12)
and o .
8@(’!‘,4,7‘3) 86(1",4,1"3)
= — ) 5.13
The net force on a pair of anisotropic particles is
E? oG (ra,rp)
A By _ &7 Ax z,zm \T A B
R 3D DI D e
T]=T,Y,2 Ty ==T,Y,2
Bx 8Gfl?lal'm (rA? TB) A (514>

T,x] or. T, T
i

2
o EI I 6G$l7xm(rA,rB) *( A’ B N A B’/ )
9 m o0 Oy Yz — Yy Yoy )+
7

T)=T,Y,2 Tm=T,Y,2
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Figure 5.12: Orientation-dependent net forces on dimers of gold nanorods. (a) Net force in
the = (black) and y (red) directions for a pair of rods rotated by angles # and —6 to form a
symmetric pair. (b) Net force in the z (black) and y (red) directions for a pair of rods where
only one rod is rotated by an angle 6.

Equation 5.14 is a generalization of Equation 5.2 to include anisotropic polarizabilities.
Non-reciprocal forces can arise either in a heterodimer (i.e. 554 # EOB) or in a homodimer,
where the anisotropic particles have different orientations (i.e. 581 = EOB but E? F# Ef).
Figure 5.12 shows the net force on a dimer of nanorods (gold; 100nm x 50nm) that are
separated by 600nm for variable relative orientations and polarization in the y direction. In
Figure 5.12a the rods are rotated by angles of § and —6 so that the pair remains symmetric.
The net force in the z (black) and y (red) directions are plotted. The net force in the x
direction is zero regardless of the orientation of the rods. The net force in the y direction
is zero when the rods are aligned with the z and y axes. When 0 < § < 7/2 there is a net
force in the —y direction. In Figure 5.12b one rod is rotated by an angle of # and the other
is stationary. As 6 increases, the net force in the x direction increases toward a maximum at
¢ = m/2, while a smaller net force in the —y direction decreases for 0 < 6 < 7/4 and then

increases back toward zero for 7/4 < 6 < /2.
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5.3.2 Coupling-induced symmetry breaking

Nonreciprocal forces can also be the result of symmetry breaking that is induced by electro-
dynamic coupling depending on the symmetry of the cluster and incident field. Consider
a cluster of 3 identical spherical particles labeled A, B, and C, each with polarizability «,
situated arbitrarily in the transverse plane of plane-wave illumination. Allowing for one order

of scattering, the polarization and electric field gradient at the location of particle A is

Pa=a(l+aG(rarp) +aGrare)

0B (a:(rA,rB) N aE(rA,rC))E (5.15)

Inserting Equations 5.15 into Equation 2.5 and summing over all particles yields the net force

on the trimer

)+ (Fa) 4 (B =5 o, o,
aG(TB,’I"A) 8G(TB,’I"0) 6@(1‘0,1'3) 8@(’[‘0,1",4) E 4
31‘1 axz axz ax’b
Y e = 0G(ra,r0)  0G(rp,ro) - 16
T o'E G (TA,'I"B) axz al‘z + ( : )
=* a:(TB,TA) 8E<TC7TA)
G (TB,"'C)( 83:1 8% +
— 0G(ra,rs) 0G(re,rs)\]—=
G (rc,rA)( oz, Az, E|.

The terms in Equation 5.16 that are proportional to |a|? are two-body terms resulting from
the component of the polarization due to the incident field and the field gradient due to the
scattered field. The terms that are proportional to |a|*a* are three-body terms resulting
from the polarization due to the light scattered by a neighboring particle, and the field

gradient due to the light scattered from a different neighboring particle. While the two-body
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Figure 5.13: Angle-dependent net forces on trimers of silver nanoparticles. (a) Net force in
the x and y directions on a trimer with the angle 6 from the central particle to the two outer
varying from 0 to 7/3 with polarization along the x direction. (b)Net force in the z and y
directions on a trimer with the angle # from the central particle to the two outer varying
from 0 to 7/3 with polarization along the y direction.

terms cancel due to the symmetry of the dyadic Green’s function (Equations 5.12-5.13), the
three-body terms do not generally cancel. In other words, electrodynamic coupling can induce
nonreciprocal forces between identical spherical particles in optical matter systems.

Figure 5.13 shows calculations of the net force on a cluster of three identical spherical
particles in the point dipole approximation for z (a) and y (b) polarized incident light. The
trimer starts in a linear configuration along the z axis, and is bent by a variable angle 8 until
it forms an equilateral triangle (at = w/3). The net force in the x direction is zero for both
polarizations and all angles. The net force in the y direction is 0 when 6 = 0, which is a
consequence of the fact that r4 —rg = rp — r¢ for this configuration. As 6 increases the net
force in both the x and y directions is generally non-zero.

In this section we have seen that nonreciprocal forces can occur in optical matter clusters
of identical particles if their polarizabilities are orientation-dependent, or as a three-body
force induced by electrodynamic coupling. The multitude of ways that broken symmetry
results in nonreciprocal forces and other strange phenomena in optical matter systems reflects

the inherently non-equilibrium nature of optical matter systems. The work in this section
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approaches the problem of broken symmetry in a simplified context. However, in a real
system the consequences of the types of nonreciprocal forces demonstrated here are only

starting to be explored.
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Chapter 6

Rearrangement dynamics in optical

matter systems

6.1 Direct visualization of barrier crossing dynamics in a
driven optical matter system

The following section is reproduced with permission from: Figliozzi, Patrick, Curtis W.
Peterson, Stuart A. Rice, and Norbert F. Scherer. Direct visualization of barrier crossing
dynamics in a driven optical matter system. ACS nano 12, no. 6 (2018): 5168-5175.

(©American Chemical Society
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6.1.1 Introduction

Chemical and physical processes are commonly represented in terms of ensemble averages
that provide a link between microscopic and macroscopic dynamics. While the microscopic
details of a process may vary from one realization to another, one can obtain an ensemble
averaged macroscopic description of the process in the form of a kinetic rate law|66, 110].
These statistical interpretations of a process do not provide detailed descriptions of individual
particle motion and various deviations from an averaged macroscopic mechanism. The
development of new techniques that allow chemical and physical processes to be studied on
an individual event or molecule basis, together with growing realization of the ubiquity and
variety of important processes that are determined by single-molecule motion, have brought
"single-molecule" measurements to the forefront of the physical sciences|[111, 112, 113, 114,
115, 116, 117, 118|. The many repetitions of identical experiments that characterize single
particle (e.g. molecule) measurements replace ensemble averages with probability distributions
and families of trajectories that can be used to link the single-molecule and macroscopic
properties of a process and separate the common and the fluctuating contributions to the
particle dynamics[119, 120].

Microscopic visualization of particles in an optical trap and the consequences of their
manipulation with external fields has had a large impact in single molecule biophysics|[121,
122]. Whereas most such studies use a typically micron-scale visualized particle (or AFM
cantilever)[123] to report on or manipulate the molecule(s) it is attached to, nano- and meso-
scale particles can be systems of investigation in and of themselves|17, 40, 114, 124, 20, 71].
Both classes of experiments, i.e., reporting on cognate molecules or the particle systems
themselves, can be readily repeated under uniform conditions, allowing kinetic data to be
extracted. The high level of spatial and temporal detail combined with the potential to
obtain a statistically significant number of repetitions in optical trapping experiments makes
them an ideal system in which to study the link between the microscopic and macroscopic

dynamics and kinetic behavior of a system.
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In the present paper, we study the physical passing of particles in an optical ring trap
and do so for different driving forces. The positions and motion of single Ag nanoparticles
are measured by (darkfield) digital microscopy; precise tracking of each particle from frame
to frame allows their dynamics to be studied with nanoscale detail. The large number
of Ag nanoparticle trajectories measured allows obtaining a detailed kinetic description of
the process. Our studies involve plasmonic nanoparticles that are confined to quasi-one-
dimensional optical ring traps and subjected to a controlled driving force. These particles feel
a variety of forces that can all be leveraged to change the energy landscapes and driving forces.
The dynamics of particle passing, i.e. a sign change in the orientation of a particle pair, are
influenced by the combined effect of the electrodynamic forces confining the particles to the
ring trap[15], the random thermal forces expressed as Brownian motion of the particles|78§],
and the electrodynamic driving force that propels the particles around the ring[102].

The present experiment involving the visualization of a driven optical matter system is
designed to mimic the steps of a bimolecular reaction|[125]. The highly detailed experimental
data allowed us to recognize and validate a two-step mechanism analogous to an exchange
reaction or the Michaelis-Menten scheme for the particle passing process involving formation
of an encounter complex surrmounting an energy barrier, and progressing through a transition
state. The first step is found to depend on the driving force in the ring, while the second
step involves a thermally activated process without a driving force dependence. We created a
stochastic microscopic model that reproduces statistical distributions measured using input
data from a large number of independent trajectories in order to describe the second step.
The advantage offered by our system is that it allows full and explicit characterization of
particle dynamics vs. the dynamics that are presumed to take place on molecular size and

timescales|126].
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6.1.2 Ag nanoparticle trapping and passing

Ag nanoparticles were trapped and driven in a transverse plane over a glass coverslip using
an optical ring trap as described previously by Figliozzi et al.[73]. Briefly, an 800 nm laser
was reflected from a spatial light modulator (SLM) acquiring a suitable phase-encoded profile
i.e. Bessel function and an azimuthal phase gradient to create an optical ring trap when
focused by a microscope objective (Olympus 60x water). The power of the optical beam after
the SLM and before the back aperture of the objective was 40 mW. A strong scattering force
caused the 150 nm diameter Ag nanoparticles to be held close to the glass surface balanced by
electrostatic repulsion of the charged particles from the charged glass surface. An azimuthal
phase gradient in the optical ring trap caused the nanoparticles to be driven[102] around the
trap along a quasi-one-dimensional path. (Figure 6.1a). The driving force in the optical ring
trap was controlled by the topological charge [ (the number of 27 phase wrappings in one
complete circuit around the ring) of the ring trap, which was varied from [ =1 to [ =5 in
the present experiment.

Figure 6.1a shows an image (raw data) of two Ag NPs in the trap. The arrow indicates
their direction of directed motion. The laser power was lower in the present experiments
compared to optimal trapping conditions in our previous study|73| to reduce the strength of
the radial confinement of the Ag NPs. As a result, particles in the trap travel around the
ring at a slower rate and have a wider radial distribution due to the diminished transverse
intensity gradient force. They can undergo Brownian fluctuations in the radial direction and
can pass each other due to radial position fluctuations, as shown in the inset to Figure 6.1a.
The trajectories of the Ag nanoparticles in the optical ring trap are naturally described in a
polar coordinate system, r and #, as shown in Figure 6.1a. The polar coordinates for each
experiment were calculated by using a least squares routine to fit a circle of radius rg to the
positions of all Ag NPs accumulated over a single experiment for a given value of [127].

We define a passing event using a relative coordinate system, Ar = ro—r; and Af = 0, —6,

where the subscripts 1 and 2 refer to the particles that are initially leading and trailing,
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Figure 6.1: A pair of Ag nanoparticles in an optical ring trap and representative passing
events that can occur. (a) Two Ag nanoparticles in a ring trap (dashed circle) with radius
rg = 4.5um. The inset shows part of an image recorded at a slightly later time where one of
the particles has fluctuated off the ring. The coordinates r» and # are also shown in a. The
driving force is in the counter-clockwise direction. (b,c) Two examples of passing events (each
at L =5 and ~ 0.1s in duration) with the changing color on the particle path representing
time propagation. In (b) the leading particle fluctuates away from the radius r( of the ring
trap, while in (c) the trailing particle fluctuates from the ring trap and simultaneously passes
the leading particle. (d,e) Trajectories of the passing events shown in (b) and (c), respectively,
in terms of relative coordinates Af and Ar.

respectively. A passing event occurs when there is a sign change in Af. In general, a particle
pair takes a random path through the two dimensional coordinate space (Ar, Af) during
such an event. Figure 6.1b shows the trajectories of both particles in a pair during a passing
event. The chronological evolution of each particle’s motion is encoded in color (red to yellow
and magenta to blue for the trailing and leading particles, respectively). In this example the
leading particle (in the direction of the applied driving force) fluctuates radially away from
the mean radius ry of the ring trap while the trailing particle remains near ry and passes
the lead particles driven by the applied optical force. A second passing event, along with
individual particle motions, is shown in Figure 6.1c. Note that in this example the trailing
particle passes around the leading particle.

The trajectories of the passing events shown in Figures 6.1b,c are shown in terms of
(Ar, Af) in Figures 6.1d and e, respectively. The trajectories of passing events always start

with Af < 0 and progress to Af > 0 because the relative coordinate system is designed with
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the leading particle at the origin. The beginning and endpoints of the trajectory in (Ar, Af)
are indicated in Figure 6.1d and e by the time points ¢y and ¢, respectively.

If each passing event is defined as a particular trajectory through the two-dimensional
coordinate space (Ar, A#), the dynamics of the process will depend on the probability
P(Ar, Af) of finding the system at a specific point in this space. Figure 6.2a shows this
probability distribution for data aggregated over all experiments. We see that it is most
likely to find Ar near zero for A6 > 0.1rad, which corresponds to a chord length of 600 nm.
This distance is associated with the expected separation for the electrodynamic interaction
known as optical binding at \/m A Aincident/M,|13, 15, 16] where n is the index of
refraction of the medium (n = 1.33 in water). However, it becomes extremely unlikely to
find Ar near zero for smaller values of Af due to electrostatic and electrodynamic repulsion
between the charged Ag NPs[128]. Moreover, the particles never overlap in the images
(videos) meaning they do not pass over each other in the axial direction of laser propagation.
Therefore, for Af to be near zero at least one of the particles must be displaced off the ring
(away from rg), and the passing process is 2-dimensional.

Figure 6.2b shows a subset of the total probability density function (PDF) Ppyssing(Ar, AB)
obtained by selecting only trajectories from a 30 frame window centered on each passing event.
Applying this condition does not change the qualitative features of the PDF. The mean paths
of the passing events (aggregated over all experiments, which were separated depending on
whether Ar is positive or negative at A = 0, are shown in red. These mean paths emphasize
that the Ag NP passing process involves changes in both Ar and Af. Figure 6.2c shows
a scatter plot of the points (Ar, Af) within a 30 frame window with the passing event at
the center with the mean path through (Ar, Af) separated according to low (blue), medium
(orange), and high (green) driving forces. The driving force appears to have, at most, a small

effect on the mean path the system takes through (Ar, Af) during a passing event.
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6.1.3 Mechanism for passing

We have discussed the nanoparticle passing process in terms of quantities averaged over many
trajectories. Because we have access to individual trajectories, however, it is possible to
deduce a mechanism or mechanisms by which the passing occurs. Since Ar must deviate from
0 for a passing event to occur, it is important to determine the typical radial fluctuations of
both particles involved in the event. Figure 6.3a show two likely mechanisms for the passing.
In scheme I, the leading particle momentarily jumps away from the mean radius ry of the
trap and the trailing particle then passes it. Conversely, in scheme II, the trailing particle
jumps away from the mean radius ry of the trap while simultaneously passing the leading
particle. In both of these schemes, only one particle fluctuates radially away from ry. The
trajectories shown in Figure 6.1 b and ¢ respectively reflect schemes I and II.

Figure 6.3b shows a conditional separation of the PDFs of particle pair deviations from
the ring trap at the time of passing combining events measured for all values of . The PDFs
are separated into two groups corresponding to the particle in the pair that is closer to ry and
the particle that is further from ry at the time of the passing event. The particle closer to rq
is approximately Gaussian distributed in Ar, while the particle further from the trap has no
probability density at ry. This result indicates that in the majority of passing events only
one particle fluctuates radially while the other remains confined to the mean radius, rg, of
the ring. Figure 6.3c shows a different conditional separation of the particle radial deviation
PDFs into two groups corresponding to the particles in the pair that are initially leading
and trailing. This alternative condition results in slightly different PDFs compared to those
shown in Figure 6.3a, implying that either the leading or trailing particle can be the one to
fluctuate radially away from r(, as depicted in schemes I and II in Figure 6.3a.

To estimate the prevalence of each schemes shown in Figure 6.1a, we re-mixed the PDFs

in Figure 6.3b in different proportions according to the relationship
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Figure 6.2: Probability density in relative coordinates (A#, Ar) and most probable paths
for passing. (a) Total probability density over all experiments for all driving forces. (b)
Conditional probability density in 30 frame windows centered on each passing event, over all
experiments for all driving forces. (c) Scatter plot of points obtained from the same condition
used in (b), with colored lines depicting the mean path of particles through (A, Ar). Note
that A6 = 0.13rad = 600nm chord length so the regions of high point density correspond to
optical binding.
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Figure 6.3: Two possible passing schemes and their related probability distributions. (a)
Two possible schemes by which passing events take place. Scheme I is related to Figure 6.1b
where the leading particle fluctuates away from the ring trap while the trailing particle moves
past it. Scheme II is related to Figure 6.1c where the trailing particle fluctuates away from
the trap and passes the leading particle. (b) PDFs of particle pair deviations from the ring
trap during passing events for all values of [ for the particle closer to (blue) and further from
(orange) ro at the time of passing. (c) PDFs of particle pair deviations from the ring trap
during passing events for all values of [ for the particle trailing (blue) and leading (orange) just
before the event. (d) Remixing of the PDFs in (b) via Equation 6.1 with Cj; = Ca = 0.85

and 012 = 021 = 0.15.
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P{ =CnP + CoPs
(6.1)

PQ/:CQIP1+022P2

where P, and P, are the PDFs of the particles closer to and further from ry in Figure 6.3b,
respectively, while P| and P; are the PDFs for the trailing and leading particles. The C;; are
the coefficients that determine the proportion of the mixing. Mechanistically, the diagonal
elements in C;; correspond to scheme I, while the off-diagonal elements correspond to scheme
II. Figure 6.3d shows the histograms obtained when C7; = Cy = 0.85 and C'5 = Cy; = 0.15,
which gives the best match between Figure 6.3c and d. Therefore, the passing events occur

85% of the time via scheme I and 15% of the time via scheme IT .

6.1.4 Electrodynamic interactions and potentials of mean force

We now turn to the question of how passing events depend on the electrodynamic interactions
between particles, and the electrodynamic potential created by the ring trap. One important
type of electrodynamic interaction between trapped particles is optical binding [15, 13|, which
results from the incident electric field interfering with the scattered electric field from each
particle. In our experiments the polarization state of the trapping beam is horizontal in the
laboratory frame aligned along the 0 to 7 coordinate of the ring shown in Figure 6.1a. The
optical binding interaction is strongest between nanoparticles oriented perpendicular to the
polarization.

We simulated the optical binding potential in the optical ring trap by starting from the
pair-wise electrodynamic potential[17] obtained from finite difference time domain (FDTD)
simulations and extending these results around a circle of the same radius as the experimental
ring trap and weighting it by the measured probability of finding a particle at each 6 position
on the ring (this probability is modulated by varying speed in different sections of the ring for
linear polarization|73]). Figure 6.4a shows this estimated optical binding potential for a pair

of Ag NPs around the ring trap. The optical binding interaction is most likely to stabilize a
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particle position away from the ring near 7/2 and 37/2, and the interaction is symmetric
about these points.

The actual tightness or looseness of single Ag NP confinement created by the optical
ring trap in the radial direction is visualized in Figure 6.4b, which shows all single particle
trajectories in an experiment (I = 5). It is apparent that deviations from r, are much
more common near 27 /3 and 57/3 compared to 7/3 and 47 /3. The reason for diminished
confinement in these regions is a slight astigmatism introduced to the phase function on the
SLM used to create the optical trap[129, 29]. Therefore, recording the 6 locations of all the
passing events allows ascertaining whether passing behaves as a concerted rotation of the
optically bound particle pair or as spontaneous radial fluctuations in the regions of reduced
confinement.

The distribution of passing events with respect to # shown in Figure 6.4c¢ indicates
that passing events have maximum probability density near 27/3 and 57/3 and minimum
probability density near m/3 and 4x /3. This distribution is clearly dominated by the reduced
radial confinement effect depicted in Figure 6.4b compared to the electrodynamic binding of
Figure 6.4a. Another experiment performed with clockwise (reversed) rotation (I = —5) shows
a very similar #-dependent probability of passing to that shown in Figure 6.4c. This rules
out any possible memory-dependent effects on the location of passing. Therefore, somewhat
surprisingly given the obvious presence of optical binding in Figure 6.2¢, the single particle
dynamics are much more important than interactions between particles with regard to the
passing mechanism.

The #-dependent probability of passing reflects a barrier to the passing process whose
height depends on the angular position of the particles in the ring. We can construct a
potential of mean force (PMF) in the A6 coordinate in the vicinity of a particular value of 0,
denoted as 6y by considering the conditional probability distribution P(A8|6 € [0y — 6, 6y +4));
i.e., the probability distribution of the angular separation A# given that the # position of a

particle pair is within some range +0 of #,, the point of interest on the ring. Figure 6.4d
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shows the conditional PMF with 6, at the centers of the red (high passing probability) and
purple (low passing probability) regions in Figure 6.4c. The increased rate of passing near
27/3 and 57/3 compared to 7/3 and 47 /3 corresponds to a barrier that is about 1.5 kgT
lower in the regions of high passing probability compared to the low probability regions.
Since this free energy landscape more closely resembles Figure 6.4b compared to Figure 6.4a
it is consistent with the second step in the mechanism for passing depending primarily on
the single-particle potential of the optical trap rather than on interactions between particles.

It is possible that at high enough laser intensity, a different mechanism that depends on
electrodynamic interaction between particles could become dominant. The single-particle
trapping potential will become steeper in the radial direction at higher laser intensity, thus
reducing the probability of large enough fluctuations from r( to allow passing events to happen.
Conversely, optical interaction between particles will be stronger. However, exploring such a

crossover is beyond the scope of this paper.

6.1.5 Analogy to bimolecular mechanism

Since the particles are being driven around the ring trap, elucidation of the mechanism for
particle passing requires considering the effect of the electrodynamic driving force. Figure 6.5a
shows the rate of events (per second) for driving forces increasing from [ =1 to [ = 5. Since
the data are collected from many experiments that have different numbers of particles n
(i.e. m = 2 — 6 particles in the ring at the same time), the rates are normalized by the

combinatorial number of possible particle pairs in a given experiment

@ - m%zy (6.2)

where n is the number of particles in a given experiment. Figure 6.5a shows that the total
event rate increases with with driving force. An increase in reaction rate with increasing

driving force is predicted by both Arrhenius (or transition state) theory [130] and Kramers
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Figure 6.4: Factors that can affect the passing event location and barrier height changes
for the passing process. (a) Simulated optical binding potential obtained by extending the
pair-wise electrodynamic potential for a particle with fixed optical polarization to the pair on
a circle of the same radius as the experimental ring trap, and weighting it by the probability
of finding a particle at each 6 position on the ring. These 6-dependent electrodynamically
preferred orientations of Ag nanoparticle pairs are shown schematically. (b) Superposition
of single Ag NP trajectories for a representative experiment. Radial fluctuations away from
ro are much more likely at 27/3 and 57/3 compared to /3 and 47 /3. The red and purple
shading denotes regions of high and low passing event probability, respectively. (c) Probability
density of passing events vs. angular position on the ring trap. (d) Potential of mean force

(pmf) in coordinate A# in areas of high (red) and low (purple) probability of passing event
occurrence.
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theory|[131]. However, since these theoretical descriptions were formulated for simple reaction
mechanisms with single steps, it is necessary to establish a reaction mechanism to understand
the increase in the "reaction" rate in our experiments.

To do this, we introduce a two step process analogous to a bimolecular exchange reaction

or the Michaelis-Menten scheme

A+ B=AB=AB*-=B+ A (6.3)

where A + B are the two separated particles in their original (spatial) order, AB is the
particle pair once they are within a certain distance (i.e. an optically bound pair that is
analogous to an encounter complex), AB* is the structure at the transition state, and B + A
is the separated particle pair after the passing event with exchange of orientational order. In
this mechanism, the total rate depends both on the formation of a particle pair (encounter
complex), and an activated process to progress from the encounter complex to the reordered
pair (product). The rate of the first step, forming the complex, should depend on the total
number of particles, and we have accounted for it being proportional to the number of
possible particle pairs by using equation 6.2. In general, each particle is driven around the
ring at slightly different speeds because of the slight polydispersity of our nanoparticle sample
(d = 148nm + 5nm). The differential speed of each particle contributes to the total rate of
the first step. The particle-sizing measurements are detailed in the Supporting Information
of Sule et al.|20]

Although it is likely that the first step of the mechanism equation 6.3 is drive force-
dependent, it is not immediately obvious if the second step also has a driving force dependence.
To address this, we consider the kinetics of the second step more closely. Figures 6.5b-d shows
the distance traveled by a particle pair (within a certain threshold distance) from formation
to completion of the passing event, and Figures 6.5e-g show the corresponding distribution of
event times from pair formation to completion. The event time distributions show that once

the particle pair is formed the process follows an exponential rate law that is not affected by
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driving force.
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Figures 6.5e-g show exponential fits of experimentally measured lifetime distributions,
which indicates the second step is a first order kinetic process described by

AP(AB) .

where k is the characteristic rate constant of the process and P(AB) is the survival probability
of the encounter complex. It is important to note that the distribution of At¢; does not
appreciably change with drive force, and consequently At; were sampled from the same
distribution obtained by averaging over results for all driving forces. To test the hypothesis
that once the encounter complex is formed the kinetics of the process no longer depend on

driving force, we created a simple stochastic model for travel distance

dy(v(1), D, At;) = N(v(l)At;, 2DAL) = v(1)At; + /2DALN(0, 1) (6.5)

where d; is the distance traveled in a particular realization of the process, v is the driving
force-dependent drift speed of a particle in the ring trap measured from experimental data,
D is the diffusion constant of a particle in the ring trap, N(0,1) is a random variable with a
normal distribution with zero mean and variance of 1, and At; is the lifetime of the encounter
complex, which is an exponentially distributed random variable. We ran 10000 realizations
of this process. The resulting PDFs, shown as red curves in Figures 6.5b-d, closely match our
experimental data, validating our simple stochastic model.

While the total rate of the passing event process increases with driving force, our simula-
tions show that once the encounter complex, AB, is formed the driving force-dependence
disappears. This implies that the driving force-dependence is contained completely in the
first step in equation 6.3. In the language of chemical reactions, increasing the driving force
has an effect analogous to increasing the frequency of encounters between reactants (e.g.
enzyme and substrate) without affecting the energetics of the ensuing reaction. This is in

contrast to theories commonly employed to predict the effect of a driving force on the rate of
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Figure 6.5: Kinetics of passing events and relation to a two-step stochastic mechanism.
(a) Rate of passing events vs. driving force. (b-d) Distance traveled by a particle pair
from formation to completion of the passing event. The solid red curves are theoretical
histograms simulated via equation 6.5. (e-g) Distributions of event times from start to finish
corresponding to the events in (b-d). Fitted rate constants are given in each panel.
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a reaction, where the driving force induces a tilt in the free energy surface that lowers the
effective barrier of activation of the reaction[130, 131].

The mechanism of our Ag NP passing event process has now fully taken shape. In the first
step two particles must approach each other to form an encounter complex. This encounter
complex is at an optical binding separation of a particle pair. In fact, the dense collection of
points in Figure 6.2c at A8 = —0.12rad reflects this initial complex. The rate of formation
of the encounter complex depends both on the number of particles (through equation 6.2)
and the drive force at as seen in Figure 6.5a. Once the optically bound encounter complex is
formed, completion of the subsequent activated process obeys an exponential rate law. We
conclude from Figure 6.3 that typically only one particle fluctuates radially away from the
ring trap, and most (85%) of the time the front particle is the one which undergoes this
fluctuation. From the propensity for only a single particle to fluctuate radially away from rq
and the kinetic data in Figure 6.5, it is apparent that the rate of the first order kinetic process
is simply due to thermal forces pushing one of the particles out of the trap, as suggested in

the schemes of Figure 6.3.

6.1.6 Barrier Crossing and Recrossing

High time and spatial resolution in optical trapping experiments allows for determination
of detailed trajectories through a barrier region, as seen in Figure 6.6 a and b. While most
passing event trajectories resemble those shown in Figure 6.1 and Figure 6.6a,b, that is,
single barrier crossing events, we also observe barrier recrossing. Figure 6.6c,d shows a
passing event that involves multiple crossings before the process is complete. A number of
trajectories exhibit such barrier re-crossing, implying that a more accurate analysis of this
electrodynamically driven nanoparticle system should include a correction to transition state

theory.
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Figure 6.6: Barrier recrossing from detailed trajectory information available in optical
trapping experiments. (a,c) Two trajectories that show significant waiting times in coordinates
(AB,Ar). (b,d) Trajectories from (a,c) in coordinates (t,Af). Barrier recrossing about Af = 0
is evident in (d).
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6.1.7 Conclusion

Transition paths in thermally activated processes such as protein and DNA folding have
only recently been related|[118|, but the reaction coordinate was inferred from the position of
beads connected to the molecule of interest using a handle (e.g. ds-DNA). The response of
both of these extraneous portions of the the experimental system are convoluted with the
molecular signal of interest, complicating the experimental analysis[132]. In experiments
where the system of interest is directly observed, dynamics and the reaction coordinate are
also directly determined, eliminating these complications. Optical trapping experiments have
the potential to explore questions regarding non-equilibrium transport at a single-particle
level due to their ability to shape both conservative and non-conservative force fields.

We studied individual passing events of pairs of Ag nanoparticles in an optical ring trap
with a controlled adjustable driving force. Our detailed and precisely localized trajectory
data measured over many realizations of this process along with stochastic model simulations
allowed identification of a detailed mechanism casting this problem in close analogy with
bimolecular exchange reactions in solution. The passing event process is also analogous to
a Michaelis-Menten scheme with an intermediate complex followed by barrier crossing as
described by equation 6.3 but where the rate of reaction (passing events) increases with
driving force. Our detailed trajectories reveal a two-step mechanism where the driving
force increases the rate of the first step, while the second step is independent of driving
force. Surprisingly, the second step is thermally activated barrier crossing of the encounter
complex formed in the first step. The exponentially distributed survival probability of the
encounter complex implies that the second step is a first order kinetic process, i.e. there is a
constant probability density at any given time that the reaction will progress to completion,
so the two-step characteristic of the passing process is crucial to the explanation of this
type of driving force-dependence. Furthermore, the decay rate of this survival probability
does not depend on the azimuthally directed driving force, which suggests that the reaction

coordinate for this step lies significantly in the radial (Ar) direction that is orthogonal to the
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0 and A6 aspect of passing. Finally, the level of detail available in nanoparticle visualization
experiments allowed direct observation of barrier recrossing. However, we do not treat this
phenomenon in detail in this paper.

The present paper is the initial report of this approach to study barrier crossing phenomena.
Many variations and interesting situations are envisioned for future studies. Optical traps
can be shaped with high precision to design conservative and nonconservative forces, and
strong inter-particle forces related to optical binding can be utilized to study the effects
of interaction in these potentials. Therefore, experiments can be designed to extend our
approach to other chemical and physical processes by tailoring specific forces and interactions

to reflect the behavior in an analogous system or to examine idealized theoretical scenarios.

6.1.8 Methods

Experimental The experiments were preformed with 150nm diameter Ag nanoparticles
(NanoXact Silver KJW1882 0.02 mg/ml) held and driven in an optical ring vortex as previously
described|39, 73]. The 800nm beam from a Ti-Sapphire laser is phase modulated with a
spatial light modulator (SLM; Hamamatsu X10468-02) to produce the optical ring vortex
[27, 39]. The experiments used ~45mW beam power going into the back aperture of the
microscope objective. Citrate capped 150 nm Ag nanoparticles (NanoComposix) are diluted
200x in Nanopure water and placed into a sample chamber as described previously|[73|. The
scattering force of the laser applied to the nanoparticles pushes them very close to the
glass-water interface of the top coverslip of the fluid well. The nanoparticles are held in
one plane perpendicular to the optical axis due to a balance of the scattering force and the
electrostatic repulsion the particles have with the electrically charged glass surface [73|. The
Ag nanoparticles are trapped and driven around the optical ring with a drive force determined
by the number of azimuthal phase wrappings, [, applied in the phase modulation pattern
on the SLM. The motion of the Ag nanoparticles is visualized via darkfield microscopy and

captured with a sSCMOS camera (Andor Neo) at 110 frames per second. A variety of different
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experiments were performed at different I’s with each one consisting of 45s-90s (5000 to
10,000 frames) of video. In order to resolve distinct particle shapes without blurring or
distortion a camera exposure of 2 x 1073s to 6 x 10~*s was used when capturing video.
Particle Tracking Particle trajectories were extracted from the video data using the
Python particle tracking software package TrackPy [127]. A cluster tracking algorithm in
TrackPy is used to accurately track the nanoparticles even when two or more nanoparticles
become part of a cluster [133]. The optimal parameters for each experiment were determined
by hand and were set so that the number of particles identified in each frame is consistent
with the number of particles in the experiment. Frames where the focus drifted were removed
from particle tracking as the particle tracking algorithm would find false positives in the
de-focused image of the particles. However, this method of particle localization uses the
center-of-mass method which can lead to significant errors especially when particles come
in close proximity, and the SPIFF algorithm was used to alleviate these errors|76, 22|. A
refinement algorithm was used that improves the accuracy of the positions of the particles by
performing a non-linear least-squares (NLLS) fit of a Gaussian function to each distribution
of pixel intensities for each nanoparticle. This allows extracting the particle positions with

much greater accuracy especially in the case of overlapping features.

6.2 Collective coordinates in optical matter systems

We saw in Section 6.1 that the process of one particle passing another in a driven ring trap
is analogous to a two-step chemical reaction. In this section we will show how the concept
of a reaction coordinate can be generalized to include structural transformations in optical
matter systems. Figure6.7 shows a common structural transformation for a 2D optical matter
cluster, namely the transition from the triangle configuration (a) through a transition state
(b) and to the chevron configuration (c).

To determine whether the transition shown in Figure 6.7 typically follows a well-defined
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Figure 6.7: Structural transition from the triangle cluster to the chevron cluster (a) Triangle
cluster. The distance between the particles labelled A and B serves as a reaction coordinate.
(b) Possible transition state between triangle and chevron clusters. (c¢) Chevron cluster.

path, we used the lattice fitting algorithm described in Section 2.2.2 to eliminate the
translational and rotational degrees of freedom from simulated and experimental trajectories
containing the transition. The first step is to detect the cluster types as described in
Section 2.2.2. Once the cluster types are detected, the set of all positions where the triangle
and chevron are detected have to be positioned and oriented so that they reflect changes in
the internal degrees of freedom, and not the translational or rotational degrees of freedom.
The translation freedom is eliminated by subtracting the center of mass of each frame or
timestep from all of the positions. The rotational freedom is eliminated by measuring the
angle between specific sites of the best-fit lattice in each frame, and rotating the particle
coordinates about their center of mass to compensate for the measured angle of the lattice.
For more details, see full analysis code in Appendix B.

Figure 6.8 shows the distributions of translated and rotated particle coordinates condi-
tioned on the distance between the two particles marked A and B in Figure 6.7 for a 55000
frame simulation (a-c) and a 1000 frame experiment (d-f). Figure 6.8 a and d show the
particle positions of the triangle configuration. The tightness of the spots verifies that the
rotation and translation of the particle coordinates worked properly. Figure 6.8 b and e
show the distribution of particle positions when the distance between the particles marked A

and B is near halfway between its value for the triangle and chevron configurations. The
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Figure 6.8: Translated and rotated particle positions for (a) the triangle, (b) the transition
state, and (c) the chevron clusters.

number of total counts is significantly lower in this region, consistent with the notion that the
distributions reflect a transition state. The positions of the particles are spread out compared
to the triangle configuration. Figure 6.8 ¢ and f show the distribution of particle positions for
the chevron configuration. The blurring of the bottom two spots corresponds to the detection
of the five-fold symmetric cluster discussed in section 4.1.

Figure 6.8 suggests that the deviations of the particles from the corresponding lattice
sites are correlated. If the deviations are i.i.d. Gaussian the sum of squared deviations
(A% = 3. 67) is expected to follow the x*(2N — 4) distribution. Figure 6.9a shows the
cumulative distribution functions of ﬁ—; for 6-particle GMT-LD simulations conducted at
a range of laser powers conditioned on the triangle being detected. The CDF of x?(8) is
plotted in black. The inset a plot of the CDF of ﬁ—j (red diamonds) and the CDF of x?(8)
for comparison. For the simulation with 20mW (blue) the scaled error CDF is in excellent
agreement with the y?(8) distribution. As laser power increases the tails of the scaled error

CDEF’s extend toward larger and larger values. Figure 6.9b shows the cumulative distribution
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Figure 6.9: Squared deviations of particle positions from best-fit lattice sites. (a) Squared
deviations of particle positions from best-fit lattice sites in simulations at a range of laser
powers (blue-red) and the x*(8) distribution when the triangle is detected. (inset) Comparison
between squared particel deviations for i.i.d. Gaussian deviations from lattice sites and the
x%(8) distribution. (b) Squared deviations of particle positions from best-fit lattice sites in
simulations at a range of laser powers (blue-red), an experiment conducted at 60mWV (black
dashed), and the x?(8) distribution for all configurations.

functions of ﬁ—j for 6-particle GMT-LD simulations conducted at a range of laser powers
regardless of which cluster is detected. Compared to the results in Figure 6.9a, the deviations
from the x*(8) CDF are larger. Simulations performed by Chatipat Lorpaiboon.

The results in Figure 6.8-6.9 suggest that optical matter systems fluctuate along collective
coordinates, and that as the trapping laser power increases correlated motion becomes
increasingly important. For equilibrium systems the movement along collective coordinates
is expected to obey detailed balance[111, 134], i.e. the forward and backward flux between
all regions in the phase space of the system is equal. However, optical matter systems are
nonequilibrium systems. While transfer of linear and angular momentum from the incident
field to optical matter systems has been shown to result in rotation and translation of the
system|82, 73, 20, 21|, the question whether detailed balance is broken with respect to the
internal coordinates in an optical matter system remains.

We conducted GMT-LD simulations of an 8-particle optical matter cluster depicted in

Figure 6.10a. This particular 8-particle cluster has significant distortions compared to the
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hexagonal lattice. For a cluster that lies on an underlying hexagonal lattice with lattice
vector length a, the two edge-lengths of the cluster, depicted by red arrows, are v/3a and 2a.
Histograms of the 4 edge lengths taken from a GMT-LD simulation are shown in Figure 6.10b.
The 4 distributions are nearly identical, and are centered at 1.2um. Therefore, this cluster
deviates significantly from an underlying hexagonal lattice.

We can construct a simple phase space in terms of the edge-lengths of the cluster to
test whether detailed balance is broken. First, we label each distance + or — depending on
whether its value is larger or smaller than the mean value of 1.2um. If we consider the two
distances depicted in Figure 6.11a, this defines a phase space that consists of 4 regions as
depicted in Figure 6.10c. The the elements of the total flux matrix 7;; are the number of
observed transitions from state i to j (i.e. T;; = m;Pij where 7; is the probability of finding
the system in state j and P;; is the Markov transition matrix element from state j to state ).
A scaled color visualization of the total flux matrix is shown in Figure 6.10d. The total flux
matrix is slightly asymmetric, reflecting the possibility of broken detailed balance.

We compared the total flux matrix depicted in Figure 6.10d between simulations conducted
at three different laser powers. Figure 6.11a-c shows the three total flux matrices and
Figure 6.11d-f shows the values of the net flux, T;; — T};. Across all three powers, the total
flux matrices and the net flux remain nearly identical. The values of the net flux define a
cycle through the constructed phase space. For the labels depicted in Figure 6.11c the net
flux moves (in a cycle) from 1 — 2 — 4 — 3 — 1. This type of cycle is only possible in a
nonequilibrium system, and is thus a direct consequence of the optical binding interaction

being mediated by an external energy source.
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Figure 6.10: Measuring detailed balance in an 8-particle optical matter cluster (a) Corner-
to-corner distances in an 8-particle optical matter cluster (red double arrows) (b) Distribution
of corner-to-corner distances. When one of the distances is less than its mean value the
variable is labeled - and when the distance is greater than its mean value the variable is
labeled +. (c) 4 possible states for the 8-particle cluster shown in panel (a) based on two
corner-to-corner separations: 1 (++), 2 (-+), 3 (+-), and 4 (). (d) Scaled-color visualization
of the total flux matrix for the 8-particle cluster shown in panel (a). The initial state is
along the horizontal direction and the final state is along the vertical direction. Each count
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Appendix A

Detecting particle type by color

This section outlines the procedure for differentiation between gold and silver particles in
a color .tif video file separated into three channels. The first step is to track the particle
positions, as described in Section 2.2.1. The next step is to mask the three channels of each
image so that every pixel value outside a radius r = 3 from a tracked particle position is set

to zero. Examples of raw and masked images are shown in Figure A.1
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Figure A.1: Binary masking of color images based on particle positions. (a-c) Raw red (a),
blue (b), and green (c) channels of a color experimental image. (d-f) Red (a), blue (b), and
green (c) channels of a color experimental image that have been masked so that every pixel
value outside a radius » = 3 from a tracked particle position is set to zero.

Once the image is masked, the average of the sum of unmasked pixels around each

unmasked particle defines an RGB vector for that particle type

R,G,B __ Zpi:pels IR,G,B

Nparticles * ZR,G,B Zpia:els [R707B

X (A1)

where I ¢ p is the red, green, or blue intensity of a pixel. Figure A.2 shows histograms
of xr g calculated over several frames for (a) gold particles and (b) silver particles. The
locations of the distributions corresponding to each color have distinct locations for the silver
and gold particles, and thus it is possible to differentiate between them. The average values

of each channel of xr ¢ g, denoted X g ¢ 5, Will be used as reference values.
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Figure A.2: Histograms of yg ¢ p calculated over several frames for (a) gold particles and
(b) silver particles.

In a video with an unknown particle type that has been masked the same way as the
reference videos, let Y %5 be the summed intensity values of the pixels surrounding a specific

YR,G,B

particle location for the red, green, and blue channels. The projection of onto Xra.B

Y X
F = XRGE (A.2)
Y[|Xr,c,5]

The reference Xgr p that yields the maximum F' is taken as the particle identity. Two
examples from frames of a video containing a mixture of gold and silver particles is shown

below in Figure A.2. Particles detected as gold in (a-b) are plotted as red dots in (c-d).
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Figure A.3: Example of particle detection by color. Particles detected as gold in (a-b) are
plotted as red dots in (c-d).
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Appendix B

MATLAB code

B.1 Importing data

B.1.1 Function for importing tab-delineated .txt files from Mosaic

function [Trajectory ,Frame,x,y,m0|] = import data(folder path

— file name)
filename = strcat (folder path ,file name,’. txt’);

Initialize variables.

%filename = ’/Users/Curtis/Documents/MATLAB/ Laser bleedthrough/
— Results 10122018 d.txt ’;

delimiter = "\t ’;

Read columns of data as strings:

For more information, see the TEXTSCAN documentation.

formatSpec = *%quqq%q%q%q %] \n\r | ’;
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Open the text file.
fileID = fopen(filename ,’r7);

Read columns of data according to format string.

This call is based on the structure of the file used to generate this code. If an error occurs for

a different file, try regenerating the code from the Import Tool.

dataArray = textscan (fileID , formatSpec, ’Delimiter’, delimiter ,

< ’ReturnOnError’, false);

Close the text file.

fclose (filelD);

Convert the contents of columns containing numeric strings to num-
bers.

Replace non-numeric strings with NaN.

raw = repmat ({’’},length(dataArray{1}),length (dataArray)—1);
for col=1:length(dataArray)—1

raw (1:length (dataArray{col}),col) = dataArray{col};
end

numericData = NaN(size (dataArray{1},1),size (dataArray ,2));

for col=[1,2,3,4,5,6,7]
% Converts strings in the input cell array to numbers.
— Replaced non—numeric

% strings with NaN.
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rawData = dataArray{col };
for row=1:size (rawData, 1)
% Create a regular expression to detect and remove non—
< numeric prefixes and
% suffixes.
regexstr = (?<prefix >.%7)(?<numbers > ([ —|*x(\d+[\ ,]*)
S V10,1 A [eBAD]{0, 1} [~ + ]+ d+ [1]{0,1}) (| ~]<(\d
o VD) # [ 1R [0, 13—+ ]\ dx] 1]{0,1}) ) (7=
— suffix >.x) 7,
try
result = regexp (rawData{row}, regexstr , ’'names’)

numbers = result.numbers;

% Detected commas in non—thousand locations.
invalidThousandsSeparator = false ;
if any(numbers==",");
thousandsRegExp = ~\d+7(\,\d{3})*\.{0,1}\d*$";
if isempty(regexp (numbers, thousandsRegExp, ’once
= 7));
numbers = NaN;
invalidThousandsSeparator = true;
end
end
% Convert numeric strings to numbers.
if TinvalidThousandsSeparator;
numbers = textscan (strrep (numbers, ', 7)., '%f’)

—
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numericData (row, col) = numbers{1};
raw{row, col} = numbers{1};
end
catch me
end
end

end

Replace non-numeric cells with NalN

R = cellfun (@Q(x) Tisnumeric(x) && Tislogical(x),raw); % Find non—
— numeric cells

raw (R) = {NaN}; % Replace non—numeric cells

Allocate imported array to column variable names

Trajectory = cell2mat (raw (:, 2));
Frame = cell2mat (raw(:, 3));

x = cell2mat (raw (:, 4));
y = cell2mat (raw (:, 5));
m0 = cell2mat (raw (:,7))

)

Clear temporary variables

clearvars filename delimiter formatSpec fileID dataArray ans raw
<~ col numericData rawData row regexstr result numbers

— invalidThousandsSeparator thousandsRegExp me R;

clearvars VarNamel

end
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B.1.2 Script for formatting output of import data function

clearvars Data x y

folder path = ’'/Users/Curtis/Documents/MATLAB/
— long range interactions/Datasets/’
file_name = ’Results 8272020 47;

[ Trajectory ,Frame,x,y,m0|] = import data(folder path ,file name);

Frame2 = Frame(2:end) + 1;
Trajectory2 = Trajectory (2:end);
xtemp = x(2:end);

ytemp = y(2:end);

mOtemp = mO0(2:end) ;

Data = [Frame2 Trajectory2 xtemp ytemp mOtemp |;

Data = sortrows(Data, 1) ;

clearvars file name folder path Frame2 Trajectory2 xtemp ytemp

— temp temp2 mOtemp Trajectory m0 Frame x y

x = zeros (50 ,max(Data(:,1)));

y = zeros (50 ,max(Data(:,1)));

(
(
x_linked zeros (50 ,max(Data(:,1)));
( (

y _linked = zeros (50 ,max(Data(:

for n = l:max(Data(:,1))
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temptraj = nonzeros ((Data(:,1) = (n)).xData(:,2));
(n)).xData(:,3));

tempx = nonzeros ((Data(:,1)
tempy = nonzeros ((Data(:,1) = (n)).xData(:,4));
temptraj2 = 1:1:length (tempx);

x_linked (temptraj ,n) = tempx;

y_linked (temptraj ,n) = tempy;

x(temptraj2 ,n) = tempx;

y(temptraj2 ,n) = tempy;
end
clearvars n

Y%temp = sortrows (Data,2) ;

%temp2 = temp (:,5) ;

clearvars temptraj temptraj2 tempx tempy

B.2 Lattice fitting and cluster detection

B.2.1 Function that takes (z,y) coordinates and returns best-fit

hexagonal lattice

function [x_si,y si,lattice positions centered ,order param,
< lattice assignment ,d lattice ,theta lattice ,cp| =

— lattice assignment algorithm vectorized (x,y)

%This function fits a lattice to tracked particle positions.
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< The required

%inputs are x(particle) and y(particle).

np = length(nonzeros(x)); %Specify the number of particles
pixelsize = .072; %Conversion factor between pixels and

<~ microns

X si = nonzeros(x)kxpixelsize; %Particle positions in microns

y _si = nonzeros(y)*pixelsize;

lattice size = 4; %Specify the size of the lattice (in terms
< of 2n+1 lattice vectors)

[templ , temp2| = meshgrid(—lattice size:lattice size);

coeff matrix(:,:,1) = temp?2;

coeff matrix(:,:,2) = templ;

%clearvars templ temp2 dist

particle list = 1:1:np; %Specify which particles to fit (

< default is 1:np)

Parameters

d spacing = 0.0025; %Specify which lattice vector lengths to
— try
d start = .540;

d end = .630;

theta spacing = .05; %Specify which lattice angles lengths to
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— try
theta start = pi/3 — pi/6; %Second lattice vector has defined
— offset

theta end = pi/3 + pi/6;

This section of the code creates lattice vectors for ALL specified

distances and angles.

\begin{lstlisting}
d temp = d_start:d_spacing:d_end;
thetal temp = theta start:theta spacing:theta end;

theta2 temp = thetal temp + pi/3;

for n1 = 1:length(d_ temp)

x1 temp(nl,

)

= d_temp(nl)*cos(thetal temp

yl temp(nl, ;

(n1 ) (n1) )
( :) = d_temp(nl)*sin (thetal temp);
x2 temp(nl,:) = d_temp(nl)*cos(theta2 temp);
(nl,:) (nl) ( )

y2 temp(nl, = d_temp(nl)xsin (theta2 temp

Y

end
num_params = length (d_temp)*length (thetal temp);

x1 temp = reshape(xl temp,1,1,1 num_ params); %reshape the
— array of lattice vectors for vectorized multiplication
yl temp = reshape(yl temp,1,1,1 num_params);

x2 temp = reshape(x2 temp,1,1,1 ,num_params);
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y2 temp = reshape(y2 temp,1,1,1 ,num_params);

lattice vectors temp (:,:,:,1) = x1 temp.xcoeff matrix(:,:,1) +
<  x2 temp.xcoeff matrix (:,:,2);

lattice vectors temp (:,:,:,2) = yl temp.*xcoeff matrix(:,:,1) +
< y2 temp.xcoeff matrix (:,:,2);

Y%matrix size = [size (coeff matrix,1) size(coeff matrix , 2)

< length (d temp)s*length (thetal temp) 2];

This section centers ALL lattices on ALL particles and calculates the

sum the deviations from the lattice.

\begin{lstlisting}
x_reshaped = reshape(x si,1,1,1 (length(particle list))); %x
— and y need to be reshaped for vectorized multiplication

y reshaped = reshape(y si,1,1,1 (length(particle list)));

for n2 = 1:length(particle list) %This loop tries centering

— the test—lattices on each particle

particle list temp = particle list(particle list “=
— particle list(n2));

particle list temp = reshape(particle list temp ,1,1,length
< (particle list temp));

lattice dist temp x = x reshaped(particle list temp) — (

< x_si(particle list(n2)) + lattice vectors temp
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— (1,0, 1));

lattice dist temp y = y reshaped(particle list temp) — (
— y_si(particle_ list(n2)) + lattice_vectors_ temp
= (,0,:,2));

lattice dist temp = lattice dist temp x.72 +

— lattice dist temp y."2;

[min temp| = min(lattice dist temp ,[],1);
[min_ temp| = min(min_ temp,|],2);

min_temp = sum(min temp,4) ;

min_temp = reshape (min_temp, size (lattice vectors temp ,3)

— ,1);

lattice dist _sum_temp (:,n2) = min temp; %This loop builds
~ a (num_params)X(num particles) array of the sum of
— suqred lattice distances

end

[order param temp, particle index temp]| = min(
— lattice dist sum temp ,[],2); %These four lines finds the
— lattice parameters and central
[order param ,param index| = min(order param temp);
— %particle that result in the
— smallest sum suqred distance

central particle = particle index temp (param index);

cp = [x_si(central particle),y si(central particle) |;
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[d_ind,theta ind] = ind2sub ([length(d temp) length (thetal temp
< )|,param_index); %These three lines unravel the param
theta lattice = [thetal temp(theta ind); theta2 temp(theta ind
— )] %index to recover the best theta and d

d lattice = d_temp(d ind);
The best lattice is reconstructed

xl = d_latticexcos(theta lattice(1l)); %Reconstruct lattice
— vectors

yl = d_latticexsin(theta lattice(1l));

x2 = d_latticexcos(theta lattice(2));

y2 = d_latticexsin(theta lattice(2));

for nl = 1:size(coeff matrix,1)
for n2 = 1:size(coeff matrix ,2)
lattice positions(nl,n2,1) = xlxcoeff matrix(nl,n2,1)

— + x2xcoeff matrix(nl,n2,2);
lattice positions(nl,n2,2) = ylxcoeff matrix(nl,n2,1)

— + y2xcoeff matrix(nl,n2,2);

lattice positions centered(nl,n2,1) =
— lattice _positions(nl,n2,1) + x_si(
< central particle);

lattice positions centered(nl,n2,2) =

— lattice positions(nl,n2,2) + y_si(
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end

— central particle);

end

Lattice assignment is recovered (each particle assigned to closest site;

duplicates possible

for

end

end

B.2.2

nl = 1:np
x_dist _temp = (lattice positions centered (:,:,1) — x_ si(nl
— ))."2;

y dist _temp = (lattice positions centered (:,:,2) — y si(nl
— ))."2;

sq_dist temp = x_ dist temp + y_dist temp;

[ mindist _templ ,indl temp| = min(sq_dist temp,[],1);

[7,ind2 temp| = min(mindist templ);

lattice assignment(nl,1) = indl temp(ind2 temp);

lattice assignment(nl,2) = ind2 temp;

Function that returns translations, rotation, and scale for

optimized lattice parameters

% Determine r

z1 = complex(r1(:,1),r1(:,2));
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z2 = complex(r2(:,1),r2(:,2));

azl = mean(zl);

az2 = mean(z2);

7z — az2—azl;

r = [real(z) imag(z)];

%Determine other optimal parameters
z1l = zl—azl;

z2 = z2—az2;

a = norm(zl)"2;

err = norm(z2) " 2;

zz1l = dot(zl,2z2);

zz._ 1 = dot(zl,conj(z2));
bl = abs(zzl);

b 1 = abs(zz _1);

errl = —bl"2/a;

err 1 =—b 1°2/a;

if (errl<=err 1)

mirr = 1;

err = err+errl;

sc = bl/a;

theta = —angle (zz1);
else

mirr = —1;

err = errferr_1;

sc = b _1/a;

theta = —angle(zz_1);
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end

err = err ~0.5;

end

B.2.3 Function that defines the occupation of lattice sites based on

a cutoff distance

function [number neighbors,lattice positions cluster ;hex indicator

< ,occupied| = lattice occupation(x_si,y si,lattice positions)
dist _tol = .25;
clearvars occupied temp occupied

occupied = zeros(size(lattice positions 1) ,size(lattice positions

< ,2),size(lattice positions ,4));

lattice positions cluster (:,:,1,:) = occupied;
lattice positions cluster (:,:,2,:) = occupied;
for nl = 1:size(lattice positions ,4)
for n2 = 1:size(lattice positions 1)
for n3 = 1:size(lattice positions ,2)

[dist temp ,indextemp| = min(sqrt ((x_si(:,nl) —
< lattice positions(n2,n3,1,nl)).72) + ((y_si(:,nl

< ) — lattice positions(n2,n3,2,nl))."2));

if dist _temp < dist_ tol
occupied (n2,n3 ,nl) = 1;
lattice positions cluster(n2,n3,1,nl) = x_si(

— indextemp ,nl);
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lattice positions cluster(n2,n3,2 nl) = y_si(
< indextemp ,nl);
end
end
end
end
clearvars number neighbors
hex index = [1 0; 1 —1; 0 1; 0 —1; =1 0; —1 1];
number neighbors = occupied;
for nl = 1:size(occupied,3)
for n2 = 1:size(hex index, 1)
neighbors temp = circshift (occupied (:,:,nl) ,hex index(n2
— 1) ,1);

neighbors temp = circshift (neighbors temp ,hex index(n2,2)

— ,2);

number mneighbors(:,: ,nl) = number neighbors(:,:,nl) +

— mneighbors temp;
end

end
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hex indicator = number neighbors — 7;

hex sites = hex indicator;

for nl = 1:size(hex index, 1)

hex sites temp =

hex sites temp =

circshift (hex indicator ,hex index(nl,1) ,1);

circshift (hex sites temp ,hex index(nl,2) ,2);

hex sites = hex sites + hex sites temp;
end
lattice positions cluster tempx (:,:,:) = lattice positions
— (:,0,1,0);
lattice positions cluster tempy (:,:,:) = lattice positions

= (:1,:,2,0);

%lattice positions cluster tempx = lattice positions cluster tempx

— .xhex sites;

%lattice positions cluster tempy = lattice positions cluster tempy

— .xhex sites;

%lattice positions cluster (:,:,1,:) =

— lattice positions cluster tempx;

%lattice positions cluster (:,:,2,:) =

— lattice positions cluster tempy;

number neighbors = (number neighbors — 1).xoccupied;

occupied = logical (occupied);

clearvars lattice positions hex tempx lattice positions hex tempy
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B.2.4 Function that detects common 6-particle clusters

function |[cluster type| = cluster detection 6p(number neighbors)

clearvars neighbor count cluster type temp cluster type

cluster 1 _ind = [0 3 0 3 0 0]7;

cluster 2 ind = [0 2 3 0 1 0]7;
cluster 3 ind = [0 2 2 2 0 0]7;

cluster type temp = zeros(1,size(number neighbors,3));

for nl = 1:size(number neighbors,3)

for n2 = 1:6

neighbor count(n2,nl) = sum(sum(number neighbors(:,:,nl)
> — u2));
end
if neighbor count(:,nl) = cluster 1 ind

cluster type temp(nl) = 1;

elseif neighbor count(:,nl) = cluster 2 ind

cluster type temp(nl) = 2;

elseif neighbor count (:,nl) = cluster 3 ind

cluster type temp(nl) = 3;
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% elseif mneighbor count(:,nl) = cluster 4 ind

% cluster type temp(nl) = 4;
%
% elseif neighbor count (:,nl) = cluster 5 ind
% cluster type temp(nl) = 5;
end
end

cluster type = cluster type temp;

B.2.5 Script that fits hexagonal lattice to (z,y) trajectories with a

variable number of particles

%%This is the simplest lattice fitting algorithm; the brute—force
Y%assignment is performed every frame. Input is to arrays x and y
— with

%%dimensions [num _particles num_frames].

min_frame = 1;

max_frame = 5000;

for nl = min_ frame:max frame
nl
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np = length (nonzeros(x(:,nl)));

[x si_ temp,y si temp,lattice positions centered temp ,
< order param temp,lattice assignment temp ,d lattice temp,
< theta lattice temp ,cp temp| =
— lattice assignment algorithm vectorized(x(:,nl),y(:,nl))
=

x si(l:length(x si temp),nl) = x si temp;

y_si(l:length(x si temp),nl) = y si temp;

%Analytical minimization minimizes the distances between two
— sets of
%points , rl and r2.
for n2 = 1:np
rl(n2,1,nl1) = x_si(n2,nl);
rl(n2,2 ,nl) =y si(n2,nl);
r2(n2,1,nl) = lattice positions centered temp (
— lattice assignment temp(n2,1),
— lattice assignment temp(n2,2),1);
r2(n2,2,nl) = lattice positions centered temp (
— lattice assignment temp(n2,1),
— lattice assignment temp(n2,2),2);

end

[r,mirr ,d_ theta,sc,err| = latt fit refine(rl(:,:,nl),r2(:,:,nl
< )); %Analytical minimization function that gives
— translation ,

error refined(nl) = err.”2;
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— %rotation , and
— scale factor for best fit

cp(nl,:) = cp_temp + r;

scale (nl) = sc;

d lattice refined(nl) = d_lattice tempxscale(nl);

theta lattice refined (:,nl) = theta lattice temp + d_theta;

mirror (nl) = mirr;

lattice positions temp (:,:,1) =
<~ lattice positions centered temp (:,:,1) — mean(r2(:,1,nl)
= );

lattice positions temp (:,:,2) =
< lattice positions centered temp (:,:,2) — mean(r2(:,2,nl)
=)

lattice positions rot (:,:,1) = lattice positions temp (:,:,1)x*

— cos(d_theta) — lattice positions temp (:,:,2)*sin(d_theta
= )
lattice positions rot (:,:,2) = lattice positions temp (:,:,1)x

< sin(d_theta) + lattice positions temp (:,:,2)x*cos(d_theta

= )5
lattice positions rot scale = lattice positions rotxsc;
lattice positions centered refined (:,:,1,nl) =

< lattice positions rot scale(:,:,1) + mean(r2(:,1,nl));
lattice positions centered refined (:,:,2,nl) =

< lattice positions rot scale(:,:,2) + mean(r2(:,2,nl));

%|[lattice positions centered refined (:,:,1:2 ,nl)] =
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— lattice construction(d lattice refined(nl),
< theta lattice refined (:,nl),cp(nl,:));

end

B.2.6 Script that translates and rotates clusters detected as trian-

gle

%This script rotates and translates the images associated with a
— 6—particle

%hexagonal cluster so that their position and orientation are the
< same, and

%averages those images togther

%Calling this function takes fit lattice positions and returns the
%following :

%-Number of hexagonal neighbors

%-The positions of occupied hexagonal lattice sites

%-An indicator of whether a hexagonal cluster exists in that frame

%A binary matrix representing occupation of lattice sites

[number neighbors,lattice positions cluster ,hex indicator ,occupied
< | = lattice occupation(x_si,y si,

< lattice positions centered refined);

%Calling this function identifies the cluster type in a given
— frame and

%returns a cluster type variable

[cluster type]| = cluster detection 6p(number neighbors);
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%A rotation matrix is created for every frame based on the fit
— lattice

%angle

%Find the frames where the specified cluster exists

indexl = find (cluster type — 1);
index2 = find (cluster type =— 2);
num _frames = size (lattice positions centered refined ,4);

%Find that lattice sites that define the position and orientation
— of

%cluster typel (triangle)

corner index temp = occupied x0;

intirior index temp = occupied*0;

corner index temp (:,:,indexl) = (number neighbors(:,:,indexl) =
— 2);

intirior index temp (:,:,indexl) = (number neighbors(:,:,indexl) =—
= 4);

corner index temp = logical (corner index temp);

intirior index temp = logical (intirior index temp);

tri_corners lattice(:,:,1,index]l) = reshape(
< lattice positions centered refined (:,:,1,index1),[9 9 length
— (index1)]) .xcorner_index_temp (:,:,indexl);

tri_corners lattice (:,:,2,indexl) = reshape(
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< lattice positions centered refined (:,:,2,index1),[9 9 length

— (index1)]) .xcorner_index_temp (:,:,indexl);

tri_intirior lattice (:,:,1,indexl) = reshape(
< lattice positions centered refined (:,:,1,index1),[9 9 length
— (index1)]) .xintirior index_ temp (:,:,indexl);

tri_intirior lattice (:,:,2,indexl) = reshape(
< lattice positions centered refined (:,:,2,index1),[9 9 length
< (index1)]|) .*intirior index temp (:,:,indexl);

tri_corners (:,:,1,indexl) = reshape(lattice positions cluster

< (:,:,1,index1),[9 9 length(indexl)]).*xcorner index temp (:,:,
< indexl);

tri_corners(:,:,2,indexl) = reshape(lattice positions cluster
— (:,:,2,index1),[9 9 length(indexl)]).*xcorner index temp (:,:,
— index1);

tri_intirior (:,:,1,indexl) = reshape(lattice positions cluster
— (:,:,1,index1),[9 9 length(indexl)]).*xintirior index temp
< (:,:,index1);

tri_intirior (:,:,2,indexl) = reshape(lattice positions cluster

— (:,:,2,index1),[9 9 length(indexl)]).xintirior index temp

— (:,:,index1);
distances tri_ positions = zeros (3,3 ,num_frames);
bisectors = zeros (4 ,num_frames);
min_bisector = zeros (1l ,num_frames);
ref lattice sites = zeros(2,2,num frames);
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for nl = 1:length(index1)

tri_corners tempx = tri_cormners(:,:,1,index1(nl));
tri_corners tempy = tri_cormers (:,:,2,index1(nl));
1

tri_intirior tempx = tri_intirior (:,:,1,index1(nl));

tri_intirior tempy = tri_ intirior (:,:,2,index1(nl));

x1 temp = tri_ corners tempx(corner index temp (:,:,indexl(nl)))
—

x2 temp = tri_intirior tempx (intirior index temp (:,:,index1(nl
= )));

yl temp = tri_corners tempy (corner index temp (:,:,index1(nl)))
-

y2 temp = tri_intirior tempy (intirior index temp (:,:,index1 (nl
= )));

x1 temp lattice = nonzeros(tri_ corners lattice(:,:,1,index1(nl
= )));

x2 temp lattice = nonzeros(tri_ intirior lattice (:,:,1,index1
= nl)));

yl temp lattice = nonzeros(tri_corners lattice (:,:,2, index1 (nl
= )));

y2 temp lattice = nonzeros(tri_ intirior lattice (:,:,2,index1(
= nl)));

dist _tri_ temp = distance calculator subsets(xl temp,yl temp,

< x2 temp,y2 temp);

distances tri_positions (:,:,index1l(nl)) = dist tri_ temp;
bisectors temp = nonzeros ((dist_ tri temp > 0.8).xdist_ tri temp
= );
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bisectors (1:length (bisectors temp) ,indexl(nl)) =
— bisectors temp;
min_bisector (index1(nl)) = min(nonzeros(bisectors (:,index1(nl)

= )));

[index templ ,index temp2| = find(dist tri temp == min_ bisector

<~ (index1(nl)));

ref lattice sites(1,1,index1l(nl)) = x1 temp lattice(
< index templ(1));

ref lattice sites(1,2,index1(nl)) = yl temp lattice(
— index templ(1));

ref lattice sites(2,1,index1(nl)) = mean(x1 temp lattice) +
< mean(x2 temp lattice);

ref lattice sites(2,2,index1(nl)) = mean(yl temp lattice) +

< mean(y2 temp lattice);

end
outer point(1,:) = reshape(ref lattice sites(1,1,:),]1 num frames
= 1) ;
outer point(2,:) = reshape(ref lattice sites(1,2,:),[1 num frames
= 1);
for nl = 1:num_frames
central point (1,nl) = mean(nonzeros(x_si(:,nl)));
central point (2,nl) = mean(nonzeros(y_si(:,nl)));
end
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rotation tempx = central point(1,:) — outer point(1,:);

rotation tempy = central point (2,:) — outer point(2,:);
rotation angle = —atan2(rotation tempy ,rotation tempx);
rotation matrix (1,1 ,:) = cos(rotation angle);

rotation matrix(1,2,:) = —sin(rotation angle);

rotation matrix (2,1 ,:) = sin(rotation angle);

rotation matrix (2,2 ,:) = cos(rotation angle);

%The images are centered at the central point and rotated by the
— rotation
%angle in each frame

for n1 = 1:length(index1)

x_cent (:,index1(nl)) = x_ si(:,indexl(nl)) — central point (1,
— index1(nl));
y_cent (:,index1l(nl)) = y _si(:,indexl(nl)) — central point (2,

— index1(nl));

x_cent (:,index1(nl)) = x_cent(:,index1(nl)).x(x_ si(:,index1(nl

y_cent (:,index1(nl)) = y cent(:,indexl(nl)).*(y_si(:,index1(nl

x_cent rot(:,indexl(nl)) = x_ cent(:,index1(nl))=x

— rotation matrix(1,1,index1(nl)) + y_cent(:,index1(nl))=x

< rotation matrix(1,2,index1(nl));
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y_cent_rot (:,indexl(nl)) = x_cent(:,index1(nl))=*
— rotation matrix(2,1,index1(nl)) + y_cent(:,index1(nl))=x

< rotation matrix(2,2,index1(nl));

end

%The centered and rotated particle positions are collected and

— reshaped

number particles = 6;

x_cent hist temp (:,indexl) = x cent rot(l:number particles,indexl)
—

y cent hist temp (:,indexl) = y cent rot(l:number particles,indexl)
=

x_hist tri = zeros(number particles ,num_frames);

y _hist tri = zeros(number particles ,num_frames);

x_hist_tri(:,index1l) = x_cent hist temp (:,index1);

y _hist tri(:,index1l) = y cent hist temp (:,index]);

min _dist = 0.78;
binsize = 0.01;
spacing = 0.01;
max_dist = 1.05;
averaging distances = max dist:(—spacing):min dist;

clearvars index dist x cent hist y cent hist

vidObj = VideoWriter(strcat (’transition tri’,’.avi’));
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open (vidObj ) ;

%for nl = 1:46
for nl = 1:length(averaging distances)
index dist temp = find ((min _ bisector > (averaging distances (
< nl)— binsize /2)).x(min_bisector < (averaging distances(
< nl) + binsize/2)).x(min_bisector "= 0));

index dist(nl,1:length(index dist temp)) = index dist temp;

x_cent dist hist temp = x cent hist temp(:,nonzeros(index dist
= (nl,:)));

y_cent dist hist temp = y cent hist temp(:,nonzeros(index dist
— (nl,:)));

n_ frames temp = size(x_cent dist hist temp,1)x*size (

< x_cent_dist_ hist temp,2);
x_cent hist(1:n_ frames temp,nl) = reshape(
< x_cent_dist hist temp ,[n_ frames temp 1]);
y _cent hist (1:n_frames temp,nl) = reshape(
< y_cent dist hist temp,|[n frames temp 1]);
imagesc (hist3 ([ nonzeros(x_cent hist (:,nl)) nonzeros(
< y_cent_ hist(:,nl))], Ctrs’,{—2:0.025:2 —2:0.025:2}))
axis (|50 115 50 115])
axis off
axis square

%colormap gray
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currFrame = getframe;

writeVideo (vidObj , currFrame) ;

end

close (vidObj) ;

figure

imagesc (hist3 ([ nonzeros(x_cent hist) nonzeros(y_cent hist)]|,’  Ctrs

— 7 {—=2:0.025:2 —2:0.025:2}))

%imagesc (log (hist3 ([x_cent hist y cent hist]|,[100 100])),[0 7])

clearvars index temp index temp2 nl x cent hist temp

<~ y_cent hist temp central point

B.3 Particle type detection by color

B.3.1 Function for masking images so only pixels near particles are
non-zero

function mask = particle mask(x,y,pixel index)

np = length(x);

mask = pixel index (:,:,1) x0;
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if np =0

for nl = 1:np
xdist _temp = pixel index (:,:,1) — x(nl);
ydist temp = pixel index(:,:,2) — y(nl);
sq_dist temp = xdist temp.” 2 + ydist temp.” 2;
mask temp (:,:,nl) = (sq_dist temp < 36);

end

mask = ((mask + sum(mask temp,3)) "= 0);

end

end

B.3.2 Function for calculating RGB values for particles in masked

images

function rgb per particle = rgb_ values(x,y,pixel index ,img temp)
np = length(x);
cl value temp = 0
c2 value temp = 0;
c¢3_ value temp = 0
if np =0
for nl = 1:np
xdist _temp = pixel index (:,:,1) — x(nl);
ydist temp = pixel index (:,:,2) — y(nl);
sq_dist _temp = xdist temp." 2 + ydist temp.” 2;
mask temp = (sq_dist temp < 36);
cl value temp(nl) = sum(sum(mask temp.ximg temp (:,:,1)

= ));
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c2 value temp(nl) = sum(sum(mask temp.ximg temp (:,:,2)

= ));
c3_value temp(nl) = sum(sum(mask temp.ximg temp (:,:,3)
= ));
end
end
rgb per particle = [c¢l value temp; c¢2 value temp; c¢3 value temp]’;

end

B.3.3 Script for detecting particle type by color in color .tif videos

min_frame = 1;
max _frame = 2000;
for nl = min frame:max frame
rgb image (:,:,:,nl) = imread(’'Mov g.tif > nl);
end

pixel index templ = 1:1:size(rgb image,2);

pixel index temp2 = 1:1:size(rgb image,1);

[pixel index temp3 ,pixel index temp4| = meshgrid(pixel index templ

< ,pixel index temp2);

pixel index (:,:,1) = pixel index temp3;

pixel index (:,:,2) = pixel index temp4;

clearvars pixel index templ pixel index temp2 pixel index temp3

157



— pixel index temp4

rgb image masked = rghb image=x0;

for nl = min_ frame:max frame

mask temp = particle mask (nonzeros(x(:,nl)) ,nonzeros(y(:,nl)),

< pixel index);

mask (:,:,nl) = uint8 (mask temp);

rgb image masked(:,:,1,nl) = rgb image(:,:,1,nl).xmask(:

—

I

,i,nl)

rgb image masked (:,:,2,nl) = rgb image(:,:,2,nl).xmask(:,:,nl)

—

’

rgb image masked (:,:,3,nl) = rgb image(:,:,3,nl).xmask(:,: ,nl)

=

end

for nl = min_ frame:max frame
np_ temp = length (nonzeros(x(:,nl)));
sum _intensity (nl,1) = sum(sum(rgb image masked (:
sum _intensity(nl,2) = sum(sum(rgb image masked (:
sum _intensity(nl,3) = sum(sum(rgb image masked (:
ave intensity(nl,1) = sum(sum(rgb image masked (:

— np_temp;

ave intensity(nl,2) = sum(sum(rgb image masked (:
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— np_temp;
ave intensity(nl,3) = sum(sum(rgb image masked (:,:,3 ,nl)))/

— np_temp;

intensity proportion(nl,1) = ave intensity(nl,1) /sum(

I

< ave intensity(nl,:)

intensity proportion(nl,2) = ave_intensity(nl,2) /sum(

= ave_intensity(nl,3) /sum/(

)
)
< ave intensity(nl,:));
intensity proportion (nl,3)
)

— ave_intensity(nl,:));

’

end

intensity proportion (isnan(intensity proportion)) = 0;

ave proportion (1) = mean(nonzeros(intensity proportion(:,1)));

ave proportion (2) = mean(nonzeros(intensity proportion(:,2)));

ave proportion (3) = mean(nonzeros(intensity proportion(:,3)));

np = sum(x = 0);

rgb per particle = zeros (|max(np),3,length (min frame:max frame)]) ;
proportion per particle = zeros (|max(np),3,length (min_ frame:

— max_ frame) |) ;

particle type = zeros (|[max(np),length (min frame:max frame)|) ;
x = x(l:max(np) ,:);

y = y(l:max(np) ,:) ;
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bl = load(’ave proportion movf’);

bl = bl.ave proportion;

b2 = load (’ave proportion movh’);

b2 = b2.ave proportion;

for nl = min frame:max frame
rgb values temp = rgb values(nonzeros(x(:,nl)),nonzeros(y(:,nl
< )),pixel index ,double(rgb image(:,:,:,nl)));

rgb per particle(1:size(rgb values temp,1) ,1:size(
< rgb_values temp,2) ,nl) = rghb values temp;
proportion per particle (1:size(rgh values temp,1) ,1:size(
< rgb_values temp,2) ,nl) = rgb values temp./sum/(
< rgb_values temp,2);
a = proportion per particle (:,:,nl);
scorel temp = sum(a.xbl,2)./(sqrt(sum(a.”2,2))*sqrt (sum(bl."2)
= ));
score2 temp = sum(a.xb2,2)./(sqrt(sum(a.”2,2))*sqrt (sum(b2."2)
= ));
typel temp = scorel temp >= score2 temp;
type2 temp = score2 temp > scorel temp;
particle type temp = lxtypel temp + 2xtype2 temp;
particle type (l:max(np),nl) = particle type temp;

160



end

typel count

type2 count

sum( particle type

sum( particle type
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The following section is reproduced in part with permission from: Yifat, Yuval, Delphine
Coursault, Curtis W. Peterson, John Parker, Ying Bao, Stephen K. Gray, Stuart A. Rice, and
Norbert F. Scherer. Reactive optical matter: light-induced motility in electrodynamically
asymmetric nanoscale scatterers. Light: Science & Applications 7, no. 1 (2018): 1-7.
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Experimental setup

A diagram of the setup used to trap the 150nm and 200nm Ag nanoparticles is shown in
Figure S1(a). The setup consisted of a continuous wave Ti:sapphire laser emitting linearly
polarized light at a wavelength of 790 nm. The beam was collimated and reflected off a
spatial light modulator (SLM; BNS/Meadowlark HSPDM512-785nm), which was used to
shape the beam by imparting the phase necessary for a ring trap. The phase mask used in
the experiment is shown in Figure S1(b). The beam was reflected from a dichroic mirror
and into an inverted optical microscope (Nikon Ti), through a quarter wave plate, which is
used to control its polarization (i.e. convert from linear to circular), and through a 60x IR
corrected water immersion objective (Nikon 60x Plan APO IR water immersion objective,
NA=1.27). The total optical power of the trapping laser measured before the dichroic mirror
was 150 mW, giving a power density of 1.5 MW cm~2 at the focus.

Figure S1(c) is an image of the ring trap. In order to measure the beam dimensions we
removed the near-IR filter before the sSCMOS detector (Andor Neo; 6.5 pm pixel size) and
imaged the reflection of the beam off the coverslip. The beam was focused slightly beneath
the top coverslip. The ring was measured to have a radius of 3.4 ym and a 500 nm width
(i.e. FWHM) of the annulus. In addition to the ring trap that was used in the experiments,
there was a noticeable focused Gaussian beam in the center of the ring trap (i.e. a zero-
order reflection from the SLM) that had no effect on the experimental results due to its large
distance (R=3.4 pm) from the particle locations on the ring.

The beam was focused into a sample cell that was filled with a solution of 150 nm and
200 nm silver nanoparticles coated with polyvinylpyrrolidone (PVP). The stock solutions
were diluted in 18 M DI water at a ratio of 1:200. The particles were illuminated using a
dark-field condenser, and the light they scattered was captured by the objective and imaged
onto a sSCMOS detector with a total magnification of 90x, giving an effective pixel size of 72
nm. The particle motion was captured in a 120x120 pixel region of interest on the detector

with an exposure time of 1 ms at a frame rate of 289 frames per second.
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Figure S1: (a) Diagram of experimental trapping setup described in the text. SLM-Spatial
Light Modulator, DF Cond. - Dark-field condenser, DM - Dichroic mirror. QWP Quarter
wave plate. Trapping laser is reflected from the SLM which is used for beam shaping. Dark-
field (high N.A.) illumination that scatters from the Ag nanoparticles is collected by the
microscope objective, spectrally filtered and imaged to a sCMOS array detector. (b) The
phase mask used to create the ring trap used in our experiments. The phase mask only uses
two phase levels (black pixel level = 0 phase shift, gray pixel level = 7 phase shift). (c) Image
of the ring trap on the sCMOS detector. The Gaussian spot in the center is the zero-order
reflection of the trapping laser from the SLM. The spot did not affect our experiments due
to the large diameter of the trap. Scale bar is 1um.
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Characteristics of Ag nanoparticles

The particles used for the trapping experiments described in the main text are an equal mix-
ture of 150 nm diameter and 200 nm diameter PVP coated silver nanoparticles (NanoCom-
posix; 150 nm diameter: NanoXact Silver KJW1882 0.02 mg ml~!; 200 nm diameter: NanoX-
act Silver DAC1326 0.02mgml~!). Each stock solution was diluted in DI water (at a ratio
of 1:200) and equal volumes were combined.

The identification of the different sized particles was achieved by analyzing their relative
brightness and size on the sSCMOS detector. See Figure S2(a,c) for representative images of
a 150 nm (Fig S2(a)) and a 200 nm (Fig S2(c)) Ag nanoparticle imaged with our optical
setup. The visual difference between the two particle images was verified as being due to
their physical size by a spectroscopic measurement. Individual particles were captured in a
Gaussian trap and the light scattered from them was directed through the side port of the
microscope, into a spectrometer (Andor Shamrock 193 imaging spectrograph; SR 193i-B1-
SIL), and detected with an EM-CD array detector (Andor Newton).

Figure S2(b,d) shows the spectral measurement for the particles imaged in Figure S2(a,c)
along with the expected scattering cross-section calculated from Mie theory®'. As can be seen
in Figure S2(b), the spectral measurement from a trapped 150 nin diameter Ag nanoparticle
is in agreement with the calculated Mie scattering spectrum. The abrupt decrease in signal
at 750 nm is due to a near-IR filter placed after the dichroic mirror to block the reflected
laser light. On the other hand, Figure S2(d) shows that the the spectral response of the
200 nm Ag nanoparticle is blue-shifted compared to the expected theoretical scattering for
a 200 nm particle, and is in closer agreement with the spectrum calculated for a 175 nm
Ag nanoparticle. Repeating this experiment for different particles showed a variance in the
measured spectral response from the 200 nm particles, and a consistent spectral result from
the 150 nm particles.

The plethora of spectra for 200 nm diameter Ag nanoparticles implies dispersion in size or

shape or both. This size (shape) dispersion was confirmed by electron microscopy imaging of
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Figure S2: (a) Representative image of a 150 nm diameter Ag nanoparticle trapped in a
Gaussian beam. (b) Measured scattering spectrum (blue) from the 150 nm diameter particle
shown in panel (a) as well as the calculated theoretical Mie scattering for 150 nm diameter
Ag nanoparticle suspended in water (red). Spectra were measured by directing the scattered
light through the side port of the inverted optical microscope to a spectrometer. The abrupt
drop in signal from 750 nm is due to a near-IR notch filter used to block scattered light
from and reflections of the trapping beam reaching the detector. Conversely, light from 500
- 750 nm was used to image the nanoparticles by dark-field microscopy. (c¢) Representative
image of a 200 nm diameter Ag nanoparticle trapped in a Gaussian beam. Intensity scales
of images (a) and (c) are identical. Scale bar is 500 nm and applies to (a) and (c). (d)
Measured scattering (blue) from the 200 nm diameter particle shown in panel (c) as well
as calculated theoretical Mie scattering for 175 nm (red) and 200 nm (green) diameter Ag
nanoparticles suspended in water.
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the different sized nanoparticles. The particles were drop cast on a copper grid and imaged
using a Transmission Electron Microscope (TEM; FEI Tecnai F30 300kV FEG) using a
magnification of 145,000x (see Fig S3(a,c)). The 150 nm Ag particles are uniform in size and
nearly spherical in shape (but with facets), whereas the 200 nm particles were noticeably

less spherical and less uniform in size.
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Figure S3: Transmission electron microscopy (TEM) and spectral analysis of Ag nanopar-
ticles. (a) TEM images of 150 nm diameter Ag nanoparticles dispersed on a copper grid.
Scale bar is 50 nm. (b) Normalized extinction spectrum of 150nm diameter Ag nanoparticle
stock solution taken with a UV-Vis-IR spectrophotometer (blue curve). Peak maxima at
440 nm and 600 nm correspond to the dipole and quadrupole Mie scattering modes of a 150
nm diameter silver particle immersed in water (calculated values given as the red curve).
(¢) TEM images of 200 nm diameter Ag nanoparticles dispersed on a copper grid. Note the
larger variance in size and shape. Scale bar is 50 nm. (d) Normalized extinction spectrum of
200nm diameter Ag nanoparticle stock solution taken with a UV-Vis-IR spectrophotometer
(blue curve). Peak maxima are at 475 nm and 700 nm. Green and red curves respectively
correspond to calculated Mie extinction spectra of a 175 nm and 200 nm diameter silver
particle immersed in water. Note the broad width of measured peak compared to that of
the the calculated values and the measured value from panel (b), implying a dispersion in
particle diameters (and shapes) in the stock solution.
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We also measured the ensemble extinction of the two stock solutions using a Cary 5000
UV/Vis/IR spectrophotometer (see Fig S3(b,d)). For the 150 nm diameter Ag nanoparticle
solution we observed peaks at 440 nm and at 600 nm (blue curve in Fig S3(b). As there is
good agreement between the measured and calculated resonance locations, these extinction
peaks are assigned as the dipole and quadrupole modes calculated from Mie extinction of
a silver particle of the same diameter immersed in water (red curve). However, for the 200
nm diameter Ag nanoparticle stock solution, we observed much broader extinction peaks at
475 nm and 700 nm (blue curve in Figure S3(d)). These peaks are wider than expected for
a monodisperse suspension of Ag nano particles with a diameter of 175 or 200 nm (compare
to red and green curves in Figure S3(d)). This implies that the solution is not monodisperse
and is an ensemble of many different particle diameters with a mean value of around 180 nm.
The reason for this non-uniformity results from the well-established difficulty in synthesis of
Ag nanoparticles larger than 150 nm52.

Despite their non-uniformity, the "200 nm" Ag particles are consistently larger than their
150 nm counterparts and this size difference manifests itself in the non-reciprocal dynamics

shown in the main text.

Theoretical description of non-reciprocal forces

An expression for the net optical force on a dimer (of spherical isotropic particles A and
B) in a plane transverse to the propagation of plane-wave illumination can be obtained in
the point dipole approximation. The component of the electric field in the i direction at
particles A and B (at only the first order of scattering)? is

By = Ey+Gj’Ea®;  Ep = E)+ Gl Ejoa? (S1)

where E? is the incident electric field, o or a® is the polarizability of particle A or B, and

G;‘}B are the elements of the dyadic Green’s function for the vector between particles A and
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B. If we assume that the particles lie on the z axis, only the diagonal elements of G;‘}B are
non-zero. For a circularly polarized plane wave propagating in the z direction this leads to

a net force in the x direction F"* on the dimer

E? 0 oG oG
met __ 0 Ax B A _Bx\ Y Ax| B2 _ | A2 Bx TX v vy
Fret = 5 Re |[(a™a oo )3$(G” + Gyy) + (@™’ ]? — | 2a”) < P G, + o
(S2)

This equation extends the treatment derived in Sukhov et. al.%4 from particles trapped in a
linearly polarized plane wave to a plane wave with circular polarization.
The corresponding result for a pair of particles (point dipoles) interacting in a beam

linearly polarized along the z-axis (inter-particle axis) is

E2 Gy 0G4y
F;zet — 7ORe (aA*OzB _ QAQB*)W + (aA*laB‘Q _ ‘&A|2QB*) ( o GJ;T>:| , (83)

which after rearrangement is identical to the result in Sukhov et al®4 except for a factor

accounting for infinite-order interactions between the two particles. The additional factors of

9G,
Tyy and
T

2]

g;y G, in equation S2 for the case of circular polarization affect the dependence of
the derived forces on interparticle separation. However, equations S2 and S3 are qualitatively
similar. Both equations equal zero when a? = of, in accordance with the experimental
and simulation results presented in the main text. In fact, both expressions vanish if the
two polarizabilities are proportional by a factor of a real number (e.g. o = CaP” where
C is a real number). Therefore, it is necessary that the a* and o have different angles
in the complex plane for the non-reciprocal forces to exist within this approximation. In
summary, our analytical results show that non-reciprocal forces arise in pairs of particles

with dissimilar polarizabilities under both linear and circular polarization, although the

exact spatial dependence of these forces is different for those two cases.
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Analysis of combined particle trajectories

We performed 11 independent experiments, each of which was 7,000 frames in length. Of
these experiments we limited our analysis to frames in which we observed two particles in
the trap without another particle nearby. We then used the intensity information from the
sCMOS detector to identify whether the particle pair was a homodimer (5 experimental
videos, 8,500 total frames) or a heterodimer (12 experimental videos, 18,900 total frames).
From each video frame we localized the particle centroids using particle-tracking al-
gorithms (e.g. Mosaic in ImageJ®%)and used their positions to calculate the interparticle
separation .. The motion of their mean angular position (or "center of geometry") w, was
calculated by how much their mean angle changed between consecutive frames, i.e. for frame
_ Aby Ocny1=bcn

n, we define w,, = AL = " where 0. is the mean angular position of the two par-

ticles in frame n, and At is the time step. This data was binned by interparticle separation,
dy9, and used to produce the plots of w, as a function of dy» in Fig 2(b,c). By plotting the
motion of the central interparticle angle as a function of interparticle separation we found
the mean rotational velocity of a homodimer (Fig 2b in the main text) and a heterodimer
(Fig. 2c in the main text). Fig S4 shows the distribution of w, along with the Gaussian
fit for the homodimers and the heterodimers. The FWHM of the Gaussian fits are due to
the thermal Brownian fluctuations inherent in the experiment. It is important to note that
the error bars shown in Figure 2(b,c) in the main text are the 3o confidence interval for
the center of the Gaussian fits, and thus, despite the width of the Gaussian distribution, its
central w, value is statistically significant.

The MSD results and the fitted transport exponents, a, for the entire homodimer and
heterodimer dataset (i.e. M.SD(6.|Vd;2), where djs is the interparticle separation) were cal-
culated by aggregating the trajectories from the entirety of the experimental videos identified
above (i.e. all 8,500 homodimer video frames or 18,900 heterodimer video frames). These
MSD curves are shown in the main text as the black and orange curves in Fig. 2(d).

Calculation of the MSD for cases where the particles were optically bound (i.e. M.SD(0,|d;s <
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Figure S4: Distributions and Gaussian fits to the homodimer (a-c) and heterodimer (d-f)
dimer velocity, w,, data shown in the main text in Figure 2(c,d). Different columns represent
particles separated by one optical binding distance (a,d), 1.5 optical binding distance (b,e)
and two optical binding distances (c,f). (a) Histogram of instantaneous angular velocity, w,,
for homodimers where the particles are at one optical binding separation (450 < dy2 < 750
nm). Center of the Gaussian curve is at —9 + 26 deg s~! (mean & S.D). (b) Homodimer
velocity data for the first unstable separation ((750 < dij2 < 1050 nm). Center of Gaussian
fit is at 54 4 130 deg s7*. (c) Homodimer velocity data for the second optical binding
separation ((1050 < dj2 < 1350 nm). Gaussian center is at 11 + 52 deg s~!. (d) Histogram
of instantaneous angular velocity, w,, for heterodimers where the particles are at one optical
binding separation (450 < dij2 < 750 nm). Center of the Gaussian fit (orange curve) is at
190 4 50 deg s~!. (e) Heterodimers velocity data for the first unstable separation ((750 <
dy2 < 1050 nm). Center of Gaussian fit is at —136 & 70 deg s~1. (f) Heterodimers velocity
data for the second optical binding separation ((1050 < dj5 < 1350 nm). Center of Gaussian
fit is at 5 40 deg s~!. The values of N in each panel indicate the total counts (events) in
each histogram.
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1.2pm)) was done by selecting and analyzing the portions of the experimental trajectories
where the interparticle separation was small enough for the particles to interact electrody-
namically. Fig S5 shows the trajectories of 9 bound homodimers (a) and 12 bound het-
erodimers (b) from our experimental set. The start time of the trajectories was selected as
when the interparticle separation was less than two optical binding separations (1.2 pm), and
ended when the interparticle separation was greater than 1.5 pm for more than one time step.
These values were chosen to allow analysis of cases in which the particles fluctuated away
from optical binding separation for short periods of time. Fig S5(c,d) shows the calculated
MSD values of the trajectories shown in Fig S5(a,b), as well as the mean MSD (connected
grey diamonds) obtained by aggregating over the all the bound homodimer or heterodimer
trajectories. The aggregated MSD curve for the bound heterodimer is identical to the orange
curve shown in Figure 2(d) the main text. The Mean homodimer MSD shown in Fig S5(c)
has a slightly different exponent than that of the entire homodimer population regardless of
separation (black curve in Fig 2(d) in the main text). The reason for the slight difference
between the exponent values (o = 0.96 vs. o = 1.0) is that the MSD shown in Fig S5(c)
was fitted only to the trajectories in which the particles are at optical binding (i.e. dis < 1.2
wm). Conversely, the exponent shown in Fig 2(d) in the main text was obtained by fitting
the entire trajectory information. Trajectories that are shorter than 35 time steps (roughly
0.1s) are not shown in Figure S5. The value of a was unchanged whether or not the trajec-
tories shorter than 35 time steps were used to calculate the MSD in addition to the longer

trajectories.
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Figure S5: Experimental trajectories and MSD calculations for bound homodimers and het-
erodimers. (a-b) Time series of angular displacement for homodimers (a) and heterodimers
(b). Trajectories were started when the particles were separated by less than 1.2 um, and
ended when the particles were separated by more than 1.5 pm for longer than one time step.
This was done to include trajectories in which the particles fluctuate out of optical binding
for short periods of time and to allow aggregation of long trajectories. Particle size was de-
termined from the scattering intensity recorded by the sCMOS detector. (c-d) MSD values
of trajectories for homodimer (c¢) and heterodimer (d). The different colors correspond to
the trajectories shown in panels (a,b). The mean MSD value (marked as gray connected
diamonds) is the mean MSD calculated from all the individual trajectories shown in (a,b).
The mean heterodimer MSD is identical to that shown in the Figure 2(d) in the main text.
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The MSD calculated from a single heterodimer trajectory demonstrates the driven nature

56, Figure S6 shows an example of the MSD calculated from a

of the heterodimer motion
single heterodimer trajectory (specifically the trajectory of the heterodimer driven in the
CW direction motion shown in Fig 2(a) in the main text), along with a quadratic fit that

signifies driven motion.

450

400
350
300
250
200
150

MSD(6) [deg?]

) * Experiment
——Quadratic fit

0 20 40 60 80 100
At [msec]

100
50

Figure S6: MSD calculated from a single heterodimer trajectory, specifically the CCW het-
erodimer trajectory shown in Fig 2(a) in the main text. The MSD was fitted with a quadratic
function, demonstrating the driven nature of the motion.
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Effect of nanoparticle heating

It is well established that micro- and nano-scale Janus particles exhibit driven motion through
self-thermophoresis. 5% A Janus particle is usually designed so that half of its surface area
is coated with a material such as Au which absorbs the laser light. When such a particle
is illuminated it will heat the environment around the coated area and exhibit driven mo-
tion towards its cooler, uncoated side due to increased thermal fluctuations on the heated
side. The driven motion we observe in this manuscript is significantly different from self-
thermophoretic motion. In this section we will describe the observed differences between self
thermophoresis and electrodynamically driven motion.

The first important point: if the cause of the motion of the heterodimer were solely
due to self-thermophoresis, one would expect that increasing the interparticle separation
would cause a monotonic decrease in the driven component of the pair. Essentially, as the
inter-particle separation increases, they become less like a Janus particle and more like 2 in-
dependent particles so the driven component in their motion should decrease. However, as we
show in Fig. 2c¢ in the main text, when the particles are separated by 3\/2 we observe a sta-
tistically significant motion in the opposite direction (i.e. towards the smaller particle). This
change in the direction of the directed motion cannot be explained by self-thermophoresis,
and supports our observation that the motion is due to oscillatory electromagnetic interac-
tion.

Another distinction from self-thermophoresis is the direction of the directed motion.
We can calculate the heating of the particles in the trap using the methods described in
the literature®?. The excess temperature of the environment, ATy p, around a nanosphere
trapped in water near the glass coverslip is defined as ATnp = 0upsl /4T RE giqss, Where
Oabs 18 the absorption cross section of the nanoparticles (1.96x10® nm? and 3.09x10% nm?
for the 150 nm and 200 nm diameter nanoparticles respectively), I is the incident laser
intensity (1.5 MW cm™2), R is the particle radius and  is the thermal permittivity of glass

(1.4W (m - K)~'), which is the dominant avenue for heat removal in our system. The result of
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this calculation is that the temperature difference between the particles is small (ATog0nm =
26.3°, ATis50nm = 22.3°). This slight temperature difference leads to a slight difference
in dynamic viscosity of the water (0.52mPa for the 200nm nanoparticles, 0.56 mPa for
the 150 nm diameter nanoparticles). If we consider only water as the sink for thermal
energy from the nanoparticles (k = 0.6 W (m - K)~1), the particle temperature will be higher
(ATo00nm = 61.3° ATi500m = 52.0°) and the viscosity will be lower (0.32mPa for the 200nm
nanoparticles, 0.36mPa for the 150 nm diameter nanoparticles). Even in this regime, the
temperature and viscosity difference between the two particles is not strikingly large.

Note that it is is not straightforward to consider our system as a Janus particle because the
particles are not physically bound to each other and the separation between them changes.
In addition, due to their separation (~ 600 nm), the temperature around each individual
particle will be roughly uniform. The reason for this is that the gap between the particles is
significantly larger than their individual size and thus the medium directly around them will
be affected, to first approximation, by the heating of the individual particles (see treatment
of particle pairs in G. Baffou et al®.

Nevertheless, even if we take the temperature difference between the particles as the
cause of the driven motion, the observed motion direction is the opposite to what is expected
for a Janus particle in water. The driven motion we have observed is towards the large
particle, which is the slightly warmer particle and experiences a smaller local viscosity. In
other words, based on the observed motion the Soret coefficient of our system (defined as
St = Dr/D, where D is the diffusion coefficient and Dy is the thermodiffusion coefficient)
is negative. By contrast, previous papers reported a positive Soret constant (e.g. motion of
the Janus particle towards the cooler side) when the particle was placed in water58510:511,
While it is possible to obtain a negative Soret coefficient by adding a surfactant to the water
or by decreasing the water temperature, we performed our experiment in pure DI water and
at room temperatures, and we do not anticipate a negative Soret coefficient.

Thus, the nature of the motion that we observe — the direction of the dimer motion
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towards the larger, hotter particle, and the dependence of the driven motion direction on
interparticle separation — suggest that the driving force is not thermophoretic in nature. We
conclude that the reason for the driven motion is the electrodynamic interaction between

the particles, in agreement with previous theoretical work and with our simulations.

Simulation methods

Force evaluation through Generalized Mie Theory

The electrodynamic interactions are computed using the Generalized Mie Theory (GMT)
method. 52513 In GMT, the incident and scattered fields are expanded into the vector spher-
ical harmonic (VSH) functions for each particle. The incident field is expanded into the
regular VSH’s N and M

Lmax n

ln(‘ - Z Z lEm" |:pznnNnm + qmnME'nZL (84)

n=1 m=—n

where L.y is the maximum number of multipole orders to expand in, E,,, is a normalization
constant, and p,,, and ¢, are the expansion coefficients to be solved for. The scattered

field is expanded into the scattering VSH’s N&) and M®)

nm?

Lmax

qcat - Z Z lEmn [a]p]mnNnm + b] qmnMSL] (85)

n=1 m=-n

where @/ and b/ are the ordinary Mie coefficientsS!* of particle j.

The expansion coefficients are solved for a system of 2N Loy (Liax + 2) equations,

(LN) Linax
P =1 = 30 35 3 AU = Nl + B (= e
l;ﬁj v=1 u=—v (86)

N) Linax

G = a7 — Z > Z Byt (1= j)abph, + A, (1 = 5)bdl,

I#j v=1 u=—v

S-16

179



where pi,” and g¥?) are the expansion coefficients of the incident source and A (1 — j)

and AW

mn

(I — j) are VSH translation coefficients from particle [ to particle j. Solving this
system includes induced dipole interactions as well as many-body interaction terms.
Once the expansion coefficients are solved for, the force on each particle can be determined

by integrating the Maxwell stress tensor (MST) T over the surface of each sphere,

F=¢ T dQ (S7)
Q

Figure S7 shows the angular scattering from a heterodimer with the indicated separations.
The small triangles represent the centroid of the angular field distributions showing that the
centroid shifts to the —z or +z direction depending on the interparticle separation. That
is, the light scattering is asymmetrical due to the asymmetry of the heterodimer and its

separation.
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Figure S7: Angular scattering in the xy-plane for the hetero-dimer for different particle sep-
arations (integer and half integer multiples of the wavelength) and incident light polarization
(right hand circularly polarized and linearly polarized along the y-axis). The black triangle
is the centroid of the angular distribution and indicates the preferred direction of angular
scattering. For separations equal to an integer multiple of the wavelength, more light is
scattered in the —z direction while for half integer multiples more light is scattered in the
+x direction.

Langevin equation of motion
The equation of motion for a 2-particle system undergoing dissipation and thermal noise
is given by the Langevin equation

d2ri
T

= Fi(T‘i,t) — )\1@ +

it n; (S8)

where m; is the mass of each nanoparticle, F'; is the electrodynamic force on each particle,
Ai = 6nvR; is the friction coefficient (v is the dynamic viscosity of water), and n, is a
Gaussian noise term such that the fluctuation-dissipation theorem holds. Equation (S8)
is integrated in time using a leap-frog Verlet integrator®™® to give the trajectories of the
nanoparticles.

Figure S8 shows the results of GMT-LD simulations of a 150-100nm diameter Ag dimer
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pair in a medium with the viscosity of water at T=300 K. The particles initially move to a
separation of ~ 600 nm (optical binding) and then the optically bound hetero-dimer moves
as a '"rigid body" towards the larger particle as in experiment. The slight wiggles in the

trajectory reflect the Brownian (thermal) noise in the LD simulation.

100 A T =0.00 pus

100 A T=1.65us

100 A T=330us

100 A T=4.95us

100 - T=6.60pus

100 A T=8.25us

100 A T=9.95us

o] -0

0 500 1000 1500 2000 2500
X (nm)

Figure S8: Trajectory snapshots of the simulated hetero-dimer using the GMT-LD
method. 5! The incident source is a y-polarized plane wave with no component of the Poynt-
ing vector in the xy-plane. The blue particle is 100 nm in diameter while the orange particle
is 150 nm in diameter. A temperature of T = 300K is used in a water medium (index of
refraction n, = 1.33). The motion of the hetero-dimer is a manifestation of the non-zero
(non-reciprical) net electrodynamic force.
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Characteristics of Au nanostars
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Figure S9: Characteristics of the gold nanostars. (a) Scanning electron microscopy image
(SEM) images of Au nanostars. (b) Nanoparticle sizes were determined by tracking analysis
(with Nanosight NS300-Malvern) reveal one major peak at 125nm diameter corresponding to
the average diameter of single particles, and peaks at 265nm and 350nm. The latter reveals
the significant presence of dimer and trimer aggregates in the solution. (c) Extinction spectra
of the Au nanostar solution.

Characteristics of Au nanoparticle cluster

423nm

Figure S10: Characteristics of the Au nanospheres that form the large aggregate shown
in Figure 4 of the main text. AFM image of the gold nanoparticles of 200nm diameter.
Individual Au nanospheres as shown here are also present in the ring trap of Figure 4.
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Driven motion of Au nano-star dimer and Au NP aggre-
gate

While circularly polarized light provides isotropic excitation anywhere within the ring trap,
we expect that the nanostar particles would spin (and a dimer would rotate) as has been
demonstrated for an anisotropic nanoparticle such as a nanorod or nanowire, or nanosphere
dimer in the near field interaction regimeS!™5'®. However, the confinement of the ring trap
would hinder rigid-body type rotation. Therefore, since we want to focus on linear driven
motion, it is desirable to prevent the emergence of a confounding effect such as spinning;
even though understanding it will be an interesting separate study. Under linearly polarized
light, the isotropic optical field-dimer interaction within the ring trap is broken. We expect
the particles to align with the light polarization to minimize the induced torque, and to be
driven due to asymmetric scattering. However, as mentioned above, the dimer cannot rotate
as a rigid body, but thermal energy could cause internal rearrangements that essentially
reverse the direction of the anisotropic polarizability causing a reversal in the direction of
light scattering and of its motion. We observe that the dimer spends more time around
©, = 270° (with an orientation parallel to the polarization). The nanostar dimer is able to
rearrange because of the Brownian thermal noise.

We also studied the dynamics of an asymmetrical aggregate of spherical NPs. There is
a noticeable difference in the dynamics of the Au NP aggregate vs. that of the nanostar
dimer. We believe this to result from the intrinsic scattering properties of the aggregate and
the electrodynamic interactions between the aggregate and the many Au NPs present in the
ring trap. In the trajectory shown from A to B in Figure 4e in the main text, the mean
speed is as high as 384°s™! then decreases to 68°s~! from B to C and increases, after flipping
orientation, up to 267°s7! between C and D. Furthermore, as shown in Figure S11, the
aggregate is oriented perpendicular (near 270°) and parallel (near 180°) to the polarization

before it flips. Several frames from the video that demonstrate this change in orientation
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are shown in Figure S11 for a location of the aggregate near 180° in the ring. The speed
of the cluster is non-linear, it decreases near 245° which corresponds to the region where it
electrodynamically “contacts” the many single Au NPs also trapped in the ring. By contrast,
these interactions are negligible in the case of the nanostar dimer because of the lower particle

density in the ring.

Frame 101 . o Frame 115 |

Figure S11: Dark field images of the Au NP aggregate and Au NPs optically trapped in the
ring. Images are presented in chronological order showing the evolution of the cluster orien-
tation around 200°. Frame rate is 35fps. The dense groups of individual Au nanoparticles
in the < 180° and > 270° regimes are due to a slight astigmatism.

The difference in the dynamics between the dimer and the aggregate is thus not only due
the intrinsic scattering properties of the aggregates but also the result of the interaction of
the aggregate with the optically bound Au NPs in the ring trap. The interactions reduce
the net drift force even though the behavior of the aggregate is strongly super diffusive (see
Figure 4f). Conversely, the interaction and driven motion of the Au NP aggregate affect the
local NP density. As observed in the video, the Au cluster pushes the many single Au NPs
inducing a compression of Au NPs in these two regions (around 180° and 285°). Notably,
the aggregate does not proceed further presumably both because of the resistance of the Au
NPs to further compression and also its interaction with the linearly polarized beam. We
beleive the combination of factors cause the Au NP aggregate to rotate 180° at these "turning
points" and to then undergo the driven motion in the reverse direction until reaching the

other turning piing.
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Figure S12: Evolution of the Au nanoparticle (NP) density in the ring. We show the average
NP density depending on the two extreme positions of the aggregate in the ring trap. The
local NP density is increased near the Au NP aggregate (i.e. near the 200° and 270° loca-
tion). The error bars represent the standard deviation of the NP density. The Au NP density
increases at angular values beyond where the Au NP aggregate goes due to its "sweeping"
and forcing them into more compact angular regions of the ring.

As shown in Figure S12, our interpretation is supported by the average probability density
calculated for the extreme position of the cluster. At 200° (respectively 285°), there is
an increase (respectively a decrease) of the density of NPs around 180° and a decrease
(respectively an increase) of the density around 270° when the Au NP aggregate is at 200°

(285°) positions. Further investigation of the phenomenon is beyond the scope of the paper.

List of videos

Video S1 - video of homodimer in ring trap.

Video S2 - video of heterodimer in ring trap - motion in a CW direction
Video S3 - video of heterodimer in ring trap - motion in a CCW direction
Video S4 - video of the nanostar dimer in a ring trap.

Video S5 - video of Au nanoparticle cluster in the ring trap.
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FORCE CALCULATIONS FOR SEVERAL PHASE GRADIENTS

We calculated the forces on cach of two particles A (black) and B (red) as depicted in Figure
la of the main text. The results are shown in Figure S1 for several regularly spaced phase
gradients starting from £ = 0 up to £ = 0.2 in increments of £ = 0.025, where £ = —d) Two
general trends are apparent as £ increases. The first is the force curves shift to larger foxce as &
increases, corresponding to an overall larger driving force. The second is the increasing disparity
in the separation dependence of the forces on each particle with increasing . This progression
shows the contrast between experiments with small &, where the optical binding locations are
largely unchanged, and experiments with large £, where they are dramatically changed.

EXPERIMENTAL METHODS

A collimated laser beam from a Ti:Sapphire laser operating at 800nm (wavelength in vacuum)
was reflected from a spatial light modulator (SLM; Meadowlark) adding a phase profile so that
it formed a ring-shaped optical trap [1] when focused through a microscope objective (Olympus;
APO 60x, water). A sample cell consisting of two glass cover-slips with a chamber formed by a
spacer was filled with a dilute solution of 150nm dia. PVP-coated Ag nanoparticles (Ag NPs;
Nanocomposix) in water. The sample was positioned so that the focus of the beam was close
to the top cover slip. In this configuration the electrostatically charged PVP-coated Ag NPs
become positioned close to the electrostatically charged upper glass cover slip at a distance
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FIG. S1. (a)-(i) Calculated electrodynamic forces on two particles A (black) and B (red) for £ =0 -
¢ = 0.2 in increments of £ = 0.025.

191



where radiation pressure from the trapping laser is balanced by electrostatic repulsion from the
cover slip [2]. The Ag NPs were, therefore, confined to a quasi-one-dimensional optical ring
trap. The particles were imaged using dark-field video microscopy and tracked using the Mosaic
particle-tracking suite in ImagelJ. All of our experiments were carried out at low particle density
(2-5 particles in the ring trap) so that our analysis could be carried out on particle pairs that
were minimally disturbed by other nearby particles and our data was not conditioned on the
location of a third particle. A representative example of the rad data is shown in Video S1.

An azimuthal phase gradient [2, 3] that depends on the topological charge, I, (the number of
27 phase wrappings around the ring) of the phase mask on the SLM can be added to the ring
by encoding a suitable phase profile. The radius of the ring trap (r) and the phase gradient can
be tuned independently, allowing a large range of experimentally accessible phase gradients to
be applied.

For a sufficiently large ring, the curved path of the ring is approximately straight for distances
relevant to our measurements and the direction of the phase gradient, which is tangent to the
ring trap, is not much different. The periodic boundary condition of the ring trap also allows for
very long trajectories to be collected under uniform intensity, polarization, and phase gradient
using circularly polarized light because the relevant forces on a particle or particle pair do not
depend on their angular position in the ring [4].

Phase gradient strength and parameter ¢

The explicit expression for the phase gradient parameter ¢ can be derived in terms of the the
magnitude of the wave vector k of the trapping light in the experimental medium (water), the
topological charge [, and the ring radius r by noting that the total phase change once around
the ring is

A¢ = 2rl. (S1)

Assuming that the phase varies uniformly around the circumference of the ring gives locally
(over a small angular section of the ring)

o6 2wl 1
o 2w r (52)
and thus
e=L ($3)
Tk

In the small phase gradient regime we used a ring radius of 4.54um with [ =1, [ = 3, and
| = 5 corresponding to & = 0.021, £ = 0.064, and £ = 0.11, respectively. In the large phase
gradient regime we used a ring radius of 3.37um with [ = 8, [ = 10, and [ = 12 corresponding to
£ =10.23, £ =0.29, and £ = 0.34, respectively.

HYDRODYNAMIC INTERACTION
Our experimental and theoretical analysis is focused on electrodynamic interactions between

driven nanoparticles. The hydrodynamic interactions between particles in our experiment are
addressed here. The velocity of a single particle A of radius a in overdamped fluid conditions
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is va = BsF4, where By = (67na)~! is the Stokes self-mobility of the sphere in a medium
with dynamic viscosity n and F 4 is the force on sphere A [5]. The net force on a homo-dimer,
Fhey = F4 + Fp, determines the dynamics of the particle pair. The velocity of the center of
mass of the homo-dimer follows from Stokes’ law[5] given the overdamped conditions of the
experiment:

1FA+F37 Fnet

= (54)
2 6mna 127na

1

<Ucm> = §<'U1 + U2> -
where 7 is the dynamic (shear) viscosity of the medium, and « is the radius of the identical
particles. For electrodynamically non-interacting particles in a linear phase gradient, Fj,.; =
2F riving and Eq. S4 gives (Vem) = (Viso1) = (Viso2), @.€. the average velocity of the center of
mass is equal to the velocity of an isolated particle (measured experimentally for particles that

are separated by more than 3um from their nearest neighbor) in the same phase gradient.
A second identical particle nearby B will create a flow field at particle A given by ﬁ(rAB)F B,

where ﬁ(rAB) is the Oseen tensor [6]. Following from Sokolov et al [7] the modified tangential
velocity of particle A due to hydrodynamic interaction separated by angle Af 5 in our annular
experimental geometry is

V4 (AO4p) = [Ba+ g(A04g)| Ff; (S5)

where L3 Ag
+ 3 cos
g(AGAB) = AD (86)
16mnr+/2(1 — cosAbOap)

and 1 is the radius of the ring. Similarly, the radial force on particle A due to hydrodynamic
interaction from the flow field caused by particle B, F7, is

F', = B 'h(A045)FS, (S7)

where
3 sinAOyp

16777m/2(1 — cosAfap)
Egs. S5-S8 suggest that the effects of hydrodynamic interactions can be characterized by
the ratios xy = %jw and x, = %ﬁ. Fig. S2a shows plots of x, and xg over the range of
interparticle separations measured in our experiments. Although Y, is very small throughout
this range, yp has a value of roughly 0.2 near single wavelength separation (i.e. 600nm for
nanoparticles of radius a = 75nm). However, this interaction cannot give rise to the results we
presented in the main text. Stable inter-particle separations will not be affected by the tangential
component of the hydrodynamic interaction since g(Af,p) is symmetric under exchange of
labels A and B, and thus any hydrodynamic forces will cancel when considering Fg — Fa.
Figure S2b shows a comparison between our experimentally measured pair velocities and
the expected pair velocity enhancement due to hydrodynamic interaction. As in the main text,
experimentally measured values of (v,) are shown as solid curves and the measured velocity of
isolated particles, (v;s,), is shown as dashed lines. The hydrodynamically enhanced pair velocity
given by (1 + xy) is shown as dotted curves. Although hydrodynamic interactions will slightly
alter the tangential velocity of a particle pair, the total magnitude of this change is smaller than
the enhancement of the pair velocity that we measured at separations equal to the wavelength
of the trapping laser. In contrast to the monotonically decaying enhancement predicted from

h(AbOap) =

(S8)

4
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FIG. S2. Hydrodynamic interaction in particle pairs. (a) Magnitude of hydrodynamic interaction
relative to the Stokes drag force as a function of pair separation in the tangential (solid) and radial
(dashed) directions. (b) Comparison between our experimentally measured pair velocities and the
expected pair velocity enhancement due to hydrodynamic interaction. Experimentally measured values
of v, are shown as solid curves and the measured velocity of isolated particles v;s, is shown as horizontal
dashed lines. The hydrodynamically enhanced pair velocity given by (1 + xg) is shown as monotonically
decaying dotted curves.

hydrodynamics, we also measured diminished pair velocity compared to single-particle results
at locations (e.g. R = 1.5)\) consistent with our theoretical predictions for electrodynamic
interactions.

OPTICAL BINDING FOR SMALL PHASE GRADIENTS

Optical binding for small phase gradients has been covered in detail in Figliozzi et al.[2]. In
Figure S3 we show experimentally measured particle separation PDFs (black) for £ = 0.021 (a),
& =0.064 (b), and £ = 0.11 (¢). For comparison we have also plotted the energy (i.e. work)
curves associated with optical binding (red). Vertical black dashed lines mark the significant
minima in these energy curves, and correspond to peaks in probability. For Figure S3a-b, the
first two minima are very close to R = A and R = 2\, while for Figure S3c the phase gradient is
strong enough to essentially eliminate the second optical binding energy minimum.

NET FORCE FOR A LARGE PHASE GRADIENT

Figure S4 shows the calculated net force in the point dipole approximation (solid) and our
GMT simulations (dashed) on a homo-dimer for a large phase gradient (£ = 0.34). The net force
still depends on separation, but is no longer periodic and the modulations are proportionally
weaker. Both of these effects can be understood from Equation 1 in the main text. Specifically,
when the phase gradient is large, we expect the phase difference between the incident and
scattered light at each particle to diverge from each other, i.e. A¢4 # A¢p, and the interference
effects that lead to the velocity enhancement for small phase gradients become much more

ot
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FIG. S3. (a)-(c) PDFs of measured inter-particle separations (black curves, left axis) for £ = 0.021 (a),
&£ =0.064 (b), and £ = 0.11 (c). The electrodynamic interaction potential is also plotted (red curves,
right axis). The vertical dashed lines mark the significant minima in the electrodynamic interaction
potential.
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FIG. S4. Calculated net force in the point dipole approximation (solid) and our GMT simulations
(dashed) on a homo-dimer for a large phase gradient (£ = 0.34).
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THEORETICAL POINT-DIPOLE CALCULATIONS

Describing the electromagnetic interactions in the point-dipole approximation allows em-
ploying analytical expressions for the total force on each particle. This approach provides
fundamental insight into the origins of forces associated with phase differences compared to
simulation methods that allow more exact calculation of the forces. We explain additional
details of the theoretical model in this section.

Following the analysis of Dholakia et al [8], the total force on each isotropic particle along
the R direction, in the point-dipole approximation, is

1 B2\ OE aG
F]g _ iRe Bx— ) 0 Ax —B

w A = —.
(%EU +()’E, G R + |ao*Ey WE0 : (S9)

where ag is the polarizability of the identical particles, * denotes complex conjugate, E{; and
_ AB

Ef are the incident electric field (vectors) at particles A and B, and G is the dyadic Green’s
function that propagates the scattered field from particle B to particle A. The force on particle
B can be obtained from Eq. S9 by exchanging the labels A and B. In this approximation we
account for the phase gradient by explicitly plugging the phase and phase gradient derived from
Eqgs. S1-S2 into Eq. S9.

The polarizability of the spherical particles, «y, is

, 2 kay\
g = O (1 - 3477'60) (SIO)

with

o Ama®  ep(e, —€m)

oy =
0 3 en+ %(ep —€m)

(S11)

where k is the wavevector of the light interacting with the particle, €,, is the permittivity
of the medium surrounding the particle, and ¢, is the permittivity of the particle (silver;
e, = —30.2 4+ 0.3874) [9]. Equation S9 was evaluated using Matlab at various separations,
R, for the parameters a = 75nm (Ag NP radius), and an incident electric field strength of
Ey =105V /m.

The geometry used in our analytical treatment is one-dimensional; i.e., only along the
inter-particle axis. However, the field is incident from a perpendicular direction. The primary
complication in our experimental ring-trap geometry is that the phase varies linearly with
arc-length 76 in a ring trap, while R depends the chord-length between the two particles. In
analyzing our experimental particle tracking data we only considered small angular sections of
the ring (i.e. A8 < 27), where these two distances are approximately equal (i.e. sin(f) ~ 0).

To make predictions related to optical binding we evaluated the work required to separate
two particles from some starting distance R; to another distance Rs

Ry
W(Ry) = f/ (FE — F}) dR'. (S12)
Ry

Optical forces are generally non-conservative [10, 11], so it is not strictly correct to call W a
potential energy. However, since our system is confined to one degree of freedom, the integration

7
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from R; to Ry is guaranteed to lie on a single path, and therefore W will be a conserved quantity
in the context of our experiment.

GENERALIZED MIE THEORY SIMULATIONS
Simulation Methods

The electrodynamic interactions are computed with the GMT method [12, 13] using the
GMT software package MiePy that we developed. In this method, the incident and scattered
fields are expanded into the vector spherical harmonic (VSH) wave functions for each particle.
The incident field on particle j is expanded into the regular VSH’s N,E}T)L and MT(L}%

Lmax

lIl( - Z Z 7E"L’L ]) ]_>] N ]) + q(]_}l] M(] ] (813)

n=1 m=-n

where L., is the maximum number of multipole orders to expand in, E,,, is a normalization
constant, and pgfm and qmn are the expansion coefficients of the incident source at particle j.
The scattered field of particle j is similarly expanded into the scattering VSH’s NT(,f,)L and M,([f,)L

Lax

scat - Z Z ZET’LTL ’n mnNr(lfn + b]qmn rri)z} (814)

n=1 m=-n

where af, and & are the ordinary Mie coefficients [14] of particle j and p/,, and ¢J,, are the
expansion coeflicients of the light incident on particle j.

The expansion coeflicients p? . and ¢/, are solved for in a system of 2N Lyyax(Liax + 2)
interaction equations

(1N) Linax

p]'I:nTI = pTil'rT}] Z Z Z Auv l % ] ﬂp'lll,ﬂ + B;LFLL;'L(Z % j)b’lﬂq”{lv
I#£j v=1 u=—v
(1,N) Linax

Do = @ = D Z B (L= flalpl, + At (I — 5y,

I#£j v=1 u=—v

(S15)

Where A% (I — j) and B" (I — j) are the VSH translation coefficients from particle { to particle

mn mn

Source decomposition in the GMT

To model the incident ring-shaped electric field, we use the following functional form of E in
cylindrical coordinates,

Eo &+ig ., p\’ :
E(p,0,2) = “/zexp[—u<—) exp [i(l0 + kz — wt) |, S16
(6.6,2) pg/ exp(—u/4) V2 p 2po ( ) (516)

where py is the radius of the ring, u determines the thickness of the ring, | dictates the strength
of the phase gradient (equal to [/pp), and k = 27n,/ A is the wavenumber of light in the medium
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of index n;. The normalization is chosen such that |E(p = po, 0, z)| = Ep. The following values
were used for simulations in this work: A = 800nm, n, = 1.33, Eg = 1 x 10°V/m, and u = 40.
For the larger ring, pg = 4.54pm and [ = 1, 3,0r 5 and the for the smaller ring, pg = 3.37 um
and [ =0, 4,or 8.

The incident electric field is decomposed into incident vector spherical harmonic wave functions

using a near-field point matching method. [15] This provides the expansion coefficients p%:j )
and qﬁ,{: 7 needed to solve the interaction equations, Eqn. S15. In this method, the coefficients
are calculated so as to minimize, in a least squares sense, the difference between the expanded

field, Eqn. S13, and the desired field, Eqn. S16.

Force evaluation in the GMT

Once the expansion coefficients are solved for, the time-averaged force on each particle can
be determined by integrating the time-averaged Maxwell stress tensor (MST), (T'), over the
surface of each sphere

<T> = %RC |:€bE QR E*+ up,H® H* — %(&;EQ + }thz)I (17&)
(F) — % (T) - A2 (17b)
Ja

where (2 is any surface enclosing the sphere. The electric field E is calculated using the field
expansions in Eqs. S13-S14 and the magnetic field H is evaluated using similar field expansions.
[12]

Comparison with Theoretical Point-Dipole Calculations

The GMT results presented in the main text are in very good agreement with our theoretical
model, demonstrating that the approximations made (e.g. point dipoles, no higher order modes,
finite sizes) do not result in significant inaccuracies. The magnitude of the net forces shown in
Figure 2d in the main text differ slightly for the point-dipole theory and GMT method (< 15%),
with the largest difference at the peaks in net force. A combination of factors affects these forces,
namely: (i) higher-order multipoles in the particles due to finite size, (ii) and the more realistic
electric field distribution in the GMT simulations where the peak intensity was set equal to the
uniform intensity in our theoretical calculations.

The energy curves in Fig. 3d further demonstrate the effect of the approximations made.
The shapes of the curves differ most at small separations, where multipole effects and high-order
scattering are most important. There is also a slight shift of the curves that grows with separation
especially for the red curves (€ = 0.23) shown in Fig. 3d in the main text. This is because in our
theoretical point-dipole calculations phase varies linearly with separation R, while in our GMT
simulations (and experiments), phase varies linearly with arc length. For short distances these
two quantitics are approximately equal, but when the particles are separated by a significant
angle on a circle this approximation breaks down. The relatively small shifts seen in Figure 2d
in the main text demonstrate that our experiments and theoretical results were in the regime
where this approximations holds relatively well.

198



* nfschere@uchicago.edu

(1]
2]
3l
4]

5]
(6]

7l

18]

9l
[10]
[11]
[12]
[13]
[14]

[15]

Y. Roichman and D. G. Grier, in Complex Light and Optical Forces, Vol. 6483 (International
Society for Optics and Photonics, 2007) p. 64830F.

P. Figliozzi, N. Sule, Z. Yan, Y. Bao, S. Burov, S. K. Gray, S. A. Rice, S. Vaikuntanathan, and
N. F. Scherer, Phys. Rev. E 95, 22604 (2017).

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100,
013602 (2008).

Y. Yifat, D. Coursault, C. W. Peterson, J. Parker, Y. Bao, S. Gray, S. A. Rice, and N. F. Scherer,
Light Sci. Appl. 7, 105 (2018).

R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry (Oxford University Press, 2000).

J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to
particulate media, Vol. 1 (Springer Science & Business Media, 2012).

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, Phys. Rev. Lett. 107, 158302
(2011).

K. Dholakia and P. Zemanek, Rev. Mod. Phys. 82, 1767 (2010).

P. B. Johnson and R.-W. Christy, Phys. Rev. B 6, 4370 (1972).

S. Sukhov and A. Dogariu, Rep. Prog. Phys 80, 112001 (2017).

M. V. Berry and P. Shukla, J. Phys. A 46, 422001 (2013).

Y.-1. Xu, Appl. Opt. 34, 4573 (1995).

J. Ng, Z. Lin, C. Chan, and P. Sheng, Physical Review B 72, 085130 (2005).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley
& Sons, 2008).

T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, J. Quant. Spectrosc. Radiat. Transf.
79-80, 1005-1017 (2003).

10

199



Bibliography

[1] George M Whitesides and Bartosz Grzybowski. Self-assembly at all scales. Science,
295(5564):2418-2421, 2002.

[2] Marek Grzelczak, Jan Vermant, Eric M Furst, and Luis M Liz-Marzan. Directed
self-assembly of nanoparticles. ACS Nano, 4(7):3591-3605, 2010.

[3] Yiyong Mai and Adi Eisenberg. Self-assembly of block copolymers. Chemical Society
Reviews, 41(18):5969-5985, 2012.

[4] Peng Yin, Harry MT Choi, Colby R Calvert, and Niles A Pierce. Programming
biomolecular self-assembly pathways. Nature, 451(7176):318-322, 2008.

[5] John D Joannopoulos, Pierre R Villeneuve, and Shanhui Fan. Photonic crystals. Solid
State Communications, 102(2-3):165-173, 1997.

[6] Alexander Poddubny, Ivan Torsh, Pavel Belov, and Yuri Kivshar. Hyperbolic metama-
terials. Nature Photonics, 7(12):948-957, 2013.

[7] Xiaoyu Zheng, Howon Lee, Todd H Weisgraber, Maxim Shusteff, Joshua DeOtte, Eric B
Duoss, Joshua D Kuntz, Monika M Biener, Qi Ge, Julie A Jackson, et al. Ultralight,
ultrastiff mechanical metamaterials. Science, 344(6190):1373-1377, 2014.

[8] Steven A Cummer, Johan Christensen, and Andrea Alu. Controlling sound with
acoustic metamaterials. Nature Reviews Materials, 1(3):1-13, 2016.

[9] Marcin Fialkowski, Kyle J. M. Bishop, Rafal Klajn, Stoyan K. Smoukov, Christopher J.
Campbell, and Bartosz A. Grzybowski. Principles and implementations of dissipative
(dynamic) self-assembly. The Journal of Physical Chemistry B, 110(6):2482-2496, 2006.
PMID: 16471845.

[10] Bartosz A Grzybowski, Howard A Stone, and George M Whitesides. Dynamic self-
assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface.
Nature, 405(6790):1033-1036, 2000.

[11] Eric Karsenti. Self-organization in cell biology: a brief history. Nature Reviews Molecular
Cell Biology, 9(3):255-262, 2008.

[12] Mario Tagliazucchi, Emily A Weiss, and Igal Szleifer. Dissipative self-assembly of
particles interacting through time-oscillatory potentials. Proceedings of the National
Academy of Sciences of the United States of America, 111(27):9751-9756, 2014.

200



[13] Michael M. Burns, Jean Marc Fournier, and Jene A. Golovchenko. Optical Binding.
Physical Review Letters, 63(12):1233-1236, 1989.

[14] Michael M Burns, Jean-Marc Fournier, and Jene A Golovchenko. Optical matter:
Crystallization and binding in intense optical fields. Science, 249(4970):749-754, 1990.

[15] Kishan Dholakia and Pavel Zeméanek. Colloquium: Gripped by Light: Optical Binding.
Review of Modern Physics, 82(2):1767-1791, 2010.

[16] Vassili Demergis and Ernst-Ludwig Florin. Ultrastrong optical binding of metallic
nanoparticles. Nano Letters, 12(11):5756-5760, 2012.

[17] Zijie Yan, Stephen K Gray, and F Scherer. Potential energy surfaces and reaction
pathways for light-mediated self-organization of metal nanoparticle clusters. Nature
Communications, 5:3751, 2014.

[18] Sergey Sukhov, Alexander Shalin, David Haefner, and Aristide Dogariu. Actio et reactio
in optical binding. Optics Express, 23(1):247-252, 2015.

[19] Yuval Yifat, Delphine Coursault, Curtis W Peterson, John Parker, Ying Bao, Stephen
Gray, Stuart A Rice, and Norbert F Scherer. Reactive optical matter: Light-induced

motility in electrodynamically asymmetric nano-scale scatterers. Light: Science &
Applications, 7(1):105, 2018.

[20] Nishant Sule, Yuval Yifat, Stephen K Gray, and Norbert F Scherer. Rotation and nega-
tive torque in electrodynamically bound nanoparticle dimers. Nano Letters, 17(11):6548—
6556, 2017.

[21] Fei Han, John A Parker, Yuval Yifat, Curtis Peterson, Stephen K Gray, Norbert F
Scherer, and Zijie Yan. Crossover from positive to negative optical torque in mesoscale
optical matter. Nature Communications, 9(1):4897, 2018.

[22] Yuval Yifat, Nishant Sule, Yihan Lin, and Norbert F Scherer. Analysis and correction
of errors in nanoscale particle tracking using the single-pixel interior filling function
(spiff) algorithm. Scientific Reports, 7(1):1-10, 2017.

[23] John Parker, Curtis W Peterson, Yuval Yifat, Stuart A Rice, Zijie Yan, Stephen K
Gray, and Norbert F Scherer. Optical matter machines: Angular momentum conversion

by collective modes in optically bound nanoparticle arrays. Optica, 7(10):1341-1348,
2020.

[24] Jennifer E Curtis, Brian A Koss, and David G Grier. Dynamic holographic optical
tweezers. Optics Communications, 207(1-6):169-175, 2002.

[25] Eric R Dufresne, Gabriel C Spalding, Matthew T Dearing, Steven A Sheets, and
David G Grier. Computer-generated holographic optical tweezer arrays. Review of
Scientific Instruments, 72(3):1810-1816, 2001.

201



[26] Fan Nan and Zijie Yan. Synergy of intensity, phase, and polarization enables versatile
optical nanomanipulation. Nano Letters, 20(4):2778-2783, 2020.

[27] Yohai Roichman and David G Grier. Three-Dimensional Holographic Ring Traps. In
David L. Andrews, Enrique J. Galvez, and Gerard Nienhuis, editors, Proceedings of
SPIFE, volume 6483, page 64830F, feb 2007.

[28] Curtis W. Peterson, John Parker, Stuart A. Rice, and Norbert F. Scherer. Controlling
the dynamics and optical binding of nanoparticle homodimers with transverse phase
gradients. Nano Letters, 19(2):897-903, 2019.

[29] J Y Wang and D E Silva. Wave-front Interpretation with Zernike Polynomials. Appl.
Opt., 19(9):1510-8, 1980.

[30] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej:
25 years of image analysis. Nature Methods, 9(7):671-675, 2012.

[31] John C Crocker and David G Grier. Methods of digital video microscopy for colloidal
studies. Journal of Colloid and Interface Science, 179(1):298-310, 1996.

[32] Shiqi Chen, Curtis Peterson, John Parker, Stuart A Rice, Andrew Ferguson, and Norbert
Scherer. Data-driven reaction coordinate discovery in overdamped and non-conservative
systems: Application to optical matter structural isomerization. 2020.

[33] Patrick C Chaumet and Manuel Nieto-Vesperinas. Time-averaged total force on a
dipolar sphere in an electromagnetic field. Optics Letters, 25(15):1065-1067, 2000.

[34] Craig F Bohren and Donald R Huffman. Absorption and Scattering of Light by Small
Particles. John Wiley & Sons, 2008.

[35] K Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C Schatz. The op-
tical properties of metal nanoparticles: The influence of size, shape, and dielectric
environment. The Journal of Physical Chemistry B, 107:668-677, 2003.

[36] S A Tatarkova, A E Carruthers, and K Dholakia. One-dimensional optically bound
arrays of microscopic particles. Physical Review Letters, 89(28):283901, 2002.

[37] Davit Hakobyan and Etienne Brasselet. Left-handed optical radiation torque. Nature
Photonics, 8(8):610-614, 2014.

[38] Jun Chen, Jack Ng, Kun Ding, Kin Hung Fung, Zhifang Lin, and Che Ting Chan.
Negative optical torque. Scientific Reports, 4:6386, 2014.

[39] Zijie Yan, Raman A. Shah, Garrett Chado, Stephen K. Gray, Matthew Pelton, and
Norbert F. Scherer. Guiding Spatial Arrangements of Silver Nanoparticles by Optical
Binding Interactions in Shaped Light Fields. ACS Nano, 7(2):1790-1802, feb 2013.

[40] Zijie Yan, Manas Sajjan, and Norbert F Scherer. Fabrication of a material assembly

of silver nanoparticles using the phase gradients of optical tweezers. Physical Review
Letters, 114(14):143901, 2015.

202



[41] Jana Damkovéa, Lukas Chvéatal, Jan JeZzek, Jindfich Oulehla, Oto Brzobohaty, and
Pavel Zeméanek. Enhancement of the ‘tractor-beam’ pulling force on an optically bound
structure. Light: Science & Applications, 7(1):17135, 2018.

[42] Oto Brzobohaty, Lukas Chvatal, Alexandr Jonas, Martin éiler, Jan Kanka, Jan Jezek,
and Pavel Zeméanek. Tunable soft-matter optofluidic waveguides assembled by light.
ACS Photonics, 6(2):403-410, 2019.

[43] Fan Nan and Zijie Yan. Tuning nanoparticle electrodynamics by an optical-matter-based
laser beam shaper. Nano Letters, 19(5):3353-3358, 2019.

[44] Bernhard Lamprecht, Gerburg Schider, RT Lechner, Harald Ditlbacher, Joachim R
Krenn, Alfred Leitner, and Franz R Aussenegg. Metal nanoparticle gratings: Influence

of dipolar particle interaction on the plasmon resonance. Physical Review Letters,
84(20):4721, 2000.

[45] Vira V Kravets, Oleg A Yeshchenko, Victor V Gozhenko, Leonidas E Ocola, David A
Smith, James V Vedral, and Anatoliy O Pinchuk. Electrodynamic coupling in regular
arrays of gold nanocylinders. Journal of Physics D: Applied Physics, 45(4):045102,
2012.

[46] Peter Nordlander, C Oubre, E Prodan, K Li, and MI Stockman. Plasmon hybridization
in nanoparticle dimers. Nano Letters, 4(5):899-903, 2004.

[47] Prashant K Jain and Mostafa A El-Sayed. Plasmonic coupling in noble metal nanos-
tructures. Chemical Physics Letters, 487(4-6):153-164, 2010.

[48] Shengli Zou and George C Schatz. Narrow plasmonic/photonic extinction and scattering
line shapes for one and two dimensional silver nanoparticle arrays. The Journal of
Chemical Physics, 121(24):12606-12612, 2004.

[49] Shengli Zou, Nicolas Janel, and George C Schatz. Silver nanoparticle array structures
that produce remarkably narrow plasmon lineshapes. The Journal of Chemical Physics,
120(23):10871-10875, 2004.

[50] FJ Garcia De Abajo. Colloquium: Light scattering by particle and hole arrays. Reviews
of Modern Physics, 79(4):1267, 2007.

[51] Weijia Wang, Mohammad Ramezani, Aaro I Vikeviinen, Paivi Térmé, Jaime Gomez
Rivas, and Teri W Odom. The rich photonic world of plasmonic nanoparticle arrays.
Materials Today, 21(3):303-314, 2018.

[52] Lukas Novotny and Bert Hecht. Principles of Nano-Optics. Cambridge university press,
2012.

[53] John Moore, Conrad Stanitski, and Peter Jurs. Principles of Chemistry: the Molecular
Science. Cengage Learning, 2009.

203



[54] Barbara Wild, Lina Cao, Yugang Sun, Bishnu P Khanal, Eugene R Zubarev, Stephen K
Gray, Norbert F Scherer, and Matthew Pelton. Propagation lengths and group velocities
of plasmons in chemically synthesized gold and silver nanowires. ACS Nano, 6(1):472—
482, 2012.

[55] Edward M Purcell, Henry Cutler Torrey, and Robert V Pound. Resonance absorption
by nuclear magnetic moments in a solid. Physical Review, 69(1-2):37, 1946.

[56] Matthew Pelton. Modified spontaneous emission in nanophotonic structures. Nature
Photonics, 9(7):427, 2015.

[57] Yuen-Ron Shen. The principles of nonlinear optics. wi, 1984.

[58] Rongchao Jin, Justin E Jureller, and Norbert F Scherer. Precise localization and
correlation of single nanoparticle optical responses and morphology. Applied Physics
Letters, 88(26):263111, 2006.

[59] Guangnan Meng, Natalie Arkus, Michael P Brenner, and Vinothan N Manoharan. The
free-energy landscape of clusters of attractive hard spheres. Science, 327(5965):560-563,
2010.

[60] Rebecca W Perry, Miranda C Holmes-Cerfon, Michael P Brenner, and Vinothan N
Manoharan. Two-dimensional clusters of colloidal spheres: Ground states, excited
states, and structural rearrangements. Physical Review Letters, 114(22):228301, 2015.

[61] Melody X Lim, Anton Souslov, Vincenzo Vitelli, and Heinrich M Jaeger. Cluster
formation by acoustic forces and active fluctuations in levitated granular matter.
Nature Physics, 15(5):460-464, 2019.

[62] Andrew J Archer and Nigel B Wilding. Phase behavior of a fluid with competing
attractive and repulsive interactions. Physical Review E, 76(3):031501, 2007.

[63] Juan Carlos Fernandez Toledano, Francesco Sciortino, and Emanuela Zaccarelli. Col-
loidal systems with competing interactions: From an arrested repulsive cluster phase to
a gel. Soft Matter, 5(12):2390-2398, 2009.

[64] Alan Barros de Oliveira, Giancarlo Franzese, Paulo A Netz, and Marcia C Barbosa.
Waterlike hierarchy of anomalies in a continuous spherical shouldered potential. The
Journal of Chemical Physics, 128(6):064901, 2008.

[65] Sergey Sukhov and Aristide Dogariu. Non-conservative optical forces. Reports on
Progress in Physics, 80(11):112001, 2017.

[66] R. S. Berry, S. A. Rice, and J. Ross. Physical Chemistry. Oxford University Press,
2000.

[67] Fei Han and Zijie Yan. Phase transition and self-stabilization of light-mediated metal
nanoparticle assemblies. ACS Nano, 14(6):6616-6625, 2020. PMID: 32422042.

204



[68] A V Ivlev, J Bartnick, M Heinen, C R Du, V Nosenko, and H Lowen. Statistical
mechanics where newton’s third law is broken. Phys. Rev. X, 5(1):011035, 2015.

[69] Vitézslav Karasek, Martin Siler, Oto Brzobohaty, and Pavel Zemének. Dynamics
of an optically bound structure made of particles of unequal sizes. Optics Letters,
42(7):1436-1439, 2017.

[70] Hongxu Chen, Qilong Zhao, and Xuemin Du. Light-powered micro/nanomotors.
Micromachines, 9(2):41, 2018.

[71] Lei Shao and Mikael Kall. Light-driven rotation of plasmonic nanomotors. Adv. Funct.
Mater., page 1706272, 2018.

[72| Leilei Xu, Fangzhi Mou, Haotian Gong, Ming Luo, and Jianguo Guan. Light-driven
micro/nanomotors: From fundamentals to applications. Chemical Society Reviews,
46(22):6905-6926, 2017.

[73| Patrick Figliozzi, Nishant Sule, Zijie Yan, Ying Bao, Stanislav Burov, Stephen K Gray,
Stuart A. Rice, Suriyanarayanan Vaikuntanathan, and Norbert F Scherer. Driven
Optical Matter: Dynamics of Electrodynamically Coupled Nanoparticles in an Optical

Ring Vortex. Phys. Rev. E, 95(2):22604, feb 2017.

[74] Yael Roichman, David G Grier, and George Zaslavsky. Anomalous collective dynamics
in optically driven colloidal rings. Physical Review E, 75(2):020401, 2007.

[75] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking and trajectory
analysis for video imaging in cell biology. Journal of Structural Biology, 151(2):182-195,
2005.

[76] Stanislav Burov, Patrick Figliozzi, Binhua Lin, Stuart A Rice, Norbert F Scherer,
and Aaron R Dinner. Single-pixel interior filling function approach for detecting and
correcting errors in particle tracking. Proceedings of the National Academy of Sciences
of the United States of America, page 201619104, 2016.

[77] Hong-Ren Jiang, Natsuhiko Yoshinaga, and Masaki Sano. Active motion of a janus
particle by self-thermophoresis in a defocused zlaser beam. Physical Review Letters,
105(26):268302, 2010.

[78] Albert Einstein. Uber die von der molekularkinetischen theorie der wirme geforderte

bewegung von in ruhenden fliissigkeiten suspendierten teilchen. Ann. Phys. (Berlin,
Ger.), 322(8):549-560, 1905.

[79] Ralf Metzler and Joseph Klafter. The restaurant at the end of the random walk: Recent
developments in the description of anomalous transport by fractional dynamics. Journal
of Physics A: Mathematical and General, 37(31):R161, 2004.

[80] Sergey Sukhov, Veerachart Kajorndejnukul, Roxana Rezvani Naraghi, and Aristide

Dogariu. Dynamic consequences of optical spin-orbit interaction. Nature Photonics,
9(12):809-812, 2015.

205



[81] Yu-lin Xu. Electromagnetic scattering by an aggregate of spheres. Appl. Opt.,
34(21):4573-4588, 1995.

[82] Jack Ng, ZF Lin, CT Chan, and Ping Sheng. Photonic clusters formed by dielectric
microspheres: Numerical simulations. Physical Review B, 72(8):085130, 2005.

[83] Jingjing Li, Alessandro Salandrino, and Nader Engheta. Shaping light beams in the
nanometer scale: A yagi-uda nanoantenna in the optical domain. Physical Review B,
76(24):245403, 2007.

[84] Terukazu Kosako, Yutaka Kadoya, and Holger F Hofmann. Directional control of light
by a nano-optical yagi—uda antenna. Nature Photonics, 4(5):312-315, 2010.

[85] Emmy Noether. Invariant variation problems. Transport Theory and Statistical Physics,
1(3):186-207, 1971.

[86] Stephen J Ebbens and Jonathan R Howse. In pursuit of propulsion at the nanoscale.
Soft Matter, 6(4):726-738, 2010.

[87] Jonathan R Howse, Richard AL Jones, Anthony J Ryan, Tim Gough, Reza Vafabakhsh,
and Ramin Golestanian. Self-motile colloidal particles: From directed propulsion to
random walk. Physical Review Letters, 99(4):048102, 2007.

[88] John M Abendroth, Oleksandr S Bushuyev, Paul S Weiss, and Christopher J Barrett.
Controlling motion at the nanoscale: Rise of the molecular machines. ACS Nano,
9(8):7746-7768, 2015.

[89] Fan Nan and Zijie Yan. Sorting metal nanoparticles with dynamic and tunable optical
driven forces. Nano Letters, 18(7):4500-4505, 2018.

[90] Fan Nan and Zijie Yan. Optical sorting at the single-particle level with single-nanometer
precision using coordinated intensity and phase gradient forces. ACS Nano, 2020.

[91] Arthur Ashkin, James M Dziedzic, JE Bjorkholm, and Steven Chu. Observation
of a single-beam gradient force optical trap for dielectric particles. Optics Letters,
11(5):288-290, 1986.

[92] Richard W Bowman and Miles J Padgett. Optical trapping and binding. Reports on
Progress in Physics, 76(2):026401, 2013.

[93] Aristide Dogariu, Sergey Sukhov, and José¢ Sdenz. Optically induced 'negative forces’.
Nature Photonics, 7(1):24, 2013.

[94] Lukas Chvatal, Oto Brzobohaty, and Pavel Zemének. Binding of a pair of au nanopar-
ticles in a wide gaussian standing wave. Optical Review, 22(1):157-161, 2015.

[95] Stephen H Simpson, Pavel Zemanek, Onofrio M Marago, Philip H Jones, and Simon
Hanna. Optical binding of nanowires. Nano Letters, 17(6):3485-3492, 2017.

206



[96] Fan Nan, Fei Han, Norbert F Scherer, and Zijie Yan. Dissipative self-assembly of
anisotropic nanoparticle chains with combined electrodynamic and electrostatic interac-
tions. Advanced Materials, page 1803238, 2018.

[97] JM Taylor and GD Love. Spontaneous symmetry breaking and circulation by optically
bound microparticle chains in gaussian beam traps. Physical Review A, 80(5):053808,
2009.

[98] Silvia Albaladejo, Juan José Saenz, and Manuel I Marqués. Plasmonic nanoparticle
chain in a light field: A resonant optical sail. Nano Letters, 11(11):4597-4600, 2011.

[99] Markus Aspelmeyer, Tobias J Kippenberg, and Florian Marquardt. Cavity optome-
chanics. Rev. Mod. Phys., 86(4):1391, 2014.

[100] René Reimann, Michael Doderer, Erik Hebestreit, Rozenn Diehl, Martin Frimmer,
Dominik Windey, Felix Tebbenjohanns, and Lukas Novotny. Ghz rotation of an
optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121:033602, Jul 2018.

[101] Sang-Hyuk Lee and David G Grier. Giant colloidal diffusivity on corrugated optical
vortices. Phys. Rev. Lett., 96(19):190601, 2006.

[102] Yohai Roichman, Bo Sun, Yael Roichman, Jesse Amato-Grill, and David G Grier.
Optical forces arising from phase gradients. Phys. Rev. Lett., 100(1):013602, 2008.

[103] Oto Brzobohaty, Vitezslav Karasek, T Cizmér, and Pavel Zeméanek. Dynamic size tuning
of multidimensional optically bound matter. Applied Physics Letters, 99(10):101105,
2011.

[104] Delphine Coursault, Nishant Sule, John Parker, Ying Bao, and Norbert F. Scherer.
Dynamics of the optically directed assembly and disassembly of gold nanoplatelet arrays.
Nano Letters, 18(6):3391-3399, 2018.

[105] Patrick Figliozzi, Curtis W Peterson, Stuart A Rice, and Norbert F Scherer. Direct
visualization of barrier crossing dynamics in a driven optical matter system. ACS Nano,
12(6):5168-5175, 2018.

[106] Yulia Sokolov, Derek Frydel, David G Grier, Haim Diamant, and Yael Roichman.
Hydrodynamic pair attractions between driven colloidal particles. Phys. Rev. Lett.,
107(15):158302, 2011.

[107] A Ambari, B Gauthier-Manuel, and E Guyon. Wall effects on a sphere translating at
constant velocity. J. Fluid Mech., 149:235-253, 1984.

[108] Michael V Berry and Pragya Shukla. Physical curl forces: Dipole dynamics near optical
vortices. J. Phys. A, 46(42):422001, 2013.

[109] T éiimér, LC Davila Romero, K Dholakia, and DL Andrews. Multiple optical trapping
and binding: New routes to self-assembly. J. Phys. B, 43(10):102001, 2010.

207



[110] Graham R Fleming and Peter G Wolynes. Chemical dynamics in solution. Phys. Today,
43(5):36-43, 1990.

[111] Robert Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press, 2001.

[112] Matthias Rief, Mathias Gautel, Filipp Oesterhelt, Julio M Fernandez, and Hermann E
Gaub. Reversible unfolding of individual titin immunoglobulin domains by afm. Science,
276(5315):1109-1112, 1997.

[113] H Peter Lu, Luying Xun, and X Sunney Xie. Single-molecule enzymatic dynamics.
Science, 282(5395):1877-1882, 1998.

[114] EH Trepagnier, Christopher Jarzynski, Felix Ritort, Gavin E Crooks, CJ Bustamante,
and J Liphardt. Experimental test of hatano and sasa’s nonequilibrium steady-state

equality. Proceedings of the National Academy of Sciences of the United States of
America, 101(42):15038-15041, 2004.

[115] Keir C Neuman and Attila Nagy. Single-molecule force spectroscopy: Optical tweezers,
magnetic tweezers and atomic force microscopy. Nature Methods, 5(6):491-505, 2008.

[116] Steve Pressé, Julian Lee, and Ken A Dill. Extracting conformational memory from
single-molecule kinetic data. The Journal of Physical Chemistry B, 117(2):495-502,
2013.

[117] Hao Shen, Xiaochun Zhou, Ningmu Zou, and Peng Chen. Single-molecule kinetics
reveals a hidden surface reaction intermediate in single-nanoparticle catalysis. The
Journal of Physical Chemistry C, 118(46):26902-26911, 2014.

[118] Krishna Neupane, Daniel AN Foster, Derek R Dee, Hao Yu, Feng Wang, and Michael T
Woodside. Direct observation of transition paths during the folding of proteins and
nucleic acids. Science, 352(6282):239-242, 2016.

[119] SC Kou, Binny J Cherayil, Wei Min, Brian P English, and X Sunney Xie. Single-molecule
michaelis-nenten equations. The Journal of Physical Chemistry B, 109(41):19068-19081,
2005.

[120] Daniel L Floyd, Stephen C Harrison, and Antoine M Van Oijen. Analysis of kinetic
intermediates in single-particle dwell-time distributions. Biophysical Journal, 99(2):360—
366, 2010.

[121] Karel Svoboda and Steven M Block. Biological applications of optical forces. Annual
Review of Biophysics and Biomolecular Structure, 23(1):247-285, 1994.

[122] Jeffrey R Moffitt, Yann R Chemla, Steven B Smith, and Carlos Bustamante. Recent
advances in optical tweezers. Annual Review of Biochemistry, 77, 2008.

[123| Hans-Jiirgen Butt, Brunero Cappella, and Michael Kappl. Force measurements with the
atomic force microscope: Technique, interpretation and applications. Surface Science
Reports, 59(1-6):1-152, 2005.

208



[124] Loic Rondin, Jan Gieseler, Francesco Ricci, Romain Quidant, Christoph Dellago, and
Lukas Novotny. Direct measurement of kramers turnover with a levitated nanoparticle.
Nature Nanotechnology, 12(12):1130, 2017.

[125] AA Ovchinnikov and Ya B Zeldovich. Role of density fluctuations in bimolecular
reaction kinetics. Chemical Physics, 28(1-2):215-218, 1978.

[126] Ahmed H Zewail. Femtochemistry: Atomic-scale dynamics of the chemical bond. The
Journal of Physical Chemistry A, 104(24):5660-5694, 2000.

[127] D Allan, T Caswell, and N Keim. van der wel, c. trackpy: Trackpy v0. 3.2. URL
https://doi. org/10.5281/zenodo, 60550:v0, 2016.

[128] N Sule, S A Rice, S K Gray, and N F Scherer. An Electrodynamics-Langevin Dynamics
(ED-LD) Approach to Simulate Metal Nanoparticle Interactions and Motion. Optics
FEzpress, 23(23):29978, 2015.

[129] Max Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light. Elsevier, 2013.

[130] George I Bell. Models for the specific adhesion of cells to cells. Science, 200(4342):618-
627, 1978.

[131] Olga K Dudko, Gerhard Hummer, and Attila Szabo. Intrinsic rates and activation free en-
ergies from single-molecule pulling experiments. Physical Review Letters, 96(10):108101,
2006.

[132] Pilar Cossio, Gerhard Hummer, and Attila Szabo. On artifacts in single-molecule force
spectroscopy. Proceedings of the National Academy of Sciences of the United States of
America, 112(46):14248-14253, 2015.

[133] Casper van der Wel and Daniela J Kraft. Automated tracking of colloidal clusters with
sub-pixel accuracy and precision. Journal of Physics: Condensed Matter, 29(4):044001,
2016.

[134] Christopher Battle, Chase P Broedersz, Nikta Fakhri, Veikko F Geyer, Jonathon
Howard, Christoph F Schmidt, and Fred C MacKintosh. Broken detailed balance at
mesoscopic scales in active biological systems. Science, 352(6285):604-607, 2016.

209



