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ABSTRACT

We define the anisotropic Sobolev spaces as H*152(M x N) = {g € L*(M x N) : ||g|| grs1.52=
lg(&,n)[(1 + 52)571 + (14 772)872]||L2(M*><N*)< oo}, where M or N can be either the real
line R or the torus T. We prove local well-posedness of modified KP-I equations in the KP
hierarchy, namely for O;u + (—1)l+718§cu — 0y 105u + u?d,u = 0 in the anisotropic Sobolev
space HSO(R x R) if [ =3 and s > 2, in H>*(R x T) if [ = 3 and s > 2, in H%5(T x T) if
[=3and s > %, and in H5%(R x T) if l =5 and s > % All four results require the initial

data to be small.
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CHAPTER 1
INTRODUCTION

1.1 Background

My main area of research is in Dispersive Partial Differential Equations. These differen-
tial equations come from models of physical phenomena. Famous equations in this area
include the wave equation, Schrédinger equation, Korteweg-de Vries equation, Kadomtsev-
Petviashvili equation, Boussinesq equation, Zakharov-Kuznetsov equation, Klein-Gordon
equation, Benjamin-Ono equation, Intermediate Long Wave equation.

An evolution partial differential equation is dispersive if, when no boundary conditions
are imposed, its wave solutions spread out in space as they evolve in time. Plane waves
with large wave number travel faster than those with a smaller one. This is the reason why
there is “spreading”. In mathematical terms, this phenomenon is called broadening of the
wave packet. My research is around the class of equations called Kadomtsev-Petviashvili
equations.

The classical KP equations
02 (O + Ou + udpu) & Oju = 0 (1.1)

were introduced by Kadomtsev and Petviashvili [25] to study the transverse stability of the
solitary wave solution of the Korteweg-de Vries (KdV) equation, which reads in the context

of water waves

1
Opu + Ogu + ulzu + (5 - T) Ou = 0. (1.2)

Here T" > 0 is the Bond number, which measures surface tension effects in the context

of surface hydrodynamical waves. If 7" = 0, this corresponds to the absence of surface

tension. The KdV equation (|1.2)) was derived by Boussinesq [7] and Korteweg and de Vries
1



[31] and the KdV approximation presented there describes the evolution of one-dimensional
surface waves which means that these waves do not depend on the transverse direction.
Thus, a natural question comes up: how about the more realistic case of waves that depend
on the transverse variable, but with a weak dependence? This corresponds exactly to the
Kadomtsev-Petviashvili (KP) regime. The analysis of Kadomtsev and Petviashvili [25] (see
also [I]) conmsists of looking for a weakly transverse perturbation of the one-dimensional
transport equation

This perturbation is obtained by a Taylor expansion of dispersion relation w(kq,ks) =

\/k% + k’% of the two-dimensional linear wave equation, assuming that |k1|< 1 and % < 1.
2

Namely, one writes w(ky, ko) ~ +k; <1 + %:—%) . This perturbation amounts to adding a

nonlocal term, leading to

O+ Opu + 0y ' Ogu = 0.

—

Here the operator 0, 1 is defined via Fourier transform, 5 * f &n) = %f({ ,M)-

The same formal procedure is applied to the KdV equation in [25], assuming that
the transverse dispersive effects are of the same order as the x-dispersive and nonlinear terms,
yielding the KP equation in the form

1 1
Ayu + Opu + udyu + (5 - T) u + iaglagu = 0. (1.3)

By change of frame and scaling, reduces to with the + sign (KP-II) when T < %
and the — sign (KP-I) when 7' > 1.

Note, however, that T > % corresponds to a layer of fluid of depth smaller than 0.46
cm, and in this situation viscous effects due to the boundary layer at the bottom cannot
be ignored. On the other hand, Druyma [II] found a Lax pair to the KP-I/II equations,

proving the "integrability” of the KP equations. In [41] and [47], it is included a description
2



of the inverse scattering aspects of the KP equations.

1.2 Third-order KP-I equation

In the past 30 years, the KP-I and KP-II equations have been well studied. The first
local well-posedness result of the IVP was obtained by Ukai [53] for initial data
¢ € H*(R?), for s > 3. The KP-II equation is well understood in regard with well-
posedness, due to the groundbreaking work of Bourgain [6], proving local and global well-
posedness in L2(R?) (and in L2(T?)) by introducing the X5 = {f € S'(R?) : Jr3 (T — €3+
%2>2b<§>25|f(§,n,7’)]2d§dnd7' < oo} spaces and devising an iterative Picard scheme (here,
() = /1+-]2). This result was later improved by Takaoka and Tzvetkov [49] and Isaza
and Mejia [23] proving local well-posedness in the anisotropic Sobolev space H*1:52 (RQ),
with s1 > —%,52 > 0, building up on previous results as in [48], [52], [51]. Hadac [17]
and Hadac, Herr and Koch [18],[19] further improved for negative order Sobolev spaces, by
proving local well-posedness in H 152 (R2), with s1 > —%, s9 > 0 and global well-posedness
for the homogeneous anisotropic Sobolev space H _%’O(RQ) for small data. Isaza and Mejia
[24] showed global well-posedness in H*1:0(R?) for s; > —1—14.

For the KP-I equation, the problem is more delicate. This stems from the fact that we
cannot apply the Picard iterative methods since the flow map fails to be real-analytic (more
precisely 02) at the origin in these spaces, as shown by Molinet, Saut and Tzvetkov [38].
The KP-I equation can be written in the Lax pair form [47] and thus it shares many features
with the integrable PDE. There is in fact an infinite sequence of formal conservation laws
associated to the KP-I equation. However, as noticed in [37] and [39], it is hard to find a
suitable framework of distributions on R? where these conservation laws make sense. The

same authors in [38] and [37] use the first three conservation laws, namely the momentum

L?-conservation law M (¢) = fR2|¢]2, the energy E(¢) = %ng(&T(b)Q + % fR2(3;18y¢)2 —



%fR2|¢|3 and

Fio) =5 [ 0045 [ 00+ [ (07550
__/ $20; 2026 — /(b “19,6)2 + /¢ +25_4/RQ¢4

to show global well-posedness in the space Z = {¢ € L*(R?) : ||¢|| z< oo} where

(1.4)

011 2= 19112, +1036 2 +19y6ll 2, +10:0y61 12 +105 10,0 2 +10; 20261 3.

Their proof uses an useful anisotropic inequality, first appeared in [50] but inspired from

[3], [4], that for 2 < p < 6, there exists a C' such that for every Hil(R2) = {pecL?:

I+ €71 (*de < oo,

Gfp p—2 2

lull 2, < Nl 5 2 losull 5 N0y 18yuu - (1.5)

Later, Kenig [28] improved the result by showing global well-posedness in the ”second energy
space’ 7% = {6 € L2(R2) : 0]z, +1026] 12, +105 '0y0lls2 +102020] 12, < oo} The
best result was achieved by Ionescu, Kenig and Tataru [21], proving global well-posedness
in the first energy space Z(13) = {¢ € L*(R?) : ||¢||L%y—i—||@m¢||L%y+||8;18y¢||L%y< oo}. In
the latter paper, the authors introduced the short time Fourier restriction norm method, by
exploiting the symmetries of the KP-I equation. Using the same methods, Guo, Peng and
Wang [16] showed local well-posedness in H10(R?). Recently, Linares, Pilod and Saut [35]

showed a local well-posedness result for the fractional KP-I equation (fKP-I):
Oru — DS Opu + udpu — (9;18511 =0for0<a<2. (1.6)

The result states that equation 1 is locally well-posed in X*(R?), for s > 2 — T, where



X5(R?) = {f € L2(R?) : || J5f|l 2 +]|05 10y f]l ;2 < oo}. The authors also proved that for
Ty Ty
0 < a <2, equation ([1.6) is quasi-linear, while for o = 4 is semilinear.
Part of my research was dedicated to the study of the Cauchy problem for the third-order

modified Kadomtsev-Petviashvili I equation (mKP-I)

Opu+ 03u — 97 L02u + u?0u = 0,
(1.7)

u(0,7,y) = up(r,y)

in the anisotropic Sobolev space H*1*2(R x R). The third order mKP-I equation ([1.7)) is the
modified version of the third order KP-I equation (|1.1). The modified KP equations appear
in [13] which describe the evolution of sound waves in antiferromagnetics. There are several
known results about mKP-I equation and its relative, the mKP-II equation, where the sign
of the KP term 0, 185 in 1} is +. For the third order modified KP-I and KP-II equation,

Saut [44] showed that the generalized KP-I/KP-II equation (p > 1)

8tu+8§u+68;135u+up8xu =0, 1)
1.8

u(0,z,y) = up(z,y)

(e = £1) is locally well-posed in C([=T, T]; H*(R2))NCY (=T, T]; H~3(R?)) for s > 3 with

the momentum M (u)(t) = [po u?(t)dxdy and energy

L@ 00w’
E(U)(t)_/RQ S P ) EF]

dxdy

being conserved quantities. There is no known equivalent third conservation law ([1.4]) for this
case. Several blow-up result were found as well for the mKP-I equations. In [44], if p > 4,
the corresponding solution « in ([1.8]) blows up in finite time, i.e. there exists co > T > 0

such that lim; ,p—|0yu(-,y)| ;2= +o00c. Liu [36] improved the blow-up result for % <p<d4,



also by showing that lim, ,p—||dyu(-, y)| ;2= +00. Both proofs are based on some virial-type
identities. The threshold % comes from the observation that in order to bound the energy
norm of a solution u by the conserved momentum and conserved Hamiltonian, we can use
the anisotropic inequality only if p < %

In the realm of the modified version of the equations, we mention several results and
developments: Kenig and Martel [29] showed global well-posedness for the modified KP-
IT equation in the energy space Z = {u € L2||ju|| g1+]|05 10yul| ;2< oo}.Moreover, Kenig
and Ziesler [30] proved local well-posedness of the modified KP-I equation in Yy = {ug €
S (R x R) : Jug|| 2+]|(1 + Da)3ug|| p2+]|(Dy Dy gl 2 < o0} for s > 3/2, with Griinrock
[14] sharpening their result. For our case of the third order modified KP-I, I prove the

following theorem

Theorem 1.2.1. [§] Assume ¢ € H¥O(R x R) with s > 2. Then the initial value problem

Au + O3u — 8;10§u +u?dpu =0,

u(0,z,y) = ¢(x,y)

admits a unique solution in C([~T,T] : H*Y(R x R)) with T = T(||¢|| gs0) with u,dpu €
L%Lg@ if |@] grs.0 is sufficiently small. Moreover, the mapping ¢ — u is continuous from

HO(R x R) to C([-T,T); H*Y(R x R)).

My proof follows the ideas of Kenig [28], by trying to obtain an a priori bound on the

quantity ||ul ;2 7o +[|0zull 12 700 - The modification of the L} that appears in the latter paper
T-xy T zy

is that this norm is not sufficient to obtain an estimate on the nonlinear cubic term. We are
using the dispersive estimates that appear in [40], which require only smoothness in z. The
smallness assumption for the initial data comes from the fact that the scale invariance for
the mKP-I equation does not behave well for the H 0 norm. Using the a priori estimate, we
use a local well-posedness result by Iorio and Nunes [22] for the gKP-I equation in R?. As an

6



extra tool, we apply the Kato-Ponce commutator estimates [27] and the fractional Leibniz
rule that appear in [2§]. For the continuity of the flow map we use a standard Bona-Smith
argument [5].

The KP-I can be considered in different settings, as for example if the y-variable is located
in T. For the case of the KP-I equation on R x T, Ionescu and Kenig [20] showed global well-
posedness in the second energy space, i.e. Z(23) —{pecL? ||(1+&+ 2’—22)5(5,71)||L§n< o0}
and Robert [42] proved global well-posedness in the first energy space Z(lg) = {p e L?:
(14 &+ %)5(& ,n)|| L?,f oo}. The latter uses the method of short time Fourier restriction

norm from [21]. For this case, I proved the following result:

Theorem 1.2.2. [9] Assume ¢ € H%*(R x T) with s > 2. Then the initial value problem

dpu + O3u — 8;18§u + u?dpu =0,
(1.9)

u(0,z,y) = ¢(x,y)

admits a unique solution in C([=T,T| : H**(RxT)) with T = T(||¢| is.s) with u, Ozu, Oyu €
L%L% if |o|lgss is sufficiently small. Moreover, the mapping ¢ — w is continuous from

H55(R x T) to C(|~T,T); H**(R x T)).

In the case T x T, Ionescu and Kenig showed in [20] global well-posedness in the second
energy space Z(23) as defined above. Zhang showed in [55] that the periodic KP-I equation
is locally well-posed in a Besov type space, namely in B% 1(’11‘2) ={¢:T? > R: 5((), n) =
0, Vi € Z\{O}, 8] gy, = S0 2 1 gus gy (m)3(m, ) (1+ marta ) Nz, , < o0} For

this case, I proved the following result:

Theorem 1.2.3. [9] Assume ¢ € H5*(T x T) with s > % Then the initial value problem

Opu + O3u — a;lagu + u2dpu = 0,
(1.10)

u(0,7,y) = ¢(v,y)
7



admits a unique solution in C([=T,T] : H>3(T xT)) with T' = T(||¢|| grs.s) with u, Oru, Oyu €

LQTL%;/ if |0\l Fs.s is sufficiently small. Moreover, the mapping ¢ — u is continuous from

H53(T x T) to O[T, T); H>*(T x T)).

The proofs of the latter local-posedness results, in the partially periodic and periodic
setting, follow the ideas of [20]. In these cases, we are looking to find an a priori estimate for
HuHL%L%—l—H@quLzTLgZ—i-HayuHL%LgZ. Again, we are constrained to consider the L% norm
instead of the L%w as we deal with a cubic nonlinearity. The fact that we need to add the
term ||Oyul| 2L is more subtle. The dispersive estimates on R x T and T x T require more
smoothness in the y-variable. The mKP-I with nonlinearity u?d,u, p = 2 is a limiting case
for these dispersive equations, therefore in the linear estimate that we need more smoothness
in y for the cubic nonlinearity than for the quadratic nonlinearity. For the continuity of the

flow map we use a Bona-Smith argument [5] adapted to the periodic setting of the variable

Y.

1.3 Fifth-order KP-I equation

The fifth order KP-I equation
Opu — Ogu — 9, 192w + udpu = 0 (1.11)

appears when modeling certain long dispersive waves with weak transverse effects, as we see
in [2], [25], [26]. By the work of Saut and Tzvetkov in [45], we know that the fifth order
KP-II initial value problem is globally wellposed in L? on both R x R and T x T. In [32],
local wellposedness in H%O(R x T) for s > —% and global wellposedness in L?. The fifth
order KP-I initial value problem is known to be globally well-posed in the energy spaces
Z(15) ={pel?: |1+ + g>$(§’”)HL§n< oo} on both R x R and T x R from the work
of Saut and Tzetkov in [45] and [46], using Picard iterative methods (see also [10]). Using

8



the Fourier restriction norm method and sufficiently exploiting the geometric structure of
the resonant set of to deal with the high-high frequency interaction, Li and Xiao
established in [33] the global well-posedness in L?(R?). Guo et al. [I5] established the local
well-posedness of the Cauchy problem in H*0(R x R) for s > —%, Yan et al [54] showed
global well-posedness in H¥O(R x R) for s > —% and finally Li et al. [34] proved global
well-posedness in H5Y(R x R) for s > —% and local well-posedness for s > —%. We conclude
with the result from [20] which proves global well-posedness on R x T and from [43] which
proves global well-posedness on T x T, both results in Z (15) (R x T), resepctively Z (15) (T xT),
the natural energy spaces in these cases. Esfahani [12] showed that the generalized fifth-order
KP-I equation

dpu — Ou — 8;10521 + uPOpu =0,
(1.12)

u(0,7,y) = up(z,y)

is locally well-posed in C([—T,T); H*(R?)) N CY([-T,T); H*~®(R)) for s > 5. In the same
paper, if p > 4, the corresponding solution u in ([1.12)) blows up in finite time, i.e. there
exists oo > T > 0 such that lim; ,;—[|Oyu(-,y)||;2= +o00. For our case of the fifth order

partially periodic modified KP-I we prove the following theorem

Theorem 1.3.1. [9] Assume ¢ € H5*(R x T) with s > % Then the initial value problem

Opu — 03u — 9y 102u + u?u = 0,

u(0,7,y) = ¢(z,y)

admits a unique solution in C([=T,T]| : H¥*(RxT)) with T = T(||¢| is.s) with u, Ozu, Oyu €
L%Lg‘; if |o]lgss is sufficiently small. Moreover, the mapping ¢ — w is continuous from

HS$(R x T) to C([-T,T); H¥*(R x T)).

The proof is in the same spirit as the one for the third order mKP-I equation on R x T.

Since p = 2 is the limit case for the dispersive estimates for the fifth-order dispersion operator
9



5 n?
W(5)(t) defined by the Fourier multiplier (§,n) — &+ ), we require more smoothness in

the linear estimate in y for the cubic nonlinearity.
The rest of the thesis is organized as follows: in Chapter [2| we consider the well-posedness
of the modified KP-I equation in R x R, namely proving [1.2.1. The latter chapters include

the proofs of the periodic and partially periodic cases of the modified KP-I equations, more

precisely in Chapter [3] we present the proof of [1.2.2] and [I.2.3] and in Chapter [4 we present
the proof of

10



CHAPTER 2
LOCAL WELL-POSEDNESS FOR THE THIRD ORDER
MODIFIED KADOMTSEV-PETVIASHVILI I EQUATION ON
R xR

2.1 Notation

We start by defining, for g € L?(R x R), §(¢,n) denote its Fourier transform in both x and

y. We consider the equation Oy + 03u — lﬁgu +u2d,u = 0. We define the Sobolev spaces

which we will consider from now on: for s;,s9 > 0

H* 15 (RxR) = {g € L*RxR) : [lg]l gvse= [ )1+ 7 +(1+52) F]l| o ) < 00}

and for s > 0

HYR x R) = {g € LR x R) : gl = [FE (1 + € + 1)1}l 12 iy < o0}

and so
H®(R x R) = N2 H¥(R x R).

For s € R we define the operators J3, J; by

T2g(€,m) = (1 +€2)25(,m);

[V

Tig(€,m) = 1 +1%)25(En)

on §'(R x R). For any set A let 14 denote its the characteristic function. Given a Banach

11



space X, a measurable function u : R — X and an exponent p € [1, 00|, we define

1
fullznx= [ [ (lu(®IR)at]” it p € 1, 50) and
il oo x = esssupye u(t) L x

Also, if I C R is a measurable set, and u : I — X is a measurable function, we define

lull e x= 11 (t)ull rx-

For T > 0, we define HUHL’%X: HUHL’[’_T7T1X

We also introduce the Kato-Ponce commutator estimates (as in Lemma XI from [27] and

Appendix 9.A from [20]):

Lemma 1. Let m >0 and f,g € H™(R). If s > 1 then

1T (f9) = FIRgll2< Cslll RN p2llgll oo+ (Lf oo +10f | oo) | T gl 2]

and if s € (0,1) then

1/&(f9) = fIRN L2 < Csll T fllp2llgll Lo

We have the following corollary which we will use later.

-1
Corollary. If s > 1, then we have || J§ (u®)|| S [ull oo | g ull p2+Iul| Loo||0zull oo | T ] 12

2.2 Dispersive Estimates

We use the dispersive estimates that appear in Molinet, Saut and Tzvetkov [40)].
Let U(t) = exp(—t(—93 — 8;185)) be the unitary group in H*(R?) defining the free KP-I

equation. D, has Fourier symbol [¢].
12



Theorem 2.2.1. Let T' > 0. Then for every 0 < e < %, we have the estimates
’ )
102 Uelig < Nl

< ||F
LqTLEy ~ || ”LClFLany

xT

and
t  —ed(r)
‘/ Dy 2 Ut —tF(tat
0

=N

= (1—=5)0(r) <1 with §(r) :== 1 —

Qo
|

provided that r € [2,+00] and 0 <

2.3 Linear Estimates

Theorem 2.3.1. Let v € C([0,T] : HSOI(RQ)) be a solution of

Opv + O3 — 0y '0jv = O, F.

Then, for every e > 0, there exists Cz such that

1 1
[0l 72 16 S Col1 + TIIF ¥l ooz +ClIEFll gy 1

Proof. We consider a Littlewood-Paley decomposition in the x-variable

vy where vy := A\v are defined as

- ¥

A—dyadic

A=1

Ayo(t,€,n) =
X(g) : ﬁ(tv 57 77))

13



where x, p € C§°(R™) are non-negative functions such that x(§) +> y+1 go(%) =1 and

0 if [¢]< § or [¢]>2

1 if1<g<y

For A\ > 2 fixed, we write a natural splitting [0,7] = U;1;, where I; = [a;, b;] have disjoint
interiors and |1;]S % We can suppose that the number of intervals is bounded by C(1+T)A.

Therefore, by applying Holder inequality in time,

_£&
loallz2 poo < ZHUAH%L%S ATG ZHUAHL%L% (2.1)
J J
where q—la = % - &

Next, we apply the Duhamel formula in each I; to obtain,

€ 13

t
ox(t) = Dy 2U(t — aj)Divy(a;) — / DEU(t — Y[ Ay DE0, F (')t
a;

where we used that D, and U commute.

By the Dispersive Estimates with r = oo and ¢ = 5 — §, we have

D=

_E& £ t
lox(®l poe pgo S 1D U (E = @j)Da?vA(aj)HanLooJrH/ DUt — ") [ANDZO F)(¢)dt'|| pa= 1 oo
ey Ij Ty a; Ij ry

3
2 1
S ID2va(ag)llzz, HIANDE Flip pp .
J

: £ 5e
Therefore, by equation 1| H’UAHL%L%S A3 \]v)\(aj)\]L%y+)\1+ 6 HA/\FHL}AL%Z, and sum-
J J

ming over j,

14



€
< 1
loallzz e S A3 D _llualay)liz +ZA e “A/\FHLl 12,

J
§(1 +1T) |U/\||L°0L2 +A + HA)\F”Ll L2

<A

Moreover, again, by Duhamel formula and the Dispersive Estimates,

[A10]1 52 1o S (L4 T)(1A0(0) | 2, HIALF Iy 12 )

Hence, for any 0 < «, we get

HUHL2 L N ZHUAHﬂ Loof, ”AWHLQ Loo+ Z AT HU>\HL2 2L
A>2

S ||A1U|’L%L%+SUPA22AQHU)\HL%L%(Z A
A>2

1
<A+ oIt Fllpy s,

UHLOOL2 +[[Jz
where in the last inequality we used Bernstein’s inequality.
2.4 A Priori Estimates

Suppose u solves the equation

Opu+ 03u — ;102 + u?0pu = 0

u(0) = ¢ € HFO(R?)

We are going to bound fy,(T) = ”u||L2TL§@+Ha$u||L%L%'

Proposition 1. Suppose u satisfies the IVP with initial data ¢ and let s > 2.

15



Then u, dyu € L*([—T,T]; L°(R x R)). Moreover,

Ju(T) = ||U||L%Lg%+||amu||L2TL%§ Cr

for a suitable small T, if ||} 75,0 is small enough.

Proof. By the linear estimate [2.3.1] we have, by taking now F = u?

1 1 3
il g ps S 114 ull e 2 HITE (@)l 2,

and

2 2 3
HaquL%L%S ||Jx+€u||L%°L%y+||Jx+€(u )HL%FL%y‘

By the corollary of the Kato-Ponce commutator estimates
1 3 1 2 1 1
IIE2 ) gz, S 12l gz, lull3as +HITE ull gl Nowell s < Ault) |14 +ul 2,
and
2 2 2 2 2
7245 ) 2, S 13l 3+ 173l g 00l 235 S Bu(®)172 0l 1z,

therefore

2 2
el g g + 100l 3 e < 113l e pa (14 £ulT)?).

Then we have

FulT) S VTFFull oo (14 fulT)?). (2.2)

First, if we apply to the equation (1.7)) the operator J% and then we multiply by Jhu, we

16



get
£||qu||2 = quJp(u20 w)
dt xr L%y xr X xXr
= /Jgu[Jg(u28xu) —u2J£@mu] +/u2J£uJ£8xu
2 2 2
S HJ:]CJUHL%y(HuHL%"‘”UHL%H&EUHL%) S HJguHL%yﬁu(t)

therefore, by Gronwall’s inequality, we get that
1720l e 12, % 1726 12, exp(Fu(T)%). (2.3
Hence, by [2.2] and we get
fulT) S 1520l exp(fu(T)?) (1 + fu(T)?).

If we choose ¢ such that HJ§+5¢H 72 is small, then by a continuity argument, we get
zy
that fu(T) < O(T, 17320 13 ). Hence Jul 3 poe +10sul 2 o0 < OCT, 724500 3 ). O
2.5 Local Well-posedness

We start by stating a well-known local-wellposedness result from Iorio and Nunes (see [22],

Section 4):
Lemma 2. Assume ¢ € H™. Then there is T = T(||¢||gs) > 0 and a solution u €
C([=T,T] : H*®) of the initial value problem

Apu + O3u — 8;13§u + u0pu = 0,

u(0,2,y) = uo(z,y).

We proceed to prove the local well-posedness result. In this section, the proof will include

17



just the existence and uniqueness of the solution.

Theorem 2.5.1. The [VP 8tu+8§u—8;18§u+u28xu = 0 is locally well-posed in H*O(R?),
s > 2. More precisely, given ug € HSvO(RQ), s > 2, there exists T = T(HUOHH&O) and a unique
solution u to the IVP such that u € u € C([0,T); H¥O(R?)), with u, Oyu € L%Lg@. Moreover,
the mapping ug — u € C([0, T); H*O(R?)) is continuous.

Proof. Let ug € H*O(R?) and find uge € H5O(R?) F‘leol(]RQ) such that [[ug —ug ¢ gs0— 0
and [[ugc| gs,0< 2|lupl gs,0. We know by the Iorio-Nunes local well-posedness result that

uQ,¢ gives a unique solution us. By applying the a priori bound, we get
"a$u€"L%L%+’|u€’|L%L%S Cr.

By the previous result, supg—s<p||ue| gso0< Cp.

3 3
_ U u_
On(z — er) + 0 (e — uer) = 050 (e — uer) + a5 — —57) =0

with e, ¢’ — 0. Henceforth,

2 udul
Ol — a3 = [ (e = waon(E — )

ug + ugu + ug,

— [ (e = o) (0 = ) T

2 2
u +u€u /+u/
— [ (e = w0,

2 2 2 2 2
< Jue — ug’HLz(HUEHngﬁHaxusHLgoyJFH%’HL%JFHang’HLg%)

< (Buc(t) + 5u€,(t))||u5 - Ua’”%z-

By Gronwall’s inequality and the a priori estimate we get ||us — uE/H%2 St lluoe — uO’E/H%Q,

implying that supy;<7||ue — uz||;2— 0, hence we can find u € C([O,T],H‘S/vo(R2)) N
18



L>®([0,T] : H*9(R?)). The fact that u is a solution of the IVP is clear now. Uniqueness

also comes from the previous Gronwall’s inequality. O

2.6 Continuity with respect to time

We are completing the proof by showing continuity with respect to time.
Let u be a fixed solution of dpu+d3u — 8;185u—l—u25)xu — 0 with initial data in H59(R?),

with s > 2. Define ¢° is defined by its Fourier transform namely,

e 1if€<§<%andif5<n<%,
= (&,n) == (2:4)
0 otherwise

Then uc is a solution to the IVP with ¢- = ¢ * ¢ as initial data. We will show that {u:}
is in fact a Cauchy sequence in C([0,T] : H*O(R?)). By straightforward calculations in the

Fourier space, one can show that for ¢ € HS’O(R2), 0 <e<1andr >0, we have

1™ * @l prs+ro@2y S €0l rsome)

and

||S06 * P — ¢||HS—T,0(R2)§ 0(5r)||¢||Hs,0(R2)

as e — 0.
From the definition, we have that, if p > s, then || JEd¢|l ;2 < C(T, ||¢|| ggs,0)e®P. Since
zy
¢s € H, by local well-posedness result of lorio and Nunes, they give rise to unique solutions

ue in H*°. The above estimates together with (2.3), if p > s, we also have
17wkl Loz < C(T, 6l rs0)e® ™ (2.5)

Denote w = gy — ue, With 0 < 1 < €9. Now choose 0 < ¢ < s. By definition, there exists
19



a function h((bg) (e) = 0 as ¢ — 0 such that [|¢ — ¢c|/;2 S Esh((;’)(g). From the interpolation
Ty
inequality,

g 1—-9 1-9
q s <
Tl gz, < I3l e 0l S Illpoca

it yields

_ 3 _4g
| llpgeps S =~ ()13, (2.6)

Lemma 3. We have the following estimates:

120 ez, S eap( ful TV + 3 fue, (T)%) 173000 gz,
150l e g I3 e e g, (1l o+l 3 e 1)
10 e, 130 | e, (1 3,16 1000 2 e e 3.1
13 ez T30 e, 1ol 3.1 (10t 52 e +H10001 13 120

2
el gge g, 1 5ue | ez, 1l poc |

Proof.
) 3 —192 2 2 2 _
hw + Opw — O, 6yw + w0pw + 3uz, Opw + 3ug, WOy, — 3ug, Wz — 3w Oyug, = 0. (2.7)
We apply J3 to (2.7) and then we multiply by Jiw, in order to get

d
EHJ;wH%z:/J;(wQ@xw)J;w—|—B/Ji(uglaxw)ng+3/J£(u51w3xugl)ng

—3/J§(uglw8$w)J£w—3/J£(w20mu51)J£w

and we will analyze each term in the sum.

We have (I) = [ J3(w20p) T3, (IT) = [ J3(u2, 0uio) 3, (111) = [ J3oteyBgtic 3,
(IV) = [ J3(ueywdpw) Jiw and (V) = [ J3(w?Opue, ) Jiw.

For (I) = [ J3(w?0,w)Jiw = [[JE(w?0pw) — w?JE0,w]| Jow + [w?J50wiw, and we

20



will denote (I)] = [[JE(w?0pw) — w2 JS0pw]JSw and (I)g = [w?JS0yw 5w, For the first
one, we have by the Kato-Ponce commutator estimate
(D1 < 13l 1 30200) — w2 T30, 2,
-1

< 5l Nl [ NOwsol g 1 T3z, + (el 0wl 235 15 Butol 12|

< 130135 -Gt
and

2 2
(D2 < Tzl 7z lwllzg 102wl g < I Tzwlizz Au(t)

so (1) S ||J§w\|%%yﬁw(t)-
Now, (IT) = [ J5(u2,0,w) Jjw = [[J5(u2,0pw) — u2, J50,w]J5w + [ u2, J50pw 5w and
we denote ([1)] = f[J;(uglaxw) —ugl J50pw]Jiw and (I1)9 = fugl Ji0zwJyw. For the first

term we have by the Kato-Ponce commutator estimate

2 2
(D S 1730 2, 13 (2, 000) = w2, T30 2,
-1
< 130l g2, e g eyl g 19ty g 1~ 0ol .,
1300 g, ey g 10 g T8y N 2

2
S I zwlize, Pue, () + 12wl L2 Izt ll 2 102wl g llue g

Also, we have
2
(I1)2 S 152 Iz, oo [9tie, | oo S 150125 B, ()
xy zy 1
Therefore,
2
(D) S zwligy Puey (8) + I zwllpz Izl 22 102wl ngg e Il -

21



Let

(II1) :/Jj(uglwaxugl)ng

[T (ueywOptie, ) — Ue,wJ5Optue, | Jow + /Ugl(.»tJJ;ax'U/gl Jow
and denote (I11); = [[J5(ug,wizpue,) — ue,wJ50zue, | 3w and

(I11)y = /uglegﬁxugngw.
We have by the Kato-Ponce commutator estimate

(I11) < HjicuHL%y||J£(u51w8xugl) - U€1WJ£8xU€1||L%y
S 15wl g2, [15uey Nz, ool g Ot s
15wl 2 ey g 10w g5 HIOwuey |17 2 )
157 0utey g (e g 10wtey g 11l g ey | g +11 0wl g e g5 |
S50l Tz Bue, (8) + 175wl 2, 175 uen | 2, Ill g 10iey 1255

50l g, e ey g (ol 225 +19501 £.25)
Also, (ITT)a 5 73wl gz, I3 ey | 3, ] 235 e | 35, and so therefore
2
(111) § | J5lEy Buy () + 13l 3 g, ol 225 100t 15

1 zwllrz 1 Tzue [l 2 lloll g llue ey 1 ewl 12 1 zue [l 12 102w o lue, | g,

1
+ 15wl g 12 ey [l g Il zgg llue g
Again,

(IV) = /Ji(uglwﬁxw)J;w = /[J;(uglwﬁxw) — Uz wJp0zw] Jow + /U51WJ£azWJ£W
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and we denote (IV)] = [[J5(ug,wpw) — te,wJ50,w]J5w and
(IV)g = /ugleé(‘?wa;w.
We have by the Kato-Ponce commutator estimate

(V)1 S 13l g2, 173 ey 000) = ey J30utsll 2.
< 13wl g2, 19wl g (17300 12, ey gy +100mey ) + 1 T3e 2 s |
-1
1300 1z, [ ey g ol 2 100l 25 ) + 10utie 225 ol 255 1730 2,
2
S 1750125 (e g +10stte 155 ) (195 55+l 155

#1751 | g, e g5 100l 5.
Also, (1V)g S 1502 (100, g ol 25+ 100l 125 e 135) and so therefore
2
(IV) S 1 5l3 ey lngs +19wtes s ) (10l 135 Hleol155)
#1730z, e g, oo g5 100 .5

Again, (V) = [ J3(w?0pus, ) 5w = [[J5(w0pue, ) — w? J50pus, | J5w + [ w2 JS0pusy Jow
and we denote (V)1 = [[J2(w?0puey) — W2 JE0pue, | J5w and (V)g = [w?J50pue, Jow. We

have by the Kato-Ponce commutator estimate

V1 S I5wll e 5@ 0ruey) — 0P Ti0sue, | 2,
-1
S 5wl 2, Il ngg | 190te g 175601 2, + (el g +10uwll g5 Il T3 By .2,

2
S Izwlize Nollzgs 10zuey ngs +1Jzwll p 1zue |z ool zgg (1ol pgg +10awll g ).
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Also, (V)2 < ||J£w||L%y||J§+1u51||L%y||w||%g§ and so therefore

V)< HJiwII%%y (Bue, (1) + Bu(t))

J£+1

2
15wl gz, (1730052, 1l 22 (1l g 10l z55) + 15+ ey 2. ol ).

Now, putting together all the terms we get that

d 2 2
%HJ;WHL%ZJ S (HJ:‘inLgy)(ﬂw(t) + Bue, (1))
1 2
+ ||Jg‘iwﬂ%||J5Z'Jr usl||Lgy(||w||Lg§/+||w||ng/||u51||Lg<é)
(2.8)

+ 2wl 2, zue Iz, (lollpgg e | gg HOawl pg lluey llrgg )

2
3l gz, 15 Lz, ol 0wt s+l 55 0w s+ o)

We are using the following variant of Gronwall’s inequality:

Lemma 4. If a(t), B(t) are two non-negative functions, and %u(zﬁ) <wu(t)B(t) + alt) for all

t €[0,T] then
u(t) < eJo Bs)ds (u(O) + /Ot a(s)ds).

By putting u(t) = ||J£w||L%y, B(t) = Bu(t) + Bu., (1) = 0 and

1 2
a(t) = 15 eyl 2, (ol +lo 225 ey 225)
1 T3tk g, (12 e 25 +H100 ] 25 e 35)

2
13 iz, (o g 1Butie 225+l 35 1020l 225+l ) > 0
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by applying the lemma to (2.8)) together with Cauchy-Schwarz we get

1 2 1 2
130l e 13, S PG LTV + 5 fuey (D)]I150(0) 12,

S s+1 2

130l g g I3 e e g, (1l e+l 3 e e 1)
S S

+ HJ:CWHL%OL%?JH‘unEIHL%OL%y(|‘wHL%L%+H8$wHL%L%)HUEIHL%L%

+ ||J§W||L%OL32W ||J§:9U€1 ||L%°L%y||w||L2TL%(||8xUE1 ”LQTL%HWJUWHLQTL%)

2
el pge g, 1 5ue | ez, Nl oo |

O
Lemma 5. For p < s, we have the following estimates:
||J£[w(ugl + Ugy Uey + “22)]”%%2@ S ||J£w||L%OL§y(Hu51”L?FL%HWEQHL%L%)
+ HWHL%L%WbHH&S(HUQ||L%L%+|‘U€2||L2TL%)-
Proof. By using[7| part (c), we get that
TPl (uZ, + ueyuey + w2y r2 S 15wl ooz [uZ) + ueyue, +u2,llzos
Y T Y (2.9)

2 2
+ ”w“LgZHJQZC)(Uel T Ugy Ugy + u52)||L%y~

Observe that Hugl + Ug Uy + u?QHL%S || ug, H%%—FHUEQH%% Also, by ﬁ part (c) again, we

have
2 2
||J£(Usl T Ugy Ugy +Ueg)||Lgy§ (||J£U61||Lgy+||=]5?u€2||L%y)(||ua1||L°°+||U52||Lg§;)-

By 2.3, we get ||.bue ||z +1Jrues | g S 1726kl 2 + 1126wl 2, S 6]l rs.0- Combining
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all the above observations together with we get

2 2
12l (uz, + ueyuey +uz,)pe S 12wl (lue g+ luesllzss)

ol 6 191 27 eyl g+ e 55 )

Integrating both sides from 0 to 7" and applying Cauchy-Schwarz inequality, we obtain the

conclusion of the lemma. O

Lemma 6. Suppose ug, satisfies the IVP with initial data ¢e,. We have ||w|| 12 100 S
o
€%+, ||83;w||L%L%Z§ 6(1)+ and ||8yw||L%L§?/§ 5(1)+ as €1 — 0. In particular, f,(T) < 6(1)+ as

g1 — 0.

Proof. Take § < % By the linear estimate in Proposition [2| applied to

1+6 1+9 2 2
||W||L%L%§ Cs(L+T)| 1z " w||L%oL%y+||Jx+ [wlug, + ve e, + ué‘g)]”L%L%y‘

145
From [2.9| we have ||J%+5w||L%>L2 < 5‘5_1_5h5¢3) (51)1_%. By Lemma 5| we get that
zy

1+0 2 2 1+0
[ TEO o, + eyt + 02, p2 S ITE Wl g (el g s Hlves 2 )

+ ||W||L%L%||¢||Hsvo(||ue1 HLQTLgZ—i_HUQHL%L%)'

1+46

Sil*dh((;) (e1)'~ "5 . By combining the previous ob-

By [2.9] we have ||J%+5w||L%oL%y§ &

servations, we obtain

—1-6,(3 110
L R P Ch

el 15 16 e 3 s el 3 )

Since we consider that ||¢[ ;750 is small, such that ||¢||Hs,0(||u<gl||L%L%+||U52||L%L%) < %,
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we get that

1—1f0
HWHL%L%S 1 b ( 1) s =0
as €1 — O since 1 + 0 < s.
The linear estimate [2.3.1| applied to 0w results in

2+0 249 2 2
|0l 3 50 S 12 %l o g +HITEo(d, +eyuey + 02l g

and by the same reasoning as above

S

—2-6,(3) . \1-2£8
”axw||L%Lg§>j< 1 h¢ (e1)

ol .15 0l g0 ey 2+l 212 )

145
which, combined with the above fact that ||w||L2 LOO,S 5™ 1= 5h§b >( DY, for £ small
enough, it gives us [|0zw|| 12 100 S €77 270 0 ase; — 0 since 246 < s. O
Thay

Corollary. We have ||w||L%oHs,o—> 0 as €1 — 0, where s > 2 for the initial value problem

.

Proof. From and Lemmas|§|we get \|JS+1uk|]LooL2 ||w||L2 LO°< 1 -€%+ = 5(1” nd

(1)+ — 0 as €1 — 0. From Lemma @ used in Lemma |[3| we obtain

1 9 1 2 0
HJ;wHL%OL%yg exp(5 fuy ()" + 5 fuo(T) )(HJ;W(O)HL%OL%;FCEJ) — 0

as €1 — 0, where we used that HJ;W(O)HL%)LQ — 0 as 1 — 0 and the boundedness of fy, (T')
Ty

and f,(T) by 1] I
Therefore, as |]J§w||L%oL2 — 0 as €1 — 0, it means that u € C([0,T] : H5O(R?)).
zy

Hence uc is Cauchy in H%Y(R?), meaning that u € C([0, T]; HY(R?)). O
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2.7 Continuity of the flow map

We assume that 7' € [0, 00) and ¢! — ¢ in HSO(R x T) as | — oo. We are going to prove
that ul — u in C([=T,T] : HY(R x T)) as | — oo, where u! and u are solutions of the the
initial value problem Oyu + agu — 0y 18§u + u2d,u = 0 corresponding to initial data ¢! and
¢, for s > 2.

For ¢ > 0, let as before, ¢L and ul € C([~T,T] : H®) the corresponding solutions.
Denote by ws = us — u. By the same estimates from Lemma [3] and Lemma [6] applied to we

we get

1 1
lue — ull grs0=15 exp(3 fo (T)? + 5 fue (T)*) (6 = &l rs0+C (T, lI6e ] grsos ]l rs0)e"").

By the same reasoning, we have that

1 2 1 2
lug — !l o0 < exp(G Lg (T)7 + 51,0 (1)) (10k = &'l oo+ CTIEE] o, 161 grs0)e” ™).

Now, denote wé = ué — ue. By the same estimates from Lemma |3| and Lemma @ applied to

b

1 1
l 2 2 l l
luz = vell o0 S exp(5 £ (1) + 5 £, (1) (I6E = bell oo+ C(T 162l oo 16z gro0)e” ™).

By the boundedness of fy (T'), f,i (T), fw.(T) and f, ; (T byand the triangle inequality,

we get

lu! — ul| gso < llue — ull gsotub — uel| gso+llul — u|| gso
< Nlpe — ol gso+l|oL — dell a0+t — | s

l l
+ C(Ta ”¢“H5707 H¢EHH5707 H¢ HH8707 H¢EHH370)80+
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which, by letting e — 0, we get [|ul — ull gs0S |t — ®|| ;s.0 and proves the continuity of the

flow map.
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CHAPTER 3
LOCAL WELL-POSEDNESS FOR THE PERIODIC AND
PARTIALLY PERIODIC THIRD ORDER MODIFIED KP-I
EQUATIONS

3.1 Notation and Preliminaries

We start by defining, for g € L?(R x T), §(&,n) denote its Fourier transform in both x and

y. We define the Sobolev spaces which we will consider from now on: for sy, s9 > 0
H2(RXT) = {g € L2RXT) : [lgl o= 561+ F + (1402 3] gz < oo}
and for s > 0

HYR X T) = {g € LR x T) : |lgllsrs= [F(&, m)I(1 + €2+ n2)3][| p2 gy < o0}

and so

H®(R x T) = N H*(R x T).

For s € R we define the operators J3, Jj by
J3g(€.n) = (1+€°)29(¢,n);

J5g(€,n) = (1+n?)25(¢,n)

on §'(R x T).

For g € L*(T x T), §(m,n) denote its Fourier transform in both x and . In this case,
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we define similarly the Sobolev spaces which we will consider from now on: for s1,s9 > 0
H*12(TXT) = {g € LATXT) : |lglgove= [G(m. )[(1+m?) 2 +(14+02) )| 12 g, < 00}
and for s > 0

H(T x T) = {g € LX(T x T) : ||gll gs= [[§(m, n)[(1 + m? +n?)2]| 12z, < o0}

and so

H(T x T) = N{2 H*(T x T).

By slight abuse of notation, for s € R we define the operators J3, J; by
Tzg(m.n) = (1+m?)3g(m, n)

Jgg(m,n) = (1+n%)2g(m,n)

on §'(T x T).
For any set A let 14 denote its the characteristic function. Given a Banach space X, a

measurable function v : R — X, and an exponent p € [1, c0], we define

1

fullznx= [ [ (@I )at]” it p € 1, 50) and
Jull e x = esssupregllu(®)ll x

Also, if I C R is a measurable set, and u : I — X is a measurable function, we define

lull e x= 11 (t)ull rx-

For T > 0, we define ||u||Lz%X: HUHLI[’_TI]X
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We also introduce the Kato-Ponce commutator estimates (as in Lemma XI from [27] and

Appendix 9.A from [20]):

Lemma 7. (a) Let m >0 and f,g € H™(R). If s > 1 then
178 (f9) = f IRl 2 < CslI TR f N p2llgll oo +(ILf | oo +HIOF | oo) T gl 2],
and if s € (0,1) then
1R (f9) — fIrall2< CsllJg fll p2llgl oo
(b) Let m >0 and f,g € H™(T). If s > 1, then
193(f9) = f 39l 12 CslIF2f N p2llgll oo +(Lf | oo +HIOF | oo) | F3 gl 2],
and if s € (0,1) then
172(fg9) = fITgll 2= CsllJpfll p2llgll oo
(¢c) Let m >0 and f,g € H™(M), where M is either R or R. If s > 0 then

18 (P2, < Csll Tap fllp2llgl oo+ 139l 2] fll oo

We have the following corollary which we will use later.
Corollary. Let M be either R or T.
(a) If s > 1, then we have || T3, ()| S [|ullF oo |75 0l g2+ llull Lo 0wl poo | T a2

(b) If s € (0,1), then we have ||Ji/[(u3)||,§ ||u||2Loo||Jf(/[u||L2
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3.2 Dispersive Estimates

For integers k = 0,1, ... we define the operators Q];, Qly“, @é, @5 on H°(R x T) by

Ok

QxQ(fan) = 1[2k71’2k)(|§|) if k Z 1

with
QUa(€.n) = 10,1 (I€])
and
@5\9@7”) = Lpgi-1 iy (Inl) if b > 1
with

—

Qyg(&,n) = 19 1)(Inl)-

~ /]~ /
AISO, Q{; = Zé/zo Qlé ,ngj - ZIZIZO ng ,k' Z 1.
By slight abuse of notation, we define the operators Qé‘j, QZ, éfc, @5 on H*(T x T) by

Ok,

ng(m> n) = 1[2k—172k)<|m|) if k >1

with
Qg(m.n) =19 1)(Im])
and
Qhg(m,m) = Lt guy(Inl) if k> 1
with

200

ng(m7 n) = 1[2]‘3—172143)('”‘)'

~ /]~ /
Also, Qk = S2F_ QF @k =5 _,QF k>1.

We are stating the dispersion estimates for the partially periodic and fully periodic cases
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that appear in Kenig and Tonescu [20].

Theorem 3.2.1. Fort € R let W( )(t) denote the operator on H>*(R x T) defined by the
Fourier multiplier (§,n) (5 + ) . Assume ¢ € H*®(R x T). Then for any ¢ > 0, we

have

W) Q) Qh6ll 2 1< C2VNQY Qhollzs, (3.1)

and

2 +k j 2 +k j
W) OQ5  Qholyz 1< C29 Q5 Qo (32)
for any integers 7 >0 and k > 1.

Theorem 3.2.2. Fort € R let W( )( ) denote the operator on H*°(T x T) defined by the
Fourier multiplier (m,n) — ¢ im*+ 35 ) Assume ¢ € H*®(T x T). Then for any ¢ > 0, we

have

W) (O Qholl 2 1< CASHINQ QAo 1, 33)

and

2tk yj (B9)j 1 N20+k i
Wy Q7 Q x¢HL§, Loo<028 T2 G Qrdllrz, (3.4)

for any integers j > 0 and k > 1.

3.3 Linear Estimate

We continue by adapting the argument in [20] to get the linear estimates.

Proposition 2. Assume N > 4, u € CY([-T,T] : HN"YR x T)), f € C([-T,1] :
H=N(R x T)) with T € [0, 3] and

[0 + 02 — 0,1 92]u = Opf on R x T x [T, 7).
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Then for any € > 0, we have
1 -1 41 1
HUHL%L%S CG[HJQ:—I_EUHL%OL%?J—'—HJx Jy+6ul|L§9L%y+HJx+€J§f||L%FL%y]'

Proof. Without loss of generality, we may assume that u € C1([=T,T] : H*(R x T)) and

feC([-T,T] : H*®(R x T)). It suffices to prove that if, for ¢ > 0,

527 A ~4 )1+ 1+
1@ Qhull g 1e < Ce2™ % 101 Ul oo g, +178 1 12 | (3.5)
and
2j+k j ) S R 1 7¢
1@ Qhull 2 e < €272 1051y P ull e+ Tl pe | (30

for any integers j < 0 and k < 1. For (3.5)), we partition the interval [—T', 7] into 2/ equal
subintervals of length 27277, denoted by [aj,la aj,l+1)7l =1,...,2/. By Duhamel’s formula,

for t € [ajy, a;41],
t
ult) = Wigy (¢ = ajplulaz)l + [ Wigy(t = 5)(0nf(s)ds
ajJ
It follows from the dispersive estimate (3.1 that

i
”1[aj,z»aj,z+1)<t>Qijjxu”L2TL§?/
i
< Celll(a; 05000 OWa) (E = a;,)Qy Qaula)ll 2 1o
t
i
+Ce\|1[aj,l,ajﬁl+1)(t)/ W(s)(S)Qijg:axf(S)dSHL%Lg@ (3.7)
aj’l
S Ce22(|Qy Qrulaz )z,

9. 0% Q)
+Ce222 Hl[aj,laaj,l—l-l)(t)Qy] ngfHLlTL%y'
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For the first term of the right-hand side of (3.7]), we have

2
g i
> o2 Hl[aj’l,aj’Hl)(t)QijgEU<aj,l)HL:%y
=1
2

G Y
Sy 2rr My, (0@ QR ulag ), (3.8)
=1

< 21972 (1+e)yHQyJQ%J%Hu”L%)L%y

_dg. 1
S272 ||Jx+eu||L%oLgy-

For the second term of the right-hand side of (3.7) we have

27 ,
€l ~27 ~J
Z 22 H1[aj,l,aj,z+1)(t)QijjfoLlTL%y
=1
20
9 _ia—(1 i ~27 7 7l
&S oA Uy ORIy,

=1
(3.9)

o2
_g ~97 i 11
5 272 Z”l[aj,hajj-}—l)(t>Qij%J‘T+€f“L%L%y
=1
S 272 ||Qijg:Jx+€f"L%L%y
_,
5 2772 ||J$+€f||L%FL§y'

Therefore, (3.8)) and (3.9) give (3.5)).

For (3.6]), we partition the interval [T, T] into oJtk equal subintervals of length 27277 —k

denoted by [b;;,b5,41),l=1,..., 2J+k By Duhamel’s formula, for ¢ € (05,1505 141],

t
) = Wig(t = biluiol + | Wigylt = s)[0e ()]s
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It follows from the dispersive estimate (3.2 that

2 —HC ]
o500 OQy" " @l 12 10
2j+k ~J

< Celljn, ;) OWea) (= 030)Qy T Q) 2 oo
t 2]—|—k J

12 p0.05000) () /b-z Wia)(8)Qy" " Quluf (s)dsll 2 o
s

< 2j+k j
S Ce22 ||1[bj,l,bj,l+l ( )Q / Qgcu(bj,l)HL%y

9 i 2j+k ~j
+ 062 2 2J Hl[bj’l7bj’l+1 ( )Q J Q‘thHL%-,L%y
For the first term of the right-hand side of (3.10]), we have

9J+k

) 2j+k ~j
> 22 Lo, 10000 (@Y lecu(bj,l)HLgy
—1

2J+k

14-€)(2j+k) 2j+k 1 1+E
<5 2% 0ig—(1+5)(2j+k) |11 b0y (D@ 0 Y ulbinllrz,
=1

. ;. . . . €
< 2j+k2%2j2_(1+%)(2j+k)‘|Q§J+kQ?CJat_1JZ}+2uHLOOL2
T Fry

_eUtk) o 145
S277 My Pullpgers -

For the second term of the right-hand side of (3.10)) we have

2tk
€ 2 +k '
o221y, (00 gff”LlTL%y
2]+k €
2j+k ~j 2
< Z 22212 Jo=3(2j+k) H [bj,1:b5,041) ( )@y ’ Q%J%J;f”L%“L%y
=1

oj+k

clixh) 2j+k i 71 73
Z” [b5.:05,141) ( )Q Q:anJy f”L’:lrL%y

2j+k 3

J Qb]sJaI:JnyHL%FL%y
_e]+ 1 €

S22 Ht]gct]y2fHL1TL%y-
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Therefore, (3.11) and (3.12)) give (3.6]). O

Proposition 3. Assume N > 4, u € CY([-T,T] : HN"UT x T)), f € C(-T,T] :
H=N(T x T)) with T € [0, 1] and

(0 + 03 — 9,192 Ju = Opf on T x T x [-T,T].

Then for any € > 0, we have

%—i—e

%+€ _%J1+€ J JG
Y UHL%OL%y‘f'H T yf”LlTL%y]‘

ol 2 155 Cell 2 ull o2+

Proof. Without loss of generality, we may assume that u € C*([=T,7T] : H®(T x T)) and

feC([-T,T]: H*(T x T)). It suffices to prove that if, for € > 0,

27 ] 7%7' %+6 %1+e
1@ Qb pz o < Ce2™F |18 ullgepa +1a° " Flipy 12 | (3.13)
and
2j+k J _ Utk _% 1+e€ %1 €
1@ Qhull e < C2™ ™7 [0 S I ulpgops +IE Tyfllpppe | (3:14)

for any integers j < 0 and k < 1. For (3.13)), we partition the interval [T, T] into 2/ equal
subintervals of length 27277, denoted by [aj’l, aj,l+1)7l =1,...,2/. By Duhamel’s formula,

for t € [ajy,aj141],

L __
) = Wiyt = ajo)lulaja)) + | Wigy(t = s)l0nf(s)}ds
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It follows from the dispersive estimate (3.3 that

i
|| 1[aj7l,ajvl+1) (t)QyJ ijuHL%Lg%

< CellLja, 0,0 OWia) (2 = a; )@ Qula)l 2 oo

+Cell1ay 0500, / W0 QAo f()dsll 1 (3:15)

§ )
S C2FH9I QY Qhutaj )i,

OO

(345)joj 27 AJ
+ 025132 Hl[aj,mj’m)(t)Qy chfHL;Lgy'

For the first term of the right-hand side of (3.15]), we have

Z 2 8 2 ] || 1[aj,laaj,l+1) (t)Qy]ngu<a],l) ||L%y

2J
§ €Vi Q . +€
<3 a5+ (8+6)9H1[aj’l,ajjl+l)(t)62 QL & u(aj)lrz, (3.16)

=1
B

P TI,
< 9ioli+ z>32—<@+6>f||c2§=7@%<1x ull oo
zy

~Y

_d +6

For the second term of the right-hand side of (3.15)) we have

§ £)j ~27 A7
)j J )
22 i ”1[aj,laaj,l+1)(t)Qy QfoLlTL%y
2 3 11 2 ~j et
34 €Y inio—(Lie)i ~2j ~j 78 T€
E o(§+5)ioig—(% 6)j||1[aj,l,aj7l+1)(t)Qy QuJ f“L’:lrL:%y
=1

N

3.17
%+€ ( )

Sj _7ZH ajl,aJlJrl )Q Q‘;‘JLE

8thE

fHLlTL%y

S 2_7”@1/7 f||L1 LQ
_ e
52 2||<]3: fHL%pL%y‘
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Therefore, (3.16) and (3.17)) give (3.13)).

For 1} we partition the interval [—T,7] into 27tk equal subintervals of length

27277=% denoted by [051:05041),1=1,..., 27tk By Duhamel’s formula, for t € [0.1505.141],

t

u(t) = Wg)(t = b;)ulb; )]+ | Wiay(t — )[0nf(5)ds

bj1

It follows from the dispersive estimate (3.4)) that

2]+k ]
||1[bjl, bjit+1) ( )Q xU”L%L%

_ .
< CellLp, ;) OWa) (6 = b0)Qy" " Quulbj) 12 1o
t
~ 2tk j
2,0 /bj Wiay ()03 QLo F(5)dsl 2 1 (3.18)
< 2§+ JH

2j+k ~j
[bj.1:05,141) ( )@y Ql’“(bj,l)HL%y

346) 2 +k '
+ 062(8 2 ]ZJH]‘ jl bj,l—l—l ( )Q / foL,}jL%y

For the first term of the right-hand side of (3.18)), we have

9J+k

(2+%) 2j+k ~j
22 8 2 ]H _]l7 jl+1 ( )Q / qu(b‘],l)HL%y

2J+k
(2+9) 2 2i+k 1+
< Zz §+5)i9gig—(1+5)(2j+k) I, boibiien) (@ J QJJ:U (Jz)HLg,y (3.19)
< 2]+k2(% 5)328]2 (1+5)(25+k) ||Q2J+kQJJ 8J1+ uHLOOLQ
1+
UHLOOLQ .
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For the second term of the right-hand side of (3.18)) we have

9J+k

(2+5) 2j+k ~j
E )i9J J J
2 8 2 2 H ]17 _lerl ( )Q QIfHL,},L%y

9J+k
(34€) _¢€ 2+k i 18 75
< Z 2 5%3 j2j2 8J2 2 27+h) H Jla ]H—l ( )Q "t Q‘%ng Jy2f||L1TL:20y

j+k

.11 €
2J+k J 78 72
Z H ]l, ]l+1 ) QrJs Jy f“L%,L%y

2j+k T 72
||Q / Q‘:jvjxg Jny”L%FL%y

e(j+k) £
5 2 Jy2f||L1TL§,y'
(3.20)
Therefore, (3.19) and (3.20) give (3.14)). O

3.4 A Priori Estimates
We are going to bound fy,(T) = HUHL%L%—FHaquLzTL%—i-H@yuHLgTLgZ.

Lemma 8. Suppose u € C([—T,T]: HS*(M x T)) satisfies the initial value problems (1.9)
or , with initial data ¢ € H5%(M x T) (here, M is either R or T). Then we have

ull Lo s S 1@l s exp(3 fu(T)).-

Proof. First,
Br(t) = I ) oo +10xf (DT o0 +10yS (D)1 75

for a function f. If we apply to any of (1.9)), (1.10]), the operator J; and then we multiply
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by Jiu, we get by integration by parts
d JS 2 o JS JS 28 . JS JS 28 QJSa ZJS J58
%H quL%y - zU x(u Iu) - xu[ x(u Iu) U Jy Iu] + U JpUJ g OzU
2 2 2
S I zullpy (lellzeg +llullrgg l0pullgg) S Wl zullyy Pult)

therefore, by Gronwall’s inequality, we get that
1 T3ull e p2. < 1956l 2 exp(fu(T)?). (3.21)

Again, if we apply to any of (1.9), (1.10), the operator J; and then we multiply by Jju, we

obtain integrating by parts,
d S, 112 S, 7S(,,2 S S(,,2 2 7s 2718, 715
EHJyuHL%y: Jyudy(u0yu) = [ Jyu[Jy(u”Opu) — u”J;0zul + [ u”JyudyOyu

and we denote (I) = [ Jju[Jj(uz(?xu) — u2J§8xu] and (1) = fu2J§uJ§8$u. For the first
term, by the Kato-Ponce commutator estimates we have
(1) £ 1Tl z, 15 (0200) — o Tyl
<l gz, (9wl 1750l 2, g+ (el s+l s Iyl 225 175~ 0l 12
S 15l (10wl o Nl s+l g+l 10yl 1)
+ HJ§UHLgyHJ£UHLgy(HUH%%HIUHL%H@yul\ng)
S Iz, Bul®) + [ gul s, I T3ull 2, Bu(t)

S I\Jysu\ligyﬁu(t) + ||J§uHL%yH(b”HSvSeXp(fU(T)2>BU<t)

By integration by parts, we get that

(1) S | uly Bult).
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Therefore, we get

d
EIIJQSUII%@S Ty ul* Bu(t) + ||J§u||L%y||¢||H5’36Xp(fu(T)2)Bu(t)

SO
d 2
Sl s, S (Wl gz 416 ssexp(fulT))Bu(t)
hence, by Gronwall’s inequality, we get

I 5ull 2, < (195@ll L2, +HI6l rssexp(Ful(T))exp(fu(T))

S N1Dl mrss (1 + exp(ful(T))exp(fu(T)?)

(3.22)

which yields that HUHL%oHs,sg ||(bHH£ZyseXp<2fu(T)2) O

Proposition 4. Let s > 2 and ug € H5*(R x T). Suppose v € C([-T,T] : H>*(R x T))
satisfies the IVP . Then u, dyu, dyu € L*([~T,T]; L°°(R x T)). Moreover,

Ju(T) = HUHLQTL%+||817UHL2TL§§+H81/UHL2TL%S Cr
for a suitable small T, if ||ug|| gs.s is small enough.
Proof. From now on s > 2+ 24. By the linear estimate in Proposition [2| we have

1+9 —1 7146 149 76,3
lull 2. os S 12 ull o, +I1 o Ty ull o+ Ty (W)l p2)

and
248 1+6 248 76/..3
102l 3,105 1300l e I8 Pl e HITEH T gy g
We observe that

244
1 ull pgorz < 1Mzull pgerz, < llull poo prsse:
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IIJZ}MUHL%oLgyS Iyull pgerz, S llull po prsye:
and
17201 e 2, S ITEH2 )| poe 2 1572 ()| poe 12
Yy T My T Hzy
SN2 oz, 1950 e 12,

so by the corollary of the Kato-Ponce commutator estimates

3 2
17300 g2, S W3l el 1 T30l 2, el Nowulzgs < Bu®l T3l

and

3 2
15 2, S 15l 2, Nl 15l el s 9yl o S Bu(t) 5l 2,
so therefore
24+ 10/,.3 2
120208 1 pa. S FulT) ol e s

Also,

1+6 -1 72446 1490 76 3
10yull 2 1o S 1T Oyull gz +IT Tyl gz, +T2 ™ Ty ()l g2 -

By the arithmetic-geometric inequality, we also have that

S

146 1=
172 Oyull ooz, S IMzull pgora +15~ " ull ooz S I zullpse 2+l Jyull ooz

the second inequality being true as s — 1 — 0 > 1. We also have

—1 7246
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Since

144 70 3 146 714+6,,.3 2426/, .3 2426/,.3
750 730, ()| 2, S AT g, S 1TEF 2 ez 132 (@) | oo,

the corollary of the Kato-Ponce commutator estimates gives
146 70 3
T 700y 0) 2, < But) (150l 2, + T3l 2, )

from th i i 1409, (u3 < FulT)2]ul| oo prsss.
So we get from the previous estimates ||J,°dy(u )HL%L%yN fu(T) ||u||LT s

Hence,

Ju(T) = ||u||L2TLg§+Haﬂ?u”L%Lg@"FHayuHL%ng

2
< Nl s gz (1 + FulT)2).

Together by the previous lemma,

FulT) S 1@l grsss (1 + fulT)?)exp(2fu(T)?)

and therefore, if ||| S is small enough, by a continuity argument, we get f,(T) < C for

T sufficiently small. |

Proposition 5. Let s > 1—89 and ug € H>*(T x T). Suppose u € C([-T,T] : H>*(T x T))

satisfies the IVP . Then u, dyu, Oyu € L2([—T, T); L®°(T x T)). Moreover,

Ju(T) = ||U||L%Lg<§/+||a:cUHL?TL%HWyU”L%L%S Cr

for a suitable small T, if ||ug||gs.s is small enough.

Proof. From now on s > % + 20.
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By the linear estimate in Proposition [3] we have

11
Lis

gJl+5u|| o+ 5 I (WP
y LFLz, "o y LyLZ%,

H+0 -
lull g2 poo S 192" ullpgorz +1lJa

and

146
Jy

I g FH0 5.3
||3xu||L%L%N [| 2 uHL%oL%erHJx U||L%OL%y+HJx Jy(u)HLlTLg;y‘

By the estimates,

19
§+5 s
B2 UHL%OL?WS ||un||L%°L§y§ “U”L%OH;;,

314 Y5 Bis
|2 T, U||L%<>Lg2£y< |2 uHL%oLngIJy U||L%OL%y§ ||U||L%0H;§,

and

Wis 5. 3 995, 5 19 196
12Ty () pgerz, S 12 ()l pgorz, +1y°

3
(u )HL;?L%y
3 3
Sz ) pger2, +l17y (W)l pgor2,

so by the corollary of the Kato-Ponce commutator estimates

o8 3 92
1952w, S 15l g B 130l .l 55 0rl 55 S a3l

and

$+26

3 2
1752w, S Il el s+ 15wl 2, el 22 19yl 235, S Bu(®)1 T3l a,

so therefore

P46 5, 3 2
1.5 Ty (u )HLlTL%yS’ fu(T) ||UHL§9H;;-
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Lastly,

1

11 5 1
g0 8 7246 0 164 (3
||ayu||L%L§<l>/5 ||J:c8 ayUHL%OL%y"’HJw SJy+ U”L%L%y‘F“JxS Jyay(u )”LCIFL%y'

By the arithmetic-geometric inequality, we also have that
s s—%—0
I12° Oyullpgerz, S |’J£“’|L%°L§y+||Jy ° ull pgerz,

S Wzullpgerz +lJyull gorz, S llull poo prss

the second inequality being true as s — % — 6 > 1. We also have
_% 246 S
||<]x Jy U”L%OLgyS ||Jyu||L%°L§y5 ||U||L§9H§;

Since

11 11 19 19
T+ .5 3 <40 146, 3 S+26, 3 F420, 3
1257 180y 2, S 1 I g, 5 1 0 ey, +1 6 e,

the corollary of the Kato-Ponce commutator estimates gives

B+6
15 50y ()l 2, < Bu(®)(1T5ull 2+l T3ull 2 ).

s

So we get from the previous estimates ||J,° 8y(u3)||L1TL%y§ fu(T)2||u||L%OH§j'

Hence,

Ju(T) = ”UHL2TL%+H8xUHL%L%+|’ay“”L%Lg§

2
S lull poo s (L + fu(T)7).
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Together with the previous lemma

FulT) S 1@l zs.s (1 + fulT)?)exp(2fu(T)?)

and therefore, if ||¢|| HES is small enough, by a continuity argument, we get f, (7)) < C for

T sufficiently small. m

3.5 Existence and Uniqueness

We start by stating a well-known local-wellposedness result from Iorio and Nunes (see [22],

Section 4):

Lemma 9. Assume ¢ € H(M x T), where M is either R or T. Then there is T =
T(|¢]l g3) > 0 and a solution v € C([=T,T] : H*(M x T)) of the initial value problem

Opu+ O3u — Oy L02u + u?0pu = 0,

u(0,7,y) = ¢(x,y).

The proof for R x T and T x T is the same as the proof in [22] for R x R.
We proceed to prove the local well-posedness result.

Theorem 3.5.1. The initial value problem (1.9) is locally well-posed in H**(R x T), s > 2.
More precisely, given uy € H**(R x T),s > 2, there exists T = T(||ug||gss) and a unique
solution u to the IVP such that u € C([0,T] : H>3(R x T)), u, Ozu, Oyu € L%ng,. Moreover,

the mapping ug — uw in C([0,T] : H>*(R x T)) is continuous.

Theorem 3.5.2. The initial value problem is locally well-posedness in H*3(TxT), s >
%. More precisely, given ug € H%3(T x T),s > %, there exists T = T(||ug||gss) and a
unique solution u to the IVP such that w € C([0,T] : H*3(T x T)), u, Oz, Oyu € L%Lg‘é.

Moreover, the mapping ug — w in C([0,T) : H%3(T x T)) is continuous.
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We present the proof for existence and uniqueness in the case of the third order mKP-I

on R x T, since the other case is similar.

Proof. Let ug € H**(R x T) and fixed ug . € H**(R x T) N H> (R x T) such that [ug —
g el grs.s— 0 and [lug,e|| rs.s < 2[Juol| s.s.

We know by the Iorio-Nunes local well-posedness result that ug . gives a unique solution
ue. We have by the a priori bound that HUEHL%L%—FHaggugHLzTL%—i-H@yueHLzTL%S Cr and
by the previous result, supg<;<7||ue| gs.s < Crp.

Henceforth,

w

u

m
~

3
U
Ol — a2 = [ (e = uaon(E — )

|

ug + UsUgr + ug,

L e

2 2
UE + UsUr + U
:/(U5_U€/)28x[ J 35 EI]

2 2 2 2 2
< Jue — u€/||L2(||u5||L%+||8xug||L%+||u€/||L%+||3xu€/||L%)

2
< (Bue (t) + Bu (1) [Jue — uzrll72.
and by Gronwall’s inequality and the a priori estimate
2 2
||Ue - Ue’”L%OL%yST ||u0,e - UO,e’HL%ya

hence supg<;<7||te —ue || 2 — 0, hence we can find u € C([0,77] : ass (RxT))NL>([0,T] :
Ty
H?%3(R x T)) with s’ < s. The fact that u is a solution of the IVP is clear now. Uniqueness

also comes from the previous Gronwall’s inequality. O]
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3.6 Continuity with respect to time

We proceed by a standard Bona-Smith argument ([5]).

Definition 3.6.1. For ¢ € H55(R x T) with s > 2, let ¢j, = gb where Pk g(&,n) =
9(&n) - Lo 3 (I€) - 1 gy (In). Let

1
= WP+ €7+ 1+ 2]
neZ |+|n\>k
Clearly, h((;’) is nondecreasing in k and limy_,~, hg(f’)(k) = 0. By Plancherel,

D=

160l = 16~ dulzz, = [ ° | emPa

In|>k
1+ 2 S 4 (14 2\s- 1 s
neZ |+|n|>k k

Definition 3.6.2. For ¢ € H**(T x T) with s > %, let ¢ = ﬁ(%)gb where ]Sé)g(m,n)

gm )i g () L g (o) Zee BP0 = [ 52 55 [lm,m) PL(14m?) +(140) )
[m|+|n|=k

Clearly, 71253) is nondecreasing in k and limy_,~, ﬁgﬁg)(k) = 0. By Plancherel,

N ||

1
l6 = ékllzz, = 16— dillz, = | D D Iomml?]”

|n|>k |m|>k

. m2)s n2s%
S LA

mneEZ, |m|+|n|>k

<R )

In all the cases, from their respective definitions, we have that, if p > s, then

1720k L2, S C(T, | ¢llerss) k0" and || yogll 2 S C(T, 6l s )k,
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Since ¢, € H®, by local well-posedness result of lTorio and Nunes, they give rise to unique
solutions uy in H*°. The above estimates together with (3.21)) and (3.22)), if p > s, we also

have

|72kl ez, < COT, 9] a5 K (3.23)

and

| Jukl Lo 12, < C(T 1] rss) K272 (3.24)

Denote w = uy — uy with k& < k’. Now choose 0 < ¢ < s. By using that ||¢ — ¢p| ;2 S
Ty
k_sh((;’)(k) for the R x T case and [|¢ — ¢pll;2 S k_sﬁq(;’)(k) for the T x T case, together
Zy

with the interpolation inequality,

q 1—-4 1—-4
q S
H‘Ix(")HL%L%yS HJQL‘WHZ%OL?W HWHL%OSLQQWS HWHL%OSL%?J

it yields
s, (3 _q
[Tl e 2, S KI5 R (k)15 (3.25)
respectively,
—s7(3 _4q
| ll o2 S ITRG) (k). (3.26)
Similarly, we get results for J,, more precisely,
— 3 _9q
[Tl e 2, S K50 (k)15 (3.27)
respectively,
—s7(3 _4q
| Tgll o2, S RI75RG) ()1, (3.28)
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Lemma 10. We have the following estimates:
a)

1 1
1750l e 12, S eap(5FulT)? + 5 Fu (D)D) | 750(0) 12,

1 2
I g o, (113 o+l 12 125 el 12 125

+ 1 Tewll ez
S S

I Tewll pgor2 Mzurlpgorz, (loollp2 oo +1020l 2 oo Mlurll p2 roc
S S

I Tewll pgor2 1wl oo ra 190l 12 oo (10zukl 12 poo +1 02wl 2 100)

2
Tl g g, I T2l 2, 1l 7 g |

b)

I 5wl eora, < exp(%fw(T)Q + %fuk(T)2) [IIJg‘jw(O)IILgy
+ I gwllrgerz, 1 yunll e rz 1wl 2 roo (10wurll 2 poc +10yupll 2 oo )
gl ggera, 15wkl e 2, (Il 2 pos 105l 2 oo +F(1)?)
+ \|J§w||L%OLgyHjcﬁukHL%OLgy||W||L2TL;;3<||ukHL2TLg§;+”ay“k||L2Tng)
gl pge 2, 15wkl e 2, (el 2 pos 10yl 2 oo+ (1))
+ ||J§wl|L%OL%y||J£w||L§9L%y||w||L%L§<Z}(||uk||L%Lg?/+||ayuk||L%L%)
1 gwll e, 15l oz, (kg2 o 19yll 2 1o +£(T)?)
I ywllpgorz 1Mzwllpeera lunllp2 poo l9yullp2 roe

s+1 2
15 e, (ol Fe .+l ez, el zssrz,))-
Proof.
Orw + 8§w — 8;18§w + w20pw + 3u%8xw + 3upwiruy — 3upwizw — 3w28xuk =0. (3.29)
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a) We apply J3 to (3.29)) and then we multiply by Jjw, in order to get

d
Gl [ s s+ 3 [ Ron) T+ 3 [ JEupstuy) S

—S/Jg(ukwﬁxw)Ja‘?w—3/J§(w26xuk)J£w

and we will analyze each term in the sum.

We have (1) = [ J3(w?0yw)Jiw, (IT) = [ JE(ui0w)Jiw, (I11) = [ J5(upwopug)Jiw,
= fJ;(ukwaxw)ng and (V) = [ JS(w?0pup) Jow.

For (I) = [ J3(w20pw)Jiw = [[J5(w?0pw) — w2 JE0pw] J5w + [w?J50pw 5w, and we
will denote (I)] = [[JE(w?0pw) — W2 TE0w]J5w and (I)g = [w?J30pwJiw. For the

first one, we have by the Kato-Ponce commutator estimate

(1)1 < |!J£w||LngJ£(w2<9xw) —wQJiﬁwaLgy
—1
S||JEW||Lgy||wI|ng[H@wang,-||JiWIILger(IIw||Lg°;,+||6’wang)||Jf; f%cwlngy]
< || J5wll3s Bult)
Ty
and
2 2
(I)2 < HJinL%yleng3|\3wa|ng,§ I\JinLgyﬁw(t)

o(l)< ||J£w||%2 Bu(t).

Now, = [JE(uF0pw) Jiw = [[J5(u20,w) — us J50,w) Jow + [ 2 JE0,w J5w and
we denote (]I)l = [[J5(uz0uw) — u3 J50,w) Jiw and (I1)g = [u2 J50,wJ5w. For the

first term we have by the Kato-Ponce commutator estimate
2 2
(D)1 S I Tzwll g, 12 (g 0w) = up J20aw 12,
-1
< 13wl iz, oz [ 10wl zog 173 2, + (sl 2+ NOuwtuel 21 T3~ 0wl 2 |

2
S N zwlze Bu(®) + 1 Tzl gz 1 zunl g2 102wl gg luel rgg
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Also, we have
()2 S ||J§W||%%y||ul<;||L°°Haa:UkHL°O§ ||J§w|!%%yﬁuk(t)
Therefore,
()5 ”Jziwnigyﬁuk(t) + 2wl 2, 1zurl rz, 100wl g gl Log -

Let (I11) = [ J3(upwdpug)Jow = [[J5(upwdrpuy) —upwJ50pup] Jow+ [(upw J50pup Jow
and denote (I11)1 = [[J3(upwdpuy) —upwJy0zug] Jiw and (111)9 = [ upwJ50puy Jaw.

We have by the Kato-Ponce commutator estimate
(I S 3wl 1T ugsodier) — o 300ue] 12,
S 15l g, [15uel 2, leollgg | Ocuell s
13 wll 2, (g | g 9wl s+ Orupl1 7 )
15 Bl g, (el 10 s+l 225 o 5+ 1000l 2.5 e )
S5l gz Bu®) + 115wl 2, 15wkl 1, Il rgg 10ru | gg

13l gz, 175l 2, ool s Nk g 17300, 180 2, 190wl s skl
Also, (ITT)y < |73l gz, 175 gl 2. 1l zgg el g and so therefore
2
(1) 5 130135 Bu )+ 123l g2, | F5ul g, I N Lz

M zwllrz 1zuel 2 llollogs lunllgg HTewll zz Izuellz2, 102l og lurll o

1
el I gl el el g
Again, (IV) = [ J5(upwdpw)Jiw = [[J5(upwdrw)—upw J30rw]Jiw+ [ upwJ50pwJiw

o4



and we denote (V)1 = [[J3 (upwdpw) —upw J30pw]Jiw and (IV )y = [wpw 30w Jw.

We have by the Kato-Ponce commutator estimate
UV)1 S I Tewll g, e (upwdaw) — upw J30uwl 2
< 13wl iz, 19l (173600 g2, (ol g 19wl zg5) + 12wkl 2, ol 22
-1
130 52, [k, (el g+ 1000l ) + NOwtugl g ol 2 11 T3~ 0wl 2,
2
S Izwlze, (lurllpgg +10zug g ) (10zwll g +llwll )

I zwlrz 1 Tzurlrz lollpgs 10nwll g -

Also, (IV)2 S IUg?WH%%y(Ha:cUkHngHwHngJrH&MIL;gHUkHng,) and so therefore

2
(V) < Izwllzz (lullrgg +10wurll nge ) (100w g +llwll g )

R P P o T P e

Again, (V) = [ J5(w?0puy,) Jow = [[JE(w?0puy) — w2 J50pus] Jow + [ w? J50puy, J5w
and we denote (V)1 = [[JE(w?0puy) — w2 JE0puy)Jiw and (V)g = [w?JS0pupJ5w.

We have by the Kato-Ponce commutator estimate

W1 S 15wl 2 173w Onug) = w J0wugl| 2,
-1
S 15l g2, Il ngg [190uplngg I 75l 2, +(lll g + 190l 125 )15 Daruel 2,

2
S Mzwlize Nollzgg 10zurll g +1Tewll p2 I Toupll p2, Il g (lwoll g+l Oaeoll e )-
Also, (V)2 < HngHL%y|\J§+1uk\|L%waH%% and so therefore
(V) S 13007 (Buy(t) + Bu(t)
&y

1 2
5wl 2, (13, Nollzgg 1ol zeg +H1wwl z2g) + 13 gl ol ).
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Now, putting together all the terms we get that

d 2 2
%HJ;WHL%?J S (||J§w||L%y)(5w(t) + Bu, (1))
1 2
+ ||J§W||Lgy||<]§Jr uk||L?Cy(Hw||Lg%+||w||Lg§/||uk:HLg§/)
+ ||J£W||L%y||J£uk||L%y(||W||Lg§||uk||Lg§;+||8xw||Lg§j||uk||Lg§;)

2
1300 2, 13k 2, (1ol 2 9ot 35+l g 1000 225+l )

(3.30)

We are using the following variant of Gronwall’s inequality:

Lemma 11. If a(t), 5(t) are two non-negative functions, and %u(zﬁ) <u(t)B(t) +aft)

for allt € [0,T] then
¢ t
) < f ﬂ(s)ds 0 ds).
u(t) < elo (u()+/00z(s) s>
By putting u(t) = [ Zwll 2 , B(1) = Buo(t) + Buy.(t) = 0 and

1 2
a(t) = 15 gl g (lollF g+l g el 2.5)
+ 13kl g, (1l zgg L2 + 100 25 o 2.5)

2
120l 2, (55 NOwtuel s+l 225 1 9uwll s+l 3 ) > 0
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by applying the lemma to (3.30]) together with Cauchy-Schwarz we get

1 2 1 2
Izwllpgerz, S exp(5 fu(T)” + 5. fu (T)7) |1z (0) 12,

s s+1 2
1 ewllpeerz 192 ukHL%OL%y(”WHL%L%‘{’HW”L%L%HukHL%Lg@)
S S
130 ez T3 ez, (102 o +H10500l 13 10kl 12 1
+ ||J£W||L%°L§y||JgukHL%OL%y”W||L2TL§<Z>/(||8aruk;||L2TL§<Z>/+||833W”L2TL%)

2
Tl pge g, I T2 2, 1l 7 g |

b) We apply Jy to (3.29) and then we multiply by Jjw, in order to get

d
EHJ?‘ij%Z:/J;(wQ@xw)J;w—|—S/Jz‘j(u%({)xw)(]jw+3/J§(ukw3xuk)<]§w

—3/J§(ukw8$w)<]§w—3/J§(w26xuk)J§w

and we will analyze each term in the sum.

We have (1) = [ J5(w?0pw)Jjw = [ J5(uFOpw) Jgw, (I11) = [ J3(upwdpuy)Jiw,
fJ (upwipw)Jyw and (V) = nyS w28xuk)<]yw
For (I) = [ J§(w?0rw)Jjw = [[J5(w?0pw) — w? J50pw] Jjw + [w?J§0sw iw, and we

will denote (I); = [[J;(w 20,w) — wQJS&Ew]JSw and (I)9 = fw2J58wa5w For the

first one, we have by the Kato-Ponce commutator estimate

(D1 < Iywllpa (15 (@?0pw) — w2 T50awll 2
< Wyl g, Il [ 10wl gl gl 2+l s + 10yl 5 )15~ Dol 2,
< Wz, [19elzag 1500 12, 1l zgg
(ol g ol oo 19yl g5 ) (15l 2, +I1 Tl 2, )

2
< (Mywllzz +lTywlig 1zwlip ) - Au(t)

o7



and

9 2
(D2 < 15z, g N0l < 11 Tl Aot

so (I) S (||J§w||%2 JHITgwlize [1zwl 2z )8 ?).
Now, fJS axw Jyw = f[JS(uzaxw) — ustﬁxw Jyw + fu%Jij@gcmySw and
we denote (]I)l = f[(];(ukaxw) — ukjsamw]JSw and (I1)g = [ u} JyOzwJyw. For the

first term we have by the Kato-Ponce commutator estimate

2 2
(D)1 S [ gwllpz, 1y (g Oew) = upJydaw 12,
-1
S I gwllzz, lukllzsg | 102wl zeg | Tyurl p2, +(lull nog +l10yurll zoo) | T2~ Ouwll 2,
2
S Myelze Bu®) + 1Tyl 1 yurlzz 10ywllzgg llurllzgg

+lzwllrz 1ywlirz 10yull e llurll e

where here we used that HJ;US_lﬁwaL%yS |J§WHL§,y+U£WHL%y- Also, we have
2 2
(D)2 S W ywlizs lullzeellOzugl oS [17ywlzs Buy(t)

Therefore,

2
(D) S Mywlize Pu(®) + 1 ywlip2 1yurl 2 19yewllgg lul g

I zwlirz 1 9ywlirz 19yull e llurll e

Let (I11) = [ Jyj(upwipuy)Jyw = [[J5(upwdpuy,)—upwJyopu] Jjw+ [ upwJyzuyJyw
and denote (I11)y = [[J;(upwipuy)—upwJyOpug] Jyw and (I11)g = [ upwJjopuyJyw.

o8



We have by the Kato-Ponce commutator estimate

(D)1 S Tyl Iy (upwdaug) — upwJyOuupll 2,
S gelgz, (15l 2, 10l o 0wl zg
195wl g, 10yl g 0w g +lue g 10wt 125
15 Dl (loll g Oyl s +luel g 19yl s
o 15l g2, ol s 9 g |
S Il T, Bu(0) + 1750l 1z, | Tur 2, (el s Nyl g+l g e 25)

15l z, 15l e, (1ol s (1wt g + 110yt ) + gl s 10yl 225 )

Also,
1
(I S | ywllze 17y ukll g, lollgg lullzeg I Tgwl e 1 7zunll 2 ool zag 1wl reg

and so therefore

2 1
(111) 5 1 gelza Bu () + 175wl 2 175" el g ol gs el 2
1 ywllrz 1 9yurl 2, (lwllzsg 10wkl zog Il Log 10y k]| Log +llunll o [19ywll zgg )

+ywllrz 12wl 2, (lwllzss 19yurl ngg +llunll nog 10yw | g +lleoll g lurll zog )-

Again, (IV) = [ Jj(upwirw) Jyw = [[J5(upwdsw) —upwyOpw] Jjw+ [ upw;0pwyw

and we denote (IV)1 = [[J; (upwizw) —upwJyosw] Jyw and (IV)g = [ upwJyoswJjw.
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We have by the Kato-Ponce commutator estimate

IV S 1yl pz 1y (upwdew) = upeo JyOuwl| 2
-1
S 1z, (190 193l g, (gl g5 +10y w225
-1
T o W PO - W o 7 1
+ 10wl g el 3, ol 3
2
S0l (B (0)+ Bul0) + 1500 3, oz, ol 00l
Al ywlirz 1 Tzwlirz, (lurllzsg Wil zeg +llurll Lo [10ywll Leg +10yu | Lgg @il zgg )-
Also, (1V)2 5 15y (100l el g +100 s llzzg) S 1512 (Buy6) +
Bw(t)) and so therefore
2
(UV) S I ywllzz, (Bu () + B () + 1 ywl Lz Iyurll 2 Iwllzgs 10awll g

+ 1 Tywllrz 15wl 2, (lukll zeg ool ngg +llurll Lag 10ywll Log 10y unll gg loll £ )-

Again, (V) = [ J5(wOpup) Jiw = [[J5(w?Orug) — w?J50pug] Jiw + [ w?J50pugJiw
and we denote (V)1 = f[J‘ys(wQ&Euk) — w2J§8xuk]J§w and (V)g = fwsz‘j@xukasw.

We have by the Kato-Ponce commutator estimate

2 2
(V)1 S Vgl gz 175 (P 0ug) — w2 T30l
-1
< 15l gz, ool g, [Nl g 1750l 2, + (ol g +10y 22 15~ Bl 12 |

S 15l (Buy®) + Bul®) + 15l 2, (1T guel 2, + Tl 12, ) B

Also,
1 2 2
(V)2 S W5l gz, 15l g, loll3 s + 15l 2, 1730l 2, ool
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and so therefore

(V) S 150l (Buel®) + Bul®) + 15l g3, | Tl 3, Bt

1 >
+ 1 Tywl e, 1zurll 2, B () + 1 Tgwll 2 12 ukll 2 lolze.

We make the following notation:
a(w, up) = [lwll Lo (10wl g 1 Oyurllngg ) + lugll ngg Oyl pog +Buw (t),

b(w, up) = llwll g (10wl Loy +lukll Lgg) + lukll Lgg |0ywll Log P (£),
c(w, ug) = llwllzgs (10yurll Lgg +llurll g )+ 1wkl Lgg 1Oyl Lge +llull Lo 10y ull Lo +6u (?)-

Now, putting together all the terms we get that

d
STl 2y S 15wl (Bult) + By (8)
Ty Ty
gl g, Il 2, afew, )
gl g, I 5] 2, b, ) (3:31)

5l g, 13wl 3, el w)

1 2
15wl 15 il 2. (1) s+l g o 225

Using the variant of Gronwall’s inequality from part a) and applying it to (3.31) with

u(t) = 1wl 2, B) = Bult) + Bug(t) > 0 and

alt) = |75l 2, 15wkl 2, e, )
el 1wk bl )
150l gz, 130l g2, e, )
el 15 il (ol + ol g 225
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we obtain

1ywilreera, S exp(%fw(T)2 + %fuk(T)2) [|\J§w(0)|yL%y
+ ”JZWHL%OL%y||J§uk||L%y||WHL2TL%;/(Haxuk||L2TL%+||ayuk||L%L%)
+ I\ngHL%oL%quguky|L%y(HukHLgTL%HaywHL%L%HW(T)z)
+ ”JzinL%OL%y||J;Uk||L?Cy||W||L2TL3<£/(”Uk||L%ng’+||ayuk”L%L%)
1 gwl e 1aurl 2, (H%HL%L%HﬁywHL%L%—i—fw(T)2>
+ ”JijL%OL%y||J£w||L%y||W||L%Lgoc%(HukHL%L%WLHayUk||L%,Lg§)
15l o, 17563, (il 2.5 10yl 2. + 7 (T)?)
Iyl pgorz 1 Tewl 2 lukl p2 oo 19yukll 2 1oc

1 2
+ ||J§W||Lg?j:g:y||J§Jr Uk||L%<>L§,y(||W||L%OL%y+||W||L%°L§y||Uk||L%°L§,y)] :

Lemma 12. For p < s, we have the following estimates:
(a)

p 2 2 P
Iz lw(ug + wpup +up)llip r2 S 12wl ez (lukll g2 poo Hllulz2 roc )

Hllwlp2 poo 10 s (lugll p2 poo +lupllp2 1o )-
(b)

2 2
15 oo + i + i)l g2 S I hwllzse s, (el 2 pos +Hlwll 2 poc)

o oll 2 g Il s (gl 2 e a2, )-
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Proof. By using 7| part (c), we get that

2 2 2 2
172w (uj; + ugups + up)lllrz, S \|J£WHL%OLgy(||Uk + ugugy + ujll Lo
(3.32)
2 2
leoll e 177 (u, + upgs + uip) Izz,-

Observe that Hu% + upup +u%/”Lg§§ Hukﬂ%%—i—Huk/H%% Also, bypart (c) again, we have

2 2 2
15, 4w+ )l g2, S (el 2, 1Tzl 2 )l oo+l g )

By B2, we set | F2ugl 2+l pz, < 1720%] 2, +1 Bl 12, < 9] s Combining

all the above observation together with we get
2 2
12 [ (u, + upugs + uplllz, S ||J??WIILgy(IIUkIIL%JrIIWIIng)
Hllwllp2 poo 101l s (lug |l pgg +lup Nl £ )-

Integrating both sides from 0 to 7" and applying Cauchy-Schwarz inequality, we obtain the

conclusion of the lemma for J,. The proof for J, goes the same way. m

Lemma 13. Suppose uy satisfies the IVP with initial data ¢ = P (;5 We have
HwHLz L0°< (-1 HﬁwaLz L°°< kO~ and HaywHLz L<>°< kK9~ as k — oo. In particular,

fu(T) < KO as k — oo.

Proof. Take § < % By the linear estimate in Proposition |2 applied to ,

1 140 76
loll 2. 0 < 1l T2 0 Wil pgora, +HIT | sopz o Tyl (uk+UkUk/+uk/)]llL1L2 :

5
From |3.25) and [3.27] we have ||J%+5w||L%oL2 S k:1+5*5h((253)(k)1_1%7 together with
zy

_ 146
1 Iy 0wl e, S 15 Pl paora S RO ()=
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For the last term, we observe

149 76 1+26 2 2
[P J[ (Uk+ukuk’+uk/)]||L1L2 ST [W(Uk+ukuk’+uk/)]||L1TL%y

1426 2 2
{1y g + wpw + w1
By Lemma [12| we get that

1426 2 2 1426
172 g + g + wplll gy 2. S o™ wllpgors, (lurll gz oo +lluwll 2 1o0)

o loll 2 g 10l s (gl 2 e a1 2.1 )

and
142§ 2 2 142§
17y ok + g + w1 pa S Iy wllpgors (el 2 poe +lwwll 2 o)
+ ||W||L2TL3<§||¢||HSS(”UkHL?TL%"’Huk’HL%L%)
1428

By [3.25| and [3.27] we have ||J%+25w|| 2 SJ fpl+20— Sh((b)(k:)l_% and ||J1}+25w||L§9L§y§

1426
jlt20—s h((;’)(k)l E . By combining the previous observations, we obtain

1426—s (3) .\ 1—1E20 3) 102
leoll 2 p5e S K ) ()1 max(1, 0 (1))

el 2 g s Qe 2o el 25

Since we consider that ||¢|| gs.s is small enough, such that WHHS,S(HukHL%L%—FHuk/HLQTL%y,) <

%, we get that

1425 (3)

< K2 ()5 a1, 1) (k)

||W||L2 L35~

as k — oo since 1 + 2§ < s.
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The linear estimate 2] applied to d,w results in
244§ 760
10zl 2 oo S 11 T2 o0 Wiigorz +Jy ) Wllpgerz, +HITe ™yl (Uk+“kuk’+uk/)]||L1 2,

and by the same reasoning as above

“Fmax(1 0 ()5)

2426—57(3) 11—
||8xw||L%L% Sk Sh¢ (k)

1ol .15 00l oo el s +luprl )

S max(1, ) (k)

for k large enough, it gives us [|0zw|| 12 j00 S k‘2+25 S —0ask— oosince 2+ 20 < s.
Ty

[
s

),

which, combined with the above fact that ||w||L2 LOO < flt20- ShgZS )(k)lf
Lastly, the linear estimate [2| applied to dyw results in
146 71 249 144 7146 2 2
10y 150 < IO bl g HIIZ 0l g +HIIEHO 3ot + s + )l g 12

and by the same reasoning as above

“ max(1, 1Y (k)*)

< k2+25—8h(3) o

||8yw||L%L% ~ b (k')l_

ol .1 00 oo el s +luprl )

@[

which, combined with the above fact that HwHL%LOO S k1+25_5h§53) (k)= B max(1, hg’) (k)s),
Ty

for k large enough, it gives us ||8xw||L2TLOO,§ k2t20-5 5 0 as k — oo since 2420 < 5. [J
Ty

Lemma 14. Suppose up satisfies the IVP (1.10) with initial data ¢ = P (b We have

0— —
Hw||L2 L°°< k(-1 ||8J;w||L2 L°<>< k'~ and Hal/wHL%Lg?jg kK0~ as k — oo. In particular,

fu(T) S KV~ as bk — oo,
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_19
Proof. Take § < Lrg. By the linear estimate in Proposition |3 applied to |3.29)

Bts —2 14$ Uis s
||UHL%L%S [Hjxg “HL%OL%y‘i‘HJ:U 8jy+ UHL%OL%y"‘HJxS Jyf”LlTLg%y]'

11 5 11 ~ _11-1-5 )
From [3.26/ and [3.28| we have || J,° * w|’L§’9Lgy§ k?+5—8h(§53)(k)1 = , together with

5
—% 7146 146 146—57(3) /g 1149
12 S Iyl e, S I 0wl e o, S KHOTRE) ()1

For the last term, we observe

s 1196 2 )
)
+ 1T w(u, + wpuy + uj)] Izyrz,
By Lemma [12| we get that
io5 9 4426
192" Lo+ wpuge )l pz S 190 wllpgorz, (lukll 2 oo Hluwll 2 o)

3 g e skl 2o + el 2,25

and

F+26, 9 2 T+26
19y™ [ +wpup +up)lllpy e S I wllrgerz, (lukll g2 oo Hluwll 2 roc)

el s Il mr (g g s Il s )

420 o557 (3) a1 BT $+6
By[3.26/and [3.28 we have || J,® 5h¢ (k) s and ||/

11
WHL%OL%y,i k8
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gz,
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11
§+26

k%—&-%—s%g(f) (k)l_

s . By combining the previous observations, we obtain
U457 (3) p y1— 52 73) 102
ol 2 125, S K ¥R 091 max(1, 5 () )

o loll 2 g 9l e (gl 2 e +llegel 2.1 )

Since we consider that ||@|| gs,s is small enough, such that ]|¢||Hs,s(||uk||L2TL%+Huk/||L%L%) <

%, we get that

11
g 20

< ks 200 () max(1,3) (k)

)
HWHL%L% s

)—0

ask:—)oosince%+25<s.

The linear estimate [3| applied to O,w results in

1000l 12 10 < 128 2ol e 2 I8 Tl e 1o TS T Tl + gty + )] g -
2Wiir2 ree S Ve rpr2, Ty wlipeerz FliJa Jylwlug B upllinhre,

and by the same reasoning as above

19
@4—25

1050l 2 e S K5 2R ()= max(1L, B (k)

P )

o loll 2 g 19l (gl 2 e +leasl 2.1 )

which, combined with the above fact that

11
1195 ~(3 - ~(3),, .8
leoll 2 10 S B3 2R ()5 max(L, R (8)9),

19
for k large enough, it gives us [|0zwl| ;2 700 S k8 T2075 5 0 as k — oo since % +2 < s.
Thay

Lastly, the linear estimate |3 applied to dyw results in

$46 1 246 N S 2
HﬁywHLZTL%S | J2° Jyw||L<7>,oLgy+||<nyr w||L5>,oLgy+HJx8 gyt [w(uk+ukuk/+uk/)]||L1TLgy
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and by the same reasoning as above

19
1995 57(3) /py1— B2 =3
19yl 3 15 < 527 RE) ()5 max(1, B ()

ol .1 100 oo el . +luprl )

which, combined with the above fact that

19195
ol 2126 S k;1879+25—sh253)(k)1—LS max(1, 1) (k)
Ty

19
for k large enough, it gives us [[Oywl| ;2 ;0 S ks T2075 5 0 as k — oo since % +20 < s.
Ty

]

Corollary. We have ||w||gs,s— 0 as k — oo, where s > 2 for the initial value problem (1.9)

and s > % for the initial value problem .

Proof. From (3.2

w

and Lemmasandwe get ||JS+1Uk||LooL2 HwHLz L°0< glop(=1)-

K9~ and kY~ — 0 as k — oco. From the Lemmas I . used in Lemma [10| we obtain

1 1 _
12wl g2, S exp(5 fuy (T)? + éfw(T)2)(”J£w<0)|’L%°L%y+CkO ) =0

as k — oo, where we used that HJjw(O)HL%)LQ — 0 as k& — oo and the boundedness of
&y

fuk( ) and fw

From (3.24

) by I and [5 I

and Lemmasandwe get ||J§+1ukHL%oL2 w72 700 S plop(=1)— — p0-
zy 7Ly

and k9~ — 0 as k — co. From the Lemmas used in Lemma |10 together with the fact

we just proved, ||J§w||L%oL%y—> 0, we obtain

1 _
1500l e 12, S 5D Fu (T + 5 Ful D)5l e g2, +CHO™) = 0

as k — oo and the boundedness of fy, (T') and f,,(T") by I and |5 I
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Therefore, as ||J£“’”L%°L§y+”Jysw||L%°L§y_> 0 as k — oo, it means that v € C([0,7T] :
H). O
3.7 Continuity of the flow map

We assume that T € [0,00) and ¢! — ¢ in HS5(M x T) as | — oo. We are going to prove
that u! — u in C([=T,T] : H>5(M x T)) as | — oo, where u! and u are solutions of the the
initial value problem Oyu + 8§u — 0, 18515 + u28,u = 0 corresponding to initial data #' and

¢,forM:Rands>2andforM:Tands>%.

For k > 1, let as before, qbi/, — Pkgl and uij € C([-T,T] : H*) the corresponding
solutions. Denote by wy = uj — u. By the same estimates from Lemma [I0] Lemma [13]

Lemma [14] applied to w}. we get
< 1 2 1 2 0—
g, = ullzrs.s S exp(5 fuo (1) + 5 fu (D)) (I0r, = Sl mrss +C (T, 10g | zrs.s, 0l s )67
By the same reasoning, we have that
1 9 1 9 _
Ju, = w755 5050 ()% 2,0 (TS} = 6 st CCT, I g, 16 )OO

Now, denote wé = ugg — uy,. By the same estimates from Lemma Lemma Lemma

applied to wf{:

1 1 -
g = wrllzr2o S exp(5 £ (1) + 5 £, (D26} = Sxlles+C(T |Gl s, | Sxll r2)E).

By the boundedness of fy, (T'), fugg (T'), fuw, (T') and f‘*’i; (T') by |4l and by |5/ and the triangle
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inequality, we get

! — ul|gs.s < g — ul| gss+][ul, — g gss+llul, — o] go.s
SN\ ok — ol s +dk — drllmss ok — &' llzss

+ C(T, |1l s [0l 5o, 116 | s 93 L oes )RO

which, by letting k — oo, we get |[ul — u|| s < ||¢F — ¢||fs.s and proves the continuity of

the flow map.
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CHAPTER 4
LOCAL WELL-POSEDNESS FOR THE PARTIALLY
PERIODIC FIFTH ORDER MODIFIED
KADOMTSEV-PETVIASHVILI I EQUATION

4.1 Dispersive Estimates

Throughout this chapter, we will use the same notations from . For t € R let W(5)(t)
denote the operator on H>°(R x T) defined by the Fourier multiplier (§,n) — HEFTEN

For integers kK = 0,1, ... we define the operators Qg, Qlyf, Qvl;;, Qvlg on H®(R x T) by

Q g(&;n )—12k 1 9k) (1€) if k> 1

with
Qale.n) = 10,1y (I€])
and
Q (& 1) = Ligr—t gny(In]) if k > 1
with

Q 9(§;n) = 1[2k 1 9k) (Inl).

~ k / /
Also, Qk = 3%, QF ,Qk =5, QF k=1,
We are stating the dispersion estimates for the partially periodic case that appear in

Kenig and Ionescu [20].

Theorem 4.1.1. Assume ¢ € H*(R x T). Then, for any € > 0,

IWes) (DQ3 Qb2 e < C2T2 V@ Qo (41)
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and

3 +k ] 3 +k; '
Wiy Q@ Qol 1< C2 TV IQ Qhollpy, (4.2
for any integers 7 > 0 and k > 1.

Remark. The same dispersive estimates are true for the operator W(5) (t) defined by the

(e 3, n2
Fourier multiplier (£,n) — &)t

4.2 Linear Estimate

Proposition 6. Assume N > 4, u € CY[-T,T] : H NI R x T)), f € O(-T,T] :
H MR xT)), T €0, —] and [0y — 92 — 8;18§]u =0;f on Rx T x [=T,T]. Then, for any

1 <p<2, we have

—4 2p—1 2 —2
Sp—t olye B2 +e

2-p +e
lulp poo S CoT 2 1™ ull gz +l0e 7 Iy ™ ullpgers, 12 1, 7 ullgirz |

where p' = max(% + e,% —€).

Proof. Without loss of generality, we may assume that u € C([-T,T] : YR x T)) N

CY[-T,T]: H®(R x T)) and f € C([-T,T] : H®(R x T)). It suffices to prove that if, for

e >0,
. _ 5p—4 3p—4
~3j j _e 2P o—de =
1Qy Qaullp poe < C27 2T [ o™ ullpgore +1Ja™ fllpyzz ] (4.3)
and
. _ 2p—1 3p—2 3p—4
3J+k: j _€(J+2k) LT=te D=4 3p4
QY @l g g < CO™ P FTH NI T TR s HIIT Sl g (44)

for any integers 7 < 0 and k& < 1. For , we partition the interval [T, 7] into 2%/ equal

subintervals of length 2T2_2j, denoted by [aj’l, ajJJrl),l =1,... ,22j. The term in the left-
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hand side of [£.3] using Holder’s inequality, is dominated by

22j

ZH a]l,ajl_H )Qy Q UHL%L%%

227
S O||1[aj7l,aj7l+1 ()H 22pp ||Z|| jlv ]H—l )Qy Q u”L%L:OCOy (45)
L7 LY 1=1
22J
L2j 37 I
<o BUTH ;H ajp0a5001) D@y Qrull 2 poc

By Duhamel’s formula, for t € [a;;, a;41],
u(t) = Wig)(t — a;0)lu(az,) / Wi (1 — 5)[0(5))ds
It follows from the dispersive estimate that

12 05000 (D@ Qhul 212
< CellVay a0, OWis) (t = 05.)Qy Q)| .2 2 L0
t P
10,0y () / Wiy (5)QY Qhon(5)dsl 2 1
<l %Jn@yf@ u(a;p)l gz,

(—5+§)ig 20l
+C’62 27209 ||1[aj,lvaj,l+1)<t>Qy meHL%ﬂL%y
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For the first term of the right-hand side of .6 we have

22j

L2jo(—%45)j 37 )] )
22 21? o(=2+3) Hl[aj7l,aj,l+1)(t>Qy Qzu(aj,l)”L%y

227
; 5p—4 | .
<ZQ 2p 2]2( 2"’2)]2 ( 2p +6)]||1
=1

5p—4
I
)(t)Qijgchzp u(aj,l)“L%y

laj.1,a5,14+1

‘_2;P2' 1, ey 5p—4 P~ . Sp—4

< M2 Mo i O QT QLT ull ey,
. 5p—4

< 9T, P

~ |z UHL%OL%y-

(4.7)

For the second term of the right-hand side of [4.6] we have

22

PoiLie)s i
ZQ = T2l 2)]H1[aj,z,aj,l+1)(t)Qy]QgcfHL%pL%y

22j

P2 o(~4+8§)igig— (P +6) Figl Bt
<22 T2 o(~h+8)igio (Y 11 ) (DQy Qe Fllzyrz,

[aj1,05,14+1
22] 3p—4

_d i Top t€
22” [@.1,051+41) )Q QlZvap f”LclpLg%y

—4
_g +e
5 22 “Q Q] Iy 2p fHLlTL:%y
. 3}; 4+
<272 fllgy 2,

(4.8)

Therefore, [4.7 and [4.8] give [4.3]

For , we partition the interval [—T, T] into 227+% equal subintervals of length 27221 %

denoted by [bj,0;1+1),1 = 1,...,2% 7. The term in the left-hand side of [1.4] using Holder’s
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inequality, is dominated by

22j+k
3j+k ~j
22j+k5

3j+k 37
< E
> CH 1[bj,labj,l+1 ( )H 22pp LOO || || 1[bj,l7bj,l+1) (t)Qy Q‘TUHL%L%;

22j+k
2 P (2j+k) 2 3]+k j
<C2 ™ T% Z 1110, 0,000 (DQy xu||L%L%.

By Duhamel’s formula, for ¢ € [bj;,b;;41],
4
u(t) = Wg)(t = bj )b )] + /b Wis)(t = )[0x f (s))ds
5l
It follows from the dispersive estimate [4.2] that

3J+k ]
||1[b]lv ]l+1 ( )Q uHL%L%

37tk AJ
< Cel L, 00) OW) (= by 0@ Qb )l 2 1o

t
3j+k ~Jj
a0 ® [ W)@ QoS (sl (49)

Lieyinn3itk
< c2l 2J||Q]+Q u(bj)llz,

(=5+5)jod 3j+k ~J
+C€2 2 2 H _]l’ ]l+1 ( )Q Ql’f“L%L%y
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Denote C; k= 2 2P (2‘7+k)2( 37%)J. For the first term of the right-hand side of | we have

92j+k

3j+k ~j
Z CS oy, (D@ (bl 2,

-1 . 3p—2 . . _2p—l 3p—2

+€)(3j+k 3j+k —€ +e
V1 b OQF QR T T b,

) 2p—1 ) 3p—2 ) ) o2l o o83p=2
2 2L )i~ (32 4e) (35+k) | 35+k
<2 J+7~€C€, k2( D €)J2 ( 2p €)(3j )HQyJ Q‘%Jx P Jy 2p UHL%OL?W
3742K) R -t
<27 P P cor2 -
~ [ Jy U”LT L2,
(4.10)
For the second term of the right-hand side of [4.9] we have
22]+k‘ 2 k k
k) o (=19 3j+k \j
Z 2 2p J 2( 2 ']QJH ]lv ]l+1 ( )Q J ]xf”L%“Lc%y
22]+k o~ (3—€)j o (3L —€)(3j+k) 3j+k ~j 5T — e
S Z Cip22 V2w 12,1000 QY QLI 17 Fll g,
92j+k
5(3J+2k 3i+k ~i 1_e¢ —22;1)-1—6
Z || 5.0 jl+1 )Q / Qg)‘]l[‘) ‘]y P f”L%L%y
(J+2 3i+k —€ —22;17—&-6
52 HQJ ijp Jy i fHL%L%y
e(3]+2 ——e —22—10
Jr g, .
|| x Y f”Lfl[“L%y
(4.11)
Therefore, and [L.11] give [£.4]
]

For our purpose, we will use the linear estimates

+(5 146 +5 5
lullp2 poe < 172" UHLOOL? Iz 2Tyl oz +HIE Tyflryiz,
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4.3 A Priori Estimate
We are going to bound f,(T) = ||u||L2TL%+”8$“||L%Lg§/+H@y“HL%Lg%‘
Proposition 7. S ' ith inite 2
position 7. Suppose u satisfies the IVP with initial data ug and let s > 3.

Then u, yu, Oyu € L2([—T, T); L°(R x T)). Moreover,

fu(T) = H“”L%ngfr||8:Z:UHL2TL%+||8?;U||L2TL%S Cr

for a suitable small enough T, if ||ug| gs.s is small enough.

Proof. First, B¢(t) = ||f(t)||%g§+||8mf(t)||%%+||8yf(t)||%% for a function f and from now

on we consider s > %

First, apply the operator J; to (1.11]) and then multiply it by J5u. We have that, by the

Kato-Ponce commutator estimates and integration by parts,

d
E”J;uH%%y = /(Jju(];(u28xu) = /Jgu[Jj(u28xu) — 2 J30u] + /UQJjquaxu
S ||J§U||%%y(||U||ng+||u||Lg§,||0xu||Lg§) S ||Jas;u||%%y5u(t)

therefore, by Gronwall’s inequality, we get that

| T5ull e p2. < 1956l L2 exp(fu(T)?). (4.12)

Similarly, apply the operator Jy to (1.11)) and then multiply it by Jju. We get that, by

7



the Kato-Ponce commutator estimates and integration by parts,

d P P P P P
Slgul2, = / JSuJS(u20,u) = / JoulJE (w20pu) — uJ20,0)] + [ v JSuTS 0
2 2
< 15 ulsz, [0l g 752 2, + 3+l g Nyl gl gl 2
2
+ el el g Nl
2 2
e A e L e O M e A e s E Py

2
S I5ulls ul)

therefore, by Gronwall’s inequality, we get that

1 Tgull oo 2, < 150 2 exp(fu(T)?). (4.13)

1 SS< 8,8 2 .
This means that HUHL%OHW < ||¢||ny exp(fu(T)?)
Now, we bound f,,(T'). We take the first term, [|u|;2 ;0. We take 0 <0 < s — 5. By the
Thay

linear estimate, we have

3
40

< — 3+0
ol 12,105 12l e+

340 146 5/ 3
’ Jer UHL%OL%erHjx Jy(U)HLlTL%y

: 346 346 :
2 2 144
with || J7 uHL%OL%yS Hu”L%"Hii 1and || T2 Jy HL%OL%?JSJ HUHL;S’H;;ZFOF the third term
. . 540 5426 5420
of the linear estimate we have ||J;? Jg(u3)||L%y§ | J# (113)||L926y+||(]y2 (UB)HL%y so by

the Kato-Ponce commutator estimates,

196

12 3426 1426 146

3 2 3 2
(@I, S 1192 ull gl and 1177 @)z, < 195l g

and so

146, 3 149 2 2
Iz )y ra S W ullpgerz lullfs poe S fulT)llull poo gy

78



and finally we get

lull g2 oo < (1 + fu(T)2)IIUI|L%oH;;§ ||¢||H;;exp(fu(T)2)(1 + fu(T)?).

Now, we look at the second term of f,(T"). By the linear estimate applied to d,u, we

have

5
5+0

1 3
—5+0 549
||amu||L%Lg%§ | 2 7

1+4 (.3
u||L%oL:%y—|—||Jx Jy+ u||L%3L%y+||Jx Jy (u >||L%I‘L%y

5 1
: 546 —5+06
with 02l e,  lull g gy amel 1

146 :
3 Jy HL??’?L%yS HUHL%OH;% For the third term
S+0 3420 5+20
of the linear estimate we have, HJJ?+ Jg(u3) HL%yS HJJ?jL (u?) HL%y—i-H Jy2Jr (u?) HL%y by the
Kato-Ponce commutator estimates,

3 3 3
340 315 340

3
3 ) 549
17200 gz < 12 Pl gzl and |1 ;

3 2
)2, S 17l gl

and so
346 5, 3 2
172 T3 11 12 S TP el e

Finally we get

|Ozullp2 poe < (1+ fu(T)2)||U||L%oH;;S H¢||H;;exp(fu(T)2)(1 + fu(T)?).
Now, for the final term of f,,(T), by the linear estimate applied to dyu, we have

iy 4 345 945 140 3
HayUHL%LgZS | Jz JyUHL%OL%yJFHJx 2 Jy+ UHL%OLgyJFHJxQ Oy (u )HLlTL%y

with
l+5 1 §+§ §+é
192" Tyl e 2, S 12 ull e g, 15 2ull e, S Tull oo s
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3
—5+0 . . . .
and ||J, 2 J§+5UHL°T°L%yS HuHL%DH;ys For the third term in the linear estimate, we have

1 3 3
146 3425 3495

3+0
122 a0, g, < 1T T @) 2, < 12 @) g, 15 ) g,

so by the same reasoning, after applying the Kato-Ponce commutator estimates we get
146 16,2 2
1™ Ty (w™dyull e p2 S Ilull poo grsys fulT)”
Finally, we get

19yl 2 12s S (14 FulT)) el o prse S 0] sgexp(ful T (1 + FulT)?),

All in all, we have that f,,(T) < H(bHH;,ysexp(fu(T)Q)(l + fu(T)?), and if 6] 73,5 is small,

then by a continuity argument we get that f,, (7)) < C if T is sufficiently small. O]

4.4 Local Well-Posedness

We start by stating a well-known local-wellposedness result from Iorio and Nunes (see [22],

Section 4):

Lemma 15. Assume ¢ € H*. Then there is T = T(||¢||g3) > 0 and a solution u €

C([=T,T] : H*®) of the initial value problem

Opu — O — 8;18§u + u2dpu = 0,

u(0,z,y) = up(x, y).

The proof for R x T is the same as the proof in [22] for R x R.

We proceed to prove the local well-posedness result. In this section, the proof will include

just the existence and uniqueness of the solution.
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Theorem 4.4.1. The IVP 8tu—8§u—6;13§u+u28xu = 0 is locally well-posed in H**(R x
T),s > % More precisely, given ug € H¥%(R x T), s > %, there exists T = T (||ug||gs.s) and
a unique solution u to the IVP such that w € C([0,T] : H**(R x T)), u, Ozu, Oyu € L%Lg@.

Moreover, the mapping ug —€ C([0,7] : H5*(R x T)) is continuous.

Proof. Let ug € H**(R x T) and fixed ug . € H**(R x T) " H> (R x T) such that [ug —
UO7€|‘H8,S—> 0 and ”'LLO’EHHS,SS QHUOHHS,S.

We know by the Iorio-Nunes local well-posedness result that ug ¢ gives a unique solution
ue. We have by the a priori bound that ”u€HL%L%}—’_Haxuf“LQTLg?/"’_HaZ/uG”L?TL%S Cp and

by the previous result, supg<;pl el frs.s < C. Henceforth,

ug’ US/

at||u5 - US’H%Z = /(UE — Ugf)ax(g — ?5)

ug + UgUy + ug,

S

2 2
u +u€u / +U/ /
— [ (e = w0,

2 2 2 2 2
< te = 1|2 (el g+ 10el 3+l g+ 19 1)

< (Buct) + By (1) e — s 2.
and by Grénwall’s inequality and the a priori estimate
2 2
[ue — ue’HL%OL%yST Juo,e — uOﬁ’”L%y’

hence supg< <7 ||tte —ue| ;2 — 0, hence we can find u € C([0,77] : HSI’S/(RXT))QLOO([O,T] :
Ty
H%3(R x T)) with s/ < s. The fact that u is a solution of the IVP is clear now. Uniqueness

also comes from the previous Gronwall’s inequality. O
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4.5 Continuity with respect to time

We proceed by a standard Bona-Smith argument ([5]).
Lah?%mzﬁzmﬂjm+w>u@£nn%u+f%&+u+n%ﬂ%ﬁ.

For ¢ € H™*, let ¢ = Pl 6 where P g(€,n) = (&, n) - 1 (I€]) - 1oy (n]). Clearly
h((;) is nondecreasing in k and limy. hgﬁ )(qﬁ) = 0. By Plancherel,

6~ oxlzz, = 16— Bz, = 2)/ o€, m)|2de)

|n| >k
o (A EP A n?) 1 g (5)
- [%/laﬂmzk’(b(g’n)' k2 ] SR hg )

and also,
1756kl L2, S C(T, I @llzzss) k0" and || Jygll 2 S C(T, 6l s )b,

Denote w = uy, — uyy with k < k.

In all the cases, from their respective definitions, we have that, if p > s, then
1756kl £z, S C(T, I ¢ll o) k0" and | ygll 2 S C(T, 6l s )b

Since ¢p. € H*, by local well-posedness result of Torio and Nunes, they give rise to unique
solutions uy in H*°. The above estimates together with (4.12)) and (4.13), if p > s, we also
have

| Tzurl Lo 2, < C(T, | ll o) K (4.14)

and

Il e 2. < OT 16l ) K. (415
Denote w = uy, — uy with k < k’. Now choose 0 < ¢ < s. By using that [|¢ — ¢xll;2 S
Ty
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k_Sh((;)(k) for the R x T case, together with the interpolation inequality,

q 1—4 1—-4
q S <
||‘]$w||L%OL%y§ ||wa||z%°L%y ||w||L89SL%yN ||w||L%OSL%y

it yields
s, (5 _q
|7 5ll e 2, S KRG (), (4.16)
Similarly, we get results for Jy, more precisely,
_s, (5 _q
| Tgll e 2, S KI75RS) (k). (4.17)

Lemma 16. We have the following estimates:
a)

1 1
75l ra, S emplz fulT)? + 5 fu (TP [1T3(0) | 2,

s s+1 2
il awllrgerz, 1o wrllpgorz, (10ll72 poe Hlwllpz foo iz 1o )
S S
I Tewll pgor2 Mzurllpgorz, (looll 2 oo + 1020l 2 oo Murll 2 roc
S S
I Tewll pgor2, 1wl ooz Il 2 o (10zkl 12 poo +1 02wl 2 100)

2
Tl pge g, 1T 2, 1l 7 g |
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b)

15 e 2, S e FolT) + 5y (DD 1 50) 2,
+ ||J§W‘|L§9L%y||J5“k||L%yHWHL%L%(”&cuk||L%L%+Hayuk”LQTL%)
15l e 2, 15kl 22, (1l 22 £ 1000l 22 o + £ (T)?)
+ HJ§WHL£}°L%yHJ:ﬁUkHL%yHWHL%L%(”W@HL2TL%+HayUkHL%Lg%)
15l zgerz, 172kl 12, (Il 22 £ 100l 2 1+ FirT)?)
gl g 22, 1930 12, 1ol 2.2 Ulaell 2 1 10yl 2 1)
15l e 12, 19590 12, (el 2 s 199l 2.+ £ (7))
A gwllpgerz Izwllrz Ikl 2 roo lloyurlp2 o

s+1 2
15 e, (ol e 2+l ez, Il zserz,)|-
Proof.
) —1492 2 2 2 _
Ow — pw — 0y Opw + wOpw + 3ujOpw + Jupwiyuy — Jupwdyw — 3w Opuy, = 0. (4.18)
a) We apply J3 to (4.18]) and then we multiply by Jiw, in order to get

d
aujggwnif / JS (w2 0pw)Jiw + 3 / TS (udOpw) J5w + 3 / TS (upwdpug) Jiw

—3/J£(ukw8xw)J£w—B/Jg(wQ(%;uk)J;w

and we will analyze each term in the sum.

We have (I) = [ J3(w?0,w) Jiw, (IT) = [ J§(uz0pw)Jiw, (ITT) = [ J3(upwdrug) Jiw,
=/ Jﬁ(ﬂkwaxW)Jiw and (V) = [ J3(w?dpuy,) Jw.

For (I) = [ J3(w?0,w)Jiw = [[J3(w?0pw) — w? J50pw] J5w + [w? J50,w 5w, and we

will denote (I)] = [[JE(w?0pw) — W2 IE0w]J3w and (I)g = [w?J30pwJiw. For the
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first one, we have by the Kato-Ponce commutator estimate

2 2
(D1 < 3wl g2, 1 T3(200) — 2 T3000] 12,
—1
< 13wl g Il zgg 1950l g 13l g+ (el g5 +1000 2211 T3~ 0wl 1 |
< 1T30l2, Bt
Ty

and

2 2
(D2 < | Jzwlzz lwllzgg 10ewl g < I Tzwlizz Au(t)

so (I) S ||J£w||%2 Bu(t).
Now, = [Ji(uioww) Jiw = [[J5(ui0pw) — uf J50pw]Jiw + [ i J50,w 5w and
we denote (I1)1 = [[J5(u30pw) — w2 JE0,w]J5w and (I1)g = [ufJ30,wJiw. For the

first term we have by the Kato-Ponce commutator estimate

2 2
(11 S 13wl g2 I3 0w) — wd J30ul 1.
-1
< 15l gz, el g (1900 225 I T30k 2, (gl g +H1Owug g ) 1750wl

2
S Izl Bu () + 1Tzl gz 1 zurl g2 10awllgg lukll rgs
Also, we have
2 2
(D)2 S zwllzy lugllzeellOzugl oo S 12wz Buy(t)
Therefore,

2
(D) S Wzwllzz Buy,(®) + 12wl 2 I rugll 2 |0l pgg lugll gs -

Let (I11) = [ J3(upwdpug)Jow = [[J5(upwdpuy) —upwJs0pu] Jow+ [(upw J50pup Jow
and denote (I11)1 = [[J3(upwdpuy) —upwJ50pug] Jiw and (111)9 = [ upwJ50pupJaw.
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We have by the Kato-Ponce commutator estimate

(D)1 S | Tewll g e (upwdaug) — upw Jpduugll e,
< 15wl g2 (13l 2, loll g 9l s
1737 ez, (e g |9l g 10 )
11957 Ol 2, (1l g 10wl g 1 g N 25 + 19 5 g 25)
STy Bue(t) + T3l gz, T3z, el 9w s

Al zwllrz | Tzunlrz lwllpss lunllpsg HTzwll 2 1zull 2, 10zl nog lurll e

Also, (I11)s % || S5l gz, 193yl 2, Il 25 gl 125, and so therefore

(1) 5 HJin%gyﬁuk(t) 1zl g 1 zurl 2 loll e |0z g
+ 12wl g 1zurl 2 1ol csg lurllLog +1 2wl 2 N TZurll 2 100wl Lo llurll og
115wl g2 15 gl 2 ol g gz,
Again, (IV) = [ J3(upwdsw) Jow = [[J3(upwdpw) —upw J50pw] Jsw+ [ upw J50pwJiw

and we denote (V)1 = [[J3(upwdpw) —upwJ30pw]Jiw and (IV )y = [upw 30w Jw.

We have by the Kato-Ponce commutator estimate

UV)1 S I Tewll g, Ve (upwdaw) — upw T30zl 2
S I zwllzz, 102l neg [“J;WHL%y(”ukHL%'f'”axukHLg@) 1 zulpz loll e
-1
+ 1 zwlirz, [HukHL;@(HWHL%HWHJWHL%) +10zurl Lgg @l Lgg NI T2 ™" Bacoll 2,
2
S Izwlze, (lurllpgg H10zur g ) (10zwll g +llwll )

2wl g, 1eurl rz ol zeg 10acl g -
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Also, (IV) 5 3012, (10sur g |l 5+ 100 5 gl 15) and so therefore

(1V) S 13002 (gl zgs +H10wugl 226 (100 s+l rgs)
Ty
+ 1zl rz 1zurlpz, loll g 100wl Lgg -

Again, (V) = [ J5(w?pup)Jow = [[JE(w?0puy) — w?JE0pup]Jow + [ w?JE0puy, J5w
and we denote (V)1 = [[JS(w?0puy) — wPJE0pup] Jiw and (V)g = [w?JS0pupJ5w.
We have by the Kato-Ponce commutator estimate

(V1 < I73wll g2 13 (@ 0rug) = w? J3dwugll

1
S 13l gz Il 3 1Ot g1 3 2+l 10wl 130l .

2
S Mzwlize Nollzgg 10zurll g+ Tewll z2 I Trupll 2, Il g (lwll g+l Oaoll g )-

Also, (V)2 < ||J£w||L%y||J£+1uk||L%y||w||%% and so therefore

(V) S 13wl (Bu(t) + Bu(t))

1 2
5wl (173, Nl zgg 1l zag +H1wwl z2g) + 13 el ol ).

Now, putting together all the terms we get that

ST3lZy S (15l )(Bul) + Buy ()
+ 1wl g, 15l g, (ol g+l e )
15 2 13, O g o5+ 000 g )
+ 1303, 150 3, (1ol Nl 235+l 00l 3+l

(4.19)

We are using the following variant of Gronwall’s inequality:
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Lemma 17. If a(t), B(t) are two non-negative functions, and %u(t) < u(t)p(t) + alt)

for allt € [0,T] then
t
Jo BG)ds (00 ds).
u(t) < elo (u( )+/0 a(s) 5)
By putting u(t) = [ gwllzz , 6(t) = fu(t) + Buy(t) = 0 and

1 2
a(t) = 17z ull gz, (ol s +lwllzgg llurlizzs)
+ 1 zurl 2, (lwllzgg lurl Lgg +10acll nog lurll Lo )

2
13kl g2, (el zgg 9 225+l 225 19l g5+ ol 5) > 0

by applying the lemma to (4.19) together with Cauchy-Schwarz we get

1 1
750l e 12, S P ful T + 5 Fug (0D 175000 I 2,

s s+1 2
1wl gorz 12 unll pgorz, (10l 72 oo Hllwll 2 poellunll 2 150)
I Jewll e rz 1wl gz, (1wl p2 poo H102wll 12 oo Mkl £2 oo
S S
A Tewll pgor2 1wl oo s Iw0ll 2 o (10zukl 12 poo +1 02wl 2 100)

s S 2
Tl g, 1T g 2, 1l 7 g |
b) We apply J; to (4.18) and then we multiply by Jjw, in order to get
d
EHJ;wH%Q:/J‘yS(wanw)J;w+3/J§(u%8xw)JySw+3/J§(ukw8xuk)J§w
—B/Jz‘j(ukwaxw)Jjw—3/J§(w28xuk)J§w

and we will analyze each term in the sum.

We have (1) = [ J3(w?0pw) 5w = [ J5(uF0pw) Jgw, (I11) = [ J3(upwdpuy)Jiw,
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= [ Jy(upworw) Jjw and (V) = nys(w28xuk)J§w

For (I) = [ gy ( w2dpw) Jyw = f[Jz‘j(w28xw) — wzJZ‘j@xw]Jﬁw + fw2J§8wa§w, and we
will denote (I); = [[J (W20pw) — wQJjﬁmw]Jiw and (I)y = fw2Jy88wa§w. For the

first one, we have by the Kato-Ponce commutator estimate

(D)1 < 1l 1 5(%05) — 2 T30ml 3
-1
< W5l gz, el g (100l g 15 2.+l 00y g3 0ol
< Wl [19ulazg 13l 2 ol
2
+ (lwllzge +llwl oo lloywll e ) Tywll 2, + Il T2wll 2, )
2

< (lywlizg +l1Jywllzz, I Tzwlip ) - Bu(?)

and
2 2
(N2 < | Jywlzz lwllzg 10ewl g < 1 Tywlizz Au(t)

so () S (HJngH%Q HJgwlipz [172wll g2 )6 (t).
Now, = [Ji(ui0mw) jw = [[J5(u0sw) — ui Ji0pw] Jjw + [ uf J50wJiw and

we denote (I[)1 = f[Jz‘j(ukaxw) — u%Jg‘j@xw]Jijw and (I1)y = fukaawag‘jw. For the

first term we have by the Kato-Ponce commutator estimate

2 2
(1)1 5 ||J§w||Lgy'||J§(Ukaxw) - Ukjg‘jawaLgy
-1
S 1gwllzz, luellsg | 10zwll pgg | Tyurl p2 +(lull g +10yull o) T2 axWHLgy]
2
S Mywlze Bu () + 1 Tywlipz 1 yurlizz 19ywllzgs llurlzgg

13wl I Tl 2, N0yl s g s
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where here we used that ||.J5 10yw]| ;2 < | Jywllp2 +[Jiwllp2 . Also, we have
TY Ty Ty

2 2
(D)2 S N ywlize llugllzeellOzugllLe S I Tywlize Fuy(®)
Therefore,

(1) 5 HJyst%%yﬁuk(t) + 1 Tywll, yurl rz, 10wl og llurl g,
+ 1 Tewllz, 1yl rz 9yurl og llurl s,

Let (I11) = [ Jyj(upwipuy) Jyw = [[Jg(upwdpuy,)—upwJyoyug] Jjw+ [ upw Jy0pugJyw
and denote (I11)y = [[J; (upwdzuy) —upwJyOpug]Jyw and (I111)g = [ upwJjosuyJyw.
We have by the Kato-Ponce commutator estimate
(11D)1 S Tyl Iy (upwdzug) — upwJyOuugllzz,

S Wywlrz, (IMyuel rz lollzgg 10wurll e

175 wll 2, (10 gs 1 Oupll g+l g 0wk g )

15 0wz, (1l 10y v g+l 5519y 255

15 £, Mok g 10w s |

<13l Bun(0)+ 15 2, 12w, Ol 9yl s el s 0y 5

1 ywllrz 1 9yunl 2, (1wl zsg 1wkl zog Il og 10y k]| Log +llunll og [19ywll zgg )-

Also,

1
(I < Wl 15 il ool el g 1756l 2 I T3kl 2, ool Nk g
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and so therefore

2 1
(111) S 1yelga Bue(t) + 195wl p2, 195 gl ol s lurl g
13l 5l 2, (1l 559w 15 Nyl 3+l s Ny
15l 1z, (g 10yl 1040+ .5 e .5
Again, (IV) = [ Jj(upwosw) Jjw = [[J;(upwisw) —upwJyOpw] Jjw+ [ upw ;) 0pw Jyw

and we denote (IV)1 = [[J; (upwdzw) —upwJyosw] Jjw and (IV ) = [upwJyoswJjw.

We have by the Kato-Ponce commutator estimate
(V)1 S 1 5ellga, | 75 (ugsodew) — uger Tyl
-1
§IIJijLgy[\Iasznglle Wl rz, (lukllzeg +dyur gg)
-1
+ (lurllpgg lwllpgg Hlukll zeg 0yl pog HOyurll og loll Log ) Ty~ Oawwll 2,
+110ewll Lgg I Tyull 2 lwllzsg
2
S Mywlize, (Bun ) + Bu(®) + 1Tyl z2 I Tyurlzz 1wl rgg 100w £
+ 1 ywlirz 12wz (lurllzgg 1wl Lgg +llunll o 110yl Lgg +10yu Lgg @]l g )-
Also, (1V)2 S 1wl (100wl gl 254100 3 el £25) S 15012 (B (8) +
Buw(t)) and so therefore
2
(V) S Myl (Bu () + (@) + 1Tyl gz I Tyurll 2 1wl ngg 100w £

Al ylrz 1zwllrz, (luklzss 1wl zeg +lukll zg 18yl pgg HOyurll og 1ol Lag )-

Again, (V) = [ Jys(wzﬁxuk),];w = f[J;(w28$uk) - oJQJ;@xuk]J;w + waJi(’?xukjgw
and we denote (V)1 = [[J5(w?0rug) — w?J50pug]Jjw and (V)o = [w?J50pupJiw.
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We have by the Kato-Ponce commutator estimate

2 2
(V)1 S Vgl gz I 75 (P 0ug) — w2 T500mil .
-1
< 15l gz, ool g, [Nl g 175l 2, + (ol zgg +10y 225 15~ Ol 12|

S 15l (Bu®) + Bul®) + 1950l 2, (1T guel 2, + Tl 12, ) B

Also,
1 2 2
(V)2 S W5l gz, 15l g, loll3 s + 15l 2, 1730l 2, ool

and so therefore

(V)5 HJ;SWII%%y(ﬁuk(t) + B () + [ Tywli 2 [ Tyurl 2, B ()

1 2
el g I3l g, Be) + 15l 2, 15 gl ol

We make the following notation:
a(w, ) = ol 25 (19l s +H19yuplrg5) + s 1yl g +Bus (1),

b(w, ug) = llwllzgs (10yurll Lge +llurll Lgg ) + llugll Lgs [10ywll Lgo +6u (),

c(w, ug) = Wl g (10wl gg +llull ngg )+ llwell Lgg 19yl g +llwpll Lgg 10y || Lgg B (t)-
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Now, putting together all the terms we get that

d
EHJQSWH%; N HJ;WH%Q (Bu(t) + Buy (1))
Ty Ty
1l 5l 2, 0. )
150l g, | T3l £, bl ) (4.20)

+ 5l g, 13wl 2, e, w)

1 2
15wl 15 il 2. (1) s+l g o 225

Using the variant of Gronwall’s inequality from part a) and applying it to (4.20) with

u(t) = HngHLgy, B(t) = Bu(t) + Bu,(t) > 0 and

alt) = |75l 2, I3kl 2, alw, )
el 1wk 2 bleo, )
150l gz, 130l g2, e, )

1 2
+ 1Tyl gz, 172 uill 2, (1l g +Hlwll g llugllLgs, )
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we obtain

glor, S ep(sfulD + 5 Fu A [15O) 2,
+ ||J§W‘|L%°L%y“Jgjuk:”L%y||WHL2TL§%(HaJJUk||L%,ng+”ayuk”L%Lg§)
1wl pge 15kl 2, (el 2,15 10yl 2 1o + £ (7))
+ ||J§w||L§9Lgy||J§uk||Lgy||w||L2TLg§>/(||“k||L2TLg<y>+||3y“k||L2Tng)
15wl pge 175kl 2, (el 2,15 10yl 2 1o + £ (7))
195wl ez, 15l 2, Il 2 s (el 2 s+l 2.0
1wl pse g, 150l 2, (il 2o 19l 2 o +£(T)?)
+ 175wl o re 172wl 2, lumll 2 os 19yl 12 e

1 2
15 anllgge 2, Qoo +lllzse 2, ol zserz, )]

Lemma 18. For p < s, we have the following estimates:
(a)

p 2 2 P
Iz lw(ug + wpup +up)llip r2 S 12wl ez (lukll g2 poo Hllulz2 roc )

+ HWHL%L%H¢HH575(HukHL2TL%+HUI~3’HL2TL%)-
(b)

2 2
15 oo + i + i)l g2 S I hwllzse s, (el 2 pos +Hlwll 2 poc)

o oll 2 g Il s (gl 2 e a2, )-
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Proof. By using 7| part (c), we get that

2 2 2 2
12 [w(ug, +upugs +ui)lll g2 S 12wl peep2 (g + wpugs + ujll oo
0 T Y (4.21)

2 2
leoll g 172 (uf, + upugs + up)llzz, -

Observe that Hu% + upup +u%/”Lg§§ Hukﬂ%%—i—Huk/H%% Also, bypart (c) again, we have

2 2 2
15, 4w+ )l g2, S (el 2, 1Tzl 2 )l oo+l g )

(\]

Byu.1

we get P2yl +HI Bl S 1756kl +17503 12, S 8] . Combining

all the above observation together with we get
2 2
12 [ (u, + upugs + uplllz, S ||J5W||Lgy(||uk||Lg§+||Uk/||ng)
Hllwllp2 poo 101l s (lug |l pgg +lup Nl £ )-

Integrating both sides from 0 to 7" and applying Cauchy-Schwarz inequality, we obtain the

conclusion of the lemma for J,. The proof for J, goes the same way. m

Lemma 19. Suppose uy satisfies the IVP (1.11) with initial data ¢ = P (b We have

HwHLz L0°< (-1 HﬁwaLz L°°< kO~ and HaywHLz L<>°< kK9~ as k — oo. In particular,

fu(T) < KO as k — oo.

_5
Proof. Take § < S—TQ By the linear estimate in Proposition applied to [4.18]

2 +5J1+5

346 1y 5
||W||L2LooN |2 WHLOOL? +| e W||L%OL§y+||Jx J [w (Uk+“kuk’+uk/)]||Ll 12,

340

3
From [4.16| and [4.17| we have ||J§+6w\|L%OL2 < /{;%ﬂs*‘shg)(/ﬁ)l* = , together with
zy

—34+6 146 146 146—s (5) 1\ 1— 148
12 2wl e s S 1yl e S RO R ()17
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For the last term, we observe

1 1
510 .5 2 2 5+20 2 2
172 7 Il + wny + oy pz, S 1922 e+ wgy + @)l gy g

1
5424 2 2
Iy wlug + wgug +up)lll gz
By Lemma |18 we get that

1 1
5420 . o 2 220

17 [wlug, + ugug + uk')]HL%pL%y S 1z “legers, (erll g o Hlowllg reg)
Hllwlp2 poo 10 mrss (lugll g2 poo Hlurll 2 1o0)

and

l+25 2 2 l'|‘2($
19y ol g up)llipy e, S Iy wllpgerz, (lurll g2 oo Hluwll 2 o)

+ ||w||L2TLg§/||¢||HS’S(||u/€||L2TL§§>/+Huk’HL2TL§§/)'

1
1i95_ _ 2+ 1426
wHL%OL%yS k2+25 shff)(k)l s and ||Jy2

1
By [4.16 and [4.17 we have || J2 T2

Wiiggerz, S
1425

k%+2575h<(;) (k)lf—

s . By combining the previous observations, we obtain

3+20 (3),,,9-1

< kR ) max (1, ()

HWHL2TL3<;/
+ 1wl 2 pog N0l (il g2 g+l 2 2 )

Since we consider that ||¢|| gs.s is small enough, such that H(bHHs,s(HukHL%L%—i—Huk/HL%L%)

<
%, we get that

1
3 §+26
< 1.5+20—s (5) 1-4—

5)
||WHL2TL§3 s max(1,h

S\/‘\
=
=

‘Oq
»

S~—
4
[a)

ask%oosince%+25<s.
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The linear estimate [4.2] applied to J;w results in

5 1 3
5+0 —5+0 1446 540 5 9 9
||axw||L%L%§ ||<]x2 WHL%OL%Z/WLHJx : Jy+ WHL%OL%Z/WLHJ% Jy[w(uk+ukuk’+uk/)]||L1TL32W'

and by the same reasoning as above

3
§+25 5—1

5
105l e S 370G ()1~ max(1, 85 () )

1ol 2.1 00l oo el s +luprl 2 )

which, combined with the above fact that

3 —s,(d 27 5 o1
leoll 2 10 S K225 ()1~ max(L, 1 (1)),

5
for k large enough, it gives us [|0zw|| ;2 100 S k2120=5 5 0 as k — oo since % + 20 < s.
Ty

Lastly, the linear estimate applied to Oyw results in

3 1
5+0 11 246 3+0 .5 2 2
HaywHL?TLg%S | J7 Jyw||L%°L§y+||Jy+ WHL%OL%y‘f'HJxZ Jy[w(“k T U Uy +“k’)]||L%L%y'

and by the same reasoning as above

3+ (5) ., 0=1

S15_ 5 _2"
10yl 2 e S K27 RG) ()1~ max(L, 1 ()5

ol .15 00l oo el s +luprl 2 )

which, combined with the above fact that

545 5. (5 11426 5 =1
leoll 2 10 S K307 R ()15 max(1 85 (1) 5 ),
5
for k large enough, it gives us Haxw”LQTLOOrS k272075 5 0 as k — oo since g +20 < s.
zy
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Corollary. We have |w| gss— 0 as k — oo, where s > % for the initial value problem

11.11)).

Proof. From (4.14) and Lemmawe get HJS+1ukHLooL2 ||wHL2 L<><>< Bl (=)= — 10—

and k9~ — 0 as k — co. From the Lemma, E used in Lemma |E| we obtain

1 1 _
7360l 12, S ex0(5 fuy (T2 + 5 Ful TP (I1360(0) | s g, +CKOT) =0

as k — oo, where we used that HJjw(O)HL%oLQ — 0 as k — oo and the boundedness of
&y

fuk( ) and fi,(T bYI
From (4.15) and Lemmawe get |\J5+1uk||LooL2 HwHLQ L<>0< gL gD = k0= and

k9~ — 0 as k — oo. From the Lemma [19 used in Lemma [16] together with the fact we just

proved, ||J:§w||L%°L§y_> 0, we obtain

1 _
1500l e 12, S 5D Fun (T + 5 Ful D)5l e g2, +CHO7) = 0

as k — oo and the boundedness of fy, (T") and f,,(T") by I
Therefore, as ||J§wHL%oL%y+HJ§w||L%oL%y% 0 as k — oo, it means that u € C([0,7T] :

H5%). 0

4.6 Continuity of the flow map

We assume that 7' € [0, 00) and ¢! — ¢ in H5S(R x T) as | — oo. We are going to prove
that u! — u in C([=T,T] : HS5(R x T)) as | — oo, where u! and u are solutions of the the
initial value problem Oyu — ééu — 0y 185u + u2d,u = 0 corresponding to initial data ¢! and
o, for s > %

For k > 1, let as before, ¢§C = Pkl and ué{ € C([-T,T] : H*) the corresponding

solutions. Denote by wyp = up — u. By the same estimates from Lemma [16| and Lemma
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applied to wy we get

1 1
lug, — ull s S e><p(§fwk(T)2 + §fuk(T)2)(||¢>k = Ol s +C(T, |Gl s, 0 oo )KO 7).

By the same reasoning, we have that

1 1 _
Juk = 'l oo S exp(5 L (1) + 5 (DD = &' Lt OCT, 0} s, 6 175K,

Now, denote wfc = ué, — uy.. By the same estimates from Lemma [10[ and Lemma (19 applied

l
to wy,

1 1 -
g = wllzr2o S exp(5 £ (1) + 5 £ (D26} = Sxlles+C(T ISRl s, | Spll e2)E).

By the boundedness of fy, (T), f,i1 (T), fu,(T) and f_; (T') byand the triangle inequality,
k k

we get

! z Ll

[ = ullgs.s < llug — ull grss+lup, — wpllgss+llwg, — 'l s
z I

SNk — dllgss+6g — drllgss+6g — &'l ms.s

l l -
+ C(T |0l s, |0l rsss: 10 ][ s | 0 | rsis )R

which, by letting k — oo, we get |[ul — u|| gs;s< ||¢" — ¢||frs.s and proves the continuity of

the flow map.
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