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ABSTRACT

We define the anisotropic Sobolev spaces as Hs1,s2(M×N) = {g ∈ L2(M×N) : ‖g‖Hs1,s2=

‖ĝ(ξ, η)[(1 + ξ2)
s1
2 + (1 + η2)

s2
2 ]‖L2(M∗×N∗)< ∞}, where M or N can be either the real

line R or the torus T. We prove local well-posedness of modified KP-I equations in the KP

hierarchy, namely for ∂tu + (−1)
l+1
2 ∂lxu − ∂−1x ∂2yu + u2∂xu = 0 in the anisotropic Sobolev

space Hs,0(R× R) if l = 3 and s > 2, in Hs,s(R× T) if l = 3 and s > 2, in Hs,s(T× T) if

l = 3 and s > 19
8 , and in Hs,s(R× T) if l = 5 and s > 5

2 . All four results require the initial

data to be small.

vii



CHAPTER 1

INTRODUCTION

1.1 Background

My main area of research is in Dispersive Partial Differential Equations. These differen-

tial equations come from models of physical phenomena. Famous equations in this area

include the wave equation, Schrödinger equation, Korteweg-de Vries equation, Kadomtsev-

Petviashvili equation, Boussinesq equation, Zakharov-Kuznetsov equation, Klein-Gordon

equation, Benjamin-Ono equation, Intermediate Long Wave equation.

An evolution partial differential equation is dispersive if, when no boundary conditions

are imposed, its wave solutions spread out in space as they evolve in time. Plane waves

with large wave number travel faster than those with a smaller one. This is the reason why

there is “spreading”. In mathematical terms, this phenomenon is called broadening of the

wave packet. My research is around the class of equations called Kadomtsev-Petviashvili

equations.

The classical KP equations

∂x(∂tu+ ∂3xu+ u∂xu)± ∂2yu = 0 (1.1)

were introduced by Kadomtsev and Petviashvili [25] to study the transverse stability of the

solitary wave solution of the Korteweg-de Vries (KdV) equation, which reads in the context

of water waves

∂tu+ ∂xu+ u∂xu+

(
1

3
− T

)
∂3xu = 0. (1.2)

Here T ≥ 0 is the Bond number, which measures surface tension effects in the context

of surface hydrodynamical waves. If T = 0, this corresponds to the absence of surface

tension. The KdV equation (1.2) was derived by Boussinesq [7] and Korteweg and de Vries
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[31] and the KdV approximation presented there describes the evolution of one-dimensional

surface waves which means that these waves do not depend on the transverse direction.

Thus, a natural question comes up: how about the more realistic case of waves that depend

on the transverse variable, but with a weak dependence? This corresponds exactly to the

Kadomtsev-Petviashvili (KP) regime. The analysis of Kadomtsev and Petviashvili [25] (see

also [1]) consists of looking for a weakly transverse perturbation of the one-dimensional

transport equation

∂tu+ ∂xu = 0.

This perturbation is obtained by a Taylor expansion of dispersion relation ω(k1, k2) =√
k21 + k22 of the two-dimensional linear wave equation, assuming that |k1|� 1 and

|k1|
|k2|
� 1.

Namely, one writes ω(k1, k2) ∼ ±k1
(

1 + 1
2
k22
k21

)
. This perturbation amounts to adding a

nonlocal term, leading to

∂tu+ ∂xu+ ∂−1x ∂2yu = 0.

Here the operator ∂−1x is defined via Fourier transform, ∂̂−1x f(ξ, η) = 1
iξ f̂(ξ, η).

The same formal procedure is applied to the KdV equation (1.2) in [25], assuming that

the transverse dispersive effects are of the same order as the x-dispersive and nonlinear terms,

yielding the KP equation in the form

∂tu+ ∂xu+ u∂xu+

(
1

3
− T

)
∂3xu+

1

2
∂−1x ∂2yu = 0. (1.3)

By change of frame and scaling, (1.3) reduces to (1.1) with the + sign (KP-II) when T < 1
3

and the − sign (KP-I) when T > 1
3 .

Note, however, that T > 1
3 corresponds to a layer of fluid of depth smaller than 0.46

cm, and in this situation viscous effects due to the boundary layer at the bottom cannot

be ignored. On the other hand, Druyma [11] found a Lax pair to the KP-I/II equations,

proving the ”integrability” of the KP equations. In [41] and [47], it is included a description
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of the inverse scattering aspects of the KP equations.

1.2 Third-order KP-I equation

In the past 30 years, the KP-I and KP-II equations have been well studied. The first

local well-posedness result of the IVP (1.1) was obtained by Ukai [53] for initial data

φ ∈ Hs(R2), for s ≥ 3. The KP-II equation is well understood in regard with well-

posedness, due to the groundbreaking work of Bourgain [6], proving local and global well-

posedness in L2(R2) (and in L2(T2)) by introducing the Xs,b = {f ∈ S ′(R2) :
∫
R3〈τ − ξ3 +

η2

ξ 〉
2b〈ξ〉2s|f̂(ξ, η, τ)|2dξdηdτ < ∞} spaces and devising an iterative Picard scheme (here,

〈·〉 =
√

1 + |·|2). This result was later improved by Takaoka and Tzvetkov [49] and Isaza

and Mej́ıa [23] proving local well-posedness in the anisotropic Sobolev space Hs1,s2(R2),

with s1 > −1
3 , s2 ≥ 0, building up on previous results as in [48], [52], [51]. Hadac [17]

and Hadac, Herr and Koch [18],[19] further improved for negative order Sobolev spaces, by

proving local well-posedness in Hs1,s2(R2), with s1 ≥ −1
2 , s2 ≥ 0 and global well-posedness

for the homogeneous anisotropic Sobolev space Ḣ−
1
2 ,0(R2) for small data. Isaza and Mej́ıa

[24] showed global well-posedness in Hs1,0(R2) for s1 > − 1
14 .

For the KP-I equation, the problem is more delicate. This stems from the fact that we

cannot apply the Picard iterative methods since the flow map fails to be real-analytic (more

precisely C2) at the origin in these spaces, as shown by Molinet, Saut and Tzvetkov [38].

The KP-I equation can be written in the Lax pair form [47] and thus it shares many features

with the integrable PDE. There is in fact an infinite sequence of formal conservation laws

associated to the KP-I equation. However, as noticed in [37] and [39], it is hard to find a

suitable framework of distributions on R2 where these conservation laws make sense. The

same authors in [38] and [37] use the first three conservation laws, namely the momentum

L2-conservation law M(φ) =
∫
R2 |φ|2, the energy E(φ) = 1

2

∫
R2(∂xφ)2 + 1

2

∫
R2(∂−1x ∂yφ)2 −

3



1
6

∫
R2|φ|3 and

F (φ) =
3

2

∫
R2

(∂xφ)2 + 5

∫
R2

(∂yφ)2 +
5

6

∫
R2

(∂−2x ∂2yφ)2

− 5

6

∫
R2
φ2∂−2x ∂2yφ−

5

6

∫
R2
φ(∂−1x ∂yφ)2 +

5

4

∫
R2
φ2∂2xφ+

5

24

∫
R2
φ4

(1.4)

to show global well-posedness in the space Z = {φ ∈ L2(R2) : ‖φ‖Z<∞} where

‖φ‖Z= ‖φ‖L2
xy

+‖∂3xφ‖L2
xy

+‖∂yφ‖L2
xy

+‖∂x∂yφ‖L2
xy

+‖∂−1x ∂yφ‖L2
xy

+‖∂−2x ∂2yφ‖L2
xy
.

Their proof uses an useful anisotropic inequality, first appeared in [50] but inspired from

[3], [4], that for 2 ≤ p ≤ 6, there exists a C such that for every Hs
−1(R2) = {φ ∈ L2 :

‖(1 + |ξ|−1)〈ξ〉s〈η〉sφ̂(ξ, η)‖L2
ξ,η
<∞},

‖u‖Lpxy≤ ‖u‖
6−p
2p

L2
xy
‖∂xu‖

p−2
p

L2
xy
‖∂−1x ∂yu‖

p−2
2p

L2
xy
. (1.5)

Later, Kenig [28] improved the result by showing global well-posedness in the ”second energy

space” Z2
(3)

= {φ ∈ L2(R2) : ‖φ‖L2
xy

+‖∂2xφ‖L2
xy

+‖∂−1x ∂yφ‖L2
xy

+‖∂−2x ∂2yφ‖L2
xy
< ∞}. The

best result was achieved by Ionescu, Kenig and Tataru [21], proving global well-posedness

in the first energy space Z1
(3)

= {φ ∈ L2(R2) : ‖φ‖L2
xy

+‖∂xφ‖L2
xy

+‖∂−1x ∂yφ‖L2
xy
< ∞}. In

the latter paper, the authors introduced the short time Fourier restriction norm method, by

exploiting the symmetries of the KP-I equation. Using the same methods, Guo, Peng and

Wang [16] showed local well-posedness in H1,0(R2). Recently, Linares, Pilod and Saut [35]

showed a local well-posedness result for the fractional KP-I equation (fKP-I):

∂tu−Dα
x∂xu+ u∂xu− ∂−1x ∂2yu = 0 for 0 < α ≤ 2. (1.6)

The result states that equation (1.6) is locally well-posed in Xs(R2), for s > 2 − α
4 , where
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Xs(R2) = {f ∈ L2(R2) : ‖Jsxf‖L2
xy

+‖∂−1x ∂yf‖L2
xy
< ∞}. The authors also proved that for

0 < α ≤ 2, equation (1.6) is quasi-linear, while for α = 4 is semilinear.

Part of my research was dedicated to the study of the Cauchy problem for the third-order

modified Kadomtsev-Petviashvili I equation (mKP-I)


∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = u0(x, y)

(1.7)

in the anisotropic Sobolev space Hs1,s2(R×R). The third order mKP-I equation (1.7) is the

modified version of the third order KP-I equation (1.1). The modified KP equations appear

in [13] which describe the evolution of sound waves in antiferromagnetics. There are several

known results about mKP-I equation and its relative, the mKP-II equation, where the sign

of the KP term ∂−1x ∂2y in (1.7) is +. For the third order modified KP-I and KP-II equation,

Saut [44] showed that the generalized KP-I/KP-II equation (p ≥ 1)


∂tu+ ∂3xu+ ε∂−1x ∂2yu+ up∂xu = 0,

u(0, x, y) = u0(x, y)

(1.8)

(ε = ±1) is locally well-posed in C([−T, T ];Hs(R2))∩C1([−T, T ];Hs−3(R2)) for s ≥ 3 with

the momentum M(u)(t) =
∫
R2 u2(t)dxdy and energy

E(u)(t) =

∫
R2

(∂xu)2

2
− ε

(∂−1x ∂yu)2

2
− up+2

(p+ 1)(p+ 2)
dxdy

being conserved quantities. There is no known equivalent third conservation law (1.4) for this

case. Several blow-up result were found as well for the mKP-I equations. In [44], if p ≥ 4,

the corresponding solution u in (1.8) blows up in finite time, i.e. there exists ∞ > T > 0

such that limt→T−‖∂yu(·, y)‖L2= +∞. Liu [36] improved the blow-up result for 4
3 ≤ p < 4,
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also by showing that limt→T−‖∂yu(·, y)‖L2= +∞. Both proofs are based on some virial-type

identities. The threshold 4
3 comes from the observation that in order to bound the energy

norm of a solution u by the conserved momentum and conserved Hamiltonian, we can use

the anisotropic inequality (1.5) only if p < 4
3 .

In the realm of the modified version of the equations, we mention several results and

developments: Kenig and Martel [29] showed global well-posedness for the modified KP-

II equation in the energy space Z = {u ∈ L2|‖u‖H1+‖∂−1x ∂yu‖L2< ∞}.Moreover, Kenig

and Ziesler [30] proved local well-posedness of the modified KP-I equation in Ys = {u0 ∈

S ′(R × R) : ‖u0‖L2+‖(1 + Dx)su0‖L2+‖(DyD−1x )u0‖L2< ∞} for s > 3/2, with Grünrock

[14] sharpening their result. For our case of the third order modified KP-I, I prove the

following theorem

Theorem 1.2.1. [8] Assume φ ∈ Hs,0(R× R) with s > 2. Then the initial value problem


∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = φ(x, y)

admits a unique solution in C([−T, T ] : Hs,0(R × R)) with T = T (‖φ‖Hs,0) with u, ∂xu ∈

L2TL
∞
xy if ‖φ‖Hs,0 is sufficiently small. Moreover, the mapping φ → u is continuous from

Hs,0(R× R) to C([−T, T ];Hs,0(R× R)).

My proof follows the ideas of Kenig [28], by trying to obtain an a priori bound on the

quantity ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy
. The modification of the L1T that appears in the latter paper

is that this norm is not sufficient to obtain an estimate on the nonlinear cubic term. We are

using the dispersive estimates that appear in [40], which require only smoothness in x. The

smallness assumption for the initial data comes from the fact that the scale invariance for

the mKP-I equation does not behave well for the Hs,0 norm. Using the a priori estimate, we

use a local well-posedness result by Ioŕıo and Nunes [22] for the gKP-I equation in R2. As an

6



extra tool, we apply the Kato-Ponce commutator estimates [27] and the fractional Leibniz

rule that appear in [28]. For the continuity of the flow map we use a standard Bona-Smith

argument [5].

The KP-I can be considered in different settings, as for example if the y-variable is located

in T. For the case of the KP-I equation on R×T, Ionescu and Kenig [20] showed global well-

posedness in the second energy space, i.e. Z2
(3)

= {φ ∈ L2 : ‖(1 + ξ2 + n2

ξ2
)φ̂(ξ, n)‖L2

ξ,n
<∞}

and Robert [42] proved global well-posedness in the first energy space Z1
(3)

= {φ ∈ L2 :

‖(1 + ξ + n
ξ )φ̂(ξ, n)‖L2

ξ,n
<∞}. The latter uses the method of short time Fourier restriction

norm from [21]. For this case, I proved the following result:

Theorem 1.2.2. [9] Assume φ ∈ Hs,s(R× T) with s > 2. Then the initial value problem


∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = φ(x, y)

(1.9)

admits a unique solution in C([−T, T ] : Hs,s(R×T)) with T = T (‖φ‖Hs,s) with u, ∂xu, ∂yu ∈

L2TL
∞
xy if ‖φ‖Hs,s is sufficiently small. Moreover, the mapping φ → u is continuous from

Hs,s(R× T) to C([−T, T ];Hs,s(R× T)).

In the case T× T, Ionescu and Kenig showed in [20] global well-posedness in the second

energy space Z2
(3)

as defined above. Zhang showed in [55] that the periodic KP-I equation

is locally well-posed in a Besov type space, namely in B1
2,1(T2) = {φ : T2 → R : φ̂(0, n) =

0, ∀n ∈ Z\{0}, ‖φ‖B1
2,1

=
∑∞
k=0 2k‖1[2k−1,2k+1](m)φ̂(m,n)

(
1 +

|n|
|m|(1+|m|)

)
‖l2m,n<∞}. For

this case, I proved the following result:

Theorem 1.2.3. [9] Assume φ ∈ Hs,s(T× T) with s > 19
8 . Then the initial value problem


∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = φ(x, y)

(1.10)

7



admits a unique solution in C([−T, T ] : Hs,s(T×T)) with T = T (‖φ‖Hs,s) with u, ∂xu, ∂yu ∈

L2TL
∞
xy if ‖φ‖Hs,s is sufficiently small. Moreover, the mapping φ → u is continuous from

Hs,s(T× T) to C([−T, T ];Hs,s(T× T)).

The proofs of the latter local-posedness results, in the partially periodic and periodic

setting, follow the ideas of [20]. In these cases, we are looking to find an a priori estimate for

‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy
. Again, we are constrained to consider the L2T norm

instead of the L1T as we deal with a cubic nonlinearity. The fact that we need to add the

term ‖∂yu‖L2
TL
∞
xy

is more subtle. The dispersive estimates on R×T and T×T require more

smoothness in the y-variable. The mKP-I with nonlinearity up∂xu, p = 2 is a limiting case

for these dispersive equations, therefore in the linear estimate that we need more smoothness

in y for the cubic nonlinearity than for the quadratic nonlinearity. For the continuity of the

flow map we use a Bona-Smith argument [5] adapted to the periodic setting of the variable

y.

1.3 Fifth-order KP-I equation

The fifth order KP-I equation

∂tu− ∂5xu− ∂−1x ∂2yu+ u∂xu = 0 (1.11)

appears when modeling certain long dispersive waves with weak transverse effects, as we see

in [2], [25], [26]. By the work of Saut and Tzvetkov in [45], we know that the fifth order

KP-II initial value problem is globally wellposed in L2 on both R × R and T × T. In [32],

local wellposedness in Hs,0(R × T) for s > −3
4 and global wellposedness in L2. The fifth

order KP-I initial value problem is known to be globally well-posed in the energy spaces

Z1
(5)

= {φ ∈ L2 : ‖(1 + ξ2 + η
ξ )φ̂(ξ, η)‖L2

ξη
< ∞} on both R × R and T × R from the work

of Saut and Tzetkov in [45] and [46], using Picard iterative methods (see also [10]). Using

8



the Fourier restriction norm method and sufficiently exploiting the geometric structure of

the resonant set of (1.11) to deal with the high-high frequency interaction, Li and Xiao

established in [33] the global well-posedness in L2(R2). Guo et al. [15] established the local

well-posedness of the Cauchy problem in Hs,0(R × R) for s ≥ −3
4 , Yan et al [54] showed

global well-posedness in Hs,0(R × R) for s > − 6
23 and finally Li et al. [34] proved global

well-posedness in Hs,0(R×R) for s > −4
7 and local well-posedness for s > −9

8 . We conclude

with the result from [20] which proves global well-posedness on R × T and from [43] which

proves global well-posedness on T×T, both results in Z1
(5)

(R×T), resepctively Z1
(5)

(T×T),

the natural energy spaces in these cases. Esfahani [12] showed that the generalized fifth-order

KP-I equation 
∂tu− ∂5xu− ∂−1x ∂2yu+ up∂xu = 0,

u(0, x, y) = u0(x, y)

(1.12)

is locally well-posed in C([−T, T ];Hs(R2)) ∩ C1([−T, T ];Hs−5(R)) for s ≥ 5. In the same

paper, if p ≥ 4, the corresponding solution u in (1.12) blows up in finite time, i.e. there

exists ∞ > T > 0 such that limt→T−‖∂yu(·, y)‖L2= +∞. For our case of the fifth order

partially periodic modified KP-I we prove the following theorem

Theorem 1.3.1. [9] Assume φ ∈ Hs,s(R× T) with s > 5
2 . Then the initial value problem


∂tu− ∂5xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = φ(x, y)

admits a unique solution in C([−T, T ] : Hs,s(R×T)) with T = T (‖φ‖Hs,s) with u, ∂xu, ∂yu ∈

L2TL
∞
xy if ‖φ‖Hs,s is sufficiently small. Moreover, the mapping φ → u is continuous from

Hs,s(R× T) to C([−T, T ];Hs,s(R× T)).

The proof is in the same spirit as the one for the third order mKP-I equation on R× T.

Since p = 2 is the limit case for the dispersive estimates for the fifth-order dispersion operator

9



W(5)(t) defined by the Fourier multiplier (ξ, n)→ e
i(ξ5+n2

ξ )
, we require more smoothness in

the linear estimate in y for the cubic nonlinearity.

The rest of the thesis is organized as follows: in Chapter 2 we consider the well-posedness

of the modified KP-I equation in R× R, namely proving 1.2.1. The latter chapters include

the proofs of the periodic and partially periodic cases of the modified KP-I equations, more

precisely in Chapter 3 we present the proof of 1.2.2 and 1.2.3 and in Chapter 4 we present

the proof of 1.3.1.
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CHAPTER 2

LOCAL WELL-POSEDNESS FOR THE THIRD ORDER

MODIFIED KADOMTSEV-PETVIASHVILI I EQUATION ON

R× R

2.1 Notation

We start by defining, for g ∈ L2(R× R), ĝ(ξ, η) denote its Fourier transform in both x and

y. We consider the equation ∂tu+ ∂3xu− ∂−1x ∂2yu+u2∂xu = 0. We define the Sobolev spaces

which we will consider from now on: for s1, s2 ≥ 0

Hs1,s2(R×R) = {g ∈ L2(R×R) : ‖g‖Hs1,s2= ‖ĝ(ξ, n)[(1+ξ2)
s1
2 +(1+η2)

s2
2 ]‖L2(R×R)<∞}

and for s ≥ 0

Hs(R× R) = {g ∈ L2(R× R) : ‖g‖Hs= ‖ĝ(ξ, η)[(1 + ξ2 + η2)
s
2 ]‖L2(R×R)<∞}

and so

H∞(R× R) = ∩∞k=0H
k(R× R).

For s ∈ R we define the operators Jsx, J
s
y by

Ĵsxg(ξ, η) = (1 + ξ2)
s
2 ĝ(ξ, η);

Ĵsyg(ξ, η) = (1 + η2)
s
2 ĝ(ξ, η)

on S ′(R × R). For any set A let 1A denote its the characteristic function. Given a Banach

11



space X, a measurable function u : R→ X, and an exponent p ∈ [1,∞], we define

‖u‖LpX=
[ ∫

R
(‖u(t)‖pX)dt

]1
p

if p ∈ [1,∞) and

‖u‖L∞X= esssupt∈R‖u(t)‖X

Also, if I ⊆ R is a measurable set, and u : I → X is a measurable function, we define

‖u‖LpIX= ‖1I(t)u‖LpX .

For T ≥ 0, we define ‖u‖LpTX= ‖u‖Lp
[−T,T ]X

We also introduce the Kato-Ponce commutator estimates (as in Lemma XI from [27] and

Appendix 9.A from [20]):

Lemma 1. Let m ≥ 0 and f, g ∈ Hm(R). If s ≥ 1 then

‖JsR(fg)− fJsRg‖L2≤ Cs[‖JsRf‖L2‖g‖L∞+(‖f‖L∞+‖∂f‖L∞)‖Js−1R g‖L2 ]

and if s ∈ (0, 1) then

‖JsR(fg)− fJsRg‖L2≤ Cs‖JsRf‖L2‖g‖L∞ .

We have the following corollary which we will use later.

Corollary. If s ≥ 1, then we have ‖JsR(u3)‖. ‖u‖2L∞‖J
s
Ru‖L2+‖u‖L∞‖∂xu‖L∞‖Js−1R u‖L2 .

2.2 Dispersive Estimates

We use the dispersive estimates that appear in Molinet, Saut and Tzvetkov [40].

Let U(t) = exp(−t(−∂3x−∂−1x ∂2y)) be the unitary group in Hs(R2) defining the free KP-I

equation. Dx has Fourier symbol |ξ|.
12



Theorem 2.2.1. Let T > 0. Then for every 0 ≤ ε ≤ 1
2 , we have the estimates

‖D
−εδ(r)

2
x U(t)ϕ‖LqTLrxy. ‖ϕ‖L2

xy

and ∥∥∥∥∫ t

0
D
−εδ(r)

2
x U(t− t′)F (t′)dt′

∥∥∥∥
L
q
TL

r
xy

. ‖F‖L1
TL

2
xy

provided that r ∈ [2,+∞] and 0 ≤ 2
q = (1− ε

3)δ(r) < 1 with δ(r) := 1− 2
r .

2.3 Linear Estimates

Theorem 2.3.1. Let v ∈ C([0, T ] : H∞−1(R2)) be a solution of

∂tv + ∂3xv − ∂−1x ∂2yv = ∂xF.

Then, for every ε > 0, there exists Cε such that

‖v‖L2
TL
∞
xy
. Cε(1 + T )‖J1+εx v‖L∞T L2

xy
+Cε‖J1+εx F‖L1

TL
2
xy

.

Proof. We consider a Littlewood-Paley decomposition in the x-variable

v =
∑

λ−dyadic

vλ where vλ := ∆λv are defined as

∆̂λv(t, ξ, η) =


ϕ( ξλ) · v̂(t, ξ, η), λ = 2k, k ≥ 1

χ(ξ) · v̂(t, ξ, η), λ = 1.

13



where χ, ϕ ∈ C∞0 (Rn) are non-negative functions such that χ(ξ) +
∑
λ>1 ϕ( ξλ) = 1 and

ϕ(ξ) =


0 if |ξ|≤ 5

8 or |ξ|≥ 2

1 if 1 ≤ |ξ|≤ 5
4

For λ ≥ 2 fixed, we write a natural splitting [0, T ] = ∪jIj , where Ij = [aj , bj ] have disjoint

interiors and |Ij |. 1
λ . We can suppose that the number of intervals is bounded by C(1+T )λ.

Therefore, by applying Hölder inequality in time,

‖vλ‖L2
TL
∞
xy
.
∑
j

‖vλ‖L2
Ij
L∞xy

. λ−
ε
6
∑
j

‖vλ‖LqεIjL
∞
xy

(2.1)

where 1
qε

= 1
2 −

ε
6 .

Next, we apply the Duhamel formula in each Ij to obtain,

vλ(t) = D
− ε2
x U(t− aj)D

ε
2
x vλ(aj)−

∫ t

aj

D−εx U(t− t′)[∆λD
ε
x∂xF ](t′)dt′

where we used that Dx and U commute.

By the Dispersive Estimates with r =∞ and q = 1
2 −

ε
6 , we have

‖vλ(t)‖LqεIjL
∞
xy

. ‖D−
ε
2

x U(t− aj)D
ε
2
x vλ(aj)‖LqεIjL

∞
xy

+‖
∫ t

aj

Dε
xU(t− t′)[∆λD

ε
x∂xF ](t′)dt′‖LqεIjL

∞
xy

. ‖D
ε
2
x vλ(aj)‖L2

xy
+‖∆λD

1+ε
x F‖L1

Ij
L2
xy
.

Therefore, by equation (2.1), ‖vλ‖L2
Ij
L∞xy

. λ
ε
3‖vλ(aj)‖L2

xy
+λ1+

5ε
6 ‖∆λF‖L1

Ij
L2
xy

and sum-

ming over j,
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‖vλ‖L2
TL
∞
xy

. λ
ε
3
∑
j

‖vλ(aj)‖L2
xy

+
∑
j

λ1+
5ε
6 ‖∆λF‖L1

Ij
L2
xy

. λ1+
ε
3 (1 + T )‖vλ‖L∞T L2

xy
+λ1+

5ε
6 ‖∆λF‖L1

TL
2
xy

Moreover, again, by Duhamel formula and the Dispersive Estimates,

‖∆1v‖L2
TL
∞
xy
. (1 + T )(‖∆1v(0)‖L2

xy
+‖∆1F‖L1

TL
2
xy

)

Hence, for any 0 < α, we get

‖v‖L2
TL
∞
xy

.
∑
λ

‖vλ‖L2
TL
∞
xy
. ‖∆1v‖L2

TL
∞
xy

+
∑
λ≥2

λ−α · λα‖vλ‖L2
TL
∞
xy

. ‖∆1v‖L2
TL
∞
xy

+supλ≥2λ
α‖vλ‖L2

TL
∞
xy

(
∑
λ≥2

λ−α)

. (1 + T )‖Jα+1+ ε
3

x v‖L∞T L2
xy

+‖Jα+1+5ε
6

x F‖L1
TL

2
xy

where in the last inequality we used Bernstein’s inequality.

2.4 A Priori Estimates

Suppose u solves the equation


∂tu+ ∂3xu− ∂−1x ∂2y + u2∂xu = 0

u(0) = φ ∈ H2+ε,0(R2)

We are going to bound fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy
.

Proposition 1. Suppose u satisfies the IVP with initial data φ and let s > 2.
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Then u, ∂xu ∈ L2([−T, T ];L∞(R× R)). Moreover,

fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy
≤ CT

for a suitable small T , if ‖φ‖Hs,0 is small enough.

Proof. By the linear estimate 2.3.1, we have, by taking now F = u3

‖u‖L2
TL
∞
xy
. ‖J1+εx u‖L∞T L2

xy
+‖J1+εx (u3)‖L1

TL
2
xy

and

‖∂xu‖L2
TL
∞
xy
. ‖J2+εx u‖L∞T L2

xy
+‖J2+εx (u3)‖L1

TL
2
xy
.

By the corollary of the Kato-Ponce commutator estimates

‖J1+εx (u3)‖L2
xy
. ‖J1+εx u‖L2

xy
‖u‖2L∞xy+‖J1+εx u‖L2

xy
‖u‖L∞xy‖∂xu‖L∞xy. βu(t)‖J1+εx u‖L2

xy

and

‖J2+εx (u3)‖L2
xy
. ‖J2+εx u‖L2

xy
‖u‖2L∞xy+‖J2+εx u‖L2

xy
‖u‖L∞xy‖∂xu‖L∞xy. βu(t)‖J2+εx u‖L2

xy

therefore

‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy
≤ ‖J2+εx u‖L∞T L2

xy
(1 + fu(T )2).

Then we have

fu(T ) ≤ ‖J2+εx u‖L∞T L2
xy
·(1 + fu(T )2). (2.2)

First, if we apply to the equation (1.7) the operator J
p
x and then we multiply by J

p
xu, we
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get

d

dt
‖Jpxu‖2L2

xy
=

∫
J
p
xuJ

p
x(u2∂xu)

=

∫
J
p
xu[J

p
x(u2∂xu)− u2Jpx∂xu] +

∫
u2J

p
xuJ

p
x∂xu

. ‖Jpxu‖2L2
xy

(‖u‖2L∞xy+‖u‖L∞xy‖∂xu‖L∞xy) . ‖Jpxu‖2L2
xy
βu(t)

therefore, by Grönwall’s inequality, we get that

‖Jpxu‖L∞T L2
xy
. ‖Jpxφ‖L2

xy
exp(fu(T )2). (2.3)

Hence, by 2.2 and 2.3, we get

fu(T ) . ‖J2+εx φ‖2
L2
xy
·exp(fu(T )2)(1 + fu(T )2).

If we choose φ such that ‖J2+εx φ‖L2
xy

is small, then by a continuity argument, we get

that fu(T ) ≤ C(T, ‖J2+εx φ‖L2
xy

). Hence ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy
≤ C(T, ‖J2+εx φ‖L2

xy
).

2.5 Local Well-posedness

We start by stating a well-known local-wellposedness result from Iorio and Nunes (see [22],

Section 4):

Lemma 2. Assume φ ∈ H∞. Then there is T = T (‖φ‖H3) > 0 and a solution u ∈

C([−T, T ] : H∞) of the initial value problem


∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = u0(x, y).

We proceed to prove the local well-posedness result. In this section, the proof will include
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just the existence and uniqueness of the solution.

Theorem 2.5.1. The IVP ∂tu+∂3xu−∂−1x ∂2yu+u2∂xu = 0 is locally well-posed in Hs,0(R2),

s > 2. More precisely, given u0 ∈ Hs,0(R2), s > 2, there exists T = T (‖u0‖Hs,0) and a unique

solution u to the IVP such that u ∈ u ∈ C([0, T ]; Hs,0(R2)), with u, ∂xu ∈ L2TL
∞
xy. Moreover,

the mapping u0 7→ u ∈ C([0, T ]; Hs,0(R2)) is continuous.

Proof. Let u0 ∈ Hs,0(R2) and find u0,ε ∈ Hs,0(R2)∩H∞−1(R2) such that ‖u0−u0,ε‖Hs,0→ 0

and ‖u0,ε‖Hs,0≤ 2‖u0‖Hs,0 . We know by the Iorio-Nunes local well-posedness result that

u0,ε gives a unique solution uε. By applying the a priori bound, we get

‖∂xuε‖L2
TL
∞
xy

+‖uε‖L2
TL
∞
xy
≤ CT .

By the previous result, sup0<t<T ‖uε‖Hs,0≤ CT .

∂t(uε − uε′) + ∂3x(uε − uε′)− ∂−1x ∂2y(uε − uε′) + ∂x(
u3ε
3
−
u3ε′

3
) = 0

with ε, ε′ → 0. Henceforth,

∂t‖uε − uε′‖2L2 =

∫
(uε − uε′)∂x(

u3ε
3
−
u3ε′

3
)

=

∫
∂x(uε − uε′) · (uε − uε′)

u2ε + uεuε′ + u2ε′

3
=

=

∫
(uε − uε′)2∂x[

u2ε + uεuε′ + u2ε′

3
]

≤ ‖uε − uε′‖2L2(‖uε‖2L∞xy+‖∂xuε‖2L∞xy+‖uε′‖2L∞xy+‖∂xuε′‖2L∞xy)

≤ (βuε(t) + βuε′ (t))‖uε − uε′‖
2
L2 .

By Grönwall’s inequality and the a priori estimate we get ‖uε − uε′‖2L2.T ‖u0,ε − u0,ε′‖2L2 ,

implying that sup0<t<T ‖uε − uε′‖L2→ 0, hence we can find u ∈ C([0, T ], Hs′,0(R2)) ∩
18



L∞([0, T ] : Hs,0(R2)). The fact that u is a solution of the IVP is clear now. Uniqueness

also comes from the previous Grönwall’s inequality.

2.6 Continuity with respect to time

We are completing the proof by showing continuity with respect to time.

Let u be a fixed solution of ∂tu+∂3xu−∂−1x ∂2yu+u2∂xu = 0 with initial data in Hs,0(R2),

with s > 2. Define ϕε is defined by its Fourier transform namely,

ϕ̂ε(ξ, η) :=


1 if ε < ξ < 1

ε and if ε < η < 1
ε ,

0 otherwise

(2.4)

Then uε is a solution to the IVP with φε = ϕε ∗ φ as initial data. We will show that {uε}

is in fact a Cauchy sequence in C([0, T ] : Hs,0(R2)). By straightforward calculations in the

Fourier space, one can show that for φ ∈ Hs,0(R2), 0 < ε < 1 and r ≥ 0, we have

‖ϕε ∗ φ‖Hs+r,0(R2). ε−r‖φ‖Hs,0(R2)

and

‖ϕε ∗ φ− φ‖Hs−r,0(R2). o(εr)‖φ‖Hs,0(R2)

as ε→ 0.

From the definition, we have that, if p ≥ s, then ‖Jpxφε‖L2
xy
. C(T, ‖φ‖Hs,0)εs−p. Since

φε ∈ H∞, by local well-posedness result of Iorio and Nunes, they give rise to unique solutions

uε in H∞. The above estimates together with (2.3), if p ≥ s, we also have

‖Jpxuk‖L∞T L2
xy
≤ C(T, ‖φ‖Hs,0)εs−p. (2.5)

Denote ω = uε1 − uε2 with 0 < ε1 < ε2. Now choose 0 ≤ q ≤ s. By definition, there exists
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a function h
(3)
φ (ε) → 0 as ε → 0 such that ‖φ − φε‖L2

xy
. εsh

(3)
φ (ε). From the interpolation

inequality,

‖Jqxω‖L∞T L2
xy
≤ ‖Jsxω‖

q
s
L∞T L

2
xy
‖ω‖1−

q
s

L∞T L
2
xy
. ‖ω‖1−

q
s

L∞T L
2
xy

it yields

‖Jqxω‖L∞T L2
xy
. εs−qh(3)φ (ε)1−

q
s . (2.6)

Lemma 3. We have the following estimates:

‖Jsxω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuε1 (T )2)

[
‖Jsxω(0)‖L2

xy

+ ‖Jsxω‖L∞T L2
xy
‖Js+1
x uε1‖L∞T L2

xy
(‖ω‖2

L2
TL
∞
xy

+‖ω‖L2
TL
∞
xy
‖uε1‖L2

TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuε1‖L∞T L2

xy
(‖ω‖L2

TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)‖uε1‖L2
TL
∞
xy

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuε1‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuε1‖L2
TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuε1‖L∞T L2

xy
‖ω‖2

L2
TL
∞
xy

]
.

Proof.

∂tω+ ∂3xω− ∂−1x ∂2yω+ ω2∂xω+ 3u2ε1∂xω+ 3uε1ω∂xuε1 − 3uε1ω∂xω− 3ω2∂xuε1 = 0. (2.7)

We apply Jsx to (2.7) and then we multiply by Jsxω, in order to get

d

dt
‖Jsxω‖2L2=

∫
Jsx(ω2∂xω)Jsxω + 3

∫
Jsx(u2ε1∂xω)Jsxω + 3

∫
Jsx(uε1ω∂xuε1)Jsxω

− 3

∫
Jsx(uε1ω∂xω)Jsxω − 3

∫
Jsx(ω2∂xuε1)Jsxω

and we will analyze each term in the sum.

We have (I) =
∫
Jsx(ω2∂xω)Jsxω, (II) =

∫
Jsx(u2ε1∂xω)Jsxω, (III) =

∫
Jsx(uε1ω∂xuε1)Jsxω,

(IV ) =
∫
Jsx(uε1ω∂xω)Jsxω and (V ) =

∫
Jsx(ω2∂xuε1)Jsxω.

For (I) =
∫
Jsx(ω2∂xω)Jsxω =

∫
[Jsx(ω2∂xω) − ω2Jsx∂xω]Jsxω +

∫
ω2Jsx∂xωJ

s
xω, and we
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will denote (I)1 =
∫

[Jsx(ω2∂xω) − ω2Jsx∂xω]Jsxω and (I)2 =
∫
ω2Jsx∂xωJ

s
xω. For the first

one, we have by the Kato-Ponce commutator estimate

(I)1 ≤ ‖Jsxω‖L2
xy
‖Jsx(ω2∂xω)− ω2Jsx∂xω‖L2

xy

≤ ‖Jsxω‖L2
xy
‖ω‖L∞xy

[
‖∂xω‖L∞xy ·‖J

s
xω‖L2

xy
+(‖ω‖L∞xy+‖∂xω‖L∞xy)‖Js−1x ∂xω‖L2

xy

]
≤ ‖Jsxω‖2L2

xy
·βω(t)

and

(I)2 ≤ ‖Jsxω‖2L2
xy
‖ω‖L∞xy‖∂xω‖L∞xy≤ ‖J

s
xω‖2L2

xy
βω(t)

so (I) . ‖Jsxω‖2L2
xy
βω(t).

Now, (II) =
∫
Jsx(u2ε1∂xω)Jsxω =

∫
[Jsx(u2ε1∂xω) − u2ε1J

s
x∂xω]Jsxω +

∫
u2ε1J

s
x∂xωJ

s
xω and

we denote (II)1 =
∫

[Jsx(u2ε1∂xω)−u2ε1J
s
x∂xω]Jsxω and (II)2 =

∫
u2ε1J

s
x∂xωJ

s
xω. For the first

term we have by the Kato-Ponce commutator estimate

(II)1 . ‖Jsxω‖L2
xy
·‖Jsx(u2ε1∂xω)− u2ε1J

s
x∂xω‖L2

xy

. ‖Jsxω‖L2
xy
‖uε1‖L∞xy(‖uε1‖L∞xy+‖∂xuε1‖L∞xy)‖Js−1x ∂xω‖L2

xy

+ ‖Jsxω‖L2
xy
‖uε1‖L∞xy‖∂xω‖L∞xy‖J

s
xuε1‖L2

xy

. ‖Jsxω‖2L2
xy
βuε1 (t) + ‖Jsxω‖L2

xy
‖Jsxuε1‖L2

xy
‖∂xω‖L∞xy‖uε1‖L∞xy

Also, we have

(II)2 . ‖Jsxω‖2L2
xy
‖uε1‖L∞‖∂xuε1‖L∞. ‖J

s
xω‖2L2

xy
βuε1 (t)

Therefore,

(II) . ‖Jsxω‖2L2
xy
βuε1 (t) + ‖Jsxω‖L2

xy
‖Jsxuε1‖L2

xy
‖∂xω‖L∞xy‖uε1‖L∞xy .
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Let

(III) =

∫
Jsx(uε1ω∂xuε1)Jsxω

=

∫
[Jsx(uε1ω∂xuε1)− uε1ωJ

s
x∂xuε1 ]Jsxω +

∫
uε1ωJ

s
x∂xuε1J

s
xω

and denote (III)1 =
∫

[Jsx(uε1ω∂xuε1)− uε1ωJsx∂xuε1 ]Jsxω and

(III)2 =

∫
uε1ωJ

s
x∂xuε1J

s
xω.

We have by the Kato-Ponce commutator estimate

(III)1 . ‖Jsxω‖L2
xy
‖Jsx(uε1ω∂xuε1)− uε1ωJ

s
x∂xuε1‖L2

xy

. ‖Jsxω‖L2
xy

[
‖Jsxuε1‖L2

xy
‖ω‖L∞xy‖∂xuε1‖L∞xy

+ ‖Js−1x ω‖L2
xy

(‖uε1‖L∞xy‖∂xuε1‖L∞xy+‖∂xuε1‖
2
L∞xy

)

+ ‖Js−1x ∂xuε1‖L2
xy

(‖ω‖L∞xy‖∂xuε1‖L∞xy+‖ω‖L∞xy‖uε1‖L∞xy+‖∂xω‖L∞xy‖uε1‖L∞xy)
]

. ‖Jsxω‖2L2
xy
βuε1 (t) + ‖Jsxω‖L2

xy
‖Jsxuε1‖L2

xy
‖ω‖L∞xy‖∂xuε1‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsxuε1‖L2

xy
‖uε1‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy)

Also, (III)2 . ‖Jsxω‖L2
xy
‖Js+1
x uε1‖L2

xy
‖ω‖L∞xy‖uε1‖L∞xy and so therefore

(III) . ‖Jsxω‖2L2
xy
βuε1 (t) + ‖Jsxω‖L2

xy
‖Jsxuε1‖L2

xy
‖ω‖L∞xy‖∂xuε1‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsxuε1‖L2

xy
‖ω‖L∞xy‖uε1‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuε1‖L2

xy
‖∂xω‖L∞xy‖uε1‖L∞xy

+ ‖Jsxω‖L2
xy
‖Js+1
x uε1‖L2

xy
‖ω‖L∞xy‖uε1‖L∞xy .

Again,

(IV ) =

∫
Jsx(uε1ω∂xω)Jsxω =

∫
[Jsx(uε1ω∂xω)− uε1ωJ

s
x∂xω]Jsxω +

∫
uε1ωJ

s
x∂xωJ

s
xω
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and we denote (IV )1 =
∫

[Jsx(uε1ω∂xω)− uε1ωJsx∂xω]Jsxω and

(IV )2 =

∫
uε1ωJ

s
x∂xωJ

s
xω.

We have by the Kato-Ponce commutator estimate

(IV )1 . ‖Jsxω‖L2
xy
‖Jsx(uε1ω∂xω)− uε1ωJ

s
x∂xω‖L2

xy

. ‖Jsxω‖L2
xy
‖∂xω‖L∞xy

[
‖Jsxω‖L2

xy
(‖uε1‖L∞xy+‖∂xuε1‖L∞xy) + ‖Jsxuε1‖L2

xy
‖ω‖L∞xy

]
+ ‖Jsxω‖L2

xy

[
‖uε1‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy) + ‖∂xuε1‖L∞xy‖ω‖L∞xy)‖Js−1x ∂xω‖L2

xy

. ‖Jsxω‖2L2
xy

(‖uε1‖L∞xy+‖∂xuε1‖L∞xy)(‖∂xω‖L∞xy+‖ω‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuε1‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy .

Also, (IV )2 . ‖Jsxω‖2L2
xy

(‖∂xuε1‖L∞xy‖ω‖L∞xy+‖∂xω‖L∞xy‖uε1‖L∞xy) and so therefore

(IV ) . ‖Jsxω‖2L2
xy

(‖uε1‖L∞xy+‖∂xuε1‖L∞xy)(‖∂xω‖L∞xy+‖ω‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuε1‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy .

Again, (V ) =
∫
Jsx(ω2∂xuε1)Jsxω =

∫
[Jsx(ω2∂xuε1)− ω2Jsx∂xuε1 ]Jsxω +

∫
ω2Jsx∂xuε1J

s
xω

and we denote (V )1 =
∫

[Jsx(ω2∂xuε1) − ω2Jsx∂xuε1 ]Jsxω and (V )2 =
∫
ω2Jsx∂xuε1J

s
xω. We

have by the Kato-Ponce commutator estimate

(V )1 . ‖Jsxω‖L2
xy
‖Jsx(ω2∂xuε1)− ω2Jsx∂xuε1‖L2

xy

. ‖Jsxω‖L2
xy
‖ω‖L∞xy

[
‖∂xuε1‖L∞xy‖J

s
xω‖L2

xy
+(‖ω‖L∞xy+‖∂xω‖L∞xy)‖Js−1x ∂xuε1‖L2

xy

]
. ‖Jsxω‖2L2

xy
‖ω‖L∞xy‖∂xuε1‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuε1‖L2

xy
‖ω‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy).
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Also, (V )2 . ‖Jsxω‖L2
xy
‖Js+1
x uε1‖L2

xy
‖ω‖2L∞xy and so therefore

(V ) . ‖Jsxω‖2L2
xy

(βuε1 (t) + βω(t))

+ ‖Jsxω‖L2
xy

(
‖Jsxuε1‖L2

xy
‖ω‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy) + ‖Js+1

x uε1‖L2
xy
‖ω‖2L∞xy

)
.

Now, putting together all the terms we get that

d

dt
‖Jsxω‖2L2

xy
. (‖Jsxω‖2L2

xy
)(βω(t) + βuε1 (t))

+ ‖Jsxω‖L2
xy
‖Js+1
x uε1‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uε1‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuε1‖L2

xy
(‖ω‖L∞xy‖uε1‖L∞xy+‖∂xω‖L∞xy‖uε1‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuε1‖L2

xy
(‖ω‖L∞xy‖∂xuε1‖L∞xy+‖ω‖L∞xy‖∂xω‖L∞xy+‖ω‖2L∞xy)

(2.8)

We are using the following variant of Grönwall’s inequality:

Lemma 4. If α(t), β(t) are two non-negative functions, and d
dtu(t) ≤ u(t)β(t) +α(t) for all

t ∈ [0, T ] then

u(t) ≤ e
∫ t
0 β(s)ds

(
u(0) +

∫ t

0
α(s)ds

)
.

By putting u(t) = ‖Jsxω‖L2
xy

, β(t) = βω(t) + βuε1 (t) ≥ 0 and

α(t) = ‖Js+1
x uε1‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uε1‖L∞xy)

+ ‖Jsxuε1‖L2
xy

(‖ω‖L∞xy‖uε1‖L∞xy+‖∂xω‖L∞xy‖uε1‖L∞xy)

+ ‖Jsxuε1‖L2
xy

(‖ω‖L∞xy‖∂xuε1‖L∞xy+‖ω‖L∞xy‖∂xω‖L∞xy+‖ω‖2L∞xy) ≥ 0
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by applying the lemma to (2.8) together with Cauchy-Schwarz we get

‖Jsxω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuε1 (T )2)

[
‖Jsxω(0)‖L2

xy

+ ‖Jsxω‖L∞T L2
xy
‖Js+1
x uε1‖L∞T L2

xy
(‖ω‖2

L2
TL
∞
xy

+‖ω‖L2
TL
∞
xy
‖uε1‖L2

TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuε1‖L∞T L2

xy
(‖ω‖L2

TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)‖uε1‖L2
TL
∞
xy

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuε1‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuε1‖L2
TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuε1‖L∞T L2

xy
‖ω‖2

L2
TL
∞
xy

]
.

Lemma 5. For p ≤ s, we have the following estimates:

‖Jpx[ω(u2ε1 + uε1uε2 + u2ε2)]‖L1
TL

2
xy

. ‖Jpxω‖L∞T L2
xy

(‖uε1‖L2
TL
∞
xy

+‖uε2‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uε1‖L2

TL
∞
xy

+‖uε2‖L2
TL
∞
xy

).

Proof. By using 7 part (c), we get that

‖Jpx[ω(u2ε1 + uε1uε2 + u2ε2)]‖L2
xy

. ‖Jpxω‖L∞T L2
xy
‖u2ε1 + uε1uε2 + u2ε2‖L∞xy

+ ‖ω‖L∞xy‖J
p
x(u2ε1 + uε1uε2 + u2ε2)‖L2

xy
.

(2.9)

Observe that ‖u2ε1 + uε1uε2 + u2ε2‖L∞xy. ‖uε1‖
2
L∞xy

+‖uε2‖2L∞xy . Also, by 7 part (c) again, we

have

‖Jpx(u2ε1 + uε1uε2 + u2ε2)‖L2
xy
. (‖Jpxuε1‖L2

xy
+‖Jpxuε2‖L2

xy
)(‖uε1‖L∞+‖uε2‖L∞xy).

By 2.3, we get ‖Jpxuε1‖L2
xy

+‖Jpxuε2‖L2
xy
. ‖Jpxφk‖L2

xy
+‖Jpxφk′‖L2

xy
. ‖φ‖Hs,0 . Combining
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all the above observations together with 2.9, we get

‖Jpx[ω(u2ε1 + uε1uε2 + u2ε2)]‖L2
xy

. ‖Jpxω‖L2
xy

(‖uε1‖L∞xy+‖uε2‖L∞xy)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,0(‖uε1‖L∞xy+‖uε2‖L∞xy).

Integrating both sides from 0 to T and applying Cauchy-Schwarz inequality, we obtain the

conclusion of the lemma.

Lemma 6. Suppose uε1 satisfies the IVP (1.9) with initial data φε1 . We have ‖ω‖L2
TL
∞
xy
.

ε1+1 , ‖∂xω‖L2
TL
∞
xy
. ε0+1 and ‖∂yω‖L2

TL
∞
xy
. ε0+1 as ε1 → 0. In particular, fω(T ) . ε0+1 as

ε1 → 0.

Proof. Take δ < s−2
2 . By the linear estimate in Proposition 2 applied to 2.7,

‖ω‖L2
TL
∞
xy
. Cδ(1 + T )‖J1+δx ω‖L∞T L2

xy
+‖J1+δx [ω(u2ε1 + uε1uε2 + u2ε2)]‖L1

TL
2
xy
.

From 2.9 we have ‖J1+δx ω‖L∞T L2
xy
. εs−1−δ1 h

(3)
φ (ε1)1−

1+δ
s . By Lemma 5 we get that

‖J1+δx [ω(u2ε1 + uε1uε2 + u2ε2)]‖L1
TL

2
xy

. ‖J1+δx ω‖L∞T L2
xy

(‖uε1‖L2
TL
∞
xy

+‖uε2‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,0(‖uε1‖L2

TL
∞
xy

+‖uε2‖L2
TL
∞
xy

).

By 2.9 we have ‖J1+δx ω‖L∞T L2
xy
. εs−1−δ1 h

(3)
φ (ε1)1−

1+δ
s . By combining the previous ob-

servations, we obtain

‖ω‖L2
TL
∞
xy

. εs−1−δ1 h
(3)
φ (ε1)1−

1+δ
s

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,0(‖uε1‖L2

TL
∞
xy

+‖uε2‖L2
TL
∞
xy

)

Since we consider that ‖φ‖Hs,0 is small, such that ‖φ‖Hs,0(‖uε1‖L2
TL
∞
xy

+‖uε2‖L2
TL
∞
xy

) ≤ 1
2 ,
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we get that

‖ω‖L2
TL
∞
xy
. εs−1−δ1 h

(3)
φ (ε1)1−

1+δ
s → 0

as ε1 → 0 since 1 + δ < s.

The linear estimate 2.3.1 applied to ∂xω results in

‖∂xω‖L2
TL
∞
xy
. ‖J2+δx ω‖L∞T L2

xy
+‖J2+δx [ω(u2ε1 + uε1uε2 + u2ε2)]‖L1

TL
2
xy
.

and by the same reasoning as above

‖∂xω‖L2
TL
∞
xy

. εs−2−δ1 h
(3)
φ (ε1)1−

2+δ
s

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,0(‖uε1‖L2

TL
∞
xy

+‖uε2‖L2
TL
∞
xy

)

which, combined with the above fact that ‖ω‖L2
TL
∞
xy
. εs−1−δ1 h

(3)
φ (ε1)1−

1+δ
s , for ε1 small

enough, it gives us ‖∂xω‖L2
TL
∞
xy
. εs−2−δ1 → 0 as ε1 → 0 since 2 + δ < s.

Corollary. We have ‖ω‖L∞T Hs,0→ 0 as ε1 → 0, where s > 2 for the initial value problem

(1.7).

Proof. From (2.5) and Lemmas 6 we get ‖Js+1
x uk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy
. ε−11 · ε1+1 = ε0+1 and

ε0+1 → 0 as ε1 → 0. From Lemma 6 used in Lemma 3 we obtain

‖Jsxω‖L∞T L2
xy
. exp(

1

2
fuk(T )2 +

1

2
fω(T )2)(‖Jsxω(0)‖L∞T L2

xy
+Cε0+1 )→ 0

as ε1 → 0, where we used that ‖Jsxω(0)‖L∞T L2
xy
→ 0 as ε1 → 0 and the boundedness of fuk(T )

and fω(T ) by 1.

Therefore, as ‖Jsxω‖L∞T L2
xy
→ 0 as ε1 → 0, it means that u ∈ C([0, T ] : Hs,0(R2)).

Hence uε is Cauchy in Hs,0(R2), meaning that u ∈ C([0, T ];Hs,0(R2)).
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2.7 Continuity of the flow map

We assume that T ∈ [0,∞) and φl → φ in Hs,0(R × T) as l → ∞. We are going to prove

that ul → u in C([−T, T ] : Hs,0(R× T)) as l →∞, where ul and u are solutions of the the

initial value problem ∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0 corresponding to initial data φl and

φ, for s > 2.

For ε > 0, let as before, φlε and ulε ∈ C([−T, T ] : H∞) the corresponding solutions.

Denote by ωε = uε − u. By the same estimates from Lemma 3 and Lemma 6 applied to ωε

we get

‖uε − u‖Hs,0=. exp(
1

2
fωε(T )2 +

1

2
fuε(T )2)(‖φε − φ‖Hs,0+C(T, ‖φε‖Hs,0 , ‖φ‖Hs,0)ε0+).

By the same reasoning, we have that

‖ulε − ul‖Hs,0. exp(
1

2
fωlε

(T )2 +
1

2
fulε

(T )2)(‖φlε − φl‖Hs,0+C(T, ‖φlε‖Hs,0 , ‖φl‖Hs,0)ε0+).

Now, denote ωlε = ulε − uε. By the same estimates from Lemma 3 and Lemma 6 applied to

ωlε

‖ulε − uε‖Hs,0. exp(
1

2
fωlε

(T )2 +
1

2
fulε

(T )2)(‖φlε − φε‖Hs,0+C(T, ‖φlε‖Hs,0 , ‖φε‖Hs,0)ε0+).

By the boundedness of fuε(T ), fulε
(T ), fωε(T ) and fωlε

(T ) by 1 and the triangle inequality,

we get

‖ul − u‖Hs,0 ≤ ‖uε − u‖Hs,0+‖ulε − uε‖Hs,0+‖ulε − ul‖Hs,0

. ‖φε − φ‖Hs,0+‖φlε − φε‖Hs,0+‖φlε − φl‖Hs,0

+ C(T, ‖φ‖Hs,0 , ‖φε‖Hs,0 , ‖φl‖Hs,0 , ‖φlε‖Hs,0)ε0+
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which, by letting ε→ 0, we get ‖ul − u‖Hs,0. ‖φl − φ‖Hs,0 and proves the continuity of the

flow map.
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CHAPTER 3

LOCAL WELL-POSEDNESS FOR THE PERIODIC AND

PARTIALLY PERIODIC THIRD ORDER MODIFIED KP-I

EQUATIONS

3.1 Notation and Preliminaries

We start by defining, for g ∈ L2(R× T), ĝ(ξ, n) denote its Fourier transform in both x and

y. We define the Sobolev spaces which we will consider from now on: for s1, s2 ≥ 0

Hs1,s2(R×T) = {g ∈ L2(R×T) : ‖g‖Hs1,s2= ‖ĝ(ξ, n)[(1+ξ2)
s1
2 +(1+n2)

s2
2 ]‖L2(R×Z)<∞}

and for s ≥ 0

Hs(R× T) = {g ∈ L2(R× T) : ‖g‖Hs= ‖ĝ(ξ, n)[(1 + ξ2 + n2)
s
2 ]‖L2(R×Z)<∞}

and so

H∞(R× T) = ∩∞k=0H
k(R× T).

For s ∈ R we define the operators Jsx, J
s
y by

Ĵsxg(ξ, n) = (1 + ξ2)
s
2 ĝ(ξ, n);

Ĵsyg(ξ, n) = (1 + n2)
s
2 ĝ(ξ, n)

on S ′(R× T).

For g ∈ L2(T × T), ĝ(m,n) denote its Fourier transform in both x and y. In this case,
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we define similarly the Sobolev spaces which we will consider from now on: for s1, s2 ≥ 0

Hs1,s2(T×T) = {g ∈ L2(T×T) : ‖g‖Hs1,s2= ‖ĝ(m,n)[(1+m2)
s1
2 +(1+n2)

s2
2 ]‖L2(Z×Z)<∞}

and for s ≥ 0

Hs(T× T) = {g ∈ L2(T× T) : ‖g‖Hs= ‖ĝ(m,n)[(1 +m2 + n2)
s
2 ]‖L2(Z×Z)<∞}

and so

H∞(T× T) = ∩∞k=0H
k(T× T).

By slight abuse of notation, for s ∈ R we define the operators Jsx, J
s
y by

Ĵsxg(m,n) = (1 +m2)
s
2 ĝ(m,n);

Ĵsyg(m,n) = (1 + n2)
s
2 ĝ(m,n)

on S ′(T× T).

For any set A let 1A denote its the characteristic function. Given a Banach space X, a

measurable function u : R→ X, and an exponent p ∈ [1,∞], we define

‖u‖LpX=
[ ∫

R
(‖u(t)‖pX)dt

]1
p

if p ∈ [1,∞) and

‖u‖L∞X= esssupt∈R‖u(t)‖X

Also, if I ⊆ R is a measurable set, and u : I → X is a measurable function, we define

‖u‖LpIX= ‖1I(t)u‖LpX .

For T ≥ 0, we define ‖u‖LpTX= ‖u‖Lp
[−T,T ]X
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We also introduce the Kato-Ponce commutator estimates (as in Lemma XI from [27] and

Appendix 9.A from [20]):

Lemma 7. (a) Let m ≥ 0 and f, g ∈ Hm(R). If s ≥ 1 then

‖JsR(fg)− fJsRg‖L2≤ Cs[‖JsRf‖L2‖g‖L∞+(‖f‖L∞+‖∂f‖L∞)‖Js−1R g‖L2 ].

and if s ∈ (0, 1) then

‖JsR(fg)− fJsRg‖L2≤ Cs‖JsRf‖L2‖g‖L∞ .

(b) Let m > 0 and f, g ∈ Hm(T). If s ≥ 1, then

‖JsT(fg)− fJsTg‖L2≤ Cs[‖JsTf‖L2‖g‖L∞+(‖f‖L∞+‖∂f‖L∞)‖Js−1T g‖L2 ].

and if s ∈ (0, 1) then

‖JsT(fg)− fJsTg‖L2≤ Cs‖JsTf‖L2‖g‖L∞ .

(c) Let m ≥ 0 and f, g ∈ Hm(M), where M is either R or R. If s > 0 then

‖JsM (fg)‖L2
xy
≤ Cs‖JsMf‖L2‖g‖L∞+‖JsMg‖L2‖f‖L∞ .

We have the following corollary which we will use later.

Corollary. Let M be either R or T.

(a) If s ≥ 1, then we have ‖JsM (u3)‖. ‖u‖2L∞‖J
s
Mu‖L2+‖u‖L∞‖∂u‖L∞‖Js−1M u‖L2 .

(b) If s ∈ (0, 1), then we have ‖JsM (u3)‖. ‖u‖2L∞‖J
s
Mu‖L2 .
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3.2 Dispersive Estimates

For integers k = 0, 1, . . . we define the operators Qkx, Q
k
y , Q̃

k
x, Q̃

k
y on H∞(R× T) by

Q̂kxg(ξ, n) = 1[2k−1,2k)(|ξ|) if k ≥ 1

with

Q̂0
xg(ξ, n) = 1[0,1)(|ξ|)

and

Q̂kyg(ξ, n) = 1[2k−1,2k)(|n|) if k ≥ 1

with

Q̂0
yg(ξ, n) = 1[0,1)(|n|).

Also, Q̃kx =
∑k
k′=0Q

k′
x , Q̃

k
y =

∑k
k′=0Q

k′
y , k ≥ 1.

By slight abuse of notation, we define the operators Qkx, Q
k
y , Q̃

k
x, Q̃

k
y on H∞(T× T) by

Q̂kxg(m,n) = 1[2k−1,2k)(|m|) if k ≥ 1

with

Q̂0
xg(m,n) = 1[0,1)(|m|)

and

Q̂kyg(m,n) = 1[2k−1,2k)(|n|) if k ≥ 1

with

Q̂0
yg(m,n) = 1[2k−1,2k)(|n|).

Also, Q̃kx =
∑k
k′=0Q

k′
x , Q̃

k
y =

∑k
k′=0Q

k′
y , k ≥ 1 .

We are stating the dispersion estimates for the partially periodic and fully periodic cases
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that appear in Kenig and Ionescu [20].

Theorem 3.2.1. For t ∈ R let W(3)(t) denote the operator on H∞(R × T) defined by the

Fourier multiplier (ξ, n) 7→ e
i(ξ3+n2

ξ )t
. Assume φ ∈ H∞(R × T). Then for any ε > 0, we

have

‖W(3)(t)Q̃
2j
y Q

j
xφ‖L2

2−j
L∞xy
≤ Cε2

εj‖Q̃2j
y Q

j
xφ‖L2

xy
(3.1)

and

‖W(3)(t)Q
2j+k
y Q

j
xφ‖L2

2−j−k
L∞xy
≤ Cε2

εj‖Q2j+k
y Q

j
xφ‖L2

xy
(3.2)

for any integers j ≥ 0 and k ≥ 1.

Theorem 3.2.2. For t ∈ R let W̃(3)(t) denote the operator on H∞(T × T) defined by the

Fourier multiplier (m,n) 7→ ei(m
3+n2

m )t.Assume φ ∈ H∞(T × T). Then for any ε > 0, we

have

‖W̃(3)(t)Q̃
2j
y Q

j
xφ‖L2

2−j
L∞xy
≤ Cε2

(38+
ε
2 )j‖Q̃2j

y Q
j
xφ‖L2

xy
(3.3)

and

‖W̃(3)(t)Q
2j+k
y Q

j
xφ‖L2

2−j−k
L∞xy
≤ Cε2

(38+
ε
2 )j‖Q2j+k

y Q
j
xφ‖L2

xy
(3.4)

for any integers j ≥ 0 and k ≥ 1.

3.3 Linear Estimate

We continue by adapting the argument in [20] to get the linear estimates.

Proposition 2. Assume N ≥ 4, u ∈ C1([−T, T ] : H−N−1(R × T)), f ∈ C([−T, T ] :

H−N (R× T)) with T ∈ [0, 12 ] and

[∂t + ∂3x − ∂−1x ∂2y ]u = ∂xf on R× T× [−T, T ].

34



Then for any ε > 0, we have

‖u‖L2
TL
∞
xy
≤ Cε[‖J1+εx u‖L∞T L2

xy
+‖J−1x J1+εy u‖L∞T L2

xy
+‖J1+εx Jεyf‖L1

TL
2
xy

].

Proof. Without loss of generality, we may assume that u ∈ C1([−T, T ] : H∞(R × T)) and

f ∈ C([−T, T ] : H∞(R× T)). It suffices to prove that if, for ε > 0,

‖Q̃2j
y Q

j
xu‖L2

TL
∞
xy
≤ Cε2

− εj2
[
‖J1+εx u‖L∞T L2

xy
+‖J1+εx f‖L1

TL
2
xy

]
(3.5)

and

‖Q2j+k
y Q

j
xu‖L2

TL
∞
xy
≤ Cε2

− ε(j+k)2

[
‖J−1x J1+εy u‖L∞T L2

xy
+‖J1xJεyf‖L1

TL
2
xy

]
(3.6)

for any integers j ≤ 0 and k ≤ 1. For (3.5), we partition the interval [−T, T ] into 2j equal

subintervals of length 2T2−j , denoted by [aj,l, aj,l+1), l = 1, . . . , 2j . By Duhamel’s formula,

for t ∈ [aj,l, aj,l+1],

u(t) = W(3)(t− aj,l)[u(aj,l)] +

∫ t

aj,l

W(3)(t− s)[∂xf(s)]ds.

It follows from the dispersive estimate (3.1) that

‖1[aj,l,aj,l+1)
(t)Q̃

2j
y Q

j
xu‖L2

TL
∞
xy

≤ Cε‖1[aj,l,aj,l+1)
(t)W(3)(t− aj,l)Q̃

2j
y Q

j
xu(aj,l)‖L2

TL
∞
xy

+ Cε‖1[aj,l,aj,l+1)
(t)

∫ t

aj,l

W(3)(s)Q̃
2j
y Q

j
x∂xf(s)ds‖L2

TL
∞
xy

. Cε2
εj
2 ‖Q̃2j

y Q
j
xu(aj,l)‖L2

xy

+ Cε2
εj
2 2j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xf‖L1

TL
2
xy
.

(3.7)
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For the first term of the right-hand side of (3.7), we have

2j∑
l=1

2
εj
2 ‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xu(aj,l)‖L2

xy

.
2j∑
l=1

2
εj
2 2−(1+ε)j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xJ

1+ε
x u(aj,l)‖L2

xy

. 2j2
εj
2 2−(1+ε)j‖Q̃2j

y Q
j
xJ

1+ε
x u‖L∞T L2

xy

. 2−
εj
2 ‖J1+εx u‖L∞T L2

xy
.

(3.8)

For the second term of the right-hand side of (3.7) we have

2j∑
l=1

2
εj
2 ‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xf‖L1

TL
2
xy

.
2j∑
l=1

2
εj
2 2j2−(1+ε)j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xJ

1+ε
x f‖L1

TL
2
xy

. 2−
εj
2

2j∑
l=1

‖1[aj,l,aj,l+1)
(t)Q̃

2j
y Q

j
xJ

1+ε
x f‖L1

TL
2
xy

. 2−
εj
2 ‖Q̃2j

y Q
j
xJ

1+ε
x f‖L1

TL
2
xy

. 2−
εj
2 ‖J1+εx f‖L1

TL
2
xy
.

(3.9)

Therefore, (3.8) and (3.9) give (3.5).

For (3.6), we partition the interval [−T, T ] into 2j+k equal subintervals of length 2T2−j−k,

denoted by [bj,l, bj,l+1), l = 1, . . . , 2j+k. By Duhamel’s formula, for t ∈ [bj,l, bj,l+1],

u(t) = W(3)(t− bj,l)[u(bj,l)] +

∫ t

bj,l

W(3)(t− s)[∂xf(s)]ds.
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It follows from the dispersive estimate (3.2) that

‖1[bj,l,bj,l+1)
(t)Q

2j+k
y Q

j
xu‖L2

TL
∞
xy

≤ Cε‖1[bj,l,bj,l+1)
(t)W(3)(t− bj,l)Q

2j+k
y Q

j
xu(bj,l)‖L2

TL
∞
xy

+ ‖1[bj,l,bj,l+1)
(t)

∫ t

bj,l

W(3)(s)Q
2j+k
y Q

j
x∂xf(s)ds‖L2

TL
∞
xy

. Cε2
εj
2 ‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xu(bj,l)‖L2

xy

+ Cε2
εj
2 2j‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xf‖L1

TL
2
xy
.

(3.10)

For the first term of the right-hand side of (3.10), we have

2j+k∑
l=1

2
εj
2 ‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xu(bj,l)‖L2

xy

.
2j+k∑
l=1

2
εj
2 2j2−(1+

ε
2 )(2j+k)‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xJ
−1
x J

1+ ε
2

y u(bj,l)‖L2
xy

. 2j+k2
εj
2 2j2−(1+

ε
2 )(2j+k)‖Q2j+k

y Q
j
xJ
−1
x J

1+ ε
2

y u‖L∞T L2
xy

. 2−
ε(j+k)

2 ‖J−1x J
1+ ε

2
y u‖L∞T L2

xy
.

(3.11)

For the second term of the right-hand side of (3.10) we have

2j+k∑
l=1

2
εj
2 2j‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xf‖L1

TL
2
xy

.
2j+k∑
l=1

2
εj
2 2j2−j2−

ε
2 (2j+k)‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xJ

1
xJ

ε
2
y f‖L1

TL
2
xy

. 2−
ε(j+k)

2

2j+k∑
l=1

‖1[bj,l,bj,l+1)
(t)Q

2j+k
y Q

j
xJ

1
xJ

ε
2
y f‖L1

TL
2
xy

. 2−
ε(j+k)

2 ‖Q2j+k
y Q

j
xJ

1
xJ

ε
2
y f‖L1

TL
2
xy

. 2−
ε(j+k)

2 ‖J1xJ
ε
2
y f‖L1

TL
2
xy
.

(3.12)
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Therefore, (3.11) and (3.12) give (3.6).

Proposition 3. Assume N ≥ 4, u ∈ C1([−T, T ] : H−N−1(T × T)), f ∈ C([−T, T ] :

H−N (T× T)) with T ∈ [0, 12 ] and

[∂t + ∂3x − ∂−1x ∂2y ]u = ∂xf on T× T× [−T, T ].

Then for any ε > 0, we have

‖u‖L2
TL
∞
xy
≤ Cε[‖J

11
8 +ε
x u‖L∞T L2

xy
+‖J−

5
8

x J1+εy u‖L∞T L2
xy

+‖J
11
8 +ε
x Jεyf‖L1

TL
2
xy

].

Proof. Without loss of generality, we may assume that u ∈ C1([−T, T ] : H∞(T × T)) and

f ∈ C([−T, T ] : H∞(T× T)). It suffices to prove that if, for ε > 0,

‖Q̃2j
y Q

j
xu‖L2

TL
∞
xy
≤ Cε2

− εj2
[
‖J

11
8 +ε
x u‖L∞T L2

xy
+‖J

11
8 +ε
x f‖L1

TL
2
xy

]
(3.13)

and

‖Q2j+k
y Q

j
xu‖L2

TL
∞
xy
≤ Cε2

− ε(j+k)2

[
‖J−

5
8

x J1+εy u‖L∞T L2
xy

+‖J
11
8
x Jεyf‖L1

TL
2
xy

]
(3.14)

for any integers j ≤ 0 and k ≤ 1. For (3.13), we partition the interval [−T, T ] into 2j equal

subintervals of length 2T2−j , denoted by [aj,l, aj,l+1), l = 1, . . . , 2j . By Duhamel’s formula,

for t ∈ [aj,l, aj,l+1],

u(t) = W̃(3)(t− aj,l)[u(aj,l)] +

∫ t

aj,l

W̃(3)(t− s)[∂xf(s)]ds.
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It follows from the dispersive estimate (3.3) that

‖1[aj,l,aj,l+1)
(t)Q̃

2j
y Q

j
xu‖L2

TL
∞
xy

≤ Cε‖1[aj,l,aj,l+1)
(t)W̃(3)(t− aj,l)Q̃

2j
y Q

j
xu(aj,l)‖L2

TL
∞
xy

+ Cε‖1[aj,l,aj,l+1)
(t)

∫ t

aj,l

W̃(3)(s)Q̃
2j
y Q

j
x∂xf(s)ds‖L2

TL
∞
xy

. Cε2
(38+

ε
2 )j‖Q̃2j

y Q
j
xu(aj,l)‖L2

xy

+ Cε2
(38+

ε
2 )j2j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xf‖L1

TL
2
xy
.

(3.15)

For the first term of the right-hand side of (3.15), we have

2j∑
l=1

2(
3
8+

ε
2 )j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xu(aj,l)‖L2

xy

.
2j∑
l=1

2(
3
8+

ε
2 )j2−(

11
8 +ε)j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xJ

11
8 +ε
x u(aj,l)‖L2

xy

. 2j2(
3
8+

ε
2 )j2−(

11
8 +ε)j‖Q̃2j

y Q
j
xJ

11
8 +ε
x u‖L∞T L2

xy

. 2−
εj
2 ‖J

11
8 +ε
x u‖L∞T L2

xy
.

(3.16)

For the second term of the right-hand side of (3.15) we have

2j∑
l=1

2(
3
8+

ε
2 )j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xf‖L1

TL
2
xy

.
2j∑
l=1

2(
3
8+

ε
2 )j2j2−(

11
8 +ε)j‖1[aj,l,aj,l+1)

(t)Q̃
2j
y Q

j
xJ

11
8 +ε
x f‖L1

TL
2
xy

. 2−
εj
2

2j∑
l=1

‖1[aj,l,aj,l+1)
(t)Q̃

2j
y Q

j
xJ

11
8 +ε
x f‖L1

TL
2
xy

. 2−
εj
2 ‖Q̃2j

y Q
j
xJ

11
8 +ε
x f‖L1

TL
2
xy

. 2−
εj
2 ‖J

11
8 +ε
x f‖L1

TL
2
xy
.

(3.17)
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Therefore, (3.16) and (3.17) give (3.13).

For (3.14), we partition the interval [−T, T ] into 2j+k equal subintervals of length

2T2−j−k, denoted by [bj,l, bj,l+1), l = 1, . . . , 2j+k. By Duhamel’s formula, for t ∈ [bj,l, bj,l+1],

u(t) = W̃(3)(t− bj,l)[u(bj,l)] +

∫ t

bj,l

W̃(3)(t− s)[∂xf(s)]ds.

It follows from the dispersive estimate (3.4) that

‖1[bj,l,bj,l+1)
(t)Q

2j+k
y Q

j
xu‖L2

TL
∞
xy

≤ Cε‖1[bj,l,bj,l+1)
(t)W̃(3)(t− bj,l)Q

2j+k
y Q

j
xu(bj,l)‖L2

TL
∞
xy

+ ‖1[bj,l,bj,l+1)
(t)

∫ t

bj,l

W̃(3)(s)Q
2j+k
y Q

j
x∂xf(s)ds‖L2

TL
∞
xy

. Cε2
(38+

ε
2 )j‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xu(bj,l)‖L2

xy

+ Cε2
(38+

ε
2 )j2j‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xf‖L1

TL
2
xy
.

(3.18)

For the first term of the right-hand side of (3.18), we have

2j+k∑
l=1

2(
3
8+

ε
2 )j‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xu(bj,l)‖L2

xy

.
2j+k∑
l=1

2(
3
8+

ε
2 )j2

5
8j2−(1+

ε
2 )(2j+k)‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xJ
−5

8
x J

1+ ε
2

y u(bj,l)‖L2
xy

. 2j+k2(
3
8+

ε
2 )j2

5
8j2−(1+

ε
2 )(2j+k)‖Q2j+k

y Q
j
xJ
−5

8
x J

1+ ε
2

y u‖L∞T L2
xy

. 2−
ε(j+k)

2 ‖J−
5
8

x J
1+ ε

2
y u‖L∞T L2

xy
.

(3.19)
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For the second term of the right-hand side of (3.18) we have

2j+k∑
l=1

2(
3
8+

ε
2 )j2j‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xf‖L1

TL
2
xy

.
2j+k∑
l=1

2(
3
8+

ε
2 )j2j2−

11
8 j2−

ε
2 (2j+k)‖1[bj,l,bj,l+1)

(t)Q
2j+k
y Q

j
xJ

11
8
x J

ε
2
y f‖L1

TL
2
xy

. 2−
ε(j+k)

2

2j+k∑
l=1

‖1[bj,l,bj,l+1)
(t)Q

2j+k
y Q

j
xJ

11
8
x J

ε
2
y f‖L1

TL
2
xy

. 2−
ε(j+k)

2 ‖Q2j+k
y Q

j
xJ

11
8
x J

ε
2
y f‖L1

TL
2
xy

. 2−
ε(j+k)

2 ‖J
11
8
x J

ε
2
y f‖L1

TL
2
xy
.

(3.20)

Therefore, (3.19) and (3.20) give (3.14).

3.4 A Priori Estimates

We are going to bound fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy
.

Lemma 8. Suppose u ∈ C([−T, T ] : Hs,s(M × T)) satisfies the initial value problems (1.9)

or (1.10), with initial data φ ∈ Hs,s(M × T) (here, M is either R or T). Then we have

‖u‖L∞T Hs,s. ‖φ‖Hs,sexp(3fu(T )).

Proof. First,

βf (t) = ‖f(t)‖2L∞xy+‖∂xf(t)‖2L∞xy+‖∂yf(t)‖2L∞xy

for a function f . If we apply to any of (1.9), (1.10), the operator Jsx and then we multiply
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by Jsxu, we get by integration by parts

d

dt
‖Jsxu‖2L2

xy
=

∫
JsxuJ

s
x(u2∂xu) =

∫
Jsxu[Jsx(u2∂xu)− u2Jsx∂xu] +

∫
u2JsxuJ

s
x∂xu

. ‖Jsxu‖2L2
xy

(‖u‖2L∞xy+‖u‖L∞xy‖∂xu‖L∞xy) . ‖Jsxu‖2L2
xy
βu(t)

therefore, by Grönwall’s inequality, we get that

‖Jsxu‖L∞T L2
xy
. ‖Jsxφ‖L2

xy
exp(fu(T )2). (3.21)

Again, if we apply to any of (1.9), (1.10), the operator Jsy and then we multiply by Jsyu, we

obtain integrating by parts,

d

dt
‖Jsyu‖2L2

xy
=

∫
JsyuJ

s
y (u2∂xu) =

∫
Jsyu[Jsy (u2∂xu)− u2Jsy∂xu] +

∫
u2JsyuJ

s
y∂xu

and we denote (I) =
∫
Jsyu[Jsy (u2∂xu) − u2Jsy∂xu] and (II) =

∫
u2JsyuJ

s
y∂xu. For the first

term, by the Kato-Ponce commutator estimates we have

(I) . ‖Jsyu‖L2
xy
‖Jsy (u2∂xu)− u2Jsy∂xu‖L2

xy

. ‖Jsyu‖L2
xy

[‖∂xu‖L2
xy
‖Jsyu‖L2

xy
‖u‖L∞xy+(‖u‖2L∞xy+‖u‖L∞xy‖∂yu‖L∞xy)‖Js−1y ∂xu‖L2

xy
]

. ‖Jsyu‖2L2
xy

(‖∂xu‖L∞xy‖u‖L∞xy+‖u‖2L∞xy+‖u‖L∞xy‖∂yu‖L∞xy)

+ ‖Jsyu‖L2
xy
‖Jsxu‖L2

xy
(‖u‖2L∞xy+‖u‖L∞xy‖∂yu‖L∞xy)

. ‖Jsy‖2L2
xy
βu(t) + ‖Jsyu‖L2

xy
‖Jsxu‖L2

xy
βu(t)

. ‖Jsyu‖2L2
xy
βu(t) + ‖Jsyu‖L2

xy
‖φ‖Hs,sexp(fu(T )2)βu(t)

By integration by parts, we get that

(II) . ‖Jsyu‖2L2
xy
βu(t).
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Therefore, we get

d

dt
‖Jsyu‖2L2

xy
. ‖Jsyu‖2βu(t) + ‖Jsyu‖L2

xy
‖φ‖Hs,sexp(fu(T )2)βu(t)

so

d

dt
‖Jsyu‖L2

xy
. (‖Jsyu‖L2

xy
+‖φ‖Hs,sexp(fu(T )2)βu(t)

hence, by Grönwall’s inequality, we get

‖Jsyu‖L2
xy

. (‖Jsyφ‖L2
xy

+‖φ‖Hs,sexp(fu(T )2)exp(fu(T )2)

. ‖φ‖Hs,s(1 + exp(fu(T )2))exp(fu(T )2)

(3.22)

which yields that ‖u‖L∞T Hs,s. ‖φ‖Hs,s
xy

exp(2fu(T )2).

Proposition 4. Let s > 2 and u0 ∈ Hs,s(R × T). Suppose u ∈ C([−T, T ] : Hs,s(R × T))

satisfies the IVP (1.9). Then u, ∂xu, ∂yu ∈ L2([−T, T ];L∞(R× T)). Moreover,

fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy
≤ CT

for a suitable small T , if ‖u0‖Hs,s is small enough.

Proof. From now on s > 2 + 2δ. By the linear estimate in Proposition 2, we have

‖u‖L2
TL
∞
xy
. ‖J1+δx u‖L∞T L2

xy
+‖J−1x J1+δy u‖L∞T L2

xy
+‖J1+δx Jδy (u3)‖L1

TL
2
xy

and

‖∂xu‖L2
TL
∞
xy
. ‖J2+δx u‖L∞T L2

xy
+‖J1+δy u‖L∞T L2

xy
+‖J2+δx Jδy (u3)‖L1

TL
2
xy
.

We observe that

‖J2+δx u‖L∞T L2
xy
≤ ‖Jsxu‖L∞T L2

xy
≤ ‖u‖L∞T H

s,s
xy
,
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‖J1+δy u‖L∞T L2
xy
. ‖Jsyu‖L∞T L2

xy
. ‖u‖L∞T H

s,s
xy
,

and

‖J2+δx Jδy (u3)‖L∞T L2
xy

. ‖J2+2δ
x (u3)‖L∞T L2

xy
+‖J2+2δ

y (u3)‖L∞T L2
xy

. ‖Jsx(u3)‖L∞T L2
xy

+‖Jsy (u3)‖L∞T L2
xy

so by the corollary of the Kato-Ponce commutator estimates

‖Jsx(u3)‖L2
xy
. ‖Jsxu‖L2

xy
‖u‖2L∞xy+‖Jsxu‖L2

xy
‖u‖L∞xy‖∂xu‖L∞xy. βu(t)‖Jsxu‖L2

xy

and

‖Jsy (u3)‖L2
xy
. ‖Jsyu‖L2

xy
‖u‖2L∞xy+‖Jsyu‖L2

xy
‖u‖L∞xy‖∂yu‖L∞xy. βu(t)‖Jsyu‖L2

xy

so therefore

‖J2+δx Jδy (u3)‖L1
TL

2
xy
. fu(T )2‖u‖L∞T H

s,s
xy
.

Also,

‖∂yu‖L2
TL
∞
xy
. ‖J1+δx ∂yu‖L∞T L2

xy
+‖J−1x J2+δy u‖L∞T L2

xy
+‖J1+δx Jδy∂y(u3)‖L1

TL
2
xy
.

By the arithmetic-geometric inequality, we also have that

‖J1+δx ∂yu‖L∞T L2
xy

. ‖Jsxu‖L∞T L2
xy

+‖J
s

s−1−δ
y u‖L∞T L2

xy
. ‖Jsxu‖L∞T L2

xy
+‖Jsyu‖L∞T L2

xy

. ‖u‖L∞T H
s,s
xy

the second inequality being true as s− 1− δ > 1. We also have

‖J−1x J2+δy u‖L∞T L2
xy
. ‖Jsyu‖L∞T L2

xy
. ‖u‖L∞T H

s,s
xy
.

44



Since

‖J1+δx Jδy∂y(u3)‖L2
xy
. ‖J1+δx J1+δy (u3)‖L2

xy
. ‖J2+2δ

x (u3)‖L∞T L2
xy

+‖J2+2δ
y (u3)‖L∞T L2

xy

the corollary of the Kato-Ponce commutator estimates gives

‖J1+δx Jδy∂y(u3)‖L2
xy
. βu(t)(‖Jsxu‖L2

xy
+‖Jsxu‖L2

xy
).

So we get from the previous estimates ‖J1+δx ∂y(u3)‖L1
TL

2
xy
. fu(T )2‖u‖L∞T H

s,s
xy
.

Hence,

fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy

. ‖u‖L∞T H
s,s
xy

(1 + fu(T )2).

Together by the previous lemma,

fu(T ) . ‖φ‖Hs,s(1 + fu(T )2)exp(2fu(T )2)

and therefore, if ‖φ‖Hs,s
xy

is small enough, by a continuity argument, we get fu(T ) . C for

T sufficiently small.

Proposition 5. Let s > 19
8 and u0 ∈ Hs,s(T × T). Suppose u ∈ C([−T, T ] : Hs,s(T × T))

satisfies the IVP (1.10). Then u, ∂xu, ∂yu ∈ L2([−T, T ];L∞(T× T)). Moreover,

fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy
≤ CT

for a suitable small T , if ‖u0‖Hs,s is small enough.

Proof. From now on s > 19
8 + 2δ.
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By the linear estimate in Proposition 3, we have

‖u‖L2
TL
∞
xy
. ‖J

11
8 +δ
x u‖L∞T L2

xy
+‖J−

5
8

x J1+δy u‖L∞T L2
xy

+‖J
11
8 +δ
x Jδy (u3)‖L1

TL
2
xy

and

‖∂xu‖L2
TL
∞
xy
. ‖J

19
8 +δ
x u‖L∞T L2

xy
+‖J

3
8
x J

1+δ
y u‖L∞T L2

xy
+‖J

19
8 +δ
x Jδy (u3)‖L1

TL
2
xy
.

By the estimates,

‖J
19
8 +δ
x u‖L∞T L2

xy
≤ ‖Jsxu‖L∞T L2

xy
≤ ‖u‖L∞T H

s,s
xy
,

‖J
3
8
x J

1+δ
y u‖L∞T L2

xy
. ‖J

11
8 +δ
x u‖L∞T L2

xy
+‖J

11
8 +δ
y u‖L∞T L2

xy
. ‖u‖L∞T H

s,s
xy
,

and

‖J
19
8 +δ
x Jδy (u3)‖L∞T L2

xy
. ‖J

19
8 +2δ
x (u3)‖L∞T L2

xy
+‖J

19
8 +2δ
y (u3)‖L∞T L2

xy

. ‖Jsx(u3)‖L∞T L2
xy

+‖Jsy (u3)‖L∞T L2
xy

so by the corollary of the Kato-Ponce commutator estimates

‖J
19
8 +2δ
x (u3)‖L2

xy
. ‖Jsxu‖L2

xy
‖u‖2L∞xy+‖Jsxu‖L2

xy
‖u‖L∞xy‖∂xu‖L∞xy. βu(t)‖Jsxu‖L2

xy

and

‖J
19
8 +2δ
x (u3)‖L2

xy
. ‖Jsyu‖L2

xy
‖u‖2L∞xy+‖Jsyu‖L2

xy
‖u‖L∞xy‖∂yu‖L∞xy. βu(t)‖Jsyu‖L2

xy

so therefore

‖J
19
8 +δ
x Jδy (u3)‖L1

TL
2
xy
. fu(T )2‖u‖L∞T H

s,s
xy
.
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Lastly,

‖∂yu‖L2
TL
∞
xy
. ‖J

11
8 +δ
x ∂yu‖L∞T L2

xy
+‖J−

5
8

x J2+δy u‖L∞T L2
xy

+‖J
11
8 +δ
x Jδy∂y(u3)‖L1

TL
2
xy
.

By the arithmetic-geometric inequality, we also have that

‖J
11
8 +δ
x ∂yu‖L∞T L2

xy
. ‖Jsxu‖L∞T L2

xy
+‖J

s

s−11
8 −δ

y u‖L∞T L2
xy

. ‖Jsxu‖L∞T L2
xy

+‖Jsyu‖L∞T L2
xy
. ‖u‖L∞T H

s,s
xy

the second inequality being true as s− 11
8 − δ > 1. We also have

‖J−
5
8

x J2+δy u‖L∞T L2
xy
. ‖Jsyu‖L∞T L2

xy
. ‖u‖L∞T H

s,s
xy
.

Since

‖J
11
8 +δ
x Jδy∂y(u3)‖L2

xy
. ‖J

11
8 +δ
x J1+δy (u3)‖L2

xy
. ‖J

19
8 +2δ
x (u3)‖L∞T L2

xy
+‖J

19
8 +2δ
y (u3)‖L∞T L2

xy

the corollary of the Kato-Ponce commutator estimates gives

‖J
11
8 +δ
x Jδy∂y(u3)‖L2

xy
. βu(t)(‖Jsxu‖L2

xy
+‖Jsxu‖L2

xy
).

So we get from the previous estimates ‖J
11
8 +δ
x ∂y(u3)‖L1

TL
2
xy
. fu(T )2‖u‖L∞T H

s,s
xy
.

Hence,

fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy

. ‖u‖L∞T H
s,s
xy

(1 + fu(T )2).
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Together with the previous lemma

fu(T ) . ‖φ‖Hs,s(1 + fu(T )2)exp(2fu(T )2)

and therefore, if ‖φ‖Hs,s
xy

is small enough, by a continuity argument, we get fu(T ) . C for

T sufficiently small.

3.5 Existence and Uniqueness

We start by stating a well-known local-wellposedness result from Iorio and Nunes (see [22],

Section 4):

Lemma 9. Assume φ ∈ H∞(M × T), where M is either R or T. Then there is T =

T (‖φ‖H3) > 0 and a solution u ∈ C([−T, T ] : H∞(M× T)) of the initial value problem


∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = φ(x, y).

The proof for R× T and T× T is the same as the proof in [22] for R× R.

We proceed to prove the local well-posedness result.

Theorem 3.5.1. The initial value problem (1.9) is locally well-posed in Hs,s(R×T), s > 2.

More precisely, given u0 ∈ Hs,s(R × T), s > 2, there exists T = T (‖u0‖Hs,s) and a unique

solution u to the IVP such that u ∈ C([0, T ] : Hs,s(R×T)), u, ∂xu, ∂yu ∈ L2TL
∞
xy. Moreover,

the mapping u0 → u in C([0, T ] : Hs,s(R× T)) is continuous.

Theorem 3.5.2. The initial value problem (1.10) is locally well-posedness in Hs,s(T×T), s >

19
8 . More precisely, given u0 ∈ Hs,s(T × T), s > 19

8 , there exists T = T (‖u0‖Hs,s) and a

unique solution u to the IVP such that u ∈ C([0, T ] : Hs,s(T × T)), u, ∂xu, ∂yu ∈ L2TL
∞
xy.

Moreover, the mapping u0 → u in C([0, T ] : Hs,s(T× T)) is continuous.
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We present the proof for existence and uniqueness in the case of the third order mKP-I

on R× T, since the other case is similar.

Proof. Let u0 ∈ Hs,s(R × T) and fixed u0,ε ∈ Hs,s(R × T) ∩H∞−1(R × T) such that ‖u0 −

u0,ε‖Hs,s→ 0 and ‖u0,ε‖Hs,s≤ 2‖u0‖Hs,s .

We know by the Iorio-Nunes local well-posedness result that u0,ε gives a unique solution

uε. We have by the a priori bound that ‖uε‖L2
TL
∞
xy

+‖∂xuε‖L2
TL
∞
xy

+‖∂yuε‖L2
TL
∞
xy
≤ CT and

by the previous result, sup0<t<T ‖uε‖Hs,s≤ CT .

Henceforth,

∂t‖uε − uε′‖2L2 =

∫
(uε − uε′)∂x(

u3ε
3
−
u3ε′

3
)

=

∫
∂x(uε − uε′) · (uε − uε′)

u2ε + uεuε′ + u2ε′

3
=

=

∫
(uε − uε′)2∂x[

u2ε + uεuε′ + u2ε′

3
]

≤ ‖uε − uε′‖2L2(‖uε‖2L∞xy+‖∂xuε‖2L∞xy+‖uε′‖2L∞xy+‖∂xuε′‖2L∞xy)

≤ (βuε(t) + βuε′ (t))‖uε − uε′‖
2
L2 .

and by Grönwall’s inequality and the a priori estimate

‖uε − uε′‖2L∞T L2
xy
.T ‖u0,ε − u0,ε′‖2L2

xy
,

hence sup0<t<T ‖uε−uε′‖L2
xy
→ 0, hence we can find u ∈ C([0, T ] : Hs′,s′(R×T))∩L∞([0, T ] :

Hs,s(R× T)) with s′ < s. The fact that u is a solution of the IVP is clear now. Uniqueness

also comes from the previous Grönwall’s inequality.
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3.6 Continuity with respect to time

We proceed by a standard Bona-Smith argument ([5]).

Definition 3.6.1. For φ ∈ Hs,s(R × T) with s > 2, let φk = P k
(3)
φ where P̂ k

(3)
g(ξ, n) =

ĝ(ξ, n) · 1[0,k](|ξ|) · 1[0,k](|n|). Let

h
(3)
φ (k) =

[∑
n∈Z

∫
|ξ|+|n|≥k

|φ̂(ξ, n)|2[(1 + ξ2)s + (1 + n2)s]dξ
]1
2
.

Clearly, h
(3)
φ is nondecreasing in k and limk→∞ h

(3)
φ (k) = 0. By Plancherel,

‖φ− φk‖L2
xy

= ‖φ̂− φ̂k‖L2
xy

=
[ ∑
|n|≥k

∫
|ξ|≥k

|φ̂(ξ, n)|2dξ
]1
2

≤
[∑
n∈Z

∫
|ξ|+|n|≥k

|φ̂(ξ, n)|(1 + ξ2)s + (1 + n2)s

k2s

]1
2 . k−sh(3)φ (k)

Definition 3.6.2. For φ ∈ Hs,s(T × T) with s > 19
8 , let φk = P̃ k

(3)
φ where

̂̃
P k
(3)
g(m,n) =

ĝ(m,n)·1[0,k](|m|)·1[0,k](|n|). Let h̃
(3)
φ (k) =

[ ∑
m∈Z

∑
n∈Z

|m|+|n|≥k

|φ̂(m,n)|2[(1+m2)s+(1+n2)s]
]1
2
.

Clearly, h̃
(3)
φ is nondecreasing in k and limk→∞ h̃

(3)
φ (k) = 0. By Plancherel,

‖φ− φk‖L2
xy

= ‖φ̂− φ̂k‖L2
xy

=
[ ∑
|n|≥k

∑
|m|≥k

|φ̂(m,n)|2
]1
2

≤
[ ∑
m,n∈Z,

∑
|m|+|n|≥k

|φ̂(m,n)|(1 +m2)s + (1 + n2)s

k2s

]1
2

. k−sh̃(3)φ (k)

In all the cases, from their respective definitions, we have that, if p ≥ s, then

‖Jpxφk‖L2
xy
. C(T, ‖φ‖Hs,s)kp−s and ‖Jpyφk‖L2

xy
. C(T, ‖φ‖Hs,s)kp−s.
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Since φk ∈ H∞, by local well-posedness result of Iorio and Nunes, they give rise to unique

solutions uk in H∞. The above estimates together with (3.21) and (3.22), if p ≥ s, we also

have

‖Jpxuk‖L∞T L2
xy
≤ C(T, ‖φ‖Hs,s)kp−s (3.23)

and

‖Jpyuk‖L∞T L2
xy
≤ C(T, ‖φ‖Hs,s)kp−s. (3.24)

Denote ω = uk − uk′ with k < k′. Now choose 0 ≤ q ≤ s. By using that ‖φ − φk‖L2
xy
.

k−sh(3)φ (k) for the R × T case and ‖φ − φk‖L2
xy
. k−sh̃(3)φ (k) for the T × T case, together

with the interpolation inequality,

‖Jqxω‖L∞T L2
xy
≤ ‖Jsxω‖

q
s
L∞T L

2
xy
‖ω‖1−

q
s

L∞T L
2
xy
. ‖ω‖1−

q
s

L∞T L
2
xy

it yields

‖Jqxω‖L∞T L2
xy
. kq−sh(3)φ (k)1−

q
s (3.25)

respectively,

‖Jqxω‖L∞T L2
xy
. kq−sh̃(3)φ (k)1−

q
s . (3.26)

Similarly, we get results for Jy, more precisely,

‖Jqyω‖L∞T L2
xy
. kq−sh(3)φ (k)1−

q
s (3.27)

respectively,

‖Jqyω‖L∞T L2
xy
. kq−sh̃(3)φ (k)1−

q
s . (3.28)
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Lemma 10. We have the following estimates:

a)

‖Jsxω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsxω(0)‖L2

xy

+ ‖Jsxω‖L∞T L2
xy
‖Js+1
x uk‖L∞T L2

xy
(‖ω‖2

L2
TL
∞
xy

+‖ω‖L2
TL
∞
xy
‖uk‖L2

TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
(‖ω‖L2

TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)‖uk‖L2
TL
∞
xy

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖2

L2
TL
∞
xy

]
.

b)

‖Jsyω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsyω(0)‖L2

xy

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L∞T L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L∞T L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L∞T L2

xy
‖uk‖L2

TL
∞
xy
‖∂yuk‖L2

TL
∞
xy

+ ‖Js+1
y uk‖L∞T L2

xy
(‖ω‖2

L∞T L
2
xy

+‖ω‖L∞T L2
xy
‖uk‖L∞T L2

xy
)
]
.

Proof.

∂tω + ∂3xω − ∂−1x ∂2yω + ω2∂xω + 3u2k∂xω + 3ukω∂xuk − 3ukω∂xω − 3ω2∂xuk = 0. (3.29)
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a) We apply Jsx to (3.29) and then we multiply by Jsxω, in order to get

d

dt
‖Jsxω‖2L2=

∫
Jsx(ω2∂xω)Jsxω + 3

∫
Jsx(u2k∂xω)Jsxω + 3

∫
Jsx(ukω∂xuk)Jsxω

− 3

∫
Jsx(ukω∂xω)Jsxω − 3

∫
Jsx(ω2∂xuk)Jsxω

and we will analyze each term in the sum.

We have (I) =
∫
Jsx(ω2∂xω)Jsxω, (II) =

∫
Jsx(u2k∂xω)Jsxω, (III) =

∫
Jsx(ukω∂xuk)Jsxω,

(IV ) =
∫
Jsx(ukω∂xω)Jsxω and (V ) =

∫
Jsx(ω2∂xuk)Jsxω.

For (I) =
∫
Jsx(ω2∂xω)Jsxω =

∫
[Jsx(ω2∂xω)− ω2Jsx∂xω]Jsxω +

∫
ω2Jsx∂xωJ

s
xω, and we

will denote (I)1 =
∫

[Jsx(ω2∂xω) − ω2Jsx∂xω]Jsxω and (I)2 =
∫
ω2Jsx∂xωJ

s
xω. For the

first one, we have by the Kato-Ponce commutator estimate

(I)1 ≤ ‖Jsxω‖L2
xy
‖Jsx(ω2∂xω)− ω2Jsx∂xω‖L2

xy

≤ ‖Jsxω‖L2
xy
‖ω‖L∞xy

[
‖∂xω‖L∞xy ·‖J

s
xω‖L2

xy
+(‖ω‖L∞xy+‖∂xω‖L∞xy)‖Js−1x ∂xω‖L2

xy

]
≤ ‖Jsxω‖2L2

xy
·βω(t)

and

(I)2 ≤ ‖Jsxω‖2L2
xy
‖ω‖L∞xy‖∂xω‖L∞xy≤ ‖J

s
xω‖2L2

xy
βω(t)

so (I) . ‖Jsxω‖2L2
xy
βω(t).

Now, (II) =
∫
Jsx(u2k∂xω)Jsxω =

∫
[Jsx(u2k∂xω) − u2kJ

s
x∂xω]Jsxω +

∫
u2kJ

s
x∂xωJ

s
xω and

we denote (II)1 =
∫

[Jsx(u2k∂xω)− u2kJ
s
x∂xω]Jsxω and (II)2 =

∫
u2kJ

s
x∂xωJ

s
xω. For the

first term we have by the Kato-Ponce commutator estimate

(II)1 . ‖Jsxω‖L2
xy
·‖Jsx(u2k∂xω)− u2kJ

s
x∂xω‖L2

xy

. ‖Jsxω‖L2
xy
‖uk‖L∞xy

[
‖∂xω‖L∞xy‖J

s
xuk‖L2

xy
+(‖uk‖L∞xy+‖∂xuk‖L∞xy)‖Js−1x ∂xω‖L2

xy
]

. ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy
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Also, we have

(II)2 . ‖Jsxω‖2L2
xy
‖uk‖L∞‖∂xuk‖L∞. ‖Jsxω‖2L2

xy
βuk(t)

Therefore,

(II) . ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy .

Let (III) =
∫
Jsx(ukω∂xuk)Jsxω =

∫
[Jsx(ukω∂xuk)−ukωJsx∂xuk]Jsxω+

∫
ukωJ

s
x∂xukJ

s
xω

and denote (III)1 =
∫

[Jsx(ukω∂xuk)−ukωJsx∂xuk]Jsxω and (III)2 =
∫
ukωJ

s
x∂xukJ

s
xω.

We have by the Kato-Ponce commutator estimate

(III)1 . ‖Jsxω‖L2
xy
‖Jsx(ukω∂xuk)− ukωJsx∂xuk‖L2

xy

. ‖Jsxω‖L2
xy

[
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Js−1x ω‖L2
xy

(‖uk‖L∞xy‖∂xuk‖L∞xy+‖∂xuk‖2L∞xy)

+ ‖Js−1x ∂xuk‖L2
xy

(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖uk‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy)
]

. ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy

Also, (III)2 . ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy and so therefore

(III) . ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy .

Again, (IV ) =
∫
Jsx(ukω∂xω)Jsxω =

∫
[Jsx(ukω∂xω)−ukωJsx∂xω]Jsxω+

∫
ukωJ

s
x∂xωJ

s
xω
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and we denote (IV )1 =
∫

[Jsx(ukω∂xω)−ukωJsx∂xω]Jsxω and (IV )2 =
∫
ukωJ

s
x∂xωJ

s
xω.

We have by the Kato-Ponce commutator estimate

(IV )1 . ‖Jsxω‖L2
xy
‖Jsx(ukω∂xω)− ukωJsx∂xω‖L2

xy

. ‖Jsxω‖L2
xy
‖∂xω‖L∞xy

[
‖Jsxω‖L2

xy
(‖uk‖L∞xy+‖∂xuk‖L∞xy) + ‖Jsxuk‖L2

xy
‖ω‖L∞xy

]
+ ‖Jsxω‖L2

xy

[
‖uk‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy) + ‖∂xuk‖L∞xy‖ω‖L∞xy)‖Js−1x ∂xω‖L2

xy

. ‖Jsxω‖2L2
xy

(‖uk‖L∞xy+‖∂xuk‖L∞xy)(‖∂xω‖L∞xy+‖ω‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy .

Also, (IV )2 . ‖Jsxω‖2L2
xy

(‖∂xuk‖L∞xy‖ω‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy) and so therefore

(IV ) . ‖Jsxω‖2L2
xy

(‖uk‖L∞xy+‖∂xuk‖L∞xy)(‖∂xω‖L∞xy+‖ω‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy .

Again, (V ) =
∫
Jsx(ω2∂xuk)Jsxω =

∫
[Jsx(ω2∂xuk) − ω2Jsx∂xuk]Jsxω +

∫
ω2Jsx∂xukJ

s
xω

and we denote (V )1 =
∫

[Jsx(ω2∂xuk) − ω2Jsx∂xuk]Jsxω and (V )2 =
∫
ω2Jsx∂xukJ

s
xω.

We have by the Kato-Ponce commutator estimate

(V )1 . ‖Jsxω‖L2
xy
‖Jsx(ω2∂xuk)− ω2Jsx∂xuk‖L2

xy

. ‖Jsxω‖L2
xy
‖ω‖L∞xy

[
‖∂xuk‖L∞xy‖J

s
xω‖L2

xy
+(‖ω‖L∞xy+‖∂xω‖L∞xy)‖Js−1x ∂xuk‖L2

xy

]
. ‖Jsxω‖2L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy).

Also, (V )2 . ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
‖ω‖2L∞xy and so therefore

(V ) . ‖Jsxω‖2L2
xy

(βuk(t) + βω(t))

+ ‖Jsxω‖L2
xy

(
‖Jsxuk‖L2

xy
‖ω‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy) + ‖Js+1

x uk‖L2
xy
‖ω‖2L∞xy

)
.
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Now, putting together all the terms we get that

d

dt
‖Jsxω‖2L2

xy
. (‖Jsxω‖2L2

xy
)(βω(t) + βuk(t))

+ ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖uk‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂xω‖L∞xy+‖ω‖2L∞xy)

(3.30)

We are using the following variant of Grönwall’s inequality:

Lemma 11. If α(t), β(t) are two non-negative functions, and d
dtu(t) ≤ u(t)β(t) +α(t)

for all t ∈ [0, T ] then

u(t) ≤ e
∫ t
0 β(s)ds

(
u(0) +

∫ t

0
α(s)ds

)
.

By putting u(t) = ‖Jsxω‖L2
xy

, β(t) = βω(t) + βuk(t) ≥ 0 and

α(t) = ‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxuk‖L2
xy

(‖ω‖L∞xy‖uk‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxuk‖L2
xy

(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂xω‖L∞xy+‖ω‖2L∞xy) ≥ 0
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by applying the lemma to (3.30) together with Cauchy-Schwarz we get

‖Jsxω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsxω(0)‖L2

xy

+ ‖Jsxω‖L∞T L2
xy
‖Js+1
x uk‖L∞T L2

xy
(‖ω‖2

L2
TL
∞
xy

+‖ω‖L2
TL
∞
xy
‖uk‖L2

TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
(‖ω‖L2

TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)‖uk‖L2
TL
∞
xy

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖2

L2
TL
∞
xy

]
.

b) We apply Jsy to (3.29) and then we multiply by Jsyω, in order to get

d

dt
‖Jsyω‖2L2=

∫
Jsy (ω2∂xω)Jsyω + 3

∫
Jsy (u2k∂xω)Jsyω + 3

∫
Jsy (ukω∂xuk)Jsyω

− 3

∫
Jsy (ukω∂xω)Jsyω − 3

∫
Jsy (ω2∂xuk)Jsyω

and we will analyze each term in the sum.

We have (I) =
∫
Jsy (ω2∂xω)Jsyω, (II) =

∫
Jsy (u2k∂xω)Jsyω, (III) =

∫
Jsy (ukω∂xuk)Jsyω,

(IV ) =
∫
Jsy (ukω∂xω)Jsyω and (V ) =

∫
Jsy (ω2∂xuk)Jsyω.

For (I) =
∫
Jsy (ω2∂xω)Jsyω =

∫
[Jsy (ω2∂xω)− ω2Jsy∂xω]Jsyω +

∫
ω2Jsy∂xωJ

s
yω, and we

will denote (I)1 =
∫

[Jsy (ω2∂xω) − ω2Jsy∂xω]Jsyω and (I)2 =
∫
ω2Jsy∂xωJ

s
yω. For the

first one, we have by the Kato-Ponce commutator estimate

(I)1 ≤ ‖Jsyω‖L2
xy
‖Jsy (ω2∂xω)− ω2Jsy∂xω‖L2

xy

≤ ‖Jsyω‖L2
xy
‖ω‖L∞xy

[
‖∂xω‖L∞xy ·‖J

s
yω‖L2

xy
+(‖ω‖L∞xy+‖∂yω‖L∞xy)‖Js−1y ∂xω‖L2

xy

]
≤ ‖Jsyω‖L2

xy

[
‖∂xω‖L∞xy ·‖J

s
yω‖L2

xy
‖ω‖L∞xy

+ (‖ω‖2L∞xy+‖ω‖L∞‖∂yω‖L∞xy)(‖Jsyω‖L2
xy

+‖Jsxω‖L2
xy

)
]

≤ (‖Jsyω‖2L2
xy

+‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
) · βω(t)
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and

(I)2 ≤ ‖Jsyω‖2L2
xy
‖ω‖L∞xy‖∂xω‖L∞xy≤ ‖J

s
yω‖2L2

xy
βω(t)

so (I) . (‖Jsyω‖2L2
xy

+‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
)βω(t).

Now, (II) =
∫
Jsy (u2k∂xω)Jsyω =

∫
[Jsy (u2k∂xω) − u2kJ

s
y∂xω]Jsyω +

∫
u2kJ

s
y∂xωJ

s
yω and

we denote (II)1 =
∫

[Jsy (u2k∂xω)− u2kJ
s
y∂xω]Jsyω and (II)2 =

∫
u2kJ

s
y∂xωJ

s
yω. For the

first term we have by the Kato-Ponce commutator estimate

(II)1 . ‖Jsyω‖L2
xy
·‖Jsy (u2k∂xω)− u2kJ

s
y∂xω‖L2

xy

. ‖Jsyω‖L2
xy
‖uk‖L∞xy

[
‖∂xω‖L∞xy‖J

s
yuk‖L2

xy
+(‖uk‖L∞xy+‖∂yuk‖L∞)‖Js−1x ∂xω‖L2

xy

]
. ‖Jsyω‖2L2

xy
βuk(t) + ‖Jsyω‖L2

xy
‖Jsyuk‖L2

xy
‖∂yω‖L∞xy‖uk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsyω‖L2

xy
‖∂yuk‖L∞xy‖uk‖L∞xy

where here we used that ‖Js−1x ∂xω‖L2
xy
≤ |Jsyω‖L2

xy
+|Jsxω‖L2

xy
. Also, we have

(II)2 . ‖Jsyω‖2L2
xy
‖uk‖L∞‖∂xuk‖L∞. ‖Jsyω‖2L2

xy
βuk(t)

Therefore,

(II) . ‖Jsyω‖2L2
xy
βuk(t) + ‖Jsyω‖L2

xy
‖Jsyuk‖L2

xy
‖∂yω‖L∞xy‖uk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsyω‖L2

xy
‖∂yuk‖L∞xy‖uk‖L∞xy

Let (III) =
∫
Jsy (ukω∂xuk)Jsyω =

∫
[Jsy (ukω∂xuk)−ukωJsy∂xuk]Jsyω+

∫
ukωJ

s
y∂xukJ

s
yω

and denote (III)1 =
∫

[Jsy (ukω∂xuk)−ukωJsy∂xuk]Jsyω and (III)2 =
∫
ukωJ

s
y∂xukJ

s
yω.
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We have by the Kato-Ponce commutator estimate

(III)1 . ‖Jsyω‖L2
xy
‖Jsy (ukω∂xuk)− ukωJsy∂xuk‖L2

xy

. ‖Jsyω‖L2
xy

[
‖Jsyuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Js−1y ω‖L2
xy

(‖∂yuk‖L∞xy‖∂xuk‖L∞xy+‖uk‖L∞xy‖∂xuk‖L∞xy)

+ ‖Js−1y ∂xuk‖L2
xy

(‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy)

+ ‖Jsyω‖L2
xy
‖uk‖L∞xy‖∂xuk‖L∞xy

]
. ‖Jsyω‖2L2

xy
βuk(t) + ‖Jsyω‖L2

xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy)

+ ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy

[
‖ω‖L∞xy(‖∂xuk‖L∞xy+‖‖∂yuk‖L∞xy) + ‖uk‖L∞xy‖∂yω‖L∞xy

]
.

Also,

(III)2 . ‖Jsyω‖L2
xy
‖Js+1
y uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy+‖Jsyω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy

and so therefore

(III) . ‖Jsyω‖2L2
xy
βuk(t) + ‖Jsyω‖L2

xy
‖Js+1
y uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy

+ ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖ω‖L∞xy‖uk‖L∞xy).

Again, (IV ) =
∫
Jsy (ukω∂xω)Jsyω =

∫
[Jsy (ukω∂xω)−ukωJsy∂xω]Jsyω+

∫
ukωJ

s
y∂xωJ

s
yω

and we denote (IV )1 =
∫

[Jsy (ukω∂xω)−ukωJsy∂xω]Jsyω and (IV )2 =
∫
ukωJ

s
y∂xωJ

s
yω.
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We have by the Kato-Ponce commutator estimate

(IV )1 . ‖Jsyω‖L2
xy
‖Jsy (ukω∂xω)− ukωJsy∂xω‖L2

xy

. ‖Jsyω‖L2
xy

[
‖∂xω‖L∞xy‖J

s−1
y ω‖L2

xy
(‖uk‖L∞xy+‖∂yuk‖L∞xy)

+ (‖uk‖L∞xy‖ω‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖∂yuk‖L∞xy‖ω‖L∞xy)‖Js−1y ∂xω‖L2
xy

+ ‖∂xω‖L∞xy‖J
s
yuk‖L2

xy
‖ω‖L∞xy

]
. ‖Jsyω‖2L2

xy
(βuk(t) + βω(t)) + ‖Jsyω‖L2

xy
‖Jsyuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
(‖uk‖L∞xy‖ω‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖∂yuk‖L∞xy‖ω‖L∞xy).

Also, (IV )2 . ‖Jsyω‖2L2
xy

(‖∂xuk‖L∞xy‖ω‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy) . ‖Jsyω‖2L2
xy

(βuk(t) +

βω(t)) and so therefore

(IV ) . ‖Jsyω‖2L2
xy

(βuk(t) + βω(t)) + ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
(‖uk‖L∞xy‖ω‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖∂yuk‖L∞xy‖ω‖L∞xy).

Again, (V ) =
∫
Jsy (ω2∂xuk)Jsyω =

∫
[Jsy (ω2∂xuk) − ω2Jsy∂xuk]Jsyω +

∫
ω2Jsy∂xukJ

s
yω

and we denote (V )1 =
∫

[Jsy (ω2∂xuk) − ω2Jsy∂xuk]Jsyω and (V )2 =
∫
ω2Jsy∂xukJ

s
yω.

We have by the Kato-Ponce commutator estimate

(V )1 . ‖Jsyω‖L2
xy
‖Jsy (ω2∂xuk)− ω2Jsy∂xuk‖L2

xy

. ‖Jsyω‖L2
xy
‖ω‖L∞xy

[
‖∂xuk‖L∞xy‖J

s
yω‖L2

xy
+(‖ω‖L∞xy+‖∂yω‖L∞xy)‖Js−1y ∂xuk‖L2

xy

]
. ‖Jsyω‖2L2

xy
(βuk(t) + βω(t)) + ‖Jsyω‖L2

xy
(‖Jsyuk‖L2

xy
+‖Jsxuk‖L2

xy
)βω(t).

Also,

(V )2 . ‖Jsyω‖L2
xy
‖Js+1
y uk‖L2

xy
‖ω‖2L∞xy+‖Jsyω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖2L∞xy
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and so therefore

(V ) . ‖Jsyω‖2L2
xy

(βuk(t) + βω(t)) + ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
βω(t)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
βω(t) + ‖Jsyω‖L2

xy
‖Js+1
x uk‖L2

xy
‖ω‖2L∞xy .

We make the following notation:

a(ω, uk) = ‖ω‖L∞xy(‖∂xuk‖L∞xy+‖∂yuk‖L∞xy) + ‖uk‖L∞xy‖∂yω‖L∞xy+βω(t),

b(ω, uk) = ‖ω‖L∞xy(‖∂yuk‖L∞xy+‖uk‖L∞xy) + ‖uk‖L∞xy‖∂yω‖L∞xy+βω(t),

c(ω, uk) = ‖ω‖L∞xy(‖∂yuk‖L∞xy+‖uk‖L∞xy)+‖uk‖L∞xy‖∂yω‖L∞xy+‖uk‖L∞xy‖∂yuk‖L∞xy+βω(t).

Now, putting together all the terms we get that

d

dt
‖Jsyω‖2L2

xy
. ‖Jsyω‖2L2

xy
(βω(t) + βuk(t))

+ ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
a(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
b(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
c(ω, uk)

+ ‖Jsyω‖L2
xy
‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy).

(3.31)

Using the variant of Grönwall’s inequality from part a) and applying it to (3.31) with

u(t) = ‖Jsyω‖L2
xy

, β(t) = βω(t) + βuk(t) ≥ 0 and

α(t) = ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
a(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
b(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
c(ω, uk)

+ ‖Jsyω‖L2
xy
‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy).
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we obtain

‖Jsyω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsyω(0)‖L2

xy

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy
‖uk‖L2

TL
∞
xy
‖∂yuk‖L2

TL
∞
xy

+ ‖Jsyω‖L∞T L2
xy
‖Js+1
y uk‖L∞T L2

xy
(‖ω‖2

L∞T L
2
xy

+‖ω‖L∞T L2
xy
‖uk‖L∞T L2

xy
)
]
.

Lemma 12. For p ≤ s, we have the following estimates:

(a)

‖Jpx[ω(u2k + ukuk′ + u2k′)]‖L1
TL

2
xy

. ‖Jpxω‖L∞T L2
xy

(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).

(b)

‖Jpy [ω(u2k + ukuk′ + u2k′)]‖L1
TL

2
xy

. ‖Jpyω‖L∞T L2
xy

(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).
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Proof. By using 7 part (c), we get that

‖Jpx[ω(u2k + ukuk′ + u2k′)]‖L2
xy

. ‖Jpxω‖L∞T L2
xy

(‖u2k + ukuk′ + u2k′‖L∞xy

‖ω‖L∞xy‖J
p
x(u2k + ukuk′ + u2k′)‖L2

xy
.

(3.32)

Observe that ‖u2k +ukuk′ +u2k′‖L∞xy. ‖uk‖
2
L∞xy

+‖uk′‖2L∞xy . Also, by 7 part (c) again, we have

‖Jpx(u2k + ukuk′ + u2k′)‖L2
xy
. (‖Jpxuk‖L2

xy
+‖Jpxuk′‖L2

xy
)(‖uk‖L∞+‖u2k′‖L∞xy).

By 3.21, we get ‖Jpxuk‖L2
xy

+‖Jpxuk′‖L2
xy
. ‖Jpxφk‖L2

xy
+‖Jpxφk′‖L2

xy
. ‖φ‖Hs,s . Combining

all the above observation together with 3.32, we get

‖Jpx[ω(u2k + ukuk′ + u2k′)]‖L2
xy

. ‖Jpxω‖L2
xy

(‖uk‖L∞xy+‖uk′‖L∞xy)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L∞xy+‖uk′‖L∞xy).

Integrating both sides from 0 to T and applying Cauchy-Schwarz inequality, we obtain the

conclusion of the lemma for Jx. The proof for Jy goes the same way.

Lemma 13. Suppose uk satisfies the IVP (1.9) with initial data φk = P k
(3)
φ. We have

‖ω‖L2
TL
∞
xy
. k(−1)−, ‖∂xω‖L2

TL
∞
xy
. k0− and ‖∂yω‖L2

TL
∞
xy
. k0− as k → ∞. In particular,

fω(T ) . k0− as k →∞.

Proof. Take δ < s−2
2 . By the linear estimate in Proposition 2 applied to 3.29,

‖ω‖L2
TL
∞
xy
. ‖J1+δx ω‖L∞T L2

xy
+‖J−1x J1+δy ω‖L∞T L2

xy
+‖J1+δx Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy
.

From 3.25 and 3.27 we have ‖J1+δx ω‖L∞T L2
xy
. k1+δ−sh(3)φ (k)1−

1+δ
s , together with

‖J−1x J1+δy ω‖L∞T L2
xy
. ‖J1+δy ω‖L∞T L2

xy
. k1+δ−sh(3)φ (k)1−

1+δ
s .
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For the last term, we observe

‖J1+δx Jδy [ω(u2k + ukuk′ + u2k′)]‖L1
TL

2
xy

. ‖J1+2δ
x [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

+ ‖J1+2δ
y [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

By Lemma 12 we get that

‖J1+2δ
x [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J1+2δ
x ω‖L∞T L2

xy
(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

and

‖J1+2δ
y [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J1+2δ
y ω‖L∞T L2

xy
(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).

By 3.25 and 3.27 we have ‖J1+2δ
x ω‖L∞T L2

xy
. k1+2δ−sh(3)φ (k)1−

1+2δ
s and ‖J1+2δ

y ω‖L∞T L2
xy
.

k1+2δ−sh(3)φ (k)1−
1+2δ
s . By combining the previous observations, we obtain

‖ω‖L2
TL
∞
xy

. k1+2δ−sh(3)φ (k)1−
1+2δ
s max(1, h

(3)
φ (k)

δ
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

Since we consider that ‖φ‖Hs,s is small enough, such that ‖φ‖Hs,s(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

) ≤
1
2 , we get that

‖ω‖L2
TL
∞
xy
. k1+2δ−sh(3)φ (k)1−

1+2δ
s max(1, h

(3)
φ (k)

δ
s )→ 0

as k →∞ since 1 + 2δ < s.
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The linear estimate 2 applied to ∂xω results in

‖∂xω‖L2
TL
∞
xy
. ‖J2+δx ω‖L∞T L2

xy
+‖J1+δy ω‖L∞T L2

xy
+‖J2+δx Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy
.

and by the same reasoning as above

‖∂xω‖L2
TL
∞
xy

. k2+2δ−sh(3)φ (k)1−
2+2δ
s max(1, h

(3)
φ (k)

δ
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

which, combined with the above fact that ‖ω‖L2
TL
∞
xy
. k1+2δ−sh(3)φ (k)1−

1+2δ
s max(1, h

(3)
φ (k)

δ
s ),

for k large enough, it gives us ‖∂xω‖L2
TL
∞
xy
. k2+2δ−s → 0 as k →∞ since 2 + 2δ < s.

Lastly, the linear estimate 2 applied to ∂yω results in

‖∂yω‖L2
TL
∞
xy
. ‖J1+δx J1yω‖L∞T L2

xy
+‖J2+δy ω‖L∞T L2

xy
+‖J1+δx J1+δy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy
.

and by the same reasoning as above

‖∂yω‖L2
TL
∞
xy

. k2+2δ−sh(3)φ (k)1−
2+2δ
s max(1, h

(3)
φ (k)

δ
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

which, combined with the above fact that ‖ω‖L2
TL
∞
xy
. k1+2δ−sh(3)φ (k)1−

1+2δ
s max(1, h

(3)
φ (k)

δ
s ),

for k large enough, it gives us ‖∂xω‖L2
TL
∞
xy
. k2+2δ−s → 0 as k →∞ since 2 + 2δ < s.

Lemma 14. Suppose uk satisfies the IVP (1.10) with initial data φk = P̃ k
(3)
φ. We have

‖ω‖L2
TL
∞
xy
. k(−1)−, ‖∂xω‖L2

TL
∞
xy
. k0− and ‖∂yω‖L2

TL
∞
xy
. k0− as k → ∞. In particular,

fω(T ) . k0− as k →∞.
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Proof. Take δ <
s−19

8
2 . By the linear estimate in Proposition 3 applied to 3.29,

‖u‖L2
TL
∞
xy
. [‖J

11
8 +δ
x u‖L∞T L2

xy
+‖J−

5
8

x J1+δy u‖L∞T L2
xy

+‖J
11
8 +δ
x Jδyf‖L1

TL
2
xy

].

From 3.26 and 3.28 we have ‖J
11
8 +δ
x ω‖L∞T L2

xy
. k

11
8 +δ−sh̃(3)φ (k)1−

11
8 +δ

s , together with

‖J−
5
8

x J1+δy ω‖L∞T L2
xy
. ‖J1+δy ω‖L∞T L2

xy
. k1+δ−sh̃(3)φ (k)1−

1+δ
s .

For the last term, we observe

‖J
11
8 +δ
x Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J
11
8 +2δ
x [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

+ ‖J
11
8 +2δ
y [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

By Lemma 12 we get that

‖J
11
8 +2δ
x [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J
11
8 +2δ
x ω‖L∞T L2

xy
(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

and

‖J
11
8 +2δ
y [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J
11
8 +2δ
y ω‖L∞T L2

xy
(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).

By 3.26 and 3.28 we have ‖J
11
8 +2δ
x ω‖L∞T L2

xy
. k

11
8 +2δ−sh̃(3)φ (k)1−

11
8 +2δ

s and ‖J
11
8 +δ
y ω‖L∞T L2

xy
.
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k
11
8 +2δ−sh̃(3)φ (k)1−

11
8 +2δ

s . By combining the previous observations, we obtain

‖ω‖L2
TL
∞
xy

. k
11
8 +2δ−sh̃(3)φ (k)1−

11
8 +2δ

s max(1, h̃
(3)
φ (k)

δ
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

Since we consider that ‖φ‖Hs,s is small enough, such that ‖φ‖Hs,s(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

) ≤
1
2 , we get that

‖ω‖L2
TL
∞
xy
. k

11
8 +2δ−sh̃(3)φ (k)1−

11
8 +2δ

s max(1, h̃
(3)
φ (k)

δ
s )→ 0

as k →∞ since 11
8 + 2δ < s.

The linear estimate 3 applied to ∂xω results in

‖∂xω‖L2
TL
∞
xy
. ‖J

19
8 +δ
x ω‖L∞T L2

xy
+‖J

3
8
x J

1+δ
y ω‖L∞T L2

xy
+‖J

19
8 +δ
x Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy
.

and by the same reasoning as above

‖∂xω‖L2
TL
∞
xy

. k
19
8 +2δ−sh̃(3)φ (k)1−

19
8 +2δ

s max(1, h̃
(3)
φ (k)

δ
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

which, combined with the above fact that

‖ω‖L2
TL
∞
xy
. k

11
8 +2δ−sh̃(3)φ (k)1−

11
8 +2δ

s max(1, h̃
(3)
φ (k)

δ
s ),

for k large enough, it gives us ‖∂xω‖L2
TL
∞
xy
. k

19
8 +2δ−s → 0 as k →∞ since 19

8 + 2δ < s.

Lastly, the linear estimate 3 applied to ∂yω results in

‖∂yω‖L2
TL
∞
xy
. ‖J

11
8 +δ
x J1yω‖L∞T L2

xy
+‖J2+δy ω‖L∞T L2

xy
+‖J

11
8 +δ
x J1+δy [ω(u2k+ukuk′+u

2
k′)]‖L1

TL
2
xy
.
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and by the same reasoning as above

‖∂yω‖L2
TL
∞
xy

. k
19
8 +2δ−sh̃(3)φ (k)1−

19
8 +2δ

s max(1, h̃
(3)
φ (k)

δ
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

which, combined with the above fact that

‖ω‖L2
TL
∞
xy
. k

19
8 +2δ−sh(3)φ (k)1−

19
8 +2δ

s max(1, h
(3)
φ (k)

δ
s ),

for k large enough, it gives us ‖∂yω‖L2
TL
∞
xy
. k

19
8 +2δ−s → 0 as k →∞ since 19

8 + 2δ < s.

Corollary. We have ‖ω‖Hs,s→ 0 as k →∞, where s > 2 for the initial value problem (1.9)

and s > 19
8 for the initial value problem (1.10).

Proof. From (3.23) and Lemmas 13 and 14 we get ‖Js+1
x uk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy
. k1 ·k(−1)− =

k0− and k0− → 0 as k →∞. From the Lemmas 13, 14 used in Lemma 10 we obtain

‖Jsxω‖L∞T L2
xy
. exp(

1

2
fuk(T )2 +

1

2
fω(T )2)(‖Jsxω(0)‖L∞T L2

xy
+Ck0−)→ 0

as k → ∞, where we used that ‖Jsxω(0)‖L∞T L2
xy
→ 0 as k → ∞ and the boundedness of

fuk(T ) and fω(T ) by 4 and 5.

From (3.24) and Lemmas 13 and 14 we get ‖Js+1
y uk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy
. k1 ·k(−1)− = k0−

and k0− → 0 as k →∞. From the Lemmas 13, 14 used in Lemma 10 together with the fact

we just proved, ‖Jsxω‖L∞T L2
xy
→ 0, we obtain

‖Jsyω‖L∞T L2
xy
. exp(

1

2
fuk(T )2 +

1

2
fω(T )2)(‖Jsyω(0)‖L∞T L2

xy
+Ck0−)→ 0

as k →∞ and the boundedness of fuk(T ) and fω(T ) by 4 and 5.
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Therefore, as ‖Jsxω‖L∞T L2
xy

+‖Jsyω‖L∞T L2
xy
→ 0 as k → ∞, it means that u ∈ C([0, T ] :

Hs,s).

3.7 Continuity of the flow map

We assume that T ∈ [0,∞) and φl → φ in Hs,s(M × T) as l → ∞. We are going to prove

that ul → u in C([−T, T ] : Hs,s(M ×T)) as l→∞, where ul and u are solutions of the the

initial value problem ∂tu+ ∂3xu− ∂−1x ∂2yu+ u2∂xu = 0 corresponding to initial data φl and

φ, for M = R and s > 2 and for M = T and s > 19
8 .

For k ≥ 1, let as before, φlk = P kφl and ulk ∈ C([−T, T ] : H∞) the corresponding

solutions. Denote by ωk = uk − u. By the same estimates from Lemma 10, Lemma 13,

Lemma 14 applied to ωk we get

‖uk − u‖Hs,s. exp(
1

2
fωk(T )2 +

1

2
fuk(T )2)(‖φk − φ‖Hs,s+C(T, ‖φk‖Hs,s , ‖φ‖Hs,s)k0−).

By the same reasoning, we have that

‖ulk − u
l‖Hs,s. exp(

1

2
fωlk

(T )2 +
1

2
fulk

(T )2)(‖φlk − φ
l‖Hs,s+C(T, ‖φlk‖Hs,s , ‖φl‖Hs,s)k0−).

Now, denote ωlk = ulk − uk. By the same estimates from Lemma 10, Lemma 13, Lemma 14

applied to ωlk

‖ulk − uk‖Hs,s. exp(
1

2
fωlk

(T )2 +
1

2
fulk

(T )2)(‖φlk − φk‖Hs,s+C(T, ‖φlk‖Hs,s , ‖φk‖Hs,s)k0−).

By the boundedness of fuk(T ), fulk
(T ), fωk(T ) and fωlk

(T ) by 4 and by 5 and the triangle
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inequality, we get

‖ul − u‖Hs,s ≤ ‖uk − u‖Hs,s+‖ulk − uk‖Hs,s+‖ulk − u
l‖Hs,s

. ‖φk − φ‖Hs,s+‖φlk − φk‖Hs,s+‖φlk − φ
l‖Hs,s

+ C(T, ‖φ‖Hs,s , ‖φk‖Hs,s , ‖φl‖Hs,s , ‖φlk‖Hs,s)k0−

which, by letting k → ∞, we get ‖ul − u‖Hs,s. ‖φl − φ‖Hs,s and proves the continuity of

the flow map.
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CHAPTER 4

LOCAL WELL-POSEDNESS FOR THE PARTIALLY

PERIODIC FIFTH ORDER MODIFIED

KADOMTSEV-PETVIASHVILI I EQUATION

4.1 Dispersive Estimates

Throughout this chapter, we will use the same notations from 3. For t ∈ R let W(5)(t)

denote the operator on H∞(R × T) defined by the Fourier multiplier (ξ, n) 7→ e
i(ξ5+n2

ξ )t
.

For integers k = 0, 1, . . . we define the operators Qkx, Q
k
y , Q̃

k
x, Q̃

k
y on H∞(R× T) by

Q̂kxg(ξ, n) = 1[2k−1,2k)(|ξ|) if k ≥ 1

with

Q̂0
xg(ξ, n) = 1[0,1)(|ξ|)

and

Q̂kyg(ξ, n) = 1[2k−1,2k)(|n|) if k ≥ 1

with

Q̂0
yg(ξ, n) = 1[2k−1,2k)(|n|).

Also, Q̃kx =
∑k
k′=0Q

k′
x , Q̃

k
y =

∑k
k′=0Q

k′
y , k = 1, . . .

We are stating the dispersion estimates for the partially periodic case that appear in

Kenig and Ionescu [20].

Theorem 4.1.1. Assume φ ∈ H∞(R× T). Then, for any ε > 0,

‖W(5)(t)Q̃
3j
y Q

j
xφ‖L2

2−j
L∞xy
≤ Cε2

(−1
2+ε)j‖Q̃2j

y Q
j
xφ‖L2

xy
(4.1)
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and

‖W(5)(t)Q
3j+k
y Q

j
xφ‖L2

2−2j−k
L∞xy
≤ Cε2

(−1
2+ε)j‖Q3j+k

y Q
j
xφ‖L2

xy
(4.2)

for any integers j ≥ 0 and k ≥ 1.

Remark. The same dispersive estimates are true for the operator W̃(5)(t) defined by the

Fourier multiplier (ξ, n) 7→ e
i(ξ5+αξ3+n2

ξ )t
.

4.2 Linear Estimate

Proposition 6. Assume N ≥ 4, u ∈ C1([−T, T ] : H−N−1(R × T)), f ∈ C([−T, T ] :

H−N (R× T)), T ∈ [0, 12 ] and [∂t − ∂5x − ∂−1x ∂2y ]u = ∂xf on R× T× [−T, T ]. Then, for any

1 ≤ p ≤ 2, we have

‖u‖LpTL∞xy. CpT
2−p
2p [‖J

5p−4
2p +ε

x u‖L∞T L2
xy

+‖J
−2p−1

p +ε
x J

3p−2
2p +ε

y u‖L∞T L2
xy

+‖Jp
′
x J

p−2
2p +ε
y u‖L1

TL
2
xy

]

where p′ = max(3p−42p + ε, 1p − ε).

Proof. Without loss of generality, we may assume that u ∈ C([−T, T ] : Y∞(R × T)) ∩

C1([−T, T ] : H∞(R× T)) and f ∈ C([−T, T ] : H∞(R× T)). It suffices to prove that if, for

ε > 0,

‖Q̃3j
y Q

j
xu‖LpTL∞xy≤ Cε2

− εj2 T
2−p
2p [‖J

5p−4
2p +ε

x u‖L∞T L2
xy

+‖J
3p−4
2p

x f‖L1
TL

2
xy

] (4.3)

and

‖Q3j+k
y Q

j
xu‖LpTL∞xy≤ Cε2

− ε(j+2k)
2 T

2−p
2p [‖J

−2p−1
2p +ε

x J
3p−2
2p +ε

y u‖L∞T L2
xy

+‖J
3p−4
2p

x f‖L1
TL

2
xy

(4.4)

for any integers j ≤ 0 and k ≤ 1. For 4.3, we partition the interval [−T, T ] into 22j equal

subintervals of length 2T2−2j , denoted by [aj,l, aj,l+1), l = 1, . . . , 22j . The term in the left-
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hand side of 4.3, using Hölder’s inequality, is dominated by

22j∑
l=1

‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xu‖LpTL∞xy

≤ C‖1[aj,l,aj,l+1)
(t)‖

L

2−p
2p
T L∞xy

‖
22j∑
l=1

‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xu‖L2

TL
∞
xy

≤ C2
−2−p

2p 2j
T

2−p
2p

22j∑
l=1

‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xu‖L2

TL
∞
xy
.

(4.5)

By Duhamel’s formula, for t ∈ [aj,l, aj,l+1],

u(t) = W(5)(t− aj,l)[u(aj,l)] +

∫ t

aj,l

W(5)(t− s)[∂xf(s)]ds.

It follows from the dispersive estimate 4.1 that

‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xu‖L2

TL
∞
xy

≤ Cε‖1[aj,l,aj,l+1)
(t)W(5)(t− aj,l)Q̃

3j
y Q

j
xu(aj,l)‖L2

TL
∞
xy

+ ‖1[aj,l,aj,l+1)
(t)

∫ t

aj,l

W(5)(s)Q̃
3j
y Q

j
x∂xf(s)ds‖L2

TL
∞
xy

. Cε2
(−1

2+
ε
2 )j‖Q̃3j

y Q
j
xu(aj,l)‖L2

xy

+ Cε2
(−1

2+
ε
2 )j2j‖1[aj,l,aj,l+1)

(t)Q̃
3j
y Q

j
xf‖L1

TL
2
xy
.

(4.6)
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For the first term of the right-hand side of 4.6, we have

22j∑
l=1

2
−2−p

2p 2j
2(−

1
2+

ε
2 )j‖1[aj,l,aj,l+1)

(t)Q̃
3j
y Q

j
xu(aj,l)‖L2

xy

.
22j∑
l=1

2
−2−p

2p 2j
2(−

1
2+

ε
2 )j2

−(5p−42p +ε)j‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xJ

5p−4
2p

x u(aj,l)‖L2
xy

. 22j2
−2−p

2p 2j
2(−

1
2+

ε
2 )j2

−(5p−42p +ε)j‖Q̃3j
y Q

j
xJ

5p−4
2p

x u‖L∞T L2
xy

. 2−
εj
2 ‖J

5p−4
2p

x u‖L∞T L2
xy
.

(4.7)

For the second term of the right-hand side of 4.6 we have

22j∑
l=1

2
−2−p

2p 2j
2(−

1
2+

ε
2 )j‖1[aj,l,aj,l+1)

(t)Q̃
3j
y Q

j
xf‖L1

TL
2
xy

.
22j∑
l=1

2
−2−p

2p 2j
2(−

1
2+

ε
2 )j2j2

−(3p−42p +ε)j‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xJ

3p−4
2p +ε

x f‖L1
TL

2
xy

. 2−
εj
2

22j∑
l=1

‖1[aj,l,aj,l+1)
(t)Q̃

3j
y Q

j
xJ

3p−4
2p +ε

x f‖L1
TL

2
xy

. 2−
εj
2 ‖Q̃3j

y Q
j
xJ

3p−4
2p +ε

x f‖L1
TL

2
xy

. 2−
εj
2 ‖J

3p−4
2p +ε

x f‖L1
TL

2
xy
.

(4.8)

Therefore, 4.7 and 4.8 give 4.3.

For 4.4, we partition the interval [−T, T ] into 22j+k equal subintervals of length 2T2−2j−k,

denoted by [bj,l, bj,l+1), l = 1, . . . , 22j+k. The term in the left-hand side of 4.4, using Hölder’s
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inequality, is dominated by

22j+k∑
l=1

‖1[bj,l,bj,l+1)
(t)Q

3j+k
y Q

j
xu‖LpTL∞xy

≤ C‖1[bj,l,bj,l+1)
(t)‖

L

2−p
2p
T L∞xy

‖
22j+k∑
l=1

‖1[bj,l,bj,l+1)
(t)Q

3j+k
y Q

j
xu‖L2

TL
∞
xy

≤ C2
−2−p

2p (2j+k)
T

2−p
2p

22j+k∑
l=1

‖1[aj,l,aj,l+1)
(t)Q

3j+k
y Q

j
xu‖L2

TL
∞
xy
.

By Duhamel’s formula, for t ∈ [bj,l, bj,l+1],

u(t) = W(5)(t− bj,l)[u(bj,l)] +

∫ t

bj,l

W(5)(t− s)[∂xf(s)]ds.

It follows from the dispersive estimate 4.2 that

‖1[bj,l,bj,l+1)
(t)Q

3j+k
y Q

j
xu‖L2

TL
∞
xy

≤ Cε‖1[bj,l,bj,l+1)
(t)W(5)(t− bj,l)Q

3j+k
y Q

j
xu(bj,l)‖L2

TL
∞
xy

+ ‖1[bj,l,bj,l+1)
(t)

∫ t

bj,l

W(5)(s)Q
3j+k
y Q

j
x∂xf(s)ds‖L2

TL
∞
xy

. Cε2
(−1

2+
ε
2 )j‖Q3j+k

y Q
j
xu(bj,l)‖L2

xy

+ Cε2
(−1

2+
ε
2 )j2j‖1[bj,l,bj,l+1)

(t)Q
3j+k
y Q

j
xf‖L1

TL
2
xy
.

(4.9)
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Denote Cεj,k = 2
−2−p

2p (2j+k)
2(−

1
2+

ε
2 )j . For the first term of the right-hand side of 4.9, we have

22j+k∑
l=1

Cεj,k‖1[bj,l,bj,l+1)
(t)Q

3j+k
y Q

j
xu(bj,l)‖L2

xy

.
22j+k∑
l=1

Cεj,k2
(2p−1p +ε)j

2
−(3p−22p +ε)(3j+k)‖1[bj,l,bj,l+1)

(t)Q
3j+k
y Q

j
xJ
−2p−1

p −ε
x J

3p−2
2p +ε

y u(bj,l)‖L2
xy

. 22j+kCεj,k2
(2p−1p +ε)j

2
−(3p−22p +ε)(3j+k)‖Q3j+k

y Q
j
xJ
−2p−1

p −ε
x J

3p−2
2p +ε

y u‖L∞T L2
xy

. 2−
ε(3j+2k)

2 ‖J
−2p−1

p −ε
x J

3p−2
2p +ε

y u‖L∞T L2
xy
.

(4.10)

For the second term of the right-hand side of 4.9 we have

22j+k∑
l=1

2
−2−p

2p (2j+k)
2(−

1
2+

ε
2 )j2j‖1[bj,l,bj,l+1)

(t)Q
3j+k
y Q

j
xf‖L1

TL
2
xy

.
22j+k∑
l=1

Cεj,k2j2
−(1p−ε)j2(

2−p
2p −ε)(3j+k)‖1[bj,l,bj,l+1)

(t)Q
3j+k
y Q

j
xJ

1
p+ε
x J

−2−p
2p +ε

y f‖L1
TL

2
xy

. 2−
ε(3j+2k)

2

22j+k∑
l=1

‖1[bj,l,bj,l+1)
(t)Q

3j+k
y Q

j
xJ

1
p−ε
x J

−2−p
2p +ε

y f‖L1
TL

2
xy

. 2−
ε(3j+2k)

2 ‖Q3j+k
y Q

j
xJ

1
p−ε
x J

−2−p
2p +ε

y f‖L1
TL

2
xy

. 2−
ε(3j+2k)

2 ‖J
1
p−ε
x J

−2−p
2p +ε

y f‖L1
TL

2
xy
.

(4.11)

Therefore, 4.10 and 4.11 give 4.4.

For our purpose, we will use the linear estimates

‖u‖L2
TL
∞
xy
. ‖J

3
2+δ
x u‖L∞T L2

xy
+‖J−

3
2+δ

x J1+δy u‖L∞T L2
xy

+‖J
1
2+δ
x Jδyf‖L1

TL
2
xy
.
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4.3 A Priori Estimate

We are going to bound fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy
.

Proposition 7. Suppose u satisfies the IVP (1.11) with initial data u0 and let s > 5
2 .

Then u, ∂xu, ∂yu ∈ L2([−T, T ];L∞(R× T)). Moreover,

fu(T ) = ‖u‖L2
TL
∞
xy

+‖∂xu‖L2
TL
∞
xy

+‖∂yu‖L2
TL
∞
xy
≤ CT

for a suitable small enough T , if ‖u0‖Hs,s is small enough.

Proof. First, βf (t) = ‖f(t)‖2L∞xy+‖∂xf(t)‖2L∞xy+‖∂yf(t)‖2L∞xy for a function f and from now

on we consider s > 5
2 .

First, apply the operator Jsx to (1.11) and then multiply it by Jsxu. We have that, by the

Kato-Ponce commutator estimates and integration by parts,

d

dt
‖Jsxu‖2L2

xy
=

∫
(JsxuJ

s
x(u2∂xu) =

∫
Jsxu[Jsx(u2∂xu)− u2Jsx∂xu] +

∫
u2JsxuJ

s
x∂xu

. ‖Jsxu‖2L2
xy

(‖u‖L∞xy+‖u‖L∞xy‖∂xu‖L∞xy) . ‖Jsxu‖2L2
xy
βu(t)

therefore, by Grönwall’s inequality, we get that

‖Jsxu‖L∞T L2
xy
. ‖Jsxφ‖L2

xy
exp(fu(T )2). (4.12)

Similarly, apply the operator Jsy to (1.11) and then multiply it by Jsyu. We get that, by
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the Kato-Ponce commutator estimates and integration by parts,

d

dt
‖Jsyu‖2L2

xy
=

∫
JsyuJ

s
y (u2∂xu) =

∫
Jsyu[Jsy (u2∂xu)− u2Jsx∂xu)] +

∫
u2JsyuJ

s
y∂xu

. ‖Jsyu‖L2
xy

[
‖∂xu‖L∞xy‖J

s
y (u2)‖L2

xy
+(‖u‖2L∞xy+‖u‖L∞xy‖∂yu‖L∞xy)‖Jsyu‖L2

xy

]
+ ‖u‖L∞xy‖∂xu‖L∞xy‖J

s
yu‖2L2

xy

. ‖Jsyu‖2L2
xy

(‖u‖L∞xy‖∂xu‖L∞xy+‖u‖2L∞xy+‖u‖L∞xy‖∂yu‖L∞xy+‖∂xu‖L∞xy‖∂yu‖L∞xy)

. ‖Jsyu‖2L2
xy
βu(t)

therefore, by Grönwall’s inequality, we get that

‖Jsyu‖L∞T L2
xy
. ‖Jsyφ‖L2

xy
exp(fu(T )2). (4.13)

This means that ‖u‖L∞T H
s,s
xy

. ‖φ‖Hs,s
xy

exp(fu(T )2).

Now, we bound fu(T ). We take the first term, ‖u‖L2
TL
∞
xy
. We take 0 < δ < s− 5

2 . By the

linear estimate, we have

‖u‖L2
TL
∞
xy
. ‖J

3
2+δ
x u‖L∞T L2

xy
+‖J−

3
2+δ

x J1+δy u‖L∞T L2
xy

+‖J
1
2+δ
x Jδy (u3)‖L1

TL
2
xy

with ‖J
3
2+δ
x u‖L∞T L2

xy
. ‖u‖L∞T H

s,s
xy

and ‖J−
3
2+δ

x J1+δy ‖L∞T L2
xy
. ‖u‖L∞T H

s,s
xy
. For the third term

of the linear estimate we have ‖J
1
2+δ
x Jδy (u3)‖L2

xy
≤ ‖J

1
2+2δ
x (u3)‖L2

xy
+‖J

1
2+2δ
y (u3)‖L2

xy
so by

the Kato-Ponce commutator estimates,

‖J
1
2+2δ
x (u3)‖L2

xy
. ‖J

1
2+2δ
x u‖L2

xy
‖u‖2L∞xy and ‖J

1
2+2δ
y (u3)‖L2

xy
. ‖J

1
2+δ
y u‖L2

xy
‖u‖2L∞xy

and so

‖J
1
2+δ
x (u3)‖L1

TL
2
xy
. ‖J

1
2+δ
x u‖L∞T L2

xy
‖u‖2

L2
TL
∞
xy
. fu(T )2‖u‖L∞T H

s,s
xy
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and finally we get

‖u‖L2
TL
∞
xy
. (1 + fu(T )2)‖u‖L∞T H

s,s
xy

. ‖φ‖Hs,s
xy

exp(fu(T )2)(1 + fu(T )2).

Now, we look at the second term of fu(T ). By the linear estimate applied to ∂xu, we

have

‖∂xu‖L2
TL
∞
xy
. ‖J

5
2+δ
x u‖L∞T L2

xy
+‖J−

1
2+δ

x J1+δy u‖L∞T L2
xy

+‖J
3
2+δ
x Jδy (u3)‖L1

TL
2
xy

with ‖J
5
2+δ
x u‖L∞T L2

xy
. ‖u‖L∞T H

s,s
xy

and ‖J−
1
2+δ

x J1+δy ‖L∞T L2
xy
. ‖u‖L∞T H

s,s
xy
. For the third term

of the linear estimate we have, ‖J
3
2+δ
x Jδy (u3)‖L2

xy
≤ ‖J

3
2+2δ
x (u3)‖L2

xy
+‖J

3
2+2δ
y (u3)‖L2

xy
by the

Kato-Ponce commutator estimates,

‖J
3
2+δ
x (u3)‖L2

xy
. ‖J

3
2+δ
x u‖L2

xy
‖u‖2L∞xy and ‖J

3
2+δ
y (u3)‖L2

xy
. ‖J

3
2+δ
y u‖L2

xy
‖u‖2L∞xy

and so

‖J
3
2+δ
x Jδy (u3)‖L1

TL
2
xy
. fu(T )2‖u‖L∞T H

s,s
xy
.

Finally we get

‖∂xu‖L2
TL
∞
xy
. (1 + fu(T )2)‖u‖L∞T H

s,s
xy

. ‖φ‖Hs,s
xy

exp(fu(T )2)(1 + fu(T )2).

Now, for the final term of fu(T ), by the linear estimate applied to ∂yu, we have

‖∂yu‖L2
TL
∞
xy
. ‖J

1
2+δ
x J1yu‖L∞T L2

xy
+‖J−

3
2+δ

x J2+δy u‖L∞T L2
xy

+‖J
1
2+δ
x ∂y(u3)‖L1

TL
2
xy

with

‖J
1
2+δ
x J1yu‖L∞T L2

xy
. ‖J

5
2+δ
x u‖L∞T L2

xy
+‖J

5
4+

δ
2

y u‖L∞T L2
xy
. ‖u‖L∞T H

s,s
xy
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and ‖J−
3
2+δ

x J2+δy u‖L∞T L2
xy
. ‖u‖L∞T H

s,s
xy
. For the third term in the linear estimate, we have

‖J
1
2+δ
x Jδy∂y(u3)‖L2

xy
≤ ‖J

1
2+δ
x J1+δy (u3)‖L2

xy
≤ ‖J

3
2+2δ
x (u3)‖L2

xy
+‖J

3
2+2δ
y (u3)‖L2

xy

so by the same reasoning, after applying the Kato-Ponce commutator estimates we get

‖J1+δx Jδy (u2∂yu)‖L∞T L2
xy
. ‖u‖L∞T H

s,s
xy
fu(T )2.

Finally, we get

‖∂yu‖L2
TL
∞
xy
. (1 + fu(T )2)‖u‖L∞T H

s,s
xy

. ‖φ‖Hs,s
xy

exp(fu(T )2)(1 + fu(T )2).

All in all, we have that fu(T ) . ‖φ‖Hs,s
xy

exp(fu(T )2)(1+fu(T )2), and if ‖φ‖Hs,s
xy

is small,

then by a continuity argument we get that fu(T ) ≤ C if T is sufficiently small.

4.4 Local Well-Posedness

We start by stating a well-known local-wellposedness result from Iorio and Nunes (see [22],

Section 4):

Lemma 15. Assume φ ∈ H∞. Then there is T = T (‖φ‖H3) > 0 and a solution u ∈

C([−T, T ] : H∞) of the initial value problem


∂tu− ∂5xu− ∂−1x ∂2yu+ u2∂xu = 0,

u(0, x, y) = u0(x, y).

The proof for R× T is the same as the proof in [22] for R× R.

We proceed to prove the local well-posedness result. In this section, the proof will include

just the existence and uniqueness of the solution.
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Theorem 4.4.1. The IVP ∂tu−∂5xu−∂−1x ∂2yu+u2∂xu = 0 is locally well-posed in Hs,s(R×

T), s > 5
2 . More precisely, given u0 ∈ Hs,s(R× T), s > 5

2 , there exists T = T (‖u0‖Hs,s) and

a unique solution u to the IVP such that u ∈ C([0, T ] : Hs,s(R× T)), u, ∂xu, ∂yu ∈ L2TL
∞
xy.

Moreover, the mapping u0 →∈ C([0, T ] : Hs,s(R× T)) is continuous.

Proof. Let u0 ∈ Hs,s(R × T) and fixed u0,ε ∈ Hs,s(R × T) ∩H∞−1(R × T) such that ‖u0 −

u0,ε‖Hs,s→ 0 and ‖u0,ε‖Hs,s≤ 2‖u0‖Hs,s .

We know by the Iorio-Nunes local well-posedness result that u0,ε gives a unique solution

uε. We have by the a priori bound that ‖uε‖L2
TL
∞
xy

+‖∂xuε‖L2
TL
∞
xy

+‖∂yuε‖L2
TL
∞
xy
≤ CT and

by the previous result, sup0<t<T ‖uε‖Hs,s≤ CT . Henceforth,

∂t‖uε − uε′‖2L2 =

∫
(uε − uε′)∂x(

u3ε
3
−
u3ε′

3
)

=

∫
∂x(uε − uε′) · (uε − uε′)

u2ε + uεuε′ + u2ε′

3
=

=

∫
(uε − uε′)2∂x[

u2ε + uεuε′ + u2ε′

3
]

≤ ‖uε − uε′‖2L2(‖uε‖2L∞xy+‖∂xuε‖2L∞xy+‖uε′‖2L∞xy+‖∂xuε′‖2L∞xy)

≤ (βuε(t) + βuε′ (t))‖uε − uε′‖
2
L2 .

and by Grönwall’s inequality and the a priori estimate

‖uε − uε′‖2L∞T L2
xy
.T ‖u0,ε − u0,ε′‖2L2

xy
,

hence sup0<t<T ‖uε−uε′‖L2
xy
→ 0, hence we can find u ∈ C([0, T ] : Hs′,s′(R×T))∩L∞([0, T ] :

Hs,s(R× T)) with s′ < s. The fact that u is a solution of the IVP is clear now. Uniqueness

also comes from the previous Grönwall’s inequality.
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4.5 Continuity with respect to time

We proceed by a standard Bona-Smith argument ([5]).

Let h
(5)
φ (k) = [

∑
n∈Z

∫
|ξ|+|n|≥k|φ̂(ξ, n)|2[(1 + ξ2)s + (1 + n2)s]dξ]

1
2 .

For φ ∈ Hs,s, let φk = P k
(5)
φ where P̂ k

(5)
g(ξ, n) = ĝ(ξ, n) · 1[0,k](|ξ|) · 1[0,k](|n|). Clearly,

h
(5)
φ is nondecreasing in k and limk→∞ h

(5)
k (φ) = 0. By Plancherel,

‖φ− φk‖L2
xy

= ‖φ̂− φ̂k‖L2
xy

=
[ ∑
|n|≥k

∫
|ξ|≥k

|φ̂(ξ, n)|2dξ]
1
2

≤
[∑
n∈Z

∫
|ξ|+|n|≥k

|φ̂(ξ, n)|(1 + ξ2)s + (1 + n2)s

k2s

]1
2 . k−sh(5)φ (k)

and also,

‖Jpxφk‖L2
xy
. C(T, ‖φ‖Hs,s)kp−s and ‖Jpyφk‖L2

xy
. C(T, ‖φ‖Hs,s)kp−s.

Denote ω = uk − uk′ with k < k′.

In all the cases, from their respective definitions, we have that, if p ≥ s, then

‖Jpxφk‖L2
xy
. C(T, ‖φ‖Hs,s)kp−s and ‖Jpyφk‖L2

xy
. C(T, ‖φ‖Hs,s)kp−s.

Since φk ∈ H∞, by local well-posedness result of Iorio and Nunes, they give rise to unique

solutions uk in H∞. The above estimates together with (4.12) and (4.13), if p ≥ s, we also

have

‖Jpxuk‖L∞T L2
xy
≤ C(T, ‖φ‖Hs,s)kp−s (4.14)

and

‖Jpyuk‖L∞T L2
xy
≤ C(T, ‖φ‖Hs,s)kp−s. (4.15)

Denote ω = uk − uk′ with k < k′. Now choose 0 ≤ q ≤ s. By using that ‖φ − φk‖L2
xy
.
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k−sh(5)φ (k) for the R× T case, together with the interpolation inequality,

‖Jqxω‖L∞T L2
xy
≤ ‖Jsxω‖

q
s
L∞T L

2
xy
‖ω‖1−

q
s

L∞T L
2
xy
. ‖ω‖1−

q
s

L∞T L
2
xy

it yields

‖Jqxω‖L∞T L2
xy
. kq−sh(5)φ (k)1−

q
s . (4.16)

Similarly, we get results for Jy, more precisely,

‖Jqyω‖L∞T L2
xy
. kq−sh(5)φ (k)1−

q
s . (4.17)

Lemma 16. We have the following estimates:

a)

‖Jsxω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsxω(0)‖L2

xy

+ ‖Jsxω‖L∞T L2
xy
‖Js+1
x uk‖L∞T L2

xy
(‖ω‖2

L2
TL
∞
xy

+‖ω‖L2
TL
∞
xy
‖uk‖L2

TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
(‖ω‖L2

TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)‖uk‖L2
TL
∞
xy

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖2

L2
TL
∞
xy

]
.
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b)

‖Jsyω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsyω(0)‖L2

xy

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy
‖uk‖L2

TL
∞
xy
‖∂yuk‖L2

TL
∞
xy

+ ‖Js+1
y uk‖L∞T L2

xy
(‖ω‖2

L∞T L
2
xy

+‖ω‖L∞T L2
xy
‖uk‖L∞T L2

xy
)
]
.

Proof.

∂tω − ∂5xω − ∂−1x ∂2yω + ω2∂xω + 3u2k∂xω + 3ukω∂xuk − 3ukω∂xω − 3ω2∂xuk = 0. (4.18)

a) We apply Jsx to (4.18) and then we multiply by Jsxω, in order to get

d

dt
‖Jsxω‖2L2=

∫
Jsx(ω2∂xω)Jsxω + 3

∫
Jsx(u2k∂xω)Jsxω + 3

∫
Jsx(ukω∂xuk)Jsxω

− 3

∫
Jsx(ukω∂xω)Jsxω − 3

∫
Jsx(ω2∂xuk)Jsxω

and we will analyze each term in the sum.

We have (I) =
∫
Jsx(ω2∂xω)Jsxω, (II) =

∫
Jsx(u2k∂xω)Jsxω, (III) =

∫
Jsx(ukω∂xuk)Jsxω,

(IV ) =
∫
Jsx(ukω∂xω)Jsxω and (V ) =

∫
Jsx(ω2∂xuk)Jsxω.

For (I) =
∫
Jsx(ω2∂xω)Jsxω =

∫
[Jsx(ω2∂xω)− ω2Jsx∂xω]Jsxω +

∫
ω2Jsx∂xωJ

s
xω, and we

will denote (I)1 =
∫

[Jsx(ω2∂xω) − ω2Jsx∂xω]Jsxω and (I)2 =
∫
ω2Jsx∂xωJ

s
xω. For the
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first one, we have by the Kato-Ponce commutator estimate

(I)1 ≤ ‖Jsxω‖L2
xy
‖Jsx(ω2∂xω)− ω2Jsx∂xω‖L2

xy

≤ ‖Jsxω‖L2
xy
‖ω‖L∞xy

[
‖∂xω‖L∞xy ·‖J

s
xω‖L2

xy
+(‖ω‖L∞xy+‖∂xω‖L∞xy)‖Js−1x ∂xω‖L2

xy

]
≤ ‖Jsxω‖2L2

xy
·βω(t)

and

(I)2 ≤ ‖Jsxω‖2L2
xy
‖ω‖L∞xy‖∂xω‖L∞xy≤ ‖J

s
xω‖2L2

xy
βω(t)

so (I) . ‖Jsxω‖2L2
xy
βω(t).

Now, (II) =
∫
Jsx(u2k∂xω)Jsxω =

∫
[Jsx(u2k∂xω) − u2kJ

s
x∂xω]Jsxω +

∫
u2kJ

s
x∂xωJ

s
xω and

we denote (II)1 =
∫

[Jsx(u2k∂xω)− u2kJ
s
x∂xω]Jsxω and (II)2 =

∫
u2kJ

s
x∂xωJ

s
xω. For the

first term we have by the Kato-Ponce commutator estimate

(II)1 . ‖Jsxω‖L2
xy
·‖Jsx(u2k∂xω)− u2kJ

s
x∂xω‖L2

xy

. ‖Jsxω‖L2
xy
‖uk‖L∞xy

[
‖∂xω‖L∞xy‖J

s
xuk‖L2

xy
+(‖uk‖L∞xy+‖∂xuk‖L∞xy)‖Js−1x ∂xω‖L2

xy
]

. ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy

Also, we have

(II)2 . ‖Jsxω‖2L2
xy
‖uk‖L∞‖∂xuk‖L∞. ‖Jsxω‖2L2

xy
βuk(t)

Therefore,

(II) . ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy .

Let (III) =
∫
Jsx(ukω∂xuk)Jsxω =

∫
[Jsx(ukω∂xuk)−ukωJsx∂xuk]Jsxω+

∫
ukωJ

s
x∂xukJ

s
xω

and denote (III)1 =
∫

[Jsx(ukω∂xuk)−ukωJsx∂xuk]Jsxω and (III)2 =
∫
ukωJ

s
x∂xukJ

s
xω.
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We have by the Kato-Ponce commutator estimate

(III)1 . ‖Jsxω‖L2
xy
‖Jsx(ukω∂xuk)− ukωJsx∂xuk‖L2

xy

. ‖Jsxω‖L2
xy

[
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Js−1x ω‖L2
xy

(‖uk‖L∞xy‖∂xuk‖L∞xy+‖∂xuk‖2L∞xy)

+ ‖Js−1x ∂xuk‖L2
xy

(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖uk‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy)
]

. ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy

Also, (III)2 . ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy and so therefore

(III) . ‖Jsxω‖2L2
xy
βuk(t) + ‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖∂xω‖L∞xy‖uk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy .

Again, (IV ) =
∫
Jsx(ukω∂xω)Jsxω =

∫
[Jsx(ukω∂xω)−ukωJsx∂xω]Jsxω+

∫
ukωJ

s
x∂xωJ

s
xω

and we denote (IV )1 =
∫

[Jsx(ukω∂xω)−ukωJsx∂xω]Jsxω and (IV )2 =
∫
ukωJ

s
x∂xωJ

s
xω.

We have by the Kato-Ponce commutator estimate

(IV )1 . ‖Jsxω‖L2
xy
‖Jsx(ukω∂xω)− ukωJsx∂xω‖L2

xy

. ‖Jsxω‖L2
xy
‖∂xω‖L∞xy

[
‖Jsxω‖L2

xy
(‖uk‖L∞xy+‖∂xuk‖L∞xy) + ‖Jsxuk‖L2

xy
‖ω‖L∞xy

]
+ ‖Jsxω‖L2

xy

[
‖uk‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy) + ‖∂xuk‖L∞xy‖ω‖L∞xy)‖Js−1x ∂xω‖L2

xy

. ‖Jsxω‖2L2
xy

(‖uk‖L∞xy+‖∂xuk‖L∞xy)(‖∂xω‖L∞xy+‖ω‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy .
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Also, (IV )2 . ‖Jsxω‖2L2
xy

(‖∂xuk‖L∞xy‖ω‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy) and so therefore

(IV ) . ‖Jsxω‖2L2
xy

(‖uk‖L∞xy+‖∂xuk‖L∞xy)(‖∂xω‖L∞xy+‖ω‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy .

Again, (V ) =
∫
Jsx(ω2∂xuk)Jsxω =

∫
[Jsx(ω2∂xuk) − ω2Jsx∂xuk]Jsxω +

∫
ω2Jsx∂xukJ

s
xω

and we denote (V )1 =
∫

[Jsx(ω2∂xuk) − ω2Jsx∂xuk]Jsxω and (V )2 =
∫
ω2Jsx∂xukJ

s
xω.

We have by the Kato-Ponce commutator estimate

(V )1 . ‖Jsxω‖L2
xy
‖Jsx(ω2∂xuk)− ω2Jsx∂xuk‖L2

xy

. ‖Jsxω‖L2
xy
‖ω‖L∞xy

[
‖∂xuk‖L∞xy‖J

s
xω‖L2

xy
+(‖ω‖L∞xy+‖∂xω‖L∞xy)‖Js−1x ∂xuk‖L2

xy

]
. ‖Jsxω‖2L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy+‖Jsxω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy).

Also, (V )2 . ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
‖ω‖2L∞xy and so therefore

(V ) . ‖Jsxω‖2L2
xy

(βuk(t) + βω(t))

+ ‖Jsxω‖L2
xy

(
‖Jsxuk‖L2

xy
‖ω‖L∞xy(‖ω‖L∞xy+‖∂xω‖L∞xy) + ‖Js+1

x uk‖L2
xy
‖ω‖2L∞xy

)
.

Now, putting together all the terms we get that

d

dt
‖Jsxω‖2L2

xy
. (‖Jsxω‖2L2

xy
)(βω(t) + βuk(t))

+ ‖Jsxω‖L2
xy
‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖uk‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxω‖L2
xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂xω‖L∞xy+‖ω‖2L∞xy)

(4.19)

We are using the following variant of Grönwall’s inequality:
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Lemma 17. If α(t), β(t) are two non-negative functions, and d
dtu(t) ≤ u(t)β(t) +α(t)

for all t ∈ [0, T ] then

u(t) ≤ e
∫ t
0 β(s)ds

(
u(0) +

∫ t

0
α(s)ds

)
.

By putting u(t) = ‖Jsxω‖L2
xy

, β(t) = βω(t) + βuk(t) ≥ 0 and

α(t) = ‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxuk‖L2
xy

(‖ω‖L∞xy‖uk‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy)

+ ‖Jsxuk‖L2
xy

(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂xω‖L∞xy+‖ω‖2L∞xy) ≥ 0

by applying the lemma to (4.19) together with Cauchy-Schwarz we get

‖Jsxω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsxω(0)‖L2

xy

+ ‖Jsxω‖L∞T L2
xy
‖Js+1
x uk‖L∞T L2

xy
(‖ω‖2

L2
TL
∞
xy

+‖ω‖L2
TL
∞
xy
‖uk‖L2

TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
(‖ω‖L2

TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)‖uk‖L2
TL
∞
xy

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂xω‖L2
TL
∞
xy

)

+ ‖Jsxω‖L∞T L2
xy
‖Jsxuk‖L∞T L2

xy
‖ω‖2

L2
TL
∞
xy

]
.

b) We apply Jsy to (4.18) and then we multiply by Jsyω, in order to get

d

dt
‖Jsyω‖2L2=

∫
Jsy (ω2∂xω)Jsyω + 3

∫
Jsy (u2k∂xω)Jsyω + 3

∫
Jsy (ukω∂xuk)Jsyω

− 3

∫
Jsy (ukω∂xω)Jsyω − 3

∫
Jsy (ω2∂xuk)Jsyω

and we will analyze each term in the sum.

We have (I) =
∫
Jsy (ω2∂xω)Jsyω, (II) =

∫
Jsy (u2k∂xω)Jsyω, (III) =

∫
Jsy (ukω∂xuk)Jsyω,
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(IV ) =
∫
Jsy (ukω∂xω)Jsyω and (V ) =

∫
Jsy (ω2∂xuk)Jsyω.

For (I) =
∫
Jsy (ω2∂xω)Jsyω =

∫
[Jsy (ω2∂xω)− ω2Jsy∂xω]Jsyω +

∫
ω2Jsy∂xωJ

s
yω, and we

will denote (I)1 =
∫

[Jsy (ω2∂xω) − ω2Jsy∂xω]Jsyω and (I)2 =
∫
ω2Jsy∂xωJ

s
yω. For the

first one, we have by the Kato-Ponce commutator estimate

(I)1 ≤ ‖Jsyω‖L2
xy
‖Jsy (ω2∂xω)− ω2Jsy∂xω‖L2

xy

≤ ‖Jsyω‖L2
xy
‖ω‖L∞xy

[
‖∂xω‖L∞xy ·‖J

s
yω‖L2

xy
+(‖ω‖L∞xy+‖∂yω‖L∞xy)‖Js−1y ∂xω‖L2

xy

]
≤ ‖Jsyω‖L2

xy

[
‖∂xω‖L∞xy ·‖J

s
yω‖L2

xy
‖ω‖L∞xy

+ (‖ω‖2L∞xy+‖ω‖L∞‖∂yω‖L∞xy)(‖Jsyω‖L2
xy

+‖Jsxω‖L2
xy

)
]

≤ (‖Jsyω‖2L2
xy

+‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
) · βω(t)

and

(I)2 ≤ ‖Jsyω‖2L2
xy
‖ω‖L∞xy‖∂xω‖L∞xy≤ ‖J

s
yω‖2L2

xy
βω(t)

so (I) . (‖Jsyω‖2L2
xy

+‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
)βω(t).

Now, (II) =
∫
Jsy (u2k∂xω)Jsyω =

∫
[Jsy (u2k∂xω) − u2kJ

s
y∂xω]Jsyω +

∫
u2kJ

s
y∂xωJ

s
yω and

we denote (II)1 =
∫

[Jsy (u2k∂xω)− u2kJ
s
y∂xω]Jsyω and (II)2 =

∫
u2kJ

s
y∂xωJ

s
yω. For the

first term we have by the Kato-Ponce commutator estimate

(II)1 . ‖Jsyω‖L2
xy
·‖Jsy (u2k∂xω)− u2kJ

s
y∂xω‖L2

xy

. ‖Jsyω‖L2
xy
‖uk‖L∞xy

[
‖∂xω‖L∞xy‖J

s
yuk‖L2

xy
+(‖uk‖L∞xy+‖∂yuk‖L∞)‖Js−1x ∂xω‖L2

xy

]
. ‖Jsyω‖2L2

xy
βuk(t) + ‖Jsyω‖L2

xy
‖Jsyuk‖L2

xy
‖∂yω‖L∞xy‖uk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsyω‖L2

xy
‖∂yuk‖L∞xy‖uk‖L∞xy

89



where here we used that ‖Js−1x ∂xω‖L2
xy
≤ |Jsyω‖L2

xy
+|Jsxω‖L2

xy
. Also, we have

(II)2 . ‖Jsyω‖2L2
xy
‖uk‖L∞‖∂xuk‖L∞. ‖Jsyω‖2L2

xy
βuk(t)

Therefore,

(II) . ‖Jsyω‖2L2
xy
βuk(t) + ‖Jsyω‖L2

xy
‖Jsyuk‖L2

xy
‖∂yω‖L∞xy‖uk‖L∞xy

+ ‖Jsxω‖L2
xy
‖Jsyω‖L2

xy
‖∂yuk‖L∞xy‖uk‖L∞xy

Let (III) =
∫
Jsy (ukω∂xuk)Jsyω =

∫
[Jsy (ukω∂xuk)−ukωJsy∂xuk]Jsyω+

∫
ukωJ

s
y∂xukJ

s
yω

and denote (III)1 =
∫

[Jsy (ukω∂xuk)−ukωJsy∂xuk]Jsyω and (III)2 =
∫
ukωJ

s
y∂xukJ

s
yω.

We have by the Kato-Ponce commutator estimate

(III)1 . ‖Jsyω‖L2
xy
‖Jsy (ukω∂xuk)− ukωJsy∂xuk‖L2

xy

. ‖Jsyω‖L2
xy

[
‖Jsyuk‖L2

xy
‖ω‖L∞xy‖∂xuk‖L∞xy

+ ‖Js−1y ω‖L2
xy

(‖∂yuk‖L∞xy‖∂xuk‖L∞xy+‖uk‖L∞xy‖∂xuk‖L∞xy)

+ ‖Js−1y ∂xuk‖L2
xy

(‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy)

+ ‖Jsyω‖L2
xy
‖uk‖L∞xy‖∂xuk‖L∞xy

]
. ‖Jsyω‖2L2

xy
βuk(t) + ‖Jsyω‖L2

xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy)

+ ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy).

Also,

(III)2 . ‖Jsyω‖L2
xy
‖Js+1
y uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy+‖Jsyω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy
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and so therefore

(III) . ‖Jsyω‖2L2
xy
βuk(t) + ‖Jsyω‖L2

xy
‖Js+1
y uk‖L2

xy
‖ω‖L∞xy‖uk‖L∞xy

+ ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
(‖ω‖L∞xy‖∂xuk‖L∞xy+‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
(‖ω‖L∞xy‖∂yuk‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖ω‖L∞xy‖uk‖L∞xy).

Again, (IV ) =
∫
Jsy (ukω∂xω)Jsyω =

∫
[Jsy (ukω∂xω)−ukωJsy∂xω]Jsyω+

∫
ukωJ

s
y∂xωJ

s
yω

and we denote (IV )1 =
∫

[Jsy (ukω∂xω)−ukωJsy∂xω]Jsyω and (IV )2 =
∫
ukωJ

s
y∂xωJ

s
yω.

We have by the Kato-Ponce commutator estimate

(IV )1 . ‖Jsyω‖L2
xy
‖Jsy (ukω∂xω)− ukωJsy∂xω‖L2

xy

. ‖Jsyω‖L2
xy

[
‖∂xω‖L∞xy‖J

s−1
y ω‖L2

xy
(‖uk‖L∞xy+‖∂yuk‖L∞xy)

+ (‖uk‖L∞xy‖ω‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖∂yuk‖L∞xy‖ω‖L∞xy)‖Js−1y ∂xω‖L2
xy

+ ‖∂xω‖L∞xy‖J
s
yuk‖L2

xy
‖ω‖L∞xy

]
. ‖Jsyω‖2L2

xy
(βuk(t) + βω(t)) + ‖Jsyω‖L2

xy
‖Jsyuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
(‖uk‖L∞xy‖ω‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖∂yuk‖L∞xy‖ω‖L∞xy).

Also, (IV )2 . ‖Jsyω‖2L2
xy

(‖∂xuk‖L∞xy‖ω‖L∞xy+‖∂xω‖L∞xy‖uk‖L∞xy) . ‖Jsyω‖2L2
xy

(βuk(t) +

βω(t)) and so therefore

(IV ) . ‖Jsyω‖2L2
xy

(βuk(t) + βω(t)) + ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
‖ω‖L∞xy‖∂xω‖L∞xy

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
(‖uk‖L∞xy‖ω‖L∞xy+‖uk‖L∞xy‖∂yω‖L∞xy+‖∂yuk‖L∞xy‖ω‖L∞xy).

Again, (V ) =
∫
Jsy (ω2∂xuk)Jsyω =

∫
[Jsy (ω2∂xuk) − ω2Jsy∂xuk]Jsyω +

∫
ω2Jsy∂xukJ

s
yω

and we denote (V )1 =
∫

[Jsy (ω2∂xuk) − ω2Jsy∂xuk]Jsyω and (V )2 =
∫
ω2Jsy∂xukJ

s
yω.

91



We have by the Kato-Ponce commutator estimate

(V )1 . ‖Jsyω‖L2
xy
‖Jsy (ω2∂xuk)− ω2Jsy∂xuk‖L2

xy

. ‖Jsyω‖L2
xy
‖ω‖L∞xy

[
‖∂xuk‖L∞xy‖J

s
yω‖L2

xy
+(‖ω‖L∞xy+‖∂yω‖L∞xy)‖Js−1y ∂xuk‖L2

xy

]
. ‖Jsyω‖2L2

xy
(βuk(t) + βω(t)) + ‖Jsyω‖L2

xy
(‖Jsyuk‖L2

xy
+‖Jsxuk‖L2

xy
)βω(t).

Also,

(V )2 . ‖Jsyω‖L2
xy
‖Js+1
y uk‖L2

xy
‖ω‖2L∞xy+‖Jsyω‖L2

xy
‖Jsxuk‖L2

xy
‖ω‖2L∞xy

and so therefore

(V ) . ‖Jsyω‖2L2
xy

(βuk(t) + βω(t)) + ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
βω(t)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
βω(t) + ‖Jsyω‖L2

xy
‖Js+1
x uk‖L2

xy
‖ω‖2L∞xy .

We make the following notation:

a(ω, uk) = ‖ω‖L∞xy(‖∂xuk‖L∞xy+‖∂yuk‖L∞xy) + ‖uk‖L∞xy‖∂yω‖L∞xy+βω(t),

b(ω, uk) = ‖ω‖L∞xy(‖∂yuk‖L∞xy+‖uk‖L∞xy) + ‖uk‖L∞xy‖∂yω‖L∞xy+βω(t),

c(ω, uk) = ‖ω‖L∞xy(‖∂yuk‖L∞xy+‖uk‖L∞xy)+‖uk‖L∞xy‖∂yω‖L∞xy+‖uk‖L∞xy‖∂yuk‖L∞xy+βω(t).
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Now, putting together all the terms we get that

d

dt
‖Jsyω‖2L2

xy
. ‖Jsyω‖2L2

xy
(βω(t) + βuk(t))

+ ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
a(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
b(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
c(ω, uk)

+ ‖Jsyω‖L2
xy
‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy).

(4.20)

Using the variant of Grönwall’s inequality from part a) and applying it to (4.20) with

u(t) = ‖Jsyω‖L2
xy

, β(t) = βω(t) + βuk(t) ≥ 0 and

α(t) = ‖Jsyω‖L2
xy
‖Jsyuk‖L2

xy
a(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxuk‖L2

xy
b(ω, uk)

+ ‖Jsyω‖L2
xy
‖Jsxω‖L2

xy
c(ω, uk)

+ ‖Jsyω‖L2
xy
‖Js+1
x uk‖L2

xy
(‖ω‖2L∞xy+‖ω‖L∞xy‖uk‖L∞xy).
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we obtain

‖Jsyω‖L∞T L2
xy

. exp(
1

2
fω(T )2 +

1

2
fuk(T )2)

[
‖Jsyω(0)‖L2

xy

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L2

xy
‖ω‖L2

TL
∞
xy

(‖∂xuk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsyuk‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxuk‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy
‖ω‖L2

TL
∞
xy

(‖uk‖L2
TL
∞
xy

+‖∂yuk‖L2
TL
∞
xy

)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy

(
‖uk‖L2

TL
∞
xy
‖∂yω‖L2

TL
∞
xy

+fω(T )2
)

+ ‖Jsyω‖L∞T L2
xy
‖Jsxω‖L2

xy
‖uk‖L2

TL
∞
xy
‖∂yuk‖L2

TL
∞
xy

+ ‖Js+1
y uk‖L∞T L2

xy
(‖ω‖2

L∞T L
2
xy

+‖ω‖L∞T L2
xy
‖uk‖L∞T L2

xy
)
]
.

Lemma 18. For p ≤ s, we have the following estimates:

(a)

‖Jpx[ω(u2k + ukuk′ + u2k′)]‖L1
TL

2
xy

. ‖Jpxω‖L∞T L2
xy

(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).

(b)

‖Jpy [ω(u2k + ukuk′ + u2k′)]‖L1
TL

2
xy

. ‖Jpyω‖L∞T L2
xy

(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).
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Proof. By using 7 part (c), we get that

‖Jpx[ω(u2k + ukuk′ + u2k′)]‖L2
xy

. ‖Jpxω‖L∞T L2
xy

(‖u2k + ukuk′ + u2k′‖L∞xy

‖ω‖L∞xy‖J
p
x(u2k + ukuk′ + u2k′)‖L2

xy
.

(4.21)

Observe that ‖u2k +ukuk′ +u2k′‖L∞xy. ‖uk‖
2
L∞xy

+‖uk′‖2L∞xy . Also, by 7 part (c) again, we have

‖Jpx(u2k + ukuk′ + u2k′)‖L2
xy
. (‖Jpxuk‖L2

xy
+‖Jpxuk′‖L2

xy
)(‖uk‖L∞+‖u2k′‖L∞xy).

By 4.12, we get ‖Jpxuk‖L2
xy

+‖Jpxuk′‖L2
xy
. ‖Jpxφk‖L2

xy
+‖Jpxφk′‖L2

xy
. ‖φ‖Hs,s . Combining

all the above observation together with 4.21, we get

‖Jpx[ω(u2k + ukuk′ + u2k′)]‖L2
xy

. ‖Jpxω‖L2
xy

(‖uk‖L∞xy+‖uk′‖L∞xy)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L∞xy+‖uk′‖L∞xy).

Integrating both sides from 0 to T and applying Cauchy-Schwarz inequality, we obtain the

conclusion of the lemma for Jx. The proof for Jy goes the same way.

Lemma 19. Suppose uk satisfies the IVP (1.11) with initial data φk = P k
(5)
φ. We have

‖ω‖L2
TL
∞
xy
. k(−1)−, ‖∂xω‖L2

TL
∞
xy
. k0− and ‖∂yω‖L2

TL
∞
xy
. k0− as k → ∞. In particular,

fω(T ) . k0− as k →∞.

Proof. Take δ <
s−5

2
2 . By the linear estimate in Proposition 4.2 applied to 4.18,

‖ω‖L2
TL
∞
xy
. ‖J

3
2+δ
x ω‖L∞T L2

xy
+‖J−

3
2+δ

x J1+δy ω‖L∞T L2
xy

+‖J
1
2+δ
x Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy
.

From 4.16 and 4.17 we have ‖J
3
2+δ
x ω‖L∞T L2

xy
. k

3
2+δ−sh(5)φ (k)1−

3
2+δ

s , together with

‖J−
3
2+δ

x J1+δy ω‖L∞T L2
xy
. ‖J1+δy ω‖L∞T L2

xy
. k1+δ−sh(5)φ (k)1−

1+δ
s .
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For the last term, we observe

‖J
1
2+δ
x Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J
1
2+2δ
x [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

+ ‖J
1
2+2δ
y [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

By Lemma 18 we get that

‖J
1
2+2δ
x [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J
1
2+2δ
x ω‖L∞T L2

xy
(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

and

‖J
1
2+2δ
y [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy

. ‖J
1
2+2δ
y ω‖L∞T L2

xy
(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

).

By 4.16 and 4.17 we have ‖J
1
2+2δ
x ω‖L∞T L2

xy
. k

1
2+2δ−sh(5)φ (k)1−

1
2+2δ

s and ‖J
1
2+2δ
y ω‖L∞T L2

xy
.

k
1
2+2δ−sh(5)φ (k)1−

1
2+2δ

s . By combining the previous observations, we obtain

‖ω‖L2
TL
∞
xy

. k
3
2+δ−sh(3)φ (k)1−

1
2+2δ

s max(1, h
(3)
φ (k)

δ−1
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

Since we consider that ‖φ‖Hs,s is small enough, such that ‖φ‖Hs,s(‖uk‖L2
TL
∞
xy

+‖uk′‖L2
TL
∞
xy

) ≤
1
2 , we get that

‖ω‖L2
TL
∞
xy
. k

3
2+2δ−sh(5)φ (k)1−

1
2+2δ

s max(1, h
(5)
φ (k)

δ−1
s )→ 0

as k →∞ since 3
2 + 2δ < s.

96



The linear estimate 4.2 applied to ∂xω results in

‖∂xω‖L2
TL
∞
xy
. ‖J

5
2+δ
x ω‖L∞T L2

xy
+‖J−

1
2+δ

x J1+δy ω‖L∞T L2
xy

+‖J
3
2+δ
x Jδy [ω(u2k+ukuk′+u

2
k′)]‖L1

TL
2
xy
.

and by the same reasoning as above

‖∂xω‖L2
TL
∞
xy

. k
5
2+2δ−sh(5)φ (k)1−

3
2+2δ

s max(1, h
(3)
φ (k)

δ−1
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

which, combined with the above fact that

‖ω‖L2
TL
∞
xy
. k

3
2+2δ−sh(5)φ (k)1−

3
2+2δ

s max(1, h
(5)
φ (k)

δ−1
s ),

for k large enough, it gives us ‖∂xω‖L2
TL
∞
xy
. k

5
2+2δ−s → 0 as k →∞ since 5

2 + 2δ < s.

Lastly, the linear estimate 4.2 applied to ∂yω results in

‖∂yω‖L2
TL
∞
xy
. ‖J

3
2+δ
x J1yω‖L∞T L2

xy
+‖J2+δy ω‖L∞T L2

xy
+‖J

1
2+δ
x Jδy [ω(u2k + ukuk′ + u2k′)]‖L1

TL
2
xy
.

and by the same reasoning as above

‖∂yω‖L2
TL
∞
xy

. k
5
2+δ−sh(5)φ (k)1−

5
2+δ

s max(1, h
(5)
φ (k)

δ−1
s )

+ ‖ω‖L2
TL
∞
xy
‖φ‖Hs,s(‖uk‖L2

TL
∞
xy

+‖uk′‖L2
TL
∞
xy

)

which, combined with the above fact that

‖ω‖L2
TL
∞
xy
. k

5
2+δ−sh(5)φ (k)1−

1+2δ
s max(1, h

(5)
φ (k)

δ−1
s ),

for k large enough, it gives us ‖∂xω‖L2
TL
∞
xy
. k

5
2+2δ−s → 0 as k →∞ since 5

2 + 2δ < s.
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Corollary. We have ‖ω‖Hs,s→ 0 as k → ∞, where s > 5
2 for the initial value problem

(1.11).

Proof. From (4.14) and Lemma 19 we get ‖Js+1
x uk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy
. k1 · k(−1)− = k0−

and k0− → 0 as k →∞. From the Lemma 19 used in Lemma 16 we obtain

‖Jsxω‖L∞T L2
xy
. exp(

1

2
fuk(T )2 +

1

2
fω(T )2)(‖Jsxω(0)‖L∞T L2

xy
+Ck0−)→ 0

as k → ∞, where we used that ‖Jsxω(0)‖L∞T L2
xy
→ 0 as k → ∞ and the boundedness of

fuk(T ) and fω(T ) by 7.

From (4.15) and Lemma 19 we get ‖Js+1
y uk‖L∞T L2

xy
‖ω‖L2

TL
∞
xy
. k1 · k(−1)− = k0− and

k0− → 0 as k →∞. From the Lemma 19 used in Lemma 16 together with the fact we just

proved, ‖Jsxω‖L∞T L2
xy
→ 0, we obtain

‖Jsyω‖L∞T L2
xy
. exp(

1

2
fuk(T )2 +

1

2
fω(T )2)(‖Jsyω(0)‖L∞T L2

xy
+Ck0−)→ 0

as k →∞ and the boundedness of fuk(T ) and fω(T ) by 7.

Therefore, as ‖Jsxω‖L∞T L2
xy

+‖Jsyω‖L∞T L2
xy
→ 0 as k → ∞, it means that u ∈ C([0, T ] :

Hs,s).

4.6 Continuity of the flow map

We assume that T ∈ [0,∞) and φl → φ in Hs,s(R × T) as l → ∞. We are going to prove

that ul → u in C([−T, T ] : Hs,s(R× T)) as l →∞, where ul and u are solutions of the the

initial value problem ∂tu− ∂5xu− ∂−1x ∂2yu+ u2∂xu = 0 corresponding to initial data φl and

φ, for s > 5
2 .

For k ≥ 1, let as before, φlk = P kφl and ulk ∈ C([−T, T ] : H∞) the corresponding

solutions. Denote by ωk = uk − u. By the same estimates from Lemma 16 and Lemma 19
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applied to ωk we get

‖uk − u‖Hs,s. exp(
1

2
fωk(T )2 +

1

2
fuk(T )2)(‖φk − φ‖Hs,s+C(T, ‖φk‖Hs,s , ‖φ‖Hs,s)k0−).

By the same reasoning, we have that

‖ulk − u
l‖Hs,s. exp(

1

2
fωlk

(T )2 +
1

2
fulk

(T )2)(‖φlk − φ
l‖Hs,s+C(T, ‖φlk‖Hs,s , ‖φl‖Hs,s)k0−).

Now, denote ωlk = ulk − uk. By the same estimates from Lemma 10 and Lemma 19 applied

to ωlk

‖ulk − uk‖Hs,s. exp(
1

2
fωlk

(T )2 +
1

2
fulk

(T )2)(‖φlk − φk‖Hs,s+C(T, ‖φlk‖Hs,s , ‖φk‖Hs,s)k0−).

By the boundedness of fuk(T ), fulk
(T ), fωk(T ) and fωlk

(T ) by 7 and the triangle inequality,

we get

‖ul − u‖Hs,s ≤ ‖uk − u‖Hs,s+‖ulk − uk‖Hs,s+‖ulk − u
l‖Hs,s

. ‖φk − φ‖Hs,s+‖φlk − φk‖Hs,s+‖φlk − φ
l‖Hs,s

+ C(T, ‖φ‖Hs,s , ‖φk‖Hs,s , ‖φl‖Hs,s , ‖φlk‖Hs,s)k0−

which, by letting k → ∞, we get ‖ul − u‖Hs,s. ‖φl − φ‖Hs,s and proves the continuity of

the flow map.
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