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ABSTRACT

Quantum computing is a promising technology that unlocks new computational frontiers

by leveraging the principles of quantum mechanics. After three decades of theoretical

research, quantum computers have emerged in experimental and industrial settings in the

past decade. Much of the current quantum system stack mirrors modern classical stacks:

hardware and software are cleanly separated by layered abstraction barriers. However, we

argue that near-term applications of quantum computing will require software that has a

full-stack view spanning from the end-user application down to the underlying hardware.

Our thesis is supported by six examples of software optimizations that cross between layers

of the traditional system stack, thereby achieving gains that are otherwise invisible. The

six optimizations include: (1) qutrit and higher-radix computing, (2) partial compilation of

parametrized programs, (3) simultaneous measurement for Variational Quantum Eigensolver

(VQE), (4) an asymptotic improvement in the runtime of VQE, (5) recompilation of quantum

programs with pulse-augmented basis gates, and (6) speedups via quantum fan-out. We

conclude by discussing future research directions that could enable practical speedups from

near-term quantum computers.
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CHAPTER 1

INTRODUCTION

As Moore’s Law comes to an end, computing will require a paradigm shift for continued

technological progress. Quantum computing provides such an opportunity, by leveraging the

unique physics of quantum hardware to accelerate calculations beyond what is possible in

the setting of classical physics. Properties such as superposition and entanglement enable a

quantum computer with n qubits to simultaneously span a state space of size 2n. Through

clever processing techniques, this advantage can be turned into polynomial or even exponential

sized speedups over classical algorithms for certain tasks. Famously, this includes speedups

for tasks such as search [9] and factoring [10].

While quantum computing was originally proposed in the 1980s [11, 12], experimentally

promising realizations did not emerge until the 2000s. For example, the transmon qubit

(quantum bit)—a superconducting circuit that maintains a macroscopic quantum state—was

introduced in 2007 [13]. Just 12 years later, the Google quantum team argued their computer

with 53 transmon qubits solved a task in seconds [14] that would take days [15] on the

world’s most powerful classical supercomputer. In the meantime, qubits based on trapped

ion, neutral atom, photonic, and silicon based technologies have also demonstrated significant

potential in recent experiments.

In the longer term when systems with thousands or millions of qubits and low error

rates become available, we will be able to build logical qubits that perform quantum error

correction. However, in the near-term era of Noisy Intermediate-Scale Quantum (NISQ) [16]

computing, we hope to find quantum speedups for practical applications without requiring

error correction. This is a formidable challenge, but an exciting one that could accelerate the

realization of practical value from quantum computing by several years, if not decades.

This dissertation examines the software stack for quantum computers in view of the

challenge of obtaining quantum speedups in the near-term era. The core thesis statement is
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as follows:

Optimizations cutting across the full stack are critical for computing advantage

in the NISQ (Noisy Intermediate-Scale Quantum) era.

This thesis statement is best understood in contrast to the conventional wisdom, which

advocates a stack that has clean layers, separated by well defined and rigid abstraction

barriers. This quantum stack design is very analogous to classical computing, in that there

are no leaky abstractions. Notably, this makes programming easier. For example, a modern

application developer does not need to deal with the device physics of transistors or even

low-level assembly code.

However, the rigidity of the abstraction barriers leads to efficiency losses. This is tolerable

in classical computing, where we have the luxury of billions of bits, virtually perfect gates,

and virtually infinite computation durations. But in the NISQ era of quantum computing, we

have only a few dozen qubits, imperfect gates with > 0.1% typical errors, and only enough

qubit coherence lifetime to support a few dozen gate layers. In this era, every optimization

must be leveraged to extract as much mileage as possible from the underlying quantum

hardware.

This motivates us to architect a system stack that allows for leaky abstractions. Taken

to the extreme, a quantum application programmer should be able to interface all the way

down to the underlying quantum hardware and perform optimizations that cut across the

full stack. The right side of Figure 1.1 depicts the system architecture that we envision.

While we recognize the value of conceptually separate layers, we also explicitly advocate for

links or leaky abstractions across the entire stack to enable cross-layer optimizations. For

completeness, we explicitly define each layer of the stack:

• Application. Here we consider any end-user application, in a form that can be expressed

independently of a quantum (or classical) algorithm. For example, we might consider

optimization applications that arise in power grids (hence the icon of power lines).
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• Algorithm. Here we consider the wide range of quantum algorithms, expressed in a

mathematical form.

• Compiler. This is software that translates the algorithm down to a form that is closer to

the underlying hardware. The compiler generally acts on a quantum circuit description

of the algorithm and outputs control pulses.

• Control. This is the classical hardware used to emit signals to the qubits. We focus on

Arbitrary Waveform Generators (AWGs) which are depicted in the icon.

• Hardware. This is where we finally encounter the actual qubits, which could be

implemented by many underlying technologies such as superconducting circuits, trapped

ions, neutral atoms, or photonics.

Figure 1.1: In this dissertation, we argue that the traditional quantum system stack on the
left should be re-architected to allow for leaky abstractions, as on the right. Doing so will
enable optimizations that cross layers and cut across the full stack. These optimizations are
critical for computing advantage in the NISQ (Noisy Intermediate-Scale Quantum) era.

This dissertation comprises six papers that each introduce a new type of optimization

cutting across the full stack, in alignment with the thesis statement. Each chapter aims

to be self-contained. We begin in Chapter 2 with Asymptotic Improvements to Quantum

Circuits via Qutrits [17], which demonstrates how quantum algorithms can be accelerated by

leveraging higher-level states of underlying hardware. In particular, we note that the binary

qubit abstraction is simply a truncation of a quantum system to the bottom two energy levels.
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We show that by instead accessing three-level qutrit hardware, we can compile a quantum

algorithm (Generalized Toffoli) more efficiently. Relative to a qubit-only circuit, we attain an

exponential speedup in the ancilla-free regime. We also perform simulations demonstrating

the expected advantage of our technique.

Chapter 3, Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale

Quantum Machines [18], studies the compilation of a new paradigm of quantum algorithm. In

this new variational paradigm, a sequence of quantum circuits is generated at runtime. This

complicates compilation since compiler latency is now runtime latency, unlike other quantum

algorithms which are statically pre-compiled. Our work demonstrates how variational

algorithms can be partially compiled into optimized controls that target the underlying

hardware.

Chapter 4, Minimizing State Preparations in Variational Quantum Eigensolver by Par-

titioning into Commuting Families [19], presents a technique for leveraging simultaneous

measurement in the VQE algorithm. As a result, we substantially reduce the repetition cost

of this algorithm. We also develop software for generating simultaneous measurement circuits,

and we study the statistics of simultaneous measurement.

Chapter 5, O(N3) Measurement Cost for Variational Quantum Eigensolver on Molecular

Hamiltonians [20], extends our work on reducing the repetition cost of VQE. We demonstrate

that simultaneous measurement actually leads to an asymptotic reduction of this cost from

O(N4) to O(N3), and we develop a tool for optimally orchestrating these simultaneous

measurements.

Chapter 6, Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse

[21], introduces a concept known as an augmented basis gate. Unlike a standard basis gate

in quantum assembly, an augmented basis gate is better aligned with the native physical

interactions executed by the underlying qubit hardware. We compile algorithms in view

of augmented basis gates in order to generate optimized control pulses. Through the
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OpenPulse interface for pulse-level control, we experimentally demonstrate significant fidelity

improvements on IBM hardware due to our technique.

Chapter 7, Optimizations with Fan-out in Near-Term Quantum Computers [22], evaluates

the ability of quantum hardware to simultaneously execute gates on overlapping qubits. We

demonstrate that both trapped ion and superconducting qubits have this capability, and

we use it to improve the compilation of a wide range of near-term quantum algorithms.

Our technique is validated with trapped ion simulation as well as experimental results on

superconducting qubits.

Finally, we conclude in Chapter 8 with closing discussion and suggestions for future work.

For completeness, Appendix A presents the author’s curriculum vitae.
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CHAPTER 2

ASYMPTOTIC IMPROVEMENTS TO QUANTUM CIRCUITS

VIA QUTRITS

2.1 Introduction

Recent advances in both hardware and software for quantum computation have demonstrated

significant progress towards practical outcomes. In the coming years, we expect quantum

computing will have important applications in fields ranging from machine learning and

optimization [23] to drug discovery [24]. While early research efforts focused on longer-term

systems employing full error correction to execute large instances of algorithms like Shor

factoring [10] and Grover search [9], recent work has focused on NISQ (Noisy Intermediate

Scale Quantum) computation [16]. The NISQ regime considers near-term machines with just

tens to hundreds of quantum bits (qubits) and moderate errors.

Given the severe constraints on quantum resources, it is critical to fully optimize the com-

pilation of a quantum algorithm in order to have successful computation. Prior architectural

research has explored techniques such as mapping, scheduling, and parallelism [25, 26, 27]

to extend the amount of useful computation possible. In this work, we consider another

technique: quantum trits (qutrits).

While quantum computation is typically expressed as a two-level binary abstraction of

qubits, the underlying physics of quantum systems are not intrinsically binary. Whereas

classical computers operate in binary states at the physical level (e.g. clipping above and

below a threshold voltage), quantum computers have natural access to an infinite spectrum of

discrete energy levels. In fact, hardware must actively suppress higher level states in order to

achieve the two-level qubit approximation. Hence, using three-level qutrits is simply a choice

of including an additional discrete energy level, albeit at the cost of more opportunities for

error.
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Prior work on qutrits (or more generally, d-level qudits) identified only constant factor

gains from extending beyond qubits. In general, this prior work [28] has emphasized the

information compression advantages of qutrits. For example, N qubits can be expressed as

N
log2(3)

qutrits, which leads to log2(3) ≈ 1.6-constant factor improvements in runtimes.

Our approach utilizes qutrits in a novel fashion, essentially using the third state as

temporary storage, but at the cost of higher per-operation error rates. Under this treatment,

the runtime (i.e. circuit depth or critical path) is asymptotically faster, and the reliability of

computations is also improved. Moreover, our approach only applies qutrit operations in an

intermediary stage: the input and output are still qubits, which is important for initialization

and measurement on real devices [29, 30].
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Figure 2.1: The frontier of what quantum hardware can execute is the yellow region adjacent
to the 45° line. In this region, each machine qubit is a data qubit. Typical circuits rely on
non-data ancilla qubits for workspace and therefore operate below the frontier.

The net result of our work is to extend the frontier of what quantum computers can

compute. In particular, the frontier is defined by the zone in which every machine qubit is

a data qubit, for example a 100-qubit algorithm running on a 100-qubit machine. This is

indicated by the yellow region in Figure 2.1. In this frontier zone, we do not have room for

non-data workspace qubits known as ancilla. The lack of ancilla in the frontier zone is a
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costly constraint that generally leads to inefficient circuits. For this reason, typical circuits

instead operate below the frontier zone, with many machine qubits used as ancilla. Our work

demonstrates that ancilla can be substituted with qutrits, enabling us to operate efficiently

within the ancilla-free frontier zone.

We highlight the three primary contributions of our work:

1. A circuit construction based on qutrits that leads to asymptotically faster circuits

(633N → 38 log2N) than equivalent qubit-only constructions. We also reduce total

gate counts from 397N to 6N .

2. An open-source simulator, based on Google’s Cirq [31], which supports realistic noise

simulation for qutrit (and qudit) circuits.

3. Simulation results, under realistic noise models, which demonstrate our circuit con-

struction outperforms equivalent qubit circuits in terms of error. For our benchmarked

circuits, our reliability advantage ranges from 2x for trapped ion noise models up

to more than 10,000x for superconducting noise models. For completeness, we also

benchmark our circuit against a qubit-only construction augmented by an ancilla and

find our construction is still more reliable.

The rest of this chapter is organized as follows: Section 2.2 presents relevant background

about quantum computation and Section 2.3 outlines related prior work that we benchmark

our work against. Section 2.4 demonstrates our key circuit construction, and Section 2.5

surveys applications of this construction toward important quantum algorithms. Section 2.6

introduces our open-source qudit circuit simulator. Section 2.7 explains our noise modeling

methodology (with full details in Section 2.10), and Section 2.8 presents simulation results

for these noise models. Finally, we discuss our results at a higher level in Section 2.9.
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2.2 Background

A qubit is the fundamental unit of quantum computation. Compared to their classical

counterparts which take values of either 0 and 1, qubits may exist in a superposition of the

two states. We designate these two basis states as |0〉 and |1〉 and can represent any qubit as

|ψ〉 = α |0〉+ β |1〉 with ‖α‖2 + ‖β‖2 = 1. ‖α‖2 and ‖β‖2 correspond to the probabilities of

measuring |0〉 and |1〉 respectively.

Quantum states can be acted on by quantum gates which (a) preserve valid probability

distributions that sum to 1 and (b) guarantee reversibility. For example, the X gate transforms

a state |ψ〉 = α |0〉 + β |1〉 to X |ψ〉 = β |0〉 + α |1〉. The X gate is also an example of a

classical reversible operation, equivalent to the NOT operation. In quantum computation, we

have a single irreversible operation called measurement that transforms a quantum state into

one of the two basis states with a given probability based on α and β.

In order to interact different qubits, two-qubit operations are used. The CNOT gate

appears both in classical reversible computation and in quantum computation. It has a

control qubit and a target qubit. When the control qubit is in the |1〉 state, the CNOT

performs a NOT operation on the target. The CNOT gate serves a special role in quantum

computation, allowing quantum states to become entangled so that a pair of qubits cannot

be described as two individual qubit states. Any operation may be conditioned on one or

more controls.

Many classical operations, such as AND and OR gates, are irreversible and therefore

cannot directly be executed as quantum gates. For example, consider the output of 1 from

an OR gate with two inputs. With only this information about the output, the value of

the inputs cannot be uniquely determined. These operations can be made reversible by the

addition of extra, temporary workspace bits initialized to 0. Using a single additional ancilla,

the AND operation can be computed reversibly as in Figure 2.2.

Physical systems in classical hardware are typically binary. However, in common quantum
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|q0〉 • |q0〉
|q1〉 • |q1〉
|0〉 |q0 AND q1〉

Figure 2.2: Reversible AND circuit using a single ancilla bit. The inputs are on the left, and
time flows rightward to the outputs. This AND gate is implemented using a Toffoli (CCNOT)
gate with inputs q0, q1 and a single ancilla initialized to 0. At the end of the circuit, q0 and
q1 are preserved, and the ancilla bit is set to 1 if and only if both other inputs are 1.

hardware, such as in superconducting and trapped ion computers, there is an infinite spectrum

of discrete energy levels. The qubit abstraction is an artificial approximation achieved by

suppressing all but the lowest two energy levels. Instead, the hardware may be configured

to manipulate the lowest three energy levels by operating on qutrits. In general, such a

computer could be configured to operate on any number of d levels, except as d increases the

number of opportunities for error, termed error channels, increases. Here, we focus on d = 3

with which we achieve the desired improvements to the Generalized Toffoli gate.

In a three level system, we consider the computational basis states |0〉, |1〉, and |2〉 for

qutrits. A qutrit state |ψ〉 may be represented analogously to a qubit as |ψ〉 = α |0〉+ β |1〉+

γ |2〉, where ‖α‖2 +‖β‖2 +‖γ‖2 = 1. Qutrits are manipulated in a similar manner to qubits;

however, there are additional gates which may be performed on qutrits.

For instance, in quantum binary logic, there is only a single X gate. In ternary, there

are three X gates denoted X01, X02, and X12. Each of these Xij for i 6= j can be viewed

as swapping |i〉 with |j〉 and leaving the third basis element unchanged. For example, for a

qutrit |ψ〉 = α |0〉+ β |1〉+ γ |2〉, applying X02 produces X02 |ψ〉 = γ |0〉+ β |1〉+α |2〉. Each

of these operations’ actions can be found in the left state diagram in Figure 2.3.

There are two additional non-trivial operations on a single trit. They are the +1 and

−1 (sometimes referred to as a +2) operations (with + meaning addition modulo 3). These

operations can be written as X01X12 and X12X01, respectively; however, for simplicity, we
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will refer to them as X+1 and X−1 operations. A summary of these gates’ actions can be

found in the right state diagram in Figure 2.3.

|0〉

|1〉 |2〉

X01

X12

X02

|0〉

|1〉 |2〉
X−1

X+1

X+1

X+1

Figure 2.3: The five nontrivial permutations on the basis elements for a qutrit. (Left)
Each operation here switches two basis elements while leaving the third unchanged. These
operations are self-inverses. (Right) These two operations permute the three basis elements
by performing a +1 mod 3 and −1 mod 3 operation. They are each other’s inverses.

Other, non-classical, operations may be performed on a single qutrit. For example, the

Hadamard gate [32] can be extended to work on qutrits in a similar fashion as the X gate

was extended. In fact, all single qubit gates, like rotations, may be extended to operate on

qutrits. In order to distinguish qubit and qutrit gates, all qutrit gates will appear with an

appropriate subscript.

Just as single qubit gates have qutrit analogs, the same holds for two qutrit gates. For

example, consider the CNOT operation, where an X gate is performed conditioned on the

control being in the |1〉 state. For qutrits, any of the X gates presented above may be

performed, conditioned on the control being in any of the three possible basis states. Just

as qubit gates are extended to take multiple controls, qutrit gates are extended similarly.

The set of single qutrit gates, augmented by any entangling two-qutrit gate, is sufficient for

universality in ternary quantum computation [33].

One question concerning the feasibility of using higher states beyond the standard two is

whether these gates can be implemented and perform the desired manipulations. Qutrit gates

have been successfully implemented [1, 34, 35] indicating it is possible to consider higher level

systems apart from qubit only systems.

In order to evaluate a decomposition of a quantum circuit, we consider quantum circuit
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costs. The space cost of a circuit, i.e. the number of qubits (or qutrits), is referred to as

circuit width. Requiring ancilla increases the circuit width and therefore the space cost of a

circuit. The time cost for a circuit is the depth of a circuit. The depth is given as the length

of the critical path (in terms of gates) from input to output.

2.3 Prior Work

2.3.1 Qudits

Qutrits, and more generally qudits, have been been studied in past work both experimentally

and theoretically. Experimentally, d as large as 10 has been achieved (including with two-qudit

operations) [36], and d = 3 qutrits are commonly used internally in many quantum systems

[37, 38].

However, in past work, qudits have conferred only an information compression advantage.

For example, N qubits can be compressed to N
log2(d)

qudits, giving only a constant-factor

advantage [28] at the cost of greater errors from operating qudits instead of qubits. Under

the assumption of linear cost scaling with respect to d, it has been demonstrated that d = 3

is optimal [39, 40], although as we show in Section 2.7 the cost is generally superlinear in d.

The information compression advantage of qudits has been applied specifically to Grover’s

search algorithm [41, 42, 43, 44] and to Shor’s factoring algorithm [45]. Ultimately, the

tradeoff between information compression and higher per-qudit errors has not been favorable

in past work. As such, the past research towards building practical quantum computers has

focused on qubits.

Our work introduces qutrit-based circuits which are asymptotically better than equivalent

qubit-only circuits. Unlike prior work, we demonstrate a compelling advantage in both

runtime and reliability, thus justifying the use of qutrits.
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This Work Gidney [4] He [46] Barenco [3] Wang [43] Lanyon [47], Ralph [48]

Depth logN N logN N2 N N
Ancilla 0 0 N 0 0 0
Qudit Types Controls are qutrits Qubits Qubits Qubits Controls are qutrits Target is d = N -level qudit
Constants Small Large Small Small Small Small

Table 2.1: Asymptotic comparison of N -controlled gate decompositions. The total gate
count for all circuits scales linearly (except for Barenco [3], which scales quadratically). Our
construction uses qutrits to achieve logarithmic depth without ancilla. We benchmark our
circuit construction against Gidney [4], which is the asymptotically best ancilla-free qubit
circuit.

2.3.2 Generalized Toffoli Gate

We focus on the Generalized Toffoli gate, which simply adds more controls to the Toffoli

circuit in Figure 2.2. The Generalized Toffoli gate is an important primitive used across a

wide range of quantum algorithms, and it has been the focus of extensive past optimization

work. Table 2.1 compares past circuit constructions for the Generalized Toffoli gate to our

construction, which is presented in full in Section 2.4.2.

Among prior work, the Gidney [4], He [46], and Barenco [3] designs are all qubit-only. The

three circuits have varying tradeoffs. While Gidney and Barenco operate at the ancilla-free

frontier, they have large circuit depths: linear with a large constant for Gidney and quadratic

for Barenco. The Gidney design also requires rotation gates for very small angles, which

poses an experimental challenge. While the He circuit achieves logarithmic depth, it requires

an ancilla for each data qubit, effectively halving the effective potential of any given quantum

hardware. Nonetheless, in practice, most circuit implementations use these linear-ancilla

constructions due to their small depths and gate counts.

As in our approach, circuit constructions from Lanyon [47], Ralph [48], and Wang [43]

have attempted to improve the ancilla-free Generalized Toffoli gate by using qudits. Both

the Lanyon [47] and Ralph [48] constructions, which have been demonstrated experimentally,

achieve linear circuit depths by operating the target as a d = N -level qudit. Wang [43] also

achieves a linear circuit depth but by operating each control as a qutrit.

Our circuit construction, presented in Section 2.4.2, has similar structure to the He design,
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which can be represented as a binary tree of gates. However, instead of storing temporary

results with a linear number of ancilla qubits, our circuit temporarily stores information

directly in the qutrit |2〉 state of the controls. Thus, no ancilla are needed.

In our simulations, we benchmark our circuit construction against the Gidney construction

[4] because it is the asymptotically best qubit circuit in the ancilla-free frontier zone. We

label these two benchmarks as QUTRIT and QUBIT. The QUBIT circuit handles the lack

of ancilla by using dirty ancilla, which unlike clean (initialized to |0〉) ancilla, can have an

unknown initial state. Dirty ancilla can therefore be bootstrapped internally from a quantum

circuit. However, this technique requires a large number of Toffoli gates which makes the

decomposition particularly expensive in gate count.

Augmenting the base Gidney construction with a single ancilla1 does reduce the constants

for the decomposition significantly, although the asymptotic depth and gate counts are

maintained. For completeness, we also benchmark our circuit against this augmented

construction, QUBIT+ANCILLA. However, the augmented circuit does not operate at the

ancilla-free frontier, and it conflicts with parallelism, as discussed in Section 2.9.

2.4 Circuit Construction

In order for quantum circuits to be executable on hardware, they are typically decomposed into

single- and two- qudit gates. Performing efficient low depth and low gate count decompositions

is important in both the NISQ regime and beyond. Our circuits assume all-to-all connectivity–

we discuss this assumption in Section 2.9.

2.4.1 Key Intuition

To develop intuition for our technique, we first present a Toffoli gate decomposition which

lays the foundation for our generalization to multiple controls. In each of the following

1. This ancilla can also also be dirty.
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|q0〉 1 1

|q1〉 X+1 2 X−1

|q2〉 X

Figure 2.4: A Toffoli decomposition via qutrits. Each input and output is a qubit. The red
controls activate on |1〉 and the blue controls activate on |2〉. The first gate temporarily
elevates q1 to |2〉 if both q0 and q1 were |1〉. We then perform the X operation only if q1 is
|2〉. The final gate restores q0 and q1 to their original state.

constructions, all inputs and outputs are qubits, but we may occupy the |2〉 state temporarily

during computation. Maintaining binary input and output allows these circuit constructions

to be inserted into any preexisting qubit-only circuits.

In Figure 2.4, a Toffoli decomposition using qutrits is given. A similar construction for

the Toffoli gate is known from past work [47, 48]. The goal is to perform an X operation

on the last (target) input qubit q2 if and only if the two control qubits, q0 and q1, are both

|1〉. First a |1〉-controlled X+1 is performed on q0 and q1. This elevates q1 to |2〉 iff q0 and q1

were both |1〉. Then a |2〉-controlled X gate is applied to q2. Therefore, X is performed only

when both q0 and q1 were |1〉, as desired. The controls are restored to their original states by

a |1〉-controlled X−1 gate, which undoes the effect of the first gate. The key intuition in this

decomposition is that the qutrit |2〉 state can be used instead of ancilla to store temporary

information.

2.4.2 Generalized Toffoli Gate

We now present our circuit decomposition for the Generalized Toffoli gate in Figure 2.5. The

decomposition is expressed in terms of three-qutrit gates (two controls, one target) instead of

single- and two- qutrit gates, because the circuit can be understood purely classically at this

granularity. In actual implementation and in our simulation, we used a decomposition [1]

that requires 6 two-qutrit and 7 single-qutrit physically implementable quantum gates.

Our circuit decomposition is most intuitively understood by treating the left half of the
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the circuit as a tree. The desired property is that the root of the tree, q7, is |2〉 if and only if

each of the 15 controls was originally in the |1〉 state. To verify this property, we observe the

root q7 can only become |2〉 iff q7 was originally |1〉 and q3 and q11 were both previously |2〉.

At the next level of the tree, we see q3 could have only been |2〉 if q3 was originally |1〉 and

both q1 and q5 were previously |2〉, and similarly for the other triplets. At the bottom level

of the tree, the triplets are controlled on the |1〉 state, which are only activated when the

even-index controls are all |1〉. Thus, if any of the controls were not |1〉, the |2〉 states would

fail to propagate to the root of the tree. The right half of the circuit performs uncomputation

to restore the controls to their original state.

After each subsequent level of the tree structure, the number of qubits under consideration

is reduced by a factor of ∼ 2. Thus, the circuit depth is logarithmic in N . Moreover, each

qutrit is operated on by a constant number of gates, so the total number of gates is linear in

N .

Our circuit decomposition still works in a straightforward fashion when the control type of

the top qubit, q0, activates on |2〉 or |0〉 instead of activating on |1〉. These two constructions

are necessary for the Incrementer circuit in 2.5.3.

We verified our circuits, both formally and via simulation. Our verification scripts are

available on our GitHub [49].

2.5 Application to Algorithms

The Generalized Toffoli gate is an important primitive in a broad range of quantum algorithms.

In this section, we survey some of the applications of our circuit decomposition.

2.5.1 Artificial Quantum Neuron

The artificial quantum neuron [50] is a promising target application for our circuit construction,

because the algorithm’s circuit implementation is dominated by large Generalized Toffoli
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gates. The algorithm may exhibit an exponential advantage over classical perceptron encoding

and it has already been executed on current quantum hardware. Moreover, the threshold

behavior of perceptrons has inherent noise resilience, which makes the artificial quantum

neuron particularly promising as a near-term application on noisy systems. The current

implementation of the neuron on IBM quantum computers relies on ancilla qubits [51] which

constrains the circuit width to N = 4 data qubits. Our circuit construction offers a path to

larger circuit sizes without waiting for larger hardware.

2.5.2 Grover’s Algorithm

Grover’s Algorithm for search over M unordered items requires just O(
√
M) oracle queries.

However, each oracle query is followed by a post-processing step which requires a multiply-

controlled gate with N = dlog2Me controls [32]. The explicit circuit diagram is shown in

Figure 2.6.

Our log-depth circuit construction directly applies to the multiply-controlled gate. Thus,

we reduce a logM factor in Grover search’s time complexity to log logM via our ancilla-free

qutrit decomposition.

2.5.3 Incrementer

The Incrementer circuit performs the +1 mod 2N operation to a register of N qubits. While

logarithmic circuit depth can be achieved with linear ancilla qubits [52], the best ancilla-free

incrementers require either linear depth with large linearity constants [53] or quadratic depth

[3]. Using alternate control activations for our Generalized Toffoli gate decomposition, the

incrementer circuit is reduced to O(log2N) depth with no ancilla, a significant improvement

over past work.

Our incrementer circuit construction is shown in Figure 2.7 for an N = 8 wide register.

The multiple-controlled X+1 gates perform the job of computing carries: a carry is performed
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iff the least significant bit generates (represented by the |2〉 control) and all subsequent bits

propagate (represented by the consecutive |1〉 controls). We present an N = 8 incrementer

here and have verified the general construction, both by formal proof and by explicit circuit

simulation for larger N .

The critical path of this circuit is the chain of logN multiply-controlled gates (of width N
2 ,

N
4 , N8 , ...) which act on |a0〉. Since our multiply-controlled gate decomposition has log-depth,

we arrive at a total circuit depth circuit scaling of log2N .

2.5.4 Arithmetic Circuits and Shor’s Algorithm

The Incrementer circuit is a key subcircuit in many other arithmetic circuits such as con-

stant addition, modular multiplication, and modular exponentiation. Further, the modular

exponentiation circuit is the bottleneck in the runtime for executing Shor’s algorithm for

factorization [53, 54]. While a shallower Incrementer circuit alone is not sufficient to reduce

the asymptotic cost of modular exponentiation (and therefore Shor’s algorithm), it does

reduce constants relative to qubit-only circuits.

2.5.5 Error Correction and Fault Tolerance

The Generalized Toffoli gate has applications to circuits for both error correction [55] and

fault tolerance [56]. We foresee two paths of applying these circuits. First, our circuit

construction can be used to construct error-resilient logical qubits more efficiently. This is

critical for quantum algorithms like Grover’s and Shor’s which are expected to require such

logical qubits. In the nearer-term, NISQ algorithms are likely to make use of limited error

correction. For instance, recent results have demonstrated that error correcting a single qubit

at a time for the Variational Quantum Eigensolver algorithm can significantly reduce total

error [57]. Thus, our circuit construction is also relevant for NISQ-era error correction.
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2.6 Simulator

To simulate our circuit constructions, we developed a qudit simulation library, built on

Google’s Cirq Python library [31]. Cirq is a qubit-based quantum circuit library and includes

a number of useful abstractions for quantum states, gates, circuits, and scheduling.

Our work extends Cirq by discarding the assumption of two-level qubit states. Instead, all

state vectors and gate matrices are expanded to apply to d-level qudits, where d is a circuit

parameter. We include a library of common gates for d = 3 qutrits. Our software adds a

comprehensive noise simulator, detailed below in Section 2.6.1.

In order to verify our circuits are logically correct, we first simulated them with noise

disabled. We extended Cirq to allow gates to specify their action on classical non-superposition

input states without considering full state vectors. Therefore, each classical input state can

be verified in space and time proportional to the circuit width. By contrast, Cirq’s default

simulation procedure relies on a dense state vector representation requiring space and time

exponential in the circuit width. Reducing this scaling from exponential to linear dramatically

improved our verification procedure, allowing us to verify circuit constructions for all possible

classical inputs across circuit sizes up to widths of 14.

Our software is fully open source [49].

2.6.1 Noise Simulation

Figure 2.8 depicts a schematic view of our noise simulation procedure which accounts for

both gate errors and idle errors, described below. To determine when to apply each gate and

idle error, we use Cirq’s scheduler which schedules each gate as early as possible, creating a

sequence of Moment’s of simultaneous gates. During each Moment, our noise simulator applies

a gate error to every qudit acted on. Finally, the simulator applies an idle error to every

qudit. This noise simulation methodology is consistent with previous simulation techniques

which have accounted for either gate errors [58] or idle errors [59].

19



Gate errors arise from the imperfect application of quantum gates. Two-qudit gates are

noisier than single-qudit gates [5], so we apply different noise channels for the two. Our

specific gate error probabilities are given in Section 2.7.

Idle errors arise from the continuous decoherence of a quantum system due to energy

relaxation and interaction with the environment. The idle errors differ from gate errors in

two ways which require special treatment:

1. Idle errors depend on duration, which in turn depend on the schedule of simultaneous

gates (Moments). In particular, two-qudit gates take longer to apply than single-qudit

gates. Thus, if a Moment contains a two-qudit gate, the idling errors must be scaled

appropriately. Our specific scaling factors are given in Section 2.7.

2. For the generic model of gate errors, the error channel is applied with probability

independent of the quantum state. This is not true for idle errors such as T1 amplitude

damping, which only applies when the qudit is in an excited state. This is treated in

the simulator by computing idle error probabilities during each Moment, for each qutrit.

Gate errors are reduced by performing fewer total gates, and idle errors are reduced by

decreasing the circuit depth. Since our circuit constructions asymptotically decrease the

depth, this means our circuit constructions scale favorably in terms of asymptotically fewer

idle errors.

Our full noise simulation procedure is summarized in Algorithm 1. The ultimate metric

of interest is the mean fidelity, which is defined as the squared overlap between the ideal

(noise-free) and actual output state vectors. Fidelity expresses the probability of overall

successful execution. We do not consider initialization errors and readout errors, because our

circuit constructions maintain binary input and output, only occupying the qutrit |2〉 states

during intermediate computation. Therefore, the initialization and readout errors for our

circuits are identical to those for conventional qubit circuits.

20



Algorithm 1: Pseudocode for each simulation trial, given a particular circuit and
noise model.

|Ψ〉 ← random initial state vector
|Ψ〉ideal = circuit applied to |Ψ〉 without noise

foreach Moment do
foreach Gate ∈ Moment do
|ψ〉 ← Gate applied to |ψ〉
GateError ← DrawRand(GateError Prob.)
|ψ〉 ← GateError applied to |ψ〉

end

foreach Qutrit do
if Moment has 2-qudit gate then

IdleErrors ← long-duration idle errors
else

IdleErrors ← short-duration idle errors
end

Prob. ← [‖M |Ψ〉 ‖2 for M ∈ IdleErrors]
IdleError ← DrawRand(Prob.)
|ψ〉 ← IdleError applied to |ψ〉
Renormalize(|ψ〉)

end

end

return 〈Ψideal|Ψ〉2 , fidelity between ideal & actual output;
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We also do not consider crosstalk errors, which occur when gates are executed in parallel.

The effect of crosstalk is very device-dependent and difficult to generalize. Moreover, crosstalk

can be mitigated by breaking each Moment into a small number of sub-moments and then

scheduling two-qutrit operations to reduce crosstalk, as demonstrated in prior work [60, 61].

2.6.2 Simulator Efficiency

Simulating a quantum circuit with a classical computer is, in general, exponentially difficult

in the size of the input because the state of N qudits is represented by a state vector of

dN complex numbers. For 14 qutrits, with complex numbers stored as two 8-byte floats

(complex128 in NumPy), a state vector occupies 77 megabytes.

A naive circuit simulation implementation would treat every quantum gate or Moment as

a dN × dN matrix. For 14 qutrits, a single such matrix would occupy 366 terabytes–out of

range of simulability. While the exponential nature of simulating our circuits is unavoidable,

we mitigate the cost by using a variety of techniques which rely only on state vectors, rather

than full square matrices. For example, we maintain Cirq’s approach of applying gates by

Einstein Summation [62], which obviates computation of the dN × dN matrix corresponding

to every gate or Moment.

Our noise simulator only relies on state vectors, by adopting the quantum trajectory

methodology [63, 64], which is also used by the Rigetti PyQuil noise simulator [65]. At a

high level, the effect of noise channels like gate and idle errors is to turn a coherent quantum

state into an incoherent mix of classical probability-weighted quantum states (for example,

|0〉 and |1〉 with 50% probability each). The most complete description of such an incoherent

quantum state is called the density matrix and has dimension dN × dN . The quantum

trajectory methodology is a stochastic approach–instead of maintaining a density matrix, only

a single state is propagated and the error term is drawn randomly at each timestep. Over

repeated trials, the quantum trajectory methodology converges to the same results as from
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full density matrix simulation [65]. Our simulator employs this technique–each simulation in

Algorithm 1 constitutes a single quantum trajectory trial. At every step, a specific GateError

or IdleError term is picked, based on a weighted random draw.

Finally, our random state vector generation function was also implemented in O(dN )

space and time. This is an improvement over other open source libraries [66, 67], which

perform random state vector generation by generating full dN × dN unitary matrices from a

Haar-random distribution and then truncating to a single column. Our simulator directly

computes the first column and circumvents the full matrix computation.

With optimizations, our simulator is able to simulate circuits up to 14 qutrits in width.

This is in the range as other state-of-the-art noisy quantum circuit simulations [68] (since

14 qutrits ≈ 22 qubits). While each simulation trial took several minutes (depending on

the particular circuit and noise model), we were able to run trials in parallel over multiple

processes and multiple machines, as described in Section 2.8.

2.7 Noise Models

In this section, we describe our noise models at a high level, with mathematical details

described in Section 2.10. We chose noise models which represent realistic near-term machines.

We first present a generic, parametrized noise model roughly applicable to all quantum systems.

We then present specific parameters, under the generic noise model, which apply to near-term

superconducting quantum computers. Finally, we present a specific noise model for trapped

ion quantum computers.
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2.7.1 Generic Noise Model

Gate Errors

The scaling of gate errors for a d-level qudit can be roughly summarized as increasing as d4

for two-qudit gates and d2 for single-qudit gates. For d = 2, there are 4 single-qubit gate

error channels and 16 two-qubit gate error channels. For d = 3 there are 9 and 81 single- and

two- qutrit gate error channels respectively. Consistent with other simulators [65, 59], we

use the symmetric depolarizing gate error model, which assumes equal probabilities between

each error channel. Under these noise models, two-qutrit gates are (1 − 80p2)/(1 − 15p2)

times less reliable than two-qubit gates, where p2 is the probability of each two-qubit gate

error channel. Similarly, single-qutrit gates are (1− 8p1)/(1− 3p1) times less reliable than

single-qubit gates, where p1 is the probability of each single-qubit gate error channel.

Idle Errors

Our treatment of idle errors focuses on the relaxation from higher to lower energy states in

quantum devices. This is called amplitude damping or T1 relaxation. This noise channel

irreversibly takes qudits to lower states. For qubits, the only amplitude damping channel is

from |1〉 to |0〉, and we denote this damping probability as λ1. For qutrits, we also model

damping from |2〉 to |0〉, which occurs with probability λ2.

2.7.2 Superconducting QC

We chose four noise models based on superconducting quantum computers expected in the

next few years. These noise models comply with the generic noise model above and are

thus parametrized by p1, p2, λ1 and λ2. The λi probabilities are derived from two other

experimental parameters: the gate time ∆t and T1, a timescale that captures how long a

qudit persists coherently.
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As a starting point for representative near-term noise models, we consider parameters for

current superconducting quantum computers. For IBM’s public cloud-accessible supercon-

ducting quantum computers, we have 3p1 ≈ 10−3 and 15p2 ≈ 10−2. The duration of single-

and two- qubit gates is ∆t ≈ 100ns and ∆t ≈ 300ns respectively, and the IBM devices have

T1 ≈ 100µs [5, 6].

However, simulation for these current parameters indicates an error is almost certain to

occur during execution of a modest size 14-input Generalized Toffoli circuit. This motivates

us to instead consider noise models for better devices which are a few years away. Accord-

ingly, we adopt a baseline superconducting noise model, labeled as SC, corresponding to a

superconducting device which has 10x lower gate errors and 10x longer T1 duration than the

current IBM hardware. This range of parameters has already been achieved experimentally

in superconducting devices for gate errors [69, 70] and for T1 duration [71, 72] independently.

Faster gates (shorter ∆t) are yet another path towards greater noise resilience. We do not

vary gate speeds, because errors only depend on the ∆t/T1 ratio, and we already vary T1. In

practice however, faster gates could also improve noise-resilience.

We also consider three additional near-term device noise models, indexed to the SC noise

model. These three models further improve gate errors, T1, or both, by a 10x factor. The

specific parameters are given in Table 2.2. Our 10x improvement projections are realistic

extrapolations of progress in hardware. In particular, Schoelkopf’s Law–the quantum analogue

of Moore’s Law–has observed that T1 durations have increased by 10x every 3 years for the

past 20 years [73]. Hence, 100x longer T1 is a reasonable projection for devices that are ∼ 6

years away.

2.7.3 Trapped Ion 171Yb+ QC

We also simulated noise models for trapped ion quantum computing devices. Trapped ion

devices are well matched to our qutrit-based circuit constructions because they feature all-to-
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Noise Model 3p1 15p2 T1

SC 10−4 10−3 1 ms

SC+T1 10−4 10−3 10 ms

SC+GATES 10−5 10−4 1 ms

SC+T1+GATES 10−5 10−4 10 ms

Table 2.2: Noise models simulated for superconducting devices. Current publicly accessible
IBM superconducting quantum computers have single- and two- qubit gate errors of 3p1 ≈
10−3 and 15p2 ≈ 10−2, as well as T1 lifetimes of 0.1 ms [5, 6]. Our baseline benchmark,
SC, assumes 10x better gate errors and T1. The other three benchmarks add a further 10x
improvement to T1, gate errors, or both.

all connectivity [74], and many ions that are ideal candidates for QC devices are naturally

multi-level systems.

We focus on the 171Yb+ ion, which has been experimentally demonstrated as both a

qubit and qutrit [29, 30]. Trapped ions are often favored in QC schemes due to their long T1

times. One of the main advantages of using a trapped ion is the ability to take advantage

of magnetically insensitive states known as ”clock states.” By defining the computational

subspace on these clock states, idle errors caused from fluctuations in the magnetic field

are minimized–this is termed a DRESSED QUTRIT, in contrast with a BARE QUTRIT.

However, compared to superconducting devices, gates are much slower. Thus, gate errors are

the dominant error source for ion trap devices. We modelled a fundamental source of these

errors: the spontaneous scattering of photons originating from the lasers used to drive the

gates. The duration of single- and two- qubit gates used in this calculation was ∆t ≈ 1 µs

and ∆t ≈ 200 µs respectively [75]. The single- and two- qudit gate error probabilities are

given in Table 2.3.

2.8 Results

Figure 2.9 plots the exact circuit depths for all three benchmarked circuits. The qubit-based

circuit constructions from past work are linear in depth and have a high linearity constant.
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Noise Model p1 p2

TI QUBIT 6.4× 10−4 1.3× 10−4

BARE QUTRIT 2.2× 10−4 4.3× 10−4

DRESSED QUTRIT 1.5× 10−4 3.1× 10−4

Table 2.3: Noise models simulated for trapped ion devices. The single- and two- qutrit gate
error channel probabilities are based on calculations from experimental parameters. For
all three models, we use single- and two- qudit gate times of ∆t ≈ 1 µs and ∆t ≈ 200 µs
respectively.

Augmenting with a single borrowed ancilla reduces the circuit depth by a factor of 8. However,

both circuit constructions are surpassed significantly by our qutrit construction, which scales

logarithmically in N and has a relatively small leading coefficient.

Figure 2.10 plots the total number of two-qudit gates for all three circuit constructions.

As noted in Section 2.4, our circuit construction is not asymptotically better in total gate

count–all three plots have linear scaling. However, as emphasized by the logarithmic vertical

axis, the linearity constant for our qutrit circuit is 70x smaller than for the equivalent

ancilla-free qubit circuit and 8x smaller than for the borrowed-ancilla qubit circuit.

Our simulations under realistic noise models were run in parallel on over 100 n1-standard-4

Google Cloud instances. These simulations represent over 20,000 CPU hours, which was

sufficient to estimate mean fidelity to an error of 2σ < 0.1% for each circuit-noise model pair.

The full results of our circuit simulations are shown in Figure 2.11. All simulations are

for the 14-input (13 controls, 1 target) Generalized Toffoli gate. We simulated each of the

three circuit benchmarks against each of our noise models (when applicable), yielding the 16

bars in the figure.

2.9 Discussion

Figure 2.11 demonstrates that our QUTRIT construction (orange bars) significantly outper-

forms the ancilla-free QUBIT benchmark (blue bars) in fidelity (success probability) by more

than 10,000x.
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For the SC, SC+T1, and SC+GATES noise models, our qutrit constructions achieve

between 57-83% mean fidelity, whereas the ancilla-free qubit constructions all have almost

0% fidelity. Only the lowest-error model, SC+T1+GATES achieves modest fidelity of 26%

for the QUBIT circuit, but in this regime, the qutrit circuit is close to 100% fidelity.

The trapped ion noise models achieve similar results–the

DRESSED QUTRIT and the BARE QUTRIT achieve approximately 95% fidelity via the

QUTRIT circuit, whereas the TI QUBIT noise model has only 45% fidelity. Between the

dressed and bare qutrits, the dressed qutrit exhibits higher fidelity than the bare qutrit, as

expected. Moreover, as discussed in Section 2.10.3, the dressed qutrit is resilient to leakage

errors, so the simulation results should be viewed as a lower bound on its advantage over the

qubit and bare qutrit.

Based on these results, trapped ion qutrits are a particularly strong match to our qutrit

circuits. In addition to attaining the highest fidelities, trapped ions generally have all-to-all

connectivity [74] within each ion chain, which is critical as our circuit construction requires

operations between distant qutrits.

The superconducting noise models also achieve good fidelities. They exhibit a particularly

large advantage over ancilla-free qubit constructions because idle errors are significant for

superconducting systems, and our qutrit construction significantly reduces idling (circuit

depth). However, most superconducting quantum systems only feature nearest-neighbor or

short-range connectivity. Accounting for data movement on a nearest-neighbor-connectivity

2D architecture would expand the qutrit circuit depth from logN to
√
N (since the distance

between any two qutrits would scale as
√
N). However, recent work has experimentally

demonstrated fully-connected superconducting quantum systems via random access memory

[76]. Such systems would also be well matched to our circuit construction.

For completeness, Figure 2.11 also shows fidelities for the

QUBIT+ANCILLA circuit benchmark, which augments the ancilla-free QUBIT circuit
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with a single dirty ancilla. Since QUBIT+ANCILLA has linearity constants ∼ 10x better

than the ancilla-free qubit circuit, it exhibits significantly better fidelities. While our QUTRIT

circuit still outperforms the QUBIT+ANCILLA circuit, we expect a crossing point where

augmenting a qubit-only Generalized Toffoli with enough ancilla would eventually outperform

QUTRIT. However, we emphasize that the gap between an ancilla-free and constant-ancilla

construction for the Generalized Toffoli is actually a fundamental rather than an incremental

gap, because:

• Constant-ancilla constructions prevent circuit parallelization. For example, consider the

parallel execution of N/k disjoint Generalized Toffoli gates, each of width k for some

constant k. An ancilla-free Generalized Toffoli would pose no issues, but an ancilla-

augmented Generalized Toffoli would require Θ(N/k) ancilla. Thus, constant-ancilla

constructions can impose a choice between serializing to linear depth or regressing to

linear ancilla count. The Incrementer circuit in Figure 2.7 is a concrete example of this

scenario–any multiply-controlled gate decomposition requiring a single clean ancilla or

more than 1 dirty ancilla would contradict the parallelism and reduce runtime.

• Even if we only consider serial circuits, given the exponential advantage of certain

quantum algorithms, there is a significant practical difference between operating at the

ancilla-free frontier and operating just a few data qubits below the frontier.

While we only performed simulations up to 14 inputs in width, we would see an even

bigger advantage in larger circuits because our construction has asymptotically lower depth

and therefore asymptotically lower idle errors. We also expect to see an advantage for the

circuits in Section 2.5 that rely on the Generalized Toffoli, although we did not explicitly

simulate these circuits.

Our circuit construction and simulation results point towards promising directions of

future work that we highlight below:
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• A number of useful quantum circuits, especially arithmetic circuits, make extensive use

of multiply-controlled gates. However, these circuits are typically pre-compiled into

single- and two- qubit gates using one of the decompositions from prior work, usually

one that involves ancilla qubits. Revisiting these arithmetic circuits from first principles,

with our qutrit circuit as a new tool, could yield novel and improved circuits like our

Incrementer circuit in Section 2.5.3.

• Relatedly, we see value in a logic synthesis tool that injects qutrit optimizations into

qubit circuits, automated in fashion inspired by classical reversible logical synthesis

tools [77, 78].

• While d = 3 qutrits were sufficient to achieve the desired asymptotic speedups for our

circuits of interest, there may be other circuits that are optimized by qudit information

carriers for larger d. In particular, we note that increasing d and thereby increasing

information compression may be advantageous for hardware with limited connectivity.

Independent of these future directions, the results presented in this work are applicable

to quantum computing in the near term, on machines that are expected within the next five

years. The net result of this work is to extend the frontier of what is computable by quantum

hardware, and hence to accelerate the timeline for practical quantum computing, rather than

waiting for better hardware. Emphatically, our results are driven by the use of qutrits for

asymptotically faster ancilla-free circuits. Moreover, we also improve linearity constants by

two orders of magnitudes. Finally, as verified by our open-source circuit simulator coupled

with realistic noise models, our circuits are more reliable than qubit-only equivalents. Our

results justify the use of qutrits as a path towards scaling quantum computers.
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2.10 Detailed Noise Model

We chose noise models that represent realistic near-term machines. We first present a

generic, parametrized noise model in that is roughly applicable to all quantum systems.

Next, we present specific parameters, under the generic noise model, that apply to near-term

superconducting quantum computers. Finally, we present a specific noise model for 171Yb+

trapped ions.

2.10.1 Generic Noise Model

The general form of a quantum noise model is expressed by the Kraus Operator formalism

which specifies a set of matrices, {Ki}, each capturing an error channel. Under this formalism,

the evolution of a system with initial state σ = |Ψ〉 〈Ψ| is expressed as a function E(σ), where:

E (σ) = E
(
|Ψ〉 〈Ψ|

)
=
∑
i

KiσK
†
i (2.1)

where † denotes the matrix conjugate-transpose.

Gate Errors

For a single qubit, there are four possible error channels: no-error, bit flip, phase flip, and

phase+bit flip. These channels can be expressed as products of the Pauli matrices:

X =

0 1

1 0

 and Z =

1 0

0 −1


which correspond to bit and phase flips respectively. The no-error channel is X0Z0 = I and

the phase+bit flip channel is the product X1Z1.
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In the Kraus operator formalism, we express this single-qubit gate error model as

E(σ) =
1∑
j=0

1∑
k=0

pjk(XjZk)σ(XjZk)† (2.2)

where pjk denotes the probability of the corresponding Kraus operator.

This gate error model is called the Pauli or depolarizing channel. We assume all error

terms have equal probabilities, i.e. pjk = p1 for j, k 6= 0. This assumption of symmetric

depolarizing is standard and is used by most noise simulators [59]. Under this model, the

error channel simplifies to:

E(σ) = (1− 3p1)σ +
∑

jk∈{0,1}2\00

p1(XjZk)σ(XjZk)† (2.3)

For two-qubit gate errors, the Kraus operators are the Cartesian product of the two

single-qubit gate error Kraus operators, leading to the noise channel:

E(σ) = (1− 15p2)σ +
∑

jklm∈{0,1}4\0000

p2KjklmσK
†
jklm (2.4)

where p2 is the probability of each error term and Kjklm = XjZk ⊗X lZm.

Next, for qutrits, we have a similar form, except that there are now more possible error

channels. We now use the generalized Pauli matrices:

X+1 =


0 0 1

1 0 0

0 1 0

 and Z3 =


1 0 0

0 e2πi/3 0

0 0 e4πi/3


The Cartesian product of {I,X+1, X

2
+1} and {I, Z3, Z

2
3} constitutes a basis for all 3x3

matrices. Hence, this Cartesian product also constitutes the Kraus operators for the single-
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qutrit gate error [79, 80, 58]:

E(σ) = (1− 8p1)σ +
∑

jk∈{0,1,2}2\00

p1(X
j
+1Z

k
3 )σ(X

j
+1Z

k
3 )† (2.5)

and similarly, the two-qutrit gate error channel is:

E(σ) = (1− 80p2)σ +
∑
jklm∈

{0,1,2}4\0000

p2KjklmσK
†
jklm (2.6)

Note that in this model, the dominant effect of using qutrits instead of qubits is that the

no-error probability for two-operand gates diminishes from 1− 15p2 to 1− 80p2, as expressed

by equations 2.4 and 2.6 respectively.

Idle Errors

For qubits, the Kraus operators for amplitude damping are:

K0 =

1 0

0
√

1− λ1

 and K1 =

0
√
λ1

0 0

 (2.7)

For qutrits, the Kraus operator for amplitude damping can be modeled as [80, 81]:

K0 =


1 0 0

0
√

1− λ1 0

0 0
√

1− λ2

 , K1 =


0
√
λ1 0

0 0 0

0 0 0

 ,
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and K2 =


0 0

√
λ2

0 0 0

0 0 0

 (2.8)

As discussed in Section 2.6.1, these noise channels are incoherent (non-unitary), which

means that the probability of each error occurring depends on the current state. Specifically,

the probability of the Ki channel affecting the state |Ψ〉 is ‖Ki |ψ〉 ‖2 [32].

2.10.2 Superconducting QC

We picked four noise models based on superconducting quantum computers that are expected

in the next few years. These noise models comply with the generic noise model above and

are thus parametrized by p1, p2, λ1, and λ2. The λm terms are given by [81]:

λm = 1− e−m∆t/T1 (2.9)

where ∆t is the duration of the idling and T1 is associated with the lifetime of each qubit.

2.10.3 Trapped Ion 171Yb+ QC

Based on calculations from experimental parameters for the trapped ion qutrit, we know

the specific Kraus operator types for the error terms, which deviate slightly from those in

the generic error model. The specific Kraus operator matrices are provided at our GitHub

repository [49].

We chose three noise models: TI QUBIT, BARE QUTRIT, and DRESSED QUTRIT.

Both TI QUBIT and DRESSED QUTRIT take advantage of clock states and thus have very

small idle errors. They both would be ideal candidates for a qudit. The BARE QUTRIT will

suffer more from idle errors as it is not strictly defined on clock states but will require less

experimental resources to prepare. Idle errors are very small in magnitude and manifest as
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coherent phase errors rather than amplitude damping errors as modeled in Section 2.7.1. We

also do not consider leakage errors. These errors could be handled for Yb+ by treating each

ion as a d = 4 qudit, regardless of whether we use it as a qubit or a qutrit.
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|q0〉 1 1

|q1〉 X+1 2 2 X−1

|q2〉 1 1

|q3〉 X+1 2 2 X−1

|q4〉 1 1

|q5〉 X+1 2 2 X−1

|q6〉 1 1

|q7〉 X+1 2 X−1

|q8〉 1 1

|q9〉 X+1 2 2 X−1

|q10〉 1 1

|q11〉 X+1 2 2 X−1

|q12〉 1 1

|q13〉 X+1 2 2 X−1

|q14〉 1 1

|q15〉 U

Figure 2.5: Our circuit decomposition for the Generalized Toffoli gate is shown for 15 controls
and 1 target. The inputs and outputs are both qubits, but we allow occupation of the
|2〉 qutrit state in between. The circuit has a tree structure and maintains the property
that the root of each subtree can only be elevated to |2〉 if all of its control leaves were
|1〉. Thus, the U gate is only executed if all controls are |1〉. The right half of the circuit
performs uncomputation to restore the controls to their original state. This construction
applies more generally to any multiply-controlled U gate. Note that the three-input gates
are decomposed into 6 two-input and 7 single-input gates in our actual simulation, as based
on the decomposition in [1].
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Oracle

H X 1 X H

H X 1 X H

H X 1 X H

H X Z X H

Figure 2.6: Each iteration of Grover Search has a multiply-controlled Z gate. Our logarithmic
depth decomposition, reduces a logM factor in Grover’s algorithm to log logM .

|a0〉 X+1 2 2 2 2 2 X02 |(a+ 1)0〉

|a1〉 1 1 X01 0 0 |(a+ 1)1〉

|a2〉 1 X+1 2 X02 0 |(a+ 1)2〉

|a3〉 1 X01 0 |(a+ 1)3〉

|a4〉 X+1 2 2 2 X02 |(a+ 1)4〉

|a5〉 1 X01 0 |(a+ 1)5〉

|a6〉 X+1 2 X02 |(a+ 1)6〉

|a7〉 X01 |(a+ 1)7〉

Figure 2.7: Our circuit decomposition for the Incrementer. At each subcircuit in the recursive
design, multiply-controlled gates are used to efficiently propagate carries over half of the
subcircuit. The |2〉 control checks for carry generation and the chain of |1〉 controls checks
for carry propagation. The circuit depth is log2N , which is only possible because of our log
depth multiply-controlled gate primitive.
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U1 U1 Gate Error Idle Error

Idle Error

U2 =⇒ U2 Gate Error Idle Error

U3 U3 Gate Error
Idle Error

Idle Error

Figure 2.8: This Moment comprises three gates executed in parallel. To simulate with noise,
we first apply the ideal gates, followed by a gate error noise channel on each affected qudit.
This gate error noise channel depends on whether the corresponding gate was single- or two-
qudit. Finally, we apply an idle error to every qudit. The idle error noise channel depends on
the duration of the Moment.

25 50 75 100 125 150 175 200
101

102

103

104

105 ∼ 633N

∼ 76N

∼ 38 log2(N)

Number of Qudits

Circuit Depth

QUBIT QUBIT+ANCILLA QUTRIT

Figure 2.9: Exact circuit depths for all three benchmarked circuit constructions for the
N-controlled Generalized Toffoli up to N = 200. Both QUBIT and QUBIT+ANCILLA scale
linearly in depth and both are bested by QUTRIT’s logarithmic depth.
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∼ 397N

∼ 48N

∼ 6N

Number of Qudits

Two-Qudit Gate Count

QUBIT QUBIT+ANCILLA QUTRIT

Figure 2.10: Exact two-qudit gate counts for the three benchmarked circuit constructions
for the N-controlled Generalized Toffoli. All three plots scale linearly; however the QUTRIT
construction has a substantially lower linearity constant.

Figure 2.11: Circuit simulation results for all possible pairs of circuit constructions and noise
models. Each bar represents 1000+ trials, so the error bars are all 2σ < 0.1%. Our QUTRIT
construction significantly outperforms the QUBIT construction. The QUBIT+ANCILLA
bars are drawn with dashed lines to emphasize that it has access to an extra ancilla bit,
unlike our construction.
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CHAPTER 3

PARTIAL COMPILATION OF VARIATIONAL ALGORITHMS

FOR NOISY INTERMEDIATE-SCALE QUANTUM

MACHINES

3.1 Introduction

In the Noisy Intermediate-Scale Quantum (NISQ) era, we expect to operate hardware with

hundreds or thousands of quantum bits (qubits), acted on by imperfect gates [16]. Moreover,

connectivity in these NISQ machines will be sparse and qubits will have modest lifetimes.

Given these limitations, NISQ era machines will not be able to execute large-scale quantum

algorithms like Shor Factoring [10] and Grover Search [9], which rely on error correction that

requires millions of qubits [82, 83].

However, recently, variational algorithms have been introduced that are well matched

to NISQ machines. This new class of algorithms has a wide range of applications such as

molecular ground state estimation [84], MAXCUT approximation [85], and prime factorization

[86]. The two defining features of a variational algorithm are that:

1. the algorithm complies with the constraints of NISQ hardware. Thus, the circuit for a

variational algorithm should have modest requirements in qubit count (circuit width)

and runtime (circuit depth / critical path).

2. the quantum circuit for the algorithm is parametrized by a list of angles. These

parameters are optimized by a classical optimizer over the course of many iterations.

For this reason, variational algorithms are also termed as hybrid quantum-classical

algorithms [16]. Typically, a classical optimizer that is robust to small amounts of noise

(e.g. Nelder-Mead) is chosen [84, 87].
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Standard non-variational quantum algorithms are fully specified at compile time and

therefore can be fully optimized by static compilation tools as in previous work [88, 89]. By

contrast, each iteration of a variational algorithm depends on the results of the previous

iteration–hence, compilation must be interleaved through the computation. As even small

instances of variational algorithms will require thousands of iterations [90], the compilation

latency for each iteration therefore becomes a serious limitation. This feature of variational

algorithms is a significant departure from previous non-variational quantum algorithms.

To cope with this limitation on compilation latency, past work on variational algorithms

has performed compilation under the standard gate-based model. This methodology has

the advantage of extremely fast compilation–a lookup table maps each gate to a sequence of

machine-level control pulses so that compilation simply amounts to concatenating the pulses

corresponding to each gate. We note that this compilation procedure is a conservative picture

of experimental approaches to gate-based compilation. In practice, parametrized gates may

be handled by a step-function lookup table that depends on the run-time parameters, with

the aim of reducing errors, as demonstrated in [91, 92, 93].

The gate-based compilation model is known to fall short of the GRadient Ascent Pulse

Engineering (GRAPE) [94, 95] compilation technique, which compiles directly to the level

of the machine-level control pulses that a quantum computer actually executes. In past

work [96, 97, 98], GRAPE has been used to achieve 2-5x pulse speeedups over gate-based

compilation for a range of quantum algorithms. Since fidelity decreases exponentially in time,

with respect to the extremely short lifetimes of qubits, reducing the pulse duration is critical

to ensuring that a computation completes before being completely scrambled by quantum

decoherence effects. Thus, 2-5x pulse speedups translate to an even bigger advantage in the

success probability of a quantum circuit.

However, GRAPE-based compilation has a substantial cost: compilation time. Running

GRAPE control on a circuit with just four qubits takes several minutes. For representative
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four qubit circuits, we observed compile times ranging from 10 minutes to 1 hour, even with

state-of-the-art hardware and GPU acceleration. This would amount to several weeks or

months of total compilation latency over the course of thousands of iterations (and millions of

iterations will be needed for larger problems). By contrast, typical pulse times for quantum

circuits are on the order of microseconds, so the compilation latency imposed by GRAPE is

untenable. Thus, GRAPE-based compilation is not practical out-of-the-box for variational

algorithms.

In this chapter, we introduce partial compilation, a strategy that approaches the pulse

duration speedup of GRAPE, but with a manageable overhead in compilation latency. With

this powerful new compiler capability, we enable the architectural choice of pulse-level

instructions, which supports more complex near-term applications through lower latencies

and thus much lower error rates. This architectural choice would be infeasible without our

compiler support. Our specific contributions include:

• Demonstration of the advantage of GRAPE over gate based compilation for variational

algorithms

• Strict partial compilation, a strategy that pre-computes optimal pulses for parametrization-

independent blocks of gates. This strategy is strictly better than gate-based compilation–

it achieves a significant pulse speedup (approaching GRAPE results), with no overhead

in compilation latency.

• Flexible partial compilation, a strategy that performs as well as full GRAPE, but with a

dramatic speedup in compilation latency via precomputed hyperparameter optimization.

The rest of this chapter is organized as follows. Section 3.2 gives prerequisite background on

quantum computation and Section 3.3 describes related work from prior research. Section 3.4

describes characteristics of our benchmark variational algorithms, with particular attention

to the structural properties that our compilation strategies exploit. Section 3.5 explains
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the GRAPE compilation methodology. Sections 3.6 and 3.7 explain our partial compilation

strategies and Section 3.8 discusses our results. We conclude in Section 3.9 and propose

future work in Section 3.10. Section 3.11 presents the system Hamiltonian that we consider

in GRAPE.

3.2 Background on Quantum Computation

3.2.1 Qubits

The fundamental unit of quantum computation is a quantum bit, or qubit. A qubit has two

basis states, which are represented by state vectors denoted

|0〉 =

1

0

 and |1〉 =

0

1

 .

Unlike a classical bit, the state of a qubit can be in a superposition of both |0〉 and |1〉. In

particular, the space of valid qubit states are α |0〉+β |1〉, normalized such that |α|2 + |β|2 = 1.

When a qubit is measured, its quantum state collapses and either |0〉 or |1〉 is measured, with

probabilities |α|2 and |β|2 respectively.

A two-qubit system has four basis states:

|00〉 =



1

0

0

0


, |01〉 =



0

1

0

0


, |10〉 =



0

0

1

0


, and |11〉 =



0

0

0

1


and any two-qubit state can be expressed as the superposition α |00〉+ β |01〉+ γ |10〉+ δ |11〉

(normalized so that |α|+ |β|2 + |γ|2 + |δ|2 = 1). More generally, an N -qubit system has 2N

basis states. Therefore, 2N numbers, called amplitudes, are needed to describe the state
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of a general N -qubit system. This exponential scaling gives rise to both the difficulty of

classically simulating a quantum system, as well as the potential for quantum computers to

exponentially outperform classical computers in certain applications.

3.2.2 Quantum Gates

A quantum algorithm is described in terms of a quantum circuit, which is a sequence of 1-

and 2- input quantum gates. Every quantum gate is represented by a square matrix, and

the action of a gate is to left-multiply a state vector by the gate’s matrix. Because quantum

states are normalized by measurement probabilities, these matrices must preserve l2-norms.

This corresponding set of matrices are unitary (orthogonal) matrices. The unitary matrices

for two important single-qubit gates are:

Rx(θ) =

i cos θ2 sin θ
2

sin θ
2 i cos θ2

 and Rz(φ) =

1 0

0 eiφ


At θ = π, the Rx(π) gate has matrix

(
0 1
1 0

)
, which acts as a NOT gate: left-multiplying

by it swaps between the |0〉 and |1〉 states. This bit-flip gate is termed the X gate.

Similarly, at φ = π, the Rz(π) gate has matrix
(

1 0
0 −1

)
, which applies a −1 multiplier to

the amplitude of |1〉; this type of gate is unique to the quantum setting, where amplitudes

can be negative (or complex). This ‘phase’-flip gate is termed the Z gate.

An important 2-input quantum gate is

CX =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


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The CX gate, often referred to as the CNOT or Controlled-NOT gate, applies an action that

is controlled on the first input. If the first input is |0〉, then the CX gate has no effect. If the

first input is |1〉, then it applies an X = Rx(π) to the second qubit.

The CX gate is an entangling gate, meaning that its effect cannot be decomposed into

independent gates acting separately on the two qubits. An important result in quantum

computation states that the set of all one qubit gates, plus a single entangling gate, is

sufficient for universality [32]. Since the Rx(θ) and Rz(φ) gates span the set of all one qubit

gates, we see that, {Rx(θ), Rz(φ), CX} is a universal gate set.

In practice, we seek to implement a quantum algorithm using the most efficient quantum

circuit possible, with efficiency defined in terms of circuit width (number of qubits) and depth

(length of critical path, or runtime of the circuit). Accordingly, quantum circuits are optimized

by repeatedly applying gate identities that reduce the resources consumed by the circuit.

All circuits that are presented in this chapter were optimized using IBM Qiskit’s Transpiler,

which applies a variety of circuit identities–for example, aggressive cancellation of CX gates

and ‘Hadamard’ gates. We also augmented the IBM optimizer with our own compiler pass

for merging rotation gates–e.g. Rx(α) followed by Rx(β) merges into Rx(α+ β)–which we

found to further reduce circuit sizes.

3.2.3 Gate-Based Compilation

At the lowest level of hardware, quantum computers are controlled by analog pulses. There-

fore, quantum compilation must translate from a high level quantum algorithm down to a

sequence of control pulses. Once a quantum algorithm has been decomposed into a quantum

circuit comprising single- and two- qubit gates, gate-based compilation simply proceeds

by concatenating a sequence of pulses corresponding to each gate. In particular, a lookup

table maps from each gate in the gate set to a sequence of control pulses that executes that

gate. Table 3.1 indicates the total pulse duration for each gate in the compilation basis gate
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Gate Rz(φ) Rx(θ) H CX SWAP

Time (ns) 0.4 2.5 1.4 3.8 7.4

Table 3.1: Library of the compiler’s gate set and corresponding pulse durations (in nanosec-
onds) for each gate. The runtimes of circuits under gate-based compilation are indexed to
these pulse durations.

set. These pulse durations are based on the gmon-qubit [99] quantum system described in

Section 3.11.

As previously noted, the {Rx(θ), Rz(φ),CX} gate set alone is sufficient for universality,

so in principle the H and SWAP gates could be removed from the compilation basis gate set.

However, we include the generated pulses (using GRAPE as described below) for these gates

in our compilation set, because quantum assembly languages typically include them in their

basis set [100, 101, 102, 65, 103, 104].

The advantage of the gate-based approach is its short pulse compilation time, as the lookup

and concatenation of pulses can be accomplished almost instantaneously. However, it prevents

the optimization of pulses from happening across the gates, because there might exists a

global pulse for the entire circuit that is shorter and more accurate than the concatenated

one. The quality of the concatenated pulse relies heavily on an efficient gate decomposition

of the quantum algorithm.

3.2.4 GRAPE

GRadient Pulse Engineering (GRAPE) is a strategy for compilation that numerically finds the

best control pulses needed to execute a quantum circuit or subcircuit by following a gradient

descent procedure [95, 105]. We use the Tensorflow implementation of GRAPE described in

[97]. In contrast to the gate based approach, GRAPE does not have the limitation incurred

by the gate decomposition. Instead, it directly searches for the optimal control pulse for the

input circuit as a whole. Our full GRAPE procedure is described further detail in Section 3.5.
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3.3 Related Work

Past publications of variational algorithm implementations have relied on gate-based compi-

lation, using parametrized gates such as Rx(θ) and Rz(φ). Existing quantum languages offer

support for such parametrized gates [104, 100, 101, 106, 65, 103]. In most languages, the

angles must be declared at compile time–thus at every iteration of a variational algorithm,

a new circuit is compiled based on the new parametrization. Rigetti’s Quil [65] language

goes a step further by supporting runtime resolution of the parameters in parameters gates,

which allows dynamic implementations of variational algorithms. However, as acknowledged

in the Quil specifications, this approach hampers circuit optimization, because the actual

parameters are not known until runtime.

While this chapter treats gate-based compilation as a simple lookup table between gates

and pulses, experimental implementations have already moved directionally towards GRAPE-

style, because pulse sequences can depend on the input angles in a complicated fashion. For

example, in [92], a parametrized U(φ) gate has five different pulse sequence decompositions,

each corresponding to φ in ranges set by the breakpoints [−π, 2.25,−0.25, 0.25, 2.25, π]. [91]

and [93] have similar step-function gate-to-pulse translation.

The growing overhead of compilation latency has been recognized, and recent work has

proposed the development of specialized FPGAs for the compilation of variational algorithms

[107]. More broadly, we note that pulse level control is at the cusp of industry adoption. An

open specification for pulse-level control, OpenPulse, was standardized recently [100], and

IBM plans to introduce an API for pulse level control in 2019 [108]. Pulse access to quantum

machines will open the door to experimental realizations of GRAPE, including for variational

algorithms as proposed in this chapter.

47



3.4 Variational Benchmarks

Variational quantum algorithms are important in the near-term because they comply with

the constraints of NISQ hardware. In particular, variational algorithms have innate error

resilience, due to the hybrid alternation with a noise-robust classical optimizer [84, 87]. Every

iteration of a variational algorithm is parameterized by a list of angles. In general, the

parameter space explored by a variational algorithm is not known a priori–the classical

optimizer picks the next iteration’s parameters based on the results of the previous iterations.

Consequently, the compilation for each iteration is interleaved with the actual computation.

A schematic of this process is illustrated in Figure 3.1.

There are two variational quantum algorithms: Variational Quantum Eigensolver and

Quantum Approximate Optimization Algorithm. We discuss both below.

3.4.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is used to find the ground state energy of a

molecule, a task that is exponentially difficult in general for a classical computer, but is

believed to be efficiently solvable by a quantum computer [109]. Estimating the molecular

ground state has important applications to chemistry such as determining reaction rates [110]

and molecular geometry [111]. A conventional quantum algorithm for solving this problem is

called the Quantum Phase Estimation (QPE) algorithm [112]. However, for a target precision

ε, QPE requires a quantum circuit with depth O(1/ε), whereas V QE algorithm requires

O(1/ε2) iterations of depth-O(1) circuits[113]. The latter assumes a much more relaxed

fidelity requirement on the qubits and gate operations, because the higher the circuit depth,

the more likely the circuit experiences an error at the end. At a high level, VQE can be

conceptualized as a guess-check-repeat algorithm. The check stage involves the preparation

of a quantum state corresponding to the guess. This preparation stage is done in polynomial

time on a quantum computer, but would incur exponential cost (owing to the 2N state vector

48



Variational Algorithm
Quantum Classical

Quantum
hardware

Classical
hardware

“Parameterized circuit” “Gradient descent”

New trial parameters

Partial compilation

Pulse optimization

Input parameters: "⃗

Evaluate: E["⃗]

Output ("⃗, E()*["⃗]) after 
sufficient iterations.

Next guess: "′

("⃗, E "⃗ )
Search for E-./

Figure 3.1: Illustration of a variational quantum algorithm that alternates between a quantum
circuit and a classical optimizer. In this process, the quantum circuit (parameterized by ~θ)

evaluates some cost function E[~θ], and the classical optimizer gradient descends for the next
set of parameters.

scaling) in general on a classical computer. This contrast gives rise to a potential quantum

speedup for VQE.

The quantum circuit corresponding to the guess is termed an ansatz. While many ansatz

choices are possible, Unitary Coupled Cluster Single-Double (UCCSD), an ansatz motivated

by principles of quantum chemistry, is considered the gold standard [114, 115]. The UCCSD

ansatz is also promising because it could circumvent the barren plateaus issue that affects

many other ansatzes [109].

We benchmark the UCCSD ansatz for five molecules: H2, LiH, BeH2, NaH, H2O. These

molecules span the state of the art for experimental implementations of VQE: H2O is the
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Molecule Width (# of Qubits) # of Params Gate-Based Runtime

H2 2 3 35 ns

LiH 4 8 872 ns

BeH2 6 26 5308 ns

NaH 8 24 5490 ns

H2O 10 92 33842 ns

Table 3.2: Benchmarked circuits for VQE, using the UCCSD ansatz. Each circuit was
optimized, parallel-scheduled, mapped using IBM Qiskit’s tools, augmented by an additional
optimization pass we wrote to merge consecutive rotation gates. The Gate-Based Runtime is
indexed to the pulse durations for each gate reported in Table 3.1.

largest molecule addressed by VQE [91] to date. We generated our UCCSD ansatz circuits

using the IBM Qiskit implementation described in [116] as well as the PySCF Python package

[117] to manage molecular data.

Both the the circuit depth and number of ansatz parameters in UCCSD scale as O(N4)

in the circuit width [118]. Table 3.2 specifies the exact circuit width, number of variational

parameters, and gate-based runtime (circuit depth) for each of the benchmarks. The reported

gate-based runtimes are indexed to the pulse durations of each gate reported in Table 3.1.

Each circuit was optimized using IBM Qiskit’s circuit optimizer pass system, Qiskit’s circuit

mapper (to conform to nearest neighbor connectivity), and a custom compiler pass to merge

neighboring rotation gates on the same axis. We also exploit parallelism to simultaneously

schedule as many gates as posisble; the reported gate-based runtimes are for the critical path

through the parallelized circuit. These circuit optimizations form a fair baseline for the best

circuit runtimes achievable by gate based compilation. Our full circuit optimization code,

along with the results of optimization applied to our benchmarks, is available on our Github

repository [119].
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3.4.2 QAOA

Quantum Approximate Optimization Algorithm (QAOA) is an algorithm for generating

approximate solutions to problems that are hard to solve exactly. At an intuitive level,

QAOA can be understood as an alternating pattern of Mixing and Cost-Optimization steps.

At each Mixing step, QAOA applies diffusion so that every possible state is explored in

quantum superposition. At each Cost-Optimization step, a bias is applied to boost the

magnitudes of quantum states that minimize a cost function. Thereafter, measuring can yield

an approximate solution close to optimal with high probability. The number of alternating

Mixing and Cost-Optimization rounds is known as p. Even for small p, QAOA has competitive

results against classical approximation algorithms. For example, at p = 1, QAOA applied to

the NP-hard MAXCUT problem yields a cut of size at least 69% of the optimal cut size [85].

At p = 5, simulations have demonstrated that QAOA achieves mean parity with the best-

known classical algorithm, Goemans-Williamson, for 10 node graphs [7]. For larger p, QAOA

is expected to outperform classical approximation algorithms even for worst-case bounds,

although theoretical guarantees have not been established yet. QAOA is of particular interest

in the near term because recent work has shown that it is computationally universal [120].

Moreover, QAOA has shown experimental resilience to noise [121]. For these reasons, QAOA

is a leading candidate for quantum supremacy [122], the solution of a classically-infeasible

problem using a quantum computer.

Similarly to VQE, QAOA is a guess-check-repeat algorithm. In the case of QAOA, the

guesses correspond to “Mixing magnitude during iteration 1 ≤ i ≤ p” and “Cost-Optimization

magnitude during iteration 1 ≤ i ≤ p”. Hence, the number of parameters in a QAOA circuit

is 2p: one scalar for Mixing magnitude and one for Cost-Optimization magnitude, for each of

the p rounds.

We benchmark QAOA for N = 6 and 8 node graphs, with the number of QAOA rounds

p spanning from 1 to 8. For each (N, p) pair, we benchmark for two types of random graphs:
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N = 6 N = 8

3-Regular Erdos-Renyi 3-Regular Erdos-Renyi

p = 1 113 ns 84 ns 163 ns 157 ns

p = 2 199 ns 151 ns 365 ns 297 ns

p = 3 277 ns 223 ns 530 ns 443 ns

p = 4 356 ns 296 ns 695 ns 596 ns

p = 5 434 ns 368 ns 860 ns 750 ns

p = 6 512 ns 440 ns 1025 ns 903 ns

p = 7 590 ns 512 ns 1191 ns 1056 ns

p = 8 668 ns 584 ns 1356 ns 1209 ns

Table 3.3: Gate-based runtimes for our 32 benchmark QAOA MAXCUT circuits. Our
benchmarks consider two types of random graphs: 3-Regular and Erdos-Renyi. We consider
both 6 and 8 node graphs–the number of qubits in the circuit is the same as the number of
nodes in the graph. We benchmarked over p, the number of repetitions of the basic QAOA
block, ranging from 1 to 8, which represents a range of p that is of both theoretical and
practical interest [7]. As in Table 3.2, the gate-based runtimes are based on the gate times in
Table 3.1, after each circuit has been optimized, parallel-scheduled, and mapped.

3-regular (each node is connected to three neighbors) and Erdos-Renyi (each possible edge is

included with 50% probability). This yields 2× 8× 2 = 32 benchmarks circuits for QAOA.

The gate-based runtimes for each of these benchmarks are reported in Table 3.3. As with the

VQE benchmarks, the runtimes are computed after circuit mapping and optimizations, to

form a fair baseline.

3.5 GRAPE Compilation

In this section, we describe GRAPE (GRadient Ascent Pulse Engineering), a compilation

technique that aims to produce the optimal possible sequence of analog control pulses needed

to realize the unitary matrix transformation for a targeted quantum circuit. At an abstract

level, GRAPE simply treats the underlying quantum computer as a black box. The black

box accepts time-discretized control pulses as input and outputs the unitary matrix of the

52



transformation that is realized by the input control pulses. GRAPE performs gradient descent

over the space of possible control pulses to search for the optimal sequence of input signals that

achieve the targeted unitary matrix up to a specified fidelity. We used the Tensorflow-based

implementation of GRAPE described in [97], which has demonstrated good performance.

The gradients are computed analytically and backpropogated with automatic differentiation.

In this chapter, we define the optimal sequence of control pulse as the one of shortest

duration–thus, we seek to speed up the pulse time with respect to gate-based compilation.

Reducing the pulse time is important in quantum computation because qubits have short

lifetimes due to quantum decoherence effects. The decoherence error increases exponential

with time, so the effect of a pulse time speedup enters the power of an exponential term. We

focus on this error metric because it is one of the dominant error terms for superconducting

qubits and it is well understood. However, in principle, GRAPE can be used to control other

sources of error such as gate errors, State Preparation and Measurement (SPAM) errors, and

qubit crosstalk, as demonstrated in past work [98, 123, 124].

3.5.1 Speedup Sources

Because GRAPE translates directly from a unitary matrix to hardware-level control pulses–

without the overhead of an intermediate set of quantum gates–it achieves more optimized

control pulses than gate-based compilation does. In particular, we observed significant pulse

speedups from GRAPE due to the following factors:

• ISA alignment. Gate based compilation incurs a significant overhead because the set

of basis gates will not be directly implementable on a target machine. For example,

while quantum circuits are typically compiled down to CX (CNOT) gates as the default

two-qubit instructions, actual quantum computers implement a wide range of native

two-qubit operations such as the MS gate or the iSWAP gate. Compiling gates to

pulses incurs a significant overhead from this ISA misalignment.
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• Fractional gates. A unique feature of quantum computing is that all operations can

be fractionally performed–for example, CX1/2 is a valid quantum gate, as is CXp more

generally for any power. Often, a fractional application of a basis gate is sufficient to

execute a larger quantum operation. The fixed basis set of gate based compilation

misses these optimizations, whereas GRAPE works in a continuous basis and realizes

fractional gates when beneficial.

• Control Field Asymmetries. While gate based compilation puts Rx and Rz gates on

an equal footing, at a physical level, there is often a significant asymmetry between the

speed and reliability of these operations. As described in A, we model a representative

quantum system in which Z-axis qubit rotations are 15 times faster than X-axis qubit

rotations. GRAPE’s search for the shortest pulse realization will therefore leverage

this asymmetry, preferring Z rotations when possible. For example, the H gate is

typically implemented by the Rx(−π2 )Rz(
−π
2 )Rx(−π2 ) pulse sequence, which involves

two X-axis rotations and one Z-axis rotation. We observe that our GRAPE system

instead discovers the equivalent Rz(
−π
2 )Rx(−π2 )Rz(

−π
2 ) pulse sequence, which only

requires one X-axis rotation and therefore executes significantly faster.

• Maximal circuit optimization. Although quantum circuits can be optimized at the

gate-level by repeatedly applying a set of circuit identity templates, the set of templates

must be finite. Opportunities for optimization between distant gates (both in width

and depth) may be overlooked. By contrast, GRAPE subsumes all circuit optimizations

by working directly in terms of the unitary matrix of the circuit, as opposed to the gate

decomposition.

3.5.2 Circuit Blocking for GRAPE

While GRAPE can achieve significant pulse speedups, it is limited by two factors:
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• The unitary matrix of the targeted quantum circuit must be specified as input to the

GRAPE program. An N -qubit circuit has a 2N × 2N matrix (due to the exponential

state space of an N -qubit space), which imposes a bound on the maximum circuit size

that GRAPE can handle.

• The total convergence time for GRAPE’s gradient descent scales exponentially in the

size of the target quantum circuit [97]. For example, it typically takes our GRAPE

implementation several minutes to find the pulses for a 4 qubit QAOA MAXCUT

circuit. Experientially, we also found difficulty consistently finding convergence for deep

quantum circuits with N > 5 qubits.

For this reason, it is necessary to partition large quantum circuits into blocks of manageable

width. We blocked into subcircuits of up to 4 qubits, using the aggregation methodology

discussed in [96]. Specifically, we select maximal subcircuits of 4 qubit width, such that

partitioning the subcircuit does not delay the execution of subcircuits. This methodology

ensures that full GRAPE is strictly better than gate based compilation–otherwise, subcircuits

may induce serialization that underperforms gate based compilation. Details are discussed in

Section 4.3 of [96].

3.5.3 Binary Search for Minimum Pulse Time

In prior work [97, 96], the pulse length is specified as a static ‘upper bound’ parameter,

total time. Pulse speedups are then performed by adding a term to the cost function that

rewards pulses that realize the targeted unitary matrix in time shorter than total time.

However, to comply with the automatic differentiation methodology for analytically computing

gradients, this cost function term is continuous and rewards gradual progress of the pulse

towards the target unitary matrix. By contrast, our ultimate goal is to find the binary cutoff

point specifying the minimal possible time needed to achieve a pulse. Moreover, setting the

relative weighting of the speedup term to the fidelity term in the cost function is difficult.
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Poor choices of weights can either prevent GRAPE from achieving any speedup or realizing

the target fidelity.

As proposed by the prior work [97], our methodology adaptively changes the total time

by binary searching for the shortest total time needed to achieve a target unitary matrix.

While this incurs the overhead of running on the more iterations 1, it is worthwhile because

minimizing the pulse time is exponentially critical in terms of reducing errors.

3.5.4 GRAPE Compilation for QAOA

There are a range of theoretical results setting upper bounds on the circuit complexity

needed to achieve a particular quantum operation. For example, it is known that 3 CX gates,

sandwiched by single-qubit rotations, is sufficient to implement any two qubit operation. These

results were recently generalized to the context of quantum optimal control (a generalization

of GRAPE) with a proof that any N -qubit operation can be achieved in O(4N ) time via

optimal control [125].

This implies that GRAPE can achieve a significant advantage over gate-based compilation

in algorithms like QAOA that have p repeated blocks. While the pulse length from gate-based

compilation scales linearly in the p, the GRAPE based pulse length is upper bounded by the

maximum time it takes to implement any transformation for an N -qubit circuit. Figure 3.2

demonstrates this behavior for QAOA MAXCUT on the 4-node clique problem. While the

pulse length from gate based compilation scales linearly in the number of QAOA rounds p, it

asymptotes below 50 ns for GRAPE based pulse lengths. Thus, the pulse speedup advantage

of GRAPE increases with p.

As our QAOA benchmarks have circuit widths of 6 and 8 qubits–larger than the 4 qubit

blocks we feed to GRAPE–the number of serial blocks will scale linearly with p. Therefore,

we don’t expect to see an unboundedly growing speedup of GRAPE with increasing p, but

1. Specifically, on the order of log(M/∆t) iterations where M is the upper bound on total time and ∆t
is the desired precision, which we set to 0.3 ns.
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Figure 3.2: Pulse lengths from gate based compilation and full GRAPE for MAXCUT on the
4-node clique. While the gate based pulse times are simply linear in the number of QAOA
rounds p, the GRAPE based times asymptote to an upper bound. For each p, a random
parametrization was set. The ratio varies from 2.0x at p = 1 to 12.0x at p = 6.

we still expect to see gains within each 4 qubit block.

3.6 Strict Partial Compilation

While full quantum optimal control generates the fastest possible pulse sequence for a target

circuit, its compilation latency on the order of several minutes is untenable for variational

algorithms, in which compilation is interleaved with computation. In order to approach the

pulse speedup of GRAPE without incurring the full cost in compilation latency, it is necessary

to exploit the structure of the variational circuits. We term this structural analysis as partial

compilation, and it is executed as pre-computation step prior to executing the variational

algorithm on a quantum computer.

Our first strategy, Strict Partial Compilation, stems from the observation that for typical

circuits in variational algorithms, most of the gates are independent of the parametrization.

For example, Figure 3.3a shows an example variational circuit. While the circuit has many

gates, only four of them depend on the variational θi parameters. All of the other gates can

be blocked into maximal parametrization-independent subcircuits. Figure 3.3b demonstrates
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(a) This is a representative variational circuit, decomposed into gates. In gate-based compilation,
each gate is translated by a lookup table to analog control pulses. Compilation amounts to simple
concatenation of these control pulses. GRAPE (denoted by the dashed line) considers the unitary
matrix for the full circuit and performs gradient descent to find the shortest control pulses that
realize the circuit. GRAPE achieves significant pulse speedups, but has substantial compilation
latency.

(b) Strict partial compilation blocks the circuit into a strictly alternating sequence of Fixed
(parametrization-independent) subcircuits and Rz(θi) gates. Each Fixed subcircuit is precompiled
with GRAPE, so that compilation at runtime simply involves concatenating the pulses for each
subcircuit.

(c) Flexible partial compilation blocks the circuit into subcircuits that depend on exactly one
parameter, θi. Parameter monotonicity ensures that these subcircuits have significantly longer
depth than the Fixed blocks of strict partial compilation. We use hyperparameter optimization to
precompute good hyperparameters (learning rate and decay rate) for each subcircuit. When all θi
are specified at runtime, we used the tuned hyperparameters to quickly find optimized pulses for
each subcircuit.

Figure 3.3: Comparison of compilation strategies. Subfigure (a) depicts gate-based and
GRAPE- based compilation for a variational circuit. These two compilation approaches
represent opposite ends of a spectrum trading off between between compilation latency and
control pulse speedup. We introduce two new compilation strategies, strict and flexible partial
compilation, that approach the pulse speedup of GRAPE without the large compilation latency.
Subfigures (b) and (c) demonstrates strict and flexible partial compilation respectively.
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the application of strict partial compilation to the variational circuit from Figure 3.3a. The

sequence of resulting subcircuits is [Fixed, Rz(θ1), Fixed, Rz(θ1), Fixed, Rz(θ2), Fixed,

Rz(θ3)], which exhibits strict alternation between ‘Fixed’ subcircuits that don’t depend on

any θi and Rz(θi) gates that do depend on the parametrization.

After the strict partial compilation blocking is performed, we use full GRAPE to pre-

compute the shortest pulse sequence needed to execute each Fixed subcircuit. These static

precompiled pulse sequences can be defined as microinstructions in a low-level assembly such

as eQASM [126]. Thereafter, at runtime, the pulse sequence for any parametrization can

be generated by simply concatenating the pre-computed pulse sequences for Fixed blocks

with the control pulses for each parametrization-dependent Rz(θi) gate. Thus, strict partial

compilation retains the extremely fast (essentially instant) compilation time of standard gate

based compilation. However, since each Fixed block was compiled by GRAPE, the resulting

pulse duration is shorter than if the Fixed blocks had been compiled by gate based compilation.

Thus, strict partial compilation achieves pulse speedups over gate-based compilation, with no

increase in compilation latency.

Full discussion of the results is deferred to Section 3.8. A priori, we note that the

performance of strict partial compilation is tied to the depth of the Fixed subcircuits. For

deeper Fixed subcircuits, GRAPE has more opportunities for optimization and can achieve

a greater advantage over gate-based compilation. From inspection of Figure 3.3a, we see

that the depth of Fixed blocks is determined by the frequency of Rz(θi) gates. For our

benchmarked VQE-UCCSD circuits, Rz(θi) gates comprise only 5-8% of the total number of

gates, so the Fixed subcircuits have reasonably long depths. For our benchmarked QAOA

circuits however, the Rz(θi) gates comprise 15-28% of the total number of gates, so the Fixed

subcircuits have short depths and the potential advantage of strict partial compilation is

limited. This motivates us to consider other strategies that more closely match the pulse

speedups of full GRAPE.
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3.7 Flexible Partial Compilation

As strict partial compilation is bottlenecked by the depth of Fixed subcircuits, we are

motivated to consider strategies that create deeper subcircuits. The core idea behind flexible

partial compilation is to create subcircuits that are only ‘slightly’ parametrized, in that

they depend on at most one of the θi variational parameters. As discussed below, we can

perform hyperparameter tuning to ensure that GRAPE finds optimized pulses for single-angle

parametrized subcircuits much faster than for general subcircuits.

3.7.1 Parameter Monotonicity

An initial strategy for creating these single-angle parametrized subcircuits would be to

merge each consecutive pair of Fixed and Rz(θi) subcircuits into a single subcircuit that

only depends on θi. However, this strategy would add at most one gate of depth to each

subcircuit, which would not lead to significantly better pulses. However, we make a key

observation which we term parameter monotonicity. For both the VQE UCCSD and QAOA

circuits, the appearances of θi-dependent gates is monotonic in i–once a θi dependent gate

appears, the subsequent parametrization-dependent gates must be θj for j ≥ i. As a result,

subcircuits with the same value of θi must be consecutive. For example, the sequence of

angles in parametrization-dependent gates could be [θ1, θ1, θ2, θ3] as in Figure 3.3a, but not

[θ1, θ2, θ3, θ1].

At a high level, parameter monotonicity for VQE/UCCSD and QAOA arise because their

circuit constructions sequentially apply a circuit corresponding to each parameter exactly

once. For instance, in QAOA, each parameter corresponds to the magnitude of Mixing or

Cost-Optimization during the ith round–once the corresponding Mixing or Cost-Optimization

has been applied, the circuit no longer depends on that parameter. Parameter monotonicity

is not immediately obvious from visual inspection of variational circuits, because the circuit

constructions and optimizations transform individual θi-dependent gates to ones that are
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Figure 3.4: The 0th single-angle dependent subcircuit of the UCCSD LiH circuit has two
angle dependent gates, the 7th has eight. These four qubit circuits are representative of the
circuits studied in this work as well as larger future circuits due to the necessity of circuit
blocking for circuits with more than four qubits. The graphs above plot GRAPE error against
ADAM learning rate. For each permutation of the argument of the angle dependent gates in
the subcircuits, the same range of learning rate values achieves the lowest error.

parametrized in terms −θi or θi/2. We resolve these latent dependencies by explicitly tagging

the dependent parameter in software during the variational circuit construction phase.

The implication of parameter monotonicity is that the subcircuits considered by flexible

partial compilation are significantly deeper than the ones considered by strict partial com-

pilation. Figure 3.3c demonstrates a small example; note that the θ1-dependent subcircuit

indicated by red dashed lines is significantly deeper than the subcircuits generated by strict

partial compilation.

3.7.2 Hyperparameter Optimization

In GRAPE, an optimal control pulse is one that minimizes a set of cost functions corresponding

to control amplitude, target state infidelity, and evolution time, among others[97]. To obtain

an optimal control pulse, the GRAPE algorithm manipulates a set of time-discrete control

fields that act on a quantum system. It may analytically compute gradients of the cost

functions to be minimized with respect to the control fields. These gradients are used to

update control fields with an optimizer such as ADAM or L-BFGS-B. As opposed to the

61



control fields, which are parameters manipulated by GRAPE, these optimizers have their

own parameters such as learning rate and learning rate decay. These parameters are termed

hyperparameters because they are set before the learning process begins.

Because they are inputs to the learning process, there is no closed form expression

relating hyperparameters and the cost functions a learning model is minimizing. This

makes hyperparameter optimization an ideal candidate for derivative free optimization

techniques. Recent work has shown that tuning hyperparameters with methods such as

bayesian optimization and radial basis functions can significantly improve performance for

stochastic and expensive objectives such as minimizing the training error of neural networks

[127, 128]. In our work, we employ hyperparameter optimization on GRAPE’s ADAM

optimizer. We realize faster convergence to a desired error rate over the baseline, significantly

reducing compilation latency.

In particular, we make the observation that a high-performing hyperparameter config-

uration for a single-angle parameterized subcircuit is robust to changes in the argument

of its θi-dependent gates, as shown in Figure 3.4. Therefore, we are able to precompute

high-performing hyperparameter configurations for each single-angle parameterized subcircuit

and employ them in compilation. For each iteration of a variational algorithm, the argument

of the θi-dependent gates of each subcircuit will change, but the same hyperparameters are

specified to GRAPE’s optimizer, maintaining the same reduced compilation latency.

3.8 Results

Our results were collected using over 200,000 CPU-core hours on Intel Xeon E5-2680 processors,

using up to 64 GB of memory per GRAPE process. The large volume of compute is a result

of both the high cost of running GRAPE and the number and large circuit size of benchmarks.

We fixed randomization seeds when appropriate for both reproducability and consistency

between identical benchmarks. Our results are available in Jupyter notebooks on our Github
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Figure 3.5: Pulse speedup factors (relative to gate based compilation) for VQE circuits.
Full QOC 1.5-2x reductions in pulse durations for these circuits. Strict and flexible partial
compilation recover 95% and 99% of this speedup respectively. Detailed results are reported
in Table 3.4.

repository [119].

3.8.1 Pulse Speedups

Max-Cut

Compilation UCCSD 3-Regular, N=6 Erdos-Renyi, N=6 3-Regular, N=8 Erdos-Renyi, N=8

Techniques H2 LiH BeH2 NaH H2O p=1 p=5 p=1 p=5 p=1 p=5 p=1 p=5

Gate-based 35.3 871.1 5308.3 5490.4 33842.2 113.2 433.6 83.7 367.8 162.5 860.0 157.1 749.5

Strict Partial 15.0 307.0 2596.5 2842.7 24781.4 91.2 397.6 54.0 291.8 134.0 711.6 100.0 551.7

Flexible Partial 5.0 84.0 2503.8 2770.8 23546.7 72.0 206.2 26.4 150.0 112.0 498.9 80.5 434.8

Full GRAPE 3.1 19.3 2461.7 2752.0 23546.7 72.0 179.0 26.6 141.2 112.0 498.9 81.6 513.7

Table 3.4: Experimental results for pulse durations (in nanoseconds) across the VQE-UCCSD
and QAOA benchmarks.

Figure 3.5 shows the pulse times speedup factors across our QAOA benchmarks for partial

compilation and for full GRAPE, normalized to the gate-based compilation baseline. We

present the normalized speedup factors, because the H2O VQE-UCCSD benchmark is 10x

larger; the raw pulse times are presented in Table 3.4.

For the BeH2 and NaH VQE-UCCSD benchmarks, full GRAPE gives a 2.15x and 2.00x

speedup in pulse duration respectively. Strict partial compilation is able to recover almost
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Figure 3.6: Pulse durations for QAOA MAXCUT benchmarks under the four compilation
techniques, across all benchmarks. The gate based pulse time always increases linearly in p,
the number of repeated rounds in the QAOA circuit. The average GRAPE pulse speedup is
2.6x for 6-node graphs and 1.8x for 8-node graphs. Strict partial compilation only achieves
a modest speedup over gate based compilation, but flexible partial compilation essentially
matches the GRAPE speedup exactly. The omitted data points correspond to computations
that did not complete in 12 CPU-core hours, even after parallelizing subcircuit jobs.

this full advantage, with speedups at 2.04x and 1.93x respectively. As discussed in Section 3.6,

this matches the expectations, because the VQE-UCCSD benchmarks have relatively deep

Fixed subcircuits. Finally, the speedups for flexible partial compilation are 2.12x and 1.98x,

which nearly closes the gap between strict partial compilation and GRAPE.

The H2O benchmark has similar relative speedups between strict, flexible, and GRAPE,

with factors of 1.37, 1.44, 1.44.2 However, the advantage over gate based compilation is

smaller than for the BeH2 and NaH benchmarks.

Figure 3.6 shows results for QAOA benchmarks. Strict partial compilation has speedups

2. In fact, the pulse speedup for flexible partial compilation exactly matches GRAPE, because each 4-qubit
block handled by GRAPE depends on at most one parameter.
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Figure 3.7: Reduction factors in compilation latency. The ratios indicate the average
compilation latency using flexible partial compilation divided by latency using full GRAPE
compilation. Flexible partial compilation uses about an hour of pre-compute time to determine
the best learning rate - decay rate pair for each subcircuit.

of 1.22x and 1.33x across the N = 6 and N = 8 qubit benchmarks respectively. By contrast,

flexible partial compilation has average speedups of 2.3x and 1.8x across the N = 6 and

N = 8 benchmarks, which almost matches the results from GRAPE. This separation between

strict and flexible partial compilation matches the expected results discussed in Section 3.6.

The high frequency of parametrized gates in QAOA limits the depth of Fixed blocks, so strict

blocking has limited mileage. However, due to the four-qubit maximum subcircuit size for

GRAPE, each block will rarely depend on more than one θi parameter. On these single-angle

dependent blocks, flexible partial compilation achieves the same pulse speedups as GRAPE.

3.8.2 Compilation Latency Reduction

Figure 3.7 shows the compilation latency reduction achieved by flexible partial compilation,

relative to full GRAPE compilation. As described in Section 7.2, flexible partial compilation

is able to dramatically speed up the gradient descent’s convergence by tuning the learning

rate and decay rate hyperparameters on a per-subcircuit basis. We note that the 3-regular

graphs achieve particularly high compilation latency reduction factors of 80.3x and 81.9x.

Across all benchmarks, the reduction in compile time is from hours to minutes, which is

critical in the context of variational algorithms.
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3.8.3 Simulation with Realistic Pulses

While we performed our GRAPE runs without accounting for error or noise sources for

simplicity, it can be adapted to account for these sources. For example, we could demand

well-shaped pulses, account for leakage into higher states outside the binary qubit abstraction,

or explicitly model the qubit decoherence times. To demonstrate that these sources can be

accounted for, we re-ran two of our VQE and QAOA benchmarks with Full GRAPE using

these more realistic assumptions:

• Allowing only 1 pulse datapoint every nanosecond (1 GSa/s), versus 20 GSa/s in the

other results presented in this chapter.

• Including leakage into the qutrit leakage level. Other results in this chapter use the

binary-qubit approximation, as outlined in the system Hamiltonian in Section 3.11.

• Application of aggressive pulse regularization in GRAPE to ensure that the pulse shapes

follow a Gaussian envelope and have smooth 1st and 2nd derivatives.

Table 3.4 compares the pulse speedups due to GRAPE, under both our standard (less

realistic) GRAPE settings and under the more realistic settings that account for the three

items above. For VQE and QAOA applications, the GRAPE speedups speedups are 11.4x

(standard) vs 8.8x (realistic) and 4.5x (standard) vs. 3.0x (realistic) respectively. While the

more realistic pulses do seem to have somewhat lower pulse speedup factors, they are similar

and still feature significant speedup over gate based compilation.

3.8.4 Aggregate Impact on Total Runtime

For a quantitative sense of aggregate impact, we note that VQE requires thousands of

iterations, even for small molecules. For instance, past work in VQE, towards estimating the

ground state energy of BeH2, required 3500 iterations [90]. Per Figure 3.7, this would amount
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Gate ns → GRAPE ns (reduction) H2 VQE Erdos-Renyi N = 3

Standard 35.3 → 3.1 (11.4x) 15.0 → 3.3 (4.5x)

More Realistic 420 → 48 (8.8x) 285 → 96 (3.0x)

Table 3.5: Speedups due to GRAPE compilation under the standard settings and under
more realistic settings, which account for lower sampling rates, qutrit leakage, and pulse
regularization. Results are given for the H2 VQE benchmark and for the Erdos-Renyi N = 3
QAOA benchmark. The speedup factors due to GRAPE are similar with and without the
more realistic assumptions.

to over 2 years of runtime compilation latency via Full-GRAPE. By contrast, strict partial

compilation achieves zero runtime compilation latency via lookup table, and the pre-computed

pulses for the fixed blocks were compiled in under 1 hour. Since the UCCSD ansatz has

quartic scaling in the number of parameters [114], the number of iterations required scales

aggressively for bigger molecules and the advantage of our approach will scale favorably.

Further experimental work is needed to estimate the advantage of our approach for larger

molecules in terms of total runtime, but extrapolation from small molecules BeH2 seems

promising. Similarly, while the improvement in quality-of-result due to the shorter pulse

times from GRAPE is difficult to quantify without concrete experiments, we emphasize that

the error due to decoherence scales exponentially with quantum runtime. Therefore, we again

expect favorable results, owing to the significant pulse time speedup of our techniques relative

to gate based compilation.

3.9 Conclusion

Variational quantum algorithms such as VQE and QAOA are strong candidates for demonstrat-

ing a quantum advantage in problems such as molecular ground state estimation, MAXCUT

approximation, and prime factorization. Unlike prior algorithms, variational algorithms

are parametrized, with the parameters at each iteration determined based on the results of

previous iterations. Consequently, compilation is interleaved with computation. As a result,
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it is not practical to each variational circuit with out-of-the-box GRAPE, which takes several

minutes to find an optimized pulse even on small (4-qubit) circuit.

Our partial compilation techniques offer a path to achieving the pulse speedups of

GRAPE, without incurring its compilation latency. On the VQE-UCCSD circuits, our strict

partial compilation strategy achieves 1.5x-2x pulse speedups over gate based compilation,

almost matching the speedups from full GRAPE. Strict partial compilation is performed by

precomputing optimal pulses for Fixed blocks. During execution, it has the same–essentially

instant–lookup table based compilation procedure as gate based compilation. Thus, strict

partial compilation is strictly better than gate based compilation.

For QAOA circuits, while strict partial compilation only achieves modest pulse speedup,

we find that flexible partial compilation almost exactly matches the pulse speedups of GRAPE.

Flexible partial compilation precomputes the best hyperparameters for each slice, so that

when the θi parameters are specified at runtime, an optimized pulse sequence can be computed

rapidly. For our benchmarked circuits, we found 10-100x reductions in compilation latency

from flexible partial compilation, relative to full GRAPE compilation.

We emphasize that achieving optimized pulses is critical because error due to decoherence

error is exponential in the pulse duration. Thus, our pulse speedups are not merely about

wall time speedups for quantum circuits, but moreso about making computations possible in

the first place, before the qubits decohere.

3.10 Future Work

The industry adoption of the OpenPulse standard will usher an experimental era for pulse-

level control. Running our partial compilation schemes on an actual machine will be valuable

in terms of determining exactly how to weigh tradeoffs between pre-computation resources,

compilation latency, and pulse durations.

On the computational side, we also see significant potential for extending the scalability
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of GRAPE. While past work has successfully used GRAPE on 10 qubit widths with very

simple circuits (for example, 10 identical single-qubit rotations in parallel), we found that

for complicated circuits, GRAPE only converges reliabily with widths up to 4 qubits. This

4-qubit blocking width limits the depths of the subcircuits that both GRAPE and our

partial compilation schemes can consider. For example, in the additional two VQE-UCCSD

molecules benchmarks (H2 and LiH) reported in Table 4, flexible partial compilation and full

GRAPE achieve 7-50x pulse speedups because the benchmarks are 2 and 4 qubits in width.

Thus, investigating the convergence properties of GRAPE and extending the circuit widths

it reliably converges for will substantially extend the advantage that these techniques can

achieve over gate based compilation.

3.11 System Hamiltonian

Although our techniques are general and apply to any quantum computer, the pulses produced

by GRAPE are specific to the underlying hardware platform. We chose to compile to control

pulses for a quantum computer with gmon superconducting qubits [99], because this qubit

type is one of the leader contenders for scalable quantum machines. For instance, the gmon

qubit is central to Google’s experimental efforts for demonstrating quantum supremacy.

The control pulse inputs that we specified to GRAPE were based on the gmon’s system

Hamiltonian. Each qubit, j, has a flux-drive control pulse and a charge-drive control pulse

which have respective Hamiltonians, truncated to the qubit subspace:

Hc,j(t) =
N∑
j=1

Ωc,j(t)(a
†
j + aj) =

N∑
j=1

Ωc,j(t)


0 1

1 0


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and

Hf,j(t) =
N∑
j=1

Ωf,j(t)(a
†
jaj) =

N∑
j=1

Ωf,j


0 0

0 1


It can be seen from exponentiating these matrices that the control pulses correspond to Rx(θ)

and Rz(φ) type gates respectively. We chose maximium drive amplitudes of |Ωc,j(t)| ≤ 2π×0.1

GHz and |Ωf,j(t)| ≤ 2π × 1.5 GHz. These values, including the asymmetry between charge

and flux drive, are representative of typical machines.

In addition to these single qubit terms, there is a control pulse for each pair of connected

qubits. We consider a rectangular-grid topology with nearest-neighbor connectivity. Between

each connected pair of qubits j and k, the corresponding control Hamiltonian is

Hj,k(t) = g(t)(a
†
j + aj)(a

†
k + ak)

This two-qubit interaction type corresponds to the entangling iSWAP gate (which swaps

two qubits and also applies a phase factor). We use a maximum coupling strength of

|g(t)| ≤ 2π × 50 MHz

Within the GRAPE software, we discretized the control pulses to 0.05 ns time slices.

We set a target fidelity of 99.9% for each invocation of GRAPE. Raw data from all of our

GRAPE runs are available at our Github repository [119].
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CHAPTER 4

MINIMIZING STATE PREPARATIONS IN VARIATIONAL

QUANTUM EIGENSOLVER BY PARTITIONING INTO

COMMUTING FAMILIES

Variational quantum eigensolver (VQE) is a promising algorithm suitable for near-term

quantum machines. VQE aims to approximate the lowest eigenvalue of an exponentially sized

matrix in polynomial time. It minimizes quantum resource requirements both by co-processing

with a classical processor and by structuring computation into many subproblems. Each

quantum subproblem involves a separate state preparation terminated by the measurement

of one Pauli string. However, the number of such Pauli strings scales as N4 for typical

problems of interest—a daunting growth rate that poses a serious limitation for emerging

applications such as quantum computational chemistry. We introduce a systematic technique

for minimizing requisite state preparations by exploiting the simultaneous measurability

of partitions of commuting Pauli strings. Our work encompasses algorithms for efficiently

approximating a MIN-COMMUTING-PARTITION, as well as a synthesis tool for compiling

simultaneous measurement circuits. For representative problems, we achieve 8-30x reductions

in state preparations, with minimal overhead in measurement circuit cost. We demonstrate

experimental validation of our techniques by estimating the ground state energy of deuteron

on an IBM Q 20-qubit machine. We also investigate the underlying statistics of simultaneous

measurement and devise an adaptive strategy for mitigating harmful covariance terms.

4.1 Introduction

The present Noisy Intermediate-Scale Quantum (NISQ) era [16] is distinguished by the

advent of quantum computers comprising tens of qubits, with hundreds of qubits expected

in the next five years. Although several thousand logical error-corrected qubits, backed by
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millions of device-level physical qubits, are needed to realize the originally-envisioned quantum

applications such as factoring [10] and database search [9], a new generation of variational

algorithms have been recently introduced to match the constraints of NISQ hardware.

Variational Quantum Eigensolver (VQE) [84] is one such algorithm that is widely con-

sidered a top contender, if not the top contender, for demonstrating a useful quantum

speedup. VQE is used to approximate the lowest eigenvalue of a matrix that is exponentially

sized in the number of qubits. This is a very generic eigenvalue problem with a wide class

of applications such as molecular ground state estimation [84]; maximum 3-satisfiability,

market split, traveling salesperson [129]; and maximum cut [107]. In this chapter, we focus

on the molecular ground state estimation problem which has already been demonstrated

experimentally, though we underscore that the full range of VQE applications is very broad.

VQE solves a similar problem as Quantum Phase Estimation (QPE) [130, 131], an older

algorithm that requires large gate counts and long qubit coherence times that are untenable

for near-term quantum computers. VQE mitigates these quantum resource requirements by

shifting some computational burden to a classical co-processor. As a result, VQE achieves

low gate count circuits and error resilience, but at the cost of requiring many iterations where

each iteration measures one of O(N4) terms.

This is a daunting scaling factor that poses practical limitations. It was observed that

this N4 scaling could be partly mitigated by performing simultaneous measurement: when

two terms correspond to commuting observables, they can be measured in a single state

preparation. Our work starts from this observation and we seek to exploit this idea to

minimize the total number of state preparations needed.

Our specific contributions include:

1. Efficient approximation algorithms for partitioning the N4 terms into commuting

families, i.e. approximating the MIN-COMMUTING-PARTITION.

2. A circuit synthesis tool for simultaneous measurement.
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3. Statistical analysis of simultaneous measurement and a procedure for guarding against

harmful covariance terms.

4. Validation of these techniques through benchmarks, simulations, and experiments.

The rest of this chapter is structured as follows. Section 4.2 presents relevant background

material and Section 4.3 surveys prior work. Section 4.4 analyzes the commutativity of

the terms of interest (Pauli strings) and Section 4.5 presents a technique for minimizing

the number of state preparations by mapping MIN-COMMUTING-PARTITION to a MIN-

CLIQUE-COVER instance that can be approximated. Section 4.6 develops an alternate

technique that takes advantage of molecular Hamiltonian structure in order to approximate

the MIN-COMMUTING-PARTITION with minimal classical overhead.

Section 4.7 shows and analyzes the circuit synthesis procedure that allows simultaneous

measurements between commuting Pauli strings. Section 4.8 presents results for our techniques

on benchmark molecules and Section 4.9 demonstrates experimental validation. Section 4.10

studies the underlying statistics and discusses a strategy for detecting and correcting course if

a partition is harmed by covariance terms. We make concluding remarks and propose future

work in Section 4.11.

4.2 Background

We assume an introductory-level knowledge of quantum computing. We refer newer readers

to one of many excellent resources such as [132], [133], or [32].

4.2.1 Quantum Measurement

A standard procedure in quantum algorithms is to measure a qubit. In hardware, the standard

measurement that can be performed is a measurement in the Z-basis, or computational basis.

Figure 4.1 depicts such a measurement. The qubit’s state is a point on the surface of the
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Figure 4.1: Z-basis (computational basis) measurement of a qubit yields |0〉 or |1〉 with a
probability corresponding to the latitude of the qubit on the Bloch sphere.

Bloch sphere—states with northern latitudes are close to the |0〉 state and southern latitudes

are close to the |1〉 state. Measurement, or readout, causes the qubit to collapse to either the

|0〉 or |1〉 state, with a probability dependent on the latitude.

At a more mathematical level, the deeper meaning of measuring a qubit in the

Z =


1 0

0 −1


basis is to project the qubit’s state onto the eigenvectors of the Z operator, which are |0〉

and |1〉. In the same sense, we can measure other observables, such as the other two Pauli

matrices :

X =


0 1

1 0

 and Y =


0 −i

i 0


The eigenvectors of X are termed |+〉 and |−〉, and they are antipodal points along X-axis

of the Bloch sphere. Similarly, Y ’s eigenvectors, |i〉 and |−i〉, are antipodal along the Y -

axis. Since hardware cannot directly measure along these axes, measurements of X (Y ) are

performed by first rotating the Bloch sphere with a unitary matrix so that the X (Y ) -axis

becomes aligned with the Z-axis. These rotations are depicted in Figure 4.2. Subsequently, a

standard Z-basis measurement can be performed, whose outcome can then be mapped to an
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Figure 4.2: Measurement of the X or Y Pauli matrices requires us to first apply a unitary
rotation operation that rotates the X or Y axis to align with the Z axis. Subsequently, a
standard Z-basis measurement yields the outcome of the X or Y measurement.

effective X (Y ) measurement.

The specific rotation that accomplishes the X-to-Z axis change is the Ry(−π/2) trans-

formation, which is typically captured in quantum circuits by the similar H gate/matrix.

The Y -to-Z axis change is accomplished by the Rx(π/2) transformation, which is typically

captured [134] in quantum circuits by the HS† gates/matrix.

The same general principle applies towards measuring observables across multiple qubits:

measurement is accomplished by applying a quantum circuit that rotates the eigenvectors of

the target observable onto the computational basis vectors. The unitary matrix for such a

transformation is simply the one that has the orthonormal eigenvectors of the observable

as column vectors. In our study, we will be interested in measuring Pauli strings, which are

tensor products of Pauli matrices across multiple qubits.

4.2.2 Simultaneous Measurement and Commutativity

From the preceding discussion, we can see that two observables can be measured simultaneously

if they share a common eigenbasis, i.e. they are simultaneously diagonalizable. In this case,

they can be measured simultaneously by applying the unitary transformation that rotates

their shared eigenbasis onto the computational basis. In the case of Hermitian operators,

such as the Pauli strings of interest to us, two observables share an eigenbasis if and only if

they commute [135, Chapter 1], i.e. the order of their product is interchangeable.
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Moreover, this relationship extends beyond simple pairs: given a family of pairwise

commuting observables, there exists a shared eigenbasis that simultaneously diagonalizes all

of the observables (rather than it merely being a situation in which each pair has a separate

shared eigenbasis) [136, Theorem 1.3.21].

In this chapter, we will exploit this property to simultaneously measure multiple Pauli

string observables with a single state preparation and measurement circuit. Notice that this

problem is non-trivial because commutativity is not transitive (and hence, not an equivalence

class). Consequently, finding optimal partitions of commuting families is a hard problem, as

we formalize later.

4.2.3 Quantum Computational Chemistry

Quantum computational chemistry has been a long targeted problem on the classical computer.

Due to the limits of classical computing resources, we are only able to perform approximate

classical simulations. Examples include Hartree Fock (O(N4) runtime [137], only takes ground

state orbitals into account), Density Functional Theory (O(N3) runtime [138], but with even

less precision), and Coupled Cluster Single-Double (O(N6)+ runtime [139], only considers

single and double excitations).

The way to achieve chemical accuracy is to use Full CI (full configuration interactions),

which considers all necessary orbitals. Classically this will generally require O(
(M
N

)
) →

exponential runtime [140]. On the other hand, quantum computation is able to encode an

exponential amount of molecular information into a polynomial number of qubits and thereby

achieve Full CI in polynomial time [141].

4.2.4 Variational Quantum Eigensolver (VQE)

As mentioned previously, VQE can be applied to a wide class of problems that are solvable as

minimum-eigenvalue estimation [129, 107]. In this chapter, we focus on the application that
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has received the most commercial and experimental interest: estimating molecular ground

state energy. Within the molecular context, we use VQE to approximate the lowest eigenvalue

of a matrix called the Hamiltonian that captures the molecule’s energy configuration. The

lowest eigenvalue is the ground state energy which has important implications in chemistry

such as determining reaction rates [110] and molecular geometry [111].

The Hamiltonian matrix for a molecule can be written in the second quantized fermionic

form as [109]

H =
N∑
p=1

N∑
q=1

hpqa
†
paq +

N∑
p=1

N∑
q=1

N∑
r=1

N∑
s=1

hpqrsa
†
pa
†
qaras (4.1)

where a† (a) is the fermionic raising (lowering) operator, and N is the number of qubits

and also the number of molecular basis wavefunctions considered. The hpq and hpqrs terms

can be computed classically via electron integral formulas implemented by several software

packages [142, 117, 143]. The second sum in Equation 4.1 indicates that the fermionic form

of the Hamiltonian has O(N4) terms [144, 145]. It can be translated to qubit form by an

encoding such as Jordan-Wigner [146], Parity [147], or Bravyi-Kitaev [148], as we will discuss

further in Section 4.6. The resulting qubit form will also have O(N4) terms, where each term

is a Pauli string.

It is difficult to directly AND efficiently estimate 〈H〉, the expected energy of the Hamil-

tonian under an input state vector. The approach of VQE is to estimate it indirectly but

efficiently, by employing linearity of expectation to decompose 〈H〉 into a sum of O(N4)

expectations of Pauli strings, which can each be computed efficiently. In the standard and

original formulation of VQE, each of these Pauli strings is measured via a separate state

preparation [84].

At its core, VQE can be described as a guess-check-repeat algorithm. Initially, the

algorithm guesses the minimum energy eigenvector of the Hamiltonian H. Then, it checks

the actual energy for the guessed eigenvector by summing expected values over the O(N4)
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directly measurable Pauli strings, as previously described. Finally, it repeats by trying a

new guess for the minimum energy eigenvector, with the assistance of a classical optimizer

that guides the next guess based on past results. The potential quantum speedup in VQE

arises from the fact that checking the energy on a classical computer would require matrix

multiplication of an exponentially-sized state vector; by contrast, the energy can be estimated

efficiently with a quantum computer by summing over the expected values of the O(N4)

Pauli strings.

Algorithm 2: Variational Quantum Eigensolver (VQE)

Result: Approximate ground state energy, min~θ 〈H〉ψ(~θ)
~θ1 ← random angles
i← 1
while (not classical optimizer termination condition) do

for j ∈ [O(N4)] do

for O(1/ε2) repetitions do

Prepare ψ(~θi)
Measure 〈Hj〉ψ(~θi)

end

end
〈H〉

ψ(~θi)
←
∑
j 〈Hj〉ψ(~θi)

Record (θi, 〈H〉ψ(~θi)
)

i++
Pick new θi via classical optimizer

end

Algorithm 2 presents the pseudocode for VQE, under the standard ‘Naive’ formulation

where each Pauli string is measured separately. The resource complexity of VQE is clear from

this code: the inner for loops run O(N4/ε2) times and each iteration requires a separate state

preparation and measurement. The outer while loop termination condition is dependent on

both the classical optimizer and the ansatz–we discuss the latter next.
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4.2.5 Unitary Coupled Cluster Single Double Ansatz

Since the number of possible state vectors spans an exponentially large and continuous

Hilbert space, we seek to restrict the family of candidate energy-minimizing states. Such

a family is called an ansatz, and the ansatz state |ψ(~θ)〉 is parametrized by a vector of

independent parameters, ~θ. Since VQE aims to run in polynomial time, the number of

parameters should be polynomial. While our work in this chapter is applicable to any ansatz,

we focus our attention to the Unitary Coupled Cluster Single Double (UCCSD) ansatz, which

has generally been the leading contender for molecular ground state estimation. In addition

to having a sound theoretical backing (the coupled cluster approach is the gold standard

for computational chemistry [109, 115]), UCCSD is more resilient to barren plateaus in the

optimization landscape that are experienced by hardware-oriented ansatzes [149, 109]. Recent

work has also demonstrated the experimental superiority of UCCSD to other ansatz types

[150].

In terms of the number of qubits (which is also the number of molecular basis wavefunctions)

N , the total gate count of UCCSD is O(N4) [151, 152], which can be parallelized in execution

to O(N3) circuit depth. As a concrete scaling example, a recent 4-qubit, 2-electron UCCSD

circuit construction required circuit depth of 100 gates, spanning 150 total gates [150]. This is

already out of range of present machines—the experimental work thus far has required many

symmetry reductions and approximations to implement UCCSD. The number of parameters

in UCCSD, with respect to the number of electrons and wavefunctions is O(N2η2), or O(N4)

under the standard assumption that these two terms are asymptotically related by a constant.

4.2.6 Mutually Unbiased Bases

Finally, we give a brief overview of Mutually Unbiased Bases (MUB) [153, 154], a concept in

quantum information theory that is connected to our overarching question of maximizing

the information learned from a single measurement. In the case of qubits, MUBs describe
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a partitioning of the 4N − 1 N -qubit Pauli strings (Identity is excluded) into commuting

families of maximal size. For example, Table 4.1 shows a MUB for the 2-qubit Pauli strings.

Notice that each row corresponds to a commuting family. Also note that not all rows are

created equal–in the first three rows, the shared eigenbasis features separable eigenvectors.

In the last two rows, the shared eigenbasis has entanglement between the two qubits.

Operator 1 Operator 2 Operator 3 Shared Eigenbasis

ZZ IZ ZI Separable

XX IX XI Separable

YY IY YI Separable

XY ZX YZ Entangled

YX ZY XZ Entangled

Table 4.1: MUB for two qubits. For the first 3 bases, the shared eigenbases has fully separable
eigenvectors. The last 2 bases have fully entangled eigenvectors.

It is known that for N qubits, there exists a MUB with 2N + 1 rows and 2N − 1 Pauli

strings per row. This is optimal in the sense that 2N − 1 is the maximum possible number

of distinct Pauli strings (excluding Identity) within a commuting family. In Section 4.5,

this result will give us insight into the bounds on our MIN-COMMUTING-PARTITION

approach.

4.3 Prior Work

Some of the theoretical aspects of our work were concurrently and independently developed

by two other research groups (our work was first presented a month earlier [155]). The four

relevant papers, [156] from Waterloo and [157, 158, 159] from Toronto all share with our work

a high level goal of reducing the cost of VQE by exploiting the simultaneous measurability

of commuting Pauli strings. In particular, [156] maps the measurement cost reduction goal

to a graph coloring problem. [157] and [158, 159], which respectively consider Qubit-Wise
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Commutativity and General Commutativity (defined in Section 4.4), treat measurement cost

reduction as a minimum clique cover problem. The core ideas of these four papers can be

compared to Sections 4.4-4.5 and Section 4.12 in this chapter.

Our work is differentiated by a systems perspective that gives explicit attention to the

classical computation costs for compilation and transpilation, as well as quantum overheads.

The graph algorithms discussed in [156, 157, 158, 159] incur impractical classical costs that

may undo potential speedups from simultaneous measurement. We remedy this issue by

introducing problem-aware techniques that operate on molecular Hamiltonian graphs in

linear time and hence preserve speedups, as discussed in Section 4.6. Also, in Section 4.7, we

introduce a synthesis tool for simultaneous measurement circuits, in recognition of the fact that

simultaneous measurement does incur a quantum overhead in additional gates and coherence

requirements. To the best of our knowledge, this is the first synthesis tool that constructs

simultaneous measurement circuits efficiently in both the classical compilation cost and in the

quantum circuit complexity. Sections 4.8 and 4.9 present benchmark results and experimental

results validating that the classical and quantum costs of simultaneous measurement are

worthwhile. Additionally, we study the statistics of simultaneous measurement in Section 4.10

and demonstrate a constructive procedure to guard against corruption from covariance terms.

Prior to this month, strategies for simultaneous measurement in VQE had not been

studied formally, aside from the initial suggestion of measurement partitioning in [87]. Most

experimental implementations of VQE, for instance [90, 91, 151, 160], did at least perform

measurement partitioning on an ad hoc basis, via inspection of the Hamiltonian terms.

Inspection is insufficient for larger molecules, because the underlying problem is NP-Hard, as

described in Section 4.12. The improvement in these experimental works due to simultaneous

measurement is indicated by the reduction from the # Pauli Strings to QWC (Qubit-Wise

Commutation) column in Table 4.2. The last column considers General Commutation (GC)

partitioning, which we introduce and evaluate in this chapter. Even for the small molecules
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that have been studied experimentally thus far, GC achieves significant cost reductions over

both Naive and QWC partitions.

Molecule # Pauli Strings QWC GC

H2 [90] 4 2 2

LiH [90] 99 25 9

BeH2 [90] 164 44 8

H2 (Bravyi-Kitaev) [151] 5 3 2

H2 (Jordan-Wigner) [151] 14 5 2

H2O [91] 21 3 3

Table 4.2: State preparation and measurement costs from prior VQE experiments that
performed Pauli string partitioning on an ad hoc basis. # Pauli Strings indicates the number
of measurement partitions that would be needed naively. QWC expresses the number of
Qubit-Wise Commuting partitions that were actually measured via ad hoc inspection—we
propose a more formal partitioning procedure in Section 4.5. GC foreshadows the General
Commuting partitions that our techniques described in Sections 4.4.3 and 4.5 - 4.6 achieve.

In software implementations, both the OpenFermion [143] and Rigetti PyQuil [65] li-

braries were recently augmented with functions for simultaneous measurement via Qubit-Wise

Commutation: group into tensor product basis sets() and group experiments() re-

spectively. However, these software implementations do not consider General Commutativity

and suffer from at least N8 scaling in runtime, which may undo the potential speedup from

simultaneous measurement.

An alternative perspective on the reduction of measurement cost in VQE was introduced

in [161] which takes the approach of transforming molecular Hamiltonians to create commu-

tativity and reduce the number of qubits needed. Another prior paper [162] operates in a
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related mathematical setting, using feedforward measurements to create QWC (though we

note that feedforward measurements are equivalent to standard unitary transformations by

the principle of deferred measurement [32]).

Aside from state preparation and measurement costs, recent work has focused on improving

other elements of the VQE pipeline. In the classical stage, [129, 87, 163] describe improvements

to the classical optimizer and [96, 18] present techniques for optimized pulse-level compilation.

At the quantum stage, [152, 164] propose improvements to ansatzes and [87, 57] demonstrate

procedures for error mitigation. We note that all of these techniques apply to orthogonal

stages of the VQE pipeline and therefore can compose directly on top of our work.

4.4 Analysis of Commutativity

We analyze the commutativity of the terms present in Hamiltonian decompositions. Two

terms A and B commute, if their commutator is 0:

[A,B] := AB −BA = 0→ AB = BA

As mentioned in Section 4.2.2, two commuting terms are simultaneously diagonalizable by a

shared eigenbasis.

In our case, the terms in an N -qubit Hamiltonian are Pauli strings, which are N -fold

tensor products of the Pauli matrices,

I =


1 0

0 1

 , X =


0 1

1 0

 , Y =


0 −i

i 0

 , Z =


1 0

0 −1

 .

Pauli strings are also referred to in other literature as members of the Pauli Group, GN .

We seek to analyze when two Pauli strings commute. While most of these results are
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known, they are usually discussed in the context of the stabilizer formalism and quantum

error correction. We present the elements relevant to VQE here, with foreshadowing of our

key techniques.

4.4.1 Single Qubit Case

First, let’s note the commutation relations for single qubit Pauli matrices:

• I commutes with everything else. Specifically, [I, I] = [I,X] = [I, Y ] = [I, Z] = 0.

• X, Y , and Z commute with themselves. [X,X] = [Y, Y ] = [Z,Z] = 0.

• The other pairs form a cyclic ordering. In particular, [X, Y ] = iZ, [Y, Z] = iX,

[Z,X] = iY . Flipping the commutator bracket order negates the result.

4.4.2 Qubit-Wise Commutativity (QWC)

The simplest type of commutativity is Qubit-Wise Commutativity (QWC). Two Pauli strings

QWCommute if at each index, the corresponding two Pauli matrices commute. For instance,

{XX, IX,XI, II} is a QWC partition, because for any pair of Pauli strings, both indices

feature commuting Pauli matrices.

As mentioned in Section 4.3, QWC has been leveraged in past experimental work for

small molecules [90, 91, 151, 160] by ad hoc inspection of the Hamiltonian terms. However,

Section 4.12 demonstrates that optimally partitioning Pauli strings into QWC families is

NP-Hard, so an efficient approximation algorithm is needed for larger Hamiltonians with

more Pauli strings.

QWC is also referred to in other work as Tensor Product Basis (TPB) [90, 143, 65],

recognizing the fact that for a family of QWC Pauli strings, the vectors in the simultaneous

eigenbasis can be expressed as a tensor product across each qubit index, with no entanglement.

As shown in Section 4.7, this makes simultaneous measurement very easy for QWC partitions.
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4.4.3 General Commutativity (GC)

QWC is sufficient but not necessary for commutation between Pauli strings. For example,

{XX, Y Y, ZZ} is a commuting family, even though none of the pairs are QWC—at both

indices the Pauli matrices always fail to commute. The most general rule for commutation of

two Pauli strings is that they must fail to commute at an even number of indices—2 in the

example of {XX, Y Y, ZZ}. We refer to this most general form of commutativity as General

Commutativity (GC), and its proof is below. Note that QWC is simply the subset of GC

corresponding to the case where the number of non-commuting indices is 0 (which is even).

Theorem 1. Consider two N-qubit Pauli strings,

A =
N⊗
j=1

Aj and B =
N⊗
j=1

Bj

where Aj , Bj ∈ {I,X, Y, Z}. A and B commute (GC) iff Aj and Bj fail to commute on an

even number of indices.

Proof. For Pauli matrices that don’t commute, AiBi = −BiAi. Thus, we can write AB as

AB =
N⊗
j=1

AjBj =
N⊗
j=1


BjAj if [Aj , Bj ] = 0

−BjAj if [Aj , Bj ] 6= 0

= (−1)kBA

where k is the number of indices where [Aj , Bj ] 6= 0. For AB to equal BA, we require

(−1)k = 1, which requires k to be even. Thus, A and B commute iff Aj and Bj don’t

commute on an even number of indices.

Figure 4.3 depicts the commutation relationships between all 16 2-qubit Pauli strings.

Edges are drawn between Pauli strings that commute—a blue edge indicates that the pair

is QWC and a red edge indicates that the pair is GC-but-not-QWC. The II identity term

QWCommutes with every other Pauli string.
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Figure 4.3: This is the commutation graph (also known as a compatibility graph [2]) for all
16 2-qubit Pauli strings. An edge appears when two Pauli strings commute. The blue edges
indicate Pauli strings that commute under QWC (which is a subset of GC). The red edges
commute under GC-but-not-QWC.

4.5 MIN-CLIQUE-COVER on Hamiltonian

We refer to our core problem of interest as MIN-COMMUTING-PARTITION: given a set of

Pauli strings from a Hamiltonian, we seek to partition the strings into commuting families

such that the total number of partitions is minimized. While the underlying structure

of Pauli matrices and their commutation relationships raises the possibility that MIN-

COMMUTING-PARTITION may be efficiently solvable, it turns out to be NP-Hard, as we

prove in Section 4.12. Moreover, MIN-COMMUTING-PARTITION is hard even when we

only consider the restricted commutativity of QWC. Thus, the ad hoc QWC partitioning

techniques from past experimental work [90, 91, 151, 160] are likely to have limited potential

for larger molecules.

Instead of solving MIN-COMMUTING-PARTITION exactly, we approximately solve it

by mapping to a graph problem as suggestively expressed by the graph representation in

Figure 4.3. Observe that cliques (fully connected subgraphs where each pair of Pauli strings

commutes) are relevant because all of the strings in a clique can be measured simultaneously.

Therefore, we seek the MIN-CLIQUE-COVER, i.e. the smallest possible set of cliques whose

union spans all vertices. As an example, Figure 4.4 shows the commutation graph for LiH’s
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4-qubit Hamiltonian and its MIN-CLIQUE-COVERs using QWC edges and using GC edges.

QWC All edges (Full)

Figure 4.4: The top commutation graph shows both QWC (blue) and GC-but-not-QWC
Commuting (red) relationships between the Pauli string’s in LiH’s Hamiltonian. The vertex
colors in the bottom two graphs indicate MIN-CLIQUE-COVERs using only QWC edges (left)
or using all edges (right). The reduction in measurement partitions from Naive (measuring
each Pauli string separately) to QWC to GC is 14→ 5→ 2.

MIN-CLIQUE-COVER, in its decision version, is one of the classic Karp NP-Complete

problems [165], so efficiently finding the minimal possible clique cover for a general graph is

unlikely. Moreover, finding a guaranteed “good” clique cover approximation is also NP-Hard

for general graphs [166]. However, molecular Hamiltonian graphs are highly structured owing

both to features of the Pauli commutation graph [167] and to patterns in the Pauli strings that

arise in molecular Hamiltonians (we explicitly address and exploit the latter in Section 4.6).

This suggests that MIN-CLIQUE-COVER approximation algorithms may yield reasonably

good results. Before discussing the approximation algorithms we used, we discuss bounds on

the MIN-CLIQUE-COVER and the relationship to whether the partitions are QWC or GC.
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4.5.1 Bounds via MUBs

Note that 2N separate Pauli strings can be measured via a single simultaneous measurement.

For instance, consider the 2N set of Pauli strings of form (I or Z)⊗N . All such Pauli strings

can be simultaneously measured by simply measuring in the Z basis on each qubit. This

example is suggestive of the power of simultaneous measurement. In the graph picture, it

means that cliques exist of size 2N , which means that simultaneous measurement can lead to

an exponential reduction in quantum cost relative to Naive separate measurements.

In the case of VQE, we will consider graphs that have only a polynomially sized (O(N4))

number of Pauli strings. It is still enlightening to consider the MIN-CLIQUE-COVER on the

N -qubit graph comprising all 4N − 1 possible Pauli strings (in this analysis, we exclude I⊗N

which commutes with everything else). Per the MUB formalism introduced in Section 4.2.6

and as suggested in the previous paragraph, a clique of Pauli strings can contain at most

2N − 1 vertices. This suggests that at least 2N + 1 cliques are needed to cover all 4N − 1

possible Pauli strings on N qubits. In fact, this lower bound is exactly attainable—a MUB is

exactly such a covering of all N -qubit Pauli strings by disjoint cliques. Again, this illustrates

the potential of simultaneous measurement—a square root reduction is achieved in the total

number of state preparations and measurements needed to cover all possible N -qubit Pauli

strings.

Many of the partitions produced by MUBs have entanglement in the shared eigenbasis:

for example, the bottom two rows of the MUB in Table 4.1. This means that the MIN-

CLIQUE-COVER corresponding to a MUB requires GC edges and not just QWC edges.

Next, we further discuss the advantage of GC over QWC.

4.5.2 QWC vs. GC

GC captures a much denser commutation graph than QWC does, and therefore has more

opportunities for larger cliques and thereby smaller clique covers.
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We first consider the commutation graph of QWC, over all possible N -qubit Pauli strings;

this graph has 4N vertices. Given a Pauli string with I on k indices, it QWC commutes with

exactly 4k · 2N−k − 1 = 2N+k − 1 other Pauli strings: on the ‘partner’ string, the k indices

are unrestricted and the N − k indices can either match the original Pauli matrix or be I

(we subtract 1 to not count the original Pauli string). Since there are
(N
k

)
3N−k terms with I

on exactly k indices, we see that

|E| =
N∑
k=0

(N
k

)
3N−k(2N+k − 1)

2
=

10N − 4N

2

This corresponds to an asymptotic graph density of

lim
N→∞

|E|
|V |(|V | − 1)/2

= lim
N→∞

(104 − 4N )/2

4N (4N − 1)/2
= lim
N→∞

(5/8)N = 0.

In other words, the QWC graph is extremely sparse. By contrast, the GC graph is dense:

consider two random Pauli strings. The indicator variable denoting whether the two strings

commute on the ith index is a Bernoulli random variable. Therefore, the GC commutation

graph corresponds to when the sum over N such independent variables is even, i.e. when a

Binomial random variable is even. Asymptotically, this occurs with 1
2 probability—thus the

asymptotic graph density for GC is 1
2 , much denser than for QWC.

Although GC leads to smaller MIN-CLIQUE-COVERs than QWC, QWC does have

cheaper simultaneous measurement circuits, as we will see in Section 4.7. However, the cost

of GC simultaneous measurement will still turn out to be favorable, because circuit costs in

VQE are dominated by the ansatz preparation.

4.5.3 Approximation Algorithms Tested

In our benchmarking, we performed MIN-CLIQUE-COVERs using the Boppana-Halldórsson

algorithm [168] included in the NetworkX Python package [169], as well as the Bron-Kerbosch
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algorithm [170] which we implemented ourselves. These heuristics approximate a MAX-

CLIQUE whose vertices are marked; we then recurse on the residual unmarked graph, repeat-

ing until all vertices are marked. We also used the group into tensor product basis sets()

approximation implemented by OpenFermion [143]—this approximation is a non-graph-based

randomized algorithm that only finds QWC partitions. Section 4.8 presents results across a

range of molecules and Hamiltonian sizes.

While the benchmark results indicate promising performance in terms of finding large

partitions, it is critical to also consider the classical computation cost of performing the

MIN-CLIQUE-COVER approximation. First, the Bron-Kerbosch algorithm has a worst case

exponential runtime. Therefore, its optimality should be interpreted as a soft upper bound on

how well other standard approximation algorithms can approximate a MIN-CLIQUE-COVER.

The Boppana-Halldórsson algorithm’s runtime is polynomial but is not well studied. Our

benchmarks and theoretical analysis indicate roughly quadratic scaling in graph size. Some

polynomial benchmarks considered in the other concurrent work scale as much as cubically

in the graph size.

However, this poses a problem—the Hamiltonian graph has N4 terms, so a quadratic or

cubic runtime in the number of vertices implies N8 or N12 scaling in classical precomputation

time. Beyond simply implying impractical scaling rates, these runtime ranges may exceed

the quantum invocation cost of VQE, in which case, we’d be better off just running VQE

in the Naive fashion. In particular, recall that the UCCSD ansatz has O(N3) circuit depth

after parallelization and that naively, O(N4) state preparations are needed per ansatz. The

total quantum invocation cost of VQE therefore scales as N7 multiplied by the number of

ansatz states explored, though we note that both the ansatz exploration and the naive O(N4)

measurements could be parallelized given multiple quantum machines. The number of ansatz

states explored is an open question that depends on the classical optimizer, the ansatz type,

and the variational landscape. Nonetheless, we can make rough estimates by noting that the
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VQE ansatz has O(N4) parameters, and rough theoretical results suggest anywhere from

O(N4) iterations under the default SciPy optimization settings [171] to O(N12) under matrix

inversion techniques. Further work is needed to understand the exact cost of VQE, but there

is a strong case that standard graph approximation algorithms may have higher asymptotic

cost than simply executing VQE naively without simultaneous measurement optimization.

In the case of many expensive MIN-CLIQUE-COVER approximation algorithms, it seems

likely that it would be better to simply skip the partitioning step and just measure the Pauli

strings naively.

In the next section, we remedy this concern by presenting a MIN-COMMUTING-

PARTITION approximation that exploits our knowledge of the structure of molecular

Hamiltonians and their encodings into qubits. The resulting approximation algorithm runs in

O(N4) time (linear in the number of Pauli strings, i.e. the graph size), which is safely below

the quantum invocation cost of VQE.

4.6 Linear-Time Partitioning

As discussed in the previous section, standard MIN-CLIQUE-COVER approximations may

be unsuitable since the classical cost of partitioning can exceed the quantum cost from naively

running VQE. This motivates us to inspect features of molecular Hamiltonians and develop

a new partitioning strategy accordingly. At a high level, our new strategy is context-aware

and attacks the MIN-COMMUTING-PARTITION problem at a different abstraction level,

namely the encoding stage from fermionic Hamiltonian to qubit Hamiltonian. By contrast,

the previous approximations are unaware of molecular properties.

For convenience, we repeat Equation 4.1 for the molecular Hamiltonians:

H =
N∑
p

N∑
q

hpqa
†
paq +

N∑
p

N∑
q

N∑
r

N∑
s

hpqrsa
†
pa
†
qaras
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where a† and a denote raising and lowering operators that act on fermionic modes.

The N4 scaling of the number of terms in the Hamiltonian is clear from the second

summation. In particular, the asymptotically-dominant terms are of form a
†
pa
†
qaras with

p 6= q 6= r 6= s. These O(N4) terms are known as the double excitation operators [172]. At the

scale of smaller molecules, the O(N) terms of form a
†
pap and the O(N2) terms of form a

†
pa
†
qapaq

are frequent. These are termed the number and number-excitation operators respectively.

We will treat both the asymptotically-dominant terms and the frequent-for-small-molecules

terms in this section.

The commutation relationships of fermions are different from the commutation relation-

ships of qubits. Thus, an encoding step is needed to convert the fermionic Hamiltonian into

a qubit Hamiltonian. We consider the most common [109] such encodings: Jordan-Wigner

[146], Parity [147], and Bravyi-Kitaev [148].

4.6.1 Jordan-Wigner

Under the Jordan-Wigner encoding, we make the fermion-to-qubit transformations:

ap →
Xp + iYp

2
Zp−1...Z0, a

†
p →

Xp − iYp
2

Zp−1...Z0

with I on every other index.

Double excitation operators

. For the asymptotically dominant O(N4) terms of form a
†
pa
†
qaras (WLOG, p > q > r > s),

we end up with the 16 Pauli strings matching the regular expression:

(Xp|Yp)Zp−1...Zq+1(Xq|Yq)(Xr|Yr)Zr−1...Zs+1(Xs|Ys)

Thus, we see that the Jordan-Wigner transformation turns each of the N4 fermionic
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terms into a sum over 16 Pauli strings. Moreover, these 16 Pauli strings are disjoint from

the ones generated by a a
†
p′a
†
q′ar′as′ term. Consider the commutation graph of the 16 Pauli

strings. All indices except for p, q, r, and s immediately commute, so the commutativity

graph only needs to consider the p, q, r, and s indices. Figure 4.5 depicts the commutation

graph, which has a MIN-CLIQUE-COVER of 2. Thus, this yields a strategy for reducing the

number of measurement partitions by 8x: we collect all Pauli strings from fermionic terms of

form a
†
pa
†
qaras (and from the 4! permutations of the indices) and measure them using 2 GC

partitions instead of 16 Naive partitions.

Figure 4.5: The 16 relevant Pauli strings in the Jordan-Wigner encoding of a
†
pa
†
qaras have a

MIN-CLIQUE-COVER of size 2.

For molecular Hamiltonians, we generally expect to have hpqrs = hsrqp, because of the

nature of these calculations via integrals and the fact that electrons are indistinguishable.

In this case, only 8 terms arise (as noted in another context by [172]), specifically the green

8-clique in Figure 4.5. Thus again, we can achieve an 8x reduction.

Number and number-excitation operators

While the 8-fold reduction in the partitions of the O(N4) pqrs terms is the asymptotic

bottleneck, we also note a useful reduction for the smaller terms which are significant for

smaller molecules.

For the O(N) number operators of form a
†
pap, multiplying out the Jordan-Wigner encoding
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yields the Pauli string Zp. For the O(N2) number-excitation operators of form a
†
pa
†
qapaq, the

Jordan-Wigner encoding yields the Pauli string ZpZq.

Observe that all of these Pauli strings commute and therefore can be simultaneously

measured. Moreover, they are QWC, so the simultaneous measurements are cheap, as we will

see in Section 4.7. While this result may appear obvious from inspection of small molecular

Hamiltonians, which have many Pauli strings of form I...IZI...I, we underscore that it is not

obvious to a context-unaware MIN-CLIQUE-COVER approximation.

4.6.2 Parity Encoding

Figure 4.6: Similar to the Jordan-Wigner case, the 16 relevant Pauli strings in the Parity

encoding of a
†
pa
†
qaras have a MIN-CLIQUE-COVER of size 2.

For the Parity encoding, we make the transformations:

ap = XN−1...Xp+1
XpZp−1 + iYpIp−1

2

a
†
p = XN−1...Xp+1

XpZp−1 − iYpIp−1

2
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Double excitation operators

WLOG, suppose p− 1 > q, q − 1 > r, r − 1 > s. Multiplying out a
†
pa
†
qaras we see that the

parity encoding creates Pauli strings matching the regular expression:

(XpZp−1|YpIp−1)Xp−2...Xq+1(XqZq−1|YqIq−1)...

...(XrZr−1|YrIr−1)Xr−2...Xs+1(XsZs−1|YsIs−1)

Only indices p, p− 1, q, q − 1, r, r − 1, s, and s− 1 are relevant for commutativity. Once

again expanding the resulting 16 Pauli strings, we see that the commutation graph has a

MIN-CLIQUE-COVER of size 2, as depicted in Figure 4.6. Thus, we can again achieve an 8x

reduction in the number of partitions by performing simultaneous measurement across these

indices. However, note that the simultaneous measurement circuit now involves 8 indices, so

it will be more expensive than the simultaneous measurement circuit for the Jordan-Wigner

encoding.

Number and number-excitation operators

We also again consider the O(N) and O(N2) operators that are frequent in smaller molecules.

The parity encoding on the number and number-excitation operators gives rise to Pauli strings

of form ZpZp−1 and ZpZp−1ZqZq−1 respectively. Again, we see that for small molecules, the

parity encoding creates a large set of QWC Pauli strings.

4.6.3 Bravyi-Kitaev

The Bravyi-Kitaev coding is asymptotically favorable for Hamiltonian simulation because it

requires asymptotically fewer non-I operators per Pauli string by only selecting a subset of

indices to perform partial sums needed in the fermion-to-qubit encoding. As a result, every
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ap or a
†
j term involves a subset of indices (> p) that carry the X update, and a subset of the

indices (< j) that require the phase correction. This complicates the commutation structure

of a
†
pa
†
qaras and there is not an immediately obvious clique cover strategy–we identify this as

an open question.

4.7 Circuits for Simultaneous Measurement

Once an approximate MIN-COMMUTING-PARTITION solution has been generated, a

natural question arises of how to actually perform the necessary simultaneous measurement

for each commuting partition. In the case of Naive partitions where each Pauli string is

measured separately, the measurement circuit is trivial. In particular, recall from Section 4.2

that we simply perform the H and HS† operations on the indices with X or Y respectively,

and then we measure every qubit in the Z basis. Thus, we need just O(N) fully-parallelizable

single qubit gates; more specifically, we require k ≤ N single qubit gates, where k is the

number of indices in the Pauli string that equal X or Y .

Simultaneous measurement is also similarly straightforward in the case of QWC partitions.

Each index of a QWC partition is characterized by a measurement basis. For example,

consider the task of simultaneously measuring the two QWC Pauli strings XIY IZI and

IXIY IZ. We simply apply H to the left two qubits and HS† to the right two qubits. The

resulting qubits can all be measured in the standard Z basis, and the corresponding outcomes

indicate the X, X, Y , Y , Z, and Z outcomes as desired. In terms of circuit cost, QWC

measurement is essentially identical to Naive measurement: O(N) single qubit gates are

required, and the gates are fully parallelizable to constant depth.

While Naive and QWC partition measurements are straightforward, GC partition mea-

surements are nontrivial. We now introduce a circuit synthesis procedure enabling these

measurements, and we analyze both the quantum and classical costs of this procedure. To

the best of our knowledge, this is the first work explicitly demonstrating how to perform
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simultaneous measurement in the general case of GC Pauli strings. We implemented our

circuit synthesis tool as a Python library and validated it across a wide range of molecular

Hamiltonians.

4.7.1 Background

As discussed in Section 4.2, performing a simultaneous measurement amounts to applying

a unitary transformation in which the columns of the unitary matrix are the simultaneous

eigenvectors of the commuting Pauli strings in the partition. After applying such a trans-

formation and then performing standard Z-basis measurements, the outcomes are mapped

directly to measurements of the Pauli strings of interest. One approach to synthesize a

simultaneous measurement circuit would be to explicitly compute the matrix of simulta-

neous eigenvectors and then apply one of many possible unitary decomposition techniques

[173, 174, 175, 176, 177, 178] to this matrix. However, this approach is not sufficient for two

reasons. First, in general, decomposition techniques trade off between requiring intractable

quantum circuit depth, requiring intractable classical compilation time, and yielding only ap-

proximations to the desired transformation. Second, and most importantly, these techniques

require us to compute the simultaneous eigenvectors and input them to the decomposer. In

general, the simultaneous eigenvectors resulting from GC can be fully entangled across all N

indices, and they are represented by a 2N -sized column vector. The corresponding unitary

matrix would be doubly exponentially sized in N , erasing any potential quantum advantage.

With this in mind, it is clear that any decomposition technique must avoid explicitly

computing eigenvectors and writing out exponentially sized unitary matrices. Fortunately,

the stabilizer formalism—typically applied to quantum error correction—provides us such a

mechanism. Before proceeding, we note that our work is built upon the language of stabilizers

introduced in [179] and expanded upon in [180]. While these two papers were applied to

error correction and quantum simulation, the core techniques also apply to our use case.
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Also, [181] and [182] leverage these stabilizer techniques to perform MUB measurements.

Our circuit constructions are drawn from these two papers as well as [183], but stem from a

different context and end goal.

4.7.2 An Example: {XX, Y Y, ZZ}

We begin with a well-known example. Consider the task of trying to simultaneously measure

XX, Y Y, and ZZ, a GC (but not QWC) partition. The simultaneous eigenvectors of these

Pauli strings are known as the four Bell states :

|Φ+〉 =
|00〉+ |11〉√

2
, |Φ−〉 =

|00〉 − |11〉√
2

,

|Ψ+〉 =
|01〉+ |10〉√

2
, |Ψ−〉 =

|01〉 − |10〉√
2

These eigenvectors are linearly independent and span all possible 2-qubit states—hence, they

are a basis. Unlike the vectors in the standard computational basis of {|00〉 , |01〉 , |10〉 , |11〉},

the eigenvectors in the Bell basis feature entanglement between the two qubits. As a result,

measurement in the Bell basis requires interaction between the two qubits, unlike the the

Naive and QWC measurements described previously. The quantum circuit in Figure 4.7 is a

well-known circuit that performs Bell basis measurement, i.e. simultaneous measurement of

XX, Y Y , and ZZ.

• H
|ψ〉

Figure 4.7: Bell basis measurement circuit that simultaneously measures XX, Y Y , and ZZ
on the |ψ〉 state. After application of these two gates, the measurements of the top and
bottom qubits correspond to outcomes for XX and ZZ respectively. The Y Y outcome is
obtained from Y Y = −(XX)(ZZ).

To understand why this circuit measures XX and ZZ (and also Y Y = −(XX)(ZZ)),
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we observe that our ultimate goal is to transform a target measurement of [XX,ZZ] into

[ZI, IZ]—the latter captures the outcomes we actually measure directly via standard Z-basis

measurement. An important background result is that after applying some unitary operation

U , a target measurement of M on the original state has become equivalent to a measurement

of UMU† [179, 32] on the new state. This is known as unitary conjugation.

In the Bell basis measurement circuit, we first apply U = CNOT . By computing UMU†

we can see that target measurements of [XX,ZZ] are transformed under conjugation to

measurements of

[XX,ZZ]
UMU†−−−−−−−−→

U = CNOT
[UXXU†, UZZU†] = [XI, IZ].

Finally, after applying the Hadamard gate on the top qubit, the measurements are transformed

to

[XI, IZ]
UMU†−−−−−−−→

U = H ⊗ I
[UXIU†, UIZU†] = [ZI, IZ].

Thus, this CNOT , H ⊗ I gate sequence performs the desired transformation of rotating

a measurement of [XX,ZZ] into the computational basis, [ZI, IZ]. The ordering of the

elements is important and indicates that measurement of the top qubit (ZI) corresponds

to the XX outcome and measurement of the bottom qubit (IZ) corresponds to the ZZ

outcome. As mentioned previously, Y Y follows as −(XX)(ZZ).

4.7.3 Stabilizer Matrices

In order to consider the general case, we now switch to the formalism of stabilizer matrices.

Our notation and terminology is similar to previous work [179, 180, 181, 182, 183], with some

deviations for clarity. Within the stabilizer formalism, every N -qubit Pauli string maps to

a 2N -entry column vector. The top N entries indicate whether each corresponding index

‘contains’ a Z. The bottom N entries correspond to X’s. The Y Pauli matrix corresponds to
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having a 1 in both the Z and X entries, since Y = iZX. The stabilizer matrix for a list of

Pauli strings is simply the concatenation of the column vectors. As an instructive example,

the stabilizer matrix for [XXX,Y Y Y, ZZZ,XY Z] is:



0 1 1 0

0 1 1 1

0 1 1 1

1 1 0 1

1 1 0 1

1 1 0 0


For convenience and clarity, we will refer to the top N rows as the Z-matrix and the

bottom N rows as the X-matrix. Recall that our goal is to transform a target set of

Pauli strings for simultaneous measurement into the computational basis measurements,

[ZII...I, IZI...I, ..., III...Z]. We see that the stabilizer matrix for this computational basis

simply has an N ×N Identity as the Z-matrix and all zeroes in the X-matrix.

We now seek a procedure to transform the target stabilizer matrix into this computational

basis stabilizer matrix. To see how to accomplish such a transformation, it is useful to know

unitary conjugation relationships for a basic gate set. Table 4.3 and Table 4.4 list the unitary

conjugations of important Pauli strings for 1- and 2- qubit unitary gates respectively.

UZU† UXU†

U = H X Z

U = S Z Y

Table 4.3: Result of conjugation of Z and X by single qubit gates U = H or S. Note that H
can be thought of as a “NOT gate” between X and Z. The S (phase) gate does not affect Z,
but does transform X into Y .
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UZIU† UIZU† UXIU† UIXU†

U = CNOT ZI ZZ XX IX

U = CZ ZI IZ XZ ZX

U = SWAP ZI ZI IX XI

Table 4.4: Result of conjugation of ZI, IZ, XI, or IX by two qubit gates U = CNOT , CZ,
or SWAP .

Based on these tables, we can interpret the action of each of these unitaries on a stabilizer

matrix. These rules can be verified directly from the tables and are also explained in [180, 182].

• H on the ith qubit swaps the ith and i+Nth row of the stabilizer matrix (i.e. swaps

between corresponding rows of the Z- and X- matrices). It is helpful to think of H as

a ”NOT gate” that flips Z and X measurements.

• S on the ith qubit sets the (i, i) diagonal entry in the Z-matrix to 0.

• CNOT controlled on ith qubit and targeted on the jth qubit adds the jth row to the

ith row and adds i+Nth row to the j +Nth row. All additions are performed modulo

2.

• CZ between the i and jth qubits sets the (i, j) and (j, i) symmetric off-diagonal entries

of the Z-matrix to 0.

• SWAP between the i and jth qubits swaps the i and jth rows of both the Z and X

matrices. This can be seen from the fact that SWAP = (CNOT )(NOTC)(CNOT )

and two rows can be swapped with three alternating binary additions.
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4.7.4 Circuit Synthesis Procedure

We now have the tools we need for circuit synthesis, which amounts to transforming the

stabilizer matrix for a commuting family of Pauli strings into the computational basis stabilizer

matrix (which has Identity for the Z-matrix and zeros for the X-matrix). For simplicity, we

describe the procedure for the case when the partition of N -qubit Pauli strings is complete

and contains N linearly independent elements. This is the hardest case—if the partition is

incomplete, the measurement procedure is similar but has more slack, because at least 1 of

the qubits will not need to be measured.

Algorithm 3: Circuit synthesis for sim. measurement

input : {Pi}, a complete GC family of Pauli strings
output : Circuit for simultaneous measurement of {Pi}

M ∈ F 2N×N
2 ← basis of {Pi}

Full-rankify X-matrix by applying H gates
Gaussian eliminate X-matrix using CNOT & SWAP gates
for each diagonal element in Z-matrix do

if element is 1 then apply S to corresponding qubit
end
for each element below diagonal of Z-matrix do

if element is 1 then apply CZ to the row-col qubits
end
Apply H to each qubit
Measure each qubit

The circuit synthesis procedure is described in Algorithm 3. To develop its intuition, we

demonstrate its application to the problem of simultaneously measuring [IY X,ZZZ,XIX,ZXY ],

which is a GC (but not QWC) family. We initialize the algorithm by setting the stabilizer

matrix to a basis of this partition. Note that the fourth term is linearly dependent on the

first three, so we exclude it to yield such a basis; in general, we use Gaussian elimination

to perform this distillation of the Pauli strings into a basis. The stabilizer matrix for this

resulting list of Pauli strings, [IY X,ZZZ,XIX], is:
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

0 1 0

1 1 0

0 1 0

0 0 1

1 0 0

1 0 1


The first step of the simultaneous measurement circuit synthesis is to apply H gates as

needed to transform the X-matrix to have full rank (it is currently only rank 2). Such a

transformation is always possible and can be found efficiently by Gaussian elimination [180,

Lemma 6]. In this case, applying H to the first qubit swaps the first and fourth rows of the

stabilizer matrix, yielding an X-matrix of full rank 3:

H →



0 0 1

1 1 0

0 1 0

0 1 0

1 0 0

1 0 1



Now that the X-matrix is of full rank, we can apply standard Gaussian elimination to row

reduce it into the Identity matrix. The CNOT and SWAP gates give us the elementary row

operations needed: add one row to another and swap rows. In this example, the X-matrix

can be row reduced to the identity by first adding its second row to the third row, and then

swapping the first and second rows. Breaking this down, we first observe the effect of the

CNOT on the stabilizer matrix:
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• →



0 0 1

1 0 0

0 1 0

0 1 0

1 0 0

0 0 1



And finally the SWAP completes the row reduction, leaving the X-matrix as the identity:

×
×

→



1 0 0

0 0 1

0 1 0

1 0 0

0 1 0

0 0 1



Notice that the CNOT and SWAP also affected the Z-matrix, which is now a symmetric

matrix; this is guaranteed to occur [182]. Now our desired transformation is almost complete.

The on-diagonal 1 is erased with S on the first qubit, and the two off-diagonal 1s are erased

with a CZ between the second and third qubits. These two operations have no effect on the

X-matrix:

S

•
•

→



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


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Finally, we apply an H to each qubit, which swaps the Z- and X- matrices, leaving us in

the computational basis stabilizer matrix, as desired:

H

H

H

→



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0



The full circuit and resulting transformation is shown below:



0 1 0

1 1 0

0 1 0

0 0 1

1 0 0

1 0 1


→

H × S H

• × • H

• H

→



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0



4.7.5 Circuit Complexity

The efficiency of Algorithm 3 and the overarching stabilizer formalism stems from the fact that

the stabilizer matrices are of size 2N ×N , and all manipulations are on this tractably-sized

matrix. This averts the exponential cost that manipulating simultaneous eigenvectors would

entail. In terms of classical cost, the synthesis tool is fast because its slowest step is the

Gaussian elimination, which has time complexity of O(N3) [184].

The actual circuit produced by the synthesis procedure requires only O(N2) gates in the

worst case, as also noted in related results [182, 183]. This follows because the Gaussian
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elimination can require O(N2) elementary row operations, which entails O(N2) CNOT gates.

The erasure of off-diagonal elements in the Z-matrix also requires O(N2) CZ gates.

While the O(N2) gate count for GC measurement is worse scaling than the O(N) gate

count for Naive or QWC measurement, we emphasize that the measurement circuit is preceded

by an ansatz preparation circuit that dominates gate counts and depth. In particular, the

UCCSD ansatz has O(N4) gate count and O(N3) depth after parallelization. Therefore,

the cost of simultaneous measurement is asymptotically insignificant. As discussed, we

base our studies on UCCSD because the Coupled Cluster approach is the gold standard for

quantum computational chemistry [109, 115]. Moreover, UCCSD has shown experimental

and theoretical promise, unlike hardware-driven ansatz, which were shown to suffer from

“barren plateaus” in the optimization landscape [149, 109]. Even in the case of other non-

hardware-driven ansatzes, gate counts and depths generally scale at least as N3 in order to

achieve high accuracy. Thus, the quadratic cost of GC measurement appears to be benign.

We also underscore that the O(N2) gate count scaling of simultaneous measurement is a

worst case scenario, where our partition is dominated by GC-but-not-QWC edges. In practice,

this is not the case and we see QWC on many, if not most indices. For example, in the

linear-time MIN-COMMUTING-PARTITION 8x approximations presented in Section 4.6

only a constant (4 or 8) number of Pauli string indices have a GC-but-not-QWC relationship

in the simultaneous measurements. The remaining N − 4 or N − 8 Pauli string indices are

QWC. Thus, under this MIN-COMMUTING-PARTITION approximation, the simultaneous

measurement circuit gate count is still O(N) and the depth is still parallelizable to O(1).

For reference, we show in Figure 4.8 the simultaneous measurement circuit for the 4 GC-

but-not-QWC qubits in the Pauli partition for the Jordan-Wigner transformation. Specifically,

this measurement circuit is used to measure the green 8-clique in Figure 4.5. The other

N − 4 qubits are QWC and require single-qubit gates for measurement—this is why the

simultaneous measurement gate complexity is still just O(N).
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Figure 4.8: Simultaneous measurement circuit generated by our software for the green 8-clique
in Figure 4.8. It transforms the measurements of XXXX,XXY Y,XY XY, Y XXY (which is
a basis for the Pauli strings in the green 8-clique) to measurements of ZIII, IZII, IIZI, IIIZ.

4.7.6 Measurement Circuit Optimizations

While the circuit synthesis procedure in Algorithm 3 yields a correct simultaneous measurement

circuit, it is not necessarily the most optimal circuit possible. For instance, in Figure 4.8, the

SWAP (implemented as 3 CNOT s) between qubits 2 and 3 can be omitted from the circuit

and instead implemented by swapping their subsequent gates, and then accounting for the

SWAP classically after the measurements are performed. In other words, the SWAPs in our

circuit constructions can be accomplished by simple classical re-labeling of qubit indices.

We also observe that many gates can be parallelized. For example, the depth of Figure 4.8

can be reduced by parallelizing the execution of the CZ gates with the execution of the

CNOT gates.

4.8 Benchmark Results

We tested the performance of our simultaneous measurement strategies in Section 4.5 on

multiple molecular benchmarks, whose Hamiltonians we obtained via OpenFermion [143].

Our benchmark results encompass both the reduction in number of partitions relative to

Naive, as well as the classical computation runtime required to produce the partitioning.

As mentioned, in Section 4.5, the Bron-Kerbosch based MIN-CLIQUE-COVER approxi-

mation has exponential worst case runtime and should thus be considered a soft bound on
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the optimality of partitions produced by other graph approximation algorithms. Figure 4.9

indicates the performance of Bron-Kerbosch in terms of number of commuting partitions

(cliques) found using both QWC and GC edges, in comparison to the Naive VQE implemen-

tation in which each Pauli string is in a singleton partition. The improvement from Naive to

QWC is consistently about 4-5x—a significant reduction especially considering that QWC

measurement is cheap. The improvement from Naive to GC ranges from 7x to 12x from H2

to CH4 (methane). This suggests that the state preparation cost reduction factor from GC

partitioning improves for larger molecules.

Figure 4.9: Number of QWC and GC partitions (which we are attempting to minimize)
generated by Bron-Kerbosch for four representative molecules. AS# indicates the number of
active spaces for the molecular Hamiltonian.

Figure 4.10 and Figure 4.11 examine partitioning efficacy when we vary the qubit encodings

and the number of active spaces considered for the H2 molecule. Across the qubit encodings,

performance is roughly consistent with a 3x improvement from QWC partitions and a

10x improvement from GC partitions. We do note one outlier in that the performance is

particularly promising for the Brayvi-Kitaev Super-Fast encoding [148], which achieves a 20x

reduction in the number of partitions from Naive to GC. Across the varying active spaces, we

again see evidence that the GC partitioning advantage scales with Hamiltonian size, ranging

from 3x to 12x as the number of active spaces is increased. This is important and encouraging,

because prior work demonstrated that a relatively large number of active spaces are needed
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to achieve chemical accuracy [116].

Figure 4.10: Number of QWC and GC partitions generated by Bron-Kerbosch for the H2
molecule, under different fermion-to-qubit encodings.

Figure 4.11: Number of QWC and GC partitions generated by Bron-Kerbosch for the H2
molecule, under different numbers of active spaces.

Along with the Bron-Kerbosch approximations as a loose upper bound on the expected

partitioning optimality, we also benchmarked another MIN-CLIQUE-COVER approximation:

the Boppana-Halldórsson algorithm, applied to both QWC- and GC- edge graphs. In addition,

we also benchmarked with the QWC partitioning heuristic provided by the OpenFermion

electronic structure package. We tested each of these algorithms on problem sizes ranging

from 4 to 5237 terms in the molecular Hamiltonian. These Hamiltonians correspond to the
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H2, LiH, H2O, and CH4 molecules with varying numbers of active spaces. We recorded

both the number of partitions generated and the runtime for each algorithm-benchmark pair.

Figure 4.12 shows the number of partitions generated for Hamiltonians with up to 5237 Pauli

strings. Note that some of the benchmarks were unable to be run due to prohibitive runtime

costs on the order of days (e.g. Bron-Kerbosch for |H| > 1519 Pauli strings). Figure 4.13

shows a zoom-in for molecules with up to 630 Pauli strings; the y-axis now shows the reduction

factor in number of partitions. The plots generally align with our expectations: GC leads

to much more optimal partitioning than QWC (recall the arguments in Section 4.5.2, and

Bron-Kerbosch GC achieves the fewest number of partitions generated although Boppana-

Halldórsson GC has comparable optimality. Among the QWC methods, we consistently

see 3-4x reductions in number of partitions over Naive separate measurements, and our

Boppana-Halldórsson QWC algorithm marginally outperforms the OpenFermion heuristic.

Figure 4.12: Number of partitions found for each algorithm-benchmark pair. Under Naive
measurement, the number of partitions would exactly equal the Hamiltonian size (number of
Pauli strings). Thus, these techniques all achieve a 4-20x reduction in state preparations and
measurements relative to the Naive strategy.

Figure 4.14 plots the wall clock runtimes for each of the algorithm-benchmark pairs;

Figure 4.15 focuses on the 0 – 630 Hamiltonian size range. These plots corroborate the

exponential worst-case scaling of Bron-Kerbosch and suggest quadratic runtime scaling
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Figure 4.13: Factor of improvement (which we are attempting to maximize) over Naive for
each of the algorithms benchmarked for Hamiltonian sizes up to 630 terms.

for the Boppana-Halldósson algorithm. OpenFermion’s function is clearly the fastest of

the algorithms explored, but is also consistently the worst approximation to the MIN-

COMMUTING-PARTITION.

Figure 4.14: Classical computer runtimes for each partitioning algorithm + benchmark pair.
Bron-Kerbosch has exponential and Boppana-Halldósson has quadratic runtime scaling. This
partitioning step runs as a compilation procedure before the actual quantum invocations of
VQE.
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Figure 4.15: Zoom-in of Figure 4.14 for Hamiltonian sizes up to 630 terms.

4.9 Experimental Results

We validated our techniques with a proof of concept demonstration by experimentally

replicating a recent result [185]: ground state energy estimation of deuteron, the nucleus of

an uncommon isotope of hydrogen. We performed our experiments via the IBM Q Tokyo

20-qubit quantum computer [5], which is cloud accessible.

Following [185], deuteron can be modeled with a 2-qubit Hamiltonian spanning 4 Pauli

strings1: IZ, ZI, XX, and Y Y . Under Naive measurement, each Pauli string is measured in

a separate partition. Under GC, we can partition into just two commuting families: {ZI, IZ}

and {XX, Y Y }. Recall that the former partition is QWC and can be measured with simple

computational basis measurements. The latter partition can be measured by the Bell basis

measurement circuit in Figure 4.7.

To establish a fair comparison between Naive measurement and simultaneous measurement

we performed experiments in which both settings were allocated an equal budget in total

number of shots (trials) allowed. We first considered a resource-constrained setting with a

budget of 100 total shots. This corresponds to 25 shots per partition in Naive measurement

1. There is also an II term, but this doesn’t actually require any measurement—it just adds a constant
offset to the Hamiltonian.
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Figure 4.16: Deuteron energy estimation under Naive and GC partitions, as executed on
IBM Q20 with a total shot budget of 100. The energies are in MeV. Average error is 11%
lower with GC simultaneous measurement than with Naive separate measurements.

and 50 shots per partition in GC simultaneous measurement. Figure 4.16 plots our results

for a simplified Unitary Coupled Cluster ansatz with a single parameter and just three gates

(two single qubit rotations and one CNOT), as described in [185].

The results indicate reasonable agreement between Naive measurement, GC measurement,

and the true (Theory) values. The deviation from Theory stems both from statistical variance

due to the low shot budget, as well as systematic noise in the quantum processes. As

Figure 4.16’s lower |Error| plot indicates, for 13 of the 24 values swept across the θ range, GC

measurement had lower error than Naive measurement. On average, the GC measurements

had an error of 835 KeV—11% less than the average error of 940 KeV for Naive measurement.

We also ran another experiment with a much higher total shot budget of 4000 (i.e. 1000

shots per partition in Naive and 2000 for GC). In this regime, errors due to systematic quantum

noise should dominate over errors from statistical variation. We expect GC simultaneous
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Figure 4.17: Deuteron energy estimation under Naive and GC partitions, as executed on
IBM Q20 with a total shot budget of 4000. The energies are in MeV. Average error is 7%
lower with Naive separate measurements than with GC simultaneous measurements.

measurement to exhibit more systematic noise because it requires an extra CNOT gate as per

the Bell measurement circuit in Figure 4.7. Therefore, we expect better results from Naive

measurement than from GC simultaneous measurement. Figure 4.17 plots the experimental

results.

For 17 of the 24 values swept across the θ range, Naive measurement does indeed

outperform GC simultaneous measurement in terms of lower error. The respective average

errors are 848 KeV and 914 KeV, indicating a 7% higher accuracy with Naive measurement.

These results are presented as proof-of-concept that simultaneous measurement achieves

higher accuracy when the shot budget is limited. Equivalently, we can achieve equal accuracy

with fewer shots (i.e. fewer state preparations) when the shot budget is limited. For several

reasons, we note that these experimental results underestimate the potential of simultaneous

measurement, especially as higher quantum volume devices emerge. In particular:
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• the Unitary Coupled Cluster ansatz of [185] is highly simplified and does not yet exhibit

the asymptotic O(N4) scaling. Our argument that simultaneous measurement is cheap

hinges on the comparison between O(N4) ansatz gate count and O(N2) simultaneous

measurement gate count. For this simplified ansatz and small N , simultaneous measure-

ment essentially doubled the gate count. As lower-error devices emerge with the ability

to support the full UCCSD ansatz gate count and larger qubit count N , simultaneous

measurement circuits will become a negligible cost.

• For a small Hamiltonian like the one considered here, the partitioning gain from GC is

only 2x. As indicated in the benchmark results in Section 4.8, we expect up to 30x gains

for larger Hamiltonians and possibly a gain factor that continues to linearly increase

for larger molecules, based on extrapolation of the benchmark results.

• For current machines, the number of jobs is far more costly than the number of shots

for practical purposes, since executions are scheduled at the granularity of jobs. In

our executions, we saw this as an immediate and practical advantage of simultaneous

measurement. Our total latency was dominated by the number of jobs rather than the

number of shots, so our simultaneous measurement results were collected much more

rapidly than Naive measurement results, even though both settings had equal total

shot budgets.

We re-iterate that these results should only be interpreted as a proof of concept. As

machines improve, we expect to see dramatically better results, for the aforementioned

reasons.
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4.10 Statistics of Simultaneous Measurement: Guarding Against

Covariances

We have now shown both how to approximate a MIN-COMMUTING-PARTITION and

how to actually construct the requisite simultaneous measurement circuits. Finally, we now

address an important question regarding the statistics of simultaneous measurement. This

question was first raised by [87, Section IV B2] which proved that simultaneous measurement

can actually underperform separate measurements due to the presence of covariance terms.

In particular, while simultaneous measurement does not bias the estimate 〈̂H〉, it can increase

the variance of the estimator, relative to separate measurements.

In this section, we first show a specific example from [87] in which simultaneous mea-

surement is suboptimal. Then, we prove that such examples are atypical and that the

MIN-COMMUTING-PARTITION is still optimal when we have no prior on the ansatz state.

Finally, we demonstrate an adaptive strategy for detecting and correcting course in the

atypical case when a simultaneous measurement should be split into separate measurements.

4.10.1 An Example

Consider the Hamiltonian, H = IZ + ZI − XX − Y Y + ZZ, following the example of

[87]. The commutation graph has a bowtie shape. Figure 4.18 depicts two possible clique

partitionings with k = 2 and k = 3 commuting-family partitions respectively.
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Figure 4.18: Commuting-family partitions of H = IZ + ZI −XX − Y Y + ZZ with k = 2
and k = 3.

Thus far, we have worked under the assumption that estimating 〈H〉 is more efficient

with simultaneous measurement than with separate measurements and we have therefore

targeted MIN-COMMUTING-PARTITIONs. However, consider a case in which the ansatz

state is |01〉, for the previously stated Hamiltonian.

Since the outcomes of our measurements are random, we quantify the uncertainty around

our estimate of the expectation value by V ar(〈H〉). Our end goal is to determine the

expected value of the Hamiltonian to a target accuracy level ε. The expected number of state

preparations, nexpect, needed to achieve this accuracy for a k-way partitioning is [87]:

nexpect =
k
∑k
i=1 V ar(Partition i)

ε2
(4.2)

The variance from each partition can be computed from the formula for the variance of a

sum of terms:

V ar({
n∑
i=1

Mi}) =
n∑
i=1

V ar(Mi) + 2
∑

1≤i<j≤n
Cov(Mi,Mj)

where Cov(M1,M2) = 〈M1M2〉 − 〈M1〉 〈M2〉 and V ar(M) = Cov(M,M).

In our case with |ψ〉 = |01〉, the primitives evaluate to: V ar(IZ) = V ar(ZI) =

V ar(ZZ) = 0 and V ar(−XX) = V ar(−Y Y ) = 1. All covariances are 0 except for
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Cov(−XX,−Y Y ) = 1.

For the k = 2 partitioning, we have

nexpect =

2
[
V ar({−XX,−Y Y, ZZ}) + V ar({ZI, IZ})

]
ε2

=

2
[
V ar(−XX) + V ar(−Y Y ) + V ar(ZZ)+

2Cov(−XX,−Y Y ) + 2Cov(−XX,ZZ) + 2Cov(−Y Y, ZZ)+

V ar(ZI) + V ar(IZ) + 2Cov(IZ, ZI)
]
/ε2

= 8/ε2

For the k = 3 partitioning, we have:

nexpect =

3
[
V ar({−XX}) + V ar({−Y Y, ZZ}) + V ar({IZ, ZI})

]
ε2

=

= 3
[
V ar(−XX) + V ar(−Y Y ) + V ar(ZZ)+

2Cov(−Y Y, ZZ) + V ar(ZI) + V ar(IZ) + 2Cov(IZ, ZI)
]
/ε2

= 6/ε2

Thus, due to the contribution of positive covariance between −XX and −Y Y , the k = 3

partitioning is better than the k = 2 partitioning for this (H, |ψ〉) combination.

This phenomenon motivates us to pay close attention to covariances within each parti-

tioning. The worst case scenario is that we end up with positive covariances within each

partition. In a best case scenario, we’ll have negative covariances within each partitioning,

which could dramatically reduce the number of state preparations needed to achieve some

desired error on 〈H〉.
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4.10.2 Typical Case

We now observe that examples such as the previous one, in which the MIN-COMMUTING-

PARTITION is suboptimal, are atypical. Below, we prove that when we have no prior on the

ansatz state |ψ〉, the expected covariance between two commuting Pauli strings is 0. This

validates the general goal of finding the MIN-COMMUTING-PARTITION, because under 0

covariances, the only strategy for reducing nexpect in Equation 4.2 is to minimize the total

number of partitions k.

Theorem 2. Given M1,M2, two commuting but non-identical Pauli strings, E[Cov(M1,M2)] =

0 where the expectation is taken over a uniform distribution over all possible state vectors

(the Haar distribution [186, 187]).

Proof. We consider the following two exhaustive cases:

1. Either M1 or M2 is I. WLOG, suppose M1 = I. Then, Cov(M1,M2) = 〈I ·M2〉 −

〈I〉 〈M2〉 = 0.

2. Neither M1 nor M2 is I. Since M1 and M2 are Pauli strings which have only +1 and −1

eigenvalues, the eigenspace can be split into M1,M2 = (−1,−1), (−1,+1), (+1,−1),

and (+1,+1) subspaces. Moreover, these subspaces are equally sized (proof follows from

stabilizer formalism [32, Chapter 10.5.1]). Let us write |ψ〉 as a sum over projections

into these subspaces:

|ψ〉 = a |ψ−1,−1〉+ b |ψ−1,+1〉+ c |ψ+1,−1〉+ d |ψ+1,+1〉

Under this state, the covariance is Cov(M1,M2)|ψ〉 = 〈M1M2〉 − 〈M1〉 〈M2〉 = (|a|2 −

|b|2 − |c|2 + |d|2)− (−|a|2 − |b|2 + |c|2 + |d|2)(−|a|2 + |b|2 − |c|2 + |d|2).

Now consider the matching state:

|ψ′〉 = b |ψ−1,−1〉+ a |ψ−1,+1〉+ d |ψ+1,−1〉+ c |ψ+1,+1〉
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Under |ψ′〉, the covariance is Cov(M1,M2)|ψ′〉 = 〈M1M2〉− 〈M1〉 〈M2〉 = (|b|2− |a|2−

|d|2 + |c|2)− (−|b|2 − |a|2 + |d|2 + |c|2)(−|b|2 + |a|2 − |d|2 + |c|2).

Thus, Cov(M1,M2)|ψ〉 = −Cov(M1,M2)|ψ′〉. Since each |ψ〉 is matched by this sym-

metric |ψ′〉 state, and our expectation is over a uniform distribution of all possible state

vectors, we conclude that E[Cov(M1,M2)] = 0.

4.10.3 Mitigating Covariances: Partition Splitting

While we have now secured the top level goal of initially performing measurements under the

MIN-COMMUTING-PARTITION approximation, it is still important to detect and correct

course if covariances do turn out to harm our measurement statistics. We now introduce such

a strategy that adaptively splits partitions to mitigate harmful covariances.

Our strategy is based on building sample covariance matrices of commuting Pauli strings.

If M1, M2, and M3 are Pauli strings, recall that the covariance matrix, Cov([M1,M2,M3]),

under a fixed state is expressed as follows:



V ar(M1) Cov(M1,M2) Cov(M1,M3)

Cov(M2,M1) V ar(M2) Cov(M2,M3)

Cov(M3,M1) Cov(M3,M2) V ar(M3)


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Or, in shorthand notation, where V ar(M1) = σ2
M1

and Cov(M1,M2) = σM1M2
:



σ2
M1

σM1M2
σM1M3

σM2M1
σ2
M2

σM2M3

σM3M1
σM3M2

σ2
M3


Note that for commuting matrices M1 and M2, we have Cov(M1,M2) = 〈M1M2〉 −

〈M1〉 〈M2〉 = 〈M2M1〉 − 〈M2〉 〈M1〉 = Cov(M2,M1), so covariance matrices are symmetric

around the main diagonal.

We now return to the pathological example from Section 4.10.1. Since the variance of a

partitioning is the sum of all entries in each partition’s covariance matrix, the sum of the shaded

terms below represents the variance of the k = 2 partitioning ({−XX,−Y Y, ZZ}, {ZI, IZ}):



σ2
−XX σ−XX,−Y Y σ−XX,ZZ σ−XX,ZI σ−XX,IZ

σ−Y Y,−XX σ2
−Y Y σ−Y Y,ZZ σ−Y Y,ZI σ−Y Y,IZ

σZZ,−XX σZZ,−Y Y σ2
ZZ σZZ,ZI σZZ,IZ

σZI,−XX σZI,−Y Y σZI,ZZ σ2
ZI σZI,IZ

σIZ,−XX σIZ,−Y Y σIZ,ZZ σIZ,ZI σ2
IZ


And the sum of the shaded terms below represents the variance of the k = 3 partitioning

({−XX}, {−Y Y, ZZ}, {ZI, IZ}):



σ2
−XX σ−XX,−Y Y σ−XX,ZZ σ−XX,ZI σ−XX,IZ

σ−Y Y,−XX σ2
−Y Y σ−Y Y,ZZ σ−Y Y,ZI σ−Y Y,IZ

σZZ,−XX σZZ,−Y Y σ2
ZZ σZZ,ZI σZZ,IZ

σZI,−XX σZI,−Y Y σZI,ZZ σ2
ZI σZI,IZ

σIZ,−XX σIZ,−Y Y σIZ,ZZ σIZ,ZI σ2
IZ



Therefore, it is favorable (fewer state preparations needed to achieve a target accuracy)
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to break the −XX term out of the {−XX,−Y Y, ZZ} partition if the condition atop the

next page holds. The matrices represent a sum over enclosed terms, and the multiplicative

factors of k = 2 and k = 3 follow from Equation 4.2.

2



σ2
−XX σ−XX,−Y Y σ−XX,ZZ

σ−Y Y,−XX σ2
−Y Y σ−Y Y,ZZ

σZZ,−XX σZZ,−Y Y σ2
ZZ

σ2
ZI σZI,IZ

σIZ,ZI σ2
IZ


> 3



σ2
−XX

σ2
−Y Y σ−Y Y,ZZ

σZZ,−Y Y σ2
ZZ

σ2
ZI σZI,IZ

σIZ,ZI σ2
IZ



or equivalently, if:



2σ−XX,−Y Y 2σ−XX,ZZ

2σ−Y Y,−XX

2σZZ,−XX


>



σ2
−XX

σ2
−Y Y σ−Y Y,ZZ

σZZ,−Y Y σ2
ZZ

σ2
ZI σZI,IZ

σIZ,ZI σ2
IZ


(4.3)

Informally, notice that the left-hand side of Equation 4.3 is a multiple of the sum of

the covariances that exist in the expression for V ar(k = 2) but not V ar(k = 3) (which we

will call the “broken terms”), whereas the right-hand side is a multiple of the sum of the

variances and covariances that exist in both the V ar(k = 2) and V ar(k = 3) expressions

(the “unbroken terms”). This pattern generalizes such that it is favorable to switch from a

partitioning with k partitions to a clique-splitting partitioning with k′ > k partitions if:

k ∗ (
∑

broken terms) > (k′ − k) ∗ (
∑

unbroken terms)

A similar strategy was described in [90, Section V. A.], for the special case of comparing

Naive partitions (with no covariances) with QWC partitions; our work generalizes to the case

of comparing two non-Naive partitions where both sides have covariance terms.
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4.10.4 Strategies for covariance estimation

As demonstrated in Section 4.10.1, the expected number of state preparations needed to

determine 〈H〉 to an accuracy level ε can be calculated if the variances and pairwise covariances

of commuting Pauli terms under an ansatz state are known.

In practice, the true theoretical values of these variances cannot be known beforehand, as

doing so would require computations involving the exponentially sized ansatz state vector.

However, just as we use repeated measurements from partitions of commuting terms to

approximate the expected value of their sum, we can use these same measurements to

approximate the covariance matrices of Pauli strings in the same partition. This

estimation of covariance is termed “sample covariance”, since its value is calculated via a

sample from the theoretical distribution. This key idea of adaptively building a sample

covariance matrix, using the measurements we are already making, allows us to adaptively

detect and correct for harmful covariance terms.

Note that the theoretical variance of 〈M〉 is V ar(M) = 〈M2〉−〈M〉2, and is approximated

by the sample variance, V̂ ar(M) = 1
n−1

∑n
i=1(mi −m), where {m1, ...,mn} represent the

n observed measurements of M , and where m = 1
n

∑n
i=1mi is the sample mean. Similarly,

the theoretical covariance Cov(M1,M2) = 〈M1M2〉 − 〈M1〉 〈M2〉 is approximated by the

sample covariance Ĉov(M1,M2) = 1
n−1

∑n
i=1(m1i −m1)(m2i −m2) where {m11, ...,m1n}

and {m21, ...,m2n} are the n observed measurements of M1 and M2 respectively.

Since covariance terms can only be approximated if terms are simultaneously measured, we

ideally want to start our measurements in a setting with MIN-COMMUTING-PARTITIONS.

Fortunately, this is exactly the optimal starting strategy that we initialize with, as per the

argument in Section 4.10.2. Once we collect sufficiently many observations that the sample

covariance matrices stabilize, this will enable us to identify opportunities to split partitions

in order to lower variances and thus reduce the number of requisite state preparations.

To make this concrete, let us again consider the k = 2 partitioning from the previous exam-
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ple, {−XX,−Y Y, ZZ}, {ZI, IZ}. As we accumulate more observations, we can empirically

build up an approximation of each partition’s sample covariance matrices, like so:



σ̂2
−XX σ̂−XX,−Y Y σ̂−XX,ZZ

σ̂−Y Y,−XX σ̂2
−Y Y σ̂−Y Y,ZZ

σ̂ZZ,−XX σ̂ZZ,−Y Y σ̂2
ZZ

σ̂2
ZI σ̂ZI,IZ

σ̂IZ,ZI σ̂2
IZ


Since the sample covariance matrix V̂ ar(k = 2) contains a superset of the terms needed

to calculate V̂ ar(k = 3), we can use observations from the k = 2 setting to explore whether

further partitions would be beneficial.

Each of the grey lines in Figure 4.19 depicts the value of V̂ ar(k = 2)− V̂ ar(k = 3) as it

evolves with a set of 100 observed measurements under the |01〉 state. The plot illustrates

that the empirical difference, V̂ ar(k = 2) − V̂ ar(k = 3) converges to the true theoretical

difference, V ar(k = 2)− V ar(k = 3) = 2 after around 30 observations. The positive sign of

this difference indicates that V ar(k = 3) < V ar(k = 2), and therefore the k = 3 partitioning

should be favored due to its lower variance.

Figure 4.19: Convergence of the empirical difference, V̂ ar(k = 2)− V̂ ar(k = 3), to the true
difference in variances under |01〉. Since V ar(k = 2)− V ar(k = 3) is positive, this signals
that the k = 3 partitioning will lead to a lower-variance estimator.
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When we broaden analysis of the k = 2 versus k = 3 setting across many different random

states, we observe that the state |01〉 is indeed atypical and pathological, as suggested in

Section 4.10.2. Under the vast majority of states, the variance of the k = 2 setting is lower

than the k = 3 setting, as observed by the negative values of V̂ ar(k = 2)− V̂ ar(k = 3) in

Figure 4.20, and therefore the −XX term should not be split into a separate partition.

Figure 4.20: The empirical difference in V̂ ar(k = 2)− V̂ ar(k = 3) across ten Haar-randomly-
chosen states. While the convergence value differs across states, it is is negative in all ten
cases. This contrasts with the atypical case of convergence to a positive value in the example
of Figure 4.19 under state |01〉.

This discussion naturally leads to the question of how many observations are necessary for

the sample covariance matrix to be a good approximation of the true theoretical covariance

matrix. To answer this question, we need to formalize a notion of the accuracy of a sample

covariance matrix. Several candidate measures may be considered, which we are exploring in

ongoing work:

• Enforcing a minimum number of “burn-in” observations. This acts as a proxy of the

sample observations being sufficiently representative of the true theoretical distribution.

• Enforcing that the distance between the sample covariance matrix after n−1 observations

and after n observations be less than a pre-specified threshold. This acts as an alternative

proxy of the stability of the observations on which the sample covariance matrix is
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based.

• Enforcing that a hypothesis test between the sample variance of the full partitioning and

the sample variance of the split-up partitioning returns a p-value below a pre-specified

significance level.

The last candidate measure is the most attractive because p-values can be compared

across different experimental settings. By contrast, appropriate cutoff values for the first two

measures vary with H and |ψ〉. Formalization of the last measure will require further work

to confirm the distribution of the sample variance and covariance terms.

4.11 Conclusion

Our techniques and demonstrations show that simultaneous measurement substantially

reduces the cost of Variational Quantum Eigensolver by allowing state preparations to

cover several Pauli strings simultaneously. We demonstrate algorithms that achieve up

to 30x reductions in the number of requisite state preparations. We also raise practical

concerns about these algorithms and identify an alternate strategy that exploits properties of

molecular Hamiltonians to achieve an 8x reduction in state preparation cost, with almost

no additional pre-computation. Our systems emphasis includes explicit attention to the

overhead of simultaneous measurement circuits. Accordingly, we develop a circuit synthesis

procedure, which we have implemented and tested in software. We also study the statistics of

simultaneous measurement, and ensure that the top-level goal of finding MIN-COMMUTING-

PARTITIONs is statistically justified. Our statistical analysis also yields a strategy for

detecting and correcting course when simultaneous measurements are harmed by covariance

terms. Our theoretical and benchmark/simulation results are accompanied by a proof-of-

concept experimental validation on the IBM 20Q quantum computer.

Our ongoing work includes further benchmarking, more theoretical investigation, and the
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development of a software tool that packages together all of our techniques. We also see

promising future work towards further developing molecular-Hamiltonian-aware partitioning

strategies, especially since the advantage of the MIN-COMMUTING-PARTITION appears to

improve with molecular size. Moreover, other qubit encodings like Bravyi-Kitaev, as well as

Hamiltonian reduction techniques such as active space reductions and frozen orbitals should

be considered.

4.12 MIN-COMMUTING-PARTITION is NP-Hard

We show that MIN-COMMUTING-PARTITION is NP hard. Given a set of operators

o1, o2, . . . , on, the MIN-COMMUTING-PARTITION problem partitions the operator set into

k subsets such that all operators in each subset pairwise commute and k is minimized. The

corresponding decision problem is in NP as it is easy to verify pairwise commutativity for

each subset of operators. To show NP completeness it remains to show the problem is NP

hard. This can be done by reducing from MIN-CLIQUE-COVER. Given a graph G = (V,E)

with n vertices that represents an instance of MIN-CLIQUE-COVER, we produce an instance

of MIN-COMMUTING-PARTITION consisting of a set of operators o1, o2, ..., on where each

operator oi has n Paulis, and the j-th Pauli is Z if j = i, X if j > i and (vi, vj) 6∈ E, and I

otherwise. This is illustrated in Figure 4.21. It is easy to see that a commuting subset of

operators corresponds to a clique, which concludes the proof. Notice that the commutativity

relationships required in this reduction are only Qubit-Wise Commutative, meaning that

even the QWC-restricted MIN-COMMUTING-PARTITION problem is NP-Hard.
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1

v1

v2

v5

v4

v3

v6 v10v8

v9v7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

o1: Z I I I X X X X X X

o2: I Z I I X X X X X X

o3: I I Z I I X X X X X

o4: I I I Z I I X X X X

o5: I I I I Z X X X X X

o6: I I I I I Z I I X X

o7: I I I I I I Z I X I

o8: I I I I I I I Z X I

o9: I I I I I I I I Z I

o10: I I I I I I I I I Z

Figure 4.21: Instance of MIN-CLIQUE-COVER (top) and MIN-COMMUTING-PARTITION
(bottom).
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CHAPTER 5

O(N 3) MEASUREMENT COST FOR VARIATIONAL

QUANTUM EIGENSOLVER ON MOLECULAR

HAMILTONIANS

5.1 Background

Variational Quantum Eigensolver (VQE) [84] is a quantum algorithm that is a leading

contender, if not the top contender, for demonstrating a practical quantum advantage on

near-term machines. Unlike traditional quantum algorithms, which have extremely high

quantum requirements in terms of gate counts and qubit lifetimes, VQE is feasible with

modest quantum resources that are already available on current quantum computers. It

attains a lower quantum resource cost in part by structuring computation over a large

number of subproblems, each of which can be performed on a quantum computer with modest

capabilities.

While the low quantum resource requirements per subproblem are appealing, the number

of subproblems is an issue for practical application of VQE. Consider molecular ground

state estimation, a classically-hard problem that is considered the canonical application of

VQE. Within the framework of VQE, molecular energy estimation is performed by applying

linearity of expectation to the Hamiltonian H, an observable that captures a molecule’s

energy configuration. Under the second quantization and expressed in fermionic form, we

have [109]:

H =
N∑
p=1

N∑
q=1

hpqa
†
paq +

N∑
p=1

N∑
q=1

N∑
r=1

N∑
s=1

hpqrsa
†
pa
†
qaras (5.1)

Applying linearity of expectation, we see that measuring 〈H〉 reduces to measuring

〈a†paq〉 and 〈a†pa†qaras〉. Each of these O(N4) terms is transformed via fermion-to-qubit
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encoding into a sum over a constant number of Pauli strings (N -fold tensor product of

Pauli matrices). Measurement of each of these resulting O(N4) Pauli strings constitutes

a subproblem. Although the measurement for each subproblem is simple, requiring only

single-qubit rotations, the O(N4) scaling of subproblems poses a practical challenge towards

applying VQE to molecules of interest such as caffeine and cholesterol, which appear to

require N numbering hundreds of qubits [188].

Recently however, several research groups observed that this O(N4) scaling may be

reducible to O(N3) [19, 156, 158, 159, 189]. The core principle underlying these papers

is that commuting Pauli strings can be measured simultaneously. The O(N4) → O(N3)

improvement is conjectured based on extrapolation of results across a range of molecules.

Here, we confirm this observation of linearly-reduced measurement cost for molecular

Hamiltonians encoded under Jordan-Wigner—the most widely used encoding [190]. Our

general approach is to demonstrate that the molecular Hamiltonians can always be partitioned

into pairwise-commuting families where each family contains O(N) terms. Since the terms

in each such family can be measured simultaneously, this constitutes our reduction in the

measurement cost of VQE from O(N4) to O(N3).

In addition to proving the existence of such a partition, we explicitly demonstrate how to

construct it. Our construction is efficient, computable in O(N5 logN) time. Moreover, the

construction is independent of the specific molecular Hamiltonian of interest and instead only

depends on N . This means that the partitioning can be pre-computed once for each N . The

efficiency of our approach is critical. In contrast, proposals for simultaneous measurement in

the recent prior work have involved algorithms with runtimes as high as O(N12), which may

be slow enough to undermine the advantage of simultaneous measurement.
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5.2 Prior Work

The empirical results in [19, 156, 158, 159, 189] all suggest that the advantage due to

simultaneous measurement appears to increase for larger molecules. The specificity of

this claim varies across the papers—[19] explicitly extrapolates linear scaling for molecular

Hamiltonians over a range of encodings, molecules, and active space sizes; [156] formulates it

as an explicit conjecture for “almost all” sets of Pauli strings; [158, 159] observes this scaling

via least-squares fitting for molecular Hamiltonians under the Jordan-Wigner and Bravyi-

Kitaev qubit encodings; and [189] makes note of increasing partition size with increasing

N .

Moreover, [19, Section 5.1] provides two encouraging examples of an asymptotic gain from

simultaneous measurement for specific types of contrived Hamiltonians. First, it is observed

that simultaneous measurement can yield an exponential gain: the 2N Pauli strings with the

same underlying measurement basis across all qubits can be simultaneously measured with a

single measurement. Second, in the case of measuring all 4N Pauli strings on N qubits, a

square root (2N ) reduction is achievable by Mutually Unbiased Bases.

However, as suggested by [19, Appendix A], an asymptotic gain from simultaneous

measurement is not guaranteed. For example, consider the set of 2N Pauli strings matching

the pattern Z*(X|Y)I*, where * matches 0 or more occurrences and | is a Boolean OR. For

example, for N = 3, we have [XII, Y II, ZXI, ZY I, ZZX,ZZY ]. It can be shown that none

of the pairs in this set commute. Thus, simultaneous measurement offers no advantage for

this set of Pauli strings. More generally, we see that simultaneous measurement does not

automatically confer any advantage.

During the preparation of this manuscript, we became aware of very recent work by

[191] that also proves the O(N3) measurement cost for molecular Hamiltonians. Their work

approaches the problem via Majorana operators, which leads to a proof agnostic of the

underlying fermion-to-qubit encoding.
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5.3 Commutativity of Index-Disjoint Terms

Our top-level goal is to partition the molecular Hamiltonian into commuting families, such

that the number of partitions is minimized. This problem is termed MIN-COMMUTING-

PARTITION and is NP-Hard in general [19]. We instead seek to approximate a good

partitioning. Our approach is to address this problem at the level of the fermionic Hamiltonian

in Equation 5.1. By contrast, past work, except for [19, Section 6], has focused on this

problem at the qubit Hamiltonian stage, after the fermionic Hamiltonian has been encoded

into a summation over Pauli strings.

We focus on the O(N4) terms with p 6= q 6= r 6= s in the second sum of Equation 5.1,

because these terms are asymptotically dominant; the number of other terms is only O(N3).

Without loss of generality, let us suppose that p > q > r > s, and likewise i > j > k > l. We

denote the set of Pauli strings in the Jordan-Wigner encoding of a
†
pa
†
qaras as {a†pa†qaras}JW.

Our core observation is that if two a†a†aa terms have disjoint indices, then the terms in

their qubit encodings commute. In particular:

Theorem 3. If {p, q, r, s} ∩ {i, j, k, l} = ∅, then

[{a†pa†qaras}JW, {a
†
ia
†
jakal}JW] = 0

where the commutator is taken to apply between all pairs of elements between the two sets.

Theorem 3 can be verified by inspecting the form of the Pauli string terms in {a†a†aa}JW.

Under the Jordan-Wigner encoding [146], we perform the transformations:

ap →
Xp + iYp

2
Zp−1...Z0, a

†
p →

Xp − iYp
2

Zp−1...Z0

Carrying out the transformation for a
†
pa
†
qaras yields the 16 Pauli strings matching the regular
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expression:

(Xp|Yp)Zp:q(Xq|Yq)(Xr|Yr)Zr:s(Xs|Ys)

where Zp:q denotes Z on each index between p and q, exclusive of endpoints. Figure 5.1

shows this pattern as a pictorial representation: the repeating Z’s are blue rectangles and

the {p, q, r, s} indices are the black vertical bars demarcating the blue and white rectangles.

Figure 5.1: Pictorial representation of the Jordan-Wigner encoding of a
†
pa
†
qaras. Repeating

Z’s span the blue rectangles between p and q and between r and s. The other three ranges
have repeating I’s. At indices p, q, r, and s, which are denoted by the black vertical bars
between the blue and white rectangles, we can have either X or Y . Thus, there are 24 = 16
Pauli strings involved in the Jordan-Wigner encoding.

To evaluate the commutativity between a term in {a†pa†qaras}JW and a term in {a†ia
†
jakal}JW,

we simply need to count the number of indices that anti-commute, as explained in [19, Section

3]. If the number of anti-commuting indices is even, then the two Pauli strings commute. For

all indices other than p, q, r, s, i, j, k, l, the Pauli matrices at the indices commute, because

[I, I] = [I, Z] = [Z, I] = [Z,Z] = 0. On the remaining 8 indices, the commutation depends

on whether the (X|Y ) is matched to an I (commutes) or Z (anti-commutes). Figure 5.2

depicts this: when one of the black bars (X|Y ) is vertically aligned with a blue rectangle (Z),

the index does not commute, as marked by the red cross. When the black bar is vertically

aligned with a white rectangle (I), the index commutes.

The commutativity between {a†pa†qaras}JW and {a†ia
†
jakal}JW terms can be verified by

considering all possible interleaved orderings of the 8 indices, subject to the constraint that

p > q > r > s and i > j > k > l. There are
(8
4

)
= 70 such cases that can be explicitly

checked (or 35 cases, accounting for symmetry) to prove Theorem 3. Figure 5.3 demonstrates

four representative cases, which provide useful intuition for the general case. In particular,

when sliding one of the {p, q, r, s} indices while keeping {i, j, k, l} fixed, the parity of the
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Figure 5.2: Pictorial representation of the commutation on each index between two
{a†a†aa}JW rectangles. All indices commute except possibly the 8 indices with black
bars—these indices anti-commute when the black bar (X or Y ) is vertically aligned with
a blue rectangle Z. In this example, the there are an even (4) number of anti-commuting
terms, so the two patterns commute.

number of anti-commuting indices is invariant. Thus, this parity is always even, and two

{a†pa†qaras}JW and {a†ia
†
jakal}JW terms with disjoint indices always commute, as claimed in

Theorem 3.

Figure 5.3: Four representative examples illustrating why {a†pa†qaras}JW and {a†ia
†
jakal}JW

terms always commute (have an even number of anti-commuting indices) when {p, q, r, s} ∩
{i, j, k, l} = ∅. At the top, no black bars align with blue rectangles, so there are 0 anti-
commuting indices. Below, r > i > s > j, so there are 2 anti-commuting indices: i and s.
Below that, observe that sliding the i endpoint into the interval between q and r does not
change the parity of the number of anti-commuting indices. The bottom example shows a
case with the maximal number of anti-commuting indices, 6.
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5.4 Existence of Linearly-Sized Partitions

Consider the set of Pauli strings contained in

{a†Na
†
N−1aN−2aN−3}JW ∪ {a

†
8a
†
7a6a5}JW ∪ ... ∪ {a†4a

†
3a2a1}JW

for N divisible by 4. There are 16N4 = 4N ∈ O(N) Pauli strings in this set. However, since the

indices are disjoint, Pauli strings from each of the N
4 subsets can be measured simultaneously

by Theorem 3. In particular, the Pauli strings can be partitioned into 16 ∈ O(1) measurement

families. In fact, they can even be partitioned into just 2 measurement families by noting that

the MIN-COMMUTING-PARTITION within each {a†pa†qaras}JW term is 2, as described in

[19, Section 6].

A natural question is whether all
(N

4

)
p > q > r > s terms in Equation 5.1 can be

partitioned in such a fashion—if so, then this constitutes a partitioning of the O(N4) terms

into
(N

4

)
/N4 =

(N−1
3

)
∈ O(N3) commuting families. Intuitively, this is the same problem

as trying to schedule a round-robin tournament of N players with 4 players-per-game into(N−1
3

)
rounds. We can think of each index as a player, and 4-player games can be scheduled

simultaneously if they don’t share players. Equivalently, these problems can be bijected to

a graph theory problem: does the 4-uniform complete hypergraph on N vertices admit a

1-factorization?

The answer to all of these questions is affirmative, per Baranyai’s Theorem [8]. In our

case, it means that for N divisible by 4, the
(N

4

)
∈ O(N4) terms can be partitioned into(N−1

3

)
∈ O(N3) sets, such that the N

4 terms within each set have disjoint indices. Table I

demonstrates such a partitioning for N = 8 qubits. Each of the
(8−1

3

)
= 35 rows has

two fermionic terms with disjoint indices—thus, their corresponding Jordan-Wigner qubit

encodings can be measured simultaneously.
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5.5 Construction of Linearly-Sized Partitions

Prior literature refers to Baranyai’s original proof as either being non-constructive [192, 193]

or providing an exponential-time construction [194] (prior literature varies in what exactly

is considered Baranyai’s proof). In order for Baranyai’s proof to be useful to us, we need

a fast polynomial-time algorithm for partitioning the
(N

4

)
subsets of N into

(N−1
3

)
groups,

each containing N/4 disjoint subsets. Fortunately, due to later work by [195], a proof was

provided that leads to an efficient construction [196]. The proof is based on maximum flows

in network flow graphs.

We refer readers to [197] for a lucid explanation and to [198] for an implementation

in code. This implementation was used to generate Table I. The pseudocode is given in

Algorithm 4. An outer loop is called N times, and each iteration solves for maximum flow on

a network with O(N3) vertices and O(N4) directed edges. Since the maximum flow in the

proof construction has a value of O(N3), solving for it with the Ford-Fulkerson algorithm

would incur a cost of O(N7) per loop iteration [199]. However, due to work on flow-rounding

[200, 201, 202, 203], this runtime is reduced to O(N4 logN). This is because for each flow

network, a fractional solution is known that can be rounded to an integral solution faster

than computing an integral solution from scratch. Thus, the total runtime of the Baranyai

constructive proof is O(N5 logN).

A useful aspect of the Baranyai-based approach to molecular Hamiltonian partitioning

is that it depends only on N and not on the hpq and hpqrs coefficients in Equation 5.1. In

this sense, it is pre-computable—for instance, the N = 8 partitioning in Table I will apply

to all 8-qubit Hamiltonians. By contrast, MIN-COMMUTING-PARTITION techniques in

prior work operate on the specific molecular Hamiltonians of interest. Thus, the partitionings

are not pre-computable and the classical cost of partitioning must be accounted for in

time-to-solution.
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Algorithm 4: O(N5 logN) Baranyai construction

input : N
output :

(N−1
3

)
sets where each set contains N

4 disjoint size-4 subsets, and no term
is repeated

for i ∈ [1, 2, ..., N ] do

Create flow network with two layers: O(N3) partition nodes and O(N3) subset
nodes

Set capacities for O(N4) edges per [195, 197] construction

Set fractional maxflow of value
(N−1

3

)
, saturating nodes out of source and into

destination
Round fractional maxflow into an integral maxflow
Update subset nodes based on integral maxflow

end

Return schedule of
(N

4

)
subsets, based on final flow

5.6 Discussion

We have demonstrated that Jordan-Wigner encoded molecular Hamiltonians can be parti-

tioned into O(N3) commuting families, each containing O(N) Pauli strings. Our proof stems

from Baranyai’s Theorem, which has a constructive form that efficiently yields partitionings,

per Algorithm 4. Since commuting families can be measured simultaneously, this constitutes

a reduction in the measurement cost of VQE from O(N4) naively to O(N3) with these

partitions. The simultaneous measurement circuits are efficient too, requiring only O(N)

gates, since the shared eigenbasis of the commuting partitions can be expressed as a tensor

product over 4-qubit chunks.

An advantage of our technique is that it only depends on N and is pre-computable for

all N -qubit molecular Hamiltonians. Further optimizations may be possible by analyzing

hpqrs coefficients in Equation 5.1. For example, for molecular Hamiltonians, we expect the

hpqrs = hsrpq symmetry [172], which reduces the number of relevant Pauli strings in each

{a†pa†qaras}JW set from 16 to 8.

Recent work [190] has gone deeper in this direction, by factoring molecular Hamiltonians

137



into a form that empirically seems to have O(N) partitions. Moreover, the simultaneous

measurements only appear to require O(N2) gates, even with linear qubit connectivity. It

would be informative to benchmark this recent work against our strategy, which produces

O(N3) partitions but requires only O(N) gates under full connectivity.

Beyond VQE, our technique may be useful in other quantum computational chemistry

applications. For example, the simulation of Hamiltonian dynamics could be improved

by partitioning into commuting families. Naively, Hamiltonian evolution is performed by

Trotterization that requires fine time slicing to account for non-commuting terms [32, Section

4.7]. However, by ordering Pauli strings in a Hamiltonian such that large commuting sets are

consecutive, the Trotterization cost could be diminished. This approach seems promising since

our work proves an asymptotic gain for partitioning. Moreover, simultaneous measurement

circuits would not be needed, so this re-ordering of a Trotterization would have essentially no

quantum cost.

138



a†7a
†
5a3a0 a†6a

†
4a2a1

a†6a
†
5a3a0 a†7a

†
4a2a1

a†7a
†
6a3a0 a†5a

†
4a2a1

a†7a
†
4a3a0 a†6a

†
5a2a1

a†7a
†
5a4a0 a†6a

†
3a2a1

a†6a
†
4a3a0 a†7a

†
5a2a1

a†6a
†
5a4a0 a†7a

†
3a2a1

a†7a
†
6a4a0 a†5a

†
3a2a1

a†5a
†
4a3a0 a†7a

†
6a2a1

a†7a
†
6a5a0 a†4a

†
3a2a1

a†7a
†
5a1a0 a†6a

†
4a3a2

a†7a
†
5a2a0 a†6a

†
4a3a1

a†6a
†
5a1a0 a†7a

†
4a3a2

a†6a
†
5a2a0 a†7a

†
4a3a1

a†7a
†
6a1a0 a†5a

†
4a3a2

a†7a
†
4a1a0 a†6a

†
5a3a2

a†7a
†
6a2a0 a†5a

†
4a3a1

a†7a
†
3a1a0 a†6a

†
5a4a2

a†7a
†
4a2a0 a†6a

†
5a3a1

a†6a
†
4a1a0 a†7a

†
5a3a2

a†6a
†
3a1a0 a†7a

†
5a4a2

a†7a
†
3a2a0 a†6a

†
5a4a1

a†5a
†
3a1a0 a†7a

†
6a4a2

a†6a
†
4a2a0 a†7a

†
5a3a1

a†5a
†
4a1a0 a†7a

†
6a3a2

a†4a
†
3a1a0 a†7a

†
6a5a2

a†6a
†
3a2a0 a†7a

†
5a4a1

a†7a
†
2a1a0 a†6a

†
5a4a3

a†5a
†
3a2a0 a†7a

†
6a4a1

a†6a
†
2a1a0 a†7a

†
5a4a3

a†5a
†
2a1a0 a†7a

†
6a4a3

a†5a
†
4a2a0 a†7a

†
6a3a1

a†4a
†
2a1a0 a†7a

†
6a5a3

a†4a
†
3a2a0 a†7a

†
6a5a1

a†3a
†
2a1a0 a†7a

†
6a5a4

Table 5.1: Partitioning of
(N=8

4

)
= 70 a

†
pa
†
qaras terms into

(N−1=7
3

)
= 35 subsets, with

disjoint indices between the two terms in each subset. Such a partitioning is guaranteed to
exist for all N divisible by 4, per Baranyai’s Theorem [8].
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CHAPTER 6

OPTIMIZED QUANTUM COMPILATION FOR NEAR-TERM

ALGORITHMS WITH OPENPULSE

6.1 Introduction

The present era of quantum computing is characterized by the emergence of quantum

computers with dozens of qubits, as well as new algorithms that have innate noise resilience

and modest qubit requirements. There are promising indications that near-term devices

could be used to accelerate or outright-enable solutions to problems in domains ranging from

molecular chemistry [109] to combinatorial optimization [85] to adversarial machine learning

[204]. To realize these practical applications on noisy hardware, it is critical to optimize

across the full stack, from algorithm to device.

Standard quantum compilers operate at the level of gates. However, the lowest-level of

quantum control is through analog pulses. Pulse optimization has shown promise in previous

quantum optimal control (QOC) work [205, 206], but we found that noisy experimental

systems are not ready for compilation via QOC approaches. This is because QOC requires

an extremely accurate model of the machine, i.e. its Hamiltonian. Hamiltonians are difficult

to measure experimentally and moreover, they drift significantly between daily recalibrations.

Experimental QOC papers incur significant pre-execution calibration overhead to address this

issue. By contrast, we propose a technique that is bootstrapped purely from daily calibrations

that are already performed for the standard set of basis gates. The resulting pulses form

our augmented basis gate set. These pulses are extremely simple, which reduces control

error and also preserves intuition about underlying operations, unlike QOC. This technique

leads to optimized programs, with mean 1.6x error reduction and 2x speedup for near-term

algorithms.

We emphasize the generality of our approach and our compiler, which can target any
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Figure 6.1: Like classical programs, quantum programs undergo a compilation process from
high-level programming language to assembly. However, unlike the classical setting, quantum
hardware is controlled via analog pulses. In our work, we optimize the underlying pulse
schedule by augmenting the set basis gates to match hardware. Our compiler automatically
optimizes user code, which therefore remains hardware-agnostic.
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underlying quantum hardware. We demonstrate our results via OpenPulse [100, 207], an

interface for pulse-level control. In particular, our work is the first experimental demonstration

of OpenPulse for optimized compilation of quantum programs (one prior paper used OpenPulse

for noise extrapolation [208]). We executed pulse schedules on IBM’s 20-qubit Almaden

quantum computer, accessible through the cloud via the IBM Q Experience [209]. Our

experience-building spanned over 11.4 million experimental shots, 4 million of which are

explicitly presented here as concrete research outcomes. Our results indicate that pulse-

level control significantly extends the computational capacity of quantum computers. Our

techniques are realizable immediately on existing OpenPulse-compatible devices. To this end,

all of our code and notebooks are available on Github [210].

We begin with background on quantum computing in Section 6.2. Next, Section 6.3

presents an overview of standard quantum compilers and our compiler design (depicted in

Figure 6.1). Sections 6.4– 6.7 describe four key optimizations in our compiler, all of which

are enabled by pulse-level control:

1. Direct Rotations (Section 6.4). Access to pulse-level control allows us to implement

any single-qubit operation directly with high fidelity, circumventing inefficiencies from

standard compilation.

2. Cross-Gate Pulse Cancellation (Section 6.5). Although gates have the illusion of

atomicity, the true atomic units are pulses. Our compiler creates new cancellation

optimizations that are otherwise invisible.

3. Two-Qubit Operation Decompositions (Section 6.6). We recompile important

near-term algorithm primitives for two-qubit operations directly down to the two-qubit

interactions that hardware actually implements.

4. Qudit Operations (Section 6.7). Quantum systems have infinite energy levels. Pulse

control enables d-level qudit operations, beyond the 2-level qubit subspace.
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Figure 6.2: The points on the Bloch sphere correspond one-to-one with possible qubit states.
The green and brown states correspond to |0〉 and |1〉 respectively. The blue state is in a
superposition described by latitude and longitude angles.

Section 6.8 presents results from application of these techniques to full algorithms. We

conclude in Section 6.9.

6.2 Background

We assume some familiarity with the fundamentals of quantum computing. Here we provide

a brief review and expand on elements relevant to our work.

6.2.1 The Qubit

The core unit involved in quantum computation is the qubit (quantum bit). Unlike a classical

bit which is either 0 or 1, a qubit can occupy any superposition between the two states,

which are now denoted |0〉 and |1〉. The Bloch sphere, depicted in Figure 6.2, is a useful

visual representation of the possible states of a qubit. The North Pole is the |0〉 state, and

the South Pole is the |1〉 state. The state of a qubit can be parametrized by two angles,

latitude and longitude. Upon measurement, a qubit collapses to either the |0〉 or |1〉 state,

with probabilities dependent only on the latitude.
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6.2.2 Quantum Gates

The set of valid single-qubit gates correspond to rotations around the Bloch sphere. Arbitrary

such rotations are typically decomposed into Rx(θ) and Rz(θ) rotations around the X and Z

axes respectively, which are universal for single-qubit rotations [211]. A prominent single-qubit

gate is the X = Rx(180◦) gate, which in Figure 6.2 would rotate the green |0〉 state 180◦

around the X-axis to the |1〉 and vice versa. Thus, the X operation implements the NOT

gate.

The set of possible multiple-qubit operations is much richer than the set of single-qubit

gates, and lacks a clear visualization on the Bloch sphere. Remarkably however, any multiple-

qubit operation can be decomposed into single-qubit rotations + an entangling gate such

as CNOT [211]. The CNOT gate acts on a control and target qubit, and it applies X to

the target iff the control is |1〉. In part because the CNOT gate is easy to understand, most

quantum programs are expressed in terms of it. By implementing a small set of gates: single

qubit rotations + CNOT, a quantum computer is universal. Accordingly, quantum computers

are generally designed with this interface in mind. However, the lowest level of hardware

control is performed by microwave pulses. Foreshadowing the main message of our work: this

pulse-backed layer actually provides a richer and “overcomplete” set of gates that outperforms

the standard interface for quantum programs.

6.2.3 Gate Calibration

To implement this standard interface of universal gates, quantum computers are routinely

calibrated to account for continuous drift in the experimental setting [212, 213]. As a

concrete example, for superconducting devices, an Rx(90◦) gate is calibrated by performing

a Rabi experiment [214, 215, 216] that determines the necessary underlying pulses. An

additional DRAG [217, 218, 219] calibration fine-tunes the Rx(90◦) gate by cancelling out

stray components. Calibrations in a similar spirit are also performed for the two-qubit gate(s).
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An interesting feature of the two-qubit gate calibrations is that they have the side effect of

also calibrating Rx(180◦) pulses on each qubit. We exploit this free calibration in Section 6.4.

Typically, RZ(θ) rotation gates do not require calibration because they are implemented in

software, as described in Section 6.4.

6.2.4 Experimental Setup

Our experiments were performed on IBM’s Almaden, a 20 qubit device [220]. Almaden is the

first cloud-accessible OpenPulse device. It comprises 20 transmon qubits, with mean T1 and

T2 coherence lifetimes of 94 and 88 µs respectively. The mean single-qubit and two-qubit

(CNOT) error rates are 0.14% and 1.78%. The mean measurement (readout) error was 3.8%,

though we used measurement error mitigation [221, 222] to correct for biased measurement

errors.

As of December 2019, IBM’s publicly cloud-accessible OpenPulse device is the new Armonk

device [223], which we used for the most recent results in Figure 6.13. For both Armonk and

Almaden (and for IBM’s devices in general), the calibrations described above are performed

every 24 hours. Our experiments ran around-the-clock via a cloud job queuing system, with

varying elapsed time to the prior calibration.

6.3 Compiler Flow

As depicted in Figure 6.1, quantum compilation proceeds through four stages, from high-level

to low-level: programming language, assembly, basis gates, and pulse schedule. Also shown is

our alternative flow, which creates an augmented set of basis gates and a more optimized

pulse schedule. Table 6.1 presents a summary of these four stages. We now discuss existing

implementations of these stages, why we should augment the standard set of basis gates, our

new compiler framework, and the tradeoffs we considered when we designed the framework.
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Stage Notes Example

Programming Language High-level; hardware-unaware; sophis-
ticated control flow

qft(qc)

Assembly Usually 1- or 2- qubit arity gates; min-
imal control flow

h q[0]

Basis Gates Like an HDL; hardware-aware gate
set

u1(3) q[0]

Pulse Schedule Analog waves across channels; ulti-
mate “at the metal” control

Table 6.1: Summary of the four stages of a quantum compiler.

6.3.1 Standard Flow

Programming Language

Quantum PLs are designed to be user-friendly, with sophisticated control flow, debugging

tools, and strong abstraction barriers between target operations and underlying quantum

hardware. The most successful languages have been implemented as Python packages, such

as IBM’s Qiskit [224], Google’s Cirq [31], and Rigetti’s PyQuil [65]. Others are written as

entirely new languages, such as Scaffold [225, 88] which is based on LLVM infrastructure;

Quipper [103] which is a functional language embedded in Haskell; and Q# [102] which is

Microsoft’s quantum domain specific language.

Assembly

Quantum assembly languages are closer to hardware, but still aim to be device-agnostic.

Generally, the assembly instructions only allow 1- or 2- qubit arity, since hardware primitives

act on only 1 or 2 qubits at a time1. Quantum assembly is essentially equivalent to the quantum

circuit representation of quantum programs. Prominent examples include OpenQASM [100],

1. The notable exception is trapped ion quantum computers, which support global entangling operations
that simultaneously act on N qubits [226, 227].
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Rigetti’s pyQuil [65], and TUDelft’s cQASM [228].

Basis Gates

Basis gates are similar to assembly, but re-expressed in terms of the gate set that hardware

implements. For example, while the well-known Controlled-Z instruction is valid in assembly

code, it would be re-written in basis gates as a sequence of H and CNOT gates—which

hardware natively implements. The distinction between assembly and basis gates is primarily

a conceptual one; in Qiskit, Cirq, and PyQuil, the basis gate and assembly layers are expressed

in the same software framework. In some other domains, for example the Blackbird language

[229] for continuous-variable quantum computing, the assembly already resembles a hardware-

aware basis gate layer. Regardless of the relationship between between assembly and basis

gates, our core observation in this chapter is that existing implementations of basis gate sets

are too far from pulse-level hardware primitives. We will expand on this observation for the

rest of the chapter.

Pulse Schedule

The ultimate lowest-level control of a quantum computer is a schedule of complex-valued

analog pulses, across multiple input channels. The image in Table 6.1 shows a sample pulse

schedule on a single channel. The input channels are controlled by an Arbitrary Waveform

Generator (AWG) which outputs a continuous value on each channel at every dt. Modern

AWGs, such as the one in our experimental realization using IBM’s Almaden system, achieve

4.5 Gigasamples per second, i.e. a new complex number every 0.22 ns.

The pulse schedule on drive channel j is referred to as dj(t) and is complex-norm

constrained by |dj(t)| ≤ 1. However, qubits are not directly acted on by dj(t) or Re[dj(t)].

Instead, the dj(t) signal is mixed with a local oscillator of frequency fj , leading to a final
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Table 6.2: Costs of various two qubit operations, by Native gate. Cost reductions at the right
indicate optimization opportunities. One

√
iSWAP is treated as 0.5 cost, while iSWAP has

1.0 cost.

Decomposition Cost by Native Gate

“Textbook” Discrete Gates Half Parametrized

Operation Standard Circuit
Rep.

CNOT CR(90◦) iSWAP bSWAP MAP
√
iSWAP CR(θ)

CNOT • 1 1 2 2 1 1 1

SWAP • •
•

3 3 3 3 3 1.5 3

ZZ Interaction • •
Rz

2 2 2 2 2 1 1

Fermionic
Simulation

Rz
iSWAP

• Rz

Rz Z Rz

3 3 3 3 3 1.5 3

signal

Dj(t) = Re[dj(t)e
ifjt] (6.1)

This equation will be relevant when we demonstrate qudit operations in Section 6.7.

The translations from basis gates to pulse schedules are known analytically. For example,

in superconducting quantum hardware, Rz basis gates are implemented in software with

zero-duration and perfect-accuracy via the virtual-Z-Gate translation [93, 230]. The X basis

gates is transformed into almost-Gaussian “DRAG” pulses [217, 218, 219]. In the OpenPulse

interface, these translations are stored in the cmd def object, and reported by the hardware.

6.3.2 Motivation for Different Basis Gates

At a high level, our core observation is that existing basis gates sets are too far from actual

hardware primitives at the pulse-level. This leads to missed opportunities for optimization.

Sections 6.4–6.7 will present optimizations resulting from specific gaps between basis gates

and pulse-level hardware primitives. Table 6.2 introduces one such gap that we expand upon

in Section 6.6. Each row in the table is a two-qubit operation. The columns express the
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cost2 of performing the target operation using the given native gate. We computed these

costs using Qiskit’s TwoQubitBasisDecomposer tool, which uses the KAK decomposition

[231] described further in [232].

The CNOT column indicates the number of CNOT gates needed to implement the target

operation. CNOT is the default “textbook” two-qubit gate, so algorithms are usually written

in terms of CNOT. The next group of four columns, Discrete Gates, captures basis gates from

• Fixed-frequency superconducting qubits: 90◦ Cross-Resonance [233, 234, 235], bSWAP

[236], and MAP [237].

• Frequency-tunable superconducting qubits: iSWAP [238] and also CZ [239, 240] which

is omitted because it is equivalent to CNOT.

• Quantum dot spin qubits: iSWAP [241]

• Nuclear spin qubits: iSWAP [242]

All four of these columns have identical costs to the CNOT column. As a result of this parity,

the prevailing sentiment in current quantum compilation software is that these basis gates

are equivalent. Moreover, since quantum algorithms are usually written in terms of CNOTs,

there is not an obvious reason to deviate from these basis gates.

The two rightmost columns, challenge this sentiment. The
√

iSWAP reflects the fact

that quantum hardware allows one to perform “half” of an iSWAP by damping the pulse

shape of a standard iSWAP gate. This Half-gate leads to significant improvements over full

iSWAPs–each row’s cost is halved. The CNOT decomposition and SWAP decomposition are

known [243, 244], but to the best of our knowledge, the ZZ Interaction (ubiquitous operation

for quantum chemistry and optimization algorithms) and Fermionic Simulation (ubiquitous

for quantum chemistry) decompositions are not previously known. They will have immediate

2. Cost here means the number of two-qubit gates needed, since they dominate both error and duration.
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applications on hardware that supports
√

iSWAP such as frequency-tunable superconducting

qubits, quantum dot spin qubits, and nuclear spin qubits.

The rightmost column, bolded because it was our experimental target, reflects the fact that

fixed-frequency superconducting qubits support parametrized Cross-Resonance(θ) via pulse

stretching. Since the native gate is parametrized, we used a different approach to compute the

decomposition costs in its column. Specifically, we used the COBYLA constrained optimizer

[245] in Scipy [246], with the constraint of finding a 99.9+% fidelity decomposition. Subject to

this constraint, our decomposer minimizes the cost of the CR(θ) gates needed to perform the

target operation. Observe that ZZ Interaction is 2x cheaper with a Parametrized CR(θ) gate

than with the standard CR(90◦) gate. The ZZ Interaction is in fact the most common two

qubit operation in near-term algorithms. This optimization is expanded upon in Section 6.6.

Our method is extensible to other systems including trapped ions. Some of the trapped

ion decompositions have already been studied in recent publications [151, 247, 91].

6.3.3 Design of Our Compiler

Our compiler is implemented as a fork of Qiskit. While Qiskit has traditionally been used in

conjunction with IBM superconducting quantum computers, it is a generic framework that

supports any underlying quantum hardware. For example, trapped ion quantum computer

vendors have recently integrated with Qiskit [248], and OpenPulse support was recently

added [249] to the XACC infrastructure for quantum-classical computing [250]. Thus our

framework is general, though we performed our experimental realizations on IBM hardware,

which is the first to implement OpenPulse.

Our compiler maintains the overall structure of Qiskit, which is already designed with

extensibility in mind. As discussed previously, we augment the set of basis gates to better

match pulse-level primitives. To support this augmented basis gate set, we re-write the

decomposition rules from assembly instructions to basis gates and add new translations
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• • Rz(γ) •

Rz(θ)

(a) Input

• • • Rz(γ)

Rz(θ)

(b) CD-pass transposes gates.

• • • Rz(γ)

Rz(θ)

(c) ABGD-pass matches template.

ZZ(θ)
• Rz(γ)

(d) Final

Figure 6.3: Depiction of our compiler passes for commutativity detection (CD) and augmented
basis gate detection (ABGD).

(to cmd def) that convert augmented basis gates to pulse schedules. We expand on the

augmented basis gates in Sections 6.4–6.7.

To take advantage of the augmented basis gates, we added Qiskit transpiler passes, which

convert input quantum assembly into optimized quantum assembly in the spirit of LLVM

Transform passes. Our transpiler passes automatically optimize user code by using the

augmented basis gates. One transpiler pass traverses a DAG-representation of the quantum

assembly and pattern matches for templates that represent sequences of gates (such as the

ZZ Interaction) that reduce to an augmented basis gate. We also include a commutativity

detection transpiler pass that performs this pattern matching even when obfuscated by false

dependencies in intermediate gates; this pass is inspired by techniques described in [96].

Figure 6.3 shows an example of these two passes. Through these two passes, we maintain the

“write-once target-all” behavior of user-written code, which can remain hardware agnostic.

6.3.4 Compiler Design Tradeoffs

Another compiler design we considered is Quantum Optimal Control [251, 252], which

translates directly from the programming language (specifically from the quantum circuit’s
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overall unitary matrix) down to highly optimized pulses. QOC has been explored extensively

in physics communities and more recently from an architectural perspective [96, 18].

QOC is indeed a promising path for future machines, and in fact our original aim was to

perform pulse-shaping via optimal control. However, our experience revealed experimental

roadblocks. In particular, QOC requires a perfect characterization of the quantum computer’s

underlying physics, i.e. the device Hamiltonian. Pulses designed from an inaccurate Hamilto-

nian accumulate substantial error. Moreover, to be experimentally realistic, QOC-generated

pulses must be constrained to have bounded amplitudes and smooth derivatives. These

constraints diminish both the potential advantage of QOC and the reliable convergence of

QOC algorithms [97, 18]. In addition, optimizing the pulse shape requires evaluation of

partial derivatives of a fidelity metric—a task that is easy analytically or in simulation, but

extremely difficult with noisy experimental measurements.

Our experience is mirrored by other work on QOC—the vast majority of prior work

has been performed via simulation. The few experimental realizations of QOC generally

focus on state preparation (easier than unitary synthesis), e.g. [205, 206]. Moreover, these

experiments impose significant Hamiltonian tomography or calibration overhead, for example

staggered field calibration [206]. Experimental realizations on superconducting qubits, whose

Hamiltonians drift over time [212, 213], are even more rare. In fact, the state-of-art for

pulse shaping on superconducting qubits has eschewed standard QOC entirely [253], focusing

instead on a closed-loop feedback for tuning pulses. We refer to [253] for further details

on the experimental barriers (and opportunities) to QOC, particularly in superconducting

qubits. We also note that recent progress in robust control [254] is promising and could

justify QOC-based approaches in future work. The work in [254] is already compatible with

OpenPulse.

Our approach to pulse-shaping arose from these limitations. In particular, our techniques

are bootstrapped from the standard basis gate calibrations, which are already performed daily.
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By decomposing and then re-scaling the pre-calibrated pulses, we generate an augmented basis

gate set, without ever requiring the device Hamiltonian. We emphasize that our technique

can be applied on current cloud-accessible quantum devices, as documented in our Github

repository [210]. Moreover, while QOC generally leads to convoluted pulses, our pulses are

very simple. This simplicity minimizes the possibility of control errors and also leads to

greater interpretability.

6.4 Optimization 1: Direct Rotations

We now present the first of our four optimizations enabled by pulse control. The gist of this

optimization is that pulse-level control enables us to perform single-qubit gates (qubit state

rotations on the Bloch sphere) via a direct trajectory, saving time and potentially reducing

errors.

It can be shown that any arbitrary single-qubit gate, termed U3 in Qiskit, can be

implemented by tuning up a single pulse that rotates the qubit state by 90 degrees around

the X axis (the Rx(90◦) pulse). This is doable due to the following identity, and due to the

fact that rotations about the Z axis can be implemented in software at no cost (implemented

by a compiler transformation on all future gates involving the target qubit) [93].

U3(θ, φ, λ) = Rz(φ+ 90◦)Rx(90◦)Rz(θ + 180◦)Rx(90◦)Rz(λ) (6.2)

The above is extremely attractive from a hardware calibration perspective, since it suggests

that fine tuning one pulse is enough to achieve high-fidelity single-qubit gates. In fact, this is

how these gates are implemented on IBM quantum computers. We now present experimental

evidence that access to one more calibrated gate, as well as pulse control, gives the compiler

the ability to optimize single-qubit gates further.
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6.4.1 Direct X gates

We first consider the simple X operation, which acts as a NOT by flipping |0〉 and |1〉

quantum states. X gates are ubiquitous in algorithms. Our approach relies on access to

the X = Rx(180◦) rotation, which is already pre-calibrated, as discussed in Section 6.2.3.

In our experiments we had access to such a pulse, but one could also be calibrated by the

user through OpenPulse. We emphasize that this extra pulse is not strictly necessary for

universal computation. However, we use it to demonstrate the power of an overcomplete

basis for optimizations.

Qiskit’s standard compilation flow decomposes an X operation into a U3 instruction

per equation 6.2. At the pulse level, the U3 instruction is implemented by two consecutive

Rx(90◦) pulses. Together these complete an X gate (i.e. 180◦ rotation).

However, the indirection of implementing X with two Rx(90◦) pulses becomes unnecessary

in the presence of a pre-calibrated Rx(180◦) gate. The procedure for calibrating such a gate

is very similar to the Rx(90◦), and its direct calibration has benefits beyond our discussion

here [214, 215, 216, 255]. On IBM hardware enabled with OpenPulse, this pulse is readily

available in the backend pulse library.

In our compiler, we exploit this simple observation by augmenting the basis gates with

a DirectX gate, which is linked to the Rx(180◦) pulse that is already calibrated on the

quantum computer. This gate is twice as fast as Qiskit’s standard X gate, and has 2x lower

error, as measured through quantum state tomography experiments.

Figure 6.4 depicts a comparison of pulse schedules used to achieve the X gate in 71.1 ns

in the standard framework vs. 35.6 ns in our optimization. It also illustrates why these two

pulse schedules are logically equivalent: they have the same (absolute) area-under-curve. To

a first approximation—which we will refine below—this area determines how much rotation

is applied.

We next consider more sophisticated direct rotation gates, for general angles.
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Figure 6.4: Pulse schedules for the X gate via standard compilation (top) versus via direct
compilation via our approach (bottom). Time is in units of dt = 0.22 ns. Thus, the DirectX

gate takes 35.6 ns, twice as fast as the 71.1 ns standard X gate.

6.4.2 Direct partial rotation about the X axis

Since OpenPulse gives us access to arbitrary pulse envelopes, it is natural to ask whether

“partial” rotations about the X axis (Rx(θ) gates) can be realized more efficiently without

invoking two discrete Rx(90◦) pulses (as done by the standard Qiskit decomposition in

Equation 6.2). Our compiler does this by downscaling the amplitude of the pre-calibrated

Rx(180◦) pulse by θ
180◦ to achieve the Rx(θ) rotation. We represent this as the DirectRx(θ)

augmented basis gate in our compiler. Since we rely on the pre-calibrated Rx(180◦) this

technique imposes no calibration overhead.

The results of our experiments with the new DirectRx(θ) are summarized in Figure 6.5.

Bypassing the gate abstraction, our technique speeds up all Rx rotations by 2x and has 16%

lower error on average. We discuss the source of the error reduction in Section 6.8.3.

In the next subsection, we will note how DirectRx(θ) generalizes to arbitrary-axis

rotations for free.
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Figure 6.5: Illustration of gate-level vs. pulse-level rotation about the X axis. (top) Trajectory
of an Rx(67◦) rotation, and the pulses that implement them. Standard gate-based compilation
(red) includes two applications of the pre-calibrated Rx(90◦) pulse (interleaved with Rz (frame
changes) which are zero-cost and in software). Optimized pulse-based compilation takes the
shortest path from origin to destination, with only one scaled pulse. (bottom) Fidelity of
Rx(θ) rotations. Each data point is obtained using quantum state tomography experiments
to rotate around the X axis by θ. Standard gate-compiled rotations (red) show more jitter
from ideal, and 16% higher error on average, compared to optimized pulse-compiled rotations
(green).
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6.4.3 Optimizing generic rotations

Equipped with an augmented gate set that implements arbitrary X axis rotations at reduced

cost, we now show that all single-qubit gates can be achieved with one pulse. Recall that

in standard Qiskit compilation, general single qubit gates are implemented via two Rx(90◦)

pulses and three no-cost Rz frame changes. However, we can write the same gate as [211]:

U3(θ, φ, λ) = Rz(φ+ 180◦)Rx(θ)Rz(λ− 180◦) (6.3)

Recall that Rz rotations are implemented by frame changes with perfect fidelity and 0

duration. Thus, this implies that any single-qubit gate can be performed using direct Rx(θ)

rotations, sandwiched by free Rz gates.

6.4.4 Compiler implications

In the preceding subsection, we showed how an augmented gate set can be beneficial. However,

the compiler now has more than the minimum set of pulses to work with to realize a quantum

gate. In order to decide which pulses to use when, we need a deeper understanding and

characterization of the errors incurred by Rx(θ) gates for arbitrary θ. We can use this system

characterization to inform the compiler about the best pulse substitution strategy.

We performed pulse simulations and real experiments to gain insight into the errors. Our

simulations were done using Qiskit’s OpenPulse simulator. We enhanced the simulator to

find the Hamiltonian terms for IBM’s Almaden system, through a reverse-engineering process

and fitting the results to the device-reported pulse library.

Taking Almaden’s pre-calibrated direct X pulse (DRAG pulse), we scaled the area-

under-curve down by a factor of 0
40 ,

1
40 ,

2
40 , ..., 1. To first order, these should perform Rx(θ)

for θ = 0◦, 4.5◦, 9◦, ..., 180◦. For each angle, we performed three simulations and three

experiments to measure the X, Y , and Z components of the final quantum state, which
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(a) Sweeping 41 angles from θ = 0◦ in
green to θ = 180◦ in orange.

(b) XZ trajectory slightly de-
viates from X = 0.

Figure 6.6: Simulated results for Direct Rx(θ). The inset magnifies the X component.

allows us to plot on the Bloch sphere.

Figure 6.6 depicts the results of simulation. Plotting only the X-Z plane, we see that

deviations from the Prime Meridian are quite small, but do have a sinusoidal pattern (at

exactly 0◦, 90◦, and 180◦, there is no dephasing). These simulation results are in agreement

with an independent simulation from [230].

The experimental results are presented in Figure 6.7. We note two deviations from

simulation: (1) the X components are still sinusoidal but now translated to the right and

(2) the magnitude of the X-component deviations are larger. However, we can treat these

characterization results with an empirical attitude—now that we know the dephasing at each

θ value point, we can perform an Rx(θ) gate by applying a scaled-down X pulse, and then

correcting the phase error in accordance with the data in Figure 6.7.
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Figure 6.7: Experimental results for Direct Rx(θ) on IBM’s Almaden system, based on
3× 41× 1000 = 123k shots. This empirical characterization of dephasing from the Meridian
can be used to make the gate better at each θ.

6.5 Optimization 2: Cross-Gate Pulse Cancellation

The gist of this optimization is that standard basis gates are not atomic3, despite conveying

this perception. By augmenting basis gates with the true atomic primitives, new gate

cancellation opportunities emerge that lead to 24% speedups for common operations.

6.5.1 Theory

Generally, two-qubit basis gates are not atomic. For example, in Qiskit, the CNOT basis

gate is implemented at the pulse level as a combination of single qubit gates, plus invocations

of the hardware primitive Cross-Resonance pulse:

• = X
CR(−45◦)

X
CR(45◦)

Rx(90◦)

3. We use atomic in the common-usage sense of something that cannot be decomposed into something
else more fundamental. This should not be confused with technical meanings of atomicity in computing.
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Notice in particular, that even the invocation of the hardware primitive Cross-Resonance

pulse is not a clean atomic unit, but is decomposed into two pulses separated by an X gate.

This “echoed” Cross-Resonance pulse design is necessary to perform a CR(90◦) gate (which

is the generator of CNOT) with high fidelity [256].

This analysis reveals there are opportunities for gate cancellation on either side of the

CNOT4. In fact, such sequences are common. To enable these cancellations, we augment the

basis gate set with the hardware primitive CR(±45◦) basis gates, which are free from pre-

calibrated CNOTs. We replace the assembly instruction for CNOT into this decomposition

and invoke Qiskit’s optimizer to perform gate cancellations.

6.5.2 Application

To demonstrate our technique, we benchmarked using a common operation: the open-

Controlled-NOT. The open-CNOT has the “opposite” behavior as a CNOT: it flips the target

if the control is |0〉 and does nothing if the control is |1〉. Its implementation via the CNOT

basis gate is simple: first an X on the control, then a standard CNOT, and then another X

to restore the control.

However, by decomposing the CNOT into our augmented basis gates, the first X on the

control cancels with the “internal” X in the decomposition of CNOT. Figure 6.8 depicts the

pulse schedules for the open CNOT under standard compilation (top) and via our compilation

(bottom). Notice that two X’s in the red box cancel out, leading to a 24% reduction in

runtime.

We tested the open-CNOT pulse schedules experimentally. To isolate the effect of cross-

gate pulse cancellation, we performed the direct X gate from the previous section in both

variants. The resulting data indicates a modest increase in success probability from 87.1(9)%

4. The circuit decomposition clearly depicts gate cancellation opportunities on the left side of the CNOT
with the X and Rx(90◦) gates; alternatively, the top X can be shifted rightward by commutation identities
to create cancellation opportunities on the right side
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Figure 6.8: Pulse schedules for the open-CNOT by standard compilation (top) and our
optimized compilation (bottom). Our compiler cancels out the X rotation gates in the red
box and combines the two Rx(−90◦) pulses in the green box into a single Rx(180◦) = X
pulse. This reduces the total duration by 24% from 1984 dt to 1504 dt.
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to 87.3(9)%, measured over 16k shots (hence the Bernoulli standard deviation of 0.09%). We

emphasize that the open-CNOT is just one of many typical quantum operations that have Rx

rotations next to two-qubit basis gates. Our compiler takes advantage of all such cancellation

opportunities, which are otherwise invisible at the granularity of standard, non-atomic basis

gates.

6.6 Optimization 3: Two Qubit Optimizations

The gist of this optimization is that standard basis gates lead to inefficient decompositions of

important two-qubit operations. Instead, we can use pulse-level hardware primitives as new

basis gates that lead to operations with 60% lower error.

6.6.1 Theory

Recall from Table 6.2 that two-qubit operations can be achieved by using a “half” or

parametrized basis gate set. For example, data movement (SWAP) is 2x more costly on

superconducting qubits with an iSWAP basis gate than on qubits with a
√

iSWAP basis gate.

Here, we study basis gate decompositions using the parametrized Cross-Resonance pulse

CR(θ), which is the pulse-level hardware primitive on IBM devices. However, we again

emphasize that our compiler techniques immediately generalize to any other basis gate

decompositions.

As discussed in Section 6.5, neither CR(θ) nor even CR(90◦) are exposed as standard

basis gates. Our compiler first extracts the pulse for the CR(90◦) gate from the cmd def

pulse schedule for the CNOT basis gate. Then, to implement CR(θ) for arbitrary θ, we

horizontally stretch the CR(90◦), guided by knowledge of IBM’s specific “active cancellation

echo” implementation of the Cross-Resonance pulse [255, 257].

Figure 6.9 shows our experimental results, which closely track with the ideal curve. Given

the successful implementation of CR(θ) at the pulse level, we added it as a new basis gate.
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Figure 6.9: Tomography on the target qubit in Cross-Resonance(θ) pulse. Results from both
experiment and simulation agree with ideal results. 41× 3× 2× 1000 = 246k shots.
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Figure 6.10: Experimental results for state fidelity, measured for the ZZ Interaction by
standard compilation vs. our optimized compilation. These results reflect 21× 2× 2000 =
84k shots. Standard and optimized have fidelities of 98.4% and 99.0% respectively. Thus, our
compiler achieves an average 60% reduction in error for the ZZ Interaction.

6.6.2 Application

As indicated by the last row of Table 6.2, the “ZZ Interaction” two-qubit operation can

be implemented using a single CR(θ) gate. By contrast, the “textbook” implementation

using standard basis gates requires two CNOTs. The CR(θ) decomposition is depicted below.

While this decomposition is fairly simple in hindsight, we discovered it computationally using

the optimization procedure mentioned in Section 6.3.2.

• •
Rz(θ)

=
CRθ

H H

To experimentally verify our ZZ Interaction technique, we implemented it using both the

standard compiler (i.e. CNOT, Rz(θ), CNOT) and our optimized compiler (H, CR(θ), H) for

θ spanning from 0◦ to 90◦ in 4.5◦ increments. As shown in Figure 6.10, our compiler achieves

better results, with a 60% average reduction in error (state infidelity).

As we will see in Section 6.8’s Benchmark Results, the ZZ Interaction is the most frequent

two-qubit operation in near-term algorithms. Thus, this optimization is the dominant source

of improvements in full benchmarks. Before continuing, we re-iterate that our compiler passes

(as discussed in Section 6.3.3) automatically identify ZZ Interactions in user-code, even when
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obfuscated by false data dependencies. Therefore, programmers may continue to write code

using “textbook” CNOT decompositions and do not need to reason about device physics.

6.7 Optimization 4: Qudit Operations

The gist of this optimization is that access to quantum hardware at the pulse level enables us

to control energy states outside the qubit subspace. In particular, we can instead control our

information carriers as d-level qudits. We experimentally demonstrate this idea, by cycling a

base-3 counter using a single qutrit, a task that would be impossible with a single qubit. The

counter achieves high fidelity, suggesting practical near-term applications.

6.7.1 Theory

Many quantum systems used to realize a qubit have other energy levels present, which can be

used to construct quantum gates [258, 259, 72] or, as we demonstrate in this section, to realize

d-level qudits. Substantial prior work observed an “information” compression advantage from

using 3-level qutrits or higher level qudits [28], which has been further applied to specific

algorithms such as Grover search [41, 260, 43, 44] and Shor factoring [45]. More recent

work [17] has even demonstrated exponential gains from using qutrits to implement common

operations like the Generalized Toffoli.

However, across nearly all quantum hardware and associated software, standard basis

gates are only written to address the qubit subspace of hardware. This is the case in part

because the local oscillator described in Section 6.3.1 is set to oscillate at the energy gap

between the |0〉 and |1〉 energy states, f01. Since higher level states are separated by different

energy gaps, under normal operation, gates can only address this qubit subspace.

However, we can circumvent this limitation by carefully designing our pulse schedule. For

example, suppose we want to address the |1〉 to |2〉 transition subspace, whose energy gap

we denote as f12 = f01 + α. Per Equation 6.1, applying a dj(t) = e−iαt pulse yields a total
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output of eif12t. Thus, by designing a frequency-shifting pulse schedule, we can change the

effective frequency of the local oscillator and target subspaces beyond the |0〉 to |1〉 regime.

6.7.2 Application

By transitioning to these higher energy levels one at a time we can realize a base-d “counter”.

Not only is this a good benchmark for qudit control, it has potential application in both

the near-term era of quantum computing and beyond. In the near-term, parity checks are

commonplace [261] (though most parity checks are for even/odd) and a counter (modulo d)

serves this exact purpose. Qutrit measurement also enables error mitigation by detecting

accidental leakages outside the qubit subspace [262]. Beyond the near-term era, function

evaluation oracles are ubiquitous and can be sped up via a counter. For example, recent work

demonstrated that just a single qudit, acting as parity check, can implement an oracle-based

quantum algorithm [263].

Here we demonstrate the ability to implement a counter via microwave control of a

superconducting qubit, using two transitions previously inaccessible by standard basis gates.

Specifically, we target the f12 and f02/2 transitions (bottom right panel of Figure 6.11) which

act on the |1〉 to |2〉 subspace and the |0〉 to |2〉 subspace respectively. The required drive

strength and duration for these different transitions are dictated by the inherent coupling

between each of the levels of interest, which is determined by the physics of the device. In

the case of the two photon f02/2 transition, the coupling between the |0〉 and |2〉 states

is suppressed and thereby requires larger drive powers than those needed for an X gate

between |0〉 → |1〉 transitions, with single photon powers around pone ≈ 0.109a.u. and two

photon powers of ptwo ≈ 0.44a.u., each 35ns in duration. The f12 frequency can be measured

either by applying an X gate on the |0〉 → |1〉 transition and subsequently performing qubit

spectroscopy, or by driving a two photon f02/2 transition and using the prior knowledge of

f01 to determine f12. Once the transition frequencies are identified, we calibrate the proper
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Figure 6.11: (Left Panel) IQ Plot of readout resonator for different quantum states, and
the specific cycle we follow. (Top Right) Percentage of shots found in the ground state as a
function of the number of cycles. (Bottom Right) Different transition frequencies for the first
three energy levels of a superconducting qubit with 2πf01 ∼ 5GHz and α ∼-300MHz and a
two photon transition. These results span 150k experimental shots on IBM Almaden.

amplitude and duration of the pulses to fully switch the qubit to the desired final state.

To gauge the fidelity of our counter, we start off by training a linear discriminator to

identify the qutrit state upon readout. In the case of this work, we train a sklearn [264]

Linear Discriminant Analysis classifier with the calibrated qutrit |0〉 , |1〉 , |2〉 states and

corresponding resonator IQ values (left panel of Figure 6.11). Once these calibrations are

made, we measure the percentage of shots that have the qutrit in the |0〉 state at the end of

the cycle. Due to imperfections in microwave control, our results deviate from the ideal of

1.0 as the number of cycles increase, making this an ideal testbed for further research such as

improved microwave control [265, 266] and optimal readout parameters [267]. Nonetheless,

the results indicate remarkably high fidelity—we can drive 60 cycles or 180 hops, before

“dropout” exceeds 40%. This appears promising for counting or parity check applications.
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6.8 Results and Discussion

6.8.1 Benchmarks

We applied our compiler towards full quantum algorithms. Before proceeding, we note two

thematic differences between our treatment of experimental benchmarks and that done in

recent architectural work.

First, we focus exclusively on near-term algorithms. Some recent work [268, 212, 269, 213,

6] demonstrated impressive compiler optimizations for algorithms like Bernstein-Vazirani

[270], Hidden-Shift [271], Adders, and Quantum Fourier Transform [272]. However, we

emphasize that these algorithms are not representative of near-term algorithms, which are

generally based on a Hamiltonian simulation kernel that quantum computers can naturally

compute efficiently. Hamiltonian simulation, and thus near-term algorithms broadly, are

dominated by the ZZ Interaction optimized in Section 6.6. We specifically evaluated three

types of near-term algorithms: (1) Variational Quantum Eigensolver (VQE) [84], which

addresses minimum-eigenvalue problems such as molecular ground state estimation; (2)

Quantum Approximate Optimization Algorithm (QAOA) [85], which approximates solutions

to NP-Hard combinatorial optimization problems; and (3) Hamiltonian Dynamics, which

models molecular dynamics and was recently adapted for near-term applications [273, 274].

Second, we use Hellinger error/distance (or its complement, Hellinger fidelity) as our

top-level metric. Intuitively, Hellinger error captures the distance between two probability

distributions: two identical distributions have the minimum distance of 0 and two completely

antipodal distributions have the maximum distance of 1. Often, it is appealing to use

Probability of Success (i.e. of finding the MAXCUT) as the top-level metric for algorithms

like QAOA-MAXCUT [275, 276]. However, QAOA is not intended to find the MAXCUT

with 100% successful probability (otherwise it would solve NP-hard problems in polynomial

time), so a QAOA experiment with 100% “Probability of Success” would actually reflect
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Figure 6.12: Reduction in error (Hellinger distance) for benchmarks, due to our optimizations.
These results reflect 6× 2× 8000 = 96k shots on IBM Almaden.

high error. Instead, QAOA is intended to compute a distribution of measurement outcomes,

within which bitstrings with large cuts will have boosted probabilities. This motivates our

use of Hellinger error, and we urge subsequent experimental work to also evaluate near-term

algorithms on the basis of probability-distribution distances.

6.8.2 Results

Figure 6.12 shows the reduction in error due to our optimizations. The H2 and LiH VQE

benchmarks replicate recent experimental work, [277] and [151] respectively. Both experiments

are based on the Unitary Coupled Cluster ansatz [114]. The QAOA benchmarks compute

MAXCUT on an N-qubit line graph. The Hamiltonian dynamics simulation benchmarks

both simulate 6 Trotter steps. The methane and water Hamiltonians were generated with

OpenFermion [143], taking advantage of orbital reductions to reduce the problems to two

qubits.

For all six benchmarks, our optimized programs run with much lower error (Hellinger
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distance/infidelity) between the actual and target outcome distributions. The average error

reduction factor is 1.55x and the largest benchmark, 5 Qubit QAOA, has a 2.32x reduction in

error from 33.7% to 14.5%. The majority of our error reduction stems from our optimization

of the ZZ Interaction by augmenting the basis gates with direct access to the Cross-Resonance

pulse. We focus on Hellinger error because it is accepted in the quantum community as an

(in)fidelity metric and has a “linear” interpretation. The average 1.55x error reduction factor

is comparable to a year worth of hardware progress; of course, our method is achievable now

and is performed in software. Similar work for QAOA was also recently demonstrated on

Rigetti’s hardware, using a parametrized ZX interaction [278].

In addition to the six qubit benchmarks, we also ran the qutrit incrementer in Section 6.7

and demonstrated 60 cycles, i.e. 180 increment operations, before “dropout” exceeds 40%.

This benchmark is unique, because it has no standard qubit comparison—a single qubit

cannot model a base-3 counter. This high-fidelity qutrit control confirms that pulse-backed

basis gates offer a promising path towards qudit-based optimizations.

6.8.3 Source of Fidelity Improvements

The fidelity improvements presented here have three sources:

1. Shorter pulses. Our compiler’s optimized pulses are shorter: 2x shorter for the single

qubit rotations in Optimization 1, 24% shorter for open-CNOTs due to Optimization

2, and ∼2x shorter for ZZ interactions due to Optimization 3. These lower operation

latencies are advantageous because qubits have less time to decohere.

2. Less calibration error susceptibility. DirectRx(θ) only applies one pre-calibrated

(and then amplitude-downscaled) pulse. By contrast, the standard decomposition

applies two pre-calibrated pulses, squaring the impact of calibration imperfections.

3. Smaller pulse amplitudes. Our pulse shaping techniques either vertically downscale
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amplitudes (Optimization 1) or horizontally stretch pulses (Optimization 3). As

such, our pulse amplitudes are smaller than or equal to those generated by standard

compilation. This is beneficial because smaller pulse amplitudes have smaller spectral

components, reducing leakage to undesired frequency sidebands—see Figure 14 in [230]

for details.

Our experience indicates that all three of these sources have meaningful contribution

to the fidelity improvements. To further understand our fidelity improvements and reduce

the impact of State Preparation and Measurement errors, we performed a Randomized

Benchmarking [279] style experiment. In the experiment, we select K−1 random single-qubit

unitary operations. We execute these K − 1 operations, terminated with 1 final single-qubit

operation that inverts all of the preceding operations. Therefore, under noise-free execution,

the qubit returns to the initial state of |0〉 with 100% probability. However, due to noise,

error accumulates as we increase K from 2 to 25.

Figure 6.13 presents our results, which ran over several hours on IBM’s Armonk device.

The optimized plot results from compiling with Optimization 1: Direct Rotations. However,

to isolate the effect of shorter pulses, we also compiled optimized-slow, which inserts NO-

OP idling into the optimized pulse schedules, to match the duration of the standard pulse

schedules.

Each trajectory was fit to the exponential decay, fK−b, where b is a y-intercept term that

represents SPAM errors independent of K, and f is interpreted as gate fidelity. The resulting

gate fidelities for optimized, optimized-slow, and standard are f = 99.87%, 99.83%, and

99.82%. This implies that shorter pulses (#1) account for 70% of the fidelity improvement,

while less susceptibility to calibration imperfection (#2) and smaller pulse amplitudes (#3)

account for the remaining 30% improvement. The improvement due to shorter pulses matches

theoretical predictions: according to the gate error in coherence limit calculation [76, Eq.

24], the 2x pulse speedup yields a minimum 0.01% fidelity improvement.
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Figure 6.13: Randomized Benchmarking style experiment, fit to exponential decay. For each
K, we randomized 5 sequences of unitary operations. 5× 24× 3× 8k = 2.88M total shots.

6.9 Conclusion

Our results demonstrate that augmenting basis gates with pulse backed hardware primitives,

bootstrapped from existing calibrations, leads to 1.6x error reductions and 2x speedups for

near-term algorithms. Critically, our technique does not rely on knowledge of the system

Hamiltonian, thus bypassing the experimental barriers to quantum optimal control. The

measured fidelity improvements are arguably equivalent to a year’s worth of hardware progress,

but our techniques are available immediately, through software. We hope that our experiences

with OpenPulse will encourage more quantum vendors to expose their hardware to pulse-level

control. To this end, all of our code and notebooks are available on Github [210].
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CHAPTER 7

OPTIMIZATIONS WITH FAN-OUT IN NEAR-TERM

QUANTUM COMPUTERS

7.1 Introduction

Instruction scheduling is a powerful compiler technique in both classical and quantum

computing. In the classical realm, scheduling techniques such as pipelining, Single Instruction

Multiple Data (SIMD), and Out-of-order execution have led to continued gains in processing

power. These scheduling techniques are designed to preserve a program’s logical correctness

by respecting constraints known as hazards.

Just as in the classical setting, quantum computing is also amenable to instruction

scheduling. In fact, due to the short lifetimes of qubits in the NISQ (Noisy Intermediate-Scale

Quantum) era [16], scheduling to reduce latency is critical for successful execution [280, §II.

E.]. The potential of quantum instruction scheduling was recently exemplified by Google’s

Quantum Supremacy result [14], which experimentally demonstrated a task soluble in seconds

on a 53 qubit computer that is argued to likely require days [15] on a supercomputer. At the

core of the Supremacy result is a coupler activation [14] schedule that maximizes simultaneous

resource utilization.

A number of papers [27, 281, 282, 283] in the architecture community have studied quantum

scheduling, inspired by techniques from the classical setting. One principle underlying these

papers is exclusive activation: a qubit can be involved in at most one operation per

timestep [27]. In architectural terms, this is a structural hazard [284]. Under exclusive

activation, schedulers optimize for data parallelism by simultaneously executing instructions

on disjoint qubits. However, there are natural limits to such schedulers, since instructions on

overlapping qubits must be serialized.

Our work begins with a simple but consequential observation: the structural hazard of
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exclusive activation is not actually enforced by most quantum hardware. In fact, it is often

more natural for a quantum processor to simultaneously execute multiple operations on

shared qubits through global interactions. The building block of our work is the fan-out

operation depicted in Figure 7.1. This operation can be understood purely classically. The

four CNOT (Controlled-NOT) gates at the left each comprise a control (•) and a target

(⊕), and the target is flipped iff the control qubit is 1. This operation performs fan-out for

classical input states: when the targets are initialized to 0, the control bit gets copied to the

targets.

While exclusive activation would serialize the four CNOT instructions as depicted on the

left, underlying quantum hardware can naturally perform these interactions simultaneously, as

depicted on the right. This form of Single Instruction Multiple Data (SIMD) parallelism arises

only after discarding structural hazards that don’t manifest in hardware. As we demonstrate

later, the fan-out building block generalizes to efficiently-scheduled circuit synthesis for

the ubiquitous Controlled-U operation. Henceforth in this chapter, fan-out will refer to

simultaneous operation on the right of Figure 7.1.

We begin in Section 7.2 by surveying relevant prior work. The three subsequent sections

capture our core contributions:

• Section 7.3: We generalize the simultaneous fan-out primitive into a circuit syn-

thesis procedure to schedule Controlled-U operations with an asymptotic depth

advantage.

• • • • •

=⇒

Figure 7.1: Device level fan-out allows a NOT to the bottom four targets iff the top control is
on. While exclusive activation induces serialization (left), quantum hardware can implement
fan-out simultaneously (right) in a single step.
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• Section 7.4: We leverage this circuit synthesis procedure to optimize NISQ cir-

cuits (which rely on Controlled-U). We also introduce novel quantum memory

architectures.

• Section 7.5: We perform technology modeling of simultaneous fan-out on trapped

ion qubits.

Section 7.6 presents results for several benchmarks. Section 7.7 proposes an implementa-

tion of fan-out on superconducting qubits and demonstrates experimental proof-of-concept.

Sections 7.8 concludes. To maintain a focus on architectural aspects, we omit details about

benchmarks and hardware physics. For readers without prior quantum computing experience,

we also provide sufficient background in Section 7.9 so that this chapter is self-contained.

Finally, Section 7.10 has further discussions regarding the scalability of the superconducting

fan-out procedure in Section 7.7.

7.2 Prior Work

Our work builds on top of prior work from the (1) computer architecture, (2) computer

science theory, and (3) physics communities. At a high level, the priorities of the work in

each community can be characterized as follows:

1. architects have devised intelligent schedulers/circuit synthesis tools, but they assume a

false structural hazard by overlooking global interactions

2. theorists have devised intelligent circuit constructions assuming global gates, but they

don’t consider NISQ workloads or device-level operation

3. physicists have studied global interactions, but usually in an ad hoc fashion separated

from computation and NISQ workloads

Our work unites insights from all three disciplines to devise a circuit synthesis tool that

leverages global interactions to accelerate NISQ workloads.
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7.2.1 Computer Architecture

Amongst architects, a number of papers [27, 281, 282, 283, 60, 285] have studied instruction

scheduling in quantum computers. These papers all assume some structural hazard against

simultaneous execution of overlapping qubits. [27, 281] provides the most formal description

of this hazard, terming it as the principle of exclusive activation which forbids a qubit from

being involved in more than one operation per timestep. Moreover, hardware-dependent

considerations such as crosstalk [286, 287] further narrow the scope of when operations can

be parallelized. For example, on superconducting hardware, CNOT(a,b); CNOT(c,d); may

be forbidden simultaneously, even though the CNOT gates are disjoint.

In other architectural work such as [282] and [285], the authors provide examples for

obtaining data parallelism on disjoint instructions. However, in both papers, the examples

ultimately incur serialization upon encountering gates on overlapping qubits. As we will

demonstrate in Section 7.3, this serialization is unnecessary.

Finally, [283] describes exclusive activation as a data dependency, since the no-cloning

theorem [288] prevents copying a qubit to participate in multiple instructions simultaneously.

This is indeed a valid perspective. Regardless, we will demonstrate that the underlying

problem is in fact addressable with the fan-out primitive.

7.2.2 Computer Science Theory

Quantum fan-out has also been studied from a complexity theory lens. [289] proved that the

QNC0
f circuit class with unbounded fan-out is powerful for fault-tolerant applications such as

Shor’s factoring algorithm [10]. Other applications of fan-out to arithmetic operations such as

addition, OR, and modulus are considered in [290, 291, 292]. Finally, [293] shows that under

widely-held complexity theory assumptions, fan-out in quantum circuits can increase the

hardness of classical simulability. Our work revisits these theory results with NISQ workloads

and underlying device physics in mind.

176



7.2.3 Physics

The engineering of global interactions on N qubits has been well studied in device physics

communities. A common benchmark for global interactions is the preparation of the GHZ state

[294], a task which is essentially equivalent to fan-out. Experimentally, global interactions

have been used to prepare the GHZ state on a variety of leading qubit technologies including

Trapped Ion [295], Neutral Atom [206], and NMR [296]. Implementation on NV center qubits

has been proposed as well [297]. Notably, superconducting qubits, which are the current

leader in hardware scale, were not previously known to support simultaneous overlapping

interactions. However, in Section 7.7, we experimentally demonstrate simultaneous fan-out

on superconducting qubits.

Global interactions have already been noted by physicists for their application to Hamil-

tonian simulation, an important quantum algorithm. As early as 2005, [298] noted that

global interactions enable constant depth parity measurement, an important building block

for Hamiltonian simulation. Later work [299, 227] further optimized the procedure. Recently

this year, three papers [300, 301, 302] have applied global interactions to building blocks of

longer-term fault tolerant quantum computers. These papers demonstrate that the General-

ized Toffoli operation can be performed in constant time with global interactions, whereas

otherwise linear or log depth is required [17].

Very recent papers have adopted an interdisciplinary approach, combining insights from

physics and architecture. For example, [227]—which inspired our work—describes fan-out

as SIMD parallelism. Also, a recent trapped ion hardware paper [303] describes global

interactions as a form of Multiple Instruction Multiple Data (MIMD) parallelism. Our work

continues this architectural perspective, while also focusing on NISQ circuit optimizations and

further refining the underlying technology models based on recent experimental developments.
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7.3 Controlled-U Synthesis

The basic building block of our work is the simultaneous fan-out operation depicted on the

right side of Figure 7.1. Two important considerations arise in evaluating the applicability

of fan-out. The first is whether the simultaneous implementation via global interactions

truly achieves a linear speedup over serialized CNOTs. As described in Sections 7.5 and 7.7,

experimental results from hardware assert this is indeed the case. The second consideration

is how fidelity is affected by simultaneous fan-out versus serialized CNOTs. Our results in

Sections 7.5 and 7.7 indicate a modest improvement in fidelity from simultaneous fan-out.

We focus on a circuit synthesis procedure that uses fan-out to optimize the Controlled-U

operation, described below. This operation is ubiquitous in NISQ algorithms, and each

application in Section 7.4 is an instance of Controlled-U . As we will describe in this section,

our circuit synthesis procedure yields a Controlled-U implementation that is scheduled to

align CNOT gates into a single fan-out step. This yields asymptotic improvements in circuit

depth.

The controlled-U operation is depicted at the left of Figure 7.2. As in other controlled

operations like CNOT, the U operation should be applied if and only if the top control qubit

is |1〉. However, unlike the single-qubit U in Figure 7.14e, here we consider the case when U

is an operation on multiple qubits. Therefore, U itself has a decomposition into gates, shown

under the blue overlay. Our results are applicable for any decomposition basis, but we focus

on the decomposition into the universal set of single-qubit + CNOT gates, since quantum

algorithms are typically expressed in this form. In the example, U has a width of four qubits

and a depth of two layers. The first layer contains four disjoint single qubit gates, and the

second layer contains two disjoint CNOTs.

Under exclusive activation, implementation of Controlled-U is bottlenecked by the de-

pendence of each controlled gate on the single control qubit. Thus, the parallel two-layer

implementation of U collapses into a serial implementation of Controlled-U as depicted at
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the right of Figure 7.2. The amount of serialization is proportional to the width of U , so that

the effective depth of a Controlled-U operation under serialization is O(Depth × Width).

In many workloads, the width greatly exceeds depth, so this serialization is very harmful.

Figure 7.2: Left: general form of controlled-U . Right: under exclusive activation, adding the
control induces serialization and multiplies the effective Depth by the Width.

It is not immediately obvious how fan-out can help speed up Controlled-U . Whereas

fan-out is a SIMD operation, Controlled-U is a MIMD operation, since the gates in U are

arbitrary. However, we can resolve this difficulty be decomposing gates into a form amenable

to ‘alignment’ of CNOTs into a single fan-out step. This circuit synthesis procedure has two

underlying cases. The first, Shared-Control Single Qubit Gates, supports the simultaneous

execution of multiple Controlled-Ui gates with a shared control qubit. This procedure applies

to the first layer of U in Figure 7.2. The second, Shared-Control Toffoli’s, supports the

simultaneous execution of multiple Controlled-CNOTs with a shared control qubit. These

double-controlled NOTs are referred to as Toffoli’s. The Shared-Control Toffoli’s case applies

to the second layer of U in Figure 7.2.

In practice, arbitrary U ’s will also contain mixed layers that contain both single-qubit

gates and CNOTs. This general case can be handled by unifying the synthesis procedures for

Shared-Control Single Qubit Gates and Shared-Control Toffoli’s.

Table 7.1 compares the time (depth) and space (ancilla qubits) costs of implementing
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Controlled-U . Our work, which uses fan-out, is optimal with O(D) depth (and very small

constants) and 0 ancilla qubits. The status quo approach of serialization incurs O(ND) depth

which is harmful because N >> D in many applications. Past work in [289] and [304] has

proposed alternative approaches for parallelizing circuits using global interactions. In the best

case, where a “basis-change” is cheap and efficiently computable, [289] matches our O(D)

depth. However, it is extremely expensive in space, requiring O(N2) ancilla qubits. Finally,

[304] provides a numerical optimization technique for compiling Controlled-U down to the

minimal possible depth. In this sense, it could achieve the O(D) lower bound. However, the

numerical optimization for compilation has exponential cost—simply defining the optimization

problem involves specifying a 2N × 2N sized matrix. Moreover, the optimization itself is

expensive, and convergence to O(D) depth is not guaranteed.

Depth Ancilla Qubits

Our Work (with fan-out) O(D) 0

Serialization O(ND) 0

[289] (if cheap basis-change) O(D) O(N2)

[304] (Ω(2N ) compile time) O(D)? 0

Table 7.1: Cost of implementing a controlled-U operation in time (depth) and space (ancilla
qubits). U has a depth of D and width of N qubits.

While our procedure achieves the best possible asymptotic space and time costs, it is not

as general as [289] and [304]. Our procedure only addresses the special case of Controlled-U

parallelization, whereas [289] and [304] apply to the parallelization of any commuting gates

or the depth reduction of any unitary, respectively. Nonetheless, our specialization is justified

because the Controlled-U template is ubiquitous in NISQ workloads.

7.3.1 Shared-Control Single Qubit Gates

Here, we consider how to simultaneously execute controlled single-qubit gates with a shared

control, as in the first layer of U in Figure 7.2. This is a form of MIMD parallelism with
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overlapping data, but we only have access to the fan-out SIMD primitive. However, we can

make progress by invoking the following well-known identity [211] for decomposing controlled

single-qubit gates. It shows that for any single-qubit gate U , the Controlled-U operation can

be implemented by using CNOT as the only two-qubit gate. Specifically there exist (trivially

computable) single-qubit gates A, B, C, and an angle θ, such that

•
=

• • Rz(θ)

U C B A

Let us consider applying this identity to a small example: attempting to parallelize

Controlled-U1 and Controlled-U2 targeting two different qubits. The result is shown below,

with colors used for disambiguation.

• • • Rz(θ1) • • Rz(θ2)

U1 = C1 B1 A1

U2 C2 B2 A2

It appears that applying the circuit identity led to minimal improvements—only C2

can slide left to execute simultaneously with controlled-U1. The rest of the blue gates are

unable to parallelize, because they are blocked by an apparent dependency on the Rz(θ1)

gate. However, recalling the commutativity rule in Figure 7.16b, we see that the apparent

dependence of the blue CNOTs on the Rz(θ1) is actually a false dependence. By commuting

the Rz(θ1) gate to the end of the circuit, we attain the final result in Figure 7.3.

We have now demonstrated simultaneous execution of shared-control U1 and U2 on

overlapping data (top+middle and top+bottom qubits respectively), using the fan-out

primitive. This pattern extends ad infinitum to more qubits—the total depth will always

consist of five layers: two fan-out layers and three single-qubit gate layers. For certain

gates, the cost could be reduced even further. For instance, for U = Z, it is known that the
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• • • Rz(θ1 + θ2)

U1 = C1 B1 A1

U2 C2 B2 A2

Figure 7.3: Simultaneous execution of shared-control single qubit gates, using the fan-out
primitive. This decomposition has constant (5 layer) depth, independent of width.

Controlled-Z operation can be implemented with just a single CNOT [211].

7.3.2 Shared-Control Toffoli’s

The second piece needed for optimized Controlled-U synthesis is simultaneous execution of

shared-control Toffoli’s. Here, we seek to simultaneously execute multiple Toffoli (Controlled-

CNOT) gates, where the CNOTs are disjoint but the additional control is shared across

the CNOTs, as in the second layer of U in Figure 7.2. Since Toffoli is a three-qubit

operation, it must first be decomposed into single-qubit gates and CNOTs. The standard [211]

decomposition is shown next. T and T † are shorthand for Rz(
π
8 ) and Rz(

−π
8 ) respectively.

• • • • T •

• = • • T T †

H T † T T † T H

The boxed group with T and T † is one example of data parallelism. This level of

data parallelism is referred to as a coarse-grained schedule in past architectural work [285].

Next, let us consider applying the Toffoli decomposition to a small example: attempting to

simultaneously execute two shared-control Toffoli’s, where the CNOTs are disjoint. This

exact example is also considered in Figure 4 of [285]. The result is shown below, with colors

used again for disambiguation.
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• • • • T • • • • T •

• • • T T †

= H T † T T † T H

• • • T T †

H T † T T † T H

As indicated by the boxed layers, only three gates from the blue Toffoli were able to

parallelize with the execution of the red Toffoli. This level of parallelization, which results in

21 layers of depth, is referred to as fine-grained scheduling in [285]. While it is slightly better

than coarse-grained scheduling, it still linearly serializes the depth. However, we can again

leverage commutativity relationships to proceed further and exploit our fan-out primitive.

Notice that the dependency between the right-most red CNOT and the subsequent blue

CNOT is in fact a false dependency. These two gates commute per the rule in Figure 7.16a

since their targets are different. After transposing the two gates, we encounter a T gate that

commutes with the control of the blue CNOT, per the rule in Figure 7.16b. Repeating such

commutative transpositions, we can push the blue CNOT to the left to align into a single

fan-out. The rest of the blue circuit can be handled similarly, resulting in the final form

presented in Figure 7.4. Since T = Rz(
π
8 ), the T × T gate at the top right is just a single

Rz(
π
4 ) gate.

• • • • T × T •

• • • T T †

= H T † T T † T H

• • • T T †

H T † T T † T H

Figure 7.4: Simultaneous execution of shared-control Toffoli’s using the fan-out primitive.
This decomposition has constant (12 layer) depth, independent of width.

The design in Figure 7.4 extends naturally to more qubits. Regardless of the number

of qubits, the depth of the circuit is always 12 layers. Since the depth of a single Toffoli
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operation is also 12 layers, this means that our shared-control Toffoli’s synthesis is optimal.

For the circuits we will encounter in the following sections, the number of Toffoli’s spans

the entire circuit. Therefore the depth cost of the other approaches is O(N), versus our

12 = O(1) constant depth.

The combination of simultaneous shared-control single qubit gates and Toffoli’s enables

a depth-optimized execution schedule for any Controlled-U . Moreover, the multiplicative

constants for our circuit synthesis are small. Shared-control single qubit gates incur a depth

of just 5 layers, which matches worst case depth. Shared-control Toffoli’s incur no depth

expansion relative to a single Toffoli and are thus optimal. The resulting Controlled-U circuit

synthesis procedure is implemented in controlled u.py. In the following section, we apply

the Controlled-U procedure to optimize several NISQ-important quantum circuits, which are

all fundamentally Controlled-U operations. While our approach is already asymptotically

optimal with low constants, in some cases we can reduce the depth constants even further.

This is exemplified by the SWAP Test, which we discuss next.

7.4 Applications

We now examine how Controlled-U circuit synthesis can be leveraged to optimize NISQ

circuits. We also apply fan-out to develop novel quantum memory architectures. Table 7.2

summarizes the spacetime advantages of our work (using simultaneous fan-out) for the

applications surveyed in this Section.

7.4.1 SWAP Test

One of the most important [308] procedures in quantum computing, especially NISQ machine

learning algorithms, is the calculation of inner products between quantum states. This inner

product reports the overlap or similarity between states. For two qubit registers |A〉 and

|B〉, this overlap is denoted by | 〈A|B〉 |2. For equal states | 〈A|B〉 |2 = 1, and for orthogonal
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Application Spacetime costs

SWAP Test between two k = N−1
2

qubit registers
(0 ancilla for all)

Our work 14 = O(1) depth

Serialized ∼ 14k = O(N) depth

Coarse-grained sched. [289] ∼ 12k = O(N) depth

Fine-grained sched. [289] ∼ 9k = O(N) depth

Hadamard Test; N -qubit circuit; U
has depth D

Our work O(D) depth, 0 ancilla

Other approaches (Table 7.1) O(ND) depth, O(N2) ancilla, or Ω(2N )
compile time

Explicit Memory with n index
qubits and bitwidth W

Our work O(n) depth, 0 ancilla

Bucket-Brigade QRAM [305] O(W2n) depth, 0 ancilla

Parallel QRAM [306] O(Wn) depth, O(2n) ancilla

Implicit Memory with n index
qubits and bitwidth W

(∼ 1 · n ancilla for both)

Our work O(2n) depth

QROM [307] O(W2n) depth

Table 7.2: Summary of space (ancilla qubits) and time (depth) costs for different applications.
Our work leverages the ubiquity of simultaneous fan-out to attain asymptotic advantages.

states | 〈A|B〉 |2 = 0.

The calculation of this overlap is a procedure known as the SWAP Test. The SWAP

Test features heavily in NISQ applications such as quantum kernel classification, which was

introduced in [309] and realized experimentally on IBM’s quantum hardware in [310]. These

quantum kernel methods are noise resilient and amenable to noise mitigation [310]. Further

work [311] has introduced kernels that have strong complexity theory foundations for hardness

of classical simulability. All of these kernel methods require the evaluation of inner product

overlaps. The SWAP Test is also integral to cost function evaluation in NISQ-friendly deep

quantum neural networks [312]. In the near-term (and in fact current-term), experimental
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sequences in quantum sensing [313] are essentially overlap measurements.

The SWAP Test has a very simple form. It is essentially just the case of Controlled-U

with U = SWAP. First, we examine the decomposition of a SWAP between two qubits:

SWAP :=
×

=
•

× • •

This decomposition is equivalent to the triple XOR sequence for in-place SWAPs of classical

bits. For a SWAP Test, we need to perform this U = SWAP sequence not just between two

individual qubits, but between two registers of qubits. Moreover, the SWAP is controlled on

an ancilla qubit. The SWAP Test also requires a Hadamard-sandwich around the controls,

and a measurement of the ancilla. After executing such a circuit, the overlap between the

two registers is related by a simple function to the probability of measuring |0〉 on the ancilla.

Repeated executions can therefore estimate the overlap to a desired precision.

Let us concretely consider the example of a SWAP Test on two two-qubit registers,

|A = A1A0〉 and |B = B1B0〉. To disambiguate the gates, we have used colors and interleaved

the bit ordering of the |A〉 and |B〉 registers below:

|0〉 H • • • H

|A0〉 •
|B0〉 • •
|A1〉 •
|B1〉 • •

Under standard serialization of the shared-control gates, the depth is 63 at best from

fine-grained scheduling. However, our Controlled-U synthesis procedure, specifically the

shared-control Toffoli’s decomposition, is directly applicable here. The resulting SWAP Test

depth is 3× 12 = 36 (ignoring the two Hadamard gates). Moreover, our procedure always

yields a constant depth of 36 layers regardless of the circuit width N , whereas serialized
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approaches scale as O(N).

While this asymptotic advantage is already appealing, we can attain even further cost

reductions to our constants via a circuit identity. It can be shown that the outer two controls

on the ancilla qubit can be removed [314, 211]. After this optimization, the final circuit has

a depth of just 14 layers, regardless of the size of the SWAP Test.

Interference Circuit

Recent work has explored alternatives to the traditional SWAP Test, with the aim of reducing

spacetime costs. The most promising one is the interference circuit [315, 308], which halves

the qubit width requirement. Whereas the traditional SWAP Test requires 2k + 1 qubits

to compute the overlap of two k-qubit registers, the interference circuit only requires k + 1

qubits. In order to use the interference circuit, we must know the sequences of gates UA and

UB that can create |A〉 and |B〉, respectively. In practice, this is indeed the case for useful

applications. The interference circuit has the following simple form shown in Figure 7.5. As

in the traditional SWAP Test, the overlap is a simple function of the probability of measuring

|0〉 on the ancilla.

The open-control (open circle) on UB activates on |0〉 and can therefore be replaced with

an ordinary control surrounded by NOT (⊕) gates. Therefore our Controlled-U is directly

applicable to the interference circuit, and it allows overlap calculation with no asymptotic

depth overhead relative to UA and UB . This is again a linear O(N) speedup via fan-out.

H • H

UA UB...
...

Figure 7.5: The interference circuit computes the overlap between k-qubit states, |A〉 and
|B〉, with just k + 1 qubits.
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H • H

U...
...

Figure 7.6: Circuit for the Hadamard Test.

7.4.2 Hadamard Test

The SWAP Test is a specific case of a more general procedure called the Hadamard Test. The

Hadamard Test has a very simple and familiar form shown in Figure 7.6. This is essentially

just the Controlled-U operation we focused on in Section 7.3. Moreover, the SWAP Test is

just the case where U = SWAP. Selecting other U makes the Hadamard Test give rise to

a wide variety of applications. We list our benchmarked applications in Table 7.3. There

are numerous additional applications of the Hadamard Test, such as training Quantum

Boltzmann Machines [316], gradient evaluation [317, 318, 319, 320], and Jones polynomial

approximation [321].

Application Description

Variational Quantum Linear
Solver [322, 323, 324]

Algorithm for solver large linear systems us-
ing NISQ hardware

Matrix elements of group
representation [325, 326]

Group theory problem; U is essentially the
Quantum Fourier Transform

Entanglement spectroscopy
[327]

Computation of entanglement spectrum of
arbitrary quantum states

Controlled Density Matrix
Exponentiation (DME) [328]

Several appliations, e.g. for private quantum
software [329]

Table 7.3: Applications of the Hadamard Test. Each corresponds to a different choice of
Controlled-U .

188



7.4.3 Quantum Memory Architectures

Next, we investigate the use of fan-out to improve the implementation of quantum memory,

which speeds up or enables many quantum algorithms [330, 331]. The high-level function of

a quantum memory is similar to that of a classical memory: n index bits enumerate over

2n memory cells. Following the notation of [332], we denote the n index bits as the |b〉

register and the 2n memory cells as the |m〉 register. As in the classical case, we expect

that setting the index register to |i〉 should allow us to retrieve the ith memory cell, |mi〉.

However, for a quantum memory, we also require the retrieval to work over superpositions of

index qubits. For example, setting |b〉 to 1√
2
[|000〉+ |111〉] should retrieve the superposition,

1√
2
[|m0〉+ |m7〉].

In this section, we apply the fan-out primitive to both explicit and implicit quantum

memories, which we define below. We demonstrate considerable improvements—exponential

and linear respectively—over prior work, as summarized in Table 7.2. These improvements

are important because the cost of quantum memory is often the principal bottleneck for

realizing practical speedups. While it remains unclear if quantum memory architectures will

be feasible [333, 305, 23, 16] even for future fault-tolerant devices, our proposed improvements

at least justify a re-assessment of the feasibility.

Explicit Quantum Memory

In an explicit quantum memory, the 2n memory cells are each explicitly stored in qubit

registers. In this sense, an explicit quantum memory is akin to a 2n–to–1 multiplexer or data

selector from classical electronics. As discussed, the quantum variant should extend to the

case where select lines are in superposition. Moreover, each of the 2n memory cells is stored

in a qubit register, so each memory cell can itself contain a quantum (superposition) state.

The dominant architecture for this explicit quantum memory is termed Quantum Random

Access Memory. The bucket brigade design of QRAM was introduced in [334, 335] and cast

189



|b0〉 • •
|b1〉 • •
|b2〉 • •
|m0〉 × × × × × × ×
|m1〉 × × × × × ×
|m2〉 × × × ×
|m3〉 × × × ×
|m4〉 × ×
|m5〉 × ×
|m6〉 × ×
|m7〉 × ×

|load/store〉 ×

Figure 7.7: Architecture for an explicit quantum memory with n = 3 index qubits and 2n = 8
memory cells of bitwidth W = 1.

to the quantum circuit model in [305]. This bucket brigade QRAM requires ∼ 2 · 2n qubits

and O(W2n) depth. Later work [306] was able to parallelize execution to achieve O(Wn)

depth, but requires an additional ∼ 6 · 2n ancilla qubits. We now present a novel architecture

for explicit quantum memory that requires only O(n) depth, with 0 ancilla qubits.

Figure 7.7 shows our architecture for n = 3 index qubits. There are 23 = 8 explicit

memory cells, each of single-qubit bitwidth W = 1. At a high level, the circuit performs

a “migration” of the target memory cell into |m0〉. Consider for example |~b = 101〉, which

should access |m5〉. The control on the MSB performs a SWAP between |m7654〉 and |m3210〉,

moving |m5〉 into |m1〉. The control on the middle index does not activate, but the control

on the LSB is activated and SWAPs |m1〉 into the |m0〉 destination. Finally, this qubit

is swapped into the |load/store〉 register. The right half of the circuit reverses the earlier

migrations, restoring the other memory cells to their original locations.

The efficiency of this architecture is enabled by the simultaneous execution of controlled

SWAPs, which in turn is enabled by the fan-out primitive. As a result, the circuit depth is

only O(n). Moreover, while our example shows the W = 1 bitwidth case, it is apparent that

with simultaneous fan-out, W is irrelevant to depth. By contrast, serialization would impose

an additional linearity in W .
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During the preparation of this chapter, another proposal was published for O(n)-depth

and ancilla-free explicit quantum memory [336], which matches our asymptotic costs.

Implicit Quantum Memory

Next we consider implicit quantum memory. In this model, the 2n memory cells represent

classical (non-superposition) data that is known in advance. In such a case, there is no need

to waste qubits to represent the classically-known memory cells. Instead, the memory can be

stored implicitly through the classical control, a memory architecture that has been referred

to as Quantum Read Only Memory [307].

Figure 7.8 shows an example implicit memory storing the first four prime numbers:

{00 → 2, 01 → 3, 10 → 5, 11 → 7}. The resulting circuit has a simple form, enumerating

all 2n indices and associating each index with a corresponding pattern of ⊕ gates. Without

fan-out, implicit memory has O(W2n) depth via the unary iteration optimization in [307].

However, simultaneous fan-out obviates the scaling in W . This is appealing, because for

datasets such as images, the bitwidth (W ) of each record exceeds the number of records.

|b0〉 • •
|b1〉 • •

|~m〉


~m = 2 ~m = 3 ~m = 5 ~m = 7

Figure 7.8: Implicit memory storing the first four prime numbers. The W = 3 bitwidth
memory is implicitly defined through classical control, based on the pattern of ⊕’s. For
anticipated applications, W can be large.

7.5 Technology Modeling: Trapped Ion

In this section, we model the implementation of fan-out on trapped ion quantum computers.

Trapped ions feature long qubit coherence times [337] and gate fidelities exceeding 99.99%
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and 99.9% for single- and two- qubit gates on current hardware [338, 339]. Furthermore,

all N qubits can be simultaneously entangled via a global interaction known as the Global

Mølmer–Sørensen (GMS) gate [340, 341]. Recent work [342, 227] has explicitly demonstrated

how GMS is essentially equivalent to simultaneous fan-out. Moreover, in the past year,

experimental work has merged demonstrating pulse shaping for global interactions [295, 343,

303] to support the use of GMS both for fan-out and for parallel two-qubit gates on disjoint

qubits. Our focus here is on studying differences in speed and fidelity between simultaneous

fan-out versus N − 1 serialized CNOTs. For brevity and to maintain a focus on architectural

themes, we omit many physical implementation details here.

Regarding the potential speedup, [342, 344, 303] assert that simultaneous fan-out via GMS

is indeed linearly faster than serialized CNOTs. To evaluate the fidelity impact, we performed

numerical simulations of fan-out via GMS for N = 2 to N = 8 qubits. We constructed a

realistic error model that accounts for two sources of noise: overrotation and laser dephasing.

Overrotation occurs due to the fact that the angle θ of the Mølmer-Sørensen rotation is

sensitive to motional frequency drifts, and it has higher-order dependence on the motional

states [345, 346, 347]. An overrotation error can be modeled by replacing θ by (1 + ε)θ, where

ε denotes the overrotation rate. Laser dephasing results from fluctuations of the optical path

length [348, 346, 345].

For current trapped ion hardware, we conservatively estimate typical overrotation rates

of 5%. We modeled GMS interaction times of 100 µs [342], contrasted against 80 ms laser

coherence time [345]. To evaluate the sensitivity of our results to these parameters, we also

modeled under three future scenarios: 5x lower overrotation rate, 5x longer laser coherence,

and both improvements. Our simulations were performed using master-equation simulation

in QuTiP [67]. We performed stochastic simulation over 100k runs per scenario. The fidelity

results are shown in Figure 7.10.

Conceptually, overrotation errors affect simultaneous and serial equally. Meanwhile, laser
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dephasing affects serial more adversely, because the laser dephasing effect on the control

qubit accumulates over the additional time required for N − 1 consecutive CNOTs. Although

simultaneous always outperforms serial on our simulations, the exact fidelity advantage is

dependent on the parameter settings. For current technology (•), simultaneous has an almost

1% higher fidelity for N = 8. For the scenario with 5x longer laser coherence (H), simultaneous

has almost no fidelity advantage over serial. For the scenario with 5x lower overrotation (�),

simultaneous again has a nearly 1% fidelity advantage over serial. Also, across all scenarios,

the advantage of simultaneous fan-out increases for larger N , which is encouraging. The

simulation results roughly agree with experimental work. For example [295] observed 93.4%

fidelity inclusive of State Preparation and Measurement (SPAM) errors for a 4-qubit fan-out

executed on hardware over a year ago, and Figure 7.10 suggests SPAM-exclusive fidelity

of 99.3% on current hardware. As cloud access to trapped ion hardware emerges over the

coming year, it will be possible to experimentally validate these simulations.
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Figure 7.9: Depth (lower is better) for SWAP Test, Hadamard Test, and memory architecture
benchmarks. We compare circuits compiled with our Controlled-U circuit synthesis procedure
(which uses simultaneous fan-out) versus circuits that serialize the CNOTs.
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2 3 4 5 6 7 8
N

98.0%

98.5%

99.0%

99.5%

100.0%
Fidelity for N qubit trapped ion fan-out

Simultaneous
Serial
1% overrotation, 400 ms
5% overrotation, 400 ms
1% overrotation, 80 ms
5% overrotation, 80 ms

Figure 7.10: Simulation results for fan-out on trapped ion hardware. Sensitivity analysis
performed under four {overrotation rate, laser coherence time} scenarios. For each scenario,
we simulated fidelity for simultaneous versus serial. Results averaged across 100k stochastic
runs per scenario, executed with 50k CPU-core hours on a large computing cluster.

7.6 Results

7.6.1 Methodology

We evaluated the exact depth reduction for eight applications: SWAP Tests (both traditional

and interference circuit), Hadamard Tests (all four applications in Table 7.3), and memory

architectures (both explicit and implicit). We compiled each benchmark, across a wide range

of circuit widths, using both our fan-out based approach (Simultaneous) and the standard

serialized approach with no fan-out (Serial). The results are plotted in Figure 7.9.

We also evaluated the fidelity advantage of simultaneous fan-out for the five most NISQ-

friendly benchmarks. For each benchmark type, we found the largest circuit instance with

fan-out of at most 8 qubits, matching the largest fan-out we simulated in Figure 7.10. Then,

we estimated fidelity with a coarse metric: for each circuit, we assigned each gate a fidelity

based on the current hardware “5% overrotation, 80 ms laser coherence” simulation in

Figure 7.10. Multiplying together these gate fidelities gives an approximation for the total
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circuit fidelity (i.e. 1 - infidelity). We also performed this multiplication under the “1%

overrotation, 80 ms laser coherence” future scenario with 5x lower overrotation. While these

estimates are less accurate than full density matrix simulation, as we performed in Figure 7.10,

they are informative from an Amdahl’s Law perspective. In particular, single- and two- qubit

gates are equally penalized in the Simultaneous and Serial circuits, so the Simultaneous

circuits can only perform better when there are large fan-out gates.
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Figure 7.11: Infidelity estimates for five benchmarks.

7.6.2 Discussion

As mentioned in Section 7.5, simultaneous fan-out does genuinely give a linear speedup over

serialization. Therefore, the depth reductions in Figure 7.9 translate directly to faster time-

to-solution. For four of the eight benchmarked applications, the underlying U has constant

depth, so our Simultaneous circuit also has constant depth. For the other four benchmarks,

the underlying U has Ω(N) depth, so both Simultaneous and Serial have increasing depth

with N . However, Simultaneous’ scaling is still lower than Serial’s by a linear factor.

Among our benchmarks, Variational Quantum Linear Solver and Controlled Density

Matrix Exponentiation have particularly high fidelity advantage via Simultaneous Fan-out.

Our results also demonstrate the sensitivity to the underlying trapped ion hardware’s error

parameters. For example, VQLS has a 13.9% Serial→Simultaneous infidelity reduction on
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current hardware versus a 20.9% reduction on future hardware with 5x lower overrotation.

On current hardware, fidelity is the primary system bottleneck. As such, the fidelity

improvement of simultaneous fan-out justifies its use in NISQ machines. 7–24% reductions

in infidelity on 8-qubit circuits are equivalent to months of hardware progress, but our

optimization requires no new hardware. As a practical message to hardware providers, we

emphasize that exposing global interactions to software will lead to substantial improvements

in both fidelity and speed for NISQ applications.

7.7 Future Work: Superconducting Qubits

Global interaction can be realized for many technologies, but superconducting qubits—which

are currently the frontrunner in commercial activity—are a notable exception. To the best of

our knowledge, there are no prior implementations of fan-out on superconducting devices. In

this section, we demonstrate that superconducting quantum computers can in fact perform

simultaneous fan-out.

We first examine the implementation of a CNOT with superconducting qubits. The

CNOT is not a natural physical interaction between qubits. Instead, it is performed through

a sequence of more primitive physical interactions between qubits. On Google and Rigetti

superconducting quantum hardware, CNOT can be realized by a sequence of iSWAP in-

teractions, which are similar to ordinary SWAPs. However, this seems incompatible with

simultaneous fan-out, which conceptually requires concurrent reads on the control qubit.

By contrast, iSWAP performs both reads and writes on the control qubit since its state is

swapped with the target.

An alternative two-qubit interaction called Cross-Resonance [233, 234] is better suited.

The Cross-Resonance interaction is used to perform CNOT gates on IBM’s devices. It has

less restrictive hardware requirements than iSWAP, so Cross-Resonance could be performed

on Google and Rigetti hardware as well. Critically, the Cross-Resonance interaction only
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reads the control qubit, so it does not suffer the immediate barrier to fan-out that iSWAP

does.

Although the control qubit state is unaffected during Cross-Resonance, the interaction

requires (somewhat counterintuitively) driving the control qubit with a microwave pulse.

However, by setting this microwave pulse to the frequency of the target qubit, the target

qubit will rotate conditioned on the state of the control qubit. This physical interaction

easily converts to CNOT through a single-qubit postprocessing gate.

Qubit 3, freq. 𝜔!Qubit 2, freq. 𝜔" Qubit 5, freq. 𝜔#

+𝜔" 𝜔#

Figure 7.12: Schematic of fan-out using Cross-Resonance on superconducting qubits. The
control qubit (3) is driven with the sum of waves at the targets’ frequencies, ω2 and ω5.

Figure 7.12 illustrates how we can extend this Cross-Resonance interaction to engineer

fan-out. In this example, qubit 3 is the control and qubits 2 and 5 are the two targets. To

perform the CNOT from 3 to 2 (5), we would drive qubit 3 with microwave at frequency ω2

(ω5). However, if we instead drive qubit 3 with the summation of two sine waves at frequencies

ω2 and ω5, then we effectively perform both CNOTs simultaneously. The resulting pulse

sequence has a linear speedup over serialization, as desired.

We experimentally realized this specific example of fan-out from qubit 3 to qubits 2 and

5 using IBM’s Paris quantum computer. We performed our experiment using OpenPulse

[100, 207, 21], an interface that enables low-level access of quantum computers through

Arbitary Waveform Generators. This level of access is required since we need to drive qubit

3 with an unconventional sum-of-waves pulse. We also use a technique called sideband

modulation, which is needed since the qubit 3 drive is configured to oscillate at ω3 by default.
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Moreover, in practice, high fidelity Cross-Resonance interactions require an echo sequence

[256] and active cancellation pulses on the target qubits [255, 257]. Additionally, we had to

calibrate a phase offset for the sideband to compensate for accumulated phase on the coaxial

cable transitioning from room temperature electronics to the fridge [207, 349].

Figure 7.13 shows our experimental results. We generated the GHZ state,
|000〉+|111〉√

2
, by

performing a NOT gate on qubit 3 and then fanning out its state to qubits 2 and 5. Ideally,

this would result in |000〉 and |111〉 each with 50% probability. With simultaneous fan-out,

we achieved 31% and 29% respectively. Serialization achieved 42% and 36% respectively.

|000> |001> |010> |011> |100> |101> |110> |111>
0%

25%

50%

Pr
ob

ab
ilit

y

GHZ on qubits 2-3-5 (IBM Paris)
Simultaneous
Serial
Ideal

Figure 7.13: OpenPulse results from 8000× 2 repetitions on IBM Q Paris. The ideal output
is 50% |000〉 and 50% |111〉.

While the GHZ state produced with serial fan-out is better than the one produced with

simultaneous fan-out, we emphasize that the simultaneous version ran almost twice as fast.

Most importantly, our experiment affirms that simultaneous fan-out is possible at all on

superconducting qubits. Section 7.10 has further discussion regarding the scalability of

simultaneous fan-out on superconducting qubits.

7.8 Conclusion

At a high level, this work validates the importance of hardware-software codesign. Our

core result is driven from the hardware → software observation that the exclusive activation

structural hazard is not necessary in quantum computing. By exploiting simultaneous fan-out,

we are able to synthesized optimized circuit schedules for Controlled-U , which is important

in NISQ workloads. In the software → hardware direction, our results suggest a number of
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priorities for future hardware development—in particular, the importance of exposing global

interactions. Moreover, our demonstration of simultaneous fan-out in superconducting qubits

they could be brought to parity with trapped ions.

In current systems, our results affirm a linear speedup from fan-out. In the NISQ era,

algorithms will require millions of iterations [17], so quantum execution speedups translate

to direct reductions in time-to-solution. This opportunity is particularly pronounced on

trapped ions, which operate at relatively slow kHz speeds. In addition to the circuit execution

speedup, our simulations show 7–24% infidelity reductions from simultaneous fan-out. This

is validated by our trapped ion simulation with a realistic noise model. Our experimental

results from superconducting qubits are also promising, though our emphasis is on the mere

fact that simultaneous fan-out is possible at all on superconducting qubits.

A number of interesting future directions arise from this work. On the hardware side, we

propose experimental realization of our circuits on larger machines. Also, global interactions

via ‘Rydberg gates’ are natural on neutral atoms [350], which are emerging as another major

qubit technology. Our results will extend naturally to neutral atoms, as well as other qubit

technologies. On the software side, we propose further investigation of compilation in view

of global interactions. [303] suggests that global interactions could in fact give an O(N2)

speedup, whereas we only explore linear speedups in this work. Finding such quadratic

speedups could further accelerate the realization of practical quantum computing.

7.9 Background on Quantum Computing

To keep this chapter self-contained, we provide necessary background on quantum computing

in this Section. To maintain accessibility, we emphasize the circuit model of quantum

computing, rather than its linear algebraic formulation.
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7.9.1 Qubits

A qubit (quantum bit) is defined by two states, denoted |0〉 and |1〉. Just as classical bits

can be implemented by a variety of underlying physical representations like magnetization

in disks or capacitor charge in RAM, qubits can be fabricated from a variety of underlying

quantum technologies. This includes discrete charge levels in superconducting qubits or

motional modes in trapped ion qubits.

The state of a qubit can be written as the linear combination a |0〉+ b |1〉, subject to a

normalization condition, |a|2 + |b|2 = 1. This is richer state space that can be captured by a

classical bit, which is either |0〉 or |1〉. For example, 1√
2
[|0〉 + |1〉] is a superposition qubit

state: the qubit has equal components in |0〉 and |1〉.

The state of a qubit can be changed by a gate. Figure 7.14 depicts the gates we use in

this chapter. Each gate has an input wire(s) and an output wire(s). The first gate is just the

classical NOT gate, which interchanges |0〉 and |1〉. The next gate is the Hadamard gate,

which is an intrinsically quantum gate that creates superposition. For example, applying H

to a |0〉 creates the equal superposition 1√
2
[|0〉+ |1〉]. The Rz(θ) gate is another quantum

gate which applies a phase. Phase is helpfully visualized as a θ displacement in longitude on

a sphere; however, for our purposes its underlying meaning is unimportant. Gates (d) and (e)

act on pairs of qubits (wires). The CNOT is a Controlled-NOT, which applies a NOT to the

bottom qubit, iff the top qubit is |1〉. The top qubit itself is unaffected. The Controlled-U is

simply a generalization, where U represents some single qubit gate that is only activated if

the top qubit is |1〉.

(a) NOT

H

(b) Hadamard

Rz(θ)

(c) Rz rotation

•

(d) CNOT

•
U

(e) Controlled-U

Figure 7.14: Gates used in this chapter.
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While a qubit can carry a rich state space, it snaps to either |0〉 or |1〉 upon measurement.

This process is fundamentally stochastic: the probability of measuring |0〉 is |a|2 and |1〉 is

|b|2, which justifies the normalization condition. For example, under the 1√
2
[|0〉+ |1〉] state,

the probability of measuring |0〉 is ( 1√
2
)2 = 1

2 which is indeed an equal superposition. The

measurement operation is visually denoted as , which terminates a wire.

7.9.2 Quantum circuits

Quantum programs are expressed as quantum circuits which, like Boolean circuits, carry

wires representing qubits through a sequence of gates. An example quantum circuit is shown

below in Figure 7.15. It can be read as a timeline from left to right. As indicated, the width is

the number of qubits the circuit acts on. In addition to data qubits that encode input/output,

quantum circuits often use extra ancilla qubits that store temporary results. The depth is

the length of the critical path. Thus, width and depth respectively capture the space and

time costs of a quantum circuit.

Rz(θ1) •

width
U

•
Rz(θ2) • Rz(θ3)

 ︸ ︷︷ ︸
depth

Figure 7.15: An example quantum circuit with a width of 4 qubits and a depth of 3 layers.

Figure 7.15 exemplifies data parallelism—no qubit is ever idle. Such speedups are especially

important in quantum computing because qubits generally have short coherence windows for

useful computation.
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7.9.3 Commutativity

Every quantum circuit has an underlying program dependency graph that enforces the

execution order of gates. Naively, one can construct a program dependency graph that simply

adds forward dependencies from each quantum gate to subsequent quantum gates in the

circuit-timeline. However, this dependency graph can often be relaxed due to commutativity,

where two quantum gates can be applied in either order.

Many commutativity relationships exist between gates. For our work, we only rely on the

two relationships depicted in Figure 7.16. The left equivalence shows that two Controlled-Ui

gates commute when they have different targets. This is clear because controlled gates leave

the control qubit unchanged, so their order is unimportant. The right equivalence shows that

Rz-type gates commute with controls of controlled gates (such as CNOTs). This relationship

has no classical analogue, but the underlying intuition is that Rz gates don’t affect the |0〉

vs. |1〉 balance of a qubit, so their order relative to a control is unimportant. Both of these

commutativity rules are used in our Controlled-U circuit synthesis procedure in Section 7.3.

• • • •
U1 = U1

U2 U2

(a) Different targets.

Rz(θ) • • Rz(θ)

=

(b) Rz gates commute with controls.

Figure 7.16: Two commutativity rules encountered in this chapter.

7.10 Scalability of Simultaneous Fan-out on Superconducting

Qubits

Section 7.7 presented our experimental realization of simultaneous fan-out on superconducting

qubits with OpenPulse on IBM Q Paris. With simultaneous fan-out, we produced a three
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qubit GHZ state (50% |000〉 and 50% |111〉) with 31% and 29% measurement outcomes for

|000〉 and |111〉 respectively. Serialized fan-out on the same machine achieved better outcomes

of 42% and 36% outcomes, required almost twice the runtime. Although simultaneous fan-

out had lower fidelity, the speedup is encouraging, because superconducting qubits have

short coherence lifetimes, so faster operations lead to significant fidelity improvements [280,

§II. E.]. Moreover, when we consider larger width circuits, faster fan-out on a subset of

qubits can improve the quality of the other qubits which decohere for less time. Finally,

anticipated increases to the sampling rate of Arbitrary Waveform Generators should improve

the fidelity of the simultaneous fan-out operation. Recent papers have also proposed different

techniques that could be used to realize many-body interactions in superconducting systems

[301, 351, 352, 353], but our work is the first experimental proof-of-concept. Our work can

be viewed a way to engineer crosstalk (unwanted interference between neighboring qubits) for

good. However, key questions remaing in scaling up simultaneous fan-out on superconducting

hardware.

An immediate barrier to scaling our procedure to more target qubits is that each control-

target pair must be connected in hardware. On superconducting qubit platforms, connectivity

is typically sparse. For example, on IBM Q Paris’s device topology, the maximum degree

is 3, and most qubits are connected to just one or two neighbors. Scaling the connectivity

will be a challenge. However, we note that fan-out does not require all-to-all connectivity.

Instead, we require a star topology, where a single (control) qubit is connected to every other

qubit. Such star topologies have been realized experimentally with 10 qubits connected to a

single bus [354]. Moreover, star topology is also useful for Hamiltonian simulation circuits

[355], so there are numerous other quantum subroutines that would also benefit.

A second consideration is that summing waves for each target qubit’s frequency (as in

Figure 7.12) will not scale since the maximum amplitude of Arbitrary Waveform Generators

is power-constrained. We propose two possible solutions to this. On frequency tunable
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devices (where ωq for each qubit can be controlled), we can simply tune all target qubits to

a common frequency during fan-out. Then, the control qubit can be driven at this single

common frequency, bypassing the summation of multiple waves. The other solution pertains

to fixed-frequency devices. Here, we propose that rectangular-topology qubits could be

fabricated with frequencies according to a checkerboard pattern. In such an arrangement,

just two colors (frequencies) are needed to ensure no frequency collisions between neighboring

qubits. During fan-out, the control qubit can be driven at the sum of just two frequencies,

averting the scalability issue.

While these proposed solutions are sound in theory, practical realization will be challenging

due to experimental nuances. For example, current qubit fabrication technologies are imprecise

and stochastic [356], so fabricating qubit frequencies in a checkerboard pattern will be difficult.

Thus, more experimental progress will be needed to scale fan-out on superconducting hardware.

These hardware-software codesign considerations are valuable in closing the gap from NISQ

hardware to practical applications. We propose further work to evaluate simultaneous fan-out

with superconducting qubits.
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CHAPTER 8

CONCLUSION

Figure 8.1 summarizes the six papers presented in Chapters 2–7 in terms of the layers of

the stack that they each address. Emphatically, the optimizations cut across these layers,

validating the overarching thesis statement. Under the standard paradigm of a stack with

rigid abstraction barriers between layers, it is not possible to achieve these optimizations.

Application

Compiler

Control

Hardware

Algorithm

Qutrits Partial 
Compilation

Simultaneous 
Measurement O(N3) VQE OpenPulse Quantum 

Fan-out

✅ ✅

✅ ✅ ✅ ✅ ✅ ✅

✅ ✅ ✅ ✅ ✅ ✅

✅ ✅ ✅

✅ ✅ ✅ ✅

Figure 8.1: Each of the six papers presented in this dissertation introduced an optimization
that cuts across layers spanning the quantum stack. The columns correspond to Chapter 2
(Qutrits) through Chapter 7 (Quantum Fan-out).

We propose two thematic areas for exciting future work. First, we call for more research

extending into the application layer. From the six papers presented here, Chapters 4 and

5 addressed this layer and they did so with particularly promising results. We suggest

that additional gains can be realized by tailoring quantum computation to actual end-user

applications. By contrast, most existing work stops at the algorithm layer. In our own ongoing

research, we are studying the application of quantum computation to practical problems in

energy and finance industries, where we expect application layer optimizations to manifest.

In addition, further exploration at the boundary between the application and algorithm

layer could be fruitful. For example, a recently proposed quantum algorithm for Maximum

205



Independent Set (MIS) [357] may have broader implications than MIS by retargeting it to

applications involving constrained optimization.

We also propose further work on the theme of pulse-level error mitigation. While full error

correction is outside the scope of the NISQ era, there are a number of promising approaches

for error mitigation. Error mitigation can suppress effective noise significantly below what

would be expected from isolated gate error rates. Moreover, with the advent of software

interfaces for pulse-level control, new techniques have emerged for analog error mitigation

strategies that have more flexibiltiy than gate-based techniques. These new techniques include

zero-noise extrapolation [358] and echoed error cancellation [255, 230]. These error mitigation

techniques reveal new opportunities for the compiler to perform optimization not only at the

logical noise-unaware level, but also in the physical noise-aware setting.

Although it is still in its early days, the field of quantum computing bears many exciting

possibilities ahead. It is exactly because of these exciting possibilities—in areas like molecular

simulation and logistics optimization—that it is doubly important for us to make quantum

computing a practical reality soon. The optimizations presented in this paper suggest that

we can accelerate the timeline for quantum computing by breaking from the conventional

wisdom of stack design. By instead designing a stack that encourages optimizations that

cross between layers, we can achieve near-term efficiency gains that are otherwise invisible.
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fen J. Glaser. Optimal control of coupled spin dynamics: design of nmr pulse se-
quences by gradient ascent algorithms. Journal of Magnetic Resonance, 172(2):296
– 305, 2005. ISSN 1090-7807. doi: https://doi.org/10.1016/j.jmr.2004.11.004. URL
http://www.sciencedirect.com/science/article/pii/S1090780704003696.

[96] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry
Hoffmann, and Frederic T Chong. Optimized compilation of aggregated instructions
for realistic quantum computers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 1031–1044. ACM, 2019.

[97] Nelson Leung, Mohamed Abdelhafez, Jens Koch, and David Schuster. Speedup for
quantum optimal control from automatic differentiation based on graphics processing
units. Physical Review A, 95(4):042318, 2017.

219



[98] Mohamed Abdelhafez, David I. Schuster, and Jens Koch. Gradient-based optimal control
of open quantum systems using quantum trajectories and automatic differentiation,
2019.

[99] Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,
B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y.
Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wen-
ner, T. C. White, Michael R. Geller, A. N. Cleland, and John M. Marti-
nis. Qubit architecture with high coherence and fast tunable coupling. Phys.
Rev. Lett., 113:220502, Nov 2014. doi: 10.1103/PhysRevLett.113.220502. URL
https://link.aps.org/doi/10.1103/PhysRevLett.113.220502.

[100] David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk, Lev Bishop,
Jiayin Chen, Jerry M. Chow, Antonio D. Córcoles, Daniel Egger, Stefan Filipp, Juan
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manipulation of schrödinger cat states in rydberg atom arrays. Science, 365:570 – 574,
2019.

[207] Thomas Alexander, Naoki Kanazawa, Daniel J Egger, Lauren Capelluto, Christopher J
Wood, Ali Javadi-Abhari, and David McKay. Qiskit pulse: Programming quantum
computers through the cloud with pulses. arXiv preprint arXiv:2004.06755, 2020.

[208] JWO Garmon, RC Pooser, and EF Dumitrescu. Benchmarking noise extrapolation
with openpulse. arXiv preprint arXiv:1909.05219, 2019.

[209] Ibm q experience. https://quantum-computing.ibm.com/, 2019.

228



[210] Optimizations via openpulse repo. github.com/singular-
value/optimizations via openpulse, 2020.

[211] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002.

[212] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Margaret
Martonosi. Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 1015–1029.
ACM, 2019.

[213] Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created equal: a case
for variability-aware policies for nisq-era quantum computers. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 987–999. ACM, 2019.

[214] J Majer, JM Chow, JM Gambetta, Jens Koch, BR Johnson, JA Schreier, L Frunzio,
DI Schuster, Andrew Addison Houck, Andreas Wallraff, et al. Coupling superconducting
qubits via a cavity bus. Nature, 449(7161):443, 2007.

[215] YM Galperin, DV Shantsev, J Bergli, and BL Altshuler. Rabi oscillations of a qubit
coupled to a two-level system. EPL (Europhysics Letters), 71(1):21, 2005.

[216] S Ashhab, JR Johansson, and Franco Nori. Rabi oscillations in a qubit coupled to a
quantum two-level system. New Journal of Physics, 8(6):103, 2006.

[217] Felix Motzoi, Jay M Gambetta, Patrick Rebentrost, and Frank K Wilhelm. Simple
pulses for elimination of leakage in weakly nonlinear qubits. Physical review letters, 103
(11):110501, 2009.

[218] Jay M Gambetta, F Motzoi, ST Merkel, and Frank K Wilhelm. Analytic control
methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Physical
Review A, 83(1):012308, 2011.

[219] Felix Motzoi and Frank K Wilhelm. Improving frequency selection of driven pulses
using derivative-based transition suppression. Physical Review A, 88(6):062318, 2013.

[220] Barbara Jones and Maria Vyushkova. Quantum computers flip the script on spin chem-
istry. https://www.ibm.com/blogs/research/2020/02/quantum-spin-chemistry/,
2020.

[221] Filip B Maciejewski, Zoltán Zimborás, and Micha l Oszmaniec. Mitigation of readout
noise in near-term quantum devices by classical post-processing based on detector
tomography. arXiv preprint arXiv:1907.08518, 2019.

229



[222] Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei. Detector tomography
on ibm 5-qubit quantum computers and mitigation of imperfect measurement. arXiv
preprint arXiv:1904.11935, 2019.

[223] Abraham Asfaw, Thomas Alexander, Paul Nation, and Jay
Gambetta. Get to the heart of real quantum hardware.
https://www.ibm.com/blogs/research/2019/12/qiskit-openpulse/, 2019.
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