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“Arguing that you don’t care about the right to privacy because you have nothing to hide is no

different than saying you don’t care about free speech because you have nothing to say.”
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ABSTRACT

Users data are stored and utilized in the cloud for various purposes. How to best utilize these data

while at the same time preserving the privacy of their owners is a challenging problem. In this

dissertation, we focus on three important cloud applications, and propose solutions to enhance the

privacy-utility tradeoffs of the existing ones.

The first application is the federated SQL processing, where multiple mutually-untrusted data

owners hold valuable data of their own, and want to execute joint SQL queries on these data

without leaking information about individual records in their own shares. The second one is the

cloud data collection and analysis, where services collect their users data, with proper privacy

guarantees, and want to enable expressive and accurate analysis on the collected data. The last one

is the end-to-end encrypted data retrieval, where a single data owner outsources her end-to-end

encrypted data to the cloud, and, later, wants to retrieve some of them that are most relevant to the

keyword queries requests.

After comprehensive literature review of the existing solutions, we realize that the privacy-

utility tradeoffs of state of the art can be substantially improved. For federated SQL processing,

existing solutions leverage trusted hardware for efficient and secure computations in the cloud,

while subsequent work demonstrate the devastating side-channel vulnerability of these solutions.

We mitigate such vulnerability to improve the existing solutions. For data collection and analysis,

existing solutions do not support joint analysis across data collected by separate services, and the

supported analytics is limited, i.e., counting frequency of certain value. We propose new mecha-

nisms and estimation algorithms to achieve better utility on the collected data. For end-to-end en-

crypted data retrieval, existing solutions are vulnerable to the powerful yet practical file-injection

attacks, and we propose new constructions that can defend against such attacks, with practical

performance.

We thoroughly analyze the privacy and utility of the proposed solutions, when necessary. We

also implement prototypes for all the solutions, and conduct extensive evaluations to show the
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CHAPTER 1

INTRODUCTION

Cloud users have their data uploaded, intentionally or not, to the cloud everyday when they enjoy

the various services backed in the cloud. For instance, when you go shopping on Amazon, every

single action that you take, including searching, browsing and purchasing, is tracked by the app or

webpage, and the tracked information gets pushed to the cloud server to drive the model there so

that it can accurately predict your next shopping needs. In this case, hundreds of millions of users,

like you, have their personal data, transparently, collected to and processed in the cloud, and the

goal of such data collection and processing is to improve the user experience. On the other hand,

users of cloud storage services, such as Dropbox, choose to upload their document data to the

cloud server so that they can access their data anywhere reliably. In this case, uploading personal

data to the cloud is an inherent part of the service.

Whether to improve or provide the services, collecting and processing users’ data in the cloud

turns out necessary to drive today’s cloud business model. This does not mean that the service

providers should collect whatever information they can from their users, and store and compute on

the collected users’ data without care. Such toxic privacy practice would doom the services, instead

of helping them, because not only the privacy-related government agencies, such as the Federal

Trade Commission, would seriously punish it, but the users themselves , with more awareness of

the risk of data breaches, would also choose to avoid these services. Hence, once users agree with

the service’s privacy policy, and grant their data permissions, the service providers should only

collect the granted data to drive their data model, and try their best to protect data collected from

each individual user, either at rest or during computations.

Providing services based on users’ data, while at the same time protecting the data from pow-

erful adversaries, turns out very challenging. In practice, the powerful adversaries could observe,

or even manipulate with, the the executions on the users’ data in the cloud, and examples of such

adversaries could obtain the capabilities by exploiting the vulnerabilities in the cloud infrastruc-
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ture, or simply via insider threat of the service. Such adversaries can easily break the privacy if

data collected by the services are stored or computed in plaintext. Even with stronger protection

that obfuscates the data throughout the lifetime in the cloud, the adversaries might be able to glean

information about the data from the execution side channels, such as the time, the input/output

sizes and how the execution accesses data. To fully prevent the adversaries from learning anything

about the users, the users should upload nothing that is computationally dependent on their per-

sonal information, e.g., not uploading anything, or via semantically-secure encryption using secret

keys only known to the users themselves. This basically makes the collected data useless, which

might not be acceptable to certain services, and leads to service termination to the users.

In this thesis, we focus on the problem of how to enable useful computations on users data

in the cloud, while guaranteeing strong privacy to each individual user. And we focus on three

important cloud applications.

Federated SQL processing. The first application is the federated SQL processing. The motivation

for such application is that separate parties, each with their own tables of users’ data, need to

assemble their data in the same cloud, and answer SQL queries on these tables. For instance, a

COVID-19 testing center, with records of tested cases, a flight company, with records of passengers

flight information, and a census bureau, with records of citizens’ demographic information, want

to answer the join query: how many people living in Chicago and tested positive for COVID-19

flew from China to US in January 2020?. The privacy requirement for this application is that the

adveraries should not learn anything about individual record in each table. And the utility objective

is to answer the SQL queries accurately and efficiently.

It is possible to achieve privacy-preserving federated SQL processing using cryptographic tech-

niques [124, 128], but the resulting systems tend to have a high overhead and can only perform a

very limited set of operations. An alternative approach [122, 139, 178] is to rely on trusted exe-

cution environments (TEEs), such as Intel’s SGX. With this approach, the data remains encrypted

even in memory and is only accessible within a trusted enclave within the CPU. As long as the
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CPU itself is not compromised, this approach can offer strong protections, even if the adversary

has compromised the operating system on the machines that hold the data.

However, even though trusted hardware can prevent an adversary from observing the data it-

self, the adversary can still hope to learn facts about the data via various side channel attacks [27,

95,121,169]. Existing work [11,12,121,122,178] on mitigating side channel vulnerabilities suffer

from two critical limitations: (1) none of them addresses the various powerful side channel attacks

simultaneously, and, therefore, the performance cost of doing to is unclear; and (2) for certain side

channel, e.g., execution time, existing solution introduces prohibitive performance overhead. In

Chapter 3, we address all of these limitations with the proposed system Hermetic [166, 167]. Her-

metic mitigates the four major digital side channels – timing, memory access patterns, instruction

traces, and output sizes – a challenging design problem in itself, while achieving performance that

is as good or better than systems with weaker privacy guarantees.

Cloud data collection and analysis. The second application is motivated by the needs that sen-

sitive data, or attributes, about users’ profiles and activities be collected by enterprises and ex-

changed between different services in one organization to help make informed data-driven deci-

sions. For instance, Google deploys collector on Chrome web browser to collect real-time activi-

ties of their users and their client-side software, and statistics, as simple as how frequently certain

software features are used, derived from the collected data is a key part of an effective, reliable

operation of online services by Cloud service and software platform operators.

In the absence of the central trusted party, directly collecting users’ sensitive data to the cloud

will likely be detrimental to the end-users’ privacy. Thus, the local differential privacy model

(LDP) [47] is adopted. Each user has her attribute values locally perturbed by a randomized al-

gorithm with LDP guaranteed, i.e., the likelihood of any specific output of the algorithm varies

little with input; each user can then have the perturbed values leave her device, without the need

to trust the data collector. Analytical queries can be answered approximately upon a collection of

LDP perturbed values. Apple [5], Google [54], and Microsoft [43] deploy LDP solutions in their
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applications on users’ device to estimate statistics about user data, e.g., histograms and means.

In Chapter 4, we investigate how to collect and analyze multi-dimensional data under LDP

in a more general setting: each user’s attributes are collected by multiple independent services,

with LDP guaranteed; and data tuples from the same user collected across different services can

be joined on, e.g., user id or device id which is typically known to the service providers. Two

natural but open questions are: what privacy guarantee can be provided on the joined tuples for

each user, and what analytics can be done on the jointly collected (and independently perturbed)

multi-dimensional data. Our main contribution [165, 168] is to extend the setting and query class

supported by existing LDP mechanisms from single-service frequency queries to the more complex

ones, including aggregations on sensitive attributes and multi-service joint aggregation; no existing

LDP mechanisms can handle our target setting and query class with formal privacy and utility

guarantees.

End-to-end encrypted data retrieval. The third application is the end-to-end encrypted search

for cloud storage services. Having users directly uploading their personal data in plaintext to their

services, like Dropbox, Google Drive and iCloud do, exposes users sensitive data to the powerful

adversaries inside and outside the services. On the other hand, end-to-end encryption protects data

stored at these services, but deploying it poses both usability and security challenges. Off-the-shelf

file encryption disables server-side data processing, including features for efficiently navigating

data at the request of the client. And even with well-designed special-purpose encryption, some

aspects of the stored data and user behavior will go unprotected.

The problem of implementing practical text search for encrypted data was first treated by Song,

Wagner, and Perrig [142], who described several approaches to solutions. Subsequently a primitive

known as dynamic searchable symmetric encryption (DSSE) was developed over the course of an

expansive literature (c.f., [23–25, 30, 32, 40–42, 56, 86, 88, 94, 110, 143, 171]). But DSSE doesn’t

provide features matching typical plaintext search systems, and more fundamentally, all existing

approaches are vulnerable to attacks [22,29,61,64,79,116,130,152,162,176] that recover plaintext
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information from encrypted data, by abusing their specified leakages.

In Chapter 5, we initiate a detailed investigation of the simple, folklore approach to end-to-

end encrypted search: simply encrypt a standard search index, storing it remotely and fetching it

to perform searches. We first introduce what we call size-locked indexes. These are specialized

indexes whose representation as a bit string has length that is a fixed function of information

we allow to leak, i.e., the total number of documents indexed and the total number of postings

handled. By coupling our size-locked index with standard authenticated encryption, we are able

to build an encrypted index system that works with stateless clients and provides better search

functionality (full BM25-ranked search) than prior approaches, while resisting both leakage abuse

and injection attacks. Furthermore, we propose two orthogonal approaches to partitioning our

size-locked indexes to reduce the end-to-end search cost. We formally analyze the security of our

constructions, and evaluate their performance using real-world datasets and settings.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Privacy-preserving Cloud Analytics

Privacy-preserving analytics denotes a wide variety of computations on data with enhanced privacy

guarantees. In particular, other than the public information on the computations, e.g., circuits and

parameters, as well as the computation output, no other information about each individual input

data should be learned by those who execute the computations and obtain the output.

In this section, we introduce background of privacy-preserving analytics in the cloud, including

the set of queries that we want to support, as well as the settings under which the data are collected

and processed.

2.1.1 Analytical Queries

In this thesis, we focus on the following types of analytical queries:

• Select SELECT F(A) FROM T WHERE C, which returns the function F on attribute A for all rows

in table T that satisfy the condition C;

• Join SELECT F(A) FROM T1 JOIN . . . JOIN Tk ON UID WHERE C, which returns the function F

on attribute A for rows in the table, from joining rows in tables T1, . . . , Tk on the join key UID ,

that satisfy the condition C;

• Groupby SELECT F(A) FROM T WHERE C GROUP BY B, which returns the function F on attribute

A for rows in each group of attributeB, i.e., each unique value of attributeB denoting one group,

in table T that satisfy the condition C;

• Project SELECTA1 . . . Ak FROM T , which returns all the rows in table T , only with the attributes

A1, . . . , Ak;

6



Sensitive
data

Query

Result

Pamela

Peter

Paul

Alice

Trusted	hardware	(e.g.,	SGX)

Figure 2.1: Example scenario. Analyst Alice queries sensitive data that is distributed across mul-
tiple machines, which are potentially owned by multiple participants. An adversary has complete
control over some of the nodes, except the CPU.

• Rename SELECT A AS B FROM T , which returns attribute value of A, renamed as B, for all rows

in table T ;

• Union SELECT ∗ FROM T1 UNION (ALL) SELECT ∗ FROM T2, which combines the rows from the

two SELET clauses into a single table. Duplicate rows are removed unless ALL is used;

• Orderby SELECT ∗ FROM T ORDER BY B, which returns all rows in table T , ordered by their

values of attribute B.

This set of SQL queries is expressive, and can support all benchmark queries in the Big Data

Benchmark [8] for SparkSQL.

2.1.2 Federated SQL Processing

In federated SQL processing, as depicted in Figure 2.1, there is a group of participants, who each

own a sensitive data set, as well as a set of nodes on which the sensitive data is stored. An analyst

can submit SQL queries that potentially involve data from multiple nodes, which we call federated

SQL queries. We assume that the queries themselves are not sensitive – only their answers and

the input datasets are – and that each node contains a trusted execution environment (TEE) that
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supports secure enclaves and attestation, e.g., Intel’s SGX. Federated SQL processing is a gener-

alization of some earlier work [139, 178], which assumes only one participant that outsources one

set of tables to a set of nodes, e.g., in the cloud.

Threat model. We assume that some of the nodes are controlled by an adversary – for instance,

a malicious participant or a third party who has compromised the nodes. The adversary has full

physical access to the nodes under her control, except the CPU; she can run arbitrary software,

make arbitrary modifications to the OS, and read or modify any data that is stored on these nodes;

she can probe the memory bus between CPU and the memory to get the memory traces. This

threat model inherently addresses all previous user-space side channel attacks [66, 67, 126, 170].

We explicitly acknowledge that the analyst herself could be the adversary, so even the queries could

be maliciously crafted to extract sensitive data from a participant.

Central Differential Privacy (CDP).

CDP [50] is a rigorous notion about individual’s privacy in the setting where there is a trusted data

curator, who gathers data from individual users, processes the data in a way that satisfies DP, and

then publishes the results. Intuitively, a query result is differentially private if a small change to

the input only has a statistically negligible effect on the output distribution.

More formally, let T be the set of possible input tables. We say that two tables T1, T2 ∈ T

are neighboring if they differ in at most one element. A randomized query processing algorithm

Q with range R is (ε, δ)-differentially private if, for all possible sets of outputs S ⊆ R and all

neighboring input tables T1 and T2,

Pr [Q(T1) ∈ S] ≤ eε ·Pr [Q(T2) ∈ S] + δ.

That is, with probability at least 1 − δ, any change to an individual element of the input data can

cause at most a small multiplicative difference in the probability of any set of outcomes S. The

parameter ε controls the strength of the privacy guarantee; smaller values result in better privacy,
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but require more random noise to output. For more information on how to choose ε and δ, see,

e.g., [72].

Differential privacy has strong composition theorems; in particular, if two query algorithmsQ1

and Q2 are (ε1, δ1)- and (ε2, δ2)-differentially private, respectively, then the combination Q1 · Q2

is (ε1 + ε2, δ1 + δ2)-differentially private [49, 50]; note that it does not matter what specifically

the queries are asking. Because of this, it is possible to associate each data set with a “privacy

budget” εmax that represents the desired strength of the overall privacy guarantee, and to then keep

answering queries usingQ1, . . . ,Qk as long as
∑
i εi ≤ εmax. The latter is only a lower bound; the

differential privacy literature contains far more sophisticated composition theorems [52, 84, 115,

137], and these can be used to answer far more queries using the same privacy “budget”. However,

to keep things simple, we will explain Hermetic using only simple composition.

Trusted Execution Environment

In this section, we introduce the necessary background on trusted execution environment (TEE),

and discuss its state of the art in privacy-preserving computations.

In principle, privacy-preserving analytics could be achieved with fully homomorphic encryp-

tion [59] or secure multi-party computation [19], but these techniques are still orders of magnitude

too slow to be practical [19, 60]. As a result, many systems use less than fully homomorphic en-

cryption that enables some queries on encrypted data but not others. This often limits the expres-

siveness of the queries they support [124, 125]. In addition, some of these systems [63, 109, 128]

have been shown to leak considerable information [48, 65, 117].

TEE is a technology that guarantees the confidentiality and integrity of data and code loaded

into a special region of processor memory. Intel Software Guard Extensions (SGX) [38] is a set

of instruction codes, built into commodity Intel CPUs, that implement the TEE. Two of its key

components are remote attestation, which is used to prove to the user’s client that it is interacting

with the server setup with the correct environment, e.g., SGX processor, and registered service
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code, and secure enclave, which protects the confidentiality and integrity of code and data inside its

memory region from any other processes, including the OS and hypervisor, on the same machine.

Recent work [11, 13, 122, 139, 178] rely on TEE, e.g., Intel’s SGX, to build privacy-preserving

data analytics in the cloud. With this approach, the data remains encrypted even in memory and

is only accessible within a trusted enclave within the CPU. As long as the CPU itself is not com-

promised, this approach can offer strong protections, even if the adversary has compromised the

operating system on the machines that hold the data. But, as we will discuss in the next section,

these systems are vulnerable to various side channel attacks.

Straw-man Solution

It may appear that the privacy-preserving federated SQL processing could be achieved as follows:

1) each participant leverages secure enclave and remote attestation to protect the confidentiality

and integrity of data and computations on other participants, which is similar to the encrypt mode

in Opaque [178]; 2) participant, Pi, sets a local privacy budget ε0max,i for dataset di, and, for the

t-th query, only query plan with valid εi – that is, εi ≤ εtmax,i, on each dataset di is allowed to

execute, and then ∀i, εt+1
max,i = εtmax,i − εi.

This approach would seem to meet our requirements: differential privacy ensures that a mali-

cious analyst cannot compromise privacy, and the TEE ensures that malicious participants cannot

get access to intermediate results and/or sensitive data from other nodes, even when the system

must send such data to their own nodes as part of the query (e.g., to be joined with some local

data). However, the straw-man solution implicitly assumes that the adversary can learn nothing at

all from the encrypted data or from externally observing the execution in the TEE, which is not

true in practice, due to the side channel vulnerabilties.
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Side Channel Vulnerability

Even though trusted hardware can prevent an adversary from observing the data itself, the adver-

sary can still hope to learn facts about the data by externally observing the execution in the enclave.

In practice, there are several side channels that remain observable. The most devastating ones, first

identified by Tople and Saxena [148], are:

• Timing channel (TC) [95]: The adversary can measure how long the computation in the enclave

takes to infer the execution path, which leaks sensitive information if branches or indirect jumps

depend on the data; and

• Memory channel (MC): The adversary can observe the locations in memory that the enclave

reads or writes (even though the data itself is encrypted!), which leaks sensitive information if

there are memory accesses indexed by the data; and

• Instruction channel (IC): The adversary can see the sequence of instructions that are being

executed, e.g., by probing the branch target buffer [96], to infer the execution path, as in TC; and

• Object size channel (OC): The adversary can see the size of any intermediate results that the

enclave stores or exchanges with other enclaves, and these size measurements could be used to

reconstruct substantial information about the data [121].

In general, the connectivity pattern between the enclaves could be another channel, but in our

setting, this pattern is a function of the (non-sensitive) query and not of the (sensitive) data, so we

do not consider it here.

At first glance, the above channels may not reveal much information, but this intuition is wrong:

prior work has shown that side channels can be wide enough to leak entire cryptographic keys

within a relatively short amount of time [175]. To get truly robust privacy guarantees, it is necessary

to close or at least mitigate these channels.

Side channel mitigation. Vuvuzela [151] and Xiao et al. [163] use differential privacy to ob-

scure message sizes, Flicker [106] and SeCAGE [100] run protected code on locked-down cores,
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CaSE [174] executes sensitive code entirely in the cache, CATalyst [99] uses Intel’s CAT against

cache-based side channels, and TRESOR [114] protect AES encryption key from physical mem-

ory attacks by locking the secret key inside persistent CPU registers. None of these systems would

work in our setting because they either cannot address all the four side channels or cannot support

the large-scale federated data analysis. As we have tried to show, the devil is usually in the details;

thus, building a comprehensive defense against several channels remains challenging.

It is well known that SGX, in particular, does not (and was not intended to [82]) handle

most side channels [38], and recent work has already exploited several of them. These include

side channels due to cache timing [27], BTB [96], and page faults [169]. Raccoon is a com-

piler that rewrites programs to eliminate data-dependent branches [134]. Its techniques inspire

the code modifications that Hermetic uses to mitigate the IC and TC. Another challenge is the

fact that IA-32’s native floating-point instructions have data-dependent timing; Hermetic uses

libfixedtimefixedpoint [10] to replace them. Some solutions aim to detect the chan-

nels [33,34,140] rather than block them, and their effectiveness highly depends on how the adver-

sary attacks, and the adversary in our threat model can easily bypass their detection.

We emphasize again that, after the discovery of the Foreshadow attack [150], current SGX im-

plementations are no longer secure. However, the underlying problem is with the implementation

and not with the design, so Intel should be able to fix it in its next generation of CPUs. Hermetic

assumes a correct implementation of SGX – an assumption it shares with the entire literature on

SGX-based systems.

Oblivious RAMs [62, 112, 144, 145] can eliminate leakage through MC in arbitrary programs,

but they suffer from poor performance in practice [134]. Moreover, ORAMs only hide the ad-

dresses being accessed, not the number of accesses, which could itself leak information [178].

None existing systems can fully mitigate physical side channels, such as power analysis [90]

or electromagnetic emanations [93] because the underlying CPU does not guarantee that its in-

structions are data-oblivious with respect to them. (Intel claims that AES-NI is resilient to digital
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side-channels, but does not mention others [68].) However, these channels are most often exploited

to infer a program’s instruction trace, so, by making the IC of a query data-oblivious, Hermetic

likely reduces these effectiveness of these channels.

Data Oblivious Analytics

M2R [46] and Ohrimenko et al. [121] aim to mitigate the OC in MapReduce. Both systems re-

duce OC leakage, but they use ad hoc methods that still leak information about the most frequent

keys. By contrast, Hermetic’s OC mitigation, based on differential privacy, is more principled.

To address the MC in databases, Arasu et al. [12] introduce a set of data-oblivious algorithms for

relational operators, based on oblivious sort. Ohrimenko et al. [122] extend this set with oblivious

machine learning algorithms. Hermetic enhances these algorithms by making them resistant to IC,

TC, and OC leakage and by speeding them up significantly using an OEE.

Opaque [178] combines TEEs, oblivious relational operators, and a query planner, and in that

it shows substantial performance gains when small data-dependent computations are performed

in oblivious execution environment. The key differences to Hermetic are: 1) Opaque does not

mitigate the IC or TC, and it mitigates the OC by padding up to a public upper bound, which may

be difficult to choose; and 2) by assuming (!) that the 8MB L3 cache of a Xeon X3 is oblivious,

Opaque’s implementation effectively assumes the existence of an OEE, but does not show how to

concretely realize one. Hermetic’s OEE primitive would be one way for Opaque to satisfy this

requirement, and it would also add protections against two additional side channels.

There are systems [7,21,87] that combine TEEs and differential privacy for privacy-preserving

data analysis. Prochlo [21] is focused on side channels during data collection, and could benefit

from our techniques for protection during data analysis. The past year has seen the first work [7,

87] that investigates using differential privacy to compute padding for the OC in a data analytics

system. This work proposes algorithms for several query operators, such as range queries, but its

leaves supporting a more functional subset of SQL that includes joins to future work. It also does

13



not address how to integrate the privacy budget into query planning.

2.1.3 Data Collection and Analytics

The general data collection and analytics, namely crowdsourcing in [54], or telemetry in [43]

consist of n users and K services. Each service collects users’ data t, in the form of tuple(s) of

attributes, with a client-side application. Some service collects exactly one tuple from each user.

Other services may collect multiple tuples (e.g., transactions). We denote the tuples collected by

the i-th service as a relational table Ti. And we denote all the tuples collected from user u as

Tu, and those from u collected by the i-th service as Tui . Thus, ∀u ∈ [n],
⋃K
i=1 T

u
i = Tu, and

∀i ∈ [K],
⋃n
u=1 T

u
i = Ti.

Besides the attributes about the users, we assume that each tuple has a pseudo-random user id

(UID), which is known to the service provider and can serve as the non-sensitive join key. An

analyst can jointly analyze the data across multiple services S ⊆ [K] by joining their tuples, on

the user id, as a fact table ./i∈S Ti.

In this thesis, we focus on answering multi-dimensional analytical (MDA) queries against joins

of tables. Consider a function F that takes one of the form COUNT, SUM, or AVG on an attribute

A. A multi-dimensional analytical query takes the format:

SELECT F(A) FROM Ti1 JOIN . . . JOIN Tiq ON UID WHERE C,

where {Ti1 , . . . , Tiq} are the tables to be joined on UID; C is the predicate on attributes of the

joined fact table, and it can be conjunction of either point constraints for categorical attributes, or

range constraints for ordinal attributes, or their combinations. We focus on conjunctions of con-

straints in this paper. Disjunctions can be handled by combinations of conjunctions, as described

in [158].

Since user id is known to service providers, other attributes may leak sensitive information

about each user. In the next two subsections, we will introduce the classical model of local dif-

ferential privacy, and propose an enhanced version, called user-level local differential privacy (for

14



the setting with multiple services), to protect these sensitive attributes during data collection. In

the rest part of this paper, for the ease of description, we assume that all the attributes in a query

are sensitive. We can extend our techniques for queries with non-sensitive attributes by simply

plugging their true values when evaluating aggregations or predicates as in [158].

Local Differential Privacy

Local differential privacy (LDP) can be used for the setting where each user possesses one value t

from a fixed domain D, and it offers a stronger level of protection, because each user only reports

the noisy data rather than the true data, and even if the central curator is untrusted, the privacy of

each individual participant is guaranteed.

Consider a randomized algorithm R(t) that takes t ∈ D. The formal definition of privacy of

R(t) is defined as follows:

Definition 1 (ε-Local Differential Privacy). A randomized algorithm R over D satisfies ε-local

differential privacy (ε-LDP), where ε ≥ 0, if and only if for any input t 6= t′ ∈ D, we have

∀y ∈R(D) : Pr [R(t) = y] ≤ eε ·Pr
[
R(t′) = y

]
,

whereR(D) denotes the set of all possible outputs ofR.

In the definition, ε is also called the privacy budget. A smaller ε implies stronger privacy

guarantee for the user, as it is harder for the adversary to distinguish between t and t′. Since a user

never reveals t to the service but only reports R(t), the user’s privacy is still protected even if the

service is malicious.

Sequential composability. An important property, sequential composability [108], for LDP bounds

the privacy on t when it is perturbed multiple times. We state the property in Proposition 2.

Proposition 2 (Directly from [108]). SupposeRi satisfies εi-LDP, the algorithmR which releases

the result of eachRi on input t, i.e.,R(t) = 〈Ri(t)〉ki=1, satisfies
∑k
i=1 εi-LDP.
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LDP mechanisms. There have been several LDP frequency oracles [6, 16, 17, 54, 157] proposed.

They rely on techniques like hashing (e.g., [157]) and Hadamard transform (e.g., [6, 16]) for good

utility. LDP mean estimation is another basic task [47, 156]; and we use stochastic rounding [47]

because it is compatible with frequency oracles (FO). FO is also used in other tasks, e.g., finding

heavy hitters [16,28,160], frequent itemset mining [133,159], and marginal release [36,135,177].

Answering range queries. Range counting queries are supported in the centralized setting of

DP via, e.g., hierarchical intervals [71] (one-dim range queries) or via wavelet [164] (multi-

dimensional range queries). [132] optimizes the hierarchical intervals in [71] by choosing a proper

branching factor. McKenna et al. [107] propose a method to collectively optimize errors in high-

dimensional queries of a given workload under the centralized setting of DP. It will be interesting

to design such workload-dependent techniques under LDP.

In both marginal release and range queries, it has been noticed that constrained inference could

boost the accuracy while enforcing the consistency across different marginal tables and intervals

(e.g., [15, 44, 71, 132]). Since it is a post-processing step, all the consistency enforcement tech-

niques in the centralized setting of DP can be potentially used in the LDP setting.

Joint analysis in LDP. Several methods have been proposed to handle the joint analysis in LDP. In

particular, [57] proposed to use EM algorithm. The starting point is to find on that maximizes the

likelihood (possibility) of the observed report. Later, [160] derived formulas to direct evaluate the

joint estimation, which essentially extends the aggregation function to multi-dimensional setting.

Both methods work in the categorical setting. For the ordinal setting [158] proposed a method

based on matrix inversion.

Frequent itemset mining in LDP. Existing work [133, 159] on LDP frequent itemset mining

addresses the problem of identifying the frequent items from n users, each generates a subset

of values from the domain D, with ε-LDP. They share this core technique called padding-and-

sampling, which pads the set of values of each user to a fixed size `, and samples one to perturb

and report. [159] further leverages the privacy amplification from sampling to boost the utility. The
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key difference between our τ -truncation and the padding-and-sampling is that τ -truncation does

not need padding because it enables unbiased estimation over tuples with distinct sampling ratios,

and padding causes biased under-estimation (small `) or amplified error bound (large `).

SQL support in DP. In the centralized model of DP, where there is a trusted party, there are efforts

to support SQL queries, including PINQ [108], wPINQ [131], Flex [81], and PrivateSQL [91].

These systems assume a trusted data engine [92] that maintains users’ exact data, and injects noise

during the (offline or online) analytical process so that query results transferred across the firewall

ensures DP. Different from that, our paper assumes no such trusted party.

2.2 End-to-End Encrypted Search

2.2.1 Information Retrieval

In this section, we review the standard information retrieval (IR) techniques for keyword search.

For a general introduction and literature overview we refer the reader to [103, 179].

Documents, terms, stemming. In this work, a term is an arbitrary byte string. A document is a

multiset of terms; This is commonly called the “bag of words” model. This formalism ignores the

actual contents of the document (e.g., binary data) and only depends on the terms that are output

by a document parser, which we leave implicit for now and make explicit in our experimental

evaluations. We assume all documents have an associated unique 4-byte identifier that is used by

the underlying storage system, as well as a small amount of metadata for user-facing information

(e.g. filename or preview). In our system we allow for 20 bytes of metadata.

The term frequency of a term w in document f, denoted tf(w, f), is the number of times that w

appears in f. In a set of documents D = {f1, f2, . . .}, the document frequency of a term w, denoted

df(w,D), is the number of documents in D that contain w at least once.

Queries and ranking functions. In this paper, a query will be a set of terms. The most popular ap-

proach to ranking assigns a positive real-valued score to every query/document pair, and orders the
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documents based on the scores. Intuitively, a document should receive a higher score if it contains

a term from the query many times, and also terms that are rare in a corpus should be given more

weight. This is accomplished via a formula that depends on term and document frequencies. This

paper uses the industry standard ranking function BM25 [136]. For a query q, set of documents D,

and document f ∈ D, the BM25 score is

BM25(q, f, D) =
∑
w∈q log

( |D|
df(w,D)+1

) tf(w,f)·(k1+1)

tf(w,f)+k1(1−b+b |f|
|f|avg )

,

where |f| (|f|avg) is the (average) document length (where length is simply the size of the multiset);

k1 and b are two tunable parameters, usually chosen in [1.2, 2.0] and as 0.75, respectively. We note

that to compute the BM25 score of a query for a given document, it is sufficient to recover the

document frequencies of the term along with their term frequencies in the document.

Inverted indexes and compression. The standard approach for implementing ranked search is

to maintain an inverted index. These consist of per-term precomputed posting lists. The posting

list for a term w will contain some header information (e.g., the document frequency), and then a

linked list of postings, which are tuples of document identifiers along with extra information for

ranking (e.g., the term frequency):

df(w,D) , (id1, tf(w, f1)), . . . , (idn, tf(w, fn))

where n is the number of documents that w appears within. A search is processed by retrieving

the relevant posting lists (multiple ones in case of multi-keyword queries), computing the BM25

scores, and sorting the results. To improve latency, posting lists are usually stored in descending

order of term frequency or document identifier (the latter improving multi-term searches, while the

former allows for early termination of searches).

In practice, inverted indexes can be large but highly amenable to optimization and compres-

sion (c.f. [103], Chapter 5). Variable byte-length encodings are used for frequencies and other

information. It is often profitable to use delta encodings where one stores the differences between

consecutive document identifiers, rather than the values, since terms tend to cluster in nearby doc-
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uments.

An example: Lucene Lucene [1] is a high-performance, full-featured text search engine library

written in Java. It creates indices on different fields of documents, and, typically, the text body

of the document are treated as TextField that are parsed into terms, which are indexed in the

inverted index, and other information, e.g., name, size and date, are treated as StoredField

that are stored as is in the forward index. Lucene breaks the index into multiple sub-indices called

segments, each of which is a standalone index. Incoming updates are always added to the current

opening segment in memory, and the opening one is committed to disk when closed or reaching

the threshold on size. Lucene provides the flexibility on when to merge the segments into one for

better space and search efficiency, and, depending on the application, the segments can be merged,

e.g., offline; when the number of segments reaches some threshold; or simply after every update.

By default, the inverted index posting contains the document identifier and the term frequency.

Optionally, it can include the positions of terms in the documents, e.g., for phrase and proximity

queries. As for the result ranking, Lucene provides two options, a TF-IDF relevance function and

a BM25 relevance function with default k1 = 1.2 and b = 0.75.

Lucene is also flexible on how a segment is encoded and written to disk. Along with the library,

there are multiple index encoding classes, or codecs, and developers can customize with their own

implementations. For Lucene 7.7.3, the default one is Lucene50, which encodes the inverted

index in separate files for term index, term dictionary and postings, and applies the delta encoding

and variable-byte encoding on numbers, e.g., identifier and term frequency, in the index. The

Lucene50 codec implements the skip list technique with configurable skip levels to enable fast

posting access in a posting list, i.e., logrithmic to the its length, at the cost of extra index space of

the skip pointers. In addition, Lucene50 applies the LZ4 compression on the StoredField in

the forward index, but not the TextField in the inverted index. The simplest codec available in

Lucene is SimpleTextCodec, which is a text-based index encoder that serializes the terms and

postings into one big string, without any optimization.
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2.2.2 Searchable Symmetric Encryption (SSE)

In this section we give our definitions for syntax, correctness, and security for encrypted indexes.

Our definitions hew closely to prior ones on searchable symmetric (going back to Curtmola et

al. [40]), except that we require a stateless client, relax the correctness definition, and change the

search interface to request pages rather than entire lists.

Encrypted index syntax. Our setting requires a search scheme with no persistent client state

beyond a key (e.g., a password). Any other needed persistent state must be stored at the server and

downloaded as needed.

A an encrypted index scheme consists of two algorithms Π = (Search,Update), with associated

sets KeySp, IDSp, MetaSp called the key-space, identifier-space, and metadata-space respectively.

It also comes with an associated page size p (e.g., p = 10). Each protocol is between two parties,

named the client and server, and we assume the server is deterministic. We require that they have

the following syntax:

• Update(K, id, δ) → Cup: takes as input a key K, document identifier id and posting list

(term/term frequency pairs) and outputs an update ciphertext Cup.

• Search(K, q, i,EDB, ~Cup)→ (R,EDB′): takes as input a key K, query q (one or more terms),

a page number i, an encrypted index EDB, and a list of zero or more update ciphertexts ~Cup. It

outputs a new encrypted index EDB′ as well as the plaintext result R, which is an ordered list

of p document identifier, metadata pairs.

We assume inputs fall in their associated spaces, and that algorithms otherwise would abort on

those inputs. In use, then, the output of Update is an encrypted update encoding. The sequence of

ciphertexts taken as input to Search is the encrypted primary index (initially empty) and the out-

standing update ciphertexts. Thus we have externalized from the semantics the storage and fetching

of ciphertexts, which serves to simplify the formalism. We do not strictly define correctness, as we

will instead measure accuracy via well-established scoring methods (see Section 5.7).
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Security games. We use a real/ideal security definition parameterized by a leakage profile. For-

mally, a leakage profile is just a pair of functions Lup and Lse. The first takes as inputs the same

inputs as expected by Update, excepting the secret key K, and outputs the number of postings in

the update. The second takes as input a history hist thus far of the queries to update and outputs

the number of document identifiers n contained in hist and the aggregate number of postings N .

We formalize two games to capture security. Pseudocode descriptions appear in Figure 2.2.

The first game, REALΠ, captures an adversary A that is able to interact with an update oracle UP

and search oracle SRCH on adaptively chosen inputs. The oracles run their respective algorithms

using a secret key K (unknown to the adversary), and the outputs are the values that the server

would see. The adversary outputs a bit, and we let “REALΠ(A)⇒ 1” be the event that the output

bit is one, defined over coins used by the game and A.

The ideal game IDEALLS is parameterized by a leakage profile L = (Lup,Lse) and a simulator

S = (Sup,Sse). In this world the two oracles are instead implemented by a combination of

running the appropriate leakage function and handing the resulting input to the respective simulator

algorithm (which can be randomized). The simulator algorithms share state; this is made explicit

with an input and output bit string st shared by the algorithms. Ultimately again the adversary

outputs a bit, and we let “IDEALLS(A) ⇒ 1” be the event that the output is one, defined over the

coins used by the game including those used by A and S.

Definition 3. Let Π = (Update, Search) be an encrypted index scheme. LetA,L,S be algorithms.

Define the L-advantage of A against Π and S to be

AdvLΠ,S(A) = Pr[REALΠ(A)⇒ 1]− Pr[IDEALLS(A)⇒ 1] .

We take a concrete security approach, meaning we will upper bound adversarial advantage as

an explicit function of the adversaries resources, rather than providing asymptotic definitions of

security. Our results can be translated to an asymptotic treatment in a straightforward way.

This model does not include adversarial manipulation of ciphertexts before returning them to

the client, which is standard to omit in searchable encryption settings. In fact our schemes resist
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REALΠ(A)

K ← KeySp
~Cup ← ε
b← AUP,SRCH

Output b
UP(id, δ)

Cup←$ Update(K, id, δ)
~Cup ← ~Cup ‖ Cup

Return Cup

SRCH(q, i):
(R,EDB)←$ Search(K, q, i,EDB, ~Cup)
~Cup ← ε
Return EDB

IDEALL
S(A)

st← ε
hist← ⊥
b← AUP,SRCH

Output b
UP(id, δ)

hist← hist‖(id, δ)
(st, ~Cup)←$ Sup(st,Lup(id, δ)))

Return ~Cup

SRCH(q, i):
hist← hist‖(q, i)
(st,EDB)←$ Sse(st,Lse(hist))
Return EDB

Figure 2.2: Games used in Definition 3.

many forms of such mauling attacks because we use authenticated encryption — a server could at

best force replays of old ciphertexts or selectively drop updates. Preventing replays is impossible

without client side state.

Related work. The study of efficient keyword search for encrypted data began with work by Song,

Wagner, and Perrig [142] (SWP). They propose schemes for linear search of encrypted files, and

mention that their approach can be applied instead to reverse indices that store a list of document

identifiers for each keyword. Subsequent work by Kamara et al. [40] provided formal, simulation-

based security notions and new constructions that leak less information than SWP’s approaches.

Cash et al. [30, 31] introduced some of the simplest known SSE schemes, by leveraging state on

the client side (beyond the key).

SSE schemes fail to provide all the features to match the search features discussed above.

The schemes mentioned so far only support single keyword searches, but follow-up works have

suggested schemes that support boolean queries [31, 85]. Unfortunately they leak more informa-

tion than needed about plaintext data, which impacts security negatively. Second, traditional SSE

schemes do not support relevance ranking, pagination, or previews. Dynamic SSE [23–25, 30, 32,

40, 41, 56, 86, 88, 94, 110, 110, 142, 143, 171] schemes enable asymptotically efficient updating of

encrypted indices in response to edited, new, or deleted documents, but view searching as an un-
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ordered retrieval problem; Many recent works in fact do not refer to it as searching, but instead

as building an encrypted multimap datastructure. Unfortunately all those schemes require state on

the client side, which needs to be securely exported somehow to the server for lightweight clients.

In addition to mismatching offered and desired functionality, all existing, efficient SSE con-

structions are vulnerable to two classes of attacks. Leakage-abuse attacks (LAAs) [22, 29, 61, 64,

79, 116, 130, 152, 162, 176] exploit information leaked during search to recover information about

searched keywords (which reveals partial information about a file’s plaintext). LAAs arise because

practical SSE schemes reveal result patterns: which (encrypted) files match on which (encrypted)

searches. We emphasize that this is leaked whether or not a user actually (wants to) access a file.

With some side information about the distribution of keywords across documents, an attacker can

infer search terms, which also reveals some plaintext content for matching documents.

LAAs are mountable by what’s often called a passive persistent adversary which observes all

the queries to the service, but does not actively modify data. In contrast, the second class of

attacks, called injection attacks [29], involve an adversary inserting maliciously chosen queries or

files into the encrypted data store. For example, Zhang et al. [176] show an efficient attack that

cleverly injects a small number of large files so that, when subsequent encrypted searches occur, the

attacker immediately infers the searched keyword and, via the results pattern, partial information

about other plaintexts. Blackstone et al. [22] combines document injection with the volumetric

pattern leakage for more robust attacks.

A line of work on forward-private dynamic SSE [24, 25, 56, 88, 143] seeks to partially mitigate

injection attacks by ensuring that past searches cannot be applied to newly added files. But this

doesn’t prevent injection attacks because they still work on all future queries. Applying expensive

primtives, e.g., ORAM [42,146], on the encrypted index can prevent injection attacks based on the

result pattern.

Summary. In summary, we do not currently have systems for searching encrypted documents that

(1) come close to matching the functionality of contemporary plaintext search services; (2) that
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work in the required deployment settings, including lightweight clients; and (3) that resist attacks.
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CHAPTER 3

HERMETIC: PRIVACY-PRESERVING DISTRIBUTED ANALYTICS

WITHOUT (MOST) SIDE CHANNELS
3.1 Introduction

Recently, several systems have been proposed that can provide privacy-preserving distributed an-

alytics [139, 178]. At a high level, these systems offer functionality comparable to a system like

Spark [172]: mutually untrusted data owners can upload large data sets, which are distributed

across a potentially large number of nodes, and they can then submit queries across the uploaded

data, which the system answers using a distributed query plan. However, in contrast to Spark, these

systems also protect the confidentiality of the data. This is attractive, e.g., for cloud computing,

where the data owner may wish to protect it against a potentially curious or compromised cloud

platform.

It is possible to implement privacy-preserving analytics using cryptographic techniques [124,

128], but the resulting systems tend to have a high overhead and can only perform a very limited set

of operations. An alternative approach [122,139,178] is to rely on trusted execution environments

(TEEs), such as Intel’s SGX. With this approach, the data remains encrypted even in memory

and is only accessible within a trusted enclave within the CPU. As long as the CPU itself is not

compromised, this approach can offer strong protections, even if the adversary has compromised

the operating system on the machines that hold the data.

However, even though trusted hardware can prevent an adversary from observing the data itself,

the adversary can still hope to learn facts about the data by monitoring various side channels.

Currently, the most notorious attacks exploiting such channels are the various Meltdown [98],

Spectre [89], and Foreshadow [150] variants, which are due to vulnerabilities in current CPU

designs. These channels are devastating because they affect a huge number of deployed CPUs,

and, in the case of Foreshadow, even compromise the security of the trusted SGX enclave itself!

However, from a scientific perspective, they are actually not the most dangerous ones: now that
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the underlying vulnerabilities are known, they can be fixed in the next generation of CPUs [77]. In

contrast, there are many other side channels – including the execution time of a target program [95],

the sequence of memory accesses from the enclave [169], the number and size of the messages that

are exchanged between the nodes [121], the contents of the cache [27], and the fact that a thread

exits the enclave at a certain location in the code [96, 161] – that are more fundamental and will

stay with us even after Meltdown, Spectre, and Foreshadow have been fixed.

Side channel leakage in privacy-preserving analytics has received considerable attention re-

cently [11, 12, 121, 122, 178], but existing proposals still suffer from two main limitations. First,

they do not attempt to mitigate the most critical side channels simultaneously or to evaluate the

performance impact of doing so. For instance, Opaque [178] explicitly declares timing channels to

be out of scope. Second, the mitigations that they do employ are unsatisfying. The most common

approach is to pad computation time and message size all the way to their worst-case values. But

as we show experimentally, full padding can drive up overhead by several orders of magnitude.

Furthermore, existing attempts to avoid full padding suffer from one of the three problems: i) em-

ploying ad hoc schemes that lack provable privacy guarantees [121]; ii) relying on users to specify

padding bounds a priori, which we believe is unrealistic [178]; and iii) failing to support complex

data analysis due to limited expressiveness [7, 87].

This paper proposes Hermetic, which aims to address all of these limitations. Hermetic miti-

gates the four major digital side channels – timing, memory access patterns, instruction traces, and

output sizes – a challenging design problem in itself, while achieving performance that is as good

or better than systems with weaker privacy guarantees. Moreover, Hermetic combines a method of

padding the execution time and result size of database queries that is substantially more efficient

than full padding and a new privacy-aware query planner to provide principled privacy guarantees

for complex queries, i.e., those with multiple join operations, and not unreasonably burdening the

user.

To achieve these goals, we employ a three-pronged strategy either to optimize the critical com-
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ponents or to fill in the missing parts in previous solutions. The first part is a primitive that can

perform fast, non-oblivious sort securely, by “locking-down” core and carefully transforming the

program to achieve several key properties. This primitive, namely oblivious execution environment

(OEE), protects against digital side channels and yet improves efficiency. Importantly, we also

provide a concrete implementation of an OEE: although related primitives have been discussed

previously (e.g., in [55, 178]), existing work either simply assumes it without details or achieves

weaker security definitions than OEE does (e.g., in [39, 106].

The second element of our approach is a set of oblivious query operators that are faster and

more secure than traditional oblivious operators. In particular, we enable the first secure inner equi-

join that is resilient to the four major side channels, and avoids the prohibitive overheads from full

padding by relaxing the privacy guarantee on output size channel to differential privacy [50]. The

third element is a privacy-aware query planner that generates an efficient query plan that respects

the user’s specification on privacy and performance. Differential privacy introduces a set of privacy

parameters that affect both the overall performance and privacy cost of the query plan to the query

optimization problem, and we solve the problem over the entire privacy parameter space, as defined

by user’s input, while existing solutions have to assume a fixed set of privacy parameters, which

misses huge optimization opportunity.

We have implemented a Hermetic prototype that runs on commodity machines. Since current

SGX hardware is not yet able to fully support the “lockdown” primitive we propose, we have im-

plemented the necessary functionality in a small hypervisor that can be run on today’s equipment.

Our experimental evaluation shows that our approach is indeed several orders of magnitude more

efficient than full padding, which has been the only principled side channel mitigation in analytics

systems against the timing and output side channels. At the same time, we show that Hermetic has

comparable performance to existing SGX-based analytics systems while offering stronger privacy

guarantees.

We note that Hermetic is not a panacea: like all systems that are based on trusted hardware,
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it assumes that the root of trust (in the case of SGX, Intel) is implemented correctly and has not

been compromised. Also, there are physical side channels that even Hermetic cannot plug: for

instance, an adversary could use power analysis [90] or electromagnetic emanations [93], or simply

de-package the CPU and attack it with physical probes [141]. These attacks are more difficult

and expensive to carry out than monitoring digital side channels with software.1 Thus, despite

these caveats, Hermetic brings privacy-preserving distributed analytics closer to practicality. Our

contributions are as follows:

• the design of the Hermetic system (Section 3.2),

• the OEE primitive, which performs fast, non-oblivious computations privately on untrusted host

(Section 3.3),

• enhanced oblivious operators, including a new oblivious join algorithm with DP padding, that

limit four different side channels (Section 3.4),

• a novel privacy-aware query planner (Section 3.5),

• a prototype of Hermetic (Section 3.6), and

• a detailed experimental evaluation (Section 3.7)

3.2 The Hermetic System

In this section, we describe the workflow of federated query processing in Hermetic, and defer the

detailed discussions on each of the key components, as well as the prototype implementation, to

Sections 3.3, 3.4, 3.5, and 3.6

3.2.1 Overview

Hermetic consists of a master node, and several worker nodes. These nodes can switch roles for

data proximity, load balance or policy regulations. Each node runs the trusted hypervisor to support

1. They may also be impossible to eliminate without extensive hardware changes. Yet, as physical side channel
attacks often aim to infer control flow, we speculate that Hermetic’s mitigations of the instruction trace side channel
may help mitigate these physical channels as well.
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OEEs (Section 3.3), and the trusted runtime, inside a TEE, that includes the Hermetic operators

(Section 3.4) and a light-weight plan verifier. The last component of Hermetic is the untrusted

query planner (Section 3.5). The workflow of Hermetic consists of the following steps:

1. Initially, the master node launches the hypervisor and runtime, and the data owners contact the

runtime to setup master encryption keys and upload their data (Section 3.2.2). Data owners

verify the authenticity of both the hypervisor and the runtime via attestation (Section 3.2.3).

2. After initialization, analysts can submit queries to the query planner, which generates a concrete

query plan and forwards it to the runtime (Section 3.2.4).

3. As the planner is outside trusted computing base, the runtime verifies incoming plans to make

sure that all operators are annotated with the appropriate sensitivities and ε’s (Section 3.2.4).

4. If verification passes, the runtime organizes the worker nodes to execute the query plan using

Hermetic’s oblivious operators. (Section 3.2.5).

We describe these steps in greater detail below.

3.2.2 Initialization

Hermetic is initialized after the data owners set up master encryption keys and upload their sensitive

data to the server. Since no party in Hermetic is completely trusted, the master keys are created

inside the trusted runtime, using randomness contributed by the data owners. After that, the keys

are encrypted using a hardware-based key and persisted to secondary storage using, e.g., SGX’s

sealing infrastructure [9].

With the master key in place, data owners send their data, together with the associated privacy

budgets, to the runtime, which encrypts it with the key and stores it to the disk.

3.2.3 Attestation

A prerequisite for uploading sensitive data is that data owners can be convinced that they are

sending the data to a correct instantiation of the Hermetic system. This means that they need to
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make sure that the Hermetic hypervisor is running on the remote machine and that the Hermetic

runtime is running in a TEE. We achieve this level of trust in two stages. First, upon launch, the

Hermetic runtime uses a mechanism such as Intel’s trusted execution technology (TXT) [75] to get

an attestation of the code loaded during the boot process. If the hypervisor is absent from the boot

process, the Hermetic runtime halts. Second, data owners leverage enclave attestation, e.g., Intel

SGX attestation [9], to verify that the correct runtime is running in the TEE.

3.2.4 Query submission and verification

Analysts write their queries in a subset of SQL that supports select, project, join, and

groupby aggregations. Analysts can supply arbitrary predicates, but they cannot run arbitrary

user-defined functions. Analysts submit queries to the query planner, which is outside Hermetic’s

TCB. The planner then prepares a query plan to be executed by the runtime.

As explained in Section 3.5, query plans are annotated with the sensitivity of each relational

operator, as well as with the ε for adding noise to the intermediate results. Since the planner is not

trusted, these parameters have to be verified, so that the enough amount of noise will be added for

the required privacy, before the plan is executed: Hermetic has to check that the sensitivities are

correct by computing them from scratch based on the query plan, and that the total ε annotations

do not exceed the privacy budgets. δ is a system parameter enforced by Hermetic runtime, and it is

not explicitly annotated or verified in the plan (Section 3.4.2). Correctness and efficiency are out

of the scope of Hermetic’s verification.

The untrusted platform could launch a rollback attack [20, 26, 104, 147], in which it tricks the

trusted runtime into leaking too much information by providing it with a stale copy of the privacy

budget. To ensure the freshness of the stored privacy budget, the runtime must have access to a

protected, monotonically-increasing counter. This counter could be implemented using a hardware

counter, such as the one optionally available with SGX [74] – possibly enhanced with techniques

to slow wear-out of the counter [20,147]. Alternatively, it could be implemented with a distributed
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system consisting of mutually-distrusting parties [26, 104].

3.2.5 Query execution

If a plan passes the verification, it is executed by the runtime. Before execution starts, the privacy

budget on each relation is decreased based on the εs in the plan, and the runtime generates the

Laplace noise which determines the number of dummy tuples to pad intermediate results with.

To execute a query plan, the Hermetic runtime sends all the individual operators of the plan to

different Hermetic worker nodes, which in turn use the appropriate operators from Section 3.4 to

perform the computation.

3.3 Oblivious Execution Environments

The first part of Hermetic’s strategy to mitigate side channels is hardware-assisted oblivious exe-

cution, using a primitive we call an oblivious execution environment (OEE).

3.3.1 OEE properties

The goal of oblivious execution is to compute a function out := f(in) while preventing an adver-

sary from learning anything other than f and the sizes |in| of the input and |out| of the output -

even if, as we have assumed, the adversary has access to TC, MC, IC and OC.

To provide a solid foundation for oblivious execution without performing dummy memory

accesses, we introduce a primitive OEE (f,in,out) that, for a small set of predefined functions f , has

the following four properties:

1. Once invoked, OEE runs to completion and cannot be interrupted or interfered with;

2. OEE loads in and out into the cache when it starts, and writes out back to memory when it

terminates, but does not access main memory in between;

3. The execution time, and the sequence of instructions executed, depend only on f , |in|, and

|out|; and
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4. The final state of the CPU depends only on f .

A perfect implementation of this primitive would plug all four side channels in our threat model:

The execution time, the sequence of instructions, and the sizes of the in and out buffers are con-

stants, so no information can leak via the TC, IC, or OC. Also, the only memory accesses that are

visible on the memory bus are the initial and final loads and stores, which access the entire buffers

sequentially, so no information can leak via the MC. Finally, since the adversary cannot interrupt

the algorithm, she can only observe the final state of the CPU upon termination, and that does not

depend on the data.

Note, however, that OEE is allowed to perform data-dependent memory accesses during its

execution. Effectively, OEE is allowed to use a portion of the CPU cache as a private, un-observable

memory for the exclusive use of f . This is what enables Hermetic to provide good performance.

3.3.2 Challenges in building an OEE today

Prior work has recognized the performance benefits of having an un-observable environment for

performing data-dependent functions. Zheng et al. [178] speculate that a future un-observable

memory would allow a system to perform ordinary quick-sort instead of expensive oblivious sort.

Unfortunately, actually realizing an OEE, especially on current hardware, is challenging.

We can achieve property #3 by eliminating data-dependent branches and by padding the ex-

ecution time to an upper bound via busy waiting (Section 3.6.2). We can also disable hardware

features such as hyper-threading that would allow other programs to share the same core, and thus

potentially glean some timing information from the OEE. Properties #2 and #4 can be achieved

through careful implementation (Sections 3.3.3, 3.6.2). Finally, by executing the OEE in a TEE,

e.g., SGX, enclave, we can ensure that the data is always encrypted while in memory.

However, even if we ignore the vulnerabilities from [150], today’s TEE, e.g., SGX, cannot be

used to achieve property #1. By design, SGX allows the OS to interrupt an enclave’s execution at

any time, as well as flush its data from the cache and remove its page table mappings [38]. Indeed,

32



these limitations have already been exploited to learn secret data inside enclaves [27, 96, 169].

Flicker [106] achieves property #1 by suspending the entire machine, except the sensitive program,

using the SKINIT instruction, and we want to achieve property #1 without suspending concurrent

processes.

3.3.3 The Hermetic OEE

Realizing an OEE requires that f in OEE be adapted with deterministic instruction sequences and

constrained memory footprints, e.g., by avoiding recursion. Algorithm 3.1 shows how we achieve

the oblivious instruction trace, in terms of op-codes, for the core merge-sort function. We unify

all the conditional branches, including those depending on the data values and the operation mode,

into one execution path using the cwrite primitive. Hermetic actually optimizes Algorithm 3.1

so that the sorted order is kept in the global oee buffer after merge-sort-ing on the sorting

attributes, and the rest of the attributes are linearly re-ordered following the sorting order, without

the cost of merge-sort.

Furthermore, the CPU core that the OEE is running on must be configured so that no other

processes can interrupt it or interfere with its state. To achieve the latter, Hermetic relies on a thin

layer of hypervisor to configure the underlying hardware for the isolation, as shown in Algorithm

3.2. Before an OEE can execute, the hypervisor (1) completely “locks down” the OEE’s core by

disabling all forms of preemption – including IPIs, IRQs, NMIs, and timers; (2) disables specu-

lation across the OEE boundary to mitigate Spectre-style attacks by setting the appropriate CPU

flags or using serialization instructions [77]; (3) configures Intel’s Cache Allocation Technology

(CAT) [118] to partition the cache between the OEE’s core and the other cores at the hardware

level; (4) prevents the OS from observing the OEE’s internal state by accessing hardware features

such as performance monitoring; (5) flushes legacy data from previous executions in the isolated

cache partition; and (6) when the function completes, restore the hardware configuration, and

flushes the legacy state of the OEE. In Section 3.6.1, we present further details of the hypervisor’s
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design and its use of the CAT.

Second, the program in OEE should be prefixed with sanitization to preload all program in-

structions and memory states into the isolated cache partition, and postfixed with cleansing to

deterministically pad the execution time and flush the cache-lines. In Section 3.6.2, we present

further details of the preloading and time padding. Note that one OEE invocation can process up-

to OEE SIZE tuples, and the total size is bounded by the last-level cache partition. We describe

how to build large-scale operators in Section 3.4.

We view the hypervisor as interim step that makes deploying Hermetic possible today. In terms

of security, the Hermetic hypervisor is equivalent to the security monitor in [39], and they both have

small TCBs that can be formally verified and attested to. Its functionality is constrained enough

that it could be subsumed into future versions of TEE, e.g., SGX. We believe that this paper and

other recent work on the impact of side channels in TEEs demonstrates the importance of adding

OEE functionality to TEEs.

3.4 Oblivious operators

OEEs provide a way to safely execute simple computations, e.g., sorting, on blocks of data, while

mitigating side channels. However, to answer complex queries over larger data, Hermetic needs

higher-level operators, as described next.

Our starting point is the set of so-called oblivious query operators, introduced in prior work [12,

122], whose memory access patterns depend only on their input size, not the specific values.

These include inherently oblivious relational operators, such as project, rename, union and

cartesian-product as well as operators based on oblivious sorting networks (e.g., Batcher’s

odd-even merge-sort [18] — BatcherSort). Oblivious sort is the basis for auxiliary oblivious

operators like group-running-sum, filter, semijoin-aggregation and expand,

which in turn can be combined to form familiar relational such as select, groupby, orderby

and join. In particular, an oblivious inner equi-join could be constructed by first applying
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MergeSort(mode):

1: for len ∈ {20, ..., 2log(end)} do
2: for off ∈ {0, 2 · len, ..., b end2·lenc · 2 · len} do
3: right← MIN(off + 2 · len− 1, end)
4: pos1 ← off; pos2 ← off + len
5: for cur ∈ {0, ..., right− off} do
6: conda ← (pos1 ≤ off + len− 1)
7: condb ← (pos2 ≤ right); condc ← 0
8: cwrite(conda, cur1, pos1, off + len− 1)
9: cwrite(condb, cur2, pos2, right)

10: for f ∈ attrs do
11: cwrite((condc = 0), condc, tb[cur1][f ]− tb[cur2][f ], condc)

12: condd ← ((condc ≤ 0) = ascend)
13: cond1 ← (mode = “PRELOAD”)?(pos1 <= (pos2 − len)) : (conda ·

condd > condb − 1)
14: for f ∈ {0, ..., FIELDS PER RUN} do
15: cwrite(cond1, tb[OEE SIZE + off + cur][f ], tb[cur1][f ], tb[cur2][f ])

16: cwrite(cond1, pos1, pos1 + 1, pos1)
17: cwrite(cond1, pos2, pos2, pos2 + 1)

18: cwrite((mode = “PRELOAD”), l, 0, OEE SIZE)
19: for cur ∈ {0, ..., right− off} do
20: tb[off + cur]← tb[off + l + cur]

cswrite(cond, out, in1, in2):

1: asm volatile("test eax, eax"
2: "cmovnz %2, %0", "cmovz %3, %0"
3: : "=r"(*out) : "a"(cond), "r"(in1), "r"(in2) : "cc",
"memory")

Figure 3.1: OEE MergeSort with data oblivious instruction trace. end, ascend, attrs are
function parameters pre-loaded into global oee buffer, and tb points into the oee buffer
for storing tuple input and output. OEE SIZE indicates the maximum number of tuples that one
OEE invocation could process.

semijoin-aggregation [12] on the two input relations to derive the join degree, namely the

number of matches for a tuple from the other relation, then expand-ing the two relations based on

join degree following equally-interleaved expansion [122], obliviously sorting the expanded rela-

tions ordered by join attributes and expansion id, and, finally, stitch-ing them together to get the
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OEESort(R, attr, order):

1: Disable preemption/interrupts
2: Set speculative execution boundary
3: Configure CAT for last-level cache isolation
4: Disable PMC read
5: Flush the entire cache partition
6: Load attr, order into global oee-buffer
7: for every FIELDS PER RUN attributes ∈ R do
8: Load the attributes ofR to oee-buffer
9: Linear scan over oee-buffer . cache data

10: MergeSort (mode = “PRELOAD”) . cache code
11: MergeSort (mode = “REAL”)
12: Copy sorted attributes from oee-buffer toR
13: Pad the execution time
14: Flush cache & restore H/W configurations

Figure 3.2: OEE isolation.

result. Note that , before Hermetic, there is no existing system that supports data-oblivious inner

equi-join for federated data analysis. See Appendix A.1.1 for more details about these operators.

3.4.1 Extending oblivious operators

Existing oblivious query operators are vulnerable to TC and IC. We eliminate the data-dependent

branches by unifying them into one execution path using the cwrite primitive (Algorithm 3.1).

We avoid instructions with data-dependent timing following [10].

Furthermore, we accelerate existing oblivious operators, by replacing BatcherSort with Hy-

bridSort that leverages OEEs (See Algorithm 3.3). HybridSort is faster than BatcherSort be-

cause each block data in OEE is sorted by faster MergeSort (Line 3). This would accelerate the

select, groupby and join whose performance is dominated by oblivious sort.

Finally, enabling Hermetic’s query planner to trade off privacy and performance (Section 3.5)

requires obliviously collecting statistics about the input data. To do so, we introduce two new

primitives that leverage OEEs: histogram that computes a histogram over the values in a given

attribute, and multiplicity that computes the multiplicity of a attribute – i.e., the number of
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HybridSort(R = {t0, . . . , tn}, attr, order):

1: if |R| ≤ OEE SIZE then
2: OEESort(R, attr, order)
3: else
4: HybridSort({t0, . . . , tn/2}, attr, order)

5: HybridSort({tn/2+1, . . . , tn}, attr, order)

6: HybridMerge(R, attr, order)

HybridMerge(R = {t0, . . . , tn}, attr, order):

1: if |R| ≤ OEE SIZE then
2: OEEMerge(R, attr, order)
3: else
4: HybridMerge({t0, . . . , tn/2}, attr, order)

5: HybridMerge({tn/2+1, . . . , tn}, attr, order)

6: for i ∈ {2, 4, . . . , n− 2} do
7: swap← ((ti[attr] ≤ ti+1[attr] = order)
8: cwrite(swap, t′i, ti+1, ti)
9: cwrite(swap, t′i+1, ti, ti+1)

10: ti ← t′i; ti+1 ← t′i+1

Figure 3.3: The OEE-assisted HybridSort primitive.

times that the most common value appears.

3.4.2 Differentially-private padding

Hermetic adopts an efficient approach to mitigating OC effectively, without padding the number of

output tuples of an intermediate query operator to its worst-case value. It determines the amount of

padding to add based on a truncated, shifted Laplace mechanism that ensures non-negative noise

size. In particular, for an operator Oi with estimated sensitivity si – the maximum change in the

output size that can result from adding or removing one input tuple, and the privacy parameter εi,

∆ ∼ Lap(oi, si/εi), where oi indicates the offset of the shifted Laplace distribution from 0, dummy

tuples are added to the output if ∆ ≥ 0; Otherwise, 0 dummy tuple is added. This mechanism

provides (ε, δ)-differential privacy [49], where δ corresponds to the probability of truncation –
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i.e., δi = Ptrunc = Pr[Lap(oi, si/εi) < 0]. In addition, Ptrunc is configured, as a system

parameter in Hermetic, with very small value to minimize leakage. Note that the idea of applying

differentially private padding to OC is not new, and has been investigated in [7, 87]. But Hermetic

enables DP padding on operators, such as inner equi-join, that are considered as future work of [7,

87]. Furthermore, the problem of optimizing a plan, the outputs of whose operators are padded

using DP, for both privacy and efficiency is a challenging problem, and Hermetic introduces a new

privacy-aware query planner to address this challenge (Section 3.5).

To implement this approach, relations must be padded with dummy tuples to hide the true size

of query results. As in prior work, we identify dummy tuples by adding an additional isDummy

attribute to each relation, adapt operators like select, groupby, and join to add dummy

tuples to their results, and adapt query predicates to ignore tuples where isDummy == TRUE

(See Appendix A.3 for details). Moreover, the actual noise value must be kept hidden from an

adversary. As a result, the number of dummy tuples has to be sampled in an enclave, and the

sampling process must be protected from side channels, especially timing [10].

3.5 Privacy-aware Query Planning

In this section, we describe how Hermetic assembles the operators from the previous section into

query plans that can compute the answer to SQL-style queries. Query planning is a well-studied

problem in databases, but Hermetic’s use of differential privacy adds a twist: Hermetic is free to

choose the amount of privacy budget ε it spends on each operator. Thus, it is able to make a tradeoff

between privacy and performance: smaller values of ε result in stronger privacy guarantees but also

add more dummy tuples, which slows down subsequent operators.

Query planning in Hermetic follows the same design as in [166], and Figure 3.4 illustrates the

key query planning steps for a counting query over three datasets:

Sensitivity estimation: For each possible execution plan tree , Hermetic query planner derives the

upper bound on the sensitivities of all the operators Oi in the plan. To do this, the untrusted query
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Figure 3.4: Query planning for query SELECT COUNT(∗) FROM C, T, P WHERE C.cid = T.cid AND

T.location = P.location AND C.age ≤ 27 AND P.category = “hospital”.

planner could initiate auxiliary queries, which we call leakage queries, to compute the number of

tuples in each operator’s output. For instance, in Figure 3.4, the planner uses a leakage select

query with the multiplicity operator on the joined attribute, c id, to get an upper bound on

the sensitivity of the leftmost join. The leakage queries are differentially private just like ordinary

queries, and their (small) cost is charged to the (ε, δ) budget as usual; thus, the planner does not

need to be trusted.

Cost estimation: Hermetic planner estimates the symbolic privacy and performance costs of the

plan. The privacy cost of a plan, each operator Oi of which is assigned with privacy budget εi, is

simply (
∑
i εi), but estimating the performance cost is more challenging. To obtain a performance

model, we derived the complexity of the Hermetic operators as a function of their input size; the

key results are shown in Table 3.5. Hermetic uses the histogram operator to estimate the size of

intermediate results, following [70,127]. These estimates are used only to predict the performance

of the query plans; thus, if the adversary were to carefully craft the data to make the estimate

inaccurate, the worst damage they could do would be to make Hermetic choose a slower query

plan. To enable the planner to assess the performance implications of the dummy tuples, Hermetic

takes them into account when estimating relation sizes, and the expected number of dummy tuples

added by operator Oi, following the distribution Lap(oi, si/εi), is simply the offset oi.
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Figure 3.5: Cost model for Hermetic’s relational operators. n: first input size; c: OEE capacity;
m: second input size; k: output size.

Operator Cost

HybridSort h(n) = n · log(c) + n · log2(n/c)
SELECT h(n)

GROUP BY 3 · h(n)
JOIN 4 · h(n+m) + 2 · h(m) + 3 · h(n) + 2 · h(k)

Parameter optimization: Hermetic’s query planner uses multi-objective optimization [149] to

find the optimal query plan that matches the user’s priorities. In particular, the user specifies a

vector of bounds, B, and a vector of weights, W, for the privacy costs on all the input relations. The

planner outputs the plan, whose weighted sum of all the costs, including privacy and performance

whose weight is always 1, is optimal, and all of the privacy costs are within the bounds. We leave

the details on the optimization technique in Appendix A.4 due to space limit.

3.6 Implementation

To evaluate our approach, we built a prototype, which we now describe, focusing on the hypervisor

and OEEs.

3.6.1 Hermetic hypervisor

Hermetic’s hypervisor extends Trustvisor [105], a compact, formally verified [153] hypervisor. To

enable OEEs to “lock down” CPU cores, we added two hyper-calls — LockCore and UnlockCore

— to Trustvisor. LockCore works as follows: (1) it checks that hyper-threading and prefetch-

ing are disabled (by checking the number of logical and physical cores using CPUID, and using

techniques from [154]), (2) it disables interrupts and preemption (3) it disables the RDMSR for non-

privileged instructions to prevent snooping on package-level performance counters of the OEE’s

core, (4) it flushes all cache lines (with WBINVD2), (5) it uses CAT [119] to assign a part of the LLC

2. Note that the timing variations of clflush and prefetch that are exploited in [66, 67] are not a problem
for Hermetic simply because the memory addresses, during flushing and preloading, are observable, in a deterministic
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exclusively to the OEE core. UnlockCore reverts actions 2–5 in reverse order. These changes

required modifying 300 SLoC of Trustvisor.

3.6.2 Oblivious execution environments

Recall that the goal of OEEs to is create an environment where a carefully-chosen function can

perform data-dependent memory accesses that are unobservable to the platform. To achieve this,

we must make the function’s memory access patterns un-observable and its timing predictable.

Un-observable memory accesses: To make memory accesses un-observable, we ensure that all

reads and writes are served by the cache: we disable hardware prefetching and preload all data

and code into the cache prior to executing the function. To preload data, we use prefetcht02,

which instructs the CPU to keep the data cached, and we perform dummy writes to prevent leakage

through the cache coherence protocol. To preload code, the function first executes in PRELOAD

mode to exercise all the code — loading it into the icache — but processes the data deterministi-

cally. We align all buffers, especially oee buffer, to avoid cache collisions.

Predictable timing: To ensure that an OEE function’s execution time is predictable regardless

of the input data, we employ a three-pronged approach. First, we statically transform the func-

tion’s code to eliminate data dependent control flow (See Algorithm 3.1) and instructions with

data-dependent timing. Second, although we allow the function’s memory accesses to be data-

dependent, we carefully structure it to constrain the set of possible memory accesses, thereby

making the number of accesses that miss the L1 cache, and thus must be served by slower caches,

predictable. For example, MergeSort (See Algorithm 3.1) performs a single pass over the input

and output buffers to ensure that there are few cache misses per iteration. Finally, to account for

timing variation that might occur in modern superscalar CPUs (e.g., due to pipeline bubbles), we

pad the OEE’s execution time to a conservative upper bound that is calibrated to each specific

model of CPU. This bound is roughly double the execution time and was never exceeded in our

manner, to the adversary anyway.
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Figure 3.6: Experimental configurations and their resilience to different channels (MS: MergeSort,
BS: BatcherSort, HS: HybridSort, CP: cartesian product, SMJ: sort-merge join).

Configuration Sort Join MC IC TC OC

NonObl MS SMJ 7 7 7 7

DOA-NoOEE BS [12, 122] 3 7 7 7

Full-Pad BS CP 3 3 3 3

HMT I HS Section 3.4 3 3 3 7

HMT II HS Section 3.4 3 3 3 3

Figure 3.7: Schema and statistics of the relations. Synthetic was generated with a variety of tuples
and multiplicities.

Query Relation Tuples Multiplicities

S1-3 Synthetic * *

Q4-6
Trips 10.00M m(cid)=32, m(loc.)=1019

Customers 4.00M m(cid)=1
Poi 0.01M m(loc.)=500

BDB1-3
rankings 1.08M m(url)=1
uservisits 1.16M m(url)=22

experiments. For more information, see Appendix A.2.

3.6.3 Trusted computing base

Hermetic’s TCB consists of the runtime (3,995 SLoC) and the trusted hypervisor (14,095 SLoC).

The former may be small enough for formal verification, and the latter has, in fact, been formally

verified [153] prior to our modifications. Recall that the hypervisor would not be necessary with a

future TEE that natively supported “locking down” CPU cores.

3.7 Evaluation

This sections presents the results of our experimental evaluation of Hermetic’s security and perfor-

mance, a comparison with Opaque, the current state-of-the-art, and a discussion of the ability of

Hermetic’s query planner to trade off privacy and performance.
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3.7.1 Experimental setup

Very recently, Intel has started offering CPUs that support both SGX and CAT; however, we were

unable to get access to one in time. We therefore chose to experiment on an Intel Xeon E5-2600 v4

2.1GHz machine, which supports CAT, with 4 cores, 40 MB LLC, and 64GB RAM. This means

that the numbers we report do not reflect any overheads due to encryption in SGX, but, as previous

work [178] reports, the expected overhead of SGX in similar data-analytics applications is usually

less than 2.4x. We installed the Hermetic hypervisor and Ubuntu (14.04LTS) with kernel 3.2.0.

We disabled hardware multi-threading, turbo-boost, and H/W prefetching because they can cause

timing variations.

Table 3.6 shows the different system configurations we compared, and the side channels they

defend against. NonObl corresponds to commodity systems that take no measure against side-

channels; DOA-NoOEE uses data-oblivious algorithms from previous work [12, 122], without

any un-observable memory; Full-Pad pads output of all operators to the maximum values: pads

output of SELECT to the input size, and pads output of JOIN to the product of the two input sizes

using Cartesian join; and HMT I and HMT II implement the techniques described in this paper –

the only difference being that the former does not add noise to the intermediate results.

Table 3.7 lists all the relations we used in our experiments. The Trips relation has 5-days-

worth of records from a real-world dataset with NYC taxi-trip data [120]. This dataset has been

previously used to study side-channel leakage in MapReduce [121]. Since the NYC Taxi and

Limousine Commission did not release data about the Customers and points of interest (Poi)

relations, we synthetically generated them. To allow for records from the Trips relation to be

joined with the other two relations, we added a synthetic customer ID attribute to the trips table, and

we used locations from the Trips relation as Poi’s geolocations. To examine the performance of

Hermetic for data with a variety of statistics, we use synthetic relations with randomly generated

data in all attributes, except those that control the statistics in question. We use the rankings

and uservisits from Big Data Benchmark (BDB) [8] for the comparison with Opaque.
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3.7.2 OEE security properties

To verify the obliviousness of MergeSort (MS) and linear- merge (LM), we created synthetic

relations, populated with random values and enough tuples to fill the available cache (187, 244

tuples of 24 bytes each).

First, we used the Pin instrumentation tool [102] to record instruction traces and memory ac-

cesses; as expected, these depended only on the size of the input data. Second, we used Intel’s

performance counters to read the number of LLC misses3 and the number of accesses that were

served by the cache4; as expected, we did not observe any LLC misses in any of our experiments.

Finally, we used objdump to inspect the compiler-generated code for instructions with operand-

dependent timing; as expected, there were none. More details can be found in Appendix A.2.1.

Next, we verify the timing obliviousness of MS and LM in OEE using cycle-level measurement.

as expected, the execution time without padding could vary by tens of thousands of cycles be-

tween data sets, but with padding, the variations were only 44 and 40 cycles, respectively. (See

Appendix A.2.3) As Intel’s benchmarking manual [123] suggests, this residual variation can be

attributed to inherent inaccuracies of the timing measurement code.

3.7.3 Performance of relational operators

Next, we examined the performance of Hermetic’s relational operators: SELECT , GROUP BY

and JOIN. For this experiment we used three simple queries (S1−S3), whose query execution plans

consist of a single relational operator. S1 selects the tuples of a relation that satisfy a predicate, S2

groups a relation by a given attribute and counts how many records are per group. S3 simply joins

two relations. To understand the performance of the operators based on a wide range of parameters,

we generated relations with different statistics (e.g., selection and join selectivities, join attribute

multiplicities) and used NonObl, DOA-NoOEE , and Hermetic to execute queries S1−S3 on these

3. Using the LONGEST LAT CACHE.MISS counter.

4. Using the MEM UOPS RETIRED.ALL LOADS and MEM UOPS RETIRED.ALL STORES counters.
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Figure 3.8: Performance of SELECT (S1), GROUP BY (S2) and JOIN (S3) for different data sizes
and join multiplicities.

relations.

Figure 3.8a shows the results for queries S1 and S2 for relations of different size. In terms of

absolute performance, one can observe that HMT I can scale to relations with millions of records,

and that the actual runtime is in the order of minutes. This is definitely slower than NonObl,

but it seems to be an acceptable price to pay for protection against side channels, at least for some

applications that handle sensitive data. In comparison to DOA-NoOEE , HMT I achieves a speedup

of about 2x for all data sizes. S3 displays similar behavior for increasing database sizes.

We also examined the performance of HMT II for query S3 on relations of different multiplic-

ities. The amount of noise added to the output in order to achieve differential privacy guarantee is

proportional to −s/ε · ln(2δ), and sensitivity s is equal to the maximum multiplicity of the join

attribute in the two relations. Figure 3.8b shows the performance of HMT II with various ε and δ

values, compared to other configurations, and differential privacy only affects the overall perfor-

mance for very small ε, δ and large multiplicity (around 200). In addition, the line for Full-Pad is

missing as it cannot finish the query within 7 hours due to its huge padding overheads for tackling

OC.
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Figure 3.9: Performance of all configurations for Q4 – Q6.

3.7.4 End-to-end performance

We compared the different system configurations on complex query plans, each of which consists

of at least one SELECT , GROUP BY , and JOIN operator. To perform this experiment, we used

the relations described in Table 3.7, as well as three queries that perform realistic processing on

the data. Q4 groups the Customer relation by age and counts how many customers gave a tip of

at most $10. Q5 groups the points of interest relation by category, and counts the number of trips

that cost less than $15 for each category. Q6 counts the number of customers that are younger than

30 years old and made a trip to a hospital.

We measured the performance of all systems on these three queries, and the results are shown in

Figure 3.9. For HMT II, the system optimized for performance, given a constraint εmax ≤ 0.05 on

the privacy budget, and we set δ = Ptrunc as 10−3 and 10−5 (Section 3.4.2). Full-Pad was not able

to finish, despite the fact that we left the queries running for 7 hours. This illustrates the huge cost

of using full padding to combat the OC. In contrast, HMT II, which pads using differential privacy,

has only a small overhead relative to non-padded execution (HMT I). This suggests that releasing

a controlled amount of information about the sensitive data can lead to considerable savings in
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Figure 3.10: Comparison with Opaque.

terms of performance. Also, note how HybridSort helps Hermetic be more efficient than previous

oblivious processing systems (DOA-NoOEE ), even though it offers stronger guarantees.

3.7.5 Comparison with the state-of-the-art

We compare Hermetic with the state-of-the-art privacy-preserving analytics system, Opaque [178]

using the big data benchmark (BDB) under the same configuration as in the previous experiments.

In particular, we measure the execution times of the first three queries in BDB (BDB1-3) on the

first 3 and 2 parts of the 1node version of the rankings and uservisits datasets, respec-

tively. Because the Hermetic prototype only supports integer attributes, we replace all VARCHAR

and CHAR attributes with integers for both Hermetic and Opaque. For Hermetic, we consider

the mode without differential privacy padding (HMT I) and the differential padding mode with

(ε = 10−3, δ = 10−5) (HMT II). For Opaque, we consider the encryption (enc) and oblivious

(obl) modes, and the oblivious memory size is fixed as 36MB. As the “oblivious pad mode” de-

scribed in [178] is not implement in the release Opaque version, we estimate its performance using

Hermetic’s Full-Pad mode on BDB3. We also ensure that Hermetic and Opaque use the same

query plans for all three queries.

The comparison results are shown in Figure 3.10. First, without differentially-private padding,

Hermetic achieves comparable efficiency to Opaque in oblivious mode. The main reason is that
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both Hermetic and Opaque leverage an un-observable memory to accelerate the oblivious sort, and

Hermetic realizes such memory while Opaque simply assumes it. The difference in BDB2 and

BDB3 is caused by the different implementations: Opaque requires two oblivious sorts for both

GROUP BY and JOIN while Hermetic uses three and eleven oblivious sorts for GROUP BY and

JOIN, respectively. Hermetic could be optimized using the GROUP BY algorithm in Opaque with

one fewer oblivious sort. The Opaque’s JOIN, although with fewer oblivious sorts, is restricted to

primary-foreign key join, and Hermetic’s JOIN can handle arbitrary inner equi-join, e.g. Q6. Sec-

ond, because the sensitivities for BDB are small (1 for BDB1-2 and 22 for BDB3), the overhead

from differential privacy padding in HMT II is very small compared to HMT I. Third, Full-Pad

is 43x slower than HMT II due to huge padding overheads. In summary, even with stronger se-

curity guarantees, Hermetic achieves comparable efficiency to Opaque in oblivious mode. With

comparable guarantees, Hermetic out-performs Opaque (“oblivious pad mode”) substantially.

3.7.6 Trading-off privacy and performance

We tested the Hermetic query planner with weight vectors of various preferences to verify whether

the planner could adjust the total privacy cost of all relations and the overall performance cost

following the input weight vectors. We set the weight on privacy of each relation in Q6 as iden-
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tical, and increased the relative weight over performance cost. Figure 3.11 shows that the planner

will sacrifice performance for lower privacy consumption when privacy is the first priority. The

red dashed line indicates the performance cost of a plan without privacy awareness. Due to the

unawareness, the plan has to assign the minimal privacy parameter to all the operators so as to

handle the most private possible queries, and this could lead to huge inefficiency, e.g., 150x slow

down, compared to Hermetic’s plans for less private queries. Hermetic is also able to optimize

the privacy cost on the individual relations based on the analyst’s preferences, as expressed by the

weight vector as shown in [166].
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CHAPTER 4

COLLECTING AND ANALYZING DATA OVER MULTIPLE SERVICES

WITH LOCAL DIFFERENTIAL PRIVACY

4.1 Introduction

Sensitive data, or attributes, about users’ profiles and activities is collected by enterprises and

exchanged between different services in one organization to help make informed data-driven deci-

sions. The de facto privacy standard, differential privacy (DP) [51], has been deployed in several

scenarios to provide rigorous privacy guarantees on how attributes are collected, managed, and

analyzed. Informally, differential privacy requires that the output of data processing varies little

with any change in an individuals’ attributes.

The centralized model of DP assumes that a trusted party collects exact attribute values from

users. The trusted party is inside a physical or logical privacy boundary [92], and injects noise

during the (offline or online) analytical process so that query results transferred across the fire-

wall ensure DP. Systems along this line [81, 91, 92, 108, 131] extend the class of data schemes and

queries supported with improving utility-privacy trade-off. A use case is that a data engine man-

aging customers’ sensitive data, e.g., in Uber [81], provides a query interface satisfying DP for its

employees.

In the absence of the central trusted party, the local differential privacy model (LDP) [47] is

adopted. Each user has her attribute values locally perturbed by a randomized algorithm with

LDP guaranteed, i.e., the likelihood of any specific output of the algorithm varies little with input;

each user can then have the perturbed values leave her device, without the need to trust the data

collector. Analytical queries can be answered approximately upon a collection of LDP perturbed

values. Apple [5], Google [54], and Microsoft [43] deploy LDP solutions in their applications on

users’ device to estimate statistics about user data, e.g., histograms and means.

In this paper, we investigate how to collect and analyze multi-dimensional data under LDP
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in a more general setting: each user’s attributes are collected by multiple independent services,

with LDP guaranteed; and data tuples from the same user collected across different services can

be joined on, e.g., user id or device id which is typically known to the service providers. Two

natural but open questions are: what privacy guarantee can be provided on the joined tuples for

each user, and what analytics can be done on the jointly collected (and independently perturbed)

multi-dimensional data.

Data model for joint collection and analytics. Figure 4.1 illustrates a target scenario. Two users

u and u′ are active in service 1 and service 2. Attribute tuples Tu1 and Tu
′

1 are collected in service

1 from u and u′, respectively; and it is similar for service 2. Indeed, each tuple is perturbed by

a randomized algorithm R to ensure LDP. Conceptually, T1 (or T2) is a relational table holding

users’ information collected from service 1 (or service 2); and perturbed versions of T1 and T2

can be joined on user id, which is naturally known to both service providers. The questions are:

whether it is safe to release the joined tuples in R(T1) ./ R(T2), and what analytics can be

conducted on it. Here is a motivating example.

Example 4.1.1 (E-Commerce). A user profiling service and a transaction processing service col-

lect separate information about users in a E-commerce platform. The user profiling service collects

attributes, including Age and Income, into table User. The transaction processing service col-

lects the attributes about transactions, including Amount and Category, into table Transaction.

Each user has a unique UID, which is randomly generated at sign-up, across the two services. An

analyst wants to know the average amount on sports products for users in specific age group, e.g.,

SELECT AVG(Amount) FROM

Transaction JOIN User ON User.UID = Transaction.UID

WHERE Category = Sports AND Age ∈ [20, 40].

The goal of this paper is to support a class of multi-dimensional analytical queries against

joins of tuples with attributes collected via multiple services from data owners. A query here

aggregates (COUNT, SUM, or AVG) on attributes of tuples under point and range predicates on the
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Figure 4.1: Data collection and analytics across multiple services (top), and an algorithmic pipeline
of our solution (bottom).

attributes (in the WHERE clause)—all attributes in the aggregation and predicates could be sensitive

and come from different services. Meanwhile, we want to provide strengthened privacy guarantee

(i.e., user-level local differential privacy as introduced later) for every single user given that her

tuples collected from different services can be linked together with her user id (known to service

providers).

Challenge I (joint aggregation). The setting and the query class studied in this paper are much

broader than previous works in two important aspects. 1) We allow all attributes (except user

ids which are naturally known to service providers) in the multi-dimensional analytical queries to

be sensitive, while existing works on answering range queries [37, 158] and releasing marginals

[36,135,177] under LDP cannot handle aggregations on sensitive attributes. Note that it is easy to

handle non-sensitive attributes by simply plugging their true values when evaluating aggregations

or predicates as in [158]. 2) Most previous works on multi-dimensional analytics, e.g., [158]

and [177], collect and analyze data from a single service only; in our setting, attributes in a query

may come from different services, each of which perturbs its sensitive attributes independently—

existing methods only work when these attributes are perturbed as a whole, which is impossible if
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these attributes are from different services.

Challenge II (frequency-based attack). We want to point out that it is insufficient (in terms

of privacy) to ensure LDP independently in each service, given the fact that tuples collected in

different services can be joined on user id which is known to service providers.

A straw-man solution based on ε-LDP works as follows: at data collection, divide the privacy

budget ε among the tuples from different services for each user, and perturb each tuple using an

LDP mechanism with proper budget. The hope is that, based on the sequential composition, the

overall privacy guarantees for each user is ε-LDP. However, it turns out that this solution cannot

provide any differential privacy for a user because it releases the sensitive information, the numbers

of tuples that a user generates while using a service, after tuples are joined on user id. Such

exact frequency release enables various attacks to users, depending on the prior knowledge of the

adversary. For instance, as shown in Figure 4.2 (an instance of Example 4.1.1), if the adversary has

the prior knowledge that the Income of a user is equal to the number of transactions multiplied by

100, then having access to the exact number of transactions of a user (even though each transaction

is perturbed under LDP) enables the recovery of the sensitive Income of the user.

The above frequency-based attack is particularly feasible in our target scenario because we

assume that the same user id is attached to tuples collected from a user, and is accessible by the

service providers. User id is not a sensitive attribute, but can function as a join key and allows the

adversary to group tuples of the same user.
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Contributions and Solution Overview

Our main contribution is to extend the setting and query class supported by existing LDP mech-

anisms from single-service frequency queries to the more complex ones, including aggregations

on sensitive attributes and multi-service joint aggregation; as we point out in challenges I-II, no

existing LDP mechanisms can handle our target setting and query class with formal privacy and

utility guarantees. We first give an overview of important algorithmic components in our solution

and introduce the end-to-end pipeline.

• Partition-rounding-perturb framework. We propose a framework to extend the class of multi-

dimensional analytical queries with aggregations on sensitive attributes, which is left as an open

problem in [158]. The main idea is to first randomly round the value of an attribute to the two ends,

with rounding probability carefully chosen so that the aggregation on the rounded variable is an

unbiased estimation of the true aggregation of the attribute. The rounded variable with two possible

values is treated as a new sentitive attribute of the user and then fed into the local perturbation

mechanism for LDP, e.g., the one in [158]. We note that the rounding may incur some utility loss,

depending on how large attribute domain is, but overall, the loss is still dominated by the part

incurred by the local perturbation. Moreover, users are randomly partitioned to boost the utilty

when there are multiple attributes to be aggregated.

• Independent perturbation and joint analytics (HIO-JOIN). In our solution, tuples collected from

different services are perturbed independently, and we need new estimation algorithm to esti-

mate aggregations on the joins of these tuples. Our solution HIO-JOIN generalizes the split-and-

conjunction technique and the mechanism HIO based on hierarchical intervals [158] to estimate

the joint distribution on the vector of perturbed tuples and evaluate how likely the joint predicate is

true. To improve the utility, we show that the standard trick of randomly partitioning users [37] also

works here. In addition, we propose an utility optimization technique, by enforcing consistency

across different levels in the hierarchical intervals.

• User-level LDP and τ -truncation. To tackle the frequency-based vulnerability for rigorous pri-
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vacy guarantees, we formally define user-level local differential privacy (uLDP), which gathers

all the information about a user (after the join) and makes it indistinguishable as whole just as in

the classical LDP notation. For one-to-one joins, the above innovations suffice to ensure uLDP.

However, in one-to-many joins, a user can generate one or more tuples in a particular service; these

tuples can be joined with tuples generated by her in other services. How many tuples are joinable

for her (i.e., frequency) is part of the output of the data collection mechanism, and thus needs to be

hidden (otherwise, uLDP is violated).

We propose the τ -truncation technique to hide such frequency information. Informally, no

matter how many tuples are joinable for a user, we randomly sample (or copy) τ of them and feed

them into the perturbation step. Each sample tuple is associated with a weight (which is inversely

proportional to the sampling ratio) to compensate for the contribution to the aggregation from

tuples not in the sample. This weight is a new sensitive attribute (of the user), as it depends on the

true frequency. A technique called double rounding is proposed to perturb these weights together

with other attributes and to derive unbiased estimation of the aggregation.

Overview of Solution Pipeline. Our solution requires minimum coordination between different

services. The whole pipeline of data collection and analytics is described in Figure 4.1 (bottom

part).

For each user and each service, 1©: if user id is the primary key of tuples generated from this

service (e.g., user profiling service), one tuple is to be collected per user; if user id is a foreign key

of tuples from this service (e.g., transaction service), the number of tuples per user is uncertain.

In the latter case, we use our τ -truncation technique to randomly sample (or create) τ tuples for

each user and collect them, even if zero tuple is generated from this service (meaning that the

user has not used this service), in order to hide the frequency/existence information about this

user in the service. Then, depending on how many tuples in total are to be collected from all the

services after τ -truncation (e.g., in Figure 4.1, 3 tuples are collected per user in total), our privacy

budget is evenly divided, and 2©: each tuple from each service is perturbed independently using
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our partition-rounding-perturb framework before collected to enable both frequency and attribute

aggregations (if the tuple contains user id as the primary key, then a single rounding on an attribute

is applied; otherwise, double rounding is needed).

Note that the data collection is query-independent—we do not have to know in advance which

attributes will appear in the query and where they are. The only information that needs to be

coordinated between services is the value of τ (which will be specified later) and the total number

of tuples to be collected for each user.

To process a multi-dimensional aggregation query, tuples (with attributes in the query) col-

lected from different services are joined on user id, and 3©: the query is rewritten into frequency

queries on their joint distribution, which are combined into the query result: if the query only

contains attributes in a single table, i.e., no join, we apply the estimation of partition-rounding-

perturb, plugged with that of HIO; if it contains attributes across multiple tables, all with user id

as primary key, i.e., 1-to-1, we apply the estimation of partition-rounding-perturb, plugged with

that of HIO-JOIN; and if it contains attributes across multiple tables, with user id as foreign key

in some table, i.e., 1-to-many, we apply the estimation of partition-rounding-perturb, plugged with

those of HIO-JOIN and double rounding.

Organization. We first extend the basic LDP to the user-level privacy guarantee, i.e., uLDP, in

Section 4.2. Section 4.3 focuses on handling aggregations of sensitive attributes. Section 4.4

focuses on joint aggregation with one-to-one relation. We address the frequency-based attack

in joint aggregation with one-to-many relation in Section 4.5. Section 4.6 introduces our utility

optimization technique. Experimental results are reported in Section 4.7.

4.2 User-level Privacy across Multiple Services

In our setting, multiple services collect tuples from users and thus sensitive information comes

from separate domains. For instance, in Example 4.1.1, one service collects users’ profile, while

the other collects users’ online shopping transactions. Definition 1 cannot quantify the privacy for
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this setting. Note that [43] studies LDP in an industrial deployment with multiple services, each

of which collects one telemetry data. Here, we define the privacy guarantee formally in a more

general setting, where a user can generate arbitrary number of tuples when using a service. In

addition, we assume tuples of a user are collected only once, which is orthogonal to the continuous

observation model [83].

In this paper, we consider the worst case where different services come together to infer the

user’s sensitive information, and we aim to protect the privacy of a user over the joint domain for

all possible tuples across the K services. Suppose the i-th service collects tuples from the domain

Di. A user u may generate zero, one, or multiple tuples when using the i-th service, denoted by

a multiset Tui ⊆ Di. Across the K services, the user generates tuples 〈Tu1 , . . . , T
u
K〉 in the joint

domain. We define the user-level privacy spanning multiple services below:

Definition 4 (ε-uLDP). A randomized algorithm R over the joint domain across K services is

user-level ε-locally differentially private (ε-uLDP), if and only if for any two users u, u′, and their

collected tuples Tu = 〈Tu1 , . . . , T
u
K〉 and Tu

′
= 〈Tu′1 , . . . , Tu

′
K 〉 in the joint domain s.t. ∃i ∈ [K]:

Tui 6= Tu
′

i , we have:

∀y ∈R(D1,...,K) : Pr [R(Tu) = y] ≤ eε ·Pr
[
R(Tu

′
) = y

]
,

whereR(D1,...,K) is the output domain across the K services.

When K > 1 and ∀u, u′, |Tui | = |Tu′i |, all users have the same number of tuples collected

by each service, and the only privacy loss is from the joint distribution of values of the user’s

tuples, which we can bound using the basic LDP, plus sequential composition. And when K > 1

and ∃u, u′, s .t ., |Tui | 6= |T
u′
i |, uLDP covers the more general setting where a user can generate

arbitrary number of tuples for a service, which is the focus of our work.

ε-uLDP is a general privacy definition for the multi-service data collection setting, and it covers

the frequency-based attacks described in Section 5.1: for users u, u′, with different numbers of

tuples on the i-th service, i.e., |Tui | 6= |T
u′
i |, the straw-man mechanism, i.e., splitting ε among Tu

(Tu
′
), and perturbing each of them with LDP, provides no uLDP guarantees. That is, for y with
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|Tui | perturbed values for the i-th service, where i ∈ [K], the straw-man has Pr[R(Tu) = y] being

non-zero while Pr[R(Tu
′
) = y] being zero, which implies∞-uLDP, or no privacy.

In Section 4.3, 4.4, we mainly focus on the utility for our target query class, and assume each

service collects exactly one tuple from each user. In Section 4.5, we propose mechanism that

achieves ε-uLDP and prevents the frequency-based attacks in the general setting.

4.3 Attribute Aggregation

To handle multi-dimensional analytical queries under LDP, existing works propose multi-dimensional

frequency oracles over single tables. In this section, we first review two such LDP oracles. In or-

der to estimate aggregations on sensitive attributes, we introduce a new class of sensitive-weight

frequency oracles based on stochastic rounding and a new framework called partition-rounding-

perturb, which allows the same sensitive attribute to appear in both aggregations and predicates of

the queries. Two instantiations of this framework are introduced, with provable error bounds.

4.3.1 Building Block: Frequency Oracles

A multi-dimensional frequency oracle under LDP is a pair of algorithms, (R, P̄): R follows LDP

definition (Definition 1); and P̄C(y) is a deterministic algorithm that takes y, i.e., the output ofR,

and outputs its estimated contribution to the predicate C ⊆ D. In addition, we denote the true result

of the original tuple as PC(t).

For a fact table T of n tuples, we denote P̄C(R(T )) =
∑
y∈R(T )

P̄C(y) as the estimated frequency aggregation of C against T , and PC(T ) as the true frequency.

And we evaluate the utility using mean squared error (MSE), over the randomness inR:

MSE(P̄C(R(T ))) = E[(P̄C(R(T ))−PC(T ))2]. (4.1)
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Optimal Local Hashing

Optimal local hashing (OLH) [157] uses hash function H : D 7→ [g] to compress the domain D.

Here, H is randomly selected from a pre-defined family of hash functions, whose g is the closest

integer to eε + 1. Given the tuple t, ROLH randomly selects H from the family of hash functions,

and outputsH , together with either the hash value of t or any distinct hash value, with the following

probabilities:

ROLH(t) =

 〈H, h← H(t)〉, w/p eε

eε+g−1

〈H, h $←− [g] \ {H(t)}〉, w/p g−1
eε+g−1

, (4.2)

where $←− indicates uniform random sampling from the set [g] \ {H(t)}.

On receiving the perturbed value y = 〈H, h〉, P̄OLH estimates its contribution to the frequency

of v ∈ D as P̄vOLH(y) =
1{H(v)=h}−q

p−q , where p = eε

eε+g−1 and q = 1/g. As stated in [157],

answering the frequency for any v ∈ D using OLH has the error bound MSE(P̄vOLH(R(T ))) =

O
(

4n
ε2

)
.

OLH works well for point query, and its error for range query increases fast as the range volume

increases. This motivates optimized multi-dimensional frequency oracles for range query.

Hierarchical-Interval Optimized Mechanism

The hierarchical-interval optimized (HIO) mechanism [158] divides the domain D into hierarchy

of nodes with various sizes on various layers. In particular, the hierarchy of a single ordinal at-

tribute of cardinality m consists of one interval of the entire attribute domain at the root and m

finest-grained intervals, e.g., individual values, at the leaves, with intermediate intervals being the

even split of their parents by the fan-out of B. For d ordinal attributes, the d hierarchies are cross-

producted into one multi-dimensional hierarchy of nodes.

To perturb tuple t, RHIO samples one layer from the hierarchy and maps t to the node that
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contain the tuple. The node is then perturbed by ROLH among nodes on its layer. To estimate the

frequency of report y for range predicate C, P̄C
HIO first decomposes C into the set of hierarchical

nodes IC, and estimates the contribution of y to each of the nodes using P̄OLH, if y and the node

are on the same layer. These frequencies, added together and multiplied by O
(

logdm
)

, is the

unbiased estimation of the frequency of C. As stated in [158], answering the range frequency

query C on dq attributes using HIO has the error bound:

MSE(P̄C
HIO(R(T ))) = O

(
n logd+dq m

ε2

)
. (4.3)

[158] also achieves frequency oracles with nonsensitive weights for aggregation on what they call

measures that are not sensitive.

4.3.2 Sensitive-weight Frequency Oracles

Consider a virtual fact table T that is comprised of n users’ tuples. A query asks for the aggregation

on a sensitive attribute A:

SELECT SUM(A) FROM T WHERE C. (4.4)

This class of query requires the underlying LDP oracles to weight the frequency contribution of

a perturbed value y to C by its attribute value A, and we define the LDP primitive for such query

Q = (A,C) as sensitive-weight frequency oracle, denoted as P̄Q(y). Thus, query (4.4) can be

estimated as P̄Q(R(T )) =
∑
y∈R(T ) P̄

Q(y).

Baseline I: HIO. One baseline to sensitive-weight frequency oracles enumerates all possible values

of A and estimates their frequencies using multi-dimensional frequency oracles, e.g., HIO, which

are summed up, weighted by values of A, as the aggregation result. In particular, P̄Q
HIO(y) =∑

v∈A v · P̄
C∧(A=v)
HIO (y). According to the error bound of HIO (Equation (4.3)), the error bound of

this baseline is: MSE(P̄Q
HIO(R(T ))) = O

(∑
v∈A v

2n logd+dq m
ε2

)
.
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Baseline II: HIO with stochastic rounding (SR-HIO). For improved utility, we can combine

stochastic rounding (SR) [47] with HIO to enumerate only the two extreme domain values at

aggregation. In particular, for each attribute A,RSR-HIO first rounds t[A], i.e., the value of A in t,

to either the min Amin or the max Amax, using the stochastic rounding functionMA
SR defined as

follows:

MA
SR(t[A]) =

 Amin, w/p Amax−t[A]
Amax−Amin

Amax, w/p t[A]−Amin
Amax−Amin

(4.5)

Then, it perturbs the d original attributes in t, together with the d rounding values, using RHIO

for ε-LDP. Note that perturbing the d original attribute values enables arbitrary range aggregation

on the collected tuples while perturbing the d rounding values enables the attribute aggregation on

any of the d attribute, both of which are necessary to support our target query class.

Given a perturbed value y, we can answer the frequency oracle for predicate C simply as

P̄C
SR-HIO(y) = P̄C

HIO(y), and, to answer query (4.4), we estimate the result by linearly combining

the frequencies of the two extreme values, i.e.,

P̄Q
SR-HIO(y) = Amin · P̄

C∧Amin
HIO (y) + Amax · P̄C∧Amax

HIO (y).

The error bound of such an estimation for query (4.4) is

MSE(P̄Q
SR-HIO(R(T ))) = O

(
(A2

min+A2
max)2dn logd+dq m

ε2

)
, (4.6)

because SR-HIO introduces d extra attributes from rounding, each of which is of cardinality 2, and

increases Equation (4.3) by multiplicative factor of 2d. Next, we propose the partition-rounding-

perturb framework to eliminate the factor of 2d in the error bound.
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4.3.3 Partition-Rounding-Perturb Framework

The improvement of SR-HIO comes from the fact that only one attribute can appear in the aggre-

gation function F. To leverage such fact, we first randomly partition the tuples into d groups, one

for each of the d attributes, using a randomized partition function S, i.e., S(t) = t[A], for A $←−

{A1, · · · , Ad}, where $←− indicates uniform random sampling from the d attributes; then apply

rounding function MA
SR on the attribute from S for each tuple independently; finally, for each

tuple, we perturb its d attribute values, together with the single rounding value. Now to aggregate

on attribute A, we only use tuples partitioned for A, aggregate their estimated contributions, and

scale the result by d as the final result.

We call the overall framework partition-rounding-perturb (PRP), and, next, we introduce two

instantiations using different ways to perturb the extra rounding value, with different error bounds.

Augment-then-Perturb (AHIO)

AHIO augments the tuple t with the extra attribute XA for the rounding value of attribute A, and

RAHIO perturbs t, including the value of XA, using HIO. Overall, we have:

RAHIO(t) = RHIO(〈t,XA =MA
SR(S(t))〉). (4.7)

At aggregation, P̄AHIO estimates the frequencies of tuples that satisfy C and have certain rounding

value by patching C with conjunctive equality condition for the rounding value. For instance,

to estimate the frequency of tuples that satisfy C and have attribute A rounded to Amin, P̄AHIO

answers the multi-dimensional frequency using P̄HIO on condition C ∧XA = Amin. Then it adds

the frequencies, multiplied by the corresponding rounding values and d, to answer the sensitive-
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weight frequency oracles, i.e., :

P̄Q
AHIO(y) =


0, if y is not in the group for A

d(Amin · P̄
C∧(XA=Amin)
HIO (y)

+Amax · P̄
C∧(XA=Amax)
HIO (y)), otherwise

(4.8)

Figure 4.3 shows how AHIO works using a toy example with two attributes and an aggregation

query. The error bound of AHIO is:

Lemma 5. Answering query (4.4) using AHIO under ε-LDP has the error bound of:

MSE(P̄Q
AHIO(R(T ))) = O

(
2(A2

min+A2
max)n·d logd+dq m

ε2

)
. (4.9)

Proof Sketch: First, since the n tuples is partitioned into d groups, and the augmented attribute in-

troduces an hierarchy of 2 layers, using HIO with ε-LDP to estimate the frequencies for C∧(XA =

Amin) and C∧ (XA = Amax) has error bound of O

(
2n logd+dq m

dε2

)
. Then, scaling the frequencies

by Amin and Amax, and multiplying the weighted frequency sum by d, introduces multiplicative

factors (A2
min + A2

max) and d2 to the error.

Embed-then-Perturb (EHIO)

EHIO embeds the rounding value into the partition attribute by doubling its domain. Specifically,

it doubles the domain of A to A−(= [2Amin − Amax − 1, Amin − 1]) ∨ A+(= [Amin, Amax]). If

the rounding value is Amin, REHIO maps t[A] to 2Amin − t[A]− 1 ∈ A−; otherwise, the value is

unchanged, and in A+. And the mapped tuple is perturbed byRHIO.

To aggregate on A, P̄EHIO patches range conditions, i.e., A ∈ A− for Amin and A ∈ A+ for
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Age Inc
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Age Inc

125

XInc

y “Inc”

Tuples Partition & 
Rounding

Perturb Q=(Inc, Age ∈ [10,20])

C1: Age ∈ [10,20] ⋀ (XInc=1),
C2: Age ∈ [10,20] ⋀ (XInc=125)

“Inc”?

1
3

2

 18 20 18 20 1

XAgeAge IncAge Inc

y “Age”

Figure 4.3: Example of running AHIO on tuples with attributes Age ∈ [1, 125] and Inc ∈ [1, 125]
(income), and aggregation on Inc for users with Age ∈ [10, 20]. 1© partition the tuples by attribute,
round their Inc or Age value, and augment with attribute XInc or XAge for the rounding value;
2© rewrite the query into two frequency aggregations for the min and max of Inc; 3© combine the

frequency estimations, weighted by the min and max of Inc, and scale the result by 2 to compensate
for the attribute partitioning.

Amax, to the predicate C to estimate the frequencies of the two rounding values:

P̄Q
EHIO(y) =


0, if y is not partitioned for A

d(Amin · P̄
C∧(A∈A−)
HIO (y)

+Amax · P̄
C∧(A∈A+)
HIO (y)), otherwise

(4.10)

If C contains range condition A ∈ [l, r], EHIO maps it to conditions A ∈ [2Amin− l− 1, 2Amin−

r − 1] and A ∈ [l, r] for Amin and Amax, respectively. EHIO doubles the domain size of attribute

A from m to 2m. Thus, its error bound for query (4.4) is:

MSE(P̄Q
EHIO(R(T ))) = O

(
(A2

min+A2
max)nd log2 2m logd+dq−2m

ε2

)
. (4.11)

Remarks. The difference between the error bounds of AHIO and EHIO is 2 log2m
log2 2m

, which is

between 0.5 (when m = 2) and 2 (when m → ∞). It is better to use AHIO and EHIO when m is

small and large, respectively.
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4.4 1-to-1 Joint Frequency Oracles

In this section, we focus on the joint aggregation over tuples that are collected by K separate

services:

SELECT F(A) FROM T1 JOIN . . . JOIN TK WHERE C, (4.12)

whereA is the aggregation attribute collected by one of the joining services, and C consists ofK ·dq

conditions, on dq attributes of each service. The key task here is to, given the vector of perturbed

values y = 〈yi〉Ki=1 joined on the same user id, estimate its contribution to the frequency of C, and

we call such LDP primitive joint frequency oracles, denoted as P̄C(y). Given such frequency ora-

cles, we can plug it into the partition-rounding-perturb framework, in place of HIO, to achieve at-

tribute aggregation, i.e., P̄Q(y), for Q = (A,C), i.e., P̄Q(./Ki=1 R(Ti)) =
∑

y∈./Kj=iR(Ti)
P̄Q(y).

Next, we focus on joint frequency oracles over tuples with one-to-one relation, and extend to

one-to-many relation in Section 4.5.

4.4.1 Split-and-Conjunction Baseline

Split-and-conjunction (SC) in [158] enables single-table multi-dimensional frequency oracles over

tuples with independently perturbed attributes. In our setting, we can use SC to independently

perturb all attributes from the K services, each with privacy parameter ε
K·d , and estimate the

frequency of C using the reported perturbed attribute values. We call such mechanism SC-JOIN.

To estimate the frequency for C, SC-JOIN first decomposes C into K · dq atomic predicates

C1,C2, . . ., one for each attribute in C. For the joined value y, SC-JOIN increments f ′C[x] by one,

where the i-th bit of x is 1 if y satisfies Ci; or 0 otherwise. Similarly, we can denote the vector

fC as the vector of frequencies on the original tuples, and fC[11 . . . 1], i.e., 1 for all Ci in C, is

the true frequency aggregation for C. The two vectors are connected via a state transition matrix

M, which defines the stochastic transition from the state fC to the frequency distribution f ′C i.e.,
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One layer for 1/9 tuples

Figure 4.4: HIO-JOIN across two services, each collecting one attribute using hierarchy with fan-
out B = 4.

E[f ′C] = M · fC. For instance, when C contains only one condition, we have

E


f ′C[0]

f ′C[1]


 =

Pr[0|0] Pr[0|1]

Pr[1|0] Pr[1|1]


fC[0]

fC[1]

 , (4.13)

where Pr[x′|x] indicates the probabilities of the perturbed value evaluated as true/false (x′ = 1/0),

given the original value evaluated as true/false (x = 1/0). Generally, for C with conjunctive con-

ditions on K · dq attributes, M is of dimension 2K·dq × 2K·dq , and we can derive M based on

the probabilities p and q of the LDP mechanism (See [158] for details). With f ′C and M, we can

calculate M−1 · f ′C as the unbiased estimation of the initial state fC, which contains the frequency

for the given predicate. We call such technique state inversion, and we have P̄C
SC-JOIN(y) =

(M−1 · f ′y,C)[11 . . . 1], where f ′y,C is the vector f ′C on y.

As stated in [158], for Q = (A,C) on T =./Ki=1 Ti, SC-JOIN has error bound of:

MSE(P̄C
SC-JOIN(R(T ))) = O

(
n log3K·dq m

(ε/(K·d))2K·dq

)
. (4.14)

To answer the joint frequency of C, SC-JOIN requires joint estimation on all attributes in C,

whether from the same or different services. For better utility, we want to minimize the number of

joint estimations to the number of services involved in C, i.e., up to K.
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4.4.2 Multi-Service Joint Frequency Oracles

While supporting joint analysis, SC-JOIN independently perturbs all the attributes. This makes

single-table analysis more noisy as SC is used for each service, instead of HIO. To improve the

utility for single-service analysis and at the same time support joint analysis, we propose to adapt

the state inversion technique in SC-JOIN for HIO reports, and call such mechanism HIO-JOIN.

For each tuple of a service, RHIO-JOIN applies RHIO to perturb it. Formally, for user u with

tuples Tu1 , . . . , TuK across the K services,

RHIO-JOIN(Tu1 , . . . , T
u
K) = Rε/KHIO (Tu1 ), . . . ,Rε/KHIO (TuK) (4.15)

is reported, whereRε/KHIO (Tui ) perturbs the single tuple in Tui using HIO with privacy parameter ε
K .

Here, tuples of the K services are independently perturbed by RHIO, and the privacy parameter ε

is evenly divided for all the K tuples of the user so that the overall privacy loss is bounded by ε.

Next, we focus on the joint aggregation over these perturbed HIO reports.

We adapt the state inversion technique in SC-JOIN for HIO-JOIN with the key insight that,

after mapping a tuple to the node in the hierarchy, RHIO perturbs the node in the exact same

manner as SC perturbs the single attribute. Thus, for each hierarchical layer across theK services,

we can derive the state transition matrix for the nodes on that layer across theK services, following

what SC does for nodes across the K · dq attributes, which gives us a state transition matrix of

dimension 2K×2K . The joined tuples that are sampled byRHIO on the same layers as the predicate

decompositions are classified into the vector f ′C, which is then multiplied by M−1 to recover the

frequency of the original tuples. The estimated frequencies of all the decompositions are added

together, and scaled by the number of layers across K services, i.e., logK·dm, to compensate for

the layer sampling in HIO.
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Thus, we have the frequency estimation of HIO-JOIN as:

P̄C
HIO-JOIN(y) =

 0, if y and C on different layers

logK·dm · (M−1 · f ′y,C)[11 . . . 1], otherwise
(4.16)

Figure 4.4 shows how HIO-JOIN works with two services, each collecting one attribute: at

collection, each tuple of a service is perturbed on one the 3 layers of the hierarchy of the attribute;

at aggregation, the predicate C with range conditions on attributes of the two services is first de-

composed into pairs of nodes across the two hierarchies. For one pair of nodes, i.e., the green

and purple ones, HIO-JOIN calculates f ′C by counting the numbers for indices 11, 10, 01 and 00,

which represent the four cases where the joined tuple yi has part from service 1 (not) in the green

node and part from service 2 (not) in the purple node. For instance, y1 has its two attributes inside

the green and purple nodes, which increments f ′C[11] by 1. And y2 has its first attribute inside

the green node, and the second attribute outside the purple node, which increments f ′C[10] by 1.

Joined values not on the same layers as the decomposed nodes, e.g., y5, do not contribute to any

of the classes. Since there are 3 × 3 layers across the two hierarchies, 1
9 of the collected tuples

are expected to be on the same layer as the decomposed nodes. Thus, after multiplying f ′C by

M−1, HIO-JOIN multiplies the estimation by 9. HIO-JOIN repeats the estimation for the other

decompositions of predicate C, and adds their estimations together as the aggregation for C.

We state the error bound of HIO-JOIN in Lemma 6:

Lemma 6. Answering the frequency query for predicate C onK ·dq attributes against T =./Ki=1 Ti

using HIO-JOIN has error bound:

MSE(P̄C
HIO-JOIN(R(T ))) = O

(
n logK(d+dq)m

(ε/K)2K

)
. (4.17)

Proof Sketch: First, the number of joined values sampled on the same layer as C is O

(
n

logK·dm

)
.

For these joined values, since the parameter ε is only splitted by K, estimating the range fre-
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quency on each of the O
(

logK·dq m
)

hierarchy nodes, using model inversion, incurs error bound

of O

(
n

logK·dm(ε/K)2K

)
. Finally, we multiply the aggregations by factor of O

(
logK·dm

)
.

Note that here the effect of joint estimation, which is manifested as the power of ε, is at the

scale ofK, which is smaller than theK ·dq in SC-JOIN. The difference will be considerable when

dq is large and ε is small, which we evaluate in Section 4.7.3

Security. HIO-JOIN splits ε by K, and, by sequential composition, the overall privacy guarantees

for each user is ε-LDP. Furthermore, since users have the same number of tuples collected by

each service, i.e., 1, it is ε-uLDP. This argument, however, does not generalize to the one-to-many

relation, where users of the i-th service can generate arbitrary numbers of tuples. We will address

this problem in Section 4.5.

4.5 Handling One-to-Many Join

In this section, we focus on the joint aggregation over tuples with one-to-many relation. In particu-

lar, we focus on the primary-foreign-key joint aggregation with two services. Each user u generates

exactly one tuple with user id as the primary key in service 1, i.e., ∀u : |Tu1 | = 1, and up to τmax

tuples with user id as a foreign key in service 2, i.e., ∀u : 0 ≤ |Tu2 | ≤ τmax. We assume that τmax,

the maximum number of tuples that can be generated by a user in service 2 is public. We want to

guarantee ε-uLDP (Definition 4), and the target analytical task is the same as query (4.12).

4.5.1 Frequency-based Attack

We introduced SC-JOIN and HIO-JOIN for joint aggregation under one-to-one relation. A straight-

forward extension to one-to-many relation is to split the privacy parameter ε for a user u among all

the tuples collected. That is, each tuple in services 1 and 2 is reported under ε/(|Tu1 |+ |T
u
2 |)-LDP.

And the overall privacy guarantees for u is ε-LDP, based on the sequential composition.

Unfortunately, this approach is not private, as it enables the simple yet effective frequency-

69



based attack: After collecting perturbed tuples from service 2, for each user, the adversary can

count the number (frequency) of tuples that can be joined with some tuple from service 1 on

user id, by grouping the tuples by user id. With such frequency information available, one can

immediately distinguish between users with different usage patterns in service 2. With extra prior

knowledge, based on these frequencies, the adversary can launch even more devastating attacks to

infer sensitive attributes about users (see Example 4.1.1). In fact, the presence of some reported

tuples or absence of any tuple already reveals information about whether the user is using a service,

which by itself is sensitive especially when the service targets certain group of users.

More formally, we can show that the above approach does not provide uLDP (Definition 4) to

individual users. To show this for HIO-JOIN and two users u and u′, s.t., |Tu2 | 6= |T
u′
2 |, we take

y = RHIO-JOIN(Tu) in Definition 4, and, thus, |y| = |RHIO-JOIN(Tu)| 6= |RHIO-JOIN(Tu
′
)|.

Thus, the ratio between the probabilities of the perturbed tuples from u and u′ being equal to y are

unbounded (∞-uLDP), as Pr[R(Tu) = y] > 0, and Pr[R(Tu
′
) = y] = 0.

The problem of the above approach is that it outputs a perturbed value for each input tuple of

the user, and breaks the privacy guarantees when users have different numbers of tuples. Next, we

close such security loophole by hiding the real number of tuples with user id as the foreign-key,

i.e., from service 2, of a user, and achieve ε-uLDP under one-to-many relation.

4.5.2 Hiding Existence and Frequency with τ -Truncation

To prevent the frequency-based attacks that exploit the distinct numbers of collected tuples on

service 2 among users, we propose the τ -truncation mechanism that outputs the fixed number, i.e.,

τ , of perturbed tuples for each user’s tuples on service 2.

Suppose each user u generates a maximum of τmax tuples in service 2, i.e., 0 ≤ |Tu2 | ≤ τmax.

Here, |Tu2 | = 0 means that u is not using this service. The goal of τ -truncation is to hide each

user’s presence/absence information as well as the true frequency.

If |Tu2 | > 0, we want to hide the frequency |Tu2 |. The mechanism samples τ tuples from
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Tu2 with replacement, and attach a truncation weight (inversed sampling ratio) r = |Tu2 |/τ ∈

[rmin, rmax], where rmin = 0 and rmax = τmax/τ , to each of these tuples. This weight is used to

obtain an unbiased estimate of the aggregation.

If |Tu2 | = 0, we want to hide the absence of u. The mechanism randomly draws a sample of

τ tuples from the domain D2 of T2, and attach a weight r = 0 to each of them (so that we know

these dummy tuples have no contribution in any aggregation).

Formally, the τ -truncation procedure Trunc is defined to be:

Trunc(τ, T ) =

 〈ti
$←− T, r =

|T |
τ 〉

τ
i=1 if |T | > 0

〈ti
$←− D, r = 0〉τi=1 if |T | = 0

, (4.18)

where ti
$←− T (or the domain D of T ) means that we use uniform random sampling to draw a tuple

from T (or D) as ti.

In both cases, each user generates exactly τ tuples 〈ti, r〉τi=1. In order to completely hide the

existence and frequency information as well as the content in ti, we apply an LDP perturbation

mechanism, e.g.,RAHIO in Section 4.3.3, on both the value of r and ti.

In terms of service 1, since user id is the primary key, each user generates exactly one tuple in

Tu1 , and thus, we only need to apply the perturbation mechanism on this tuple.

For each user u, there are a total of τ + 1 tuples to be perturbed, namely, one tuple in Tu1 and

τ tuples in Trunc(τ, Tu2 ) = 〈ti, r〉τi=1. The privacy budget is evenly partitioned among these τ + 1

tuples. Putting them together, we are going to release

RεTrunc(T
u
1 , T

u
2 ) = Rε/(τ+1)

AHIO (Tu1 )⊕ 〈Rε/(τ+1)
AHIO (〈ti, r〉)〉τi=1 (4.19)

where each instance of Rε/(τ+1)
AHIO with privacy parameter ε

τ+1 runs independently. We can show

thatRεTrunc is ε-uLDP.

Lemma 7. Collecting a user’s tuples from service 1 (with user id as the primary key) and service
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2 (with user id as a foreign key) usingRεTrunc above satisfies ε-uLDP.

Proof Sketch: For users u and u′, they both have one tuple on service 1, and |Tu2 | and |Tu′2 | tuples

on service 2, respectively. With τ -truncation, both users have τ tuples collected by service 2. In

addition, all collected tuples of a user is perturbed with ε
1+τ -LDP. In the definition of uLDP, any

possible value y from τ -truncation consists of one perturbed tuple for service 1 and τ perturbed

tuples for service 2. Thus, we have Pr[R(Tu)=y]

Pr
[
R(Tu

′
)=y

] ≤ (eε/(1+τ))1+τ .

Both the aggregating attribute A and the truncation weight r are randomly rounded (to {Amin,

Amax} and {rmin, rmax}, respectively) during the perturbation process RAHIO. In the next sub-

section, we will introduce our double-rounding mechanism and estimation technique to recover the

answer to the original aggregation query from truncated and perturbed data in an unbiased way.

4.5.3 Double Rounding: Recovering Aggregation from Truncated Tuples

At aggregation, the contribution of each perturbed value need to be multiplied by its truncation

weight to compensate for tuples truncated away by Trunc. In particular, we need to answer the

following queries for COUNT(∗) and SUM(A), respectively:

SELECT SUM(r) FROM T1 JOIN T2 WHERE C, and (4.20)

SELECT SUM(r · A) FROM T1 JOIN T2 WHERE C, (4.21)

where r is the truncation weight in the collected tuples. Queries (4.20) and (4.21) require two

sensitive-weight frequency oracles, i.e., one for Q = (r,C) and the other for Q = (r · A,C),

and directly applying the mechanisms in Section 4.3.3 would degrade the utility for the frequency

aggregation (query (4.20)) by O(d+ 1), due to partitioning.

To preserve the utility for frequency aggregation, we do not partition the tuples for frequency

aggregation, and only partition the tuples among the d attributes for attribute aggregation, via what

we call double rounding: for each truncated tuple output by Trunc, we group it for one of the
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the d attributes, and derive two rounding values, one for the partition attribute A, and the other

for the truncation weight r; thus, the rounding value for r enables query (4.20) for all tuples,

i.e., P̄(r,C)
Trunc(y) = rmax · P̄C∧rmax

HIO-JOIN(y) + rmin · P̄
C∧rmin
HIO-JOIN(y); Note that, since rmin = 0, the

contributions for predicate C ∧ rmin is zero, and, thus, ignored; similarly, the rounding values

for A and r together enable query (4.21) for tuples partitioned for A, and, for one such y, we

have P̄
(r·A,C)
Trunc (y) = d ·

∑
br

∑
bA
br · bA · P̄

C∧br∧bA
HIO-JOIN(y), where br ∈ {rmin, rmax} and bA ∈

{Amin, Amax}.

Concretely, we pack the two rounding values as a pair, and augment the tuple with attribute

Xr,A ∈ {〈rmin, Amin〉, 〈rmin, Amax〉, 〈rmax, Amin〉, 〈rmax, Amax〉} for it. The augmented at-

tribute is perturbed, together with the original d attributes, for data collection. For P̄(r·A,C)
Trunc (y), if

y is partitioned for A, we estimate

P̄
C∧rmin∧Amin
HIO-JOIN (y) = P̄

C∧(Xr,A=〈rmin,Amin〉)
HIO-JOIN (y), (4.22)

as well as for other pairs: 〈rmin, Amax〉, 〈rmax, Amin〉 and 〈rmax,

Amax〉; otherwise, P̄(r·A,C)
HIO-JOIN(y) = 0. And we have:

Lemma 8. P̄(r·A,C)
Trunc (RTrunc(T1, T2)) is unbiased for query (4.21).

Proof Sketch: First, since P̄HIO-JOIN is unbiased, and r and A are independently rounded, we

have

E[P̄
C∧(Xr,A=〈rmin,Amin〉)
HIO-JOIN (y)] =

1{t∈C}·(rmax−t[r])(Amax−t[A])

d(rmax−rmin)(Amax−Amin)
. (4.23)

And we have similar results for 〈rmin, Amax〉, 〈rmax, Amin〉 and 〈rmax, Amax〉. Hence, we have

E[P̄
(r·A,C)
Trunc (RTrunc(〈T1, T2〉))]

=
∑

t∈T1./T2
d·1{t∈C}·t[r]·t[A]·(rmax−rmin)(Amax−Amin)

d·(rmax−rmin)(Amax−Amin)

=
∑

t∈T1./T2 1{t∈C} · t[r] · t[A].
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Lemma 9. For n users, whose tuples on service 1 and 2 are collected via RTrunc, answering

query (4.21) using P̄Trunc has error bound:

O

(
ndτ(1+τ)4 log2(d+dq)m

ε4
(r2

min + r2
max)(A2

min + A2
max)

)
. (4.24)

Proof Sketch: First, since the ε is splitted evenly for the 1 + τ tuples of a user, the tuples are

each perturbed with ε
1+τ -LDP. In addition, we have rmin = 0, rmax = τmax/τ . Thus, estimating

the contribution of one pair of joined tuples from the two services to the aggregation on A, using

P̄
(r·A,C)
HIO-JOIN(y), has error bound

O

(
d(1+τ)4 log2(d+dq)m

ε4
(r2

min + r2
max)(A2

max + A2
min)

)
. (4.25)

We need to add up the contributions from n · τ pairs of joined tuples, which sums up the error as

Equation (4.24).

Based on Lemma 9, setting τ = 1 achieves the optimal error bound. We evaluate the effects of

τ on utility in Section 4.7.3.

4.6 Range Consistency Optimization

For single dimensional range aggregation, [37, 97] show that post-processing the hierarchy for

consistency, i.e., equality between aggregation on every node and the aggregations on its children,

improves the aggregation utility. For multi-dimensional case, however, it is challenging to achieve

the consistency without exponentially (to the number of attributes) increasing the post-processing

overhead. In this section, we propose a cost-effective consistency optimization technique based on

optimal range decompositions.

74



1 25 1 25

11 25 11 25
11

12

11

Figure 4.5: Optimal range decompositions for predicate C on attributes Age and Income, with
fan-out of 5.

4.6.1 Optimal Range Decomposition

Given the multi-dimensional hierarchy, there are multiple ways to decompose the predicate C into

the (hierarchy) nodes. For instance, in Figure 4.5, the predicate asks for C = Age ∈ [11, 25] ∧

Income ∈ [11, 25], and we can decompose it into minimum nine nodes in four different ways, i.e.,

I1, . . . , I4, without overlapping.

For decomposition IC of C, with |IC| nodes, since the frequencies of these nodes are added

together for C, and the error bound for each node is the same, we have:

MSE(P̄C(y)) ∝ |IC|. (4.26)

Thus, the optimal decomposition of C is the one with the minimum number of nodes among all

possible decompositions. The possible decompositions include the ones that only add up the nodes,

as in previous work [37, 158], as well as those that subtract some nodes to achieve the equivalent

range conditions, e.g., I4 in Figure 4.5.

To find the decomposition with minimum number of nodes, we can first find the optimal de-

composition for each single-attribute condition of C, and cross product them into the optimal de-
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composition of C. For the example in Figure 4.5, 1©we find the top-2 decompositions for attributes

Age and Income separately, and 2© cross-product them to get the top-4 decompositions for C. For

1©, we can solve for the top-k decompositions for all possible ranges of each individual attribute

using dynamic programming offline, with complexity polynomial to the domain size.

4.6.2 Consistency Optimization

The top-k decompositions of C are consistent, i.e., they are all unbiased estimations of C, and

we can combine them for better utility. For the top-k decompositions of C with |IC1 |, . . . , |I
C
k |

nodes, respectively, we assign wi as the weight for ICi , and the weighted average of the k de-

compositions has MSE(P̄C(y)) ∝
∑k
i=1w

2
i |I

C
i |. We can minimize the error bound using

the KKT condition, under the constraint that
∑k
i=1wi = 1, and the optimal weights are wi =

(1/|ICi |)/(
∑k
j=1 1/|ICj |). Hence, the optimal error bound of the weighted average of the top-k

decompositions is

MSE(P̄C(y)) ∝ 1/(
∑k
i=1 1/|ICi |), (4.27)

which can be as small as 1
k of Equation (4.26), i.e., when the top-k decompositions all have the

same number of nodes. We state the utility improvement in Lemma 10

Lemma 10. For range frequency aggregation of C, weighted averaging its top-2dq decompositions

can improve the utility by 2dq .

Proof Sketch: Let’s first consider the simple case where each hierarchy of the dq range attributes

is single layer with B leaves. Then, suppose the optimal decomposition has li leaves on the i-th

attribute, and the total number of nodes of the decomposition is
∏dq
i=1 li. For the i-th attribute, we

can substitute its li leaves with B − li + 1 intervals, i.e., the parent interval minus the other B − li

leaves. In addition, the substitution does not overlap with the original optimal decomposition.

Thus, we have 2dq consistent decompositions by choosing either the optimal or its substitution on
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each attribute. The error bound of the optimal decomposition is ∝
∏dq
i=1 li. And the error bound

of the weighted average of the 2dq consistent decompositions is

∝
∏dq
i=1 li/(1 +

∑dq
j=1

∑
1≤i1<···<ij≤dq

∏j
k=1

B−lik+1

lik
). (4.28)

When li = B − li + 1, i.e., li = B+1
2 , the error bound is 2−dq of that of the single optimal

decomposition.

For hierarchies with more than one layers, the above argument applies, and the improvement

reaches 2dq when there is a non-overlapping substitution with equal number of intervals for the

optimal decomposition on each individual attribute in C.

We evaluate the effect of k on the aggregation utility in Section 4.7.

4.7 Evaluation

We evaluate the utility of our end-to-end framework using synthetic and real-world datasets and

queries. We conduct the evaluation on an Intel Xeon Platinum 8163 2.50GHz PC with 64GB

memory. We set up a single node Spark cluster on the machine, using Hadoop 2.7.1, Spark 2.4.3

and Hive 2.3.5. We register the R’s and P̄’s of our mechanisms as UDF’s of SparkSQL. Each

dataset is first loaded as table into Spark SQL, and we perturb each row, as a tuple, using the

perturb UDF and collect them as the table to be released. At query time, ordinary SQL statement

is issued from the user interface, and automatically rewritten using the proper P̄ UDF’s, which

will be executed by the underlying SparkSQL engine on the released table. For joint aggregation,

multiple released tables are first joined on the join key by SparkSQL, and the SQL engine applies

the joint frequency oracles over joined tuples and adds up their contributions into the result. We

will open-source the code and the platform setup as a docker container.

Dataset We evaluate with two synthetic and two real-world datasets:
• SYN-1: Single-table synthetic data with 4 ordinal and 4 categorical attributes, and 1 non-
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sensitive ordinal attributes. The number of tuples ranges from 2−2 × 106 to 22 × 106 (default

1×106). The domain sizem for ordinal ranges from 52 to 54 (default 53), and that for categorical

is 500. We simulate correlations among ordinal attributes by sampling from normal distribution,

with (µ = m
2 , σ = m

4 ) for one of them, and adding it with Gaussian noises (µ = 0, σ = 10) for

others.

• SYN-2: Synthetic data of two tables, both with one ordinal and one categorical attributes. For

ordinal, m = 53, and, for categorical, m = 500. The two tables can be joined by the forged

id, with two configurations: i) one-to-one; and ii) one-to-many, where a tuple in table one has

[1, 10] matching tuples in table two. And we test with 1× 106 and 2× 106 joined tuples.

• PUMS-P [138]: 3× 106 census records of US citizens in 2017, with attributes AGE, MARST

and UHRSWORK.

• PUMS-H [138]: 1940 census records of US households, with attributes STATE and CITY, and

citizens, with attributes SEX, AGE, RACE and INCOME. Both records have HID as the join

key, and it is primary-key for household and foreign-key for citizens. We focus on two samples:

IN): 3.42 × 106 joined records from Indiana; and IL): 7.56 × 106 joined records from Illinois.

For both samples, each household has up to τmax = 10 citizens.

Mechanisms. We consider six mechanisms in the evaluation:

• HIO: The mechanism proposed in [158] for single-table MDA.

• SC-JOIN: Joint aggregation mechanism using SC (Section 4.4.1).

• AHIO: The augment-then-perturb instantiation of PRP (Section 4.3.3).

• EHIO: The embed-then-perturb instantiation of PRP (Section 4.3.3).

• HIO-JOIN: Joint aggregation over HIO (Section 4.4.2), with aug-ment-then-perturb and τ -

truncation (Section 4.5.2).

• *-RDC: Mechanism * with utility optimization (Section 4.6).

We set the fan-out as 5 for hierarchies in both HIO and SC.
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Queries. We evaluate the utility of aggregation queries for COUNT, SUM and AVG, as well as

their sensitivity to factors: i) m: the domain size of the aggregation attribute; ii) vol: the volume of

the predicate, i.e., the ratio of the predicate space over the entire domain; and iii) dq: the number

of attributes in the predicate.

Metrics. We use two metrics to evaluate the estimation utility of P̄ over a set Q of queries of the

same characteristics,

• Normalized Mean Squared Error. It measures how large the errors are relative to the maximum

possible answer, i.e.,

NMSE(P̄(Q)) = 1
|Q|
∑

Q∈Q
(
(P̄Q(R(T)) − PQ(T))/ΣT

)2 where ΣT = |T | for COUNT,

and ΣT =
∑
t∈T |t[A]| for SUM, are the upper bounds of aggregation. Note that this metric is

identical to the mean square error used in [37].

• Mean Relative Error. It measures how large the errors are relative to the true answers, i.e.,

MRE(P̄(Q)) = 1
|Q|
∑

Q∈Q
∣∣(P̄Q(R(T))−PQ(T))/PQ(T)

∣∣.
We use NMSE for COUNT and SUM, and MRE for AVG.

4.7.1 Attribute Aggregation

We first evaluate aggregation on attribute, with COUNT, SUM and AVG queries, using the HIO,

AHIO and EHIO mechanisms.

Benchmark with SYN-1. First, we evaluate the effect of the volume of the aggregation query. We

sample queries with range volume from 0.04 up to 0.30, and fixed ε = 2.0, d = 2, m = 125 and

dq = 1. Figures 4.6a, 4.6d, and 4.6e show the aggregation errors for HIO, AHIO and EHIO. We

observe that, for COUNT, HIO performs better than AHIO and EHIO, and the reason is that both

AHIO and EHIO spare privacy budget for the rounding value to support attribute aggregation. For

SUM and AVG, AHIO and EHIO outperform HIO consistently. The volume does not have much

effect on COUNT or SUM, and the relative error of AVG decreases as the volume increases.

Second, we evaluate the effect of m, and test with m = 5, 25, 125 and 250 for the aggregation
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Figure 4.6: Aggregation on sensitive attribute using SYN-1.

attribute, with ε = 2.0, d = 2, vol = 0.15, and dq = 1 (Figures 4.6b,4.6f and 4.6g). We first

observe that the domain size has slight effects on the absolute error of COUNT since there is an

logarithmic relation between the hierarchy height and the domain size. As for SUM and AVG, the
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ε = 0.5 1.0 2.0 5.0 True

Q1

HIO 32.74± 20.03 28.25± 6.46 27.49± 4.07 26.6± 0.69

26.62
AHIO 26.88± 5.15 27± 2.82 26.71± 1.2 26.23± 0.75
EHIO 26.93±4.07 26.76±2.06 26.07±1.05 26.7±0.27

AHIO-RDC 26.88± 5.15 27± 2.82 26.71± 1.2 26.23± 0.75

Q2

HIO 44.6± 47.24 35.95± 28.81 33.91± 10.08 30.73± 3.36

29.98
AHIO 24.53± 12.08 24.33± 5.79 29.63± 3.43 29.55± 1.25
EHIO 28.60± 18.71 29.16± 7.2 29.33± 2.89 30± 0.7

AHIO-RDC 31.06±10.37 29.64±4.71 29.58±1.82 29.95±0.69

Q3

HIO −110.27± 320.65 22.76± 121.81 54.35± 73.6 26.32± 8.48

30.82
AHIO 4.15± 133.45 37.5± 67.08 26.21± 20.34 29.57± 4.91
EHIO 42.58± 243.41 26.58± 36.65 29.18± 14.62 30.78± 1.76

AHIO-RDC 25.13±98.24 30.7±25.03 29.18±9.12 30.83±1.74

Figure 4.7: Q1-Q3 on PUMS-P.

domain size does not affect the errors for AHIO or EHIO much, and the error for HIO increases

fast as the domain size increases.

Third, we evaluate the effect of the number of attributes, i.e., d, in the data, and test with d = 2,

3, 4 and 5 (Figures 4.6c, 4.6h and 4.6i). As d increases, all the errors increase.

To better understand the effect of the rounding technique, we evaluate using HIO when the

aggregation attribute is released as non-sensitive. We show its results as HIO-PUB in Figure 4.6,

and we only report for SUM and AVG since its utility on COUNT is the same as HIO. We observe

consistent drop on utility for AHIO and EHIO, compared to HIO-PUB.

We also evaluate the PRP framework when the underlying multi-dimensional analytical fre-

quency oracle is marginal release (MG) [45], and we report the results for augment-then-perturb

using MG (AMG) in Figure 4.6. As the volume increases, the aggregation error of AMG increases

much faster than those of AHIO and EHIO (Figure 4.6d and 4.6e) because MG estimates a large

range predicate with many point conditions. When the volume is not large, e.g., ≤ 0.15, the errors

of AMG are comparable to those of AHIO and EHIO.

Sample Queries on PUMS-P. We test on the PUMS-P dataset with the following three queries:
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Q1: SELECT AVG(UHRSWORK) FROM PUMS-P WHERE MARST = Married;

Q2: SELECT AVG(UHRSWORK) FROM PUMS-P WHERE MARST = Married AND 31 ≤ AGE ≤

70;

Q3: SELECT AVG(UHRSWORK) FROM PUMS-P WHERE MARST = Single AND 31 ≤ AGE ≤ 50.

We set ε = 0.5, 1, 2, 5, and test with HIO, AHIO, EHIO and AHIO-RDC. For each setting, we

release the data 10 times, evaluate Q1-Q3 on the 10 releases, and report the mean aggregation re-

sults, together with the standard deviations, in Figure 4.7. We include the true results for the three

queries in the right-most column. For all mechanisms and settings, i.e., the pair of query and ε, we

have the true aggregation results in the standard deviation intervals. For each setting, we highlight

the mechanism with the smallest standard deviation because it provides the best confidence inter-

val. We observe that AHIO, EHIO and AHIO-RDC consistently out-performs HIO, and AHIO and

EHIO are comparable. AHIO-RDC performs better than AHIO, especially for the more selective

queries, e.g., Q3. In addition, the standard deviation increases when the range predicate gets more

selective, and decreases as ε increases.

4.7.2 Range Consistency Optimization

We next evaluate the effect of the range consistency optimization on attribute aggregations using

the AHIO and AHIO-RDC mechanisms. We use SYN-1 with 4 ordinal sensitive attributes, and

fix ε = 2. We evaluate the effects of dq and the number of top decomposition k. In particular,

we evaluate aggregation queries with range predicate on dq = 1, 2, 3 and 4 of the attributes, and

vary k to be 2, 4, 8 and 16. Figures 4.8a, 4.8c and 4.8e show the results. We observe that HIO-

RDC improves the utility for COUNT and SUM, as the number of sensitive attributes in the range

predicate increases. In addition, larger k performs better when the number of attributes in the

predicate is larger, which is consistent with Equation (4.27). Note that the improvement on utility

is not exactly k because the analysis in Lemma 10 is the upper bound when the k decompositions
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Figure 4.8: Effect of range consistency optimization using SYN-1. Left: aggregation on sensitive
attribute. Right: aggregation on non-sensitive attribute. k indicates the number of top decomposi-
tions and dq indicates the number attributes in the range predicate.

are of the same error bound, which is not guaranteed for randomly selected range predicates in our

experiments.

To benchmark the effectiveness of the range consistency optimization against the state of the

art, we compare the utility of HIO-RDC against that of HIO, using queries that aggregate on the

non-sensitive attribute of SYN-1 with range predicate on 1, 2, 3 and 4 of the ordinal attributes,

and k ∈ {2, 4, 8, 16}. Figures 4.8b, 4.8d, and 4.8f show the results, and HIO-RDC consistently

outperforms HIO for all the three types of aggregations.
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Figure 4.9: Joint aggregation over SYN-2. Left: one-to-one, C, O, CO indicate one categorical,
one ordinal, one categorical and one ordinal attributes in the predicate, respectively. Right: one-
to-many, τ is the truncation number.

4.7.3 Joint Aggregation

Finally, we evaluate joint aggregation across two tables. We first evaluate with SC-JOIN, HIO-

JOIN and HIO-JOIN-RDC using SYN-2 for sensitivity analysis. Then we evaluate with HIO-

JOIN and HIO-JOIN-RDC on PUMS-H as case-study.

One-to-one. We test with queries of different range predicates on the attributes: i) C: one point

condition; ii) O: one range condition; and iii) CO: one point and one range conditions. The

volume for the range condition is fixed at 0.12. If the predicate involves only one attribute, then
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the aggregation attribute is in the other table. Figures 4.9a, 4.9c and 4.9e show the results. First, the

overall estimation utility improves as either ε or the table size n increases. Second, as the predicate

gets complicated, HIO-JOIN outperforms SC-JOIN. In addition, HIO-JOIN-RDC consistently

improves the aggregation utility over HIO-JOIN.

One-to-many. We test with queries that aggregate on the attribute with the CO range predicate

of volume 0.12. We evaluate the HIO-JOIN and HIO-JOIN-RDC schemes because, as we show

above, SC-JOIN is worse than HIO-JOIN for this kind of range predicate. For the one-two-many

setting, we enforce the user-level LDP using τ -truncation, and we evaluate the same aggregation

with τ = 1, 2, 4. Figures 4.9b, 4.9d and 4.9f show the results. First, larger ε or table size n

leads to better estimation utility for all types of queries. Second, as τ increases, the estimation

utility on COUNT and SUM decreases, and the effect on AVG is not substantial. Third, the range

optimization technique improves the overall utility consistently.

PUMS-H Case Study. We conduct a case study using the PUMS-H dataset, for Indiana and

Illinois, respectively. The study answers the following question: how many people living in Indiana

(Illinois) are in the city Indianapolis (Chicago) and in the specific age group? In addition to the

count, we include in the analysis the sum and average on AGE. The age groups are [1-20], [21-45],

[46-70], [71-95] and [96-120]. We evaluate HIO-JOIN and HIO-JOIN-RDC, and set ε = 2 and 5.

The truncation number τ is fixed at 1 for this study. Figure 4.10a, 4.10c and 4.10e show the results

for Indiana, and Figure 4.10b, 4.10d and 4.10f for Illinois.

4.7.4 Handling Group-by Queries

Our solution can be extended for group-by queries to perform aggregation analysis over joins

of relations from different services and summarize the results by some group-by attribute. To

answer the group-by queries, we share the same assumption, as previous works [5, 51, 131] do,

that the dictionary (i.e., the set of all possible values) of the group-by attribute is known to public.

Note that this assumption does not affect the privacy of each individual’s data, as the dictionary is
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Figure 4.10: Joint aggregation over PUMS-H. Left: Indiana. Right: Illinois. The predicate is
“CITY = x AND AGE ∈ [l, r]”.

independent on the content of the data and is usually public knowledge (e.g., group by CITY or

RACE).

Algorithm HIO-GROUP-BY. Consider a query Q = (A,C, T ) aggregating A under predicate

C on a relation or join of relations T , with a group-by attribute G. Abusing the notation, we

also use G to denote the dictionary of attribute G. With the perturbation algorithms (τ -Truncation

and Partition-Rounding-Perturb framework to ensure ε-uLDP) unchanged, our query estimation

algorithm HIO-GROUP-BY is outlined in Figure 4.11. Let consider two cases:

If G is a nonsensitive attribute and known to public, we can partition the perturbed relation
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Aggregation query Q = (A,C, T ) group by G:

1: for v ∈ G do
2: if G is nonsensitive then
3: T (v)← σG=v(R(T )) (σ·(·) is selection)

4: Sv ← P̄
(A,C)
HIO-JOIN(T (v))

5: else Sv ← P̄
(A,C∧G=v)
HIO-JOIN (R(T ))

6: return S

Figure 4.11: HIO-GROUP-BY: for group-by queries
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Figure 4.12: One run of HIO-GROUP-BY es-
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Figure 4.13: Average errors (over 15 runs) of
HIO-GROUP-By by group.

R(T ) by G. For each group v ∈ G, we read the perturbed tuples of this group into T (v) (line 3)

and apply HIO-JOIN on T (v) to estimate the aggregation value (line 4).

If G is a sensitive attribute, we can still enumerate all possible values of G with the public

dictionary, but cannot access its true value for each perturbed tuple in R(T ). To estimate the

answer to Q, we rewrite it a bit: for each group v ∈ G, we extend the predicate C to be “C∧G = v”

and apply HIO-JOIN to process Q with the extended predicate on R(T ) (line 5). In this way, we

obtain an unbiased estimate of the aggregation value for each group.

Error bounds. If G is non-sensitive, the error bound of estimated aggregation in each group

follows from Lemmas 5, 6, or 9 for different join types. As each group is processed independently,

the mean squared error (MSE) is proportional to the size of the group (n in the lemmas is equal to

the number of tuples in each group).

The case when G is sensitive is more difficult. The error bound for different join types again
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follows from Lemmas 5, 6, or 9. However, since the aggregation value is recovered from all the

perturbed tuples with an additional constraint “G = v”, the MSE is proportional to the total number

of tuples in T (n in the lemmas is equal to |T |) as well as the aggregation value. Note that MSE is

the “squared” error, the above error bound implies that, for groups with large aggregation values,

the relative estimation errors are smaller.

Case study and empirical evaluation. We test a group-by query on the PUMS-H dataset: what

are COUNT and SUM(Income) of people whose households are in Chicago, grouped by RACE1?

All the attributes, including RACE, are sensitive. We compare the estimates obtained by HIO-

GROUP-BY in one run (ε = 5) with the ground truth (Figure 4.12), and further report the average

error (NMSE) of each group for 15 runs of the mechanism (Figure 4.13). The key observation is

that, our HIO-GROUP-BY preserves the trend across groups very well especially for large groups

(e.g., groups ‘W’ and ‘A’), which enables us to identify the “top groups” and support accurate

decision making on them. NMSE for all the groups are very close, which is consistent with the

theoretical error bounds. For small groups (e.g., groups ‘J’ and ‘O’), the error is relatively large

because of small aggregation values, which is an inherently difficult case for DP-based estimations.

1. W: White; A: African American; N: American Indian or Alaska Native; C: Chinese; J: Japanese; O: Other Asian
or Pacific Islander.
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CHAPTER 5

SEARCHING ENCRYPTED DATA WITH SIZE-LOCKED INDEXES

5.1 Introduction

Client-side encryption protects data stored at untrusted servers, but deploying it poses both us-

ability and security challenges. Off-the-shelf file encryption disables server-side data processing,

including features for efficiently navigating data at the request of the client. And even with well-

designed special-purpose encryption, some aspects of the stored data and user behavior will go

unprotected.

This work concerns text searching on encrypted data, and targets replicating, under encryption,

the features provided in typical plaintext systems efficiently and with the highest security possible.

Diverse applications are considered, but a concrete example is a cloud storage service like Drop-

box, Google Drive, and iCloud. These systems allow users to log in from anywhere (e.g., from a

browser) and quickly search even large folders. The search interface accepts multiple keywords,

ranks the results, and provides previews to the user. To provide such features, these storage ser-

vices retain access to plaintext data. In contrast, no existing encrypted storage services (e.g., Mega,

SpiderOakOne, or Tresorit) supports keyword search.

The problem of implementing practical text search for encrypted data was first treated by Song,

Wagner, and Perrig [142], who described several approaches to solutions. Subsequently a primitive

known as dynamic searchable symmetric encryption (DSSE) was developed over the course of an

expansive literature (c.f., [23–25, 30, 32, 40–42, 56, 86, 88, 94, 110, 143, 171]). But DSSE doesn’t

provide features matching typical plaintext search systems, and more fundamentally, all existing

approaches are vulnerable to attacks that recover plaintext information from encrypted data. The

security of DSSE is measured by leakage profiles which describe what the server will learn. Leak-

age abuse attacks [22, 29, 61, 64, 79, 116, 130, 152, 162, 176] have shown that DSSE schemes can

allow a server to learn substantial information about the encrypted data and/or queries. Even more
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damaging have been injection attacks [29,176], where adversarially-chosen content (documents or

parts of documents) are inserted into a target’s document corpus. After inserting a small amount

of content, an attacker can identify queried terms accurately by observing when those documents

are returned, which is revealed by the so-called results pattern leaked by DSSE schemes.

Contributions. This work returns to a simple, folklore approach to handling search over encrypted

documents: simply encrypt a standard search index, storing it remotely and fetching it to perform

searches. In fact this idea was first broached, as far as we are aware, by the original Song, Wagner

and Perrig [142] paper, but they offered no details about how it would work and there has been no

development of the idea subsequently. While the approach has many potentially attractive features,

including better security and the ability to provide search features matching plaintext search, it

has not received attention perhaps because it seems technically uninteresting and/or because the

required bandwidth was thought impractical — indexes can be very large for big data sets.

We initiate a detailed investigation of encrypted indexes. Our first contribution is to show

the insecurity of naively encrypting existing plaintext search indexes, such as those produced by

the industry-standard Lucene [1]. The reason is that Lucene and other tools use compression

aggressively to make the index — a data structure that allows fast ranking of documents that

contain one or more keywords — as compact as possible. Compression before encryption is well

known to be dangerous, and indeed we show how injection attacks would work against this basic

construction.

We therefore introduce what we call size-locked indexes. These are specialized indexes whose

representation as a bit string has length that is a fixed function of information we allow to leak. We

show a compact size-locked index whose length depends only on the total number of documents

indexed and the total number of postings handled. By coupling our size-locked index with standard

authenticated encryption, we are able to build an encrypted index system that works with stateless

clients and provides better search functionality (full BM25-ranked search) than prior approaches,

while resisting both leakage abuse and injection attacks. We provide a formal security model and

90



analysis.

Our encrypted size-locked index already provides a practical solution for moderately sized doc-

ument sets. But for larger document sets it can be prohibitive in terms of download bandwidth,

for example providing a 217 MB index for the full 1.7 GB classic Enron email corpus. Here prior

techniques like DSSE require less bandwidth to perform searches. We therefore explore optimiza-

tions to understand whether encrypted indexes can be made competitive with, or even outperform,

existing approaches.

We show two ways of partitioning our size-locked indexes to reduce bandwidth. Our vertical

partitioning technique exploits the observation that, in practice, clients only need to show users a

page of results at a time. We therefore work out how to securely partition the index so that the top

ranked results are contained within a single (smaller) encrypted index, the next set of results in a

second-level index, and so on. Handling updates is quite subtle, because we must carefully handle

transferring data from one level to another in order to not leak information in the face of injection

attacks. We provide an efficient mechanism for updates. We show formally that vertical portioning

prevents injection attacks and only leaks (beyond our full index construction) how many levels a

user requested. Because most users are expected to most often need only the first level, vertical

partitioning decreases average search bandwidth by an order of magnitude.

We also consider horizontal partitioning which separates the space of keywords into a tunable

parameter P of partitions, and uses a separate vertically partitioned size-locked index for each.

This gives us a finely tunable security/performance trade-off, since now performing searches and

updates can be associated by an adversarial server to certain partitions. We formally analyze the

security achieved, and heuristically argue that for small P is less dangerous than the result patterns

revealed by prior approaches. In terms of performance, horizontally plus vertical partitioning

enable us to almost match the bandwidth overheads of DSSE. For Enron fetching the first page of

results requires just 0.95 MB.

91



5.2 Problem Setting

As mentioned in the introduction, we target building efficient encrypted search for cloud services

such as Dropbox, Google Drive, Mega, and others. Some already offer client-side encryption

(without search), and for others it is straightforward to add it. We will therefore leave the actual

file storage out of our modeling, and assume that filenames and content are encrypted, and focus

on adding search capabilities in a practical way. We target search functionality that matches that

of plaintext services that handle search by directly accessing plaintext data on the server side.

To understand search in contemporary storage services, we briefly surveyed several widely

used ones. Some features are not precisely documented, in which cases we performed simple

experiments to assess functionality. We summarize our findings in Figure 5.1. We do not include

in the table encrypted services like Tresorit, Mega, Sync.com, and SpiderOakOne which provide

client-side encryption but only currently allow search of (unencrypted) filenames (for the first

three) or no search at all (for SpiderOakOne). As can be seen, search features vary across plaintext

services. Most support conjunctions of keywords (but not disjunctions), perform relevance ranking

of some small number k of returned results, and update search indices when keywords are added

to documents. Interestingly, none of these services appear to update search indices when a word

is removed from a document (i.e. once a word is added, that document will contain that word

forever).

All of these services supported both a full-fledged application that mirrored data on a client

as well as lightweight portals for accessing data via the web and mobile apps. When the data is

locally held by the client, search is easy (say, via the client system’s OS tools). For lightweight

clients, search queries are performed via a web interface with processing at the server. Previews of

the top matching documents are returned, but documents are not accessed until a user clicks on a

returned link for the matching document. A user can also request the subsequent pages of results.

In summary, our design requirements include the following.

• Lightweight clients with no persistent state should be supported. Users should be able to log in
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App Type Rank Preview Top-k Update

Dropbox ∧ rel n,d,s,p 10 3

Box ∧,∨ rel n,d,s,p 6 3

Google Drive ∧ rel n,d,s 8 3

Microsoft OneDrive ∧ rel n,d,s 8 3

Amazon Drive ∧ date n,d,s 8 7

Figure 5.1: Search features in popular storage services. Services support either just conjunctions
(∧) or additionally disjunctions (∨) over keywords. The top-k results are ranked according to
relevance (rel) or just date. Previews may of search results may include name (n), modification
date (d), file size (s), and/or the parent directory (p). Search indices may be updated due to edits
within a file (3) or only when documents are added or deleted (7).

with a password and search from anywhere.

• Multi-keyword, ranked queries should be supported. Most services support conjunctive multi-

keyword queries ranked by relevance.

• Query results may be presented in pages of k (k ≈ 10) results with metadata previews, including

name, date and size.

• The addition and deletion of entire documents should be supported. Updating indices in re-

sponse to deletion of words from documents is optional.

Summary. In summary, we do not currently have systems for searching encrypted documents that

(1) come close to matching the functionality of contemporary plaintext search services; (2) that

work in the required deployment settings, including lightweight clients; and (3) that resist attacks.

5.3 Insecurity of Encrypting Standard Indexes

In this section we describe and analyze how modern search indices, should they be encrypted,

are vulnerable to various threats, especially file injection attacks. The basic problem is that the

length of industry-standard indices varies significantly based on the plaintext content, and lengths

are visible even after encryption to an adversary. Despite the suggestion of index encryption being

around for close to twenty years [142], we are unaware of any prior investigations into the security
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of this basic approach.

We recall the approach of Song, Wagner and Perrig [142] of storing encrypted indexes at a

server, fixing some details that were not discussed. We then show that using this approach with

a standard tool like Lucene can result in a system vulnerable to document injection attacks (and

possibly more). The key observation is that changes in the byte-length of the encrypted index blob

will depend on sensitive data in an exploitable way.

Naive encrypted indexing. A simple approach to adding search to an outsourced file encryption

system, such as those discussed in Section 5.2, is to have a client build a Lucene (or other standard)

index, encrypt it using their secret key, and store it with the service. To perform a search, a

lightweight client can download the entire encrypted index, decrypt it, initialize an in-memory

index, and then use it to perform searches. Should client state be dropped (e.g., due to closing a

browser or flushing its storage), the next search will require fetching the encrypted index again.

To perform updates to the index, because a new file is added or new keywords are added to a

file, the system can work in two different ways. The most obvious is to download the encrypted

index (if not already downloaded), update it directly, re-encrypt, and upload. In an update-heavy

workload, where the frequency of document updates is greater than the frequency of searches, it

would be more efficient to defer updating the index until the next search. More specifically, an

update delta d describing the changes to the index (i.e., the new keyword and/or new postings, as

well as changes to document frequencies) can be encrypted separately and appended to an update

list stored in encrypted form at the server. The next time a search is perform, the δ values can be

recovered and merged into the full index. This lazy merging avoids having to download the full

index each time an update occurs.

Prior work has observed that indices can be large, which may make this basic approach in-

efficient for settings where clients or network bandwidth are constrained and the dataset is large.

We will explore efficiency issues in more detail in later sections. A more critical issue is that the

security of this approach is far from certain.
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Figure 5.2: Document-injection attack on Lucene to recover indexed term. The term s∗ results in
a noticeably smaller change in byte-length than other terms.

Security case study: Lucene. Assuming encryption meets a standard notion like CPA security,

a standard reduction would prove that this basic encrypted index approach reveals only the byte-

lengths of index and (in the case of lazy updates) the update messages.

While simple to express, this leakage depends on plaintext data in a complicated way. We

thus performed a simple experiment to highlight the possibility of practically-exploitable issues

with naive encrypted indexing using Lucene. The basic question is: Does the length of encrypted

ciphertexts observed by an adversary enable attacks? Compression (delta encodings and variable-

byte encodings), and data structure overheads mean that the size of the index is related to various

sensitive pieces of information, such as the number of unique keywords present in the index. Fac-

tors like periodic merging and optimization introduce noise variation, obscuring the channel. We

show however that enough information survives in a controlled setting, and conclude that this

system is unlikely to be secure in practice.

We simulated a naive encrypted index using Lucene version 7.7.3. For simplicity, we con-

figured Lucene to immediately merge segments after each update and also disabled the skip list

feature, which accelerates lookup while slightly increasing the index size.1 We also configure

1. We see no reason why these features would prevent attacks, even though they may add extra noises.
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Lucene not to include the positions in the postings because such information are not useful for the

kinds of search queries we target supporting. We use two different built-in Lucene encodings, the

naive SimpleTextCodec and Lucene50 (the default). The adversary is given the byte-length

of the encoding after updates: In the case of SimpleTextCodec only one file is output, and we

used that length. In the case of Lucene50 several files are output, so we used the total sum of

their lengths. This captures the assumption that encryption leaks the exact length of the plaintext

data, which is true of most popular symmetric encryption schemes.

We considered the following file-injection attack setting: An index has been created that con-

tains a single document containing exactly one term which is a random 9-digit numerical, e.g.,

a social security number (SSN) that we denote s∗. An adversary is given a list of 1,000 random

SSNs s1, . . . , s1000, one of which equals s∗. Its goal is determine which si equals s∗. Our attacker

is allowed to repeatedly inject a document of its choosing and observe the new byte-length of the

index. A secure system should keep s∗ secret, even against this type of adversary.

We ran simulated document injection attacks. Our attacker works as follows: It records the

initial byte-length of the index. Then for each of the 1,000 SSNs in its list, the attacker requests

that a document consisting of exactly that SSN be injected. It then records the change in byte-

length of the index. (Documents are not deleted here, so at the conclusion of this attack, the index

contains 1,001 documents.) Finally, the attack finds the injected SSN that resulted in the smallest

change in byte-length, and uses that as its guess for s∗.

The intuition for this attack is that if a term in already in the Lucene index, then adding a

posting with that term should require fewer bytes than a “fresh” term. This is because adding fresh

terms will result in extra overhead, like new head nodes in hash table linked-list which are slightly

larger than other nodes.

We plot two example runs in Figure 5.2, one for each encoding. The horizontal axis corre-

sponds to the injected terms in order, and the vertical axis is the change in byte-length after each

injection. We observe first that our attack works for both encodings, since the smallest change
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corresponded to s∗ (as is visible in the plot). We also observe that this worked despite quite a

bit of noise, especially in case of Lucene50, where the variation in changes due to the internal

function of Lucene is visible. We repeat the attack 100 times, each with a different s∗ from the

1000 candidate SSNs, and the attack succeeded every single time.

Discussion. While a toy example, the highlighted weakness appears to be only the beginning of

an exploration of the size-side-channel in this construction. For instance, an index may compress

its term dictionary, so injecting terms similar to existing terms may result in a different byte-length

change than injection terms that are far from the existing dictionary. We have also not exploited

the variable-byte encoding used in postings lists. And while implementation noise issues may

confound some attacks, we conclude that a well-controlled approach to sizing indexes is required

to have confidence in the security of an encrypted search system.

5.4 Basic Encrypted Size-Locked Indexes

We now describe an approach to encrypted indexes that ensures security from injection and leakage-

abuse attacks. The key technique is what we call a size-locked index, which is an index whose

byte-length encoding is a fixed function of features we are willing to leak, particularly the total

cumulative number of postings N and the number of documents n.

One potential approach for a size-locked index would be to use a standard index tool like

Lucene as a black box, resulting in a (variable length) encoded string, and padding to a target fixed

length. But it is unclear how to do this with any confidence in security as it is hard-to-predict the

length after padding, and adversarial injections may interfere with predicted bounds on length. We

instead take a direct approach to constructing a size-locked index.
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Figure 5.3: Four stages of basic encrypted size-locked indexing. 1©: documents to be indexed;
2©: primary index on the documents; 3©: document updates and their encoding; 4©: primary index

merged with the encoded updates, with new entries shown in red.

5.4.1 A Size-Locked Index

Primary index construction. Our encoder takes as input a standard forward index that includes

document identifiers, the keywords that appear in them, their term frequencies for that document,

and metdata about each document. The encoder operates deterministically and outputs a byte string

〈n〉4 ‖ fwd ‖ inv,

where ‖ denotes string concatenation, 〈n〉4 is an encoding of the number of documents (we use a

four byte representation in our implementation), fwd is an encoded forward index byte string, and

inv is an encoded inverted index byte string. Here and below, for a value v we use the notation

〈v〉k to mean some canonical k-byte encoding of v. We use two configurable parameters: W is

the number of bytes used to encode identifiers and M is the number of bytes of per-file metdata

allowed.

We explain fwd and inv next, starting with inv. The goal is to ensure that they together:

encode the metadata and postings, allow efficient reconstruction of an in-memory inverted index,

and have total byte-length equal to a fixed function of n and N . Because we support updates,

meaning document insertions and edits, the values of n and N will change over time, and we will

make them monotonically increasing as explained further below. Our primary index will achieve

size

(W +W/2 +M) · n+ (W + 1) ·N
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bytes. (We assume that W is a multiple of two.) The first term is the size of fwd and the second

term is the size of inv.

The inverted index. To start, consider a standard inverted index which would consist of a

sequence of posting lists each of the form

w , df(w,D) , (id1, tf1) , . . . , (id`, tf`)

where ` = df(w,D) is the document frequency and tfi = tf(w, di) is the term frequency of w

in document di whose id is idi. We start by compactly encoding keywords w as short, W -byte

hashes, denoted by H(w). We use a cryptographic hash for H and then truncate appropriately.

This replaces variable-length keywords with fixed length hashes. Of course for small W there

can be collisions in which case we simply merge the colliding posting lists. This happens rarely

enough to not degrade search accuracy much.

Next we make term frequencies compactly represented by one-byte values. This will make

BM25 calculations coarser, but still enable sufficiently accurate ranking. Specifically we let t̃fi

be a rounding of tfi to the nearest value expressible in the form a2b, where a, b are four-bit non-

negative integers. We can thus encode each t̃fi = a‖b as a single byte. We dispense with storing

document frequency df(w,D) entirely, as this is equal to the length of the posting list.

This is still not yet sufficient, because concatenating together the resulting posting lists of the

form

H(w) , (id1, t̃f1) , . . . , (id`, t̃f`)

would give a byte string of length dependent on the number of keywords in the search index. We

therefore perform a trick to make a posting list of length ` have exactly (W+1)` bytes. We enforce

domain separation between hashes and document identifiers by fixing the top bit of hashes to be

one, i.e., replacing H(w) with H(w) ∨ 108W−1 and fixing the top bit of all document identities to

zero. Then, we remove id1 in each posting list, making it implicit. We will store information in
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fwd to be able to recover it during decoding. Thus our posting list ends up encoded as

(H(w) ∨ 108W−1) ‖ t̃f1 ‖ id2 ‖ t̃f2 ‖ · · · ‖ id` ‖ t̃f`

and inv is the concatenation of the individual posting lists.

The forward index. We now turn to the forward index fwd. This includes an entry for each

document that includes the document identifier, the metadata, and the number of keywords that

first appear in that document. Let Newi be the set of terms newly introduced by document idi and

let cti = |Newi|, encoded as a W/2-byte integer. For this to make sense, imagine the n documents

are processed one by one, and those terms in the i-th document but not in the previous i − 1

documents are in Newi. Then for each document we include in the forward index the byte string

idi ‖mdi ‖ cti. Then to enable the decoder to fill-in the omitted first identifiers, we sort the posting

lists within inv so that the ct1 posting lists associated to keywords in New1 appear first, then the

ct2 lists for New2, and so on. Thus during decoding we know that the first ct1 = |New1| posting

lists should have added id1, the next ct2 = |New2| have added id2, and so on.

The 1© and 2© stages in Figure 5.3 illustrate how the full primary index looks with two docu-

ments

Update encoding. We want to support adding documents as well as editing documents in a way

that changes the keywords (including repetitions). Updates need to be handled carefully, as other-

wise subtle injection attacks arise like those we described against Lucene in the previous section.

Concretely, suppose we handle in distinct ways adding a new keyword “cat” to a document versus

adding another repetition of an existing keyword “dog” to that document. A natural approach here

would be, in the former case, to add a new posting for “cat” and, in the latter case, just update the

term frequency for “dog”. Consider if our index, via its size, leaks the exact number of postings

in the search index before an update (N ) and after an update (N ′). Then an adversary can perform

an injection attack to infer plaintext contents by inserting different values until they see N ′ = N ,

indicating they inserted a keyword matching an existing one.

We therefore make the total number of postings in the index monotonically increasing as up-

100



dates occur. Thus we will have an invariant that N ′ = N +m where m is the number of modifica-

tions made (additions or edits). This has performance implications (storage and bandwidth), but is

required to avoid injection attacks.

We also use a “lazy” update merging approach to make updates fast. Whenever a document

is added or edited, our construction will encode and encrypt the changes so that they can be ap-

pended to a list of outstanding updates on the server. The updates will be downloaded and merged

into the main index upon the next search. Lazy merging means we can perform updates without

downloading the search index, which is good for performance in when workloads are update heavy.

In detail, an update consists of a document identified by id, metadata md, and list of m updated

term, term-frequency pairs. We use the encoding

id ‖md ‖H(w1) ‖ t̃f1 ‖ · · · ‖H(wm) ‖ t̃fm,

where t̃fi is the rounding of tfi to fit into a single byte as described earlier. For an update with m

postings, this encoding will be exactly W +M + (W + 1)m bytes. Thus the size leaks the number

of changes to the postings list. It does not leak whether a new keyword was added or an existing

keyword updated. The stage 3© in Figure 5.3 shows how to encode the update on existing or new

documents.

To perform a merge, the existing posting list in inv is located, and we add all m postings

to it. Note that we do not delete prior postings: in the case that there are two postings for the

same keyword and document pair, we set one of these to the correct term frequency and make

the remaining term frequencies zero. These latter postings are now essentially padding to mask

whether a new term was added to the document. After processing an update with m postings, we

have that inv’s size increases by exactly (W + 1) ·m bytes. The stage 4© in Figure 5.3 show the

primary index merged with updates on both existing and new keyword and document pairs.
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Update(K, id, δ; ~Cup):

1: Client generates size-locked inv and fwd on id and δ
2: Client sends EncK(〈1〉4‖fwd‖inv) to server, and server appends it to ~Cup

Search(K, q, i; EDB, ~Cup):

4: Client downloads EDB and ~Cup from server
5: Client merges DecK(~Cup) and DecK(EDB) into DB
6: Client sends EncK(DB) to server, and server stores it as EDB
7: Client returns the ranked results in the i page for q in DB

Figure 5.4: Basic encrypted size-locked index construction. EDB and ~Cup denote the encrypted
index and the outstanding encrypted updates. The semicolon in protocol input separates the input
to client (left) and to server (right).

5.4.2 Security Analysis

With our index encodings fixed, converting to an encrypted index is straightforward: just apply a

standard authenticated encryption (AE) scheme to the concatenation of the index byte strings. We

provide detailed pseudocode in Figure 5.4.

At any point in time, EDB at the server will consist of a encoded and encrypted index, along

with possibly several appended update ciphertexts. To upload an update, the client uses our update

encoding, encrypts the result, and uploads it to the server, where the ciphertext is appended to

EDB. To perform a search, the current encrypted primary index as well as encrypted updates

are downloaded, decrypted, and merged. The query is run against the index, and a new primary

index is encrypted and uploaded. A key benefit of this approach is that we can use standard, fast

authenticated encryption tools, such as AES-CCM [53].

We analyze security in two steps: In the first we use cryptographic analysis to show that the

security of the underlying symmetric encryption together with size-locking guarantees that a server

cannot learn more information than is provided via a simple leakage profile. Second, we discuss

what the leakage profile reveals to adversarial servers.

Formal cryptographic analysis. We give an informal overview here and the details in Ap-
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pendix B.1. The definitions follow closely prior formal models from those of symmetric searchable

encryption (c.f., [40]) and we adopt their terminology, calling our security goal L-adaptive secu-

rity. Here L refers to a leakage profile that captures what is allowed to be leaked to the adversarial

server by client messages to it. An update is only allowed to reveal the number of postings included

and a search is only allowed to reveal the total number of documents and postings added thus far

when a search occurs.

Our security model captures an adaptive adversary that observes all interactions with the server.

(In our case this amounts to update ciphertexts and the main primary index ciphertext.) The model

allows the adversary to adaptively choose inputs to insert into the index, thereby capturing active

injection attacks. The only secret is the encryption key. The formalisation asks that the adversary

cannot distinguish the server’s view when receiving real encryption indexes from ones generated

by a simulator that only receives the leakage specified by L.

We prove in Appendix B.1 that our encrypted size-locked index achieves L-adaptive security

assuming the underlying encryption scheme is secure (in the standard sense of indistinguishability

under chosen plaintext attack), for an L that intuitively reveals the number of postings in updates,

and the number of documents added to the system. A benefit of our approach is that ours proof is

very simple, and in fact most of the work is done in the encoding analysis.

Leakage-abuse analysis. The formal cryptographic analysis implies that only the leakage speci-

fied by L is revealed to an adversary. This leakage is strictly less, in a formal sense, than efficient

DSSE schemes (which do not achieve the same level of functionality as our scheme, see Ap-

pendix B.2 where we discuss adapting existing SSE schemes to enable ranking). In particular L

does not reveal the results patterns exploited by prior leakage abuse attacks [29, 79, 130, 162, 176].

We even hide the number of search results, completely preventing other attacks that get by with

just that leakage including [22, 29]. Our leakage does reveal some information about updates (as

do prior DSSE schemes), and in theory an adversary can use this to infer something about the

magnitude of changes made to documents. But we are aware of no practical attacks known that
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exploit this type of leakage.

Our leakage also is crafted to ensure resistance to injection attacks [29,176]. The reason is that

the leakage revealed via a sequence of updates is independent of whether those updates touch on

keywords already present in the index.

Finally we note that in a deployment, a user may click on documents after a search, leading to

the revelation of the access pattern. If a user requests every page of results and clicks on every

result, then in principle the results pattern would leaked by prior DSSE schemes would also be

revealed by our schemes. In practice users may be unlikely to actually do this, and whenever they

opt not to click a result, it is not revealed in the access pattern, leading a false negative for an attack.

Users may also click on additional documents unrelated to the search, further confusing attacks.

5.5 Partitioning Size-Locked Indexes

While providing stronger security than previous encrypted search systems, the size-locked index

from the previous section may result in high bandwidth requirements for initializing a light client.

In this section we introduce techniques to improve bandwidth at the cost of some additional, tun-

able leakage. The high-level idea is to partition indexes vertically (i.e., slicing postings lists) or

horizontally (i.e., placing postings lists into buckets on a per-term basis), or both.

Vertical partitioning nicely matches the paginated nature of user-facing search while saving

bandwidth, and introduces almost no additional leakage (concretely, once implemented properly

it only leaks how many pages are being requested). Horizontal partitioning reflects the fact that

not every posting list is needed to process a particular query, and provides additional bandwidth

reduction, though at the cost of some leakage about keywords being searched.

Naive attempts at partitioning result in damaging leakage that enable attacks of the sort we

identified against the Lucene-based solution earlier. Thus we introduce a size-locked versions of

partitioning that carefully pad or truncate partitions according to fixed functions of the number

of postings. As with our first construction from the previous section, our priority is security via
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small leakage, and our constructions will allow for violations in correctness if necessary. We can

however argue in a principled way that correctness is unlikely to be violated in practice due to

typical text data distributions.

5.5.1 Vertical Partitioning

An insecure attempt. We begin with a straw proposal to highlight the subtleties and motivate

our solution. Consider a modification of our scheme from the previous section which works by

dividing every posting list into pages of k postings each, and then encodes all of the first pages

together in one encrypted blob B1, the second pages in another encrypted blob B2, and so on. For

a search that requests page pg, one downloads blob Bpg and looks up the corresponding term. Let

us generously assume that updates are done by downloading all of the blobs, re-ordering lists, and

then re-encoding and uploading all of the blobs. (This is impractical but good for security, which

is our concern at the moment.)

This strategy is strictly more leaky than before, since the size of each blob is revealed. Even

if the encoding size-locked to only reveal the number of postings in the blob, this revelation is

exploitable by injection attacks. For example, an adversary can inject a document containing w

and observe which level grows to learn the rounded document frequency of w.

This attack allows an adversary to recover statistics about the plaintext, such as if a particular

term appears anywhere (i.e., if the postings list has positive length), so we conclude that this

approach provides unacceptable security for our setting.

Overview of size-locked vertical partitioning. We propose a secure vertical partitioning algo-

rithm that results in index partitions whose sizes are “locked” by the features of the dataset we are

willing to leak.

Our strategy is to fix a capacity function Cap : Z+ → Z+ that determines a partition size

Cap(N) for a corpus withN postings; We defer how this is done for the moment. We then maintain

an invariant on our size-locked partitions, requiring that each vertical partition except the last one
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hold exactly Cap(N) postings. This will completely mitigate the size leakage issue because the

sizes are all determined by N only, and not the number of terms or how postings are distributed

amongst the terms.

We now overview our construction. The vertical partitioning strategy works by splitting the

index across a number L = dN/Cap(N)e of levels. Each level has associated to it an encrypted

index B1, . . . , BL and an encryptd update cache C1, . . . , CL, both stored at the server. Updates

are performed lazily, by appending encoded and encrypted information to the first level cache C1.

To search, one begins by downloading just the first level (B1, C1), decrypting and decoding

them, and performing the search using whatever postings are available. To process any outstanding

updates in C1, the client uses a policy function (to be fixed below) which dictates the postings that

should remain in the first level and the postings that will be evicted to the next level. These evicted

updates are encrypted and appended to C2. The number of evicted postings is exactly the number

of new postings in the updates included inC1. (Recall that we leak the number of postings included

in an update.) This ensures the invariant for B1.

If more results are requested, then additional levels are accessed as needed, and the process

above is repeated. Thus an update of size m eventually results in what looks like m postings being

moved from each level to the next.

To realize this approach, we need to fix a number of details, including specifying Cap and an

eviction policy, as well as how to encode both the primary indexes (which require some changes

due to levels) and the evictions.

Capacity function. Our goal is to select Cap so that the top-k postings for the entire corpus

sum to about Cap(N) total postings. If Cap overshoots this target then extra postings can be

opportunistically packed into the level, so the space is not wasted, but we would prefer not to in

order to reduce bandwidth. If Cap undershoots the target, then not all of the top-k postings will fit,

resulting in some searches not being properly handled. In any case, security does not depend on

the accuracy Cap.
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Figure 5.5: Comparing Cap(N) to N10, the total number of postings in the top-10 of postings-lists
across three datasets and for varying . We added documents in random order, measuring the ratio
N10/N after each addition. Heap’s Law is apparent in the shape of each curve, and our choice of
Cap proves conservative.

We would like to simply set Cap(N) = kt, where k is the page size (e.g., k = 10) and t is

the number of terms in the corpus. But we do not want to leak t which varies as new keywords

are added to the document corpus. Fortunately, on typical text t behaves in a predicable fashion

known as Heap’s Law (c.f., [103], Chapter 5.1.1) which predicts that t ≈ α · Tβ , where T is the

total number of occurrences of terms in the corpus (i.e., the sum of all of the term frequencies

across all document/term pairs) and α, β are constants satisfying 10 ≤ α ≤ 100 and β ≈ 0.5.

Following this, we conservatively take α = 20 and β = 0.5, and use the bound N ≤ T , and set the

capacity function to be

Cap(N) = min{N , 20 · k ·N0.5} .

To estimate how this will perform in practice, we compare this function to the size required to store

the top-k postings for k = 10 and the datasets we use for evaluation in Section 5.7. See Figure 5.5.

We find that the estimate provides a large margin above what is required. This slack is both from

our conservative choice of constants α, β, and the fact that many postings lists contain fewer than

10 postings.

Primary vertical partition encoding. We encode the first partition differently from the rest, which
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are all encoded the same. The difference will be that the first partition will hold the entire forward

index associating identifiers to metadata, as well as document frequencies for each term, stored in a

size-locked way. The high-level structure of the first partition is again 〈n〉4 ‖ fwd ‖ inv, where fwd

is encoded exactly as before. We change the encoding of inv in order to explicitly store document

frequencies (recall these were implicit before; now, since we do not have entire postings lists they

must be stored explicitly). We can not naively write the document frequencies into a separate table

due to size-locking, as we should not reveal the number of terms.

We encode inv by processing postings lists in order as before, with the same encoding, except

that each posting includes an extra byte. We process the list for term w to compute its document

frequency df, and encode it in as many bytes as needed, in little-endian order; call these bytes

df1, df2, . . ., where the unused bytes are implicitly zero. We then encode the posting list for w as

(H(w) ∨ 108W−1) ‖ t̃f1 ‖ df1 ‖ id2 ‖ t̃f2 ‖ df2 ‖ · · · ‖ id` ‖ t̃f` ‖ df`.

Note that while the document frequency byte encoding varies in length, it will not be leaked, be-

cause we pad each posting regardless. We will also always have enough space for the df encoding:

In a list of length ` we will have2 ` bytes to encode df = `. This completes the description of

encoding the first partition. For an index with W -byte identifiers, M -byte metadata, n documents,

and N total postings, the encoding will have length

(W +W/2 +M) · n+ (W + 2) ·min{N,Cap(N)}.

We next describe how the other partitions are encoded. The input here is partial posting lists of

the form

H(w), (id1, t̃f1), . . . , (id`, t̃f`) .

Our encoder sorts the terms by their document frequency (which is available as we assume the first

partition has been loaded). It then encodes this a posting list as

(id1 ∨ 108W−1) ‖ t̃f1 ‖ id2 ‖ t̃f2 ‖ · · · ‖ id` ‖ t̃f`.

2. Formally, we use that 256` − 1 > ` for all positive integers `.
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In words, the first identifier has its top bit set, and rest are encoded with their rounded term fre-

quencies (and top bits cleared) exactly as before. This encoding does not include the hashed terms

themselves. The decoder can infer this association using the document frequencies from the top

partition (the first posting list corresponds to the term with highest document frequency and so on).

The byte-length of this encoding is (W + 1) · Cap(N). The last partition may contain fewer than

Cap(N) postings, in which case the length is appropriately adjusted.

Updates and evictions. Updates are encoded exactly as in the basic scheme before they are ap-

pended to the top-level update cache C1.

We opted for a simple greedy policy to determine which postings are stored in each tier. First,

fix an ordering over keywords that matches the ordering in which they were added to the corpus,

and breaks ties (due to being added by the same document) arbitrarily. Then we loop over keywords

in that order, adding to their posting list the next highest posting by BM25 for that keyword. This

round robin approach ends when Cap(N) postings have been processed. To get the next level’s

postings, remove all the postings from the first level from consideration, and otherwise repeat the

process. BM25 ties within a list are broken arbitrarily.

When processing updates incrementally, the eviction policy can be evaluated with just the

current level and the outstanding updates for that level. In case of two postings for the same

document and term, we keep one with (updated) term frequency and zero out the term frequency

of the other. Then we combine the new and old postings to get a set of Cap(N) + m eligible

postings, and perform the round-robin approach using those postings. The remaining m postings

will then become the postings shifted to the next lower level. We encode each of those postings as

a (2W + 1)-byte string H(w) ‖ id ‖ t̃f, and concatenate them together to form a single string of

length (2W + 1) ·m.

We provide the pseudocode for the vertically partitioned encrypted size-locked index construc-

tion in 5.6.

Leakage profile. The leakage profileL of this construction is exactly the same as before except the
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Update(K, id, δ; (~C1, . . . )):

1: Client generates size-locked inv and fwd on id and δ
2: Client sends EncK(〈1〉4‖fwd‖inv) to server, and server appends it to ~C1

Search(K, q, i; (B1, . . . ), (~C1, . . . )):

4: Client initializes DB as empty
5: for l = 1, . . . do
6: Client downloads Bl and ~Cl from server
7: Client merges DecK(~Cl) and DecK(Bl) into DB
8: Client looks up for ranked results in the i page for q using DB
9: Client vertically partitions DB: encrypts and sends (1) the top Cap(N) postings as Bl,

and (2) the remaining postings as update to ~Cl+1, to server
10: if no word in DB has more results in the i-th page then break
11: Client returns the search results

Figure 5.6: Vertically partitioned encrypted size-locked index construction. Bl and ~Cl denote the
encrypted vertical partition and outstanding updates at level l.

requested number of levels is also leaked. The sizes of all of the levels Bi are determined precisely

by the total number of documents and postings, via the capacity function and the size-locked

encodings. As described above, the update caches reveal only the number of postings included in

updates. Notably, all this means that injection attacks fail.

In deployment, a natural approach will be to request more levels when a user requests further

results. The server will therefore learn that more results were desired, which could reveal some

information about the number or quality of postings in the previous tiers. We do not know how

this could be exploited by an adversary (it would require a model of user behavior), and it is not

a threat model that has been treated in prior leakage abuse attack research. Even so, implementa-

tions could potentially obfuscate even this information by automatically fetching subsequent levels

automatically regardless of user behavior.
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5.5.2 Horizontal Partitioning

Our next extension is simple: we just horizontally partition the keyword space and build separate

size-locked indexes for each of partition. At a high level, we will assign each term to one of

P buckets via a pseudorandom function (PRF), and run P parallel versions of either our basic

or vertically-partitioned constructions. This roughly reduces the search bandwidth by a factor

of P (for single-term queries), at the cost of extra leakage (because touching the buckets limits

the possibilities for the query or update). Techniques similar to this have been studied in the

information retrieval literature [113, 173] for load balancing and parallel index lookup, and also

recently for DSSE schemes [42].

We implement this by having the user derive an additional key K ′ for a PRF (e.g. HMAC-

SHA256), and assigning a term to a bucket via p = PRF(K ′, w) mod P . For updates, the new

postings are assigned to their respective partitions, and an update is issued to each partition with

the assigned postings. A query for a single term is run against one partition, and a multi-term query

is run by executing the query against the relevant partitions and then ranking the results together

(once the partitions are downloaded, we can compute BM25 on the entire query).

Leakage analysis. The leakage profile here is more complicated to describe formally, but intu-

itively simple. Via the PRF, there is a random-looking association between terms and partitions.

When an update is issued, the server learns how many postings and documents are being added

to the partitions determined by the random mapping. A search reveals which partitions are being

touched along with the number of levels requested (if also using vertical partitioning). The result

pattern is otherwise hidden. A formal version of this leakage is given in Appendix B.1.

The possibility of leakage-abuse and injection attacks against this construction depends on the

number of partitions. For a single partition, it reduces to the previous construction. If we set

the number of partitions so large that they all contain a single term, then the construction will be

vulnerable to document injection attacks: the adversary can insert documents with single terms

and learn which term is contained in each partition. Subsequently it can identify searches.
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With a modest number of (say, 10) partitions, it is less clear how to attack the system in a

practical setting. Via document injection, an adversary can eventually learn the mapping of some

chosen terms to partitions, so let us pessimistically assume that the map is fully known. Then

for single-term queries, the adversary can determine which bucket the query was in. For a small

number of partitions, the buckets will be large. If an adversary however knows that the query takes

one of a few values (say querying “april” versus ”june”), then it can identify which query was

issued with good probability. But if the query is not from a small set, then it may be difficult to

identify it amongst the large number of terms assigned to the bucket.

5.6 Secure Binary Index Lookup

5.6.1 Secure Binary Index Lookup without Partitions

The straight-forward approach to search with the encoded index is to first decode it into the in-

memory index, consisting of the inverted index and the forward index, and then to lookup the

postings of the query keywords in the inverted index to identify the documents. Fully decoding

the encoded index file, however, takes time linear in the total number of postings in the index, and,

therefore, such an approach cannot scale as the size of the document collection increases.

An optimized approach is to store a lookup table, mapping from the word hashes to the offsets

of the bytestrings for their posting lists in the encoded index. Thus, we can first identify the

offsets of the posting lists of the query keywords, and then skip to those offsets to decode only the

necessary postings. Even better, we can order the word hashes in the lookup table by their values,

and use binary search to quickly identify the offsets at query time. The decoding cost will be linear

to the summation of document frequencies of the query keywords, which is asymptotically much

smaller than the index size. The extra space overhead is linear to the number of words covered in

the lookup table.

The major problem with naively applying this optimization is that including all the words in the
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index in the lookup table will leak the total number of words in index, and, with file-injection ca-

pability, the attacker can learn whether a word is in the index or not. To resolve such size leakage,

we construct the lookup table based on the estimated number of words in the document collection,

instead of the exact number, following Heap’s law. Heap’s law states that, for a document collec-

tion withN postings, the number of unique words is roughly α ·Nβ , and we conservatively choose

α = 50 and β = 0.5 to let the estimated number of words be an overestimate. In the rare case in

which the estimated number of terms is smaller than the exact number of terms, some words will

not appear in the lookup table, and we fall back to the straight-forward approach, i.e., decoding the

entire index. Hence, the size of the lookup table is 50(2W + 4) ·N0.5 because we store, for each

word hash of W bytes, the W -byte identifier of the first document that introduces the word and 4

bytes offset, and the size only leaks total number of postings in the index.

5.6.2 Secure Binary Index Lookup with Partitions

The optimization for fast keyword search using a size-locked binary lookup table (Section ??) can

be adapted for both vertical and horizontal partitioning.

For vertical partitioning, we use the same estimated number of words from Heap’s Law over

the entire document collection to construct the binary lookup tables for all vertical partitions: for

each partition, we fill in the lookup table with the word hashes, together with their offsets, from the

partition, as well as dummy entries, up to the estimated number. The first partition requires W + 4

bytes per word to help identify both the first document for the word and the offset of the posting

list, while the subsequent ones only need 4 bytes per word for the offset of the posting list.

For horizontal partitioning, the expected number of words in each partition is 1
P of the total

number of words, and we divide the estimated number of words from Heap’s Law over the entire

document collection by P to determine the lookup table size for each horizontal partition. Within

each horizontal partition, the construction of the lookup table across vertical partitions is the same

as described above.
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5.7 Evaluation

We experimentally evaluate our proposed constructions, particular to answer the questions: (1)

Are size-locked index-based constructions feasible in practice, in terms of bandwidth and end-to-

end processing time? (2) Do they provide accurate ranked search results, compared to plaintext

searches?

Experimental setup. We implemented the schemes from Sections 5.4 and 5.5 in Python, and

plan to release our prototype as a public open-source project. It uses the PyCryptodome library’s

implementation of AES-CCM-128 for authenticated encryption, and HMAC-SHA256 for a PRF.

For all symmetric cryptographic tools, we fix the key size to be 128 bits. We use BLAKE2b

for the hash function. As for the encoding parameters, we fix identifier/term hash with W = 4

bytes (giving a term collision rate less than 10−4 for our target datasets), the document metadata

consisting ofM = 14 bytes (6 bytes for the name; 2 bytes for encoding the length of the document;

2 bytes for encoding the number of words in the document; 4 bytes for a timestamp).

We refer below to our full index scheme as FULL, the vertically partitioned scheme as VPART,

and the scheme using a combination of vertical and horizontal partitioning as VHPART. We vary

the number of horizontal partitions between 10 and 1,000, and utilize the Cap function described

in Section 5.5.1 to bound the sizes of all vertical partitions.

We run experiments with one machine as client and the Amazon S3 as the storage service

provider. We test as the client with a variety of machines: (i) iMac Mojave with Intel quad-core

4.00GHz CPU and 16 GB RAM; (ii) MacBook Pro with Intel dual-core 2.70GHz CPU and 8 GB

RAM; and (iii) AWS EC2 instance with Intel dual-core 2.30GHz CPU and 8 GB RAM. We test un-

der different network bandwidth conditions: LOW: home wifi router with 12-25Mbps downstream

and 2Mbps upstream bandwidth; MED: department wifi router with 80-160Mbps downstream and

250Mbps upstream bandwidth; and HIGH: AWS data-center network with 700Mbps downstream

and upstream bandwidth.
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Dataset Size (MB) |D| |W | |DB| Lucene

Ubuntu 116 1,038,324 95,120 6,674,297 16.8
Enron 1,700 517,400 252,904 43,358,907 101.8

NYTimes 846 300,000 101,470 69,665,021 115.1

Figure 5.7: The datasets used for our experiments. The first column is size of the datasets in
MB, followed by: the number of documents |D|, the vocabulary size |W |, the number of unique
word/document pairs |DB|, and the size in MB of a standard Lucene index for the corpus.

Dataset FULL
VPART VHPART-10 VHPART-100

L1 L2 L1 L2 L1 L2

Ubuntu 45.7 16.3 3.67 5.76 0.34 0.90 0.04
Enron 217.7 17.3 9.10 6.50 0.90 2.19 0.09

NYTimes 340.4 17.8 11.50 4.85 1.15 3.05 0.12

Figure 5.8: Search bandwidth cost (in MB) after adding all documents in corpus. L1/2 stands for
level 1 and 2 in vertical partitioning.

Datasets. We evaluate with three public datasets: the public Enron email collection (Enron) [2],

the Ubuntu IRC dialogue corpus (Ubuntu) [4], and a collection of New York Times news arti-

cles (NYTimes) [3]. All of these have been used in previous works on either searchable encryp-

tion [29, 79, 176] or information retrieval [101, 155]. Summary statistics for the datasets appear in

Figure 5.7. Note that the Enron and Ubuntu datasets are raw textual data without preprocessing,

and, for indexing, we preprocess the text with stop word removal [103] and Porter stemming [129].

The NYTimes dataset has already been preprocessed into terms, which we directly use for index-

ing.

Search bandwidth cost. We start by measuring the search bandwidth cost of the constructions,

after adding every document and merging them into the primary indexes. We focus on the cold-

start setting, where the client starts with no state locally.

The search bandwidth costs of the constructions are shown in Figure 5.8. For FULL, the en-

tire index needs to be downloaded for a fresh search, and our specialized encoded index leads to

bandwidth cost smaller than the (uncompressed) document corpus sizes by a substantial amount,
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Figure 5.9: End-to-end search time. The rows LOW, MED and HIGH indicate downstream network
bandwidth at levels of 12-25Mbps, 80-160Mpbs and 700Mbps, respectively. PG-1 and PG-2 indi-
cate performance of searching for the first and second pages. The error bar indicates the standard
deviation.

i.e., 12.8% (Enron), 39.4% (Ubuntu), and 40.2% (NYTimes) of the size of the respective corpus.

For small-to-moderate datasets, e.g., 10% of the datasets, the bandwidth cost would be 22.6MB

(Enron), 4.6MB (Ubuntu) and 34.1MB (NYTimes), respectively. For very large datasets, e.g.,

the full corpus, FULL would require too much bandwidth for many clients.

Vertical partitioning substantially reduces bandwidth (Figure 5.8) for searches handled by the

first page or two of results (the common case). The bandwidth cost for searching the first page,

which can be handled by the first level, is smaller by 12.6x (Enron), 2.8x (Ubuntu), and 19.1x

(NYTimes), compared to that of FULL. Since all levels beyond the first are of the same size, we

just report on the sizes of the second partition, which is substantially smaller than the first since it

contains just postings and not the forward index.

Horizontal partitioning can easily be used to reduce bandwidth costs further, trading off in-

creased leakage for performance. In Figure 5.8 we show the average size of the first and second

levels with P = 10 and P = 100, respectively. In particular, for P = 100 and Enron, searching

for the first page only downloads 2.19MB data, and query for subsequent pages at most downloads

0.09MB data per page.
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End-to-end search time. We now turn to analyzing the end-to-end search performance. We focus

on the end-to-end search time in the steady state, i.e., after all documents of the corpus have been

added and merged into the primary index, and we use 30 single-keyword queries (Appendix B.3)

covering a wide range of document frequencies for each corpus, and report the averages over the

30 queries. We evaluate the search performance with one local client connected to the remote AWS

S3 service that holds encrypted search indices, over three levels of network conditions: (i) LOW

(12-25Mbps); (ii) MED (80-160Mbps); and (iii) HIGH (700Mbps).

The results are shown in Figure 5.9. First, when the network bandwidth is very limited, i.e.,

LOW, FULL has very large end-to-end search time for the first page results, i.e., averaging at 68.64

(Enron), 17.9 (Ubuntu) and 126.98 (NYTimes) seconds, respectively. VPART alone can reduce

the search time to 5.52, 6.91 and 6.16 seconds for the three datasets, respectively, and VHPART

with 1000 partitions, can further reduce the search time to 0.7, 0.19 and 0.67 seconds. When the

network bandwidth is abundant, i.e., HIGH, the end-to-end time of FULL reduces to 3.5, 0.7 and

4.33 seconds for the three datasets, and the time for VPART and VHPART are all way below 1

second.

When searching for results in the second page, the client does not need to download the index

that has been downloaded already for the first page. Therefore, FULL only needs to lookup for

the second page results locally without downloading anything, and, even under LOW network

conditions, the end-to-end time are small, i.e., 0.48, 0.1 and 0.25 seconds, respectively. VPART

and VHPART, on the other hand, may need to download subsequent vertical levels to identify

enough results for the requested page, and, under the LOW network conditions, the end-to-end

times of VPART are 3.62, 0.007 and 3.95 seconds for the three datasets, while those of VHPART

with 1000 partitions are 0.39, 0.002 and 0.1 seconds.

Effect of dataset size on the end-to-end search time. It is not uncommon for real-world users to

upload a much smaller amount of documents to the cloud, than the three datasets that we adopted.

To fully understand the performance of these constructions for datasets of smaller scale, we eval-
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Figure 5.10: End-to-end search time for the first result page, with various percentage of the Enron
dataset added to the index. LOW and HIGH indicate downstream network bandwidth at levels of
12-25Mbps and 700Mbps, respectively.

uate the end-to-end search time when a variety of percentage of Enron gets added to the search

index. In particular, for each target percentage, we randomly select that percentage of documents

from the Enron dataset, and add them to the empty index. Finally, we merge the index updates

into the steady-state index for the end-to-end search evaluation.

The results are shown in Figure 5.10. The key takesway is that: when network bandwidth is

abundant, i.e., HIGH, the FULL construction can achieve acceptable end-to-end search time, i.e.,

< 1 second, for datasets of small scale, i.e., less than 30% of Enron; when network bandwidth

is limited, i.e., LOW, we can switch to VHPART with mild partition number, i.e., 10, to achieve

acceptable performance for up to 50% of Enron.

Search quality Recall that our constructions provide approximate BM25 scoring, and also have

occassional hash collisions which could degrade search quality. More broadly we can evaluate

search quality by comparing to a baseline of using BM25 [136] as per plaintext search. For a

query q with result being an ordered list of documents R, we measure the overall search quality

using normalized discounted cumulative gain (NDCG) [80, 103], which aggregates the scores of

the results, with more weights on the earlier ones, i.e.,

NDCG(q,R) = 1
IDCG(q,|R|)

∑|R|
i=1

2BM25(q,Ri)−1
log(i+1)

,

where IDCG(q, k) is the normalization factor, calculated from the optimal ranking of the top-|R|

results for q, to make NDCG(q,R) ∈ [0, 1]. Higher NDCG indicates better search quality, relative
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Figure 5.11: Processing time to lazily merge as a function of the fraction of the document corpus
inserted before performing the merge.

to BM25 plaintext search. We can average the NDCG’s of multiple queries as the overall search

quality of a system.

Considering just the top 10 results, the NDCG over 50 random searches for all our techniques

never drops below 0.9985. This means we match the search quality of state-of-the-art plaintext

search systems for the first page of results. In our experiments only less than 10−4 term collisions

arose, and these never impacted search quality calculations given how unlikely it is to choose such

terms.

Update performance. We now turn to assessing the performance of our lazy merging technique

for updates. We first measured the total amount of data transferred between client and server

triggered by adding a new document to the dataset. For FULL, VPART and VHPART, the update

size is just a small fixed overhead plus the document size (in terms of the number of keywords),

and the average update bandwidth costs of three constructions are roughly the same, i.e., around

0.1KB, 0.5KB and 1.2KB for Ubuntu, Enron and NYTimes, respectively. The average end-to-

end time varies based on the network upstream bandwidth, and it is around 30ms and 80ms for

HIGH and LOW, respectively. Horizontal partitioning requires more time in general because the

extra computations on dividing the update into P buckets.

Searches that occur with outstanding updates will require first merging the update before com-

pleting the search. We are unaware of good datasets indicating how often searches occur relative to
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Figure 5.12: End-to-end search time, right after adding 10 documents, when various percentages
of the document corpus have been added and merged.

document updates, so we consider two distinct cases: (I) the very first search after adding a large

number of documents to an empty index; and (II) the very first search after adding a small number

of documents to an merged index.

For case (I), we measure the total processing time on the very first search after different per-

centages of the dataset have been updated without merging. That is, we insert some fraction of

documents before the first search is performed. The results are shown in Figure 5.11. This shows

that merge times can be signficant (on the order of several seconds) when searches only occur after

adding tens of thousands of documents. In practice, this can be easily mitigated at the cost of some

bandwidth by periodically having the client perform a merge to ensure the backlog of updates does

not get so large.

For case (II), we measure the total processing time on the very first search, right after adding 10

documents to the index that has already merging different percentages of the dataset. That is, we

insert some fraction of documents to the index, perform a search (to have all the updates merged

into the steady state), add 10 new documents to the index, and, finally, perform a search, whose

time we measure and report. The results are shown in Figure 5.12. Compared to those in case (I),

the search times in case (II) are smaller because the amount of updates to be merged is smaller,

but downloading the merged index will bottleneck the performance as the index size increases, i.e.,

merged with more documents, especially when the network bandwidth is LOW.
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Comparison against DSSE. For comparison, we also implement a state-of-the-art forward-private

DSSE based on the Diana construction [25]. We extend it with metadata and BM25 scoring, as

well as making it work for stateless clients. As the scheme relies on client-side counters, we

encrypt that client state and store it at the server with optimizations. We call the resulting scheme

CTR-DSSE. Details are given in Appendix B.2. We note that this approach achieves much weaker

security than our scheme, but it will serve to highlight trade-offs in performance.

As expected CTR-DSSE mostly outperforms our approach on search bandwidth and compu-

tation, as DSSE schemes target search costs that scale with just the size of the posting list for

the queried keyword, with the average and maximum (for the most common keyword) bandwidth

cost around 0.01MB and 0.5MB for the three datasets. Note that to show the first page of results,

CTR-DSSE must download the entire posting list because the latter cannot be stored in sorted

order in the dynamic case. Because posting list sizes vary greatly, the result is higher variance

in performance for CTR-DSSE compared to our size-locked approach. The key takeaway here is

that VHPART can easily achieve comparable performance to CTR-DSSE, while leaking less to the

server, simply by a modest increase in the number of horizontal partitions.

The update performance of CTR-DSSE is more complicated as the bandwidth is dominated by

the size of the client states, which increases as more documents are added. Updates early on will be

fast, for example the best case update bandwidth usage for the three corpuses are 1.1KB, 0.2KB,

and 2.4KB for Enron, Ubuntu, and NYTimes. The worst case occurs when adding the final

document to the dataset, which results in update costs of 4 MB, 1.5 MB, and 1.5 MB respectively.

In general the update bandwidth will be significantly better for encrypted indexing schemes, and

in update-heavy workloads this will make a significant difference in overall bandwidth utilization.

While in theory one might try some kind of lazy merging for CTR-DSSE, it’s unclear how to do

so while preserving search efficiency.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we aim at improving the privacy-utility trade-offs in three popular cloud applications.

The first one is the federated SQL processing, and we presented a principled approach to clos-

ing the four most critical side channels: memory, instructions, timing, and output size. Our ap-

proach relies on a new primitive, hardware-assisted oblivious execution environments, new query

operators that leverage differential privacy, and a novel privacy-aware query planner. Our exper-

imental evaluation shows that Hermetic is competitive with previous privacy-preserving systems,

even though it provides stronger privacy guarantees.

The second application is cloud data collection and analytics. We generalize the setting in

previous work from single service to multiple services under local differential privacy. And we

address two challenges in this more general setting: first, how to prevent privacy guarantee from

being weakened during the joint data collection; second, how to analyze perturbed data jointly

from different services. We introduce the notation of user-level LDP to formalize and protect the

privacy of a user when her joined tuples are released. We propose mechanisms and estimation

methods to process multi-dimensional analytical queries, each with attributes (in its aggregation

and predicates) collected and perturbed independently by multiple services. We also introduce an

online utility optimization technique for multi-dimensional range predicates, based on consistency

in domain hierarchy.

The third application is end-to-end encrypted search. We show that the simple, folklore ap-

proach to end-to-end encrypted search: simply encrypt a standard search index, storing it remotely

and fetching it to perform searches, is actually a promising direction, in terms of security, usabil-

ity and efficiency. In particular, it reduces the leakage at search and update to the level where

the file-injection attacks, which break almost all existing work, would not work. Moreover, it is
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straight-forward to extend the index blob with necessary information for arbitrary query support,

and, with proper optimizations, the end-to-end performance is practical in real-world setting.

6.2 Future Work

6.2.1 Shuffled LDP

A recent model of LDP, i.e., shuffled LDP [14, 35, 58], introduces an extra data anonymization

operation between the user and the service, and proves its amplification effects on the privacy of

each user. In our setting, assuming all attributes, excluding the join keys, of the tuples are sensitive,

and thus obfuscated, we can apply the shuffling operation on the perturbed tuples, i.e., via a 3rd

party shuffler, before forwarding them to each service. Note that the join keys do not neutralize

the effects of shuffling because they themselves are anonymous. Thus, according to the results

in [14, 35, 58], we can achieve the same level of user-level privacy with larger perturb budget, i.e.,

ε, which will improve the aggregation utilities of all queries on the collected tuples.

6.2.2 Join with Star Schema

We focus on two-table primary-foreign-key join in Section 4.5, and can extend to join with the more

complex star schema, where one service collects tuples with foreign keys to multiple primary-key

tuples collected by different services. Such schema is common in business data warehouse. For

instance, in Example 4.1.1, a third service could collect tuples on products, with attributes Price

and Country, and a unique product id PID. The collected transaction tuples further contain the

foreign key PID of the corresponding product. And an analyst wants to know the total sales from

certain users on products from certain country, e.g.,
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SELECT SUM(Amount) FROM Transaction

JOIN Product ON Transaction.PID = Product.PID

JOIN User ON Transaction.UID = User.UID

WHERE Country = “China” AND Age ∈ [20, 30].

We can extend τ -truncation to handle such relation, under ε-uLDP. The major adaptation is that

we need to enforce that the same number of tuples with foreign-key, i.e., transaction, match each

pair of primary-key tuples, i.e., 〈user,product〉. Thus, for n users and n products, with τ -truncation,

we need to collect n2τ transaction tuples. Thus, for joint aggregation, we can join the perturbed

values from the three services, and aggregate on the joined values. It is possible to optimize such

straight-forward extension for better efficiency and privacy management, which we leave as future

work.

6.2.3 Adaptive Index Management System

In Chapter 5, we introduce three separate constructions to handle encrypted search, namely, FULL,

VPART, and VHPART. They have different trade-offs on security, i.e., resilience to file injection

attacks, and efficiency, i.e., end-to-end bandwidth and processing cost. Despite of the asymptotic

trade-offs, we realized that, under various settings, certain construction might dominate the others.

For instance, when the data corpus is very small, the security benefits of FULL would be more

appealing than the marginal efficiency benefits from VHPART. On the other hand, when the data

corpus is extremely large, the severity of the leakage of VHPART might diminishes because of the

increased entropy of the corpus itself, while the efficiency benefits of VHPART would shine.

Hence, we envision an adaptive index management system that could switch between the differ-

ent constructions under various conditions. The first key factor would be the scale of the ingested

data: as the index size increases, the system would switch from FULL to VPART, then to VH-

PART, and increase the number of partitions of VHPART on-demand. The second key factor is

the target performance requirement, and it determines when the system should switch to meet the
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requirements. The third factor is the overheads of switching. Each switching would incurr certain

amount of extra computations at the client, and it would increase as the data scale increases. The

system should minimize the impact of the switching operation on the performance exposed to the

end-user.

6.2.4 Multi-user End-to-end Encrypted Search

In Chapter 5, we focus on end-to-end encrypted search for one single user who uploads her docu-

ments to the cloud, and searches with keyword queries. This enables the fundamental use case for

real-world cloud storage services, e.g., Dropbox. For broader adoption, we might need to consider

the more general setting where multiple users share a directory of documents in the cloud, and

each of them can upload and search for documents in the shared directory. There are challenges

in both security and efficiency under such setting. First, if some users, with access to the shared

directory, collude with the service provider, what privacy guarantees can we provide to the query

and documents of other users sharing the same directory? Second, when some users are removed

from the sharing list, what kind of privacy can we achieve for queries and documents of other

active users? In terms of efficiency, how to design the constructions so that the local updates by a

user can be immediately searchable by other users sharing the same directory?
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APPENDIX A

HERMETIC IMPLEMENTATION DETAILS

A.1 Query operators

A.1.1 List of query operators

Query processing in Hermetic is built upon a set of oblivious operators. From the bottom up,

we have OEE operators that support simple sort and merge, auxiliary operators that support re-

lation transformations, including re-ordering, grouping, expansion, etc. and statistics, relational

operators that support well-known SQL-style query processing. We describe all the operators be-

low, together with their definitions and oblivious constructions. We also mark the one unique in

Hermetic as HMT, and other from previous work with citations:

OEE Operators

• (HMT) merge-sort Given an array of tuples that fits inside OEE and the set of order-by at-

tributes, sort them in the order of the given attributes.

• (HMT) linear-merge Given two arrays of sorted tuples, that together fit inside OEE and the

set of order-by attributes, merge them into one sorted array of tuples with one linear scan.

Auxiliary Operators

• (HMT) hybrid-sort Given an array of tuples, beyond the capacity of OEE, and a set of order-

by attributes, sort them in the order of the given attributes. Algorithm A.1 shows the pseudo-code

of hybrid-sort (Lines 10-17).

• (HMT) hybrid-merge Given two arrays of sorted tuples, that together are beyond the capacity

of OEE and the set of order-by attributes, merge them into one sorted array of tuples. Algo-

rithm A.1 shows the pseudo-code of hybrid-merge (Lines 18-31).

• ( [12]) augment Given a relation, a function and an attribute name, returns a relation whose

attributes consist of the given relation’s attributes and the given attribute, and each row of which
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is the corresponding row in the given relation extended with the value of the function applied on

the that row.

• ( [12]) filter Given a relation and a predicate on a set of attributes, return a relation that

consists of all the rows from the given relation that satisfy the predicate. Algorithm A.1 shows

how to construct filter using hybrid-sort (Lines 1-9): first, augment the relation with

”mark” equal to 1 if the row satisfy the predicate or 0 otherwise. Second, hybrid-sort the

relation on ”mark” to in descending order so that all the rows with ”mark” equal to 1 are at the

front. Finally, return all the rows that satisfy the predicate at the front.

• ( [12]) groupId Given a relation, a set of aggregate-on attributes, group the rows based on the

aggregate-on attributes, and augment the relation with the group internal ID, starting from 1.

The groupId operator could be constructed by first sorting the relation on the aggregate-on

attributes using hybrid-sort, and then keeping a running counter as the group internal ID

while scanning over the sorted relation and extending each row with the group internal ID.

• ( [12]) group-running-sum Given a relation, a set of aggregate-on attributes, a summation

attribute and a new attribute, augment the relation with the new attribute whose value is the

running sum over the summation attribute, in the reverse order of the group internal ID, within

each group of the aggregate-on attributes. The group-running-sum operator could be con-

structed by first applying groupId, then sorting the relation on the aggregate-on attributes, plus

the group ID attribute in descending order, using hybrid-sort, and finally keeping a running

sum over the summation attribute while scanning over the sorted relation and extending each

row with the running sum.

• ( [12]) semijoin-aggregation Given two relations and a set of join attributes, augment

each of the two relations with the number of matches, i.e. join degree, on the given set of

join attributes from the other relation. To augment the first relation with the join degree, first

augment each relation with attribute ”src”, e.g. 1(0) for the first(second) relation, union the two

relations, and then hybrid-sort it on the join attributes plus the ”src” attribute in ascending
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order. Then augment the relation with running counter of the rows in each group of the join

attributes, but only increment the counter if the ”src” is equal to 0. Finally, apply filter to

keep rows with ”src” equal to 1. Then, repeat on the second relation by switching the order.

• ( [12,122]) expandGiven one relation from the semijoin-aggregation output, duplicate

each row by the times, equal to the number of matches, in the order of the join attributes. In

Hermetic, this operation will leak the differentially private total join size.

• ( [12]) stitch Given two relations from expand, return a relation whose i-th row is the

concatenation of the i-th rows from the two given relations.

• (HMT) histogram Given a relation and a target attribute, returns a histogram over the given

attribute of the relation. In Hermetic, we first hybrid-sort the relation on the target attribute,

and then keep a running counter, refreshed to 0 at the beginning of each histogram bucket,

and augment the relation with the running counter if the row is the last of the bucket, or -1

otherwise. Finally, hybrid-sort the relation on the augmented attribute in descending order,

and return the rows with non-negative values.

• (HMT) multiplicity Given a relation and a set of target attributes, calculates the number of

times that the most common values of the target attributes appear in the relation. In Hermetic,

we first hybrid-sort the relation on the set of target attributes, and then keep a counter on

the most common values while scanning over the relation.

Relational operators

• project Given a relation and a set of attributes, returns a relation, each row of which is a

projection, onto the given attributes, of the corresponding row in the input relation.

• rename Given a relation and a set of old and new names, returns a relation, whose specified

attributes are renamed from old to new given names.

• unionGiven two relations, returns a relation whose attribute set is the union of the two relations

and that contains all the rows from the two relations, with new attributes filled by null.

• ( [12]) select Given a relation and a predicate on a set of attributes, return a relation that
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filter(R = {t0, t1, ..., tn}, p):

1: osize← 0
2: for t ∈ R do
3: cwrite(p(t),match, 1, 0)
4: t← t ∪ {(’mark’,match)}
5: osize← osize + match
6: hybrid− sort(R, ’mark’, desc = 0)
7: returnR[0 : osize]

Figure A.1: The oblivious filter operator

consists of all the rows from the given relation that satisfy the predicate. The select operator

could be constructed with one filter directly.

• ( [12]) groupby Given a relation, a set of aggregate-on attributes, an accumulate function and

a new accumulate attribute name, group the rows in the given relation by the aggregate-on at-

tributes, apply the accumulate function on each group and returns the aggregate-on attributes

and the accumulation of each group. The groupby operator could be constructed with one

groupId, followed by a group-running-sum, and, finally, a filter to keep the aggre-

gate results only.

• orderby Given a relation and a set of order-by attributes, order the rows in the input relation by

the order-by attributes. The orderby operator could be constructed with one hybrid-sort

directly.

• cartesian-product Given two relations, returns a relation that consists of the concatena-

tions of every pair of rows, one from the first relation and the other from the second relation.

• ( [12]) join Given two relations and a set of join attributes, returns a relation with every pair of

matches from the two relations on the join attributes. The join operator could be constructed

by first deriving the join degree of each row using semijoin-aggregation, then expanding

each row by its join degree using expand and finally joining the two expanded relations using

sticth to get the join result.
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Figure A.2: Every x86 instruction used in Hermetic OEE

add addl cmovbe cmove
cmovg cmovle cmovne cmp
cmpl imul ja jae
jb jbe je jmp
jne lea mov movl

movzbl pop push ret
setae setb setbe sete
setg setle setne shl
shll sub test

A.2 Predictable timing for OEE operators

Hermetic currently performs two operations within OEEs, MergeSort and LinearMerge. As dis-

cussed in Section 3.6.2, although OEEs allow these operators to perform data-dependent memory

accesses (which is why they are faster than purely data-oblivious operators), they are carefully

structured to avoid data-dependent control flow and instructions and to constrain the set of possi-

ble memory accesses. The latter makes the number of accesses that miss the L1 cache, and thus

must be served by slower caches, predictable. Moreover, their execution time is padded to a con-

servative upper bound calibrated to a specific model of CPU. This section describes these measures

in more detail.

A.2.1 Avoiding data-dependent control flow and instructions

We ensure that OEE operators’ code is free from data-dependent branches using techniques similar

to [134]. Furthermore, we limit the set of instructions that they use to avoid those with data-

dependent timing. Table A.2 lists all of the x86 instructions that are used by the operators that

run in an OEE. The instructions marked in dark green have constant execution time, as verified

by Andrysco et al. [10]. The instructions in light green were not among the instructions verified

by Andrysco et al., but are either variants of them or, as is the case with cmov*, are known to be

constant time [134].
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A.2.2 Making L1 cache misses predictable

By construction, all memory accesses performed by OEE operators are served from the cache.

Moreover, they have deterministic control flow, and therefore perform a fixed number of memory

accesses for a given input size. For example, Algorithm A.3 shows the pseudocode for OEE

MergeSort. Note that the two running pointers that scan over the two sublists will keep accessing

the data even if one of the sublists has been completely merged (Lines 9 and 10). This will not

affect the correctness due to the modified merge condition (Line 11), but it will make the total

number of memory accesses on each input deterministic. Nevertheless, the operators’ timing could

vary depending on whether accesses hit the L1 cache or whether they have to be served by slower

caches.

To address this problem, we could determine an upper bound on an operator’s execution time

by assuming that all of its memory accesses are served from the L3 cache, but this would be wildly

conservative. In particular, it would result in a 43x slowdown for OEEMergeSort and a 33x

slowdown for OEELinearMerge (see Figure A.4). Instead, we carefully structure each operator’s

code to make the number of L1 cache misses predictable. For example, if we examine the code of

MergeSort, we can see that its memory accesses adhere to three invariants:

1. Each merge iteration accesses one of the same tuples as the previous iteration. Figure A.5

shows the memory traces of MergeSort on 32,768 input tuples that have been sorted, reverse

sorted, and permuted randomly. With sorted input, the two running pointers (Lines 9 and 10 in

Algorithm A.3) follow the invariant: the second pointer keeps accessing the first tuple of the

second sub-list until the first pointer finishes scanning through the first sub-list. Then, the first

pointer keeps accessing the last tuple of the first sub-list until the second pointer reaches the

end of the second sub-list. The same memory access pattern holds even with reverse sorted and

randomly permuted inputs because only one of the two running pointers would advance after

each merge iteration. If we assume that a tuple can fit in a single L1 cache line, as is the case in

our examples, then one of the two memory accesses in each iteration will be an L1 hit.
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2. Merge iterations access the input tuples sequentially. The merge loop (Lines 6–15) accesses

the tuples in each of the input sub-lists sequentially. Consequently, if each tuple is smaller than

an L1 cache line, then accessing an initial tuple will cause subsequent tuples to be loaded into

the same cache line. Assuming that the L1 cache on the OEE’s CPU is large enough – as is the

case in our experiments – these subsequent tuples will not be evicted from the cache between

merge loop iterations, and future accesses to them will be L1 hits. If a cache line is of CL bytes

and each tuple is of TP bytes, then at least 1− TP
CL of the tuple accesses will be L1 hits.

3. Local variables are accessed on every iteration. Since MergeSort is not recursive, the variables

local to the merge loop (Lines 7–14) are accessed on every iteration. Furthermore, because more

cache lines are allocated to the OEE than local variables and tuples, these accesses should be

L1 hits as well.

Given these invariants, it is possible to express the lower bound on L1 hits as a formula. Let

N be the number of tuples per OEE input block, FPR as the number of fields in each tuple, and

FNO as the number of fields used as keys for sorting. Then, the lower bound is given by:

Lms = (77 + 11 ∗ FNO + 12 ∗ FPR) ∗N ∗ log(N)

+ (1− FPR

16
)(12 + FPR) ∗N ∗ log(N)

+ 5N ∗ log(N) +
15

4
N ∗ log(N)

(A.1)

A similar analysis can be done for LinearMerge, resulting in the following lower bound formula:

Llm = (69 + 24 ∗ FNO + 11 ∗ FPR) ∗N + 14

+ (1− FPR

16
)(12 + FNO + FPR) ∗N

+
15

4
N

(A.2)

Plugging in the values for N , FPR, FNO from our experimental data, we can see that the

majority of accesses are served by the L1 — approximately 89.06% and 79.73% for MergeSort

and LinearMerge, respectively.
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A.2.3 Determining a conservative upper bound on execution time

Even though the number of L1 cache misses is predictable regardless of the input, as discussed in

Section 3.6.2, we still pad OEE operators’ execution time to a conservative upper bound to account

for timing variation that might occur in modern CPUs (e.g., due to pipeline bubbles).1 To determine

this upper bound, we could take the lower bound on L1 hits determined above and assume that all

other memory accesses were served from the L3 cache (LLC). We could then compute the bound

by plugging in the L1 and L3 access latencies from processor manual [76]. As Figure A.4 shows,

however, due to the superscalar execution in modern CPUs, the resulting bound is still 10x larger

than the actual execution time.

Instead, we achieve a tighter but still conservative bound using worst-case execution time

(WCET) estimation techniques [69]. We performed 32 experiments each on random, sorted, and

reverse sorted inputs in which we measured the L1 hit and miss rates using the CPU’s performance

counters. We then used linear regression to learn effective L1 and L3 hit latencies l∗L1 and l∗L3 for

the specific CPU model. Since we could not be sure that we have observed the worst case in our

experiments, we increased the L1 and L3 latency estimates by 10% and 20%, respectively to obtain

bounds l̂L1 and l̂L3. Table A.6 shows l∗L1, l∗L3, l̂L1, and l̂L3 estimated for MergeSort, as well as

the latencies from the specification. The computed upper bounds were 1.6x the actual execution

time for MergeSort and 1.96x for LinearMerge and were never exceeded in our experiments.

The effective L1 and L3 hit latencies would have to be derived on each distinct CPU model.

To do so, we envision a profiling stage that would replicate the procedure above and would be

performed before Hermetic is deployed to a new processor.

1. We determine execution time using the rdtsc instruction. rdtsc is available to enclaves in SGX version
2 [73]. Moreover, a malicious platform cannot tamper with the timestamp register because the core is “locked down.”
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A.2.4 Overhead of time padding

We examine the overheads of padding time for mergesort and LinearMerge in the OEE, and

how they depend on the size of the un-observable memory.

Analogous to Section 3.7.2, we generated random data and created relations with enough rows

to fill up a cache of 1MB to 27MB. On this data, we measured the time required to perform the

actual computation of the two primitives, and the time spent busy-waiting to pad the execution

time. We collected results across 10 runs and report the average in Figure A.7. The overhead of

time padding ranges between 34.2% and 61.3% for MergeSort, and between 95.0% and 97.9% for

LinearMerge. Even though the padding overhead of MergeSort is moderate, it is still about an

order of magnitude faster than BatcherSort. This performance improvement over BatcherSort

is enabled by having an OEE, and it is the main reason why Hermetic is more efficient than DOA-

NoOEE , even though Hermetic provides stronger guarantees.

A.3 Oblivious primitives which use dummy tuples

Section 3.4 mentions that we modified the oblivious primitives from prior work [12] to accept

dummy tuples. These modifications have two goals: (1) allowing the primitives to compute the

correct result on relations that have dummy tuples, and (2) providing an oblivious method of adding

a controlled number of dummy tuples to the output of certain primitives.

A.3.1 Supporting dummy tuples

Dummy tuples in Hermetic are denoted by their value in the isDummy field. Below we list all the

primitives we had to modify to account for this extra field.

groupid: This primitive groups the rows of a relation based on a set of attributes, and adds

an incremental id column, whose ids get restarted for each new group. In order for this to work

correctly in the face of dummy tuples, we need to make sure that dummy records do not get grouped
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with real tuples. To avoid this, we expand the set of grouping attributes by adding the isDummy

attribute. The result is that real tuples get correct incremental and consecutive ids.

grsum: Grouping running sum is a generalization of groupid, and as such, we were able to

make it work with dummy tuples by applying the same technique as above.

union: Union expands the attributes of each relation with the attributes of the other relation,

minus the common attributes, fills them up with nil values, and then appends the rows of the

second relation to the first. To make unionwork with dummy tuples, we make sure the isDummy

attribute is considered common across all relations. This means that the output of unions has a

single isDummy attribute, and its semantics are preserved.

filter: To make filter work with dummy tuples, we need to make sure that user predicates

select only real rows. To achieve this, we rewrite a user-supplied predicate p as “(isDummy = 0)

AND p”. This is enough to guarantee that no dummy tuples are selected.

join: What we want for join is that real tuples from the one relation are joined only with real

tuples from the other relation. To achieve this, we include the isDummy attribute to the set of join

attributes of the join operation.

groupby: For the groupby primitive, we apply the same technique as for the groupid and

grsum – we expand the grouping attributes with isDummy.

cartesian-product: Cartesian product pairs every tuple of one relation with every tuple of

the other, and this happens even for dummy tuples. However, we need to make sure that only one

instance of isDummy will be in the output relation, and that it will retain its semantics. To do this,

we keep the isDummy attribute of only one of the relations, and we update its value to be 1 if both

paired tuples are real and 0 otherwise.

multiplicity and histogram: These two primitives need to return the corresponding

statistics of the real tuples. Therefore, we make sure to (obliviously) exclude dummy tuples for the

computation of multiplicities and histograms.
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A.3.2 Adding dummy tuples to the primitive outputs

To enable the introduction of dummy tuples, we alter the primitives filter, groupby, and

join. The oblivious filter primitive from previous work involves extending the relation with

a column holding the outcome of the selection predicate, obliviously sorting the relation based on

that column, and finally discarding any tuples which do not satisfy the predicate. To obliviously

add N tuples, we keep N of the previously discarded tuples, making sure to mark them as dummy.

groupby queries involve several stages, but their last step is selection. Therefore, dummy

tuples can be added in the same way.

join queries involve computing the join-degree of each tuples in the two relations.2 To add

noise, we modify the value of join-degree: instead of the correct value, we set the join-degree of

all dummy tuples to zero, except one, whose degree is set to N . As a result, all previous dummy

tuples are eliminated and N new ones are created.

A.4 Hermetic multi-objective query optimization

Hermetic’s query planner uses multi-objective optimization [149] to find the optimal query plan

that matches the user’s priorities. A query plan is associated with multiple costs, including the

overall performance cost and a vector of privacy costs across the involved relations. The user’s

specification includes a vector of bounds, B, and a vector of weights, W, for the privacy costs on

all the input relations. The planner’s output is the plan where the weighted sum of all the costs is

as close to optimal as possible and where all of the privacy costs are within the bounds. Each plan

that the planner considers could be represented as a join tree covering all the input relations, with

each noised operator assigned a privacy parameter, εi. (The current query planner only considers

different join orders and privacy parameters. We leave more advanced query optimization to future

work.)

2. In a join between relations R and S, the join-degree of a tuple in R corresponds to the number of tuples in S
whose join attribute value is the same with this row in R.
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The planner first constructs the complete set of alternative plans joining the given set of rela-

tions. Then, for each of the candidate plans, the planner formalizes an optimization problem on

the privacy parameters of all the noised operators, and solves it using linear programming. Finally,

the plan that both meets the bounds and has the best weighted-sum of costs is selected.

Returning to the query example in Figure 3.4, let p be the plan under consideration, BM25ε[i]

be the privacy parameter on the i-th operator of the plan, and fp(BM25ε) be the plan’s overall

performance cost. Then, we could solve the following optimization problem for the privacy pa-

rameters:
min W ·A · BM25ε+ fp(BM25ε)

s.t. A · BM25ε ≤ B,BM250 < BM25ε ≤ B.

(A.3)

Here, the matrix A is the linear mapping from privacy parameters to the privacy costs on the input

relations. For instance, suppose the C, T and P relations are indexed as 0, 1 and 2, and the privacy

parameters on the selection on C, the selection on P , the join of C and T and the join of (C ./ T )

and P are indexed as 0, 1, 2 and 3 respectively. Then, the corresponding A for the plan is:


1 0 1 1

0 0 1 1

0 1 0 1

 (A.4)

Finding an exact solution to this optimization problem is challenging because we cannot assume

that the performance cost function fp(BM25ε) is either linear or convex. As a result, Hermetic

approximates the solution instead. The planner first partitions the entire parameter space into small

polytopes, and then approximates the performance cost function on each polytope as the linear

interpolation of the vertices of the polytope. Thus, it achieves a piecewise linear approximation of

the performance cost function. Finally, the planner can solve the corresponding piecewise linear

programming problem to obtain an approximately-optimal assignment for the privacy parameters.

This approach is consistent with existing nonlinear multidimensional optimization techniques in
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the optimization literature [111].

Let fp(BM25ε) be the performance cost function, d be the number of operators in the query

plan, and K be the number of partitions on each parameter dimension. Then, the entire parameter

space could be partitioned into Kd polytopes, each of which has 2d vertices. We pick one of the

vertices, BM25ε0, and d other vertices, BM25ε1, . . . ,BM25εd, each of which is different from

BM25ε0 in exactly one parameter dimension. Then any point, BM25ε, as well as its performance

cost, fp(BM25ε), in such polytope could be represented as:

(BM25ε, fp(BM25ε)) =
d∑
i=1

ui ∗ ((BM25εi, fp(BM25εi))− (BM25ε0, fp(BM25ε0)))

+ (BM25ε0, fp(BM25ε0))

, where 0 ≤ ui ≤ 1,

0 ≤ ui + uj ≤ 2,

0 ≤ ui + uj + uk ≤ 3,

. . .

0 ≤
d∑
i=1

ui ≤ d.

(A.5)

For each such polytope, we can plug Equations A.5 into Equation A.3 to obtain the following linear
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programming problem:

min W ·A · BM25ε+

d∑
i=1

ui ∗ (fp(BM25εi)− fp(BM25ε0)) + fp(BM25ε0)

s.t. A · BM25ε ≤ B,

0 < BM25ε ≤ B,

BM25ε−
d∑
i=1

ui ∗ (BM25εi − BM25ε0) = BM25ε0,

0 ≤ ui ≤ 1,

0 ≤ ui + uj ≤ 2,

0 ≤ ui + uj + uk ≤ 3,

. . .

0 ≤
d∑
i=1

ui ≤ d.

(A.6)

Solving this linear programming problem on all the polytopes enables the query planner to deter-

mine the optimal assignment of privacy parameters for the plan.

The number of partitions of the parameter space, K, affects the optimization latency and ac-

curacy. Larger K leads to more fine-grained linear approximation of the non-linear objective, but

requires more linear programmings to be solved. To amortize the optimization overheads for large

K, the query planner could be extended with parametric optimization [78] to pre-compute the op-

timal plans for all possible W and B so that only one lookup overhead is necessary to derive the

optimal plan at runtime.
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merge− sort({R = {t0, t1, . . . , tn} : B}, REAL,′′ , ascend):

1: for len ∈ {20, 21, . . . , 2log2(n)} do
2: for offset ∈ {0, 2 · len, . . . , n− 2 · len} do
3: pos0 ← offset
4: pos1 ← offset+ len
5: mov eax, len; add eax, eax
6: mov ebx, pos0; mov ecx, pos1
7: lea edx, [ebx]; lea edi, [ecx]
8: LOOP: cmp edx, edi
9: cmovle esi, edx; cmovg esi, edi
// Merge [pos0] if pos1 ≥ 2 · len

10: mov esi, len; mov esi, esi
11: cmp esi, ecx; cmovle esi, edx

12: // Merge [pos1] if pos0 ≥ len
13: mov esi,len; cmp esi, ebx
14: cmovle esi, edi
15: mov [-eax], esi

16: // update pos0
17: mov esi, $0; cmp edx, edi
18: cmovle esi,$1; add ebx, esi
19: mov esi, len; cmp ebx, esi
20: cmovg ebx, esi

21: // update pos1
22: mov esi, $0; cmp edx, edi
23: cmovg esi, $1; add ecx, esi
24: mov esi, len; add esi,esi
25: cmp ecx, esi; cmovg ecx, esi

26: // load the next item
27: cmp edx, edi; cmovle esi, ebx
28: cmovg esi, ecx; lea esi, [esi]
29: cmovle edx, esi; cmovg edi,esi

30: // decrement the counter
31: sub eax,$1; cmp eax,$0;ja LOOP
32: R[offset : offset+ 2 · len]← B[offset : offset+ 2 · len]

Figure A.3: The merge-sort supported in OEE.
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Figure A.4: Cycle-resolution measurements of the actual timing of MergeSort (MS) and Lin-
earMerge (LM) inside the OEE, and their padded timing, respectively.
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Figure A.5: Memory access patterns of OEEMergeSort on sorted, reverse sorted and random
input.

Figure A.6: L1 hit and miss latencies for MergeSort, as reported by Intel’s specifications (lL1,
lL3), and as measured on different datasets (l∗L1, l∗L3). The last columns show the values we used
in our model. All values are in cycles.

Data lL1 lL3 l∗L1 l∗L3 l̂L1 l̂L3

Random
4 34

0.6800 3.3400
0.74 5.0Ordered 0.6693 3.8032

Reverse 0.6664 4.2630
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APPENDIX B

SIZE-LOCKED INDEXING SECURITY AND CONSTRUCTION

DETAILS

B.1 Formal Cryptographic Analysis

Security of the full size-locked index scheme. With a formal model in place, we start with

arguing the security of the encrypted size-locked index scheme from Section 5.4. For this we are

able to prove a very strong result, in the sense that the leakage profile L is very simple. It has Lup

simply output the number of postings in the update, and Lse leak the total number n of documents

currently in the index and the aggregate number N of postings that have been added via updates.

Note that both numbers are monotonically increasing.

We have the following theorem.

Theorem 11. Let Π be the encrypted size-locked index scheme from Section 5.4 using a symmetric

encryption scheme SE. Let L be the leakage profile defined above. Then we give a simulator S

such that for any adversary A we can build an adversary B such that AdvLΠ,S(A) ≤ Adv
cpa
SE (B)

where B and each algorithm of S run in time that of A plus some small overhead.

The simulator S works as follows. The first time either algorithm is executed, it sets st←$ KeySp,

i.e., it picks a random key for the underlying encryption scheme SE. On input m algorithm Sup

simply outputs the encryption under K of an all zeros string of length W +M+(W +1) ·m bytes.

On input n,N algorithm Sse chooses a random byte string of length exactly

(W +W/2 +M) · n+ (W + 1) ·N .

Then a simple reduction to the security of SE establishes the theorem, because no matter what

inputs the adversary chooses, the resulting ciphertexts in REALΠ will always be encryptions of

encodings of a lengths exactly indicated by the formulas above. By the CPA security of SE these

ciphertexts are indistinguishable from ones that encrypt zeros.
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Security of vertically partitioned scheme. We next analyze the vertically partitioned scheme

from Section 5.5.1. The update algorithm is exactly the same as the full scheme, so we only

need to recall how the search algorithm works formally. The server state EDB always consists

of ciphertexts (B1, . . . , BL) and (~C2, . . . , ~CL, ~CL+1), where L = dN/Cap(N)e (we identify the

top-level update cache ~C1 with ~Cup in the experiment, so it is not represented in EDB explicitly

to fit our formalism). The scheme maintains the invariant that B1, . . . , BL−1 will always contain

exactly Cap(N) postings, and BL contains at most that many.

Search takes input K, q, i,EDB, ~Cup; We show how to handle the cases i < L, i = L, and

i = L + 1 seperately, starting with the former. In all three cases, it starts by parsing EDB as

(B1, . . . , BL) and (~C1, . . . , ~CL, ~CL+1) (where ~C1 = ~Cup).

In the case i < L, search decrypts and decodes blobsB1, . . . , Bi, recovering exactly i ·Cap(N)

postings. It then decrypts the update caches ~C1, . . . , ~Ci, and finds another m ≥ 0 postings. It com-

putes the results R using the postings found so far. Then it applies our policy to assign i · Cap(N)

of the i ·Cap(N)+m recovered postings to the blobs 1, . . . , i; These are reencoded and rencrypted

to produce B′1, . . . , B
′
i (note that B′1 contains the forward encoding information). It then forward

encodes the remaining m evicted postings, and appends those to ~Ci+1, calling the result ~C ′i+1.

Finally search outputs EDB as (B′1, . . . , B
′
i, Bi+1, . . . , BL) and (ε, . . . , ε, ~C ′i+1,

~Ci+2 . . . , ~CL+1).

When i = L, search works the same, except that it may produce B′L with fewer than Cap(N)

postings. When i = L + 1, search proceeds as before, except that creates a new blob BL+1

holding at most Cap(N) postings, and a new empty update cache CL+2. If there are more than

(L+ 1)Cap(N) postings, then it appends the forward-encoded entries to CL+1.

The leakage profile L is not much more complicated than before: Lup is the same, outputting

the number of postings in the update. The search leakage Lse leaks n (the total number of docu-

ments) and N (the total number postings added over all updates) and also i, the level requested.

We show formally that this is all that is leaked, assuming encryption is secure.

Theorem 12. Let Π be the vertically-partitioned size-locked index scheme from Section 5.5.1 using
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a symmetric encryption scheme SE. Let L be the leakage profile defined above. Then we give a

simulator S such that for any adversary A we can build an adversary B such that AdvLΠ,S(A) ≤

Adv
cpa
SE (B) where B and each algorithm of S run in time that of A plus some small overhead.

We construct a simulator similar to before: The high-level idea is that the leakage allows for

the computation of the (size-locked) plaintext lengths, and the simulator simply replaces all of the

ciphertexts in EDB with encryptions of the appropriate number of zeros under a key it maintains as

state. Concretely, the first time either algorithm is run, it picksK←$ KeySp and sets s .t .← (K, ε).

Looking ahead, the simulator will use the second component of its state to store the last EDB that

it output.

The simulator Sup works exactly as in the previous proof. The search simulator Sse takes

input n,N, i and its state s .t . = (K,EDB). It parses EDB as (B1, . . . , BL) and (~C2, . . . , ~CL+1),

and needs to output and updated EDB. The key observation is that all of sizes of the new blobs

(including new ones) in the “real” updated EDB are determined by n,N, i and the sizes of the

previous EDB update caches (this includes the size of the new blob and update cache that are

occasionally created). This follows by construction, using Cap and our size-locked encoding. Thus

the simulator can encrypt the appropriate number of zeros underK to produce an indistinguishable

EDB.

Security of horizontally partitioned scheme. Our last scheme works by maintaining P databases

EDB1, . . . ,EDBP , each maintained as in the previous scheme, except EDBj only holds postings

with PRF(K ′, w) = j mod P .

Updates are still appended to ~Cup and encoded exactly as before, except they are now labeled

with PRF(K ′, w) mod P . To fit our formalism, we view the first-level update cache as EDBj

as a subset of ~Cup that is labeled with j. The search algorithm takes input K, q, i,EDB, ~Cup.

It parses q = (w1, . . . , wt). It then runs the previous algorithm on partitions determined by

PRF(K ′, w1), . . . ,PRF(K ′, wt). The only difference is that results are computed by merging

the postings obtained, but this is not relevant for security.
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The leakage functions Lup,Lse work as follows. They are stateful, and when either is run for

the first time, it picks a random function g mapping term to {1, . . . , P} as its state. On update

input, Lup outputs (m1, . . . ,mP ), where mj is the number of postings in δ with a term w such

that g(w) = j. The search leakage Lse outputs the following:

• The set Z = {g(w) mod P | w ∈ q}, where q is the latest query. This is the set of indexes of

partitions relevant to the query.

• For each j ∈ Z, it outputs nj , Nj , where nj is the number of documents added with a term w

such that g(w) = j andNj is the total number of postings added with term w such that g(w) = j.

We have the following theorem.

Theorem 13. Let Π be the horizontally-partitioned size-locked index scheme from Section 5.5.2

using a symmetric encryption scheme SE and PRF. Let L be the leakage profile defined above.

Then we give a simulator S such that for any adversary A we can build an adversary B such that

AdvLΠ,S(A) ≤ Adv
cpa
SE (B) + Adv

prf
PRF(C) where B, C and each algorithm of S run in time that of

A plus some small overhead.

This simulator is a straightforward adaptation of the prior one.

B.2 CTR-DSSE Construction

In this section, we introduce the CTR-DSSE construction, using an existing DSSE construction

as black-box, for our target search problem.

DSSE primitive. Our CTR-DSSE construction is built with the DSSE.Search and DSSE.Update

protocols defined in existing DSSE works (semicolon separates input/output for client and server):

• (σ′;EDB′) ← DSSE.Update(K, σ,w, posting;EDB): the client takes the secret key K, the

per-term counters σ, the term w to update and the information posting to be put in the posting;
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the server takes the encrypted search index EDB. The protocol outputs the updated counters σ′

to the client, and the updated encrypted search index EDB′, added with the new posting for w,

to the server.

• (postings;⊥) ← DSSE.Search(K, σ, q;EDB): the client takes the secret key K, the per-term

counters σ and a query q, and the server takes the encrypted search index EDB. The protocol

outputs all the postings that match the query q to the client, and nothing to the server.

Almost all existing DSSE constructions only include document identifiers in posting, and they

focus on identifying all the documents that contain the query terms. Next, we describe how to

achieve our target search syntax based on the DSSE protocols.

Construction. Algorithm B.1 shows the details of the CTR-DSSE. CTR-DSSE executes DSSE.

Update with the new postings to update the encrypted search index (Line 4), and DSSE.Search

with the query and page number to retrieve all the postings matching the query (Line 8). For the

per-term counters σ, CTR-DSSE uploads it in ciphertext to the server (Line 6), and downloads it

when necessary (Line 2, 7). For the ranked previews, CTR-DSSE augments the posting in DSSE

with the term frequency and document meta-data (Line 4), and retrieves this information, together

with the identifiers, to rank and preview the results (Line 11).

We adopt Diana with 8 byte posting label, and 4 byte encoded counters for the underlying

DSSE primitives. The identifier, term hashes and metadata are encoded in the same way as in our

size-locked encoding.

Security of CTR-DSSE. For CTR-DSSE, Lup outputs the number of words in current, but not

any previous, update, and the number of postings in the update. Lse outputs the leakages of the

underlying DSSE construction, i.e., query pattern and result pattern for Diana.

Theorem 14. Let Π be CTR-DSSE with construction and L above, using a symmetric encryption

scheme SE. Then we give a simulator S such that for any adversary A we can build an adversary

B such that AdvLΠ,S(A) ≤ Adv
cpa
SE (B) where B and each algorithm of S run in time that ofA plus

some small overhead.
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Update(K, id, δ):

1: K1‖K2 ← K; md, (wi, tfi)
m
i=1 ← δ

2: Download and decrypt (using K1) σ from server
3: for i = 1, . . . ,m do
4: (σ′;EDB′)← DSSE.Update(K2, σ, wi, (id, tfi,md);EDB)
5: σ ← σ′; EDB ← EDB′

6: Encrypt (using K1) and upload σ to server

Search(K, q, i,⊥,⊥):

7: Download and decrypt σ; Initialize empty tables TFs,Metas
8: (postings; )← DSSE.Search(K2, σ, q;EDB)
9: for w ∈ q do

10: for posting ∈ postings[w] do
11: id, tf,md← posting
12: TFs[id, w]← TFs[id, w] + tf; Metas[id]← md

13: Use TFs to rank results, and return page i of results with entries from Metas

Figure B.1: CTR-DSSE construction.

Optimization. CTR-DSSE can be optimize to download only the counters for the query terms at

Search, without affecting the search leakage. The idea is to store the per-term counters separately,

and download the counters only for the query terms at Search. Such optimization does not affect

the leakage because it only reveals query pattern on the query terms, which is already included in

Lse. Note that, at Update, all the separate counters have to be downloaded at the beginning and

re-uploaded at the end, whether the associated word is changed or not because, otherwise, it would

leak the updated words, and make the construction not forward private.

We can further optimize to decouple the metadata from the postings using a forward index from

identifiers to the encrypted per-document metadata. Accessing metadata of matched identifiers

only leaks the result pattern, which is included in Lse already.

B.3 Experimental Queries
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Here are the single-keyword queries that we used to evaluate the search performance of the con-

structions in Section 5.7. Each keyword is followed by its document frequency in parentheses.

f

• Enron: enron (246814), thank (191266), message (130359), attach (108190), work (97741),

meet (76706), market (71063), review (63604), energy (63016), schedule (62857), friday (54685),

contract (49902), product (44437), talk (42498), california (38701), credit (35100), financial

(34715), transaction (33037), industry (25828), policy (20413), invest (17785), portland (17232),

georgia (2138), tokyo (2154), japan (4870), china (2259), chinatown (32), rolex (55), piano

(178), slave (178)

• Ubuntu: ubuntu (127005), help (42044), linux (28063), system (19892), driver (15561), version

(14018), firefox (8899), debian (4901), mysql (1781), radeon (1100), winxp (715), wikipedia

(535), gpg (436), invalid (389), udev (329), httpd (273), warcraft (251), rss (224), checksum

(195), askubuntu (164), openssl (142), benchmark (125), tracerout (110), smbpasswd (85),

selinux (65), noacpi (56), vsync (44), byobu (39), ipsec (36), openprint (31)

• NYTimes: president (79991), government (65339), research (27026), drug (22189), criminal

(13861), terrorism (13959), protest (9902), employee (8054), revolution (6271), diplomatic

(5247), girlfriend (4402), firefighter (3768), courtroom (3273), classified (2685), securities

(2296), zzz michael jordan (2062), diabetes (1847), zzz lincoln (1636), yankee (1460), heroin

(1261), zzz mit (1146), cereal (1058), zzz lieberman (983), zzz starbuck (912), cinnamon (842),

zzz rocky (779), volleyball (730), zzz gucci (641), nerd (486), tapestry (399)

B.4 Extended Security Analysis

In this section, we present an analysis of the leakage profiles of the basic sizelocked index, vertical

partitioning (VP), horizontal partitioning (HP), and vertical horizontal partitioning (VHP) along
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with comparisons to the leakage of a standard forward private DSSE scheme. Furthermore, we

discuss and analyze the power and practicality of possible attacks against our construction.

B.4.1 Leakage Across Various Settings

DSSE. In all circumstances, DSSE search will leak the length of the posting list associated with a

query as well as query equality, that is, the server can tell when two queries are associated with the

same keyword. Furthermore, search will leak the result pattern, that is, which documents contain

the queried keyword. Note that this result pattern is leaked even if a user does not request the

associated document from the server.

Updates will leak the size of the udpate was well as the number of new keywords added.

Vertical Partitioning. In all circumstances, a search in the vertical partitioning scheme will leak

the requested page of results and partition cutoffs for page numbers. Updates will leak the size of

the update. The leakage of partition cutoffs can open the possibility of a Cap undershooting attatck,

which we detail in section D.2. If we assume a user that looks specifically for top honesetly ranked

results, then the vertical partitioning scheme is vulnerable to a ranking deflation attack, which

we detail in section D.4. Assuming a user that clicks through all pages of results, the number of

requested pages can leak the length of the posting list of the queried keyword to the granularity of

the page length.

Horizontal Partitioning. Updates and searches for a keyword will leak the partition to which a

keyword belongs. Under the circumstance that a keyword is never queried after being added to the

index, horizontal partitioning has strictly worse leakage than DSSE because horizontal partitioning

will leak the partition to which the keyword belongs. The CTR-DSSE construction will have no

such access pattern leakage for updates because it is forward private.

If however a keyword is searched after it is added, then the access pattern leakage of DSSE will

be at least as granular as the access pattern leakage at the partition level of horizontal partitioning.

163



Note that if a user requests every document in the list of results served by a horizontally parti-

tioned index, our leakage becomes the same as that of DSSE because the document requests leak

the full result pattern .

B.4.2 Cap Undershooting

Recall from Section 5.1 that the number of postings in each vertical partition is determined using

the Cap function and is therefore dependent only on the number of postings in the index, which

we are willing to leak. Under ideal circumstances the Cap function outputs a partition size that can

accommodate at least the first page of results for all keywords in the index. However, if there are

many unique terms relative to the number of postings, formalized by Heap’s Law as a heuristic,

then the first page of certain keywords may be forced to spill over to the second partition. In

particular, the Cap function will undershoot when Cap(N) <
∑
w∈W

min(l(w), k) where W is the

full set of keywords, l(w) is the length of the posting list of keyword w and k is the page size. The

right hand side of the inequality corresponds to the total number of postings across all of the first

pages of terms within the index. Such a scenario would lead to two partitions being fetched instead

of just one, upon loading the first page of results. This distinction enables a file-injection attack

that can ascertain information about the initial state of the index.

Consider a scenario in which an adversary wishes to distinguish between an index containing

a single document containing the single word ”dog” versus an index containing a single document

with just the word ”cat”. In order to do so, the adversary can begin by injecting documents to attain

the condition that Cap(N) <
∑
w∈W

min(l(w), k) only if an additional posting is added to the index.

Of the injected postings, exactly k − 1 will be postings for “cat”.

The adversary then injects a final “cat” posting, which will force some “cat” posting to the

second partition. If there were a “cat” posting in the original index, then there will be k + 1 total

“cat” postings, so a single “cat” posting will be evicted to the second partition onto the second

page of the posting list. Note that when a user searches for a keyword, the first page of results is
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automatically loaded for the user and enough partitions are fetched to accommodate the first page

of any keyword in the index.

Therefore when the first page is served to a user, just the first partition will be fetched if and

only if “cat” was originally in the index. If “cat” were not originally in the index, then the first

page of the posting list of “cat” will be split between the second and first partitions, leading to two

partitions being fetched. This enables the adversary to win the security game with non-negligible

advantage and infer the contents that the index initially held.

One naturally may wonder if Cap undershooting can be used to mount a query recovery attack.

Because the partition fetching policy for loading page i will request enough partitions to have

page i of any keyword in the index, the number of partitions fetched by itself leaks no information

about the keyword in the query. If one were to modify the partition fetching policy to load enough

partitions to load results for page i of just the queried keyword, then a query recovery attack is

possible.

B.4.3 Timing Attack on the Lookup Table

As described in Section 5.3, the keyword table contains offsets within the serialized index to the

posting lists of keywords, allowing the client to avoid deserializing the full index to answer indi-

vidual search queries. The size of the keyword table, as with the partition sizes in VP, is determined

using the Cap function. When the number of terms is sufficiently large relative to the number of

postings, the keyword table cannot accommodate all terms in the index. Therefore, when a key-

word is not found in the keyword table, the entire index must be deserialized, which leads to a

considerable increase in query response time. In this way, timing information leaks when key-

words that aren’t in the lookup structure or in the index at all are searched. This leads to a query

recovery attack if the adversary can ensure that particular keywords {w1, . . . , wr} do not make it

into the lookup table because the lookup table was packed with injected keywords. This leads to

at most one bit of leakage (fast vs. slow). It is likely the case that noise from the manner in which
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users make queries will mask this timing side channel.

Under the ambitious assumption that the adversary is able to send queries, a timing attack can

be used to ascertain what keywords are in the index. If the adversary sees that their queries are

answered quickly, the adversary can deduce that the keywords in the queries are in the index. If a

query takes a long time to be answered [reword] then the full index must have been deserialized,

indicating that the keyword is not in the lookup structure and likely not in the index.

The above two attacks assume that the adversary is able to observe query response times on the

client. The frequency with which a user searches for different keywords can be a proxy for these

response times, however this is likely to be a noisy signal. In order for an adversary to accurately

measure the response time this way, it must be the case that the user immediately searches for a

new keyword once obtaining the results for the last keyword.

B.4.4 Ranking Deflation Attack

Posting lists are shown to the user across a number of pages. The page in which a result occurs

is determined by a ranking function (e.g. BM25, TF-IDF). On average, users are expected to find

what they are looking for among the first pages, ideally on the first page itself. Recall that in

vertical partitioning, the number of partitions accessed leaks the page number requested. If an

adversary observes that later pages are requested for a particular query, then the adversary may

deduce that the queried keyword has low-quality rankings for the first pages of results.

The adversary can inject files to deflate the ranking of the first page of honest high-ranked

results and replace them with lower quality results for a keyword w∗. Assuming that users will

keep clicking for results until they find at least one honest high-ranked result, then this gives a

query recovery attack for w∗.
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