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DISSERTATION ABSTRACT 

While genome-wide association studies (GWAS) have identified variants and genes 

associated with human disease, a comprehensive understanding of the genetic architecture of 

individual loci and the functional implications of these associations remains incomplete. In this 

work, we applied an integrated pipeline to chart the regulatory landscapes of obesity-associated 

loci within two cell types central to obesity etiology. In both adipocytes and hypothalamic 

neurons, we annotated gene expression, chromatin accessibility, and long-range chromatin 

interactions across multiple differentiation stages. Additionally, we generated a list of 2,396 

variants in high LD with BMI lead SNPs and tested them in a massively parallel reporter assay to 

identify putatively causal variants modulating enhancer activity. We identified 94 variants within 

enhancers that displayed enhancer-modulating properties, many of which were active in both cell 

types. Our data show that individual GWAS loci harbor multiple candidate causal variants within 

distinct enhancers that display cross-tissue effects. Integrating the identified enhancer 

modulating variants (EMVars) with chromatin interactions and eQTL information generated a 

comprehensive list of genes predicted to underlie obesity GWAS associations. Aggregating our 

data across multiple time points allowed us to assign more candidate causal variants to genes 

compared to regulatory maps in a single cell type and to prioritize 232 genes with varying 

degrees of evidence for obesity risk importance. We used these insights during experimental 

dissection of a complex genomic interval on 16p11.2 where we observed EMVars at two 

independent GWAS loci exhibiting megabase-range, cross-locus Hi-C chromatin interactions 

and shared eQTL effects. We provide evidence that EMVars within these two loci converge to 

regulate a shared gene set. Together, our data chart the genetic architecture of obesity-associated 
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loci and support a model in which many GWAS loci contain multiple variants that impair the 

activities of distinct enhancers across tissues, potentially with temporally restricted effects, to 

impact the expression of multiple genes. This complex network model has broad implications for 

ongoing variant to function efforts to mechanistically dissect GWAS.  
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CHAPTER 1: INTRODUCTION 

1.1 The allure of the non-coding genome 

In 1988 the Human Genome Project (HGP) was brought forth as an attempt to attain a 

complete map of the base pair sequence encoding human life. Completed in 2003, the HGP was 

the first large scale endeavor to understand how the nearly 3.2 billion base pair sequence of 

repeating four nucleotides - A, T, C and G - in the human genome leads to precise control of 

developmental and organismal functions1. What emerged from this effort was both the first 

human genome sequence, as well as a realization of a critical knowledge gap in our 

understanding of genome function; e.g., using this code how does a cell know which 

combination of genes to express, and to what level? This question still remains, and a continued 

investigation is critical for our understanding of gene expression patterns, which determine not 

only which proteins are produced, but also the overarching functions of each cell.  

The first clue to emerge was the discovery that protein-coding genes comprise only 2% of 

genomic sequence.  The remaining 98% was even colloquially termed “junk DNA”, as its 

function remained a mystery2. But in 2012 the Encyclopedia of DNA Elements (ENCODE) 

project suggested that up to 80.4% of the genome is functional, and provided evidence through 

large scale investigation of 147 different cell types that so-called “junk DNA” is riddled with 

elements capable of regulating the spatiotemporal expression of genes3. These gene regulatory 

elements have thus become a research area of great interest, and deep mechanistic investigation 

into how these regulatory elements act, and how they are misregulated in disease, will provide 

great insight into our understanding of gene expression regulation and genome biology. 
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1.2 Gene expression control via cis-regulatory elements 

Defined as enhancers, repressors, and insulators – gene regulatory elements are now 

known to coordinate amongst each other to orchestrate precise gene expression from 

development through adulthood. These elements usually contain docking sites (motifs) for 

transcription factor (TF) proteins, which together allow for cooperative binding of multiple 

transcription factors to DNA at these non-coding locations (Figure 1.1). In conjunction with 

defined TF expression within embryonic domains, this combinatorial binding allows for precise 

control of gene expression4–6. These TFs act by recruiting or blocking the actions of RNA 

polymerase II, the protein responsible for producing mRNA from DNA, at a gene’s promoter to 

modulate its transcription level. On average, a gene’s expression can be regulated by up to 

dozens of enhancers that fine-tune its expression across cell types and developmental stages3,7.   

Transcription factor binding to DNA can be measured directly through chromatin 

immunoprecipitation (ChIP-seq) or indirectly through chromatin compaction assays. The level of 

local chromatin compaction, where functional genomic elements can be turned on or off based 

on loosening (activation) or compaction (inactivation) of the genomic region due to recruitment 

of activators or repressors, alters regulatory element accessibility and thus availability for TF 

binding. Accessibility measures have traditionally relied on assays of chromatin compaction such 

as DNase I hypersensitive sites sequencing (DNase-seq), Formaldehyde-Assisted Isolation of 

Regulatory Elements (FAIRE-seq), or more recently, Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-seq)8. ATAC-seq relies on a Tn5 transposase which inserts 

sequencing adapters into nucleosome free regions of DNA for PCR amplification and 

quantification of open chromatin via next generation sequencing8 (Figure 1.1). This 

measurement allows for identification of accessible genomic regions, thus suggesting the 
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location and activity status of gene regulatory elements under defined cellular states, 

perturbations, and/or developmental time-points. 

A critical biological insight recently uncovered about regulatory elements is their ability 

to act locally, as well as over great linear distances (typically up to 1Mb), to alter a cognate 

gene’s expression through physical interaction and stabilization mediated by proteins such as 

CCCTC-binding factor (CTCF) and cohesin9. This allows regulatory elements to modulate the 

expression of local or distal genes, which makes predicting the gene(s) that they regulate 

challenging. Fortunately the 3D organization of genes and their regulatory elements in the 

genome can now be measured thanks to a groundbreaking suite of “C” technologies, which 

provide a snapshot of DNA-DNA interactions within the nucleus and can also be used to suggest 

the location of a gene’s regulatory elements within the vast search space of the non-coding 

genome10 (Figure 1.1). A particularly sensitive “C” technology, termed in situ promoter capture 

Hi-C (cHi-C), has become popular in the last several years because it allows for targeted 

enrichment and sequencing of promoter interacting genomic regions11–13. Knowledge of 

promoter interacting regions makes detection of regulatory elements located far away from their 

cognate gene feasible, although the proportion of promoter interacting regions that are 

regulatory, versus structural or artifact, requires further investigation. 

 

1.3 Current methods for enhancer identification 

Out of all regulatory elements, enhancers are arguably the best understood. As of yet, 

enhancers are not easily detectable based on sequence alone, so other methods to identify their 

location have been implemented. Some of the earliest methods to identify these elements were 

through estimates of conservation across species to prioritize non-coding regions of the genome 
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under selection, or through ChIP-seq detection of histone modifications such as H3K27ac and 

H3K4me1 that correlate with enhancer activity (Figure 1.1). Unfortunately, not all enhancers are 

conserved, and co-localization of enhancers with histone marks is imperfect, making these 

measures incomplete14. These techniques also lack direct assessment of enhancer activity. 

Historically, the best methods to measure enhancer activity have been mouse transgenic reporter 

assays for in-vivo validation of enhancer activity or luciferase assays for in-vitro validation. 

Luciferase assays and mouse transgenic assays provide reliable measurements of enhancer 

potential but are low-throughput with limited sensitivity and require individual cloning of tested 

regions. Recently, a class of high throughput enhancer assays has been developed, which 

includes Self-transcribing Active Regulatory Region sequencing (STARR-seq)15, Massively 

Parallel Reporter Assay (MPRA)16, High-resolution Dissection of Regulatory Activity 

(HiDRA)17, and others, which can test thousands of regions at a time and take advantage of 

barcoding technology to gain very precise estimations of enhancer activity (Figure 1.1). 

Although these assays allow for unprecedented numbers of enhancer activity measurements, they 

suffer from being episomal, meaning the DNA fragments are tested outside their native genomic 

context, and only short DNA sequences can be tested. Thus, confirmation of predictions with 

CRISPR-cas9 editing, where you can remove these putative enhancers out of the genome and 

measure changes in gene expression, is the current gold standard to validate enhancer 

predictions18. All together, multiple data types should be orthogonally integrated and carefully 

interpreted when evaluating whether or not a region of the genome is an enhancer. 
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Figure 1.1 Overview of applied methods  
The genome is riddled with regulatory elements. Methodologies have arisen in order to identify enhancers 
and connect them to their cognate promoters within the vast search space of the non-coding genome. To 
identify enhancers, we used a combination of ATAC-seq, luciferase assays, MPRAs or colocalization 
with posttranslationally applied marks on histone tails such as H3K27ac or H3K4me1. Gene expression 
levels were determined via RNA-seq. Promoter accessibility for transcription factor (TF) and Pol II 
binding, which can also be observed with ATAC-seq. The proximity of enhancers and promoters in 3D 
nuclear space, sometimes brought together by CTCF/cohesin complexes (blue ring), was measured with a 
“C” technology termed in situ promoter capture Hi-C. 
 
 

1.4 Understanding disease risk through Genome Wide Association Studies 

For cellular homeostasis to persist it is very important for the orchestration between gene 

regulatory elements and their cognate genes to be maintained. Gene expression levels naturally 

differ between individuals, and this diversity is attributed to both lifetime environmental 

exposures and genetic variants. Single nucleotide polymorphisms (SNPs) are the most common 

type of genetic variation present between people, as over 100 million SNPs have been identified 

to date. For over a decade, geneticists have used a method called Genome Wide Association 

Studies (GWAS) to identify SNPs that alter risk for common diseases. GWAS relies on 

genotyping a large number of individuals with and without the disease or disease modulating 

phenotype of interest, and determines whether particular alleles of each SNP are more likely to 
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be present in the individuals with or without disease, thus associating alleles to disease state. The 

results of these studies have lead to an explosion of interest in the fields of medical genetics and 

genomics, and have been instrumental in our understanding of the genetic basis of many traits.  

Looking back to the first 5 years of GWAS, the results were initially difficult to interpret. 

Researchers quickly noticed that the vast majority of GWAS disease associations mapped to the 

non-coding genome far away from nearby protein coding genes. Up until this point, disease had 

been understood primarily through the lens of Mendelian traits such as Sickle-cell anemia, 

Hemophilia A, or Phenylketonuria (PKU), where rare mutations within single genes cause 

disease. It was thought that these findings could be extrapolated to common diseases such as 

obesity, cardiovascular disease, or type 2 diabetes (T2D) where we would theoretically observe 

common coding variants with large effect sizes explaining the majority of trait heritability. 

Examples of a common disease with large effect variants that motivated these assumptions 

include coding variants for the gene MTHFR (Methylenetetrahydrofolate Reductase), where the 

677C>T substitution creates a thermolabile and less active form of this enzyme leading to a 10 

fold increased risk for homozygous TT individuals to develop hyperhomocysteinemia19,20. But 

upon implementation of GWAS it was discovered that the genetic architecture of complex 

common disease is very different from the MTHFR example or Mendelian traits. The first wave 

of GWAS identified very few variants that explained only a small portion of the trait heritability 

predicted by twin studies. This concerning performance of GWAS compared to twin studies even 

lead researchers to ponder where heritability was hiding in the genome, or why it was 

“missing”21. 

Today, thanks to larger and more powerfully designed GWAS, that question can now be 

answered with confidence. Hundreds of regions containing SNPs with very small effect sizes 
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contribute to the heritability of traits such as obesity and T2D, meaning that many genes 

contribute to risk for these traits, and each explain a small proportion of total disease risk and 

penetrance. To date, over 90% of all complex trait disease associations map to the non-coding 

genome22. These association regions are highly enriched for regulatory elements such as 

enhancers, suggesting that genetic variants may act to modulate regulatory element activity 

directly through altering binding affinity of transcription factors and affecting expression of 

genes important for disease. It is now more important than ever to focus scientific effort on 

learning about these noncoding variants and how small single nucleotide polymorphisms in 

regulatory elements can modulate gene expression and thus contribute to disease risk.  

 

1.5 Limitations of GWAS  

Although GWAS have been instrumental for our understanding of the genetic basis of 

complex traits, to date very few loci have been mechanistically dissected deep enough to provide 

a confident understanding of how variants in these regions lead to disease. This shortage of 

mechanistic understanding is primarily due to limitations in GWAS design that create 

challenging experimental hurdles that must be crossed prior to interpretation.  

First, when attempting to interpret the results from any GWAS locus, there are usually 

many SNPs in each association region that reach genome wide significance. This is because the 

genome is inherited in blocks, where many SNPs are oftentimes nonrandomly linked together 

due to lack of recombination in that region during meiosis. This phenomenon is known as 

linkage disequilibrium or “LD”.  When performing a genetic association study where individuals 

must be genotyped, genomic regions are “tagged” by choosing SNPs within each haplotype 

block to represent that locus, thus avoiding costly whole-genome sequencing.  Because of this, 
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the SNP with the lowest p value identified in each GWAS locus is oftentimes not the causal 

variant, meaning the risk variant driving disease risk. Nearby SNPs in the LD block, due to allele 

frequency differences or lack of direct genotyping, can instead reach the highest statistical 

significance in the area23. Therefore, SNPs in each GWAS locus that are the most significant 

(lead SNPs) and nearby SNPs in high LD must all be considered for causality.  

Once the causal variant has been predicted you can try to understand how that variant 

disturbs a gene. To do this for non-coding variation, it is important to first determine the cell type 

driving the association. To address this, epigenetic enrichment analyses are sometimes 

performed to determine the cell type(s) where there are active regulatory elements in the region 

of interest. Although there are many mechanisms by which a non-coding region can contribute to 

disease risk, modulation of regulatory elements, specifically enhancers, is predicted to be the 

most common24–26. It is then up to the researcher to prove that the SNP affects the regulatory 

element, potentially by providing evidence that this variant has the capability of affecting 

enhancer activity in a disease relevant tissue.  

Once the likely causal variant has been identified, the target gene affected by the non-

coding SNP must be determined. As previously discussed, enhancers do not necessarily regulate 

the closest gene, so if a causal SNP is in an enhancer, the gene regulated by the enhancer must be 

identified. Using a set of “gold standard” genes with missense mutations that lead to the same 

trait, it has been estimated that at least 50% of the causal GWAS target genes are not the closest 

gene27,28. Technologies such as promoter capture Hi-C have become essential tools to help 

researchers predict target genes within these regions. Integration with expression quantitative 

trait loci (eQTL) mapping information has also been used to varying degrees of success as well 

as CRISPR-cas9 editing to validate enhancer-target predictions. Finally, the implicated gene 
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must be linked to a cellular function important for your disease in a causal manner, usually 

though in-vivo mouse models or in-vitro cellular studies.  

All of these questions create a multi-step process of variant-to-function interpretation that 

has complicated our understanding of GWAS results. Studies attempting to address these 

questions have themselves uncovered additional complexities hiding within the genetic 

architecture of these loci. Because of the regulatory complexity of many genes, where each gene 

can have multiple enhancers, multiple variants within these regions can then affect the 

expression of target genes. This has lead to the hypothesis that multiple causal variants may exist 

within GWAS loci. Additionally, deep dissections of certain loci have taught us that multiple 

genes may also be affected by these variants where each independently contributes to disease29. 

In the work presented here, we aimed to apply a pipeline to address many of these experimental 

hurdles and outstanding questions in order to prioritize functional variants and target genes in 

obesity associated GWAS loci in a high-throughput manner.  

 

1.6 The genetic basis of common obesity  

Metabolic disease prevalence is on the rise, and the center for disease control and 

prevention (CDC) estimates that obesity now affects over 40% of Americans30. Defined as 

having a body mass index (BMI) > 30, obesity is not only a serious condition in isolation, but is 

also a major risk factor for other diseases such as cancer, heart disease, and type 2 diabetes. The 

high prevalence and presence of serious comorbidities associated with this disease makes it a 

significant public health threat that has yet to be addressed. Few successful treatments for obesity 

actually exist, and a large contributing factor is thought to be a historically inaccurate 

understanding of obesity etiology. Although environmental influences such as poor nutrition and 
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sedentary lifestyle have long been the sole attributors to obesity risk, genetic factors are now 

known to play a key role. In support of this, heritability estimates for body mass index (BMI) 

range from 16-40%31–34, demonstrating that a sizable proportion of the phenotypic variation 

within obesity is attributable to genetic variants.  

There are several interesting theories on how genetic variants contribute to obesity risk. 

In 1962 the “thrifty” genotype hypothesis was put forth to suggest that certain genetic variants 

were positively selected on through human evolution because they confer a biological ability to 

store energy, and were advantageous during the many thousands of years humans did not have 

reliable food availability35. But after the dawn of the agricultural revolution as food became more 

widely accessible, it is thought that these variants now predisposed individuals to superfluous fat 

storage and obesity risk. Although this hypothesis is attractive, it is not well supported in 

scientific literature, as few obesity loci exhibit signatures of selection36. A second, more recent, 

hypothesis suggests genetic variants may modulate hedonic reward centers in the brain37. The 

brain is responsible for regulating hunger and satiety cues, and circulating hormones act on 

regions of the hypothalamus to stimulate or inhibit feeding in order to maintain energy balance. 

In one example, individuals with congenital deficiencies of the hormone leptin were asked to rate 

how much they liked images of certain foods. Upon treatment with leptin supplementation, these 

ratings were significantly reduced, demonstrating the capacity of genetic variants to also affect 

food desirability38,39. Thus, a thorough investigation of human genetic variation is important 

because it can pinpoint genes important for obesity relevant biological processes, which can lead 

us to identify novel therapeutic targets for this common condition. 

In 2015 the genetic investigation of anthropometric traits (GIANT) consortium performed 

a large-scale effort to identify novel genetic loci associated with obesity. With this effort, the 
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consortium identified 56 novel associations to BMI while confirming 41 from previous studies. 

This group found that highly expressed genes near BMI associated SNPs are strongly enriched 

for tissues in the central nervous system, particularly the hippocampus, hypothalamus and limbic 

systems40. They also suggested that common genetic variants (MAF > 5%) explain at least 21% 

of the heritability for obesity and found that these variants were enriched to be in brain and 

adipose enhancers. Specifically, hypothesized mechanisms for obesity risk include; cross-talk 

between adipocytes and regions of the hypothalamus controlling feeding behavior via signaling 

by the satiety hormone leptin or other metabolism-modulating hormones such as insulin or 

ghrelin39,41–43; regulation of thermogenesis through modulation of beta-adrenergic signaling or 

beiging/whitening of adipose tissue29,44; disruption of reward pathways in the brain leading to 

imbalances toward stimuli when eating37,38; or developmental abnormalities leading to loss of 

homeostatic mechanisms in either cell type45. These hypotheses suggest that processes within 

brain and adipose drive obesity, where these cell types coordinate to regulate phenotypes related 

to body weight maintenance.  

To date, few genes have been implicated in obesity risk, and the majority of these have 

been through investigating instances of rare monogenic obesity. Several genes have been 

implicated in both conditions, including POMC (Pro-opiomelanocortin), BDNF (Brain-derived 

neurotropic factor), PCSK1 (Proprotein convertase subtilisin/kexin Type 1), LEP (Leptin), and 

MC4R (Melanocortin 4 receptor) 41,46–49.  Each of these genes are involved in the leptin-

melanocortin pathway, a key metabolic signaling pathway that controls food intake. Leptin is a 

hormone secreted by adipocytes that signals to leptin receptors on neurons in the arcuate nucleus 

of the hypothalamus. This signal blocks AGRP (Agouti-related protein) appetite stimulating 

signals and instead induces expression of POMC to produce the pro-opiomelanocortin pre-
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hormone. This POMC pre-hormone is then cleaved by PC1/3 50, the protein produced by PCSK1, 

to make α-MSH. α-MSH can then activate MC4R signaling in secondary neurons of the 

paraventricular nucleus to induce satiety (reviewed in 51). BDNF has found to be regulated 

downstream of MC4R signaling and is thought to play a role in MC4R’s regulation of energy 

balance and neuronal development52. BDNF also has an important role to play in the 

hippocampus, where it regulates long-term memory53. Humans harboring pathogenic mutations 

in the coding portion of these genes exhibit hyperphagia and severe, early onset obesity. 

It has been proposed that non-coding associations at these regions may tag rare coding 

variants with large effect sizes at these locations, which is known as the synthetic association 

hypothesis54. But a careful investigation of variants at the MC4R locus instead supports the 

contribution of common non-coding variants that modulate the expression of these genes to a 

lesser degree, predisposing to the common form of obesity55. Secondarily this indicates that 

identifying common variation with small effect sizes does not speak to the magnitude of the 

biological relevance of the target gene itself.  

Other novel genes such as NEGR1 (Neuronal growth regulator 1)56, MAP2K5 (Mitogen-

activated protein kinase kinase 5)45, ADCY3 (Adenylate cyclase 3)57,58, and CADM2 (Cell 

adhesion molecule 2)59 have been linked to obesity specifically from GWAS results with varying 

degrees of supporting evidence. NEGR1, ADCY3, and CADM2 are predicted to lead to obesity 

risk through modulation of homeostatic processes in the hypothalamus. On the other hand, 

MAP2K5’s role in obesity risk has been predicted to be important in adipocytes, where this gene 

acts as a potent activator of extracellular signal-related kinase 5 (ERK5) signaling, which 

regulates a wide range of processes, including cell growth, proliferation, and differentiation. 
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Mice lacking ERK5 specifically in adipocytes had increased adiposity as well as food intake60. 

MAP2K5 may therefore regulate adiposity via this important pathway60. 

As with other traits, very few obesity associated regions have been mechanistically 

investigated thoroughly from “variant to function” to identify the genes driving risk. One great 

exception is for an association that lies within the first intron of the FTO (Fat mass and obesity-

associated) gene, where these variants consistently represent the strongest genetic variants 

associated with obesity across studies and human populations. Individuals homozygous for the 

risk variant in this locus are on average 2.5-3kg heavier than homozygous non-risk individuals61. 

The risk variant in this locus is associated with both increased food intake as well as diminished 

satiety response in adults as well as children62–65. For years gene driving this phenotype was 

predicted to be FTO itself, and mouse models showed that knocking out this gene lead to a body 

weight phenotype. However, a loss-of-function mutation (R316Q) in FTO was then identified in 

a cohort of human subjects, and neither heterozygous nor homozygous individuals exhibited a 

high prevalence of obesity, complicating this interpretation 66. Recent, careful investigation of 

this locus demonstrated that the first intron of FTO contains enhancers active in both brain and 

adipose29,44. Using 3D genome technology as well as CRISPR-cas9 editing, these enhancers were 

then linked not to FTO, but to two distal genes, IRX3 and IRX5 that were also found to regulate 

BMI in mice and humans29,44. These enhancers also seem to have temporally restricted effects, so 

they only modulate the expression of these two genes only during the early stages of adipose and 

neuronal development. This mechanism has been elucidated through years of work to determine 

that SNPs within these enhancers likely alter disease risk through disruption of adipose-mediated 

thermogenesis as well as hypothalamic mediated food intake preferences (unpublished and 29 ). 

Although the FTO locus has highlighted novel insights into the complexities of GWAS, 
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questions remain whether these principles are uniform across regions or unique to this locus. 

Understanding these complexities will allow us to further understand the genetic mechanisms 

underlying GWAS.    

 

1.7 Overview of thesis research 

The thesis research presented here was an attempt to address the gaps discussed above in 

our knowledge of how to interpret GWAS associations. This work aimed to encompass a 

pipeline that would allow us to interpret GIANT consortium obesity GWAS associations in a 

high-throughput manner in order to generate a list of prioritized genes for further investigation 

into their relevancy for obesity risk. This pipeline is also flexible enough that it can be applied to 

other heritable complex traits. We first created maps of key genomic features in cell types 

important for our trait of interest, obesity, to prioritize causal SNPs and target genes important 

for disease risk (Chapter 2). After integrating these data, we then chose to dig further into an 

interesting locus on chromosome 16 that emerged from the analysis. An introduction to this 

locus and our findings are discussed in Chapter 3.  

Chapter 2: In order to interpret obesity GWAS associations, we turned to models of white 

adipocytes and hypothalamic neurons in order to generate useful genomic annotations in these 

disease relevant cell types. We differentiated Simpson-Golabi-Behmel syndrome (SGBS) 

preadipocytes to adipocytes and collected ATAC-seq, RNA-seq, and promoter-capture HiC at 

four differentiation stages. Secondarily, we also differentiated iPSC cells to mature hypothalamic 

neurons and collected these cells for ATAC-seq, RNA-seq, and promoter-capture HiC at three 

differentiation stages. These genomic annotations were then integrated with additional data 

suggesting putatively causal variants that modulate enhancer activity which were identified using 
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a massively parallel reporter assay (MPRA) performed in 3 adipose and 2 neuronal cell lines. 

Combining these datasets and integrating them with eQTL information from the Genotype-

Tissue Expression project (GTEx version 8) we were able to prioritize target genes for 

importance in obesity risk across 38 GWAS association loci in a cell type specific manner.  

Chapter 3: Leveraging data from Chapter 2 of this thesis, we then went on to further 

investigate an interesting locus on chromosome 16p11.2 containing two independent GWAS 

loci. Both of these loci exhibited a dense network of enhancers containing variants that were 

seemingly connected via cHi-C interactions and eQTL evidence. In the ATP2A1 (ATPase 

Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 1) locus, we identified a haplotype of 

7 common variants that segregate together in European populations. These variants were each 

found to modulate enhancer activity, were eQTLs for many genes in brain and adipose, and 

interacted with many promoters in our cHi-C data in both cell types. In the second SBK1 (SH3 

Domain Binding Kinase 1) locus we identified one very interesting candidate causal variant that 

also exhibited these traits and made long range cHi-C contacts into the ATP2A1 locus. Using a 

suite of functional genomics technologies we decided to probe this hypothesis and discovered 

that there is indeed a physical connection between the two loci, and that at least one of the 

enhancers is capable of modulating the expression of more than one gene under unique cell-type 

and temporal situations. These results validate our predictions from Chapter 2 that suggest many 

GWAS loci will harbor more than one functional variant that participates in either uniform or 

temporally restricted modulation of gene expression to lead to obesity risk, and may regulate 

more than one gene.   
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CHAPTER 2: LEVERAGING GWAS TO IDENTIFY GENES IMPORTANT FOR 

OBESITY RISK 

 

2.1 Abstract 

GWAS interpretation relies on the generation of genomic annotations in cell types 

relevant to the disease or trait of interest. In order to interpret GWAS association loci for obesity, 

we generated ATAC-seq, RNA-seq, and promoter capture Hi-C (cHi-C) data across several 

stages of development for adipose and hypothalamic neurons. We then combine these 

annotations with additional data generated from a massively parallel reporter assay (MPRA) 

where we tested enhancer modulating activity for all SNPs in high LD with the 97 independent 

obesity GWAS loci identified in Locke et al 2015. Using MPRA, we were able to identify 94 

variants across 40 of these GWAS loci that exhibited enhancer-modulating activity in either 

adipose and/or brain cells. Thirty-nine percent of these enhancer-modulating variants (EMVars) 

were functional in both cell types, suggesting that effects they impart could be shared across 

tissues. Additionally, two-thirds of the loci harbored more than one EMVar, providing evidence 

for multiple functional variants across the majority of loci. Using the generated genomic 

annotations, we prioritized genes in 38 GWAS loci via a classification system into degrees of 

supporting evidence for obesity risk. Twenty class I genes exhibited the highest levels of support 

and many had functions with known relevance to metabolic processes. Thirty additional class II 

genes also had high levels of support. Together, our data support a model in which many GWAS 

loci contain multiple variants that impair the activities of distinct enhancers across tissues, 

potentially with temporally restricted effects, to impact the expression of multiple genes. This 
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complex network model has broad implications for ongoing variant to function efforts to 

mechanistically dissect GWAS. 

 

2.2 Introduction 

While genome wide association studies (GWAS) have been instrumental in associating 

genetic variation to disease, functional studies delineating specific causal variants or effector 

genes of these associations have yet to become commonplace. Current evidence indicates that a 

significant proportion of associated variants impart their phenotypic effect through functional 

effects on distal gene regulatory elements, such as enhancers. However, a challenge remains to 

pinpoint the causal variants that modulate these enhancers and to identify their effects on target 

genes in specific tissues. Recent studies have posited that regulatory variants are common, and 

may act in a pleiotropic manner to modulate expression across cell types67,68. Therefore, 

questions remain whether genetic associations are driven by single or multiple variants, if the 

phenotypic impact of causal variants is uniform or cell type specific, and whether this regulation 

occurs across developmental stages or is confined to specific temporal windows29,44,69,70.  The 

ability to characterize the genetic architecture of a disease remains anchored in the need to 

develop and interpret comprehensive functional genomic maps in disease relevant cell types. 

Here, we applied a suite of tools to generate genomic annotations that allow for the functional 

interpretation of GWAS loci associated with obesity.    

GWAS meta-analyses for Body Mass Index (BMI) have identified 97 independent loci 

associated with obesity, where the vast majority of these loci harbor causal variants that are 

predicted to be noncoding40. These noncoding BMI associated variants are strongly enriched to 

lie within regions containing brain and, to a lesser extent, adipose enhancers identified by 
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H3K27ac and H3K4me1 ChIP-seq in these cell types.  These two cell types are thought to be 

critical players in BMI maintenance, as they modulate energy intake in the form of hunger and 

satiety cues and control energy expenditure through central and peripheral circuitry.  To 

functionally interpret obesity-associated loci, we systematically generated key genomic 

annotations in primary human adipocytes and human iPSC-derived hypothalamic neurons. To 

capture dynamic features of chromatin accessibility, gene expression, and long-range enhancer-

promoter interactions, we assessed these parameters across the differentiation of iPSC derived 

hypothalamic neurons and during the conversion of pre-adipocytes to mature white adipocytes. 

Additionally, we identified a set of 2,396 putatively causal variants in high linkage 

disequilibrium (LD) with the 97 BMI GWAS lead single nucleotide polymorphisms (SNPs) and 

determined the enhancer activity and allelic effects of each of these variants by performing a 

massively parallel reporter assay (MPRA) in brain and adipose cell lines.  

Our MPRA data identified putatively causal enhancer-modulating variants (EMVars) 

with regulatory properties in adipose and/or neuronal cell lines. While we identified a single 

EMVar in some obesity-associated loci, the majority of loci contained multiple EMVars, 

demonstrating that the genetic architecture at GWAS loci is often complex. Assaying the 

regulatory landscapes of human adipocytes and hypothalamic neurons across developmental 

stages resulted in an increased overlap of functional annotations with EMVars, supporting 

evidence that a subset of functional variants have temporally restricted phenotypic effects in 

vivo. We synthesized these datasets to provide a ranking system for variant and target gene 

prioritization across 38 of the 97 GWAS loci to inform functional follow-up in each cell type. 
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2.3 Results 

2.3.1 Charting the regulatory landscape of obesity relevant cell types 

To interpret obesity GWAS associations, we aimed to generate comprehensive maps of 

genome annotations in human hypothalamic neurons and adipocytes. Despite the prominence of 

hypothalamic neurons in obesity etiology40,51,71–73, little is known about the regulatory landscape 

of these cells, which is in part due to the challenge in obtaining them. To overcome this, we 

differentiated a human induced pluripotent stem cell line (iPSCs) into mature hypothalamic 

neurons. We modulated sonic hedgehog (SHH), transforming growth factor β (TGFβ), and bone 

morphogenetic protein (BMP) signaling pathways to induce neuronal differentiation. After 

neuronal differentiation we introduced BDNF factor to promote maturation of POMC and NPY 

positive arcuate nucleus type hypothalamic neurons. We collected cells at three time points 

representing early hypothalamic neuron precursors (D55), early immature (D75) and late (D100) 

mature hypothalamic neurons. These cells were then processed for cHi-C to elucidate putative 

enhancer-promoter interactions, ATAC-seq to identify open chromatin, and RNA-seq for global 

gene expression information. Additionally, we obtained non-immortalized Simpson-Golabi-

Behmel syndrome (SGBS)74 human preadipocytes, the only human preadipocyte cell line 

available, and differentiated them to mature white adipocytes for collection at four key time 

points representing preadipocytes, differentiation induction, early mature adipocytes and late 

mature adipocytes, respectively (Figure 2.1a). For each of the adipocyte time points, we 

performed ATAC-seq, RNA-seq, and cHi-C (Figure 2.1a)8,9,13  

In total, we identified 601,109 - 935,217 significant cHi-C interactions per time point in 

adipose and 456,653 - 588,929 interactions in neurons, with a median interaction distance 

between 178-260kb (Supplementary Figure S2.1c). The average fragment size for each 
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interaction was 422 base pairs, allowing us to map putative regulatory regions at very high 

resolution75. In support of these maps use for enhancer identification, we evaluated the promoter 

distal ends of hypothalamus and adipose interactions and found they were enriched for cell type 

appropriate enhancer histone marks identified by ENCODE (H3K4me1 and H3K27ac), as well 

as for open chromatin (Supplementary Figure S2.1e,f).  

To characterize dynamic changes of these datasets across differentiation stages, we 

initially focused on identifying differentially expressed genes (DEGs). For adipose, the largest 

changes in gene expression occurred upon differentiation induction, with 1,881 DEGs observed 

between day 0-2 compared to 516 genes between day 2-8 and 611 DEGs between day 8-16. A 

two-stage comparison between preadipocytes and mature adipocytes would have resulted in 760 

DEGs, thus losing a significant portion of temporally restricted transcriptome changes. We used 

fuzzy-c means clustering to group DEGs for both cell types into predominant patterns (Figure 

2.1b & Supplementary Figure S2.1a,b). The three clusters with the highest membership scores 

are shown (Figure 2.1b & Supplementary Figure S2.2a).  The top adipose cluster (Cluster 1) 

encompassed genes that have the highest expression in preadipocytes and was enriched for genes 

involved in actin cytoskeleton rearrangement and proliferation, both of which represent 

important processes for the conversion of preadipocytes to adipocytes76,77. The second cluster 

(Cluster 6) was enriched for genes involved in focal adhesion, a signaling pathway involved in 

extracellular matrix (ECM) communication78–81. The last cluster (Cluster 4) represented genes 

that were upregulated quickly upon exposure to differentiation stimuli, and included genes from 

the PPAR signaling pathway as well those involved in lipolysis, both of which are canonical 

processes that occur during the transition of fibroblast-like preadipocytes to lipid-laden 

adipocytes82 (Figure 2.1b-d). For hypothalamic neurons, the three main clusters for neuronal 
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differentiation DEGs were enriched for genes involved in neurogenesis (Cluster 4), cell-cell 

signaling (Cluster 6), and developmental processes (Cluster 5). The genes involved in 

neurogenesis and cell-cell signaling were the highest expressed at D100, the most mature state. 

Alternatively genes involved in development were downregulated by D100 (Supplementary 

Figure S2.2a-c). 

To derive comparisons across time and between datasets, we show all significant data 

points in adipose and brain using the Hue-Saturation-Value transformation (HSV)83,84 (Figure 

2.1e-g, Supplementary Figure S2.2d-f). With HSV, gene expression, chromatin accessibility and 

cHi-C promoter interactions can be visualized in a 360° space, where each significant data point 

is binned into a representative temporal pattern shown on the outside of the plot. We also 

performed a Pearson’s r correlation to evaluate relationships between time points. In adipose, 

gene expression and chromatin accessibility were the least correlated (most changed) between 

Day 0-2 (r =.854; RNA  & r =.461; ATAC) and reached an equilibrium in later differentiation (r 

=.938-.941; RNA & r =.781-.865; ATAC). Conversely, the cHi-C data were the most correlated 

between Day 0-2 (r =.573), but changed dramatically as differentiation continued (r =.316-.390) 

(Figure 2.1e-g). Broadly, gene expression values in adipose exhibited diverse global patterns, 

where the most common was a strong decrease in expression between the first two time points 

(yellow pattern). ATAC-seq peaks tended to increase over time (dark blue pattern), but also 

exhibited some regions of decreased accessibility (yellow pattern). Promoter interactions seemed 

to be the least dynamic, either decreasing over time (orange pattern) or increasing during the last 

time point (light blue pattern) (Figure 2.1e-g).  These analyses were also performed for neuronal 

maturation and are presented in Supplementary Figure S2.2. We observed different patterns 

emerging from these hypothalamic HSV plots compared to adipose, and these differences are 
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likely due to differences in biological processes happening between cell types, or, because we are 

capturing the late stages of induced maturation rather than the process of stimulated 

differentiation induction as with the adipocytes. 

To evaluate whether changes in chromatin accessibility and/or cHi-C interactions 

correlate with gene expression changes at gene loci, we obtained a list of genes that were 

connected to at least one ATAC-seq peak via a significant cHi-C interaction (Figure 2.1h, 

Supplementary Figure 2.2g). For adipose this list contained 8,288 genes and on average each 

promoter interacted with 3-4 unique ATAC-seq peaks across this time-course (Figure 2.1h). In 

the hypothalamic neuron data, 5,129 gene promoters interacted with an average 1-2 ATAC-seq 

peaks, likely because we captured fewer significant Hi-C interactions in these cells compared to 

adipose (Supplementary Figure S2.2g). To test the functionality of these interactions, we 

grouped genes that were differentially expressed at any time point and compared changes in 

chromatin accessibility and cHi-C interaction strength to static genes. For genes upregulated 

between two time points, we observed stronger interaction scores and more accessible chromatin 

compared to genes that were not differentially expressed. Downregulated genes also generally 

demonstrated stronger suppression of chromatin and interaction scores, supporting the use of 

these datasets to identify gene regulatory regions (Supplementary Figure S2.1g).  

Using these data, we generated a high-resolution map of interactions between promoters 

and putative regulatory elements across several differentiation time points in both adipose cells 

and hypothalamic neuronal precursors. This is a critical first step for the overarching goal of 

obesity GWAS interpretation, and allowed us to wire distant enhancers to promoters in a high-

throughput manner (Figure 2.1i, Supplementary Figure S2.2h) 
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Figure 2.1: Characterizing Adipocyte Differentiation using Genomic Annotations 
a) Time points for data collection  
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Figure 2.1, continued. b) Adipose DEGs were grouped via fuzzy-c means clustering and the top three 
clusters with highest membership scores are illustrated. The number of genes in each cluster and scaled 
expression across the four differentiation time points is depicted. c) Significant KEGG pathway terms 
identified using Enrichr for the top three clusters. d) Heatmap of gene expression depicting genes from 
each of the top three clusters that are members of the enriched KEGG pathway terms.  The leftmost 
colored bar indicates cluster membership and each column is an RNA-seq replicate. e-g) HSV 
transformation of expressed genes, ATAC-seq peaks, and cHi-C interactions across differentiation. The 
three nodes of each pattern represent day 0, day 2, and day 16 of adipose differentiation. The distance of 
each point from the center of the circle represents maximum log2 fold change, and color transparency 
represents the relative number of reads for that data point. Below, heatmaps of Pearson’s r correlation 
coefficients estimate overall similarity between time points. h) On average, a promoter interacts with 3-4 
ATAC-seq peaks via a cHi-C interaction across time (interactions and ATAC peaks were not required to 
be significant at the same time point). i) View of cHi-C interactions emanating from the promoter of the 
IRS2 gene, which becomes upregulated between differentiation days 0-2. ATAC-seq reads and peaks 
from day 0 and day 2 are also shown. 
 

2.3.2 Identifying functional variation in obesity GWAS loci 

A common mechanism by which noncoding variants lead to disease risk is expression 

modulation mediated by alterations in enhancer function67. In order to identify SNPs capable of 

affecting enhancer activity at GWAS loci, we employed a massively parallel reporter assay 

(MPRA) to test variants in high LD with lead SNPs identified in a recent BMI meta-analysis 

conducted by the GIANT consortium16,40,85. Candidate variants were defined as lead SNPs in 97 

independent obesity GWAS loci and variants in high LD (MAF >= 5% CEU population, r2 >.8), 

for a total of 2,396 variants. We synthesized 175-bp DNA fragments centered on each biallelic 

SNP, and each allele was placed alongside 18-19 unique 10bp DNA barcodes, allowing for 18-

19 measurements of enhancer activity for every allele. This resulted in a pool of 89,964 

fragments that was cloned into the pMPRA1 vector16. We tested each region containing a SNP 

for enhancer modulating activity, as well as allele specific differences in activity across three 

adipose cell types (SGBS preadipocytes, SGBS mature adipocytes, 3T3-L1 preadipocytes) and 

two neuronal cell types (GT1-7 and HT22 cells) (Figure 2.2a-b). Across the GWAS loci, we 

identified 807 genomic regions in brain and 543 genomic regions in adipose where at least one of 
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the two alleles acted as an enhancer, and 460 regions were enhancers in both cell types (Figure 

2.2c). Of the enhancers, 94 harbored an enhancer-modulating variant (EMVar), which conferred 

significant differences in enhancer activity between alleles (Figure 2.2b,d). ENCODE 

ChromHMM provides chromatin state predictions across the genome based on ChIP-seq derived 

histone marks3. Compared to all tested regions, MPRA enhancers were enriched for ENCODE 

ChromHMM predicted active marks and depleted for inactive marks in adipose and brain tissues 

(Supplementary Figure S2.3a). They were also more likely to overlap open chromatin and cHi-C 

interactions compared to other MPRA tested regions without enhancer activity, supporting the 

potential of enhancer function for these regions in their native chromatin context (Supplementary 

Figure S2.3b).  

Because enhancers are made up of combinatorial transcription factor binding sites that 

can be up to 1kb in length, we decided to validate enhancer activity for 24 unique ~1,000bp sized 

regions containing MPRA EMVars using luciferase assays in a brain and/or adipose cell line 

depending on where they were found to be significant using MPRA. We found that these longer 

DNA fragments resulted in the same enhancer activity call in luciferase assays for 28/43 (65%) 

of the conditions tested (Supplementary Figure S2.3c). This indicates that while size of the tested 

enhancer may affect activity, the calls were relatively consistent across different assay types and 

fragment sizes. 

We next sought to illuminate the network of transcription factors (TFs) putatively bound 

to these enhancers to understand potential biological processes regulated within these GWAS 

loci. We performed TF motif enrichment analysis within enhancer sequences identified from 

each of our MPRA cell types and found that MPRA enhancers at obesity GWAS loci were 

enriched for motifs for TFs that are involved in critical metabolic processes regulated in both 
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brain and adipose. Multiple members of the AP-1 complex family as well as the ATF family 

were identified. AP-1 family members are upregulated during early adipogenesis and are critical 

for proper adipose formation, and also have the ability to regulate whole-body energy 

expenditure when modulated in the hypothalamus 71,86–88. ATF factors in particular are important 

for adipogenesis, and have also been shown to regulate thermogenic programs in the mouse 

hypothalamus through Agrp expression modulation 89–91. Other TF motifs important for 

thermogenesis and glucose homeostasis were also enriched, including thyroid hormone 

receptors, IRF3, ERRα, and USF1/2 92–95. Interestingly, TFs important for maintenance of 

circadian rhythm in central or peripheral clocks such as CLOCK, BHLHE40 (DEC1), and 

BMAL1 were also enriched (Supplementary Figure S2.4a, Supplementary Table S2.1-S2.2)96.  

In addition to identifying enhancers, the MPRA assay tests for variants capable of 

modulating enhancer activity (EMVars). Of the 94 EMVars we found 61 brain EMVars and 70 

adipose EMVars, and at least one EMVar was identified in 40/97 (41%) of tested GWAS loci. 

Surprisingly, 2/3 of these contained more than one EMVar, raising the possibility that the genetic 

architecture of these GWAS loci could be driven by allelic heterogeneity, where multiple 

variants impart their effects on a phenotype (Figure 2.2e). Additionally, 37/94 (39%) of these 

variants affected enhancer activity in both cell types, an observation in line with the recent GTEx 

finding that the majority of expression quantitative trait loci (eQTLs) are not tissue specific 

(Figure 2.2e)67. This suggests that at each of these GWAS loci, multiple variants have the 

potential to contribute to expression variation. Additionally, the effect of these variants may not 

be restricted to one obesity relevant tissue. 

The two loci that harbor largest number of EMVars identified in our study were the FTO 

and ATP2A1 obesity association regions, each representing strong and highly reproducible 
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associations on chromosome 16 (Figure 2.2e)40. Overall, we observed the largest number of 

EMVars mapping to chromosome 16. To investigate this further, we applied stratified LD score 

regression (s-LDSC)97 to BMI GWAS summary statistics to estimate heritability across 

chromosomes and confirmed  that chromosome 16 contributes disproportionally to obesity 

heritability (Figure 2.2f, Supplementary Figure S2.5b,c) 34. These data suggest that the strong 

heritability enrichment at chromosome 16 could be driven by an overabundance of functional 

variants, such as EMVars, that exist within chromosome 16 obesity GWAS loci.  
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Figure 2.2: MPRA identifies enhancers and functional variants in obesity GWAS loci 
a) Variants were synthesized adjacent to 18-19 unique 10bp DNA barcodes and cloned into the pMPRA1 
vector. Constructs were transfected into 5 cell lines from the adipose and brain lineages (see Methods). b) 
Average MPRA activity across replicates is shown for all tested regions in GT1-7 libraries. Significant 
GT1-7 enhancers (q < 0.05; one sided Mann-Whitney U test) are colored red. A SNP was considered an 
EMVar if the variant significantly affected MPRA enhancer activity levels (q < 0.05; two sided Mann-
Whitney U test). c) Venn diagram of MPRA enhancers significant in either cell type d) Circos plot of 
MPRA results. Grey lines within the circle represent the locations of GWAS associations, blue lines 
represent the locations of MPRA identified enhancers, and the red lines represent identified MPRA 
EMVars. Locus gene names (closest gene) are shown in the center.  
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Figure 2.2, continued. e) Bar chart of significant EMVars per locus, along with a Venn diagram of 
EMVars called in either brain or adipose cell lines. f) (left) Number of significant EMVars identified per 
chromosome. (right) s-LDSC estimate of the percent of heritability explained per chromosome 
normalized to the proportion of variants tested; Error Bars = SEM 
 

2.3.3 Assigning functional variants to target genes 

Having identified an array of regulatory elements and functional variants in obesity 

GWAS loci, we next aimed to gain insights into the connections of these regulatory elements 

with their target genes in 3D genomic space using cHi-C (Figure 2.3a). Understanding the 

configuration of these functional variants in respect to promoters in the nucleus is important to 

identify target genes of the EMVar-containing enhancers and generate a list of prioritized genes 

for future mechanistic studies into their role in obesity etiology.  

We intersected the time course cHi-C data generated in adipocytes and neuronal 

precursors with EMVar locations to identify interactions between EMVars and their target genes 

in a cell-type specific manner. Having cHi-C data for multiple time points in both lineage 

differentiations allowed us to assign more EMVars to promoters than using one time point alone 

(Figure 2.3b). Interestingly, we observed that if an adipose EMVar, enhancer, ATAC-seq peak, 

or H3K27ac marked region participated in a cHi-C interaction, it contacted a median of 3 

different promoters across the adipose cHi-C time-course (data not shown). Similarly, brain 

EMVars and enhancers contacted a median of 2 or more promoters across the hypothalamic cHi-

C time course (Figure 2.3b, data not shown).  These data highlight the pervasive opportunity for 

pleiotropic regulation by these regulatory variants, which could affect gene expression in 

disparate tissues or in specific developmental stages. Our findings underscore the importance of 

assaying regulatory landscapes across development or under specific conditions, a finding 



	30	

recently corroborated by reports showing genomic annotations are subject to tissue and temporal 

specific regulation29,69,70,98 

To further assess the functionality of these long-range interactions and gain additional 

evidence for gene targets, we intersected EMVar-promoter interactions with eQTL information 

in adipose and brain cell types from GTEx67. For brain, 26/61 EMVars were eQTLs for a gene in 

a GTEx(V8) brain cell type and 35/61 interacted with a promoter in at least one cHi-C library. 

Twenty one EMVars participated in interactions with distant promoters and were eQTLs, while 

16/21 were an eQTL for a gene they interacted with (Figure 2.3c). We evaluated the intersection 

of adipose EMVars with our adipose differentiation cHi-C and GTEx subcutaneous or visceral 

adipose eQTLs in the same manner (Figure 2.3c). Through the integration of these datasets 

across time, we were able to assign 31/61 (51%) of brain EMVars and 54/70 (77%) of adipose 

EMVars to at least one gene in the cell type where the EMVar was found to alter enhancer 

activity (Figure 2.3c).  

Integrating these annotations established gene expression patterns, identified regions of 

open chromatin, pinpointed enhancers harboring EMVars, and suggested target genes through 

integration with long-range enhancer-promoter interactions in obesity-associated loci. To 

summarize this for each GWAS locus, we binned genes into 4 classes of supporting evidence for 

both adipose and brain based on degrees of supporting evidence for their involvement in obesity 

etiology (Figure 2.3d). Identified class I genes have functions with known relevance to BMI 

maintenance, such as cholesterol and steroid metabolism, food intake, fat mass, mitochondrial 

function, or leptin sensitivity43,99–104. There are also several genes with unknown function or 

functions with unidentified relevance to a BMI phenotype.  



	31	

As an example, we show that a brain EMVar (rs4776984) in the MAP2K5 locus interacts 

with the class I gene MAP2K5 (Figure 2.3e). This variant is a GTEx eQTL for MAP2K5 in 

adipose, brain, and other cell types. This SNP-gene pair was previously tied to obesity risk in a 

study that identified this locus using eQTLs from the METSIM cohort and cHi-C data from 

primary human white adipose tissue45.  We confirmed this SNP’s interaction in adipose and 

show that it also interacts with MAP2K5 in neuronal precursors (Figure 2.3e). We also identified 

a second EMVar in this locus, rs2127163, which was an EMVar in both adipose and brain. This 

variant also interacted with, and is an eQTL for, MAP2K5 in both adipose and brain, suggesting 

that the association at this locus may be due to at least two different SNPs in independent 

enhancers regulating MAP2K5 across these cell types (Figure 2.3e). Our datasets thus allow us to 

tease apart loci with multiple potential causal variants and was not influenced by LD in the same 

manner as eQTL data alone.  
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Figure 2.3: Integration of functional variants with genomic annotations prioritizes target genes 
a) cHi-C allows for identification of physical connections between enhancers (E) and promoters (P) in 
nuclear space and are shown as arcs on the linear genome (depicted here in pink). b) (left) Cumulative 
distribution of promoter interactions per EMVar across time in adipose and brain cells. (right) Bar plot 
showing the number of promoters that each brain MPRA enhancer interacts with across all cHi-C 
replicates (does not include enhancers that do not interact with a promoter). c) Diagram of EMVars that 
are either in cHi-C interactions and/or are GTEx eQTLs, and not assigned to a target gene with either 
method. d) Genes were binned into classes based on strength of evidence supporting them as a GWAS 
target gene (see Methods). Half shaded circle= eQTL or cHi-C support  
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Figure 2.3, continued. e) MAP2K5, a class I gene, is shown here with the local brain and adipose cHi-
C interactions emanating from its promoter. Activity units for every barcode for the two EMVars and lead 
SNP from this locus are shown in a violin plot in HT22 (blue) and 3T3-L1 cells (yellow). *q < 0.05; two-
sided Mann-Whitney U test 
 

2.4 Discussion 

In this chapter we generated comprehensive regulatory maps in human adipose and 

hypothalamic neurons, which lack comprehensive genomic annotations despite their prominence 

in disease etiology. We profiled these cells across several differentiation stages to catalog 

chromatin accessibility, expression patterns, and cHi-C enhancer-promoter interactions. We also 

used a high throughput enhancer assay to identify putatively causal variants within 97 

independent obesity GWAS loci identified by the GIANT consortium. Integrating these datasets 

aided in the interpretation of candidate causal non-coding variants and genes at obesity-

associated loci.  

Using MPRA, we were able to first identify enhancers that were active in brain and/or 

adipose cells. Using this data we were able to assess the network of transcription factor motifs 

that were enriched within these regions. The transcription factor enrichments that emerged from 

HOMER enrichment analysis was a network of TFs that participate in metabolic regulation with 

roles in energy-expenditure, glucose homeostasis, development, and circadian rhythm. These 

processes are major players in maintenance of body mass index and modulation within neuronal 

or adipose cells will have affects on whole body metabolism. Evidence of enrichment for 

circadian rhythm transcription factors was particularly interesting, as sleep and circadian 

rhythmicity have recently been identified as modifiable risk factors for obesity105,106. Knowledge 

of these players and their biological importance could illuminate biological processes that are 
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potentially regulated within these regions and thus when misregulated, e.g. in the case of risk 

loci, leads to disease. 

In two thirds of all identified loci, we observed more than one EMVar per locus. This 

suggests a previously underappreciated degree of allelic heterogeneity present within these loci.  

Recent reports support this notion, as strongly powered and densely genotyped GWAS have 

identified independent signals within the same association to suggest the existence of multiple 

causal variants within single loci107. But, few studies to date have investigated how regions 

containing multiple causal variants affect gene expression across tissues and developmental time 

points. In thirty three percent of our cases, EMVars were significant in both tested cell types. The 

GTEx consortium has recently been able to address patterns of tissue specificity in eQTLs with 

its increasingly larger dataset and found a high level of eQTL effect sharing between tissues67. 

They suggest that only ~20 percent of all eQTLs have their effects restricted to 1-5 cell types. 

Another ~20 percent have effects in all cell types tested67.  This indicates functional variants may 

have pleiotropic effects across tissues as frequently, or more frequently, than tissue specific 

effects. Therefore, it may be critical to develop a methodology to predict the most likely causal 

tissue of interest, as well any secondary or tertiary effects in other cell types. This would allow 

for a better understanding of potential synergistic effects across cell types. Focus on how your 

SNP or gene of interest modulates biology in one cell type may be providing a limited 

understanding of how the locus affects disease. Combining the potential for multiple causal 

variants to exist within the same locus that have cross-tissue effects leads us to infer a complex 

network model whereby a region with multiple perturbations leads to large effects on cellular 

phenotypes and disease. The extent to which all perturbed enhancers or genes contribute to your 

phenotype, or are innocent bystanders, requires further investigation. 
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During our analysis we also observed that having multi-time point cHi-C data allowed us 

to assign more EMVars to genes. This could be because sampling these cells multiple times 

allowed us to pick up more interactions, and thus cell type unique interactions we observed are 

actually present in all time points but were not measured. But, these interactions could also be 

due to the presence of temporally restricted interactions between these enhancers and promoters. 

Our knowledge of the biology of enhancers suggests that regulatory variants associated with 

human phenotypes may impart their effect during developmental windows, which would be 

missed in functional assays of a single time point or environmental perturbation29,69,70,98. If this 

were true, we would expect these variants to also have effects on gene expression during some 

developmental stages and not others. This adds an additional layer of complexity when 

predicting whether a region of the genome acts as a regulatory element. Plus, it complicates our 

understanding of the biological importance of assaying a gene’s functional effect on an organism 

when it is modulated at specific developmental time points and not others.   

Using all data, we were able to integrate cHi-C data from multiple time points along with 

GTEx eQTL information to better assign putative gene targets to functional variants and to 

suggest the importance of 232 genes across classes in obesity risk. Across classes we identified 

20 genes that were highly supported class I genes in brain or adipose and thirty that were class II 

genes. These genes have the highest genomic support for causality in these loci and thus have a 

high likelihood biological relevance for obesity that will only be realized with further 

experimental interrogation and understanding.  
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2.5 Methods 

2.5.1: SGBS Culture and Differentiation  

SGBS cells were maintained and differentiated as previously described74,108. Cells were grown in 

DMEM/F12 (1:1) media (Life Technologies #11330-032) with 10% fetal bovine serum, 1% 

penicillin-streptomycin solution (10,000 U/ml; gibco #15140122), 8mg/ml Panthotenic Acid, and 

8mg/ml Biotin (Sigma; #B4639). Cells were allowed to grow to 70-80% confluency before 

splitting 1:3 with 0.25% Trypsin-EDTA (gibco; #25200056). To differentiate, cells were split 

into 6 well plates, allowed to reach 100% confluency over two days. After maintenance of 

confluency, day 0 cells were harvested, and the remaining cells were washed twice with 1x PBS 

and exposed to Quick-Diff media. Quick-Diff media consists of serum free DMEM/F12 media 

supplemented with 0.01mg/ml human transferrin (Sigma #T2252), 20nM human insulin, 100nM 

cortisol, and 0.2nM Triiodothyronine. Day 2 cells were harvested two days after addition of 

quick-diff media. Cells were incubated for a total of 4 days in quick-diff media before 3FC 

media was added. The 3FC media consists of serum free DMEM/F12 media supplemented with 

0.01mg/ml human transferrin (Sigma #T2252), 20nM human insulin, 100nM cortisol, 0.2nM 

Triiodothyronine, 25nM dexamethasone, 250uM 3-isobutyl-1-methylxanthine (IBMX), and 2uM 

rosiglitazone. Mature adipocytes are maintained on 3FC media until collection. 

 

2.5.2: Human hypothalamic neuron differentiation 

Human induced pluripotent stem cells (hiPSCs) (Findiv 24382) were differentiated 

into hypothalamic arcuate-like neurons, as previously described by Yao and collaborators in 

2017. Briefly, hiPSC were grown as embryoid bodies (EBs) with Neural Induction 

media, DMEM/F12 (Gibco) without bFGF (Sigma) and supplemented with N2 (Gibco) and 
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NEAA (Sigma) for 3 days. After induction, EBs were plated in coated dishes (poly-L-ornithine 

(Sigma) and laminin (Thermo Fisher)) and media was changed daily for 14 days. Primitive 

neuroepithelial were treated with 50 ng/ml WNT3A (R&D) and neural tube-like rosettes were 

formed, isolated and transferred onto new coated dishes and grown in media containing WNT3A 

((R&D) for 7 days. Cells were supplemented with 1uM cAMP (R&D) and 10ng/ml WNT3A for 

3 days. The neurons were then maintained in this medium supplemented with BDNF, GDNF and 

IGF1 (10ng/ml each) (R&D) to promote neuronal maturation of POMC and NPY neurons. Cells 

were collected at different time points and processed for in situ promoter capture HiC (cHiC), 

total RNA extraction and ATAC-seq. 

 

2.5.3: Timecourse RNA-seq 

Three technical replicates were performed derived from three unique differentiations for both 

SGBS and hypothalamic neurons. Adipose: SGBS cells were grown and differentiated as stated 

above. At day 0, 2, 8 and 16 of differentiation 1 million cells were collected and frozen per 

replicate with three technical replicates per time point. When all time points were collected, cells 

were lysed with a 20g needle and total RNA was extracted using the Qiagen RNeasy kit 

(#74104). RNA quality was assessed on an agarose gel. RNA-seq libraries were generated from 

1ug of total RNA following the Illumina TruSeqRNA Sample Preparation V2 guide and 15 

cycles of PCR amplification. Brain: iPSC derived hypothalamic neurons were grown and 

differentiated as stated above. At day 55,75, and 100 cells were collected and frozen per 

replicate. When all time points were collected, cells were lysed with a 20g needle and total RNA 

was extracted using the Qiagen RNeasy kit (#74104). RNA quality was assessed on an Agilent 

Bioanalyzer. RNA-seq libraries were generated from 500ng of total RNA using the NEB Next 
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Ultra II Directional RNA-seq kit and 10 cycles of PCR amplification. Libraries were sequenced 

on an Illumina HiSeq 4000 machine. Analysis: Gene-level read counts were quantified in each 

technical replicate at each time point directly using salmon (v0.7.2), correcting for sequence-

specific bias and using a gene list derived from GENCODE release grch37.v19. For individual 

gene expression, read counts per gene were converted into transcripts-per-million (TPM) to 

account for gene length and library size. For the purposes of HSV visualization, gene counts 

were normalized converted to TPM to normalize for transcript length and then normalized by 

library size using trimmed mean of M-values (TMM) normalization and normalized by transcript 

length. Mean TPM was calculated at each time point, and all genes with mean log2(TPM) < 1 at 

any time point were removed from further analysis. 

 

2.5.4: Fuzzy c-means clustering 

Gene-level read counts were quantified in each technical replicate at each time point directly 

using salmon(v0.7.2), correcting for sequence-specific bias and using a gene list derived from 

GENCODE release grch37.v19. Gene-level read counts were transformed into cpm and any gene 

with cpm < 1 in more than three samples across all time points was removed from further 

analysis. The data were normalized to account for library size using TMM normalization. Linear 

models testing pairwise differential expression between any two time points were then build 

using limma and tested using a moderated t-test accounting for mean-variance dependence and 

increased dispersion in limma. All genes with significant differential expression between any 

two time points were included in the clustering analysis. Raw gene-level counts from salmon 

were normalized to account for transcript length and scaled to account for differences in gene 

expression across genes. Fuzzy c-means clustering was performed in R using the e1071 package. 
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A gene was assigned to the cluster for which it had the highest membership if 1) its membership 

score was above 0.3 for the averaged replicates and 2) above 0.2 for each individual replicate. 

The top three clusters were defined by the highest average membership score. 

 

2.5.5: Hue-Saturation-Value (HSV) plots 

All Hue-Saturation-Value (HSV) analyses are developed from code originally published in 

Siersbaek et al84. Value (V) indicates the maximum log2(TPM/cpm) for a given gene at any time 

point, and so is defined as: 

𝑉 = 𝑚𝑎𝑥(𝐶!) 

Saturation (S) indicates the maximal fold change between any time points and is defined as: 

𝑆 = 1−
𝑚𝑖𝑛!(𝐶!)

𝑉  

Hue (H) indicates the pattern of change in gene expression across time, and is defined as: 

𝐻 = 60 ∗ (2+
𝐶! + 𝐶! − 𝐶!" − 𝑉

𝑉 ∗ 𝑆 ) ∗
𝐶! − 𝐶!
|𝐶! − 𝐶!|

 

For visualization purposes, the values of V and S were scaled between 0 and 1 based on rank. 

 

2.5.6: MPRA cell lines culture and transfection 

HT22: Cells were maintained in DMEM (Gibco # 11995-065) supplemented with 10% FBS and 

1% penicillin-streptomycin solution (10,000 U/ml; Gibco #15140122) at 37°C in 5% CO2. We 

plated 250K cells into wells of 6 well plates and transfected one day later with Lipofectamine 

LTX & Plus reagent (Invitrogen; #15338100) when 60-70% confluent. 3T3-L1: Cells were 
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maintained in DMEM (Gibco # 11995-065) supplemented with 10% FBS, 1% penicillin-

streptomycin solution (10,000 U/ml; Gibco #15140122), 0.8mg/ml Biotin (Sigma; #B4639) and 

0.8mg/ml Panthotenic Acid at 37°C in 5% CO2. We plated 20k cells into wells of 6 well plates 

and transfected 2.5 days later with Lipofectamine LTX & Plus reagent (Invitrogen; #15338100) 

when 30-50% confluent. GT1-7: Cells were maintained in High Glucose DMEM (Gibco # 

10313-021) supplemented with 10% FBS, 1% penicillin-streptomycin solution (10,000 U/ml; 

gibco #15140122)  and 1X Glutamax (Gibco #35050061) at 37°C in 5% CO2. We plated 750k 

cells into wells of 6 well plates and transfected the next day with Lipofectamine LTX & Plus 

reagent (Invitrogen; #15338100) when 60-70% confluent. SGBS Preadipocyte (D0): 30,000 

SGBS preadipocyte cells were plated into 24 well plates and transfected with Polyplus jetPEI 

DNA transfection reagent (Polyplus; #101-10N) when 50% confluent. These cells were collected 

48 hours later for RNA processing. SGBS Adipocyte (D8): Cells were plated as described above 

for differentiation. On differentiation day 8, cells were transfected with Lipofectamine LTX & 

Plus reagent (Invitrogen; #15338100) and collected on differentiation day 10. 

 

2.5.7: ATAC-seq 

Two technical replicates were performed for each time point derived from two unique 

differentiations for both SGBS and hypothalamic neurons. The two replicate sequencing data 

was merged and analyzed to produce merged datasets which were used in downstream analyses. 

We harvested 100,000 fresh SGBS cells per time point, and 100,000 hypothalamic neurons per 

time point. ATAC-seq libraries for each cell type were generated according to the protocol 

outlined in Buenrostro et al. 20158. The cells were lysed, centrifuged, and frozen at -80C until all 

time points were collected. Final processing of all pellets was performed together. Transposed 
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DNA fragments were PCR amplified using 5- 7 PCR cycles. PCR cycle number was determined 

using qPCR reactions where the additional cycle numbers were those that corresponded to the 

inflection point of the qPCR curve. Peak Calling: ATAC-seq reads were trimmed to remove 

Nextera adapters using cutadapt (v8.25) and aligned to the genome using Bowtie2 (v2.3.2). All 

reads mapping to the mitochondrial genome were removed from further analyses. Peak calling 

was performed using macs2 (v2.1.1.20160309) using no model and an extension size of 200. 

Significant peaks were considered those which survived FDR correction (q<0.05). HSV analysis: 

The union set of significant peaks across time points was obtained, and peaks of a uniform length 

of 1kb were obtained by centering around the summit of the highest peak per locus in the union 

set. The counts per time point mapping to these 1kb union peaks were obtained and transformed 

to log2cpm format, normalizing by library size(defined as total number of reads in peaks per 

sample). Hue, saturation, and value were calculated using the same equations as with gene 

expression, using normalized log2(cpm) values as input. 

 

2.5.8: in-situ promoter capture Hi-C (cHi-C) 

Two technical replicates for each time point were performed derived from two unique 

differentiations for both SGBS and hypothalamic neurons. Each technical replicate was analyzed 

alone, and additionally the technical replicate raw sequencing data was merged and analyzed to 

produce merged datasets. Merged datasets and individual replicate datasets were used in 

downstream analyses. In situ promoter capture HiC was performed and analyzed as previously 

described9,13. 5 million SGBS cells per replicate were harvested, counted and crosslinked using a 

final 1% (v/v) concentration of formaldehyde for 10 minutes at room temperature while rocking. 

This reaction was quenched with 0.25M Glycine to a final concentration of 0.2M for 5 minutes 
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and washed with 1X PBS. Cells were frozen in liquid nitrogen and stored at -80C until ready for 

the next stage of promoter-capture Hi-C processing. Each differentiation time point has two 

technical replicates and was sequenced on a full lane of an Illumina Hiseq 4000 machine to 

achieve sufficient read depth for interaction calling. Data Analysis: promoter capture Hi-C reads 

were aligned to the genome using Bowtie2 (v2.3.2) and technical artifacts were removed using 

HiCUP (v0.5.9). Significant interactions were detected over a background model of null 

expectation using CHiCAGO (v1.2.0). Only interactions with a CHiCAGO score > 5 at any time 

point were included in downstream analyses. Trans-chromosomal interactions and interactions 

between loci greater than 1 megabase apart were filtered from further analysis. Counts were 

normalized by library size using (TMM) normalization and transformed into counts-per-million 

(cpm). Hue, saturation, and value were calculated using the same equations as with gene 

expression, using normalized cpm values as input. 

 

2.5.9: Massively Parallel Reporter Assay (MPRA) 

Lead variants for BMI were taken from the 2015 GIANT consortium meta-analysis, which 

identified 97 independent significant loci. We searched 1,000 genomes phase 3 genotypes 

(ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) for the 97 GWAS lead SNPs and 

obtained all CEU SNPs (Utah residents with Northern and Western European ancestry from the 

CEPH collection) within 50kb and with r2 >.8 with a lead SNP. We only retained biallelic 

SNPs with MAF >= 5% (2,396 in total). Using these variants, MPRA oligo design was 

performed as previously described with modifications16. We synthesized 230bp long DNA 
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fragments as seen below using a 100,000 oligonucleotide Agilent array. 5’-

ACTGGCCGCTTCACTG-enh-GGTACCTCTAGA-barcode-AGATCGGAAGAGCGTCG-3’ 

Each enh region was 175 base pairs of endogenous DNA context surrounding one of the biallelic 

2,346 SNPs. Each allele of each biallelic variant was synthesized beside 18-19 unique 10bp 

DNA barcodes. Barcodes were randomly generated using a series of A,C,T,or Gs that did not 

contain three or more of the same base in a row and did not create Kpn1 or Xba1 restriction 

enzyme sites. We also later determined that barcodes should not end with the sequence “TCT”, 

because it creates a restriction enzyme site with the beginning of the second constant region and 

they will thus be lost. Upon receipt, this fragment pool was dissolved in 100ul of nuclease free 

water and PCR amplified using the Micellula DNA emulsion and Purification Kit (EURx 

#E3600-01) in order to reduce amplification bias of particular oligos over others. This PCR adds 

homology arms onto the oligos and allowed us to use Gibson Assembly Master Mix (NEB # 

E2611S) to clone these oligos into a linearized pMPRA1 vector (addgene #49349) that was cut 

open using the SfiI restriction enzyme. This backbone + oligo insert vector was then linearized 

using a Kpn1 and Xba1 double digest and a 60bp truncated eGFP containing a minimal promoter 

and spacer sequence (141bp in size) was ligated in between the enh fragments and barcodes 

using T4 DNA ligase (NEB; # B0202S) at a 1:10 ratio of insert to vector and incubated at 16*C 

overnight. The resulting plasmid library was linearized a final time using Kpn1 and size selected 

for vectors containing all inserts (oligos + eGFP insert) on a 1% agarose gel. This is then 

religated using T4 DNA ligase and transformed until enough final plasmid is produced for all 

transfections. At each cloning and transformation step complexity must be maintained, so we 

counted colony forming units (CFUs) after each transformation and aimed to attain at least 100 

million CFUs. To ensure the best transformation, all reactions were cleaned up with the Minelute 
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PCR purification kit (Qiagen; # 28004) and then further cleaned on a Millipore drop dialysis 

membrane (Millipore; #VSWP02500) for an hour before transformation. Cells were transformed 

into MegaX DH10B T1R electrocompetent bacteria (Invitrogen #C640003) and allowed to grow 

for only 7-9 hours after recovery to ensure likelihood of getting high CFUs without bias towards 

particular constructs. Once the final constructs were produced, they were transfected into GT1-7 

cells (6 replicates), 3T3-L1 cells (7 replicates), HT22 cells (5 replicates), SGBS Day 0 cells (6 

replicates), and SGBS Day 8 cells (5 replicates) as described above. Enough cells were 

transfected to achieve at minimum 10 million transfected cells per replicate with transfection 

efficiency estimated using a GFP control plasmid. Cells were collected 48 hours after 

transfection and flash frozen in liquid nitrogen until all replicates were collected. A replicate was 

considered “technical” if they were transfected with the same batch of DNA on different days 

with different cell passages. A replicate was considered “biological” if the input DNA library 

was separately cloned from the beginning from our Agilent oligonucleotides. MPRA 

experiments were designed to have 2-4 technical replicates for each of two biological replicates. 

After transfection, cells were lysed using a 20g needle and RNA was extracted using Qiagen 

RNeasy mini kit. RNA quality was assessed on an 1% agarose gel. mRNA was isolated from 

total RNA using Invitrogen Dynabeads (ThermoFisher #61006) and then treated with Promega 

RQ1 DNAse (Promega; M6101) for 1.5 hours at 37°C with an enzyme boost halfway through 

the reaction. The isolated and DNA plasmid depleted mRNA is then cleaned up with the Qiagen 

RNeasy mini kit and quantified using the Promega QuantiFluor RNA system (Promega #E3310). 

Importantly, enrichment of RNA transcripts emanating from our MPRA plasmid compared to 

MPRA DNA plasmid contamination is assessed at this point using qPCR primers targeted to the 

eGFP. To do this, 250ng of mRNA is converted to cDNA while 250ng of mRNA is run through 
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the cDNA reaction without reverse transcriptase (RT). We then perform a qPCR to determine 

enrichment of eGFP transcripts between RT(+) and RT(-) samples. We set a threshold of a 

minimum of 8CT enrichment between DNA and RNA as a quality control check. All remaining 

mRNA is then converted to cDNA using Superscript III Reverse Transcriptase. cDNA is treated 

with RNAse A (invitrogen #12091-021) and RNAse T1 (ThermoFisher #EN0541) for one hour 

and then cleaned with the Qiagen Minelute PCR purification kit.  50ng of cDNA is then used as 

a PCR template for the final Illumina multiplexing primers. All available cDNA should be 

amplified. Two 50ng reactions of Input DNA (DNA used as transfection material) must also be 

PCR amplified with Illumina multiplexing primers at this point. Libraries were amplified with 

10-11 PCR cycles using Q5 Hot Start High-Fidelity 2x Master Mix (NEB #M0494S) and pooled 

before clean up using Agencourt AMPure XP beads (0.6x + 1.2x double cleanup; Beckman 

Coulter; #A63882). Library quality was assessed using the Agilent DNA 1000 bioanalyzer chip 

(Agilent; #G2938-90014), where a single sharp peak of around 250bp is expected. Samples can 

then be sent for paired end NGS sequencing. A 25% PhiX genome spike in must be added to 

each sequencing run due to low sequencing complexity. Data Analysis: Barcode counts must be 

converted to the reverse complement before they can be matched with known barcodes. We 

required sequenced barcodes to be exact matches with expected barcode sequences. Count data is 

then analyzed for significance as previously described85. In essence, lowly expressed barcodes 

were removed and enhancer activity was determined from the remaining normalized counts 

using the following equation: Enhancer activity = log2 (output (CPM) - input (CPM)). Activity 

was then quantile normalized and enhancer p values were calculated using a one-sided Mann-

Whitney U Test in R using the wilcox.test function. P values were corrected for multiple testing 

using the p.adjust function, method = “fdr”. All regions where at least one allele was determined 
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to be a significant enhancer were then tested for enhancer modulating effects using a two-sided 

Mann-Whitney U test in R with p values adjusted for multiple testing as previously described. 

Enhancer modulating variants were retained for downstream analyses if they were significant in 

half of all technical replicates or both biological MPRA replicates.  

 

Chapter 2.5.10: Luciferase Assays for Enhancer Validation 

The luciferase assays used for MPRA validation had between 3-5 technical replicates per 

construct, where different DNA preps were used and the cells were transfected, collected, and 

analyzed on different days. Twenty-one regions containing at least one SNP that had an allele in 

a significant enhancer in either HT22 and/or 3T3-L1 cells were chosen for validation.  These 

regions were PCRed from genomic DNA using Q5 Hot Start 2x Master Mix (NEB #M0494S) 

and were designed to be ~1kb in size. Each region was cloned into the pGL4.23 luciferase vector 

containing firefly Luciferase, and were tested for luciferase activity via co-transfection with 

renilla luiferase at a ratio of (1:50) in both 3T3-L1 cells and HT22 cells. Alleles were determined 

through Sanger sequencing. Renilla and firefly luciferase fluorescence was measured on a 

Promega GloMax microplate reader using the Dual-Luciferase Reporter Assay System (Promega 

#E1910). Firefly luciferase measurements were normalized to renilla measurements and then 

fold change over a control DNA region was calculated to determine enhancer activity.       

 

2.5.11: s-LDSC Partitioned Heritability Analysis 

Heritability per chromosome was calculated via LD score regression analysis using the ldsc 

package in R (v1.0.0) using Locke et al 2012 BMI GWAS summary statistics downloaded from 

the GIANT consortium. Briefly, .bim files from 1000 Genomes Phase 1 were downloaded and 
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annotation files were created for each chromosome where chromosome was treated as a binary 

annotation. LD scores were then computed from these annotation files for input into partitioned 

heritability analysis. Summary statistics were filtered to contain only HapMap3 variants as 

advised.   

 

Chapter 2.5.12: Transcription Factor Motif Analysis 

All regions identified to be significant enhancers were included in this analysis. Regions were 

expanded to be 175bp (size of enhancers tested in MPRA) and then if two regions overlapped 

they were then merged so they would not become overrepresented in the analysis. The program 

findMotifsGenome.pl from HOMER109(v4.8.3) was then used in addition to the -size flag to 

identify motifs that were overrepresented in significant MPRA enhancers from each cell line. 

These were compared to a size and base composition matched set of background sequences 

computed by HOMER to determine significance and p value. All p values from each cell line are 

included in the supplementary tables. 

 

2.5.13: Calling EMVar Interactions with Promoters 

MPRA EMVars were considered to interact with a promoter if the distal end of the promoter 

interaction came within 1kb of the single base pair SNP location.  EMVar SNP location and cHi-

C BEDPE files were overlapped using the BEDtools (v2.27.1)110 pairToBed function. 

 

2.5.14: Gene Support Classes 

To develop gene level support for each GWAS locus, we first binned EMVars into their 

respective loci. For class I genes, we required an EMVar to interact with that gene and the 
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EMVar must be a GTEx eQTL for that gene in the appropriate cell type (GTEx adipose tissues 

for adipose EMVars and GTEx Brain tissues for Brain EMVars). Class II genes interact with an 

EMVar in the appropriate cHi-C dataset and the EMVar is an eQTL for that gene in cell types 

other than the appropriate one. Class III genes were those that interacted with an EMVar in the 

appropriate cHi-C libraries or were an eGene for this SNP in the correct cell type. Class IV genes 

were eGenes for these EMVars in other cell types. Additionally, we only included genes in this 

analysis that were expressed > 1 TPM in at least 1 time point in their respective cell type from 

our RNA-seq (All genes with their classes from both cell types are shown in the Supplementary 

Tables) 
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2.6: Appendix A, Supplementary Figures 

 

Supplementary Figure S2.1: Features of functional annotations 
a) Six fuzzy–c means clusters were identified for adipose and b) brain DEGs from the RNA-seq time 
course. The number of genes comprising each cluster, along with scaled expression across the time points 
is shown. c) Overview of median interaction length and number of interactions per time-point in the 
replicate-merged cHiC datasets. Number of ATAC-seq peaks from the replicate-merged time points. d) 
Bar plot depicting proportion of promoter-promoter interactions in merged cHiC libraries.  
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Supplementary Figure S2.1, continued. e,f) The promoter-distal ends of interactions are enriched for 
functional ChIP-seq peaks and ATAC-seq peaks compared to a distribution of randomly chosen, number-
matched set of non-promoter MboI fragments within mappable genomic regions (N=100 iterations). The 
fold change of the observed overlap over our 100 randomized sets is presented. ChIP-seq datasets were 
obtained from Adipose Nuclei (E063) and Fetal Brain (E081) repositories from the Roadmap 
Epigenomics project. (All significant with p <0.05; Z-test) Error Bars: SD g) Genes were binned based on 
upregulation or downregulation across each time point. Plotted are the changes in interaction score or 
normalized ATAC-seq reads for ATAC peaks connected through these genes via a significant cHiC peak 
between each time point. *p <0.05; two-sided Mann-Whitney U test 
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Supplementary Figure S2.2: Characterizing hypothalamic differentiation using genomic 
annotations 
a) Brain DEGs were grouped via fuzzy-c clustering and the top three clusters with highest membership 
are illustrated.  
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Supplementary Figure S2.2, continued. b) Significant Gene Ontology terms for the top three clusters. c) 
A heatmap of gene expression depicting genes from each of the top three clusters that are members of the 
enriched Gene Ontology terms.  The leftmost colored bar indicates cluster membership and the columns 
are RNA-seq replicates. d-f) HSV transformation of gene expression dynamics, ATAC-seq accessibility, 
and cHiC interactions across differentiation. Each significant data point is categorized and colored based 
on the temporal pattern it displays shown by the guides on the periphery of each plot. The three nodes of 
each pattern represent day 55, day 75, and day 100 of neuronal differentiation. The distance of each point 
from the center of the circle represents maximum log2 fold change, and color transparency represents the 
relative number of reads for that data point. Below, heatmaps of Pearson’s r correlation coefficients 
estimate overall similarity between time points. g) On average, a promoter interacts with 1-2 ATAC-seq 
peaks via a cHiC interaction across time (interactions and ATAC peaks were not required to be significant 
at the same time point). h) View of significant cHiC interactions emanating from the promoter of the 
ATXN1 gene, which becomes significantly upregulated between differentiation days 75-100. ATAC-seq 
reads and significant ATAC-seq peaks at day 75 and day100 are also shown. 
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Supplementary Figure S2.3: MPRA enhancers are functional 
a) MPRA enhancers are enriched for Epigenome Roadmap’s 15 state ChromHMM functional marks in 
adipose nuclei or fetal brain compared to all tested variants b) MPRA enhancers are enriched for presence 
in cHiC interactions, number of interactions per enhancer, and open chromatin compared to non-
significant regions. (*p < 0.05; two-sided Student’s t-test)  
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Supplementary Figure S2.3, continued. c) Luciferase assay results for ~1kb sized regions containing an 
EMVar. Regions were chosen at random, and represent a full spectrum of MPRA enhancer p-values. 
Because of this, non-EMVar rs1026737 and rs10000940 were included because they had very low and 
high enhancer p values, respectively. If the allele that was captured was not a significant enhancer, the 
result is colored with a grey background. Interestingly, for the rs4430895 region, we were able to clone 
both alleles, and although neither allele was an enhancer using the luciferase assay, the allele predicted to 
be stronger with MPRA had higher Luc2 expression compared to the weak allele.  *p < 0.05, two-tailed 
Student’s t-test (N=3-4 replicates). Error bars = SEM  
 
 
 
 

 
 
Supplementary Figure S2.4: Transcription factors in obesity-associated loci  
(left) Position weight matrices for enriched transcription factor motifs from HOMER. Each motif was 
enriched in either MPRA adipose or brain enhancers (HOMER adjusted p value < 0.05). (right) 
Transcription factors are connected to a BMI relevant phenotype with a line if these factors play a role in 
that biological process (significant in both brain and adipose = grey circle, significant in adipose = 
yellow, and significant in brain = blue).   
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Supplementary Figure S2.5: Chromosome 16 harbors an excess of obesity heritability 
a) s-LDSC estimated proportion of total heritability explained per chromosome is depicted along with 
heritability enrichment values. Error bars = SEM b) Number of EMVars compared to the number of 
variants tested with MPRA stratified per chromosome. 
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2.7: Appendix B, Supplementary Tables 

Table S2.1: Homer Transcription Factor Enrichment p-values 

Motif Name P-value Cell Type 
 Usf2(bHLH)/C2C12-Usf2-ChIP-Seq(GSE36030)/Homer 1.00E-08 3T3-L1 
 TFE3(bHLH)/MEF-TFE3-ChIP-Seq(GSE75757)/Homer 1.00E-06 3T3-L1 
 MITF(bHLH)/MastCells-MITF-ChIP-Seq(GSE48085)/Homer 1.00E-06 3T3-L1 
 CLOCK(bHLH)/Liver-Clock-ChIP-Seq(GSE39860)/Homer 1.00E-05 3T3-L1 
 USF1(bHLH)/GM12878-Usf1-ChIP-Seq(GSE32465)/Homer 1.00E-04 3T3-L1 
 JunD(bZIP)/K562-JunD-ChIP-Seq/Homer 1.00E-04 3T3-L1 
 Atf1(bZIP)/K562-ATF1-ChIP-Seq(GSE31477)/Homer 1.00E-04 3T3-L1 
 c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-03 3T3-L1 
 AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer 1.00E-03 3T3-L1 
 Atf7(bZIP)/3T3L1-Atf7-ChIP-Seq(GSE56872)/Homer 1.00E-03 3T3-L1 
 Fra2(bZIP)/Striatum-Fra2-ChIP-Seq(GSE43429)/Homer 1.00E-03 3T3-L1 
 BATF(bZIP)/Th17-BATF-ChIP-Seq(GSE39756)/Homer 1.00E-02 3T3-L1 
 c-Myc(bHLH)/LNCAP-cMyc-ChIP-Seq(Unpublished)/Homer 1.00E-02 3T3-L1 
 Fra1(bZIP)/BT549-Fra1-ChIP-Seq(GSE46166)/Homer 1.00E-02 3T3-L1 
 Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912)/Homer 1.00E-02 3T3-L1 
 Atf2(bZIP)/3T3L1-Atf2-ChIP-Seq(GSE56872)/Homer 1.00E-02 3T3-L1 
 THRa(NR)/C17.2-THRa-ChIP-Seq(GSE38347)/Homer 1.00E-02 3T3-L1 
 BMAL1(bHLH)/Liver-Bmal1-ChIP-Seq(GSE39860)/Homer 1.00E-02 3T3-L1 
 Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872)/Homer 1.00E-02 3T3-L1 
 COUP-TFII(NR)/Artia-Nr2f2-ChIP-Seq(GSE46497)/Homer 1.00E-02 3T3-L1 
 bHLHE40(bHLH)/HepG2-BHLHE40-ChIP-Seq(GSE31477)/Homer 1.00E-02 3T3-L1 
 IRF3(IRF)/BMDM-Irf3-ChIP-Seq(GSE67343)/Homer 1.00E-02 3T3-L1 
 CRX(Homeobox)/Retina-Crx-ChIP-Seq(GSE20012)/Homer 1.00E-02 3T3-L1 
 JunB(bZIP)/DendriticCells-Junb-ChIP-Seq(GSE36099)/Homer 1.00E-02 3T3-L1 
 n-Myc(bHLH)/mES-nMyc-ChIP-Seq(GSE11431)/Homer 1.00E-02 3T3-L1 
 E-box(bHLH)/Promoter/Homer 1.00E-02 3T3-L1 
 CEBP:AP1(bZIP)/ThioMac-CEBPb-ChIP-Seq(GSE21512)/Homer 1.00E-02 3T3-L1 
 CLOCK(bHLH)/Liver-Clock-ChIP-Seq(GSE39860)/Homer 1.00E-04 GT1-7 
 Usf2(bHLH)/C2C12-Usf2-ChIP-Seq(GSE36030)/Homer 1.00E-03 GT1-7 
 NFAT:AP1(RHD,bZIP)/Jurkat-NFATC1-ChIP-Seq(Jolma_et_al.)/Homer 1.00E-03 GT1-7 
 ZNF143|STAF(Zf)/CUTLL-ZNF143-ChIP-Seq(GSE29600)/Homer 1.00E-02 GT1-7 
 Bapx1(Homeobox)/VertebralCol-Bapx1-ChIP-Seq(GSE36672)/Homer 1.00E-02 GT1-7 
 c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-02 GT1-7 
 ZFX(Zf)/mES-Zfx-ChIP-Seq(GSE11431)/Homer 1.00E-02 GT1-7 
 MITF(bHLH)/MastCells-MITF-ChIP-Seq(GSE48085)/Homer 1.00E-02 GT1-7 
 p53(p53)/Saos-p53-ChIP-Seq(GSE15780)/Homer 1.00E-02 GT1-7 
 p53(p53)/Saos-p53-ChIP-Seq/Homer 1.00E-02 GT1-7 
 USF1(bHLH)/GM12878-Usf1-ChIP-Seq(GSE32465)/Homer 1.00E-02 GT1-7 
 IRF3(IRF)/BMDM-Irf3-ChIP-Seq(GSE67343)/Homer 1.00E-02 GT1-7 
 p73(p53)/Trachea-p73-ChIP-Seq(PRJNA310161)/Homer 1.00E-02 GT1-7 
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Table S2.1: Homer Transcription Factor Enrichment p-values (continued) 
   

Motif Name P-value Cell Type  

THRa(NR)/C17.2-THRa-ChIP-Seq(GSE38347)/Homer 1.00E-02 GT1-7 
 Atf7(bZIP)/3T3L1-Atf7-ChIP-Seq(GSE56872)/Homer 1.00E-02 GT1-7 
 Atf1(bZIP)/K562-ATF1-ChIP-Seq(GSE31477)/Homer 1.00E-02 GT1-7 
 TFE3(bHLH)/MEF-TFE3-ChIP-Seq(GSE75757)/Homer 1.00E-02 GT1-7 
 Nkx3.1(Homeobox)/LNCaP-Nkx3.1-ChIP-Seq(GSE28264)/Homer 1.00E-02 GT1-7 
 Usf2(bHLH)/C2C12-Usf2-ChIP-Seq(GSE36030)/Homer 1.00E-06 HT22 
 Atf1(bZIP)/K562-ATF1-ChIP-Seq(GSE31477)/Homer 1.00E-05 HT22 
 AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer 1.00E-04 HT22 
 BATF(bZIP)/Th17-BATF-ChIP-Seq(GSE39756)/Homer 1.00E-04 HT22 
 Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912)/Homer 1.00E-04 HT22 
 Fra2(bZIP)/Striatum-Fra2-ChIP-Seq(GSE43429)/Homer 1.00E-04 HT22 
 TFE3(bHLH)/MEF-TFE3-ChIP-Seq(GSE75757)/Homer 1.00E-04 HT22 
 MITF(bHLH)/MastCells-MITF-ChIP-Seq(GSE48085)/Homer 1.00E-04 HT22 
 Fra1(bZIP)/BT549-Fra1-ChIP-Seq(GSE46166)/Homer 1.00E-03 HT22 
 Atf7(bZIP)/3T3L1-Atf7-ChIP-Seq(GSE56872)/Homer 1.00E-03 HT22 
 c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-03 HT22 
 JunB(bZIP)/DendriticCells-Junb-ChIP-Seq(GSE36099)/Homer 1.00E-03 HT22 
 CLOCK(bHLH)/Liver-Clock-ChIP-Seq(GSE39860)/Homer 1.00E-03 HT22 
 Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872)/Homer 1.00E-03 HT22 
 Jun-AP1(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-03 HT22 
 JunD(bZIP)/K562-JunD-ChIP-Seq/Homer 1.00E-03 HT22 
 Atf2(bZIP)/3T3L1-Atf2-ChIP-Seq(GSE56872)/Homer 1.00E-03 HT22 
 THRa(NR)/C17.2-THRa-ChIP-Seq(GSE38347)/Homer 1.00E-02 HT22 
 USF1(bHLH)/GM12878-Usf1-ChIP-Seq(GSE32465)/Homer 1.00E-02 HT22 
 COUP-TFII(NR)/Artia-Nr2f2-ChIP-Seq(GSE46497)/Homer 1.00E-02 HT22 
 Cdx2(Homeobox)/mES-Cdx2-ChIP-Seq(GSE14586)/Homer 1.00E-02 HT22 
 p73(p53)/Trachea-p73-ChIP-Seq(PRJNA310161)/Homer 1.00E-02 HT22 
 Mef2a(MADS)/HL1-Mef2a.biotin-ChIP-Seq(GSE21529)/Homer 1.00E-02 HT22 
 Nrf2(bZIP)/Lymphoblast-Nrf2-ChIP-Seq(GSE37589)/Homer 1.00E-02 HT22 
 BMAL1(bHLH)/Liver-Bmal1-ChIP-Seq(GSE39860)/Homer 1.00E-02 HT22 
 SpiB(ETS)/OCILY3-SPIB-ChIP-Seq(GSE56857)/Homer 1.00E-02 HT22 
 GATA3(Zf),DR4/iTreg-Gata3-ChIP-Seq(GSE20898)/Homer 1.00E-02 HT22 
 FOXM1(Forkhead)/MCF7-FOXM1-ChIP-Seq(GSE72977)/Homer 1.00E-02 HT22 
 CEBP:AP1(bZIP)/ThioMac-CEBPb-ChIP-Seq(GSE21512)/Homer 1.00E-02 HT22 
 Atf1(bZIP)/K562-ATF1-ChIP-Seq(GSE31477)/Homer 0.000000001 SGBS_Preadipocytes(D0) 

Atf7(bZIP)/3T3L1-Atf7-ChIP-Seq(GSE56872)/Homer 0.00000001 SGBS_Preadipocytes(D0) 

COUP-TFII(NR)/Artia-Nr2f2-ChIP-Seq(GSE46497)/Homer 0.0000001 SGBS_Preadipocytes(D0) 

THRa(NR)/C17.2-THRa-ChIP-Seq(GSE38347)/Homer 0.00001 SGBS_Preadipocytes(D0) 

GSC(Homeobox)/FrogEmbryos-GSC-ChIP-Seq(DRA000576)/Homer 0.00001 SGBS_Preadipocytes(D0) 

LXRE(NR),DR4/RAW-LXRb.biotin-ChIP-Seq(GSE21512)/Homer 0.00001 SGBS_Preadipocytes(D0) 

Mef2a(MADS)/HL1-Mef2a.biotin-ChIP-Seq(GSE21529)/Homer 0.0001 SGBS_Preadipocytes(D0) 

Mef2c(MADS)/GM12878-Mef2c-ChIP-Seq(GSE32465)/Homer 0.0001 SGBS_Preadipocytes(D0) 
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Table S2.1: Homer Transcription Factor Enrichment p-values (continued)   
   
Motif Name P-value Cell Type 
THRb(NR)/Liver-NR1A2-ChIP-Seq(GSE52613)/Homer 0.001 SGBS_Preadipocytes(D0) 

c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 0.001 SGBS_Preadipocytes(D0) 

Atf2(bZIP)/3T3L1-Atf2-ChIP-Seq(GSE56872)/Homer 0.001 SGBS_Preadipocytes(D0) 

AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer 0.001 SGBS_Preadipocytes(D0) 

BATF(bZIP)/Th17-BATF-ChIP-Seq(GSE39756)/Homer 0.001 SGBS_Preadipocytes(D0) 

Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912)/Homer 0.001 SGBS_Preadipocytes(D0) 

Fra1(bZIP)/BT549-Fra1-ChIP-Seq(GSE46166)/Homer 0.001 SGBS_Preadipocytes(D0) 

Fra2(bZIP)/Striatum-Fra2-ChIP-Seq(GSE43429)/Homer 0.01 SGBS_Preadipocytes(D0) 

Mef2b(MADS)/HEK293-Mef2b.V5-ChIP-Seq(GSE67450)/Homer 0.01 SGBS_Preadipocytes(D0) 

CRX(Homeobox)/Retina-Crx-ChIP-Seq(GSE20012)/Homer 0.01 SGBS_Preadipocytes(D0) 

Bapx1(Homeobox)/VertebralCol-Bapx1-ChIP-Seq(GSE36672)/Homer 0.01 SGBS_Preadipocytes(D0) 

Usf2(bHLH)/C2C12-Usf2-ChIP-Seq(GSE36030)/Homer 0.01 SGBS_Preadipocytes(D0) 

Erra(NR)/HepG2-Erra-ChIP-Seq(GSE31477)/Homer 0.01 SGBS_Preadipocytes(D0) 

JunB(bZIP)/DendriticCells-Junb-ChIP-Seq(GSE36099)/Homer 0.01 SGBS_Preadipocytes(D0) 

Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872)/Homer 0.01 SGBS_Preadipocytes(D0) 

GATA(Zf),IR3/iTreg-Gata3-ChIP-Seq(GSE20898)/Homer 0.01 SGBS_Preadipocytes(D0) 

Atf1(bZIP)/K562-ATF1-ChIP-Seq(GSE31477)/Homer 1.00E-09 SGBS_Adipocytes(D8) 

COUP-TFII(NR)/Artia-Nr2f2-ChIP-Seq(GSE46497)/Homer 1.00E-09 SGBS_Adipocytes(D8) 

Mef2c(MADS)/GM12878-Mef2c-ChIP-Seq(GSE32465)/Homer 1.00E-07 SGBS_Adipocytes(D8) 

GSC(Homeobox)/FrogEmbryos-GSC-ChIP-Seq(DRA000576)/Homer 1.00E-06 SGBS_Adipocytes(D8) 

THRb(NR)/Liver-NR1A2-ChIP-Seq(GSE52613)/Homer 1.00E-06 SGBS_Adipocytes(D8) 

Atf7(bZIP)/3T3L1-Atf7-ChIP-Seq(GSE56872)/Homer 1.00E-06 SGBS_Adipocytes(D8) 

THRa(NR)/C17.2-THRa-ChIP-Seq(GSE38347)/Homer 1.00E-06 SGBS_Adipocytes(D8) 

LXRE(NR),DR4/RAW-LXRb.biotin-ChIP-Seq(GSE21512)/Homer 1.00E-05 SGBS_Adipocytes(D8) 

Mef2a(MADS)/HL1-Mef2a.biotin-ChIP-Seq(GSE21529)/Homer 1.00E-04 SGBS_Adipocytes(D8) 

Mef2b(MADS)/HEK293-Mef2b.V5-ChIP-Seq(GSE67450)/Homer 1.00E-04 SGBS_Adipocytes(D8) 

CRX(Homeobox)/Retina-Crx-ChIP-Seq(GSE20012)/Homer 1.00E-04 SGBS_Adipocytes(D8) 

Usf2(bHLH)/C2C12-Usf2-ChIP-Seq(GSE36030)/Homer 1.00E-03 SGBS_Adipocytes(D8) 

Erra(NR)/HepG2-Erra-ChIP-Seq(GSE31477)/Homer 1.00E-02 SGBS_Adipocytes(D8) 

Pitx1(Homeobox)/Chicken-Pitx1-ChIP-Seq(GSE38910)/Homer 1.00E-02 SGBS_Adipocytes(D8) 

Atf2(bZIP)/3T3L1-Atf2-ChIP-Seq(GSE56872)/Homer 1.00E-02 SGBS_Adipocytes(D8) 

Nkx3.1(Homeobox)/LNCaP-Nkx3.1-ChIP-Seq(GSE28264)/Homer 1.00E-02 SGBS_Adipocytes(D8) 

c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 1.00E-02 SGBS_Adipocytes(D8) 

Bapx1(Homeobox)/VertebralCol-Bapx1-ChIP-Seq(GSE36672)/Homer 1.00E-02 SGBS_Adipocytes(D8) 
 

 
Table S2.1: Homer Transcription Factor Enrichment p-values 
Transcription factor motifs identified with HOMER enrichment analysis for each MPRA library. Only 
significant transcription motifs  (HOMER adjusted p-value <0.05) were kept for downstream analysis, 
which is shown in Supplementary Figure S2.4 
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Table S2.2: Adipose Genes and Class Rank 

Gene Adipose 
Class 

Gene Adipose 
Class 

Gene Adipose 
Class 

ARL3 1 DHX34 3 SEZ6L2 3 
ATXN2L 1 DMWD 3 SIX5 3 
BCS1L 1 DNAJC27 3 SLC1A5 3 

C16orf62(VPS35L) 1 EIF3C 3 SMAD3 3 
HSD17B12 1 EML2 3 SSBP4 3 

INO80E 1 ERCC1 3 STIL 3 
KCTD15 1 ETS2 3 SULT1A1 3 
KNOP1 1 FAM178A 3 TAOK2 3 

MAP2K5 1 FBXO46 3 TBC1D10B 3 
NFATC2IP 1 FKBP8 3 TFDP2 3 

NPC1 1 FOSB 3 TMBIM1 3 
POC5 1 GATSL2 3 TMEM160 3 

SH2B1 1 GDF15 3 TMEM241 3 
SULT1A2 1 GIPR 3 TTC39C 3 

TUFM 1 GK5 3 TUBA4A 3 
USP37 1 GPATCH1 3 UBXN2A 3 

ZNF142 1 GPI 3 VASP 3 
AS3MT 2 GTF2IRD2 3 YPEL3 3 
ATP2A1 2 HIF1AN 3 ZBTB38 3 

C10ORF32(BORCS7) 2 HIRIP3 3 ZC3H4 3 
CCDC101 2 IRX3 3 ZFP64 3 
CMPK1 2 IRX5 3 ZNF181 3 
CNNM2 2 ISYNA1 3 ANKRD39 4 

COL4A3BP 2 JUND 3 C15ORF61 4 
FTO 2 KIF22 3 CNOT9 4 

GDPD3 2 KLHL26 3 CYP27A1 4 
IFI30 2 LAMA3 3 EIF3CL 4 

NT5C2 2 LAT 3 FHIT 4 
NUPR1 2 LPCAT2 3 GPRC5B 4 
PGPEP1 2 LSM14A 3 IQCH 4 
POLK 2 MAPK3 3 IQCK 4 

RABEP2 2 MARK4 3 KCTD13 4 
SAE1 2 MEIS3 3 LIN7C 4 

SFXN2 2 MMP2 3 METTL15 4 
SPNS1 2 MVP 3 MFSD13A 4 
WBP1L 2 NDUFB8 3 NPIPB12 4 
ADCY3 3 NPIPB9 3 NPIPB6 4 
ALDOA 3 OPA3 3 NPIPB8 4 
AP2S1 3 PAGR1 3 POM121C 4 
BBC3 3 PDE4C 3 PPP4C 4 

BRWD1 3 PEPD 3 PTRHD1 4 
C18orf8(RMC1) 3 PLCD4 3 SNRPD2 4 

CALHM2 3 PPM1N 3 STK36 4 
CCDC146 3 PPP1R13L 3 SYMPK 4 
CCDC171 3 PRKD1 3 SYT15 4 

CCDC9 3 PRKD2 3 TMEM219 4 
CD2BP2 3 PRRT2 3 TRIM73 4 
CD3EAP 3 RASA2 3 TTLL4 4 
CDIPT 3 RBL2 3 UBE2E3 4 
CDV3 3 RCC1L 3 XPO6 4 

CENPO 3 RPGRIP1L 3 ZFHX4 4 
CTDSP1 3 RQCD1 3 ZNF771 4 
CWC22 3 RTN2 3   

 
Table S2.2: Adipose Genes and Class Rank  
All genes identified using the classification system outlined in Figure 2.3 with their respective ranks in 
adipose.  
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Table S2.3: Hypothalamic genes and class rank 
 

Gene Brain 
Class 

Gene Brain 
Class 

Gene Brain 
Class 

ZNF142 1 RTN2 3 CEP89 3 
TUFM 1 RNF25 3 CEP57L1 3 
SH2B1 1 PXDN 3 CDIPT 3 

RABEP1 1 PSMB6 3 CCDC171 3 
POC5 1 PRRT2 3 CCDC146 3 

NUPR1 1 PRKD2 3 CALML4 3 
NUP88 1 PPP4C 3 C2ORF44 3 

NFATC2IP 1 PPM1N 3 C19ORF40 3 
MAP2K5 1 POMC 3 ATPAF1 3 
INO80E 1 POM121C 3 ASPHD1 3 

HSD17B12 1 PNKD 3 ARMC2 3 
ZNF232 2 PLCD4 3 API5 3 
STK36 2 PFN1 3 ALDOA 3 
SPNS1 2 PEPD 3 AKTIP 3 
SGF29 2 PACRG 3 AGBL4 3 
SBK1 2 OPA3 3 ADCY3 3 

RPAIN 2 MVP 3 ACP1 3 
RABEP2 2 MOB3C 3 ZNF771 4 

POLK 2 MAZ 3 ZFHX4 4 
PGPEP1 2 LSM14A 3 XPO6 4 
KCTD13 2 KNOP1 3 VMO1 4 
GDPD3 2 KLHL26 3 UBE2E3 4 
DOC2A 2 KIF22 3 TTLL4 4 

COL4A3BP 2 KIF1C 3 TMEM219 4 
CMPK1 2 KIAA1683 3 SYMPK 4 

CAMTA2 2 KDX1 3 SNRPD2 4 
C16ORF62 2 KCTD6 3 RPTOR 4 
C15ORF61 2 IRX3 3 RCC1L 4 

BCS1L 2 INCA1 3 PTRHD1 4 
ATXN2L 2 HMGCR 3 PIAS1 4 
ATP2A1 2 HIRIP3 3 PARK2 4 
YPEL3 3 GSG1L 3 NPTX1 4 
VASP 3 GPRC5B 3 NPIPB12 4 
USP37 3 GPI 3 NLRP1 4 
UPF1 3 GDF15 3 NCOA1 4 

TMEM59L 3 FOXO3 3 MIS12 4 
TBX6 3 FOXA3 3 MAPK3 4 

TAOK2 3 FOSB 3 KCTD15 4 
TAL1 3 FEM1B 3 IQCK 4 
STIL 3 FBXO46 3 IQCH 4 

SSBP4 3 FAM57B 3 GRID1 4 
SRCAP 3 ENDOV 3 GCNT4 4 
SNX3 3 EML2 3 FTO 4 

SMIM7 3 EIF4A3 3 FOXG1 4 
SMAD6 3 EIF3C 3 FHIT 4 
SMAD3 3 DMWD 3 EFR3B 4 
SLC5A5 3 DDX49 3 DNAJC27 4 
SKOR1 3 DACT3 3 CYP27A1 4 

SIX5 3 CXCL16 3 CENPO 4 
SH3YL1 3 COPE 3 C1QBP 4 
SEZ6L2 3 CNOT9 3 ALKAL2(FAM150B) 4 
SESN1 3 CLN6 3   
S1PR3 3 CHMP6 3   

 
Table S2.3: Hypothalamic genes and class rank 
All genes identified using the classification system outlined in Figure 2.3 with their respective ranks in 
hypothalamus.  
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CHAPTER 3: INVESTIGATION OF TWO INDEPENDENT GWAS ASSOCIATIONS 

THAT EXHIBIT EXTENSIVE PLEIOTROPY 

 

3.1 Abstract 

Using the insights gained in Chapter 2, we sought to better understand a region that 

emerged from our analysis located on chromosome 16. Within chromosome 16p11.2 we 

observed EMVars within two independent GWAS regions, the ATP2A1 locus and SBK1 locus, 

that participated in cross-locus cHi-C interactions extending over 500kb in distance to land 

within the reciprocal region. Ten significant EMVars were identified across the two loci, each of 

them interacting with several promoters. Not only did these variants share interacting genes, but 

were also eQTLs for many of the shared genes within this region. In order to further investigate 

this complex network of variants, we used CRISPR-cas9 editing to knock out 0.75-1.2kb regions 

of the genome containing the two enhancers, one containing the EMVar rs2650492, and the other 

containing the EMVar rs9972768, and observed changes in local gene expression. With this data, 

we demonstrate that these enhancers converge to regulate the gene SBK1, a serine/threonine 

protein kinase implicated in the control of brain developmental processes. To better understand 

the evidence of pleiotropy suggested by cHi-C and eQTL information, we then went on to target 

the enhancer containing rs2650492 using CRISPRi under a secondary cellular context. We show 

this enhancer regulates another gene, NUPR1, under these conditions. This supports our previous 

observation that enhancers within these two independent GWAS loci co-localize within the 

nucleus and coordinate to regulate gene expression. Secondarily, we provide evidence that these 

functional variants may commonly affect more than one gene depending on the cell type and 

developmental time point assayed. Thus, when investigating a non-coding element’s function, it 
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may be important to assess gene expression under unique spatio-temporal conditions important 

for your disease of interest to have a full understanding of a SNP’s ability to modulate disease 

risk. 

 

3.2 Introduction 

While the integration of our functional genomics datasets was able to resolve regions 

such as the MAP2K5 locus, where a single class I gene emerged as the likely target of the genetic 

association with obesity, we also uncovered unexpected complexities amongst other loci. As 

previously mentioned, in spite of its modest length, chromosome 16 had the strongest enrichment 

for obesity heritability of all human chromosomes and contained the largest number of EMVars 

in our study (Figure 2.2f). This overrepresentation was partly due to a hotspot of EMVars within 

a 600kb span on chromosome 16p11.2, which harbored two independent GWAS loci and an 

overabundance of EMVars (Supplementary Figure S3.1a). These were the SBK1 and ATP2A1 

loci, which were named for the gene closest to the lead variant.  

The SBK1 and ATP2A1 association regions have lead variants separated by over 500kb, 

making them independent GWAS signals. In this interval, local segmental duplications in the 

great apes lineage have resulted in new genes and transcripts in the human genome1,111. These 

repeat regions leave this region and its surrounding context vulnerable to structural variants, 

which resulted in large, rare, gene deletions and duplications in the ATP2A1 locus112. Deletions 

within this locus have been implicated in highly penetrant forms of obesity113 as well as 

developmental delay114. 

Although the ATP2A1 region has been implicated in obesity risk, the gene or genes 

underlying this GWAS association have not been conclusively determined. The gene with the 
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most evidence for support is SH2B1, a ubiquitously expressed adaptor protein located within the 

ATP2A1 locus that enhances leptin and insulin signaling pathway potentiation43,115. 

Heterozygous loss-of-function alleles for SH2B1 have been associated with early-onset obesity 

as well as insulin resistance and behavioral abnormalities in humans103, and the highly penetrant 

forms of obesity arising from deletions in the 220kb ATP2A1 region frequently encompass this 

gene. Although this gene seems like the likely causal gene of the association, additional 

deletions, duplications and inversions associated with obesity within this region do not affect the 

expression of SH2B1116,117, suggesting the presence of other obesity modulating genes within the 

16p11.2 locus. 

What immediately became clear after integrating our genome-wide annotations was that 

functional variants within both the ATP2A1 and SBK1 loci participated in very long-range cHi-C 

interactions that extended over the 500kb distance to land within and between the reciprocal 

locus in both adipose and brain. Additionally, the EMVars within these two loci were eQTLs for, 

and physically interacted with, some of the largest number of genes in our dataset, including 

SH2B1 but also others. Because of this interesting phenomenon, we wanted to better understand 

how this region contributes to disease risk, and to determine whether enhancers within these 

distinct disease associated loci individually or coordinately regulate the expression of genes in 

hypothalamic neurons. A better understanding of these regions would shed light into a complex 

network of variants that may regulate multiple obesity-relevant genes, additionally it would serve 

to test the ability of our functional annotations to uncover gene regulatory insights at obesity 

GWAS loci. 
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3.3 Results 

3.3.1 Extensive variant and gene level pleiotropy within obesity-associated loci  

 In total, 10 EMVars were identified within the SBK1 and ATP2A1 regions. Using our 

cHi-C data, we were able to observe that EMVars within these two regions formed an extensive 

network of long-range interactions with promoters within and between the reciprocal locus 

(Figure 3.1a, Supplementary Figure S3.2a). This suggested to us that several of the genes in this 

megabase region may be co-regulated by a set of shared enhancers important for obesity risk. 

 The first of these two regions harbored rs2650492, a lead SNP emanating from the 

3’UTR of SBK1. This SNP is not only associated with BMI, but also with other body weight 

phenotypes in the UK Biobank118. We identified three EMVars in this region. Two of these were 

not present in the GTEx database nor did they participate in cHi-C interactions and were 

therefore discarded from future investigation (Supplementary Figure S3.1a). But the third, 

rs2650492, is the lead SNP of this locus and is an eQTL for 18 nearby genes across GTEx cell 

types, including 5 in adipose and 7 in brain. This EMVar also participated in cHi-C interactions 

with 15 genes, including those that extended beyond its locus into the neighboring ATP2A1 locus 

over 500kb away (Figure 3.1a). In our MPRA datasets the GWAS risk allele rs2650492-A 

decreased enhancer activity in both adipose and brain cell lines. This variant localized to open 

chromatin in our data as well as in a DNaseI cluster that encompassed 85/125 ENCODE cell 

types (Figure 3.1b). Together, this gives us high confidence that this variant may be a causal 

variant in this locus. In order to better understand the trans-acting factors that are bound to this 

enhancer we searched ENCODE data for transcription factors binding to this region of 

commonly open chromatin. In 56 ChIP-seq libraries from different samples, CTCF was bound to 

this region (Supplementary Figure S3.3a). We ran JASPAR to identify transcription factor 
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binding sites and identified three high confidence CTCF binding sites (score >11.0) within this 

region of open chromatin (Supplementary Figure S3.2). Although the majority of CTCF binding 

peaks center on the highest scoring CTCF site (#2), we wanted to perform allele-specific read 

mapping of CTCF ChIP-seq data to determine whether this variant could be affecting CTCF 

binding to chromatin in an allele-specific manner to the second highest scoring CTCF site (#3) 

which contained the rs2650492 variant. There were 7 heterozygous cell lines in the ENCODE 

database that had appreciable CTCF ChIP-seq read coverage (> 10 reads) over the rs2650492 

variant. None of these lines had statistically significant deviation from the expected 50% read 

coverage over each allele, suggesting that CTCF binding is not affected by this variant within 

these cell types (Supplementary Figure S3.3c). This suggests that other transcription factors are 

binding to this SNP, and that CTCF is not bound directly to this enhancer, but is bound near by, 

likely allowing it to anchor promoters and participate in the long-range interactions we observe.  

The second region in this chromosome 16 locus harbored a lead SNP, rs3888190, which 

mapped closest to the ATP2A1 gene. SNPs in this locus have been associated with obesity in 

several studies, and the region harbors rare large copy number variations (CNVs) that lead to 

early onset obesity118. This region contained 7 EMVars, the largest number in our study, and 5 

out of the 7 EMVars are in perfect LD with rs3888190 in the CEU population (Figure 3.1c, 

Supplementary Figure S3.1a). These variants are therefore commonly inherited together on a 

European haplotype present at 32% frequency (Supplementary Figure S3.1a). Five out of the 7 

alleles segregating on this risk haplotype decrease enhancer activity in the MPRAs. Three 

located between SH2B1 and TUFM decrease enhancer activity, two located within RABEP2 

introns decrease enhancer activity, and two located within introns of ATXN2L increase enhancer 

activity (Supplementary Figure S3.1b). Each SNP was an eQTL for 9 genes in adipose and 7 



	66	

genes in brain. Although eQTL status can be confounded by linkage, meaning that variants in 

high LD capture the functional effects of other variants in high LD, each of these EMVars also 

participated in independent cHi-C interactions with several promoters in both adipose and brain, 

indicating capacity for independent regulation of multiple genes in the locus across cell types 

(Supplementary Figure S3.2). 

Using luciferase assays where we expanded the tested regions to  ~500bp in size, we 

confirmed EMVar enhancer activity for all ATP2A1 locus EMVars and rs2650492 in either 

SGBS preadipocytes and/or HT22 brain cells depending on where they were active in MPRA (6 

active in adipose and 6 active in brain). We validated that 3/6 adipose EMVars and 4/6 brain 

EMVars had allelic effects detectable by the luciferase assay, which has a lower sensitivity to 

detect allelic effects compared to the MPRA. Both rs2650492 and rs9972768 were confirmed to 

affect enhancer activity in both cell types (Figure 3.1d).  Overall, these data suggested that 

multiple functional variants within distinct enhancers are present within this obesity-associated 

locus, each with the potential to regulate multiple genes, thus providing evidence against the 

canonical GWAS model of a single casual variant affecting a single target gene. The pleiotropic 

regulatory impact on different genes would result in complex molecular signals emanating from 

multiple genes that, together, participate in disease etiology. Given that 27/40 (67.5%) of loci 

were found to have more than one EMVar (Figure 2.2d), our data suggests that this complex 

connectivity will be a common feature of disease-associated loci, and is not simply an oddity of 

this region. 
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Figure 3.1: Two independent GWAS loci physically converge in nuclear space 
a) The locations of two lead GWAS variants separated by >0.5Mb are depicted. cHi-C promoter 
interactions shown emanate from rs2650492 in brain (blue) and adipose (yellow) and demonstrate cross-
locus connections. b) Location of rs2650492 within the 3’UTR of SBK1, along with significant DNAseI 
hypersensitivity clusters in 125 cell types from ENCODE. ATAC-seq peaks and read pileup from day 0 
SGBS preadipocytes is also shown c) Location of all EMVars within the ATP2A1 locus along with 
ATAC-seq peaks and read pileup from day 0 SGBS preadipocytes and day 55 early neuronal precursors is 
shown.  



	68	

Figure 3.1, continued. d) Allele-specific luciferase assay results for EMVars in the HT22 neuronal cell 
line or SGBS preadipocytes. Fold change is compared to control sequence. *p <0.05, two-tailed Student’s 
t-test, Error Bars = SEM 
 

3.3.2 Evidence of cross-locus connections and implications for gene regulation 

To provide additional evidence for a functional connection between the ATP2A1 and 

SBK1 GWAS loci on chromosome 16, we used CRISPR-cas9 editing to delete one EMVar-

containing enhancer from each locus to observe effects on gene expression. Out of the 10 

EMVars identified across the two loci, rs2650492 and rs9972768 stood out because they were in 

open chromatin, they participated in many long-range interactions with distal genes, they were 

eQTLs for several genes within the megabase encompassing these regions, and they were 

functional EMVars in both adipose and brain. We generated two lines where we deleted the 

regions harboring rs2650492 or rs9972768 in a human iPSC cell line homozygous for the non-

risk haplotypes at both GWAS loci (Figure 3.2a). By deleting these enhancers on the non-risk 

background we thus recapitulate the effects of the enhancer-lowering risk variants. We used the 

BrainSpan atlas119 of gene expression in addition to expression data collected from our 

hypothalamic differentiation to determine that all genes within this megabase region are 

expressed uniformly across early development except NUPR1, which is lowly expressed until 

post conception.  We therefore chose to assay the effects of these variants during early 

hypothalamic development. Four homozygous deletion clones from each enhancer deletion line 

were then differentiated to the hypothalamic lineage. Cells were collected at four time points 

representing key early developmental stages: iPSCs (TP1), ventralized cells (TP2), neuronal 

precursors (TP3), and hypothalamic precursors (TP4) (Figure 3.2a). RNA was extracted from 

each clone at every time point and RNA-seq was performed to identify genes affected by these 



	69	

enhancer deletions. Cells clustered well by developmental stage throughout the differentiation 

but only separated by genotype at TP4 (Figure 3.3b). 

Although these two SNPs map to enhancers separated by over half a megabase, we found 

that these deletions independently affected the expression of a single gene in the locus during 

development, SBK1, and the effect was not uniform across time (Figure 3.2c). The rs2650492 

deletion line significantly decreased expression of SBK1 during TP1-2, while the rs9972768 

variant was trending lower at the first stage but only significantly affected SBK1 expression 

during TP2-4 (Figure 3.2c). Both enhancers were critical for proper SBK1 expression during 

ventralization (TP2), as SBK1 expression was reduced in both lines at this stage. The convergent 

regulation of SBK1 by variants from two independent GWAS loci supports the cross-locus cHi-C 

interactions that we observed, as well as the eQTL effect of both variants on SBK1 expression. 

 

 

 
Figure 3.2: Functional variants in two GWAS loci coordinate to regulate SBK1 in early 
neuronal development 
a) Genomic regions targeted by CRISPR-cas9 editing machinery in iPSCs. (top) A 750bp region within 
the 3’UTR of SBK1 containing rs2650492 was targeted for deletion, and (middle) a second 1.3kb region 
in between TUFM and SH2B1 surrounding rs9972768 was deleted in an independent line. (bottom) iPSCs 
were differentiated to the hypothalamic lineage and collected at 4 time points for RNA-seq.  
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Figure 3.2, continued. b) PCA plot showing all genotypes and time points collected for RNA-seq during 
differentiation to hypothalamic neuronal precursors (N=3-4 clones) c) Plot of TMM normalized counts 
per million (cpm) for SBK1 across time points. *q < 0.05 rs2650992 deletion lines, +q <0.05 rs9972768 
deletion lines; Error Bars = SD  

 

Looking at global gene expression patterns in these two lines, we observed extensive 

sharing of a large number of differentially expressed genes between the two enhancer deletions 

(Figure 3.3a). DEG sharing increased dramatically between the ventralization (TP2) and 

neuronal precursor timepoints (TP3) (Figure 3.3a), suggesting these two enhancers converge to 

regulate an early driver gene that, when misregulated, leads to a cascade of gene expression 

effects throughout differentiation that peaks at TP3 (Figure 3.3b).  

Although the function of human SBK1 is unknown, its zebrafish homolog, Bsk146, is 

essential for neuronal development. Upon Bsk146 knockdown, zebrafish embryos exhibited 

changes to the midbrain-hindbrain boundary, enlarged hindbrain ventricles, and had small 

eyes120. Mice and rats lacking SBK1 have also been shown to exhibit an abnormal neurological 

phenotypes121. In both of our enhancer deletion lines, Gene Ontology terms for neural 

development genes were enriched within differentially expressed genes throughout 

differentiation, suggesting a conserved role for human SBK1 in this process (Supplementary 

Table S3.2).  
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Figure 3.3: A high level of DEG sharing between independent enhancer deletions 
a) Venn Diagrams depicting numbers of significantly differentially expressed genes between enhancer 
deletions and WT cells at each time point. The Jaccard Index is a representation of sharing on a scale of 
0-1, where 1 is complete sharing and 0 is no sharing. b) Heatmap showing the Pearson’s r correlations of 
log2(fold change over WT) for all expressed autosomal genes in the genome for the two enhancer 
deletion lines. 
 

3.3.3 Further investigation of the enhancer containing rs2650492 

While our data in neural lineage cells demonstrated that enhancers within the two 

independent GWAS loci regulate SBK1, it did not address the evidence of pleiotropy suggested 

by the many cHi-C interactions and eQTL effects. Therefore we evaluated the ability of the 

enhancer harboring rs2650492 to regulate additional genes. Using CRISPRi machinery to assess 

enhancer activity in HEK293t cells, we targeted the rs2650492 EMVar, the promoter of GAPDH 

as a positive control, and a negative control region within chromosome 16 that was predicted to 

not have regulatory element activity through looking at ENCODE data across cell types 

(Supplementary Figure S3.4a).  These cells were transfected with plasmids containing either the 

dCas9-KRAB and/or guide components. We used FACS to sort cells containing the dCas9-

KRAB alone, or dCas9-KRAB and CRISPRi guides, to select for cells that were expressing the 

necessary CRISPRi components (Supplementary Figure S3.4b). We extracted RNA from these 
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cells and performed RNA-seq to look for downregulation of cis-genes within the two loci. We 

observed a significant expression decrease for one gene in the locus, NUPR1, which was very 

lowly expressed throughout our neuronal RNA-seq time course (<5 TPM all stages) but is 

moderately expressed in HEK293t and in adipose (Figure 3.4). The rs2540492 EMVar was an 

eQTL for NUPR1 in several GTEx tissues, and in our data formed frequent long-range cHi-C 

interactions with NUPR1 across the adipocyte differentiation and to a much lesser extent in 

brain. We also observed a significant decrease in SBK1 expression after targeting rs2650492 in 

HEK293t cells. However, because rs2650492 maps within the 3’UTR of SBK1, we cannot rule 

out that the change in expression we detect may be due to dCas9-KRAB hindering SBK1 

transcription or reducing mRNA stability from the recruitment to the 3’UTR122 (Figure 3.4). 

Together this shows that rs2650492 is capable of regulating at least two genes under unique 

cellular contexts. 

 

 

Figure 3.4: The lead GWAS variant, rs2650492, regulates a second gene 
a) CRISPRi of enhancer containing rs2650492 in HEK293t cells. Expression after removal of batch 
effects for significant differentially expressed cis-genes and GAPDH identified in RNA-seq analysis 
across CRISPRi conditions in HEK293t cells (N=4-5 replicates).  *p < 0.0035; Error Bars = SD 
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3.4 Discussion 

In this Chapter, we aimed to better understand two independent GWAS loci that emerged 

from our datasets and were seemingly functionally connected. We based our hypothesis on an 

observation that enhancers within these two loci exhibited long-range cHi-C interactions to 

promoters within and between the reciprocal locus and exhibited sharing of eQTL effects. These 

data combined suggested the existence of high levels of regulatory pleiotropy within these 

regions and colocalization in the nucleus. To assess how these EMVars could lead to phenotypes 

important for obesity risk, we wanted to specifically understand their gene regulatory capacity in 

a cell type important for obesity risk. We knocked out two enhancers containing the variants 

rs2650492 from the SBK1 locus and rs9972768 from the ATP2A1 locus, and found that they both 

regulate SBK1 expression during early hypothalamic neuronal precursor differentiation. Based 

on previous research in model organisms, this gene is predicted to be important for brain 

development in rats and zebrafish120,123.  Looking at our global differential expression data, we 

observed enrichment of brain developmental genes, suggesting this gene may play a conserved 

role in human neuronal development. Although this data alone does not conclusively prove that 

SBK1 plays a conserved role in neuronal development, future studies could target SBK1 in mouse 

models or human cells to better understand the role this gene may play in neuronal development 

and potentially obesity. This data strongly supports the existence of a functional link between 

these two independent GWAS loci, and suggests that as GWAS grow larger and more powered 

we could observe more instances of this phenomenon due to the presence of more and more 

weaker GWAS associations occurring in distal enhancers for key disease genes. It also suggests 

the importance of assaying for gene regulatory effects across several stages of development, as 

these enhancers display temporally restricted effects. 



	74	

For the rs2650492 enhancer, which is the lead SNP of the SBK1 locus association, we 

wanted to better understand the dense network of promoter interactions emanating from this 

region. We therefore wanted to test if this enhancer was capable of regulating additional genes 

beyond SBK1 under other conditions. We targeted the rs2650492 region using CRISPRi in a 

secondary cell type and observed that within HEK293t cells this enhancer regulated the 

expression of NUPR1. It was interesting to identify NUPR1 out of all the other genes, 

specifically because it is specifically not expressed during early hypothalamic neuronal 

differentiation. This enhancer interacted with NUPR1 at one time point in the brain cHi-C 

timecourse, but in adipose, where NUPR1 is expressed, the rs2650492 EMVar interacted with 

the promoter of NUPR1 at every time point. Altogether, this demonstrates the enhancer 

containing rs2650492 also regulates NUPR1. This also suggests that the cHi-C interactions 

emanating from this enhancer may predict genes that this enhancer regulates under specific 

spatio-temporal contexts. Future experiments will need to be performed to determine how many 

genes seem to be regulated by this enhancer, and which of the genes are capable of contributing 

to obesity risk.  

In summary, the physiological effects stemming from these tissue and temporal 

regulatory specificities may play a role in the molecular etiology of obesity risk, and highlight 

complex considerations in the functional experiments that will attempt to better understand the 

mechanisms underlying GWAS associations.  
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3.5 Methods 

3.5.1: ATP2A1-SBK1 locus EMVar Luciferase Assays 

In order to test allele specific enhancer activity, IDT gBlocks™ were ordered containing each 

allele of each variant. Each SNP tested was centered and surrounded by 470 base pairs of native 

genomic context and 15bp of homology on each side to the pGL4.23 luciferase vector. These 

gblocks were then cloned into the pGL4.23 luciferase vector using Gibson assembly. rs4788100 

(C) and (T) gblocks were surrounded by 295bp of native genomic context, rs62037414 (C) and 

(T) gblocks were surrounded by 451bp of genomic context, and rs55719896 (G) and (A) gblocks 

were surrounded by 469bp of genomic context due to synthesis constraints. Luciferase assays 

were conducted either in SGBS preadipocytes or HT22 cells as previously described. 

 

3.5.2: iPSC culture conditions 

The NA19101 Yoruban iPSC line was grown in complete mTeSR1 media (Stemcell #85850) 

supplemented with 1% Penicillin-Streptomycin (10,000 U/ml; gibco #15140122) on Matrigel-

coated dishes (Corning #354277) at 37°C in 5% CO2. Cells were passaged 1:10-1:8 every three 

days or upon reaching 70-80% confluency and ROCK inhibitor was added to the media during 

each split. Media was changed every day for the duration of culture.  

 

3.5.3: CRISPR-cas9 editing of iPSC cells 

Fluorescently tagged crRNA-Atto550 and cas9 protein were purchased from IDT. Guides were 

designed using IDT software in order to maximize cutting efficacy and minimize off target 

cleavage using their RNP system. Two guides were designed per region in order to delete the 

enhancers from their endogenous context. IDT crRNA and tracrRNA were complexed according 
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to manufacturer’s instructions. The day of transfection, 50uM of each guide and cas9 protein 

were combined and incubated at room temperature for 20 minutes to form RNPs. Each guide was 

complexed with cas9 in individual reactions. 900k NA19101 human iPSC cells were harvested 

and nucleofected using a Lonza nucleofector 2b device with the program A23 and the two RNP 

complexes. These cells were plated into one 22cm2 flask. Once recovered, 40k cells were split 

into a 100cm2 flask to achieve single cell colonies. Colonies were then picked and transferred 

into 48 well plates to grow independently. Colonies were screened for the presence of 

homozygous deletion bands using PCR. Homozygous deletion colonies were grown, transfected, 

split, and treated identically to WT cells in order to mitigate RNA-seq batch effects for the 

differentiation. Cells were differentiated as previously described. Cells remained frozen until all 

timepoints were collected. RNA was then extracted using the Qiagen RNeasy Kit and RNA-

quality was assessed via an Agilent Bioanalyzer RNA Chip. 1ug of RNA was used for input into 

RNA-seq. RNA-seq was performed using the NEB Next Ultra II Directional RNA-seq kit.  

rs265 guide 1: 5’-GGGAUUGUCCUGACAACUUG-3’, rs265 guide 2: 5’-

AAAGUGCUCGGAGUUCACUC-3’, rs99 guide 1: 5’-UGAGCCAUUCACUAAUACAG-3’, 

rs99 guide 2: 5’-UGUCAACACUGUGGUUCAAU-3’, PCR rs265- F: 5’-

CCAAGCCCTTGGAAAATGTA-3’, PCR rs265-R: 5’-AACTATGGTCCCCTCCCAAC-3’, 

PCR rs99-F: 5’-AGCCGATATCACGCCATTGT-3’, PCR rs99-R: 5’-

GAACAGAAGCCAGGAGACCC-3’ 

 

3.5.4: Early neuronal differentiation time course analysis 

Reads were mapped and gene counts were quantified with STAR (v2.5.1a). Counts were filtered 

to retain autosomal genes and exclude lowly expressed genes (< 1 cpm at all time points). PCA 
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analysis showed that the data clustered well by time-point and genotype so no batch effect 

correction was necessary. P values were identified using glmQLFTest() from edgeR. P values 

were FDR adjusted genome wide using p.adjust to get q values.  

 

3.5.5: HEK293t cell culture conditions 

HEK293t cells were maintained in DMEM (Gibco # 11995-065) supplemented with 10% FBS and 1% 

penicillin-streptomycin (10,000 U/ml; gibco #15140122) solution at 37°C in 5% CO2. Cells were 

passaged with 0.25% trypsin-EDTA when they reached 70-80% confluency. Media was changed every 

other day for the duration of culture 

 

3.5.6: HEK293t CRISPRi 

Four guide RNAs were designed for each targeted region by CHOPCHOP or MIT’s guide design tool 

based on maximizing cutting efficiency, minimizing off targets, and closest proximity to the region of 

interest. Guide sequences are provided in the supplementary tables. Guides were then individually cloned 

using golden gate methodology into the guide vector upstream of an eGFP gene. Cells were transfected 

into HEK293t cells at 50-70% confluency using Lipofectamine LTX with the 4 guide vectors and dCas9 

vector (dCas9-KRAB upstream of BFP fluorophore) at a ratio of three parts Cas9 to one part guide, where 

each individual guide was added in equal amounts to additional guides for that region. After 48 hours, 

double positive GFP and BFP fluorescing cells were collected into culture media via FACs sorting, spun 

down and frozen. In the case of the Cas9 only control population, BFP single positive cells were sorted 

out of the population via FACS and frozen. FACS gates: Gate 1: FSC-A 50,000-250,000 x SSC-A 1,000-

100,000, Gate 2: FSC-W 50,000-125,000 x FSC-W 50,000-125,000, Gate 3: BFP-BV421 1,000+ x GFP-

FITC 1,000+ (double positives were collected for conditions and BFP single positives were collected for 

dCas9 only control). Transfection and sorting was repeated 4-5 times to have technical replicates. RNA 
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was extracted using the Qiagen RNeasy RNA mini extraction kit and 500ng of RNA was used as input for 

RNA-seq. RNA-seq was performed using the NEB Next Ultra II Directional RNA-seq kit.  

 

3.5.7 HEK293t CRISPRi Analysis 

Reads were mapped and gene counts were quantified with STAR (v2.5.1a). Counts were filtered 

to retain autosomal genes and exclude lowly expressed genes (< 1 CPM). PC1 clearly associated 

with sorting batch, so sorting batch was added as a covariate into the final linear model. P values 

were identified using glmQLFTest() from edgeR.  Because of the very small effect sizes of 

CRISPRi in non-coding regions, cis-genes within the SBK1-ATP2A1 loci were considered for 

final significance testing. This list included all protein coding genes within these loci passing the 

expression threshold as well as GAPDH (14 genes total). Raw p values from these genes were 

Bonferroni corrected to get adjusted p values (P < 0.05/14 genes). Only genes passing the 

Bonferroni significance threshold were considered significantly affected by the CRISPRi 

perturbations. 

 

3.5.8: Allele specific mapping of CTCF ChIP-seq Peaks 

Encode CTCF ChIP-seq .bam files were found using the region search tool within ENCODE 

https://www.encodeproject.org/region-search. All files were then sorted using samtools and 

processed for allele-specific read mapping using WASP (v0.0.3). The location of the rs2650492 

variant was provided along with reference and alternate variants and the reads overlapping the 

reference variant were counted and compared to the reads overlapping the alternate variant.  
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3.6 Appendix C, Supplementary Figures 

 

Supplementary Figure S3.1: Haplotype information for ATP2A1 locus EMVars  
a) (left) Summary information for all 10 EMVars identified in both the SBK1 and ATP2A1 loci. Two 
SNPs in the SBK1 region were neither eQTLs nor did they participate in cHi-C interactions and were thus 
removed from future consideration. (right) Allele frequencies and haplotype information in the CEU 
population for all EMVars in the ATP2A1 locus (LDhap tool: https://ldlink.nci.nih.gov). The lead risk 
variant, rs3888190-A, is outlined in blue. b) MPRA allele specific activity levels for EMVars within the 
ATP2A1 locus and SBK1 locus in adipose or brain libraries. The average activity for each barcode across 
replicates is shown as a dot. *q < 0.05; two-sided Mann-Whitney U test. Adipose cHiC data=yellow, 
Neuronal cHiC data = blue 
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Supplementary Figure S3.2: SNP specific Hi-C interactions for ATP2A1 locus EMVars  
a) Promoter interactions stemming from each EMVar in the ATP2A1 locus at any time point in both brain 
and adipose cells. Location of variant is indicated by a red line. Adipose cHiC data=yellow, Neuronal 
cHiC data = blue 
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Supplementary Figure S3.3: CTCF transcription factor binding to rs2650492 
a) ENCODE CTCF ChIP-seq for 58 samples showing locations of significant peaks (black bar) and peak 
point (line within black bar) in relation to rs2650492 within the 3’UTR of SBK1. These samples were 
identified using the region search tool (https://www.encodeproject.org/region-search/). Also depicted are 
the ENCODE DNaseI hypersensitivity clusters in all 125 ENCODE cell types, and the locations of 
JASPAR predicted CTCF binding sites (orange). b) Close up of JASPAR predicted binding sites with 
score > 11 within region of open chromatin. The location of rs2650492 is shown in hot pink, and it is 
located in the 3rd CTCF peak with the second highest score. c) Allele specific read mapping of seven cell 
lines with significant read coverage over rs2650492. These lines were heterozygous for this variant and 
exhibited no significant differences in read mapping to either the non-risk (G) or risk (A) alleles. 
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Supplementary Figure S3.4: CRISPRi guide locations and selection with flow activated cell sorting 
(FACS) 
a) Locations of CRISPRi guides for each condition. Guides were designed to target the 3’UTR of SBK1, 
the promoter of GAPDH as a positive control, and a region downstream of TUFM as a negative control. 
b) Cells were transfected and isolated via FACS based on the presence of either the Cas9 expressing BFP 
plasmid (BV421-A) and/or the GFP expressing guide plasmid (FITC-A). 
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3.7 Appendix D, Supplementary Tables 

Table S3.1: CRISPRi guide sequences 
 

Guide Orientation Sequence Target 
1 5' GACAATCCCTTGTGGTTAGG   rs2650492  
2 5' GGGCGTAGGACCTGCATGTG rs2650492  
3 5' TGTGTAGGGTGCAGACGCAT rs2650492  
4 5' CCCCGCAATAAGCACCACAT rs2650492  
    

1 5' AGGAGGAGCAGAGAGCGAAG GAPDH control  
2 5' CGGGCTCAATTTATAGAAAC GAPDH control  
3 5' TGGCGACGCAAAAGAAGATG GAPDH control 
4 5' CGGGCGGAGAGAAACCCGGG GAPDH control 
    

1 5' GTATTCTTAAAACTAGAGAG Negative control 
2 5' GTGTTTGTATGCTATCAGCG Negative control 
3 5' TAAGAAACGTGAAGACAATG Negative control 
4 5' TTTCGACGGTCTCTATGGGG Negative control 

 
Table S3.1: CRISPRi guide sequences 
CRISPRi guide sequences used to target either rs2650492, the promoter of GAPDH, or a negative control 
region on chromosome 16.  
 
  
Table S3.2: Gene Ontology terms for enhancer deletion DEGs 

GO biological 
Process Complete 

Observed Expected Fold 
Enrichment 

(+ or -) raw P value FDR Library Stage 

Nervous system 
development 

224 127.15 1.76 + 4.27E-16 5.66E-13 rs2650492 
Deletion 

iPSC 

Nervous system 
development 

145 90.44 1.6 + 2.56E-08 0.0000453 rs2650492 
Deletion 

Ventralizaton 

Nervous system 
development 

410 254.18 1.61 + 7.02E-20 1.86E-16 rs2650492 
Deletion 

Neuronal 
Precursors 

Nervous system 
development 

477 259.77 1.84 + 1.02E-34 3.25E-31 rs2650492 
Deletion 

Hypothalamic 
Precursors 

         

Nervous system 
development 

130 79.36 1.64 + 3.48E-08 0.000111 rs9972768 
Deletion 

iPSC 

Nervous system 
development 

256 150.22 1.7 + 3.37E-16 1.07E-12 rs9972768 
Deletion 

Ventralization 

Nervous system 
development 

356 206.74 1.72 + 3.61E-22 2.87E-18 rs9972768 
Deletion 

Neuronal 
Precursors 

Nervous system 
development 

648 393.44 1.65 + 3.85E-31 1.53E-27 rs9972768 
Deletion 

Hypothalamic 
Precursors 

 
Table S3.2: Gene Ontology terms for enhancer deletion DEGs  
Significance of nervous system development GO term in both enhancer deletion differentially expressed 
genes across all time points tested. Shown are observed number of DE genes within this category, the 
expected number of DE genes in the category, the fold enrichment for observed/expected, whether it is a 
+ or – enrichment, the raw and FDR adjusted p-values, as well as the library and stage.  
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CHAPTER 4: CONCLUSIONS, SPECULATIONS AND FUTURE DIRECTIONS 

 

Conclusions  

The overarching goal of this dissertation was the development, integration, and 

interpretation of a functional genomics pipeline in order to better understand the genetic basis of 

obesity risk. In Chapter 2 we generated comprehensive regulatory maps for human adipose and 

hypothalamic neurons to profile these cells across differentiation stages. We cataloged data such 

as chromatin accessibility, expression patterns, and cHi-C enhancer-promoter interactions which 

together aid in the interpretation of candidate causal non-coding variants at obesity-associated 

loci. Additionally we applied a massively parallel reporter assay to gain information on enhancer 

locations within obesity GWAS loci. We identified 94 variants within enhancers in high LD with 

obesity GWAS lead variants that were capable of modulating enhancer activity in adipose and/or 

brain cell types. Interestingly, we frequently identified multiple functional SNPs within a locus, 

many of which were capable of modulating enhancer activity across both tested cell types. After 

integrating these functional variants with cHi-C, we additionally provided evidence of the 

capacity for multi-gene regulation, where many of the enhancers and EMVars interacted with 4 

or more promoters across the cHi-C time course. We integrated this information with eQTLs and 

expression data to prioritize 20 high confidence class I genes and 30 class II genes for obesity 

importance.   

In Chapter 3, we focused specifically on a megabase region on chromosome 16. We 

identified 23% (22/94) of EMVars on chromosome 16 alone.  This, and the obesity heritability 

enrichment of chromosome 16, suggests that this chromosome could harbor a plethora of obesity 
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relevant genes. The locus encompassing the SBK1 and ATP2A1 association regions emerged 

from our datasets due to the high complexity of long-range interactions and patterns of eQTL 

sharing among many genes across the two regions in adipose and brain. Compared to the SBK1 

locus, where we prioritized one casual variant, the ATP2A1 locus harbored several variants with 

evidence of causality, and these were all found to be in very high LD and segregate together on a 

common haplotype. The gene(s) and mechanisms mediating BMI phenotypes in this region 

remain a focus of investigation, and the combination of data from this thesis and previously 

published data suggests that there are likely several obesity relevant genes within this large 

interval. Using MPRA and CRISPR-cas9 editing we demonstrated that these loci harbor two 

functional SNPs within enhancers that independently regulate SBK1 early in neuronal 

differentiation. Additionally, we demonstrated that rs2650492, the SBK1 locus GWAS lead 

variant, also regulates NUPR1. Other critical modulators of the obesity phenotype exist within 

the ATP2A1 locus, such as SH2B1, a gene involved in leptin and insulin signaling43,103. This gene 

and others were eGenes that physically connected to multiple EMVars. Therefore, this data 

suggests that multiple genes with the potential to regulate the obesity phenotype are regulated by 

functional variants in this locus. It is likely that investigation of these EMVars under other 

conditions or developmental stages would uncover additional examples of gene regulation in this 

locus. It has yet to be elucidated whether many, or only a subset, of genes modulated within this 

region are capable of leading to an obesity phenotype. 

Recent work has also suggested that regulatory variants associated with human 

phenotypes may impart their effect during temporally restricted windows, which would be 

missed in functional assays of a single developmental time point or environmental 

perturbation29,69,70,98. We were able to provide some additional support for this hypothesis by 
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assigning more EMVars to promoters using the time-course cHi-C data compared to a single 

time point, as well as our finding that the rs2650492 and rs9972768 EMVars regulated the 

expression of SBK1 during specific stages of early hypothalamic differentiation. This may 

require assessment of putatively causal variants during several key developmental timepoints of 

your cell type of interest in order to capture any temporally restricted effects of enhancers and to 

understand the full range of effects this variant may impart.  

All together, this work support a model where the underlying genetic architecture of 

individual loci associated with obesity will often involve allelic heterogeneity, where multiple 

variants in distinct regulatory elements impart effects on the expression of gene(s) across tissues 

during uniform or restricted temporal windows to alter disease risk. Whether the complexities we 

uncovered here are a rule or exception for loci in variant-to-function studies has yet to be 

addressed and will thus require careful investigation of causal genetic variation at GWAS loci 

under multiple cell types and temporal conditions.   

 

How can we improve causal variant prediction? 

The method used here to identify causal genetic variation relied on experimental fine-

mapping where we tested each SNP in high LD with lead variants identified in GWAS for their 

ability to modulate enhancer activity, presence in cHi-C interactions, and eQTL status. Although 

the MPRA allows for a direct measurement of functional outcomes of a SNP, there are 

limitations to this approach to identify causal variation within a GWAS locus. MPRA technology 

is currently limited by technical limitations to the size of DNA fragments that can be 

synthesized. Thus, longer regions that require >175bp for enhancer activity would be missed in 
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this assay.  Second, we only test for functional variation that affects enhancer activity. Although 

enhancer modulation is predicted to be the most common mechanism by which causal variants 

impart their gene modulatory effects, other mechanisms are also likely at play, such as affecting 

repressor activities124, splicing67,125, RNA modifications126, alternative polyadenylation127, and 

likely others. Thus, we are limiting the true scope of functional variants we observe in obesity 

GWAS loci. Once more of these functional genomics annotations are generated, it will be 

interesting to learn more about the combinations of mechanisms potentially at play within these 

regions. In line with this, it seems unlikely that all functional variation observed is causal, as 

benign functional variation is likely to exist in close proximity to GWAS lead variants. Until this 

is conclusively understood, functional studies such as this one would be strengthened with 

knowledge of high confidence statistical fine-mapping results, where variants with high 

statistical support are eventually given more weight for causality than those with low statistical 

support. Some fine-mapping approaches128–131 currently employ a similar theory, where variants 

in very high LD that cannot be prioritized over others statistically are weighted by their presence 

in functional genomics annotations. The best methodology to use is still under debate, but it is 

likely that a combination of approaches that blends both high confidence statistical fine-mapping 

and verified functional annotations will be the most powerful approach.   

The next phase of GWAS seems to be the integration of information from human 

populations beyond those with European ancestry. This will provide great insight into which 

SNPs are causal, since LD changes across human populations and thus different genetic variants 

exist on population specific haplotypes. This can be used to perform trans-ancestry fine-mapping 

to narrow down candidate causal variation132. For example, African populations are the most 

genetically diverse in the world. Because of this, LD is lower in Africans, allowing for smaller 
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haplotypes and better causal variation prediction. Another example is the use of founder 

populations where there has been increased probability for large effect size disease variants to 

overcome selection due to a historic population bottleneck. In testament to this, a common 

p.Arg684Ter nonsense variant in the TBC1D4 gene present at 17% allele frequency in the 

Greenlandic Inuit population has been found to confer very high risk for type 2 diabetes risk 

(homozygous OR = 10.3)133. Genetic investigations into these populations has been wildly 

important for genetics research, especially in instances where these genetic data are coupled with 

detailed phenotypic records, such as what is available via the FinnGen Biobank. It is also 

important to collect samples from diverse human populations to better treat and predict disease in 

individuals of these ancestry groups.  

In this work, I was able to dig deeper into putatively causal variation in two loci. The 

SBK1 locus harbored a single likely causal variant, but an interesting cluster of 7 variants in the 

ATP2A1 locus emerged in very high LD that individually participated in cHi-C interactions with 

multiple genes. Two of the EMVars within the ATP2A1 locus had alleles falling on the risk 

haplotype that were predicted to increase enhancer activity, while the others were all predicted to 

decrease enhancer activity. If all of these variants contribute to causality and regulate a single 

gene important to obesity risk, this means that these variants that increase enhancer activity 

might offset the effects of other variants on the haplotype that reduce enhancer activity. In a 

phenomenon called linkage masking134, functional variants in high LD that have opposite effects 

may counterbalance one another and escape negative selection. Alternatively, these variants 

could affect the expression of distinct genes that individually contribute to obesity risk. In order 

to have a better understanding of either of these scenarios, an interesting experiment would be 

individual and combinatorial deletions of each of these enhancers in human iPSCs coupled with 
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differentiation to observe which are capable of participating in gene expression regulation during 

early to late neuronal development. Ideally these enhancers would also be assessed in the 

adipocyte lineage, although current methodologies to perform CRISPR-cas9 editing in human 

adipocytes are challenging and iPSC differentiation to the adipocyte lineage is inefficient, 

making gene expression estimates after CRISPR perturbations in this model difficult. This type 

of experiment would confirm our predictions of which variants have tissue specific versus shared 

effects on gene expression to better understand the generalizable cross-tissue effects observed in 

this work. Overall it remains to be seen whether all of these functional EMVars contribute to 

causal variation within this locus, or only a subset of the variants that impact key target genes. 

 

How can we improve causal gene prediction? 

Another interesting observation that emerged from our analysis was that that these 

enhancers may regulate multiple genes under different cell type or developmental conditions, 

which complicates target prediction for non-coding causal variants. If these enhancers are 

capable of modulating more than one gene under certain stages of development and/or different 

cell types, methods to better predict target genes must be developed that take into account these 

factors.  

In this work, we used a combination of promoter capture Hi-C, expression data, and 

publically available eQTL information as a first pass prioritization method for target genes. We 

then used CRISPR-cas9 editing to validate some of these predictions in two loci. Other methods 

have been utilized that employ functional genomics or statistical methodologies to prioritize 

target genes within GWAS loci. One of the more common statistical methods, termed 

transcriptome wide association study (TWAS)135, integrates GWAS summary statistics and gene 
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expression measurements to identify genes whose expression pattern is associated with the trait 

of interest. A second more recent approach, termed polygenic priority score (PoPS)27, leverages 

summary statistics along with biological pathway and protein-protein interaction data to predict 

target genes. These methodologies lead to gene level predictions but either rely on a priori 

knowledge of cell type or do not generate specific cell type predictions. 

CRISPR editing of non-coding regions in order to wire enhancers to promoters remains 

the most conclusive measure of target gene identification, but suffers from being technically 

challenging and very low throughput. In order to make CRISPR technologies more accessible, 

CRISPR screens have emerged as a popular tool. Using CRISPR screens, you can target all 

genes genome-wide to test for a phenotype of interest. For example, Hilgendorf et. al performed 

a genome-wide CRISPR screen for genes important in adipogenesis136. These types of screens 

provide an additional layer of evidence to identify genes important for your trait and 

prioritization based on function, and can be performed across cell types or potentially at different 

cell stages to suggest when the gene acts on the trait. The limitation of this approach is that your 

trait of interest must be able to be selected for within the cell population.  

In order to further address the question of relevant cell type, methods are being developed 

that leverage epigenetic marks assayed amongst a broad range of cell types. For example, tissue-

of-action (TOA) scores 137 use tissue specific gene expression from GTEx as well as epigenomic 

annotations for cell type predictions for finemapped genetic variants within GWAS loci. Using 

this method, authors were able to predict the contribution of various cell types to each locus, and 

demonstrate whether causal variant is expected to act in one or multiple cell types. The authors 

were able to provide evidence at 41% of type 2 diabetes GWAS signals of shared regulatory 
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effects across tissues. This type of information is critical for reducing the guesswork involved in 

designing downstream experiments to test these predictions.  

In this thesis, we used cell type enrichment information based on ChIP-seq annotations 

from several generally metabolically relevant cell types generated in Locke et al 2015. A single 

tissue or multiple tissues of interest can be implicated but this does not generate individual loci 

level predictions. In general, for these types of predictions to reach their highest potential, a more 

comprehensive genomic annotation catalog of all cell types at developmental stages is required. 

For example, a recent paper used single-cell sequencing data from 727 mouse neuronal cell types 

and performed enrichment analysis for human obesity GWAS data138. They specifically 

identified 26 brain cell types, including the hypothalamus, cortex, and hippocampus, for BMI 

heritability enrichment. This, and the fact that obesity seems to trigger reward circuitry, may 

indicate that several of these loci have primary effects in regions of the brain outside the 

hypothalamus.  

 Data from specific cellular subtypes such as this can provide additional fine-grain 

hypothesis generation tools to predict how these genes lead to obesity risk across closely related 

cellular subtypes such as in the brain or as those across more distally related cell types. It will not 

be surprising if more instances of cross-tissue effects leading to unique yet synergistic effects on 

the trait of interest are uncovered in the near future. These cell type and gene level predictions 

will allow for focused experimental efforts on the tissue or tissues implicated at each locus to 

better understand how genes within the region may affect relevant biological processes in certain 

cell types over others.  

In the case of the SBK1 and ATP2A1 regions, it would be interesting to test how many 

genes these enhancers are capable of regulating across cell types. With the iPSC model, the 
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enhancer deletions for each of the identified EMVars could be differentiated into several distinct 

cell types for gene expression measurement across time as was done for hypothalamic neuronal 

precursors in Chapter 3 of this thesis. Additionally, since the hypothalamic neuronal 

differentiation does not lead to pure populations of one specific subtype, it could be interesting to 

perform the same differentiation in Chapter 3 but analyze the data using single cell sequencing, 

where differentially expressed genes in each cell type cluster could be identified, thus showing 

whether the SBK1 phenotype is a pan-hypothalamic cell phenomenon or restricted to certain 

cellular subtypes. Data such as this, coupled with a CRISPR screen for function, would be 

informative for narrowing down the entire landscape of putative target genes within these 

complex loci for those important for obesity risk versus bystanders. This could also help us 

understand how predictive many of these promoter capture Hi-C interactions are for functional 

connections across cell types.  

 

Final Remarks 

In conclusion, we have provided support for a complex network model within GWAS 

regions where multiple causal variants affect the expression of multiple genes to lead to disease 

risk. Regions such as the ATP2A1 locus are fascinating, and a thorough investigation of this 

region would lead to additional novel insights into the mechanisms of GWAS associations to 

disease and further our knowledge of gene regulation. But, regions such as this one on 

chromosome 16 are seemingly not the best initial targets for therapeutic investigation. Ideally, 

for the fastest and most efficient use of the data, a focus on less complicated regions, such as the 

MAP2K5 locus, would be a more straightforward path to success. Although drug targets with 

supporting human genetics evidence are twice as likely or more to succeed in clinical trials139,140, 
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gene predictions outlined in this thesis and related works will not, and should not, replace the 

mechanistic insights that can be gained through fine-scale single locus efforts where the effects 

of perturbing these genes is carefully assessed in an in-vivo setting. It simply provides an avenue 

for gene prioritization before embarking on costly cellular biology based efforts to understand 

gene function. As we approach the next decade of GWAS interpretation, it will be interesting to 

learn more about how these complex mechanisms coordinate to regulate disease risk.  
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