
THE UNIVERSITY OF CHICAGO

THRIFTY QUERY PROCESSING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

DIXIN TANG

CHICAGO, ILLINOIS

DECEMBER 2020

Copyright © 2020 by Dixin Tang

All Rights Reserved

Dedicated to my parents and my wife

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

ABSTRACT . xii

1 INTRODUCTION . 1

2 CROCODILEDB USER MODEL . 6
2.1 Performance goal & Resources . 6
2.2 User model demonstration . 8

3 INCREMENTABILITY-AWARE QUERY PROCESSING 10
3.1 Background and Definitions . 13

3.1.1 Problem Context and Assumptions . 13
3.1.2 System Model . 14
3.1.3 Incrementability Definition . 15

3.2 Computing Incrementability . 17
3.2.1 Cardinality Estimation for Incrementability 17
3.2.2 Computing Incrementability with a Cost Model 24

3.3 Incrementability-aware Query Processing . 26
3.3.1 Problem Formalization . 26
3.3.2 Greedy Algorithm . 26
3.3.3 Applicability of InQP . 29

3.4 Experiments . 29
3.4.1 Prototype Implementation . 30
3.4.2 Experiment Setup . 31
3.4.3 Low Resource Consumption with Similar Latency 32
3.4.4 Performance Impact of the Accuracy of Cost Model and Bursty Workloads 36
3.4.5 Cardinality Estimation Accuracy Compared to PostgreSQL 38
3.4.6 Overhead and Benefits of InQP’s Greedy Algorithm 39

3.5 Summary . 40

4 RESOURCE-EFFICIENT SHARED QUERY EXECUTION 41
4.1 Problem Statement and Overview . 44

4.1.1 Problem context and definition . 44
4.1.2 Definitions and optimization overview . 45
4.1.3 Query execution . 47

4.2 Finding the Pace configuration . 49
4.2.1 Incrementability definition in iShare . 49
4.2.2 Pace configuration via incrementability 50

iv

4.3 Decomposing A Shared Subplan . 53
4.3.1 Finding a split for a shared plan . 55
4.3.2 Generating a new plan & pace configuration 59
4.3.3 Partial decomposition . 61
4.3.4 Applying decomposition to the full plan 61

4.4 Experiments . 62
4.4.1 Prototype Implementation . 62
4.4.2 Experiment setup . 64
4.4.3 Low CPU consumption with the same final work constraints 65
4.4.4 Performance impact of decomposition . 69
4.4.5 Optimization overhead . 70
4.4.6 Impact of incrementability and final work 71

4.5 Summary . 73

5 INTERMITTENT QUERY PROCESSING . 74
5.1 DISS Overview . 76
5.2 Delta-oriented Intermediate State Selection . 78

5.2.1 Motivation . 79
5.2.2 DISS Overview . 79
5.2.3 DISS Algorithm . 80

5.3 Extensions and Optimizations . 90
5.4 Experiments . 92

5.4.1 Prototype Implementation . 93
5.4.2 Benchmark Setup . 95
5.4.3 IQP Use Scenarios . 95
5.4.4 Impact of Prediction Quality . 100
5.4.5 Effectiveness of State Selection . 102
5.4.6 Impact of Additional Operators . 103
5.4.7 Performance Impact of Delete Workloads 104

5.5 Summary . 105

6 RELATED WORK . 106

7 CONCLUSION AND FUTURE WORK . 111

REFERENCES . 113

v

LIST OF FIGURES

1.1 An overview of CrocodileDB . 3

2.1 An example of a performance goal in CrocodileDB 6
2.2 CrocodileDB configuration component . 8
2.3 CrocodileDB monitoring component . 9

3.1 How incrementability can impact query latency and the amount of work done. 10
3.2 A query with multiple query paths. 13
3.3 An example of the benefit (i.e. reduced final work) and cost (i.e. additional work) for

an incremental execution plan. 16
3.4 An example selectivity matrix. 20
3.5 Additional CPU time and query latency for a final work constraint. It is set to 0.02

for a query if the cost model finds the query can meet the constraint, otherwise we use
constraint 0.05 (i.e. Q17, Q AggJoin, and Q Outer). 33

3.6 Trade-off between resource consumption and query latency under different final work
constraints. 33

3.7 Reduced latency per unit of additional CPU time. 35
3.8 CPU usage trace (Q17, constraint = 0.05). 35
3.9 Performance impact of biased statistical information. 36
3.10 Performance impact of a bursty arrival rate (Q17). 36
3.11 Planning time. 39
3.12 Q17 Performance . 39

4.1 Example query plans w/(o) MQO . 42
4.2 CPU seconds of executing two queries separately or in a shared plan w/(o) perfor-

mance goals . 43
4.3 An example of a shared aggregate operator . 48
4.4 An overview of decomposing a shared subplan . 54
4.5 One split of Subplan1 . 55
4.6 Input cardinalities of Subplan1 using a pace configuration 55
4.7 Generating a new plan using the decomposed Subplan1 60
4.8 Tests of random relative constraints . 66
4.9 Batch execution (22 queries) . 66
4.10 Tests of uniform relative constraints (22 queries) . 66
4.11 Tests of uniform relative constraints (10 queries) . 66
4.12 Manually tuned pace . 68
4.13 Missed latencies for manually tuned pace . 68
4.14 Tests for decomposition algorithm . 70
4.15 Missed latencies for the test of decomposition . 70
4.16 Overhead of end-to-end optimization . 71
4.17 Optimization overhead of clustering algorithm . 71
4.18 Micro benchmarks for queries with varied levels of incrementability and relative final

work constraints . 72

vi

5.1 IQP Prototype Overview . 77
5.2 Examples of Intermediate State Selection . 78
5.3 DISS with late data processing on TPC-H scale factor 5. 96
5.4 DISS with HoloClean (Q8) . 99
5.5 Quality of cardinality prediction (Q8) . 100
5.6 Impact of individual relation’s completeness prediction’s quality (Q8): effect of over-

estimation and underestimation of the number of incomplete relations. For overesti-
mation (i.e. the first two figures), DISS predicts all relations being incomplete, while
the number of incomplete relation varies (in x-axis). For underestimation (i.e. the
last two figures), all relations are incomplete while DISS foresees a subset of them (in
x-axis). 101

5.7 Delta processing time under different memory budgets (all relations have a single 1%
delta): DISS and ReBatch can work for all memory budgets, but DBT-PG only works
when the memory budget is larger than the vertical dashed line. (Y-axis is log-scale) . . 102

5.8 Impact of injecting operators in DISS . 104
5.9 Average, min, and max delta processing time by varying percentage of deletes (1%

delta) . 104

vii

LIST OF TABLES

3.1 Accuracy of cardinality estimation of InQP and PostgreSQL for incremental executions. 38

4.1 Missed latencies of random and uniform relative constraints. 67
4.2 Missed latencies of micro benchmarks. 72

5.1 Notation Table . 81
5.2 Aggregated results of join ordering benchmark . 98

viii

ACKNOWLEDGMENTS

Pursuing a Ph.D. degree is known to be a long and harsh journey, which is no exception to me.

Despite this, I have had so much fun in the past five years plus two months because I have met so

many fantastic people who help me grow, support me, and enrich my life. It has been a great honor

and pleasure knowing them and working with them.

First of all, I want to thank my fabulous advisor Prof. Aaron J. Elmore. He has extraordinary

patience in helping me grow step by step and provides me with an enjoyable and motivating envi-

ronment for doing research. We spent more than half a year reading and discussing papers before

we landed on the topic of this dissertation. I am so grateful for his patience and valuable guidance

in helping me find the right topic. He did not just teach me a lot in doing research, but also showed

me a way of being an inspirational leader. He is very positive and always encourages me to achieve

more. It is so fortunate to work with him. I am very proud of the research I did under his advising.

I also appreciate the opportunities of working with two fantastic professors Prof. Michael J.

Franklin and Prof. Sanjay Krishnan. Mike can use one sentence to create a dissertation topic.

I still remember the day in this office when he told me that striking the middle ground between

batch execution and stream computing could be an awesome topic, which is essentially what this

dissertation is about. He asks many tough, but inspiring questions, which is very helpful in my

research. Sanjay always provides interesting and insightful perspectives about my research, and

can quickly identify the key problems during the discussion. I sincerely thank both Mike and

Sanjay for their efforts in my research and their valuable advice for improving myself. I want to

thank Prof. Raul Castro Fernandez for every fruitful chat with him and his helpful feedback on my

talks and research.

Next, I would like to thank the postdoc researcher Zechao Shang. He encourages me to consider

a more ambitious and impactful research topic. I appreciate his candid and sharp critiques on my

research ideas, writing, and presentation, which have driven me to improve myself significantly. I

am grateful for working with him in my Ph.D.

I appreciate Justin Levandoski offering me the opportunity of interning at Microsoft Research.

ix

I am fortunate to have Umar Farooq Minhas as my mentor. I thank Umar for his patience and

valuable advice in guiding me through the research project, especially when we met obstacles.

I thank Cristian Diaconu and Donald Kossmann for their helpful feedback on my project and

everyone I met at Microsoft Research.

I want to thank Prof. Aditya Parameswaran for offering me this valuable postdoc opportunity.

I am so excited to explore the new research topics and look forward to working with him. I would

like to thank my friend Prof. Bolong Zheng. The discussion with him inspires me to decide to

advance my research career as a postdoc researcher.

I want to thank the administration staff and tech staff of the CS Department of UChicago for

helping me have a smooth Ph.D. life. Special thanks to Nita Yack, Margaret Jaffey, Sandra Wallace,

Sandy Quarles, Donna Brooms, Bob Bartlett, and Patricia Baclawski.

My Ph.D. life would be much less delightful without my cool friends and labmates. Many

thanks to Yi Ding, Guangpu Li, Mingzhe Hao, Huaicheng Li, Renyu Zhang, Xuefeng Liu, Hao

Jiang, Adam Dziedzic, Chunwei Liu, Suhail Reman, Rui Liu, William Brackenbury, Xi Liang,

John Paparrizos, and everyone I met in the CS Department. Chatting with them gives me so much

fun. We cheer for each other’s achievement and show support in the frustrating moment. It is my

great pleasure being friends with them. Thanks for the help and the happy memories they brought

to me.

I also want to express my gratitude to my family and my friends I met before my Ph.D. Let me

start with my first friend that I can recall.

I probably knew Yunwei Yang when he was born. I use “probably” because we are already

best friends since I can remember. The most fun I had in my childhood is with him. I am so

grateful for having him in my life, and thankfully we are still close today. More luckily, Yunwei

and I met a group of interesting people: Wanyi Zhou, Ruoyun Li, Maoying Li, Kui Luo, Jiadi

Zou, and Hanbing Chen. 2020 is the nineteenth year since we first got together. Nineteen years

of friendship let us not just know each other’s parents but also many of their cousins, uncles, and

aunts. I appreciate the happiness and support they brought to me. Kui Luo, Huayu Liu, and I have

x

been close friends since middle school. Our friendship started initially due to our common passion

for basketball and is further developed as we keep encouraging and inspiring each other to be a

better self. It is so fortunate to be friends with them.

I also want to thank my friends Jian Wang, Lesi Zhao, and my undergraduate roommates Jian

Peng, Min Hu, and Yazhou Chen. When I did my master study in ICT, CAS, I am fortunate to

work with my advisor Wei Li, collaborators Taoying Liu and Rubao Li, and many great friends

Yang Yang, Chen Feng, Fan Liang, Liang Li, Ruijian Wang, Jingjie Liu, Jian Lin, Xiaoyi Lu, and

Hong Liu. Thanks for the happiness they brought to me.

As a single child of my parents, I am fortunate to have several great cousins: Yutian Lei, Qi Ni,

Li Zhu. The most fun of family gathering is to play around with them. I am sincerely thankful for

the good time I have with them.

I am so grateful for my last ex-girlfriend Lingna Yang for agreeing to be my wife. My wife

and I met half a year before I started my Ph.D. at UChicago. However, more than ten thousand

kilometers of distance did not separate us. We commit to each other and offer unconditional support

for each other. There are countless times in my Ph.D. when I was frustrated but cheered up by her.

I am so blessed to have her as my wife.

Finally, I would like to thank my parents and my wife’s parents. My wife’s parents, Shaohui

Yang and Qiufang Hu are very supportive of the long-distance relationship between us. They trust

their daughter’s choice and never put any pressure on us. My parents, Jingsong Tang and Jianhua

Lei always give me the best of their love. They always support my decisions and encourage me to

live a fulfilling life. I am so grateful for their love and so proud of being their child.

xi

ABSTRACT

Database systems have long been designed to take one of the two major approaches to process a

dataset under changes (e.g. a data stream). Eager query processing methods, such as continuous

query processing or immediate incremental view maintenance (IVM), are optimized to reduce

query latency. They eagerly maintain standing queries by consuming all available resources to

immediately process new data, which can be a major source of wasting CPU cycles and memory

resources. On the other hand, lazy query processing methods, such as batch processing or deferred

IVM, defer the query execution to a future point to reduce resource consumption but suffer high

query latencies. We find that existing eager and lazy query execution approaches are optimized for

the applications on the two ends of the resource-latency trade-off, but the middle ground between

the two is rarely exploited.

This dissertation proposes a new query processing paradigm Thrifty Query Processing (TQP),

for the middle-ground applications where users do not need to see the up-to-date query result right

after the data is ready and allow a slackness of time before the result is returned. TQP exploits this

time slackness to reduce resource consumption and allows users to tune this slackness to adjust

query latencies and resource consumption.

Implementing TQP involves the redesigns of several core database components. First, we have

a new user model that allows users to not just submit a SQL query, but also specify the time slack-

ness information. Specifically, users can specify a performance goal that represents the maximally

allowed time to return the result after the data is complete. After, we design a new query execution

engine to leverage this performance goal information to reduce CPU cycles. This execution engine

includes optimizations for both a single query and multiple queries. For a single query, we consider

selectively delaying parts of a query to reduce the resource consumption while meeting the perfor-

mance goals. For multiple queries, we find that shared execution may not decrease the resource

consumption because sharing queries with different performance goals requires the whole plan to

execute eagerly to meet the highest performance goal (i.e. the lowest query latency). Therefore,

we consider selectively sharing queries to avoid the overhead of eager query execution but also

xii

exploit the benefit of eliminating redundant work across queries. Finally, we design a memory

management component to release occupied memory resources when the query is not active. We

find that in many cases the data arrival rate is low (e.g. late data), where the query may have a long

idle time. Therefore, we selectively release memory resources (e.g. intermediate states) that are

least useful for processing the new data. We implement TQP in CrocodileDB, a resource-efficient

database, and perform extensive experiments to evaluate each component of CrocodileDB. We

show that CrocodileDB can significantly reduce CPU and memory consumption while providing

similar query latencies compared to existing approaches.

xiii

CHAPTER 1

INTRODUCTION

Several on-going trends pose resource-efficiency as a crucial challenge to the designs of modern

database systems. First, the unprecedented growth of data outpaces the expansion of memory and

computing resources, yet at the same time data analytics applications are becoming more complex

and resource-intensive. Second, the wide adoption of pay-per-use models pushes cloud databases

to maximize the gains from the resources users paid for. Finally, environmental concerns demand

databases to reduce resource consumption while not sacrificing query performance.

Unfortunately, many existing database designs for querying a dataset under changes (e.g. a data

stream) are optimized to improve the raw query performance (e.g. reducing query latency), but not

for resource-efficient query execution. These approaches, such as continuous query processing [12,

21, 80], stream computing [3, 17, 20], and immediate incremental view maintenance (IVM) [28, 5],

start the query early and eagerly incorporate new tuples into prior query results via incremental

execution to provide low-latency results. However, such eager query execution could significantly

waste both memory resources and CPU cycles. This is because 1) the system may excessively

maintain intermediate states (e.g. a hash table for a hash join) that are barely useful for processing

new data and 2) the system can eagerly generate intermediate tuples that will be removed by

later query executions and do not contribute to computing the query results. On the other hand,

lazy query execution approaches, such as batch processing or deferred view maintenance [28],

significantly defer the query execution (e.g. batch processing starts a query execution when all

data for this query is ready) to reduce resource consumption but suffer high query latencies.

We find that existing eager and lazy query execution approaches are optimized for the two

ends of the resource-latency trade-off, but the middle ground between the two is rarely exploited.

Specifically, we consider the middle-ground applications where users do not need to see the query

result immediately after the data is complete and allow a slackness of time before the result is

returned (e.g. 5s after a window of data arrives). This time slackness provides new opportunities

for reducing resource waste, which are not fully exploited by existing systems.
1

This dissertation proposes Thrifty Query Processing (TQP) that exploits the time slackness

to reduce resource consumption of processing queries over a dataset under changes. The time

slackness serves as a knob that allows users to make the trade-off between resource consumption

and query latency, and also connects existing eager and lazy approaches at the two ends of the

trade-off spectrum. For example, if users allow a high query latency, TQP can employ batch

processing and defer the query execution to the point when all data is ready to save resources. On

the other hand, if users prioritize low query latency, TQP can adopt a continuous query approach

and eagerly maintain the query for every newly arrived tuple.

TQP can be used in an on-premise database to reduce resource consumption and support higher

query throughput. More importantly, TQP can be integrated into the cloud database to provide

service for stateful standing queries, which is not covered by today’s cloud providers. We envision

this service to allow users to register a data source, a query, and a sink for a query result, and

specify the desired performance (i.e. performance goal). In addition, users are allowed to explore

the trade-off between query performance and resource consumption. TQP exploits the information

about the performance goal to reduce resource consumption by choosing the right system strategies

(e.g. batch, continuous query, or the strategies proposed in the dissertation), and intelligently

allocating CPU cycles for maintaining the standing queries and selectively investing memory into

keeping the query’s intermediate states.

We implement TQP in CrocodileDB [87], a resource-efficient database that exploits time slack-

ness to reduce resource consumption. I lead the system designs of CrocodileDB including the

components of query execution engine and memory management. Figure 1.1 shows an overview

of the system design of CrocodileDB. The user model [94] of CrocodileDB allows users to spec-

ify a maximally allowed time slackness (i.e. performance goal) to make a trade-off between the

resource consumption and the query latency. Here, the query latency is defined as the time be-

tween when all data arrives for a query (e.g. daily loaded data) and when the corresponding query

result is returned. For example, consider a tumbling window query over a data stream. If users

set the maximally allowed time slackness to 5 seconds, it means that after all data arrives for a

2

CrocodileDB

Query Execution Engine

Incrementability-aware Query Processing (InQP)

Resource-efficient Shared Query Execution (iShare)

Memory Management
Intermittent Query Processing (IQP)

User Model

Figure 1.1: An overview of CrocodileDB

time window, users need to see the query result for that window of data within 5 seconds. This

timing information is integrated into the underlying query execution engine such that the system

can generate a query plan that minimizes CPU consumption and also meet the performance goal

(i.e. InQP [95]). In addition, the query execution engine is extended to share the execution of the

overlapping work across multiple queries to further reduce CPU consumption (i.e. iShare [96]).

The memory management component (i.e. IQP [93]) monitors the data arrival rate and selectively

discards some intermediate states to reduce memory consumption when the data arrival rate be-

comes low and there is an idle time when the query is not executed. We now give an overview of

InQP, iShare, and IQP respectively:

Incrementability-aware Query Processing (InQP [95]) Many queries are scheduled before the

data is ready (e.g. a window query over a stream of tuples). How early to start the query execution

and how eagerly to maintain this query impacts the trade-off between the query latency and CPU

consumption. InQP considers reducing the total query work (i.e. reducing CPU cycles) with

respect to a performance goal. One major approach to reducing a query latency and meeting the

performance goal is using incremental execution, where new data is incrementally incorporated

3

into prior results. However, incremental execution can increase total query work and waste CPU

cycles because for some queries, tuples output in prior executions are removed by later executions.

The observation in InQP is that eager incremental executions do not increase the total work for

all parts of a query. Some parts of a query are amenable to incremental executions and executing

them eagerly (i.e. start one execution for every small amount of data) does not increase the total

query work. We define a metric, incrementability, to quantify the cost-effectiveness of incremental

executions. In InQP, the higher incrementability a part of a query has, the more eagerly it is

executed. InQP integrates this metric into the query optimizer to generate an optimized query

plan that meets the performance goal and also reduces the total work. In addition, given this

efficient execution engine, InQP supports non-positive query semantics, which is often lacking in

continuous query processing systems [12, 21, 80]

Resource-efficient shared query execution (iShare [96]) iShare studies how to share queries

with different performance goals when they process the same data (i.e. daily loaded data). Shared

execution eliminates redundant computation to save CPU cycles. However, naively sharing the

execution across different queries with different performance goals runs the whole shared plan

eagerly to meet the highest goal (i.e. lowest latency constraint). This eager execution forces many

participating queries with lower performance goals (i.e. higher latency constraints) to run more

eagerly than they should. As shown in InQP, eager incremental executions increase the total work.

Therefore, the overhead introduced by eager execution may offset the benefit of shared execution.

iShare does not execute a shared plan as a whole with a single frequency, but selectively un-

tangles the execution of a shared plan in two aspects to reduce the overhead of eager incremental

execution: 1) executing different subplans in different frequencies with respect to the performance

goals; 2) breaking the shared subplans into separate ones (i.e. unshare) and run them at different

frequencies based on the performance goals. The key challenge here is that the query optimization

process is time-consuming due to the complex search space in finding the execution frequency for

each subplan and the possible ways of decomposing a shared subplan. Therefore, we design a new

search algorithm and a heuristic metric to quickly find a query plan that exploits the benefit of

4

shared query execution and avoids the overhead of eager execution.

Intermittent Query Processing (IQP [93]) When new data arrives intermittently or at a low rate

and users choose to maintain the query lazily, there is an idle time when the query has no data

to process and is inactive. IQP considers releasing some memory resources when the query is

inactive. Specifically, IQP sets a memory budget for the query when it is inactive. IQP exploits

this budget by selectively keeping a subset of intermediate states (e.g. hash tables for hash join)

or building new states such that we can reuse these saved states to reduce the query latency of

processing new data.

An efficient plan about which intermediate states should be materialized or built depends on

information about the new data, such as the estimated size and distribution of the relations having

new data. Since this information can be provided or predicted by upstream data systems (e.g.

data collection and preparation), IQP leverages the information about new data to find an efficient

query plan, where it chooses to materialize a subset of intermediate states or build new states that

are most useful for reducing the latency of processing the new data. Therefore, for this intermittent

and predictable data arrival pattern, IQP achieves low query latency with a memory limit.

In this dissertation, we first present the user model of CrocodileDB in Chapter 2. Then, we

discuss InQP, iShare, and IQP in Chapter 3, Chapter 4, and Chapter 5 respectively. After, we

discuss related work in Chapter 6 and conclude this dissertation in Chapter 7.

5

CHAPTER 2

CROCODILEDB USER MODEL

In CrocodileDB, we allow users to specify a performance goal that represents the maximally al-

lowed time to return the result after the data is complete. Figure 2.1 shows an example of querying

a window of data. Here, the performance goal is the maximally allowed time between when the

last tuple arrives for this window and the query result is returned. Our query optimizer internally

leverages the information about users’ performance goals along with information about the query

structure and data arrival patterns (i.e. which relations having new data and the corresponding data

arrival rates) to generate a query plan that can reduce CPU consumption (i.e. InQP and iShare) and

memory usage (i.e. IQP) while meeting the performance goal.

Window Size
Performance

Goal

Time

All tuples arrive Return result

Figure 2.1: An example of a performance goal in CrocodileDB

2.1 Performance goal & Resources

CrocodileDB maintains a standing window query over a stream of tuples. While CrocodileDB

currently supports tumbling windows, we can support other window semantics, such as sliding

windows. We later briefly discuss how to support performance goals in more general cases.

Performance goals for tumbling window: In CrocodileDB, users can explicitly express a perfor-

mance goal, which is the maximally allowed time slackness between when all tuples for a window

arrive and the actual result is returned to users.

The performance goal is a knob that users can tune to make trade-offs between resource con-

sumption and query latency. With different performance goals, the system will generate corre-

sponding plans to minimize resource consumption. Consider an example of a windowed query

6

with a window of 10 minutes. If users allow a large slackness (e.g. a performance goal of 2

mins), CrocodileDB can selectively maintain some parts of the query lazily to reduce CPU con-

sumption [95] or selectively discard some intermediate states of incremental executions to reduce

memory consumption [93]. If the slackness is large enough (e.g. 10 mins), CrocodileDB can start

the query after all tuples arrive (i.e. batch processing) and avoid the CPU or memory resources

waste introduced by incremental executions. On the other hand, if users prioritize query perfor-

mance (e.g. return the result within 1 sec for every 10 mins of data), CrocodileDB will execute

this query more eagerly with higher resource consumption.

With the performance goal specified by users, CrocodileDB unlocks many optimization oppor-

tunities [87] that are impossible in existing systems[6, 13, 28]. Existing systems let users decide

when to execute the query, instead of allowing users to specify when to expect a query result in

CrocodileDB. For example, users need to set a time trigger of maintaining the whole query period-

ically (e.g. every 1 min) to achieve the desired performance. This query plan executes the whole

query in a single pace and ignores that some parts of a query are less amenable to incremental

executions. By contrast, CrocodileDB can exploit this performance goal to selectively delay parts

of the queries to reduce CPU consumption but still meet the performance goal (i.e. InQP).

Extensions of performance goals to more general cases: The performance goal of CrocodileDB

can be extended to sliding windows. Semantically, a sliding window can be regarded as a list of

independent windows. We can apply the performance goal to each of them. We note that the

underlying system optimizations should consider the overlaps between sliding windows to reduce

redundant work, which is in the future work of CrocodileDB.

The performance goal can also be applied to general incremental view maintenance. Consider

an example of maintaining a view over a stream of tuples. Users can specify the condition of

computing an up-to-date result (e.g. updating the result for every 10 mins of data) and additionally

submit a performance goal to decide when they can see an up-to-date result. For example, if the

performance goal is 10 secs, for every 10 mins of data, we will incorporate them into the query

result within 10 secs after the data is ready.

7

Figure 2.2: CrocodileDB configuration component

2.2 User model demonstration

We implement CrocodileDB in Spark and develop a framework to show how users interact with

CrocodileDB. In this section, we show how users interact with the optimization of InQP, which can

reduce CPU consumption compared to Spark with the same performance goal. This framework

contains an interactive configuration interface and a real-time performance monitoring component.

The configuration interface allows users to 1) submit a window query and specify a final work

constraint as a proxy for the performance goal; and 2) tune the final work constraint to make the

trade-off between CPU consumption and query latency (i.e. the time of returning the result after

all tuples for a window arrive). The final work constraint is based on a cost model and is used to

quantify the remaining number of units of work the query needs to do after all data arrives. We

provide the final work constraint as a knob instead of the performance goal to users because the

actual query latency is hard to predict (e.g. query latency depends on the hardware configuration).

Specifically, the final work constraint is a ratio between the final work users want to achieve and

the one of executing a query in one batch. For example, a constraint 0.2 means that users want to

8

Figure 2.3: CrocodileDB monitoring component

reduce the query’s final work to 20% of the one of batch execution.

Figure 2.2 shows the configuration interface of CrocodileDB. In the Configuration Panel, users

first choose a query from all TPC-H queries and several hand-written queries based on the TPC-

H schema. Then, users set the window size and the final work constraint. The Configuration

Details shows the SQL query selected by users and the estimated trade-off between the additional

work (with respect to the batch execution) invested into the query to meet the desired final work

constraint. For example, Figure 2.2 shows that for a constraint 0.05, InQP needs to invest 35%

work compared to the work of batch execution. Users can tune the final work constraint based on

the estimated trade-off curve to achieve the desired query latency and control the CPU resources

they are willing to pay for.

If users hit the Submit Query button, the configuration framework will submit the query to

systems InQP and Spark. Users are able to observe the runtime statistics of both systems side-by-

side in our monitoring component. The monitoring component is shown in Figure 2.3. It monitors

the execution of the same query with the same final work constraint for InQP and Spark side-by-

side. We show the returned result and the actual latency of returning this result. Users are expected

to observe similar latencies for both systems since they use the same constraint. We also show CPU

usages during the query execution and we see that InQP has lower overall CPU usages compared

to Spark.

9

CHAPTER 3

INCREMENTABILITY-AWARE QUERY PROCESSING

Many open-source and commercial database systems support triggers, which are stored procedures

executed when an event occurs. Examples of triggering events include a time frequency (e.g. every

hour), a progress condition (e.g. data completely loaded), or a constraint violation (e.g. duplicate

user ids added to a database). As is often the case, the stored procedure is itself a query, and

there is an interesting question of how to process this pending query. One could simply wait

until the trigger to begin processing in a way similar to traditional batch query execution. Or,

one could treat the query like a standing query in a streaming system by continuously updating

the results in anticipation of a future trigger. In general, there is a trade-off space between the

resource-hungry but low-latency streaming approach and a resource-efficient but higher-latency

batch evaluation [93].

Time

D
at

a

Time

D
at

a

Time

D
at

a

Query
Work

Query
Work

Query
Work

New Records Query Start Query Finish

(a)

(b)

(c)

Figure 3.1: How incrementability can impact query latency and the amount of work done.

This project studies how a user can effectively exploit such a middle-ground for scheduled

or triggered queries. For example, suppose she would like to reduce her latency by 50%, how

much more resources would she have to use? In the context of triggered queries, an important

question towards this goal is when to start processing a query. Consider the motivating example in

Figure 3.1, where data is being progressively loaded into the database and the goal is to compute

the result of a pre-defined query. In Figure 3.1a, a traditional batch query does not begin until

10

all new data arrives. No resources are held or used while data are arriving. If a system wanted

to provide the result earlier, it would need to start processing existing data earlier by investing

additional resources and incrementally incorporating new data into prior results (Figure 3.1b).

Exactly how much benefit there is for eager processing depends on the structure of the pending

query; for example, the latency could see less improvement as in Figure 3.1c. Some queries are

amenable to incremental computation while others can incur steep overheads that may not be worth

the additional resources.

Not surprisingly, our study is related to algorithms for Incremental View Maintenance (IVM).

Prior work [49, 14, 42] shows IVM is efficient for select-project-join-aggregate (SPJA) queries, but

less so for more complex queries, such as those involving nested queries or outer/anti-joins [27].

One major reason is that many complex queries are non-monotonic: newly arriving data can force

these queries to delete previously produced output tuples. For example, consider a SQL query that

finds all tuples with an above-average attribute value. To incrementally maintain this result, on

each new tuple, the maintenance algorithm has to not only update the running average, but also

re-scan all the previous tuples to update query result if the average changes. In other words, some

amount of the incremental work in such a query removes old results instead of simply making

forward progress; making it less beneficial to maintain frequently.

However, we noticed that many such queries, while expensive to incrementally maintain, have

substructures that are amenable to incremental computation. For the example query above, a better

strategy is to eagerly maintain the average values, and less frequently re-scan to find the tuples

that are above the average. State-of-the-art IVM systems lack the ability to tune maintenance

frequencies for individual dataflow paths to optimize overall system performance. Making these

tuning decisions requires a metric of “incrementability” to indicate how amenable a particular

operator or pipeline of operators is for incremental execution.

One of our contributions is to propose such a metric aptly called incrementability. A query with

a high incrementability reduces its final work without much increase to its total work. We define

total work as all work done by the system for the query to compute the final query result (which

11

can be a viewed as a proxy for CPU consumption) and final work as the work spent after data is

complete and the trigger starts the query (which can be viewed as a proxy for a query’s latency).

We quantify the final work and total work based on the cost metric in a RDBMS optimizer, which

could be a unified cost of estimated CPU time and I/O operations, or number of tuples processed

by all operators.

Ideally a system would more eagerly schedule query parts with higher incrementability than

those with a lower one. We leverage this definition to propose a new query processing method,

Incrementability-aware Query Processing (InQP), that leverages incrementability to efficiently

improve query performance. We decompose a query into query paths of tuples’ data flow between

buffered operations. We propose a new cost model that computes incrementability for each query

path from a decomposed query. To intelligently improve performance, InQP executes query paths

at different paces (or frequencies) based on their respective incrementability. In InQP, users are

allowed to specify a final work constraint for a query (i.e. a proxy for the performance goal), and

the system finds an optimized query plan that minimizes the total work under the given final work

constraint.

We address two challenges of InQP. First, computing incrementability requires estimation of

total work and final work, but conventional cost models are designed for one-batch processing

instead of incremental executions. We address this with a cardinality estimation method that works

better for incremental executions. Specifically, we separately estimate cardinalities of tuples that

are new, updated, or deleted. Second, we need to assign different paces for different query paths.

We propose a greedy algorithm to decide the paces to minimize a query’s total work and meet a

final work goal.

The major contributions of InQP include

• we propose a new metric of incrementability to quantify the effectiveness of incremental

execution;

• we define the incrementability and propose a cost model with improved cardinality estima-

tion for computing incrementability;
12

• we decompose a query into query paths and design a novel algorithm based on incrementabil-

ity to decide when to execute query paths;

• we integrate our ideas into a real system, Spark, and demonstrate the effectiveness of such

an approach.

3.1 Background and Definitions

In this section, we introduce the problem context and assumptions, InQP’s system model, formally

define incrementability that represents the ratio of reduced final work to increased total work, and

analyze the key factors for incrementability.

RelationA

⋈

RelationB

𝑄𝑢𝑒𝑟𝑦 𝑃𝑎𝑡ℎ𝐴

𝑄𝑢𝑒𝑟𝑦 𝑃𝑎𝑡ℎ𝐶

Γ

𝜎
𝑄𝑢𝑒𝑟𝑦 𝑃𝑎𝑡ℎ𝐵

Figure 3.2: A query with multiple query paths.

3.1.1 Problem Context and Assumptions

We consider an application scenario where data is being loaded into a database and users want to

query the loading data based on trigger conditions, such as time-based (e.g. daily loaded data) or

count-based (e.g. for every 100M tuples) conditions. Each triggered query returns an exact result

over its conditioned data (e.g. daily loaded data). We emphasize that our approach also applies to

general incremental query evaluation and view maintenance, including stream query processing.

We assume knowledge of the data arrival rate, which can be predicted based on historical statis-

tics [91]. With this knowledge, we can estimate when a query is triggered, and the final work and

13

the total work of a triggered query based on our cost model in Section 3.2.1. For simplicity, we

assume a steady arrival rate for our cost model and we show our robustness for a bursty arrival rate

in Section 3.4.4.

3.1.2 System Model

Unlike conventional IVM systems, InQP decomposes a query into different query paths.

Query paths: A query path is a dataflow segment in the query operator tree delineated by blocking

operators, inputs, or outputs. We note that an operator may belong to multiple query paths. Fig-

ure 3.2 illustrates a sample query that finds the IDs and balance of customers with a balance larger

than the average balance (i.e. Bal > Avg(Bal)). This query has three query paths: (1) the first

query path A takes balance from Customer to compute the average balance (i.e. ΓAvg(Bal)), (2)

the second query path B takes ΓAvg(Bal), joins it with the all tuples from Customer and outputs

customer IDs and balance, and (3) query path C takes tuples from Customer and joins them with

the average value.

Intuitively, query paths represent a stream of tuples between buffers in a pipelined query exe-

cution engine. All blocking operators including aggregate, sort, and distinct have output buffers.

Similarly, all base relations or delta logs can be treated as buffers as well, and so can the output of

the whole query. On the other hand, simple operators like a filter or a join can yield outputs in a

streaming fashion.

Query paths naturally decompose the query operator tree, and the individual dataflow paths are

the ideal unit for fine-grained resource or latency management. Buffers for blocking and scan oper-

ators can be flushed with a varying frequency (called the pace) depending on the incrementability.

Pace configuration: Generally, the buffers could be flushed in different ways, such as a count-

based flush (i.e., after 1000 tuples in buffer), a time-based flush (i.e., every 10 seconds), or a

heuristic-based flush. For simplicity in our prototype, we use mini-batch execution and consider a

flushing with respect to the percentage of the total number of tuples arrived for the system. Each

14

query path with a pace k flushes its input buffer whenever the system has received new 1
k of all the

estimated tuples. A pace configuration can be represented as a vector P = (K1, K2, . . . , KQ) for

Q query paths. A special pace configuration P1 = (1, 1, . . . , 1) represents batch processing where

all tuples are processed by a single final step.

3.1.3 Incrementability Definition

Incrementability: Incrementability describes how incrementable a pace configuration is. For a

pace configuration P , we define CF (P) as its final work and CT (P) as its total work. Recall that

the final work means the work the system does after data is complete and the total work is all work

done by the system to compute the result. Consider two pace configurations P2 > P1, such that

each query path’s pace in P2 is no smaller than the pace in P1, and there is at least one query path

in P2 whose pace is larger than the pace in P1. Here, P2 has a larger total work than P1 and the

incrementability of P2 over P1 (e.g. the “benefit” of extra total work) is defined as:

INC(P1, P2) =
CF (P1)− CF (P2)

CT (P2)− CT (P1)
(3.1)

This is defined on two pace configurations that evaluate the same query plan. A similar relationship

could also be extended to pairs of different query plans, or more generally, to pairs of two broadly

defined “mechanisms” that answer the query (e.g., one count-based trigger and one time-based

trigger), but we leave this for future work. Figure 3.3 shows an example of the benefit and cost

of more incremental executions. This curve presents the trade-off between total work and final

work. It starts at the point of batch processing (i.e. P = P1). When we invest more resources

into incremental executions (i.e. by increasing pace in P), the final work drops and the total work

increases. A special incrementability that is relative to the batch execution may be of particular

interest. Specifically, INC(P, P1) models the effectiveness of how extra total work reduces final

work, compared to batch processing.

There are three levels of incrementability. If there is no additional total work for incremental

15

Total work
Fi

na
l w

or
k

X

Batch processing

X

Incremental view maintenance

Additional work

Reduced
final work

Figure 3.3: An example of the benefit (i.e. reduced final work) and cost (i.e. additional work) for
an incremental execution plan.

executions (i.e. CT (P) equals CT (P1)), the incremental executions are fully incrementable. Here

the incrementability is∞. If Incrementability is less than∞, but larger than 0, it means incremental

executions are partially incrementable, that is, we need to pay some additional cost for total work

to reduce the final work. If Incrementability is no larger than zero, more total work is not helpful

in reducing the final work, or it even prolongs the overall final work. Here, the query is non-

incrementable and thus should not be executed until a query is triggered. We summarize the three

cases in the following:

• Incrementability =∞: Fully incrementable

• 0 < Incrementability <∞: Partially incrementable

• Incrementability ≤ 0: Non-incrementable

We note the levels of incrementability depend on both input data and query semantics. We now

use examples to illustrate this.

Fully incrementable: Positive queries (e.g. SPJ queries) with insert data are fully incre-

mentable because prior output tuples are not removed by new insert tuples and early work of

outputing tuples is not wasted.

Partially incrementable: When we have non-positive queries or the data involving deletes or

updates, later executions will remove some of prior output tuples, which makes queries partially

incrementable. One such example is left-outer-join. In addition to joined tuples, it outputs tuples

from the left side that do not match right side tuples. It is possible that new tuples from the right

side successfully join with a previous unmatched left tuple. The prior output unmatched left tuples
16

should be removed from the output. Therefore, outputting the unmatched tuples too eagerly wastes

resources and is partially incrementable.

Non-incrementable: This is an extreme case of partially incrementable queries. For exam-

ple, if all data we have processed are deleted later, we should not start incremental executions.

Therefore, this case is non-incrementable.

3.2 Computing Incrementability

To calculate incrementability, we need to compute CT (P) and CF (P) given a pace configuration P .

A critical challenge for this task is how to estimate the cost for each incremental execution given

a pace configuration. We first discuss our modifications on existing cost models for computing

CT (P) and CF (P), and then discuss how to compute the total work and the final work given a

pace configuration in Section 3.2.2. We support insert, delete, and update operations, and support

operators of select, project, join (i.e. inner, outer, anti, and semi-join), aggregate, distinct, sort, and

limit.

3.2.1 Cardinality Estimation for Incrementability

As shown in prior work [103, 62, 86], cost modeling involves two key pieces: output cardinality

estimation (i.e. the number of tuples each operator output) and relating cardinalities to a unit of

work such as I/O cost or CPU time. We find that existing cardinality estimation approaches are

ill-suited for the problems studied in InQP, especially for non-positive queries. So we focus on

the problem of cardinality estimation, and adopt the cost functions in conventional RDBMS cost

model [62, 86, 65] for the second factor.

Problem and Intuition

We emphasize that the problem of cardinality estimation for InQP is different from the ones in

existing work [103, 62] for either batch processing or incremental execution, because they mainly

17

consider the positive queries where new input data only produces new outputs but never removes

previous outputs. However, an important source of non-incrementable execution are operators that

output tuples which are later removed. Therefore, existing cardinality estimation solutions cannot

fully consider the effects of non-incrementable parts and fail to compute an accurate incrementabil-

ity. Anti-join, for example, is not a positive operator. R Anti-join S outputs tuples in R

that do not match any tuples in S. However, extra input tuples of S could delete prior joined tuples

because tuples in R that were unmatched before become matched.

The core of our solution is to distinguish the cardinalities of three categories of tuples: in-

serts, updates, and deletes. Specifically, updates are those tuples who change previously emitted

tuples. Note that we do not regard this as the primary contribution of this project, but our approach

does advance the state-of-the-art [103] in this area. We distinguish these three types of tuples’

cardinalites for three reasons.

First, three types of tuples usually have different maintenance costs. For example, if tuples are

materialized in a log structure (i.e., unsorted append-only array), inserts are much more efficient to

perform than deletes and updates. Distinguishing the cardinalities gives us a better cost estimation.

Conventional cost models do not distinguish types, as they typically focus on inserts.

Second, different types of inputs could have different probabilities to produce outputs. Con-

sider natural join as an example. If the insert tuples’ join keys are randomly distributed and delete

tuples are those who have been previously joined, then the expected cardinalities of their output

are different.

Third, operators in incremental executions are stateful, and the cardinality estimator is sup-

posed to take the statistics of states (e.g., the size of the hash tables in a hash join operator) into

consideration, and maintain these statistics during/after the estimation so following estimations

have accurate information. Distinguishing three types of tuples helps us maintain the statistics of

an operator’s state. For example, being able to tell whether the input tuples are inserts or updates

gives us a better estimation of the hash table size.

18

Operators

We use a volcano-style query execution model [37] and assume operators are pipelined such that

output tuples of operators are not materialized as intermediate results, but directly sent to their

parent operators. We support inserts, deletes, and updates for all operators in InQP including scan.

A delete is a tuple that has the same content (e.g. attributes and values) as their insert counterparts

with an additional tombstone bit indicating the delete. We represent an update as a delete plus an

insert tuple. We additionally include a bit in the delete tuple to show that it is the leading tuple of

an update.

For each operator, we first discuss its physical design that is borrowed from prior work [24],

and then present the cardinality estimation based on the physical choice. Note that we include

the physical designs of supported operators for completeness and do not perceive them as our

contribution. We represent insert, update, and delete cardinalities as a vector C = (CI ,CU ,CD).

We denote input’s and output’s cardinality vectors as CIN and COUT.

As with conventional cardinality estimation, we use statistical information to help estimate car-

dinalities. This includes select selectivity that models the probability that a tuple satisfies a certain

predicate, join selectivity factor [103] that models the probability that any two tuples from two

relations successfully join, and number of groups for aggregate operators. As in prior work on

estimating cardinalities for incremental execution [103], we use statistical information from previ-

ous executions as the estimation for upcoming query executions. We also perform an experimental

analysis in Section 3.4.4 to show how biased statistical information impacts the performance of

InQP.

Select and project: As select and project operators are stateless, the incremental approach effec-

tively has no difference from a batch execution. For a select operator insert and delete tuples only

produce insert and delete outputs correspondingly. However, an update tuples could emit delete

and/or insert tuples as a changed tuple may no longer satisfy the predicate (or vice-versa). For

its cardinality estimation, different types of tuples could have different selectivity values, which

highly depend on the application that generates the input data. Thus, instead of a single selectivity,

19

Selectivity
Matrix

Insert Delete Update

Insert 0.01 0.0 0.01

Delete 0.0 0.02 0.01

Update 0.0 0.0 0.02O
ut

pu
t O

pe
ra

tio
n

Input Operation

Figure 3.4: An example selectivity matrix.

we use a selectivity matrix S ∈ R3×3. Figure 3.4 shows an example, where columns represent the

input operation and rows represents the output operation. So a cell at S[Delete, Update] repre-

sents the probability of an update tuple generating a tuple of delete operation, which is 0.01 in our

example. We estimate the cardinality as COUT = S × CIN. Project operators do not change the

cardinality.

Sort and limit: Sort operators maintain a sorted array for all processed tuples emitted. When new

tuples arrive, we buffer them into a temporary array. If the sort operator needs to output an updated

sorted array, we sort the temporary array and merge it with the original sorted array. During the

merge, a delete tuple will remove the corresponding tuple in the original array, which also applies

for deletes generated by an update tuple. Before we output the new array as insert tuples, we

output the original array with all tuples as deletes to invalidate the prior output. Assuming that the

size of the original array is K, the size of new array is K + CIIN − CDIN. The output cardinality

(CIOUT,C
U
OUT,C

D
OUT) = (K + CIIN − CDIN, 0, K).

We only consider limit operators that have a sort as its child. A limit operator takes a parameter

N and outputs the first N tuples with respect to the order they arrive from its child sort operator.

Recall that the incremental execution of a sort operator first removes all prior output tuples and

then inserts newly sorted tuples. For an incremental execution of a limit operator, it outputs the

first N delete tuples arrived from its sort child to remove the prior output tuples. For the newly

inserted tuples, it outputs the first N .

Aggregate and distinct: We implement the aggregate operator using a hash-based aggregation and

20

support SUM, AVG, COUNT, MAX, and MIN aggregate operations. Since we regard an update

as a delete and an insert, we only discuss the case of processing insert/delete tuples. For each

input tuple, a hash aggregate operator identifies its group-by attributes and incorporates that tuple

into that group’s aggregated value. To maintain aggregate operators with deletes and updates, we

include a counter for each group to indicate how many tuples are aggregated [42]. We output an

insert for a group when that group is first created. If one group’s value is changed and its counter

is larger than zero, we output an update for this group. When the counter reaches zero, we remove

this group from the hash table and output an delete tuple. To support MAX and MIN with deletes

and updates, we materialize all prior input tuples for each group. When the tuple for the current

aggregate max/min value is deleted, we find the new max/min value in the materialized tuples.

Cardinality estimation on aggregate operators is based on our observation that the operator has

different behaviors when all groups are covered by at least one tuple or not. Specifically, when the

number of tuples is big enough that all groups have at least one tuple (i.e., “saturated”), new insert

tuples only produce update outputs. Otherwise it can output insert, delete, and update tuples.

Based on this intuition, we leverage statistics that estimate the total number of groups. This

can come from previous executions or statistical approaches [26]. We denote this number as M .

When we estimate cardinalities for each incremental execution, we also track the total number of

tuples of “net” input tuples as its state information. It represents the sum of input inserts minus

input deletes in all previous incremental estimations, which is denoted as N . The estimation of

output cardinality is divided into two cases:

• If N ≥ M , we consider each group has at least one tuple. So each input tuple, regardless of

its type, updates a group and thus emits an update tuple. So (CIOUT,C
U
OUT,

CDOUT) = (0,CIIN + CUIN + CDIN, 0).

• If N < M , each group has less than one tuple “on average”. We adopt a simple model that

each of N groups has one tuple, and the remaining groups contain no tuple at all. Thus, each

delete input tuple removes one group. So CDOUT = min(CDIN, N). Similarly, each insert tuple

goes to an empty group, and emit a new aggregation tuple, so CIOUT = min(CIIN,M − N).

21

Update tuples update existing non-empty groups, so CUOUT = min(CUIN, N).

We implement distinct operators using a hash table which uses the whole tuple as key and the

number of duplicated tuples as value. We estimate its cardinalities in a similar way to aggregate

operators.

Physical design of join operators: For equi-join we use a symmetric hash join [106], which

maintains two hash tables for input tuples from the left and right children. For each hash table, we

use the join key as the key and the input tuples as the value. A new tuple from one side updates

the corresponding hash table and probes the other one to produce output tuples. For non-equi-join,

we maintain two arrays that materialize input tuples from the left and right children. For one new

tuple from a child sub-tree, we update its corresponding array, join the new tuple with all tuples

in the other array, and produce output tuples. The types of the output tuples (e.g. insert, delete,

or update) depend on the types of input tuples and the semantics or join operators (e.g. inner or

outer), which we discuss next.

Inner-join, semi-join: We denote two left and right sub-relation cardinalities as CLIN and CRIN,

and assume that the sizes of “net” input tuples from previous incremental estimations for left

and right sub-relation are |L| and |R| respectively (e.g. number of tuples in a hash table or a

materialized array). |L| and |R| are state information and should be updated for each incremental

estimation. We first discuss inner-join, which emits all pairs of input tuples from left and right

sub-relation that meet the join condition. Without loss of generality, we discuss the scenario that

input comes from left. In contrast to prior approach that uses a single join selectivity factor to

estimate select-project-join queries [103], we use a matrix of join selectivity factors SL ∈ R3. A

selectivity factor in SL represents the probability of an input tuple with a specific operation (e.g.

update) successfully joining one tuple from R and producing a tuple with a specific operation

(e.g. insert). Given that we have |R| tuples for right sub-relation, we estimate the cardinality as

CLOUT = SL × CLIN × |R|.

Semi-join is different from inner-join in the way that it only outputs tuples from the left sub-

relation that match with at least a tuple from the right sub-relation. The cardinality of this operator

22

is estimated similarly as inner-join.

Outer-join and anti-join: Estimating cardinality of outer-join and anti-join output is more chal-

lenging. One fundamental difference between outer/anti-join from inner/semi-join is they output

tuples that do not meet the join condition. We use left outer-join as an example, and right/full

outer-join or anti-join can be handled similarly. Left outer-join, besides the matched tuples, also

output tuples from the left sub-relation that are not matched. We denote them as unmatched tuples.

Estimating the cardinality of matched tuples is similar to inner/semi-join, and here we focus on the

cardinality of unmatched tuples. We discuss how to estimate cardinality when inputs come from

the left and right sub-relation:

• If input comes from the left side, we need to estimate the probability of one input tuple not

matching all tuples of the right sub-relation. Assume that the probability that an insert is matched

with one right sub-relation tuple is pl. Then the probability of an inserted left tuple not matching

with any tuples in right sub-relation is (1− pl)|R| where |R| is the size of the right sub-relation.

Thus, the cardinality of unmatched inserts is CILIN × (1− pl)|R|. The cardinality of unmatched

deletes is the same, and an update can be treated as an insert plus a delete.

• If input comes from the right side, it could turn a left tuple from matched to unmatched or vice

versa. Assume a right tuple is an insert, it changes a left tuple from unmatched to matched if

the left one has no match so far, and the two tuples match together. Assume the probability of a

right insert matching with one left tuple is pr and there are |L| tuples for left sub-relation. So the

number of tuples in L that match with this insert tuple is |L| × pr. Among these matched tuples

in L, we further consider whether they do not have matches before (and thus the current insert

tuple is their first match). Recall that the probability of one tuple on the left side not having any

matches for R is (1− pl)|R|. So among |L| × pr, the number of tuples that do no have matches

before and we need to delete is |L| × pr × (1− pl)|R|. For the deletes from right, they may flip

left tuples from matched to unmatched status, and thus emit insert outputs for these unmatched

tuples. The cardinality of such inserts can be estimated similarly, and an update can be treated

as an insert plus a delete.

23

Algorithm 1: Computing CT (P) and CF (P).

1 (K1, K2, · · · , KQ)← (0, 0, · · · , 0)

2 for m← 1 to M do
3 IGlobal ← m

M
4 PathSet← ∅
5 for i← 1 to Q do
6 if IGlobal −

Ki
Pi
≥ 1

Pi
then

7 Add path i to PathSet
8 end
9 for i ∈ PathSet do

10 Ki ← Ki + 1
11 end
12 cost← Estimated cost of a simulated execution
13 that involves flushing buffers of paths in PathSet
14 CT (P)← CT (P) + cost
15 if IGlobal = 100% then
16 CF (P)← cost

17 end

3.2.2 Computing Incrementability with a Cost Model

We now discuss how to utilize the cost model to compute incrementability. Recall that given two

pace configurations P1 and P2, INC(P1, P2) =
CF (P1)−CF (P2)
CT (P2)−CT (P1)

. So we focus on how to estimate

CF (P) and CT (P) for a given pace configuration P . Cost estimation for a pace configuration is

challenging for two primary reasons. First, the paces of a parent query path and its child query

path may be different. Here, the parent query path needs to know the correct input cardinality from

child query path to estimate the cost of its incremental executions. Second, a join operator may

have two input query paths with different paces. So the join operator will interleave the incremental

executions of different input query paths. One incremental execution of one query path impacts

the state information for the other query path. The challenge here is how to estimate the cost

for interleaved incremental executions of input query paths. We approach the two challenges by

simulating the process of incremental executions based on a pace configuration.

We first discuss how to estimate the cost for an incremental execution of a query path. Recall

that an incremental execution of a query path takes all input buffered tuples and flush them all the

24

way to the end of this query path. Here, we use our cardinality estimation methods to recursively

compute the cardinalities of each operator in this query path for an incremental execution and use

cost functions to convert the cardinalities into cost. After, we also update the state information for

each operator based on their input cardinality (e.g. updating the number of input tuples for a join

operator).

Given that we know how to estimate the cost for a single query path, we now discuss computing

CT (P) and CF (P) for the pace configuration P . Since we assume base relations have steady arrival

rates, we use a global indicator IGlobal ∈ [0, 1] to represent the data arrival progress of all input

data. For example, IGlobal = 50% means 50% of total data has arrived. Assuming that P has

Q query paths, we additionally include an array K = (K1, K2, · · · , KQ) to record how many

times each query path has simulated flushing its input buffer. Algorithm 1 shows the algorithm of

computing CT (P) and CF (P). We simulate the continuous data arrival process in a discrete way,

which includes M steps, where each step represents 1
M of total data. Here, M is the maximally

allowed pace. After m steps, the current progress IGlobal is m
M . For each simulation step, we need

to find query paths that should be triggered to flush their input buffers. Given a query path with

pace Pi, it flushes its buffer if at least another 1
Pi

of new data arrives since its last flush (i.e. Ki
Pi

),

that is, IGlobal −
Ki
Pi
≥ 1

Pi
. After we find the set of paths (i.e. PathSet), we estimate the cost of a

simulated execution that involves flushing buffers for query paths in PathSet. We add this cost to

CT (P). When IGlobal reaches 100%, all query paths flush the buffers and the cost is CF (P).

Complexity analysis: We note that each operator has a cost estimation function. We use the num-

ber of cost functions being invoked to quantify the complexity. The worst case of our simulation

is all paces for a pace configuration are M , the maximally allowed pace. This means for each

simulation step, we need to invoke cost functions for all query paths and thus all operators. As-

suming the number of operators in a query is N . Note that the number of simulation steps is M .

So in the worst case, the simulation algorithm needs to run O(N ×M) numbers of cost estimation

functions.

25

3.3 Incrementability-aware Query Processing

In this section, we discuss how to utilize incrementability to find a pace configuration for a query

to make a better trade-off between the final work and the total work than the approach of assigning

a uniform pace for the whole query. Specifically, given the same target final work InQP uses less

total work. The basic idea is to execute query paths with higher incrementability more eagerly

(i.e., higher pace) and query paths with lower incrementability more lazily (i.e., smaller pace).

We consider the following optimization problem: minimizing the total work given a final work

constraint.

3.3.1 Problem Formalization

We define the final work constraint L as the ratio between the final work users want to achieve and

the final work of executing the query in one batch, where L ∈ [0, 1]. Consider an example of a

final work constraint L = 0.3. The pace configuration for batch processing is P1. If we increase

pace configuration of P1, we decrease final work. When we reach 30% of the final work of P1, we

meet the constraint L = 0.3. The problem is formally stated as:

minimize
P

CT (P)

subject to CF (P) ≤ L× CF (P1)

Pi ≤ Pj , ∀j ∈ children(i)

The constant L is specified by the user, which indicates the maximally allowed final work. Query

path j is the direct child of query path i: its output tuples are query path i’s input. We specifically

require Pi ≤ Pj so query path i always has the necessary input data to process.

3.3.2 Greedy Algorithm

We can solve the optimization problem by enumerating all possible pace configurations and find the

pace configuration that satisfies the final work constraint and has the lowest total work. However,
26

Algorithm 2: Greedy algorithm of selecting pace configuration for query paths by mini-
mizing total work with a final work constraint L.

1 P ← P1
2 while true do
3 i← arg max

i:Pi<Pj ,∀j∈children(i)
∂i(P)

4 Pnew ← P[i\Pi+1]

5 if CF (Pnew) ≤ L× CF (P1) then
6 return Pnew
7 if P = P∞ or ∂i(P) < 0 then
8 return P

9 P ← Pnew
10 end

this approach has exponential complexity and is very time-consuming as shown in our experiments

(Section 3.4.6). Instead, we design a greedy algorithm that leverages incrementability to reduce

the search space and still generates a query plan that has low total work.

The greedy algorithm starts with a pace configuration P1, where total work is the smallest.

When we increase the pace configuration P , we increase total work, but decrease final work. The

algorithm stops when we first meet the final work constraint. The intuition of our algorithm is that

given we need to meet the final work constraint L × CF (P1), we want to increase pace for the

query path that decreases the most final work per unit of total work increased, so that we can best

utilize the additional total work.

We find that when we increase a pace configuration for a query from P1 to P2, the ratio between

the decreased final work (i.e. CF (P1) − CF (P2)) and the increased total work (i.e. CT (P2) −

CT (P1)) is the definition of incrementability. Intuitively we should always increase the pace for

the query path with the highest incrementability, so query paths with higher incrementability are

executed more eagerly, while query paths with lower incrementability are executed more lazily. We

notice that as we increase the pace for a query path, its incrementability changes. Thus, we increase

at the minimum granularity and recompute the incrementability after each step. We formalize this

approach as follows. For a pace configuration P , we denote its marginal incrementability at query

27

path i as

∂i(P) = INC(P[i\Pi+1], P)

where P[i\c] represents another pace configuration by replacing the i-th query path’s pace by c. In

short, ∂i(P) represents the incrementability of increasing i-th query path’s pace by 1. We note that

if we increase a pace configuration from P1 to P2 and both final work and total work can increase

(i.e. non-incrementable case) we should never increase the pace no matter whether we currently

meet the final work constraint. This mainly happens when a pace configuration has very large

paces. We also set a maximum pace configuration P∞ = (M,M,M, . . . ,M), where M is the

maximally allowed pace for each query path.

Our algorithm is illustrated in Algorithm 2. We start with the initial pace configuration P1. We

search for the query path i that gives the highest marginal incrementability and is also feasible to

increase (i.e. strictly less than all children paces). At each search step, we increase it by 1 and

terminate when one of the three conditions is met: 1) the increment first meets the constraint; 2)

the incrementability is less than 0 (i.e. non-incrementable); 3) we reach P∞.

Complexity analysis: Assuming that we have Q query paths, for each step we need to compute

the incrementability for all of them. Combined with the complexity of computing incrementability,

the complexity for each step isO(Q×N×M). This greedy algorithm runs at mostQ×M steps, so

in total the greedy algorithm needs to run O(Q2 ×N ×M2) number of cost estimation functions.

We test its overhead in Section 3.4.6.

Putting everything together: We use the example in Figure 3.2 to explain the optimization of

InQP. Since this example has three query paths, we use a pace configuration P = (PA, PB , PC).

The optimization starts with P1 and we consider increasing pace for one query path from 1 to 2.

Specifically, we have three possible configurations (1, 1, 2), (1, 2, 1), and (2, 1, 1). Recall that we

require the pace of a parent query path is no larger than the pace of its child query path. Therefore,

(1, 2, 1) is not a valid pace configuration since query path B should not have larger pace than query

path A. We only compare the incrementability of (1, 1, 2) and (2, 1, 1) with respect to (1, 1, 1).

28

Recall that given two pace configurations P1 and P2, their incrementability is INC(P1, P2) =

CF (P1)−CF (P2)
CT (P2)−CT (P1)

. We use Algorithm 1 to compute CT (P) and CF (P). It simulates the process

of executing the query using pace configuration P . Consider P = (2, 1, 1) as an example. We

trigger a simulated execution of query path A when 50% of data arrives because its pace is 2. The

simulated execution uses our cost model to compute the cost of processing 50% of data for path

A. When 100% of data arrives, we trigger another execution for all paths. After we compute the

values of incrementability for all paths, we choose to increase the pace of the path with the highest

incrementability. We repeat this process until we meet the final work constraint.

3.3.3 Applicability of InQP

InQP can be applied to systems that support incremental view maintenance, such as Spark [3],

Flink [17], and a PostgreSQL modified for incremental executions [93]. For systems that only

support insert tuples (e.g. Spark), operators need to be modified to support deletes and updates

(Section 3.2.1). In addition, to control the execution frequencies of different query paths the system

needs a mechanism to pause and start the execution of a query path. Recall that we break a query

plan tree into query paths at the blocking operators. Therefore, a query path either starts at a scan

or a blocking operator. If we choose to pause a query path, a scan operator buffers input tuples,

and a blocking operator processes the input tuples, but delays pushing changes to the query path.

To start the execution of a query path, we include a variable into the query path’s starting operator

(i.e. a scan or blocking operator), which indicates whether this query path is executable or not.

InQP is responsible for setting this variable to control which query paths to execute or delay.

3.4 Experiments

Our experimental study addresses the following questions:

• Compared to an incrementability-oblivious approach, which uses a uniform pace for a single

query, and an approach that processes input tuples for leaf nodes at different paces [48], how

29

much CPU consumption does InQP reduce given the similar query latency goal? (Section 3.4.3)

• How do the accuracy of our cost model and bursty workloads impact InQP’s performance?

(Section 3.4.4)

• What is the accuracy of our cardinality estimation compared to PostgreSQL? (Section 3.4.5)

• What are the overhead and benefits of the greedy algorithm of InQP? (Section 3.4.6)

We evaluate InQP in one server with 196 GB of main memory and two Intel Xeon Silver 4116

processors, each with 12 physical cores. For all experiments, we use 20 physical cores and the rest

for the OS (Ubuntu 18.04).

3.4.1 Prototype Implementation

We implement InQP in Spark 2.4.0 [3], and extend Structured Streaming to support deletes and

updates based on existing IVM algorithms [24] and support incremental execution based on a pace

configuration. We reduce the cost of starting Spark jobs for each incremental execution based on

techniques in Venkataraman et al. [102]. We use a Kafka [1] cluster on a different machine with

the same hardware configuration as the data source of Spark queries.

Users submit a SQL query to Spark and InQP maintains the query results with a stream of data

loaded from Kafka. For our system, users specify a final work constraint that indicates the percent-

age of final work to reduce to compared to the final work of executing the query in one batch, and

InQP finds a pace configuration to minimize total work. For example, a constraint of 0.02 means

users want to reduce the final work to 2% of batch processing’s final work. This optimization

explores the trade-off between resource consumption and query latency. In this experiment, we

use additional CPU time to represent the CPU consumption invested into incremental executions.

It is defined as the total query processing time for all incremental executions minus the time of

executing the query in one batch. A query’s latency is defined as the time of the final incremental

execution or the processing time if the query is executed in one batch.

We use the Spark SQL optimizer to generate a physical query plan for the submitted query and

30

decompose the query plan into query paths. After, InQP determines the pace configuration of this

query plan for computing the query result with respect to the performance constraint.

3.4.2 Experiment Setup

We use the TPC-H benchmark in our experiments, and our prototype supports all 22 TPC-H

queries, where 10 of them are not fully incrementable. We additionally write 2 queries based on

the TPC-H schema to test partially incrementable parts caused by individual operators including

aggregate operators and outer-join operators. The 2 queries are shown in the following:

Q_AggJoin: SELECT AVG(avg_price)

FROM customer c,

(SELECT o_custkey,

AVG(o_totalprice) avg_price

FROM orders GROUP BY o_custkey) agg_o

WHERE c.c_custkey = agg_o.o_custkey

Q_Outer: SELECT COUNT(*) FROM part

LEFT JOIN partsupp on p_partkey = ps_partkey

JOIN lineitem on p_partkey = l_partkey

JOIN orders on l_orderkey = o_orderkey

where Q AggJoin joins an aggregate operator with a base table, and Q Outer is a left-outer-join

with two equal-joins. We preload the full dataset into Kafka, but let InQP pull data from Kafka

at a data rate of 1GB/min. We generate datasets that are large enough to show the performance

impact of partially-incrementable parts. Using a single large scale factor results in some queries

running out of memory on the test machine. The reason is that the table Lineitem in TPC-H

occupies more than 70% of the data. Queries that involve Lineitem have significantly larger

data to process than queries that do not involve Lineitem. To make sure that every query has

enough data and does not run out of memory, we generate two datasets: scale factor 100 and 10,

where the former is used for queries that do not access Lineitem (i.e. Q2, Q11, Q13, Q16, Q22,

Q AggJoin), and the latter is used for the rest queries. While we only show insert-only workloads,

31

operators within a query plan can generate deletes and updates. We also evaluated a workload

with mixed inserts and deletes and find similar performance to the insert-only workload: InQP has

a much lower resource consumption and similar latency compared to the baselines. To simulate

prior executions, we calibrate our cost model statistics with several warm up runs. We show how

the quality of statistical information impacts InQP in Section 3.4.4. We set the max pace for a

query path to 100. In our experiments, we run each test three times and report the average.

We compare InQP with an incrementability-oblivious baseline (IncObv), which is a mini-batch

approach in Spark that uses a single pace value for all query paths of a query. For this approach,

we search over uniform paces using InQP’s cost model to find a pace configuration we estimate

to meet the performance constraint. We also evaluated against a strategy with a hand-tuned single

pace, where the pace is the inverse of the final work constraint (e.g. for constraint 0.02, we use

pace 50). We test 5 constraints (0.5, 0.2, 0.1, 0.05, and 0.02) for TPC-H queries and find that the

hand-tuned approach meets the target query latency constraint in only 8% of the time, compared

to 64% for InQP and 38% for IncObv. Additionally, the trade-off between latency and resource

consumption between the hand-tuned approach and IncObv is the similar as both use the a uniform

pace configuration. Therefore, in our experiments we only include the results of IncObv. We note

that it is possible the cost model estimates that some queries cannot meet the final work constraint

0.02. In this case, we do not report the results of final work constraint 0.02 and use constraint 0.05

instead. These queries include Q17, Q AggJoin, and Q Outer.

3.4.3 Low Resource Consumption with Similar Latency

In this subsection, we examine how much InQP lowers resource consumption compared with sim-

ilar query latencies for IncObv. We use final work constraints (1.0, 0.2, 0.05, 0.02), and minimize

the additional CPU time. Recall that final work constraint is the percentage of final work we want

to reduce to compared to the final work of executing the query in one batch. Inspired by prior

work [48], we consider an alternative approach, Leaf, where query paths are made from the leaf

nodes (scans) to the root node. As the original paper considers a different optimization (i.e. min-

32

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19 Q2 Q11 Q13 Q15 Q16 Q17 Q18 Q20 Q21 Q22 AggJoin
Outer

0

50

100

150

200

A
dd

iti
on

al
 C

PU
 ti

m
e

(s)

4602s 4583s
Fully Incrementable Queries Partially Incrementable QueriesIncObv

Leaf
InQP

(a) Additional CPU time for all queries with a fixed final work constraint

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19 Q2 Q11 Q13 Q15 Q16 Q17 Q18 Q20 Q21 Q22 AggJoin
Outer

0.0
0.1
0.2
0.3
0.4
0.5

La
te

nc
y

re
la

tiv
e

 to
 b

at
ch

 p
ro

ce
ss

in
g 2.3 2.4

Fully Incrementable Queries Partially Incrementable Queries
IncObv
Leaf
InQP

(b) Query latency for all queries with a fixed final work constraint

Figure 3.5: Additional CPU time and query latency for a final work constraint. It is set to 0.02 for
a query if the cost model finds the query can meet the constraint, otherwise we use constraint 0.05
(i.e. Q17, Q AggJoin, and Q Outer).

IncObv (1)
IncObv (0.2)

IncObv (0.05)
IncObv (0.02)

Leaf (1)
Leaf (0.2)

Leaf (0.05)
Leaf (0.02)

InQP (1)
InQP (0.2)

InQP (0.05)
InQP (0.02)

0 30 60 90
Additional CPU time (s)

0

50

100

150

La
te

nc
y

(s)

Q2

0 15 30 45 60
Additional CPU time (s)

0

25

50

75

100

La
te

nc
y

(s)

Q11

0 60 120 180
Additional CPU time (s)

0

100

200

La
te

nc
y

(s)

Q13

100 102 104

Additional CPU time (s)
100

101

102

La
te

nc
y

(s)

Q15

0 50 100 150
Additional CPU time (s)

0

50

100

La
te

nc
y

(s)

Q17

0 20 40 60 80
Additional CPU time (s)

0

50

100

La
te

nc
y

(s)

Q22

0 50 100 150 200
Additional CPU time (s)

0

25

50

75

100

La
te

nc
y

(s)

Q_AggJoin

0 10 20 30 40
Additional CPU time (s)

0

20

40

60

80

La
te

nc
y

(s)

Q_Outer

Figure 3.6: Trade-off between resource consumption and query latency under different final work
constraints.

imizing the work to refresh a stale view), Leaf uses InQP’s cost model and greedy algorithm to

find a pace configuration to minimize total work and satisfy a final work constraint. We discuss

the difference between InQP and this work in the related work.

We test all 24 queries, and report additional CPU time and the ratio of query latency to the

latency of executing a query in a batch for a fixed final work constraint 0.02. If the cost models

find it is impossible to meet this constraint, we use the constraint of 0.05, which occurs for Q17,

33

Q AggJoin and Q Outer. Figure 3.5 shows the results of all 24 queries. Figure 3.5a shows that

InQP has much lower additional CPU time and similar query latency compared to IncObv and

Leaf for not-fully incrementable queries (right of the vertical dashed line). Specifically, InQP uses

as low as 1.5% of additional CPU time compared to IncObv and Leaf for the same final work

constraint (i.e. Q15). For fully-incrementable queries (left of the vertical dashed line), InQP has a

similar additional CPU time and query latency to IncObv and Leaf. We note that Leaf has similar

additional CPU time to InQP when we test Q Outer. The partially incrementable parts for Q Outer

come from its left-outer-join operator. To reduce the cost of partially incrementable parts, both

InQP and Leaf consider flushing tuples for base relations at different paces. Therefore, they have

similar pace configurations for flushing input tuples of base relations and have similar additional

CPU time.

We report additional CPU time and query latency with different final work constraints, which

are in Figure 3.6. For each final work constraint, we compare their additional CPU time and query

latency. For the same final work constraint we use the same point shape for all approaches, which

is highlighted in the legend. For the same shape note that InQP has similar latency but with much

lower additional CPU time. If a query cannot meet the final query constraint based on the cost

model, we do not show its results. Here, we see that InQP uses much less resource consumption

with a similar query latency compared to IncObv and Leaf, especially when the constraint is low

(e.g. 0.05 or 0.02). InQP makes a better trade-off for these queries because we selectively increase

the pace of query path with higher incrementability. Consider Q17 as an example, it includes an

aggregate operator that joins with two relations (i.e. Lineitem and Part). When aggregated

values change, it needs to output the new values and delete the old ones. The tuples inserted, but

deleted later, need to join with Lineitem and Part, but do not contribute to the final query

result. InQP delays outputting the updated values for the aggregate operator to reduce additional

CPU time, and eagerly executes other operators to meet the final work constraint.

In addition, we find in Q15 IncObv and Leaf have a higher query latency when we reduce the

final work constraint. Q15 has two aggregate operators, where the parent aggregate operator is a

34

max without group-by and the child aggregate operator is a sum with a group-by statement. So the

child aggregate operator sum will update the sum value per group and the max value in the parent

max operator. In this case, we need to sort all input values for the max operator to find the new

max value. When we set a lower final work constraint, the cost model tends to increase the pace

(i.e. higher number of incremental executions), which increases the chance of updating the max

value. So IncObv has higher query latency when the constraint is low. While Leaf is able to tune

the frequencies of flushing tuples for base relations, it cannot delay the incremental executions for

aggregate operators, which makes it has similar performance to IncObv. Specifically, the case of

updating the max value of the max operator happens when we set the constraint to 0.05 and 0.02.

0.2 0.05 0.02
Final work constraint

0

2

4

6

8

Re
du

ce
d

la
te

nc
y

pe
r

 u
ni

t o
f a

dd
iti

on
al

 C
PU

 ti
m

e

IncObv
Leaf
InQP

Figure 3.7: Reduced latency per unit
of additional CPU time.

0 120 240 360 480 600
Execution time (s)

0

20

40

60

CP
U

Us
ag

e
(%

) IncObv
Leaf

InQP

Figure 3.8: CPU usage trace
(Q17, constraint = 0.05).

To highlight the cost-effectiveness of InQP, we report the ratio between the reduced query

latency compared to batch processing and the additional CPU time. The higher the ratio is, the

more latency we reduce per unit of additional CPU time we invest. Figure 3.7 shows the average

ratio of all queries in Figure 3.6 by constraint. This figure shows InQP is more thrifty at utilizing

computing resources to reduce query latency, especially when the final work constraint is larger.

An interesting question to explore is how systems could expose such information to users, so they

can make decisions about the trade-off—especially in pay-per-use environments.

We also report the trace of CPU usage during query processing to show how InQP reduces

computing resources with similar query latency to IncObv and Leaf. We report the average CPU

usage every 60s for Q17 with the final work constraint as 0.05 in Figure 3.8. Q17 uses the 10GB

dataset and the whole data loading process takes 600 seconds (data rate of 1GB/min). Figure 3.8
35

IncObv InQP

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0
20
40
60
80

100
A

dd
iti

on
al

 C
PU

 ti
m

e
(s) Q2 (Additional CPU time)

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0
3
6
9

12
15

La
te

nc
y

(s)

Q2 (Latency)

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0

50

100

150

200

A
dd

iti
on

al
 C

PU
 ti

m
e

(s) Q17 (Additional CPU time)

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0
3
6
9

12
15

La
te

nc
y

(s)

Q17 (Latency)

Figure 3.9: Performance impact of biased statistical information.

1 2 3 4 5
Ratio between spike rate and steady rate

0

50

100

150

200

A
dd

iti
on

al
 C

PU
 ti

m
e

(s) Spike in the middle (Additional CPU time)

1 2 3 4 5
Ratio between spike rate and steady rate

0

5

10
La

te
nc

y
(s)

Spike in the middle (Latency)

1 2 3 4 5
Ratio between spike rate and steady rate

0

50

100

150

200

A
dd

iti
on

al
 C

PU
 ti

m
e

(s) Spike at the end (Additional CPU time)

1 2 3 4 5
Ratio between spike rate and steady rate

0

10

20

30

La
te

nc
y

(s)

Spike at the end (Latency)

Figure 3.10: Performance impact of a bursty arrival rate (Q17).

shows that InQP has lower CPU consumption than IncObv and Leaf, which reduces total time of

query processing. We also trace, but do not show, the I/O operations for Q17 and find that InQP

has 47% and 53% less I/O operations compared to IncObv and Leaf respectively.

3.4.4 Performance Impact of the Accuracy of Cost Model and Bursty Workloads

InQP utilizes statistical information of previous executions to build a cost model and uses the

cost model to compute incrementability to decide the pace configuration. Examples of collected

statistical information include selectivity for joins and select operators, and number of groups for

aggregate operators. In this subsection, we first test the performance impact of biased statistical

information on InQP and IncObv. Note that the performance of IncObv is affected by the statistical

information because we use the cost model to determine its pace configuration. After, we test how

bursty workloads impact the performance of InQP. We use Q2 with the final work constraint 0.02,

and Q17 with the constraint 0.05.

For the first experiment, we apply a bias ratio to the statistical information we collect. The bias

ratio represents the ratio between the biased statistical information and the one we collect. For

example, if the collected selectivity is 0.1 and the bias ratio is 0.2, the biased selectivity is 0.02.

We consider two cases: overestimation and underestimation. For the first one, we vary the bias

36

ratio from 2.0 to 5.0 with an interval 1.0. For a given ratio R, we allow each operator chooses a

random ratio between [1.0, R]. For the underestimation case, we use the ratio {0.5, 0.33, 0.25, 0.2}

to represent that we underestimate by a factor of 2, 3, 4, 5 respectively. For each given bias ratio,

we test 10 times and report the average, minimum, and maximum additional CPU time and query

latency.

We show the results of Q2 and Q17 in Figure 3.9. We see that for Q2, with the value of bias

ratio increasing InQP has higher resource consumption, but lower query latency. The reason is that

high bias ratio makes the cost model schedule incremental executions more eagerly. For InQP, it

needs to schedule the non-incrementable parts more frequently to meet the final work constraint,

which increases the additional CPU time of executing the query and decreases the query latency.

However, in an extreme case (i.e. bias ratio = 5.0) InQP has lower additional CPU time and

similar query latency compared to IncObv. For Q17, we have similar observation to Q2. When

we overestimate, the additional CPU time increases and and the query latency decreases for both

approaches. The average additional CPU time of InQP is lower than IncObv when bias ratio is

no larger than 4.0. When the bias ratio reaches 5.0, both approaches have similar additional CPU

time. These experiments show that biased statistical information could increase additional CPU

time of InQP, and makes the performance of InQP similar to the performance of IncObv.

We now report the performance impact of bursty workloads. We decide the paces for InQP and

IncObv assuming a steady rate of 1GB/min. We generate bursty workloads by introducing a spike

in the data arrival. We vary the ratio between the spike rate and steady rate from 1 to 5. Note that

we load the same amount of data, so when we increase the spike rate, data rates of other periods

drop. The whole data loading process takes 10 mins. We use Q17 and set the time span of the

spike rate to 1 min. We test two cases where the spike is in the middle or at the end (i.e. the last

min) of the data loading processing.

Figure 3.10 shows the test results. We see that the spike in the middle does not change ad-

ditional CPU time of InQP, but slightly decreases its latency (i.e. the two leftmost figures in

Figure 3.10). On the other hand, both additional CPU time and latency drop for IncObv. The rea-

37

Q2 Q11 Q13 Q15 Q16 Q17 Q18 Q20 Q21 Q22
InQP -15.5% -28.6% 41.7% -9.1% -36.8% 7.4% -0.1% -3.4% -2.0% 2.9%

PostgreSQL -53.2% -13.9% -89.2% -85.0% -71.6% -45.3% -7.5% -99.7% -45.1% -85.1%

Table 3.1: Accuracy of cardinality estimation of InQP and PostgreSQL for incremental
executions.

son for both approaches having lower latency is that when the spike rate increases in the middle,

the data rate at the end drops. Compared to IncObv, InQP has higher latency than IncObv because

it delays some partially incrementable work to the end. Additional CPU time drops for IncObv

because with the spike rate increasing, more data are processed in one batch for the spike and

thus IncObv does less incremental work. This reduces the cost of partially incrementable parts of

IncObv. Nevertheless, InQP has a much lower additional CPU time than IncObv. If the spike is at

the end, the query latency for both InQP and IncObv increases because they do not expect a high

arrival rate in the last minute (i.e. the two rightmost figures in Figure 3.10). We see that InQP has

a lower latency compared to IncObv since InQP executes its incrementable parts eagerly and has

lower work for the last mini-batch, which makes it less sensitive to the higher rate.

3.4.5 Cardinality Estimation Accuracy Compared to PostgreSQL

We evaluate the accuracy of our cardinality estimation for incremental executions and compare

it with PostgreSQL’s estimation. Note that we choose PostgreSQL because it supports a wide

range of complex queries and existing cardinality estimation for incremental executions [103] only

supports select-project-join queries. In InQP, we need to support complex queries such as the

query in Figure 3.2 that involves an aggregate operator in the query plan tree. For PostgreSQL,

we obtain the estimated cardinality for each incremental execution in three steps: 1) we first use

its batch-based cost model to estimate the cardinality for existing data; 2) we then insert input data

for the incremental execution into the base relations and obtain the cardinality for new data; 3)

finally, we use the difference of two estimated cardinalities as the cardinality for this incremental

execution. We use a pace of 100 incremental executions and test the partially incrementable queries

in TPC-H. We use our best effort to adjust the Spark SQL query plan to make sure that a query

38

20 40 60 80 100
Maximally allowed pace

0.0

0.5

1.0
Pl

an
ni

ng
 ti

m
e

(s) 17s 821s 3.8h 26.8h 84.7h

Brute-Force
Greedy

Figure 3.11: Planning time.

Additional CPU time Latency
0

50

100

150

Ti
m

e
(s)

IncObv
Brute-Force
Sample
Greedy

Figure 3.12: Q17 Performance

running on Spark and PostgreSQL has exactly the same physical plan for this experiment. Only

Q20 has a different plan on the two systems because PostgreSQL enforces the index scan for Q20,

but Spark only uses sequential scan. We collect the ground truth by running queries on Spark.

We compute the accuracy of cardinality estimation using the following formula: Accuracy =

Estimated−Ground Truth
Ground Truth

. If the value is 0, it means the estimation is the same as the ground

truth. If the value is positive (i.e. estimated cardinality > ground truth), it represents the case of

overestimation. On the other hand, a negative value represents the case of underestimation. We

report the average accuracy of all 100 incremental executions. Table 3.1 shows that InQP has a

more accurate estimation compared to PostgreSQL in all queries except Q11, and in some queries

(e.g. Q21 and Q22) utilizing cardinality estimation of PostgreSQL could be very inaccurate.

3.4.6 Overhead and Benefits of InQP’s Greedy Algorithm

We evaluate the planning time of InQP’s greedy algorithm (Greedy) and compare it with a brute-

force method (BruteForce) that enumerates all possible pace configurations to find a plan that

has the lowest total work while meeting the final work constraint. We vary the maximally allowed

pace from 20 to 100 and report the planning time. We use final work constraint 0.01 to force

Greedy to take the maximum number of search steps, as Greedy takes less planning time with a

larger constraint. Figure 3.11 shows Greedy has much lower planning time than Brute-Force for

Q17 as Greedy leverages the key metric incrementability to largely prune the search space. We test

all queries and find the maximum planning time is 640ms and the 80th percentile is 340ms.

39

We test query latency and additional CPU time of the generated query plan for the above

methods, and include a sampling method (Sample) that randomly samples pace configurations

and selects the one with the lowest total work while meeting the final work constraint. We allow

Sample to run the same planning time as Greedy. We test Q17 with final work constraint 0.05 for

10 times, and report the mean, min, and max query latency and additional CPU time. Figure 3.12

shows that Greedy has similar performance to the optimal plan generated by Brute-Force, and

that the additional CPU time of Sample varies. While Sample can find a plan that has similar

performance to Brute-Force, it has much larger additional CPU time in the average and worst case

compared to Greedy and Brute-Force. The two experiments show that our greedy algorithm can

find a good plan with limited planning time.

3.5 Summary

We present InQP as a new query processing method that models how amenable a query is for

incremental executions and uses fine-grained control flow to schedule more incrementable parts

(e.g. dataflow paths) eagerly for efficient query execution. We propose a metric, incrementabil-

ity, to quantify the cost-effectiveness of incremental executions, a cost model for computing in-

crementability, and a greedy solution for minimizing additional work for incremental execution

subject to a final work goal (i.e. latency). The experiments show that compared to a baseline using

coarse-grained scheduling (via mini-batch size), InQP reduces final work up to 3.3x per unit of

additional work.

40

CHAPTER 4

RESOURCE-EFFICIENT SHARED QUERY EXECUTION

In addition to reducing CPU consumption for a single query, TQP considers optimizing multiple

queries together and sharing their common work to further reduce CPU consumption. Prior studies

in shared query execution [34, 47, 67] or multi-query optimization (MQO) [35, 85, 50] create a

shared plan to reduce CPU consumption by eliminating the redundant work across queries when

multiple queries intend to access the same data or perform the same job. However, sharing is not

always beneficial in TQP.

As shown in InQP, there exists a trade-off between resource consumption and latency for query-

ing a dataset under changes. Consider a regular query over a dynamic dataset, such as a regular

ETL job or tumbling window over high ingest data, where the trigger condition that starts one or

more queries is known and frequent. Waiting until all data is ready before starting the query (i.e.,

batch execution) offers low resource consumption, but high latency. If the user demands a lower

latency, we can start processing data early before the trigger condition and incrementally maintain

the query result. While this reduces the query latency (being the time between when the last record

for the query arrrives and when the query result is returned), it may increase the total execution

time and CPU consumption for certain queries [95, 28, 48, 20]. This is because tuples output

in earlier executions are removed by later executions. These queries are partially incrementable

queries as shown in InQP (as opposed to fully incrementable queries, which do not consume ad-

ditional CPU cycles on eager incremental execution). Generally, if we increase the frequency or

eagerness of incremental execution of a partially incrementable query, its query latency decreases

but its resource consumption increases. Prior work demonstrates methods for tuning the eagerness

to meet latency performance goals [95, 48].

In this context, when multiple queries have different latency goals, the shared execution may

not be optimal. The main reason is that the shared plan needs to honor the tightest (i.e. lowest) la-

tency goal and execute more frequently, potentially consuming more resources. The extra resource

consumption may even offset the benefit of sharing. While recent research [59, 54, 85] judiciously
41

𝜎

Part

⋈

Lineitem

𝛾𝑠𝑢𝑚

QB: low latency goal

𝛾𝑎𝑣𝑔

𝐵

⋈
PartSupp

⋈

Lineitem

𝛾𝑠𝑢𝑚

QAB: Shared plan of QA and QB

𝛾𝑎𝑣𝑔

⋈
PartSupp

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1

𝑆𝑢𝑏𝑝𝑙𝑎𝑛3

𝛾𝑠𝑢𝑚

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2

𝜎
Part

𝐵
Part

⋈

Lineitem

𝛾𝑠𝑢𝑚

𝛾𝑠𝑢𝑚

QA: high latency goal

Π
Π

Figure 4.1: Example query plans w/(o) MQO

decides the parts of queries to be shared, an essential goal of MQO is minimizing overall resource

consumption. No existing MQO approach considers the overhead of heterogeneous latency goals

and the consequential eager execution on shared parts.

We illustrate the problem with an example. Consider query QA and QB in Figure 4.1. An

MQO optimizer generates a plan QAB that shares two almost identical joins (with the difference

of σB). Note that σB only marks tuples that belong to QB , and does not drop any tuple (which

are all needed by QA). Consider the case that QA has high latency goal and QB has a low or tight

latency goal. The shared plan QAB needs to meet the tighter goal (i.e. QB’s). There are two cases

of overhead compared with the scenario of not sharing. First, Subplan1 needs to execute more

frequently to meet QB’s latency goal. Assume the selectivity of σB is 1%. Without sharing, all

data can be executed lazily for QA (e.g. using one batch) and only 1% data is executed eagerly

for QB . In the shared plan, all data is executed eagerly. If we eagerly maintain Subplan1, the ag-

gregate operator γsum needs to repeatedly remove prior output tuples when the aggregated values

of corresponding groups change. Therefore, eagerly processing all data for Subplan1 consumes

more computing resources. Second, Subplan2 has overly eager execution. This is because QAB is

executed eagerly to meet the goal of QB , but QA has a high latency goal, which allows Subplan2

to execute lazily.

We illustrate the complexity of the decision space by a micro-benchmark. The first workload in-

cludes two (almost) fully incrementable queries Q5 and Q8 from TPC-H. The second includes two

partially incrementable queries QA and QB in Figure 4.1. For each workload, we evaluate them

individually (denoted as NoShare) or in a shared plan by a state-of-the-art MQO optimizer [35]

42

Share NoShare

Batch High+High High+Low
0

25

50

75

100
C

PU
 T

im
e

(s
)

(a) Tests of Q5 and Q8

Batch High+High High+Low
0

25

50

75

100

125

C
PU

 T
im

e
(s

)

(b) Tests of QA and QB

Figure 4.2: CPU seconds of executing two queries separately or in a shared plan w/(o)
performance goals

(denoted as Share). We consider three scenarios: i) no latency constraint (Batch evaluation); ii)

low latency goal for Q5/QB and high latency goal for Q8/QA; iii) high latency goal for both

queries. A cost model chooses execution frequency (c.f. Section 4.2.2), and more experimental

details are in Section 4.4.6. We measure the total CPU seconds in Figure 4.2. We see that for the

first workload, Share uses less CPU in all cases. This is due to incremental execution consuming

little additional resources. However, for a partially incrementable workload with latency perfor-

mance goals (i.e. High+High), the benefit of sharing decreases. With heterogeneous latency goals

(i.e. High+Low) Share actually has even higher resource consumption. Therefore, an optimizer

should holistically consider the benefit of shared query execution and the overhead of incremental

executions by leveraging the information about the diverse latency goals and how amenable the

queries are to incremental executions.

We propose iShare for sharing queries with different latency goals. Instead of evaluating a

shared plan with a single frequency, iShare selectively untangles a shared (sub)plan execution in

two ways: 1) executing different subplans in different frequencies with respect to the latency goals;

2) breaking the shared subplans into separate ones based on latency goals (i.e. unshare) and run

them at different frequencies.

However, such optimization is time-consuming due to the complex search space in finding the

execution frequency for each subplan [95] and the possible ways to decompose the shared plan.

43

We propose several techniques to address this challenge and make the following contributions:

• First, we observe that some plans are more incrementable than others (as in Figure 4.2).

Therefore, we evaluate more incrementable plans with higher frequencies. Specifically, we

extend the metric of incrementability to quantify the cost-effectiveness of incremental execution

for a subplan, and design an optimized algorithm to quickly find the execution frequencies.

• Second, we propose a heuristic metric, sharing benefit, which can estimate whether it is

worthwhile to share a subplan for two sets of queries, and a greedy algorithm to decompose

a shared subplan based on sharing benefit.

• Third, we design a algorithm to quickly compute the execution frequencies for the decom-

posed subplan without computing the execution frequencies for the whole plan from scratch.

• Finally, we perform extensive experiments to show that iShare has low optimization overhead

and can significantly reduce CPU consumption compared to executing share plans (from the

state-of-the-art MQO optimizer) in a single frequency and two approaches that execute queries

separately.

4.1 Problem Statement and Overview

In this section, we discuss the context and definition of our optimization problem, present the

definitions used in iShare, and the underlying shared query execution engine.

4.1.1 Problem context and definition

We consider a scenario where a stream of tuples is being loaded into the database, and users

want to analyze this data stream via scheduled queries. The queries are scheduled based on pre-

defined events (e.g., time/count-based). We name this pre-defined event trigger condition. We

focus on optimizing the scheduled queries with the same trigger conditions (e.g., daily loaded

data). We assume knowledge of the data arrival rate (i.e., number of new tuples per hour for each

base relation). Historical statistics [92] can estimate this information. We use this information to

44

estimate the cost of query execution and query latency. For simplicity, we assume a fixed data

arrival rate. As in prior work [95], we use the total work to represent the CPU consumption of

all queries and the final work as a proxy for the latency of each query. The total work represents

the total units of work done by all queries throughout the shared query execution. The final work

is the remaining units of work to be done for each query after the trigger condition is met. Take

the query QAB in Figure 4.1 as an example. The final work of QA includes the remaining units

of work of Subplan1 plus Subplan2, and the final work of QB includes the remaining work of

Subplan1 plus Subplan3. Both total work and final work are quantified based on the cost metric

in a database optimizer. It could be a unified cost of estimated CPU cycles and I/O operations, or

the number of tuples processed by all operators.

In iShare, users additionally submit a final work constraint for each query. This constraint

allows users to make a trade-off between CPU consumption and query latency. Therefore, our

optimization problem is given a set of scheduled queries with the same trigger conditions, how to

find a query plan to minimize the total work of all queries while meeting each query’s final work

constraint.

4.1.2 Definitions and optimization overview

We observe that directly using the shared plan from existing MQO optimizers has high total work

because the whole plan is executed in a single frequency. Therefore, our key idea is to break

the shared plan into subplans, where each subplan can be executed via a separate frequency. For

simplicity, our optimization assumes a shared plan generated by an existing MQO optimizer [35].

Subplan A subplan in iShare represents a subtree of operators that are shared by the same set of

queries. We break the shared plan into subplans at the operators that have more than one parent

operator. Consider the shared plan in Figure 4.1. iShare breaks it into three subplans, where all

shared operators belong to a subplan (i.e., SubP lan1) and the unique plans for QA and QB are

two separate subplans. When the root operator of one subplan has two or more parent operators,

it materializes its output into a buffer such that the parent subplans can consume the intermediate

45

results at individual frequencies [85]. Similarly, we treat all base relations or delta logs as buffers as

well. Therefore, each incremental execution of one subplan processes all new data from the buffers

of its child subplans or base tables. Then, it materializes the result tuples into this subplan’s buffer

or outputs them as the query results. We note that there are multiple parent subplans consuming

the same child subplan’s buffer. Therefore, each parent subplan will track the offsets of the tuples

it has processed. We assume a shared query execution engine that requires the query set of a

subplan subsume the query set of its parent subplans (e.g. the query set {QA, QB} of Subplan1

in Figure 4.1 contains the query set {QA} of Subplan2) We note that it is possible to break the

shared plan in a more fine-grained way [95], which comes with a higher optimization cost. We use

subplans as the granularity of control as it significantly reduces the optimization time, which we

show in Section 4.2.2.

Pace The execution frequency of a subplan can be defined as time-based (every 5s), count-based

(every 1000 tuples), or heuristic-based. We use the definition of pace in InQP to represent the

execution frequency of a subplan and include it here for completeness. A pace k means that the

subplan starts one execution whenever the system has received 1
k of the total estimated tuples for a

trigger condition (e.g. daily loaded data). The higher the pace is, the more eagerly we execute the

subplan. A pace configuration represents the set of paces P = (p1, p2, . . . , pM) for allM subplans.

The pace configuration P1 = (1, 1, . . . , 1) represents the batch execution for all subplans.

Optimization overview In iShare, we take a shared plan generated by existing MQO optimizers

and adopt the following two techniques to reduce its total work. First, we use a greedy algorithm

to find a pace configuration to minimize the total work and also meet the final work constraints,

which is discussed in Section 4.2. Based on the shared plan annotated with paces, we consider

decomposing each shared subplan into multiple separate subplans. This way, we can execute

different subplans at different paces to further reduce the total work. We discuss the subplan

decomposition in Section 4.3.

46

4.1.3 Query execution

iShare combines the ideas of SharedDB [34] and prior work in incremental view maintenance [24]

to support shared incremental execution of scan, select, project, aggregate, and inner join operators

with respect to insert, delete, and update operations.

Our design considers two subplans to be sharable if they are exactly the same or are different

only in their select and project operators. Merging two different project operators unions their

projection expressions to generate a new project operator. If two select operators are different,

they are not merged but directly copied from the original subplans. The key idea for enabling

the shared execution of the subplan is to annotate each intermediate tuple with a bitvector B =

(b1, b2, . . . , bn), where one bit indicates whether this tuple is valid for a query [34], and each

operator is also associated with a bitvector where one bit is set if a query shares this operator. To

support delete operations, each intermediate tuple is additionally associated with a bit that indicates

the insertion or deletion [24]. An update operation is implemented as a delete plus an insert. We

now discuss the shared incremental execution of our supported operators.

Scan We support two types of scan operators: scanning a base table or scanning the materialized

output tuples of a subplan. For each new tuple scanned from a base table, we create a bitvector for

it and set a bit if this bit’s corresponding query shares this scan. If the tuple is from a subplan, it

has a bitvector that indicates which queries this tuple is valid for. We unset a bit of this bitvector if

the corresponding query does not share the scan. Finally, a tuple is output if at least one bit is set

for its bitvector.

Select and project A select operator does not directly discard a tuple if the evaluation of its pred-

icates returns false. Instead, it checks the queries sharing on this select operator and unsets their

corresponding bits for this tuple’s bitvector. Same as scan, it only outputs a tuple when at least one

bit is set. A project operator does not change an input tuple’s bitvector.

Aggregate An aggregate operator is implemented using a hash table that maps the group-by at-

tributes to the aggregated values. We currently support SUM, AVG, COUNT, MAX, and MIN

47

Hash Table

Groupby Key: 1
𝑞1, 𝑞2

{𝑞3}

Sum: 10

Sum: 5

𝛾𝑆𝑢𝑚 𝑄 = {𝑞1, 𝑞2, 𝑞3}

𝑡1(1, 1, 0)

𝑡2(1, 1, 0)

𝑡3(1, 1, 1)

New data

insert

Figure 4.3: An example of a shared aggregate operator

aggregate operations. In our design, two aggregate operators are sharable if they have exactly

the same group-by keys and the same aggregate expressions. If two aggregate operators have the

same descendant operators with only the projection different, they have the same set of input tu-

ples. Therefore, they can share the same aggregated value for an aggregate operation (e.g. SUM,

COUNT). Consider the aggregate operator (γsum) in Figure 4.3 as an example. For each group-by

key, q1 and q2 can share the sum value because they have the same sets of input tuples. We name

those queries a query cluster. We use separate aggregated values for different query clusters (e.g.

{q1, q2} and {q3} are two query clusters). To process an input tuple, we identify the valid queries

that this tuple belongs to based on its bitvector. Then, we use the valid queries to find the valid

query clusters (e.g. t1 in Figure 4.3 belongs to {q1, q2}). After, we find this tuple’s group-by

attributes and incorporate it into this group’s aggregated values that belong to the valid query clus-

ters. To support deletes and updates, we include a counter for every query cluster in each group

to indicate how many tuples are aggregated [42]. If one group is first created for a query cluster,

we output an insert. When one aggregated value is changed and the counter is larger than zero,

we output an update. If the counter is decreased to zero for a group’s query cluster, we remove

the aggregated values in the hash table and output a delete. An output tuple is annotated with the

bitvector that represents its query cluster. We note that to support MAX and MIN with deletes and

updates, we need to materialize all prior input tuples for each group. When the tuple for the current

aggregate max/min value is deleted, we find the new max/min value in the materialized tuples.

Join We implement equi-join using symmetric hash join [106], which is widely used in incremental

48

execution because it is a non-blocking operator [95, 93, 49, 45]. It maintains two hash tables for

inner and outer child subtrees separately. For each hash table, we use the join key as its key and

the input tuple as the value. We note that when we insert a tuple into the hash table, we also

keep its bitvector. A new tuple from one side updates the corresponding hash table and probes the

hash table on the other side. For each matched tuple, we generate one joined tuple that adopts the

intersected bitvector between the input and its matched tuple. Joined tuples with all bits unset are

discarded. The implementation of non-equi-join is similar to equi-join with the difference that we

maintain two arrays that materialize input tuples from the inner and outer children.

4.2 Finding the Pace configuration

iShare allows each subplan to have a different pace to reduce the total work with respect to the final

work constraints of participating queries. Here, the system is allowed to lazily execute subplans

in the queries that have higher final work constraints. We extend InQP to reduce the total work by

considering the different final work constraints and the structure of shared query plans.

Specifically, we redefine the metric incrementability. Incrementability quantifies the cost-

effectiveness of incremental executions and is a key metric for efficient incremental execution

for a single query. In this section, we redefine this metric for shared query execution, and propose

an optimized algorithm with a low running time to find a nonuniform pace configuration using

incrementability.

4.2.1 Incrementability definition in iShare

If we execute a query more eagerly, we have a lower query latency but a higher resource consump-

tion. The intuition of incrementability is to quantify how much query latency we can reduce given

the same additional resources we invest. InQP defines incrementability as the ratio between the

reduced final work and the increased total work.

For iShare’s incrementability, we define the benefit of decreased final work differently by con-

49

sidering the final work constraints of different queries. Intuitively, if a pace configuration has al-

ready met the final work constraints of some queries, further increasing the paces for those queries’

subplans does not yield benefit for them any more. Therefore, the benefit of a query here should

be the reduced missed final work with respect to its final work constraint rather than the absolute

reduction. With this observation, we now define the benefit for N queries Q = (q1, q2, . . . , qN)

between two pace configurations PA and PB , where PA should be eagerer than PB . This means

that any pace in PA is no smaller than the corresponding pace in PB and there is at least one

subplan’s pace in PA larger than the one in PB . The formula of the benefit between the two is:

Benefit(PA, PB) =
∑
∀qi∈Q

max(0, CF (PB , qi)− C′F (PA, qi)) (4.1)

where C′F (P, qi) = max(L(qi), CF (P, qi)).

Here, L(qi) represents a query’s final work constraint and CF (P, qi) means the final work of a

query given a pace configuration P . Therefore, C′F (P, qi) represents the bounded final work that is

no lower than the constraint and max(0, CF (PB , qi)− C′F (PA, qi)) means the benefit of reducing

the missed final work with respect to the query qi’s constraint. Finally, Equation 4.1 sums the

per-query benefit to compute the overall benefit.

The overhead of the eager execution from PB to PA is CT (PA)− CT (PB), where CT (·) repre-

sents the total work of a pace configuration. The incrementability definition for iShare is:

InC(PA, PB) =
Benefit(PA, PB)

CT (PA)− CT (PB)
(4.2)

4.2.2 Pace configuration via incrementability

We now discuss the algorithm of estimating incrementability and leveraging incrementability to

find the pace configuration. Finding the pace configuration essentially uses incrementability to

prune the search space of different pace configurations. Therefore, the cost of estimating incre-

mentability is the bottleneck of finding the pace configuration. As the definition shows, computing

50

incrementability requires estimating the final work CF (P, ·) for each query and total work CT (P)

given a pace configuration P . We find that as the number and complexity of subplans grow, directly

adapting the algorithm from InQP to compute the total work and the final work of a pace config-

uration is time-consuming. Our experiments in Section 4.4.5 shows that the original algorithm

cannot finish within 30 mins for the full TPC-H query set when the max pace of each subplan is

larger than 50. This is because the original algorithm computes the cost of a pace configuration by

simulating its the execution from scratch. Therefore, we propose a memoization-based algorithm

to quickly compute the cost of a pace configuration.

Memoization algorithm Recall that by definition, a pace k means that the subplan starts one in-

cremental execution to process its new data whenever the system receives 1
k of the total estimated

tuples. To estimate the cost of a pace configuration, the original algorithm simulates the execution

of each subplan with respect to the progress of how much new data is loaded into the system. To

enable more reuse opportunities, our algorithm does not strictly simulate the process of how a sub-

plan should be executed based on the above pace definition. Instead, our memoization algorithm

estimates the cost of a pace configuration by redefining the pace of a subplan to be dependent on

the subplan’s input data rather than the system’s input data. Specifically, to estimate the cost of a

subplan with pace k, we take the estimated total input data of this subplan, evenly divides it into k

parts, and starts k incremental executions where each process 1
k of its total input data.

We now use an example to explain the algorithm of estimating the total work and the final work

of a pace configuration. Consider a pace configuration (3, 2, 1) for QAB in Figure 4.1. Here, the

paces of Subplan1, Subplan2, and Subplan3 are 3, 2, and 1 respectively. The algorithm estimates

the cost of a pace configuration from the bottom to top. It first simulates 3 incremental executions

for Subplan1 to process its input data. We note that for each incremental execution, it updates

the statistics of intermediate states (e.g. hash table size for symmetric hash join) and estimate the

output cardinality of each execution. Here, each incremental execution consumes 1
3 of its input

data. We name the total cost of processing the input data of a subplan private total work. We

additionally define the private final work of a subplan as the cost of the final execution (i.e. the 3rd

51

Algorithm 3: Estimate CT (P) and CF (P, ·)

1 Gsorted ← Sorting subplans topologically from child
2 to parent subplans
3 for gi ∈ Gsorted do
4 key ← Find the private pace configuration for gi in P
5 if memoi.contains(key) then
6 (pT, pF)← memoi(key)
7 else
8 (pT, pF, outCard)← Estimating the cost and
9 output cardinality of pi simulated executions

10 Add (key -¿ (pT, pF, outCard)) to memoi
11 end
12 for qi ∈ Q do
13 if qi includes gi then
14 Add pF to CF (P, qi)

15 end
16 Add pT to costT (P)

17 end

execution for Subplan1). Now, we have the output cardinality of Subplan1 for the 3 executions.

This output cardinality will be the input data of Subplan2 and Subplan3. Subplan2 and Subplan3

take this output cardinality, and simulate 2 and 1 incremental executions respectively. Therefore,

total work is estimated as the summation of the private total work of all subplans. The final work

of a query includes the private final work of this query’s subplans. For example, the final work of

QA in Figure 4.1 is the sum of the private final work of Subplan1 and Subplan2.

Now we discuss how to reuse the prior estimated results to quickly estimate the cost of a pace

configuration. The estimated results we want to reuse include output cardinality, private total work,

and private final work of each subplan. We note that these estimated results depend on the paces

of the subplan and its descendant subplans. We name these paces as private pace configuration for

a subplan. To reuse prior estimated results, each subplan maintains a key-value memo table. The

key is a private pace configuration and the value includes output cardinality, private total work, and

private final work.

Algorithm 3 shows our memoization algorithm. We estimate the private total work and private

52

final work of each subplan (i.e. pT and pF in Algorithm 3) from the bottom to top. For each

subplan, we first probe its memo table to look for prior estimated results. If not found, we start one

simulation to estimate the private total work, the private final work, and its output cardinality (i.e.

outCard). This information is then stored in the memo table. Finally, we add pT to the total work

and add pF to the final work of the queries that include this subplan.

Algorithm of finding pace configuration Now we have an optimized algorithm for computing

incrementability. We then adapt the algorithm from InQP to find the pace configuration in the

shared setting. It starts at P1, which is the case of batch execution, and repeatedly increase the

pace of one subplan having the highest incrementability. The loop includes two steps:

• Check whether all queries have met the final work constraints (i.e. ∀qi ∈ Q : CF (P, qi) <=

L(qi)) and whether all paces have reached the max pace J (i.e. ∀pi ∈ P : pi >= J). If either is

true, the optimization stops.

• For each subplani, its incrementability is Inc(P, P[pi\pi+1]), where P[pi\pi+1] means that we

increase subplani’s pace pi by one. Assuming subplani∗ has the highest incrementability, the

pace configuration P is updated to P[pi∗\pi∗+1] .

We note that the pace of a parent subplan should be no larger than its child subplan. The step two

of the above the algorithm will filter out a candidate pace configuration P[pi\pi+1] if it violates this

requirement.

4.3 Decomposing A Shared Subplan

iShare exploits the time slackness in the diverse final work constraints by selectively executing

parts of the shared plan lazily to reduce the total work. After finding nonuniform paces for different

subplans, iShare considers “unsharing” or decomposing each shared subplan for lazier execution.

One “unsharing” method, full decomposition, is decomposing Subplan1 in Figure 4.1 into two

separate subplans such thatQA andQB can be executed with different paces. Another “unsharing”

method, partial decomposition, only decompose parts of Subplan1, such as the join operator (./).

53

Original plan

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1
{𝑞1, 𝑞2, 𝑞3}
Pace = 5

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑎
{𝑞1, 𝑞2}
Pace = 5

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑏
{𝑞3}
Pace = 5

Split

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1
{𝑞1, 𝑞2, 𝑞3}
Pace = 5

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2
{𝑞1, 𝑞2, 𝑞3, 𝑞5}

Pace = 8

𝑆𝑢𝑏𝑝𝑙𝑎𝑛3
{𝑞1, 𝑞2, 𝑞3, 𝑞4}
Pace = 10

Step 1: Find a split Step 2: Generate a new plan and
find a new pace configuration

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑎
{𝑞1, 𝑞2}
Pace = 4

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑏
{𝑞3}
Pace = 2

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2
{𝑞1, 𝑞2, 𝑞3, 𝑞5}
Pace = 8

𝑆𝑢𝑏𝑝𝑙𝑎𝑛3
{𝑞1, 𝑞2, 𝑞3, 𝑞4}
Pace = 10

Figure 4.4: An overview of decomposing a shared subplan

In this case, the join operator is merged into Subplan2 and Subplan3 respectively and its two child

subtrees form two separate subplans. For simplicity, our following discussion is focused on full

decomposition and discuss partial decomposition in Section 4.3.3.

We find that decomposing a shared plan loses some opportunities for shared execution. There-

fore, we need to systematically consider the shared opportunities and the benefit of lazy incremen-

tal executions. Figure 4.4 shows an overview of our decomposition algorithm. The input of this

algorithm is the shared query plan annotated with a pace configuration. We consider decomposing

Subplan1 in Figure 4.4 with the two following steps:

• First, we need to split the queries that share this subplan. For example, Figure 4.4 shows that

we split its query set {q1, q2, q3} into two subsets {q1, q2} and {q3}. Each subset of queries

shares a single subplan (i.e. Subplan1a and Subplan1b). The challenge here is that there is an

exponential number of possible ways of splitting the queries. Therefore, we propose a clustering

algorithm to heuristically split the queries. This algorithm uses a metric sharing benefit that can

quickly decide whether it is worthwhile to share two sets of queries. We discuss splitting a

subplan in Section 4.3.1.

• Second, we generate a new query plan for this decomposed subplan and find a new pace

configuration. For example, Figure 4.4 shows that we replace Subplan1 with Subplan1a and

Subplan1b and we find a new pace for each subplan. We compute the new plan’s total work,

compare it with the total work of the original plan, and choose the one with the lowest total

work. We discuss this step in Section 4.3.2.

54

⋈

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2
Scan

𝛾𝑠𝑢𝑚
𝜎3

𝑆𝑢𝑏𝑝𝑙𝑎𝑛3
Scan

⋈

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2
Scan

𝛾𝑠𝑢𝑚
𝑆𝑢𝑏𝑝𝑙𝑎𝑛3

Scan

A Split of 𝑆𝑢𝑏𝑝𝑙𝑎𝑛1

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑎 𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑏

𝑄 = {𝑞1, 𝑞2}
𝑄 = {𝑞3}⋈

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2
Scan

𝛾𝑠𝑢𝑚
𝜎3 𝑆𝑢𝑏𝑝𝑙𝑎𝑛3

Scan

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1

𝑄 = {𝑞1, 𝑞2, 𝑞3}

Figure 4.5: One split of Subplan1

𝑆𝑢𝑏𝑝𝑙𝑎𝑛3
𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}
Pace = 10

𝑆𝑢𝑏𝑝𝑙𝑎𝑛2
𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞5}

Pace = 8

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1
𝑄 = {𝑞1, 𝑞2, 𝑞3}
Pace = 5

Input Cardinality
{𝑞1: 100, 𝑞2: 200,

𝑞3: 300, 𝑡𝑜𝑡𝑎𝑙: 500}

Input Cardinality
{𝑞1: 100, 𝑞2: 100,

𝑞3: 200, 𝑡𝑜𝑡𝑎𝑙: 400}

Figure 4.6: Input cardinalities of Subplan1
using a pace configuration

After that, we talk about partial decomposition in Section 4.3.3 and applying our decomposition

algorithm to the full plan in Section 4.3.4.

4.3.1 Finding a split for a shared plan

We define a split as a partitioning of the queries that share this subplan. Consider the example

in Figure 4.5. The Subplan1 is shared by three queries Q = {q1, q2, q3}, which is split into two

query sets {q1, q2} and {q3}. The new plan for one query set (e.g. Subplan1a) copies all operators

from the original subplan, except the select operators that do not belong to this query set (e.g. σ3),

and derives the same parent and child operators from the original subplan. Not shown in the figure

are the project operators, which are copied from the original subplan and modified to include all

attributes required by its ancestor operators.

There is an exponential number of ways of splitting a query set. Computing the total work from

scratch for all splits can be time-consuming. Therefore, we define a local optimization problem of

finding the split that best reduces the work of the subplan itself. The intuition here is that if a split

can reduce the work of the subplan, it should also be able to reduce the total work of the whole

plan. To solve this problem, we use a clustering algorithm to heuristically find the split that reduces

the work of this subplan. This algorithm is based on a metric sharing benefit that decides

whether it is worthwhile to share two query sets. Since this local optimization problem only relies

on the statistics of this subplan itself, we can quickly compute this metric. In this subsection, we

first talk about the definition of this local optimization problem and then discuss the clustering

algorithm and sharing benefit.

55

Defining the local optimization problem

Before we formally define this problem, we use an example to conceptually explain it.

Explaining the optimization problem with an example Consider the query plan in Figure 4.6

as an example. Here, we have the nonuniform pace configuration for this shared plan and are

considering if we should decompose Subplan1. The input cardinality of Subplan1 represents

the estimated total number of tuples that Subplan1 needs to process given the nonuniform pace

configuration. For example, the input cardinality from Subplan3 is 500, where 100, 200, and 300

tuples are valid for q1, q2, and q3, respectively. The local optimization problem studies how to find

a split that can reduce the work of the subplan to process the input data. If there is no split and

Subplan1 uses pace 5, we simulate 5 incremental executions for every one-fifth of the input data.

The total work of this subplan is the sum of the five executions’ work. We define the total work of

this subplan as local total work.

If we split Subplan1 as shown in Figure 4.5, we would have two partitions {q1, q2} and {q3}.

Assuming that they use paces 2 and 4 respectively, the local total work of Subplan1 is computed as

follows. We first simulate 2 incremental executions for the partition {q1, q2} to process the input

data of Subplan1. The total work of this partition is the sum of the two executions’ work. We

define the total work of a partition as partial local total work. Similarly, we can simulate another

4 incremental executions for the partition {q3} to compute its partial local total work. The local

total work for this split is the summation of each partition’s partial local total work. Therefore,

we can compare the local total work of different splits and find the one with the lowest local total

work.

After we define the optimization objective (i.e. local total work), we now explain the constraints

for this optimization problem. We first define local final work of each query for this optimization

problem. Recall that each partition is associated with a pace and, based on this pace, we need

to simulate several incremental executions for this partition. Consider the queries q1 and q2 in

Figure 4.5, where we simulate 2 incremental executions. The local final work of q1 and q2 is the

work of the final execution for their partition.

56

Our optimization problem is constrained on the local final work of each query. We compute

the local final work constraints as follows. Recall that we already have a final work constraint

for each query. The idea is to proportionally scale each query’s constraint to its local constraint for

each subplan. Consider Subplan1 in Figure 4.5. The query q1 has two operators in this subplan

(i.e. the join and the aggregate operators). We note that the two scan operators are not included

because they are generated by the shared plan rather than by q1. Assume that the two operators

occupy 20% of the work for executing q1 separately in one batch. Therefore, the local final work

constraint for the two operators is also 20% of the constraint on q1. We pre-compute the local final

work constraints for each subplan before we start the decomposition phase.

We define the paces for all partitions in a split as the local pace configuration. We estimate the

input data for each subplan’s local optimization problem (i.e. the input cardinality in Figure 4.6) by

simulating the execution of the nonuniform pace configuration found in Section 4.2.2. Therefore,

the optimization problem is finding a split along with its local pace configuration to minimize the

local total work and meet local final work constraints.

Formal definition We useWT (O,R) to denote the local total work given a splitO = (O1, · · · , OD)

and a local pace configuration R = (R1, · · · , RD). D represents the number of partitions and Ri

represents the pace of partition Oi. The partial local total work of a partition Oi and a pace Ri is

denoted asWPT (Oi, Ri). Therefore, we have

WT (O,R) =
D∑
i=1

WPT (Oi, Ri) (4.3)

In addition, the local final work for partitionOi, and each of its queries, with paceRi isWF (Oi, Ri).

Assuming that we have H queries sharing a subplan with local final work constraints S =

(S1, · · · , SH), the local optimization problem is formally defined as

minimize
(O,R)

WT (O,R)

subject to WF (Oi, Ri) ≤ min
j∈Oi

Sj

∀i ∈ [1, D]

57

Here, the local final work of each partitionWF (Oi, Ri) needs to meet the lowest local final work

constraint among the partition’s queries (i.e. minj∈Oi
Sj)

Finding the best split

Solving the above optimization problem requires consideration for both the split and its local pace

configuration. Simply searching the space is time-consuming due to its exponential complexity.

Thus, to prune this search space, we make the following key observation.

Observation Consider two partitions O1 and O2 in a split. We define the optimal pace, R∗i , of

a partition, Oi, as the smallest pace that allows Oi to meet its local final work constraints (i.e.

WF (Oi, R
∗
i) ≤ minj∈Oi

Sj). The optimal pace represents the laziest possible execution that

reduces the most local total work. The observation here is that if we merge O1 and O2 into a single

partition (i.e. O12), the optimal pace R∗12 of O12 should be no smaller than that of O1 and O2.

The reason is that the work O12 needs to do is the union of the work of O1 and O2, and this union

of work will be no smaller than an individual partition. At the same time, O12 needs to meet the

lowest final work constraint in the two partitions. Therefore, O12 will be no lazier than O1 and O2

respectively. To that end, we propose clustering the queries from the bottom up (i.e. keep merging

partitions) and monotonically increasing the pace for the merged partitions (i.e. the optimal pace

monotonically increases as we merge more partitions).

Sharing benefit As we are clustering the queries from the bottom up, we need to choose which

partitions to merge. To do so, we develop a metric, sharing benefit, to quantify the reduced total

work if we merge the two partitions. Consider merging two partitions Oi and Oj into a new

partition Oij The benefit is:

Sharingbenefit(Qi, Qj) =WPT (Oi, R
∗
i) +WPT (Oj , R

∗
j)

−WPT (Oij , R
∗
ij)

(4.4)

Here,WPT (Oi, R
∗
i) represents the lowest partial total work of partition Oi given its optimal pace

R∗i .

58

The clustering algorithm The clustering algorithm keeps merging two partitions with the highest

sharing benefit until there is no positive benefit or all queries are merged into a single partition. It

starts with a split where each query is in a separate partition. The pace configuration is initialized to

P1. Before we merge partitions, we increase the pace of each partition to find the optimal pace that

meets the partition’s local final work constraints. Afterwards, we compute the sharing benefit of

each pair of partitions and merge the pair that has the highest benefit. As the observation indicates,

the newly merged partition adopts the larger pace of the two old partitions and increases this pace

to find the optimal one. Thus, the search for the optimal pace of the merged partition does not start

from 1, but monotonically from the optimal paces of old partitions.

The split found by the clustering algorithm is outputed as the decomposed subplan. If there

does not exist a decomposed plan (i.e. all queries merged in a single partition), we skip the next

step of generating a new plan and finding a new pace configuration.

4.3.2 Generating a new plan & pace configuration

The first step proposes a decomposed subplan and then we check whether this new subplan can

reduce the total work. We note that we cannot directly use the local pace configuration of the

decomposed plan found in the previous step. This is because that the local pace configuration is

based on the local optimization for this decomposed subplan and directly using it can violate the

following requirement: the pace of a parent subplan should be no larger than the pace of its child

subplans. Therefore, we generate a new query plan that includes the decomposed subplan and find

the new pace configuration for the new plan based on the pace configuration of the original plan.

Finally, if the total work of the new plan is lower than the original one, we use the new plan.

Generating a new plan Recall that we assume an execution engine that requires the query set of

a subplan subsume the query sets of its parent subplans. However, the new decomposed subplan

may not meet this requirement. Consider the subplan in Figure 4.7 as an example. We see that the

query set {q3} of Subplan1b does not subsume the query set of its parent Subplan4 (i.e. {q1, q3}).

In this case, we split the parent subplans to align them with their child subplans (e.g. the middle

59

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑎 𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑏
{𝑞1, 𝑞2} {𝑞3}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛4
{𝑞1, 𝑞3}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛5
{𝑞2}

Split 𝑆𝑢𝑏𝑝𝑙𝑎𝑛1

𝑆𝑢𝑏𝑝𝑙𝑎𝑛5
{𝑞2}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛4𝑎
{𝑞1}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑎
{𝑞1, 𝑞2}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛14𝑏
{𝑞3}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛5
{𝑞2}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛4𝑎
{𝑞1}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛4𝑏
{𝑞3}

𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑎 𝑆𝑢𝑏𝑝𝑙𝑎𝑛1𝑏
{𝑞1, 𝑞2} {𝑞3}

Split 𝑆𝑢𝑏𝑝𝑙𝑎𝑛1

Figure 4.7: Generating a new plan using the decomposed Subplan1

graph in Figure 4.7). We recursively do this for the parent subplans until we meet the requirement.

After that, we consider merging the newly generated subplans when a new subplan has only one

parent subplan. Consider the Subplan1b and Subplan4b of the newly generated plan in Figure 4.7.

Since Subplan1b’s the only parent subplan is Subplan4b, they should be merged (i.e. Subplan14b

in the right graph of Figure 4.7).

Finding a new pace configuration Recall that the motivation of the decomposition is that the

decomposed subplan enables us to execute the whole shared plan lazily by leveraging the diverse

final work constraints. Therefore, we need to find a lazier pace configuration (i.e. smaller pace).

The key idea is to initialize the newly generated plan with a pace configuration that is more eager

than or equal to the original one (i.e. equal or larger pace) and incrementally decrease the paces.

Therefore, we use two steps to generate the initial pace configuration:

• Step 1. For each newly generated subplan, we use the pace of the original subplan that the

new subplan is derived from. For example, since Subplan1a and Subplan1b in Figure 4.7 are

derived from Subplan1, the two new plans then adopt the pace of Subplan1.

• Step 2. If a newly generated subplan should be merged with another subplan (e.g. Subplan1b

and Subplan4b in Figure 4.7) and the two subplans have different paces, we choose the larger

pace for the merged subplan.

Starting from this pace configuration, we use a modified algorithm in Section 4.2.2 to incrementally

find a new nonuniform pace configuration. The difference is that at each step instead of increasing

the pace of the subplan with the highest incrementability, we decrease the pace of the subplan that

60

has the lowest incrementability. That is, we choose the subplan that can best lower the total work

for the same final work increase.

4.3.3 Partial decomposition

Partially decomposing a subplan selects a subtree that shares the root of the subplan and then splits

the subtree. For example, consider Subplan1 in Figure 4.5. We can choose to split the join operator

(i.e. ./) and leave its child operators unchanged. The key idea is that we first break the subplan

into three subplans: the join operator itself, and the left/right child subtree of the join operator.

Afterwards, we split the join operator using the clustering algorithm.

We note that there is an exponential number of subtrees sharing the root of a subplan. There-

fore, our partial decomposition considers a subset of them. Specifically, we generate the subtree

candidates by starting with the root operator and gradually expanding the subtree to include its

child operators using a breath-first like search. Each new subtree includes one additional child

operator that is the closest to the root operator. Therefore, the number of subtree candidates is

no larger than the number of operators in a subplan, which greatly reduces the optimization time

while keeping the opportunities of decomposing the subplan with a fine-granularity.

4.3.4 Applying decomposition to the full plan

We now discuss applying the decomposition algorithm of a shared subplan to the full plan. After

we find the nonuniform pace configuration for the full plan, we also collect statistics information

required by the decomposition algorithm. We simulate the execution of the nonuniform pace con-

figuration to generate the input cardinalities for each subplan and run each query separately in one

batch to collect the local final work constraints. Then, we sort all subplans topologically from the

parent to the child and apply the decomposition algorithm for each subplan in this order to generate

a new plan with a smaller total work.

61

4.4 Experiments

Our experiments address the following questions:

• Compared to a state-of-the-art shared plan [35] that uses a single pace and two other ap-

proaches that execute queries separately, how much does iShare reduce CPU consumption

given the same final work constraints? (Sec. 4.4.3)

• How much more efficient is our decomposition algorithm in reducing computing resources

in iShare? (Sec. 4.4.4)

• What is the optimization overhead of iShare, and what is the overhead reduction of our

memoization and clustering algorithms reduce compared to other algorithms? (Sec. 4.4.5)

• How does different levels of incrementability and varied final work constraints impact the

resource consumption of baseline approaches and iShare? (Sec. 4.4.6)

All experiments are run on a server that has 196 GB of main memory and two Intel Xeon Silver

4116 processors, with 24 total physical cores. We use 20 cores for all experiments and leave the

rest for the OS (Ubuntu 18.04) and other supporting processes (e.g. HDFS).

4.4.1 Prototype Implementation

iShare is implemented in Spark 2.4.0 [3]. We extend Spark SQL to support shared query execution

based on SharedDB [34] and incremental execution of deletes and updates based on existing IVM

algorithms [24]. We adopt techniques to reduce the cost of starting Spark jobs for incremental

execution [102] . We use a Kafka [1] cluster as the data source that streams new data into Spark

queries. The Kafka cluster is also used to materialize intermediate output tuples from a subplan

that has two or more parent subplans. Each parent subplan pulls the new data of this subplan

from the Kafka cluster. Additionally, the cluster is run on a different machine with the same hard-

ware configuration. The two machines are placed on the same rack and have 10 Gbps Ethernet

62

connection to each other. We use Kafka because it provides better support for parallel data load-

ing, out-of-memory data storage, and offset management (e.g. finding the offsets of new data for

different subplans).

Users submit a set of SQL queries along with relative final work constraints to iShare. The

relative final work constraint of a query is the ratio between the final work users want to achieve and

the final work of separately executing the query in one batch. For example, a relative constraint of

0.1 means that users want to reduce the final work to 10% of the final work had the query executed

in one batch. Furthermore, users can tune the relative constraints to explore the trade-off between

resource consumption and query latency. We also define the absolute final work constraint for a

query as the query’s relative constraint multiplied by the work done when executing the query in

one batch.

iShare uses a state-of-the-art MQO optimizer [35] to generate a shared query plan from the

submitted queries. Note that we extend this optimizer to account for the materialization cost of

intermediate tuples as suggested by an existing MQO optimizer [85]. iShare takes this shared plan

and performs two optimizations: it finds the pace configuration and decomposes the shared plan

into subplans in order to reduce its CPU consumption. iShare executes each subplan in the shared

plan based on the pace configuration. Each incremental execution of a subplan uses all 20 CPU

cores. When an execution is finished, we execute the next subplan based on the pace configuration.

If multiple subplans start their incremental executions at the same time (e.g. they have the same

pace), the child subplans are executed earlier than their parent subplans.

We use CPU time to represent the resource consumption of the shared query execution. It

is defined as the summation of the execution time of all incremental executions of this shared

plan. The query latency is defined as the summation of the final execution time of all subplans

in this query. We report missed latency with respect to the latency goal in the experiment. Here,

we compute the latency goal of a query by multiplying the query’s relative final work constraint

by the latency of its batch execution. We note that for different queries they may have different

latency goals even for the same relative final work constraints. This is because the latency of

63

their respective batch execution is different. We report two types of missed latency, absolute

missed latency and relative missed latency. The absolute missed latency represents difference

between the tested latency and the latency goal. We calculate the absolute missed latency with

max(0, tested latency − latency goal). The relative missed latency represents the percentage of

the absolute missed latency compared to the latency goal. We calculate the relative missed latency

with absolute missed latency
latency goal . Our experiments will show that iShare has a significantly lower CPU

consumption and has a lower missed latencies relative to the baselines.

4.4.2 Experiment setup

Benchmark We use the TPC-H benchmark in our experiments and our prototype supports all 22

TPC-H queries. Furthermore, we test the two example queries QA and QB from Figure 4.1:

QA: SELECT SUM(agg_l.sum_quantity) as total_sum_quantity

From part p,

(SELECT SUM(l_quantity) as sum_quantity

FROM Lineitem

GROUP BY l_partkey) agg_l

WHERE p_partkey == l_partkey

QB: SELECT ps_partkey

FROM partsupp ps,

(SELECT AVG(agg_l.sum_quantity) as avg_quantity

From part p,

(SELECT SUM(l_quantity) as sum_quantity

FROM Lineitem

GROUP BY l_partkey) agg_l

WHERE p_partkey == l_partkey

AND p_brand" == "Brand#23" AND p_size == 15)

WHERE ps.ps_availqty < avg_quantity

We preload the full dataset into Kafka and let iShare pull data from Kafka at a rate of 100MB/min.

This data pull rate allows the system to process all the data even if we run all 22 TPC-H queries

64

concurrently. We use a dataset with a scale factor of 5 to make sure that Spark does not run out of

memory even for all TPC-H queries. The max pace is capped at 100. In our experiments, we run

each test three times and report the average unless otherwise specified.

Baselines We compare against three baselines: Share-Uniform, a shared query plan with a uni-

form pace; NoShare-Uniform, independent query plans each with a uniform pace; and NoShare-

Nonuniform, independent query plans with nonuniform pace. Share-Uniform, the shared query

plan approach using a MQO optimizer [35], may include several separate plans, each shared by a

set of queries. Separate plans are not shared because they have no sharable sub-expressions or the

MQO optimizer finds the shareing cost too high (e.g. due to the high materialization cost). For

each separate plan, we find the lowest absolute final work constraint among the shared queries.

Then, we use the algorithm from Section 4.2.2 to find a single pace that minimizes the total work

and makes the plan meet the lowest absolute final work constraint.

NoShare-Uniform executes each query separately with a single pace for each query. The pace

is set to meet each query’s absolute final work constraint using the algorithm from Section 4.2.2.

Finally, NoShare-NonUniform, uses nonuniform paces to reduce CPU consumption for a single

query as in InQP. Each query is broken into smaller parts and executed at different paces. We

implement this idea by breaking a query into subplans at blocking operators (e.g. aggregate). The

root of a subplan is either a blocking operator or the root of the query. To generate a subplan,

we expand the subplan’s root to gradually include its descendant operators until another blocking

operator or a base relation. The pace configuration for each query with respect to the query’s

absolute final work constraint is found with the algorithm from Section 4.2.2

4.4.3 Low CPU consumption with the same final work constraints

In this subsection, we examine how much iShare reduces CPU consumption with similar or lower

absolute and relative missed latencies compared to baseline approaches. We test 22 TPC-H queries

and with two types of relative final work constraints. First, we generate a set of relative final

work constraints for all queries by randomly picking relative constraints from (1.0, 0.5, 0.2, 0.1)

65

0

500

1000

1500

2000

2500

3000

C
PU

 T
im

e
(s

)

NoShare-Uniform
NoShare-
Nonuniform
Share-
Uniform
iShare

Figure 4.8: Tests of random relative
constraints

0

250

500

750

C
PU

 T
im

e
(s

)

Share (Batch)
NoShare
(Batch)

Figure 4.9: Batch execution
(22 queries)

NoShare-Uniform NoShare-Nonuniform Share-Uniform iShare

1.0 0.5 0.2 0.1
Relative Final Work Constraint
0

400

800

1200

1600

2000

C
PU

 T
im

e
(s

)

Figure 4.10: Tests of uniform relative
constraints (22 queries)

1.0 0.5 0.2 0.1
Relative Final Work Constraint
0

300

600

900

1200

1500

C
PU

 T
im

e
(s

)

Figure 4.11: Tests of uniform relative
constraints (10 queries)

for each query. Second, we use a uniform relative final work constraint from (1.0, 0.5, 0.2, 0.1) for

all queries.

Tests of random relative constraints For the first experiment, we test three sets of randomly

generated relative constraints and report the mean, minimum, and maximum CPU time and missed

latencies for all approaches. Figure 4.8 shows that iShare consumes 60.5%, 80.1%, and 34.1%

of the CPU seconds compared to NoShare-Uniform, NoShare-NonUniform, and Share-Uniform.

This is because iShare reduces redundant work from overlapping sub-expressions, compared to

NoShare approaches and iShare lazily executes part of the shared plan to avoid the overly eager

execution, relative to Share-Uniform. In addition, Share-Uniform has a larger variance in CPU

consumption due to its need to meet the lowest absolute constraints, which is both highly variable

from the random selection of relative constraints and the limiting factor in controlling performance.

66

For completeness, we show the CPU time reduction of executing the shared plan of Share-Uniform

in one batch relative to executing all the queries independently in one batch, in Figure 4.9. Thus, the

overhead of overly eager execution is what makes Share-Uniform have higher CPU consumption

than other approaches.

Random Uniform
Mean % Mean Sec. Max % Max Sec. Mean % Mean Sec. Max % Max Sec.

NoShare-Uniform 37.24 1.37 854.69 30.48 21.36 0.98 884.47 31.54
NoShare-Nonuniform 6.37 0.42 123.41 9.06 5.66 0.38 192.59 7.60
Share-Uniform 44.24 1.72 895.19 31.92 29.48 2.02 802.19 33.53
iShare 6.39 0.22 153.66 4.68 7.17 0.34 207.24 7.14

Table 4.1: Missed latencies of random and uniform relative constraints.

The Random column in Table 4.1 shows Mean Sec. and Max Sec. representing absolute

missed latencies, and Mean % and Max % representing relative missed latencies. The minimum

and median missed latencies, not shown, for all approaches are zero. We see that iShare has less

absolute and relative missed latencies compared to the baselines. However, the main reason for

missed latency is the inaccuracy of the cost model. Additionally, the maximum absolute and rel-

ative missed latencies for NoShare-Uniform and Share-Uniform are large because parts of some

queries are not incrementable. Thus, using a single pace to eagerly execute these queries does not

reduce the query latency, resulting in a high missed latency. One such example is Q15. It main-

tains two aggregate operators, where one aggregate operator, max is parent of another aggregate

operator, sum. When the aggregated values in the the sum operator are changed, this operator will

output a delete and an insert operation to the parent max operator. If a max value is deleted, the

max operator needs to rescan all arrived values to find the new max one. Eagerly maintaining the

whole query does not reduce the cost of finding a new max value, which is why NoShare-Uniform

and Share-Uniform have high query latencies. However, NoShare-Nonuniform and iShare use dif-

ferent paces for different parts of a shared plan and can maintain the max operator lazily to avoid

deleting the max value and, thus, the cost of finding a new max value.

Tests of uniform relative constraints Our second test uses uniform relative final work constraints

for all queries. Specifically, we use relative constraints of 1.0, 0.5, 0.2, and 0.1, and report the CPU

time and missed latencies. Figure 4.10 shows that iShare lowers CPU consumption compared
67

0

500

1000

1500

2000

2500

3000

C
PU

 T
im

e
(s

)

NoShare-Uniform
NoShare-
Nonuniform
Share-
Uniform
iShare

Figure 4.12: Manually tuned pace

Mean % Mean Sec. Max % Max Sec.
NoShare-Uniform 4.40 0.16 96.85 3.45
NoShare-Nonuniform 0 0 0 0
Share-Uniform 32.34 1.15 711.57 25.37
iShare 0 0 0 0

Figure 4.13: Missed latencies for manually tuned pace

to the baselines for all relative constraints. We also observe that the Share-Uniform has similar

CPU consumption compared to NoShare approaches when the relative constraint is 1.0. A relative

constraint of 1.0 means that the tested latency of a query should be no larger than the latency of

executing the query independently in one batch. Therefore, even when the relative constraint is

1.0 for all queries, the absolute constraint for each query is different. To meet the lowest absolute

constraint, Share-Uniform has overly eager executions, which offsets the benefit of shared query

execution. To show the benefit of Share-Uniform, we perform an additional test of 10 TPC-H

queries, Q4, Q5, Q7, Q8, Q9, Q15, Q17, Q18, Q20, and Q21, which have significant amounts

of overlapping work and, for the same relative constraint, they have similar absolute final work

constraints. We see, in Figure 4.11, that Share-Uniform has lower CPU consumption compared

to NoShare approaches, because the absolute constraints are less diverse and Share-Uniform has

smaller overhead of overly eager execution. This leads to better shared performance. For all

constraints, iShare has lower CPU consumption compared to all other approaches.

The Uniform column in Table 4.1 shows the mean and maximum missed latencies for all

queries tested in Figure 4.10 and Figure 4.11. Again, the minimum and median missed latencies

are not shown because they are zero for all approaches. We have the same observation as the test

of random relative constraints. iShare has less absolute and relative missed latencies compared

to other approaches and NoShare approaches have higher maximum missed latencies because one

tested query (i.e. Q15) is not incrementable.

Tests for manually tuned pace configuration In this test, we manually tune the pace configuration

68

to make all approaches meet the latency goals (a relative constraint of 0.1). If there are queries

that cannot meet the latency goal for some approaches, we make sure that these queries have the

smallest missed latencies.

For NoShare-Uniform, we test all paces for each query; for Share-Uniform, we tune the pace

for the whole plan; and for NoShare-NonUniform and iShare, we tune the pace configurations by

setting smaller relative final work constraints for queries that otherwise have missed latencies.

Figure 4.12 shows that iShare uses uses 77.7%, 80.0%, and 27.9% of the CPU seconds com-

pared to NoShare-Uniform, NoShare-Nonuniform, and Share-Uniform, respectively, for manually

tuned pace configurations. Table 4.13 shows the results of the mean and maximum missed laten-

cies, with the minimum and median excluded as they are all 0. We see that both NoShare-Uniform

and Share-Uniform still have missed latencies because the query Q15 is not incrementable and

increasing a single pace for the query plan could not achieve the desired query latency.

4.4.4 Performance impact of decomposition

We demonstrate how much our decomposition algorithm reduces CPU consumption compared

to using the nonuniform pace configuration only. Here, we use iShare (w/o unshare) to

represent the iShare variant that does not use the decomposition algorithm. We denote the vari-

ant with all optimizations as iShare (w/ unshare). We create a query set that has much

overlapping work and show the benefit of the decomposition algorithm for this “sharing-friendly”

query set. Specifically, we take the 10 TPC-H queries in Figure 4.11, modify their predicates to

generate new 10 TPC-H queries, and combine the original and new queries to create a new query

set with 20 queries. For each query, we modify the two types of predicates: equality predicate (e.g.

name = ”Tom”) and range-based predicates (e.g. A > 10 and A < 20). For 50% of the equality

predicates, we use a different value (e.g. name = ”Jerry”), and for a range-based predicate, we

generate a new predicate that with an overlap up to 50% (e.g. A > 15 and A < 25). We test

uniform relative final work constraints of 1.0, 0.5, 0.2, and 0.1 for all 20 queries.

Figure 4.14 shows iShare (w/o unshare) has similar CPU consumption to iShare (w/ unshare)

69

0.10.20.51.0
Relative Final Work Constraint

0

500

1000

1500

2000

2500

3000

3500
C

PU
 T

im
e

(s
)

NoShare-Uniform
NoShare-Nonuniform
Share-Uniform
iShare
(w/o unshare)
iShare
(w/ unshare)

Figure 4.14: Tests for
decomposition algorithm

Mean % Mean Sec. Max % Max Sec.
NoShare-Uniform 16.62 0.79 910.19 32.45
NoShare-Nonuniform 2.71 0.29 104.49 7.79
Share-Uniform 28.76 1.79 670.8 26.08
iShare (w/o unshare) 27.01 0.98 996.32 35.53
iShare (w/ unshare) 0.39 0.01 32.82 0.96

Figure 4.15: Missed latencies for the test of
decomposition

for the first three relative constraints. However, when we use the relative constraint 0.1, we find that

iShare (w/o unshare) uses more CPU seconds than the NoShare approaches, because there is sig-

nificant overhead of overly eager execution introduced by shared subplans. For example, consider

Q15 and its variant Q′15. iShare (w/o unshare) shares the subplan of maintaining the max aggre-

gate operator for the two queries. Since Q15 and Q′15 have different (but overlapping) predicates,

the max aggregate of the shared plan needs to do more work than the individual max aggre-

gate in each query. Therefore, a lower relative final work constraint (e.g. 0.1) pushes the shared

plan to execute more eagerly. Eagerly maintaining this max operator is expensive. iShare (w/ un-

share) avoids its cost by decomposing the shared subplan betweenQ15 andQ′15 and executing each

lazily. iShare (w/ unshare) uses 52.3%, 58.6%, 31.8%, and 71.8% of the CPU seconds compared to

NoShare-Uniform, NoShare-Nonuniform, Share-Uniform, and iShare (w/o unshare), respectively.

4.4.5 Optimization overhead

We test the optimization time of iShare, baselines, and an iShare variant that computes incre-

mentability using a simulation algorithm of InQP rather than the memoization algorithm in Sec-

tion 4.2.2. We denote this approach as iShare (w/o memo) and with the memoization as

iShare (w/ memo). We use all TPC-H queries, vary the value of the max pace from 10 to

100, and set a low relative final work constraint for all queries (i.e. 0.01) such that the optimization

only finishes when we reach the max pace.

70

10 20 30 40 50 60 70 80 90 100
Max Pace

0

25

50

75

100

O
pt

im
iz

at
io

n
tim

e
(s

)
245

591

1093

1651

DNF

DNF

DNF

DNF

DNF

NoShare-Uniform
NoShare-Nonuniform
Share-Uniform
iShare (w/ memo)
iShare (w/o memo)

Figure 4.16: Overhead of end-to-end
optimization

1 4 7 10 13 16 19 22
Number of Queries

0

1

2

3

4

5

O
pt

im
iz

at
io

n
Ti

m
e

(s
) 16.6

92.0Brute Force
Clustering

Figure 4.17: Optimization overhead of
clustering algorithm

Figure 4.16 shows the optimization time, where iShare (w/ memo) has a much lower running

time compared to iShare (w/o memo). We mark a test case as DNF if it does not finish within 30

minutes, where iShare (w/o memo) fails when the max pace is larger than 50. In the worst case,

iShare (w/ memo) uses 25.6s to finish the optimization. While it is higher than the baselines, we

believe the significant reduction in CPU consumption justifies the cost.

We, also, compare our clustering algorithm for decomposing a subplan to searching all possible

ways of splitting the queries of a subplan (denoted as Brute-force). We use a max pace 100

and vary the number of queries we need to optimize. Figure 4.17 shows that the running time of our

clustering algorithm is significantly smaller than that of the Brute-force method, which increases

exponentially as we increase the number of queries to optimize.

4.4.6 Impact of incrementability and final work

In this subsection, we test how incrementability and relative final work constraints impact CPU

consumption with three pairs of queries: 1) PairA:Q5 andQ8; 2) PairB:Q7 andQ15; and 3) PairC:

QA and QB . PairA consists of two queries that are amenable to incremental executions, which

does not have significant increases in CPU consumption with eager execution. PairB includes

an incrementable query (Q7) and a query that is not amenable to incremental executions (Q15).

71

Finally, PairC has two queries that are less incrementable. For each pair, we fix one query’s relative

constraint to 1.0 (i.e. Q5, Q15, and QA) and change the relative constraint of the other query.

NoShare-Uniform NoShare-Nonuniform Share-Uniform iShare

1.0 0.5 0.2 0.1
Relative Final Work Constraint

0

40

80

120

C
PU

 T
im

e
(s

)

(a) CPU consumption of
Q5 and Q8

1.0 0.5 0.2 0.1
Relative Final Work Constraint

0

50

100

150

C
PU

 T
im

e
(s

) 333.8

(b) CPU consumption of
Q7 and Q15

1.0 0.5 0.2 0.1
Relative Final Work Constraint

0
25
50
75

100
125

C
PU

 T
im

e
(s

)

(c) CPU consumption of
QA and QB

Figure 4.18: Micro benchmarks for queries with varied levels of incrementability and relative
final work constraints

PairA: Q5 and Q8 PairB: Q7 and Q15 PairC: QA and QB

Mean % Mean S. Max % Max S. Mean % Mean S. Max % Max S. Mean % Mean S. Max % Max S.
NoShare-Uniform 0.07 0.01 1.71 0.15 2.77 0.15 21.01 1.40 0.20 0 4.74 0.11
NoShare-Nonuniform 0 0 0 0 5.26 0.56 37.85 2.30 1.53 0.07 14.28 0.69
Share-Uniform 0.58 0.04 7.26 0.57 7.43 0.28 107.97 3.60 0 0 0 0
iShare 0 0 0 0 1.44 0.17 17.09 1.14 0 0 0 0

Table 4.2: Missed latencies of micro benchmarks.
Figure 4.18a shows that the overhead of overly eager execution for Share-Uniform is small,

since Q5 and Q8 are amenable to incremental executions. Thus, Share-Uniform has lower CPU

consumption than NoShare approaches, and a slightly lower CPU consumption than Share-Uniform

due to its nonuniform pace configuration. When we mix a less incrementable query (i.e. Q15) with

an incrementable query Q7 and eagerly execute the incrementable query, Q7, Share-Uniform is

no longer better than the approaches of not sharing. Figure 4.18b shows that, when the relative

constraint is 0.1, Share-Uniform consumes more CPU seconds than NoShare approaches. iShare

can bring the benefit of shared query execution and lazy execution together and, thus, lead to a

lower CPU consumption than the baselines. Finally, mixing two less incrementable queries QA

andQB in Figure 4.18c, we also see that Share-Uniform becomes sub-optimal when either query’s

relative final work constraint is decreased. Here, iShare first shares QA and QB for the relative

constraints 1.0 and 0.5. When the relative constraint is 0.2 and 0.1, it decomposes the shared

plan and executes QA and QB separately, and has similar performance to NoShare-Uniform and

72

NoShare-Nonuniform in these cases. Table 4.2 shows the missed latencies of the three pairs. We

see that all approaches have small missed latencies except the Share-Uniform for PairB because

Share-Uniform executes the non-incrementable query Q15 eagerly.

4.5 Summary

We present iShare as a new optimization framework that exploits heterogeneous latency goals to

judiciously decide what parts of a query to share and how eagerly or lazily to execute different

parts of the shared plan. To address the challenge of a complex optimization space, we propose a

memoization-based algorithm to quickly find the nonuniform pace configuration and a key metric

sharing benefit to decide which parts of a query to share at a low optimization time. Our experi-

ments demonstrate that iShare can significantly reduce CPU consumption for queries with diverse

latency goals compared to the shared query execution using a single pace and two approaches that

execute queries separately.

73

CHAPTER 5

INTERMITTENT QUERY PROCESSING

InQP and iShare assume that the new data arrives in a steady rate. However, we find that in

many applications the new data can arrive intermittently or at a low rate. In these applications,

the query is not necessarily active all the time (e.g. using deferred refresh), and can release some

resources (i.e. memory) during inactivity. Interestingly, we find that the knowledge about the new

data is predictable. Leveraging the predictable knowledge of the estimated size of the new data

and distribution of the relations having new data, we can selectively keep a subset of resources

that can best accelerate the query processing for the new data, and release the others to reduce

memory consumption. Therefore, we propose intermittent query processing (IQP) to exploit the

knowledge of incoming data to accelerate updating the result of a standing query for new new

data with limited memory consumption. We find a few applications exhibiting intermittent and

predictable workloads [64, 107, 83, 29, 92] when the database is used either to analyze data from

external sources or as a component in an analytical pipeline. Here, we describe two representative

applications.

• Late Data Processing: A user wants to query a dataset that is newly collected from external

sources (e.g. sensors). Most data generated for a time interval can be collected under a time

threshold, but due to network disconnection or congestion some data arrives late. The remaining

data will arrive intermittently at a low rate due to long-tail transfer times of Internet traffic [29].

To predict the arrival pattern of missing data, we build the cumulative distribution functions

(CDF) of the arrival time based on historical statistics. With CDFs built, the system can tell the

estimated number of data items to arrive for a time window.

• Data Cleaning: We consider an analytical pipeline between a data cleaning system and a

database. A typical data cleaning process includes two steps: error detection [25] and clean-

ing [83]. Given a dirty dataset, the data cleaning system splits it into the clean partition, which

includes most of the data [83], and the dirty partition. Here, the clean partition can be loaded

74

into a database and is ready for answering queries. Then, the time-consuming cleaning phase

is started on the dirty partition, and inserts the cleaned tuples into the database at a low rate. In

fact, our experiment in Section 5.4.3 shows that cleaning 1 GB data can take hours for a state-

of-the-art data cleaning system. For this application, the arrival rate of cleaned tuples for each

relation is predictable because the data cleaning system provides the database the information of

the relations it is cleaning and the estimated cleaned tuple rate.

IQP integrates three components: a policy component, a query execution engine, and a planner.

After a user submits a long-term query and receives an initial query result, the policy component

repeatedly schedules the intermittent execution to refresh the query result. Each intermittent ex-

ecution is defined by a trigger event that determines when to update or refresh the query result,

the estimated size of new data for each relation, and how many resources are available to prepare

for future updates. An event policy can trigger intermittent execution in several ways, such as

periodically or by a predefined number of new tuples. After the initial query processing or each

intermittent execution, the planner component uses the knowledge of the next trigger event to build

a new execution plan for the query execution engine that meets the resource usage constraint. With

this new physical plan, the query execution engine makes the query inactive by releasing resources

(i.e. memory) to explicitly control the amount of resources used during inactivity. When the query

re-activates, the query execution engine uses IVM algorithms to incorporate new data (a delta in

IQP) to refresh the result. Afterwards, the query execution will either terminate or inactivate if

another delta is expected, with the process repeating until termination.

IQP introduces a novel planner that couples policies with query processing engines. The plan-

ner builds a query execution plan based on knowledge of trigger events. We propose DISS (Delta-

oriented Intermediate State Selection) to prototype this planner. DISS generates a specification of

a subset of intermediate states to persist by the query execution and reuse when processing and

incorporating a delta into the prior result. Examples of such state include hash tables for joins

and aggregations, as well as materialized relational operators. DISS addresses the key challenge

of how to selectively keep the optimal subset of intermediate states according to intermittent delta

75

prediction to minimize query refresh latency while meeting a memory budget.

The major contributions of IQP include:

• We propose intermittent query processing (IQP) to efficiently support querying an incom-

plete dataset with predictable and intermittent arrival patterns by exploiting information of

trigger events.

• We design a prototype DISS that can select intermediate states to keep in memory to mini-

mize delta processing time with constrained memory consumption.

• We implement DISS on top of PostgreSQL 10 and perform extensive experiments to eval-

uate its efficiency. Compared with batch processing and an incremental view maintenance

system, we have remarkable performance improvements and significantly lower memory

usage.

Chapter 5.1 provides an overview of DISS. We present our intermediate states selection algo-

rithm, and its extensions and system optimizations in Chapter 5.2 and Chapter 5.3 respectively.

After, we discuss the prototype implementation and its evaluation in Chapter 5.4.

5.1 DISS Overview

In this section we discuss major components of DISS and a query life cycle, as shown in Fig-

ure 5.1. The key component for DISS is the dynamic programming (DP) algorithm of the planner

that runs between the policy component and query execution engine to select intermediate states

for processing deltas with a memory budget. This algorithm has a linear running time with respect

to the number of intermediate states and can inject new operators into the plan. Specifically, our

algorithm considers three types of intermediate states: i) data structures along with intermediate

tuples that are maintained by blocking operators, with state that is materialized during query pro-

cessing; ii) intermediate tuples generated by each operator but not materialized (i.e. pipelining);

iii) data structures that are not generated but may help upcoming delta processing (e.g. additional

hash tables for symmetric hash join).

76

End User

Incomplete Dataset

Terminate Query DISS

Refreshed Result

Operator with Intermediate State Marked as Dropped Operator with Intermediate State Marked as Kept in Memory

Old Plan New Plan

Policy Component

Query Execution Engine

Planner (DP Algorithm)

External Data Source

Trigger Event

Plan from
physical engine

Information about
the next delta

Estimate the
next delta

New plan for
physical engine

Insert new data

Monitor the
next delta

12

1 23

4

6

7

8

9

5

10

11

Figure 5.1: IQP Prototype Overview

DISS initially uses batch processing to execute a query over an incomplete dataset with major-

ity of the expected data present, and uses delta processing to incorporate one or more data deltas

into the prior query result. Figure 5.1 shows an overview of a query life cycle. A user first issues

a query to DISS 1 , where the policy component triggers one query execution over an incomplete

dataset 2 . The query is compiled and generated into a query plan as a tree of operators. Before ex-

ecuting the query, the planner uses our core DP algorithm to determine the intermediate states that

should be kept subject to a memory budget. It first extracts the query plan from query execution

engine 3 , and then obtains the information from the policy component 5 according to the delta

prediction model 4 . The DP algorithm marks a subset of intermediate states of the query plan

for the execution engine to keep 6 . The query engine, based on canonical IVM algorithms [14],

executes the plan and returns an initial query result to the end user 7 . After that, we persist the

intermediate states that are marked as kept in the query plan and drop the rest. When new data

is added to the database 8 , the policy component monitors the new data 9 and creates a trigger

event based on a defined policy 10 . If another delta is expected, DISS repeats the DP algorithm

and generates a new plan; otherwise, we use the same plan. DISS then runs this plan to return

a refreshed result to the user 11 . This process repeats either the dataset is complete or the user

terminates the query 12 .

77

Hash

Hash

𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑂𝑟𝑑𝑒𝑟𝑠 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

(a) Original query plan

Hash

Hash

𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑂𝑟𝑑𝑒𝑟𝑠 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

(b) Delta from Lineitem

Hash

HashHash

𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑂𝑟𝑑𝑒𝑟𝑠

Hash

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

(c) Delta from Customer

Figure 5.2: Examples of Intermediate State Selection

5.2 Delta-oriented Intermediate State Selection

In this section, we introduce the intermediate states selection algorithm for DISS. Materializing

intermediate states and auxiliary data structures speeds up delta processing, but comes with the

cost of higher memory consumption and longer initial batch processing time. To strike a bal-

ance between batch processing and delta processing, we carefully persist a subset of intermediate

states and build optional auxiliary data structures when necessary. This is enabled by our dynamic

programming algorithm that considers the cost of batch processing and delta processing together

based on the predicted information about the next delta. Our algorithm currently does not consider

using a different join order from the one generated by the database query optimizer: for this work

we assume that majority of the data for relations exists for the initial query and we use the plan that

is optimized for the initial data. Thus, we leave adaptive query execution for future work. Since

the applications we have discussed so far are insert-only workloads, our algorithm discussion in

this section only considers insert-only deltas, and we discuss how to process deletes and updates in

Chapter 5.3. In this section, we propose our dynamic programming-based optimization algorithm

that handles one delta at a time, and discuss the case of processing multiple deltas in Chapter 5.3.

We begin with a motivation in Chapter 5.2.1, present an overview of DISS in Chapter 5.2.2, and

elaborate on the algorithm in Chapter 5.2.3.

78

5.2.1 Motivation

We propose an IQP system DISS (Delta-oriented Intermediate State Selection) that considers using

a limited memory budget to store a subset of intermediate states for efficient delta processing. In-

termediate states are critical to the performance of delta processing and a major source of memory

consumption. Consider a simple example query shown in Figure 5.2a: Lineitem ./ (Orders ./

Customer) implemented using hash joins. During the batch processing, the hash table is built

for the right sub-tree, and the left sub-tree probes the hash table. If the delta only includes data

for Lineitem (i.e. Figure 5.2b), keeping the top hash table (colored in Figure 5.2b) is enough to

process this delta efficiently without recomputing Orders ./ Customer, and we can discard the

other hash table. However, if the delta only comes from Customer, these two hash tables cannot

help delta processing as we need to re-scan Lineitem and Orders. This motivates us to consider

building new intermediate states for delta processing. Figure 5.2c shows a possible solution using

symmetric hash joins [101] (if we know delta only includes data for Customer). During the batch

processing, we build two new hash tables for Lineitem and Orders. After that, we discard two

hash tables (not colored in Figure 5.2c) and keep the other two (colored in Figure 5.2c) assuming

the memory budget permits. Building new intermediate states comes with additional cost. DISS

provides a holistic solution to choosing which intermediate states to keep, and if necessary where

to build new states.

5.2.2 DISS Overview

In this subsection, we give an overview of DISS. It takes several inputs: a query plan (e.g. tree of

relational operators) T, meta-information of all intermediate states, a cardinality estimator, and an

operator cost estimator (from the conventional RDBMS that executed batch processing), a memory

budget M, and prediction of the next delta (i.e. the numbers of new tuples for each base relation).

Note that we currently use a static memory budget M set by a user, and leave dynamic memory

budget allocation for future work. Similar to classical query optimization, we run the optimization

algorithm as if the cardinality estimates are accurate and the predicted delta position/sizes are pre-
79

cise; With this information, DISS solves the problem of selecting a subset of intermediate states

to persist, where the sum of their sizes is within the budget M, such that the summation of delta

processing time and the overhead of materializing new operators (based on the estimator) is mini-

mized. The query is compiled into a tree of operators and each operator may include intermediate

states. Using DISS to select the optimal set of intermediate states includes four steps.

In the first step, DISS obtains the prediction about the next delta, including which base rela-

tion(s) it belongs to and the number of new tuples. Then, DISS propagates the delta information

from base relations to the top operator such that each operator knows the cardinalities of (delta) tu-

ples from its child subtrees when the delta will be processed. DISS reuses the cardinality estimator

from the underlying RDBMS (that handles batch processing).

After, for each operator DISS estimates the operator’s query processing time using the RDBMS’

cost estimator. We may apply one of several actions on each operator. For example, a join operator

may only contain a hash table for the right child. Thus, there are at least four state configurations

on the hash table: drop it; keep it; drop it and build a left one; keep it and build a left one. We

need to choose exactly one action for each operator, and each action incurs a different time cost

(for processing deltas) and memory cost.

Finally, the cost information and the query operator tree are used by our core dynamic pro-

gramming algorithm to decide which intermediate states to keep (if they will be built by the batch

processing) or build (if batch processing does not build them). As in conventional RDBMS query

optimization, we use a normalized processing time that combined both the main-memory process-

ing time and I/O time into a unified metric.

5.2.3 DISS Algorithm

Here, we discuss how to choose a subset of intermediate states to keep, and build new intermediate

states if necessary based on one predicted delta, a memory budget M, and a query plan tree T gen-

erated by the query optimizer. Without loss of generality, each tree vertex is a relational operator

op which has one child op.c or two children op.l, op.r. For each operator op, we also consider it

80

Table 5.1: Notation Table

Notations Meaning
|R| size for relation R (also costs for read/write R)

M memory budget for IQP
T query plan tree
op an operator (vertex) in T

op.c unary operator op’s (single) child
op.l, op.r binary operator op’s two children

op⇓ a subtree of plan T: op and its descendants
D the dataset (for batch processing)

∆D the new dataset (for delta processing)
D+D ∪∆D
Q a query (explicitly given or induced by op⇓)

RQ(D), RQ(D)

RQ(∆D), ∆RQ(D+)−Q(D) (not Q(∆D))
RQ(D+), R+Q(D+)

Dop(m) min. cost for op⇓ to emit ∆R (c.f. Ch. 5.2.3)
Fop(m) min. cost for op⇓ to emit R+ (c.f. Ch. 5.2.3)

Cop(d), C(d)
cost for processing data d (d = D, ∆D, or D+)
(estimated by RDBMS’ cost estimator)

as a query, which is made of op and its descendants. For simplicity, we use op(D) to denote the

evaluation of op and its descendants on dataset D. We summarize our notations in Table 5.1.

Pre-processing

Before working on the problem of selecting the optimal subset of intermediate state to build or

keep for a future delta, the system is ready to process the query on the existing set of data (batch

processing). Thus, for each operator op, we know the (estimated) cardinality of its output. We also

know the cardinality of each base relation’s delta (from the delta predictor). For pre-processing, we

propagate the delta cardinality information to each operator, so we know each operator’s input(s)’

sizes, which will be used in the next step. We delegate the delta cardinality estimation to the

RDBMS’ cardinality estimator.

81

Problem Definitions

Generally, for each query Q, dataset D, and a delta dataset ∆D, there are two ways to compute

the query result on the union of D and ∆D: re-computation Q(D+) where D+ = D ∪ ∆D,

and incremental computation, which finds a query Qincr(D,∆D) such that Q(D+) = Q(D)⊕

Qincr(D,∆D). For performance, ideally incremental computation is faster than re-computation.

However, incremental mechanisms do not always accelerate computation due to two possible rea-

sons.

First, in some cases fully supporting incremental computation requires persisting intermediate

states. It comes with extra cost and can make the incremental approach less efficient compared to

re-computation. Consider joining two sub-trees L and R using a simple hash join, which builds

one hash table for one of its two sub-trees (assuming R) and uses the result pulled from the other

sub-tree (i.e. L) to probe the hash table. To enable full incremental computation for deltas from L

and R, the hash join operator needs to persist hash tables for both sub-trees and the output result

of this hash join. The extra overhead of building one more hash table (i.e. for L) and materializing

the output result might be larger than the cost of re-computation, which includes re-scanning from

the sub-tree L and performing the join with the hash table of R.

Second, as discussed previously, since the deltas arrive in an intermittent way, the system may

not have sufficient memory to keep all intermediate states for all concurrent standing queries that

are waiting intermittent deltas. Thus, we have to drop some intermediate states, and incremental

computation may be slower than the re-computation due to lack of necessary intermediate states.

Therefore, since incremental computation is not always the faster choice for all operators, each

operator needs to choose what kind of input it needs from its child operators depending on that

this operator chooses re-computation or not. Informally speaking, it may only need to see the

“new” input (generated due to the arrival of delta) or ingest the “full” input (a combination of the

“new” input and previous inputs). Thus, for each operator op, we consider the costs of two output

requirements. One is how efficient can op output a delta output (defined asRop(∆D) = op(D+)−

op(D)); the other is how efficient can op output a full output (defined asRop(D+) = op(D∪∆D)).

82

Algorithm 4: Memoization-based Dynamic Programming
Parameters : operator op, memory budget m

1 if Dop(m) and Fop(m) have been processed then

2 return the result from memoization

3 for op’s all available action act do

4 Dop(m) = Fop(m) =∞
5 if act is applicable under current setting then

6 Dop(m) = min(Dop(m), cost according to act)

7 Fop(m) = min(Fop(m), cost according to act)

8 end

9 memoize Dop(m) and Fop(m)

We emphasize that, depending on the actual costs, a full output can be computed incrementally and

a delta output can be computed by re-execution as well.

Based on this observation, we define two cost functions. Assume the memory budget for

operator op⇓ (op and its descendants) is m (0 ≤ m ≤ M). Dop(m) is the minimum cost for op⇓ to

emit delta output Rop(∆D). Similarly, Fop(m) is the minimum cost for operator op⇓ to emit full

output Rop(D+).

Recursive Dynamic Programming

We introduce a memoization-based top-down dynamic programming algorithm. Assume the op-

eration root is the root of query plan T, the better (smaller) solution of Droot(M) and F root(M)

is the solution of the intermediate state selection problem. For any operator op and a budget m,

to compute Dop(m) (or Fop(m)), we need to recursively calculate Dop′(m′) and/or F op′(m′) for

op’s descendant op′ and a budget m′ ≤ m. Throughout the recursive computation process, we

memoize all results for Dop(·) and Fop(·), so we can reuse the existing results if we need them

later. This top-down memoization process is equivalent to a bottom-up dynamic programming.

We present the former for better clarity, and analyze the complexity of our algorithm later. We

emphasize that our algorithm is different from classical query optimization dynamic programming

algorithms [86] in that we consider the cost of batch processing and delta processing together with

83

an memory constraint rather than just the batch processing time.

In our recursive algorithm, we focus on one operator at one time. Each operator has several

action templates (actions for short). For an operator op, each action corresponds to one configu-

ration of op’s intermediate states and/or auxiliary data structures. For example, for a sort operator

one action is to keep the sorted result, and another is to drop the sorted result. Each action includes

a constraint indicating when this action is applicable based on a memory budget and is associated

with two formulas Dop(·) and Fop(·), which represent the cost of computing the delta output ∆D

and full output D+ respectively. An example of action is illustrated in Action 1.

We assume a pipelined query execution engine, and consider injecting new operators (e.g.

Materialize) or building new data structures (e.g. hash table) for fast delta processing if necessary.

DISS currently supports the following operators:

• Scan including sequential scan, and index scan

• Materialize

• Sort

• Join1 including hash, sort-merge, and nested loop join

• Aggregate including hash aggregate and sort aggregate

We briefly introduce these operators and the corresponding actions. It is straightforward to extend

our DISS solution to support more operators or more actions. We illustrate the framework of our

dynamic programming solution in Algorithm 4, and discuss each action as follows. For simplicity,

the following discussion considers the first delta after the initial batch processing. In this case,

the DP algorithm generates a specification of which intermediate states to materialize. According

to this specification, the query plan in the batch phase is modified to materialize or build new

intermediate states that do not exist in the original plan. After batch processing, a delta plan is

generated by keeping and discarding corresponding intermediate states based on the specification.

Processing successive deltas is similar.

1. Our current design only considers inner joins.

84

Action 1: No MaterializationOperator: Materialize
Applicable: Always

Cost:
Dop(m) = C(∆D) +Dop.c(m)
Fop(m) = C(D+) + Fop.c(m)

Action 2: Keep MaterializationOperator: Materialize
Applicable: |R| ≤ m

Cost:
Dop(m) = Cmat(R) + C(∆D) +Dop.c(m− |R|)
Fop(m) = Cmat(R) + C(∆D) +Dop.c(m− |R|)

+Cscan(R)

Scan (including Projection and Selection): Scan is a leaf operator, it performs projection and

predicate filtering for tuples scanned from base relations. Since we assume a pipelined execution

engine, a scan operator does not maintain any intermediate state. To avoid re-scanning the base

relations during delta processing, we can inject a materialize operator as its parent.

Materialize: A materialize operator op can be inserted as the parent of an operator to materialize

their output tuples, which will be used for future delta processing. There are two actions: no op-

eration (i.e. do not materialize, Action 1), and materialization (Action 2). If we do not materialize

these tuples in the batch processing, the cost of evaluating op over either delta data ∆D or full data

D+ (i.e. Dop(m) orFop(m) in Action 1) includes the cost of pulling the corresponding result from

its child (i.e. Dop.c(m) or Fop.c(m)) and the cost of delivering them to its parent operator C(·). If

the memory budget m is sufficient to keep R (the query result of op) in the batch processing, we

can choose to keep it for more efficient delta processing. In this case, we need to pay an additional

cost of materializing R (i.e. Cmat(R) in Action 2). Here, if its parent operator asks for delta result

∆R, the time Dop(m) in Action 2 includes the materialization time Cmat(R), the time of pulling

delta result from its child Dop.c(m − |R|), and delta processing C(∆D) time. If the upper layer

operator asks for a full re-evaluation R+, the time Fop(m) in Action 2 for emitting full result R+

needs to additionally account for the time of scanning the materialized result Cscan(R).

We note that a materialize operator only applies to child operators when a new delta can be

merged with the previous output straightforwardly without additional effort, that is, the output

only requires bag semantics. For child operators that require richer semantics, such as a sorted

output, this materialize action does not apply, and a specialized materialize action is required (i.e.

Action 3).

85

Action 6: Keep Right Hash Table OnlyOperator: Hash Join
Applicable: |Rr| ≤ m (|Rr| is right hash table’s size)

Cost:

Dop(m) = min
0≤ml≤m−|Rr|

ml+mr=m−|Rr|

F l(ml) +Dr(mr)︸ ︷︷ ︸
pull from both sub-trees

+ CB(∆Dr)︸ ︷︷ ︸
hash table for ∆Dr

+CHJ(∆Dl, Dr ∪∆Dr)︸ ︷︷ ︸
left delta

+CHJ(Dl,∆Dr)︸ ︷︷ ︸
right delta

Fop(m) = min
0≤ml≤m−|Rr|

ml+mr=m−|Rr|

F l(ml) +Dr(mr)︸ ︷︷ ︸
pull from both sub-trees

+ CI(∆Dr, Dr)︸ ︷︷ ︸
insert ∆Dr into right hash table

+CHJ(Dl ∪∆Dl, Dr ∪∆Dr)︸ ︷︷ ︸
full hash join

Action 3: Keep SortOperator: Sort

Applicable: |R| ≤ m

Cost:

Dop(m) = C(∆D) +Dop.c(m− |R|)

Fop(m) = C(∆D) +Dop.c(m− |R|)

+Cmerge(∆R,R)

Sort: A sort operator outputs sorted tuples. The drop action of a sort operator is similar to Action 1,

where theC(·) represents the time of sorting data pulled from its child operator and delivering them

to its parent operator. We omit the drop action for space. If the memory budget m is sufficient to

keep the sorted intermediate result R, we can apply keep action shown in Action 3. Here, keeping

the intermediate result does not introduce additional time cost because the sort operator is part

of the original batch processing. Therefore, the cost of emitting the delta result ∆R for a sort

operator (i.e. Dop(m) in Action 3) includes the cost of pulling delta result from its child operator

(Dop.c(m−|R|)), and the cost of computing the delta result C(∆D). If the operator is expected to

output the full result R+, the keep action needs to account for the cost of merging of sorted result

∆R and the sorted (i.e. R Cmerge(∆R,R)).

Action 4: Drop AggregationOperator: Aggregate

Applicable: Always

Cost: Dop(m) = Fop(m) = C(D+) + Fop.c(m)

Action 5: Keep AggregationOperator: Aggregate

Applicable: |R| ≤ m

Cost:
Dop(m) = C(∆D) +Dop.c(m− |R|)

Fop(m) = C(∆D) + Cscan(R) +Dop.c(m− |R|)

Aggregate: Before introducing DISS for an aggregate operator, we note that the aggregate operator

is not a monotonic operator, even if the aggregate function itself is mathematically monotonic.

Informally speaking, if an operator is monotonic, one delta (i.e. new tuples) only generates zero
86

or more extra output tuples. However, an aggregate operator may introduce extra tuples, and

remove existing ones: assume the SUM-aggregated result contains a tuple (’Tom’, 15), so a

delta (’Tom’, 3) turns the previous tuple into (’Tom’, 18). We define the delta result ∆R

contains these two tuples with appropriate annotations.

An aggregate operator can be implemented in hash-based or sort-based approaches. For the

former, a hash table is built with group-by ID as the key and aggregated value as the value. For each

tuple from an aggregate operator’s child’s output, a hash aggregate operator identifies its group-by

ID and incorporates that tuple into the aggregated value. A sort aggregate operator assumes tuples

from the child operator are already sorted by the group-by ID. It scans the tuples and aggregate

numerical values that share the same group-by ID. We use hash-based aggregate as an example,

while our two actions apply on both aggregate methods.

If we discard the intermediate state, regardless whether the operator is supposed to output a

delta output ∆R or a whole output R+, the aggregate operation has to redo the whole aggregate

process to generate the positive tuples (that are new due to deltas) and the negative tuples (that shall

be removed due to deltas). Thus, the cost of computing the delta and full output (i.e. Dop(m) and

Fop(m) in Action 4) equals the cost of pulling the full output from descendant operators Fop.c(m)

and redoing the aggregate C(D+).

If we keep the intermediate state (the hash table), for each new tuple, we use its key to look

up in the hash table. Based on the existing aggregated tuple and the new tuple’s value, we can

calculate the new aggregated value. Thus, the cost of generating the delta output of the aggregate

operator (Dop(m) in Action 5) includes the cost of processing the delta input C(∆D), and the cost

incurred by the descendant operators Dop.c(m − |R|). Similarly, if we aim at the whole output

(Fop(m) in Action 5), we only need to merge new tuples into the hash table and scan the whole

table (i.e. Cscan(R)).

All the above discussions about aggregate functions assume the aggregate function f is “incre-

mentable”: in order to compute X = f(a1, a2, . . . , an), we can find two functions g and h such

that X = h(g(a1, a2, . . . , an−1), an). Most of SQL’s standard aggregate functions have this nice

87

property: when f is MIN, g and h is MIN as well; when f is STDDEV, g and h are not STDDEV, but

some simple arithmetic functions (sum and sum of squares). However, if the aggregate function f

is a user-defined function (UDF), it is not trivial, or even impossible to find the corresponding g

and h, or g and h are not efficient. Therefore, to process the UDF-aggregate the default action is

redo, unless the user hints otherwise.

Hash Join: DISS supports hash join2, nested-loop join, and sort-merge join. We only discuss hash

join here as nested-loop and sort-merge join operators do not persist intermediate states, but let

their child operators do this job (i.e. sort operators for a sort-merge join and materialize operators

for nested-loop join). In the following discussion, for a join operator op we use subscripts l and r

to denote its left and right child operators, as well as other values associated with two sub-trees.

For example, op.l is the op’s left child, Dl is the data associated with the left sub-relation, query

result of left sub-tree Rl is op.l(Dl). For this discussion, CB(D) is the estimated cost of building

hash table for dataset D, CI(∆D,D) represents the estimated cost of inserting the result of ∆D

into the hash table for D, and CHJ (DL, DR) denotes the estimated cost of scanning tuples from

DL and probing them to the hash table for DR.

For a hash join operation, a hash table is built on one of two joined sub-trees’ keys. After the

hash table is built, the hash join iterates through the tuples from the other sub-tree and probes the

hash table based on join keys. Without loss of generality, we assume the hash table is always built

for the right side. Here, it is easy to incrementally process deltas from the left side (given the right

hash table is built), but processing deltas from the right side requires recomputing the full result

from the left sub-tree. To address this issue, our algorithm additionally considers building left hash

table if necessary (also known as symmetric hash join [106]). Therefore, we discuss three actions:

keep the right hash table only, keeping the right hash table and building a left one, and drop both.

Other possible actions, including building the left hash table and dropping the right one, can be

handled in a similar approach. Throughout the discussion, we assume that both sides have deltas,

2. We currently only support simple hash-join as we only persist intermediate state in memory, but nothing in our
approach limits supporting other hash join algorithms.

88

and other cases (e.g. only left side has delta) can be easily derived from this one.

We begin with discussing the case of keeping the right hash table only. The cost of computing

the delta result and full result is shown in Action 6. The cost of computing the delta result (i.e.

Dop(m)) includes four parts:

• Pulling full output from the left sub-tree and delta output from the right sub-tree. To find

the minimum cost, we need to enumerate all possible memory allocation of the remaining

memory budget m − |Rr| into two sub-trees (i.e. ml and mr). The cost for this part is

F l(ml) +Dr(mr).

• Afterwards, we build a hash table for the right delta ∆Dr, which is used to process the data

pulled from the left sub-tree. The cost for building this hash table is CB(∆Dr).

• Next, we begin the join process for the left delta ∆Dl. It joins with Dr ∪ ∆Dr using the

right hash table we have kept and the newly built hash table in the last step. The cost here is

CHJ (∆Dl, Dr ∪∆Dr).

• Finally, the right delta ∆Dr joins withDl by scanningDl and probes the hash table of ∆Dr.

The cost of this part is CHJ (Dl,∆Dr).

The cost of computing the full result (Fop(m) in Action 6) is similar toDop(m). We first insert

the right delta into the right hash table (i.e. CI(∆Dr, Dr)). Then we join the full result pulled from

the left sub-tree with this hash table via the hash join.

Next, we discuss the case of building a left hash table and keeping the right table at the same

time. Since the left hash table is not originally built in the batch processing, building it costs

CB(Dl) for either computing the delta output or full output. If the operator needs to compute the

delta output, the right delta ∆Dr is first inserted into the right hash table, and probes the left hash

table. The left delta then joins with the right hash table as well. If the operator need to emit the

full result, we also insert the right delta ∆Dr into the right hash table and probe it by scanning the

left hash table and the left delta. We omit the action description for space limits.

The final action is to drop the right hash table. In this case, we do not keep any intermediate

89

states, so we need to recompute the join. We pull full results from both sub-trees, build a hash table

for the right sub-tree, and use the left full result to probe it. Its action description is similar to the

previous two and we omit it here.

Computational Complexity

The time complexity depends on two factors: the number of operators and the complexity for

applying actions for each operator. In our algorithm, each operator takes a memory budget m

(0 ≤ m ≤ M) as input and evaluates all associated actions. The number of different budgets

depends on the granularity of budget: if M =1 GB, we could use Byte as the basic unit of memory,

or round each intermediate state’s size up to the nearest MB. Assuming there are M budget units

and the query plan tree has N operators, the computational complexity of applying actions of all

operators is O(NM). The computational complexity for each action depends on the action itself.

For all the actions except join, their computational complexities are O(1). The time complexity

for join operators is O(M) because they require enumeration on the memory allocated to each

sub-relation. Thus, the overall complexity is O(NM2).

5.3 Extensions and Optimizations

In this section we describe how to extend DISS to support updates and deletes, multiple subsequent

deltas, and optimizations for our DP algorithm.

Processing Deletes and Updates: As one update can be modelled as a delete and an insert, we

only discuss how to process deletes here. To extend our framework to support deletes, we require

that the underlying IVM system can incrementally process deletes, and estimate the corresponding

cost, cardinality, and selectivity. Here, cost formulas in each action should be modified to consider

the cost of deletes. We modify the underlying IVM system to support deletes for the operators we

have discussed so far. Due to space limits, we only discuss an IVM algorithm of processing deletes

for symmetric hash join, and use it as an example of explaining how to support deletes in DISS.

90

For other IVM algorithms for processing deletes, we refer the reader to a comprehensive survey on

materialized views [24].

Each delete is represented as a new tuple with an additional flag field indicating the deletion.

Processing a new tuple for symmetric hash join includes two basic steps: 1) maintaining the hash

table that is built on the same side where the new tuple comes from, and 2) probing the hash table

of the other side to generate new tuples. For the first step, one delete needs to delete the tuple of

the hash table on the same side. It finds the corresponding bucket of the hash table and scans the

list of tuples associated with that bucket to find the exact tuple to delete. Its cost could be higher

than inserting a new tuple because for insert operation, once the right bucket is found, the inserted

tuple is added to the list of tuples for that bucket without scanning it. Therefore, the corresponding

cost formulas are modified to account for this cost. For example, for Fop(m) in Action 6, if the

delta includes deletes, we need to split the cost of inserting a delta into the right hash table (i.e.

CI(∆Dr, Dr)) into two parts, where one represents the cost of inserts and the other represents the

cost of deletes. For the second step, the cost of generating new tuples for a delete by probing the

hash table of the other side is the same as an insert. Other operators discussed in Chapter 9 can be

supported in a similar way.

Multiple Deltas: Until now we only consider one delta at one time, containing tuples for one

or more relations. In practice, there will likely be multiple deltas. For this case, there are two

possible solutions. If we are able to predict multiple deltas together in the future, we can extend

our DP algorithm to minimize the running time of batch processing and multiple delta processing

as a whole. However, this approach makes computational complexity of the DP algorithm too

high. For one delta, each operator needs to find the minimal cost of computing delta output (i.e.

Dop(m)) and the minimal cost of computing full output (i.e. Fop(m)). If we consider K deltas

together, all possible output combinations for K deltas are O(2K), and computing the cost for one

possible combination is K. Combined with the complexity for one delta, the complexity for K

deltas is O(K2KNM2). Therefore, we choose an alternative way of applying our DP algorithm

for one delta at a time. Specifically, we choose to select a new subset of intermediate states to

91

persist and build if the predicted next delta is different from the current delta (i.e. the sizes of

new tuples for base relations). Otherwise, we use the same plan. We emphasize that to determine

the intermediate states for the next delta, we run our algorithm before processing the current delta

because we can only build intermediate states, if any, while we process the current delta (or initial

data).

Accelerating DP Algorithm: Here we propose an optimization of our DISS algorithm. The opti-

mization is based on an observation that intermediate states’ sizes are usually sparse, so the optimal

intermediate states usually stays the same when the memory budget does not change drastically.

Although theoretically there are M possible values, in practice the number of distinct Dop(·) and

Fop(·) is far less than M .

We exploit the sparsity of unique Dop(·) and Fop(·) values to optimize our algorithm. The key

observation is that both Dop(·) and Fop(·) are non-increasing monotonic functions with respect to

memory budgets. Therefore, instead of computing cost values from child operators for all possible

memory budgets from 0 to M , we run a binary search of memory budgets. Specifically for each

operator, we start with computing its cost values with the memory budget 0 and M respectively. If

they have the same value, the costs with memory budgets between 0 and M are the same and we

do not need to compute them from child operators; otherwise, we divide this range [0,M] into two

equal ones and repeat the aforementioned process to compute the two separate ranges until all cost

values are computed for this operator.

5.4 Experiments

Our experimental study addresses the following questions:

• How much does DISS lower delta processing latency and memory consumption compared

with IVM and (re-)batch processing under IQP applications? (Section 5.4.3)

• What is the impact of delta prediction quality on DISS performance? (Section 5.4.4)

• How does DISS’s dynamic programming algorithm gracefully trade memory consumption

92

for efficient delta processing compared to greedy algorithms? (Section 5.4.5)

• What is the benefit and cost of injecting operators or building new states (i.e. MATERIALIZE

and SYMMETRIC HASH JOIN) into the query plan? (Section 5.4.6)

• How much does DISS lower delta processing time in workloads with deletes? (Section 5.4.7)

We evaluate the performance of DISS on a machine with two Intel Xeon Silver 4116 processors

(i.e. 2.10GHz), 192 GB of RAM, and Ubuntu 16.04 operating system. For all experiments we

report single threaded query execution with no concurrent requests.

5.4.1 Prototype Implementation

We implement the DISS prototype in PostgreSQL 10. When a query is issued to DISS, it uses

the query optimizer of PostgreSQL to process this query and generate a query plan. DISS then

obtains information about new data from a delta predictor without requiring any user specification.

DISS periodically asks for information about the next delta that specifies how many new tuples

are expected to arrive for each incomplete table and whether that table will be complete after the

next delta. We discuss two scenarios of obtaining such information in Section 5.4.3. After, we use

DISS to choose intermediate states to keep (and to rebuild). Intermediate states that are marked

as kept will be materialized during the initial query processing. Specifically, if DISS chooses to

materialize the output tuples of an operator it inserts a Materialize node, and if DISS chooses

a symmetric hash join it adds a Hash node. DISS adopts the execution engine of PostgreSQL

to run this modified query plan over the incomplete dataset and when it finishes, DISS discards

unnecessary intermediate states and waits for a delta. We also modify PostgreSQL to keep the

query alive after the initial query result is returned and the client is able to refresh the query result

when the next delta is processed.

We generate delta tuples using INSERT SQL statements of PostgreSQL. We modify the insert

operation such that it not only inserts tuples into the database, but also notifies the queries (e.g. a

delta log [41, 24]). For this prototype, each query monitors the number of delta tuples and when

93

it exceeds a threshold or when an pre-defined time elapses, delta processing is triggered. DISS

repeats the aforementioned process to generate a modified query plan that specifies the intermediate

states to persist, and delegate query processing to PostgreSQL. During delta processing, we use

our modified operators (based on the implementation of PostgreSQL) to incrementally process

delta tuples or re-generate full output from child operators. The query terminates when the delta

predictor informs that there will be no additional deltas.

We compare DISS against a state-of-the-art IVM system, DBToaster [5], that supports con-

tinuous query processing. Different from DISS, which selectively materializes intermediate states

by considering intermittent and predictable arrival patterns, DBToaster recursively maintains all

higher-order views (i.e. intermediate states with indexes) to support frequently refreshing query

results in response to high-velocity data streams. To make a fair comparison of the query execution

plan between DISS and DBToaster, we migrate DBToaster’s query plans to PostgreSQL (denoted

as DBT-PG). This includes which intermediate states to materialize and physical execution steps of

maintaining those intermediate states for each new tuple. DBToaster uses hash join as its physical

join operator implementation. We use TPC-H Q3 to explain the execution of DBToaster in Post-

greSQL. Q3 joins three relations Lineitem ./ Orders ./ Customer. The recursive view mainte-

nance algorithm of DBToaster not only builds hash tables for Lineitem, Orders, and Customer,

but also builds hash tables for Lineitem ./ Orders and Orders ./ Customer. To process a new

tuple from Lineitem, DBToaster joins it with the hash table for Orders ./ Customer, and also

inserts it to related hash tables such as the ones for Lineitem and Lineitem ./ Orders. Process-

ing tuples from Orders and Customer follows the similar steps. This approach has the benefit

of reducing the number of joins for maintaining the final join results, but comes with the cost of

maintaining additional materialized views.

Our experiments also include a conventional batch processing in PostgreSQL. After the initial

query processing or each delta processing, it discards all intermediate states and re-computes on

arrivals of deltas. Note that this is how PostgreSQL supports refreshing materialized views [2]. We

denote this as ReBatch in our tests.

94

5.4.2 Benchmark Setup

Our experiments use the TPC-H benchmark, a decision support benchmark that analyzes the activ-

ity of a wholesale supplier, and join ordering benchmark (JOB) [62] that is built on IMDB datasets

to test queries with many joins (i.e. up to 16-way join). Our current prototype supports flat select-

project-join-aggregate (SPJA) queries, which covers 11 queries of TPC-H and all 33 queries of

JOB. We generate an incomplete dataset by removing some portion of tuples from the complete

dataset and then insert them back as deltas. We build a primary index for each relation in TPC-H

and JOB. We assume small dimension relations including REGION and NATION are always com-

plete for TPC-H and relations having less than 10,000 tuples are always complete for JOB. We use

a dataset with scale factor 5 for TPC-H since DBT-PG exceeds memory limitation on larger scale

factors on our test machine. We also test a large scale factor (SF=50) in a larger machine and find

they result in similar observations, which we omit here due to space limits. JOB includes 21 IMDB

tables with 4.3 GB of data in total. In our experiments, we run each test three times and take the

average number. For experiments of DISS, DBT-PG, and ReBatch, we use hot start, which means

all base tables are either in buffer pools or OS caches.

5.4.3 IQP Use Scenarios

We verify the performance of DISS on two representative scenarios: late data processing and data

cleaning. For each scenario, we explain how to predict delta information and discuss experiment

setups and results.

DISS with Late Data Processing

We consider a scenario where a dataset is collected from external sources (e.g. sensors), and users

demand the refreshed results periodically. While most data arrives on time, some data items can

be delayed due to network conditions (i.e. long-tail network traffic). In this application, we can

predict the arrival pattern of missing data using historical statistics.

95

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
0

20

40

60
Ti

m
e

(s
)

XDNF 79s 250s

Batch (100%) ReBatch DBT-PG DISS

(a) Execution time of initial query processing.

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
0

1

5
10

50
100

Ti
m

e
(s

)

XDNF

ReBatch DBT-PG DISS

(b) Average execution time of delta processing.

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
0

50

100

150

200

250

Ti
m

e
(s

)

X
DNF 330s

X
DNF

X
DNF

X
DNF

X
DNF

X
DNF

Batch (100%) ReBatch DBT-PG DISS DBToaster

(c) Total query processing time (i.e. initial query processing time
plus all delta processing time).

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19

1x

5x

10x

15x

20x

Re
la

tiv
e

M
em

or
y

C
on

su
m

pt
io

n X
DNF

(d) DBT-PG’s relative memory
consumption against DISS.

Figure 5.3: DISS with late data processing on TPC-H scale factor 5.

In this experiment, we model the long-tail of late data by a geometric distribution. Specifically,

the arrival time of each data item is independent from each other. Each data item arrives within a

time interval with a probability p, and if not, it has the same probability to arrive in the next time

interval. We set p as 0.9 and the time interval as 60 seconds. We assume there are three deltas:

90% of the complete dataset are available initially, and the incoming three deltas are 9%, 0.9%, and

0.1% respectively. DISS refreshes query result every 60 seconds after the initial query processing

is finished. We assume all relations (except REGION and NATION) have deltas. For reference we

also include the result of batch processing on a complete dataset, denoted as Batch (100%). We

also assume the memory budget is sufficient. If a query cannot finish within 500 seconds, we mark

it as DNF (i.e. Did Not Finish).

The experiment results are shown in Figure 5.3, where we report the initial query processing

time (Figure 5.3a), average delta processing time (Figure 5.3b), total query processing time, which

is the sum of initial query processing time and all delta processing time (Figure 5.3c), and relative

memory usage of DBT-PG compared with DISS (Figure 5.3d). In Figure 5.3a, DISS is slower than

ReBatch in the initial query processing because it needs to build more intermediate states (e.g.

hash table in symmetric hash join) to accelerate future delta processing. On the other hand, DISS

is much faster than DBT-PG because it builds fewer views and fewer intermediate states. For the

96

delta processing time shown in Figure 5.3b, we see that DISS performs better than both ReBatch

and DBT-PG because it selectively keeps intermediate states that are useful for delta processing,

without introducing the heavy cost of maintenance. Specifically for queries with 5-way join or

more (i.e. Q5, Q7, Q8, and Q9), the delta processing of DISS is at least 2.1x faster than DBT-PG.

The reason is that DBT-PG not only builds more intermediate states with more joins present (e.g.

21 materialized hash tables for Q9 with 6-way join), but also is unable to avoid large intermediate

state. For example, DBT-PG needs to materialize the joined results of tables Customer and Supplier

on nationkey for Q5. This means that on average each tuple in Supplier can successfully join 30000

tuples in Customer. Such joins with extremely high selectivity should be avoided. For DISS, this

case can be avoided by leveraging the query optimizer of underlying databases. While DBT-

PG runs faster than ReBatch in most queries, in some cases the cost of maintaining intermediate

states dominates and makes DBT-PG slower than ReBatch (e.g. Q9). Figure 5.3c and Figure 5.3d

show the total query processing time and relative memory consumption of DBT-PG to DISS. We

see that DISS uses less overall query processing time than ReBatch and DBT-PG, and consumes

less memory than DBT-PG. These figures show DISS strikes a good trade-off between resource

consumption and delta processing efficiency. Specifically, DISS is up to 240x and 25x faster than

ReBatch and DBT-PG respectively during delta processing, and only consumes at best 5.6% of the

memory consumed by DBT-PG.

We also include the total query processing time of the native DBToaster system (the latest

release of the C++ version) in Figure 5.3c for reference. We find that DBToaster cannot finish for

5 queries, and performs worse than DBT-PG for many queries. One reason we observed during

testing is that DBToaster’s generated code consumes enormous amounts of memory, which we

believe is due to memory management issues. For example, we observed the execution of Q7 for

20 minutes, and found it consumes 70% memory of our test machine, which translates to 137 GB.

By contrast, DBT-PG only consumes 3.6 GB. For Q19, it does not consume much memory, but is

very slow when it performs string matching for predicate evaluation. We also test SF 0.1 and find

that while all queries are finished by DBToaster, DBT-PG is faster in most cases.

97

Table 5.2: Aggregated results of join ordering benchmark

ReBatch DBT-PG DISS
Number of Query Finished 33 28 33

Total Query Processing Time
of One Query (s)

Avg 15.9 77.5 10.6
Max 112.6 430 72.1
Min 2.7 3.0 2.2

Memory Consumption (GB)
Avg 0 14.3 1.5
Max 0 86.7 12.1
Min 0 0.35 0.2

We also test the performance of DISS for JOB [62]. Our test starts with 99% of data in the

batch phase, and inserts a 1% delta. If a query cannot finish within 500s, we mark it as DNF. In

this test, we assume the memory budget is sufficient for DISS. We report the results of variant A for

33 queries; other variants, which have different values on predicates, result in similar performance.

Table 5.2 shows the number of queries that finish within 500s, total query processing time

of one query (batch and delta), and memory consumption after batch processing. We find the

results are consistent with TPC-H. DISS can finish all queries, and is faster than both ReBatch and

DBT-PG. Seven queries cannot finish for DBT-PG because it takes too much time to recursively

materialize intermediate states. For example, Q29 involves a 16-way join, which leads DBT-PG to

materialize more than 1000 intermediate states. In addition, DISS consumes much less memory

than DBT-PG, which also validates the memory consumption results of TPC-H.

DISS with HoloClean

Our second IQP use scenario is a data cleaning system HoloClean [83]. Given a dataset with dirty

tuples HoloClean detects dirty tuples based on pre-defined rules, and then executes a cleaning

algorithm over the identified dirty tuples. The cleaning algorithm trains a statistical model based

on clean tuples and uses the model to predict correct values for dirty tuples. We build a full

pipeline between HoloClean and DISS, where DISS executes queries over the initial clean tuples

(i.e. initial query processing), receives cleaned tuples (i.e. delta tuples) from HoloClean, and

incorporates delta tuples into the query result. DISS gets the information about the next delta from

HoloClean regarding which relations it is cleaning and the tuples/sec of cleaning for each relation.

98

0 200 400 600 800 1000 1200 1400 1600
The number of query result refresh

100

101

102

103

Ex
ec

ut
io

n
tim

e
(m

s)
ReBatch DBT-PG DISS

(a) Execution time of delta processing

101

102

103

M
em

or
y

(M
B)

DISS-1
DISS-2
DISS-3

DISS-4
DISS-5
DBT-PG

(b) Memory usage after delta
phase

Figure 5.4: DISS with HoloClean (Q8)

In this experiment, we use TPC-H dataset and assume 20% of the records are dirty. We set

scale factor as 1 to allow HoloClean to finish within a reasonable amount of time. HoloClean

cleans dirty relations one by one and delivers cleaned tuples to the data processing engines (e.g.

DISS and ReBatch), which refreshes the query result every 5 seconds regardless whether new data

appears. We report the results on Q8, which includes five dirty relations (SUPPLIER, CUS-

TOMER, PART, ORDERS, LINEITEM), and report the execution time of refreshing the query

result each time in Figure 5.4a. We also show memory consumption of DISS when the query is

inactive for each relation cleaning in Figure 5.4b. For example, DISS-1 in Figure 5.4b represents

the memory consumption when HoloClean is cleaning the first relation SUPPLIER. Figure 5.4b

also includes average memory consumption of DBT-PG along with its minimum and maximum

cost shown as error bars. Note that we use log scale for y-axis in Figure 5.4b.

In Figure 5.4a, HoloClean repeats the process of training statistical models and cleaning tuples

via the trained models for each relation. Query result refreshing is trivial when HoloClean is

training and the data processing engine is inactive (i.e. refresh execution time is 0 ms). When

HoloClean is cleaning (and delivering cleaned tuples continuously), we see that DISS refreshes

the query result much faster than ReBatch and DBT-PG in most cases except when the cleaned

tuples come from a different relation. This only happens when HoloClean completes one relation

and moves on to the next (for example, the 310th refresh). In this case, DISS needs to build and

keep new intermediate states for processing delta tuples from a different relation, and we find that

99

it has comparable performance to ReBatch here. In other cases, DISS outperforms DBT-PG and

ReBatch by up to 6x and 500x. Additionally, DISS only needs to keep no more than 15MB of

data in most cases and 600MB in the worst case (i.e. the third relation PART), whereas DBT-PG

consumes about 3000MB of memory all the time. This experiment shows that in a real application,

DISS can quickly process delta tuples and at the same time consume limited memory.

5.4.4 Impact of Prediction Quality

In previous experiments, we assume that the prediction of delta is always accurate. Here we

inspect how imperfect prediction affects the performance of DISS. Our experiment investigate two

situations: carnality discrepancy and categorical discrepancy. We report our results on TPC-H’s

Q8.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Memory budget (GB)

0
3
6
9

12
15

Ti
m

e
(s

)

small delta, correctly predict small delta
small delta, wrongly predict big delta

big delta, correctly predict big delta
big delta, wrongly predict small delta

Figure 5.5: Quality of cardinality prediction (Q8)

In the first experiment, we assume the predictor correctly predicts that all relations are incom-

plete, but the prediction of deltas’ sizes could be wrong. A relation being incomplete means that it

expects new data in the future. Such information is obtained from the delta predictor. For example,

HoloClean can tell the predictor that a table is complete if it has completely cleaned that table.

Here, we assume that the initial batch contains 70% data and consider four possible scenarios: the

actual delta as big or small, and the predicted delta as big or small. A small delta contains 1% of

the complete relation, and a big delta contains 30%. We vary the memory budget from 0 to 2 GB,
100

and report the delta processing time in Figure 5.5. We find the performance of right and wrong

delta prediction are close. This is because the cost of rebuilding the intermediate states dominates

the cost of delta processing, so DISS chooses the correct intermediate states to keep even if the

prediction is not perfect.

ReBatch DBT-PG DISS (Right Prediction) DISS (Wrong Prediction)

54321
Number of actual tables having deltas

0

14

28

42

56

70

Ti
m

e
(s

)

(a) Overestimation
(Batch)

54321
Number of actual tables having deltas

0

2

4

6

8

10
Ti

m
e

(s
)

(b) Overestimation
(Delta)

54321
Number of estimated tables having deltas

0

14

28

42

56

70

Ti
m

e
(s

)

(c) Underestimation
(Batch)

54321
Number of estimated tables having deltas

0

2

4

6

8

10

Ti
m

e
(s

)

(d) Underestimation
(Delta)

Figure 5.6: Impact of individual relation’s completeness prediction’s quality (Q8): effect of
overestimation and underestimation of the number of incomplete relations. For overestimation

(i.e. the first two figures), DISS predicts all relations being incomplete, while the number of
incomplete relation varies (in x-axis). For underestimation (i.e. the last two figures), all relations

are incomplete while DISS foresees a subset of them (in x-axis).

Next, we consider the impact of incorrect completeness prediction. We assume the delta size as

1% for the following experiments. We separate the overestimation and underestimation scenarios.

For the overestimation case (Figure 5.6a and Figure 5.6b), the predictor asserts all 5 relations are

incomplete and the actual number of incomplete relations varies from 1 to 5. We assume larger

relations are more likely to be incomplete and are chosen as incomplete relations first (e.g. when

there is only 1 incomplete relation, it is LINEITEM). For the underestimation case (Figure 5.6c

and Figure 5.6d), all relations are actually incomplete, but the prediction only contains a subset of

them. Here, we vary the number of predicted incomplete relations from 1 to 5. Figure 5.6 shows

that in the overestimation case, the batch processing time of a wrong prediction for DISS (i.e.

DISS (Wrong Prediction) in Figure 5.6a) is higher because it keeps more intermediate states for the

future delta processing, but DISS’s delta ingestion performance is stable regardless the prediction.

Conversely, DISS has a longer delta processing time but a shorter batch processing time in the

underestimation cases. Compared to ReBatch and DBT-PG, DISS has a similar performance of

delta processing to ReBatch in its worst case and has better performance than DBT-PG when we

101

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q3

ReBatch DBT-PG DISS-DP DISS-Recycler

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 (17.5)
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 (57.0)
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q9

Figure 5.7: Delta processing time under different memory budgets (all relations have a single 1%
delta): DISS and ReBatch can work for all memory budgets, but DBT-PG only works when the

memory budget is larger than the vertical dashed line. (Y-axis is log-scale)

can correctly predict at least 3 incomplete relations out of all 5 (shown in Figure 5.6d). The above

two experiments show that DISS can outperform ReBatch and DBT-PG even when the prediction

is not perfect.

5.4.5 Effectiveness of State Selection

Here, we test the effectiveness of intermediate state selection of our dynamic programming algo-

rithm. We vary the memory budget, and measure the performance of delta processing based on

our dynamic programming algorithm (DISS-DP) and an intermediate state cache algorithm [72]

(DISS-Recycler). DISS-Recycler caches a subset of intermediate states for future queries with re-

spect to a memory budget. The cache algorithm is based on a heuristic metric BENEFIT associated

with each intermediate state. It represents the cost of recomputing it from other cached interme-

diate states or base relations, multiplied by the number of times it has been (or will be) used, and

then divided by its memory usage. For a new intermediate state, DISS-Recycler chooses to cache

it if there is enough memory or DISS-Recycler can find a set of cached intermediate states to evict

with a lower average benefit such that these intermediate states can create enough memory to cache

the new state. Note that if one intermediate state is updated, DISS-Recycler regards it as a new

state and repeats the aforementioned algorithm. For reference, we compare their performance with

ReBatch and DBT-PG, which do not choose a subset of intermediate states to materialize.

We vary the memory budget from 0 to 4 GB with a step of 0.5 GB and report the delta pro-

cessing time for Q3, Q7, Q8, and Q9 of TPC-H. We choose these queries because they have the

102

most number of joins (and also intermediate states) and can be finished by DBT-PG. With more

intermediates states in a query plan, we can better observe the behavior of our DP algorithm com-

pared to other approaches. Here we test a single 1% delta that includes delta tuples for all relations

(except REGION and NATION). The experimental results are shown in Figure 5.7. We see that

the DP algorithm has lower delta processing time than DISS-Recycler, because DISS-Recycler

does not consider information about a future delta. Specifically, DISS-DP is to up 30x faster than

DISS-Recycler.

ReBatch fails to utilize the available memory budget to accelerate delta processing. DBT-PG,

however, only works after we provide enough memory (i.e. after the vertical dashed line) and is not

always the most time-efficient since it has to maintain the extra intermediate states. When there is

no memory budget available, DISS-DP uses the approach of ReBatch by discarding all intermedi-

ate states after the initial query processing and recomputes from base relations for delta processing.

Therefore, it has the same performance as ReBatch when the memory budget is 0. As the memory

budget increases, DISS-DP keeps more intermediate states and becomes close to the performance

of continuous query processing (i.e. DBT-PG) for delta processing. By materializing a subset of

intermediate states, DISS-DP even outperforms DBT-PG with less memory consumption. Overall,

these results show that DISS-DP improves the performance by selectively persisting intermediate

states with limited memory consumption.

5.4.6 Impact of Additional Operators

In IQP, we assume a pipelined execution engine, but also consider injecting new operators (e.g.

MATERIALIZE) to improve delta processing efficiency when necessary. We measure the benefit

and cost of injecting operators for materializing pipelined operators and converting hash-joins to be

symmetric (i.e. injecting HASH operator). Specifically, we consider DISS on four TPC-H queries.

There are three possible scenarios: the original pipelined query plan without operator injection, the

DISS-optimized plan which only allows extra MATERIALIZE operators, and the DISS-optimized

plan which may MATERIALIZE and build extra intermediate states (i.e. HASH for symmetric

103

hash join). We report the initial batch processing time, delta processing time, and the memory

consumption for storing intermediate states. We assume all relations have a single 1% delta and

the memory is sufficient.

Q3 Q7 Q8 Q90

10

20

30

40

Ti
m

e
(s

)

Initial batch

Q3 Q7 Q8 Q90

5

10

15

20

Ti
m

e
(s

)

Delta processing

Q3 Q7 Q8 Q90

1

2

3

4

M
em

or
y

(G
B)

Memory consumption
No Operator Injection Injecting Materialize Only Injecting Materialize and Symmetric Hash Join

Figure 5.8: Impact of injecting operators in DISS

Figure 5.8 shows when building intermediate states is permitted, DISS has a much lower delta

processing time, but at a higher initial query processing time and higher memory consumption.

This is because DISS can keep or build more states for delta processing, but has to pay the cor-

responding costs during initial query processing. Our DP algorithm can intelligently select the

intermediate states to keep or to build, and thus minimizes the overall query processing time, es-

pecially in the presence of multiple deltas.

0% Deletes 25% Deletes 50% Deletes 75% Deletes 100% Deletes
0

1

5
10

50
100

Ti
m

e
(s

)

ReBatch DBT-PG DISS

Figure 5.9: Average, min, and max delta processing time by varying percentage of deletes (1%
delta)

5.4.7 Performance Impact of Delete Workloads

We test 11 TPC-H queries using delta data with mixed inserts and deletes. We start with 99%

data in the batch phase, and then processes a single 1% delta. We vary the percentage of deletes

in the delta to be 0%, 25%, 50%, 75%, and 100%. We report the average delta processing time

along with minimum and maximum time in Figure 5.9 and find that DISS always outperforms

104

DBT-PG and ReBatch. An interesting observation is that with a higher percentage of deletes, delta

processing time for DBT-PG increases too, while the processing time for ReBatch and DISS stays

the same. The reason is DBT-PG cannot avoid materializing join operators with high selectivity

(i.e. a tuple from one table can successfully join many tuples of the other one). One such example

is that in Q9 DBT-PG needs to materialize the join results of tables Supplier and Lineitem joined

on supplier key. Since there are no predicates on the two tables, each Supplier tuple joins 600

Lineitem tuples on average. With the hash table for Lineitem built on supplier key, deleting one

tuple from Lineitem’s hash table needs to find the right bucket and scan through the list of tuples

associated with the bucket (i.e. at least 600 for each bucket) to find the right one to delete. In

contrast, DISS uses PostgreSQL’s query optimizer to join Lineitem with other tables having lower

selectivities first, and then join Supplier, which greatly reduces the cost of finding the tuple to

delete.

5.5 Summary

We introduce IQP as a new query processing method for standing queries that balances query

processing latency and controlled memory consumption by exploiting knowledge of data arrival

patterns. We develop an IQP prototype, DISS, based on PostgreSQL that selects a subset of inter-

mediate states from query execution to persist for efficient processing of future data arrivals; this

state selection algorithm minimizes resource consumption for queries when not updating results,

and lowers query refresh time by selecting a set of intermediate states within a budget constraint.

Our experimental evaluation shows that DISS is able to achieve low latency and limited memory

consumption simultaneously for many applications and offers significant performance improve-

ments over state-of-the-art IVM systems that do not leverage knowledge about future data arrivals.

105

CHAPTER 6

RELATED WORK

We discuss the related work on incremental view maintenance algorithms (IVM), view mainte-

nance policies, view and intermediate states reuse, continuous query processing and stream com-

puting, query pause and resume, shared query execution, and cardinality estimation.

Incremental View Maintenance Algorithms Materialized views are cached or pre-computed

query results that are derived from base tables. When base tables are updated, incremental view

maintenance (IVM) algorithms incrementally incorporate new data into the prior view without re-

computing the view from scratch. Larson et al. [14] introduces IVM algorithms for select-project-

join (SPJ) views. Later work proposes new IVM algorithms for more complex queries such as

maintaining views with negation and aggregate operators [42, 40], supporting recursive views and

nested subqueries [42, 108, 74], and optimizing incremental executions for semi-join, outer join,

and acyclic joins [39, 61, 51]. New IVM algorithms are also designed to optimize scenarios such as

base tables and intermediate results having IDs [57], matrix calculations [75, 76], and deep learn-

ing [73]. Due to space constraints we point the reader to a comprehensive survey on materialized

views [24].

We believe that these algorithms are orthogonal to TQP because TQP assumes existing IVM

algorithms and considers the system strategies of how to using these algorithms, such as which

intermediate states to keep (as in IQP) and at what execution frequencies different parts of a query

should be executed (as in InQP and iShare).

View Materialization Policies There are several different policies for maintaining a materialized

view to makes different trade-offs between view maintenance cost and query latency [28]. Im-

mediate view maintenance updates the view whenever base tables are updated or new tuples are

inserted [5, 21]. This approach lowers query latency with higher cost of view maintenance. On

the other hand, a deferred view [27] does not update the view immediately, but defers view main-

tenance to some future point such as when the view is queried or when the system has free cycles

106

for view maintenance [111]. Snapshot view [28] maintains a view that is consistent with a snap-

shot of base tables, but allows a stale result (i.e. not consistent with up-to-date base tables). It

makes a better trade-off between the query latency and view maintenance cost than the previous

two approaches, does not always return up-to-date results to users.

These works are mostly related to InQP. InQP is different from them in that it decomposes

a query into multiple query paths and assign each query path a different pace based on the in-

crementability, while existing IVM approaches use a uniform execution pace for maintaining the

whole query.

He et al. [48] observes the asymmetric maintenance cost for different access methods (e.g.

index scan or sequential scan). Therefore, they propose to process modifications of different base

relations at different batch sizes. This work focuses on SPJA queries, but InQP considers more

complex queries, such as outer-joins. In addition, InQP decomposes the query plan into query

paths that offer more fine-grained control flow compared to this work, which only considers paths

from a leaf to the root.

Materialized View Selection and Reuse: Building materialized views can accelerate query pro-

cessing but with additional cost. Several efforts exploit this trade-off in data warehouses [4, 43, 44,

58, 84]. Dynamic materialized views [113, 36] maintain partial views according to hot/cold access

patterns to answer parameterized queries and reduce maintenance cost. In distributed systems,

pre-computation can achieve linear scalability [8] and selectively materializing sub-expressions

can minimize query response time at “data center” scale [53]. Chaudhuri et al. incorporate materi-

alized views into query optimization [22] and Mistry et al. share materialized views for multi-query

optimization [71].

A related topic to materialized view selection is reusing intermediate states. Several projects

explore caching intermediate states based on its reuse frequency, performance contribution, and

its cost (i.e. memory size) [52, 72]. Dursun et al. consider reusing intermediate data structures

from join algorithms in main-memory databases [30]. ReCache studies the same problem for

heterogeneous data sources [10]. Intermediate results can also accelerate approximate query pro-

107

cessing [32] and feature selection workloads [109].

These research projects are related to IQP, but the difference is that IQP considers how to

efficiently incorporate delta into an existing query result, rather than storing materialized views or

intermediate states for future queries.

Continuous query processing and stream systems Many continuous query processing and stream

systems adopt IVM as its query execution engine to provide low query latency [21, 3, 17, 20].

These systems often provide a trade-off between query latency and computing resource consump-

tion by allowing users to adjust the amount of tuples to be processed for each incremental exe-

cution [3, 17, 20]. Several projects focus on finding query plans or execution plans to optimize

different performance metrics, such as maximizing output rate [104], minimizing per-tuple pro-

cessing latency [18], lowering memory consumption [11, 18], producing fast early results [98], or

a mix of these metrics [9, 88].

These research projects are related to InQP. However, they are limited in SQL support and

only allow select-project-join-aggregate queries. For complex queries, they do not consider the

semantics (e.g. outer join) that make the query not fully incrementable. InQP is different from them

in that it supports complex queries and exploits the knowledge of diverse levels of incrementability

within a query to execute different parts of a query at different paces.

Query Suspend and Resume: Several previous projects study the problem of suspending query

execution due to system failures or query scheduling, and then efficiently resuming the query

later. Chandramouli et al. [19] design lightweight asynchronous check-pointing to store the states

of operators during suspension phase, and resume the query by restoring the consistent states of

operators. Later work studies the same problem in the context of index construction [38, 7]. Query

suspend and resume is related to IQP, but has the difference in that a suspended query in the

aforementioned approaches does not necessarily finish processing the desired partial workload and

cannot present the corresponding incomplete query result to end users. In addition, they do not

consider the knowledge about the new data arrival pattern as in IQP.

108

Multi-query optimization and shared query execution Many MQO and shared query execution

projects focus on ad-hoc queries. Some work [67, 34, 82, 112, 85, 35] considers batching sev-

eral queries together to exploit their common sub-expressions and builds a single query plan to

maximally share the work of batched queries. Other projects consider specific operators, such as

sharing scans [81, 79, 90] and joins [66, 16]. In addition, some projects also consider reusing in-

termediate results of running queries to process newly submitted queries on-the-fly [47, 78]. This

idea of shared query execution is widely used in continuous query processing or stream comput-

ing [59, 105, 46, 99, 97, 110, 50]. For example, shared arrangements [70] considers sharing the

intermediate states across standing queries and supports different indexed views over the same

states. Other projects [55, 56] consider sharing the execution of standing and ad-hoc queries. Prior

research works also studied whether queries should be shared by considering the overhead intro-

duced by parallel execution [54] or materializing intermediate results [85].

iShare is different from these projects in that it considers heterogeneous latency goals and

judiciously shares query execution by considering the overhead of eager execution.

Cardinality Estimation Conventional databases [86, 62] use statistical information (e.g. selec-

tivity or number of distinct values) collected from base tables, to estimate cardinalities. Sev-

eral techniques, such as data sketching [31, 15], index sampling [63], sampled executions [100],

and leveraging runtime execution information [23], are proposed to improve or bound the ac-

curacy of cardinality estimation. Different from statistics-based cardinality estimation, some re-

cent works consider leveraging machine learning techniques to more accurately estimate cardinal-

ity [77, 68, 60, 89, 69]. However, all these research works are focused on the context of batch

processing and are limited in the estimation for incremental executions. We also find that several

works focus on estimating cardinality or statistics for incremental executions [103, 33]. Viglas

et al. [103] introduces rate-based cardinality estimation to estimate output data rate of each opera-

tor in a continuous query. But this work only considers select-project-join operators and does not

address the problem of estimating cardinalities for deletes or updates.

Cardinality estimation in InQP is different from these works because it uses different estimation

109

methods based on operation semantics (i.e. insert, delete, and update), which can more accurately

compute the cardinalities for incremental executions.

110

CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation presents a new query processing paradigm, Thrifty Query Processing (TQP), to

strike the middle ground between eager and lazy query processing methods (e.g. batch vs. CQ)

for querying a dataset under changes. It addresses the resource-efficiency challenge by exploiting

the time slackness information to reduce CPU and memory consumption while providing similar

query latencies compared to existing approaches. TQP includes three pieces of work. We design

InQP to reduce the CPU consumption for a single query by selectively deferring the execution of

some parts of the query that significantly increase CPU consumption if they are executed eagerly.

We further present iShare to judiciously share queries with different performance goals to exploit

the benefit of shared query execution and avoid the overhead of overly eager execution. Finally, we

design IQP to reduce memory consumption when the data arrival rate becomes low and the query

has a long time of inactivity.

We believe TQP has wide applications in both on-premise and cloud databases. For the

database that runs in a resource constrained scenario (i.e. on-premise database), users are allowed

to adjust the performance goals to spare resources for other queries (e.g. ad-hoc queries), which

improves the overall query throughput. On the other hand, TQP can be integrated in the cloud

databases to provide the stateful standing query service. Users are allowed to explore the trade-off

between query performance and resource consumption and the underlying system can intelligently

choose the right system strategies to save resources while meeting the performance goal. We en-

vision that since TQP exploits the full spectrum between eager and lazy query execution, it can

also be used to address dynamic workloads by adaptively adjusting when to maintain the query

and how many intermediate states to keep.

Looking into the future, our research vision is to build a resource-efficient and general data

analysis pipeline system with end-to-end optimizations. We plan to explore this topic in three

directions:

111

User-driven optimization Today’s interactive data analysis systems have advanced to predict

users’ access patterns including what queries users will issue and what time they expect to see

the query results. This valuable information can be integrated into the database to speculatively

start the query early even when not all data is ready or opportunistically materialize useful inter-

mediate states. More interestingly, this information can be pushed down into the early stages of

data pipelines to prioritize preparing data and computing intermediate results that are most useful

and critical to users.

Cross-stage optimization Data pipelines are becoming more and more complex with multiple

stages involved including data collection, preparation, analysis, and visualization. Different stages

are relatively isolated from each other in that they are deployed on separate systems or have dif-

ferent run-time environments. The problem is that much useful information siloed in each stage

cannot be shared to optimize the full data pipelines as a whole. I advocate a holistic approach

that shares meta information across different stages to enable cross-stage optimizations. As an ex-

ample, databases can actively ask data collection systems to prioritize loading particular data and

generating useful information.

General incremental execution Data pipelines are involving complex operators (e.g. UDFs and

machine learning inference) beyond the relational ones. This research direction studies how to

expand my incremental execution engine to more general and complex operators, and support

holistic optimizations across relational and non-relational operators. For example, the key metric

for efficient incremental execution is incrementability, which quantifies the cost-effectiveness of

incremental executions. One research problem is how to measure the incrementability of UDFs,

where the semantics might be unknown to the database.

112

REFERENCES

[1] Apache kafka. https://kafka.apache.org/.

[2] Refresh materialized view. https://www.postgresql.org/docs/10/static/
sql-refreshmaterializedview.html.

[3] Spark structured streaming. https://spark.apache.org/docs/latest/
structured-streaming-programming-guide.html.

[4] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of mate-
rialized views and indexes in SQL databases. In VLDB 2000, Proceedings of 26th Interna-
tional Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages
496–505, 2000.

[5] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. DBToaster: Higher-
order delta processing for dynamic, frequently fresh views. Proc. VLDB Endow., 5(10):968–
979, 2012.

[6] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael Fernández-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and
Sam Whittle. The dataflow model: A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing. PVLDB, 8(12):1792–
1803, 2015.

[7] Panagiotis Antonopoulos, Hanuma Kodavalla, Alex Tran, Nitish Upreti, Chaitali Shah, and
Mirek Sztajno. Resumable online index rebuild in SQL server. PVLDB, 10(12):1742–1753,
2017.

[8] Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, and
David A. Patterson. Generalized scale independence through incremental precomputation.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 625–636, 2013.

[9] Ahmed Ayad and Jeffrey F. Naughton. Static optimization of conjunctive queries with slid-
ing windows over infinite streams. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Paris, France, June 13-18, 2004, pages 419–430, 2004.

[10] Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. Recache: Reactive caching for
fast analytics over heterogeneous data. PVLDB, 11(3):324–337, 2017.

[11] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani. Chain : Operator
scheduling for memory minimization in data stream systems. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, San Diego, California,
USA, June 9-12, 2003, pages 253–264, 2003.

[12] Shivnath Babu and Jennifer Widom. Continuous queries over data streams. ACM Sigmod
Record, 30(3):109–120, 2001.

113

[13] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and Kenneth
Knowles. One SQL to rule them all - an efficient and syntactically idiomatic approach to
management of streams and tables. In SIGMOD 2019, pages 1757–1772. ACM, 2019.

[14] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently updating materialized
views. In Proceedings of the 1986 ACM SIGMOD International Conference on Management
of Data, Washington, DC, USA, May 28-30, 1986, pages 61–71, 1986.

[15] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality estimation:
Tighter upper bounds for intermediate join cardinalities. In Proceedings of the 2019 In-
ternational Conference on Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019, pages 18–35, 2019.

[16] George Candea, Neoklis Polyzotis, and Radek Vingralek. A scalable, predictable join oper-
ator for highly concurrent data warehouses. PVLDB, 2(1):277–288, 2009.

[17] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache flink™: Stream and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28–38, 2015.

[18] Donald Carney, Ugur Çetintemel, Alex Rasin, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Operator scheduling in a data stream manager. In Proceedings of
29th International Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany,
September 9-12, 2003, pages 838–849, 2003.

[19] Badrish Chandramouli, Christopher N. Bond, Shivnath Babu, and Jun Yang. Query suspend
and resume. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Beijing, China, June 12-14, 2007, pages 557–568, 2007.

[20] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, John C. Platt,
James F. Terwilliger, and John Wernsing. Trill: A high-performance incremental query
processor for diverse analytics. Proc. VLDB Endow., 8(4):401–412, 2014.

[21] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman,
Frederick Reiss, and Mehul A. Shah. Telegraphcq: Continuous dataflow processing for
an uncertain world. In CIDR 2003, First Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 5-8, 2003, Online Proceedings, 2003.

[22] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. Optimiz-
ing queries with materialized views. In Proceedings of the Eleventh International Confer-
ence on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages 190–200, 1995.

[23] Surajit Chaudhuri, Vivek R. Narasayya, and Ravishankar Ramamurthy. Estimating progress
of long running SQL queries. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Paris, France, June 13-18, 2004, pages 803–814, 2004.

[24] Rada Chirkova and Jun Yang. Materialized views. Foundations and Trends in Databases,
4(4):295–405, 2012.

114

[25] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. PVLDB,
6(13):1498–1509, 2013.

[26] Yeounoh Chung, Michael Lind Mortensen, Carsten Binnig, and Tim Kraska. Estimating the
impact of unknown unknowns on aggregate query results. In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, pages 861–876, 2016.

[27] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and Howard
Trickey. Algorithms for deferred view maintenance. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996, pages 469–480, 1996.

[28] Latha S. Colby, Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mumick, and Ken-
neth A. Ross. Supporting multiple view maintenance policies. In SIGMOD 1997, Proceed-
ings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997,
Tucson, Arizona, USA., pages 405–416, 1997.

[29] Allen B. Downey. Evidence for long-tailed distributions in the internet. In Proceedings
of the 1st ACM SIGCOMM Internet Measurement Workshop, IMW 2001, San Francisco,
California, USA, November 1-2, 2001, pages 229–241, 2001.

[30] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, and Tim Kraska. Revisiting reuse in
main memory database systems. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 1275–1289, 2017.

[31] Cristian Estan and Jeffrey F. Naughton. End-biased samples for join cardinality estimation.
In Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8
April 2006, Atlanta, GA, USA, page 20, 2006.

[32] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. Re-
visiting reuse for approximate query processing. PVLDB, 10(10):1142–1153, 2017.

[33] Like Gao, Min Wang, Xiaoyang Sean Wang, and Sriram Padmanabhan. A learning-based
approach to estimate statistics of operators in continuous queries: a case study. In Proceed-
ings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge
discovery, DMKD 2003, San Diego, California, USA, June 13, 2003, pages 66–72, 2003.

[34] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. Shareddb: Killing one thou-
sand queries with one stone. Proc. VLDB Endow., 5(6):526–537, 2012.

[35] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Kossmann. Shared
workload optimization. Proc. VLDB Endow., 7(6):429–440, 2014.

[36] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Martin Ek, Eddie
Kohler, M. Frans Kaashoek, and Robert Tappan Morris. Noria: dynamic, partially-stateful
data-flow for high-performance web applications. In 13th USENIX Symposium on Operating

115

Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018.,
pages 213–231, 2018.

[37] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys
(CSUR), 25(2):73–169, 1993.

[38] Goetz Graefe, Wey Guy, and Harumi A. Kuno. ’pause and resume’ functionality for in-
dex operations. In Workshops Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 28–33, 2011.

[39] Timothy Griffin and Bharat Kumar. Algebraic change propagation for semijoin and outer-
join queries. SIGMOD Record, 27(3):22–27, 1998.

[40] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with duplicates. In
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data,
San Jose, California, USA, May 22-25, 1995, pages 328–339, 1995.

[41] Ashish Gupta and Iderpal Singh Mumick. Materialized views: techniques, implementations,
and applications. MIT press, 1999.

[42] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incre-
mentally. In Proceedings of the 1993 ACM SIGMOD International Conference on Manage-
ment of Data, Washington, DC, USA, May 26-28, 1993, pages 157–166, 1993.

[43] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize under a
maintenance cost constraint. In Database Theory - ICDT ’99, 7th International Conference,
Jerusalem, Israel, January 10-12, 1999, Proceedings., pages 453–470, 1999.

[44] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize in a data
warehouse. IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

[45] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In Alex
Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999, Pro-
ceedings ACM SIGMOD International Conference on Management of Data, June 1-3, 1999,
Philadelphia, Pennsylvania, USA, pages 287–298. ACM Press, 1999.

[46] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K. Elmagarmid.
Scheduling for shared window joins over data streams. In Johann Christoph Freytag, Pe-
ter C. Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger, and Andreas
Heuer, editors, Proceedings of 29th International Conference on Very Large Data Bases,
VLDB 2003, Berlin, Germany, September 9-12, 2003, pages 297–308. Morgan Kaufmann,
2003.

[47] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. Qpipe: A simul-
taneously pipelined relational query engine. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,
pages 383–394, 2005.

116

[48] Hao He, Junyi Xie, Jun Yang, and Hai Yu. Asymmetric batch incremental view maintenance.
In Karl Aberer, Michael J. Franklin, and Shojiro Nishio, editors, Proceedings of the 21st
International Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan,
pages 106–117. IEEE Computer Society, 2005.

[49] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In Joan
Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 171–182. ACM Press,
1997.

[50] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes Gehrke, and Alan J. De-
mers. Rule-based multi-query optimization. In Martin L. Kersten, Boris Novikov, Jens
Teubner, Vladimir Polutin, and Stefan Manegold, editors, EDBT 2009, 12th International
Conference on Extending Database Technology, Saint Petersburg, Russia, March 24-26,
2009, Proceedings, volume 360 of ACM International Conference Proceeding Series, pages
120–131. ACM, 2009.

[51] Muhammad Idris, Martı́n Ugarte, and Stijn Vansummeren. The dynamic yannakakis al-
gorithm: Compact and efficient query processing under updates. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 1259–1274, 2017.

[52] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. An architecture
for recycling intermediates in a column-store. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island,
USA, June 29 - July 2, 2009, pages 309–320, 2009.

[53] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. Selecting subexpres-
sions to materialize at datacenter scale. PVLDB, 11(7):800–812, 2018.

[54] Ryan Johnson, Nikos Hardavellas, Ippokratis Pandis, Naju Mancheril, Stavros Harizopou-
los, Kivanc Sabirli, Anastassia Ailamaki, and Babak Falsafi. To share or not to share? In
Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer,
Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian
Kanne, Wolfgang Klas, and Erich J. Neuhold, editors, Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, University of Vienna, Austria, September 23-
27, 2007, pages 351–362. ACM, 2007.

[55] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. Ajoin: Ad-hoc stream joins at scale.
Proc. VLDB Endow., 13(4):435–448, 2019.

[56] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. Astream: Ad-hoc shared stream pro-
cessing. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska, editors, Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 607–622. ACM, 2019.

117

[57] Yannis Katsis, Kian Win Ong, Yannis Papakonstantinou, and Kevin Keliang Zhao. Utilizing
ids to accelerate incremental view maintenance. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia, May 31
- June 4, 2015, pages 1985–2000, 2015.

[58] Yannis Kotidis and Nick Roussopoulos. Dynamat: A dynamic view management system for
data warehouses. In SIGMOD 1999, Proceedings ACM SIGMOD International Conference
on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages 371–382,
1999.

[59] Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin. On-the-fly sharing for streamed
aggregation. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Chicago, Illinois, USA, June 27-29, 2006, pages 623–634, 2006.

[60] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and Ion Stoica.
Learning to optimize join queries with deep reinforcement learning. CoRR, abs/1808.03196,
2018.

[61] Per-Åke Larson and Jingren Zhou. Efficient maintenance of materialized outer-join views.
In Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 56–65, 2007.

[62] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? Proc. VLDB Endow., 9(3):204–
215, 2015.

[63] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neumann.
Cardinality estimation done right: Index-based join sampling. In CIDR 2017, 8th Biennial
Conference on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11,
2017, Online Proceedings, 2017.

[64] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geoffrey J
Gordon. Query-based workload forecasting for self-driving database management systems.
In Proceedings of the 2018 International Conference on Management of Data, pages 631–
645. ACM, 2018.

[65] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance evalua-
tion for local queries. In Proceedings of the 1986 ACM SIGMOD International Conference
on Management of Data, Washington, DC, USA, May 28-30, 1986, pages 84–95, 1986.

[66] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. Mqjoin:
Efficient shared execution of main-memory joins. PVLDB, 9(6):480–491, 2016.

[67] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. Batchdb: Effi-
cient isolated execution of hybrid OLTP+OLAP workloads for interactive applications. In
Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 37–50, 2017.

118

[68] Tanu Malik, Randal C. Burns, and Nitesh V. Chawla. A black-box approach to query car-
dinality estimation. In CIDR 2007, Third Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings, pages 56–67, 2007.

[69] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim
Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned query optimizer. Proc.
VLDB Endow., 12(11):1705–1718, 2019.

[70] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy Roscoe. Shared ar-
rangements: practical inter-query sharing for streaming dataflows. Proc. VLDB Endow.,
13(10):1793–1806, 2020.

[71] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. Materialized view se-
lection and maintenance using multi-query optimization. In Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, CA, USA, May
21-24, 2001, pages 307–318, 2001.

[72] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. Recycling in pipelined query evalua-
tion. In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pages 338–349, 2013.

[73] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. Incremental and approxi-
mate inference for faster occlusion-based deep CNN explanations. In Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019., pages 1589–1606, 2019.

[74] Milos Nikolic, Mohammad Dashti, and Christoph Koch. How to win a hot dog eating
contest: Distributed incremental view maintenance with batch updates. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 511–526, 2016.

[75] Milos Nikolic, Mohammed Elseidy, and Christoph Koch. LINVIEW: incremental view
maintenance for complex analytical queries. In International Conference on Management
of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 253–264, 2014.

[76] Milos Nikolic and Dan Olteanu. Incremental view maintenance with triple lock factorization
benefits. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 365–380, 2018.

[77] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi. An empir-
ical analysis of deep learning for cardinality estimation. CoRR, abs/1905.06425, 2019.

[78] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki. Sharing data and work
across concurrent analytical queries. Proc. VLDB Endow., 6(9):637–648, 2013.

[79] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and Guy M. Lohman. Main-
memory scan sharing for multi-core cpus. PVLDB, 1(1):610–621, 2008.

119

[80] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. Using state modules
for adaptive query processing. In Proceedings of the 19th International Conference on Data
Engineering, March 5-8, 2003, Bangalore, India, pages 353–364, 2003.

[81] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani, Donald Koss-
mann, Inderpal Narang, and Richard Sidle. Constant-time query processing. In Proceedings
of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008,
Cancún, Mexico, pages 60–69, 2008.

[82] Robin Rehrmann, Carsten Binnig, Alexander Böhm, Kihong Kim, Wolfgang Lehner, and
Amr Rizk. Oltpshare: The case for sharing in OLTP workloads. Proc. VLDB Endow.,
11(12):1769–1780, 2018.

[83] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic data
repairs with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

[84] Nick Roussopoulos. An incremental access method for viewcache: Concept, algorithms,
and cost analysis. ACM Trans. Database Syst., 16(3):535–563, 1991.

[85] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible algo-
rithms for multi query optimization. In Weidong Chen, Jeffrey F. Naughton, and Philip A.
Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages 249–260. ACM, 2000.

[86] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price. Access path selection in a relational database management system. In
Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data,
Boston, Massachusetts, USA, May 30 - June 1., pages 23–34, 1979.

[87] Zechao Shang, Xi Liang, Dixin Tang, Cong Ding, Aaron J. Elmore, Sanjay Krishnan, and
Michael J. Franklin. Crocodiledb: Efficient database execution through intelligent defer-
ment. In CIDR 2020. www.cidrdb.org, 2020.

[88] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs. Algo-
rithms and metrics for processing multiple heterogeneous continuous queries. ACM Trans.
Database Syst., 33(1):5:1–5:44, 2008.

[89] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO - db2’s learning
optimizer. In VLDB 2001, Proceedings of 27th International Conference on Very Large Data
Bases, September 11-14, 2001, Roma, Italy, pages 19–28, 2001.

[90] Michal Switakowski, Peter A. Boncz, and Marcin Zukowski. From cooperative scans to
predictive buffer management. PVLDB, 5(12):1759–1770, 2012.

[91] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga, Michael Stone-
braker, Ricardo Mayerhofer, and Francisco Andrade. P-store: An elastic database system
with predictive provisioning. In Proceedings of the 2018 International Conference on Man-
agement of Data, pages 205–219. ACM, 2018.

120

[92] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga, Michael Stone-
braker, Ricardo Mayerhofer, and Francisco Jose Andrade. P-store: An elastic database sys-
tem with predictive provisioning. In Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein, editors, Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 205–219.
ACM, 2018.

[93] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J. Franklin.
Intermittent query processing. Proc. VLDB Endow., 12(11):1427–1441, July 2019.

[94] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J. Franklin.
Crocodiledb in action: Resource-efficient query execution by exploiting time slackness.
Proc. VLDB Endow., 13(12):2937–2940, 2020.

[95] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J. Franklin.
Thrifty query execution via incrementability. In SIGMOD 2020, pages 1241–1256. ACM,
2020.

[96] Dixin Tang, Zechao Shang, William Ma, Aaron J. Elmore, and Sanjay Krishnan. Resource-
efficient Shared Query Execution via Exploiting Time Slackness. Under submission, 2020.

[97] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. General incre-
mental sliding-window aggregation. Proc. VLDB Endow., 8(7):702–713, 2015.

[98] Yufei Tao, Man Lung Yiu, Dimitris Papadias, Marios Hadjieleftheriou, and Nikos
Mamoulis. RPJ: producing fast join results on streams through rate-based optimization.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Baltimore, Maryland, USA, June 14-16, 2005, pages 371–382, 2005.

[99] Jonas Traub, Philipp M. Grulich, Alejandro Rodriguez Cuellar, Sebastian Breß, Asterios
Katsifodimos, Tilmann Rabl, and Volker Markl. Efficient window aggregation with general
stream slicing. In Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini Fundulaki,
Carsten Binnig, and Zoi Kaoudi, editors, Advances in Database Technology - 22nd Inter-
national Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal,
March 26-29, 2019, pages 97–108. OpenProceedings.org, 2019.

[100] Immanuel Trummer. Exact cardinality query optimization with bounded execution cost.
In Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 2–17, 2019.

[101] Tolga Urhan and Michael J Franklin. Xjoin: A reactively-scheduled pipelined join operator.
Bulletin of the Technical Committee on Data Engineering, page 27, 2000.

[102] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi,
Michael J. Franklin, Benjamin Recht, and Ion Stoica. Drizzle: Fast and adaptable stream
processing at scale. In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 374–389, 2017.

121

[103] Stratis Viglas and Jeffrey F. Naughton. Rate-based query optimization for streaming infor-
mation sources. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, pages 37–48, 2002.

[104] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output rate of multi-
way join queries over streaming information sources. In Proceedings of 29th International
Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany, September 9-12,
2003, pages 285–296, 2003.

[105] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and Sudeept Bhatnagar. State-slice:
New paradigm of multi-query optimization of window-based stream queries. In Proceedings
of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September
12-15, 2006, pages 619–630, 2006.

[106] A.N. Wilschut and Peter M.G. Apers. Pipelining in query execution. In Proceedings of
the International Conference on Databases, Parallel Architectures and Their Applications
(PARBASE 1990), pages 562–562, United States, 3 1990. IEEE Computer Society.

[107] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy H. Katz, and Ion Stoica. Im-
proving mapreduce performance in heterogeneous environments. In 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, pages 29–42, 2008.

[108] Kai Zeng, Sameer Agarwal, and Ion Stoica. iOLAP: Managing uncertainty for efficient
incremental OLAP. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 1347–1361, 2016.

[109] Ce Zhang, Arun Kumar, and Christopher Ré. Materialization optimizations for feature se-
lection workloads. In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 265–276, 2014.

[110] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava. Multiple aggregations
over data streams. In Fatma Özcan, editor, Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages
299–310. ACM, 2005.

[111] Jingren Zhou, Per-Åke Larson, and Hicham G. Elmongui. Lazy maintenance of materialized
views. In Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, September 23-27, 2007, pages 231–242, 2007.

[112] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang Lehner. Efficient
exploitation of similar subexpressions for query processing. In Chee Yong Chan, Beng Chin
Ooi, and Aoying Zhou, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12-14, 2007, pages 533–544. ACM, 2007.

[113] Jingren Zhou, Per-Åke Larson, Jonathan Goldstein, and Luping Ding. Dynamic materi-
alized views. In Proceedings of the 23rd International Conference on Data Engineering,
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 526–535, 2007.

122

