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ABSTRACT

The work presented in this thesis utilized experimental and computational methods to
investigate the association and dissociation of small DNA oligonucleotides. Fourier trans-
form infrared spectroscopy (FTIR) and temperature-jump (T-jump) infrared (IR) spectro-
scopy were used to investigate the thermodynamics, mechanism, dynamics, and kinet-
ics of DNA oligos with the sequence 5’-C(AT),,G-3’ where n = 2-6. To compliment the
experiments a Markov state Monte Carlo kinetic model, intended to be accessible to ex-
perimentally focused researchers with regards to the model’s complexity and computa-
tional expense, was built to simulate association and dissociation trajectories of these
sequences plus 5’-ATATGCATAT-3’ (GC-core) and 5’-ATATATATAT-3'. These sequences
were selected to make a first attempt at separating the different factors that impact DNA
dynamics and kinetics focusing initially on sequence length and composition.

IR spectroscopy is ideal for studying DNA due to its ability to resolve adenine-thymine
(A:T) and guanine-cytosine (G:C) base pairs. Additionally, the kinetics of the sequences
studied here fall within the nanosecond to millisecond time window the T-jump instrument
can resolve. The Markov state Monte Carlo model provides improved base pair resolution
by independently tracking each base pair providing new insights into the mechanism and
dynamics of association and dissociation. The experimental results of the 5’-C(AT),,G-3’
series were analyzed using an Eyring analysis of a two-state model providing a clearer
interpretation of the reaction energetics by extracting the activation entropy, activation en-
thalpy, and activation free energy. Global analysis links the thermodynamic and kinetic
parameters utilizing a linear dependence on oligo length of the entropic and enthalpic ac-
tivation barriers. Analysis incorporating the thermodynamic nearest neighbor parameters
and the experimentally determined activation enthalpy found that the critical nucleus, the
minimum number of base pairs such that the partially formed duplex is stable and will pro-
ceed downhill to the fully formed dimer, increases in size with increasing temperature and

sequence length.
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Association and dissociation trajectories from the kinetic model were analyzed dir-
ectly and utilizing transition pathway theory (TPT). The dominant association pathways,
isolated by TPT, showed two primary motifs: initiating at or next to a G:C base pair, which
is enthalpically driven, and initiating in the center of the sequence, which is entropically
driven. For GC-core these motifs overlap resulting in a strong preference for initiating as-
sociation at the central G:C base pairs. For 5’-C(AT),,G-3’ sequences the paths compete
resulting in a preference for initiating association events either at or next to a terminal
G:C base pair or in the center. Configurations in the transition state ensemble were found
to increase in size with increasing sequence length and temperature, in good agreement
with the literature and the experimentally determined critical nucleus size. Finally, terminal
end fraying experimentally observed in GC-core was replicated by the model and shown to
be driven by increased thermodynamic accessibility of the frayed states after the T-jump.
This was compared to fast dynamics observed for longer 5-C(AT),,G-3’ sequences, the
physical origins of which were not previously clear, and suggests that this fast response

is also due to thermodynamically driven end fraying.
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CHAPTER 1
INTRODUCTION

1.1 DNA Hybridization and Dehybridization

The hybridization of DNA single strands to their complement and the dehybridiza-
tion of a DNA duplex are fundamental to biological function. There are also a number of
interesting applications of DNA hybridization and dehybridization outside of natural biolo-
gical functions. DNA biosensors use a DNA sequence, commonly a short oligonucleotide,
which upon hybridizing with a specific target of interest generates a detectable signal.
These biosensors can be used to detect a large number of targets including small mo-
lecules, such as drugs, proteins, or complimentary DNA sequences in addition to a wide
range of other applications.1 DNA origami involves designing DNA sequences that fold
into complex three dimensional structures with a wide range of applications.2 Numerous
studies have investigated the thermodynamics and kinetics of the folding process, and
the energetic driving forces behind it, to better understand and predict how these com-
plex structures fold.3—5 Similarly, DNA is a common model system for the study of self-
assembling polymers and is widely used as a building block for nanomachines.® Another
fascinating application is DNA computing.7 DNA computing takes inspiration from the idea
of DNA as a molecule for information storage and processing. It has been demonstrated
that DNA computers can carry out logical operations,7’8 simple mathematical operations
such as multiplication,9 and could be used as a practical and cost-effective solution for
archiving data.19 DNA computers have even solved a basic version of the Hamiltonian
path problem, a special case of the traveling salesman problem,11 and simple chess
puzzles. 12 All of these applications require the consistent, repeatable, and highly selective
hybridization of DNA to function necessitating a complete understanding of the hybridiza-
tion process.

DNA thermodynamics, kinetics, and dynamics all play an important role in a large vari-
1



ety of biological processes. Processes varying from DNA replication to protein expression
all involve the hybridization of nucleic acid sequences ranging from long sequences to
short RNA primers. While it has long been known that the thermodynamic stability of DNA
plays an important role in its biological function, more recent findings have demonstrated
that DNA dynamics and kinetics also play a significant role. DNA undergoes a variety of
dynamical changes including structural changes within an intact duplex and fluctuations
involving the localized loss of base pairing. A large number of distortions to the “ideal”
double helix have been identified and extensively categorized. It has been recognized
that these significantly impact the physical properties of DNA which likely plays a role
in biological processes, particularly protein-DNA interactions. 13,14 1 addition to these in-
ternal fluctuations it is well known that DNA undergoes dynamical breathing modes, which
range from the localized loss of a single base pair, referred to as base flipping, 1° to con-
tinuous stretches of broken base pairs that can grow quite large, which are referred to as
bubbles. 16 Base flipping is the process by which a single base ends up in an extrahelical
position, a configuration that is known to be adopted in a variety of instances where a
base is in the active site of a protein. This occurs in the context of a variety of processes,
an example of which is the removal of a mismatched base pair or a modified base pair,
such as a methylated cytosine. 7 It has been proposed that the dynamics through which
the base adopts an extrahelical configuration play a significant role in such processes, an
example of which is that these dynamics aid in the recognition of the target base by the
protein. 1217 DNA breathing modes, where base pairs dynamically open and close along
a stretch of the double helix, have been thoroughly studied utilizing a number of different
techniques and have been shown to play a role in a large number of biological processes.
Two such processes, among many others, are the recognition of thymine dimers formed
due to UV damage, which if unrepaired may lead to skin cancer, and the initiation of DNA
transcription, one of the most fundamental processes in biology. 16,18-22

The thermodynamics of nucleic acid hybridization and dehybridization have been ex-
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tensively studied by experimental and computational methods. While the thermodynamics
of DNA are quite well understood, there are still many details regarding the kinetics and dy-
namics that are not. In particular, even though initial kinetic studies were conducted over
half a century ago and continue to this day, questions about the description of the energy
landscape and underlying mechanism, particularly the form of the transition state, remain
unanswered. Despite interest in the folding of nucleic acid hairpins2328, the diffusion-
limited association of small nucleic acid oligomers has received less attention. Recent
work on DNA duplex dynamics and kinetics has focused more on longer lengths, often
ranging from 20 to over 100 base pairs, often looking at more complex dynamics, such as
bubble formation, that do not necessarily involve the complete hybridization or dehybrid-
ization of the duplex.16-29-32 Additional studies have been conducted that look at how

factors such as salt concentration affect the formation of DNA duplexes.31:33

1.2 Hybridization Dynamics

Before jumping into specific models for association and dissociation it is worth taking
a broader look at the overall processes and the various dynamics that occur. In this section
we will discuss common dynamics and the terminology that is used to describe them. The
purpose of this is to provide a foundation for understanding both the physical processes
that occur and the language that is used to describe them.

DNA association and dissociation are commonly discussed utilizing the conceptual
picture of the nucleation-zipper mechanism. This mechanism has been incorporated into a
number of models which will be discussed in more detail in the next section. Here our focus
is broader and we will use the mechanism to qualitatively discuss different aspects of DNA
association and dissociation. A general overview of the nucleation-zipper mechanism is
shown in Figure 1.1. In the nucleation-zipper picture there are three distinct phases of the

association process. The first step is two monomers diffusing together to form the first base
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Figure 1.1: Overview of the different stages, and their approximate time scales, of DNA
association according to the nucleation-zipper mechanism.

pair. This process is largely considered to be diffusion controlled.34:35 |n a simple case
the rate constant for the reaction of two molecules that occurs when the molecules come
within a distance R of one another is given by kp = 4mrRDNp where kp is the diffusion
controlled reaction rate, D is the sum of the diffusion coefficients for the two molecules and
Np is Avogadro’s number. 36 The first base pair can form anywhere along the sequence
either as an in-register or out-of-register base pair, with internal rearrangement required
in the case of an out-of-register base pair.

Upon forming the first base pair the process enters what is commonly known as the
pre-equilibrium.34:3%:37 During this portion of the reaction the partially formed duplex rap-
idly interconverts between a variety of configurations all of which are not thermodynamic-
ally stable. The partially formed duplex remains in the pre-equilibrium until it either returns
to the monomer state, after which the monomers may reenter the pre-equilibrium or dif-
fuse apart, or the partially formed duplex forms a structure known as the critical nucleus.
The critical nucleus is a structure that contains the minimum number of intact base pairs

such that the partially formed duplex is stable and has a significantly greater probability of
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rapidly zipping up the remaining bases in a downhill fashion relative to returning to the pre-
equilibrium. The pre-equilibrium portion of the process involves not just the formation and
breaking of base pairs, but in situations where out-of-register base pairs are present it also
includes internal rearrangements that result in the formation of in-register base pairs.e’8

The non-fundamental nature of the pre-equilibrium kinetic step in the association has
been linked to a negative activation energy32:37-39 that has been observed by a number
of different studies.3%37-41 However, there is some disagreement in the literature as to
what the sign of the association activation energy should be with some studies finding a
positive activation energy.4243 Some potential explanations for the differing signs of the
activation energy have been proposed including a sequence effect due to the increased
stability of G:C base pairs potentially limiting the extent of the pre-equilibrium step.42 How-
ever, the fact that sequences with G:C base pairs have been found with both positive 42:43
and negative 3940 gctivation energies suggests that the presence of G:C base pairs does
not necessarily dictate the sign of the activation energy. Temperature has also been pro-
posed as a contributing factor due to the association rate taking the form of a bell shaped
curve as a function of temperature with a maximum rate below Tm,34 which has been
experimentally observed.41 This would result in a differently signed activation energy on
each side of the maximum. As a result the sign of the association activation energy may
prove to be a useful indicator of the underlying mechanism due to its potential connection
to the existence of a pre-equilibrium step. However, additional research is necessary to
provide a unified explanation for this connection.

The downhill zipping portion of the reaction involves the sequential formation of the
remaining base pairs from the critical nucleus to the ends of the sequence, a process
that occurs orders of magnitude faster than the formation of the critical nucleus. In Figure
1.1 the critical nucleus is shown including a terminal base pair, with the resulting zipping
occurring towards the other end. However, the critical nucleus may form anywhere along

the sequence and if it does not include a terminal base pair zipping will proceed out in
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both directions.

It is worth pausing here to make an important note about the terminology used with
respect to the critical nucleus and a similar structure, the transition state. While we will
more rigorously, and quantitatively, define the transition state later on, for the time being
we will consider it to be a structure that sits at the peak of a standard reaction free energy
diagram. This implies that the probability of the transition state going to the monomer state
is equal to the probability of going to the fully formed dimer state. Since the critical nucleus
is stable and proceeds in a downhill fashion to the fully formed dimer state we can think
of it as the first configuration found on the dimer side of the free energy peak where the
transition state is found.

Finally we will discuss common dissociation dynamics that occur. Dissociation follows
the same general mechanism provided in Figure 1.1, but in the opposite direction. A fully
formed duplex will begin to dissociate and will rapidly form and break base pairs until
enough are broken such that the structure is no longer stable, which by definition is one
base pair smaller than the corresponding critical nucleus since that structure is stable,
at which point the remaining bases will break apart resulting in the strands entering the
monomer state.

There are two ways in which the bases begin to dissociate, fraying or bubble forma-
tion. Fraying is the sequential loss of base pairing that initiates at the end of the sequence
and the base pairs break sequentially towards the center. 40 Configurations where dissoci-
ated base pairs exist but both terminal base pairs are intact are known as bubbles. 16,29,30
It is possible to see fraying occurring from both termini simultaneously. Additionally, in long
enough sequences it is possible for multiple bubbles to occur, or for bubbles and fraying
to both be present at the same time. There is also the potential for interplay between
the two, if a frayed end becomes long enough the base pairs can reattach resulting in
the formation of a bubble, or create both a bubble and a frayed state. Bubble states that

expand far enough will also eventually create frayed states, especially in the context of
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shorter sequences.

Moving forward we will explore how the different dynamics and configurations provide
insight into mechanistic and dynamical questions about DNA association and dissociation.
We start by taking this broad view of the mechanism and exploring specific models, meth-
ods, and techniques that have been utilized to explore these questions. We start with a
closer look at specific models that are built off of the canonical nucleation-zipper mechan-

ism.

1.3 Proposed Mechanisms for DNA Association and Dissociation

One of the earliest and most commonly employed models describing nucleic acid as-
sociation and dissociation is the zipper model which was first proposed in the 1950s.44:4
In some contexts the zipper model is also sometimes referred to as the nucleation-zipper
model, since it is closely aligned with the nucleation-zipper mechanism. The version dis-
cussed here follows the formalism of Craig, Crothers, and Doty which is one of the more
extensive versions of the model.3” The model describes the association and dissociation
of DNA as a series of sequential steps each involving forming or breaking a single base
pair. The reaction scheme for this version of the zipper model is presented in Figure 1.2.
The k; and ki, parameters are rate constants for forming and breaking base pairs at the
end of a long helical segment. The d parameter is a degeneracy factor that accounts for

the number of different ways the system can move between states based on the different

possible configurations for a given number of intact base pairs. For example, there are N
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Figure 1.2: DNA zipper model mechanism using the formalism of Craig, Crothers, and
Doty. 37



different ways to form the first intact base pair, where N denotes the total number of base
pairs in the sequence. For the reverse steps the degeneracy is two, with the exception of
breaking the very last base pair which has a degeneracy of one since the zipper model
requires that all intact base pairs must be sequential and thus a base pair can only be
broken at one of the two ends of the stretch of intact base pairs. Another way to put this is
that bubble states are not allowed. The ~ parameter is a kinetic parameter that provides
additional flexibility for reducing the equilibrium constant either through decreasing the
forward rate or increasing the backwards rate, in comparison to o, another attenuation
parameter, that only impacts the forward rate constant. The o parameter attenuates the
forward rate to account for the fact that k; is the rate of formation for a base pair at the
end of a long helical stretch, where base pair formation is expected to be the fastest, and
base pairs will form slower earlier in the process. Finally, 5 serves a similar purpose to o,
though it only attenuates the formation of the first base pair from two monomer strands.
The zipper model has been utilized extensively in the literature for studying the associ-
ation and dissociation of DNA oligos. The model consistently follows this general form,
however small changes in the symbols used for each parameter and their definitions do
exist, 35,37,42,44-48

The zipper model is often referred to as the nucleation-zipper model to reflect an
important aspect of the mechanism that is not necessarily apparent from simply looking at
the reaction scheme shown in Figure 1.2, which is the two components of the association
mechanism discussed previously and shown in Figure 1.1. The reaction scheme in no way
identifies the formation of the critical nucleus nor where along the scheme its formation
occurs. Currently, there is no clear consensus in the literature with respects to the size
of the critical nucleus, though most estimates put it somewhere in the realm of one to
four base pairs and suggest it is impacted by factors including base pair composition,
temperature, and sequence length.3%:37.38:42

More recent work on the original theory of the zipper model has focused on evaluating
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the scaling of the association rate with oligomer length, originally proposed by Wetmur

and Davidson34 and studied by many others,31:32:35,37,42

and attempting to determine
its underlying causes.31:32 This scaling behavior predicts that for sequences under 100
base pairs the association rate should be proportional to length (L) and for sequences
over 100 base pairs it should be proportional to 1.9->,34

More recent computational studies have seen evidence of critical nucleus formation
while also proposing new mechanisms such as “slithering” or the “inch-worm” mechanism
that may also play a role in the formation of DNA duplexes.3':38 Both of these mech-
anisms differ significantly from the zipper model in that they involve configurations with
out-of-register base pairs as intermediates on the way to a fully hybridized duplex. While
sequences do not need to be perfectly repetitive for these mechanisms to play a signific-
ant role, they will be more relevant for repetitive sequences. Additionally, the probability
for out-of-register binding is higher for longer sequences suggesting these mechanisms

would be expected to be more relevant for longer sequences.:”8 However, these mechan-

isms have not yet been experimentally observed.

1.4 Infrared Spectroscopy of DNA

Infrared (IR) spectroscopy is a powerful tool for studying DNA hybridization and de-
hybridization. The most prominent benefit of IR spectroscopy is that each of the four DNA
bases has a distinct IR spectra meaning changes in adenine-thymine (A:T) base pairs can
be observed independently from changes in guanine-cytosine (G:C) base pairs. This can
be observed in Figure 1.3 which shows both the two-dimensional infrared (2DIR) spectrum
and the linear Fourier transform infrared spectroscopy (FTIR) spectrum for each of the four
DNA bases, the collection and processing of these spectra and a more detailed discussion
of their analysis is provided in later chapters. The peak assignments for each base have

been determined and their frequencies are given above each of the FTIR spectra in Figure
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Figure 1.3: 2DIR and FTIR spectra of adenine monophosphate (a-b), guanine monophos-
phate (c-d), thymine monophosphate (e-f), and cytosine monophosphate (g-h), adapted
from Ref 49.

1.3. Each of these peaks is made up of a convolution of individual vibrations that have
been previously outlined by DFT calculations. 49 Generally, these peaks are broken down
into two categories. Peaks below 1650 cm™ are commonly referred to as ring modes and
contain contributions from in-plane ring vibrations. Peaks above 1650 cm™! are referred to
as carbonyl modes because they contain strong contributions from symmetric and asym-
metric carbonyl stretching modes. These terms will be used to generally describe the two
sets of peaks throughout this work.

We can see that both guanine and cytosine have regions where they are the only base
pair with a peak, at around 1560-1580 cm™! and 1500-1525 cm™, respectively. Adenine
and thymine don’t have individual peaks that are quite as clean, though thymine does
have a small shoulder that sits relatively isolated at around 1690 cm™!, but this can be
hard to observe in sequences without a large percentage of thymine bases. However,
around 1625 cm™! both adenine and thymine have a very strong absorption, on top of
a weak cytosine absorption, which means this peak can be used as a relatively clean
marker for A:T base pairs. Since the research described here is primarily focused on
hybridization and dehybridization, the ability to isolate adenine from thymine is of less

concern compared to the ability to separate A:T base pairs from G:C base pairs.
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All of the peaks, with the exception of the thymine shoulder found at approximately
1690 cm™!, are suppressed by duplex hybridization. The experiments conducted here
perturb the system through heating which means that they induce dehybridization. As a
result our experiments primarily track the increasing IR signal that occurs as the result
of a loss of base pairing. Additional signals in the nonlinear experiments occur due to
the existence of cross peaks that primarily appear, in the context of this work, due to
coupling between different vibrational modes. Intramolecular coupling appears in Figure
1.3 as cross peaks between different modes, easily observed in Figure 1.3d between
the guanine ring modes and carbonyl modes. Intermolecular cross peaks also appear
between vibrational modes of hydrogen bonded base pairs, such as cross peaks between
adenine ring modes and thymine carbonyl modes, which disappear as a result of the loss
of hydrogen bonding. This provides additional signal changes that can be tracked, and is
a clear marker of dehybridization in the 2DIR experiments since these cross peaks only
appear when intact hydrogen bonds between the complimentary base pairs exist.

Now that we have introduced the ability of IR to differentiate the signal from different

base pairs we will highlight why IR is useful for observing hybridization and dehybridization

‘C
76

0.16f
0.14+ 00
§0.12 56
8 01 45

50.08
13(106 36

0.04
0.02 26

1550 1600 1650 1700 1750
Frequency (cm™)

Ofi
1500

Figure 1.4: Temperature ramp series of FTIR spectra taken every 3 °C between 16 °C and
76 °C for the sequence 5’-CATATATATATATATG-3’ showing the change in absorbance as
a result of the loss of base pairing.
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processes. Figure 1.4 contains a series of FTIR spectra for 5’-CATATATATATATATG-3’
taken approximately every 3 °C from 16 °C to 76 °C tracking the duplex as it dehybridizes
with increasing temperature. We see that, with the exception of the thymine shoulder at
1690 cm™!, the signal increases with increasing temperature because the duplex structure
suppresses these vibrational modes. This provides the ability to track the loss of A:T base
pairs, looking primarily at the growth of the 1625 cm™! peak, and the loss of G:C base pairs,
looking primarily at the growth of the 1580 cm™! peak. With the ultimate goal of gaining
insight into the mechanism of DNA hybridization, especially when considering the effect
of base pair composition, the ability to independently monitor A:T and G:C base pairs that
IR provides makes it particularly well suited for these types of studies.

Beyond the benefits of IR spectroscopy, the kinetics of the DNA sequences studied
here are an ideal fit to the time range our temperature-jump experiment is able to resolve.
The spectrometer is able to resolve kinetics that fall in the nanosecond to millisecond
timescale. For the sequences studied here the full dissociation occurs on a timescale
of tens to hundreds of microseconds with fast dynamics occurring on the order of nano-
seconds which places these processes directly in our resolvable time window. This makes

these systems ideal candidates for study utilizing these techniques. 39:40:50

1.5 Computational Methods

One of the most well-known and utilized DNA thermodynamic models is the nearest
neighbor (NN) model.51~%4 The NN model is utilized in the construction of the lattice
model®° that the kinetic model presented here is built off of. The NN model, and resulting
parameters, are also used as a point of comparison during analysis of the thermodynamic
and kinetic results presented here. The model is based on the assumption that the sta-
bility of a given base pair depends on its identity and the identify of the neighboring base

pair. The dinucleotides are often represented with a slash denoting the two strands in
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antiparallel orientation such that AC/TG refers to a 5’-AC-3’ that is paired with 3-TG-5.51
As an example, the sequence 5-CATG-3’, which is self-complimentary, contains three
dinucleotide subunits (CA/GT, AT/TA, and TG/AC).

The model can accurately predict DNA secondary structure in a variety of salt con-
ditions. The NN model breaks down thermodynamic parameters for sequences of sev-
eral different DNA motifs into individual parameters containing the contribution of each
dinucleotide, of which there are ten, to each particular thermodynamic quantity. In addi-
tion to the dinucleotide parameters, additional parameters exist to account for the impact
other factors have on the thermodynamic parameters. These include accounting for the
initiation, a penalty applied to sequences with terminal A:T base pairs, and a symmetry
correction for self-complimentary sequences.51‘54 Parameters are provided for AHY and
ASY. In some cases additional parameters are provided for AGg7 which is the value of
AGY at 37 °C.

The AHY and ASY are determined by identifying each dinucleotide in a given se-
quence and summing the parameters provided by the model in addition to the values for
any relevant additional parameters. The value of AG? at any temperature, and the T,
can then be determined from AHY and AS?. It is worth noting that the individual NN
parameters have been shown to not carry any dependence on sequence length, however
the salt correction does.®1 Parameters are often determined and provided for a particular
salt concentration, however equations to correct for salt concentration have been determ-
ined.%2:9 The specific NN parameter set used in the thermodynamic lattice model, and
the analysis presented here, was determined by SantalLucia utilizing a set of 108 oligo-
nucleotide duplexes.®! The most common method for obtaining thermodynamics from
experiment to develop NN parameters is melting curves monitored by UV spectroscopy,
though DSC and other techniques have also been used. >’

The NN parameters have been shown to be highly accurate for predicting thermo-

dynamic values. A study examining 264 duplexes of length 4 to 16 base pairs found
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an average absolute deviation of 1.6 °C between the experimental Ty, and calculated T,
which is particularly good agreement since the model was optimized to predict AGY, AHY,
and ASY rather than the Tm.52 While next nearest neighbor models, that break down the
thermodynamics into parameters for each possible trinucleotide, exist; evidence shows
that they do not provide any significant improvement over NN models.®” Additionally, NN
parameter sets have been determined by a number of different research groups that have
been shown to all be in agreement.®’

Lattice models are another common method for modeling DNA thermodynamics. Lat-
tice models are a class of models where the physical space occupied by the system is a
discrete lattice rather than a continuous space. This simplification greatly reduces the
computational cost. It has been shown that lattice models can accurately reproduce melt-
ing thermodynamics and study the energy landscape of nucleic acid duplex oligomers and
hairpins.24’55=58

Advances in coarse-grained molecular dynamics (MD) simulations have provided new
insights into DNA association mechanisms and the resulting kinetics.31:38:59.60 Tywo com-
monly used coarse-grained MD models are the 3SPN.2 model31°9-62 and the OXDNA
model.38:63 Coarse-grained MD differs from all atom MD in that it groups atoms together
into single entities, commonly referred to as interaction sites, each of which represents
a portion of the DNA base, which greatly reduces computing costs. For example, the
3SPN.2 model uses three interaction sites to model the nucleotide that represent the
sugar, the phosphate, and the nucleobase itself. These models have been used ex-
tensively to investigate the kinetics and mechanism of DNA oligo hybridization and ex-
amine the effect of a number of different parameters including length, sequence, and salt
concentration on the association process.31:38.60 These methods have made numerous
contributions to the study of DNA kinetics including, but not limited to, examining the scal-
ing relationship proposed by Wetmur and Davidson, 34 proposing new mechanisms by

which DNA associates including the previously mentioned “inch-worm” and "pseudoknot”
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mechanisms, 31:38and examining the configurational states, and their size, that make up
the transition state for particular sequences.31’3&591:’0 Coarse-grained MD simulations
are usually carried out under equilibrium conditions where DNA hybridization is a rare
event making sampling the kinetics and dynamics difficult. To overcome this, a few differ-
ent sampling methods are utilized including umbrella sampling, transition path sampling,
or forward flux sampling.31 Another method for studying the transitions is to generate a
set of key kinetic states from the trajectories which can be analyzed as a Markov state
model.84-66 Wwhile these techniques are very powerful they have a relatively high com-
putational cost which, combined with the complexity of running and analyzing them, puts
them out of reach for many researchers.

We now look to another method used to study the kinetics of biomolecular systems,
the use of Monte Carlo methods. Monte Carlo methods are used to simulate trajectories of
a system evolving through a given state space. One option for generating the state space
is to utilize the states generated from a thermodynamic lattice model.4 Other approaches
for generating states include using the NN model® and building Markov state models from
MD simulations.64-66

Here we broadly discuss a few methods, and their applications, from the literature.
Monte Carlo simulations are commonly run in two different ways. With discrete and con-
stant time steps or in continuous time. In the continuous time case the model moves
forward in discrete time steps, but each discrete time step is randomly selected from a
continuous distribution of potential time steps. One commonly utilized algorithm for dis-
crete time step models is the Metropolis-Hastings algorithm,87:68 which has been used to
study both protein369 and DNA.%420 |n brief, at each discrete time step the algorithm ran-
domly selects a potential move based on the probability density for the system. Then the
model decides whether to accept that move and go to the new state, or to reject that move
and remain in the current state. The probability of accepting or rejecting is proportional to

the probabilities of the two states and is commonly referred to as an acceptance ratio. The
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algorithm decides whether or not a move is accepted by comparing the acceptance ratio
against a randomly generated number. After making the move if accepted, or remaining
in the same state if not, the model steps forward one time step. The Metropolis-Hastings
method is particularly useful for resolving mechanisms and pathways, however it is difficult
to extract meaningful kinetic information without additional complexity.

To extract kinetic information it is beneficial to utilize a Monte Carlo algorithm that
operates in continuous time. One commonly used algorithm is the Gillespie algorithm. 707
This algorithm is used to generate the trajectories for the model presented in this work
and as such the theory and methodology required for carrying it out will be described in
detail later. The Gillespie algorithm has been used to study DNA in a variety of contexts

including breathing dynamics19’72

and the hybridization of a variety of DNA motifs and
structures.3.9.73.74

Now we will briefly introduce two analysis techniques commonly utilized in conjunc-
tion with these computational methods that are also used in the work presented here.
Transition path theory (TPT) was developed for the purpose of analyzing the statistical
properties of the pathways between any two subsets in the state space of continuous-time
Markov chains on discrete state spaces.”®~"® A common application of TPT is determin-
ing the dominant reactive pathways between two states in a Markov state model through
calculating the reactive flux between all the intermediate states that make up the possible
pathways. This is often utilized to determine and study the dominant folding pathways of
proteins. 466 A particularly useful aspect of TPT analysis is that it does not require that
trajectories are run to disseminate pathway information; it simply requires the transition
rate matrix from a Markov state model to determine the pathways and relevant statistical
information.

While TPT is very useful for isolating the dominant pathways between two states,

usually the initial and final states of a folding process, it does not easily provide significant

insight into the intermediate stages of the process beyond what states the pathway moves
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through. This misses out on a significant aspect of the mechanism which is the identity
of the transition state and critical nucleus. One way to isolate the identity of the transition
state is through defining the transition state ensemble (TSE). The TSE is a collection of
states that represent the transition state, which is considered to be an ensemble since pro-
cesses involving large complex biomolecules are unlikely to have a single configuration
that makes up the transition state. One method for determining the configurations in the
TSE for the hybridization of DNA oligos is based on the probability of a given intermediate
configuration first reaching the fully formed dimer state versus the monomer state. A con-
figuration is considered to be in the TSE if the probability of going to the fully formed dimer
state is roughly equal to that of going to the monomer. 59,60 Isolating the TSE in conjunc-
tion with the identification of the dominant reactive pathways provides a comprehensive
picture of the association and dissociation processes and provides a useful framework for

understanding multiple aspects of the mechanism.

1.6 Research Question and Goals

Even with the significant interest in the thermodynamics, kinetics, and dynamics of
DNA hybridization and dehybridization there are a number of remaining open questions.
The transition state, which is correlated with the critical nucleus, has not been conclus-
ively characterized and inconsistencies in the literature exist with regards to whether the
association mechanism of certain sequences is described by Arrhenius or anti-Arrhenius
behavior.#0:42 This carries mechanistic importance since the anti-Arrhenius kinetics have
been proposed to be connected to the pre-equilibrium step and Arrhenius kinetics might
imply that this step is not present.

Additionally, little exists with regards to accessible predictive models for DNA kinetics
based purely on sequence, such as a kinetic analog to the NN thermodynamic parameters.

NN parameters can be used to predict barriers to dissociation within a two-state model,
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allowing the dissociation rate to be predicted from the association rate.®4 However, con-
clusive evidence for the validity of the two-state model is lacking. Additionally, more work
is needed to determine the robustness of the predictive power and how sequence, sec-
ondary structure, and mechanism all impact the effectiveness of predictions.

The research presented here is motivated by multiple factors. Recent research has
demonstrated that IR methods are capable of observing mechanistic changes as a result
of base pair composition. 4949 Additionally, developing accessible computational models
to pair with these experiments greatly improves our ability to study the mechanism, kinet-
ics, and dynamics of DNA oligo hybridization. This motivated the development of an ac-
cessible and computationally inexpensive kinetic model that could be used in conjunction
with our experimental techniques and thermodynamic lattice model. We were motivated
to revisit the length dependent trends studied decades ago to reexamine these systems
utilizing modern experimental techniques. It is also our hope that examining the length de-
pendence of DNA oligos will help drive forward the study of longer and more biologically
relevant oligos utilizing our IR spectroscopic methods in combination with our thermody-
namic and kinetic models. Utilizing modern label-free sequence specific spectroscopies
on the length dependent samples, and a new stochastic model on both the length de-
pendent samples and the sequence dependent samples, provides new insights into the
process by which DNA associates and dissociates while also providing new insights into
equilibrium fluctuations and dynamics.

The research conducted here focused on a few overarching goals. The first was to
build an accessible and computationally inexpensive kinetic model for use in conjunction
with experimental results to obtain more specific mechanistic insight than can be provided
with experiment alone. Beyond the goal of developing new tools, the ultimate goal is fo-
cused on understanding and providing a more robust description of the association mech-
anism, transition state, and their underlying energetics. While sequence specificity and

length are just two of the many variables that impact the hybridization and dehybridization
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of DNA oligos we believe that this work provides a significant step forward by clarifying the
role of these two significant variables. Additionally, we believe that the methods proposed
here can provide a framework for investigating other important variables to continue to

provide greater clarity with regards to this long discussed problem.
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CHAPTER 2
THEORY AND FORMALISM OF IR

2.1 Introduction

In this chapter the basics necessary for understanding the physical origin of the sig-
nals measured with nonlinear IR techniques are discussed along with how these signals
are processed into the final spectrum. 2DIR spectroscopy is a technique within the broader
family of ultrafast spectroscopies. Numerous references exist for ultrafast spectroscopy
in general '™ and 2DIR®-8 itself that comprehensively discuss the theory and formalism
of the technique. As a result this discussion will be limited to what is necessary to un-
derstand the experiment as it is utilized here and the spectra that are analyzed. Readers
interested in learning more about ultrafast spectroscopy or 2DIR are encouraged to seek
out the previously mentioned resources for more information.

A 2DIR spectrum is a two-dimensional frequency correlation plot that probes the vi-
brational modes of the sample providing information about its structure and dynamics on
very fast time scales. 2DIR uses a series of femtosecond laser pulses to interrogate the
vibrational modes of the sample. In the case of biological samples these vibrational modes
can be connected to detailed structural information that identifies configurational changes
or isolates a particular structure or biomolecule of interest. The existence of cross peaks
allows the direct observation of interactions between different vibrational modes providing
information on the movement of energy through the system or the presence of couplings
between vibrational modes. The time resolution of the ultrafast experiments utilized here
makes it possible to resolve this structural information on the timescales at which the bio-
molecular reactions studied here occur making it ideal for the study of the kinetics and
dynamics of DNA systems.

In this section we will first detail the origin of the signal measured in 2DIR experiments

and the related nonlinear experiments utilized in this work. This will involve a brief discus-
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sion of the changes that occur within the system, as a result of the interactions with the
laser pulses, that give rise to this signal. Afterwards, the relationship between the peaks
in the spectrum and the vibrational modes of the system will be explained. Finally, the
relationship between 2DIR and other nonlinear ultrafast measurements will be discussed
to understand the different experiments that were conducted and the how information is

portrayed in each one.

2.2 Third-Order Nonlinear Polarization and Response Function

To understand the origins of 2DIR we start with simple linear absorption. Semi-
classically, absorption can be thought of as a loss of intensity as a result of an electric
field emitted by the sample that is out-of-phase with the electric field of the transmitted
light. The electric field emitted by the sample is radiated by the macroscopic polarization
induced in the sample by the electromagnetic field of the incoming light. The macroscopic

polarization P is given by the expectation value of the dipole operator

P(t) = (ip(1)) (2.1)

where p is the density matrix for the system.

For 2DIR we are interested in the third-order polarization induced in the system as a

E1 EZ E3 \
To T o

Figure 2.1: Pulse sequence and orientation for a three pulse 2DIR experiment utilizing the
Boxcar geometry.
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result of interactions with a set of ultrafast infrared pulses. The most basic form of 2DIR
spectroscopy involves three laser pulses that are separated by time intervals 7, and 7,.
Our focus is on the polarization at some time ¢ during the detection time, 75. The pulse
sequence is shown in Figure 2.1. Using Equation 2.1 in conjunction with a perturbative
expansion of the density matrix that treats the interaction of an electric field with the system
as a small time-dependent perturbation to the system Hamiltonian, the equation for the

third-order polarization P(®) () is found to be2:5

PO)(1) — / h / h / 7RO (g, g, 71 Bt — )t — 7y — )
0 0 0

E3(t — 7'3 — ’7'2 - 7'1)d7'3d7'2d7'1 (22)

where Ey are the incoming electric fields of the three femtosecond IR laser pulses and
R3) s the third-order response function. In our treatment here we will assume that our
femtosecond pulses can be treated as delta functions with impulsive interactions. The
third-order response function generates the electric field emitted by the nonlinear polar-
ization and is ultimately what 2DIR aims to measure. The third-order response can be

expressed as?:°

—1

3
R I & ICCACIACTCAR

([lAars + 7o +71), ity + 7)) f1(71)], 11(0)] pg) - (2-3)

where p is the equilibrium density matrix and © is the Heaviside function, the purpose of
which is to enforce the time ordering of the pulses and ensure that the third-order response
only occurs after all three electric fields have interacted with the sample.

Now we need a way to visualize how the system evolves as a result of the light-matter
interactions that occur during the experiment. This is often done through the use of Feyn-

man diagrams which visually illustrate the light-matter interaction pathways that can occur,

28



21| |10 |10
111 [11] 7loo

Rephasing 1571 o1 01’
oo|> [oo|> [oo[®
R1* R2 R3
10|, [21| |10 21| |10
Non-Rephasing 11 . 7111 . Zloo /20 h /20
10> 10> |10 10| 7|10

“loo| “loo| “loo| |7|oo| 7|00
R R° R R R’

1 2 4 3 4

Figure 2.2: The eight Liouville pathways that contribute to the third-order response func-
tion. The rephasing and non-rephasing pathways that are experimentally measured are
in the blue box while the two quantum coherence non-rephasing pathways are outside the
box.

which are known as Liouville pathways. The eight Feynman diagrams that correspond to
the possible pathways for the response function given in Equation 2.3 are shown in Figure
2.2. Time runs from the bottom to the top on these diagrams. Horizontal lines indicate a
light-matter interaction and the boxes created by the lines show how the density matrix
evolves during the time period between interactions. The numbers inside the box are the
density matrix elements for that time period. Arrows that point away from the diagram in-
dicate emission while arrows pointing towards the diagram indicate absorption. Of these
eight pathways four are unique and the other four are their complex conjugates, denoted
by the star in Figure 2.2. The third-order response function can be written as the sum of

these pairs

4
R (ry,75,7) =Y R; — R} (2.4)
=1

demonstrating that it contains all of the information on the evolution of the system through
each of these pathways. Under the assumption that our femtosecond pulses can be
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treated as delta pulses, the nonlinear polarization is directly proportional to the response
function. Presuming that the electric field that is emitted due to the macroscopic polariz-
ation is detected in the time domain, the 2DIR spectrum is in practice obtained by taking

real part of a two-dimensional Fourier transform of the response function

o0 (0. ¢] . .
Sop(ws, Ty, wy) =R (/ / R(r3, 79, Tl)e’w17162w373d71d7'3> (2.5)
0 0

where w; and w; correspond to Fourier transform pairs of 7; and 75. An important note on
notation here is that Sy refers to the real part of the 2D surface while S,p refers to the

complex 2D surface.

2.3 Time Ordering of Interactions and Phase Matching

The eight Louiville pathways can be broken down into two categories, rephasing path-
ways and non-rephasing pathways demonstrated in Figure 2.2. Pathways are considered
to be rephasing when the phase evolutions during 7; and 75 carry opposite sign whereas
for non-rephasing pathways the phase evolutions during 7; and 73 carry the same sign.
These phase evolutions are related to the sign of the wavevector associated with the
incoming field. Arrows pointing to the right indicate a positive wavevector while arrows
pointing to the left indicate a negative wavevector. Within the non-rephasing group there
are two pathways, R} and R}, that are known as double quantum coherence pathways
since they reach a doubly excited state after the first two interactions, and they are the
only pathways that do so. The 2DIR spectra collected as described by Equation 2.5 is
referred to as the 2DIR correlation spectrum. This is the most useful spectra to acquire
since combining the rephasing and non-rephasing spectra produces a spectrum with a
purely absorptive line shape. Acquiring this requires collecting both the rephasing and
non-rephasing pathways which brings up the concept of phase matching.

Phase matching is a common method for selecting specific pathways based on the
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phase and time ordering of the incoming pulses.5 Each of the incoming electric fields E;,
E-, and E3 has a corresponding wavevector ki, ko, and k3. Utilizing the boxcar geometry
shown in Figure 2.1 the goal is to arrange the pulses in time and space in such a way that
the signals from the rephasing and non-rephasing pathways can both be obtained along
the same wavevector. This allows both to be collected without needing to realign the spec-
trometer or use a second detector. Looking at the orientation of the pulses in Figure 2.1,
and knowing that k; and ks must carry opposite phases to obtain the rephasing pathway,
we can see that the phase matching condition —k; + ko + ks will generate the rephasing
signal along the desired vector shown in Figure 2.1. To collect the non-rephasing signal we
could keep the same time ordering and use the phase matching condition k| —ks+ks, how-
ever that would result in the signal being generated in a different direction. Instead we alter
the time ordering of the pulses and use the phase matching condition k9 — k; + k3 which
has both the proper phases for acquiring the non-rephasing signal and emits the signal in
the same direction as the rephasing signal. The two quantum coherence pathways have
a different phase matching condition and are not acquired during our experiments. The
result of this is that the rephasing and non-rephasing spectra can be collected separately
by changing the time ordering of the first two pulses. The rephasing and non-rephasing

signals can then be added together to obtain the third-order response function.

2.4 Model Six Level System

It is now useful to look at a model system to identify how the different Liouville path-
ways shown in Figure 2.2 correspond to the experimental spectra. This provides the most
tangible way to understand the useful information that is provided by a 2DIR experiment.
The model system described here is shown in Figure 2.3c and contains six vibrational
energy levels consisting of fundamentals, overtones, and a combination band. The cor-

responding cartoon 2DIR plot is shown in Figure 2.3b. In the 2DIR spectrum w,, presented
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Figure 2.3: Cartoon HDVE (a) and 2DIR spectrum (b) for the model six level system de-
scribed by the ladder diagram (c).

on the horizontal axis, is the excitation frequency and ws;, on the vertical axis, is the de-
tection frequency. The w, frequency corresponds to the energy gap of vibrational modes
excited by the first electric field. The w4 frequency corresponds to the difference in energy
between the two states that are occupied after the interaction with the third electric field.
Looking at the peaks the first distinction is that there are both positive (red) and negative
(blue) peaks. The positive and negative peaks come in pairs as seen in Figure 2.3b, the
reason for this will become clear when we assign individual pathways to each peak and
see which transitions they contain. The sign corresponds to the transition that is probed
by the third pulse. The positive peaks result from two types of pathways known as ground
state bleach and stimulated emission. In both cases the states that are occupied after the
interaction with the third electric field are the ground state and a singly excited state. The
negative peaks result from excited state absorption pathways where the system is in a
coherence between a singly excited state and a doubly excited state after the interaction
with the third field. The opposite signs are due to the fact that the emitted signal from
an excited state absorption pathway has the opposite phase relative to the signal emitted
from a ground state bleach or stimulated emission.

Now that we understand the signs of the different peaks we will separate the peaks

32



according to whether they lie along the diagonal (Peaks 1, 1’, 2, and 2’) or are off-diagonal
peaks (Peaks 3, 3’, 4, and 4’) which are also known as cross peaks. When examining
these peaks in the diagram the axes are labeled according to the frequency of the transition
that is probed by the first interaction and the third interaction. In the case of positively
signed diagonal peaks the same vibrational mode is probed by the first and third pulses.
Looking at the 2DIR and ladder diagram in Figure 2.3 and using peak 1 as an example,
both the first and third pulses are probing the 0—a transition, which also explains why the
frequency is the same along both axes. Peak 1’ is the excited state absorption for this
vibrational mode so the first pulse probes the 0—a transition and the third pulse probes
the a—2a transition. The reason that the 1’ peak is slightly off the diagonal is due to
the anharmonicity of the system resulting in the a—2a transition having a slightly lower
frequency then the 0—a transition. The difference in frequency between the two peaks
provides information about the anharmonicity of the system. The fact that both peak 1 and
1’ probe the same vibrational mode with the first pulse demonstrates why the positive and
negative peaks exist as a pair.

Cross peaks arise from multiple vibrational modes interacting with the incoming elec-
tric fields. These peaks manifest from anharmonic coupling between different vibrational
modes, which can arise from a number of interesting physical processes. To give a few
examples for the case of DNA, this can occur between modes within a single base such as
coupling between the ring mode and carbonyl modes of guanine. They can also occur as a
result of coupling between hydrogen bonded bases pairs such as coupling between guan-
ine vibrational modes and cytosine vibrational modes. This latter example is particularly
useful as this coupling only occurs when the base pairs are hydrogen bonded meaning
this cross peak disappears upon the loss of base pairing. Looking at peaks 3 and 3’ as
examples, peak 3 arises from the first pulse probing the 0—a transition and the third pulse
probing the 0—b transition. This corresponds to the bleaching of the ground state that is

shared between the coupled oscillators. For peak 3’ the first pulse again probes the 0—a
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transition while the third pulse probes the a—ab transition, which is an excitation into a

combination band.

2.5 Alternative Nonlinear IR Measurements

There are a few other nonlinear IR measurements that are related to 2DIR, but are
all one-dimensional representations of the signal. These are heterodyne dispersed vibra-
tional echo (HDVE), dispersed vibrational echo (DVE), and dispersed pump-probe (DPP).
Since these are one-dimensional representations the excitation axis is not resolved mak-
ing them much faster to acquire since 7, is fixed, though w, resolution is of course lost.

Starting with the complex 2D surface §2D (w3, wl) the alternative spectra are given by

~ m ~ ~
SHDVE (w3) = /o Sop (w3, wy) dwy = Sop (w3, 7 = 0)
2

0o ) 2
SpvE (w3) = ‘/0 Sop (wg,wy) dwy | = ‘SHDVE (w3)‘ (2.6)

Sppp (w3) = R (/OOO Sop (wg,wy) dw1) =R <5HDVE (w3)>

One useful note is that the DPP is simply the real part of the HDVE. Later on when dis-
cussing HDVE this is important to recall as the spectra shown will be the DPP, though we
commonly refer to them as HDVE since that is how they are acquired. Another point to
note is that the HDVE is a projection of the 2D signal onto the w4 axis and collected by
fixing 7, = 0 fs, by the projection slice theorem. Fixing 7, at zero also results in the reph-
asing and non-rephasing pathways being emitted along the same wavevector® allowing
both to be acquired simultaneously.

Since the HDVE is the most heavily used in this thesis it is worth revisiting the model
six level system shown earlier to see what the corresponding HDVE spectrum would look
like. Figure 2.3a shows the HDVE figure determined from the 2D spectrum according

to Equation 2.6. In this case we can see many features are still present, despite the
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projection. We can still see each of the peaks individually, the only difference being that
the positive peaks on the diagonal are combined with the positive cross peaks resulting
in only two positive peaks with greater intensity. While in this case there is no significant
information lost due to integrating over the w, axis, for spectra of real samples this is
usually not the case as there are some peaks that overlap along the w; axis.

One final note on the HDVE, while the details of the experimental methods will be
detailed in a later chapter there is one particular aspect that is worth discussing here with
regards to the nature of the signal. The HDVE signal is acquired in the frequency domain
as the result of the signal being dispersed by a grating onto the detector. The resulting sig-
nal measured at each frequency contains only the real part of the HDVE and an additional
method is required to obtain the complex HDVE. The method utilized here is Fourier trans-
form spectral interferometry (FTSI). The method has been outlined in detail elsewhere 910
and only a brief explanation is provided here. This method utilizes a Kramers-Kronig re-
lation that relates the real and imaginary parts of a complex function which allows the real
component to be calculated from the imaginary component and vice versa. Using FTSI
the real valued frequency signal obtained by the experiment is inverse Fourier transformed
into the time domain resulting in a complex time domain signal that has both positive and
negative time components. A Heaviside function is then used to select only the positive
time signal which is then Fourier transformed back into the frequency domain resulting in

the complex HDVE signal.
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CHAPTER 3
THEORY AND FORMALISM OF MARKOV PROCESSES AND THE
GILLESPIE ALGORITHM

3.1 Introduction

One of the primary goals of this research was to develop a conceptually and com-
putationally accessible model to compliment experimental studies of DNA dynamics and
kinetics. It has been well documented that DNA hybridization and dehybridization does
not follow a single well defined pathway but rather has a distribution of available path-
ways through which the process can occur. The process of DNA hybridization and de-
hybridization is dictated by diffusive motion and random forces that guide the motions and
interactions of the individual strands. To model our experimental data we will mathemat-
ically represent the association and dissociation of DNA as a stochastic process. While
stochastic processes are widely used in mathematics, biology, chemistry, physics, and
other fields, some of the underlying mathematics and terminology are likely to be unfamil-
iar to many. In this chapter the basics necessary to understand the origins of the model are
outlined, while the construction of the model itself is detailed in later chapters. We begin
with the basics of Markov processes which is followed by an explanation of the algorithm
that is utilized to generate stochastic trajectories from a Markov model. The remainder of
the chapter is dedicating to outlining additional mathematical methods that will be utilized
in the analysis of the model.

A stochastic process is an indexed family of random variables, commonly denoted
X (t), where the indexes are a set of times over which the random variable evolves. The
set of possible values used to index the random variables is known as the index set and
the set of possible values for the random variable is known as the state space. Stochastic
processes are used to model numerous systems in a variety of fields that evolve randomly

over some period of time. Stochastic processes can have numerous outcomes, due to
37



their random nature, with individual outcomes known as, among other possible names, a
sample function, realization, or trajectory. To put this another way, a trajectory of a random
process is generated by allowing the system to iterate through the states in the state space
recording each state along the way with an index which is usually the time at which the
system is in that state. Since stochastic processes indexed by a set of times are both the
most common type of stochastic process, and the type used here, our discussion going
forward will consider the index set to be a set of times.

A Markov chain, also referred to as a Markov process, is a particular type of stochastic
model that follows the Markov property. The Markov property requires that the next state
of a process, and the time at which the system will be in that state, depends solely on the
current state and time with no dependence on previous steps in the process. A classic
example of a Markov process is a random walk on a 2-D lattice where the system has equal
probability of moving to each of the four neighboring states regardless of where the system
is. The system can be initially placed at a given position and allowed to move throughout
the lattice grid resulting in a number of different random trajectories. Additionally, the next
state the trajectory moves to only depends on the state the system currently occupies and
is completely independent of how the system arrived at that state.

Markov processes, and stochastic models in general, are often broken down into
classifications based on two factors: how they progress forward in time and their state
space. The time evolution of a model can occur in either discrete-time or continuous-time.
A model can also have either a discrete or continuous state space. It is worth noting that
a continuous state space is by definition infinite and uncountable while a discrete state
space could be finite or infinite.

The model presented here is based on the states generated by a thermodynamic lat-
tice model, previously developed in our group,1 resulting in a discrete and countable state
space. The model is set up as a continuous-time Markov process because this provides

the most natural comparison to the kinetics obtained from the temperature-jump experi-
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ment. However, in some instances it will be advantageous to analyze the model within
the context of discrete time steps. We will now examine the theory of Markov processes
and the rules they follow. Later on the theory behind methods for directly analyzing the

Markov model without needing to generate trajectories is presented.

3.2 Theory of Markov Processes

Our goal here is to examine the case of a discrete state Markov process in continuous-
time to understand what dictates the evolution of a system following the Markov property.
We are interested in a random variable X (¢), which at any given time is in one of the
states in the state space, and how it evolves as a function of time. We start by defining the
transition probability for going from step n— 1 to step n in a Markov process. The transition
probability is given by?2

Pr(zn, tn|zn—1,tn—1) (3.1)

which is the probability of being at state x,, at time ¢,, given that the system was at z,,_; at
time t,,_1 where n and n—1 denote steps along the trajectory. A Markov process where the
transition probabilities do not evolve as a function of time is referred to as stationary. One
can show that this implies the transition probability only depends upon the time difference
tn—t,_1. Aprocess respecting these two properties is also known as a time-homogeneous
Markov chain. This is true for the model discussed in this work and moving forward we
will use the notation Pij (t) for the probability of going from state : to state j in time ¢. The
matrix whose elements are Pij (t) is sometimes known as the transition probability matrix
or the transition matrix and will be denoted by P,2 though it is critical to not confuse this
with the transition rate matrix that will be introduced later on. The elements pij(t) must
satisfy two conditions

pij (t) =0 (3.2)
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S pi () =1 (33)
J

Equation 3.2 requires that all probabilities be non-negative and Equation 3.3 enforces that
upon transitioning the model must go to one of the existing states. The term non-negative,
and the term non-positive that will be used later, is used intentionally because a value of
zero is allowed. Note that the case where i = j must also adhere to these rules and is not
necessarily zero.

Our next goal is to introduce the transition rate matrix which is an important component
of the method that will be used to generate stochastic trajectories in our kinetic model.
Since the transition rate matrix is a critical component of the model it is important to build
both a mathematical and intuitive understanding of its elements. To do so we start by
introducing the Chapman-Kolmogorov equation which when applied to a Markov process

with a discrete state space takes the following form3

P (t+7) pr Py (T pr 7)pjx (¢ (3.4)

which breaks down a transition from i to % into intermediate transitions ij and jk and
replicates the probability of going from i to &£ by summing over all possible intermediates

j. Rewriting this using 7 = At where t > At gives us

pig, (t+ AL = p;; (t) pjj, (At) (3.5)
J

pig (T + At) = Zpij (At)pjy, (1) (3.6)

J
which are the forward and backward master equations respectively3 and can be thought
of as either taking a big first step followed by a tiny second step or a tiny first step followed
by a big second step. For the purpose of the work presented here we will only utilize the

forward master equation, however for the sake of completeness and the fact that future
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work could potentially utilize the backward master equation we will continue to include it
in this discussion.

We will now approximate Pij (At) for small At as?
pi; (A) = 8 + 1At + O (At2> (3.7)

where ¢;; is the Kronecker delta function, O (At2) describes the error term due to factors
on the order of At? and smaller, li; are the entries of the transition rate matrix L which has
units of per time. For the model presented here the units are s!. Note that Equation 3.7
results in pij(O) = d;; as expected since the probability of a system that starts in state :
being found in state i after a time step of zero is one. The entries in the transition rate matrix
describe the rate at which a continuous-time Markov chain moves between states, such
that /;; describes the rate at which the process transitions from state i to j. The entries of
the transition rate matrix can also be thought of as the time derivative of Pij (t) taking the
limit as At approaches zero, which we will demonstrate, and discuss further, shortly. The
transition rate matrix is commonly also referred to as C or Q, however to avoid confusion
with other variables, we have elected to utilize the formalism of Vanden-Eijnden4, which
refers to these elements as /;;.

To ensure that the approximation given by Equation 3.7 is consistent with the rules

for Pij given by Equations 3.2 and 3.3, the following conditions for /;; must be true

lii <0 (3.8)
> =0 (3.10)
J

Equation 3.8 dictates that diagonal elements must be non-positive. Equation 3.9, which
utilizes the symbol V which means "for all”, dictates that all off diagonal elements must be
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non-negative. Equation 3.10 dictates that each row of the transition rate matrix must sum

to zero. Another consequence of these conditions that is important to note is that

lii=— Y 1 (3.11)

JF
These diagonal elements are related to the amount of time needed to exit a state in the
model, the calculation of which will be described later on in Section 3.3. As mentioned
previously the elements of the transition rate matrix can be thought of as the time derivative
Ofpij (t) in the limit of At approaching zero. To demonstrate this we start by taking Equation

3.5 and subbing in the approximation for pij(At) from Equation 3.7 which yields
Dy, (t+ At) = pr (Jk+ljkAt+(’)(At2>> (3.12)

We then subtract off p,, () from both sides and divide through by At. Looking at the first

term in the sum and noting that > _; Pij (t) 91 = p;;, (t) results in the expression

(t+ At
Pik Zplj L + O (At) (3.13)
Taking the limit as At approaches zero gives us the derivative at time ¢

dp
m Z pij (t (3.14)

Now that we have the derivative form of the master equation we can clarify our understand-
ing of the transition rate matrix elements. We want to examine what happens to Equation

3.14 in the limit of ¢ approaching zero. We know from Equation 3.7 that Pij (0) = 4;; and
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applying this to equation 3.14 we get

lim % (t) = zj:%'ljk = lik (3.15)
There are two cases to consider here, the first being if the system starts in state i, what is
the probability that it is still in state 7 after time ¢, which is denoted p,, (). The second case
is if the system starts in state i what is the probability that the system is in state j after time
t, denoted pij(t). In the first case, if i = k in Equation 3.15 we note that the probability
of being in state ¢ cannot increase with increasing time, which results in a derivative that
must be non-positive at time zero. This means that the derivative in Equation 3.15 must
also be non-positive in agreement with Equation 3.8. Alternatively, if i # k, with increasing
time the probability of finding the system in state £ can only remain the same or increase
with time which results in a non-negative derivative in Equation 3.15 in agreement with
Equation 3.9. This demonstrates that an alternative way to think about the elements of
the transition rate matrix is as the derivatives of the transition probabilities in the limit of ¢
approaching zero. Finally we can rewrite Equation 3.14 into the matrix form of the forward

master equation
dP

—=PL (3.16)

The same steps can be done for the backward master equation resulting in its matrix form

dP

— =LP (3.17)

3.3 The Gillespie Algorithm

Once the Markov model has been constructed it is necessary to devise a way to
generate the stochastic trajectories. This is achieved through the incorporation of Monte

Carlo methods. Like Markov models, Monte Carlo methods are often broken down into two
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classes, discrete-time and continuous-time. Considering that our ultimate goal is to gen-
erate trajectories for the purpose of analyzing biomolecular kinetics and dynamics derived
from experiment, we utilize the Gillespie algorithm, a method for generating trajectories
from a continuous-time Markov process that was initially proposed by Daniel GiIIespie.5’6

The Gillespie algorithm utilizes the transition rate matrix L to generate stochastic tra-
jectories. In each step of the process the algorithm determines two factors from the trans-
ition rate matrix, the next state in the trajectory and how long the system will spend in the
current state before moving to the next state, which we will refer to as the exit time. Gen-
erating stochastic trajectories requires that the next state and the exit time are generated
randomly from a probability distribution function defined by the model. In this section we
will demonstrate the origins of the Gillespie algorithm, where the steps in the algorithm
come from, and the method by which the exit time and the next state in the trajectory can
be determined from random numbers.

The ultimate goal is to derive a function that describes the probability of moving to a
particular state ; at some time 7. We will first focus on determining the statistical distri-
bution for the exit time, which is the time at which the trajectory will leave a given state,
k, for the next state, which provides the time step for each step in the algorithm. This is
referred to as the first passage time in some contexts, however since we utilize that term
to also describe the time it takes for the system to first reach the fully formed dimer state
from the monomer state, or vice versa, we will continue to refer to the time it takes for the
process to first leave any given state as the exit time. To determine the exit time for each
step in the algorithm from a random number we need to determine the functional form of
the probability distribution of possible exit times. To determine the form of the probability
distribution we first calculate the probability that if the system is initially in state & it is still
in state & at some time 7 later. The probability of being in state £ at time = + A~ is equal
to the probability of being in state £ at time 7, p, (7), times the probability of not moving

during the time interval A7, p,, (A7) which we get from Equation 3.7. This would then
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give us

P (T + AT) = pp (1) (1 + [ AT + O (At)) (3.18)

which can be rewritten as

py. (7 + AT) = p;. (1) (1 = AT+ O (At)) (3.19)

m=#k
subtracting off p, (), dividing through by A, and taking the limit as A7 goes to zero yields

Do) == gy () (3.20)
m#£k

Solving the differential equation knowing that we are in state & at time zero then gives us
py (1) = €= Lm i (3.21)

which means the probability of leaving state k for the first time in the interval 0 < 7 < T,

or in other words the probability that the exit time is less than T, is
Pr (exit k before time T) =1 — ¢~ 2otk liem T (3.22)

Note that this is the cumulative distribution function for an exponential distribution.? This
tells us that the first exit time is exponentially distributed with the parameter being the sum
of all rates out of the occupied step.

Now that we have an expression for the exit time from our initial state £ we need
to determine what state the system moves to. We take a similar approach by looking
to determine the form of the distribution that describes the probability of moving to each
possible state. However, there are some changes to the process since the state space
is discrete rather than continuous as is the case for time. We again start in state £ and

want to find the probability of going to a specific state j in the time interval 7 + Ar. This
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probability can be expressed as
Prj (T + AT) = py (7) Ly AT (3.23)

Where p, (1) is the probability of being in state k at time 7 and [;,; A is the probability of
going to state j in the time A7. At this point we need to introduce the concept of a prob-
ability density function. The probability density function for random variable X evaluated

at a specific value x is given by fx (z) and has the following three properties?

fx(x)>0  Vzx (3.24)
/OO fx(x)dr =1 (3.25)
Prix <)~ [ Iyt (3.26)

Equation 3.24 states that the probability density function is non-negative at each point.
Equation 3.25 requires that the total area under the curve must sum to unity. Equation 3.26
dictates the probability of X having a value less than or equal to =, which also explains
why the integral in Equation 3.25 must equal one since the value of X must lie in the
interval (—oo, c0).2 To find Pr(a < X < b) one must simply utilize « and b as the bounds
of the integral given by Equation 3.26. Intuitively for a very small value of dx one can
interpret fx (x)dx as the probability of x being found in the interval [z, x + dx]. This intuitive
understanding will be demonstrated through deriving the joint probability density function
for our system.

As mentioned previously we desire a function that describes the probability of moving
to state ;j at time 7, which can be found using a probability density function. A probability
density function with more than one random variable, in this case there are two, j and 7, is
known as a joint probability density function and must follow the same rules. Using similar

notation a joint probability density function with two random variables will be denoted as
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fxy(z,y).
Swapping in our variables j and 7 the joint probability density function is defined as

the function such that?

b pd
Prla<j<bc<t<d = / / frr(j,7)drdj (3.27)
a &

which means that the integral of the probability density function is the probability that j is
in the interval (a,b] and that 7 is in the interval (¢, d]. Equation 3.27 is the most general
definition which utilizes integrals, but note that in our case j is discrete so the equation is
properly written with a summation over j instead of the integral.

Now we will determine the joint probability distribution for going to state j at time .
Looking at Equation 3.23 the right hand side of that equation is the probability of going to
a specific state j in the time window 7 + A7. Looking at the left hand of the definition of
the joint probability density, Equation 3.27, we see that this is equivalent to Equation 3.23
if the bounds on j are the same, because we are only interested in a single potential final
state, and the bounds for time are 7 and 7 + Ar. Thus we can plug the right hand side of

Equation 3.23 in for the left hand side of Equation 3.27 resulting in

T+AT
G / Frrsr)dr (3.28)

T

Utilizing the assumption that A is very small and taking the derivative of both sides yields

pi(T)l; = f1r(, ) (3.29)

which is the joint probability density function for j and 7. This also demonstrates the

intuitive explanation of the fx (z)dx described earlier. We can now substitute in our value
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for p,.(7) given by Equation 3.21 and multiplying through by %m#‘ M vields

frr(isT) = Z Ly 2=mk e (3.30)

Zm;ﬁkj k:m

where the right side is the probability density function for a continuous exponential distri-
bution representing the exit time and the left side is a discrete probability distribution for

the probability of going to a given state j. It can also be shown that

3 / fr0G (3.31)

J7k

where we sum over all j # k since when exiting state k the system is not allowed to reenter
state k£ and integrate over all valid times 7.

Now that the joint probability density function has been obtained we can introduce the
Gillespie algorithm5’6 for simulating trajectories for a stochastic model. How the steps in
the algorithm are determined from the joint probability density function will be explained

after the steps have been defined. The algorithm is laid out in the following steps:
1. Initialize the model by occupying a single state k att = 0 (p,,(0) = J,,.)

2. If this is not the first iteration of the algorithm designate the currently occupied state

as k
3. Generate two uniform random numbers in the interval (0, 1), denoted R; and R»

4. Calculate the exit time 7 according to

—InRy
L (3.32)
2tk bem
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5. Set j to be the smallest integer that satisfies

Z I > Ro (3.33)

6. Update the model by occupying state j; and increasing the time such that¢t =t + 7
7. Return to step 2 or terminate the simulation if a predetermined end criteria is met

In the context of the model for DNA association and dissociation presented here
the exit criteria for an association trajectory is that the fully formed dimer state has been
reached, and in the case of a dissociation trajectory it is that the monomer state has been
reached. In steps 4 and 5 we are utilizing what is referred to as the “direct method”® for
determining the next state in the trajectory and the exit time 7, the basis of which will now
be described.

To understand the direct method we start with the joint probability density function
and note that for independent variables, which we have here, 3 it can be broken down into
two single variable probability density functions.® Our goal now is to generate random
variables 7 and j from their respective probability density functions. We will start with the

probability density function for determining the exit time 7 given by

= " Upe Zm T (3.34)
m#£k
To understand the method for generating = we must introduce the cumulative distribution
function, denoted F(7), which is the function of random variable 7" that when evaluated
at 7 is the probability that 7" will have a value less than or equal to 7. The cumulative

distribution function gives the area under the PDF from 0 to 7, note that the interval (—o0, 0)
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is neglected since we cannot have negative time in this context, such that?

Fp(r) = /OT fr(x)dx (3.35)

We now look to draw a random number, R, from the interval (0,1) and determine the

corresponding value of 7 from the distribution such that
T=F;(R) (3.36)

We note that the inverse of the cumulative distribution function is known as the quantile

function. One can easily calculate the cumulative distribution function

-
Pr(r) = / 3"l Zomklen® gy = 1 — o™ Zmk lom™ (3.37)

0 m#£k
We first note that we can swap out 1 — R for R because in the case where R is uniformly
distributed on [0, 1] then 1 — R must also be uniformly distributed on [0, 1]. Making this

change in addition to substituting in F7(7) = R and solving for 7 gives us the inverse

—InR

T S bom (3-38)

which is the expression for calculating 7 from our probability distribution function based on
a random number R utilized in step 4 of the algorithm.

The method for determining the integer j that defines the state that the system moves
to follows a similar process with slight tweaks to account for the fact that the probability

density function
Ukj

fr(j) = St o

(3.39)

is discrete. In the discrete case since f;(j) is normalized, it is clear that our cumulative
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distribution function is simply

J
=Y fs() (3.40)
=0

where F;(jg) is the probability that J will be less than or equal to j;. Since we are in the
discrete case we cannot simply find the inverse of I’ like we could in the continuous case.

Instead the method is to draw a random number R and find the value of j that satisfies®
Fy(j—1) <R < Fy(j) (3.41)

Substituting in the cumulative distribution function and utilizing the probability density func-
tion results in

J
.
E: <R<Y <t (3.42)
Zm;ﬁk lkm =0 Zm;zék lkm

to solve for 5 only the right side is needed which is the expression for determining j in step

5 of the algorithm.

3.4 Calculating the Steady State Distribution

The steady state distribution, also known as the stationary distribution, is a vector
whose entries, once normalized to sum to one, form a probability distribution that does not
evolve with time. As a result this can also be thought of as the equilibrium distribution for a
Markov process. The method for determining the steady state distribution for a continuous-
time Markov process will now be described as it will be utilized later in the analysis of the
model.

We start by noting that an irreducible Markov process has a positive steady state
distribution if and only if all of its states are positive recurrent.” A Markov process is irre-
ducible if every state is accessible from every other state, including the ability to return to
the initial state. A state j is accessible from state i if and only if there exists some integer

n > 0 such that p,?j > 0. It is positive recurrent if the mean recurrence time, the time
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it takes for a process in state ¢ to return to state i, is finite. The Markov model for DNA
association and dissociation that is presented in this work can be shown to satisfy both
of these conditions so it must have a steady state distribution. Thus it is worth taking the
time to understand how to calculate it. To understand how to calculate the steady state

distribution we start with the left eigenvector equation for the transition rate matrix
XL = XX (3.43)

where X is the left eigenvector, which takes the form of a row vector, L is the transition
rate matrix and \ is the eigenvalue. The steady state distribution can be written as

t“—%pij (t) =m; (3.44)

where = is a vector containing the steady state solution whose elements ; are the equi-
librium probability for each state, which must be normalized such that they sum to one.

In the case of our model that utilizes the transition rate matrix L we are looking for
the distribution for which the rates in and out of each state sum to zero. Thus, the steady
state distribution is the eigenvector corresponding to an eigenvalue of zero. Note that this
is different than looking for the steady state distribution to the transition probability matrix
where the solution corresponds to an eigenvalue of one. As a result the steady state
distribution satisfies the equation

L =0 (3.45)

which can also be written as the sum
D> ik =0 (3.46)
J
To understand why the steady state distribution corresponds to an eigenvalue of zero we

look at the forward master equation in the form given by Equation 3.14 and take the limit
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of Pij (t) as t goes to infinity, described by Equation 3.44. This gives us

dp.

—E 0 =D pyy Ol =D _miljp =0 (3.47)
J J

which shows that the steady state distribution corresponding to the transition rate matrix is

the left eigenvector of the transition rate matrix that corresponds to an eigenvalue of zero.

The fact that the time derivative of the transition probabilities is zero also shows that this

distribution does not evolve.

3.5 Absorbing Markov Chains

Describing the system as an absorbing Markov chain provides a useful framework
for analyzing the model without the need to generate individual trajectories. An absorbing
Markov chain is any Markov chain that has one or more absorbing states, which are states
where the probability of leaving the state is zero. To formulate the model as an absorbing
Markov chain the concept of an embedded Markov chain must first be discussed. The em-
bedded Markov chain is a discrete-time Markov chain formed by converting the transition
rate matrix of a continuous-time Markov chain into a transition probability matrix which will

be denoted by S. The elements of S, denoted s;; are calculated according to

0 Vi =

sij = . (3.48)
i o,
2 itk ik Vi

where the elements s;; are the conditional probabilities of transitioning into state j given
the system is in state ;. As expected, since upon leaving state i the system must move
to another state 7, the rows of S sum to one. What we have done here is take the trans-
ition rate matrix and turn it into a form that states the probability of going to each other
state. There is one slight difference between an embedded Markov chain and the trans-
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ition probability matrix for a discrete-time Markov chain that is worth highlighting. In an
embedded Markov chain the diagonal elements are zero forcing each step to move to a
different state, whereas the transition probability matrix for a discrete-time Markov chain
can have nonzero diagonal elements.

Now that the transition probability matrix for the embedded Markov chain has been
constructed we can rearrange it into the canonical form for an absorbing Markov chain
where we designate the monomer and fully formed dimer states as absorbing states. A
quick note on terminology, it is necessary to differentiate transient states in a Markov chain
from transient states in an absorbing Markov chain. In the case of a standard Markov
chain, a state is transient if the probability of returning to a state is less than one, whereas
for an absorbing Markov chain a transient state is simply any state that is not absorbing.
Since the monomer and fully formed dimer states are designated as absorbing states, the
diagonal elements for the rows representing the monomer and fully formed dimer states
are equal to one and the off-diagonal elements in those rows are set to zero since the
system is unable to leave theses states. The monomer and fully formed dimer states are
selected as the absorbing states since our primary interest is analyzing statistics of reach-
ing these states from intermediate states. However, in some cases only one absorbing
state will be designated. The dissociation reaction can be analyzed by only designating
the monomer as an absorbing state while the association reaction can be analyzed by
only designating the fully formed dimer state as an absorbing state.

To describe the canonical form for an absorbing Markov chain consider an absorbing
Markov chain with r absorbing states and ¢ transient states. To construct the transition
probability matrix for an absorbing Markov chain the rows and columns are rearranged
such that the first ¢t rows and columns of the matrix are the transient states and the last

r rows and columns are the absorbing states. This results in the canonical form of the
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transition probability matrix

Q R
P = (3.49)

0 1

where Q is a t-by-t matrix containing the probability of moving from transient state i to tran-
sient state j, R is a t-by-r matrix that contains the probability of moving from transient state
1 to absorbing state j. The elements of Q and R are drawn from the embedded Markov
chain conditional probability matrix S. | is a r-by-r identity matrix, since the probability of
remaining in an absorbing state is one. Finally, the r-by-t zero matrix exists since it is
impossible to transition from an absorbing state into a transient state. The entries of this
matrix p;; are still the probability of moving from state i to state ; as they were previously.
We then note that P"* contains the matrix elements p%. which are the probability of being
in state j after n discrete steps given that the system started in state i.

We can utilize Q to construct the fundamental matrix N which will provide useful in-
sights while interpreting the results of the model. The elements n;; are the expected
number of times that the process will be in state j given that it starts in state 4, prior to

reaching an absorbing state. The fundamental matrix is calculated from Q as follows
N=1+Q+Q*+.---=(1-Q)! (3.50)

Note that | here has the same dimensions as Q and is not the same identity matrix that
shows up in the lower right of the canonical form of the transition matrix P. To prove this
statement we first point out that for an absorbing Markov chain, the probability that the
system will eventually end up in an absorbing state is one, which can be stated as

lim Q" =0 (3.51)

n—00

The next step is to demonstrate that the matrix (I — Q) is invertible. First, we note that by

the invertible matrix theorem a matrix A is invertible if the equation Ax = 0, where x is
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an arbitrary vector, has only the trivial solution x = 0. This means that it must be shown
that (I — Q) x = 0 which can be rearranged into x = Qx. We then note that multiplying
both sides by Q gives us Qx = Q>x which means x = Q?x. By induction this proves that
x = Q"x and taking the limit as n goes to infinity, and looking at Equation 3.51, we see
that x = 0 proving that (I — Q) is invertible. Now we will verify that Equation 3.50 is correct.
If N is the expected number of times a system will visit j given that it starts in i and the
probability of starting in state ¢ and being in state ;j after n steps is given by Q" it follows
thatN=> Q" =14+Q+ Q? + - - - which simply leaves demonstrating that this is equal

to (I — Q). We start with the expression
1-Q(1+Q+Q+--+Q") =1-Q" (3.52)

and then multiply both sides by N using the definition that N = (I — Q)_1 on the left hand
side

I+Q+Q2+---+Q”:N<I—Q”+1) (3.53)

and then taking the limit as n goes to infinity to demonstrate that the expression in Equation
3.50 is correct.

In addition to directly providing useful insights into how the system evolves according
to the Markov model the fundamental matrix is also used to calculate the absorption prob-
abilities for an absorbing Markov chain. The matrix containing the absorption probabilities
will be denoted as B which is a t-by-r matrix with entries b;; that are the probability of being
absorbed by state j if starting in state i. Note that the rows of B must sum to one because,
as mentioned previously, the probability that the process will end up in an absorbing state
is one as the number of steps approaches infinity.

To determine B we must consider all pathways between a given transient state : and
absorbing state j. The probability of transitioning from a transient state to an absorbing

state is given by the elements of R denoted Tij In addition to transitioning directly from

56



transient state i to absorbing state ; we must also consider that the system can pass
through intermediate transient states k. The probability of transitioning between transient
states ¢ and & is given by the elements of Q denoted ¢,,.. The probability of going from
transient state ¢ to absorbing state j through intermediate transient state k is given by
qﬁfkj where n is the number of steps needed to reach state & from state i. Summing over
all possible intermediate states & and number of steps n results in the following expression

for B
bij =D > Gk (3.54)
)

where summing over all n accounts for all the different possible number of moves that
can be taken to reach state k£ from ¢ and summing over all k£ accounts for all possible
intermediate transient states between i and ;. Since any matrix raised to the zero power

is the identity matrix Equation 3.50 shows us that

Z ¢ = (3.55)
n

and thus

B=> nyr,; =NR (3.56)
k

which can then be used to calculate the probability that any state is absorbed by the
monomer state versus the dimer state when those two states are the absorbing states in

an absorbing Markov chain.

3.6 Transition Path Theory Analysis

We will now introduce transition path theory (TPT) as a method for extracting mech-
anistic information about DNA association and dissociation from the kinetic model. A ma-
jor point of emphasis for the analysis utilizing TPT is understanding the mechanism by

which the association and dissociation barrier crossings occur. Our kinetic model, like
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many others, spends a vast majority of its time in the thermodynamically stable states and
barrier crossings are rare events. There is an extensive history of developing methods
for observing rare events in simulations including, but not limited to, transition pathway

10-13 and umbrella sampling. ' Our primary goals

sampling,®9® forward flux sampling,
are identifying the likely transition paths that the system undergoes during barrier cross-
ing events while also identifying dynamical bottlenecks and the identity of configurations
in the transition state ensemble. Many other methods for rare event sampling are cap-
able of extracting this information from continuous-time Monte Carlo simulations. TPT
was selected because of our interest in extracting this information and understanding the
mechanism in the state space of the system, rather than the path space. Additionally, it
was selected due to the ability of TPT to extract this information directly from the transition
rate matrix of the Markov model, without needing to generate additional trajectories with
varying initial conditions.

TPT directly analyzes the transition rate matrix, the matrix L introduced in Section
3.2, of a Markov model and provides numerous interesting insights without the need to
run stochastic trajectories. TPT is regularly used in the literature to examine transition
paths between select states in a Markov state model415-17 and is particularly common
with regards to the study of protein folding. 18-20 One particularly useful result it provides is
determining and ranking the dominant association and dissociation pathways for a system
modeled by a Markov state model to better understand the mechanisms by which these
processes occur. Itis important to note that in the work presented here we apply this under
the assumption that the system is at equilibrium. This is in contrast to the trajectories that
are run on a non-equilibrium system since the initial monomer concentration is taken at
the initial temperature prior to the introduction of the temperature-jump pulse rather than
the temperature at which the system evolves. However, the pathways derived from TPT
analysis can still provide key insights into the mechanisms the trajectories follow. The

analysis isolates and ranks different mechanistic pathways by comparing the reactive flux
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through each pathway. In some cases in the literature the flux is also referred to as the
probability flux or the probability current. For the purposes of this discussion we will closely
follow the notation and terminology of Metzner, Schutte, and Vanden-Eijnden.4

To determine the reactive flux for a pathway we first need to determine the flux for
every possible move within the model. In this context the reactive flux between two states
is the flux that contributes to the overall pathway of interest. To generalize the equations
and reduce confusion we will refer to a general pathway that proceeds from A to B where
A and B are sets of states. Mathematically all of our equations will be written utilizing set
notation for correctness. However, in the case of the work presented here there will only
ever be a single state in both A and B and the discussion with respect to the methods
application to the model will be presented as such. In the association case A contains the
monomer state and B contains the fully formed dimer state, with the two flipped for the
dissociation case. While the construction of our specific model is discussed in Chapter 7
Figure 7.23 in Appendix 7A shows the states and allowed moves for a simple sequence.
This can help to visualize how the individual moves, whose reactive fluxes are being cal-
culated, combine to form the pathways that TPT is analyzing.

The flux going from state i into state j along an overall pathway going from A to B is
given by

ap )Tl if i

[ij (3.57)

0 ifi=j
where flf?B is the flux between i and j that contributes to the overall pathway of interest, =;
is the probability of being in state 4, ¢;~, known as the backward committor, is the probability
that a process arriving in state i last came from A rather than B, /;; is the transition rate from
1to 5, and qJTL, known as the forward committor, is the probability that the process starting
in j will first reach B rather than A. The calculation of ¢, and q;' will be described shortly.
The probability of occupying a state, «; is calculated from the steady state distribution for

the transition rate matrix, the calculation of which is discussed in Section 3.4.
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It is important to note that the steady state distribution is calculated from the trans-
ition rate matrix which, as will be discussed in Chapter 7, is built and parameterized to
replicate our non-equilibrium temperature-jump experiments. As a result the steady state
distribution is not directly comparable to either the population distribution of the system
at the initial or final temperature. However, it is used for the analysis to ensure that the
condition of detailed balance holds, or that the system being analyzed is at equilibrium
even if it is not the physical equilibrium at either the initial or final temperature. For the

condition of detailed balance to hold the following expression must be true
Wilij = leji (358)

In this case it is also true that

¢ +q =1 (3.59)

which states that a process that starts in state i must eventually reach either state A or B.

To prove Equation 3.59 we must introduce the formal method for solving both the
forward and backward committors. While only the forward or backward committor needs
to be solved with this method since the other can be solved for using Equation 3.59 the
method for calculating both will be provided for completeness. For the purpose of this
discussion we will continue with more general language and discuss the calculation of
the committors for a system with a set of states denoted as S and looking at pathways
between two subsets of states within S denoted A and B. We start with the definition of

the forward committor which is defined as the values of ¢ = (qj)ies that satisfy4

/

G =0 Vie A (3.60)

g =1 Vie B

\
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where we introduce additional mathematical symbols. The U symbol is known as the union
symbol and AU B refers to elements that belong to either A or B. The € symbol means ”in”
and the superscript ¢ refers to the complement of the set which is all elements not in the
set. The line Vi € (AU B)“ is then read as "for all i in the compliment of A and B” or "for
all i that are not in either A or B” and the line Vi € A is read as "for all i in A”. To determine

¢ we then solve the following set of linear equations

Ugt =v (3.61)

where the matrix U and vector v are given by

Ujj = lij Vi,j € (AU B)C (3.62)
vi=—Y ly Vie(AUB) (3.63)
keB

Or in other words if there is a single state B, such as the case where B is simply the
fully formed dimer state, v is a vector that contains the negative elements of the column
associated with state B. Solving the linear system of equations given by Equation 3.61
then provides the values of ¢ .

Turning our attention to the backward committor values ¢~ we start with the definition

of the backward committor which is defined as the values of ¢— = (Q;)ies that satisfy*

(

S hesliwgy =0 Vi€ (AUB)

g =1 Vie A (3.64)

2

g =0 Vic B
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With a steady state distribution denoted as 7, calculated as discussed earlier, we define

[ — Thlki (3.65)

iy

If balanced detection does not hold we follow a similar procedure to above by solving the
linear set of equations

U =v (3.66)

where the matrix U and vector v are given by

wij=1ljj  Vi,j€(AUB)" (3.67)
vi=—Y Ly Vi€ (AUB) (3.68)
kecA

Or in other words if there is a single state in A, such as the case where A is the monomer
state, v is a vector with the negative elements of the column associated with state A. As
before solving the system of equations given by Equation 3.66 provides the values of ¢ .
In the case where detailed balance holds we first note that by looking at Equations 3.58

and 3.65 we see that [;;, = [;; and Equation 3.64 becomes

Sheslingy =0 Vi€ (AUB)
¢ =1 Vie A (3.69)

g =0 Vie B

A quick calculation of which demonstrates that ¢~ = 1 — ¢ demonstrating that the forward
and backward committors for a given state will sum to one if detailed balance holds.

Now that we have determined the flux between two states we can calculate the net
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flux between i and j that contributes to the A to B transition according to

fif = max (15 ~ 14P,0) (3.70)

The overall flux for a pathway is then defined as the minimum of the net flux values for
each step along the pathway. The step with the minimum net flux is referred to as the
bottleneck step. The dominant pathway is defined as the pathway with the largest overall
flux, or in other words the pathway whose bottleneck step has the largest net flux among
bottleneck steps.

Determining and ranking the pathways requires an algorithm to determine what steps
are bottlenecks and rank them according to their net flux values. Additionally, itis likely that
each bottleneck step contributes to multiple different pathways, requiring the determination
of the most dominant pathway among all pathways that share that bottleneck, all of which
have the same overall flux. The first step requires finding the bottleneck with the largest
flux among all possible pathways. A bisection algorithm to achieve this was written based
on the one proposed by Metzner, Schiitte, and Vanden—Eijnden.4

After determining the bottleneck for the dominant pathway the other steps in the path-
way need to be determined. This must be done considering the fact that there are likely to
be multiple pathways that share this bottleneck. This requires a second algorithm which
is also based on one proposed by Metzner, Schitte, and Vanden-Eijnden.4 To determine
the most dominant pathway with a bottleneck we look to maximize the net flux for each
remaining step in the pathway. To achieve this the pathway is broken into two parts, the
initial state to the first state in the bottleneck, and the second state in the bottleneck to the
final state. Each of these pathways is treated independently and the first algorithm is util-
ized to find the bottleneck of each one. Those pathways can then be split up in the same
way and the process continues until each step in the pathway has been filled. Ultilizing

this recursive method ensures that the maximum flux value for each step in the process is
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achieved resulting in the dominant pathway containing the given bottleneck. Now that the
dominant pathway has been found additional pathways must be isolated. To do this we
adapt the algorithm proposed by Noé et al.20 that is designed to determine the pathways
with the largest overall flux in descending order. After finding the first pathway the al-
gorithm subtracts off the pathway flux from the net flux of each step in the pathway setting
the net flux for the bottleneck step to zero and reducing the magnitude of the net flux for
all other steps. This new net flux matrix is then used to find the next pathway utilizing the
same method. Subtracting off the overall pathway flux from each step along the pathway
after the pathway is determined ensures that the same pathway is not found again. This
does however result in the fact that only one pathway, the most dominant one, is found
for each bottleneck and once a step is determined to be a bottleneck step for a pathway it

cannot appear in any subsequent pathways.
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CHAPTER 4
EXPERIMENTAL METHODS

4.1 Introduction

This chapter discusses the basics of the instrumentation and experiments utilized in
the research presented in this thesis. The portions of this chapter dedicated to nonlin-
ear measurements are closely related to the theory and formalism laid out in Chapter 2,
particularly with respect to the acquisition of nonlinear signals. The experiments and in-
strumentation discussed have been described elsewhere in detail =3 and full descriptions
are not provided here. The main purpose of this chapter is to establish a functional under-
standing of how the instruments are designed and utilized. The instruments will be briefly
discussed while highlighting important aspects of their operation and data collection.

The thermodynamic measurements were conducted utilizing a Fourier transform in-
frared (FTIR) spectrometer connected to a recirculating chiller for temperature control.
The kinetic measurements were conducted utilizing an ultrafast two-dimensional infrared
(2DIR) spectrometer, known by us as the boxcar as it is our only system that utilizes the
boxcar geometry, which is a component of the overall temperature-jump spectrometer.
The other component is the temperature-jump laser that induces the temperature perturb-
ation while the boxcar tracks the changes in the sample as it evolves.

In this chapter we will first discuss the preparation of samples for both the thermo-
dynamic and kinetic experiments and tricks that improve the data collection. This will be
followed by a brief discussion of the FTIR temperature ramp setup that was used to obtain
the thermodynamic data. Then our focus will shift to the ultrafast setup utilized to obtain
the kinetic data. We will discuss the main components of the instrument and the com-
mercial systems used to generate the ~6 um mid-IR and 2 ym temperature-jump pulse.
We will also briefly walk through important components of these instruments’ operation.

This will include essential aspects of setting up the instrument in addition to an overview
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of how the data are collected. Finally we conclude by discussing highlights of the data

processing that occurs after data collection.

4.2 Sample Preparation

The first step in sample preparation is to deuterate both the nucleic acid and the
buffer components to swap out any labile hydrogens in the sample. This is essential since
the H,O bend vibrational mode, centered at ~1650 cm'1, has an intense absorption4
in the 1500-1700 cm"" region that contains the DNA vibrational modes of interest and
any H,O present would make it hard to observe the DNA signal. Deuterium oxide has
a significantly weaker absorption in this region, due to a redshifted D,O bend-libration
combination band centered at ~1550 cm™!,4 that can be removed during data processing.
During the deuteration step the DNA is purified using Amicon Ultra 3 kDa centrifugal filters
or Sartorius Setim Biotech Vivaspin 2 2 kDa centrifugal filters, depending on the sample
molecular weight, to remove impurities that may remain from the manufacturing process.

A typical sample contains approximately 35 uL of sample containing the DNA at a
concentration of 2 mM in a sodium phosphate buffer. Before loading the sample into the
sample cell it is useful to briefly spin it in a centrifuge. This forces any particulates that
may be present to the bottom of the vial allowing sample to be taken from the top of the
vial that is generally free of particulates. While this is not particularly important for FTIR
measurements it significantly reduces the risk of scatter washing out nonlinear signal.
For both FTIR and nonlinear measurements the sample is then loaded into a home-built
sample cell that sandwiches the sample between two calcium fluoride windows, ideal due
to their low absorbance across most of the mid-IR range, separated by a Teflon spacer
creating a 50 uym path length. When loading the cell care should be taken to avoid the
presence of bubbles. In the case of FTIR temperature ramps the presence of bubbles can

speed up evaporation which can affect measurements. It is less important for nonlinear
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measurements which have a much smaller focus, though it is still preferred to not have to
adjust the sample cell to shift the focus away from bubbles. The windows are held together
by a brass jacket which is used for its high thermal conductivity which aids in temperature

control.

4.3 FTIR Temperature Ramp

FTIR temperature ramp experiments were conducted on a Bruker Tensor 27 FTIR
spectrometer hooked up to a recirculating chiller for temperature control. The spectra
were obtained utilizing a macro program that automates the process by controlling both
the chiller temperature and the FTIR acquisition software. A standard temperature ramp
series ramps the chiller temperature from 0-96 °C in 3 °C steps with an FTIR spectrum
obtained after each temperature step. This provides a good balance between collecting
sufficient data points for analysis while keeping the acquisition time reasonable. It is im-
portant to ensure that there is a sufficient waiting time between the chiller reaching each
set point and acquiring the FTIR spectrum to ensure that the sample has equilibrated at
the new temperature. The necessary time can vary depending on the exact settings used
for the particular ramp. As time passes a relatively intense absorption due to the HOD
bend vibration grows in at ~1460 cm™! which begins to overwhelm the DNA absorption
that can be difficult to remove via processing if it becomes too large. As a result care
should be taken to minimize the exposure of the sample to the air to minimize the initial
amount of hydrogen present. Additionally, at high temperature evaporation starts to occur
which, if significant enough, results in a noticeable absorption decrease in the DNA peaks.

There are two main components of the data processing to prepare spectra for ana-
lysis. The first is determining the actual sample temperature at each chiller set point. To
determine the correct temperature an additional temperature ramp is done on a sample

cell containing water with a thermocouple attached to the window. The automated temper-
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ature ramp program is run with the thermocouple temperature logged when each spectrum
is taken. While the temperature cannot be determined during the same run as the data
since the thermocouple blocks the window, conducting both runs under the same condi-
tions provides a reasonable value of the sample temperature. The other major component
is subtracting off the absorption due to D,O and HOD. This is done by conducting two ref-
erence temperature ramps: one with D,O and the other with a 2% HOD solution. The
resulting spectra can then be scaled to the sample spectrum at a point where only HOD
and D, 0O absorption are present, to account for any differences in absorption due to slight
differences in path length, IR intensity, or other slight variations between measurements,
allowing the reference spectrum to be subtracted off leaving only the DNA FTIR spectrum

at each temperature point.

4.4 Boxcar Spectrometer

441 Mid-IR Generation

The generation of our ultrafast mid-IR pulses broadly occurs in three steps. The
first step is the generation of a 90 fs 795 nm pulse which is done by a titanium sapphire
(Ti:Sapph) regenerative amplifier (Libra, Coherent) with a 1 kHz repetition rate. To gen-
erate a pulse of sufficient power a 795 nm seed pulse is amplified using chirped pulse
amplification.5 The seed is first stretched out in time by a grating before entering the op-
tical cavity with a Ti:Sapph rod that contains a population inversion generated by 527 nm
light from a pump laser. The chirped seed pulse makes multiple round trips through the
cavity and is amplified at each step by stimulated emission from the Ti:Sapph rod before
the amplified pulse is ejected from the cavity. At this point it is recompressed by a grating
compressor resulting in a 795 nm pulse that is approximately 90 fs in duration.

This pulse then undergoes optical parametric amplification (OPA) to generate two

frequencies of light that are then used to generate the mid-IR pulse through difference
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frequency generation (DFG). The commercial OPA (TOPAS C, Light Conversion) uses
a two-step process to generate pulses of light at two center frequencies, referred to as
the signal and idler. The signal and idler frequencies sum to the frequency of the 795
nm pulse that enters the OPA and their difference is the frequency of the desired mid-
IR. In the first OPA step, known as the pre-amplification stage, the signal is generated at
approximately 1.4 um. In the second stage of the OPA the signal is mixed with remaining
795 nm light from the regenerative amplifier to amplify the signal and generate the idler,
which is approximately 1.8 ym. Both the signal and idler can be tuned to generate the
exact frequency of mid-IR that is desired. As a reference, a signal and idler of exactly 1.4
and 1.8 uym respectively produces a mid-IR pulse centered at ~1587 cm™. In practice, for
the purpose of studying the dynamics and kinetics of canonical DNA duplexes, our mid-IR
pulse is commonly tuned to be centered at ~1630 cm™! with approximately 300 cm™! of
bandwidth. After the amplification stage the signal and idler exit the TOPAS and enter
the DFG. The DFG is home-built and a full description of it can be found elsewhere.?
The signal and idler beams are separated to allow their relative timing to be adjusted
before they are recombined colinearly in a AgGaS, crystal with the proper timing and
phase matching condition to maximize the generation of the desired mid-IR light. At the
conclusion of this process approximately 10 pJ of mid-IR light is generated with average

pulse energy fluctuations below 1%, ideal for nonlinear measurements.

4.4.2 Interferometer

Before leaving the DFG the mid-IR is overlapped with a visible HeNe tracer beam
that propagates collinearly with the mid-IR throughout the remainder of the instrument.
This is for the purposes of alignment since the mid-IR light is not visible to the naked eye.
The mid-IR and HeNe are overlapped by reflecting the HeNe off of a germanium plate
that transmits the mid-IR. The mid-IR is properly overlapped with the HeNe, to ensure that

they propagate collinearly, by sending both beams through an iris into a power meter at
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two positions, one close to the DFG and one several meters away. The HeNe is centered
on each iris and the power meter is used to maximize mid-IR throughput at both positions.
It is essential to use a position both close to, and far away from, the DFG to ensure that
the beams continue to propagate collinearly all the way to the sample area.

The boxcar has a home-built interferometer, which is fully described and diagrammed
elsewhere. 12 The interferometer uses ZnSe beamsplitters to split the incoming mid-IR into
five pulses, the three pulses that interact with the sample to generate the signal, the Local
Oscillator (LO) pulse, the purpose of which will be described when detection is discussed,
and the tracer pulse, which follows the signal pathway for the purposes of alignment and is
not used in the experiment. The LO and tracer pulses contain less than 1% of the mid-IR
light that enters the interferometer while the other three beams share the remaining light
roughly equally. Once separated each beam follows its own path with its own set of optics
in the interferometer allowing each one to be independently controlled. All four beam paths
have their own retroreflector all of which, except k3, the third beam in the signal generating
pulse set, are mounted on a motorized stage that provides precise control of the time
delays between each pulse. After the retroreflector the LO beam passes through another
beamsplitter where the reflected light exits the box as the LO and the transmitted light
becomes the tracer. The tracer is usually blocked, however when unblocked it becomes
the fourth corner of the boxcar geometry. This means that it follows the path of the signal
which can be useful for the purposes of aligning the balanced detection optics. Each beam
then passes through its own wave plate and polarizer to provide polarization control. In the
case of the experiments presented here all four beams have the same polarization. Before
exiting the interferometer k5, the second beam when collecting the rephasing signal and

the first beam when collecting the non-rephasing signal, passes through the chopper.
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4.4.3 Sample Detection

The four beams, and the tracer if needed, then enter the sample area, which is de-
scribed in detail elsewhere. The three signal generating pulses enter the sample detec-
tion area in the boxcar geometry, as shown in Figure 2.1, with the tracer beam occupying
the fourth corner of the box if necessary. The beams are aligned onto a gold parabolic
mirror that focuses them into the sample. The LO beam comes into the box separately
and is aligned to reflect off of the gold parabolic just outside of the box made by the sig-
nal generating beams and is also focused into the sample. A coarse spatial alignment of
the beams is done using a set of irises prior to the gold parabolic to properly align them
into the boxcar geometry. A more precise alignment, ensuring the beams all focus to the
same spot, is conducted by placing a 50 ym pinhole at the sample position and aligning all
four beams through the pinhole by maximizing the throughput of each beam on a single
channel detector. Once the beams are aligned spatially they need to be overlapped in
time as well. Since k3 is not mounted on a motorized stage all other beams will use it as
a reference. Two beams are scanned against each other to find the point in time where
constructive interference is maximized, which provides the time at which the beams are
overlapped. Firstks is scanned against k3 and time zero for k,, is set to be the time at which
they overlap. Then k, is scanned against k4 to set kq to the same time zero. Scanning
k4 against ky rather than k3 helps to minimize timing errors in 7, the time delay between
the first and second pulses as introduced in Chapter 2. Finally the LO can be scanned
against k3 resulting in all four beams sharing the same time zero at the sample.

With the beams properly overlapped in time and space we can move onto detection.
The detector is a mercury cadmium telluride (MCT) detector that contains two vertically
displaced stripes each with 64 pixels. The signal is detected utilizing a balanced detec-
tion scheme which provides a significant increase in the signal-to-noise ratio. Balanced
detection works by overlapping the signal and the LO on an anti-reflection (AR) coated
beamsplitter resulting in two paths along which the signal and LO both propagate collin-
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early. The beamspilitter is AR coated on one side to restrict reflections to only occur at
the uncoated face. The LO and signal approach from different directions resulting in the
signal reflecting off of the front face of the beamsplitter while the LO reflects off of the back
face. Due to the difference in refractive index between air and ZnSe the signal reflection
off of the front face has a 7 phase shift relative to the transmitted LO that it is overlapped
with. The LO reflection off of the back face of the uncoated side does not undergo a phase
shift and has the same phase as the transmitted signal. This results in the signal collected
on each stripe being

I (w3.79, 71,7 0) = ’Esig (w3, 79, 71) + ELO (W377Lo)‘2 @.1)

2
Iy (w3.72, 1 TLO) = ’Esig (w3, 79, 7) — ELo (wg,TLO)’

Describing the electric field as a plane wave as E = Ae'® where A is the amplitude and
¢ is the phase. The amplitude and phase of the signal depend on w3, 75, and 7; where

as the amplitude and phase of the LO depend on w5 and 7, 5 which will be dropped from

here on for simplification. Expanding each term out gives us

[1 ((A}3.7‘27 1, TLO) = Aglg + AEO + 2ASIgALO CcOSs <¢S|g - ¢LO> (4 2)

2 2
I (w3.19, 71,7 o) = Asig + Alo — 24sigALo cOs <¢sig - ¢LO>

where the cross term contains the desired phase and amplitude information. These equa-
tions designate the detected signal when all three signal generating beams are present,
meaning the chopper is in the open position. We will designate this as I and I3 where
the superscript o designates that ky passes through the chopper. In the case where the

chopper is blocking k, the signal detected on each stripe of the MCT array is

2
If)y (w3:10) = [ELo (w3.10)|” = 4fo (4.3)
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since the third order signal cannot be generated along the detected signal path without all
three beams interacting with the sample. Here the superscript ¢ designates the chopper
is in the closed position and both stripes detect the same signal. Moving forward these
will simply be designated as It and IS for simplicity. In practice the data are acquired

according to the following equation 36

_ IO—IO ]C—IC
o[- (D) e
R+13 IT + 15

where the term in the right is essentially zero but helps to remove effects due to scatter

and other shot to shot variations. Plugging Equations 4.2 and 4.3 into equation 4.4 results

in

241 0Asig COS(¢sig — Lo + TLow3)
Ao

gexp (W377'1) = (4.5)

where the Agig term has been neglected since it is very small relative to the AEO term.
Multiplying through by AEO, which is also done on the fly by the control software, provides

the final signal.

4.4.4 Temperature-Jump Spectrometer

The temperature-jump spectrometer is an extension of the boxcar where a 10 ns 1.98
Mm pulse induces a rapid temperature increase in the sample and the resulting structural
changes are monitored utilizing the boxcar spectrometer. The temperature-jump laser
is a flashlamp pumped Q-switched Nd:YAG (YG981C, Quantel) that generates 1064 nm
pulses that are approximately 10 ns in duration at a repetition rate of 20 Hz. These pulses
are then frequency doubled by second harmonic generation to 532 nm. This light pumps
an optical parametric oscillator (OPO) (Opotek), which, similar to the OPA, generates a
signal and idler whose frequencies sum to the frequency of the incoming light, though the
method by which this occurs is slightly different. The primary difference between the two

being that the OPA first generates a seed which is then amplified in the second stage while
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also generating the idler whereas the OPO is self-seeded. The OPO generates a 1.98 um
idler, the signal is discarded, which is used to generate the temperature perturbation. The
trigger for the flashlamps and the Q-switch in the temperature-jump laser is generated
by a delay generator (DG535, Stanford Research) which itself is triggered by the signal
delay generator (SDG) that controls all of the timing electronics for the boxcar syncing the
timings for both systems. A schematic of the timing electronics and delays that control
both the regenerative amplifier and the temperature-jump laser can be found elsewhere.

The 1.98 um pulse pumps the overtone of the OD stretch vibrational mode of the
D, 0O solvent. The resulting vibrational excitation quickly relaxes back to the ground state
causing the sample to heat up on the scale of the ~10 ns temperature-jump pulse width.
The overtone of the OD stretch is used since only about 10% of the light is absorbed which
results in a more even heating of the sample as the power of the pulse is not significantly
reduced as it passes through the sample.

Before discussing spatially overlapping the temperature-jump pulse with the mid-IR
pulses at the sample, in addition to setting the timing between the two pulses, it is useful
to discuss the profile of the temperature-jump experiment, which is shown in Figure 4.1.

Due to the difference in the repetition rates between the two lasers there are 50 mid-IR
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Figure 4.1: Profile of a temperature-jump experiment. The orange pulse represents the
temperature-jump pulse while the purple pulses represent the mid-IR pulse sequence,
shown in the insert, that tracks the samples response to the temperature perturbation.
The temperature-jump time delay r is adjusted to sample the entire temperature profile.
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pulse sequences for each temperature-jump pulse. For simplicity the four mid-IR pulse
sequence will be referred to as a single shot, since it originates from a single shot of the
Ti:Sapph laser, and the set of 50 mid-IR shots will be referred to as a shotset. Looking at
the profile of the experiment in Figure 4.1 we designate time zero to be the time at which
the temperature-jump pulse arrives at the sample, which is designated by the orange
pulse in the diagram. The mid-IR shots are the purple peaks on the plot with the insert
demonstrating that each is split into the four individual pulses. The curve that changes
color from orange to red and back to orange demonstrates the temperature profile of the
sample. The user controlled time delay between the temperature-jump pulse and the first
mid-IR shot is designated as 7. Designating the time delay between the temperature-
jump pulse and each mid-IR shot in the shotset as 7; where j designates the jth shot,
7 =7+ (j—1)-1ms where j =1, 2, ..., 50. Since the temperature plateau, during
which the sample is evolving at the final temperature, lasts for less than a millisecond
before starting to cool back to the initial temperature only the first mid-IR shot for each
shotset will fall within the temperature plateau. The 49t and 50t shots occur at a time
where the sample has returned to the initial temperature and re-equilibrated. These shots
are referred to as the equilibrium shots and are used during processing to determine the
change in signal relative to equilibrium at each time point. A series of r points are collected
to sample the temperature profile. For shots j = 2-48 the j* shots are often averaged
together across multiple 7 points since the change in 7 is insignificant in the millisecond
time regime in which these shots occur.

After the temperature-jump pulse is routed into the sample area it must be spatially
overlapped with the mid-IR pulse at the sample. The temperature-jump pulse is first visu-
ally overlapped with the HeNe tracer as a coarse alignment. After the coarse alignment a
temperature dependent change in LO transmission of the D,O bend-libration combination
band centered near 1555 cm™! should be observed. Next a fine alignment of the spatial

overlap is conducted by adjusting the position of the temperature-jump pulse to maximize
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the LO response. The next step is to set the zero point for = as the point at which the
temperature-jump pulse arrives at the sample at same time as the first mid-IR shot in the
shotset. This is done by determining the magnitude of the LO response at the top of the
plateau and then adjusting the delay that triggers the temperature-jump laser such that the
LO response of the first mid-IR shot is half of the maximum magnitude of the LO response.
The time at which the LO response is half of the maximum is designated as time zero for
T.

Data acquisition for a temperature-jump experiment generally follows the method util-
ized by the boxcar as described in Section 4.4.3 with a few distinctions. The first is that
7, = 0, meaning that we are acquiring the HDVE rather than a 2D spectrum. This is done
to conserve time in cases where the ability to resolve the w, axis is not necessary. Ac-
quiring a full HDVE data set for a single initial temperature for a given sample requires
somewhere in the range of four to eight hours. While it is possible to take a full transient
2DIR spectrum it takes much longer. Acquiring the HDVE provides the ability to collect
more initial temperatures and 7 delays for each sample, or more samples, in the same
amount of time.

The second distinction is that chopping every other mid-IR shot during acquisition and
processing sequential open and closed shots together according to Equation 4.4 does not
work since the neighboring chopped and unchopped shots have different values of 7. To
get around this the chopper phase is flipped during data acquisition. The signal is first
acquired with the chopper open for the even shots and closed for the odd shots and then
the chopper undergoes a 7 phase shift and the signal is acquired with the chopper closed
for the even shots and open for the odd shots. This results in obtaining a signal with both
the chopper open and closed for each value of 7 which can then be used to obtain the

signal as described in Section 4.4.3.
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4.4.5 Data Processing

After the data is collected additional processing is done with Matlab scripts. Our focus
will be on processing the transient HDVE data as that is what is used in this thesis. The
first aspect of data processing is to recover the complex spectral interferogram which is
done using the FTSI method that was described in Section 2.5. The next step is to correct
any errors that may have occurred in 7, 5 over the course of the experiment. This is done
by comparing the equilibrium shots for each shotset to a pump probe spectrum which is
equivalent to the real part of the HDVE spectrum as discussed in Section 2.5. Prior to
the acquisition of the temperature-jump data a pump probe spectrum is collected using
the chopped k, beam and the LO with a delay of 150 fs, the same as the 7, delay in the
temperature-jump experiment. For each shotset the equilibrium shots are fit to the pump
probe spectrum in the frequency domain with a phase correction value as the fit parameter.
The best fit is found by a nonlinear least squares fitting algorithm and the resulting phase
correction is applied to the entire shot set. To generate the final transient HDVE difference
spectrum the equilibrium spectra are subtracted off from the spectra at each time point
before dividing through by the maximum value of the equilibrium spectrum. The resulting
final transient HDVE spectrum for each time point has a y-axis that is the percent change
in signal at time 7 relative to the equilibrium signal normalized to the maximum value of

the equilibrium spectrum.
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CHAPTER 5
ANALYSIS METHODS

5.1 Introduction

This chapter introduces the analysis conducted on the experimental thermodynamic
and kinetic data. We will first discuss the methods utilized to extract thermodynamic para-
meters from the temperature ramp FTIR experiments. These parameters are useful both
for understanding the energetics of the association and dissociation processes, but are
also a necessary part of the kinetic analysis for the transient temperature-jump experi-
ments. Thermodynamic analysis starts with obtaining the melting curve that tracks the
loss of DNA base pairs as a function of temperature. Two different methods of varying
complexity for obtaining the melting curve will be discussed providing some flexibility in
how it can be obtained. After obtaining the melting curve a seven parameter fit is applied
to extract the thermodynamic parameters. Analysis of thermal melting curves can take
multiple different forms that depend on how various parameters, such as the melting tem-
perature, are defined since a variety of definitions exist. The resulting expressions for the
parameters and the fit itself also differ based on the system being studied, an example
being different expressions for self-complimentary and non-self-complimentary DNA du-
plexes. Here we will present the fitting used in this work to extract the thermodynamic
parameters from the melting curve of a duplex made up of self-complimentary monomers
that is assumed to dissociate and associate as a two-state process.

This is followed by a discussion of the methods for analyzing the data obtained from
the transient temperature-jump experiments. The methods discussed here are widely
used both in the literature and in our research group so only a brief discussion is contained
here. The first step upon obtaining a completed temperature-jump data set is to confirm the
magnitude of the temperature jump for each initial temperature. This is used to determine

the final temperature at which the system is evolving. Once the final temperature is known
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the kinetic information can be extracted and analyzed. Two different methods for extracting
relevant kinetics will be discussed: analyzing the results in the time domain and utilizing an
inverse Laplace transform method to translate the data into the rate domain for analysis.
Neither method is inherently better than the other, instead they provide different avenues
for examining the data and both methods can be useful depending on the specific context.
Finally, the methods and mathematics behind the deconvolution of the association and
dissociation rates from the overall observed rate, and the assumptions that are made to
greatly simplify the process, will be discussed. Looking at not only the association and
dissociation rates but also the shape and functional form of the signal obtained both in the
time and rate domains is the first step towards understanding the kinetics and dynamics

of the samples.

5.2 Thermodynamic Analysis

5.2.1 Obtaining the Melting Curve

Two methods for obtaining the thermodynamic melting curve from an FTIR temperat-
ure ramp series, an example of which is shown in Figure 5.1, will be discussed here. While
other methods for analyzing the thermodynamics exist, the methods presented here cover
a wide range of potential applications of interest. The first method is simpler and analyzes
a specific frequency of interest, often the frequency with the maximum absorbance for a
given feature. The more complex method considers a range of frequencies whether that
includes multiple frequencies within a single peak or a wide range of frequencies spanning
multiple features.

The first approach is to plot a signal trace at a specific frequency as a function of
temperature. This is analogous to a method commonly used to study DNA thermody-
namics in the UV where the melting curve is commonly the absorbance at approximately

260 nm as a function of temperature. =3 One key difference relative to UV is that the 260
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Figure 5.1: FTIR temperature ramp series for the sequence 5’-CATATATATG-3’ from 10-82
°C with a spectrum taken every 3 °C.

nm peak contains contributions from all DNA base pairs whereas a single IR frequency
in the range examined here will not necessarily contain strong contributions from all four
bases and may only have contributions from a single base. This is a potential downside
of analyzing a single frequency in the IR since, depending on the sequence composition,
it might not accurately represent the overall melting of the duplex. Rather it results in a
melting curve that is primarily reporting on either the loss of A:T base pairs or G:C base
pairs. However, this can also be useful in some contexts. If the melting curves of A:T base
pairs are distinguishable from G:C base pairs this can provide some insight into how the
sequence melts. It is worth considering that this can be interpreted as a violation of the
two-state approximation since it implies that different base pairs within the same sequence
are not melting at the same time.

To help counteract the limitations of using single frequency slices it is advantageous to
have a complimentary method that considers a wider frequency range. This could involve
considering all frequencies within a single peak or incorporating multiple peaks across a
larger frequency range. This can be accomplished through the use of singular value de-

composition (SVD) which, while beneficial, does come with increased complexity. A brief
82



description of SVD specifically focused on its application in this work is provided here to
explain the origin of the thermodynamic melting curves, for those interested in a complete
description of SVD the minireview by Hendler and Shrager provides a good starting point
for further reading.# Applying SVD starts by defining a matrix A which contains all of the
spectra from the temperature ramp such that each row contains the spectra at a given
temperature. As a result A has w columns, where w is the number of frequencies in the
spectra and t rows where ¢ is the number of temperatures spectra were collected at. SVD

breaks down the matrix A into components according to
wat = wasssxsvl—xt (5.1)

where U is the set of orthanormal vectors of the column space of A which contain the
spectral information for each component, V is the set of orthanormal vectors of the row
space that contain the melting profile for each component and S contains the singular
values for each component which provide information on the relative significance of each
component. Computational languages, such as MATLAB, Python, and R, commonly have
built in functions for performing SVD on a matrix. Since we are interested in the melting
profile for the system we will focus on the vectors of V which contain this information. The
first component corresponds to an average spectrum that is roughly static as a function
of temperature. The second component contains the dominant spectral changes caused
by increasing temperature, which are the result of duplex melting. For a system that is
assumed to melt in a two-state fashion the only changes observed should be the dimer to
monomer transition with no intermediates present. Thus, in theory, if the system is truly
two-state the remaining components would be expected to be essentially noise, though in
practice this is not the case. Regardless, within the two-state approximation made here
we assume that the normalized second SVD component directly reports on the fraction of

intact base pairs relative to the total number of base pairs. This means that the second
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Figure 5.2: (a) Normalized second SVD component (orange dots) with the fit (light blue
line) and both upper (black line) and lower (dark blue line) baselines and (b) the resulting
fit for 5’-CATATATATATG-3'.

vector in the V matrix, after normalization, is taken as the melting curve to be fit. The

second SVD component with the fit being applied to it is shown in Figure 5.2a.

5.2.2 Melting Curve Analysis

The ultimate goal of analyzing the melting curves is to obtain the thermodynamic
parameters for the system and determine the monomer concentration at each temper-
ature which is required for the analysis of the temperature-jump experiments. This is
accomplished by fitting the melting curve assuming that the dissociation can be described
as a two-state process during which all strands in the system are either a monomer orin a
fully formed duplex where every base pair is intact.® All of the sequences studied here are
self-complimentary and as such the analysis will be derived for this case. The non-self-

complimentary case follows a similar derivation and the relevant equations are contained
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in Appendix 5A for reference. Under this assumption the reaction can be written as

kg
D =% 2M (5.2)
ka

where D represents the fully formed dimer state and M represents the monomer state. The

equilibrium constant for this reaction, which we define with respect to the dissociation, is

~AGY
K:M:e RTd (5.3)
D]
where the square brackets indicate concentrations. We now define the total concentration
of strands in the system, C7, as

Cr = 2[D] + [M] (5.4)

Since each duplex contains two single strands the value of C7 is constant regardless of
the ratio of monomers to dimers in the system.
We now define the fraction of intact base pairs for the system under the two-state

assumption, where all intact base pairs are contained within a fully formed dimer, as

_ 20]

o (5.5)

since the melting curve reflects the fraction of intact base pairs for the system at a given
temperature this is the value that will be fit, which means an expression for fp based
on the thermodynamic parameters of interest is required. The first step is to derive an
expression for the equilibrium constant, K, as a function of Ct and fp. Using Equation

5.5 in combination with Equations 5.4 and 5.3 produces

207 (1 fp)?

K
/o

(5.6)

This is useful since C is a known quantity and the thermodynamic parameters of interest
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can all be determined based on their relations to the equilibrium constant. Solving for fp,

taking the negative root of the quadratic equation, results in the following expression for

/o

40T+ K — /K2 +8KCy (5.7)

/o iy

We now need to determine the thermodynamic quantities of interest from the equilib-

rium constant. We start by relating the Gibbs free energy to the equilibrium constant
AG =AG" + RTInK (5.8)
and noting that AG = 0 at equilibrium results in
AGY = —RTInK (5.9)
which we can break down into the enthalpy and entropy according to
AGY = AHY + TASY (5.10)

At this point we need to formally define the melting temperature, Ty, within the context
of this work. While many different definitions of the melting temperature exist, it will be
considered here to be the temperature at which fp = 0.5. The melting temperature will be
utilized as a reference state for determining AHY and ASY at any temperature. To do this

we invoke the definition of heat capacity

_dH _ TdS

= = ar

(5.11)

and integrate with the bounds 7T and 7', making the assumption that AC), is constant
resulting in

AHYT) = AH® (Tm) + AC, (T — Tm) (5.12)

86



ASY(T) = AS” (Ti) + AC) In (Ti) (5.13)

Substituting Equations 5.12 and 5.13 into Equation 5.10 results in the final expression for
AGY

AGUT) = AHY (Tim) + TAS® (Trm) + AC, (T —Tm—T1In (Ti» (5.14)

where AH? (Tin) and AC,, are fit parameters. At this point all that remains is an expression
for ASY (Thn).

Rather than having AS? (Tm) be a fit parameter it can be calculated from the fit para-
meters AH" (Trm) and T, It can be seen in Equation 5.6 that at Tr, the equilibrium con-
stant is equal to C't. Setting the right hand side of Equation 5.9 equal to the right hand side
of Equation 5.10 and solving for ASY at T, provides the following expression for ASY (Tr)

as a function of known quantities and the fit parameters AHO (Tm) and Ty

AH® (Tm) + RTmInCy
Tm

ASY (T = (5.15)

We can now determine fp from the fit parameters AHO (Tm), Tm, and AC), according to
Equation 5.7 solving for K through Equations 5.14 and 5.9.

In practice the experimental melting curves have slanted baselines for both the upper
and lower baselines that must be accounted for, which is done by fitting the second SVD

component to the equation
VQZfD(SD—SM)—i-SM (5.16)

where V2 is the resulting fit to the melting curve, which is referred to /2 since it often fits
the vector in the matrix V that corresponds to the second SVD component. Sy and Sm

are the upper (dimer) baseline and lower (monomer) baseline respectively. Both Sy and
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Sm are linear and thus simply determined by two parameters, a slope and an intercept.
The upper and lower baselines can be seen along with the second SVD component in
Figure 5.2a while the resulting values of fp can be seen in Figure 5.2b. This results in

four additional fit parameters for a total of seven used to fit the melting curve.

5.3 Kinetic Analysis

5.3.1 Calculating Temperature-Jump Magnitude

The magnitude of the temperature change is determined by the transient response
of the D,O bend-libration combination band in the local oscillator (LO) spectrum. This
primarily tracks the change in the solvent transmission as a result of the temperature per-
turbation and subsequent cooling back to the initial temperature. This transient response
also provides the thermal profile of the sample over the course of the experiment. To de-
termine the magnitude of the temperature jump the percent change in LO transmission is
compared to a reference of the percent change in transmission in the same peak between
FTIR D,O spectra taken at known temperatures. The first step is to determine the percent
change in LO transmission between a time point at the top of the temperature profile and
the equilibrium initial temperature. Since the signal obtained from the temperature-jump
experiment at each time point has already been referenced to the equilibrium signal, which
is taken care of during the data processing as mentioned previously, the signal at a time
point at the top of the plateau provides this necessary percent change in transmission. It
simply requires a method for determining the magnitude of this signal at each frequency
measured, which can be obtained through fitting the solvent response at each frequency
to a known function.

The thermal profile of the solvent response is well fit to a stretched exponential which
has the form

f(r) = ce=(7) (5.17)
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where C'is a scaling factor that accounts for the magnitude of the solvent response, 7 is
the time point in the experiment, ¢ is the timescale for the temperature relaxation, and
controls the extent to which the function is stretched such that 0 < g < 1 with a value of
one resulting in a standard exponential function and smaller values increasing the degree
of stretching. For the purposes of determining the magnitude of the temperature jump
the scaling parameter is the parameter of interest since it reports on the magnitude of
the percent change in transmission for the solvent response relative to the equilibrium
transmission. An important note on fitting the solvent response is that early time points
need to be removed due to the effects of cavitation waves that form as a result of the rapid
heating of the sample. These pressure waves also affect the transmission of the sample,
which is observed in the LO trace as a function time for a single frequency as a sharp rise
that can be observed in the vicinity of 100 ns. To avoid any artefacts in the temperature
calculation that could arise from this the fits to the solvent response do not incorporate
early time points, a reasonable cut off point is around 200 ns, though this can be adjusted
sample to sample as necessary.

The magnitude of the thermal response from the stretched exponential fit can now be
compared to a known standard, which is the absorbance of D,O as a function of temper-
ature obtained from FTIR. The percent change in transmission between two temperatures

Tt and 7T; is obtained via the equation

(5.18)

. 10~ ATy _ 10—A(T)
Atrans (%) = 100 ( [0—AT) )

where A is the IR absorbance obtained from linear FTIR experiments as a function of
temperature. The D,O reference spectrum is taken at one degree temperature steps
and calibrated to ensure it serves as an accurate reference. Since the initial temperature
for the temperature-jump experiment is known all that remains is to determine the final

temperature that results in the percent change in transmittance, as calculated by Equation
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5.18, closest to the parameter C' determined from the fit to the LO solvent response as
determined by Equation 5.17. This is then carried out for every frequency measured in
the temperature-jump experiment resulting in a 7; value for each frequency. To minimize
the effect of noise on the calculation these values are averaged together to produce the

final value of T;.

5.3.2 Time Domain Analysis

Analyzing the temperature-jump data in the time domain is the first step in the ana-
lysis since it simply requires taking frequency slices of the transient HDVE spectrum at
frequencies of interest. Figure 5.3a shows an example of a transient HDVE spectrum that
shows where frequency slices are taken to generate time traces that show the signal re-
sponse for the guanine and adenine ring modes. As mentioned when assigning the peaks
in the IR DNA spectrum in Chapter 1 these peaks are isolated from the signals generated
by other base pairs resulting in the ability to independently track the response, due to the
temperature perturbation, of A:T and G:C base pairs. Taking the frequency slice results
in the time domain traces seen in Figure 5.3c.

Extracting the relevant kinetic parameters is done through fitting the time traces, which
enforces a functional form onto the data. Not only does the fit provide the timescales but
the functional form that fits best provides the first piece of mechanistic insight into the
system. In this section we will discuss the different functional forms that are used to fit
the kinetic traces and simple interpretations of the insights that can be drawn from them.©
This section is intended to orient the reader to how to generally interpret these results; a
more complete analysis of the kinetics, dynamics, and mechanisms for all of the different
samples examined will be included in later chapters.

The signal rise in the time trace associated with DNA that dissociates in a two-step
all or nothing process should be well fit by a single exponential function whereas more

complicated reactions, potentially due to multiple processes occurring simultaneously with

90



40
30
20
10

-10
-20
-30

AS(v)/max(S,,) (%)
o

=102
)

B103
310
8105
106
3107
0

O 108

1550 1600 1650 1700 O 10 20 30
Frequency (cm™) AS(t)/max(S,,)(%)

Figure 5.3: Results from the 5’-CATATATG-3’ 41-54 °C temperature-jump. The transient
HDVE spectra for times up to 100 us (a) and the corresponding rate map (b). The dashed
lines correspond to the frequencies with the maximum signal for the guanine (red) and
adenine (blue) ring mode excited state absorptions, which are the time traces plotted in

(c).

different timescales or different mechanisms entirely, will deviate from an exponential fit.®
To fit the trace it is broken down into two sections the initial rise that is caused by the loss
of base pairs in the duplex followed by the signal decay that occurs at longer times due
to rehybridization as the temperature of the system returns to the initial temperature. The
rehybridization portion of the signal trace is well fit to a stretched exponential function since
the temperature re-equilbration, which is the dominant factor driving the rehybridization, is
well fit to a stretched exponential as mentioned previously. While in theory this could allow
the direct observation of the hybridization reaction the analysis of this region is significantly

complicated by the fact that the temperature of the sample is evolving during this portion

91



o A
S 30} [© Guanine
N .
— o Adenine

ik i il i i i i
oy i i i i oy i

o Guanine
~ 0.8F | o Adenine

Normalized

10107105 10% 107 10° 10
T-Jump Delay (1)

Figure 5.4: (a) Time trace and fit for the adenine and guanine ring mode response to the
41-54 °C temperature-jump for 5’-CATATATG-3'. (b) Normalized time trace and fits such
that the first time point lies at zero on the y-axis and the largest signal is equal to one.

of the experiment. Since the hybridization of base pairs is convolved with the temperature
relaxation it is extremely difficult to extract reliable information out of this portion of the
data.

This leaves the early time portion of the data that observes the dissociation of the
duplex in response to the temperature jump. The simplest case observed is that of a
standard two-state all or nothing dissociation which is best demonstrated by shorter se-
quences with G:C end caps, an example of which is shown in both Figure 5.3c and 5.4a.
Evidence for the two-state mechanism appears in a few different forms in Figure 5.4. The
first is that both the adenine and the guanine response are well fit to a single exponential
rise, best seen in the unaltered data in Figure 5.4a indicating that the loss of base pairing
is occurring as a two-step process. Additionally the timescales for the rise of the guanine
and adenine base pairs are nearly identical, as can be seen in the normalized data in
Figure 5.4b, indicating that A:T and G:C base pairs are lost at essentially the same time
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Figure 5.5: (a) Adenine and guanine ring mode time traces for the 5’-ATATGCATAT-3’ 46-
60.2 °C temperature-jump. The signal rise is fit to a biexponential function for adenine and
a single exponential for guanine. Adapted from Ref 7.

which supports the all or nothing dissociation picture.

Another common form utilized to fit the rise of the signal is the use of two exponen-
tials. This has been primarily in sequences with G:C base pairs in the middle flanked
by A:T regions.7 As seen in Figure 5.5 the guanine response follows a standard single
exponential rise while the adenine response is best fit by a biexponential function. This
functional form can be interpreted as two resolvable processes each occurring in a rel-
atively two-state manner with a single timescale for each process. In the context of the
sequence mentioned here this has been interpreted as fast fraying of terminal A:T base
pairs, a conclusion strongly supported by the contrast between the biexponential rise in
the adenine signal and the single exponential rise of the guanine signal. Additionally the
timescale for the guanine response is in reasonable agreement with the second timescale
in the adenine response meaning those two processes occur at roughly the same time.”

The third common functional form for the rise in signal is a stretched exponential.
This can be observed in Figure 5.6 which shows adenine ring mode time domain traces
for sequences of two different lengths. In Figure 5.6 the dashed line is the stretched

exponential fit to each time trace and the solid line is the exponential fit. The shorter
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Figure 5.6: Comparison of the adenine ring mode time traces (circles), exponential fits
(solid lines), and stretched exponential fits (dashed lines) for temperature-jumps on the
sequences 5’-CATATATG-3’ (yellow) and 5’-CATATATATATATG-3’ (blue) with a final tem-
perature of approximately 53 °C. Both traces are normalized to their maximum value and
offset by a value of 0.4 for clarity.

sequence is well fit to the single exponential rise, such that the stretched exponential fit
is not a significant deviation from the exponential fit. Whereas for the longer sequence
the stretched exponential fit demonstrates a significant improvement relative to the single
exponential fit. A stretched exponential is most commonly interpreted to be the result
of having a mixture of different processes occurring with different timescales resulting in
the signal becoming stretched out in time. There are numerous reasons why processes
with different timescales could be occurring simultaneously. One possible example is a
system with a unified overall mechanism but a heterogeneous initial population. Another
example is a system with a homogeneous initial population but the reaction proceeds via
a downhill mechanism through a continuous ensemble of configurations. Both of these
examples lead to a broad distribution of timescales and the stretched exponential form as

a result.®
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5.3.3 Rate Domain Analysis

An alternative method to analyzing the kinetic data in the time domain is to transform
the data into the rate domain and examine the rate distribution. An example rate map,
corresponding to the transient HDVE spectrum shown in Figure 5.3a, is shown in Figure
5.3b. These plots are oriented such that faster rates are at the bottom of the y-axis which
results in time progressing from the bottom of the plot to the top. As a result the peaks
corresponding to the dissociation as a result of the temperature perturbation occur below
the peaks for the association. Figures 5.3b and 5.3c are oriented such that their y-axis
are aligned which can help visualize the relationship between viewing the data in the time
domain and the rate domain. The main advantage of utilizing this representation is that
a functional form does not need to be assumed to extract the kinetic information from the
system. It can instead be extracted directly from the rate map. While the identity of the
functional form of the time domain plot does provide useful information about the system,
having to enforce a functional form can impact the kinetic parameters obtained from the
fit. Additionally, that same information is still observed in the rate domain by examining

the shape of the peaks in the rate map and in particular the evolution of the peaks along
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Figure 5.7: Rate maps displayed at 4x magnification for the (a) 5-CATATATG-3’ 41-54 °C
and (b) 5’-CATATATATATATG-3’ 40-54.8 °C temperature-jumps.
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the y-axis, as seen in Figure 5.7. Figure 5.7b contains a tail going out to faster rates for
three of the four peaks indicating the presence of faster rates which are not observed in
Figure 5.7a. This is analogous to the longer sequence being better fit by the stretched
exponential in Figure 5.6. Before discussing the method for extracting the observed rate
from the rate domain, that is analogous to the observed time constant extracted from the
time domain, the method for transforming the transient HDVE spectrum into the rate map
will be briefly discussed.

The transient HDVE spectrum is transformed into the rate domain using a maximum
entropy implementation of a numerical inverse Laplace transform. The method has been
thoroughly described elsewhere®9 and as such the discussion of the method here will
focus heavily on its application and implementation.

The goal of the method is to obtain the distribution of rates denoted ¢(\) that satisfies

the equation

I(t) = / . g(A\)e Mdx (5.19)

0
which is the definition of a Laplace transform. 10 The Laplace transform is an integral trans-
form that takes a function of a real variable and transforms it into a function of a complex
variable. In our case I(t) is obtained from experiment so the corresponding function g(\)
needs to be found. This requires a numerical inverse Laplace transform to be carried out
on I(t) which contains experimental noise making this process an ill-conditioned problem.
To accomplish this we first note that since the data covers many orders of magnitude it
makes more sense to work in the log space. We also rewrite the integral for the Laplace

transform to be a finite sum resulting in

N
I(t) = fje "'A (log A;) (5.20)
j=1
where N is the number of data points taken in the experiment. We now turn to the max-

imum entropy method (MEM) for determining f;, ultimately by looking to maximize the
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parameter (). Before introducing @) two terms must be introduced, the information entropy
and an expression for the normalized mean square error between the model and the data.

The information entropy is defined as

N fi
_ Ain(22) =1 5.21
s=-2aln(7) 521
where F; is called the prior distribution and can be used to incorporate any known in-
formation about the rates. In our case we presume no known knowledge about the rate
distribution and give each F; a value of le—* which is also the starting guess for fj- The

expression for the normalized mean square error between the model and the data is given

by

= %g: [Ty (t) — L (tj)]z (5.22)

where the subscripts f and e denote the fit value and the experimental value respectively
and the term o; is the noise variance associated with the jth data point which is supplied
by the user. The value of I. (t;) is taken from experiment and the value of I (;) is

determined for each iteration by Equation 5.20. We can now define ) as
Q=5-ny’ (5.23)

where 7 is the Lagrange multiplier that is selected to satisfy the constraint that x2 = 1. In
practice the optimization algorithm that determines the values of f; will be minimizing the
function

—Q=nx*-5 (5.24)

where 7 is initially set to the mean of o; and @ is optimized for this value. The value
of n is then increased and the process repeats itself until it terminates when the value

of x2 is one and returns the value of fj- An important observation about the MEM in-
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verse Laplace transform method is that it must be done individually for each frequency
measured in the experiment and that the calculation of the rate distribution for a given
frequency is independent from all other frequencies. This makes the code for this method
an excellent candidate for parallelization. Utilizing computing nodes with a large number
of workers significantly increases the efficiency which makes using such a system highly
recommended.

Once the rate maps have been determined using the MEM inverse Laplace transform
method the observed rate constant from the process can be determined. The observed
rate constant is determined from a weighted average across the main dissociation peak
for each feature. This method has two main advantages relative to determining the ob-
served rate constant via fitting to signal traces in the time domain. The first is that there is
no assumed functional form of the kinetic response which means that the rate can be de-
termined without enforcing a particular mechanistic description on the system. The second
advantage is that it considers the rate across the entire peak rather than just looking at
a single frequency. This provides a more consistent observed rate constant because it
can account for some degree of experimental noise. It also provides an easy method for
estimating the error in the observed rate by considering the amplitude weighted standard

deviation in the rate across the peak.

5.3.4 Two-State Kinetics

The observed rate constant for a transient experiment is a convolution of both the
forward and backward rates for the system. Deconvolving the observed rate constant
into the forward and backward rates for a second order process is a complex problem to
solve analytically. However, this problem can be simplified significantly by approximating
our experiment as a small amplitude perturbation. This requires making the assumption
that the system is at equilibrium and the population changes that occur as a result of the

temperature perturbation are relatively small.
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The derivation of an expression for the observed rate constant in terms of the asso-
ciation and dissociation rates for the reaction given by Equation 5.2 starts with deriving
an expression for the equilibrium concentration of the monomer and dimer prior to the
introduction of the temperature perturbation. We start with the time derivatives for the

monomer and dimer concentrations 1!

d [l“l] 2
—t = [D] kd — [M]2 ka (5 5)
d [D] 26

and note that at equilibrium both of them are equal to zero. From this, the definition of
the total strand concentration given by Equation 5.4, and the definition of the equilibrium
constant K = Z—g we can derive the following expressions for the monomer and dimer

concentrations at equilibrium

Mgq = % (—K /K24 SKCT) (5.27)
Dleq = —% (—K +4CT + 4/ K2 — SKCT> (5.28)

We now introduce the small perturbation assumption and define the concentrations for the
monomer and dimer after the perturbation, which alters the populations only slightly away
from equilibrium, as

M] = [Mjog + [m (5.29)
D) = [Dleg + [¢] (5.30)

where the lower case denotes the small changes in concentration that occur due to the

perturbation. We now want to determine # which can then be used to derive the ob-

served rate constant. The same method can be done using @ and it will produce the

same expression for the observed rate constant so it will not be explicitly shown here. We
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start by adding together the time derivatives for [D}eq and [d] giving us the expression

d [D]eq d[d]

. Ta e ([M]eq T [m]>2 — kg ([D]eq + [d]> (5.31)

Incorporating Equation 5.26 yields

d(d]

~r = 2ka [Mleq [m] — kg[d] + ka[m]* (5.32)
Knowing that Ct cannot change as a result of the perturbation means that [m] = —2[d] so
by substitution we get

d[d

A9 ke Mlag 0] — kgl + 4kafa]? (5.33)

At this point we drop the second order term due to our assumption that our perturbation
only slightly changes the overall concentration. Solving the differential equation that re-

mains after the second order term is dropped gives us

— (4ka [M]eq+kd) t

[d](t) = Ce (5.34)

where C'is a constant. Which gives us the observed rate constant !
kobs = 4ka [M]gq + kg (5.35)

Using Equations 5.3, 5.4, and 5.5 Equation 5.35 can be rewritten as
ka = kops (Kq,p +4CT (1 - foyi))i1 (5.36)

where fp j denotes the fraction of molecules in the duplex state at the initial temperature,

and Ky ¢ is the dissociation equilibrium constant at the final temperature T;.
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Appendix 5A: Equations for the Thermodynamic and Kinetic Analysis

of Non-Self-Complimentary Sequences

In this appendix the equations for analyzing non-self-complimentary sequences are
provided. Since the derivation for both the thermodynamics and kinetics follow the same
general procedure as the self-complimentary case the derivations will not be provided and
instead the equations that differ from the self-complimentary analysis are provided. Again

following the two-state assumption for the reaction

k
D == My + M, (5.37)

ka

where M4 and M, are the two monomers. For the purposes of this analysis we will make
the assumption that [M4] = [M5] such that if the system is fully duplexed there are no

remaining unpaired monomers. In this case the equilibrium constant is given by

_ I“l‘l I“|2 o
K —[ } —e RI (538)
In this case CT is defined as as
CT = Q[D] + [M»]] + [Mz] = Q[D] =+ Q[M] (539)

where [M] = [M4] = [Ma].
The fraction of intact base pairs for the system under the two-state assumption is
the same as the self-complimentary case given in Equation 5.5. The expression for the

equilibrium constant as a function of Ct and fp in the non-self-complimentary case is

_Cr(1- fp)?
K = T (5.40)
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From this the expression for fp is determined to be

K- VKT 12K
_ Tt e 1 (5.41)

T

/o

The expressions for AH? (T)), ASY(T), and AG? (T) are unchanged from the self-
complimentary case leading to the expression of AGY (T') given in Equation 5.14.

All that remains is to determine the expression for ASY (Tpy). First we must note that
based on the definition that fp = 0.5 at Ty, and Equation 5.40 the equilibrium constant at

Tmis given by K (Tm) = % Using this we get

AH? (Tm) + RTmIn (%)
Tm

ASY (Thy) = (5.42)

Following a similar derivation to the self-complimentary case the equation for the ob-
served rate constant for a two-state system assuming a small amplitude perturbation is
given by

kobs = kg + ka <[M1]eq + [MZ]eq> (5.43)
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CHAPTER 6

LENGTH-DEPENDENT MELTING KINETICS OF SHORT DNA
OLIGONUCLEOTIDES USING TEMPERATURE-JUMP IR
SPECTROSCOPY

Portions of this chapter have been published and are reprinted with permission from:
Menssen, R. J.; Tokmakoff, A. Length-Dependent Melting Kinetics of Short DNA
Oligonucleotides Using Temperature-Jump IR Spectroscopy. J. Phys. Chem. B 2019,
123, 756-767.

Copyright 2019 American Chemical Society

6.1 Abstract

In this work we utilize Fourier transform infrared (FTIR) and temperature-jump (T-
jump) IR spectroscopy to investigate the melting thermodynamics and kinetics of a series
of five DNA sequences ranging from 6 to 14 base pairs long. IR spectroscopy is well suited
for the study of DNA because of its ability to distinguish base specific information and the
nanosecond time resolution of the T-jump apparatus can access the relevant range of
kinetics. Eyring analysis of a two-state model examines both the activation enthalpy and
entropy providing new insight into the energetic driving forces and physical processes
behind the association and dissociation while also helping to clarify the commonly ob-
served negative activation energy. Global analysis of the thermodynamic and kinetic data
applying a linear dependence of activation barriers on oligo length provides a holistic res-
ult by producing reasonable agreement between our data and existing nearest neighbor
thermodynamic parameters blending the experimental results with established predictive
models. By studying the trends in the thermodynamics and kinetics as a function of length

this work demonstrates a direct correlation between the effects additional dinucleotides
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have on the kinetics and the nearest neighbor parameters for those dinucleotides. This
result further supports the development of a kinetic analog to the thermodynamic nearest

neighbor parameters.

6.2 Introduction

One of the main goals of this research is to begin to break down and understand the
different variables that impact DNA association and dissociation mechanisms. Numerous
variables including, but not limited to, length, temperature, sequence, and salt concentra-
tion are known to impact both the kinetics and dynamics of DNA reactions and underlying
driving forces. =15 While it may seem basic, there is a surprising amount that is not under-
stood about the fundamentals of DNA association and dissociation reactions. Historically
some of this has been due to available techniques as only more recently have modern
computational techniques developed methods that are able to produce detailed simula-
tions of these reactions. Experimental techniques continue to lag behind the computa-
tional methods as simulations have predicted a number of rich and interesting dynamics
that experiments have yet to observe. 1.3

Many experimental studies remain focused on the kinetics of the reactions looking at
aspects such as the rates and energetic barriers for the processes.z’16 While these are in-
teresting and we ourselves also study the kinetics we feel that the real prize is understand-
ing the dynamics of the process. The dynamics focus more on how the reaction proceeds
looking at the mechanisms of all processes that occur, not just the overall monomer to di-
mer reaction. Additional processes such as the diffusion to capture of two monomers, the
fluctuations that occur during critical nucleus formation, and fast dynamics during the dis-
sociation such as fraying and bubble formation are all of significant interest to our research
group. The use of ultrafast IR spectroscopy is a perfect match for understanding these

dynamical questions due to its ability to provide greater structural resolution compared to
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other label free techniques.

These topics motivated the study of the length series, the experimental studies that
are described in this chapter. The effect of length on the association and dissociation
of DNA has not received significant attention from experimental studies using modern
techniques. Additionally, with respect to canonical DNA duplex dynamics and kinetics
our group has focused more on short DNA oligos that are well described by a two-state
mechanism. However, to start to access the rich and complicated dynamics we are inter-
ested in, our focus needs to shift to longer sequences where these dynamics are known
to occur.1”:18 Examining the length series bridges this gap as, using similar sequence
construction, we can examine how the dynamics and kinetics are affected by increasing
length. An additional advantage of the length series is, due to the kinetics and dynamics
evolving with length, the data set not only motivated the development of the kinetic model
but also served as a useful core data set for comparison during development. While there
is significant work to be done to fully understand the rich and complex dynamics and kin-
etics of DNA association and dissociation, focusing on a single variable, length, provided
an approachable way to build the necessary tools, both experimental and computational.
These tools allow us to start to pull apart and understand the different variables that in-
fluence DNA association and dissociation and dive into the fundamental energetic driving

forces, mechanism, and dynamics that occur.

6.3 Experimental Methods

6.3.1 Sample Preparation

DNA oligonucleotides with the sequence 5’-C(AT),,G-3’ (n = 2-6) and lengths L = 6-
14 (i.e. number of base pairs in the single strands) were purchased from Integrated DNA
Technologies (IDT) and purified using Amicon Ultra 3 kDa centrifugal filters or Sartorius

Setim Biotech Vivaspin 2 2 kDa centrifugal filters depending on the sample molecular
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weight. To prepare for IR spectroscopy, DNA samples were then H/D exchanged in D,O
(Cambridge Isotopes) and lyophilized. Samples for both the FTIR and T-jump were meas-
ured in a deuterated 50 mM sodium phosphate buffer with an additional 240 mM NaCl and
18 mM MgCl, and a pH of 7.2. All samples were run at a concentration of 2 mM and a
NanoDrop UV/vis spectrometer (Thermo Scientific) was used to ensure sample concen-
tration consistency. Prior to measurement, samples were annealed by heating to 95 °C
and gradually cooling to room temperature for 15 minutes. For both the FTIR and T-jump
measurements samples were placed between two 1 mm CaF, windows with a 50 ym path
length formed with a Teflon spacer. The sample was then mounted in a home-built brass

sample cell that was temperature controlled by a recirculating chiller.

6.3.2 Temperature Ramp FTIR

For the temperature ramp FTIR measurements the chiller was ramped from 0 to 96
°C in 3 °C steps with a 60 second equilibration time at each point. The sample temper-
ature was calibrated by attaching a thermocouple to the CaF, window to determine the
temperature at the sample relative to the chiller set point. Spectra were recorded on a
Bruker Tensor 27 FTIR spectrometer. The raw FTIR spectra where then processed by

subtracting off the D,O and HOD spectra.

6.3.3 Temperature-Jump Measurements

T-jump kinetic measurements were made with an ultrafast nonlinear IR spectrometer
with a center wavelength of 6.2 ym and 1600 cm™! bandwidth synchronized electronically
to a nanosecond T-jump laser. The spectrometer and data acquisition methods have been
described in detail elsewhere. 19:20 Briefly, the spectrometer collects a heterodyne detec-
ted vibrational echo (HDVE) spectrum. The real part of the HDVE spectrum is closely
related to a transient absorption spectrum and can be read in the same way. The posit-

ive and negative signals are the ground state bleach (GSB) and excited state absorption
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(ESA) which originate from 0 to 1 and 1 to 2 vibrational transitions respectively. All tran-
sient T-jump spectra we report are differences between the HDVE spectrum measured at
a given delay time after a T-jump pulse (7), and the equilibrium HDVE spectrum acquired
at the initial temperature prior to the T-jump (Sy) : AS (w,7) = S (w, T) — Sp(w).

The T-jump laser was used to jump the sample temperature by approximately 15 °C
from an initial equilibrium temperature 7; to a final temperature 7; within ~10 ns. This
transient temperature jump is maintained until the sample thermally re-equilibrates on a
time-scale of ~2 ms. The initial temperatures were selected to sample a minimum of four
temperatures across the melting transition of each oligo while ensuring the kinetics fall
within the window between 10 ns and 2 ms that the instrument can observe. 7; was main-
tained by the chiller connected to the brass sample cell. 7; was determined by comparing
the transient response of the D,O solvent as a result of the temperature-jump pulse to
changes in intensity observed in equilibrium FTIR measurements of D,0O at different tem-

peratures.

6.4 Results and Discussion

6.4.1 Equilibrium Melting

The self-complementary sequences utilized in this study were selected to ensure they
followed simple two-state melting behavior, by choosing relatively short lengths that would
be unlikely to form bubbles or hairpins and putting G:C base pairs at each end which limits
the likelihood of terminal fraying.4 The melting profile and underlying thermodynamics of
the monomer-dimer transition were determined from temperature-dependent FTIR meas-
urements between 1500 cm™! and 1750 cm™!. An example is shown in Figure 6.1a. The
DNA vibrational modes in this frequency range contain contributions from both in-plane
ring vibrations, predominately at frequencies below 1650 cm™, and carbonyl stretches,

predominately at frequencies above 1650 cm™’, that are sensitive to DNA hydrogen bond-
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Figure 6.1: (a) FTIR temperature ramp for 5’-CATATATATATATG-3". The boxes highlight
the peaks for the guanine ring mode (blue), adenine ring mode (red), and the overlapping
region (green). (b) DNA melting curves obtained from a fit to the second SVD component
of the temperature dependent FTIR data.

ing and base stacking interactions.21:22 Other than the shoulder at 1690 cm™" the features
in this frequency range are suppressed by the hybridization of DNA bases resulting in an
increase in signal as the DNA double helix melts. We focus on peaks at 1556 cm™ and
1625 cm! which arise from guanine and adenine ring mode vibrations respectively. These
peaks are used to independently resolve the loss of G:C and A:T base pairs. Above 1630
cm™! the spectrum becomes more congested with overlapping contributions for thymine,

guanine, and cytosine.
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To determine the melting curve from the global changes in the spectrum, singular
value decomposition (SVD) analysis was applied to the FTIR temperature series. 2324
The second SVD component contains the dominant spectral changes caused by increas-
ing temperature, which are the result of duplex melting. The dimer is assumed to melt in
a two-state fashion so the only changes observed should be the dimer to monomer trans-
ition with no intermediates present. This leads us to assume the normalized second SVD
component directly reports on the fraction of intact base pairs relative to the total number
of base pairs.

The resulting melting curves are shown in Figure 6.1b. There are two observations
to make with the melting curves. The first is that the curves shift to higher temperat-
ure as length increases and the amount that the curves shift decreases with increasing
length. The second observation is that under our experimental conditions the two shortest
sequences do not have a full low temperature baseline. For L = 8 the baseline is not
fully established which introduces some error into the fitting algorithm which is partially
responsible for the deviation from the nearest neighbor (NN) result that is observed for
this sequence. For L = 6 the issue is more pronounced such that the sample never fully
duplexes at low temperature as seen in Figure 6.1b. The fact that the duplex state is not
fully established results in the lack of a low temperature baseline which causes a more
significant deviation from the NN parameters. However, it is worth noting that previous
studies? have also found discrepancies with the NN parameters at very short lengths due
to the fact that the NN parameters were obtained by fitting data to larger duplexes with L
> 9 suggesting that this could also be contributing to the discrepancy that we observe.

The equations used to fit the melting curves are derived and discussed in Section
5.2.2. To obtain thermodynamic parameters from melting curves, we make the van’t Hoff
assumption that AH and AS are independent of temperature, and fit the temperature-
dependent duplex fraction fp(7"), Equation 5.7, using two independent parameters from

the model, the dissociation enthalpy (AHg) and Ty, and four additional parameters that
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Figure 6.2: Values for the (a) enthalpy, (b) entropy, (c) Tm, and (d) free energy of dissoci-
ation at 37 °C for the two-state thermodynamic model (red), the nearest neighbor model
(blue), and the global fit (black).

define the baselines for the high and low temperature regimes. Asg follows from Equa-
tion 5.15, AGg from Equation 5.10, and Ky from Equation 5.3. The resulting analysis of
the equilibrium melting of the oligomers is summarized in Table 6.1 and plotted in Fig-
ure 6.2. All values for the NN parameters were corrected to account for the buffer salt
concentrations.2°

Plots of both the enthalpy and entropy as a function of length, shown in Figure 6.2a
and 6.2b respectively, are roughly linear as expected. The resulting slopes for the two-
state thermodynamic fit show that the enthalpy and entropy increase by 24 kJ mol"! and
70 J mol! K- respectively for each additional base pair. Adding two base pairs, in this
case both an AT and a TA dinucleotide, increases the AHg by 48 kJ mol-! and Asg by 140
J mol" K1 which is in reasonable agreement with salt-corrected 25 NN predictions of 60.2
kJ mol"! and 179 J mol! K1 respectively.2® Finally, for the free energy of dissociation,
according to the fit two additional A:T base pairs add 5.3 kJ mol™! to the free energy of the

duplex. This is in reasonable agreement with the NN prediction of 6.1 kJ mol~1.26 It is worth

111



Table 6.1: Length-dependent thermodynamic parameters for sequences 5-C(AT),,G-3’
where n = 2-6 obtained from two-state analysis of melting curves, nearest neighbor
calculations?, kinetic Eyring analysis, and global fit analysis.

length 6 8 10 12 14
global fit 426 | 46.7 | 49.0 | 50.5 | 51.5
Tm (°C) nearest neighbor® | 37 | 44 | 47 | 50 52

melting curve 27.6 | 40.3 | 46.8 | 49.7 | 52.5
Eyring analysis | 16.8 | 21.1 | 24.8 | 29.7 | 35.6
global fit 194 | 234|272 | 316 | 36.6
nearest neighbor? | 16.1 | 20.6 | 25.2 | 29.8 | 34.5
melting curve 10.8 | 18.7 | 25.0 | 28.4 | 32.6
Eyring analysis 163 | 219 | 275 | 345 | 408
global fit 172 | 243 | 313 | 384 | 455
nearest neighbor? | 161 | 221 | 281 | 341 | 402
melting curve 155 | 233 | 275 | 314 | 357
Eyring analysis | 472 | 638 | 808 | 1017 | 1201
global fit 493 | 707 | 922 | 1136 | 1349
nearest neighbor?® | 466 | 646 | 825 | 1005 | 1184

melting curve 465 | 691 | 806 | 921 | 1046

@Nearest neighbor values are calculated from Ref 26 utilizing salt corrections from Ref 25.
PAGY is calculated at 37 °C.

AGY (kJ molT)P

AH{ (kJ mol™)

ASY (J molt K1)

noting that all of the two-state results do demonstrate a slight non-linearity, especially at
the shortest lengths. This suggests that the assumptions made in the two-state model or
the additive nature of the NN model may be breaking down for these short lengths. This
is consistent with previous work that showed discrepancies between NN predictions and
experimental results at short lengths which suggested it may be due to the fact that the
NN parameters were obtained by fitting to longer sequences with L > 9.2

For the equilibrium melting measurements shown in Figure 6.2 (red), the y-intercept
is roughly zero. More precisely, in each case the fit crosses the x-axis at a length cor-
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responding to somewhere between -1 and 2 base pairs. Because a change in sign in
the thermodynamic parameters demonstrates a change from favorable to unfavorable or
vice versa one would expect to cross the x-axis at the length where stable duplexes are
no longer able to form, which roughly matches what is observed here. The fact that the
y-intercept is not exactly zero demonstrates the fact that there are other factors that con-
tribute to DNA thermodynamics outside of the dinucleotide contributions themselves. An
example of this is observed in the NN parameters for initiation and the symmetry pen-
alty. 26 The thermodynamic value at the y-intercept can be thought of as corresponding
to the free-energy of a hypothetical duplex with zero bound base pairs but occupying the
same molar volume as the fully base paired duplex.27 Additionally, the fact that the ther-
modynamic parameters are all roughly zero at a length of zero base pairs helps to reinforce

the picture that DNA thermodynamics are linear as a function of length.

6.4.2 Temperature-Jump Melting Kinetics

To study the kinetics, a minimum of four T-jump measurements, each with a jump
magnitude of roughly 15 °C, were done on each length with varied 7; that sampled across
the melting transition to allow for kinetic analysis. The resulting IR spectra allow the loss
of base pairing as a result of the temperature perturbations to be tracked throughout the
window of time between approximately 10 ns and 2 ms.

An example series of transient IR spectra following the T-jump for L = 6 is shown in
Figure 6.3a. The spectrum shows positive and negative peaks that arise from 0-1 and
1-2 vibrational transitions, but they can be assigned by correspondence to the peaks ob-
served in the FTIR absorption spectrum. Of the four most intense features the two negative
peaks at approximately 1560 cm™'and 1610 cm™ correspond to the guanine and adenine
ring modes respectively and the two positive peaks correspond to a mixture of guanine,
cytosine, and thymine vibrations.

To illustrate the temporal form and length dependence of the kinetics, Figure 6.4
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Figure 6.3: 5-CATATG-3’ (a) Transient IR spectrum for the 7; = 25 °C to 77 = 40 °C T-jump
for delays between 0 and 0.1 ms, with increasing time delay as colors go from blue to red
(re-equilibration not shown). (b) Rate distribution where purple denotes a loss in signal
associated with that rate and orange denotes an increase in signal. The dotted black lines
are a guide to the eye to show how the two are connected and highlight the guanine and
adenine ring modes.

shows the time-dependent changes to the adenine ring mode intensity as a function of
temperature-jump delay (7) and oligo length. Each intensity trace is also superimposed
with an exponential and stretched exponential fit. Also shown is the time-dependent tem-
perature of the sample as it thermally re-equilibrates from 73 to 7; through thermal diffusion,
which is relatively constant to 7 ~100 us before relaxing with a ~2 ms time constant. As a
result, we ensure that all data presented here have relaxation time scales <<2 ms. Note

the kinetics in Figure 6.4 are compared at a fixed temperature of approximately 7; = 53 °C
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Figure 6.4: Normalized time domain traces for each length of sequence type 5’-C(AT),,G-3’
(n =2-6) at approximately w = 1610 cm™! and 17 =53 °C. Each trace is offset by 0.2 in order
to facilitate comparison. The time-dependent re-equilibration of the solvent temperature
is plotted in black. For each length the raw data (0), an exponential fit (-) and a stretched
exponential fit (- -) are plotted.

and a roughly 15 °C jump magnitude, so the region of the melting curve sampled in each
temperature jump shown in Figure 6.4 varied with length. The melting curves shown in
Figure 6.1b can be used to determine what region of the melting curve was sampled for
each of the jumps shown in Figure 6.4.

In the data we observe a growth of the signal between 7 = 100 ns and 100 ps that
reports on the melting of the duplex, followed by a drop in signal at longer times which re-
flects the convoluted temperature re-equilibration of the sample and re-hybridization of the
oligos. The decrease in the observed melting rate, k.5, as length increases is observed
as the rise in signal associated with the dissociating duplexes shifting to longer times.
Comparing the exponential and stretched exponential fits to the rise of the signal indicates
that the kinetics deviate from exponential and are better represented by stretched expo-
nential relaxation with a stretching exponent that decreases from 0.67 to 0.58 between
5’-C(AT)3G-3’ and 5’-C(AT)gG-3'. This increasingly non-exponential behavior likely arises
from a distribution of rates resulting from a heterogeneous initial population or the pres-
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Figure 6.5: Rate maps for (a) 5-CATATG-3’ temperature jump from 7; = 20 °C to 7; = 33
°C and (b) 5’-CATATATATATATG-3’ temperature jump from 7; = 40 °C to 75 = 55 °C. The
region containing the fast response for both sequences is shown with 5x magnification to
highlight the difference between the two sequences.

ence of more complicated dynamics.

Without a clear functional form that can be consistently applied to all of the time traces,
we turn to an alternative method to analyze the relaxation kinetics. A maximum entropy
implementation of an inverse Laplace transform was used to obtain a relaxation rate dis-

tribution map for each of the frequencies of the transient IR spectrum.23’28 Additional
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Figure 6.6: Eyring plot of the observed rate constant for the adenine and guanine ring
modes for each 5’-C(AT),,G-3’ sequence where n = 2-6.

details about the method are provided in Section 5.3.3. Figure 6.3b shows the resulting
rate spectrum corresponding to Figure 6.3a, with the fastest rates at the bottom of the
rate axis. Peaks in the rate distribution can be separated out into two distinct regions: the
dissociation kinetics — highlighted in blue — that correspond to the microsecond kinetics,
and the slower re-equilibration regime — highlighted in red. A purple (orange) peak in the
rate distribution corresponds to a decrease (increase) in signal, i.e. a decrease (increase)
of positive signal or an increase (decrease) of negative signal. In Figure 6.3b, and for
other samples, we observe that there is a single common peak in the rate distribution for
each IR detection frequency, indicating that all spectral features respond in a correlated
manner, as expected for two-state kinetics in which the dissociation of all base pairs is syn-
chronous. As relaxation kinetics become more stretched, the rate distributions broaden —
sometimes considerably as shown in Figure 6.5 — but a single well-defined peak for the
observed dissociation rate is always apparent.

The observed rate, ko, for both the adenine ring mode ESA (~1610 cm™') and
the guanine ring mode ESA (~1560 cm™ ) were determined by the first moment (weighted

average) of the dissociation peak in the rate spectrum. The observed rates for the adenine
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Figure 6.7: Eyring plot of the adenine ring mode observed rate constant for each 5'-
C(AT),,G-3’ sequence where n = 2-6. Error bars reflect the amplitude weighted standard
deviation of the maximum rate for all detected frequencies.

and guanine ring modes are almost identical under all conditions, as seen in Figure 6.6;
due to this, our analysis will focus on the adenine ring mode response. The resulting
adenine ring mode rate shows a dependence on both temperature and length which is

obs

reflected in the Eyring plot, In <kT) VS. % in Figure 6.7. The linear behavior indicates
that ks increases exponentially ;s temperfature increases. With increasing length, kg
decreases and the slope of the line, which reports on the activation enthalpy, increases.
The linear behavior in this plot is virtually indistinguishable from an Arrhenius plot, In kgpg

1
VS. T as shown in Figure 6.8
f

6.4.3 Two-State Analysis of Kinetics

Next we analyzed the data using the two-state kinetic model that was described in
Section 5.3.4. For sequences 5-C(AT),,G-3’ where n = 4-6 both of the thermodynamic
parameters needed for kinetic analysis, the duplex fraction at the initial temperature and
the dissociation equilibrium constant at the final temperature, are taken from the thermo-
dynamic fits of the melting curves described in Section 5.2.2. For 5’-C(AT),,G-3’ where n
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Figure 6.8: Arrhenius plots for the adenine ring mode association and dissociation rates
for each 5’-C(AT),,G-3’ sequence where n = 2-6.

= 2-3 the values were determined by NN parameters,26 to avoid possible errors due to
the poor low temperature baseline in their melting curves. While the NN parameters may
not be perfect in this length regime; between the lack of low temperature baselines in the
melting curve and the possibility that the two-state assumption may be breaking down we
believe utilizing the well-established NN parameters will provide the most reliable analysis
for these sequences. With k3 determined from Equation 5.36, we obtain k4 from Equation
5.35. The results are shown in Figure 6.9 as an Eyring plot, and are seen to follow linear
trends. A comparison between Figure 6.9 and the observed rate constant in Figure 6.7
shows that kqpg is heavily dominated by £y.

As our initial attempt to determine the association and dissociation barriers for du-
plex dissociation, we constructed Arrhenius plots for k5 and kq from which the activation
energy, Ea, and pre-exponential factors, A, for both are determined by a linear fit and
are shown in Table 6.2. The Arrhenius plots obtained, shown in Figure 6.8, show the
same length and temperature dependent trends as Figure 6.9. Our results show thermally
activated kinetics with a positive dissociation barrier and negative association barrier, in

reasonable agreement with other published values.314.15 The presence of a negative ac-
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Figure 6.9: Eyring plot for the adenine ring mode association and dissociation rates for
each 5’-C(AT),,G-3’ sequence where n = 2-6.
tivation barrier indicates that the association process in Equation 5.2 does not represent
a fundamental kinetic step.
To avoid the ambiguity over the physical interpretation of the negative activation en-

ergy and to better understand the role entropy changes play in the reaction barrier, the

data was analyzed using the Eyring equation29-30
k —AHY1 kg\ = —AST

This approach allows us to obtain values for the activation entropy and activation enthalpy
that can be directly compared to the thermodynamic results.

Linear fits were used to calculate the enthalpy of activation for the association and
dissociation, AHg and AH(ij, and the entropy of activation for association and dissociation,
AS& and ASCiI. These values are presented in Figure 6.10 and Table 6.3. Ouir first obser-
vation is that the parameters determined by analyzing the melting kinetics through the
adenine ring mode and guanine ring mode are identical within our error bars. As expec-

ted AHi and AHé are essentially identical to the Arrhenius activation energies shown in
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Table 6.2: Fit parameters for the Arrhenius analysis of the adenine ring mode association
and dissociation rates. The activation energies are roughly equivalent to the activation
enthalpies from the Eyring analysis given in Table 6.3.

length 6 8 10 12 14
Ep
association | (kJ mol’?) -0.6 -41.3 -80.0 -80.4 -126
A
M1 Ty | 1:9x107 2.1 61x107 | 32x107 | 1.9x 10-14
En
dissociation | (kJ mol™") 162 177 196 265 282
A
(s1) | 9:3x10%1 [ 4.2x10% | 1.0x10% | 4.0x10% | 9.7 x 10%®

Table 6.2 confirming that they contain the same information. The reaction barrier defined
by the free energy of activation, which will be denoted AG% for the association reaction
and AGifJ for the dissociation, are calculated from the enthalpy and entropy of activation
and are plotted as a function of temperature in Figure 6.11.

From Figure 6.10, we observe that AHi, AHg, AS%, and ASCii are all roughly linear
with length. For the dissociation they are both positive and increasing with length, whereas
for association they are negative and decrease with length. Combining the activation en-
thalpy and entropy results in a positive free energy barrier to both association and dissoci-
ation as shown in Table 6.3 and Figure 6.11. As a result we see that the considerable loss
of conformational freedom that results from initiating the duplex formation is partially com-
pensated by an enthalpic benefit from forming favorable contacts in the transition state.
The fact that the activation enthalpy and entropy are changing significantly as a function
of length shows that the energetics of the transition state have a significant dependence
on length. This suggests that changing the length may induce changes in the structure
of the transition state, an idea that merits further study in future research. The barriers
for duplex dissociation have a more traditional interpretation. AH(:E increases with length

as a result of the loss of base pairing and stacking required to reach the transition state,
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Table 6.3: Activation free energies, enthalpies, and entropies for the association and dis-
sociation determined from the adenine ring mode Eyring analysis and the global fit.

length 6 8 10 12 14
global fit 499 | 54.2 | 58.3 | 63.6 | 68.0
Eyring analysis | 49.0 | 54.0 | 58.1 | 64.1 | 66.9
global fit 146 | 182 | 218 | 255 | 291
Eyring analysis | 160 | 175 | 193 | 262 | 279
global fit 310 | 412 | 515 | 617 | 719
Eyring analysis | 358 | 390 | 435 | 638 | 684
global fit 30.5 | 308 | 311 | 32.0 | 314
Eyring analysis | 32.2 | 329 | 33.3 | 344 | 31.3
global fit -26.3 | -60.7 | -95.1 | -129 | -164
Eyring analysis | -3.2 | -44.0 | -82.4 | -83.1 | -129
global fit -183 | -295 | -407 | -519 | -630

Eyring analysis | -114 | -248 | -373 | -379 | -517
4Free energy values are calculated at 37 °C

AGY (kJ mor")2

dissociation AH@E (kJ mol'1)

ASY (I molt K1)

AGE (kJ mol )2

association AHi (kJ mol1)

ASE (Jmol! K1)

and is partially compensated by the gain in configurational entropy in ASé. Since it ex-
plicitly accounts for diffusion, Kramers theory is an alternative route to interpreting barrier
crossing in solution phase reactions. However, in our experimental analysis the resulting
pre-exponential parameters in either theory are equally difficult to interpret microscopically
whether they are cast in terms of an attempt frequency and activation entropy or friction
coefficient and barrier curvature. Over the temperature range in our experiments, the
viscosity of the solvent changes by a small amount (~1.3) whereas the increase in asso-
ciation and dissociation rates is much higher in most cases. This indicates that diffusion
of two strands to encounter is a minor contribution to the overall association barrier, and
the primary contribution to the diffusive barrier crossing in Kramers theory is the internal
friction experienced by the dynamics of the encounter complex. Indeed, simulations have

predicted that the reaction probability for the formation of DNA duplexes is below 1% and
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Figure 6.10: Activation enthalpy and entropy of association and dissociation determined
from the adenine and guanine ring modes as a function of sequence length.

that the rate limiting step is the contact between the DNA single strands. Similarly, the
internal interactions within the dimer state rather than the resistance of the solvent are the

dominant contributors to the dissociation barrier.

6.4.4 Global Fit of Thermodynamics and Kinetics

As a further test of the general applicability of the two-state all or nothing model and
the linearity of the kinetic parameters we applied a global fit to the thermodynamic and
kinetic data under the assumption that the activation enthalpies and entropies were linear
in oligo length. Additionally, we wanted to investigate how well the thermodynamics and
kinetics could be tied together utilizing an Eyring description of the data and to see if we
could describe both the kinetics and the thermodynamics of the system utilizing only a

small set of kinetic parameters. The AH%, AHg, AS% and ASé can be used to describe
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the kinetics at any fixed temperature and the thermodynamics can be derived using fun-
damental relations such as

AGY = AH} — TAS], (6.2)

and

AGY = AGY — AG (6.3)

with AH{ and AS] calculated in the same way as AGY. We then posit that the length
dependence of AHg, AHg, ASi and ASfj follow a linear length dependence of the form

AHY, (L) = AHY, (0)+ L+ SAH) (6.4)

d/a d/a /a

where the slope JAH? is the change in activation enthalpy for every base added to the
sequence, and the intercept AHi(O) is the activation enthalpy for a hypothetical sequence

of length zero. The activation entropies were treated in the same way where §AS* and
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Figure 6.11: Gibbs free energy of activation for association and dissociation determined
from the adenine ring mode as a function of T-jump final temperature (75).

124



Table 6.4: Global fit parameters compared to the linear fits from the Eyring analysis.

global fit | Eyring fit

SAHE (kdmol ' bp?) | -17.2 14.4
AHE(0) (kJ mol!) 76.9 74.4
SAH (kd mol™T bp™) 18.2 16.4
AH(0) (kJ mol™" ) 36.4 48.0

SASE (kJ mol™t K1 bp!) | -0.0559 | -0.0466
ASH0) (kI molT K1) | 0.153 | 0.135
5ASS (kd mol! K1 bp ) | 0.0512 | 0.0452
AS4(0) (kdmol't KT | 0.0022 | 0.0441

ASi(O) designate the corresponding slope and intercept respectively for the activation
entropies.

The resulting eight parameters, 6AH1, 5AH£,5AS§,5AS§, AH&(O), AHg(O), AS%(O),
and ASS,(O), used in the global fit are given in Table 6.4. These parameters were used
to fit the thermodynamic data in the form of the second SVD component from the FTIR
temperature ramps for sequences 5-C(AT),,G-3’ where n = 4-6 and the NN derived T
for all lengths. The melting curves were fit by taking the value of AGg determined from
Equations 6.2 and 6.3 and using that to determine fp using Equations 5.3 and 5.7. The
fit to the second SVD component according to Equation 5.16 used the upper and lower
baselines determined by the two-state thermodynamic fit described previously. As such
the baselines required no additional fit parameters in the global fit. The melting curves
for the two shortest sequences were not fit to avoid the limited low temperature baselines
skewing the results. The NN T, values were used because, while they were derived from
two-state fits to UV melting curves, they are independent of our two-state fit to the melting

curve, unlike our Ty, values, and thus provide an additional data set to fit. To fit the melting
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temperature we rearrange Equation 5.15 to obtain

AH! — AH}

fm = (AS}; . Asg) ~ RIn(Cy)

(6.5)

where AH&, AHﬁ, Asg, and ASé are determined from the relevant versions of Equation
6.4. In addition to fitting the thermodynamics, the observed rate constants from the ad-
enine ring mode for all lengths were also fit. The fit parameters calculated the observed
rate constant using the Eyring equation, Equation 6.1, and Equation 5.35 where [Meg] can
be determined from the thermodynamic value of fp determined from the global fit para-
meters as described above in conjunction with Equation 5.4 and the known value of C7.
The minimization algorithm independently scaled the residuals for the melting curve fits,
observed rates, and Ty, values to make each residual the same order of magnitude so all
three equally contribute to the fit.

Figure 6.12a contains the kinetic results from the global fit and the adenine ring mode
observed rate constants from experiment for comparison. Additionally, AGH, AHY, and
AS* from the global fit and the Eyring analysis are compared in Table 6.3. This demon-
strates that the global fit is able to reasonably replicate the experimental kinetics for these
sequences, in particular sequences with length greater than ten. Figure 6.12b shows that
the second SVD components are well fit by the global fit. The better agreement seen in
the kinetics relative to the thermodynamics in Figure 6.12 is most likely because the ad-
justable parameters used are more closely tied to the kinetics then the thermodynamics.
The values for the thermodynamic parameters determined by the Eyring analysis, global
fit, NN parameters, and two-state thermodynamic fit are all given in Table 6.1 and plotted
in Figure 6.2. The enthalpy and entropy appear to be in relatively good agreement for all
lengths, but they do appear to deviate more at longer lengths. However, because these
two values directly compensate for each other when determining the observed rate and

the fraction of intact base pairs, it is more informative to examine the Ty, and free energy,

126



8r a
Length
= ° 6
v ’r ° 180
X o 14
— br = Global Fit
§5- \
é >
c
<
1/340 1/330 1/320 1/310
Temperature™ (K)
‘I —
% b
0.8r Length
S -
Q0.6 > s
E .
Soa
a)
S 0.2
(Vp)]
g0 £.%00000000
(@]

10 20 30 40 50 6'007'0 80 90
Temperature ('C)

Figure 6.12: (a) Result of the global fit and the adenine ring mode observed rate from the
T-jump experiment. (b) The raw second SVD component (0) and the result of the global
fit (-) for the three longest sequences.

which are more closely related to the experimental observables. The Ty, and free energy
display the opposite trend, they are in relatively good agreement at longer lengths, but
begin to deviate significantly at lengths shorter than ten base pairs. The worse agree-
ment observed for the shorter sequences could be due to the fact that those second SVD
components were not included in the fit. However, because the agreement in the kinetics
also appears to be better for the longer sequences it seems more likely that there is a
fundamental explanation for the discrepancy observed in the short sequences. The short
sequences are reaching the minimum number of bases required to form a stable duplex

so it is possible that the assumption that the kinetic parameters are linear as a function
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of length may partially break down. This agrees with our earlier observation on the loss
of linearity seen in the two-state thermodynamic determined from FTIR in addition to pre-
viously mentioned discrepancies between the NN predictions and experimental results.?
This supports the possibility that the larger discrepancy at lower temperatures is the result
of a breakdown in the linearity of the kinetic and thermodynamic parameters. However,
overall the global fit is able to reproduce the experimental results with a reasonable ac-
curacy.

As mentioned previously, we use Eyring analysis as the primary interpretive tool out
of a desire to reproduce a more complete picture of the energy landscape of DNA hy-
bridization and dehybridization. In previous studies, the negative activation energy for
association obtained from the Arrhenius equation is typically cited as reflecting a non-
fundamental kinetic step in the form of the pre-equilibrium involved in the formation of the
critical nucleus.3:14 This focus on the enthalpic contribution neglects the significant en-
tropic contribution in the form of the large decrease in activation entropy of association,
as expected for assembling a critical nucleus from the free strands. The self-consistency
between the kinetic and thermodynamic results illustrates that applying an Eyring analysis
to the kinetics of DNA association and dissociation and describing the reaction barrier as
an activation free energy provides additional insight into the energetic driving forces of
the reaction which produces a robust and physically intuitive description of the process of
DNA association and dissociation. Additionally, the fact that the thermodynamic paramet-
ers can be determined from the kinetic parameters provides additional validation that the
two-state dissociation model is appropriate for sequences within this length regime and

for the present sequences.

6.4.5 Linear Scaling of Thermodynamics and Kinetics with Length

Now that the linear scaling of both the thermodynamic and kinetic parameters with

length has been established we can dive deeper into the meaning of these trends. First,
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Figure 6.13: The free energy of activation for dissociation and association plotted against
the thermodynamic free energy from the FTIR temperature ramp experiments both at 37
°C.

it is worth noting that AHg approaches zero for the shortest sequence, 5-C(AT),G-3’, of
length six which is roughly the lower bound for the formation of stable duplexes. Another
interesting note is that although the length-dependent trends observed in Figure 6.10 are
roughly linear, we note that the deviations of the linear fit at each length was reproducible
across multiple measurements. All results display a discontinuity between 5’-C(AT),G-3’
and 5’-C(AT)s5G-3’. While we do not have an explanation for this, it is interesting to note
that this length coincides with the 10.5 base pairs per of turn of the B-form DNA double
helix.

To further study the relationship between the thermodynamic and kinetic results AG%
and AGg were plotted against AG, shown in Figure 6.13. AG(i]I is strongly correlated to
the AGC (R2=0.986) in good agreement with existing literature. 16 The change in AGf1 with
respect to AGY is linear with a slope of about one demonstrating that AG@ scales directly
with AGY, and further demonstrates the strong ties between the thermodynamics and the
kinetics. 1631

We will now compare the activation enthalpies in Figure 6.10, the values of which are
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shown in Table 6.3, in addition to their linear fits as a function of length, the parameters
of which are shown in Table 6.4, with the activation energies from prior studies of small
oligo melting utilizing a capacitive discharge temperature-jump apparatus and monitoring
changes with UV spectroscopy. 10:14.15 While these studies were conducted with RNA oli-
gos the comparison is still informative none the less. The results from Pdrschke et al.14
and Craig et al.’®, which examined sequences containing only A:U base pairs, are com-
pared graphically with our results in Figure 6.14. They find that the dissociation activation
energy is positive and has a significant trend with length. Additionally, comparing their
trends in the activation energy of dissociation with respect to length with our trends in the
activation enthalpy of dissociation as a function of length demonstrates that the two are
in reasonable agreement. These studies also observe that the association activation en-
ergy is negative in agreement with our work. While our results appear to have a stronger
length dependence there is some ambiguity in the results and how they compare to our
work. 1415 Early studies looking at a variety of sequences including G:C base pairs have
found that the dissociation activation energy is also positive and weakly dependent on

length. 19 For the association activation energy they found it should be positive and not
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Figure 6.14: Results from studies of RNA sequences in the absence of G:C base pairs by
Craig et al.1® and Porschke et al. 14 alongside our results.
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significantly depend on length, in contrast with our results. 10 More recent results are mixed
with previous work from our group finding that G:C containing sequences have negative
activation energies23 while others have found positive activation energies. 16

When comparing the literature to our work there are two factors that could be causing
the discrepancy between Arrhenius and anti-Arrhenius results observed for the associ-
ation. It has been suggested that the presence of G:C base pairs results in a positive
activation energy due to their additional stability relative to A:T base pairs. 10 However,
evidence suggests that it is not purely a sequence effect. In this case, similar sequences
with identical GC content would have activation energies with the same sign, but compar-
ing our results with results in the literature demonstrates this is not the case. 10,23

Another explanation is that a temperature effect is responsible for the discrepancy
between the Arrhenius and anti-Arrhenius results. It has been demonstrated that the as-
sociation rate as a function of temperature follows a bell shaped curve with a maximum
rate below Tm.5 This means the temperature at which the rates are determined could
cause the discrepancy in the sign of the activation energy. Studies conducted at temper-
atures below the association rate maximum would be expected to have positive activation
energies while studies at temperatures above the maximum would be expected to have
negative activation energies with a potential turnover region in between. While this has
been experimentally observed, 32 inconsistency in the literature remains as to what the
sign of the activation energy should be, even when considering the temperature at which
the data was acquired relative to the T, of the sample. Of the previously mentioned stud-
ies that found positive activation energies for sequences containing G:C base pairs one
was conducted at temperatures between 3 °C and 45 °C depending on the sequence, but
the Ty, values for those sequences were also relatively low, between 1 °C and 25 °C, and in
all cases the temperatures examined for each sequence were roughly centered around Ty
10

or slightly above meaning they are all above the proposed association rate maximum.

The other study with G:C base pairs studied sequences with T, values between 42.6
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°C and 68 °C at temperatures between 6.6 °C and 30.6 °C so the vast majority of their
rates were measured below the maximum association rate. '® Previous work in our group
studied sequences with T, values of 47 °C and 57 °C at temperature ranges of 34-65
°C and 42-70 °C respectively, such that all temperatures were around 7,, and above the
maximum rate, and found negative activation energies.23 One study looking at sequences
without G:C base pairs that also found predominately negative activation energies looked
at sequences with Ty, values between 9 °C and 23.5 °C at temperatures between 8.6
°C and 28.6 °C such that in each case the temperatures for that sequence were roughly
centered around Ty, and were above the association rate maximum. 1® A different study
examined sequences of varying length without G:C base pairs at temperatures between
3.4 °C and 32.4 °C and found negative activation energies, however the Tr, values at their
experimental conditions are not listed making a direct comparison difficult. 14 This demon-
strates that while the overall results are inconclusive, they suggest that while temperature
likely plays a role it is likely not the only factor responsible for the discrepancy in the sign of
the activation energy. Future studies are needed to understand if the sign of the activation
energy depends on sequence and temperature and if so determine what that relationship
is.

To the extent that AH* and AS* are linear functions of length for these short self-
complementary oligos, our results indicate that these kinetic parameters are simply ad-
ditive in the number of A:T base pairs and could be used to predict the kinetics of similar
sequences with longer lengths. Such additive relationships underlie the highly successful
NN approach to predicting sequence and length dependent thermodynamic parameters.
To compare our kinetic parameters with the NN parameters, we note that for both AH?
and AS* the slopes of the fits to the association and dissociation data in Figure 6.10, are
roughly equal in magnitude with opposite signs (See Table 6.4). Adding two A:T base pairs
adds both a TA and AT dinucleotide to the sequence resulting in a £92 J mol™! K1 change

to the activation entropy and roughly +30 kJ mol to the activation enthalpy. These values
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are similar to the ASY and A HY for a single AT dinucleotide from the NN parameters, which

are 85 J mol”! K1 and 30 kJ mol” respectively.26 As a result adding two dinucleotides
to the overall sequence changes AH* and AS? for the association and the dissociation
reactions by half of what the NN parameters would predict. This suggests that the two
results are correlated, but not directly related. Understanding why these values are half
of what the NN parameters predict requires additional mechanistic insight into the associ-
ation and dissociation reactions which could be achieved by examining the results of this
work in the context of mechanistic models. We will further examine this relationship later
on in this chapter within the context of the nucleation-zipper mechanism.

The consistency between our results and the NN parameters suggests that the NN
parameters themselves may be useful for predicting melting and hybridization kinetics for
small oligos that follow two-state kinetics. 33 It has been previously noted that the NN para-
meters can be used to predict dissociation kinetics if the association rate is either known
or assumed by calculating the dissociation rate constant from the NN derived equilibrium
constant and the assumed association rate.33 However, it would be preferable to be able
to predict the kinetics without making such an assumption, which means an alternative set
of parameters, potentially a kinetic analog of the NN parameters based on dinucleotides,
iS necessary.

It has also been shown that it is possible to develop predictive models making no
assumptions about the association rate with sequence and temperature specificity for a
variety of sequences of a single Iength.34 However, this work was conducted on longer
sequences of a single length that were attached to a fluorophore or quenching strands that
were as large or larger than the probe and target strands which could impact the observed
kinetics. The linear relationships and resulting global fit parameters presented here offer
an alternative method for the prediction of both the association and dissociation rate con-
stants, in addition to the thermodynamic parameters, without requiring an assumed value

for the association rate constant or the attachment of probes or labels that could affect the
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kinetics. This suggests the possibility of predicting kinetics of arbitrary DNA sequences
using an equivalent set of NN parameters for kinetics, determined through label free ex-
perimental methods, that are able to account for the effect that temperature, sequence,
and length all have on the kinetics. Whether or not this is possible will depend on a num-
ber of assumptions, including that the melting dynamics of varying oligos follow predictably
similar pathways to their transition states and that the simple two-state kinetics of the form

investigated here remain valid for different sequences.

6.4.6 Application of Nucleation-Zipper Model

To connect the results presented here to the mechanism of DNA association and dis-
sociation they will be considered further within the context of the nucleation-zipper model.
The main focus of this analysis is to investigate the size of the critical nucleus. The critical
nucleus is defined as the minimum number of base pairs such that the partially formed
duplex is stable and the remaining base pairs rapidly zip up in a sequential and downhill
fashion that is orders of magnitude faster than the formation of the critical nucleus.

The expected change in the enthalpy associated with making or breaking base pair
dinucleotides is given by the NN parameters.26:32.33,35.36 | conjunction with the activa-
tion enthalpy for association and dissociation determined by the Eyring analysis the NN
parameters can be used to determine the number of bases in the critical nucleus for a
given sequence length. Based on the definition of the critical nucleus, and the fact that
the reaction proceeds downhill from that point, it must lie at or just on the dimer side of the
peak of a standard reaction free energy diagram. As a result the size of the critical nucleus
can be determined by finding the minimum number of base pairs such that the sum of the
enthalpies, given by the NN parameters, is equal to or greater than the activation enthalpy
of association. 33 For the dissociation, the number of base pairs that must be broken such
that the sum of the NN enthalpies is equal to or greater than the dissociation activation

enthalpy can be calculated and the number of intact base pairs at that point can be de-
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Figure 6.15: Activation enthalpies for association and dissociation from the adenine and
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length assuming different critical nucleus sizes determined using the nearest neighbor
parameters.

termined. The number of intact base pairs at that point will be one less than the number
of base pairs in the critical nucleus since it is the largest structure that will dissociate in a
downhill fashion back to the monomer state. This means it lies at, or just on the monomer
side of, the peak of a standard reaction free energy diagram.

The results of this analysis are shown in Figure 6.15 which contains the activation
enthalpies from both the association and dissociation plotted against the predicted activ-
ation enthalpy from the NN parameters for a given critical nucleus size at each length.
This analysis shows that the number of base pairs in the critical nucleus increases as the
overall length of the sequence increases.

It must be acknowledged that this trend cannot be solely attributed to length based
on the experimental evidence here since the temperature at which these sequences were
studied did increase with length, which can been nicely seen in °C in Figure 6.11 or K-

in Figure 6.7. The temperature difference is more significant at shorter lengths relative
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to longer lengths where there is more overlap between the sequences. Coarse-grained
molecular dynamics simulations have suggested that the critical nucleus should increase
in size with increasing temperature.3 However, for the purposes of this analysis we will
consider the changes observed here to be primarily due to length. The application of the
two-state analysis and Eyring analysis presumes an activation enthalpy that is independ-
ent of temperature, the validity of which is supported by the linearity in the Eyring plots.
As this analysis ties the number of bases in the critical nucleus directly to the activation
enthalpy for the sequence we will presume for the purposes of this analysis that the size
of the critical nucleus is relatively independent of temperature over the temperature range
studied here. This topic will be revisited in Chapter 7 utilizing the kinetic model which is
able to independently probe the effect of temperature and sequence length on the critical
nucleus.

With that clarified we can return to examining the size of the critical nucleus as a
function of sequence length and look to further understand the size increase. Figure 6.15
shows that for every two base pairs added to the overall sequence the critical nucleus
increases by a single base pair. This means that the number of base pairs that form
during the zippering portion of the reaction must also increase by one. We previously
observed that the trends in the entropy and enthalpy of activation as a function of length
are correlated to the NN parameters and the value is half of what is predicted by the NN
parameters. The additional mechanistic insight gained from the nucleation-zipper model
provides an explanation for the factor of two that separates the two values. Adding two
base pairs to the sequence results in the addition of two dinucleotides, yet the association
and dissociation activation energies only increase by the value of a single dinucleotide.
This demonstrates that, for the lengths examined in this study, increasing the overall se-
quence length by two base pairs increases the size of the critical nucleus and the zippering
regime each by a single base pair adding a single dinucleotide. This is in agreement with

the results in Figure 6.15. This explains why the activation enthalpies and entropies in our
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data increased by the amount predicted by the NN parameters for a single dinucleotide
when two base pairs were added to the sequence.

Combining the Eyring analysis with the mechanistic insight from the nucleation-zipper
model provides a much clearer picture of the energetic driving forces for DNA association
and dissociation. Looking at the increasing critical nucleus size with length suggests that
the observed decrease in the activation enthalpy of association is simply due to the exo-
thermic nature of forming a base pair and the fact that longer sequences have more bases
in the critical nucleus. The steeper slope for longer lengths in the Eyring plot can be ra-
tionalized by the fact that a larger critical nucleus requires more base pairs to be formed
and as a result the increased probability of breaking a base pair at higher temperature
will have a more significant impact. Additionally, larger critical nuclei will have a larger
entropic penalty due to additional bases losing the conformational freedom that they have
when unbound. This large negative entropic contribution that increases with length is a
significant factor in the association of DNA monomers and offsets the favorable enthalpy
of activation resulting in the positive free energy barrier to association. This demonstrates
that the barrier to overall DNA association is primarily entropic in nature.

Now that it has been demonstrated that the critical nucleus increases in size as the
overall sequence length increases it is worth discussing a possible explanation for this.
The stability of the critical nucleus is the result of the favorable enthalpic contribution over-
coming the unfavorable entropic component. It is reasonable to assume that after the first
G:C base pair all of the remaining A:T base pairs that can make up the critical nucleus
will all add similar enthalpic gains that are independent of both position in the sequence
and overall length. However, each base pair throughout the sequence is unlikely to have
a consistent entropic contribution. A large portion of the entropic loss occurs upon the
initial binding event meaning that the initial pairing has the largest entropy penalty. Con-
figurational entropy will also result in longer sequences having a larger entropic penalty

upon binding of the first base pair. This means that the initial base pairs have a larger en-

137



tropy cost at longer lengths than they do at shorter lengths, but the enthalpic benefit is the
same for each base pair. This provides an explanation for the increasing size of the critical
nucleus. The longer sequences see an increased entropic cost to forming the critical nuc-
leus but the enthalpic gain per base pair does not increase with increasing length. As a
result the critical nucleus must increase in size with increasing length so the favorable en-
thalpic contribution can overcome the entropic cost that increases with increasing length.
A similar conclusion in the context of the increasing activation energy of dissociation as a
function of increasing sequence length has been noted in the literature. 10

There are a few aspects of this discussion that are worth highlighting as they will be
revisited in the analysis conducted with the kinetic model. The first is in regards to the ar-
gument that the critical nucleus size increases with length because additional base pairs
are necessary to overcome the larger entropic penalty seen at longer lengths. This is very
similar to the argument made in the literature that size increases at higher temperatures
because the additional base pairs are needed to stabilize the critical nucleus due to the
destabilizing effect of higher temperatures.3 In reality both of these are likely contributing
to our experimental results which we will provide evidence for utilizing the kinetic model.
The second aspect is the assumptions that the association always initiates at a G:C base
pair when present10 and that all associations for a given sequence share the same en-
tropic cost. Utilizing the kinetic model we will revisit this to examine the validity of these
assumptions while also taking a closer look at the entropic penalty and its dependence
on the initiation position. This will demonstrate that it has an even greater impact on the

association mechanism than initially realized via the experimental data.

6.4.7 Free Energy Surfaces

With the results of the activation free energies we can also investigate the length-
dependence of the free energy landscapes for DNA hybridization. These are shown in

Figure 6.16, using the monomer state as the reference state. From the reference state
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Figure 6.16: Free energy surfaces for each length at 10 °C (a), 40 °C (b), and 70 °C (c)
using AG* values from the Eyring analysis.

the AGg from the Eyring analysis provides the energy difference between the monomer
state and the transition state and the AG({] from the Eyring analysis provides the energy dif-
ference between the transition state and the duplex state. Additional free energy surfaces
illustrating the temperature dependence are plotted for sequences 5-C(AT),G-3" and 5'-
C(AT)gG-3’ in Figures 6.17a and 6.17b, respectively. Figure 6.18 complements the free
energy diagrams by showing plots of the activation free energy for both the association
and dissociation as a function of length at five different temperatures. This alternative
representation demonstrates the trends in AG% and Ang| more qualitatively and helps to
clarify the interpretation of the free energy diagrams.

In both Figure 6.16 and Figure 6.17 the free energy of the transition state reports on
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Figure 6.17: Free energy surfaces for 5’-CATATG-3’ (a) and 5’-CATATATATATATG-3’ (b)
at 10 °C, 25 °C, 40 °C, 55 °C, and 70 °C.

AGg, because the free energy of the monomer state is referenced at zero. In Figure 6.16a
we observe that at low temperature, where association is favored, AGg decreases as
length increases. In Figure 6.16¢ we observe that at high temperature, where dissociation
is favored, the trend is flipped. These two trends can also be observed in Figure 6.18.
At low temperature the dimer free energy decreases with increasing length while at high
temperature it increases with length. However, the trend in the AG@ as a function of length
does not change and increases with increasing length for all temperatures shown in Figure
6.16. Even though the longest sequence has the lowest energy transition state in Figure
6.16a, it still has the largest AGE. Even at temperatures above those shown here the AG@
does not definitively flip its trend with length but rather shows no significant change with
length as seen in Figure 6.18.

Looking at Figure 6.17 and Figure 6.18 we will now consider the trends in the free en-

ergy as a function of temperature for sequences 5’-C(AT),G-3" and 5’-C(AT)gG-3’. We first
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Figure 6.18: Association and dissociation activation free energies determined from the
adenine ring mode plotted as a function of length at 10 °C, 30 °C, 50 °C, 70 °C, and 90
°C.

observe that AGg increases roughly linearly with temperature for each length. Additionally,
the transition states are more closely spaced for 5’-C(AT),G-3’ relative to 5’-C(AT)gG-3’,
reflecting that the variation of AGg with temperature for fixed length increases with length,
as expected from the linear increase of ASé with temperature. Similarly, AGEj decreases
with increasing temperature for all length, and we observe a larger temperature depend-
ence at larger length due to the linear increase of AS(:{[II with increasing length. This likely
reflects the increased conformational freedom that the longer monomers have relative to
the shorter monomers. This opposite trend in AG% and AGéI results in the larger spacing

between the dimer free energies at different temperatures observed for longer lengths.

6.5 Conclusion

In this work we have examined the thermodynamics and kinetics of a series of DNA
oligos of lengths ranging from 6 to 14 base pairs. Eyring analysis utilizing a two-state

assumption provides additional insight into the energetic driving forces behind the associ-
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ation and dissociation of DNA through examining the entropic and enthalpic components to
the activation free energy. Eyring analysis demonstrated trends in the activation enthalpy
and entropy that are strongly correlated with NN thermodynamic parameters providing a
direct link between the thermodynamics and the kinetics. This suggests a kinetic analog
of the NN parameters exists that could be used to accurately predict kinetics. However,
it is clear that even at these short lengths the reaction may be approaching the limits of
the two-state assumption. Further research is needed to study how the kinetics at longer
lengths are affected by non-two-state behavior and potentially changing association and
dissociation mechanisms. Changes to the dynamics could affect the kinetics in such a way
that the predictive power of the NN model, or our global fit parameters, may decrease.

In the work presented here we restricted our analysis to the simplest kinetic model
which provides insight into the kinetics of the system and allows comparisons to be made
to the literature, where this model is widely prevalent. However, these results open up the
opportunity to test them against a wide range of models, such as the kinetic zipper model
or Zimm-Bragg model, which we plan in follow up work. Such comparisons will provide
further insight and allow additional predictions about the length-dependent kinetics and
thermodynamics. Analyzing this data in conjunction with these mechanistic models, with
lattice models, or with molecular dynamics simulations should provide additional insight
into the dynamics of hybridization and the nature of the transition state in association and

dissociation reactions.
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CHAPTER 7

THE MECHANISM AND DYNAMICS OF DNA HYBRIDIZATION AND
DEHYBRIDIZATION ELUCIDATED BY KINETIC MONTE CARLO
SIMULATIONS

7.1 Introduction

The analysis of the equilibrium temperature ramp and transient temperature-jump
data provides a great window into the kinetics and underlying energetic driving forces
of DNA hybridization and dehybridization. However, the experimental results provide an
incomplete picture of the process since deeper mechanistic information is difficult to ob-
tain through experiments alone. Additionally, knowing the rates, or kinetics, provides little
insight into the complex mechanistic processes, or dynamics, that occur during DNA as-
sociation and dissociation. Our goal was to develop a model that can extract dynamic and
mechanistic insight from our data in a way that is accessible to experimentally focused
researchers both in terms of the model's complexity and computational expense. This
model is in no way intended as a replacement for more extensive computational methods
such as molecular dynamics (MD) simulations. Rather, by comparing our model to exist-
ing models in the literature, we hope to demonstrate that our model is in agreement with
respect to the dynamical and mechanistic information that we seek without the additional
complexity and computational expense.

A natural starting point for the development of this model is the thermodynamic lattice
model that was previously developed by the group.1v2 The lattice model naturally com-
pliments the experimental results by examining all possible configurations the oligos can
adopt and providing insights into the thermodynamics of the system. While the lattice
model provides additional insight, there are limits to the conclusions that can be drawn

from an equilibrium thermodynamic model. This was the primary motivator for developing
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a kinetic model. The thermodynamic model provides the probability of occupying each
configuration at equilibrium, but that does not necessarily correlate to the states the reac-
tion is likely to pass through during a hybridization or dehybridization event. The probability
of occupying a given state during a single reaction event is not simply determined by the
equilibrium free energy for that state, but also depends on the probability of occupying of
each of the other states along the possible pathways that lead there. The fact that we want
to explore not just the distribution of states, but how the system actually moves through
the states leads one directly to the development of a kinetic model.

A kinetic model utilizing Markov state Monte Carlo methods was a natural extension of
the thermodynamic lattice model to allow us to further investigate these mechanistic ques-
tions. The lattice model provides the kinetic model’s state space and the thermodynamic
values utilized in the calculation of the reaction rates. Considering the prevalence of the
nucleation-zipper mechanism, where base pairs are added sequentially, it made sense
to create a model that builds trajectories by stepping through configurations by adding or
removing a single base pair. This makes it an optimal system to study using Markov state
Monte Carlo methods.

The model, which is introduced and analyzed in this chapter, was applied to a vari-
ety of DNA sequences of differing lengths and base pair composition to begin to probe
different variables that impact the dynamics and mechanism of DNA hybridization and de-
hybridization. The main body of experimental results the model is applied to is the length
series that was discussed in Chapter 6 and we will continue to refer to these sequences
as the length series or CG-ends. This was the most robust data set available and was
both the main driving force behind the development of the model in addition to the primary
point of comparison for the model’s development. Additional data sets are analyzed as
well. The sequence 5’-ATATATATAT-3’, which we will refer to as AT-all since it is the only
sequence studied here that contains only A:T base pairs. This data set will be used spar-

ingly as there are only two temperature points that were collected. Another sequence,
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5-ATATGCATAT-3’, will be referred to as GC-core. The purpose of these two sequences
was twofold: first, to test how well the model matches experimental results when the num-
ber and location of G:C base pairs is altered and second, to better understand how the
mechanism of DNA hybridization is affected by changing the sequence composition to a
greater degree than was possible without a kinetic model.

Examining this varied set of sequences provides the opportunity to probe numer-
ous different factors that impact the dynamics and mechanism of DNA hybridization and
dehybridization. This will also provide insight into the models ability to replicate the differ-
ent physical processes that occur, particularly the model’s ability to replicate experiment-
ally observed non-Arrhenius behavior and early time dynamics. Better understanding the
strengths and limitations of the model also provides ideas for future changes to strengthen
and improve the model pushing it forward towards new systems of interest beyond these
initial investigations.

With regards to probing the dynamics and mechanism of DNA hybridization and de-
hybridization there is an important limitation that needs to be discussed. The established
rules for the model are dictated by the canonical nucleation-zipper model. Since particular
mechanistic rules are built into the construction of the model negative results can prove
that the mechanism does not represent the physical system but positive results do not
definitively prove that the mechanism represents the physical system. This is a result of
other mechanistic pathways not being allowed and explicitly tested by the model presented
here.

However, more complicated and computationally expensive methods do not have the
same restrictions with regards to the possible mechanistic pathways that simulations can
follow. Coarse-grained MD simulations do not have any such limitations and have been
commonly used to study the dynamics and kinetics of DNA oligos. The OxDNA model
and 3SPN.2 model, are two such models that have been utilized to study DNA oligos. 32

Ouldridge et al. used the OxDNA model to examine sequences of 8 and 14 base
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pairs. They found that the initial contact between two single strands is stabilized by two to
three intact base pairs which is then followed by the remaining base pairs zipping up. They
refer to this stabilized configuration as the effective transition state which is enthalpically
stabilized by base pairing. At higher temperatures the typical number of base pairs in
the transition state increases as more base pairing is required to make duplex formation
probable. This increases the activation enthalpy with increasing temperature resulting in
non-Arrhenius behavior. They found two reasons for the temperature dependence: at
higher temperatures the state with two base pairs itself becomes less stable and new
bonds are less likely to form. New bonds are less likely to form because: strands become
more unstructured and forming new base pairs generates a smaller free energy gain.
Another interesting point is that a free energy diagram built utilizing the OxDNA model
has a maximum at a single base pair, in agreement with the lattice model that the kinetic
model presented here is built off of, suggesting that the underlying thermodynamics for
the two models are in agreement.4

The de Pablo group has used their 3SPN.2 model to publish a number of studies
of DNA oligos, the findings of three such studies will be highlighted here.’—9 Utilizing
transition path sampling and transition state ensemble analysis they found that DNA re-
hybridization is prompted by a distinct nucleation event involving approximately four base
pairs.’-8 The distribution of the transition state ensemble was found to be broader for re-
petitive sequences than it was for random sequences.7=8 However, the distributions for a
randomized sequence of length 15 and a repetitive sequence of length 14 both had a clear
peak in the distribution corresponding to configurations with a size that was about 30%
of the overall sequence Iength.7’8 Examining sequences with lengths between 10 and
30 base pairs they found that repetitive sequences often observed either sliding mechan-
isms’-® or more complex base pair displacement processes.9 Homogeneous sequences
were also found to commonly follow sliding mechanisms.® Random or heterogeneous se-

quences were most likely to follow the canonical nucleation-zipper mechanism.”:2 Even
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in the case where a mechanism other than the canonical nucleation-zipper mechanism
occurs a distinct nucleation event still exists.”:® There are two additional findings relev-
ant to the work presented here. For the short oligos studied, ranging from 10 to 30 base
pairs, middle to middle nucleation events represented more than 80% of all events.? Ad-
ditionally, as was the case for the OxDNA model,* the free energy diagrams generated
by the 3SPN.2 model are also very similar to those generated from the lattice model used
in the development of our kinetic model, suggesting that the underlying thermodynamics
are similar.8

In this chapter we will first describe the application of Markov state Monte Carlo meth-
ods to DNA association and dissociation reactions. This will be followed by evaluating the
ability of the model to replicate the experimental data while also examining trends in the
model’s parameters to gain some insight into the physical system and the model itself. Fi-
nally, we will discuss the insights gained from analyzing the kinetic model with a particular
interest in the mechanism by which the sequences associate and dissociate. Comparison
with the experimental results provides more detailed mechanistic insight than the experi-
ments can alone since the model distinguishes individual base pairs while the experiments
only distinguish G:C and A:T base pairs. The model will also be considered against res-
ults in the literature that utilize other methods, particularly MD simulations, to establish the
validity of the model and demonstrate how, with regards to the relevant dynamical and
mechanistic information, our kinetic model provides many of the same insights but with
significantly less complexity. The agreement between our model and the coarse-grained
MD simulations discussed previously not only provides significant support for the findings
of our model but also mitigates concerns over the interpretation of our findings that result

from the mechanistic limitations of our model due to its construction.
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7.2 Model Construction

7.2.1 Reaction Scheme

Understanding the construction of the kinetic model starts with understanding the
state space and the allowed moves between states. The state space is made up of all
possible configurations where all intact base pairs are in-register, meaning they are aligned
properly for the formation of the fully formed dimer, and that these intact base pairs form a
continuous stretch. Configurations that contain bubbles or out-of-register base pairs are
excluded from the model and cannot be occupied. When moving between states only one
base pair can form or break during a single step. This means the number of intact base
pairs, Ngp, must change with every move; moves between configurations with the same
Npgp are not allowed as that would require both a base pair to form and a base pair to
break.

With the exception of the first base pair to form, which can occur anywhere, all sub-
sequent base pair formation must occur adjacent to an already formed base pair. Any
move that creates the first base pair between two monomers will be referred to as a nuc-
leation step and any move that creates a base pair next to an already formed base pair
will be referred to as a propagation step. Similarly, the only base pairs that can break are
the two on the end of the continuous stretch of intact base pairs.

One final aspect about the states that are explored in this kinetic model is that the
different possible configurations of the unpaired bases, either frayed ends or monomers,
are not explicitly considered. They are however explicitly considered in the lattice model
meaning that their energetics are built into the kinetic model. In doing so the model essen-
tially averages over all of the different configurations that the unpaired bases can adopt for
a given configuration of intact base pairs. This can be thought of as the model sampling
all of the free chain configurations very quickly relative to the making and breaking of base

pairs. Now that the state space and rules for moving between states have been outlined
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Figure 7.1: Reaction scheme for the kinetic model for the example sequence 5’-CATATG-
3’. The boxes below each state show each possible configuration, with each row repres-
enting a different possible configuration. A black box represents an intact base pair and a
white box represents a broken base pair.

we can look at the full reaction scheme. Figure 7.1 contains the full reaction scheme for
the six base pair CG-ends sequence. A short sequence was selected for display to high-
light the different allowed configurations for each given Ngp. This provides the ability to
both highlight what configurations are allowed and to visualize how the model is allowed
to move through the system based on the rules provided previously. The general scheme
can then be determined simply by extrapolating out for a sequence of any length. While
the parameters and rate calculations will be outlined in more detail shortly it is worth high-
lighting here that the nucleation step is the formation of D4 and has the rate 5ks. The
remaining steps are the propagation steps and have a rate of o;k. The nucleation step
and a series of sequential propagation steps correspond to the two distinct physical pro-
cesses of nucleation and zippering respectively. The reverse rates are calculated from
the ratio of the forward and reverse rates which will be described in the following sections.
In the reverse rates R and 7', are the ideal gas constant and the temperature at which the
system is evolving. The remaining parameters shown in Figure 7.1 are then differentiated
by whether they are a thermodynamic parameter or a kinetic parameter and are described

in the following sections.
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7.2.2 Thermodynamic Parameters

The thermodynamic parameter, AG, is calculated from the coarse-grained lattice
model, a full description of which has been published elsewhere 2 and only a brief over-
view is included here. At the broadest level the concentration effects associated with the
gain in translational entropy that occurs upon the dissociation of the dimer are simulated
on a 3D lattice where each site is the size of an individual monomer. Moving a level down,
the configurational entropy for each sequence with a minimum of one intact base pair
is determined by self-avoiding random walks of beaded polymer chains on a 3D lattice of
nucleotide sized sites. At the smallest level the enthalpy of a particular configuration is de-
termined utilizing the NN parameters. ! The NN parameters used by the lattice model are
the "unified” oligonucleotide NN parameters determined by SantalLucia. 10 Finally, there is
a single free parameter that is used to account for excess entropy per base pair and its
value is selected to ensure that the T, determined by the lattice model matches the value
predicted by the NN model. All other parameters are fixed. To determine AG for a given
move we first must calculate the free energy of a given configuration (§) the equation for
which is

G5 = —RTIn (p;) (7.1)

where I is the ideal gas constant and p; is the population fraction of configuration 4. For
the monomer state p; is the fraction of all strands without any intact base pairs and is taken
directly from the lattice model. The remaining states are all the configurations with at least
one intact base pair, which are referred to as a duplex configurations and are denoted by
the subscript D. Note that this language can get confusing since in the case of the two-
state assumption a dimer refers specifically to the fully formed duplex since that and the
monomer state are the only two states that exist. To alleviate confusion when discussing
the model we will refer the state where all base pairs are intact as the fully formed dimer

state or the fully formed duplex state. To determine the population fraction of the dimer
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states we begin with the partition function

9Dint = > WD,(seﬂED"s (7.2)
5

where Wp s is the degeneracy for a given duplex configuration § and Ep s is the sum
of the nearest neighbor dinucleotide enthalpies across the intact dinucleotide subunits of
configuration 6. Both of these values are determined by the coarse-grained lattice model.
From here the population fraction for each configuration with at least one intact base pair
is calculated from

Wo 56/6ED,6

Ps = Oext (7.3)

9pint
where Ogy¢ is the fraction of all strands with at least one intact base pair. This can then be

used in Equation 7.1 to determine the free energy for the configuration.

7.2.3 Kinetic Parameters

In addition to the thermodynamic parameters taken from the coarse-grained lattice
model, additional kinetic parameters are utilized in the calculation of the transition rates
for the model. These parameters are ks, 5, and o;. There is also an additional kinetic
parameter « that is used in the calculation of o;. Two of these parameters, k; and «, are fit
parameters, whereas [ and o; are calculated from these fit parameters and other known
quantities.

The first parameter is k¢, which has units of s™!, and can be thought of as the “speed
limit” for forming a base pair next to an already formed base pair or as the maximum zipping
rate. 1114 We will demonstrate shortly that the rate of formation for a single base pair
increases as the number of previously intact base pairs increases until it asymptotically
approaches ks. As a result, ks can be thought of as the rate of formation for base pairs at
the end of a long sequence of continuous base pairs.

The second parameter, 3, is unitless and is used to calculate the rate for nucleation
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steps. " The parameter itself is the ratio between the rate for a nucleation step and the
maximum zipping rate, k¢. It is important to note that nucleation and zipping are two phys-
ically distinct processes. As a result the g parameter does not directly reflect a physical
process itself. However, there are a number of physical processes, such as the diffusive
motion of the monomers, that impact the value of 5. Since bubble states are not allowed, 5
only factors into the nucleation step and attenuates the rate at which two monomers come
together and form the first base pair. To determine the value of 5 we begin by assuming
that the formation of the first base pair can be broken down into two individual steps, the
single strands diffusing into the proper orientation and the formation of the base pair once
the two monomers are in proximity and properly aligned. With the assumption that these
two processes are sequential we can write the timescale for the formation of the first base
pair in the sequence as

TN = TD + Tf (74)

Where 7, is the timescale for the two monomers diffusing into proper orientation and ¢ IS
the timescale for the formation of the first base pair. Due to the assumption that the two
base pairs are in proximity to each other and aligned after the first step the formation of
the base pair can be presumed to occur at roughly the “speed limit” for base pair formation
which is k¢, thus 7 = klf It is worth noting here that k¢ is treated as a fit parameter when
fitting to the experimental data, while the rest of the terms used to calculate 5 are either
known physical quantities or are taken from the thermodynamic lattice model. In the kinetic
model the overall rate of formation for the first base pair, which we will denote as ky;, has
been defined as Sks. Utilizing this and Equation 7.4 we can derive the following expression
for g
f

b= o+ 7 (7.5)

All that remains is to develop an expression for 7.

To approximate T, we will utilize the diffusion limited association rate for two identical
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spheres with an encounter radius equal to the diameter of the sphere in conjunction with
the Einstein relation and Stokes law. ® The equation for this rate, in units of %ﬁ_s is given

by
_ 8kgT'Na

i (7.6)

kp

where kg is the Boltzmann constant, 7' is temperature in kelvin, Na is Avogadro’s number
and 7 is the viscosity of the solution. To then turn this bimolecular association rate into
a timescale requires multiplying through by [M], which is the monomer concentration at
the initial temperature prior to the arrival of the temperature-jump pulse, and taking the

inverse to get

_ . 3n
D T kg TNAM] (7.7)
Plugging this expression into Equation 7.5 produces

_ 8kgTNaAM|
 3nks + 8kgT Na[M]

(7.8)

Calculating  in this way also incorporates the expected concentration dependence for
the association of self-complementary DNA single strands.

An important note with respect to g is that in some contexts of the literature it is defined
by the ¢; parameters.16 Or another parameter, often referred to as 3 apparent, 3app, or
sometimes still referred to as (3, is defined that incorporates a 3 value as it is defined here
in addition to the o; parameters to create a single overall attenuation parameter. 11.17.18
In some cases this overall attenuation parameter is also referred to as o. 19 |n other cases
instead of differentiating $ and ¢ all of the attenuation parameters are referred to as j; 12 or
0 13 Thus, itis important to carefully check the definition of the parameters in the literature
due to this inconsistency.

The third parameter ¢;, the values of which are contained in the interval (0, 1], atten-

uates the rate of formation for all base pairs that form next to an existing base pair with
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the attenuation decreasing as more base pairs are formed. " The subscript 7 in this case
denotes the Ngp in the initial state, with respect to the forward, or association, direction,
for the move that utilizes that specific o; parameter. To put this another way, regardless
of if the specific move that is occurring is forming or breaking a base pair, the subscript i
denotes the Ngp in the state with fewer intact base pairs. When forming a base pair this
is the initial state, when dissociating a base pair it is the final state. The reason for this can
be visualized by looking at Figure 7.1. The decreasing attenuation with increasing Ngp is
in line with the conceptual understanding of ks being the rate of formation for a base pair
at the end of a long series of intact base pairs. A more complete discussion of the factors
that contribute to the value of ¢; as a function of Ngp is included later on in this chapter.
For the time being we will simply consider it to be primarily due to the additional stabil-
ity that is associated with the formation of the helical structure that occurs when multiple
consecutive intact base pairs exist. !

The definition of ¢; requires that the values fall between zero and one and that it starts
small, monotonically increases, and asymptotically approaches a value of one. It is worth
noting that within the context of this model the value of o, is the same for all moves with that
i value, regardless of the location of the base pairs within the sequence. To avoid fitting
an individual ¢; value for each value of i, which would immediately result in concerns of
overfitting, we adopted an alternative description based off a single fit parameter. Based

on our definition, and the literature definitions, ! of o; we require that

lim o; = 1 (7.9)

1—00

and that o; be monotonically increasing with increasing i. The hyperbolic tangent function

fits both of these requirements and is a reasonable fit to our intuitive understanding of the
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functional form of ¢, resulting in ¢; being defined as

ALy

o; = tanh (7.10)

1—[17i

where « is a fit parameter in the model that determines how quickly o; approaches a value
Nj

of one and z; is the normalized value of Ngp, (%) where N is the total number of base

pairs in the sequence, for the configuration in the move with fewer intact base pairs. The

normalized value is used to allow the same function to be used for all sequence lengths.

7.2.4 Calculation of Rate Constants and Assumptions Utilized

This section more clearly defines the origin of the reverse rate and discusses the major
assumptions that are made when calculating both the forward and reverse rates for the
model. We begin with the assumption that k¢ is independent of temperature and base pair
composition for a given sequence. In other words the value of ks is constant regardless
of what temperature the system is evolving at and whether a G:C or A:T base pair is
forming. The sequence component of this assumption is commonly made for nucleation-

11,13,14,16,19-21

zipper models since A:T and G:C base pairs are sterically very similar and

k¢ should not significantly depend on stacking interactions. 2

The assumption that k¢ is independent of temperature is more contentious in the lit-
erature. Models exist that do not include a temperature dependence,13 while others do
by incorporating an activation energy or directly fitting each individual temperature; how-
ever, among these models the results are inconclusive. It has been proposed that the
activation barrier is small and positive, generally in the range of 1-5 kcal mol-1.14.16,19,22
This leads to the proposal that the elementary formation of a single base pair adjacent to
an intact base pair is diffusion-controlled. 14:16.19 However, caution should be exercised

due to studies in the literature examining significantly longer sequences,19 or fitting as

few as two temperatures and acknowledging that under certain experimental conditions
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the correct rate as a function of temperature was obtained using an activation energy of
zero. 14 Other experimental results, examining sequences with lengths of 8-14 base pairs,
demonstrate that ks varies insignificantly and inconsistently with temperature for a given
chain length. 11

The conceptual understanding of ks as the "speed limit” for the formation of a single
base pair next to an already formed base pair is consistent with the idea that ; is the rate
for a diffusion-controlled reaction. While a diffusion-controlled reaction would be expected
to contain a temperature dependence the resulting barrier is very small, consistent with
the 1-5 kcal mol™! previously mentioned. 14:16.19.22 |n the work presented here each se-
quence was studied over a relatively small temperature range with the lowest and highest
temperatures being separated by only 10-15 K. Over such a minimal temperature range
the change in the solvent viscosity is also relatively minimal. Considering both of these
factors within the context of the experimental work that is examined here the impact of the
temperature dependence of k¢ is considered to be negligible.

Considering the inconsistencies in the literature, and the relative insignificance of a
very small activation energy over the temperature range studied here, as a first approxima-
tion ks is assumed to be independent of temperature. This was done in an effort to simplify
the model and reduce the number of parameters to alleviate concerns of overfitting, which
can easily occur due to the significant number of parameters incorporated into some ver-
sions of the nucleation-zipper model. 11:16 Additionally, this allows fitting the model to all
temperatures for a given sequence with a single parameter set, rather than fitting a dis-
tinct parameter set to each temperature. It is advantageous to do this without needing
additional parameters to capture a temperature dependence that is expected to be very
small or nonexistent. As a result, fitting two parameters to all temperatures significantly
reduces the risk of overfitting.

We will now clarify the calculation of the forward and reverse rates for the model, the

rates for forming or breaking a single base pair, before discussing the additional assump-
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tions that they require. The only distinguishing factor between different forward rates is the
number of previously intact base pairs. As seen in Figure 7.1 the nucleation step proceeds
with a rate of gk; and the propagation steps proceed with a rate of o;k;. The subscript :
denotes the Ngp prior to the move, such that for the formation of the second base pair the
rate is given by o1ks. There is no o; value associated with the formation of the first base
pairso1l <i < N — 1 where op_1 is the ¢ value associated with the formation of the final
base pair.

With the forward rates defined we now look to the calculation of the reverse rates.
The forward and reverse rates for moving between any two states, where such a move is
allowed, are related by

s= M T (7.11)

where s denotes the equilibrium constant following the notation used by many in the liter-
ature, 11:19.23 . is the forward rate, and k_, is the reverse rate. The value of s is defined
as an association equilibrium constant where the forward direction is the formation of a
base pair and this convention is used throughout this work. It is important to know that s
is unitless. As a result k_; will carry the same units as k;. Since both 5 and o are unitless,
k; and k_; have the same units as k¢ which are s1, which is necessary for the transition

rate matrix. As a result the reverse rate can be solved by simple rearrangement yielding
k_;=— (7.12)

For both the nucleation and propagation type moves, as a result of utilizing the free energy
value of each configuration, the reverse rate constants do contain sequence specificity as
mentioned previously. This is because the AG value depends on the specific configura-
tions of the initial and final states for a given move. Equation 7.12 is then used to calculate
the reverse rates seen in the reaction scheme shown in Figure 7.1.

It is worth acknowledging here that the equilibrium constant s only factors into the re-
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verse rate meaning this rate carries all of the effect due to the specific identities of the initial
and final configurations defined by that particular s. This results in all base pair specificity
being carried in the reverse rates, an assumption widely utilized in kinetic Monte Carlo
models utilized to study DNA kinetics.20-22:24-26 An explanation for this is that outside
of any diffusion contribution, the formation of a base pair is an elementary reaction. This
elementary reaction is predominately driven by steric and structural considerations which
would not be expected to carry any significant base pair specificity. With respect to the dif-
fusion contribution, it is incorporated for nucleation steps and its omission in propagation
steps was discussed previously with respect to k;.

These rates are inserted into the transition rate matrix L as the indices /;;. If [;; is
a forward rate it is calculated from the definition based on whether it is a nucleation or
a propagation step and then [;; is calculated according to Equation 7.12. There is no
correlation between the values of the indices i and j and which state has more intact base
pairs such thatif ; > j the given element /;; could be either a forward or a backward move.

One final assumption that needs to be addressed is that DNA hybridization and de-
hybridization can be broken down into individual sequential steps making or breaking a
single base pair at a time. To consider this we first note that according to the Chapman-
Kolmogorov equation, given by Equation 3.4, considering a transition between two con-
figurations with the same Ngp as two sequential transitions and summing over all inter-
mediates is the same thing as considering it as one transition over a longer period of time.
It is true that making and breaking a base pair could happen simultaneously, particularly
the case where a base pair is being simultaneously made or broken on each end of a
consecutive stretch of intact base pairs. However, the assumption that association and

dissociation can be broken down into rapid individual discrete steps is a hallmark of many

models used to study DNA. 11-14.16,20-22,27
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7.2.5 Running Trajectories

The Gillespie algorithm code that generates trajectories is written in C and utilizes
inputs both generated by the user and from an accompanying Matlab script. The transition
rate matrix, L, outlined in the previous section is used by the Gillespie algorithm to generate
the trajectories. The steps in the algorithm and the method utilized to select the state that
the trajectory moves to and the time step for that move, also known as the exit time,
are detailed in Section 3.3. For association (dissociation) trajectories the system starts
in the monomer (fully formed dimer) state and runs until reaching the fully formed dimer
(monomer) state. In this context the fully formed dimer state refers to the state where every
base pair is bound to its native pair. Upon reaching the final state it terminates and the first
passage time, time spent in each state, and the states traversed during the barrier crossing
are saved. The first passage time in this context is the entire length of the simulation from
when the trajectory initiates in the initial state at time zero until it reaches the final state.
Logging the states occupied during the barrier crossing event is an important componentin
the analysis of the model. The barrier crossing for the association (dissociation) is defined
as the portion of the trajectory starting with the last time the trajectory was in the monomer
(fully formed dimer) state until it reaches the fully formed dimer (monomer) state. If desired
the initial and final states can be changed to allow the model to be initiated or terminated
at an intermediate state where some, but not all, base pairs are intact.

Once the final parameters were determined for the model a large number of traject-
ories were run to ensure proper statistics. For the GC-core sequence 5,000 trajectories
were run for both the association and dissociation trajectories while for all other sequences
100,000 trajectories were run. These large trajectory sets and the transition rate matrices

used to generate them, are the results that are analyzed in this chapter.
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7.2.6 Optimization of Parameters to Experiment

To determine the fit parameters a and k¢, the model was parameterized against our
experimental temperature-jump results for sequences of varying base pair composition
and length that have been published previously.28’29 The parameters for each sequence
were fit independently to the observed rate constants from experiment with five or six
temperatures included in the fit for each sequence. To compare the simulations to the
experimental results a set of association and dissociation trajectories were run for a given
set of parameters to determine the mean first passage time for both. The association rate
ka was then calculated from

1

ka = Wi (7.13)

where [M] is the monomer concentration at the initial temperature prior to the temperature-
jump pulse, and 7, is the mean first passage time for association from the model. In the
case of the CG-ends sequence the monomer concentration was drawn from the coarse-
grained lattice model while for GC-core and AT-all it was drawn from experimental results.
However, this distinction is minor as the coarse-grained model has been shown to be in
excellent agreement with the experimental results. The dissociation rate, k4, was determ-
ined by

kg = — (7.14)
d

where 7 is the mean first passage time for dissociation from the model. The association
and dissociation rates were used to calculate the observed rate constant according to a
standard two-state kinetic analysis making the assumption that these rates are in response
to a weak perturbation, which our temperature jump is assumed to be. 12830 Under this

assumption the observed rate constant is given by

kobs = kg + 4[M]ka (7.15)
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where kqpg is the same observed rate constant as the one determined from the exper-
imental data allowing the direct comparison of the two values. The parameters were
optimized utilizing a pattern search algorithm that minimized the sum of the squared re-
siduals at each temperature. It is worth noting that these equations are correct for the
self-complimentary sequences analyzed here and would need to be altered for the case
of non-self-complimentary sequences. The necessary equations for both thermodynamic
and kinetic analysis of a non-self-complimentary two-state system are provided in Ap-
pendix 5A.

The number of trajectory sets run during each iteration of the fitting algorithm is twice
the number of fit parameters, so in the case of fitting ks and « four trajectory sets must
be run each iteration. With thousands of iterations required to optimize the parameters
against the experimental results running a large trajectory set each time is not computa-
tionally feasible. For this reason the trajectory sets run during the course of the fitting are
relatively small, on the order of hundreds of trajectories. Initially a number of optimiza-
tion routines were run for each sequence with randomized initial parameters until a more
concise range in which the parameters were converging was determined. The best para-
meters from these initial fits were selected and used as the initial parameters for additional
optimization routines, using the same method, to determine the final parameters. Once
these parameters were determined a full trajectory set was run with these parameters to
ensure that the values compared to experiment during the fit were representative of the
results of the full trajectory set. This ensured that there was no error due to the small

trajectory sets used during the optimization routines.
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7.3 Results

7.3.1 Final Parameters and Fit Quality

The parameters returned by the fitting algorithm are given in Table 7.1. The result-
ing observed rate constants, calculated from the mean first passage time for association
and dissociation using the two-state analysis, are compared to those determined by ex-
periment in Figure 7.2 for all sequences except AT-all. AT-all was excluded since only
two temperatures are available which makes it a poor metric of fit quality relative to the
other sequences. The model is generally in good agreement with the experimental data,
particularly at higher temperatures.

Before discussing the fit quality, and the resulting parameters, it is important to dis-
cuss the robustness of the fit and the level of confidence in the parameters. There are
a number of local minima in the optimization meaning there is not necessarily one clear
and unique solution of parameters. The reported values are the best quality fit to the ex-
perimental data determined during the optimization. However, there is generally a small
set of other parameters that provide fits that could be considered reasonable results since
the difference in the results is not necessarily significant. As a result, while the analysis of

trends in the fit parameters provides interesting insights, the size of the data set studied,

Table 7.1: Fit parameters returned by the kinetic model for each sequence studied.

sequence | length ke (s71) o

6 |5.4344x 10" | 0.6101
8 | 2.0969x 10" | 1.0790
CG-ends 10 | 5.9513 x 1010 | 1.5424
12 | 4.0526 x 1019 | 1.5665
14 | 7.4036 x 10° | 2.2705
GC-core 10 | 3.5993 x 1010 | 3.7285
AT-all 10 | 3.2769x 100 | 2.8186
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Figure 7.2: Kinetic model observed rate constant (red) compared to the observed
rate constant from experiment (black) for (a) 5-CATATG-3’, (b) 5-CATATATG-3’, (c)
5-CATATATATG-3’, (d) 5-CATATATATATG-3’, (e) 5-CATATATATATATG-3’, and (f) 5'-
ATATGCATAT-3’

both in the number of sequences and the number of temperature points for each sequence,
should be expanded in the future to help bolster confidence in the results. Additionally,
there are a number of factors and assumptions that go into the parameters utilized in this
mathematical model. This means caution should be taken, and the context of the paramet-
ers within the model should be considered, while making any connections to real physical
processes. It should be noted that the overall mechanistic and pathway information that
is provided by the model is not heavily dependent on the exact parameters used as long
as they are within range of the reported values. This results in greater confidence with
regards to conclusions drawn from the analysis of the overall reaction mechanism relative
to the analysis of the individual fit parameters.

One discrepancy between the model and experimental results is the ability of the
model to replicate the degree to which the different sequences and lengths demonstrate

nonlinear trends in the Arrhenius plots. As demonstrated in Chapter 6 the observed rate
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constant is closely related to the dissociation rate constant, where a linear Arrhenius plot
is indicative of two-state kinetics dictated by a single temperature independent activa-
tion barrier. The model demonstrates a small degree of nonlinearity such that for shorter
CG-ends sequences, where the experimental trends are linear, the model does not fully
replicate the linear trend resulting in some deviation from the experimental rates at low
temperature. The degree of nonlinearity demonstrated by the model appears to be relat-
ively unaffected by sequence length and composition which can be seen by the fact that
the model is unable to fully replicate the degree of nonlinearity observed in the GC-core
sequence, such that it again deviates from the experimental rates at low temperature. A
more thorough discussion of the nonlinear behavior is included in Section 7.4

While discussing the linearity of the rates determined by the model it is worth re-
visiting the model’s construction and the fact that it assumes that DNA association and
dissociation can be modeled as sequential steps making and breaking individual base
pairs. Initially this construction may seem to be at odds with a system that is known to
follow a two-state model, particularly for the shorter CG-ends sequences, which makes
this topic worth discussing briefly. In both the case of the model and the experiment the
Arrhenius plots for the dissociation rate constant are sightly more linear than the observed
rate constant, since some of the nonlinearity in the observed rate is due to the convolution
of the association and dissociation rates. However, the difference between the two should
be the same for both the model and experimental results. While the model does not gen-
erate results that are as linear as experiment for the shortest sequences the curvature of
the plots is in reasonable agreement for most of the CG-ends sequences. This demon-
strates that even though the trajectories generated by the model are made up a large
number of individual steps involving the formation or breaking of a single base pair it is
able to reasonably reproduce the two-state behavior of these sequences. However, this
should be treated with caution since a two-state assumption is utilized both to calculate

the association and dissociation rates from the experimentally determined observed rate
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Figure 7.3: The value of k; as a function of length (a) and the ¢ values derived from « as a
function of the normalized Ngp with (e) marking the position of each base pair for a given
sequence with an associated o; value less than 0.9 (b) for the 5’-C(AT),,G sequences with
n = 2-6.

constant and to calculate the observed rate constant from the association and dissociation
timescales determined by the model.

Now that overall agreement between the model and experiment has been established
it is worth taking a closer look at the resulting fit parameters. Figure 7.3 contains plots of
ks for each length as well as the functional form of ¢ as a function of Ngp normalized by
the total number of base pairs for each length. The dots on Figure 7.3b designate the
location of o; values that are less than 0.9 for each sequence. Base pairs for which the ¢;
value is larger are not included for the sake of clarity. In Figure 7.3, ks clearly decreases
as a function of length for the CG-ends sequences and is well fit by a single exponential.
However, it is important to note what will be a recurring theme throughout the analysis of

the model. It is difficult to disentangle the numerous variables that impact the dynamics
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and kinetics of DNA, particularly length, sequence, and temperature. An example of this is
that both length and sequence composition affect duplex stability and melting temperature.
Sequences with higher melting temperatures must be experimentally studied at higher
temperatures making it hard to disentangle the effects of temperature from the effects
of either sequence or length. This means that the decreasing trend in k¢ as a function
of length may also have an underlying temperature component. It is worth pointing out
that over the entire temperature range studied across all sequences the viscosity of D,O
changes by approximately a factor of two and as such is not expected to be a significant
factor in the observed trend in k¢ with sequence length. The potential causes of this trend,
both length and temperature, will be further discussed in Section 7.4.

Figure 7.3b shows that the increasing value of a with increasing length seen in Table
7.1 corresponds to the functional form of o approaching a value of one faster along the
normalized x-axis. This results in ¢ approaching a value of one after approximately 4-5
base pairs regardless of length. It is worth noting that this is approximately half of a full
turn of the helix which occurs in 10-11 base pairs. It has been proposed in the literature
that only a few intact base pairs are needed to begin to form the double helix structure
and obtain the associated stability. As a result o should approach one in less than a single
turn of a helix which is in excellent agreement with our results. An additional note from
looking at Table 7.1 is that the values of a for GC-core and AT-all result in o values that
approach a value of one within three and four base pairs respectively. It is interesting that
they have the highest o values of all the sequences studied here. While this means that
for each Ngp value AT-all and GC-core have larger values of o; compared to the CG-ends
sequence of the same length, they do still approach a value of one in approximately the
same number of intact base pairs.

Finally, with respect to § it is worth noting that the values of 5 calculated utilizing this
method are in rough agreement with existing literature values, however those values do

cover a large range which, in addition to the wide range of definitions of 3 that exist in the
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literature, makes direct comparisons difficult. 11:12.17.31

7.3.2 Analyzing Trajectories

Before moving ahead to analyze the trajectories themselves it is worth taking a step

back to look at a couple of example trajectories to get a sense for the different aspects

that will be shown. Two full dissociation and two full association trajectories are shown

in Figure 7.4. Additionally, the final ten nanoseconds of both dissociation trajectories are

shown separately. In these figures each dot represents an individual state that the traject-

ory passes through with the y-axis denoting the number of intact base pairs for the state

and the x-axis denoting the time that the trajectory enters that state. Averaging over the
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Figure 7.4: Sample association and dissociation trajectories for 5’-ATATGCATAT-3’ at 333
K and 5’-CATATATATG-3’ at 334 K. The full trajectories are shown in addition to plots
highlighting the last 10 nanoseconds of the dissociation trajectories. The black dots in
each trajectory represent the time points included in the overall barrier crossing event.
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different configurations to just focus on the number of intact base pairs was done in these
plots for the sake of clarity. The black dots designate the final barrier crossing event for
the trajectory. Here we define the association (dissociation) barrier crossing event as the
portion of the trajectory from the last time it is in the monomer (fully formed dimer) state
until it reaches the fully formed dimer (monomer) state.

Starting with the dissociation trajectories the first thing to note in Figure 7.4 is the
amount of time spent rapidly moving between configurations with different Ngp values
while regularly returning to the fully formed dimer state. This demonstrates the fraying
behavior that is seen to varying degrees across most sequences. The increased fray-
ing behavior for GC-core can be seen by the fact that it both spends more time in states
with fewer intact base pairs during the dissociation trajectory relative to the CG-ends se-
quence and it also reaches states with fewer intact base pairs at an earlier point in time.
The increased amount of time GC-core visits states with fewer intact base pairs is par-
ticularly clear over the final ten nanoseconds. The fact that in both cases the trajectory
regularly returns to the fully formed dimer state throughout the early portion of the traject-
ory demonstrates the picosecond to nanosecond timescale of the zippering component of
the nucleation-zipper model first introduced in Figure 1.1.

The association trajectories in Figure 7.4 help to further highlight the significantly dif-
ferent timescales of the different parts of the nucleation-zipper mechanism seen in in Fig-
ure 1.1. The vast majority of the trajectory is spent going between the monomer state
and a configuration with a single intact base pair before at the very end forming mul-
tiple consecutive base pairs and rapidly zipping up to the fully formed duplex. Due to the
vastly different timescales for forming the first base pair, and breaking that base pair, the
monomer state is occupied for almost the entirety of the trajectory. This clearly demon-
strates the microsecond timescale of the diffusive encounter and pre-equilibrium steps of
the reaction which is significantly slower relative to the picosecond to nanosecond times-

cale of the final zippering which takes up a very small portion of the overall association
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trajectories. The time spent in different phases of the association trajectory and how it
compares to the physical picture is discussed in more detail later on in conjunction with
a closer examination of the rates for forming base pairs, particularly the first base pair,
returned by the model.

The analysis here will have two different foci. The first aspect that we will analyze
in detail is the barrier crossing event in the trajectories. In Figure 7.4 this portion of the
trajectories is highlighted by the black dots. The barrier crossings shown here occur on
a timescale of hundreds of picoseconds for the dissociation and a time scale of nano-
seconds for the association. These barrier crossing events can involve both forward and
backward moves meaning that there is no set number of steps that make up the barrier
crossing. However, the minimum number of steps is equal to the number of base pairs in
the sequence. For certain sequences it is not entirely uncommon for the barrier crossing
event in the trajectory to include two to three times more steps than the minimum amount
required.

The second way the trajectories are analyzed is by examining the entire trajectory as
a whole. The main focus of analyzing the entire trajectory is examining the fast response
observed in experiment for some sequences, particularly GC-core and the longer CG-
ends sequences. To do this we will examine aspects of the entire trajectory such as the
number of times configurations with each Ngp are visited and the average duration of
each visit. Doing so will allow us to qualitatively compare the behavior of the dissociation
trajectories for each sequence and compare the resulting trends to changes observed in

the experimental results to further clarify the dynamics behind the experimental results.

7.3.3 Individual Reaction Pathways

Utilizing TPT analysis, the method for which is described in Section 3.6, individual
pathways for barrier crossing events can be isolated and ranked according to the fre-

quency at which they occur. It is important to distinguish what is meant by individual
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Figure 7.5: Top six pathways for 5’-C(AT),,G-3’ sequences with n = 3-6. The pathways are
shown at a temperature of 334 K for each sequence except 5’-CATATATG-3’ which is 333
K. For each length these pathways are ordered from most probable to least probable from
left to right with their ranking denoted by the number above each column. For each length
6-14 these six pathways, and their symmetric partner, make up 87.0%, 69.0%, 57.5%,
and 49.5% respectively of the total flux between the monomer state and the fully formed
dimer state across all pathways isolated by TPT analysis at the temperatures shown.

pathways from the overall mechanism. Individual pathways are one possible way the sys-
tem can move through different configurations during either an association or dissociation
barrier crossing event. In this context the overall mechanism incorporates the entire dis-
tribution of individual pathways and is a more general view of how the system progresses
through a barrier crossing event.

Figure 7.5 shows the top six association pathways ordered from left to right accord-
ing to the probability that an association event will occur along that particular pathway for
each CG-ends sequence with lengths of 8-14 base pairs at a temperature of either 333 K
or 334 K. The sequences were compared at similar temperatures to isolate mechanistic

changes as a function of length. The eight base pair sequence is in the top row of plots
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Figure 7.6: Percentage of all association barrier crossing events that occur along
each of the top six pathways for (a) 5-CATATATG-3’, (b) 5-CATATATATG-3’, (c) 5'-
CATATATATATG-3’, and (d) 5’-CATATATATATATG-3’ at a sample temperature of (a) 333
K or (b-d) 334 K. Note that each pathway has a symmetric pair that shares the same
percentage.

with the sequence length increasing in each subsequent row moving down. Black boxes
represent intact base pairs and the plots are read from the bottom up where the first base
pair formed is in the second row of the plot and the reaction proceeds up the plot to reach
the fully formed dimer state in the top row. It should be noted that this method considers
direct pathways and disregards off pathway loops that occur when a trajectory leaves a
particular state only to eventually return to that exact state. However, as will be demon-
strated later on, this does not significantly impact the ability of the pathways isolated by
TPT to represent the pathways of the trajectories generated by the kinetic model. Since
these sequences are all self-complimentary each pathway has a symmetric partner that
is identical and carries the same probability. For example, the first pathway for each se-
quence in Figure 7.5 initiates at one end and zips up sequentially across the sequence.
The symmetric partner of this pathway is identical except that it starts at the other ter-
minus. For all self-complimentary sequences each pair will be referred to as a unit, for
example referring to the two most dominant pathways refers to the two most dominant
sets of pathways which is actually four pathways. Figure 7.6 contains the probability that
an association event will occur along each particular pathway shown in Figure 7.5 with the
pathways numbered according to their ranking, which proceeds from left to right across
Figure 7.5. The probability is calculated from the percentage of overall flux between the

monomer state and fully formed dimer state that passes through each individual pathway.
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The most obvious conclusion to draw from Figures 7.5 and 7.6 is that the two dom-
inant pathways for all lengths initiate at and directly next to the C:G termini respectively.
This shows that while there is a distribution of pathways, the simplest pathway for the nuc-
leation zipper picture that proceeds by initiating at one end and sequentially zipping across
is the dominant association pathway for this sequence motif. Figure 7.6 shows that there
is a significant decrease in probability between the top pathway and the second pathway,
followed by a smaller, but still noticeable drop after the second pathway. The difference
in the relative probability between the remaining pathways is quite small for all sequences
with almost no decrease observed for the shorter sequences. Figure 7.5 also shows that
it is advantageous for shorter sequences of this motif to form the termini as quickly as
possible. This is best observed in the top four pathways for the shortest sequence all
proceeding directly to the closest terminal base pair. For longer sequences proximity to
the termini, and forming a terminal base pair early on in the process, becomes less signi-
ficant. For the two longest sequences, after the two most probable pathways only one of
the remaining pathways directly proceeds to a termini. These pathways are the fifth and
sixth most probable pathways for the twelve base pair and fourteen base pair sequences
respectively. It is also interesting to note that while forming the terminal base pair early
on does seem to be favorable, the pathway that forms at the fourth position and proceeds
directly to the closest termini is slightly more probable relative to the comparable path-
way that initiates at the third position. However, as mentioned previously since these are
never one of the top two pathways the difference in probability between them is relatively
negligible.

Another interesting observation is that other than forming the first base pair at or next
to the termini it is advantageous to initiate near the center of the sequence. In particu-
lar, the third most dominant pathway for the three longest sequences all share roughly
the same pathway, initiating in the middle and then building out keeping the two frayed

ends roughly equal in length until the sequence is fully hybridized. This demonstrates
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Figure 7.7: Top six pathways for 5’-ATATATATAT-3’ at 308 K (top) and 5’-ATATGCATAT-
3’ at 333 K (bottom). Both pathways are ordered from most probable to least probable
from left to right with their ranking denoted by the number above each column. At the
temperatures shown, these six pathways, and their symmetric partner, make up 64.7%
and 74.2% of the total flux between the monomer state and the fully formed dimer state
across all pathways isolated by TPT analysis for 5’-ATATATATAT-3’ and 5’-ATATGCATAT-
3’ respectively.
that among common pathways there appears to be two main motifs, forming at or next
to G:C base pairs, and forming in the center of the sequence and building symmetrically
towards the ends. The slight, but consistent, preference for forming at the fourth base
pair and proceeding directly to the termini rather than initiating at the third position and
doing the same thing also points to a preference for initiating close to the center. We will
demonstrate later on in the discussion that pathways that initiate at or near a G:C base
pair that forms early on are enthalpically driven, due to the additional stability of G:C base
pairs, while pathways that initiate nearer to the center of the sequence are entropically
driven. One of the major factors behind the entropic driving force is that the entropy of
the configurations that these pathways pass through is more favorable, which has been
demonstrated by the thermodynamic lattice model.2

The CG-ends pathways can be compared to the AT-all and GC-core pathways which
are shown in Figure 7.7 and their corresponding probabilities in Figure 7.8. The two motifs
observed in CG-ends are essentially repeated for AT-all and GC-core. Since AT-all does

not contain any G:C base pairs only the motif of initiating in the center appears. Figure 7.8

shows for AT-all that there is a relatively small difference between the probability of these
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Figure 7.8: Percentage of all association barrier crossing events that occur along each of
the top six pathways for (a) 5’-ATATATATAT-3’ at 308 K and (b) 5’-ATATGCATAT-3’ at 333
K. Note that each pathway has a symmetric pair that shares the same percentage.

pathways and that the top ones do not stand out nearly to the same degree. For GC-
core because the G:C base pairs are in the center the two motifs essentially result in the
same pathways meaning that these pathways are driven by both enthalpic and entropic
driving forces. This results in top pathways that are significantly more dominant than the
top pathways for other sequences. The probability of each pathway also drops off more
significantly across all six pathways. For the CG-ends sequences there is little difference
between the center initiated pathways, AT-all sees a very minor drop across all pathways,
and GC-core sequence sees a steep decrease after each of the top three pathways and

another noticeable drop after the fifth pathway.

7.3.4 Overall Mechanistic Insights

While the individual pathways are informative on a microscopic scale, it is important
to more generally consider the mechanism for monomer-dimer transitions in terms of the
overall two-state reaction. However, our focus at this point remains on the barrier crossing
event itself. One interesting aspect of the overall mechanism is the probability of initiat-
ing a barrier crossing at different positions. Using the pathways isolated by TPT we can
determine the percentage of barrier crossings that initiate at each position by summing
over all of the pathways, the result of which is shown in Figure 7.9. This can be thought

of as the probability that a successful association initiates at a particular position. This
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Figure 7.9: Percentage of all association barrier crossing events that initiate at each pos-
ition for 5’-ATATGCATAT-3" and 5’-C(AT),,G-3’, n = 2-6, at the highest and lowest temper-
atures each sequence was studied at.

can be compared to the trajectories from the kinetic Monte Carlo model by looking at the
percentage of all trajectories whose barrier crossing event initiates at each position. The
plots generated directly from the trajectories themselves are in excellent agreement with
the plots from the TPT analysis as shown in Appendix 7B. This demonstrates that the as-
sociation pathways isolated utilizing TPT are representative of the association events in
the trajectory even though TPT does not isolate every single possible pathway.

It is also interesting to compare these plots to those generated by the last intact base
pair for a dissociation barrier crossing event. The last intact base pair is of greater interest
than the first base pair to break since the model requires that dissociation initiates at one
of the ends, and for self-complimentary sequences the two termini should be essentially
identical. The model requires that dissociation initiates at one of the ends because break-
ing the first base pair in any other position would form a bubble state, which is not allowed
by the model. The final intact base pair plots for a dissociation event from both the TPT
analysis and the trajectories are in agreement with each other and are also very similar to
those for the first intact base pair to form for an association event. This suggests that the

association and dissociation barrier crossings can be considered reversible in that they
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follow the same mechanistic pathway, just in the opposite direction. While this is not par-
ticularly surprising for the TPT analysis since the system is reversible due to utilizing the
steady state solution of the transition rate matrix, the trajectories themselves are not run
under equilibrium conditions and reversibility is not required. This is an interesting result
both because it further supports the idea of microscopic reversibility for the association
and dissociation of DNA and also because it provides evidence that enforcing reversibility
to simplify the TPT analysis does not impact the methods ability to accurately represent
the mechanisms followed by the non-equilibrium trajectories.

One of the more interesting observations gained by examining Figures 7.5 and 7.9
is that while the dominant individual pathway for all CG-ends sequences initiates at a ter-
mini those positions are the least likely to initiate a successful association barrier crossing
event. The most probable position is actually either next to the G:C termini, the position
at which the second most probable individual pathway initiates, or in the center of the
sequence depending on temperature. For all sequences except the shortest one, there
is also consistently a drop in probability for the third position, relative to the neighboring
positions. This is due to the energetic driving forces behind the association reaction. The
entropic driving forces preferentially drive barrier crossings that initiate in the center with
the benefit decreasing the closer the initiation point gets to the end of the sequence. This
is both due to the favorable entropy of the configurations these pathways go through, as
mentioned previously, in addition to an additional entropic benefit due to positions in the
center having additional pathways available through which association barrier crossings
can proceed. These entropic factors explain the dome shape observed in the longer se-
quences and explains why the fourth position from the end is more probable than the third
position. The second position is more probable than the third position because it receives
a significant enthalpic benefit from forming next to the G:C base pair at the termini. These
energetic driving forces will be discussed in more detail in the discussion section, including

an explanation of why the terminal G:C base pairs are such an unlikely initiation position
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for CG-ends. The results in Figure 7.9 for CG-ends are in stark contrast to those for the
GC-core sequence that demonstrate a very strong preference for initiating in the middle
of the sequence, which makes sense when considering the pathways in Figure 7.7 and
the overlap between the two main pathway motifs.

The plots in Figure 7.9 show a consistent theme as a function of temperature. For
CG-ends sequences a temperature increase increases the probability of initiating a barrier
crossing at or next to a G:C base pair with a corresponding drop in the probability of
initiating in the center. This would then suggest that the increasing probability of initiating
in the center with increasing temperature for G:C core is driven by the location of the G:C
base pairs rather than a positional effect.

Another way to investigate the association mechanism is to more directly probe the
identity of the transition state or configurations in the transition state ensemble. A common
way to analyze Markov state models and isolate structures in the transition state ensemble
is to use the committor values, which are calculated for TPT analysis. A common method
for determining the transition state ensemble is to select configurations with committor val-
ues within some threshold around 0.5, though it should be noted that this analysis is more
commonly applied to Markov state models created by binning structures from MD simu-
lations together to create the states.”-8 This provides more flexibility and control over the
states and a more continuous set of states than the model presented here. As such the
discussion here will remain broader. Rather than attempting to specifically identify each
configuration in the transition state ensemble we will focus on trends in the committor val-
ues as a function of length, temperature, and sequence composition to better understand
how these variables impact on the makeup of transition state ensemble. We will utilize the
forward committor values, which are the probability of going from that particular configur-
ation to the final state, which in the case of association is the fully formed dimer state. The
forward committor values are introduced and defined in Section 3.6 Recall that since our

TPT analysis presumes reversibility the forward and backward committors sum to one.
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Figure 7.10: All configurations with forward committor values between 0.2 and 0.8
for (a) 5-CATATATG-3’, (b) 5-CATATATATG-3’, (c) 5-CATATATATATG-3’, and (d) 5-
CATATATATATATG-3’ at a temperature of (a) 333 K or (b-d) 334 K.

We will start with the CG-ends sequences with 8-14 base pairs at 333 K or 334 K to
remove any temperature effects and focus on length. Configurations with a forward com-
mittor value between 0.2 and 0.8 are shown in Figure 7.10. In these plots the black and
white squares designate intact and broken base pairs respectively. The bar graph to the
right of the configurations denotes the forward committor for each of the specific config-
urations shown. These plots also serve as an example as to why a less rigid description
of the transition state ensemble is utilized here. Restricting it to configurations that fall
between a narrow window, such as 0.4 to 0.6, would result in at best a limited number
of configurations and in some instances there would be none. This is a result of basing
the kinetic model on a discrete lattice model whose reaction coordinate is Ngp. Even with
our expanded range of forward committor values certain pathways will not pass through
a configuration with a forward committor value in this range. An easy example of which is
the most dominant pathway for sequences of lengths 8, 10, and 12 since the two base pair
configuration with an intact terminal base pair does not have a forward committor value in
this range.

At these temperatures Figure 7.10 shows that the configurations with forward com-
mittor values in this range all have two intact base pairs. The main trend in Figure 7.10 is
that, regardless of position, as the length of the overall sequence increases the forward
committor values for configurations with two intact base pairs decrease. This is best seen
by looking at the configuration with the two central base pairs intact, which is present on

all four plots, whose value decreases as the sequences get longer. This is also true for
181



configurations involving the two base pairs closest to the end that are above 0.8 and off
the chart for lengths 8, 10, and 12 but appear for the longest sequence. This shows that
as sequences get longer a specific configuration will become less likely to proceed to the
fully formed dimer state. This demonstrates that the model predicts that the size of the
configurations that make up the transition state ensemble should increase with increasing
length.

Our experimental results, discussed in Section 6.4.6 found that the critical nucleus
increases in size with increasing length and, while the experiments predict a noticeably
larger size increase, itis promising that the model is in agreement with the overall trend. As
mentioned previously our experimental results were not able to fully decouple length and
temperature. The smaller magnitude of change observed in Figure 7.10, which examines
all lengths at roughly the same temperature, provides evidence that the experimental trend
does contain contributions from both length and temperature.

The second variable examined with the forward committor values is temperature. Fig-

ure 7.11 contains the forward committors for the 14 base pair CG-ends sequence and
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Figure 7.11: All configurations with forward committor values between 0.2 and 0.8 for 5’-
ATATGCATAT-3’ at 315 K (a) and 343 K (b) and 5’-CATATATATATATG-3’ at 328 K (c) and
342 K (d).
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GC-core at their highest and lowest temperatures. These sequences were selected be-
cause they represent the clearest example of the trends in the configurations with forward
committors in the range studied as a function of temperature. Though only these two
sequences are shown the trends are representative of all sequences. Like the trend with
increasing length, increasing temperature decreases the stability of the configurations res-
ulting in smaller forward committor values. For both sequences in Figure 7.11 when going
from low to high temperature the forward committor values for a given configuration de-
crease. The degree to which is such that configurations with three intact base pairs at high
temperature have similar forward committor values to configurations with two intact base
pairs at low temperature. Thus, the model clearly demonstrates that the size of the trans-
ition state will increase as a function of increasing temperature. This is in good agreement
with results from MD simulations in the literature.*

This is also in good agreement with our observation above with respect to the ex-
perimentally observed increasing critical nucleus size being a function of both length and
temperature. Figure 7.11 shows that with an increase as small as 14 K the model predicts
the transition state ensemble, as defined here, will include configurations with a single ex-
tra base pair. While small, this is still a significantly larger impact compared to the impact

of increasing sequence length from 6 to 14. The relatively small impact of both temperat-

b
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Figure 7.12: All configurations with forward committor values between 0.2 and 0.8 for
5-CATATATATG-3’ at 334 K (a) and 5’-ATATGCATAT-3’ at 333 K (b).
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ure and length in the model supports the idea that the experimentally observed increase in
critical nucleus size with increasing length has both length and temperature contributions.

Finally we will take a look at how the placement of G:C base pairs affects the configur-
ations in the transition state ensemble independent of any temperature or length effects.
This can be done by comparing the two sequences shown in Figure 7.12. There are a
few differences between the two that show the impact of changing the position of the G:C
base pairs. The biggest impact is seen in the GC-core configuration with three intact base
pairs that has a forward committor of about 0.7. This shows the effect that shifting the
position of the G:C base pairs has on the stability of configurations with only intact A:T
base pairs. Even though the %GC is the same for the two sequences there is no configur-
ation for the CG-ends sequence with three intact A: T base pairs. Additionally, in the case
of CG-ends the three A:T base pairs could actually be further away from a more stable
G:C base pair. Comparing configurations with two intact A:T base pairs at the same po-
sition for both sequences we see that in all cases the configurations are more stable for
the CG-ends sequence then they are for the GC-core sequence. The sequence effect is
significant enough that the CG-ends configuration with two intact A:T base pairs furthest
from a stabilizing G:C base pair is more stable than the GC-core configuration with two
intact A:T base pairs next to a G:C base pair.

Overall, considering the various sequences, lengths, and temperatures studied here
the forward committor values predict that the configurations in the transition state en-
semble are made up of approximately 2-3 base pairs. This is in good agreement with the
number of base pairs determined by coarse-grained MD simulations for both configura-
tions in the transition state ensemble”-® and the critical nucleus.# This result is particularly

promising considering the relative simplicity of the model presented here.
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Figure 7.13: Average percentage of time during the simulation that the trajectories spent
in states with each Ngp for a trajectory starting in the fully formed dimer state for 5'-
ATATGCATAT-3’ (a-f) and 5’-CATATATATG-3’ (g-1). The temperatures for 5’-ATATGCATAT-
3 are 315K (a), 320 K (b), 327 K(c), 333 K (d), 339 K (e), and 343 K (f). The temperatures
for 5’-CATATATATG-3 are 319 K (g), 322 K (h), 325 K (i), 328 K (j), 330 K (k), and 334 K

().
7.3.5 Full Trajectory Analysis

Now we will step back from looking solely at the barrier crossing event and examine
the entire trajectory, with a particular eye towards insights the trajectories provide on the
experimentally observed fast response. The primary purpose of this is twofold. The first
goal is to understand how fraying appears in the model by looking at GC-core, where fray-
ing has been experimentally observed. The second goal is to use this knowledge to gain
insight into the fast response that grows in with length in the CG-ends sequences. Ana-
lyzing the entire trajectory is difficult since there are thousands of steps in each trajectory
as seen in Figure 7.4. However, due to the construction of the model and the fact that all
dissociation must initiate at the ends we know that any dissociation must be due to fraying.
As a result we do not need to be particularly concerned with the individual configurations
and rather simply need to track Ngp at each step.

Figure 7.13 contains plots showing the percentage of time spent in states as a func-
tion of Ngp averaged over all trajectories for GC-core and the ten base pair CG-ends

sequence. The CG-ends sequence is used as a point of comparison since it is the same
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Figure 7.14: Probability of occupying a non-monomer state with a given Ngp determined
by the thermodynamic lattice model? for 5'-ATATGCATAT-3’ at 315 K (@), 320 K (b), 327
K (c), 333 K (d), 339 K (e), and 343 K (f).

overall length and relatively little fast response is observed for this sequence. There is
a clear distinction between the two sequences. GC-core spends a significantly greater
portion of the trajectory in states with multiple broken base pairs, particularly at high tem-
peratures. This demonstrates that the kinetic model replicates the fraying behavior exper-
imentally observed in GC-core while indicating less early time dissociation in the ten base
pair CG-ends sequence, also in agreement with experiment.

Not only does the kinetic model agree with the experimental results but also with the
thermodynamic lattice model it is an extension of. The plots in Figure 7.13 are an almost
exact match to the equilibrium population distribution as a function of Ngp from the lattice
model, which is shown in Figure 7.14. This demonstrates that over a sufficient number
of trajectories the amount of time spent in different states in the kinetic model is primarily
dictated by the thermodynamic free energy of the system.

The agreement with experiment is particularly good since the model also demon-
strates that for the GC-core sequence primarily A:T base pairs are dissociating at early
time. Any configuration with six or more intact base pairs must have both G:C base pairs
intact. Among configurations with four or five intact base pairs the vast majority of time is
spent in configurations with both G:C base pairs intact. This is demonstrated by looking at
the equilibrium probability of occupying each configuration for a given Ngp since we have
previously established the connection between equilibrium probabilities from the lattice

model and the percentage of time spent in each state in the kinetic model. As an example
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Figure 7.15: Probability of 5’-ATATGCATAT-3’ adopting each possible configuration given
that the model is in a state with four or five intact base pairs at 343 K. For Ngp =4 and Ngp
= 5 the probability of occupying a configuration with both G:C base pairs intact is 99.5%
and 99.7% respectively.

Figure 7.15 contains the relative probability of occupying each possible configuration with
either four or five intact base pairs for GC-core at 343 K. Looking at Figure 7.13, in con-
junction with Figure 7.15, shows that very little time is spent in states with fewer than six
intact base pairs, and when the model is in those states predominately A:T base pairs
are dissociated. This demonstrates that prior to the dissociation barrier crossing almost
exclusively A:T base pairs have dissociated, in excellent agreement with experiment.
The GC-core fraying is in stark contrast to the ten base pair CG-ends sequence where
the overwhelming maijority of time, regardless of temperature, is spent in the fully formed
dimer state as seen in Figure 7.13. While the amount of fraying seen for the ten base pair
CG-ends sequence is minimal, it is consistent with GC-core in that there is an increase in
fraying with temperature. However, the magnitude of this change is significantly smaller.
Now that it has been established that the kinetic model demonstrates the fraying be-
havior expected for GC-core the same analysis can be applied to the CG-ends sequences
to understand what is behind the experimentally observed fast response that grows in with
increasing length. Figure 7.16 shows the plots for each length of the CG-ends series at
the highest and lowest temperature at which they were experimentally studied. While the
trends are small, it is clear that at both temperatures there is a slight increase with length

in the time spent in states with broken base pairs. This provides clear evidence that even
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Figure 7.16: Average percentage of time during the simulation that the trajectories spentin
states with each Ngp at the lowest and highest temperatures studied for each 5’-C(AT),,G-
3’ sequence as follows: n =2 306 K (a) and 317 K (b), n =3 315 K (c)and 333 K (d), n =
4 319 K (e) and 334 K (f), n =5 325 K (g) and 340 K (h), and n = 6 328 K (i) and 342 K (j).

with the stabilizing G:C base pairs on the termini these sequences become more sus-
ceptible to fraying with increasing length. While the trends with length are not nearly of
the magnitude observed for GC-core, this is reasonable since the trends observed in the
experimental results for the CG-ends sequences are also of smaller magnitude. This
suggests that fraying is a likely source of the increasing stretching factor observed in the

CG-ends sequences with increasing length.

7.4 Discussion

7.41 Kinetic Model Fit and Parameterization

Taking a closer look at the fit quality for the model and trends in the fit parameters
provides additional insight into how the model works and its interpretation. The first aspect
to consider is the difficulty the model has replicating the changing degree of nonlinearity
observed with changing length and sequence. As seen in Figure 7.2 at shorter lengths
the experimental data is more linear than the model, while in the case of the GC-core
sequence the model is more linear than the experimental data. One potential consid-

eration is that the kinetic model is fit presuming the system is two-state by utilizing the
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two-state equation for a small perturbation as described by Equation 7.15, even in cases
where the experimental results deviate from linearity. Applying the same assumption for
all samples could potentially result in the same degree of nonlinearity in the resulting ob-
served rate constant. Extracting the experimental observed rate constant does not require
this assumption. While at first glance this seems to be the obvious explanation, further
examination suggests that it is not the only cause.

The distribution of first passage times for the dissociation and association trajectories
are both a near perfect exponential distribution, a clear sign of two-state kinetics. However,
each individual temperature abiding by a two-state mechanism does not automatically
result in a linear Arrhenius plot. A simple system with two states separated by a single
barrier will demonstrate non-Arrhenius behavior if that barrier is temperature dependent.
This scenario would be consistent with findings in the literature that show that the non-
Arrhenius behavior of DNA association is due to a changing activation barrier caused by
the size of the critical nucleus increasing with increasing temperature.4 While this scenario
is plausible it does not rule out the possibility that the model returning two-state results for
both the association and dissociation for all sequences and temperatures contributes to
the difficulty the model has replicating the curvature observed in the GC-core experimental
data. It also does not explain why the observed rate constant for the model demonstrates
more curvature than the experimental data, most easily observed in the eight base pair
CG-ends sequence in Figure 7.2.

The « fit parameter, and corresponding o; parameters provide some interesting in-
sight into the interpretation of the nucleation-zipper model. An interesting observation
about « is that while it shows a clear trend with length for the CG-ends series, GC-core
and AT-all have a significantly larger value than the CG-ends sequence of the same length.
As we have demonstrated both GC-core and AT-all prefer to follow very different associ-
ation pathways, initiating in the center and symmetrically adding base pairs to each side,

compared to the CG-ends sequences, where the top pathways initiate at or next to a
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terminal G:C base pair. While there is not enough evidence, particularly in the case of AT-
all, to make a definitive conclusion this does suggest a link between « and the preferred
mechanistic pathways. Additionally, for longer lengths, which also have larger « values,
the pathways that initiate at the third or fourth positions and directly form sequential base
pairs until a terminal G:C base pair is formed become less favorable relative to pathways
initiating in the middle. This trend can clearly be observed in Figure 7.5. While weaker
evidence relative to what is observed in GC-core and AT-all this also supports the idea
that larger o values may be related to the center initiated pathway motif.

Itis also worth considering if GC-core has a larger « value due to the adjacent stronger
G:C base pairs, particularly their stronger stacking interactions compared to A:T base
pairs.32:33 |t has been previously proposed that stacking is a significant factor in estab-

" s0 it would logically

lishing the structure and stability that results in ¢ approaching one,
follow that the presence of two G:C base pairs at the most probable initiation sites may res-
ultin a larger a.. This does not however appear to be the driving factor. The lower « value
in the CG-ends sequences could be explained by the fact that the G:C base pairs do not
have a neighboring G:C base pair. Additionally, when considering all possible pathways
the G:C termini is a relatively unlikely location for initiating a barrier crossing. Furthermore,
the idea that the value of «a is tied to preferentially forming G:C base pairs early would not
provide any obvious explanation for a increasing as a function of length. Also, considering
the large a value of AT-all it appears that initiating at the center, regardless of sequence,
is linked to a larger « value. If this is indeed true, the fact that GC-core has the largest «
value could potentially be due to the preference for center initiated pathways in addition
to a small contribution from sequence effects. These two factors may even be linked. It
might be as simple as the fact that the location of the G:C base pairs in GC-core drives
the most significant preference for initiating at one of the center two positions among se-

quences studied here, as seen in Figure 7.9. This would mean that the sequence doesn’t

directly impact the value of « but rather it impacts what pathways are preferred, which in
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turn impacts the value of a. While further investigation is required, the results here sug-
gest that mechanism, and potentially sequence to a lesser degree, may have some very
interesting effects on «v and o.

Examining the values of ks for the CG-ends series provides additional insight into
the parameters themselves in addition to the model’s construction. Two aspects of the
parameter will be evaluated. First the values of k¢, and the associated rate of forming the
first base pair from the monomer given by ks, will be discussed followed by examining
trends in £ as a function of length and temperature. The values of ks returned by the
model presented here range from approximately 5.4 x 10! to 7.4 x 107 with the value
of ks decreasing as a function of length. Values of ks in the literature range cover mul-
tiple orders of magnitude ranging from being on the order of 105 to 109.11.12,14,19 \while
these values cover multiple orders of magnitude, as do the values returned by the model
presented here, the edges of the two ranges do overlap. Even though the values do show
slight agreement with the literature the values are faster than expected, particularly for the
shorter lengths. The trends observed with length and temperature, that will be discussed
in more detail shortly, suggest that these factors may not be fully accounted for. It is also
possible that the magnitude of the rates is a consequence of the construction of the model.
Breaking down the association and dissociation into sequential steps of making and break-
ing individual base pairs, as discussed in Section 7.2.4, is mathematically correct, but may
result in a deviation from the physical system. In reality multiple base pairs can diffuse
together and form simultaneously, rather than having to do so sequentially. The fact that
the model requires the formation of one base pair to occur before the next can start to form
could be responsible for the large values of ks returned by the model. However, further
clarity on the role of other potential factors such as length and temperature is necessary
before drawing any conclusions with regards to the interpretation of the magnitude of £;.

While discussing the magnitude of k¢, and its connection to the physical system, it is

also important to consider the value of ks returned by the model. As mentioned in Section
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7.2.3 the value of g incorporates the diffusion limited association rate of two spheres, and
since this is orders of magnitude slower than the value of ks this dominates the rate of
forming the first base pairs such that it is in close agreement with the diffusion limited
association rate of two spheres itself. This demonstrates that the rate of formation for the
first base pair has a simple physical interpretation since it is so closely tied to the diffusion
limited association rate. The exit time is then determined randomly from an exponential
distribution whose parameter is the sum of the rates for all possible moves leaving the
monomer state as described in Section 3.3. This results in the exponential distribution
having a parameter that is larger than the rate of each individual process for leaving the
monomer, by an order of magnitude in the case of a ten base pair sequence. However,
this is the stochastically correct method for determining the time at which the trajectory
will leave the monomer state and is equivalent to selecting the first reaction that occurs
out of all possible reactions each time the trajectory leaves the monomer state.34 This
can help intuitively explain why the exit time for leaving the monomer state is often, but
not always, faster than the rate for leaving the monomer state given by Sks. Additionally,
the probability of an initial encounter proceeding to the fully formed dimer state has been
determined by coarse-grained MD simulations and forward flux sampling to be very small,
potentially below 1%.49 This means that a large number of encounters would be expected
to occur during the process of two monomers associating to form a fully formed dimer
requiring that the formation of the first base pair be multiple orders of magnitude faster
than the timescale for the overall association. This however does not fully account for the
relatively large rate of formation for the first base pair suggesting that other factors are
likely impacting it as well. One such factor that merits further evaluation is the contribution
of diffusion to the process. In the model the two monomers must diffuse into proximity
each time the first base pair is formed. However, this is not physically realistic. When two
monomers are formed due to breaking the only intact base pair they will not necessarily

break apart and could reasonably be expected to quickly reform a base pair without a
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significant contribution of diffusion to that rate. This would occur significantly faster relative
to two monomers that need to diffuse together prior to forming a base pair. Since the model
does not distinguish these events, and considers the diffusion contribution to be the same
each time, this could potentially factor into the relatively fast rate of forming the first base
pair between two monomers returned by the model.

Based on the definition of k¢ it would not be intuitively expected to have any significant
dependence on length. As such we will now examine this relationship further in an attempt
to figure out potential underlying causes of the relationship seen in Figure 7.3a. Base
pairs that form with a rate of ks are at the end of a series of intact base pairs that have
adopted the proper double helix configuration and the associated stability. This assumes
that o is purely a function of Ngp without considering the number of unpaired bases in the
frayed end. If o approaches a value of one within 4-5 base pairs for all sequence lengths
the length of the remaining frayed end must increase with increasing sequence length,
the effect of which could be considered.?! It has been proposed that diffusion plays a
significant role in the reaction forming a single base pair and it may even be diffusion-
controlled. 1412 A longer frayed end could slow down diffusion, due to increased drag
and a larger mass, and the rate of formation for a single base pair relative to one with
the same number of previously intact base pairs but a shorter frayed end. This could
potentially explain the decreasing value of k¢ with increasing length. If o; reaches a value
of one too early the model may compensate by reducing k¢, an effect that would increase
as the length of the frayed ends increases. This suggests that a better definition of o;
might consider both Ngp, for steric and stability considerations, and the length of the
frayed end to account for diffusion. However, over the length of sequences studied here
the changes due to slight differences in frayed end length would likely be small and have
no significant impact.21 This makes it unlikely to be the sole cause of the decrease in ks as
a function of length seen here; especially considering that ks decreases by multiple orders

of magnitude.
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We must also consider the potential role of temperature since the longer sequences
were studied at higher temperature due to their increased thermodynamic stability. The
fact that the trend is fit so well to an exponential suggests that the data would be lin-
ear on an Arrhenius plot, albeit with a negative activation energy, which is inconsistent
with the small positive activation energy expected for a diffusion-controlled process. A
negative activation energy for ks might initially make sense given the well documented
negative activation energy for the overall DNA association reaction that is commonly ob-
served, particularly at high temperatures. 11.12,28,29.35 However, both our results and the
literature consistently relate the negative activation energy to the early stages of the asso-
ciation mechanism, the formation of the critical nucleus, rather than the elementary rate of
formation for a single base pair.411:12.28 Additionally, if we consider a diffusion-controlled
reaction to have an activation energy around or below 4-5 kcal/mol 19 we can use that as
an estimation of a reasonable magnitude for the activation energy of ks regardless of sign.
In this case an estimation of the activation energy for k¢ observed here would be over five
times greater than the magnitude of a diffusion-controlled reaction.

One final thought on the values of &; focuses on the shorter lengths where the most
significant decrease in ks is observed. It is interesting that for these sequences the value of
o approaches one at approximately the fifth base pair for both the six and eight base pair
sequences. For longer sequences this remains relatively constant and does not increase
further within this length regime. It is interesting to note that as a result of this the two
shortest sequences, particularly the shortest one, don’t have a significant portion of the
reaction that proceeds by zipping at the "speed limit". This does raise some questions
over the conceptual definition of k; as the "speed limit” for base pair formation since the
shorter sequences do not undergo rapid zipping at the "speed limit” to nearly the same
extent. While no further conclusions can be drawn based on the current information it is
interesting to note that the value of ks appears to level off once it reaches lengths where a

number of sequential base pairs are formed at the "speed limit”.
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The final influence on the k¢ value is its use in calculating the 5 parameter that at-
tenuates the rate of formation for the first base pair. A smaller ks leads to a larger 5 so
the model may be using &z to tune (5 to account for some currently unaccounted for factor.
Since  attenuates the rate of formation for the first base, which includes a significant dif-
fusion component, there should be significant temperature and length components, since
longer monomers have greater mass. While the calculation of 5 does carry a temperature
and length dependence it may be insufficient and k; is accounting for this as a result, which

could contribute to the observed trend with length.

7.4.2 Energetic Driving Forces Behind DNA Dynamics and Kinetics

Our attention now turns to the driving forces behind the trends observed in the in-
dividual pathways and overall barrier crossing mechanisms. Two general motifs were
observed, initiating association in the center and initiating at or near a G:C base pair that
forms early on. We will now demonstrate that the center initiated motif is entropically
driven while the G:C base pair initiated motif is enthalpically driven. These motifs may
overlap, resulting in the enthalpic and entropic components driving the same pathways,
or they may drive competing pathways.

To demonstrate the entropic nature of the center initiated motif we start with the in-
creased preference for the pathways that follow it, best observed in the top pathway for
AT-all in Figure 7.7. The thermodynamic lattice model shows that for configurations with
a given Ngp the highest entropy state is the one with two frayed ends of equal length, or
if an odd number of broken base pairs exists one frayed end is a single base pair longer
than the other. The next highest entropy states are those that have two frayed ends but
with unequal lengths and the entropy decreases as the difference between the two grows.
Finally, the lowest entropy configuration is the one with only a single frayed end. Since
the entropy of the system is reduced each time a base pair is formed it is preferred to go

to the configuration with the highest possible entropy. This explains the ranking of center
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initiated pathways, best seen in AT-all in Figure 7.7.

Since the pathways that initiate at or next to the terminal G:C base pairs in the CG-
ends sequences are expected to have a higher entropic cost, the relative preference for
these pathways must be enthalpically driven. This is not particularly surprising as G:C
base pairs are known to be more stable and it has been previously proposed that they
play a role in the early stages of the association process for this reason. 2’

The influence of these enthalpic and entropic driving forces is also seen in Figure 7.9.
For GC-core both contribute to the strong dominance of initiating in the center. For the
CG-ends sequences the entropic benefit contributes to the dome shape in the center and
the enthalpic benefit contributes to the preference for the position next to the G:C termini.
However, these factors alone cannot account for how unlikely it is to initiate at the termini
which means there must be an additional factor at play with respect to the probability of
initiating at each position.

This factor is an additional entropic benefit to initiating near the center of the sequence
that does not appear until the entire distribution of pathways is considered. There are more
pathways that can initiate in the center compared to positions nearer to the ends. A clear
example of this is that only one pathway initiates at each terminus, the most dominant CG-
ends pathway that zips straight across, whereas there are numerous pathways initiating
in the middle generated by changing the order in which bases are added to both sides.
Even though these pathways become increasingly unlikely, when combined together the
contribution becomes significant. This provides an explanation for why in Figure 7.9 the
dome shape in the center becomes more prominent with increasing length. As sequence
length increases combinatorics dictates that the number of pathways available to positions
in the center will increase at a faster rate relative to positions closer to the end and there
can only ever be one pathway initiating at the termini. The number of available pathways
for each position along a sequence follows the binomial distribution and can be found by

looking at the row of Pascal’s triangle that contains the number of entries equal to the
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sequence length. The preference for initiating successful association events in the center
is thus the result of both the increased number of pathways and the entropic benefit to
each individual pathway. This also explains why the CG-ends termini are surprisingly
improbable when considering the full distribution of pathways; while it is the most probable
pathway, it is also the only pathway.

Evidence for the energetic driving forces is also observed in how temperature impacts
the preference for different initiation positions. These effects can be seen in Figure 7.9.
With increasing temperature each CG-ends sequence shows a decrease in the prefer-
ence for initiating in the center and a corresponding increase for initiating at or next to a
G:C base pair. With increasing temperature GC-core’s preference for initiating at the G:C
base pairs in the center increases, even though both the entropic and enthalpic driving
forces drive this preference. Increasing temperature magnifies the contribution, to the as-
sociation free energy barrier, of the unfavorable entropy due to forming base pairs. This
means that both increasing the enthalpic gain, by prioritizing G:C base pairs, and minimiz-
ing the entropic penalty, by initiating near the center, would help to minimize the increase
in the association free energy barrier with increasing temperature. The fact that for all
sequences the probability of initiating at G:C base pairs increases suggests that the addi-
tional enthalpic benefit gained from forming G:C base pairs early in the process provides
a more significant benefit, with regards to mitigating the effect of increasing temperature,
relative to minimizing the entropic penalty by initiating in the center.

Additional evidence for the greater significance of the enthalpic driving force is seen
in the ranking of CG-ends pathways in Figure 7.5 where for each length at least the top
two pathways are enthalpically driven. Furthermore, these pathways are expected to be
very entropically unfavorable but, as a result of the favorable enthalpy, are significantly

more probable than the most favorable entropically driven pathway for each length.
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7.4.3 Literature Comparison

Before ending the discussion of individual pathways and the overall mechanistic pic-
ture it is important to make comparisons to the literature. Coarse-grained MD simulations
have found that contacts in the center of the sequence are critical for hybridization, par-
ticularly in the case of more randomized sequences where internal rearrangement is not
possible.7v8 For both randomized and repetitive sequences nucleation is biased towards
the center’ and one study found that middle to middle nucleation events represent more
than 80% of all those possible for all oligos examined.® All of which is in great agreement
with our findings.

Considering G:C base pairs, it has been proposed that sequences that contain them
are expected to initiate at their position.27:3% While we do find a preference for forming
at or near G:C base pairs, it is still very location dependent and not overwhelming. While
the findings for GC-core do show that a large number of initiations will occur at the G:C
base pairs it is still less than 50% of all initiations for all temperatures in the range studied
here. For CG-ends this number is even lower with initiation at the terminal G:C base pairs
making up less than 28% of all initiations for the shortest sequence and less than 12% for
the longest sequence. This further demonstrates that, for CG-ends, while initiating at a
G:C base pair does appear to result in a dominant individual pathway, when considering
the mechanism as a whole the relative significance of that pathway diminishes, particularly

for longer lengths.

7.4.4 Identity of Critical Nucleus and Transition State

While the identity of the transition state, and the related and often discussed critical
nucleus, has received significant attention in the literature it has remained elusive and
difficult to definitively observe, particularly through experimental methods. In this section
we will start by further clarifying the relationship between the transition state and the critical

nucleus. We will then dive into different angles of analysis that directly probe either the
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critical nucleus or the transition state ensemble. In both cases our primary focus is on
their size and location while also identifying trends as a function of sequence length and
temperature.

Before jumping in it is worth ensuring that the terminology used and the connection
between the terms is clear. The critical nucleus, shown in Figure 1.1 is defined as the
minimum number of base pairs such that the partially formed duplex is stable and the
remaining base pairs rapidly zip up in a sequential and downhill fashion orders of mag-
nitude faster than the formation of the critical nucleus. The transition state is defined as
the configuration at the peak of the reaction free energy diagram such that the probabilities
of going to the monomer and fully formed dimer states are roughly equal. It is important
to recall that there is an ensemble of configurations that fits this definition due to the dy-
namical nature of the reaction and the multitude of available pathways. Comparing the
definitions makes the relationship between them clear. Considering a two-state reaction
diagram for a particular pathway the transition state is at the highest free energy point and
the critical nucleus is just off the peak on the side of the dimer. Throughout this section
the two terms are both used since different analysis methods are focused on one or the
other. However, by keeping their relationship in mind, any insights into one can be applied
to the other.

While it may seem overly complicated to utilize both of these related, but not identical,
reaction intermediates it will hopefully become clear why both are useful components of
the analysis. A concrete example of why it is useful in the context of this model to utilize
both the critical nucleus and the transition state comes from the committor values used to
determine transition state configurations. As mentioned previously, Figure 7.10 demon-
strates how there are a number of pathways that do not have a transition state according
to the definition used here. However, each pathway must have a configuration that fits
the definition of the critical nucleus. While the critical nucleus may not be the most obvi-

ous or intuitive point of emphasis within the association process, each association event
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must contain a critical nucleus, making it a useful configuration to highlight, particularly for
pathways where no transition state exists.

Looking at the individual pathways provides the first insight into the size of the critical
nucleus. For both GC-core and CG-ends, pathways that form a G:C base pair in the
first or second step are more probable than those that form a G:C base pair later, with the
difference being particularly striking when forming the G:C base pair first as can be seen in
Figures 7.6 and 7.8. This suggests that the additional enthalpic benefit from forming a G:C
base pair is significantly less advantageous after the first two base pairs have been formed.
This is also supported by the plots in Figure 7.9 where a decrease in probability is seen
between initiating at the second and third base pairs from the end. Changes in Figure 7.9
with temperature provide support as well. At higher temperature as the enthalpic benefit
from the G:C base pair becomes more important. For both GC-core and CG-ends, the
positions at or next to a G:C base pair increase in probability while all other positions
decrease, further demonstrating that forming a G:C base pair in the third step provides
relatively less benefit. This suggests that the partially formed duplex is stable prior to the
third base pair forming implying a critical nucleus of two base pairs, in good agreement
with the literature. 41112 |t is also in reasonable agreement with our experimental results
discussed in Chapter 6. While there are no clear trends in critical nucleus size with either
length or temperature, the forward committor values, which already demonstrated that
small trends exist, are better suited for analyzing them and we will do so later on.

Two additional interesting observations can be made based on a critical nucleus size
of two. The first demonstrates an interesting connection between the enthalpic benefit
from forming G:C base pairs and the critical nucleus. The enthalpic benefit is signific-
antly greater if the critical nucleus is not yet formed. The second observation provides
some insight into the relative dominance of the top two CG-ends pathways. These two
dominant pathways are the only ones that contain a critical nucleus with a G:C base pair,

presuming a critical nucleus size of two. Looking at the additional stability of G:C base
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pairs we note that while G:C base pairs do have some additional stability, relative to A:T
base pairs, from the extra hydrogen bond, the larger component of the additional stability
comes from increased stacking interactions. 32:33 |f one assumes that the full benefit from
stacking requires the neighboring base pair be intact it would be expected that the two
pathways would have roughly the same probability. Since this is not the case, and the dif-
ference in probability between the two is quite large, this might suggest that the G:C base
pair is gaining additional stability due to stacking interactions with its unpaired neighbor.
This would suggest that the frayed end is adopting a relatively structured conformation
that allows for some stacking interactions. While this observation is interesting it is worth
noting that this model does not resolve the conformation of the frayed end and further
investigation is necessary utilizing methods, such as coarse-grained MD, that are better
suited for directly probing frayed end conformations.

The analysis of the critical nucleus also provides insight into the relative likelihood of
it forming at different positions along the sequence. Presuming that the critical nucleus
contains two intact base pairs, looking at the probability of initiating at different positions
shown in Figure 7.9 provides some insight into the location of the critical nucleus. This
suggests that for the GC-core sequence the critical nucleus has a very high probability
of forming near the center while in the case of CG-ends it is likely to be found either
near to the center or contain a terminal G:C base pair, with the balance between the two
having a temperature dependence. This rationale behind this conclusion follows the same
reasoning as the relative probability observing initiations and various locations discussed
earlier.

We now shift to analyzing the transition state ensemble by examining the committor
values that are shown in Figures 7.10, 7.11, and 7.12. Across all of the different tem-
peratures and sequences the configurations with committor values in the range shown
are made up of two or three base pairs which is consistent with the size of the critical

nucleus of two base pairs. This is also in good agreement with the size of the most com-
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mon configurations in transition state ensembles for similar sequences determined utilizing
coarse-grained MD simulations. -8

Now we will use the transition state analysis utilizing the committors to explore how
the configurations in the transition state evolve as a function of different variables includ-
ing temperature, sequence, and length. It is helpful to discuss these trends in conjunc-
tion with reexamining the experimental critical nucleus analysis presented in Chapter 6
considering the new insight and context provided by the model. This is done because the
analysis of the committors provides the best ability to independently analyze each variable
while controlling for the others. The experimental results found that the critical nucleus re-
quires additional intact base pairs at longer lengths because the additional enthalpic gain
is needed to overcome the increased entropic penalty from binding longer monomers.

One drawback of the experimental data is that even with the ability of IR spectroscopy
to independently resolve A:T and G:C base pairs the kinetic analysis is limited to a relat-
ively broad approach that assumes a two-state mechanism. This means the experimental
data is unable to distinguish where along the sequence the critical nucleus forms but, as
we have demonstrated, the model can. The experimental analysis presumed that the first
dinucleotide to form was the terminal CA dinucleotide, the most likely initiation position ac-
cording to our thermodynamic model and the literature.2”-3% Since our work suggests that
the critical nucleus should be made up of two base pairs or more it is not significant which
of the two base pairs in the CA dinucleotide formed first. So the analysis used to determ-
ine the size of the critical nucleus from experiment assumes the association mechanism
follows one of the top two pathways shown in Figure 7.5 for all lengths. While they are
the most dominant their combined probability is still only 20-40% depending on sequence
length. However, utilizing the same analysis assuming that the critical nucleus forms in
the center and contains no G:C base pairs does not significantly change the predicted size
of the critical nucleus. This is because changing a single G:C base pair to an A:T base

pair is not a huge effect, though the effect would become more significant in sequences
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with more G:C base pairs.

However, since this analysis is conducted with the activation enthalpy determined
from a two-state analysis of the data, it assumes the entropic penalty is the same re-
gardless of where the critical nucleus forms. Since the analysis determines the number
of dinucleotides necessary to equal or surpass the experimentally determined activation
enthalpy, changing the initiation point changes what dinucleotide units are included but
not the target enthalpy. The model has demonstrated that the entropic penalty depends
on initiation position, which is not considered in the analysis of the experimental data. So
while changing the initiation position did not change the size of the critical nucleus, it would
be interesting to see if that is still true if the position dependence of the entropic penalty
were fully considered. More generally, the ability to determine the activation enthalpy
and entropy for individual mechanistic pathways would provide the ability to explore these
questions with significantly more detail and provide valuable information on what drives,
and distinguishes, the different available mechanistic pathways.

We continue our analysis by examining trends as a function of temperature and how
they influence our understanding of the kinetics. Figure 7.11 shows that transition state
configuration size increases with increasing temperature. It has also been established that
the critical nucleus size is correlated to the activation enthalpy. Increasing the number of
base pairs in the critical nucleus increases the activation enthalpy as well. Since activation
enthalpy is very closely related to activation energy determined by Arrhenius analysis this
demonstrates a direct connection between the commonly discussed non-Arrhenius beha-
vior of DNA association kinetics with the transition state and critical nucleus. 43 This also
helps explain why, as mentioned in the literature, the pre-equilibrium step is responsible
for the negative activation energy of association.411:12.28 The critical nucleus increases in
size with increasing temperature, and the individual configurations that are formed along
the path to the critical nucleus are less stable and more prone to dissociating back into

the monomers. This makes the critical nucleus harder to form at higher temperatures.
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More time is spent fluctuating between configurations prior to forming the critical nucleus
resulting in a slower rate. Since the zippering portion of the reaction is many orders of
magnitude faster regardless of temperature the overall association rate decreases with
increasing temperature resulting in the negative activation energy of association.

It is interesting to note that the argument for why the critical nucleus increases in size
with increasing temperature is almost identical to the argument for why it should increase
with increasing sequence length. In both cases extra base pairs in the critical nucleus are
necessary to offset additional instability, whether it is due to higher temperature, or the
larger entropic penalty that comes with increased sequence length. The decrease in the
forward committor values for configurations with a given number of intact base pairs that
occurs as a result of increasing length, independent of temperature changes, is shown
in Figure 7.10. The fact that both have similar physical explanations, in addition to the
kinetic model suggesting that both trends exist, further supports the conclusion that both
independent trends in the model are smaller in magnitude then the trend observed in
experiment because the trend in experiment carries contributions from both effects.

The final aspect, as shown in Figure 7.12, is the effect of moving the G:C base pairs
around in the sequence. For the GC-core sequence configurations of three base pairs that
include a terminal base pair have a relatively high probability of returning to the monomer
state. If a configuration with three base pairs includes even a single G:C base pair the
probability of going to the fully formed dimer state is very high. This suggests that even
within a given sequence, the critical nucleus size may differ depending on where along

the sequence it forms and what its base pair composition is.

7.4.5 Fast Dynamics and Fraying

As we have previously established the amount of time GC-core sequences spend,
during the trajectories, as a partially formed duplex is representative of fraying. At longer

lengths the CG-ends sequences are also observed to spend more time as partially formed
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Figure 7.17: Expected number of visits to configurations with each Ngp, normalized to the
total number of expected visits to all configurations during the trajectory, for a trajectory
starting in the fully formed dimer state for 5’-ATATGCATAT-3’ (a-f) and 5’-CATATATATG-3’
(g-1). 5-ATATGCATAT-3’ was calculated at 315 K (a), 320 K (b), 327 K (c), 333 K (d), 339
K (e), and 343 K (f). 5-CATATATATG-3’ was calculated at 319 K (g), 322 K (h), 325 K (i),
328 K (j), 330 K (k), and 334 K (I).

duplexes, though the distribution of time as a function of Ngp has a different form as seen
in Figure 7.16. The amount of time spent in a state over the course of a trajectory depends
both on the number of times that state is accessed and the duration of each visit. To start to
understand the interplay between these factors we can look at the fundamental matrix from
the absorbing Markov chain analysis introduced in Section 3.5. Briefly, the fundamental
matrix N contains the elements n;; which are the expected number of times a trajectory
will visit transient state j given that it started in transient state ;. To determine the number
of visits to each possible configuration for a dissociation trajectory the monomer is set
to be the only absorbing state and i is the dimer state. Figure 7.17 shows the values
obtained from the fundamental matrix for the GC-core sequence and the ten base pair
CG-ends sequence at each temperature. Combining the expected number of visits with
the average amount of time spent in states with each Ngp value during the course of a
trajectory allows the calculation of the average duration of each visit which is plotted in

Figure 7.18 for the same sequences.
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Figures 7.17 and 7.18 combine to show that the stark differences seen in Figure 7.13,
both as a function of sequence and temperature, are primarily the result of changes in the
number of visits rather than their duration. The normalized number of visits for GC-core
seen in Figure 7.17 very closely tracks the changes in Figure 7.13. A significant drop in
visits is observed for states with nine or ten intact base pairs and a corresponding increase
is observed for states with fewer intact base pairs. The same is true for the CG-ends
sequence of the same length, while the trends in both Figure 7.13 and Figure 7.17 are
much smaller for CG-ends; they still match up quite well.

Looking at Figure 7.18 the average time per visit does not appear to be significantly
affected by sequence, at least to the same degree as the number of visits in Figure 7.17.
The only real significant difference between GC-core and the ten base pair CG-ends se-
quence is the average time per visit to the fully intact dimer state and the state with a
single intact base pair. In the case of these two states the values between the two se-
quences differ by an order of magnitude with GC-core being an order of magnitude smaller
in both cases. For configurations with a value of Ngp ranging from two to nine the average
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amount of time per visit to these states is very similar, easily within an order of magnitude.
Furthermore, both observe the same relative trend of shorter visits at higher temperature
with the fully intact dimer state seeing a substantially larger effect than other configura-
tions. This suggests that the fraying observed in the GC-core sequence is predominately
due to an increase in the relative accessibility of the frayed states rather than any signific-
ant change in the timescales for entering and leaving them. This in turn further supports
the idea that the frayed response is due more to the thermodynamics and probability of
occupying a given state throughout the course of a trajectory rather than the kinetics of
moving between states. The thermodynamics can be interpreted as changes to the reac-
tion free energy surface, particularly the states in the dimer well, which is in agreement
with the free energy surfaces calculated by the thermodynamic lattice model, as previously

demonstrated. While this agreement may not seem surprising, since the kinetic model util-
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Figure 7.19: Lattice model free energy surfaces at 333 K for 5-ATATGCATAT-3’ where
blue denotes the most favorable free energy and red the least. Configurations on or below
the black dashed line must include at least one bubble and are therefore not allowed. The
white dots represent the top six pathways predicted by TPT in descending order (a-f). The
probability of a successful association event occurring along each pathway according to
TPT is: 10.84% (a), 8.68% (b), 6.45% (c), 4.18% (d), 3.99% (e), and 2.94% (f).
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izes the free energies from the lattice model, the lattice model does not contain any kinetic
considerations. Through incorporating the kinetics of the system into the analysis of the
fraying dynamics we now have clearer evidence that the thermodynamics are the driving
force behind the fast fraying dynamics and role of the kinetics is relatively minimal.

To further examine the role of the thermodynamics as the driving force for the disso-
ciation we can directly examine the free energy surface from the lattice model? along with
the dominant pathways determined by the TPT analysis which are shown in Figure 7.19.
The free energy surface runs from red (largest free energy) to blue (lowest free energy).
The white dots represent the pathway determined by the TPT analysis. Any configuration
that lies below the dashed black line must include at least one bubble and is thus not in-
cluded in the kinetic model. The top three pathways, particularly the top two, follow a clear
trend where they keep the frayed ends on each side short which also tracks the pathway
with the lowest free energy. In particular when the top pathways have one or two intact
base pairs they enter a clear valley in the free energy surface where the length of the
longest frayed end is 4-6 base pairs and the remaining pathways all have longer frayed

ends at this point. This also provides another method for visualizing the dominant unfold-
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Figure 7.20: Expected number of visits to configurations with each Ngp, normalized to the
total number of expected visits to all configurations during the trajectory, for a trajectory
starting in the fully formed dimer state at the lowest and highest temperatures studied for
each 5-C(AT),,G-3’ sequence as follows: n =2 at 306 K (a) and 317 K (b), n =3 at 315 K
(c)and 333 K(d), n =4 at 319 K (e) and 334 K (f), n = 5 at 325 K (g) and 340 K (h), and
n =6 at 328 K (i) and 342 K (j).
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Figure 7.21: Average time per visit, in seconds, to configurations with each Ngp at the
lowest and highest temperatures studied for each 5’-C(AT),,G-3’ sequence as follows: n
=2 at 306 K (a) and 317 K (b), n =3 at 315 K (c) and 333 K (d), n =4 at 319 K (e) and
334 K (f), n =5 at 325 K (g) and 340 K (h), and n = 6 at 328 K (i) and 342 K (j).

ing motif of preferentially maintaining two frayed ends that are of roughly equal length. It
can be clearly seen in Figure 7.19 that pathways four, five, and six have longer frayed
ends along most, if not all, of the Ngp values for the dissociation and also make their final
barrier crossing with a longer frayed end, higher up on the y-axis, that clearly has higher
free energy values.

The same analysis used for GC-core can now be applied to CG-ends to obtain more
insight into their fast response. Figure 7.20 shows the normalized number of visits for the
highest and lowest temperatures for each length of CG-ends sequence while Figure 7.21
shows the average duration of each visit both as a function Ngp. The changes observed
in Figures 7.20 and 7.21 as a function of length can be compared to those in Figures
7.17 and 7.18 as a function of sequence, while also comparing changes as a function of
temperature to gain insight into the fast dynamics. The trends observed in Figure 7.21
as a function of length and temperature very closely match those seen in Figure 7.18 for
sequence and temperature. In Figure 7.21 the magnitudes vary between plots but they

all have the same general shape. The average visit length also slightly decreases with
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temperature for all states except the fully intact duplex state which sees a sharp decrease.
The trends in Figure 7.20 are a close match to the trends in the average time per visit to
states with each Ngp in Figure 7.16, which is again comparable to what was observed for
GC-core. As length increases there is a relative decrease in the number of visits to the
fully intact dimer state and the state with a single broken base pair with a relative increase
observed for states with more broken base pairs. Additionally, temperature has a signific-
antly larger effect on longer sequences relative to shorter sequences which is comparable
to the comparison between GC-core and the ten base pair CG-ends sequence. The strong
correlation between the effect of increasing length and the effect of moving the G:C base
pairs to the center suggests that the source of the increasing fast response observed with
length is also fraying.

One interesting note between GC-core and the longest CG-ends sequence is that the

experimental fast response for GC-core is of the form of a biexponential while CG-ends
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Figure 7.22: Lattice model free energy surface at 334 K for 5’-CATATATATG-3’ where blue
denotes the most favorable free energy and red the least. Configurations on or below the
black dashed line must include at least one bubble and are therefore not allowed. The
white dots represent the top six pathways predicted by TPT in descending order (a-f).
The probability of a successful association event occurring along each pathway according
to TPT is: 8.02% (a), 5.82% (b), 5.28% (c), 5.14% (d), 5.12% (e), and 5.12% (f).
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is a stretched exponential. While no conclusive evidence is provided here it is interest-
ing to note that at higher temperatures the shape of the distribution for GC-core in Figure
7.13 significantly changes while for the longest CG-ends sequence it stays relatively ex-
ponential in Figure 7.16. Figures 7.17 and 7.20 also mirror this observation. In Figures
7.13 and 7.17 we see that GC-core does stay relatively exponential for the first three or
four temperatures before the distribution starts to change shape. It would be interesting
to see if pushing to higher temperatures resulted in this change occurring for CG-ends or
if the form of the distribution remains consistent. This possible connection between the
functional form of the experimental kinetics and the percentage of time spent in states as
a function of Ngp in the model is interesting. It would imply a connection to the thermody-
namic free energy surface and result in new avenues for understanding the fast dynamics.

The lattice model free energy surfaces with the top six kinetic pathways overlaid for
the ten base pair CG-ends sequence are shown in Figure 7.22. Just like Figure 7.19
for GC-core these show that the most dominant pathways are again closely related to
the thermodynamics. However, in the case of CG-ends the preference for the pathways
after the first one may not seem as inherently obvious since the free energy surface is so
clearly aligned with the top pathway. In particular the third pathway isolated by the kinetic
model seems somewhat counter-intuitive when considering the thermodynamic model.
This helps to illustrate the point that while the thermodynamic model can provide insights
into what the dominant association pathway may be, gaining additional insights requires
a kinetic model.

While the consistencies between the effect of increasing length and changing the
sequence suggest that fraying is a significant contributor to the observed fast response
in CG-ends there are other factors that should be considered. Four other factors will be
considered here as potential sources of the fast response either instead of, or in addition
to, fraying. The first alternative factor is bubble formation which is a partial dissociation

including only internal base pairs. While the final version of the model does not incorpor-
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ate bubble states there are two pieces of evidence from models that we have in addition
to experimental evidence that suggest fraying does not significantly contribute to the fast
response. The first comes from the thermodynamic lattice model that shows that for se-
quences within this length regime bubble states have very high free energies, making
them unlikely to be accessed. This is observed in both Figures 7.19 and 7.22 by looking
at the area outlined by the black dashed line that represents configurations that include
bubbles. This area of the free energy surface has a significantly larger free energy than
any other area on the surface. Knowing the previously established connection between
the thermodynamic free energy and the dominant pathways these plots help to show that
it is highly unlikely for dissociation events to occur that involve passing through these high
energy bubble states. Early iterations of the kinetic model, which also utilized the Gillespie
algorithm but were parameterized differently, included bubble states for short sequences
of six and eight base pairs. In these early trials the bubble states were not significantly
accessed and there was no observable difference between the results of the kinetic model
with and without bubble states. In the CG-ends experimental results the fast response is
observed in both the A:T and G:C response. Bubble formation must keep G:C base pairs
intact, so even ifit occurs it cannot be the only fast dynamics occurring since these dynam-
ics involve dissociating G:C base pairs. Thus, while bubble formation cannot entirely be
ruled out it does not appear likely and also cannot be the sole cause of the fast response.

The second possible contributor is an increasingly heterogeneous initial dimer pop-
ulation. Increasing heterogeneity can lead to an increasingly stretched rate distribution
since configurations with fewer intact base pairs could dissociate faster. This would in-
crease with length since longer lengths have more stable intermediates causing a more
diverse equilibrium population distribution. However, the model suggests this would not
generate a stretched exponential rate distribution. Running the model starting in the fully
formed dimer state and a large variety of intermediates results in indistinguishable mean

first passage times. It is worth pointing out that the model itself struggles to capture the

212



effect of non-two-state kinetics, so it may be that the model is unable to capture the dif-
ferent timescales. This would likely be tied to the construction of the model as a Markov
state Monte Carlo method. According to the forward committor values, configurations with
more than three intact base pairs are more likely to go to the dimer state than the monomer
state and with more intact base pairs the probability quickly becomes well over 90%. This
means that trajectories that start in an intermediate configuration will likely go to the fully
formed dimer. At that point, since the model is memoryless, this is the same as starting
a trajectory in the fully formed dimer state, but at a time later than time zero. Thus, while
the model predicts that a heterogeneous dimer configuration is not responsible for the fast
response, it could be due to a limitation of the method used rather than a fully accurate
representation of the physical system.

The third possible contributor is similar in that it affects the distribution of rates itself,
but rather than being due to a distribution of initial states it is instead the result of a distri-
bution in mechanistic pathways that share common initial and final states. This has been
proposed as an explanation for stretched exponential kinetics observed in proteins. 36 The
model does cast some doubt on this because the distribution of first passage times is an
almost perfect exponential distribution. Since the model does take into account a number
of different pathways across the many trajectories this would suggest that an increased
distribution of pathways is not responsible for the fast response. However, this is another
case where the inability to capture the effect of non-two-state kinetics means that this can-
not fully rule out a distribution of pathways as the cause of the observed fast dynamics.

The final possible explanation discussed here is mismatched initial states. In some
ways this is a more extreme case of the heterogeneous dimer distribution in that partially
formed intermediates in the initial population distribution cause the fast response. These
configurations are inherently less stable than the fully formed duplex and when samples
are properly annealed the number of mismatched sequences should be very low. How-

ever, at longer lengths the repeating AT dinucleotide section in the center does allow for
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numerous consecutive mismatched bases to form making them more stable than they are
for shorter lengths. Additionally, it would not be unreasonable that over the course of a
temperature-jump experiment repeatedly breaking apart and reforming the duplexes for
multiple hours might increase the presence of mismatches. Mismatches are not allowed
by the model so only the experimental results can provide insight into the potential role
of mismatches. While we already discussed why starting from a configuration that is not
a fully formed duplex is an unlikely explanation for the increasingly stretched kinetics a
mismatched sequence would likely result in a more significant deviation in the kinetics.
There are two potential reasons for this, the first is that mismatches by definition can-
not have any intact G:C base pairs for the CG-ends sequences since the complimentary
base pairs must shift out-of-register. This results in a less stable configuration than a par-
tially formed in-register configuration that can contain a G:C base pair. Additionally, an
in-register partially formed configuration can, and for some intermediates likely will, reform
the fully formed duplex state. While a partially formed out-of-register structure could add
additional base pairs in some situations, it cannot reach the fully formed duplex without
either fully dissociating first, or undergoing a more complex mechanism. Thus it has a
lower ceiling for stability and could be expected to dissociate faster. However, the fact
that there is a fast response for the G:C and A:T base pairs means that out-of-register
mismatches cannot be solely responsible for the fast response. This is because a shifted
registry state, the most stable possible mismatch for these sequences, can not include
intact G:C base pairs.

Ultimately, this results in a position where, even with the model, we are still unable
to definitively provide a clear explanation for the cause of the fast response seen in CG-
ends that grows in with length. However, we have gained additional insight beyond the
experimental results. The kinetic model provides strong evidence that fraying dynamics
are occurring and contribute to the CG-ends fast response while also suggesting that it

may be the most significant contributor. While the other alternatives cannot be definit-

214



ively ruled out there is evidence that they are less significant or unlikely to contribute at
all. This is especially true for the cases of a heterogeneous dimer population and a distri-
bution of pathways where the model provides some evidence, though inconclusive, that
these factors do not contribute to the fast response. Additionally, mismatches, hetero-
geneous initial populations, and bubble formation would not result in a fast G:C base pair
response. Furthermore, in the given length regime bubble states are not particularly ac-
cessible as suggested by both the thermodynamic lattice model and early iterations of the
kinetic model. This strongly suggests that the driving factor behind the increasing fast dy-
namics is fraying with a possibility that mismatched sequences might provide an additional

small contribution.

7.5 Future Directions

The relative simplicity of the model makes it easily accessible to future researchers
while also providing significant versatility for incorporating further improvements. This can
come in the form of both the incorporation new experimental data in addition to further
improvements to the construction of the model. One aspect that will be critical for future
development is expanding the library of experimental data for comparison and fitting. Any
work to incorporate additional parameterization will benefit greatly from additional data
to avoid concerns of overfitting while also improving the models ability to explore and
decouple parameters such as length, sequence, and temperature.

There are a few particularly clear avenues for potential alterations to the construction
of the model. The first is a direct consideration of temperature with respect to k. While
preliminary explorations have suggested that the temperature dependence is small and
trends so far have been inconsistent a more explicit consideration of the relationship may
provide new insights. This would be particularly interesting with regards to the CG-ends

sequence where a trend in ks emerged and its dependence on length and temperature
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cannot be fully decoupled. Acquiring a larger range of temperatures in the experimental
data and altering the way in which £; is defined in the model could shed new light on this.
Another interesting avenue for exploration would be decoupling the g and ks parameters.
This might not only clarify the interpretation of both parameters but also provide more in-
sights into the diffusion to capture component of the association mechanism that is known
to be a highly influential and complex portion of the mechanism.

A significant improvement in both our understanding of the model and its parameters
could lead to deciphering trends in the parameters as a function of basic variables such
as length, sequence, temperature, and additional effects such as salt concentrations. If
these trends can be isolated the model could potentially shift from fitting experimental data
to become a predictive model. This would have numerous significant benefits beyond the
ability to provide insights into sequences without experimental data. Currently, a signi-
ficant component of the computational expense lies in the fitting and parameterization of
the model. Eliminating the need for this would allow new avenues to become accessible.
This would open up the possibility of adding in additional allowed configurations such as
bubble states or even out-of-register base pairs. This would provide the ability to extend
the model out to longer sequences that contain richer and more complex dynamics where
these alternative configurations become more relevant. Additionally, more complex mech-
anisms such as pseudoknot association, which has been observed by coarse-grained MD
simulations, would become allowed by the model. Not only would this provide the ability
to expand the models out to longer lengths but also could shed some light on the dynam-
ics responsible for the fast response observed for the CG-ends sequences. The ability of
the model to replicate such rich dynamics would nicely compliment ongoing experimental
technique development into new ways to probe the kinetics and dynamics of DNA which
together can continue to provide novel insights into the complex questions surrounding

the association and dissociation of DNA duplexes.
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7.6 Conclusions

The two parameter Markov state Monte Carlo model presented here is able to reas-
onably reproduce the experimental results while also producing findings that are in agree-
ment with existing coarse-grained MD simulations that are significantly more complex and
computationally expensive. The model shows that the initiation position for a success-
ful association barrier crossing, which corresponds to the location of the critical nucleus
and transition state, is driven by two factors. An entropic contribution that preferentially
drives initiating at the center of the sequence and an enthalpic contribution that preferen-
tially drives initiating near G:C base pairs if present in the sequence. The effects of these
energetic forces, particularly the enthalpic benefit, become far less significant after the
formation of the first few base pairs which is in agreement with the canonical nucleation-
zipper mechanism and the corresponding critical nucleus. Based on insights gained by
looking at the dominant association mechanisms and the relative stability of intermediate
configurations the critical nucleus is predicted to be on the order of two to three base pairs,
in excellent agreement with predictions from the literature.478 Additionally, the model
provides evidence that the critical nucleus is expected to increase in size with increasing
temperature and sequence length. This is consistent with the insights into the energetic
driving forces gained from the model, our own experimental findings on length, and res-
ults in the literature on the effects of temperature.4 With regards to fast dynamics prior to
the full dissociation of the duplex, the model recreates the fast fraying dynamics exper-
imentally observed for GC-core and provides further evidence that these dynamics are
primarily driven by thermodynamic factors and the reshaping of the free energy surface
rather than kinetic factors. Additionally, the model suggests that the origins of the increas-
ing fast response observed with increasing length in the CG-ends series is similar to those
observed in the GC-core sequence suggesting that fraying plays a significant role in these

dynamics.
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Appendix 7A: Kinetic Model Example for a Three Base Pair Sequence

To better visualize the construction of the kinetic model it is useful to demonstrate the
possible states, and allowed moves between them, utilizing a basic example. Considering
a simple model sequence of three base pairs there are initially eight possible configura-
tions the system can adopt. Utilizing a binary representation for the configurations where
a one represents a site with an intact base pair and a zero represents a site with a broken
base pair the possible configurations are given in Table 7.2. With the assumption that
bubble states, such as the state denoted (1,0,1), are not sufficiently populated to have a
significant impact on the simulations we are left with seven remaining configurations that
are indexed. From these seven configurations, utilizing the allowed moves described in
section 7.2.1, there are 18 allowed moves between configurations for this three base pair
sequence. The resulting reaction scheme is shown in Figure 7.23 and shows the 18 al-
lowed moves between the configurations. Now the rates for each allowed moves must
be calculated. Calculating the rates as described in section 7.2.4 for each allowed move
results in the transition rate matrix, L for moving from state ¢ (rows) to state j (columns)
where zeros denote a move that is not allowed by the reaction scheme shown in Figure
7.23. For the sake of making the table easier to read the diagonal elements of the mat-

rix, which are equal to the negative of the sum of the off diagonal elements for that row,

Table 7.2: All possible configurations for a sequence with three base pairs.

index | configuration
1 (0,0,0)
2 (1,0,0)
3 (0,1,0)
4 (0,0,1)
5 (1,1,0)
- (1,0,1)
6 (0,1,1)
7 (1,1,1)
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Figure 7.23: Diagram of moves allowed by the kinetic model for a three base pair DNA
sequence.

have been replaced with a dashed line. Here G; refers to the free energy of the configur-
ation which is calculated from the lattice model, R is the ideal gas constant and T is the

temperature at which the system is evolving.

Table 7.3: Transition rate matrix for a three base pair sequence.

i 10,00 | (1,00 | 0,1,0) | (0,0,1) | (1,1,0) | (0,1,1) | (1,1,1)

(0,0,0) - Bl1 Bl Bl 0 0 0
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RT e RT
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(1,1,1) 0 0 0 0 Bl | — B | -
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Appendix 7B: Comparing the Percentage of All Association Barrier
Crossing Events that Initiate at Each Position Determined by Trans-

ition Pathway Theory and the Stochastic Trajectories

This appendix contains plots showing the percentage of all association barrier cross-
ing events that initiate at each position for the CG-ends and GC-core sequences. Each
figure contains the values determined by the TPT analysis, also shown in Figure 7.9, and
directly from the trajectories. These plots show that the results from the two methods are

in good agreement with one another.
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Figure 7.24: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATG-3’ from the stochastic trajectories (a-e) and the transition path
theory analysis (f-j). The temperatures are: 306 K (a) and (f), 309 K (b) and (g), 310 K (c)
and (h), 314 K (d) and (i), and 317 K (e) and (j).
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Figure 7.25: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATG-3’ from the stochastic trajectories (a-f) and the transition path
theory analysis (g-). The temperatures are: 315 K (a) and (g), 321 K (b) and (h), 324 K
(c) and (i), 327 K (d) and (j), 330 K (e) and (k), and 333 K (f) and (I).
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Figure 7.26: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATATG-3’ from the stochastic trajectories (a-f) and the transition path
theory analysis (g-l). The temperatures are: 319 K (a) and (g), 322 K (b) and (h), 325 K
(c) and (i), 328 K (d) and (j), 330 K (e) and (k), and 334 K (f) and (I).
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Figure 7.27: Percentage of all association barrier crossing events that initiate at each
position for 5’-ATATGCATAT-3’ from the stochastic trajectories (a-f) and the transition path
theory analysis (g-). The temperatures are: 315 K (a) and (g), 320 K (b) and (h), 327 K
(c) and (i), 333 K (d) and (j), 339 K (e) and (k), and 343 K (f) and (I).
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Figure 7.28: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATATATG-3’ from the stochastic trajectories (a-f) and the transition
path theory analysis (g-1). The temperatures are: 325 K (a) and (g), 329 K (b) and (h), 331
K (c) and (i), 334 K (d) and (j), 338 K (e) and (k), and 340 K (f) and (I).
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Figure 7.29: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATATATATG-3’ from the stochastic trajectories (a-f) and the transition
path theory analysis (g-1). The temperatures are: 328 K (a) and (g), 331 K (b) and (h), 334
K (c) and (i), 336 K (d) and (j), 339 K (e) and (k), and 342 K (f) and (I).
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