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ABSTRACT

The work presented in this thesis utilized experimental and computational methods to

investigate the association and dissociation of small DNA oligonucleotides. Fourier trans-

form infrared spectroscopy (FTIR) and temperature-jump (T-jump) infrared (IR) spectro-

scopy were used to investigate the thermodynamics, mechanism, dynamics, and kinet-

ics of DNA oligos with the sequence 5’-C(AT)nG-3’ where n = 2-6. To compliment the

experiments a Markov state Monte Carlo kinetic model, intended to be accessible to ex-

perimentally focused researchers with regards to the model’s complexity and computa-

tional expense, was built to simulate association and dissociation trajectories of these

sequences plus 5’-ATATGCATAT-3’ (GC-core) and 5’-ATATATATAT-3’. These sequences

were selected to make a first attempt at separating the different factors that impact DNA

dynamics and kinetics focusing initially on sequence length and composition.

IR spectroscopy is ideal for studying DNA due to its ability to resolve adenine-thymine

(A:T) and guanine-cytosine (G:C) base pairs. Additionally, the kinetics of the sequences

studied here fall within the nanosecond to millisecond time window the T-jump instrument

can resolve. The Markov state Monte Carlo model provides improved base pair resolution

by independently tracking each base pair providing new insights into the mechanism and

dynamics of association and dissociation. The experimental results of the 5’-C(AT)nG-3’

series were analyzed using an Eyring analysis of a two-state model providing a clearer

interpretation of the reaction energetics by extracting the activation entropy, activation en-

thalpy, and activation free energy. Global analysis links the thermodynamic and kinetic

parameters utilizing a linear dependence on oligo length of the entropic and enthalpic ac-

tivation barriers. Analysis incorporating the thermodynamic nearest neighbor parameters

and the experimentally determined activation enthalpy found that the critical nucleus, the

minimum number of base pairs such that the partially formed duplex is stable and will pro-

ceed downhill to the fully formed dimer, increases in size with increasing temperature and

sequence length.
xvii



Association and dissociation trajectories from the kinetic model were analyzed dir-

ectly and utilizing transition pathway theory (TPT). The dominant association pathways,

isolated by TPT, showed two primary motifs: initiating at or next to a G:C base pair, which

is enthalpically driven, and initiating in the center of the sequence, which is entropically

driven. For GC-core these motifs overlap resulting in a strong preference for initiating as-

sociation at the central G:C base pairs. For 5’-C(AT)nG-3’ sequences the paths compete

resulting in a preference for initiating association events either at or next to a terminal

G:C base pair or in the center. Configurations in the transition state ensemble were found

to increase in size with increasing sequence length and temperature, in good agreement

with the literature and the experimentally determined critical nucleus size. Finally, terminal

end fraying experimentally observed in GC-core was replicated by the model and shown to

be driven by increased thermodynamic accessibility of the frayed states after the T-jump.

This was compared to fast dynamics observed for longer 5’-C(AT)nG-3’ sequences, the

physical origins of which were not previously clear, and suggests that this fast response

is also due to thermodynamically driven end fraying.
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CHAPTER 1

INTRODUCTION

1.1 DNA Hybridization and Dehybridization

The hybridization of DNA single strands to their complement and the dehybridiza-

tion of a DNA duplex are fundamental to biological function. There are also a number of

interesting applications of DNA hybridization and dehybridization outside of natural biolo-

gical functions. DNA biosensors use a DNA sequence, commonly a short oligonucleotide,

which upon hybridizing with a specific target of interest generates a detectable signal.

These biosensors can be used to detect a large number of targets including small mo-

lecules, such as drugs, proteins, or complimentary DNA sequences in addition to a wide

range of other applications.1 DNA origami involves designing DNA sequences that fold

into complex three dimensional structures with a wide range of applications.2 Numerous

studies have investigated the thermodynamics and kinetics of the folding process, and

the energetic driving forces behind it, to better understand and predict how these com-

plex structures fold.3–5 Similarly, DNA is a common model system for the study of self-

assembling polymers and is widely used as a building block for nanomachines.6 Another

fascinating application is DNA computing.7 DNA computing takes inspiration from the idea

of DNA as a molecule for information storage and processing. It has been demonstrated

that DNA computers can carry out logical operations,7,8 simple mathematical operations

such as multiplication,9 and could be used as a practical and cost-effective solution for

archiving data.10 DNA computers have even solved a basic version of the Hamiltonian

path problem, a special case of the traveling salesman problem,11 and simple chess

puzzles.12 All of these applications require the consistent, repeatable, and highly selective

hybridization of DNA to function necessitating a complete understanding of the hybridiza-

tion process.

DNA thermodynamics, kinetics, and dynamics all play an important role in a large vari-
1



ety of biological processes. Processes varying from DNA replication to protein expression

all involve the hybridization of nucleic acid sequences ranging from long sequences to

short RNA primers. While it has long been known that the thermodynamic stability of DNA

plays an important role in its biological function, more recent findings have demonstrated

that DNA dynamics and kinetics also play a significant role. DNA undergoes a variety of

dynamical changes including structural changes within an intact duplex and fluctuations

involving the localized loss of base pairing. A large number of distortions to the “ideal”

double helix have been identified and extensively categorized. It has been recognized

that these significantly impact the physical properties of DNA which likely plays a role

in biological processes, particularly protein-DNA interactions.13,14 In addition to these in-

ternal fluctuations it is well known that DNA undergoes dynamical breathing modes, which

range from the localized loss of a single base pair, referred to as base flipping,15 to con-

tinuous stretches of broken base pairs that can grow quite large, which are referred to as

bubbles.16 Base flipping is the process by which a single base ends up in an extrahelical

position, a configuration that is known to be adopted in a variety of instances where a

base is in the active site of a protein. This occurs in the context of a variety of processes,

an example of which is the removal of a mismatched base pair or a modified base pair,

such as a methylated cytosine.17 It has been proposed that the dynamics through which

the base adopts an extrahelical configuration play a significant role in such processes, an

example of which is that these dynamics aid in the recognition of the target base by the

protein.15,17 DNA breathing modes, where base pairs dynamically open and close along

a stretch of the double helix, have been thoroughly studied utilizing a number of different

techniques and have been shown to play a role in a large number of biological processes.

Two such processes, among many others, are the recognition of thymine dimers formed

due to UV damage, which if unrepaired may lead to skin cancer, and the initiation of DNA

transcription, one of the most fundamental processes in biology.16,18–22

The thermodynamics of nucleic acid hybridization and dehybridization have been ex-
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tensively studied by experimental and computational methods. While the thermodynamics

of DNA are quite well understood, there are still many details regarding the kinetics and dy-

namics that are not. In particular, even though initial kinetic studies were conducted over

half a century ago and continue to this day, questions about the description of the energy

landscape and underlying mechanism, particularly the form of the transition state, remain

unanswered. Despite interest in the folding of nucleic acid hairpins23–28, the diffusion-

limited association of small nucleic acid oligomers has received less attention. Recent

work on DNA duplex dynamics and kinetics has focused more on longer lengths, often

ranging from 20 to over 100 base pairs, often looking at more complex dynamics, such as

bubble formation, that do not necessarily involve the complete hybridization or dehybrid-

ization of the duplex.16,29–32. Additional studies have been conducted that look at how

factors such as salt concentration affect the formation of DNA duplexes.31,33

1.2 Hybridization Dynamics

Before jumping into specific models for association and dissociation it is worth taking

a broader look at the overall processes and the various dynamics that occur. In this section

we will discuss common dynamics and the terminology that is used to describe them. The

purpose of this is to provide a foundation for understanding both the physical processes

that occur and the language that is used to describe them.

DNA association and dissociation are commonly discussed utilizing the conceptual

picture of the nucleation-zipper mechanism. This mechanism has been incorporated into a

number of models which will be discussed inmore detail in the next section. Here our focus

is broader and we will use the mechanism to qualitatively discuss different aspects of DNA

association and dissociation. A general overview of the nucleation-zipper mechanism is

shown in Figure 1.1. In the nucleation-zipper picture there are three distinct phases of the

association process. The first step is twomonomers diffusing together to form the first base

3





Critical NucleusPre-EquilibriumMonomers Duplex

Di�usive 
Encounter

Downhill
Zippering

Approximate
Timescale

μs
ps-ns



Figure 1.1: Overview of the different stages, and their approximate time scales, of DNA
association according to the nucleation-zipper mechanism.

pair. This process is largely considered to be diffusion controlled.34,35 In a simple case

the rate constant for the reaction of two molecules that occurs when the molecules come

within a distance R of one another is given by kD = 4πRDNA where kD is the diffusion

controlled reaction rate,D is the sum of the diffusion coefficients for the two molecules and

NA is Avogadro’s number.36 The first base pair can form anywhere along the sequence

either as an in-register or out-of-register base pair, with internal rearrangement required

in the case of an out-of-register base pair.

Upon forming the first base pair the process enters what is commonly known as the

pre-equilibrium.34,35,37 During this portion of the reaction the partially formed duplex rap-

idly interconverts between a variety of configurations all of which are not thermodynamic-

ally stable. The partially formed duplex remains in the pre-equilibrium until it either returns

to the monomer state, after which the monomers may reenter the pre-equilibrium or dif-

fuse apart, or the partially formed duplex forms a structure known as the critical nucleus.

The critical nucleus is a structure that contains the minimum number of intact base pairs

such that the partially formed duplex is stable and has a significantly greater probability of

4



rapidly zipping up the remaining bases in a downhill fashion relative to returning to the pre-

equilibrium. The pre-equilibrium portion of the process involves not just the formation and

breaking of base pairs, but in situations where out-of-register base pairs are present it also

includes internal rearrangements that result in the formation of in-register base pairs.38

The non-fundamental nature of the pre-equilibrium kinetic step in the association has

been linked to a negative activation energy35,37–39 that has been observed by a number

of different studies.35,37–41 However, there is some disagreement in the literature as to

what the sign of the association activation energy should be with some studies finding a

positive activation energy.42,43 Some potential explanations for the differing signs of the

activation energy have been proposed including a sequence effect due to the increased

stability of G:C base pairs potentially limiting the extent of the pre-equilibrium step.42 How-

ever, the fact that sequences with G:C base pairs have been found with both positive42,43

and negative39,40 activation energies suggests that the presence of G:C base pairs does

not necessarily dictate the sign of the activation energy. Temperature has also been pro-

posed as a contributing factor due to the association rate taking the form of a bell shaped

curve as a function of temperature with a maximum rate below Tm,34 which has been

experimentally observed.41 This would result in a differently signed activation energy on

each side of the maximum. As a result the sign of the association activation energy may

prove to be a useful indicator of the underlying mechanism due to its potential connection

to the existence of a pre-equilibrium step. However, additional research is necessary to

provide a unified explanation for this connection.

The downhill zipping portion of the reaction involves the sequential formation of the

remaining base pairs from the critical nucleus to the ends of the sequence, a process

that occurs orders of magnitude faster than the formation of the critical nucleus. In Figure

1.1 the critical nucleus is shown including a terminal base pair, with the resulting zipping

occurring towards the other end. However, the critical nucleus may form anywhere along

the sequence and if it does not include a terminal base pair zipping will proceed out in

5



both directions.

It is worth pausing here to make an important note about the terminology used with

respect to the critical nucleus and a similar structure, the transition state. While we will

more rigorously, and quantitatively, define the transition state later on, for the time being

we will consider it to be a structure that sits at the peak of a standard reaction free energy

diagram. This implies that the probability of the transition state going to the monomer state

is equal to the probability of going to the fully formed dimer state. Since the critical nucleus

is stable and proceeds in a downhill fashion to the fully formed dimer state we can think

of it as the first configuration found on the dimer side of the free energy peak where the

transition state is found.

Finally we will discuss common dissociation dynamics that occur. Dissociation follows

the same general mechanism provided in Figure 1.1, but in the opposite direction. A fully

formed duplex will begin to dissociate and will rapidly form and break base pairs until

enough are broken such that the structure is no longer stable, which by definition is one

base pair smaller than the corresponding critical nucleus since that structure is stable,

at which point the remaining bases will break apart resulting in the strands entering the

monomer state.

There are two ways in which the bases begin to dissociate, fraying or bubble forma-

tion. Fraying is the sequential loss of base pairing that initiates at the end of the sequence

and the base pairs break sequentially towards the center.40 Configurations where dissoci-

ated base pairs exist but both terminal base pairs are intact are known as bubbles.16,29,30

It is possible to see fraying occurring from both termini simultaneously. Additionally, in long

enough sequences it is possible for multiple bubbles to occur, or for bubbles and fraying

to both be present at the same time. There is also the potential for interplay between

the two, if a frayed end becomes long enough the base pairs can reattach resulting in

the formation of a bubble, or create both a bubble and a frayed state. Bubble states that

expand far enough will also eventually create frayed states, especially in the context of
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shorter sequences.

Moving forward we will explore how the different dynamics and configurations provide

insight into mechanistic and dynamical questions about DNA association and dissociation.

We start by taking this broad view of the mechanism and exploring specific models, meth-

ods, and techniques that have been utilized to explore these questions. We start with a

closer look at specific models that are built off of the canonical nucleation-zipper mechan-

ism.

1.3 Proposed Mechanisms for DNA Association and Dissociation

One of the earliest and most commonly employed models describing nucleic acid as-

sociation and dissociation is the zipper model which was first proposed in the 1950s.44,45

In some contexts the zipper model is also sometimes referred to as the nucleation-zipper

model, since it is closely aligned with the nucleation-zipper mechanism. The version dis-

cussed here follows the formalism of Craig, Crothers, and Doty which is one of the more

extensive versions of the model.37 The model describes the association and dissociation

of DNA as a series of sequential steps each involving forming or breaking a single base

pair. The reaction scheme for this version of the zipper model is presented in Figure 1.2.

The kf and kb parameters are rate constants for forming and breaking base pairs at the

end of a long helical segment. The d parameter is a degeneracy factor that accounts for

the number of different ways the system can move between states based on the different

possible configurations for a given number of intact base pairs. For example, there are N

D1 DN
...D4D3D22M

d’0γ0kb d’1γ1kb d’2γ2kb d’3γ3kb d’4γ4kb d’N-1γN-1k-6

dN-1γN-1σN-1kfd4γ4σ4kfd3γ3σ3kfd2γ2σ2kfd1γ1σ1kfd0γ0ßkf

Figure 1.2: DNA zipper model mechanism using the formalism of Craig, Crothers, and
Doty.37
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different ways to form the first intact base pair, where N denotes the total number of base

pairs in the sequence. For the reverse steps the degeneracy is two, with the exception of

breaking the very last base pair which has a degeneracy of one since the zipper model

requires that all intact base pairs must be sequential and thus a base pair can only be

broken at one of the two ends of the stretch of intact base pairs. Another way to put this is

that bubble states are not allowed. The γ parameter is a kinetic parameter that provides

additional flexibility for reducing the equilibrium constant either through decreasing the

forward rate or increasing the backwards rate, in comparison to σ, another attenuation

parameter, that only impacts the forward rate constant. The σ parameter attenuates the

forward rate to account for the fact that kf is the rate of formation for a base pair at the

end of a long helical stretch, where base pair formation is expected to be the fastest, and

base pairs will form slower earlier in the process. Finally, β serves a similar purpose to σ,

though it only attenuates the formation of the first base pair from two monomer strands.

The zipper model has been utilized extensively in the literature for studying the associ-

ation and dissociation of DNA oligos. The model consistently follows this general form,

however small changes in the symbols used for each parameter and their definitions do

exist.35,37,42,44–48

The zipper model is often referred to as the nucleation-zipper model to reflect an

important aspect of the mechanism that is not necessarily apparent from simply looking at

the reaction scheme shown in Figure 1.2, which is the two components of the association

mechanism discussed previously and shown in Figure 1.1. The reaction scheme in no way

identifies the formation of the critical nucleus nor where along the scheme its formation

occurs. Currently, there is no clear consensus in the literature with respects to the size

of the critical nucleus, though most estimates put it somewhere in the realm of one to

four base pairs and suggest it is impacted by factors including base pair composition,

temperature, and sequence length.35,37,38,42

More recent work on the original theory of the zipper model has focused on evaluating
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the scaling of the association rate with oligomer length, originally proposed by Wetmur

and Davidson34 and studied by many others,31,32,35,37,42 and attempting to determine

its underlying causes.31,32 This scaling behavior predicts that for sequences under 100

base pairs the association rate should be proportional to length (L) and for sequences

over 100 base pairs it should be proportional to L0.5.34

More recent computational studies have seen evidence of critical nucleus formation

while also proposing new mechanisms such as “slithering” or the “inch-worm” mechanism

that may also play a role in the formation of DNA duplexes.31,38 Both of these mech-

anisms differ significantly from the zipper model in that they involve configurations with

out-of-register base pairs as intermediates on the way to a fully hybridized duplex. While

sequences do not need to be perfectly repetitive for these mechanisms to play a signific-

ant role, they will be more relevant for repetitive sequences. Additionally, the probability

for out-of-register binding is higher for longer sequences suggesting these mechanisms

would be expected to be more relevant for longer sequences.38 However, these mechan-

isms have not yet been experimentally observed.

1.4 Infrared Spectroscopy of DNA

Infrared (IR) spectroscopy is a powerful tool for studying DNA hybridization and de-

hybridization. The most prominent benefit of IR spectroscopy is that each of the four DNA

bases has a distinct IR spectra meaning changes in adenine-thymine (A:T) base pairs can

be observed independently from changes in guanine-cytosine (G:C) base pairs. This can

be observed in Figure 1.3 which shows both the two-dimensional infrared (2DIR) spectrum

and the linear Fourier transform infrared spectroscopy (FTIR) spectrum for each of the four

DNA bases, the collection and processing of these spectra and a more detailed discussion

of their analysis is provided in later chapters. The peak assignments for each base have

been determined and their frequencies are given above each of the FTIR spectra in Figure

9
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Figure 1.3: 2DIR and FTIR spectra of adenine monophosphate (a-b), guanine monophos-
phate (c-d), thymine monophosphate (e-f), and cytosine monophosphate (g-h), adapted
from Ref 49.

1.3. Each of these peaks is made up of a convolution of individual vibrations that have

been previously outlined by DFT calculations.49 Generally, these peaks are broken down

into two categories. Peaks below 1650 cm-1 are commonly referred to as ring modes and

contain contributions from in-plane ring vibrations. Peaks above 1650 cm-1 are referred to

as carbonyl modes because they contain strong contributions from symmetric and asym-

metric carbonyl stretching modes. These terms will be used to generally describe the two

sets of peaks throughout this work.

We can see that both guanine and cytosine have regions where they are the only base

pair with a peak, at around 1560-1580 cm-1 and 1500-1525 cm-1, respectively. Adenine

and thymine don’t have individual peaks that are quite as clean, though thymine does

have a small shoulder that sits relatively isolated at around 1690 cm-1, but this can be

hard to observe in sequences without a large percentage of thymine bases. However,

around 1625 cm-1 both adenine and thymine have a very strong absorption, on top of

a weak cytosine absorption, which means this peak can be used as a relatively clean

marker for A:T base pairs. Since the research described here is primarily focused on

hybridization and dehybridization, the ability to isolate adenine from thymine is of less

concern compared to the ability to separate A:T base pairs from G:C base pairs.
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All of the peaks, with the exception of the thymine shoulder found at approximately

1690 cm-1, are suppressed by duplex hybridization. The experiments conducted here

perturb the system through heating which means that they induce dehybridization. As a

result our experiments primarily track the increasing IR signal that occurs as the result

of a loss of base pairing. Additional signals in the nonlinear experiments occur due to

the existence of cross peaks that primarily appear, in the context of this work, due to

coupling between different vibrational modes. Intramolecular coupling appears in Figure

1.3 as cross peaks between different modes, easily observed in Figure 1.3d between

the guanine ring modes and carbonyl modes. Intermolecular cross peaks also appear

between vibrational modes of hydrogen bonded base pairs, such as cross peaks between

adenine ring modes and thymine carbonyl modes, which disappear as a result of the loss

of hydrogen bonding. This provides additional signal changes that can be tracked, and is

a clear marker of dehybridization in the 2DIR experiments since these cross peaks only

appear when intact hydrogen bonds between the complimentary base pairs exist.

Now that we have introduced the ability of IR to differentiate the signal from different

base pairs we will highlight why IR is useful for observing hybridization and dehybridization
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Figure 1.4: Temperature ramp series of FTIR spectra taken every 3 °C between 16 °C and
76 °C for the sequence 5’-CATATATATATATATG-3’ showing the change in absorbance as
a result of the loss of base pairing.
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processes. Figure 1.4 contains a series of FTIR spectra for 5’-CATATATATATATATG-3’

taken approximately every 3 °C from 16 °C to 76 °C tracking the duplex as it dehybridizes

with increasing temperature. We see that, with the exception of the thymine shoulder at

1690 cm-1, the signal increases with increasing temperature because the duplex structure

suppresses these vibrational modes. This provides the ability to track the loss of A:T base

pairs, looking primarily at the growth of the 1625 cm-1 peak, and the loss of G:C base pairs,

looking primarily at the growth of the 1580 cm-1 peak. With the ultimate goal of gaining

insight into the mechanism of DNA hybridization, especially when considering the effect

of base pair composition, the ability to independently monitor A:T and G:C base pairs that

IR provides makes it particularly well suited for these types of studies.

Beyond the benefits of IR spectroscopy, the kinetics of the DNA sequences studied

here are an ideal fit to the time range our temperature-jump experiment is able to resolve.

The spectrometer is able to resolve kinetics that fall in the nanosecond to millisecond

timescale. For the sequences studied here the full dissociation occurs on a timescale

of tens to hundreds of microseconds with fast dynamics occurring on the order of nano-

seconds which places these processes directly in our resolvable time window. This makes

these systems ideal candidates for study utilizing these techniques.39,40,50

1.5 Computational Methods

One of the most well-known and utilized DNA thermodynamic models is the nearest

neighbor (NN) model.51–54 The NN model is utilized in the construction of the lattice

model55 that the kinetic model presented here is built off of. The NN model, and resulting

parameters, are also used as a point of comparison during analysis of the thermodynamic

and kinetic results presented here. The model is based on the assumption that the sta-

bility of a given base pair depends on its identity and the identify of the neighboring base

pair. The dinucleotides are often represented with a slash denoting the two strands in
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antiparallel orientation such that AC/TG refers to a 5’-AC-3’ that is paired with 3’-TG-5’.51

As an example, the sequence 5’-CATG-3’, which is self-complimentary, contains three

dinucleotide subunits (CA/GT, AT/TA, and TG/AC).

The model can accurately predict DNA secondary structure in a variety of salt con-

ditions. The NN model breaks down thermodynamic parameters for sequences of sev-

eral different DNA motifs into individual parameters containing the contribution of each

dinucleotide, of which there are ten, to each particular thermodynamic quantity. In addi-

tion to the dinucleotide parameters, additional parameters exist to account for the impact

other factors have on the thermodynamic parameters. These include accounting for the

initiation, a penalty applied to sequences with terminal A:T base pairs, and a symmetry

correction for self-complimentary sequences.51–54 Parameters are provided for ∆H0 and

∆S0. In some cases additional parameters are provided for ∆G0
37 which is the value of

∆G0 at 37 °C.

The ∆H0 and ∆S0 are determined by identifying each dinucleotide in a given se-

quence and summing the parameters provided by the model in addition to the values for

any relevant additional parameters. The value of ∆G0 at any temperature, and the Tm,

can then be determined from ∆H0 and ∆S0. It is worth noting that the individual NN

parameters have been shown to not carry any dependence on sequence length, however

the salt correction does.51 Parameters are often determined and provided for a particular

salt concentration, however equations to correct for salt concentration have been determ-

ined.52,56 The specific NN parameter set used in the thermodynamic lattice model, and

the analysis presented here, was determined by SantaLucia utilizing a set of 108 oligo-

nucleotide duplexes.51 The most common method for obtaining thermodynamics from

experiment to develop NN parameters is melting curves monitored by UV spectroscopy,

though DSC and other techniques have also been used.51

The NN parameters have been shown to be highly accurate for predicting thermo-

dynamic values. A study examining 264 duplexes of length 4 to 16 base pairs found
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an average absolute deviation of 1.6 °C between the experimental Tm and calculated Tm,

which is particularly good agreement since the model was optimized to predict∆G0,∆H0,

and ∆S0 rather than the Tm.52 While next nearest neighbor models, that break down the

thermodynamics into parameters for each possible trinucleotide, exist; evidence shows

that they do not provide any significant improvement over NN models.57 Additionally, NN

parameter sets have been determined by a number of different research groups that have

been shown to all be in agreement.51

Lattice models are another common method for modeling DNA thermodynamics. Lat-

tice models are a class of models where the physical space occupied by the system is a

discrete lattice rather than a continuous space. This simplification greatly reduces the

computational cost. It has been shown that lattice models can accurately reproduce melt-

ing thermodynamics and study the energy landscape of nucleic acid duplex oligomers and

hairpins.24,55,58

Advances in coarse-grainedmolecular dynamics (MD) simulations have provided new

insights into DNA association mechanisms and the resulting kinetics.31,38,59,60 Two com-

monly used coarse-grained MD models are the 3SPN.2 model31,59–62 and the OxDNA

model.38,63 Coarse-grained MD differs from all atom MD in that it groups atoms together

into single entities, commonly referred to as interaction sites, each of which represents

a portion of the DNA base, which greatly reduces computing costs. For example, the

3SPN.2 model uses three interaction sites to model the nucleotide that represent the

sugar, the phosphate, and the nucleobase itself. These models have been used ex-

tensively to investigate the kinetics and mechanism of DNA oligo hybridization and ex-

amine the effect of a number of different parameters including length, sequence, and salt

concentration on the association process.31,38,60 These methods have made numerous

contributions to the study of DNA kinetics including, but not limited to, examining the scal-

ing relationship proposed by Wetmur and Davidson,34 proposing new mechanisms by

which DNA associates including the previously mentioned “inch-worm” and ”pseudoknot”
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mechanisms,31,38and examining the configurational states, and their size, that make up

the transition state for particular sequences.31,38,59,60 Coarse-grained MD simulations

are usually carried out under equilibrium conditions where DNA hybridization is a rare

event making sampling the kinetics and dynamics difficult. To overcome this, a few differ-

ent sampling methods are utilized including umbrella sampling, transition path sampling,

or forward flux sampling.31 Another method for studying the transitions is to generate a

set of key kinetic states from the trajectories which can be analyzed as a Markov state

model.64–66 While these techniques are very powerful they have a relatively high com-

putational cost which, combined with the complexity of running and analyzing them, puts

them out of reach for many researchers.

We now look to another method used to study the kinetics of biomolecular systems,

the use of Monte Carlo methods. Monte Carlo methods are used to simulate trajectories of

a system evolving through a given state space. One option for generating the state space

is to utilize the states generated from a thermodynamic lattice model.4 Other approaches

for generating states include using the NN model5 and building Markov state models from

MD simulations.64–66

Here we broadly discuss a few methods, and their applications, from the literature.

Monte Carlo simulations are commonly run in two different ways. With discrete and con-

stant time steps or in continuous time. In the continuous time case the model moves

forward in discrete time steps, but each discrete time step is randomly selected from a

continuous distribution of potential time steps. One commonly utilized algorithm for dis-

crete time step models is the Metropolis-Hastings algorithm,67,68 which has been used to

study both proteins69 and DNA.4,20 In brief, at each discrete time step the algorithm ran-

domly selects a potential move based on the probability density for the system. Then the

model decides whether to accept that move and go to the new state, or to reject that move

and remain in the current state. The probability of accepting or rejecting is proportional to

the probabilities of the two states and is commonly referred to as an acceptance ratio. The
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algorithm decides whether or not a move is accepted by comparing the acceptance ratio

against a randomly generated number. After making the move if accepted, or remaining

in the same state if not, the model steps forward one time step. The Metropolis-Hastings

method is particularly useful for resolving mechanisms and pathways, however it is difficult

to extract meaningful kinetic information without additional complexity.

To extract kinetic information it is beneficial to utilize a Monte Carlo algorithm that

operates in continuous time. One commonly used algorithm is theGillespie algorithm.70,71

This algorithm is used to generate the trajectories for the model presented in this work

and as such the theory and methodology required for carrying it out will be described in

detail later. The Gillespie algorithm has been used to study DNA in a variety of contexts

including breathing dynamics19,72 and the hybridization of a variety of DNA motifs and

structures.3,5,73,74

Now we will briefly introduce two analysis techniques commonly utilized in conjunc-

tion with these computational methods that are also used in the work presented here.

Transition path theory (TPT) was developed for the purpose of analyzing the statistical

properties of the pathways between any two subsets in the state space of continuous-time

Markov chains on discrete state spaces.75–78 A common application of TPT is determin-

ing the dominant reactive pathways between two states in a Markov state model through

calculating the reactive flux between all the intermediate states that make up the possible

pathways. This is often utilized to determine and study the dominant folding pathways of

proteins.64–66 A particularly useful aspect of TPT analysis is that it does not require that

trajectories are run to disseminate pathway information; it simply requires the transition

rate matrix from a Markov state model to determine the pathways and relevant statistical

information.

While TPT is very useful for isolating the dominant pathways between two states,

usually the initial and final states of a folding process, it does not easily provide significant

insight into the intermediate stages of the process beyond what states the pathway moves
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through. This misses out on a significant aspect of the mechanism which is the identity

of the transition state and critical nucleus. One way to isolate the identity of the transition

state is through defining the transition state ensemble (TSE). The TSE is a collection of

states that represent the transition state, which is considered to be an ensemble since pro-

cesses involving large complex biomolecules are unlikely to have a single configuration

that makes up the transition state. One method for determining the configurations in the

TSE for the hybridization of DNA oligos is based on the probability of a given intermediate

configuration first reaching the fully formed dimer state versus the monomer state. A con-

figuration is considered to be in the TSE if the probability of going to the fully formed dimer

state is roughly equal to that of going to the monomer.59,60 Isolating the TSE in conjunc-

tion with the identification of the dominant reactive pathways provides a comprehensive

picture of the association and dissociation processes and provides a useful framework for

understanding multiple aspects of the mechanism.

1.6 Research Question and Goals

Even with the significant interest in the thermodynamics, kinetics, and dynamics of

DNA hybridization and dehybridization there are a number of remaining open questions.

The transition state, which is correlated with the critical nucleus, has not been conclus-

ively characterized and inconsistencies in the literature exist with regards to whether the

association mechanism of certain sequences is described by Arrhenius or anti-Arrhenius

behavior.40,42 This carries mechanistic importance since the anti-Arrhenius kinetics have

been proposed to be connected to the pre-equilibrium step and Arrhenius kinetics might

imply that this step is not present.

Additionally, little exists with regards to accessible predictive models for DNA kinetics

based purely on sequence, such as a kinetic analog to the NN thermodynamic parameters.

NN parameters can be used to predict barriers to dissociation within a two-state model,
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allowing the dissociation rate to be predicted from the association rate.54 However, con-

clusive evidence for the validity of the two-state model is lacking. Additionally, more work

is needed to determine the robustness of the predictive power and how sequence, sec-

ondary structure, and mechanism all impact the effectiveness of predictions.

The research presented here is motivated by multiple factors. Recent research has

demonstrated that IR methods are capable of observing mechanistic changes as a result

of base pair composition.40,49 Additionally, developing accessible computational models

to pair with these experiments greatly improves our ability to study the mechanism, kinet-

ics, and dynamics of DNA oligo hybridization. This motivated the development of an ac-

cessible and computationally inexpensive kinetic model that could be used in conjunction

with our experimental techniques and thermodynamic lattice model. We were motivated

to revisit the length dependent trends studied decades ago to reexamine these systems

utilizing modern experimental techniques. It is also our hope that examining the length de-

pendence of DNA oligos will help drive forward the study of longer and more biologically

relevant oligos utilizing our IR spectroscopic methods in combination with our thermody-

namic and kinetic models. Utilizing modern label-free sequence specific spectroscopies

on the length dependent samples, and a new stochastic model on both the length de-

pendent samples and the sequence dependent samples, provides new insights into the

process by which DNA associates and dissociates while also providing new insights into

equilibrium fluctuations and dynamics.

The research conducted here focused on a few overarching goals. The first was to

build an accessible and computationally inexpensive kinetic model for use in conjunction

with experimental results to obtain more specific mechanistic insight than can be provided

with experiment alone. Beyond the goal of developing new tools, the ultimate goal is fo-

cused on understanding and providing a more robust description of the association mech-

anism, transition state, and their underlying energetics. While sequence specificity and

length are just two of the many variables that impact the hybridization and dehybridization
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of DNA oligos we believe that this work provides a significant step forward by clarifying the

role of these two significant variables. Additionally, we believe that the methods proposed

here can provide a framework for investigating other important variables to continue to

provide greater clarity with regards to this long discussed problem.
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CHAPTER 2

THEORY AND FORMALISM OF IR

2.1 Introduction

In this chapter the basics necessary for understanding the physical origin of the sig-

nals measured with nonlinear IR techniques are discussed along with how these signals

are processed into the final spectrum. 2DIR spectroscopy is a technique within the broader

family of ultrafast spectroscopies. Numerous references exist for ultrafast spectroscopy

in general1–4 and 2DIR5–8 itself that comprehensively discuss the theory and formalism

of the technique. As a result this discussion will be limited to what is necessary to un-

derstand the experiment as it is utilized here and the spectra that are analyzed. Readers

interested in learning more about ultrafast spectroscopy or 2DIR are encouraged to seek

out the previously mentioned resources for more information.

A 2DIR spectrum is a two-dimensional frequency correlation plot that probes the vi-

brational modes of the sample providing information about its structure and dynamics on

very fast time scales. 2DIR uses a series of femtosecond laser pulses to interrogate the

vibrational modes of the sample. In the case of biological samples these vibrational modes

can be connected to detailed structural information that identifies configurational changes

or isolates a particular structure or biomolecule of interest. The existence of cross peaks

allows the direct observation of interactions between different vibrational modes providing

information on the movement of energy through the system or the presence of couplings

between vibrational modes. The time resolution of the ultrafast experiments utilized here

makes it possible to resolve this structural information on the timescales at which the bio-

molecular reactions studied here occur making it ideal for the study of the kinetics and

dynamics of DNA systems.

In this section we will first detail the origin of the signal measured in 2DIR experiments

and the related nonlinear experiments utilized in this work. This will involve a brief discus-
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sion of the changes that occur within the system, as a result of the interactions with the

laser pulses, that give rise to this signal. Afterwards, the relationship between the peaks

in the spectrum and the vibrational modes of the system will be explained. Finally, the

relationship between 2DIR and other nonlinear ultrafast measurements will be discussed

to understand the different experiments that were conducted and the how information is

portrayed in each one.

2.2 Third-Order Nonlinear Polarization and Response Function

To understand the origins of 2DIR we start with simple linear absorption. Semi-

classically, absorption can be thought of as a loss of intensity as a result of an electric

field emitted by the sample that is out-of-phase with the electric field of the transmitted

light. The electric field emitted by the sample is radiated by the macroscopic polarization

induced in the sample by the electromagnetic field of the incoming light. The macroscopic

polarization P is given by the expectation value of the dipole operator µ̂

P(t) = ⟨µ̂ρ(t)⟩ (2.1)

where ρ is the density matrix for the system.

For 2DIR we are interested in the third-order polarization induced in the system as a

Figure 2.1: Pulse sequence and orientation for a three pulse 2DIR experiment utilizing the
Boxcar geometry.
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result of interactions with a set of ultrafast infrared pulses. The most basic form of 2DIR

spectroscopy involves three laser pulses that are separated by time intervals τ1 and τ2.

Our focus is on the polarization at some time t during the detection time, τ3. The pulse

sequence is shown in Figure 2.1. Using Equation 2.1 in conjunction with a perturbative

expansion of the density matrix that treats the interaction of an electric field with the system

as a small time-dependent perturbation to the system Hamiltonian, the equation for the

third-order polarization P(3)(t) is found to be2,5

P(3)(t) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
R(3)(τ3, τ2, τ1)E3(t− τ3)E2(t− τ3 − τ2)×

E3(t− τ3 − τ2 − τ1)dτ3dτ2dτ1 (2.2)

where EN are the incoming electric fields of the three femtosecond IR laser pulses and

R(3) is the third-order response function. In our treatment here we will assume that our

femtosecond pulses can be treated as delta functions with impulsive interactions. The

third-order response function generates the electric field emitted by the nonlinear polar-

ization and is ultimately what 2DIR aims to measure. The third-order response can be

expressed as2,5

R(3)(τ3, τ2, τ1) =

(
−i

ℏ

)3

Θ(τ3)Θ(τ2)Θ(τ1)×

⟨[[[µ̂(τ3 + τ2 + τ1), µ̂(τ2 + τ1)], µ̂(τ1)], µ̂(0)]ρ0⟩ (2.3)

where ρ0 is the equilibrium density matrix and Θ is the Heaviside function, the purpose of

which is to enforce the time ordering of the pulses and ensure that the third-order response

only occurs after all three electric fields have interacted with the sample.

Now we need a way to visualize how the system evolves as a result of the light-matter

interactions that occur during the experiment. This is often done through the use of Feyn-

man diagrams which visually illustrate the light-matter interaction pathways that can occur,
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Figure 2.2: The eight Liouville pathways that contribute to the third-order response func-
tion. The rephasing and non-rephasing pathways that are experimentally measured are
in the blue box while the two quantum coherence non-rephasing pathways are outside the
box.

which are known as Liouville pathways. The eight Feynman diagrams that correspond to

the possible pathways for the response function given in Equation 2.3 are shown in Figure

2.2. Time runs from the bottom to the top on these diagrams. Horizontal lines indicate a

light-matter interaction and the boxes created by the lines show how the density matrix

evolves during the time period between interactions. The numbers inside the box are the

density matrix elements for that time period. Arrows that point away from the diagram in-

dicate emission while arrows pointing towards the diagram indicate absorption. Of these

eight pathways four are unique and the other four are their complex conjugates, denoted

by the star in Figure 2.2. The third-order response function can be written as the sum of

these pairs

R(3)(τ3, τ2, τ1) =
4∑

i=1

Ri − R∗
i (2.4)

demonstrating that it contains all of the information on the evolution of the system through

each of these pathways. Under the assumption that our femtosecond pulses can be
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treated as delta pulses, the nonlinear polarization is directly proportional to the response

function. Presuming that the electric field that is emitted due to the macroscopic polariz-

ation is detected in the time domain, the 2DIR spectrum is in practice obtained by taking

real part of a two-dimensional Fourier transform of the response function

S2D(ω3, τ2, ω1) = R
(∫ ∞

0

∫ ∞

0
R(τ3, τ2, τ1)eiω1τ1eiω3τ3dτ1dτ3

)
(2.5)

where ω1 and ω3 correspond to Fourier transform pairs of τ1 and τ3. An important note on

notation here is that S2D refers to the real part of the 2D surface while S̃2D refers to the

complex 2D surface.

2.3 Time Ordering of Interactions and Phase Matching

The eight Louiville pathways can be broken down into two categories, rephasing path-

ways and non-rephasing pathways demonstrated in Figure 2.2. Pathways are considered

to be rephasing when the phase evolutions during τ1 and τ3 carry opposite sign whereas

for non-rephasing pathways the phase evolutions during τ1 and τ3 carry the same sign.

These phase evolutions are related to the sign of the wavevector associated with the

incoming field. Arrows pointing to the right indicate a positive wavevector while arrows

pointing to the left indicate a negative wavevector. Within the non-rephasing group there

are two pathways, R∗
3 and R∗

4, that are known as double quantum coherence pathways

since they reach a doubly excited state after the first two interactions, and they are the

only pathways that do so. The 2DIR spectra collected as described by Equation 2.5 is

referred to as the 2DIR correlation spectrum. This is the most useful spectra to acquire

since combining the rephasing and non-rephasing spectra produces a spectrum with a

purely absorptive line shape. Acquiring this requires collecting both the rephasing and

non-rephasing pathways which brings up the concept of phase matching.

Phase matching is a common method for selecting specific pathways based on the
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phase and time ordering of the incoming pulses.5 Each of the incoming electric fields E1,

E2, and E3 has a corresponding wavevector k1, k2, and k3. Utilizing the boxcar geometry

shown in Figure 2.1 the goal is to arrange the pulses in time and space in such a way that

the signals from the rephasing and non-rephasing pathways can both be obtained along

the same wavevector. This allows both to be collected without needing to realign the spec-

trometer or use a second detector. Looking at the orientation of the pulses in Figure 2.1,

and knowing that k1 and k3 must carry opposite phases to obtain the rephasing pathway,

we can see that the phase matching condition −k1 + k2 + k3 will generate the rephasing

signal along the desired vector shown in Figure 2.1. To collect the non-rephasing signal we

could keep the same time ordering and use the phasematching condition k1−k2+k3, how-

ever that would result in the signal being generated in a different direction. Instead we alter

the time ordering of the pulses and use the phase matching condition k2 − k1 + k3 which

has both the proper phases for acquiring the non-rephasing signal and emits the signal in

the same direction as the rephasing signal. The two quantum coherence pathways have

a different phase matching condition and are not acquired during our experiments. The

result of this is that the rephasing and non-rephasing spectra can be collected separately

by changing the time ordering of the first two pulses. The rephasing and non-rephasing

signals can then be added together to obtain the third-order response function.

2.4 Model Six Level System

It is now useful to look at a model system to identify how the different Liouville path-

ways shown in Figure 2.2 correspond to the experimental spectra. This provides the most

tangible way to understand the useful information that is provided by a 2DIR experiment.

The model system described here is shown in Figure 2.3c and contains six vibrational

energy levels consisting of fundamentals, overtones, and a combination band. The cor-

responding cartoon 2DIR plot is shown in Figure 2.3b. In the 2DIR spectrum ω1, presented
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Figure 2.3: Cartoon HDVE (a) and 2DIR spectrum (b) for the model six level system de-
scribed by the ladder diagram (c).

on the horizontal axis, is the excitation frequency and ω3, on the vertical axis, is the de-

tection frequency. The ω1 frequency corresponds to the energy gap of vibrational modes

excited by the first electric field. The ω3 frequency corresponds to the difference in energy

between the two states that are occupied after the interaction with the third electric field.

Looking at the peaks the first distinction is that there are both positive (red) and negative

(blue) peaks. The positive and negative peaks come in pairs as seen in Figure 2.3b, the

reason for this will become clear when we assign individual pathways to each peak and

see which transitions they contain. The sign corresponds to the transition that is probed

by the third pulse. The positive peaks result from two types of pathways known as ground

state bleach and stimulated emission. In both cases the states that are occupied after the

interaction with the third electric field are the ground state and a singly excited state. The

negative peaks result from excited state absorption pathways where the system is in a

coherence between a singly excited state and a doubly excited state after the interaction

with the third field. The opposite signs are due to the fact that the emitted signal from

an excited state absorption pathway has the opposite phase relative to the signal emitted

from a ground state bleach or stimulated emission.

Now that we understand the signs of the different peaks we will separate the peaks
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according to whether they lie along the diagonal (Peaks 1, 1’, 2, and 2’) or are off-diagonal

peaks (Peaks 3, 3’, 4, and 4’) which are also known as cross peaks. When examining

these peaks in the diagram the axes are labeled according to the frequency of the transition

that is probed by the first interaction and the third interaction. In the case of positively

signed diagonal peaks the same vibrational mode is probed by the first and third pulses.

Looking at the 2DIR and ladder diagram in Figure 2.3 and using peak 1 as an example,

both the first and third pulses are probing the 0→a transition, which also explains why the

frequency is the same along both axes. Peak 1’ is the excited state absorption for this

vibrational mode so the first pulse probes the 0→a transition and the third pulse probes

the a→2a transition. The reason that the 1’ peak is slightly off the diagonal is due to

the anharmonicity of the system resulting in the a→2a transition having a slightly lower

frequency then the 0→a transition. The difference in frequency between the two peaks

provides information about the anharmonicity of the system. The fact that both peak 1 and

1’ probe the same vibrational mode with the first pulse demonstrates why the positive and

negative peaks exist as a pair.

Cross peaks arise from multiple vibrational modes interacting with the incoming elec-

tric fields. These peaks manifest from anharmonic coupling between different vibrational

modes, which can arise from a number of interesting physical processes. To give a few

examples for the case of DNA, this can occur between modes within a single base such as

coupling between the ring mode and carbonyl modes of guanine. They can also occur as a

result of coupling between hydrogen bonded bases pairs such as coupling between guan-

ine vibrational modes and cytosine vibrational modes. This latter example is particularly

useful as this coupling only occurs when the base pairs are hydrogen bonded meaning

this cross peak disappears upon the loss of base pairing. Looking at peaks 3 and 3’ as

examples, peak 3 arises from the first pulse probing the 0→a transition and the third pulse

probing the 0→b transition. This corresponds to the bleaching of the ground state that is

shared between the coupled oscillators. For peak 3’ the first pulse again probes the 0→a
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transition while the third pulse probes the a→ab transition, which is an excitation into a

combination band.

2.5 Alternative Nonlinear IR Measurements

There are a few other nonlinear IR measurements that are related to 2DIR, but are

all one-dimensional representations of the signal. These are heterodyne dispersed vibra-

tional echo (HDVE), dispersed vibrational echo (DVE), and dispersed pump-probe (DPP).

Since these are one-dimensional representations the excitation axis is not resolved mak-

ing them much faster to acquire since τ1 is fixed, though ω1 resolution is of course lost.

Starting with the complex 2D surface S̃2D
(
ω3, ω1

)
the alternative spectra are given by

S̃HDVE (ω3) =

∫ ∞

0
S̃2D (ω3, ω1) dω1 = S̃2D (ω3, τ1 = 0)

SDVE (ω3) =

∣∣∣∣∫ ∞

0
S̃2D (ω3, ω1) dω1

∣∣∣∣2 =
∣∣∣S̃HDVE (ω3)

∣∣∣2
SDPP (ω3) = R

(∫ ∞

0
S̃2D (ω3, ω1) dω1

)
= R

(
S̃HDVE (ω3)

) (2.6)

One useful note is that the DPP is simply the real part of the HDVE. Later on when dis-

cussing HDVE this is important to recall as the spectra shown will be the DPP, though we

commonly refer to them as HDVE since that is how they are acquired. Another point to

note is that the HDVE is a projection of the 2D signal onto the ω3 axis and collected by

fixing τ1 = 0 fs, by the projection slice theorem. Fixing τ1 at zero also results in the reph-

asing and non-rephasing pathways being emitted along the same wavevector5 allowing

both to be acquired simultaneously.

Since the HDVE is the most heavily used in this thesis it is worth revisiting the model

six level system shown earlier to see what the corresponding HDVE spectrum would look

like. Figure 2.3a shows the HDVE figure determined from the 2D spectrum according

to Equation 2.6. In this case we can see many features are still present, despite the
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projection. We can still see each of the peaks individually, the only difference being that

the positive peaks on the diagonal are combined with the positive cross peaks resulting

in only two positive peaks with greater intensity. While in this case there is no significant

information lost due to integrating over the ω1 axis, for spectra of real samples this is

usually not the case as there are some peaks that overlap along the ω3 axis.

One final note on the HDVE, while the details of the experimental methods will be

detailed in a later chapter there is one particular aspect that is worth discussing here with

regards to the nature of the signal. The HDVE signal is acquired in the frequency domain

as the result of the signal being dispersed by a grating onto the detector. The resulting sig-

nal measured at each frequency contains only the real part of the HDVE and an additional

method is required to obtain the complex HDVE. The method utilized here is Fourier trans-

form spectral interferometry (FTSI). The method has been outlined in detail elsewhere9,10

and only a brief explanation is provided here. This method utilizes a Kramers-Kronig re-

lation that relates the real and imaginary parts of a complex function which allows the real

component to be calculated from the imaginary component and vice versa. Using FTSI

the real valued frequency signal obtained by the experiment is inverse Fourier transformed

into the time domain resulting in a complex time domain signal that has both positive and

negative time components. A Heaviside function is then used to select only the positive

time signal which is then Fourier transformed back into the frequency domain resulting in

the complex HDVE signal.
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CHAPTER 3

THEORY AND FORMALISM OF MARKOV PROCESSES AND THE

GILLESPIE ALGORITHM

3.1 Introduction

One of the primary goals of this research was to develop a conceptually and com-

putationally accessible model to compliment experimental studies of DNA dynamics and

kinetics. It has been well documented that DNA hybridization and dehybridization does

not follow a single well defined pathway but rather has a distribution of available path-

ways through which the process can occur. The process of DNA hybridization and de-

hybridization is dictated by diffusive motion and random forces that guide the motions and

interactions of the individual strands. To model our experimental data we will mathemat-

ically represent the association and dissociation of DNA as a stochastic process. While

stochastic processes are widely used in mathematics, biology, chemistry, physics, and

other fields, some of the underlying mathematics and terminology are likely to be unfamil-

iar to many. In this chapter the basics necessary to understand the origins of the model are

outlined, while the construction of the model itself is detailed in later chapters. We begin

with the basics of Markov processes which is followed by an explanation of the algorithm

that is utilized to generate stochastic trajectories from a Markov model. The remainder of

the chapter is dedicating to outlining additional mathematical methods that will be utilized

in the analysis of the model.

A stochastic process is an indexed family of random variables, commonly denoted

X(t), where the indexes are a set of times over which the random variable evolves. The

set of possible values used to index the random variables is known as the index set and

the set of possible values for the random variable is known as the state space. Stochastic

processes are used to model numerous systems in a variety of fields that evolve randomly

over some period of time. Stochastic processes can have numerous outcomes, due to
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their random nature, with individual outcomes known as, among other possible names, a

sample function, realization, or trajectory. To put this another way, a trajectory of a random

process is generated by allowing the system to iterate through the states in the state space

recording each state along the way with an index which is usually the time at which the

system is in that state. Since stochastic processes indexed by a set of times are both the

most common type of stochastic process, and the type used here, our discussion going

forward will consider the index set to be a set of times.

A Markov chain, also referred to as a Markov process, is a particular type of stochastic

model that follows the Markov property. The Markov property requires that the next state

of a process, and the time at which the system will be in that state, depends solely on the

current state and time with no dependence on previous steps in the process. A classic

example of aMarkov process is a randomwalk on a 2-D lattice where the system has equal

probability of moving to each of the four neighboring states regardless of where the system

is. The system can be initially placed at a given position and allowed to move throughout

the lattice grid resulting in a number of different random trajectories. Additionally, the next

state the trajectory moves to only depends on the state the system currently occupies and

is completely independent of how the system arrived at that state.

Markov processes, and stochastic models in general, are often broken down into

classifications based on two factors: how they progress forward in time and their state

space. The time evolution of a model can occur in either discrete-time or continuous-time.

A model can also have either a discrete or continuous state space. It is worth noting that

a continuous state space is by definition infinite and uncountable while a discrete state

space could be finite or infinite.

The model presented here is based on the states generated by a thermodynamic lat-

tice model, previously developed in our group,1 resulting in a discrete and countable state

space. The model is set up as a continuous-time Markov process because this provides

the most natural comparison to the kinetics obtained from the temperature-jump experi-
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ment. However, in some instances it will be advantageous to analyze the model within

the context of discrete time steps. We will now examine the theory of Markov processes

and the rules they follow. Later on the theory behind methods for directly analyzing the

Markov model without needing to generate trajectories is presented.

3.2 Theory of Markov Processes

Our goal here is to examine the case of a discrete state Markov process in continuous-

time to understand what dictates the evolution of a system following the Markov property.

We are interested in a random variable X(t), which at any given time is in one of the

states in the state space, and how it evolves as a function of time. We start by defining the

transition probability for going from step n−1 to step n in a Markov process. The transition

probability is given by2

Pr (xn, tn|xn−1, tn−1) (3.1)

which is the probability of being at state xn at time tn given that the system was at xn−1 at

time tn−1 where n and n−1 denote steps along the trajectory. A Markov process where the

transition probabilities do not evolve as a function of time is referred to as stationary. One

can show that this implies the transition probability only depends upon the time difference

tn−tn−1. A process respecting these two properties is also known as a time-homogeneous

Markov chain. This is true for the model discussed in this work and moving forward we

will use the notation pij(t) for the probability of going from state i to state j in time t. The

matrix whose elements are pij(t) is sometimes known as the transition probability matrix

or the transition matrix and will be denoted by P,2 though it is critical to not confuse this

with the transition rate matrix that will be introduced later on. The elements pij(t) must

satisfy two conditions

pij (t) ≥ 0 (3.2)
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∑
j

pij (t) = 1 (3.3)

Equation 3.2 requires that all probabilities be non-negative and Equation 3.3 enforces that

upon transitioning the model must go to one of the existing states. The term non-negative,

and the term non-positive that will be used later, is used intentionally because a value of

zero is allowed. Note that the case where i = j must also adhere to these rules and is not

necessarily zero.

Our next goal is to introduce the transition ratematrix which is an important component

of the method that will be used to generate stochastic trajectories in our kinetic model.

Since the transition rate matrix is a critical component of the model it is important to build

both a mathematical and intuitive understanding of its elements. To do so we start by

introducing the Chapman-Kolmogorov equation which when applied to a Markov process

with a discrete state space takes the following form3

pik (t+ τ) =
∑
j

pij (t) pjk (τ) =
∑
j

pij (τ) pjk (t) (3.4)

which breaks down a transition from i to k into intermediate transitions ij and jk and

replicates the probability of going from i to k by summing over all possible intermediates

j. Rewriting this using τ = ∆t where t ≫ ∆t gives us

pik (t+∆t) =
∑
j

pij (t) pjk (∆t) (3.5)

pik (t+∆t) =
∑
j

pij (∆t) pjk (t) (3.6)

which are the forward and backward master equations respectively3 and can be thought

of as either taking a big first step followed by a tiny second step or a tiny first step followed

by a big second step. For the purpose of the work presented here we will only utilize the

forward master equation, however for the sake of completeness and the fact that future
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work could potentially utilize the backward master equation we will continue to include it

in this discussion.

We will now approximate pij (∆t) for small ∆t as2

pij (∆t) = δij + lij∆t+O
(
∆t2

)
(3.7)

where δij is the Kronecker delta function, O
(
∆t2

)
describes the error term due to factors

on the order of∆t2 and smaller, lij are the entries of the transition rate matrix L which has

units of per time. For the model presented here the units are s-1. Note that Equation 3.7

results in pij(0) = δij as expected since the probability of a system that starts in state i

being found in state i after a time step of zero is one. The entries in the transition ratematrix

describe the rate at which a continuous-time Markov chain moves between states, such

that lij describes the rate at which the process transitions from state i to j. The entries of

the transition rate matrix can also be thought of as the time derivative of pij(t) taking the

limit as ∆t approaches zero, which we will demonstrate, and discuss further, shortly. The

transition rate matrix is commonly also referred to as C or Q, however to avoid confusion

with other variables, we have elected to utilize the formalism of Vanden-Eijnden4, which

refers to these elements as lij .

To ensure that the approximation given by Equation 3.7 is consistent with the rules

for pij given by Equations 3.2 and 3.3, the following conditions for lij must be true

lii ≤ 0 (3.8)

lij ≥ 0 ∀i ̸= j (3.9)

∑
j

lij = 0 (3.10)

Equation 3.8 dictates that diagonal elements must be non-positive. Equation 3.9, which

utilizes the symbol ∀ which means ”for all”, dictates that all off diagonal elements must be
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non-negative. Equation 3.10 dictates that each row of the transition rate matrix must sum

to zero. Another consequence of these conditions that is important to note is that

lii = −
∑
j ̸=i

lij (3.11)

These diagonal elements are related to the amount of time needed to exit a state in the

model, the calculation of which will be described later on in Section 3.3. As mentioned

previously the elements of the transition rate matrix can be thought of as the time derivative

of pij(t) in the limit of∆t approaching zero. To demonstrate this we start by taking Equation

3.5 and subbing in the approximation for pij(∆t) from Equation 3.7 which yields

pik (t+∆t) =
∑
j

pij (t)
(
δjk + ljk∆t+O

(
∆t2

))
(3.12)

We then subtract off pik(t) from both sides and divide through by ∆t. Looking at the first

term in the sum and noting that
∑

j pij (t) δjk = pik (t) results in the expression

pik (t+∆t)− pik (t)

∆t
=
∑
j

pij (t) ljk +O (∆t) (3.13)

Taking the limit as ∆t approaches zero gives us the derivative at time t

dpik
dt

(t) =
∑
j

pij (t) ljk (3.14)

Now that we have the derivative form of themaster equation we can clarify our understand-

ing of the transition rate matrix elements. We want to examine what happens to Equation

3.14 in the limit of t approaching zero. We know from Equation 3.7 that pij (0) = δij and
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applying this to equation 3.14 we get

lim
t→0

dpik
dt

(t) =
∑
j

δij ljk = lik (3.15)

There are two cases to consider here, the first being if the system starts in state i, what is

the probability that it is still in state i after time t, which is denoted pii(t). The second case

is if the system starts in state i what is the probability that the system is in state j after time

t, denoted pij(t). In the first case, if i = k in Equation 3.15 we note that the probability

of being in state i cannot increase with increasing time, which results in a derivative that

must be non-positive at time zero. This means that the derivative in Equation 3.15 must

also be non-positive in agreement with Equation 3.8. Alternatively, if i ̸= k, with increasing

time the probability of finding the system in state k can only remain the same or increase

with time which results in a non-negative derivative in Equation 3.15 in agreement with

Equation 3.9. This demonstrates that an alternative way to think about the elements of

the transition rate matrix is as the derivatives of the transition probabilities in the limit of t

approaching zero. Finally we can rewrite Equation 3.14 into the matrix form of the forward

master equation
dP
dt

= PL (3.16)

The same steps can be done for the backward master equation resulting in its matrix form

dP
dt

= LP (3.17)

3.3 The Gillespie Algorithm

Once the Markov model has been constructed it is necessary to devise a way to

generate the stochastic trajectories. This is achieved through the incorporation of Monte

Carlo methods. LikeMarkovmodels, Monte Carlo methods are often broken down into two
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classes, discrete-time and continuous-time. Considering that our ultimate goal is to gen-

erate trajectories for the purpose of analyzing biomolecular kinetics and dynamics derived

from experiment, we utilize the Gillespie algorithm, a method for generating trajectories

from a continuous-time Markov process that was initially proposed by Daniel Gillespie.5,6

The Gillespie algorithm utilizes the transition rate matrix L to generate stochastic tra-

jectories. In each step of the process the algorithm determines two factors from the trans-

ition rate matrix, the next state in the trajectory and how long the system will spend in the

current state before moving to the next state, which we will refer to as the exit time. Gen-

erating stochastic trajectories requires that the next state and the exit time are generated

randomly from a probability distribution function defined by the model. In this section we

will demonstrate the origins of the Gillespie algorithm, where the steps in the algorithm

come from, and the method by which the exit time and the next state in the trajectory can

be determined from random numbers.

The ultimate goal is to derive a function that describes the probability of moving to a

particular state j at some time τ . We will first focus on determining the statistical distri-

bution for the exit time, which is the time at which the trajectory will leave a given state,

k, for the next state, which provides the time step for each step in the algorithm. This is

referred to as the first passage time in some contexts, however since we utilize that term

to also describe the time it takes for the system to first reach the fully formed dimer state

from the monomer state, or vice versa, we will continue to refer to the time it takes for the

process to first leave any given state as the exit time. To determine the exit time for each

step in the algorithm from a random number we need to determine the functional form of

the probability distribution of possible exit times. To determine the form of the probability

distribution we first calculate the probability that if the system is initially in state k it is still

in state k at some time τ later. The probability of being in state k at time τ +∆τ is equal

to the probability of being in state k at time τ , pk (τ), times the probability of not moving

during the time interval ∆τ , pkk (∆τ) which we get from Equation 3.7. This would then
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give us

pk (τ +∆τ) = pk (τ) (1 + lkk∆τ +O (∆t)) (3.18)

which can be rewritten as

pk (τ +∆τ) = pk (τ)

1−
∑
m ̸=k

lkm∆τ +O (∆t)

 (3.19)

subtracting off pk (τ), dividing through by∆τ , and taking the limit as∆τ goes to zero yields

d

dτ
pk (τ) = −

∑
m ̸=k

lkmpk (τ) (3.20)

Solving the differential equation knowing that we are in state k at time zero then gives us

pk (τ) = e−
∑

m̸=k lkmτ (3.21)

which means the probability of leaving state k for the first time in the interval 0 ≤ τ ≤ T ,

or in other words the probability that the exit time is less than T , is

Pr (exit k before time T ) = 1− e−
∑

m ̸=k lkmT (3.22)

Note that this is the cumulative distribution function for an exponential distribution.2 This

tells us that the first exit time is exponentially distributed with the parameter being the sum

of all rates out of the occupied step.

Now that we have an expression for the exit time from our initial state k we need

to determine what state the system moves to. We take a similar approach by looking

to determine the form of the distribution that describes the probability of moving to each

possible state. However, there are some changes to the process since the state space

is discrete rather than continuous as is the case for time. We again start in state k and

want to find the probability of going to a specific state j in the time interval τ + ∆τ . This
45



probability can be expressed as

pkj (τ +∆τ) = pk (τ) lkj∆τ (3.23)

Where pk(τ) is the probability of being in state k at time τ and lkj∆τ is the probability of

going to state j in the time ∆τ . At this point we need to introduce the concept of a prob-

ability density function. The probability density function for random variable X evaluated

at a specific value x is given by fX(x) and has the following three properties2

fX(x) ≥ 0 ∀x (3.24)

∫ ∞

−∞
fX(x)dx = 1 (3.25)

Pr (X ≤ x) =

∫ x

−∞
fX(y)dy (3.26)

Equation 3.24 states that the probability density function is non-negative at each point.

Equation 3.25 requires that the total area under the curve must sum to unity. Equation 3.26

dictates the probability of X having a value less than or equal to x, which also explains

why the integral in Equation 3.25 must equal one since the value of X must lie in the

interval (−∞,∞).2 To find Pr (a < X ≤ b) one must simply utilize a and b as the bounds

of the integral given by Equation 3.26. Intuitively for a very small value of dx one can

interpret fX(x)dx as the probability of x being found in the interval [x, x+dx]. This intuitive

understanding will be demonstrated through deriving the joint probability density function

for our system.

As mentioned previously we desire a function that describes the probability of moving

to state j at time τ , which can be found using a probability density function. A probability

density function with more than one random variable, in this case there are two, j and τ , is

known as a joint probability density function and must follow the same rules. Using similar

notation a joint probability density function with two random variables will be denoted as
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fX,Y (x, y).

Swapping in our variables j and τ the joint probability density function is defined as

the function such that2

Pr (a < j ≤ b, c < τ ≤ d) =

∫ b

a

∫ d

c
fJ,T (j, τ)dτdj (3.27)

which means that the integral of the probability density function is the probability that j is

in the interval (a, b] and that τ is in the interval (c, d]. Equation 3.27 is the most general

definition which utilizes integrals, but note that in our case j is discrete so the equation is

properly written with a summation over j instead of the integral.

Now we will determine the joint probability distribution for going to state j at time τ .

Looking at Equation 3.23 the right hand side of that equation is the probability of going to

a specific state j in the time window τ + ∆τ . Looking at the left hand of the definition of

the joint probability density, Equation 3.27, we see that this is equivalent to Equation 3.23

if the bounds on j are the same, because we are only interested in a single potential final

state, and the bounds for time are τ and τ +∆τ . Thus we can plug the right hand side of

Equation 3.23 in for the left hand side of Equation 3.27 resulting in

pk(τ)lkj∆τ =

∫ τ+∆τ

τ
fJ,T (j, τ)dτ (3.28)

Utilizing the assumption that∆τ is very small and taking the derivative of both sides yields

pk(τ)lkj = fJ,T (j, τ) (3.29)

which is the joint probability density function for j and τ . This also demonstrates the

intuitive explanation of the fX(x)dx described earlier. We can now substitute in our value
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for pk(τ) given by Equation 3.21 and multiplying through by
∑

m̸=k lkm∑
m̸=k lkm

yields

fJ,T (j, τ) =
lkj∑

m̸=k lkm

∑
m̸=k

lkme
∑

m̸=k lkm (3.30)

where the right side is the probability density function for a continuous exponential distri-

bution representing the exit time and the left side is a discrete probability distribution for

the probability of going to a given state j. It can also be shown that

∑
j ̸=k

∫ ∞

0
fJ,T (j, τ)dτ = 1 (3.31)

where we sum over all j ̸= k since when exiting state k the system is not allowed to reenter

state k and integrate over all valid times τ .

Now that the joint probability density function has been obtained we can introduce the

Gillespie algorithm5,6 for simulating trajectories for a stochastic model. How the steps in

the algorithm are determined from the joint probability density function will be explained

after the steps have been defined. The algorithm is laid out in the following steps:

1. Initialize the model by occupying a single state k at t = 0 (pn(0) = δnk)

2. If this is not the first iteration of the algorithm designate the currently occupied state

as k

3. Generate two uniform random numbers in the interval (0, 1), denoted R1 and R2

4. Calculate the exit time τ according to

τ =
− lnR1∑
m̸=k lkm

(3.32)
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5. Set j to be the smallest integer that satisfies

1∑
m̸=k lkm

j∑
m=1,
m̸=k

lkm ≥ R2 (3.33)

6. Update the model by occupying state j and increasing the time such that t = t+ τ

7. Return to step 2 or terminate the simulation if a predetermined end criteria is met

In the context of the model for DNA association and dissociation presented here

the exit criteria for an association trajectory is that the fully formed dimer state has been

reached, and in the case of a dissociation trajectory it is that the monomer state has been

reached. In steps 4 and 5 we are utilizing what is referred to as the “direct method”5 for

determining the next state in the trajectory and the exit time τ , the basis of which will now

be described.

To understand the direct method we start with the joint probability density function

and note that for independent variables, which we have here,3 it can be broken down into

two single variable probability density functions.5 Our goal now is to generate random

variables τ and j from their respective probability density functions. We will start with the

probability density function for determining the exit time τ given by

fT (τ) =
∑
m ̸=k

lkme−
∑

m ̸=k lkmτ (3.34)

To understand the method for generating τ we must introduce the cumulative distribution

function, denoted FT (τ), which is the function of random variable T that when evaluated

at τ is the probability that T will have a value less than or equal to τ . The cumulative

distribution function gives the area under the PDF from 0 to τ , note that the interval (−∞, 0)

49



is neglected since we cannot have negative time in this context, such that2

FT (τ) =

∫ τ

0
fT (x)dx (3.35)

We now look to draw a random number, R, from the interval (0, 1) and determine the

corresponding value of τ from the distribution such that

τ = F−1
T (R) (3.36)

We note that the inverse of the cumulative distribution function is known as the quantile

function. One can easily calculate the cumulative distribution function

FT (τ) =

∫ τ

0

∑
m̸=k

lkme−
∑

m ̸=k lkmxdx = 1− e−
∑

m̸=k lkmτ (3.37)

We first note that we can swap out 1− R for R because in the case where R is uniformly

distributed on [0, 1] then 1 − R must also be uniformly distributed on [0, 1]. Making this

change in addition to substituting in FT (τ) = R and solving for τ gives us the inverse

τ = F−1
T (R) =

− lnR∑
m ̸=k lkm

(3.38)

which is the expression for calculating τ from our probability distribution function based on

a random number R utilized in step 4 of the algorithm.

The method for determining the integer j that defines the state that the system moves

to follows a similar process with slight tweaks to account for the fact that the probability

density function

fJ (j) =
lkj∑

m̸=k lkm
(3.39)

is discrete. In the discrete case since fJ (j) is normalized, it is clear that our cumulative
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distribution function is simply

FJ (j) =

j∑
x=0

fJ (x) (3.40)

where FJ (j0) is the probability that J will be less than or equal to j0. Since we are in the

discrete case we cannot simply find the inverse of F like we could in the continuous case.

Instead the method is to draw a random number R and find the value of j that satisfies5

FJ (j − 1) < R ≤ FJ (j) (3.41)

Substituting in the cumulative distribution function and utilizing the probability density func-

tion results in
j−1∑
x=0

lkx∑
m̸=k lkm

< R ≤
j∑

x=0

lkx∑
m̸=k lkm

(3.42)

to solve for j only the right side is needed which is the expression for determining j in step

5 of the algorithm.

3.4 Calculating the Steady State Distribution

The steady state distribution, also known as the stationary distribution, is a vector

whose entries, once normalized to sum to one, form a probability distribution that does not

evolve with time. As a result this can also be thought of as the equilibrium distribution for a

Markov process. Themethod for determining the steady state distribution for a continuous-

time Markov process will now be described as it will be utilized later in the analysis of the

model.

We start by noting that an irreducible Markov process has a positive steady state

distribution if and only if all of its states are positive recurrent.7 A Markov process is irre-

ducible if every state is accessible from every other state, including the ability to return to

the initial state. A state j is accessible from state i if and only if there exists some integer

n > 0 such that pnij > 0. It is positive recurrent if the mean recurrence time, the time
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it takes for a process in state i to return to state i, is finite. The Markov model for DNA

association and dissociation that is presented in this work can be shown to satisfy both

of these conditions so it must have a steady state distribution. Thus it is worth taking the

time to understand how to calculate it. To understand how to calculate the steady state

distribution we start with the left eigenvector equation for the transition rate matrix

XL = λX (3.43)

where X is the left eigenvector, which takes the form of a row vector, L is the transition

rate matrix and λ is the eigenvalue. The steady state distribution can be written as

lim
t→0

pij (t) = πj (3.44)

where π is a vector containing the steady state solution whose elements πj are the equi-

librium probability for each state, which must be normalized such that they sum to one.

In the case of our model that utilizes the transition rate matrix L we are looking for

the distribution for which the rates in and out of each state sum to zero. Thus, the steady

state distribution is the eigenvector corresponding to an eigenvalue of zero. Note that this

is different than looking for the steady state distribution to the transition probability matrix

where the solution corresponds to an eigenvalue of one. As a result the steady state

distribution satisfies the equation

πL = 0 (3.45)

which can also be written as the sum

∑
j

πj ljk = 0 (3.46)

To understand why the steady state distribution corresponds to an eigenvalue of zero we

look at the forward master equation in the form given by Equation 3.14 and take the limit
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of pij(t) as t goes to infinity, described by Equation 3.44. This gives us

dpik
dt

(t) =
∑
j

pij (t) ljk =
∑
j

πj ljk = 0 (3.47)

which shows that the steady state distribution corresponding to the transition rate matrix is

the left eigenvector of the transition rate matrix that corresponds to an eigenvalue of zero.

The fact that the time derivative of the transition probabilities is zero also shows that this

distribution does not evolve.

3.5 Absorbing Markov Chains

Describing the system as an absorbing Markov chain provides a useful framework

for analyzing the model without the need to generate individual trajectories. An absorbing

Markov chain is any Markov chain that has one or more absorbing states, which are states

where the probability of leaving the state is zero. To formulate the model as an absorbing

Markov chain the concept of an embedded Markov chain must first be discussed. The em-

bedded Markov chain is a discrete-time Markov chain formed by converting the transition

rate matrix of a continuous-time Markov chain into a transition probability matrix which will

be denoted by S. The elements of S, denoted sij are calculated according to

sij =


0 ∀i = j

lij∑
i ̸=k lik

∀i ̸= j

(3.48)

where the elements sij are the conditional probabilities of transitioning into state j given

the system is in state i. As expected, since upon leaving state i the system must move

to another state j, the rows of S sum to one. What we have done here is take the trans-

ition rate matrix and turn it into a form that states the probability of going to each other

state. There is one slight difference between an embedded Markov chain and the trans-
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ition probability matrix for a discrete-time Markov chain that is worth highlighting. In an

embedded Markov chain the diagonal elements are zero forcing each step to move to a

different state, whereas the transition probability matrix for a discrete-time Markov chain

can have nonzero diagonal elements.

Now that the transition probability matrix for the embedded Markov chain has been

constructed we can rearrange it into the canonical form for an absorbing Markov chain

where we designate the monomer and fully formed dimer states as absorbing states. A

quick note on terminology, it is necessary to differentiate transient states in a Markov chain

from transient states in an absorbing Markov chain. In the case of a standard Markov

chain, a state is transient if the probability of returning to a state is less than one, whereas

for an absorbing Markov chain a transient state is simply any state that is not absorbing.

Since the monomer and fully formed dimer states are designated as absorbing states, the

diagonal elements for the rows representing the monomer and fully formed dimer states

are equal to one and the off-diagonal elements in those rows are set to zero since the

system is unable to leave theses states. The monomer and fully formed dimer states are

selected as the absorbing states since our primary interest is analyzing statistics of reach-

ing these states from intermediate states. However, in some cases only one absorbing

state will be designated. The dissociation reaction can be analyzed by only designating

the monomer as an absorbing state while the association reaction can be analyzed by

only designating the fully formed dimer state as an absorbing state.

To describe the canonical form for an absorbing Markov chain consider an absorbing

Markov chain with r absorbing states and t transient states. To construct the transition

probability matrix for an absorbing Markov chain the rows and columns are rearranged

such that the first t rows and columns of the matrix are the transient states and the last

r rows and columns are the absorbing states. This results in the canonical form of the
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transition probability matrix

P =

Q R

0 I

 (3.49)

whereQ is a t-by-tmatrix containing the probability of moving from transient state i to tran-

sient state j, R is a t-by-rmatrix that contains the probability of moving from transient state

i to absorbing state j. The elements of Q and R are drawn from the embedded Markov

chain conditional probability matrix S. I is a r-by-r identity matrix, since the probability of

remaining in an absorbing state is one. Finally, the r-by-t zero matrix exists since it is

impossible to transition from an absorbing state into a transient state. The entries of this

matrix pij are still the probability of moving from state i to state j as they were previously.

We then note that Pn contains the matrix elements pnij which are the probability of being

in state j after n discrete steps given that the system started in state i.

We can utilize Q to construct the fundamental matrix N which will provide useful in-

sights while interpreting the results of the model. The elements nij are the expected

number of times that the process will be in state j given that it starts in state i, prior to

reaching an absorbing state. The fundamental matrix is calculated from Q as follows

N = I+Q+Q2 + · · · = (I−Q)−1 (3.50)

Note that I here has the same dimensions as Q and is not the same identity matrix that

shows up in the lower right of the canonical form of the transition matrix P. To prove this

statement we first point out that for an absorbing Markov chain, the probability that the

system will eventually end up in an absorbing state is one, which can be stated as

lim
n→∞

Qn = 0 (3.51)

The next step is to demonstrate that the matrix (I−Q) is invertible. First, we note that by

the invertible matrix theorem a matrix A is invertible if the equation Ax = 0, where x is
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an arbitrary vector, has only the trivial solution x = 0. This means that it must be shown

that (I−Q)x = 0 which can be rearranged into x = Qx. We then note that multiplying

both sides by Q gives us Qx = Q2x which means x = Q2x. By induction this proves that

x = Qnx and taking the limit as n goes to infinity, and looking at Equation 3.51, we see

that x = 0 proving that (I−Q) is invertible. Now we will verify that Equation 3.50 is correct.

If N is the expected number of times a system will visit j given that it starts in i and the

probability of starting in state i and being in state j after n steps is given by Qn it follows

that N =
∑

nQn = I +Q +Q2 + · · · which simply leaves demonstrating that this is equal

to (I−Q). We start with the expression

(I−Q)
(
I+Q+Q2 + · · ·+Qn

)
= I−Qn+1 (3.52)

and then multiply both sides by N using the definition that N = (I−Q)−1 on the left hand

side

I+Q+Q2 + · · ·+Qn = N
(
I−Qn+1

)
(3.53)

and then taking the limit as n goes to infinity to demonstrate that the expression in Equation

3.50 is correct.

In addition to directly providing useful insights into how the system evolves according

to the Markov model the fundamental matrix is also used to calculate the absorption prob-

abilities for an absorbing Markov chain. The matrix containing the absorption probabilities

will be denoted as Bwhich is a t-by-rmatrix with entries bij that are the probability of being

absorbed by state j if starting in state i. Note that the rows of Bmust sum to one because,

as mentioned previously, the probability that the process will end up in an absorbing state

is one as the number of steps approaches infinity.

To determine B we must consider all pathways between a given transient state i and

absorbing state j. The probability of transitioning from a transient state to an absorbing

state is given by the elements of R denoted rij . In addition to transitioning directly from
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transient state i to absorbing state j we must also consider that the system can pass

through intermediate transient states k. The probability of transitioning between transient

states i and k is given by the elements of Q denoted qik. The probability of going from

transient state i to absorbing state j through intermediate transient state k is given by

qnikrkj where n is the number of steps needed to reach state k from state i. Summing over

all possible intermediate states k and number of steps n results in the following expression

for B

bij =
∑
k

∑
n

qnikrkj (3.54)

where summing over all n accounts for all the different possible number of moves that

can be taken to reach state k from i and summing over all k accounts for all possible

intermediate transient states between i and j. Since any matrix raised to the zero power

is the identity matrix Equation 3.50 shows us that

∑
n

qnik = nik (3.55)

and thus

B =
∑
k

nikrkj = NR (3.56)

which can then be used to calculate the probability that any state is absorbed by the

monomer state versus the dimer state when those two states are the absorbing states in

an absorbing Markov chain.

3.6 Transition Path Theory Analysis

We will now introduce transition path theory (TPT) as a method for extracting mech-

anistic information about DNA association and dissociation from the kinetic model. A ma-

jor point of emphasis for the analysis utilizing TPT is understanding the mechanism by

which the association and dissociation barrier crossings occur. Our kinetic model, like
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many others, spends a vast majority of its time in the thermodynamically stable states and

barrier crossings are rare events. There is an extensive history of developing methods

for observing rare events in simulations including, but not limited to, transition pathway

sampling,8,9 forward flux sampling,10–13 and umbrella sampling.14 Our primary goals

are identifying the likely transition paths that the system undergoes during barrier cross-

ing events while also identifying dynamical bottlenecks and the identity of configurations

in the transition state ensemble. Many other methods for rare event sampling are cap-

able of extracting this information from continuous-time Monte Carlo simulations. TPT

was selected because of our interest in extracting this information and understanding the

mechanism in the state space of the system, rather than the path space. Additionally, it

was selected due to the ability of TPT to extract this information directly from the transition

rate matrix of the Markov model, without needing to generate additional trajectories with

varying initial conditions.

TPT directly analyzes the transition rate matrix, the matrix L introduced in Section

3.2, of a Markov model and provides numerous interesting insights without the need to

run stochastic trajectories. TPT is regularly used in the literature to examine transition

paths between select states in a Markov state model4,15–17 and is particularly common

with regards to the study of protein folding.18–20 One particularly useful result it provides is

determining and ranking the dominant association and dissociation pathways for a system

modeled by a Markov state model to better understand the mechanisms by which these

processes occur. It is important to note that in the work presented here we apply this under

the assumption that the system is at equilibrium. This is in contrast to the trajectories that

are run on a non-equilibrium system since the initial monomer concentration is taken at

the initial temperature prior to the introduction of the temperature-jump pulse rather than

the temperature at which the system evolves. However, the pathways derived from TPT

analysis can still provide key insights into the mechanisms the trajectories follow. The

analysis isolates and ranks different mechanistic pathways by comparing the reactive flux
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through each pathway. In some cases in the literature the flux is also referred to as the

probability flux or the probability current. For the purposes of this discussion we will closely

follow the notation and terminology of Metzner, Schütte, and Vanden-Eijnden.4

To determine the reactive flux for a pathway we first need to determine the flux for

every possible move within the model. In this context the reactive flux between two states

is the flux that contributes to the overall pathway of interest. To generalize the equations

and reduce confusion we will refer to a general pathway that proceeds from A to B where

A and B are sets of states. Mathematically all of our equations will be written utilizing set

notation for correctness. However, in the case of the work presented here there will only

ever be a single state in both A and B and the discussion with respect to the methods

application to the model will be presented as such. In the association case A contains the

monomer state and B contains the fully formed dimer state, with the two flipped for the

dissociation case. While the construction of our specific model is discussed in Chapter 7

Figure 7.23 in Appendix 7A shows the states and allowed moves for a simple sequence.

This can help to visualize how the individual moves, whose reactive fluxes are being cal-

culated, combine to form the pathways that TPT is analyzing.

The flux going from state i into state j along an overall pathway going from A to B is

given by

fAB
ij =


πiq

−
i lijq

+
j if i ̸= j

0 if i = j

(3.57)

where fAB
ij is the flux between i and j that contributes to the overall pathway of interest, πi

is the probability of being in state i, q−i , known as the backward committor, is the probability

that a process arriving in state i last came from A rather thanB, lij is the transition rate from

i to j, and q+j , known as the forward committor, is the probability that the process starting

in j will first reach B rather than A. The calculation of q−i and q+j will be described shortly.

The probability of occupying a state, πi is calculated from the steady state distribution for

the transition rate matrix, the calculation of which is discussed in Section 3.4.
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It is important to note that the steady state distribution is calculated from the trans-

ition rate matrix which, as will be discussed in Chapter 7, is built and parameterized to

replicate our non-equilibrium temperature-jump experiments. As a result the steady state

distribution is not directly comparable to either the population distribution of the system

at the initial or final temperature. However, it is used for the analysis to ensure that the

condition of detailed balance holds, or that the system being analyzed is at equilibrium

even if it is not the physical equilibrium at either the initial or final temperature. For the

condition of detailed balance to hold the following expression must be true

πilij = πj lji (3.58)

In this case it is also true that

q+i + q−i = 1 (3.59)

which states that a process that starts in state i must eventually reach either state A or B.

To prove Equation 3.59 we must introduce the formal method for solving both the

forward and backward committors. While only the forward or backward committor needs

to be solved with this method since the other can be solved for using Equation 3.59 the

method for calculating both will be provided for completeness. For the purpose of this

discussion we will continue with more general language and discuss the calculation of

the committors for a system with a set of states denoted as S and looking at pathways

between two subsets of states within S denoted A and B. We start with the definition of

the forward committor which is defined as the values of q+ =
(
q+i
)
i∈S that satisfy4



∑
k∈S likq

+
k = 0 ∀i ∈ (A ∪B)c

q+i = 0 ∀i ∈ A

q+i = 1 ∀i ∈ B

(3.60)
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where we introduce additional mathematical symbols. The ∪ symbol is known as the union

symbol and A∪B refers to elements that belong to either A or B. The ∈ symbol means ”in”

and the superscript c refers to the complement of the set which is all elements not in the

set. The line ∀i ∈ (A ∪B)c is then read as ”for all i in the compliment of A and B” or ”for

all i that are not in either A or B” and the line ∀i ∈ A is read as ”for all i in A”. To determine

q+ we then solve the following set of linear equations

Uq+ = v (3.61)

where the matrix U and vector v are given by

uij = lij ∀i, j ∈ (A ∪B)c (3.62)

vi = −
∑
k∈B

lik ∀i ∈ (A ∪B)c (3.63)

Or in other words if there is a single state B, such as the case where B is simply the

fully formed dimer state, v is a vector that contains the negative elements of the column

associated with state B. Solving the linear system of equations given by Equation 3.61

then provides the values of q+.

Turning our attention to the backward committor values q− we start with the definition

of the backward committor which is defined as the values of q− =
(
q−i
)
i∈S that satisfy4



∑
k∈S l̃ikq

−
k = 0 ∀i ∈ (A ∪B)c

q−i = 1 ∀i ∈ A

q−i = 0 ∀i ∈ B

(3.64)
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With a steady state distribution denoted as π, calculated as discussed earlier, we define

l̃ik =
πklki
πi

(3.65)

If balanced detection does not hold we follow a similar procedure to above by solving the

linear set of equations

Uq− = v (3.66)

where the matrix U and vector v are given by

uij = l̃ij ∀i, j ∈ (A ∪B)c (3.67)

vi = −
∑
k∈A

l̃ik ∀i ∈ (A ∪B)c (3.68)

Or in other words if there is a single state in A, such as the case where A is the monomer

state, v is a vector with the negative elements of the column associated with state A. As

before solving the system of equations given by Equation 3.66 provides the values of q−.

In the case where detailed balance holds we first note that by looking at Equations 3.58

and 3.65 we see that l̃ik = lik and Equation 3.64 becomes

∑
k∈S likq

−
k = 0 ∀i ∈ (A ∪B)c

q−i = 1 ∀i ∈ A

q−i = 0 ∀i ∈ B

(3.69)

A quick calculation of which demonstrates that q− = 1−q+ demonstrating that the forward

and backward committors for a given state will sum to one if detailed balance holds.

Now that we have determined the flux between two states we can calculate the net
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flux between i and j that contributes to the A to B transition according to

f+ij = max
(
fAB
ij − fAB

ji , 0
)

(3.70)

The overall flux for a pathway is then defined as the minimum of the net flux values for

each step along the pathway. The step with the minimum net flux is referred to as the

bottleneck step. The dominant pathway is defined as the pathway with the largest overall

flux, or in other words the pathway whose bottleneck step has the largest net flux among

bottleneck steps.

Determining and ranking the pathways requires an algorithm to determine what steps

are bottlenecks and rank them according to their net flux values. Additionally, it is likely that

each bottleneck step contributes tomultiple different pathways, requiring the determination

of the most dominant pathway among all pathways that share that bottleneck, all of which

have the same overall flux. The first step requires finding the bottleneck with the largest

flux among all possible pathways. A bisection algorithm to achieve this was written based

on the one proposed by Metzner, Schütte, and Vanden-Eijnden.4

After determining the bottleneck for the dominant pathway the other steps in the path-

way need to be determined. This must be done considering the fact that there are likely to

be multiple pathways that share this bottleneck. This requires a second algorithm which

is also based on one proposed by Metzner, Schütte, and Vanden-Eijnden.4 To determine

the most dominant pathway with a bottleneck we look to maximize the net flux for each

remaining step in the pathway. To achieve this the pathway is broken into two parts, the

initial state to the first state in the bottleneck, and the second state in the bottleneck to the

final state. Each of these pathways is treated independently and the first algorithm is util-

ized to find the bottleneck of each one. Those pathways can then be split up in the same

way and the process continues until each step in the pathway has been filled. Utilizing

this recursive method ensures that the maximum flux value for each step in the process is
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achieved resulting in the dominant pathway containing the given bottleneck. Now that the

dominant pathway has been found additional pathways must be isolated. To do this we

adapt the algorithm proposed by Noé et al.20 that is designed to determine the pathways

with the largest overall flux in descending order. After finding the first pathway the al-

gorithm subtracts off the pathway flux from the net flux of each step in the pathway setting

the net flux for the bottleneck step to zero and reducing the magnitude of the net flux for

all other steps. This new net flux matrix is then used to find the next pathway utilizing the

same method. Subtracting off the overall pathway flux from each step along the pathway

after the pathway is determined ensures that the same pathway is not found again. This

does however result in the fact that only one pathway, the most dominant one, is found

for each bottleneck and once a step is determined to be a bottleneck step for a pathway it

cannot appear in any subsequent pathways.
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CHAPTER 4

EXPERIMENTAL METHODS

4.1 Introduction

This chapter discusses the basics of the instrumentation and experiments utilized in

the research presented in this thesis. The portions of this chapter dedicated to nonlin-

ear measurements are closely related to the theory and formalism laid out in Chapter 2,

particularly with respect to the acquisition of nonlinear signals. The experiments and in-

strumentation discussed have been described elsewhere in detail1–3 and full descriptions

are not provided here. The main purpose of this chapter is to establish a functional under-

standing of how the instruments are designed and utilized. The instruments will be briefly

discussed while highlighting important aspects of their operation and data collection.

The thermodynamic measurements were conducted utilizing a Fourier transform in-

frared (FTIR) spectrometer connected to a recirculating chiller for temperature control.

The kinetic measurements were conducted utilizing an ultrafast two-dimensional infrared

(2DIR) spectrometer, known by us as the boxcar as it is our only system that utilizes the

boxcar geometry, which is a component of the overall temperature-jump spectrometer.

The other component is the temperature-jump laser that induces the temperature perturb-

ation while the boxcar tracks the changes in the sample as it evolves.

In this chapter we will first discuss the preparation of samples for both the thermo-

dynamic and kinetic experiments and tricks that improve the data collection. This will be

followed by a brief discussion of the FTIR temperature ramp setup that was used to obtain

the thermodynamic data. Then our focus will shift to the ultrafast setup utilized to obtain

the kinetic data. We will discuss the main components of the instrument and the com-

mercial systems used to generate the ≈6 µm mid-IR and 2 µm temperature-jump pulse.

We will also briefly walk through important components of these instruments’ operation.

This will include essential aspects of setting up the instrument in addition to an overview
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of how the data are collected. Finally we conclude by discussing highlights of the data

processing that occurs after data collection.

4.2 Sample Preparation

The first step in sample preparation is to deuterate both the nucleic acid and the

buffer components to swap out any labile hydrogens in the sample. This is essential since

the H2O bend vibrational mode, centered at ≈1650 cm-1, has an intense absorption4

in the 1500-1700 cm-1 region that contains the DNA vibrational modes of interest and

any H2O present would make it hard to observe the DNA signal. Deuterium oxide has

a significantly weaker absorption in this region, due to a redshifted D2O bend-libration

combination band centered at≈1550 cm-1,4 that can be removed during data processing.

During the deuteration step the DNA is purified using Amicon Ultra 3 kDa centrifugal filters

or Sartorius Setim Biotech Vivaspin 2 2 kDa centrifugal filters, depending on the sample

molecular weight, to remove impurities that may remain from the manufacturing process.

A typical sample contains approximately 35 µL of sample containing the DNA at a

concentration of 2 mM in a sodium phosphate buffer. Before loading the sample into the

sample cell it is useful to briefly spin it in a centrifuge. This forces any particulates that

may be present to the bottom of the vial allowing sample to be taken from the top of the

vial that is generally free of particulates. While this is not particularly important for FTIR

measurements it significantly reduces the risk of scatter washing out nonlinear signal.

For both FTIR and nonlinear measurements the sample is then loaded into a home-built

sample cell that sandwiches the sample between two calcium fluoride windows, ideal due

to their low absorbance across most of the mid-IR range, separated by a Teflon spacer

creating a 50 µm path length. When loading the cell care should be taken to avoid the

presence of bubbles. In the case of FTIR temperature ramps the presence of bubbles can

speed up evaporation which can affect measurements. It is less important for nonlinear
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measurements which have a much smaller focus, though it is still preferred to not have to

adjust the sample cell to shift the focus away from bubbles. The windows are held together

by a brass jacket which is used for its high thermal conductivity which aids in temperature

control.

4.3 FTIR Temperature Ramp

FTIR temperature ramp experiments were conducted on a Bruker Tensor 27 FTIR

spectrometer hooked up to a recirculating chiller for temperature control. The spectra

were obtained utilizing a macro program that automates the process by controlling both

the chiller temperature and the FTIR acquisition software. A standard temperature ramp

series ramps the chiller temperature from 0-96 °C in 3 °C steps with an FTIR spectrum

obtained after each temperature step. This provides a good balance between collecting

sufficient data points for analysis while keeping the acquisition time reasonable. It is im-

portant to ensure that there is a sufficient waiting time between the chiller reaching each

set point and acquiring the FTIR spectrum to ensure that the sample has equilibrated at

the new temperature. The necessary time can vary depending on the exact settings used

for the particular ramp. As time passes a relatively intense absorption due to the HOD

bend vibration grows in at ≈1460 cm-1 which begins to overwhelm the DNA absorption

that can be difficult to remove via processing if it becomes too large. As a result care

should be taken to minimize the exposure of the sample to the air to minimize the initial

amount of hydrogen present. Additionally, at high temperature evaporation starts to occur

which, if significant enough, results in a noticeable absorption decrease in the DNA peaks.

There are two main components of the data processing to prepare spectra for ana-

lysis. The first is determining the actual sample temperature at each chiller set point. To

determine the correct temperature an additional temperature ramp is done on a sample

cell containing water with a thermocouple attached to the window. The automated temper-
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ature ramp program is run with the thermocouple temperature logged when each spectrum

is taken. While the temperature cannot be determined during the same run as the data

since the thermocouple blocks the window, conducting both runs under the same condi-

tions provides a reasonable value of the sample temperature. The other major component

is subtracting off the absorption due to D2O and HOD. This is done by conducting two ref-

erence temperature ramps: one with D2O and the other with a 2% HOD solution. The

resulting spectra can then be scaled to the sample spectrum at a point where only HOD

and D2O absorption are present, to account for any differences in absorption due to slight

differences in path length, IR intensity, or other slight variations between measurements,

allowing the reference spectrum to be subtracted off leaving only the DNA FTIR spectrum

at each temperature point.

4.4 Boxcar Spectrometer

4.4.1 Mid-IR Generation

The generation of our ultrafast mid-IR pulses broadly occurs in three steps. The

first step is the generation of a 90 fs 795 nm pulse which is done by a titanium sapphire

(Ti:Sapph) regenerative amplifier (Libra, Coherent) with a 1 kHz repetition rate. To gen-

erate a pulse of sufficient power a 795 nm seed pulse is amplified using chirped pulse

amplification.5 The seed is first stretched out in time by a grating before entering the op-

tical cavity with a Ti:Sapph rod that contains a population inversion generated by 527 nm

light from a pump laser. The chirped seed pulse makes multiple round trips through the

cavity and is amplified at each step by stimulated emission from the Ti:Sapph rod before

the amplified pulse is ejected from the cavity. At this point it is recompressed by a grating

compressor resulting in a 795 nm pulse that is approximately 90 fs in duration.

This pulse then undergoes optical parametric amplification (OPA) to generate two

frequencies of light that are then used to generate the mid-IR pulse through difference
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frequency generation (DFG). The commercial OPA (TOPAS C, Light Conversion) uses

a two-step process to generate pulses of light at two center frequencies, referred to as

the signal and idler. The signal and idler frequencies sum to the frequency of the 795

nm pulse that enters the OPA and their difference is the frequency of the desired mid-

IR. In the first OPA step, known as the pre-amplification stage, the signal is generated at

approximately 1.4 µm. In the second stage of the OPA the signal is mixed with remaining

795 nm light from the regenerative amplifier to amplify the signal and generate the idler,

which is approximately 1.8 µm. Both the signal and idler can be tuned to generate the

exact frequency of mid-IR that is desired. As a reference, a signal and idler of exactly 1.4

and 1.8 µm respectively produces a mid-IR pulse centered at ≈1587 cm-1. In practice, for

the purpose of studying the dynamics and kinetics of canonical DNA duplexes, our mid-IR

pulse is commonly tuned to be centered at ≈1630 cm-1 with approximately 300 cm-1 of

bandwidth. After the amplification stage the signal and idler exit the TOPAS and enter

the DFG. The DFG is home-built and a full description of it can be found elsewhere.2

The signal and idler beams are separated to allow their relative timing to be adjusted

before they are recombined colinearly in a AgGaS2 crystal with the proper timing and

phase matching condition to maximize the generation of the desired mid-IR light. At the

conclusion of this process approximately 10 µJ of mid-IR light is generated with average

pulse energy fluctuations below 1%, ideal for nonlinear measurements.

4.4.2 Interferometer

Before leaving the DFG the mid-IR is overlapped with a visible HeNe tracer beam

that propagates collinearly with the mid-IR throughout the remainder of the instrument.

This is for the purposes of alignment since the mid-IR light is not visible to the naked eye.

The mid-IR and HeNe are overlapped by reflecting the HeNe off of a germanium plate

that transmits the mid-IR. The mid-IR is properly overlapped with the HeNe, to ensure that

they propagate collinearly, by sending both beams through an iris into a power meter at
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two positions, one close to the DFG and one several meters away. The HeNe is centered

on each iris and the power meter is used to maximize mid-IR throughput at both positions.

It is essential to use a position both close to, and far away from, the DFG to ensure that

the beams continue to propagate collinearly all the way to the sample area.

The boxcar has a home-built interferometer, which is fully described and diagrammed

elsewhere.1,2 The interferometer uses ZnSe beamsplitters to split the incomingmid-IR into

five pulses, the three pulses that interact with the sample to generate the signal, the Local

Oscillator (LO) pulse, the purpose of which will be described when detection is discussed,

and the tracer pulse, which follows the signal pathway for the purposes of alignment and is

not used in the experiment. The LO and tracer pulses contain less than 1% of the mid-IR

light that enters the interferometer while the other three beams share the remaining light

roughly equally. Once separated each beam follows its own path with its own set of optics

in the interferometer allowing each one to be independently controlled. All four beam paths

have their own retroreflector all of which, except k3, the third beam in the signal generating

pulse set, are mounted on a motorized stage that provides precise control of the time

delays between each pulse. After the retroreflector the LO beam passes through another

beamsplitter where the reflected light exits the box as the LO and the transmitted light

becomes the tracer. The tracer is usually blocked, however when unblocked it becomes

the fourth corner of the boxcar geometry. This means that it follows the path of the signal

which can be useful for the purposes of aligning the balanced detection optics. Each beam

then passes through its own wave plate and polarizer to provide polarization control. In the

case of the experiments presented here all four beams have the same polarization. Before

exiting the interferometer k2, the second beam when collecting the rephasing signal and

the first beam when collecting the non-rephasing signal, passes through the chopper.
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4.4.3 Sample Detection

The four beams, and the tracer if needed, then enter the sample area, which is de-

scribed in detail elsewhere.1 The three signal generating pulses enter the sample detec-

tion area in the boxcar geometry, as shown in Figure 2.1, with the tracer beam occupying

the fourth corner of the box if necessary. The beams are aligned onto a gold parabolic

mirror that focuses them into the sample. The LO beam comes into the box separately

and is aligned to reflect off of the gold parabolic just outside of the box made by the sig-

nal generating beams and is also focused into the sample. A coarse spatial alignment of

the beams is done using a set of irises prior to the gold parabolic to properly align them

into the boxcar geometry. A more precise alignment, ensuring the beams all focus to the

same spot, is conducted by placing a 50 µm pinhole at the sample position and aligning all

four beams through the pinhole by maximizing the throughput of each beam on a single

channel detector. Once the beams are aligned spatially they need to be overlapped in

time as well. Since k3 is not mounted on a motorized stage all other beams will use it as

a reference. Two beams are scanned against each other to find the point in time where

constructive interference is maximized, which provides the time at which the beams are

overlapped. First k2 is scanned against k3 and time zero for k2 is set to be the time at which

they overlap. Then k2 is scanned against k1 to set k1 to the same time zero. Scanning

k1 against k2 rather than k3 helps to minimize timing errors in τ1, the time delay between

the first and second pulses as introduced in Chapter 2. Finally the LO can be scanned

against k3 resulting in all four beams sharing the same time zero at the sample.

With the beams properly overlapped in time and space we can move onto detection.

The detector is a mercury cadmium telluride (MCT) detector that contains two vertically

displaced stripes each with 64 pixels. The signal is detected utilizing a balanced detec-

tion scheme which provides a significant increase in the signal-to-noise ratio. Balanced

detection works by overlapping the signal and the LO on an anti-reflection (AR) coated

beamsplitter resulting in two paths along which the signal and LO both propagate collin-
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early. The beamsplitter is AR coated on one side to restrict reflections to only occur at

the uncoated face. The LO and signal approach from different directions resulting in the

signal reflecting off of the front face of the beamsplitter while the LO reflects off of the back

face. Due to the difference in refractive index between air and ZnSe the signal reflection

off of the front face has a π phase shift relative to the transmitted LO that it is overlapped

with. The LO reflection off of the back face of the uncoated side does not undergo a phase

shift and has the same phase as the transmitted signal. This results in the signal collected

on each stripe being

I1
(
ω3.τ2, τ1, τLO

)
=
∣∣∣Esig (ω3, τ2, τ1) + ELO

(
ω3, τLO

)∣∣∣2
I2
(
ω3.τ2, τ1, τLO

)
=
∣∣∣Esig (ω3, τ2, τ1)− ELO

(
ω3, τLO

)∣∣∣2 (4.1)

Describing the electric field as a plane wave as E = Aeiϕ where A is the amplitude and

ϕ is the phase. The amplitude and phase of the signal depend on ω3, τ2, and τ1 where

as the amplitude and phase of the LO depend on ω3 and τLO which will be dropped from

here on for simplification. Expanding each term out gives us

I1
(
ω3.τ2, τ1, τLO

)
= A2

sig + A2
LO + 2AsigALO cos

(
ϕsig − ϕLO

)
I2
(
ω3.τ2, τ1, τLO

)
= A2

sig + A2
LO − 2AsigALO cos

(
ϕsig − ϕLO

) (4.2)

where the cross term contains the desired phase and amplitude information. These equa-

tions designate the detected signal when all three signal generating beams are present,

meaning the chopper is in the open position. We will designate this as Io1 and Io2 where

the superscript o designates that k2 passes through the chopper. In the case where the

chopper is blocking k2 the signal detected on each stripe of the MCT array is

Ic1/2
(
ω3, τLO

)
=
∣∣ELO (ω3, τLO)∣∣2 = A2

LO (4.3)
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since the third order signal cannot be generated along the detected signal path without all

three beams interacting with the sample. Here the superscript c designates the chopper

is in the closed position and both stripes detect the same signal. Moving forward these

will simply be designated as Ic1 and Ic2 for simplicity. In practice the data are acquired

according to the following equation3,6

S̃exp (ω3, τ1) =
[(

Io1 − Io2
Io1 + Io2

)
−
(
Ic1 − Ic2
Ic1 + Ic2

)]
(4.4)

where the term in the right is essentially zero but helps to remove effects due to scatter

and other shot to shot variations. Plugging Equations 4.2 and 4.3 into equation 4.4 results

in

S̃exp (ω3, τ1) =
2ALOAsig cos(ϕsig − ϕLO + τLOω3)

A2
LO

(4.5)

where the A2
sig term has been neglected since it is very small relative to the A2

LO term.

Multiplying through by A2
LO, which is also done on the fly by the control software, provides

the final signal.

4.4.4 Temperature-Jump Spectrometer

The temperature-jump spectrometer is an extension of the boxcar where a 10 ns 1.98

µm pulse induces a rapid temperature increase in the sample and the resulting structural

changes are monitored utilizing the boxcar spectrometer. The temperature-jump laser

is a flashlamp pumped Q-switched Nd:YAG (YG981C, Quantel) that generates 1064 nm

pulses that are approximately 10 ns in duration at a repetition rate of 20 Hz. These pulses

are then frequency doubled by second harmonic generation to 532 nm. This light pumps

an optical parametric oscillator (OPO) (Opotek), which, similar to the OPA, generates a

signal and idler whose frequencies sum to the frequency of the incoming light, though the

method by which this occurs is slightly different. The primary difference between the two

being that the OPA first generates a seed which is then amplified in the second stage while
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also generating the idler whereas the OPO is self-seeded. The OPO generates a 1.98 µm

idler, the signal is discarded, which is used to generate the temperature perturbation. The

trigger for the flashlamps and the Q-switch in the temperature-jump laser is generated

by a delay generator (DG535, Stanford Research) which itself is triggered by the signal

delay generator (SDG) that controls all of the timing electronics for the boxcar syncing the

timings for both systems. A schematic of the timing electronics and delays that control

both the regenerative amplifier and the temperature-jump laser can be found elsewhere.1

The 1.98 µm pulse pumps the overtone of the OD stretch vibrational mode of the

D2O solvent. The resulting vibrational excitation quickly relaxes back to the ground state

causing the sample to heat up on the scale of the ≈10 ns temperature-jump pulse width.

The overtone of the OD stretch is used since only about 10% of the light is absorbed which

results in a more even heating of the sample as the power of the pulse is not significantly

reduced as it passes through the sample.

Before discussing spatially overlapping the temperature-jump pulse with the mid-IR

pulses at the sample, in addition to setting the timing between the two pulses, it is useful

to discuss the profile of the temperature-jump experiment, which is shown in Figure 4.1.

Due to the difference in the repetition rates between the two lasers there are 50 mid-IR

Figure 4.1: Profile of a temperature-jump experiment. The orange pulse represents the
temperature-jump pulse while the purple pulses represent the mid-IR pulse sequence,
shown in the insert, that tracks the samples response to the temperature perturbation.
The temperature-jump time delay τ is adjusted to sample the entire temperature profile.
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pulse sequences for each temperature-jump pulse. For simplicity the four mid-IR pulse

sequence will be referred to as a single shot, since it originates from a single shot of the

Ti:Sapph laser, and the set of 50 mid-IR shots will be referred to as a shotset. Looking at

the profile of the experiment in Figure 4.1 we designate time zero to be the time at which

the temperature-jump pulse arrives at the sample, which is designated by the orange

pulse in the diagram. The mid-IR shots are the purple peaks on the plot with the insert

demonstrating that each is split into the four individual pulses. The curve that changes

color from orange to red and back to orange demonstrates the temperature profile of the

sample. The user controlled time delay between the temperature-jump pulse and the first

mid-IR shot is designated as τ . Designating the time delay between the temperature-

jump pulse and each mid-IR shot in the shotset as τj where j designates the jth shot,

τj = τ + (j − 1) · 1 ms where j = 1, 2, . . ., 50. Since the temperature plateau, during

which the sample is evolving at the final temperature, lasts for less than a millisecond

before starting to cool back to the initial temperature only the first mid-IR shot for each

shotset will fall within the temperature plateau. The 49th and 50th shots occur at a time

where the sample has returned to the initial temperature and re-equilibrated. These shots

are referred to as the equilibrium shots and are used during processing to determine the

change in signal relative to equilibrium at each time point. A series of τ points are collected

to sample the temperature profile. For shots j = 2-48 the jth shots are often averaged

together across multiple τ points since the change in τ is insignificant in the millisecond

time regime in which these shots occur.

After the temperature-jump pulse is routed into the sample area it must be spatially

overlapped with the mid-IR pulse at the sample. The temperature-jump pulse is first visu-

ally overlapped with the HeNe tracer as a coarse alignment. After the coarse alignment a

temperature dependent change in LO transmission of the D2O bend-libration combination

band centered near 1555 cm-1 should be observed. Next a fine alignment of the spatial

overlap is conducted by adjusting the position of the temperature-jump pulse to maximize
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the LO response. The next step is to set the zero point for τ as the point at which the

temperature-jump pulse arrives at the sample at same time as the first mid-IR shot in the

shotset. This is done by determining the magnitude of the LO response at the top of the

plateau and then adjusting the delay that triggers the temperature-jump laser such that the

LO response of the first mid-IR shot is half of the maximummagnitude of the LO response.

The time at which the LO response is half of the maximum is designated as time zero for

τ .

Data acquisition for a temperature-jump experiment generally follows the method util-

ized by the boxcar as described in Section 4.4.3 with a few distinctions. The first is that

τ1 = 0, meaning that we are acquiring the HDVE rather than a 2D spectrum. This is done

to conserve time in cases where the ability to resolve the ω1 axis is not necessary. Ac-

quiring a full HDVE data set for a single initial temperature for a given sample requires

somewhere in the range of four to eight hours. While it is possible to take a full transient

2DIR spectrum it takes much longer. Acquiring the HDVE provides the ability to collect

more initial temperatures and τ delays for each sample, or more samples, in the same

amount of time.

The second distinction is that chopping every other mid-IR shot during acquisition and

processing sequential open and closed shots together according to Equation 4.4 does not

work since the neighboring chopped and unchopped shots have different values of τ . To

get around this the chopper phase is flipped during data acquisition. The signal is first

acquired with the chopper open for the even shots and closed for the odd shots and then

the chopper undergoes a π phase shift and the signal is acquired with the chopper closed

for the even shots and open for the odd shots. This results in obtaining a signal with both

the chopper open and closed for each value of τ which can then be used to obtain the

signal as described in Section 4.4.3.
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4.4.5 Data Processing

After the data is collected additional processing is done with Matlab scripts. Our focus

will be on processing the transient HDVE data as that is what is used in this thesis. The

first aspect of data processing is to recover the complex spectral interferogram which is

done using the FTSI method that was described in Section 2.5. The next step is to correct

any errors that may have occurred in τLO over the course of the experiment. This is done

by comparing the equilibrium shots for each shotset to a pump probe spectrum which is

equivalent to the real part of the HDVE spectrum as discussed in Section 2.5. Prior to

the acquisition of the temperature-jump data a pump probe spectrum is collected using

the chopped k2 beam and the LO with a delay of 150 fs, the same as the τ2 delay in the

temperature-jump experiment. For each shotset the equilibrium shots are fit to the pump

probe spectrum in the frequency domain with a phase correction value as the fit parameter.

The best fit is found by a nonlinear least squares fitting algorithm and the resulting phase

correction is applied to the entire shot set. To generate the final transient HDVE difference

spectrum the equilibrium spectra are subtracted off from the spectra at each time point

before dividing through by the maximum value of the equilibrium spectrum. The resulting

final transient HDVE spectrum for each time point has a y-axis that is the percent change

in signal at time τ relative to the equilibrium signal normalized to the maximum value of

the equilibrium spectrum.
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CHAPTER 5

ANALYSIS METHODS

5.1 Introduction

This chapter introduces the analysis conducted on the experimental thermodynamic

and kinetic data. We will first discuss the methods utilized to extract thermodynamic para-

meters from the temperature ramp FTIR experiments. These parameters are useful both

for understanding the energetics of the association and dissociation processes, but are

also a necessary part of the kinetic analysis for the transient temperature-jump experi-

ments. Thermodynamic analysis starts with obtaining the melting curve that tracks the

loss of DNA base pairs as a function of temperature. Two different methods of varying

complexity for obtaining the melting curve will be discussed providing some flexibility in

how it can be obtained. After obtaining the melting curve a seven parameter fit is applied

to extract the thermodynamic parameters. Analysis of thermal melting curves can take

multiple different forms that depend on how various parameters, such as the melting tem-

perature, are defined since a variety of definitions exist. The resulting expressions for the

parameters and the fit itself also differ based on the system being studied, an example

being different expressions for self-complimentary and non-self-complimentary DNA du-

plexes. Here we will present the fitting used in this work to extract the thermodynamic

parameters from the melting curve of a duplex made up of self-complimentary monomers

that is assumed to dissociate and associate as a two-state process.

This is followed by a discussion of the methods for analyzing the data obtained from

the transient temperature-jump experiments. The methods discussed here are widely

used both in the literature and in our research group so only a brief discussion is contained

here. The first step upon obtaining a completed temperature-jump data set is to confirm the

magnitude of the temperature jump for each initial temperature. This is used to determine

the final temperature at which the system is evolving. Once the final temperature is known
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the kinetic information can be extracted and analyzed. Two different methods for extracting

relevant kinetics will be discussed: analyzing the results in the time domain and utilizing an

inverse Laplace transform method to translate the data into the rate domain for analysis.

Neither method is inherently better than the other, instead they provide different avenues

for examining the data and both methods can be useful depending on the specific context.

Finally, the methods and mathematics behind the deconvolution of the association and

dissociation rates from the overall observed rate, and the assumptions that are made to

greatly simplify the process, will be discussed. Looking at not only the association and

dissociation rates but also the shape and functional form of the signal obtained both in the

time and rate domains is the first step towards understanding the kinetics and dynamics

of the samples.

5.2 Thermodynamic Analysis

5.2.1 Obtaining the Melting Curve

Two methods for obtaining the thermodynamic melting curve from an FTIR temperat-

ure ramp series, an example of which is shown in Figure 5.1, will be discussed here. While

other methods for analyzing the thermodynamics exist, the methods presented here cover

a wide range of potential applications of interest. The first method is simpler and analyzes

a specific frequency of interest, often the frequency with the maximum absorbance for a

given feature. The more complex method considers a range of frequencies whether that

includes multiple frequencies within a single peak or a wide range of frequencies spanning

multiple features.

The first approach is to plot a signal trace at a specific frequency as a function of

temperature. This is analogous to a method commonly used to study DNA thermody-

namics in the UV where the melting curve is commonly the absorbance at approximately

260 nm as a function of temperature.1–3 One key difference relative to UV is that the 260
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Figure 5.1: FTIR temperature ramp series for the sequence 5’-CATATATATG-3’ from 10-82
°C with a spectrum taken every 3 °C.

nm peak contains contributions from all DNA base pairs whereas a single IR frequency

in the range examined here will not necessarily contain strong contributions from all four

bases and may only have contributions from a single base. This is a potential downside

of analyzing a single frequency in the IR since, depending on the sequence composition,

it might not accurately represent the overall melting of the duplex. Rather it results in a

melting curve that is primarily reporting on either the loss of A:T base pairs or G:C base

pairs. However, this can also be useful in some contexts. If the melting curves of A:T base

pairs are distinguishable from G:C base pairs this can provide some insight into how the

sequence melts. It is worth considering that this can be interpreted as a violation of the

two-state approximation since it implies that different base pairs within the same sequence

are not melting at the same time.

To help counteract the limitations of using single frequency slices it is advantageous to

have a complimentary method that considers a wider frequency range. This could involve

considering all frequencies within a single peak or incorporating multiple peaks across a

larger frequency range. This can be accomplished through the use of singular value de-

composition (SVD) which, while beneficial, does come with increased complexity. A brief
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description of SVD specifically focused on its application in this work is provided here to

explain the origin of the thermodynamic melting curves, for those interested in a complete

description of SVD the minireview by Hendler and Shrager provides a good starting point

for further reading.4 Applying SVD starts by defining a matrix A which contains all of the

spectra from the temperature ramp such that each row contains the spectra at a given

temperature. As a result A has w columns, where w is the number of frequencies in the

spectra and t rows where t is the number of temperatures spectra were collected at. SVD

breaks down the matrix A into components according to

Awxt = UwxsSsxsVTsxt (5.1)

where U is the set of orthanormal vectors of the column space of A which contain the

spectral information for each component, V is the set of orthanormal vectors of the row

space that contain the melting profile for each component and S contains the singular

values for each component which provide information on the relative significance of each

component. Computational languages, such as MATLAB, Python, and R, commonly have

built in functions for performing SVD on a matrix. Since we are interested in the melting

profile for the system we will focus on the vectors of V which contain this information. The

first component corresponds to an average spectrum that is roughly static as a function

of temperature. The second component contains the dominant spectral changes caused

by increasing temperature, which are the result of duplex melting. For a system that is

assumed to melt in a two-state fashion the only changes observed should be the dimer to

monomer transition with no intermediates present. Thus, in theory, if the system is truly

two-state the remaining components would be expected to be essentially noise, though in

practice this is not the case. Regardless, within the two-state approximation made here

we assume that the normalized second SVD component directly reports on the fraction of

intact base pairs relative to the total number of base pairs. This means that the second
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Figure 5.2: (a) Normalized second SVD component (orange dots) with the fit (light blue
line) and both upper (black line) and lower (dark blue line) baselines and (b) the resulting
fit for 5’-CATATATATATG-3’.

vector in the V matrix, after normalization, is taken as the melting curve to be fit. The

second SVD component with the fit being applied to it is shown in Figure 5.2a.

5.2.2 Melting Curve Analysis

The ultimate goal of analyzing the melting curves is to obtain the thermodynamic

parameters for the system and determine the monomer concentration at each temper-

ature which is required for the analysis of the temperature-jump experiments. This is

accomplished by fitting the melting curve assuming that the dissociation can be described

as a two-state process during which all strands in the system are either a monomer or in a

fully formed duplex where every base pair is intact.5 All of the sequences studied here are

self-complimentary and as such the analysis will be derived for this case. The non-self-

complimentary case follows a similar derivation and the relevant equations are contained
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in Appendix 5A for reference. Under this assumption the reaction can be written as

D
kd−⇀↽−
ka

2M (5.2)

where D represents the fully formed dimer state andM represents the monomer state. The

equilibrium constant for this reaction, which we define with respect to the dissociation, is

K =
[M]2

[D]
= e

−∆G0
d

RT (5.3)

where the square brackets indicate concentrations. We now define the total concentration

of strands in the system, CT, as

CT = 2[D] + [M] (5.4)

Since each duplex contains two single strands the value of CT is constant regardless of

the ratio of monomers to dimers in the system.

We now define the fraction of intact base pairs for the system under the two-state

assumption, where all intact base pairs are contained within a fully formed dimer, as

fD =
2[D]
CT

(5.5)

since the melting curve reflects the fraction of intact base pairs for the system at a given

temperature this is the value that will be fit, which means an expression for fD based

on the thermodynamic parameters of interest is required. The first step is to derive an

expression for the equilibrium constant, K, as a function of CT and fD. Using Equation

5.5 in combination with Equations 5.4 and 5.3 produces

K =
2CT (1− fD)

2

fD
(5.6)

This is useful since CT is a known quantity and the thermodynamic parameters of interest
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can all be determined based on their relations to the equilibrium constant. Solving for fD,

taking the negative root of the quadratic equation, results in the following expression for

fD

fD =
4CT +K −

√
K2 + 8KCT

4CT
(5.7)

We now need to determine the thermodynamic quantities of interest from the equilib-

rium constant. We start by relating the Gibbs free energy to the equilibrium constant

∆G = ∆G0 +RT lnK (5.8)

and noting that ∆G = 0 at equilibrium results in

∆G0 = −RT lnK (5.9)

which we can break down into the enthalpy and entropy according to

∆G0 = ∆H0 + T∆S0 (5.10)

At this point we need to formally define the melting temperature, Tm, within the context

of this work. While many different definitions of the melting temperature exist, it will be

considered here to be the temperature at which fD = 0.5. The melting temperature will be

utilized as a reference state for determining ∆H0 and ∆S0 at any temperature. To do this

we invoke the definition of heat capacity

Cp =
dH

dT
=

TdS

dT
(5.11)

and integrate with the bounds Tm and T , making the assumption that ∆Cp is constant

resulting in

∆H0(T ) = ∆H0 (Tm) + ∆Cp (T − Tm) (5.12)
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∆S0(T ) = ∆S0 (Tm) + ∆Cp ln
(

T

Tm

)
(5.13)

Substituting Equations 5.12 and 5.13 into Equation 5.10 results in the final expression for

∆G0

∆G0(T ) = ∆H0 (Tm) + T∆S0 (Tm) + ∆Cp

(
T − Tm − T ln

(
T

Tm

))
(5.14)

where∆H0 (Tm) and∆Cp are fit parameters. At this point all that remains is an expression

for ∆S0 (Tm).

Rather than having ∆S0 (Tm) be a fit parameter it can be calculated from the fit para-

meters ∆H0 (Tm) and Tm. It can be seen in Equation 5.6 that at Tm the equilibrium con-

stant is equal to CT. Setting the right hand side of Equation 5.9 equal to the right hand side

of Equation 5.10 and solving for∆S0 at Tm provides the following expression for∆S0 (Tm)

as a function of known quantities and the fit parameters ∆H0 (Tm) and Tm

∆S0 (Tm) =
∆H0 (Tm) +RTm lnCT

Tm
(5.15)

We can now determine fD from the fit parameters ∆H0 (Tm), Tm, and ∆Cp according to

Equation 5.7 solving for K through Equations 5.14 and 5.9.

In practice the experimental melting curves have slanted baselines for both the upper

and lower baselines that must be accounted for, which is done by fitting the second SVD

component to the equation

V 2 = fD (SD − SM ) + SM (5.16)

where V 2 is the resulting fit to the melting curve, which is referred to V 2 since it often fits

the vector in the matrix V that corresponds to the second SVD component. Sd and Sm

are the upper (dimer) baseline and lower (monomer) baseline respectively. Both Sd and
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Sm are linear and thus simply determined by two parameters, a slope and an intercept.

The upper and lower baselines can be seen along with the second SVD component in

Figure 5.2a while the resulting values of fD can be seen in Figure 5.2b. This results in

four additional fit parameters for a total of seven used to fit the melting curve.

5.3 Kinetic Analysis

5.3.1 Calculating Temperature-Jump Magnitude

The magnitude of the temperature change is determined by the transient response

of the D2O bend-libration combination band in the local oscillator (LO) spectrum. This

primarily tracks the change in the solvent transmission as a result of the temperature per-

turbation and subsequent cooling back to the initial temperature. This transient response

also provides the thermal profile of the sample over the course of the experiment. To de-

termine the magnitude of the temperature jump the percent change in LO transmission is

compared to a reference of the percent change in transmission in the same peak between

FTIR D2O spectra taken at known temperatures. The first step is to determine the percent

change in LO transmission between a time point at the top of the temperature profile and

the equilibrium initial temperature. Since the signal obtained from the temperature-jump

experiment at each time point has already been referenced to the equilibrium signal, which

is taken care of during the data processing as mentioned previously, the signal at a time

point at the top of the plateau provides this necessary percent change in transmission. It

simply requires a method for determining the magnitude of this signal at each frequency

measured, which can be obtained through fitting the solvent response at each frequency

to a known function.

The thermal profile of the solvent response is well fit to a stretched exponential which

has the form

f(τ) = Ce−(
τ
t )

β

(5.17)
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where C is a scaling factor that accounts for the magnitude of the solvent response, τ is

the time point in the experiment, t is the timescale for the temperature relaxation, and β

controls the extent to which the function is stretched such that 0 < β ≤ 1 with a value of

one resulting in a standard exponential function and smaller values increasing the degree

of stretching. For the purposes of determining the magnitude of the temperature jump

the scaling parameter is the parameter of interest since it reports on the magnitude of

the percent change in transmission for the solvent response relative to the equilibrium

transmission. An important note on fitting the solvent response is that early time points

need to be removed due to the effects of cavitation waves that form as a result of the rapid

heating of the sample. These pressure waves also affect the transmission of the sample,

which is observed in the LO trace as a function time for a single frequency as a sharp rise

that can be observed in the vicinity of 100 ns. To avoid any artefacts in the temperature

calculation that could arise from this the fits to the solvent response do not incorporate

early time points, a reasonable cut off point is around 200 ns, though this can be adjusted

sample to sample as necessary.

The magnitude of the thermal response from the stretched exponential fit can now be

compared to a known standard, which is the absorbance of D2O as a function of temper-

ature obtained from FTIR. The percent change in transmission between two temperatures

Tf and Ti is obtained via the equation

∆trans (%) = 100

(
10−A(Tf) − 10−A(Ti)

10−A(Ti)

)
(5.18)

where A is the IR absorbance obtained from linear FTIR experiments as a function of

temperature. The D2O reference spectrum is taken at one degree temperature steps

and calibrated to ensure it serves as an accurate reference. Since the initial temperature

for the temperature-jump experiment is known all that remains is to determine the final

temperature that results in the percent change in transmittance, as calculated by Equation
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5.18, closest to the parameter C determined from the fit to the LO solvent response as

determined by Equation 5.17. This is then carried out for every frequency measured in

the temperature-jump experiment resulting in a Tf value for each frequency. To minimize

the effect of noise on the calculation these values are averaged together to produce the

final value of Tf.

5.3.2 Time Domain Analysis

Analyzing the temperature-jump data in the time domain is the first step in the ana-

lysis since it simply requires taking frequency slices of the transient HDVE spectrum at

frequencies of interest. Figure 5.3a shows an example of a transient HDVE spectrum that

shows where frequency slices are taken to generate time traces that show the signal re-

sponse for the guanine and adenine ring modes. As mentioned when assigning the peaks

in the IR DNA spectrum in Chapter 1 these peaks are isolated from the signals generated

by other base pairs resulting in the ability to independently track the response, due to the

temperature perturbation, of A:T and G:C base pairs. Taking the frequency slice results

in the time domain traces seen in Figure 5.3c.

Extracting the relevant kinetic parameters is done through fitting the time traces, which

enforces a functional form onto the data. Not only does the fit provide the timescales but

the functional form that fits best provides the first piece of mechanistic insight into the

system. In this section we will discuss the different functional forms that are used to fit

the kinetic traces and simple interpretations of the insights that can be drawn from them.6

This section is intended to orient the reader to how to generally interpret these results; a

more complete analysis of the kinetics, dynamics, and mechanisms for all of the different

samples examined will be included in later chapters.

The signal rise in the time trace associated with DNA that dissociates in a two-step

all or nothing process should be well fit by a single exponential function whereas more

complicated reactions, potentially due to multiple processes occurring simultaneously with
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Figure 5.3: Results from the 5’-CATATATG-3’ 41-54 °C temperature-jump. The transient
HDVE spectra for times up to 100 µs (a) and the corresponding rate map (b). The dashed
lines correspond to the frequencies with the maximum signal for the guanine (red) and
adenine (blue) ring mode excited state absorptions, which are the time traces plotted in
(c).

different timescales or different mechanisms entirely, will deviate from an exponential fit.6

To fit the trace it is broken down into two sections the initial rise that is caused by the loss

of base pairs in the duplex followed by the signal decay that occurs at longer times due

to rehybridization as the temperature of the system returns to the initial temperature. The

rehybridization portion of the signal trace is well fit to a stretched exponential function since

the temperature re-equilbration, which is the dominant factor driving the rehybridization, is

well fit to a stretched exponential as mentioned previously. While in theory this could allow

the direct observation of the hybridization reaction the analysis of this region is significantly

complicated by the fact that the temperature of the sample is evolving during this portion
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Figure 5.4: (a) Time trace and fit for the adenine and guanine ring mode response to the
41-54 °C temperature-jump for 5’-CATATATG-3’. (b) Normalized time trace and fits such
that the first time point lies at zero on the y-axis and the largest signal is equal to one.

of the experiment. Since the hybridization of base pairs is convolved with the temperature

relaxation it is extremely difficult to extract reliable information out of this portion of the

data.

This leaves the early time portion of the data that observes the dissociation of the

duplex in response to the temperature jump. The simplest case observed is that of a

standard two-state all or nothing dissociation which is best demonstrated by shorter se-

quences with G:C end caps, an example of which is shown in both Figure 5.3c and 5.4a.

Evidence for the two-state mechanism appears in a few different forms in Figure 5.4. The

first is that both the adenine and the guanine response are well fit to a single exponential

rise, best seen in the unaltered data in Figure 5.4a indicating that the loss of base pairing

is occurring as a two-step process. Additionally the timescales for the rise of the guanine

and adenine base pairs are nearly identical, as can be seen in the normalized data in

Figure 5.4b, indicating that A:T and G:C base pairs are lost at essentially the same time
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60.2 °C temperature-jump. The signal rise is fit to a biexponential function for adenine and
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which supports the all or nothing dissociation picture.

Another common form utilized to fit the rise of the signal is the use of two exponen-

tials. This has been primarily in sequences with G:C base pairs in the middle flanked

by A:T regions.7 As seen in Figure 5.5 the guanine response follows a standard single

exponential rise while the adenine response is best fit by a biexponential function. This

functional form can be interpreted as two resolvable processes each occurring in a rel-

atively two-state manner with a single timescale for each process. In the context of the

sequence mentioned here this has been interpreted as fast fraying of terminal A:T base

pairs, a conclusion strongly supported by the contrast between the biexponential rise in

the adenine signal and the single exponential rise of the guanine signal. Additionally the

timescale for the guanine response is in reasonable agreement with the second timescale

in the adenine response meaning those two processes occur at roughly the same time.7

The third common functional form for the rise in signal is a stretched exponential.

This can be observed in Figure 5.6 which shows adenine ring mode time domain traces

for sequences of two different lengths. In Figure 5.6 the dashed line is the stretched

exponential fit to each time trace and the solid line is the exponential fit. The shorter
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perature of approximately 53 °C. Both traces are normalized to their maximum value and
offset by a value of 0.4 for clarity.

sequence is well fit to the single exponential rise, such that the stretched exponential fit

is not a significant deviation from the exponential fit. Whereas for the longer sequence

the stretched exponential fit demonstrates a significant improvement relative to the single

exponential fit. A stretched exponential is most commonly interpreted to be the result

of having a mixture of different processes occurring with different timescales resulting in

the signal becoming stretched out in time. There are numerous reasons why processes

with different timescales could be occurring simultaneously. One possible example is a

system with a unified overall mechanism but a heterogeneous initial population. Another

example is a system with a homogeneous initial population but the reaction proceeds via

a downhill mechanism through a continuous ensemble of configurations. Both of these

examples lead to a broad distribution of timescales and the stretched exponential form as

a result.6
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5.3.3 Rate Domain Analysis

An alternative method to analyzing the kinetic data in the time domain is to transform

the data into the rate domain and examine the rate distribution. An example rate map,

corresponding to the transient HDVE spectrum shown in Figure 5.3a, is shown in Figure

5.3b. These plots are oriented such that faster rates are at the bottom of the y-axis which

results in time progressing from the bottom of the plot to the top. As a result the peaks

corresponding to the dissociation as a result of the temperature perturbation occur below

the peaks for the association. Figures 5.3b and 5.3c are oriented such that their y-axis

are aligned which can help visualize the relationship between viewing the data in the time

domain and the rate domain. The main advantage of utilizing this representation is that

a functional form does not need to be assumed to extract the kinetic information from the

system. It can instead be extracted directly from the rate map. While the identity of the

functional form of the time domain plot does provide useful information about the system,

having to enforce a functional form can impact the kinetic parameters obtained from the

fit. Additionally, that same information is still observed in the rate domain by examining

the shape of the peaks in the rate map and in particular the evolution of the peaks along

Figure 5.7: Rate maps displayed at 4x magnification for the (a) 5’-CATATATG-3’ 41-54 °C
and (b) 5’-CATATATATATATG-3’ 40-54.8 °C temperature-jumps.
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the y-axis, as seen in Figure 5.7. Figure 5.7b contains a tail going out to faster rates for

three of the four peaks indicating the presence of faster rates which are not observed in

Figure 5.7a. This is analogous to the longer sequence being better fit by the stretched

exponential in Figure 5.6. Before discussing the method for extracting the observed rate

from the rate domain, that is analogous to the observed time constant extracted from the

time domain, the method for transforming the transient HDVE spectrum into the rate map

will be briefly discussed.

The transient HDVE spectrum is transformed into the rate domain using a maximum

entropy implementation of a numerical inverse Laplace transform. The method has been

thoroughly described elsewhere8,9 and as such the discussion of the method here will

focus heavily on its application and implementation.

The goal of the method is to obtain the distribution of rates denoted g(λ) that satisfies

the equation

I(t) =

∫ ∞

0
g(λ)e−λtdλ (5.19)

which is the definition of a Laplace transform.10 The Laplace transform is an integral trans-

form that takes a function of a real variable and transforms it into a function of a complex

variable. In our case I(t) is obtained from experiment so the corresponding function g(λ)

needs to be found. This requires a numerical inverse Laplace transform to be carried out

on I(t) which contains experimental noise making this process an ill-conditioned problem.

To accomplish this we first note that since the data covers many orders of magnitude it

makes more sense to work in the log space. We also rewrite the integral for the Laplace

transform to be a finite sum resulting in

I(t) =
N∑
j=1

fje
−λjt∆

(
logλj

)
(5.20)

where N is the number of data points taken in the experiment. We now turn to the max-

imum entropy method (MEM) for determining fj , ultimately by looking to maximize the
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parameter Q. Before introducing Q two terms must be introduced, the information entropy

and an expression for the normalized mean square error between the model and the data.

The information entropy is defined as

S = −
N∑
j=1

fj

[
ln
(
fj
Fj

)
− 1

]
(5.21)

where Fj is called the prior distribution and can be used to incorporate any known in-

formation about the rates. In our case we presume no known knowledge about the rate

distribution and give each Fj a value of 1e−4 which is also the starting guess for fj . The

expression for the normalized mean square error between the model and the data is given

by

χ2 =
1

N

N∑
j=1

[
If
(
tj
)
− Ie

(
tj
)]2

σ2j
(5.22)

where the subscripts f and e denote the fit value and the experimental value respectively

and the term σj is the noise variance associated with the jth data point which is supplied

by the user. The value of Ie
(
tj
)
is taken from experiment and the value of If

(
tj
)
is

determined for each iteration by Equation 5.20. We can now define Q as

Q = S − ηχ2 (5.23)

where η is the Lagrange multiplier that is selected to satisfy the constraint that χ2 = 1. In

practice the optimization algorithm that determines the values of fj will be minimizing the

function

−Q = ηχ2 − S (5.24)

where η is initially set to the mean of σj and Q is optimized for this value. The value

of η is then increased and the process repeats itself until it terminates when the value

of χ2 is one and returns the value of fj . An important observation about the MEM in-
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verse Laplace transform method is that it must be done individually for each frequency

measured in the experiment and that the calculation of the rate distribution for a given

frequency is independent from all other frequencies. This makes the code for this method

an excellent candidate for parallelization. Utilizing computing nodes with a large number

of workers significantly increases the efficiency which makes using such a system highly

recommended.

Once the rate maps have been determined using the MEM inverse Laplace transform

method the observed rate constant from the process can be determined. The observed

rate constant is determined from a weighted average across the main dissociation peak

for each feature. This method has two main advantages relative to determining the ob-

served rate constant via fitting to signal traces in the time domain. The first is that there is

no assumed functional form of the kinetic response which means that the rate can be de-

termined without enforcing a particular mechanistic description on the system. The second

advantage is that it considers the rate across the entire peak rather than just looking at

a single frequency. This provides a more consistent observed rate constant because it

can account for some degree of experimental noise. It also provides an easy method for

estimating the error in the observed rate by considering the amplitude weighted standard

deviation in the rate across the peak.

5.3.4 Two-State Kinetics

The observed rate constant for a transient experiment is a convolution of both the

forward and backward rates for the system. Deconvolving the observed rate constant

into the forward and backward rates for a second order process is a complex problem to

solve analytically. However, this problem can be simplified significantly by approximating

our experiment as a small amplitude perturbation. This requires making the assumption

that the system is at equilibrium and the population changes that occur as a result of the

temperature perturbation are relatively small.
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The derivation of an expression for the observed rate constant in terms of the asso-

ciation and dissociation rates for the reaction given by Equation 5.2 starts with deriving

an expression for the equilibrium concentration of the monomer and dimer prior to the

introduction of the temperature perturbation. We start with the time derivatives for the

monomer and dimer concentrations11

d [M]

dt
= [D] kd − [M]2 ka (5.25)

d [D]
dt

= [M]2 ka − [D] kd (5.26)

and note that at equilibrium both of them are equal to zero. From this, the definition of

the total strand concentration given by Equation 5.4, and the definition of the equilibrium

constant K =
kd
ka

we can derive the following expressions for the monomer and dimer

concentrations at equilibrium

[M]eq =
1

4

(
−K +

√
K2 + 8KCT

)
(5.27)

[D]eq = −1

8

(
−K + 4CT +

√
K2 − 8KCT

)
(5.28)

We now introduce the small perturbation assumption and define the concentrations for the

monomer and dimer after the perturbation, which alters the populations only slightly away

from equilibrium, as

[M] = [M]eq + [m] (5.29)

[D] = [D]eq + [d] (5.30)

where the lower case denotes the small changes in concentration that occur due to the

perturbation. We now want to determine d[d]
dt which can then be used to derive the ob-

served rate constant. The same method can be done using d[m]
dt and it will produce the

same expression for the observed rate constant so it will not be explicitly shown here. We
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start by adding together the time derivatives for [D]eq and [d] giving us the expression

d [D]eq
dt

+
d[d]
dt

= ka
(
[M]eq + [m]

)2
− kd

(
[D]eq + [d]

)
(5.31)

Incorporating Equation 5.26 yields

d[d]
dt

= 2ka [M]eq [m]− kd[d] + ka[m]2 (5.32)

Knowing that CT cannot change as a result of the perturbation means that [m] = −2[d] so

by substitution we get

d[d]
dt

= −4ka [M]eq [d]− kd[d] + 4ka[d]2 (5.33)

At this point we drop the second order term due to our assumption that our perturbation

only slightly changes the overall concentration. Solving the differential equation that re-

mains after the second order term is dropped gives us

[d](t) = Ce
−
(
4ka[M]eq+kd

)
t (5.34)

where C is a constant. Which gives us the observed rate constant11

kobs = 4ka [M]eq + kd (5.35)

Using Equations 5.3, 5.4, and 5.5 Equation 5.35 can be rewritten as

ka = kobs
(
Kd,f + 4CT

(
1− fD,i

))−1 (5.36)

where fD,i denotes the fraction of molecules in the duplex state at the initial temperature,

and Kd,f is the dissociation equilibrium constant at the final temperature Tf.
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Appendix 5A: Equations for the Thermodynamic and Kinetic Analysis

of Non-Self-Complimentary Sequences

In this appendix the equations for analyzing non-self-complimentary sequences are

provided. Since the derivation for both the thermodynamics and kinetics follow the same

general procedure as the self-complimentary case the derivations will not be provided and

instead the equations that differ from the self-complimentary analysis are provided. Again

following the two-state assumption for the reaction

D
kd−⇀↽−
ka

M1 +M2 (5.37)

where M1 and M2 are the two monomers. For the purposes of this analysis we will make

the assumption that [M1] = [M2] such that if the system is fully duplexed there are no

remaining unpaired monomers. In this case the equilibrium constant is given by

K =
[M1] [M2]

[D]
= e

−∆G0
d

RT (5.38)

In this case CT is defined as as

CT = 2[D] + [M1] + [M2] = 2[D] + 2[M] (5.39)

where [M] = [M1] = [M2].

The fraction of intact base pairs for the system under the two-state assumption is

the same as the self-complimentary case given in Equation 5.5. The expression for the

equilibrium constant as a function of CT and fD in the non-self-complimentary case is

K =
CT (1− fD)

2

2fD
(5.40)
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From this the expression for fD is determined to be

fD =
CT +K −

√
K2 + 2KCT

CT
(5.41)

The expressions for ∆H0 (T ), ∆S0 (T ), and ∆G0 (T ) are unchanged from the self-

complimentary case leading to the expression of ∆G0 (T ) given in Equation 5.14.

All that remains is to determine the expression for ∆S0 (Tm). First we must note that

based on the definition that fD = 0.5 at Tm and Equation 5.40 the equilibrium constant at

Tm is given by K (Tm) =
CT
4
. Using this we get

∆S0 (Tm) =
∆H0 (Tm) +RTm ln

(
CT
4

)
Tm

(5.42)

Following a similar derivation to the self-complimentary case the equation for the ob-

served rate constant for a two-state system assuming a small amplitude perturbation is

given by

kobs = kd + ka
(
[M1]eq + [M2]eq

)
(5.43)
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CHAPTER 6

LENGTH-DEPENDENT MELTING KINETICS OF SHORT DNA

OLIGONUCLEOTIDES USING TEMPERATURE-JUMP IR

SPECTROSCOPY

Portions of this chapter have been published and are reprinted with permission from:

Menssen, R. J.; Tokmakoff, A. Length-Dependent Melting Kinetics of Short DNA

Oligonucleotides Using Temperature-Jump IR Spectroscopy. J. Phys. Chem. B 2019,

123, 756-767.

Copyright 2019 American Chemical Society

6.1 Abstract

In this work we utilize Fourier transform infrared (FTIR) and temperature-jump (T-

jump) IR spectroscopy to investigate the melting thermodynamics and kinetics of a series

of five DNA sequences ranging from 6 to 14 base pairs long. IR spectroscopy is well suited

for the study of DNA because of its ability to distinguish base specific information and the

nanosecond time resolution of the T-jump apparatus can access the relevant range of

kinetics. Eyring analysis of a two-state model examines both the activation enthalpy and

entropy providing new insight into the energetic driving forces and physical processes

behind the association and dissociation while also helping to clarify the commonly ob-

served negative activation energy. Global analysis of the thermodynamic and kinetic data

applying a linear dependence of activation barriers on oligo length provides a holistic res-

ult by producing reasonable agreement between our data and existing nearest neighbor

thermodynamic parameters blending the experimental results with established predictive

models. By studying the trends in the thermodynamics and kinetics as a function of length

this work demonstrates a direct correlation between the effects additional dinucleotides
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have on the kinetics and the nearest neighbor parameters for those dinucleotides. This

result further supports the development of a kinetic analog to the thermodynamic nearest

neighbor parameters.

6.2 Introduction

One of the main goals of this research is to begin to break down and understand the

different variables that impact DNA association and dissociation mechanisms. Numerous

variables including, but not limited to, length, temperature, sequence, and salt concentra-

tion are known to impact both the kinetics and dynamics of DNA reactions and underlying

driving forces.1–15While it may seem basic, there is a surprising amount that is not under-

stood about the fundamentals of DNA association and dissociation reactions. Historically

some of this has been due to available techniques as only more recently have modern

computational techniques developed methods that are able to produce detailed simula-

tions of these reactions. Experimental techniques continue to lag behind the computa-

tional methods as simulations have predicted a number of rich and interesting dynamics

that experiments have yet to observe.1,3

Many experimental studies remain focused on the kinetics of the reactions looking at

aspects such as the rates and energetic barriers for the processes.2,16While these are in-

teresting and we ourselves also study the kinetics we feel that the real prize is understand-

ing the dynamics of the process. The dynamics focus more on how the reaction proceeds

looking at the mechanisms of all processes that occur, not just the overall monomer to di-

mer reaction. Additional processes such as the diffusion to capture of two monomers, the

fluctuations that occur during critical nucleus formation, and fast dynamics during the dis-

sociation such as fraying and bubble formation are all of significant interest to our research

group. The use of ultrafast IR spectroscopy is a perfect match for understanding these

dynamical questions due to its ability to provide greater structural resolution compared to
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other label free techniques.

These topics motivated the study of the length series, the experimental studies that

are described in this chapter. The effect of length on the association and dissociation

of DNA has not received significant attention from experimental studies using modern

techniques. Additionally, with respect to canonical DNA duplex dynamics and kinetics

our group has focused more on short DNA oligos that are well described by a two-state

mechanism. However, to start to access the rich and complicated dynamics we are inter-

ested in, our focus needs to shift to longer sequences where these dynamics are known

to occur.17,18 Examining the length series bridges this gap as, using similar sequence

construction, we can examine how the dynamics and kinetics are affected by increasing

length. An additional advantage of the length series is, due to the kinetics and dynamics

evolving with length, the data set not only motivated the development of the kinetic model

but also served as a useful core data set for comparison during development. While there

is significant work to be done to fully understand the rich and complex dynamics and kin-

etics of DNA association and dissociation, focusing on a single variable, length, provided

an approachable way to build the necessary tools, both experimental and computational.

These tools allow us to start to pull apart and understand the different variables that in-

fluence DNA association and dissociation and dive into the fundamental energetic driving

forces, mechanism, and dynamics that occur.

6.3 Experimental Methods

6.3.1 Sample Preparation

DNA oligonucleotides with the sequence 5’-C(AT)nG-3’ (n = 2-6) and lengths L = 6-

14 (i.e. number of base pairs in the single strands) were purchased from Integrated DNA

Technologies (IDT) and purified using Amicon Ultra 3 kDa centrifugal filters or Sartorius

Setim Biotech Vivaspin 2 2 kDa centrifugal filters depending on the sample molecular
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weight. To prepare for IR spectroscopy, DNA samples were then H/D exchanged in D2O

(Cambridge Isotopes) and lyophilized. Samples for both the FTIR and T-jump were meas-

ured in a deuterated 50 mM sodium phosphate buffer with an additional 240 mM NaCl and

18 mM MgCl2 and a pH of 7.2. All samples were run at a concentration of 2 mM and a

NanoDrop UV/vis spectrometer (Thermo Scientific) was used to ensure sample concen-

tration consistency. Prior to measurement, samples were annealed by heating to 95 °C

and gradually cooling to room temperature for 15 minutes. For both the FTIR and T-jump

measurements samples were placed between two 1 mmCaF2 windows with a 50 µm path

length formed with a Teflon spacer. The sample was then mounted in a home-built brass

sample cell that was temperature controlled by a recirculating chiller.

6.3.2 Temperature Ramp FTIR

For the temperature ramp FTIR measurements the chiller was ramped from 0 to 96

°C in 3 °C steps with a 60 second equilibration time at each point. The sample temper-

ature was calibrated by attaching a thermocouple to the CaF2 window to determine the

temperature at the sample relative to the chiller set point. Spectra were recorded on a

Bruker Tensor 27 FTIR spectrometer. The raw FTIR spectra where then processed by

subtracting off the D2O and HOD spectra.

6.3.3 Temperature-Jump Measurements

T-jump kinetic measurements were made with an ultrafast nonlinear IR spectrometer

with a center wavelength of 6.2 µm and 1600 cm-1 bandwidth synchronized electronically

to a nanosecond T-jump laser. The spectrometer and data acquisition methods have been

described in detail elsewhere.19,20 Briefly, the spectrometer collects a heterodyne detec-

ted vibrational echo (HDVE) spectrum. The real part of the HDVE spectrum is closely

related to a transient absorption spectrum and can be read in the same way. The posit-

ive and negative signals are the ground state bleach (GSB) and excited state absorption
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(ESA) which originate from 0 to 1 and 1 to 2 vibrational transitions respectively. All tran-

sient T-jump spectra we report are differences between the HDVE spectrum measured at

a given delay time after a T-jump pulse (τ ), and the equilibrium HDVE spectrum acquired

at the initial temperature prior to the T-jump (S0) : ∆S (ω, τ) = S (ω, τ)− S0(ω).

The T-jump laser was used to jump the sample temperature by approximately 15 °C

from an initial equilibrium temperature Ti to a final temperature Tf within ≈10 ns. This

transient temperature jump is maintained until the sample thermally re-equilibrates on a

time-scale of ≈2 ms. The initial temperatures were selected to sample a minimum of four

temperatures across the melting transition of each oligo while ensuring the kinetics fall

within the window between 10 ns and 2 ms that the instrument can observe. Ti was main-

tained by the chiller connected to the brass sample cell. Tf was determined by comparing

the transient response of the D2O solvent as a result of the temperature-jump pulse to

changes in intensity observed in equilibrium FTIR measurements of D2O at different tem-

peratures.

6.4 Results and Discussion

6.4.1 Equilibrium Melting

The self-complementary sequences utilized in this study were selected to ensure they

followed simple two-state melting behavior, by choosing relatively short lengths that would

be unlikely to form bubbles or hairpins and putting G:C base pairs at each end which limits

the likelihood of terminal fraying.4 The melting profile and underlying thermodynamics of

the monomer-dimer transition were determined from temperature-dependent FTIR meas-

urements between 1500 cm-1 and 1750 cm-1. An example is shown in Figure 6.1a. The

DNA vibrational modes in this frequency range contain contributions from both in-plane

ring vibrations, predominately at frequencies below 1650 cm-1, and carbonyl stretches,

predominately at frequencies above 1650 cm-1, that are sensitive to DNA hydrogen bond-

108



Length
6

8
10
12
14

1500 1550 1600 1650 1700 1750
Frequency (cm-1)

5

15

25

35

45

55

85

75

65

0.02

0.04

0.06

0.08

0.10

0.12

A
bs

or
ba

nc
e

0

10 20 30 40 50 60 70 80 90

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fr
ac

tio
n 

Fo
ld

ed

Temperature (ºC)

a

b

˚C

Figure 6.1: (a) FTIR temperature ramp for 5’-CATATATATATATG-3’. The boxes highlight
the peaks for the guanine ring mode (blue), adenine ring mode (red), and the overlapping
region (green). (b) DNA melting curves obtained from a fit to the second SVD component
of the temperature dependent FTIR data.

ing and base stacking interactions.21,22 Other than the shoulder at 1690 cm-1 the features

in this frequency range are suppressed by the hybridization of DNA bases resulting in an

increase in signal as the DNA double helix melts. We focus on peaks at 1556 cm-1 and

1625 cm-1 which arise from guanine and adenine ring mode vibrations respectively. These

peaks are used to independently resolve the loss of G:C and A:T base pairs. Above 1630

cm-1 the spectrum becomes more congested with overlapping contributions for thymine,

guanine, and cytosine.
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To determine the melting curve from the global changes in the spectrum, singular

value decomposition (SVD) analysis was applied to the FTIR temperature series.23,24

The second SVD component contains the dominant spectral changes caused by increas-

ing temperature, which are the result of duplex melting. The dimer is assumed to melt in

a two-state fashion so the only changes observed should be the dimer to monomer trans-

ition with no intermediates present. This leads us to assume the normalized second SVD

component directly reports on the fraction of intact base pairs relative to the total number

of base pairs.

The resulting melting curves are shown in Figure 6.1b. There are two observations

to make with the melting curves. The first is that the curves shift to higher temperat-

ure as length increases and the amount that the curves shift decreases with increasing

length. The second observation is that under our experimental conditions the two shortest

sequences do not have a full low temperature baseline. For L = 8 the baseline is not

fully established which introduces some error into the fitting algorithm which is partially

responsible for the deviation from the nearest neighbor (NN) result that is observed for

this sequence. For L = 6 the issue is more pronounced such that the sample never fully

duplexes at low temperature as seen in Figure 6.1b. The fact that the duplex state is not

fully established results in the lack of a low temperature baseline which causes a more

significant deviation from the NN parameters. However, it is worth noting that previous

studies2 have also found discrepancies with the NN parameters at very short lengths due

to the fact that the NN parameters were obtained by fitting data to larger duplexes with L

> 9 suggesting that this could also be contributing to the discrepancy that we observe.

The equations used to fit the melting curves are derived and discussed in Section

5.2.2. To obtain thermodynamic parameters from melting curves, we make the van’t Hoff

assumption that ∆H and ∆S are independent of temperature, and fit the temperature-

dependent duplex fraction fD(T ), Equation 5.7, using two independent parameters from

the model, the dissociation enthalpy
(
∆H0

d
)
and Tm, and four additional parameters that
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Figure 6.2: Values for the (a) enthalpy, (b) entropy, (c) Tm, and (d) free energy of dissoci-
ation at 37 °C for the two-state thermodynamic model (red), the nearest neighbor model
(blue), and the global fit (black).

define the baselines for the high and low temperature regimes. ∆S0
d follows from Equa-

tion 5.15, ∆G0
d from Equation 5.10, and Kd from Equation 5.3. The resulting analysis of

the equilibrium melting of the oligomers is summarized in Table 6.1 and plotted in Fig-

ure 6.2. All values for the NN parameters were corrected to account for the buffer salt

concentrations.25

Plots of both the enthalpy and entropy as a function of length, shown in Figure 6.2a

and 6.2b respectively, are roughly linear as expected. The resulting slopes for the two-

state thermodynamic fit show that the enthalpy and entropy increase by 24 kJ mol-1 and

70 J mol-1 K-1 respectively for each additional base pair. Adding two base pairs, in this

case both an AT and a TA dinucleotide, increases the∆H0
d by 48 kJ mol

-1 and∆S0
d by 140

J mol-1 K-1 which is in reasonable agreement with salt-corrected25 NN predictions of 60.2

kJ mol-1 and 179 J mol-1 K-1 respectively.26 Finally, for the free energy of dissociation,

according to the fit two additional A:T base pairs add 5.3 kJ mol-1 to the free energy of the

duplex. This is in reasonable agreement with the NN prediction of 6.1 kJmol-1.26 It is worth
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Table 6.1: Length-dependent thermodynamic parameters for sequences 5’-C(AT)nG-3’
where n = 2-6 obtained from two-state analysis of melting curves, nearest neighbor
calculationsa, kinetic Eyring analysis, and global fit analysis.

length 6 8 10 12 14

Tm (°C)
global fit 42.6 46.7 49.0 50.5 51.5

nearest neighbora 37 44 47 50 52

melting curve 27.6 40.3 46.8 49.7 52.5

∆G0
d (kJ mol

-1)b

Eyring analysis 16.8 21.1 24.8 29.7 35.6

global fit 19.4 23.4 27.2 31.6 36.6

nearest neighbora 16.1 20.6 25.2 29.8 34.5

melting curve 10.8 18.7 25.0 28.4 32.6

∆H0
d (kJ mol

-1)

Eyring analysis 163 219 275 345 408

global fit 172 243 313 384 455

nearest neighbora 161 221 281 341 402

melting curve 155 233 275 314 357

∆S0
d (J mol

-1 K-1)

Eyring analysis 472 638 808 1017 1201

global fit 493 707 922 1136 1349

nearest neighbora 466 646 825 1005 1184

melting curve 465 691 806 921 1046
aNearest neighbor values are calculated from Ref 26 utilizing salt corrections from Ref 25.
b∆G0

d is calculated at 37 °C.

noting that all of the two-state results do demonstrate a slight non-linearity, especially at

the shortest lengths. This suggests that the assumptions made in the two-state model or

the additive nature of the NN model may be breaking down for these short lengths. This

is consistent with previous work that showed discrepancies between NN predictions and

experimental results at short lengths which suggested it may be due to the fact that the

NN parameters were obtained by fitting to longer sequences with L > 9.2

For the equilibrium melting measurements shown in Figure 6.2 (red), the y-intercept

is roughly zero. More precisely, in each case the fit crosses the x-axis at a length cor-
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responding to somewhere between -1 and 2 base pairs. Because a change in sign in

the thermodynamic parameters demonstrates a change from favorable to unfavorable or

vice versa one would expect to cross the x-axis at the length where stable duplexes are

no longer able to form, which roughly matches what is observed here. The fact that the

y-intercept is not exactly zero demonstrates the fact that there are other factors that con-

tribute to DNA thermodynamics outside of the dinucleotide contributions themselves. An

example of this is observed in the NN parameters for initiation and the symmetry pen-

alty.26 The thermodynamic value at the y-intercept can be thought of as corresponding

to the free-energy of a hypothetical duplex with zero bound base pairs but occupying the

same molar volume as the fully base paired duplex.27 Additionally, the fact that the ther-

modynamic parameters are all roughly zero at a length of zero base pairs helps to reinforce

the picture that DNA thermodynamics are linear as a function of length.

6.4.2 Temperature-Jump Melting Kinetics

To study the kinetics, a minimum of four T-jump measurements, each with a jump

magnitude of roughly 15 °C, were done on each length with varied Ti that sampled across

the melting transition to allow for kinetic analysis. The resulting IR spectra allow the loss

of base pairing as a result of the temperature perturbations to be tracked throughout the

window of time between approximately 10 ns and 2 ms.

An example series of transient IR spectra following the T-jump for L = 6 is shown in

Figure 6.3a. The spectrum shows positive and negative peaks that arise from 0-1 and

1-2 vibrational transitions, but they can be assigned by correspondence to the peaks ob-

served in the FTIR absorption spectrum. Of the four most intense features the two negative

peaks at approximately 1560 cm-1 and 1610 cm-1 correspond to the guanine and adenine

ring modes respectively and the two positive peaks correspond to a mixture of guanine,

cytosine, and thymine vibrations.

To illustrate the temporal form and length dependence of the kinetics, Figure 6.4
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Figure 6.3: 5’-CATATG-3’ (a) Transient IR spectrum for the Ti = 25 °C to Tf = 40 °C T-jump
for delays between 0 and 0.1 ms, with increasing time delay as colors go from blue to red
(re-equilibration not shown). (b) Rate distribution where purple denotes a loss in signal
associated with that rate and orange denotes an increase in signal. The dotted black lines
are a guide to the eye to show how the two are connected and highlight the guanine and
adenine ring modes.

shows the time-dependent changes to the adenine ring mode intensity as a function of

temperature-jump delay (τ ) and oligo length. Each intensity trace is also superimposed

with an exponential and stretched exponential fit. Also shown is the time-dependent tem-

perature of the sample as it thermally re-equilibrates from Tf to Ti through thermal diffusion,

which is relatively constant to τ ≈100 µs before relaxing with a ≈2 ms time constant. As a

result, we ensure that all data presented here have relaxation time scales <<2 ms. Note

the kinetics in Figure 6.4 are compared at a fixed temperature of approximately Tf = 53 °C
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Figure 6.4: Normalized time domain traces for each length of sequence type 5’-C(AT)nG-3’
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and a roughly 15 °C jump magnitude, so the region of the melting curve sampled in each

temperature jump shown in Figure 6.4 varied with length. The melting curves shown in

Figure 6.1b can be used to determine what region of the melting curve was sampled for

each of the jumps shown in Figure 6.4.

In the data we observe a growth of the signal between τ = 100 ns and 100 µs that

reports on the melting of the duplex, followed by a drop in signal at longer times which re-

flects the convoluted temperature re-equilibration of the sample and re-hybridization of the

oligos. The decrease in the observed melting rate, kobs, as length increases is observed

as the rise in signal associated with the dissociating duplexes shifting to longer times.

Comparing the exponential and stretched exponential fits to the rise of the signal indicates

that the kinetics deviate from exponential and are better represented by stretched expo-

nential relaxation with a stretching exponent that decreases from 0.67 to 0.58 between

5’-C(AT)3G-3’ and 5’-C(AT)6G-3’. This increasingly non-exponential behavior likely arises

from a distribution of rates resulting from a heterogeneous initial population or the pres-
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Figure 6.5: Rate maps for (a) 5’-CATATG-3’ temperature jump from Ti = 20 °C to Tf = 33
°C and (b) 5’-CATATATATATATG-3’ temperature jump from Ti = 40 °C to Tf = 55 °C. The
region containing the fast response for both sequences is shown with 5x magnification to
highlight the difference between the two sequences.

ence of more complicated dynamics.

Without a clear functional form that can be consistently applied to all of the time traces,

we turn to an alternative method to analyze the relaxation kinetics. A maximum entropy

implementation of an inverse Laplace transform was used to obtain a relaxation rate dis-

tribution map for each of the frequencies of the transient IR spectrum.23,28 Additional
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Figure 6.6: Eyring plot of the observed rate constant for the adenine and guanine ring
modes for each 5’-C(AT)nG-3’ sequence where n = 2-6.

details about the method are provided in Section 5.3.3. Figure 6.3b shows the resulting

rate spectrum corresponding to Figure 6.3a, with the fastest rates at the bottom of the

rate axis. Peaks in the rate distribution can be separated out into two distinct regions: the

dissociation kinetics – highlighted in blue – that correspond to the microsecond kinetics,

and the slower re-equilibration regime – highlighted in red. A purple (orange) peak in the

rate distribution corresponds to a decrease (increase) in signal, i.e. a decrease (increase)

of positive signal or an increase (decrease) of negative signal. In Figure 6.3b, and for

other samples, we observe that there is a single common peak in the rate distribution for

each IR detection frequency, indicating that all spectral features respond in a correlated

manner, as expected for two-state kinetics in which the dissociation of all base pairs is syn-

chronous. As relaxation kinetics become more stretched, the rate distributions broaden –

sometimes considerably as shown in Figure 6.5 – but a single well-defined peak for the

observed dissociation rate is always apparent.

The observed rate, kobs, for both the adenine ring mode ESA (≈1610 cm-1) and

the guanine ring mode ESA (≈1560 cm-1) were determined by the first moment (weighted

average) of the dissociation peak in the rate spectrum. The observed rates for the adenine
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Figure 6.7: Eyring plot of the adenine ring mode observed rate constant for each 5’-
C(AT)nG-3’ sequence where n = 2-6. Error bars reflect the amplitude weighted standard
deviation of the maximum rate for all detected frequencies.

and guanine ring modes are almost identical under all conditions, as seen in Figure 6.6;

due to this, our analysis will focus on the adenine ring mode response. The resulting

adenine ring mode rate shows a dependence on both temperature and length which is

reflected in the Eyring plot, ln
(
kobs
Tf

)
vs. 1

Tf
, in Figure 6.7. The linear behavior indicates

that kobs increases exponentially as temperature increases. With increasing length, kobs

decreases and the slope of the line, which reports on the activation enthalpy, increases.

The linear behavior in this plot is virtually indistinguishable from an Arrhenius plot, ln kobs

vs. 1

Tf
, as shown in Figure 6.8

6.4.3 Two-State Analysis of Kinetics

Next we analyzed the data using the two-state kinetic model that was described in

Section 5.3.4. For sequences 5’-C(AT)nG-3’ where n = 4-6 both of the thermodynamic

parameters needed for kinetic analysis, the duplex fraction at the initial temperature and

the dissociation equilibrium constant at the final temperature, are taken from the thermo-

dynamic fits of the melting curves described in Section 5.2.2. For 5’-C(AT)nG-3’ where n
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Figure 6.8: Arrhenius plots for the adenine ring mode association and dissociation rates
for each 5’-C(AT)nG-3’ sequence where n = 2-6.

= 2-3 the values were determined by NN parameters,26 to avoid possible errors due to

the poor low temperature baseline in their melting curves. While the NN parameters may

not be perfect in this length regime; between the lack of low temperature baselines in the

melting curve and the possibility that the two-state assumption may be breaking down we

believe utilizing the well-established NN parameters will provide the most reliable analysis

for these sequences. With ka determined from Equation 5.36, we obtain kd from Equation

5.35. The results are shown in Figure 6.9 as an Eyring plot, and are seen to follow linear

trends. A comparison between Figure 6.9 and the observed rate constant in Figure 6.7

shows that kobs is heavily dominated by kd.

As our initial attempt to determine the association and dissociation barriers for du-

plex dissociation, we constructed Arrhenius plots for ka and kd from which the activation

energy, EA, and pre-exponential factors, A, for both are determined by a linear fit and

are shown in Table 6.2. The Arrhenius plots obtained, shown in Figure 6.8, show the

same length and temperature dependent trends as Figure 6.9. Our results show thermally

activated kinetics with a positive dissociation barrier and negative association barrier, in

reasonable agreement with other published values.3,14,15 The presence of a negative ac-
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Figure 6.9: Eyring plot for the adenine ring mode association and dissociation rates for
each 5’-C(AT)nG-3’ sequence where n = 2-6.

tivation barrier indicates that the association process in Equation 5.2 does not represent

a fundamental kinetic step.

To avoid the ambiguity over the physical interpretation of the negative activation en-

ergy and to better understand the role entropy changes play in the reaction barrier, the

data was analyzed using the Eyring equation29,30

ln
(
k

T

)
=

−∆H‡

R

1

T
+ ln

(
kB
h

)
+

−∆S‡

R
(6.1)

This approach allows us to obtain values for the activation entropy and activation enthalpy

that can be directly compared to the thermodynamic results.

Linear fits were used to calculate the enthalpy of activation for the association and

dissociation,∆H
‡
a and∆H

‡
d, and the entropy of activation for association and dissociation,

∆S
‡
a and ∆S

‡
d. These values are presented in Figure 6.10 and Table 6.3. Our first obser-

vation is that the parameters determined by analyzing the melting kinetics through the

adenine ring mode and guanine ring mode are identical within our error bars. As expec-

ted ∆H
‡
a and ∆H

‡
d are essentially identical to the Arrhenius activation energies shown in
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Table 6.2: Fit parameters for the Arrhenius analysis of the adenine ring mode association
and dissociation rates. The activation energies are roughly equivalent to the activation
enthalpies from the Eyring analysis given in Table 6.3.

length 6 8 10 12 14

association
EA

(kJ mol-1) -0.6 -41.3 -80.0 -80.4 -126

A
(M-1 s-1) 1.9 x 107 2.1 6.1 x 10-7 3.2 x 10-7 1.9 x 10-14

dissociation
EA

(kJ mol-1) 162 177 196 265 282

A
(s-1) 9.3 x 1031 4.2 x 1033 1.0 x 1036 4.0 x 1046 9.7 x 1048

Table 6.2 confirming that they contain the same information. The reaction barrier defined

by the free energy of activation, which will be denoted ∆G
‡
a for the association reaction

and ∆G
‡
d for the dissociation, are calculated from the enthalpy and entropy of activation

and are plotted as a function of temperature in Figure 6.11.

From Figure 6.10, we observe that ∆H
‡
a, ∆H

‡
d, ∆S

‡
a, and ∆S

‡
d are all roughly linear

with length. For the dissociation they are both positive and increasing with length, whereas

for association they are negative and decrease with length. Combining the activation en-

thalpy and entropy results in a positive free energy barrier to both association and dissoci-

ation as shown in Table 6.3 and Figure 6.11. As a result we see that the considerable loss

of conformational freedom that results from initiating the duplex formation is partially com-

pensated by an enthalpic benefit from forming favorable contacts in the transition state.

The fact that the activation enthalpy and entropy are changing significantly as a function

of length shows that the energetics of the transition state have a significant dependence

on length. This suggests that changing the length may induce changes in the structure

of the transition state, an idea that merits further study in future research. The barriers

for duplex dissociation have a more traditional interpretation. ∆H
‡
d increases with length

as a result of the loss of base pairing and stacking required to reach the transition state,
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Table 6.3: Activation free energies, enthalpies, and entropies for the association and dis-
sociation determined from the adenine ring mode Eyring analysis and the global fit.

length 6 8 10 12 14

dissociation

∆G
‡
d (kJ mol

-1)a
global fit 49.9 54.2 58.3 63.6 68.0

Eyring analysis 49.0 54.0 58.1 64.1 66.9

∆H
‡
d (kJ mol

-1)
global fit 146 182 218 255 291

Eyring analysis 160 175 193 262 279

∆S
‡
d (J mol

-1 K-1)
global fit 310 412 515 617 719

Eyring analysis 358 390 435 638 684

association

∆G
‡
a (kJ mol-1)a

global fit 30.5 30.8 31.1 32.0 31.4

Eyring analysis 32.2 32.9 33.3 34.4 31.3

∆H
‡
a (kJ mol-1)

global fit -26.3 -60.7 -95.1 -129 -164

Eyring analysis -3.2 -44.0 -82.4 -83.1 -129

∆S
‡
a (J mol-1 K-1)

global fit -183 -295 -407 -519 -630

Eyring analysis -114 -248 -373 -379 -517
aFree energy values are calculated at 37 °C

and is partially compensated by the gain in configurational entropy in ∆S
‡
d. Since it ex-

plicitly accounts for diffusion, Kramers theory is an alternative route to interpreting barrier

crossing in solution phase reactions. However, in our experimental analysis the resulting

pre-exponential parameters in either theory are equally difficult to interpret microscopically

whether they are cast in terms of an attempt frequency and activation entropy or friction

coefficient and barrier curvature. Over the temperature range in our experiments, the

viscosity of the solvent changes by a small amount (≈1.3) whereas the increase in asso-

ciation and dissociation rates is much higher in most cases. This indicates that diffusion

of two strands to encounter is a minor contribution to the overall association barrier, and

the primary contribution to the diffusive barrier crossing in Kramers theory is the internal

friction experienced by the dynamics of the encounter complex. Indeed, simulations have

predicted that the reaction probability for the formation of DNA duplexes is below 1% and
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Figure 6.10: Activation enthalpy and entropy of association and dissociation determined
from the adenine and guanine ring modes as a function of sequence length.

that the rate limiting step is the contact between the DNA single strands.1 Similarly, the

internal interactions within the dimer state rather than the resistance of the solvent are the

dominant contributors to the dissociation barrier.

6.4.4 Global Fit of Thermodynamics and Kinetics

As a further test of the general applicability of the two-state all or nothing model and

the linearity of the kinetic parameters we applied a global fit to the thermodynamic and

kinetic data under the assumption that the activation enthalpies and entropies were linear

in oligo length. Additionally, we wanted to investigate how well the thermodynamics and

kinetics could be tied together utilizing an Eyring description of the data and to see if we

could describe both the kinetics and the thermodynamics of the system utilizing only a

small set of kinetic parameters. The ∆H
‡
a, ∆H

‡
d, ∆S

‡
a and ∆S

‡
d can be used to describe
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the kinetics at any fixed temperature and the thermodynamics can be derived using fun-

damental relations such as

∆G
‡
d = ∆H

‡
d − T∆S

‡
d (6.2)

and

∆G0
d = ∆G

‡
d −∆G

‡
a (6.3)

with ∆H0
d and ∆S0

d calculated in the same way as ∆G0
d. We then posit that the length

dependence of ∆H
‡
a, ∆H

‡
d, ∆S

‡
a and ∆S

‡
d follow a linear length dependence of the form

∆H
‡
d/a

(L) = ∆H
‡
d/a

(0) + L ∗ δ∆H
‡
d/a

(6.4)

where the slope δ∆H‡ is the change in activation enthalpy for every base added to the

sequence, and the intercept∆H‡(0) is the activation enthalpy for a hypothetical sequence

of length zero. The activation entropies were treated in the same way where δ∆S‡ and
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Figure 6.11: Gibbs free energy of activation for association and dissociation determined
from the adenine ring mode as a function of T-jump final temperature (Tf).
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Table 6.4: Global fit parameters compared to the linear fits from the Eyring analysis.

global fit Eyring fit

δ∆H
‡
a (kJ mol-1 bp-1) -17.2 -14.4

∆H
‡
a(0) (kJ mol-1 ) 76.9 74.4

δ∆H
‡
d (kJ mol

-1 bp-1) 18.2 16.4

∆H
‡
d(0) (kJ mol

-1 ) 36.4 48.0

δ∆S
‡
a (kJ mol-1 K-1 bp-1) -0.0559 -0.0466

∆S
‡
a(0) (kJ mol-1 K-1) 0.153 0.135

δ∆S
‡
d (kJ mol

-1 K-1 bp-1) 0.0512 0.0452

∆S
‡
d(0) (kJ mol

-1 K-1) 0.0022 0.0441

∆S‡(0) designate the corresponding slope and intercept respectively for the activation

entropies.

The resulting eight parameters, δ∆H
‡
a, δ∆H

‡
d,δ∆S

‡
a,δ∆S

‡
d, ∆H

‡
a(0), ∆H

‡
d(0), ∆S

‡
a(0),

and ∆S
‡
d(0), used in the global fit are given in Table 6.4. These parameters were used

to fit the thermodynamic data in the form of the second SVD component from the FTIR

temperature ramps for sequences 5’-C(AT)nG-3’ where n = 4-6 and the NN derived Tm

for all lengths. The melting curves were fit by taking the value of ∆G0
d determined from

Equations 6.2 and 6.3 and using that to determine fD using Equations 5.3 and 5.7. The

fit to the second SVD component according to Equation 5.16 used the upper and lower

baselines determined by the two-state thermodynamic fit described previously. As such

the baselines required no additional fit parameters in the global fit. The melting curves

for the two shortest sequences were not fit to avoid the limited low temperature baselines

skewing the results. The NN Tm values were used because, while they were derived from

two-state fits to UV melting curves, they are independent of our two-state fit to the melting

curve, unlike our Tm values, and thus provide an additional data set to fit. To fit the melting
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temperature we rearrange Equation 5.15 to obtain

Tm =
∆H

‡
d −∆H

‡
a(

∆S
‡
d −∆S

‡
a
)
−R ln (CT)

(6.5)

where ∆H
‡
a, ∆H

‡
d, ∆S

‡
a, and ∆S

‡
d are determined from the relevant versions of Equation

6.4. In addition to fitting the thermodynamics, the observed rate constants from the ad-

enine ring mode for all lengths were also fit. The fit parameters calculated the observed

rate constant using the Eyring equation, Equation 6.1, and Equation 5.35 where [Meq] can

be determined from the thermodynamic value of fD determined from the global fit para-

meters as described above in conjunction with Equation 5.4 and the known value of CT.

The minimization algorithm independently scaled the residuals for the melting curve fits,

observed rates, and Tm values to make each residual the same order of magnitude so all

three equally contribute to the fit.

Figure 6.12a contains the kinetic results from the global fit and the adenine ring mode

observed rate constants from experiment for comparison. Additionally, ∆G‡, ∆H‡, and

∆S‡ from the global fit and the Eyring analysis are compared in Table 6.3. This demon-

strates that the global fit is able to reasonably replicate the experimental kinetics for these

sequences, in particular sequences with length greater than ten. Figure 6.12b shows that

the second SVD components are well fit by the global fit. The better agreement seen in

the kinetics relative to the thermodynamics in Figure 6.12 is most likely because the ad-

justable parameters used are more closely tied to the kinetics then the thermodynamics.

The values for the thermodynamic parameters determined by the Eyring analysis, global

fit, NN parameters, and two-state thermodynamic fit are all given in Table 6.1 and plotted

in Figure 6.2. The enthalpy and entropy appear to be in relatively good agreement for all

lengths, but they do appear to deviate more at longer lengths. However, because these

two values directly compensate for each other when determining the observed rate and

the fraction of intact base pairs, it is more informative to examine the Tm and free energy,
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Figure 6.12: (a) Result of the global fit and the adenine ring mode observed rate from the
T-jump experiment. (b) The raw second SVD component (o) and the result of the global
fit (-) for the three longest sequences.

which are more closely related to the experimental observables. The Tm and free energy

display the opposite trend, they are in relatively good agreement at longer lengths, but

begin to deviate significantly at lengths shorter than ten base pairs. The worse agree-

ment observed for the shorter sequences could be due to the fact that those second SVD

components were not included in the fit. However, because the agreement in the kinetics

also appears to be better for the longer sequences it seems more likely that there is a

fundamental explanation for the discrepancy observed in the short sequences. The short

sequences are reaching the minimum number of bases required to form a stable duplex

so it is possible that the assumption that the kinetic parameters are linear as a function
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of length may partially break down. This agrees with our earlier observation on the loss

of linearity seen in the two-state thermodynamic determined from FTIR in addition to pre-

viously mentioned discrepancies between the NN predictions and experimental results.2

This supports the possibility that the larger discrepancy at lower temperatures is the result

of a breakdown in the linearity of the kinetic and thermodynamic parameters. However,

overall the global fit is able to reproduce the experimental results with a reasonable ac-

curacy.

As mentioned previously, we use Eyring analysis as the primary interpretive tool out

of a desire to reproduce a more complete picture of the energy landscape of DNA hy-

bridization and dehybridization. In previous studies, the negative activation energy for

association obtained from the Arrhenius equation is typically cited as reflecting a non-

fundamental kinetic step in the form of the pre-equilibrium involved in the formation of the

critical nucleus.3,14 This focus on the enthalpic contribution neglects the significant en-

tropic contribution in the form of the large decrease in activation entropy of association,

as expected for assembling a critical nucleus from the free strands. The self-consistency

between the kinetic and thermodynamic results illustrates that applying an Eyring analysis

to the kinetics of DNA association and dissociation and describing the reaction barrier as

an activation free energy provides additional insight into the energetic driving forces of

the reaction which produces a robust and physically intuitive description of the process of

DNA association and dissociation. Additionally, the fact that the thermodynamic paramet-

ers can be determined from the kinetic parameters provides additional validation that the

two-state dissociation model is appropriate for sequences within this length regime and

for the present sequences.

6.4.5 Linear Scaling of Thermodynamics and Kinetics with Length

Now that the linear scaling of both the thermodynamic and kinetic parameters with

length has been established we can dive deeper into the meaning of these trends. First,
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it is worth noting that ∆H
‡
a approaches zero for the shortest sequence, 5’-C(AT)2G-3’, of

length six which is roughly the lower bound for the formation of stable duplexes. Another

interesting note is that although the length-dependent trends observed in Figure 6.10 are

roughly linear, we note that the deviations of the linear fit at each length was reproducible

across multiple measurements. All results display a discontinuity between 5’-C(AT)4G-3’

and 5’-C(AT)5G-3’. While we do not have an explanation for this, it is interesting to note

that this length coincides with the 10.5 base pairs per of turn of the B-form DNA double

helix.

To further study the relationship between the thermodynamic and kinetic results ∆G
‡
a

and ∆G
‡
d were plotted against ∆G0, shown in Figure 6.13. ∆G

‡
d is strongly correlated to

the∆G0 (R2=0.986) in good agreement with existing literature.16 The change in∆G
‡
d with

respect to ∆G0 is linear with a slope of about one demonstrating that ∆G
‡
d scales directly

with ∆G0, and further demonstrates the strong ties between the thermodynamics and the

kinetics.16,31

We will now compare the activation enthalpies in Figure 6.10, the values of which are
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shown in Table 6.3, in addition to their linear fits as a function of length, the parameters

of which are shown in Table 6.4, with the activation energies from prior studies of small

oligo melting utilizing a capacitive discharge temperature-jump apparatus and monitoring

changes with UV spectroscopy.10,14,15 While these studies were conducted with RNA oli-

gos the comparison is still informative none the less. The results from Pörschke et al.14

and Craig et al.15, which examined sequences containing only A:U base pairs, are com-

pared graphically with our results in Figure 6.14. They find that the dissociation activation

energy is positive and has a significant trend with length. Additionally, comparing their

trends in the activation energy of dissociation with respect to length with our trends in the

activation enthalpy of dissociation as a function of length demonstrates that the two are

in reasonable agreement. These studies also observe that the association activation en-

ergy is negative in agreement with our work. While our results appear to have a stronger

length dependence there is some ambiguity in the results and how they compare to our

work.14,15 Early studies looking at a variety of sequences including G:C base pairs have

found that the dissociation activation energy is also positive and weakly dependent on

length.10 For the association activation energy they found it should be positive and not
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Craig et al.15 and Pörschke et al.14 alongside our results.
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significantly depend on length, in contrast with our results.10More recent results aremixed

with previous work from our group finding that G:C containing sequences have negative

activation energies23 while others have found positive activation energies.16

When comparing the literature to our work there are two factors that could be causing

the discrepancy between Arrhenius and anti-Arrhenius results observed for the associ-

ation. It has been suggested that the presence of G:C base pairs results in a positive

activation energy due to their additional stability relative to A:T base pairs.10 However,

evidence suggests that it is not purely a sequence effect. In this case, similar sequences

with identical GC content would have activation energies with the same sign, but compar-

ing our results with results in the literature demonstrates this is not the case.10,23

Another explanation is that a temperature effect is responsible for the discrepancy

between the Arrhenius and anti-Arrhenius results. It has been demonstrated that the as-

sociation rate as a function of temperature follows a bell shaped curve with a maximum

rate below Tm.5 This means the temperature at which the rates are determined could

cause the discrepancy in the sign of the activation energy. Studies conducted at temper-

atures below the association rate maximum would be expected to have positive activation

energies while studies at temperatures above the maximum would be expected to have

negative activation energies with a potential turnover region in between. While this has

been experimentally observed,32 inconsistency in the literature remains as to what the

sign of the activation energy should be, even when considering the temperature at which

the data was acquired relative to the Tm of the sample. Of the previously mentioned stud-

ies that found positive activation energies for sequences containing G:C base pairs one

was conducted at temperatures between 3 °C and 45 °C depending on the sequence, but

the Tm values for those sequences were also relatively low, between 1 °C and 25 °C, and in

all cases the temperatures examined for each sequence were roughly centered around Tm

or slightly above meaning they are all above the proposed association rate maximum.10

The other study with G:C base pairs studied sequences with Tm values between 42.6
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°C and 68 °C at temperatures between 6.6 °C and 30.6 °C so the vast majority of their

rates were measured below the maximum association rate.16 Previous work in our group

studied sequences with Tm values of 47 °C and 57 °C at temperature ranges of 34-65

°C and 42-70 °C respectively, such that all temperatures were around Tm and above the

maximum rate, and found negative activation energies.23 One study looking at sequences

without G:C base pairs that also found predominately negative activation energies looked

at sequences with Tm values between 9 °C and 23.5 °C at temperatures between 8.6

°C and 28.6 °C such that in each case the temperatures for that sequence were roughly

centered around Tm and were above the association rate maximum.15 A different study

examined sequences of varying length without G:C base pairs at temperatures between

3.4 °C and 32.4 °C and found negative activation energies, however the Tm values at their

experimental conditions are not listed making a direct comparison difficult.14 This demon-

strates that while the overall results are inconclusive, they suggest that while temperature

likely plays a role it is likely not the only factor responsible for the discrepancy in the sign of

the activation energy. Future studies are needed to understand if the sign of the activation

energy depends on sequence and temperature and if so determine what that relationship

is.

To the extent that ∆H‡ and ∆S‡ are linear functions of length for these short self-

complementary oligos, our results indicate that these kinetic parameters are simply ad-

ditive in the number of A:T base pairs and could be used to predict the kinetics of similar

sequences with longer lengths. Such additive relationships underlie the highly successful

NN approach to predicting sequence and length dependent thermodynamic parameters.

To compare our kinetic parameters with the NN parameters, we note that for both ∆H‡

and ∆S‡ the slopes of the fits to the association and dissociation data in Figure 6.10, are

roughly equal in magnitude with opposite signs (See Table 6.4). Adding two A:T base pairs

adds both a TA and AT dinucleotide to the sequence resulting in a ±92 J mol-1 K-1 change

to the activation entropy and roughly ±30 kJ mol-1 to the activation enthalpy. These values
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are similar to the∆S0 and∆H0 for a single AT dinucleotide from the NN parameters, which

are 85 J mol-1 K-1 and 30 kJ mol-1 respectively.26 As a result adding two dinucleotides

to the overall sequence changes ∆H‡ and ∆S‡ for the association and the dissociation

reactions by half of what the NN parameters would predict. This suggests that the two

results are correlated, but not directly related. Understanding why these values are half

of what the NN parameters predict requires additional mechanistic insight into the associ-

ation and dissociation reactions which could be achieved by examining the results of this

work in the context of mechanistic models. We will further examine this relationship later

on in this chapter within the context of the nucleation-zipper mechanism.

The consistency between our results and the NN parameters suggests that the NN

parameters themselves may be useful for predicting melting and hybridization kinetics for

small oligos that follow two-state kinetics.33 It has been previously noted that the NN para-

meters can be used to predict dissociation kinetics if the association rate is either known

or assumed by calculating the dissociation rate constant from the NN derived equilibrium

constant and the assumed association rate.33 However, it would be preferable to be able

to predict the kinetics without making such an assumption, which means an alternative set

of parameters, potentially a kinetic analog of the NN parameters based on dinucleotides,

is necessary.

It has also been shown that it is possible to develop predictive models making no

assumptions about the association rate with sequence and temperature specificity for a

variety of sequences of a single length.34 However, this work was conducted on longer

sequences of a single length that were attached to a fluorophore or quenching strands that

were as large or larger than the probe and target strands which could impact the observed

kinetics. The linear relationships and resulting global fit parameters presented here offer

an alternative method for the prediction of both the association and dissociation rate con-

stants, in addition to the thermodynamic parameters, without requiring an assumed value

for the association rate constant or the attachment of probes or labels that could affect the
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kinetics. This suggests the possibility of predicting kinetics of arbitrary DNA sequences

using an equivalent set of NN parameters for kinetics, determined through label free ex-

perimental methods, that are able to account for the effect that temperature, sequence,

and length all have on the kinetics. Whether or not this is possible will depend on a num-

ber of assumptions, including that the melting dynamics of varying oligos follow predictably

similar pathways to their transition states and that the simple two-state kinetics of the form

investigated here remain valid for different sequences.

6.4.6 Application of Nucleation-Zipper Model

To connect the results presented here to the mechanism of DNA association and dis-

sociation they will be considered further within the context of the nucleation-zipper model.

The main focus of this analysis is to investigate the size of the critical nucleus. The critical

nucleus is defined as the minimum number of base pairs such that the partially formed

duplex is stable and the remaining base pairs rapidly zip up in a sequential and downhill

fashion that is orders of magnitude faster than the formation of the critical nucleus.

The expected change in the enthalpy associated with making or breaking base pair

dinucleotides is given by the NN parameters.26,32,33,35,36 In conjunction with the activa-

tion enthalpy for association and dissociation determined by the Eyring analysis the NN

parameters can be used to determine the number of bases in the critical nucleus for a

given sequence length. Based on the definition of the critical nucleus, and the fact that

the reaction proceeds downhill from that point, it must lie at or just on the dimer side of the

peak of a standard reaction free energy diagram. As a result the size of the critical nucleus

can be determined by finding the minimum number of base pairs such that the sum of the

enthalpies, given by the NN parameters, is equal to or greater than the activation enthalpy

of association.33 For the dissociation, the number of base pairs that must be broken such

that the sum of the NN enthalpies is equal to or greater than the dissociation activation

enthalpy can be calculated and the number of intact base pairs at that point can be de-
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termined. The number of intact base pairs at that point will be one less than the number

of base pairs in the critical nucleus since it is the largest structure that will dissociate in a

downhill fashion back to the monomer state. This means it lies at, or just on the monomer

side of, the peak of a standard reaction free energy diagram.

The results of this analysis are shown in Figure 6.15 which contains the activation

enthalpies from both the association and dissociation plotted against the predicted activ-

ation enthalpy from the NN parameters for a given critical nucleus size at each length.

This analysis shows that the number of base pairs in the critical nucleus increases as the

overall length of the sequence increases.

It must be acknowledged that this trend cannot be solely attributed to length based

on the experimental evidence here since the temperature at which these sequences were

studied did increase with length, which can been nicely seen in °C in Figure 6.11 or K-1

in Figure 6.7. The temperature difference is more significant at shorter lengths relative

135



to longer lengths where there is more overlap between the sequences. Coarse-grained

molecular dynamics simulations have suggested that the critical nucleus should increase

in size with increasing temperature.3 However, for the purposes of this analysis we will

consider the changes observed here to be primarily due to length. The application of the

two-state analysis and Eyring analysis presumes an activation enthalpy that is independ-

ent of temperature, the validity of which is supported by the linearity in the Eyring plots.

As this analysis ties the number of bases in the critical nucleus directly to the activation

enthalpy for the sequence we will presume for the purposes of this analysis that the size

of the critical nucleus is relatively independent of temperature over the temperature range

studied here. This topic will be revisited in Chapter 7 utilizing the kinetic model which is

able to independently probe the effect of temperature and sequence length on the critical

nucleus.

With that clarified we can return to examining the size of the critical nucleus as a

function of sequence length and look to further understand the size increase. Figure 6.15

shows that for every two base pairs added to the overall sequence the critical nucleus

increases by a single base pair. This means that the number of base pairs that form

during the zippering portion of the reaction must also increase by one. We previously

observed that the trends in the entropy and enthalpy of activation as a function of length

are correlated to the NN parameters and the value is half of what is predicted by the NN

parameters. The additional mechanistic insight gained from the nucleation-zipper model

provides an explanation for the factor of two that separates the two values. Adding two

base pairs to the sequence results in the addition of two dinucleotides, yet the association

and dissociation activation energies only increase by the value of a single dinucleotide.

This demonstrates that, for the lengths examined in this study, increasing the overall se-

quence length by two base pairs increases the size of the critical nucleus and the zippering

regime each by a single base pair adding a single dinucleotide. This is in agreement with

the results in Figure 6.15. This explains why the activation enthalpies and entropies in our
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data increased by the amount predicted by the NN parameters for a single dinucleotide

when two base pairs were added to the sequence.

Combining the Eyring analysis with the mechanistic insight from the nucleation-zipper

model provides a much clearer picture of the energetic driving forces for DNA association

and dissociation. Looking at the increasing critical nucleus size with length suggests that

the observed decrease in the activation enthalpy of association is simply due to the exo-

thermic nature of forming a base pair and the fact that longer sequences have more bases

in the critical nucleus. The steeper slope for longer lengths in the Eyring plot can be ra-

tionalized by the fact that a larger critical nucleus requires more base pairs to be formed

and as a result the increased probability of breaking a base pair at higher temperature

will have a more significant impact. Additionally, larger critical nuclei will have a larger

entropic penalty due to additional bases losing the conformational freedom that they have

when unbound. This large negative entropic contribution that increases with length is a

significant factor in the association of DNA monomers and offsets the favorable enthalpy

of activation resulting in the positive free energy barrier to association. This demonstrates

that the barrier to overall DNA association is primarily entropic in nature.

Now that it has been demonstrated that the critical nucleus increases in size as the

overall sequence length increases it is worth discussing a possible explanation for this.

The stability of the critical nucleus is the result of the favorable enthalpic contribution over-

coming the unfavorable entropic component. It is reasonable to assume that after the first

G:C base pair all of the remaining A:T base pairs that can make up the critical nucleus

will all add similar enthalpic gains that are independent of both position in the sequence

and overall length. However, each base pair throughout the sequence is unlikely to have

a consistent entropic contribution. A large portion of the entropic loss occurs upon the

initial binding event meaning that the initial pairing has the largest entropy penalty. Con-

figurational entropy will also result in longer sequences having a larger entropic penalty

upon binding of the first base pair. This means that the initial base pairs have a larger en-
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tropy cost at longer lengths than they do at shorter lengths, but the enthalpic benefit is the

same for each base pair. This provides an explanation for the increasing size of the critical

nucleus. The longer sequences see an increased entropic cost to forming the critical nuc-

leus but the enthalpic gain per base pair does not increase with increasing length. As a

result the critical nucleus must increase in size with increasing length so the favorable en-

thalpic contribution can overcome the entropic cost that increases with increasing length.

A similar conclusion in the context of the increasing activation energy of dissociation as a

function of increasing sequence length has been noted in the literature.10

There are a few aspects of this discussion that are worth highlighting as they will be

revisited in the analysis conducted with the kinetic model. The first is in regards to the ar-

gument that the critical nucleus size increases with length because additional base pairs

are necessary to overcome the larger entropic penalty seen at longer lengths. This is very

similar to the argument made in the literature that size increases at higher temperatures

because the additional base pairs are needed to stabilize the critical nucleus due to the

destabilizing effect of higher temperatures.3 In reality both of these are likely contributing

to our experimental results which we will provide evidence for utilizing the kinetic model.

The second aspect is the assumptions that the association always initiates at a G:C base

pair when present10 and that all associations for a given sequence share the same en-

tropic cost. Utilizing the kinetic model we will revisit this to examine the validity of these

assumptions while also taking a closer look at the entropic penalty and its dependence

on the initiation position. This will demonstrate that it has an even greater impact on the

association mechanism than initially realized via the experimental data.

6.4.7 Free Energy Surfaces

With the results of the activation free energies we can also investigate the length-

dependence of the free energy landscapes for DNA hybridization. These are shown in

Figure 6.16, using the monomer state as the reference state. From the reference state
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using ∆G‡ values from the Eyring analysis.

the ∆G
‡
a from the Eyring analysis provides the energy difference between the monomer

state and the transition state and the∆G
‡
d from the Eyring analysis provides the energy dif-

ference between the transition state and the duplex state. Additional free energy surfaces

illustrating the temperature dependence are plotted for sequences 5’-C(AT)2G-3’ and 5’-

C(AT)6G-3’ in Figures 6.17a and 6.17b, respectively. Figure 6.18 complements the free

energy diagrams by showing plots of the activation free energy for both the association

and dissociation as a function of length at five different temperatures. This alternative

representation demonstrates the trends in ∆G
‡
a and ∆G

‡
d more qualitatively and helps to

clarify the interpretation of the free energy diagrams.

In both Figure 6.16 and Figure 6.17 the free energy of the transition state reports on
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Figure 6.17: Free energy surfaces for 5’-CATATG-3’ (a) and 5’-CATATATATATATG-3’ (b)
at 10 °C, 25 °C, 40 °C, 55 °C, and 70 °C.

∆G
‡
a, because the free energy of the monomer state is referenced at zero. In Figure 6.16a

we observe that at low temperature, where association is favored, ∆G
‡
a decreases as

length increases. In Figure 6.16c we observe that at high temperature, where dissociation

is favored, the trend is flipped. These two trends can also be observed in Figure 6.18.

At low temperature the dimer free energy decreases with increasing length while at high

temperature it increases with length. However, the trend in the∆G
‡
d as a function of length

does not change and increases with increasing length for all temperatures shown in Figure

6.16. Even though the longest sequence has the lowest energy transition state in Figure

6.16a, it still has the largest∆G
‡
d. Even at temperatures above those shown here the∆G

‡
d

does not definitively flip its trend with length but rather shows no significant change with

length as seen in Figure 6.18.

Looking at Figure 6.17 and Figure 6.18 we will now consider the trends in the free en-

ergy as a function of temperature for sequences 5’-C(AT)2G-3’ and 5’-C(AT)6G-3’. We first
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observe that∆G
‡
a increases roughly linearly with temperature for each length. Additionally,

the transition states are more closely spaced for 5’-C(AT)2G-3’ relative to 5’-C(AT)6G-3’,

reflecting that the variation of∆G
‡
a with temperature for fixed length increases with length,

as expected from the linear increase of ∆S
‡
a with temperature. Similarly, ∆G

‡
d decreases

with increasing temperature for all length, and we observe a larger temperature depend-

ence at larger length due to the linear increase of ∆S
‡
d with increasing length. This likely

reflects the increased conformational freedom that the longer monomers have relative to

the shorter monomers. This opposite trend in ∆G
‡
a and ∆G

‡
d results in the larger spacing

between the dimer free energies at different temperatures observed for longer lengths.

6.5 Conclusion

In this work we have examined the thermodynamics and kinetics of a series of DNA

oligos of lengths ranging from 6 to 14 base pairs. Eyring analysis utilizing a two-state

assumption provides additional insight into the energetic driving forces behind the associ-
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ation and dissociation of DNA through examining the entropic and enthalpic components to

the activation free energy. Eyring analysis demonstrated trends in the activation enthalpy

and entropy that are strongly correlated with NN thermodynamic parameters providing a

direct link between the thermodynamics and the kinetics. This suggests a kinetic analog

of the NN parameters exists that could be used to accurately predict kinetics. However,

it is clear that even at these short lengths the reaction may be approaching the limits of

the two-state assumption. Further research is needed to study how the kinetics at longer

lengths are affected by non-two-state behavior and potentially changing association and

dissociation mechanisms. Changes to the dynamics could affect the kinetics in such a way

that the predictive power of the NN model, or our global fit parameters, may decrease.

In the work presented here we restricted our analysis to the simplest kinetic model

which provides insight into the kinetics of the system and allows comparisons to be made

to the literature, where this model is widely prevalent. However, these results open up the

opportunity to test them against a wide range of models, such as the kinetic zipper model

or Zimm-Bragg model, which we plan in follow up work. Such comparisons will provide

further insight and allow additional predictions about the length-dependent kinetics and

thermodynamics. Analyzing this data in conjunction with these mechanistic models, with

lattice models, or with molecular dynamics simulations should provide additional insight

into the dynamics of hybridization and the nature of the transition state in association and

dissociation reactions.
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CHAPTER 7

THE MECHANISM AND DYNAMICS OF DNA HYBRIDIZATION AND

DEHYBRIDIZATION ELUCIDATED BY KINETIC MONTE CARLO

SIMULATIONS

7.1 Introduction

The analysis of the equilibrium temperature ramp and transient temperature-jump

data provides a great window into the kinetics and underlying energetic driving forces

of DNA hybridization and dehybridization. However, the experimental results provide an

incomplete picture of the process since deeper mechanistic information is difficult to ob-

tain through experiments alone. Additionally, knowing the rates, or kinetics, provides little

insight into the complex mechanistic processes, or dynamics, that occur during DNA as-

sociation and dissociation. Our goal was to develop a model that can extract dynamic and

mechanistic insight from our data in a way that is accessible to experimentally focused

researchers both in terms of the model’s complexity and computational expense. This

model is in no way intended as a replacement for more extensive computational methods

such as molecular dynamics (MD) simulations. Rather, by comparing our model to exist-

ing models in the literature, we hope to demonstrate that our model is in agreement with

respect to the dynamical and mechanistic information that we seek without the additional

complexity and computational expense.

A natural starting point for the development of this model is the thermodynamic lattice

model that was previously developed by the group.1,2 The lattice model naturally com-

pliments the experimental results by examining all possible configurations the oligos can

adopt and providing insights into the thermodynamics of the system. While the lattice

model provides additional insight, there are limits to the conclusions that can be drawn

from an equilibrium thermodynamic model. This was the primary motivator for developing
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a kinetic model. The thermodynamic model provides the probability of occupying each

configuration at equilibrium, but that does not necessarily correlate to the states the reac-

tion is likely to pass through during a hybridization or dehybridization event. The probability

of occupying a given state during a single reaction event is not simply determined by the

equilibrium free energy for that state, but also depends on the probability of occupying of

each of the other states along the possible pathways that lead there. The fact that we want

to explore not just the distribution of states, but how the system actually moves through

the states leads one directly to the development of a kinetic model.

A kinetic model utilizing Markov state Monte Carlo methods was a natural extension of

the thermodynamic lattice model to allow us to further investigate these mechanistic ques-

tions. The lattice model provides the kinetic model’s state space and the thermodynamic

values utilized in the calculation of the reaction rates. Considering the prevalence of the

nucleation-zipper mechanism, where base pairs are added sequentially, it made sense

to create a model that builds trajectories by stepping through configurations by adding or

removing a single base pair. This makes it an optimal system to study using Markov state

Monte Carlo methods.

The model, which is introduced and analyzed in this chapter, was applied to a vari-

ety of DNA sequences of differing lengths and base pair composition to begin to probe

different variables that impact the dynamics and mechanism of DNA hybridization and de-

hybridization. The main body of experimental results the model is applied to is the length

series that was discussed in Chapter 6 and we will continue to refer to these sequences

as the length series or CG-ends. This was the most robust data set available and was

both the main driving force behind the development of the model in addition to the primary

point of comparison for the model’s development. Additional data sets are analyzed as

well. The sequence 5’-ATATATATAT-3’, which we will refer to as AT-all since it is the only

sequence studied here that contains only A:T base pairs. This data set will be used spar-

ingly as there are only two temperature points that were collected. Another sequence,
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5’-ATATGCATAT-3’, will be referred to as GC-core. The purpose of these two sequences

was twofold: first, to test how well the model matches experimental results when the num-

ber and location of G:C base pairs is altered and second, to better understand how the

mechanism of DNA hybridization is affected by changing the sequence composition to a

greater degree than was possible without a kinetic model.

Examining this varied set of sequences provides the opportunity to probe numer-

ous different factors that impact the dynamics and mechanism of DNA hybridization and

dehybridization. This will also provide insight into the models ability to replicate the differ-

ent physical processes that occur, particularly the model’s ability to replicate experiment-

ally observed non-Arrhenius behavior and early time dynamics. Better understanding the

strengths and limitations of the model also provides ideas for future changes to strengthen

and improve the model pushing it forward towards new systems of interest beyond these

initial investigations.

With regards to probing the dynamics and mechanism of DNA hybridization and de-

hybridization there is an important limitation that needs to be discussed. The established

rules for the model are dictated by the canonical nucleation-zipper model. Since particular

mechanistic rules are built into the construction of the model negative results can prove

that the mechanism does not represent the physical system but positive results do not

definitively prove that the mechanism represents the physical system. This is a result of

other mechanistic pathways not being allowed and explicitly tested by themodel presented

here.

However, more complicated and computationally expensive methods do not have the

same restrictions with regards to the possible mechanistic pathways that simulations can

follow. Coarse-grained MD simulations do not have any such limitations and have been

commonly used to study the dynamics and kinetics of DNA oligos. The OxDNA model

and 3SPN.2 model, are two such models that have been utilized to study DNA oligos.3–9

Ouldridge et al. used the OxDNA model to examine sequences of 8 and 14 base
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pairs. They found that the initial contact between two single strands is stabilized by two to

three intact base pairs which is then followed by the remaining base pairs zipping up. They

refer to this stabilized configuration as the effective transition state which is enthalpically

stabilized by base pairing. At higher temperatures the typical number of base pairs in

the transition state increases as more base pairing is required to make duplex formation

probable. This increases the activation enthalpy with increasing temperature resulting in

non-Arrhenius behavior. They found two reasons for the temperature dependence: at

higher temperatures the state with two base pairs itself becomes less stable and new

bonds are less likely to form. New bonds are less likely to form because: strands become

more unstructured and forming new base pairs generates a smaller free energy gain.

Another interesting point is that a free energy diagram built utilizing the OxDNA model

has a maximum at a single base pair, in agreement with the lattice model that the kinetic

model presented here is built off of, suggesting that the underlying thermodynamics for

the two models are in agreement.4

The de Pablo group has used their 3SPN.2 model to publish a number of studies

of DNA oligos, the findings of three such studies will be highlighted here.7–9 Utilizing

transition path sampling and transition state ensemble analysis they found that DNA re-

hybridization is prompted by a distinct nucleation event involving approximately four base

pairs.7,8 The distribution of the transition state ensemble was found to be broader for re-

petitive sequences than it was for random sequences.7,8 However, the distributions for a

randomized sequence of length 15 and a repetitive sequence of length 14 both had a clear

peak in the distribution corresponding to configurations with a size that was about 30%

of the overall sequence length.7,8 Examining sequences with lengths between 10 and

30 base pairs they found that repetitive sequences often observed either sliding mechan-

isms7,8 or more complex base pair displacement processes.9 Homogeneous sequences

were also found to commonly follow sliding mechanisms.9 Random or heterogeneous se-

quences were most likely to follow the canonical nucleation-zipper mechanism.7,9 Even

149



in the case where a mechanism other than the canonical nucleation-zipper mechanism

occurs a distinct nucleation event still exists.7,8 There are two additional findings relev-

ant to the work presented here. For the short oligos studied, ranging from 10 to 30 base

pairs, middle to middle nucleation events represented more than 80% of all events.9 Ad-

ditionally, as was the case for the OxDNA model,4 the free energy diagrams generated

by the 3SPN.2 model are also very similar to those generated from the lattice model used

in the development of our kinetic model, suggesting that the underlying thermodynamics

are similar.8

In this chapter we will first describe the application of Markov state Monte Carlo meth-

ods to DNA association and dissociation reactions. This will be followed by evaluating the

ability of the model to replicate the experimental data while also examining trends in the

model’s parameters to gain some insight into the physical system and the model itself. Fi-

nally, we will discuss the insights gained from analyzing the kinetic model with a particular

interest in the mechanism by which the sequences associate and dissociate. Comparison

with the experimental results provides more detailed mechanistic insight than the experi-

ments can alone since the model distinguishes individual base pairs while the experiments

only distinguish G:C and A:T base pairs. The model will also be considered against res-

ults in the literature that utilize other methods, particularly MD simulations, to establish the

validity of the model and demonstrate how, with regards to the relevant dynamical and

mechanistic information, our kinetic model provides many of the same insights but with

significantly less complexity. The agreement between our model and the coarse-grained

MD simulations discussed previously not only provides significant support for the findings

of our model but also mitigates concerns over the interpretation of our findings that result

from the mechanistic limitations of our model due to its construction.
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7.2 Model Construction

7.2.1 Reaction Scheme

Understanding the construction of the kinetic model starts with understanding the

state space and the allowed moves between states. The state space is made up of all

possible configurations where all intact base pairs are in-register, meaning they are aligned

properly for the formation of the fully formed dimer, and that these intact base pairs form a

continuous stretch. Configurations that contain bubbles or out-of-register base pairs are

excluded from the model and cannot be occupied. When moving between states only one

base pair can form or break during a single step. This means the number of intact base

pairs, NBP, must change with every move; moves between configurations with the same

NBP are not allowed as that would require both a base pair to form and a base pair to

break.

With the exception of the first base pair to form, which can occur anywhere, all sub-

sequent base pair formation must occur adjacent to an already formed base pair. Any

move that creates the first base pair between two monomers will be referred to as a nuc-

leation step and any move that creates a base pair next to an already formed base pair

will be referred to as a propagation step. Similarly, the only base pairs that can break are

the two on the end of the continuous stretch of intact base pairs.

One final aspect about the states that are explored in this kinetic model is that the

different possible configurations of the unpaired bases, either frayed ends or monomers,

are not explicitly considered. They are however explicitly considered in the lattice model

meaning that their energetics are built into the kinetic model. In doing so the model essen-

tially averages over all of the different configurations that the unpaired bases can adopt for

a given configuration of intact base pairs. This can be thought of as the model sampling

all of the free chain configurations very quickly relative to the making and breaking of base

pairs. Now that the state space and rules for moving between states have been outlined
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Figure 7.1: Reaction scheme for the kinetic model for the example sequence 5’-CATATG-
3’. The boxes below each state show each possible configuration, with each row repres-
enting a different possible configuration. A black box represents an intact base pair and a
white box represents a broken base pair.

we can look at the full reaction scheme. Figure 7.1 contains the full reaction scheme for

the six base pair CG-ends sequence. A short sequence was selected for display to high-

light the different allowed configurations for each given NBP. This provides the ability to

both highlight what configurations are allowed and to visualize how the model is allowed

to move through the system based on the rules provided previously. The general scheme

can then be determined simply by extrapolating out for a sequence of any length. While

the parameters and rate calculations will be outlined in more detail shortly it is worth high-

lighting here that the nucleation step is the formation of D1 and has the rate βkf. The

remaining steps are the propagation steps and have a rate of σikf. The nucleation step

and a series of sequential propagation steps correspond to the two distinct physical pro-

cesses of nucleation and zippering respectively. The reverse rates are calculated from

the ratio of the forward and reverse rates which will be described in the following sections.

In the reverse rates R and T , are the ideal gas constant and the temperature at which the

system is evolving. The remaining parameters shown in Figure 7.1 are then differentiated

by whether they are a thermodynamic parameter or a kinetic parameter and are described

in the following sections.
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7.2.2 Thermodynamic Parameters

The thermodynamic parameter, ∆G, is calculated from the coarse-grained lattice

model, a full description of which has been published elsewhere1,2 and only a brief over-

view is included here. At the broadest level the concentration effects associated with the

gain in translational entropy that occurs upon the dissociation of the dimer are simulated

on a 3D lattice where each site is the size of an individual monomer. Moving a level down,

the configurational entropy for each sequence with a minimum of one intact base pair

is determined by self-avoiding random walks of beaded polymer chains on a 3D lattice of

nucleotide sized sites. At the smallest level the enthalpy of a particular configuration is de-

termined utilizing the NN parameters.1 The NN parameters used by the lattice model are

the ”unified” oligonucleotide NN parameters determined by SantaLucia.10 Finally, there is

a single free parameter that is used to account for excess entropy per base pair and its

value is selected to ensure that the Tm determined by the lattice model matches the value

predicted by the NN model.1 All other parameters are fixed. To determine ∆G for a given

move we first must calculate the free energy of a given configuration (δ) the equation for

which is

Gδ = −RT ln
(
pδ
)

(7.1)

where R is the ideal gas constant and pδ is the population fraction of configuration δ. For

the monomer state pδ is the fraction of all strands without any intact base pairs and is taken

directly from the lattice model. The remaining states are all the configurations with at least

one intact base pair, which are referred to as a duplex configurations and are denoted by

the subscript D. Note that this language can get confusing since in the case of the two-

state assumption a dimer refers specifically to the fully formed duplex since that and the

monomer state are the only two states that exist. To alleviate confusion when discussing

the model we will refer the state where all base pairs are intact as the fully formed dimer

state or the fully formed duplex state. To determine the population fraction of the dimer
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states we begin with the partition function

qD,int =
∑
δ

WD,δe
βED,δ (7.2)

where WD,δ is the degeneracy for a given duplex configuration δ and ED,δ is the sum

of the nearest neighbor dinucleotide enthalpies across the intact dinucleotide subunits of

configuration δ. Both of these values are determined by the coarse-grained lattice model.

From here the population fraction for each configuration with at least one intact base pair

is calculated from

pδ = Θext
WD,δe

βED,δ

qD,int
(7.3)

where Θext is the fraction of all strands with at least one intact base pair. This can then be

used in Equation 7.1 to determine the free energy for the configuration.

7.2.3 Kinetic Parameters

In addition to the thermodynamic parameters taken from the coarse-grained lattice

model, additional kinetic parameters are utilized in the calculation of the transition rates

for the model. These parameters are kf, β, and σi. There is also an additional kinetic

parameter α that is used in the calculation of σi. Two of these parameters, kf and α, are fit

parameters, whereas β and σi are calculated from these fit parameters and other known

quantities.

The first parameter is kf, which has units of s-1, and can be thought of as the “speed

limit” for forming a base pair next to an already formed base pair or as themaximum zipping

rate.11–14 We will demonstrate shortly that the rate of formation for a single base pair

increases as the number of previously intact base pairs increases until it asymptotically

approaches kf. As a result, kf can be thought of as the rate of formation for base pairs at

the end of a long sequence of continuous base pairs.

The second parameter, β, is unitless and is used to calculate the rate for nucleation
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steps.11 The β parameter itself is the ratio between the rate for a nucleation step and the

maximum zipping rate, kf. It is important to note that nucleation and zipping are two phys-

ically distinct processes. As a result the β parameter does not directly reflect a physical

process itself. However, there are a number of physical processes, such as the diffusive

motion of the monomers, that impact the value of β. Since bubble states are not allowed, β

only factors into the nucleation step and attenuates the rate at which two monomers come

together and form the first base pair. To determine the value of β we begin by assuming

that the formation of the first base pair can be broken down into two individual steps, the

single strands diffusing into the proper orientation and the formation of the base pair once

the two monomers are in proximity and properly aligned. With the assumption that these

two processes are sequential we can write the timescale for the formation of the first base

pair in the sequence as

τN = τD + τf (7.4)

Where τD is the timescale for the two monomers diffusing into proper orientation and τf is

the timescale for the formation of the first base pair. Due to the assumption that the two

base pairs are in proximity to each other and aligned after the first step the formation of

the base pair can be presumed to occur at roughly the “speed limit” for base pair formation

which is kf, thus τf =
1
kf
. It is worth noting here that kf is treated as a fit parameter when

fitting to the experimental data, while the rest of the terms used to calculate β are either

known physical quantities or are taken from the thermodynamic latticemodel. In the kinetic

model the overall rate of formation for the first base pair, which we will denote as kN, has

been defined as βkf. Utilizing this and Equation 7.4 we can derive the following expression

for β

β =
τf

τD + τf
(7.5)

All that remains is to develop an expression for τD.

To approximate τD we will utilize the diffusion limited association rate for two identical
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spheres with an encounter radius equal to the diameter of the sphere in conjunction with

the Einstein relation and Stokes law.15 The equation for this rate, in units of m3
mol·s is given

by

kD =
8kBTNA

3η
(7.6)

where kB is the Boltzmann constant, T is temperature in kelvin, NA is Avogadro’s number

and η is the viscosity of the solution. To then turn this bimolecular association rate into

a timescale requires multiplying through by [M], which is the monomer concentration at

the initial temperature prior to the arrival of the temperature-jump pulse, and taking the

inverse to get

τD =
3η

8kBTNA[M]
(7.7)

Plugging this expression into Equation 7.5 produces

β =
8kBTNA[M]

3ηkf + 8kBTNA[M]
(7.8)

Calculating β in this way also incorporates the expected concentration dependence for

the association of self-complementary DNA single strands.

An important note with respect to β is that in some contexts of the literature it is defined

by the σi parameters.16 Or another parameter, often referred to as β apparent, βapp, or

sometimes still referred to as β, is defined that incorporates a β value as it is defined here

in addition to the σi parameters to create a single overall attenuation parameter.11,17,18

In some cases this overall attenuation parameter is also referred to as σ.19 In other cases

instead of differentiating β and σ all of the attenuation parameters are referred to as βi12 or

σi.13 Thus, it is important to carefully check the definition of the parameters in the literature

due to this inconsistency.

The third parameter σi, the values of which are contained in the interval (0, 1], atten-

uates the rate of formation for all base pairs that form next to an existing base pair with
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the attenuation decreasing as more base pairs are formed.11 The subscript i in this case

denotes the NBP in the initial state, with respect to the forward, or association, direction,

for the move that utilizes that specific σi parameter. To put this another way, regardless

of if the specific move that is occurring is forming or breaking a base pair, the subscript i

denotes the NBP in the state with fewer intact base pairs. When forming a base pair this

is the initial state, when dissociating a base pair it is the final state. The reason for this can

be visualized by looking at Figure 7.1. The decreasing attenuation with increasing NBP is

in line with the conceptual understanding of kf being the rate of formation for a base pair

at the end of a long series of intact base pairs. A more complete discussion of the factors

that contribute to the value of σi as a function of NBP is included later on in this chapter.

For the time being we will simply consider it to be primarily due to the additional stabil-

ity that is associated with the formation of the helical structure that occurs when multiple

consecutive intact base pairs exist.11

The definition of σi requires that the values fall between zero and one and that it starts

small, monotonically increases, and asymptotically approaches a value of one. It is worth

noting that within the context of this model the value of σi is the same for all moves with that

i value, regardless of the location of the base pairs within the sequence. To avoid fitting

an individual σi value for each value of i, which would immediately result in concerns of

overfitting, we adopted an alternative description based off a single fit parameter. Based

on our definition, and the literature definitions,11 of σi we require that

lim
i→∞

σi = 1 (7.9)

and that σi be monotonically increasing with increasing i. The hyperbolic tangent function

fits both of these requirements and is a reasonable fit to our intuitive understanding of the
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functional form of σi resulting in σi being defined as

σi = tanh αxi
1− xi

(7.10)

where α is a fit parameter in the model that determines how quickly σi approaches a value

of one and xi is the normalized value ofNBP,
(
NBP
N

)
whereN is the total number of base

pairs in the sequence, for the configuration in the move with fewer intact base pairs. The

normalized value is used to allow the same function to be used for all sequence lengths.

7.2.4 Calculation of Rate Constants and Assumptions Utilized

This sectionmore clearly defines the origin of the reverse rate and discusses themajor

assumptions that are made when calculating both the forward and reverse rates for the

model. We begin with the assumption that kf is independent of temperature and base pair

composition for a given sequence. In other words the value of kf is constant regardless

of what temperature the system is evolving at and whether a G:C or A:T base pair is

forming. The sequence component of this assumption is commonly made for nucleation-

zipper models11,13,14,16,19–21 since A:T and G:C base pairs are sterically very similar and

kf should not significantly depend on stacking interactions.21

The assumption that kf is independent of temperature is more contentious in the lit-

erature. Models exist that do not include a temperature dependence,13 while others do

by incorporating an activation energy or directly fitting each individual temperature; how-

ever, among these models the results are inconclusive. It has been proposed that the

activation barrier is small and positive, generally in the range of 1-5 kcal mol-1.14,16,19,22

This leads to the proposal that the elementary formation of a single base pair adjacent to

an intact base pair is diffusion-controlled.14,16,19 However, caution should be exercised

due to studies in the literature examining significantly longer sequences,19 or fitting as

few as two temperatures and acknowledging that under certain experimental conditions
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the correct rate as a function of temperature was obtained using an activation energy of

zero.14 Other experimental results, examining sequences with lengths of 8-14 base pairs,

demonstrate that kf varies insignificantly and inconsistently with temperature for a given

chain length.11

The conceptual understanding of kf as the ”speed limit” for the formation of a single

base pair next to an already formed base pair is consistent with the idea that kf is the rate

for a diffusion-controlled reaction. While a diffusion-controlled reaction would be expected

to contain a temperature dependence the resulting barrier is very small, consistent with

the 1-5 kcal mol-1 previously mentioned.14,16,19,22 In the work presented here each se-

quence was studied over a relatively small temperature range with the lowest and highest

temperatures being separated by only 10-15 K. Over such a minimal temperature range

the change in the solvent viscosity is also relatively minimal. Considering both of these

factors within the context of the experimental work that is examined here the impact of the

temperature dependence of kf is considered to be negligible.

Considering the inconsistencies in the literature, and the relative insignificance of a

very small activation energy over the temperature range studied here, as a first approxima-

tion kf is assumed to be independent of temperature. This was done in an effort to simplify

the model and reduce the number of parameters to alleviate concerns of overfitting, which

can easily occur due to the significant number of parameters incorporated into some ver-

sions of the nucleation-zipper model.11,16 Additionally, this allows fitting the model to all

temperatures for a given sequence with a single parameter set, rather than fitting a dis-

tinct parameter set to each temperature. It is advantageous to do this without needing

additional parameters to capture a temperature dependence that is expected to be very

small or nonexistent. As a result, fitting two parameters to all temperatures significantly

reduces the risk of overfitting.

We will now clarify the calculation of the forward and reverse rates for the model, the

rates for forming or breaking a single base pair, before discussing the additional assump-
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tions that they require. The only distinguishing factor between different forward rates is the

number of previously intact base pairs. As seen in Figure 7.1 the nucleation step proceeds

with a rate of βkf and the propagation steps proceed with a rate of σikf. The subscript i

denotes the NBP prior to the move, such that for the formation of the second base pair the

rate is given by σ1kf. There is no σi value associated with the formation of the first base

pair so 1 ≤ i ≤ N − 1 where σN−1 is the σ value associated with the formation of the final

base pair.

With the forward rates defined we now look to the calculation of the reverse rates.

The forward and reverse rates for moving between any two states, where such a move is

allowed, are related by

s =
ki
k−i

= e
−∆G
RT (7.11)

where s denotes the equilibrium constant following the notation used by many in the liter-

ature,11,19,23 ki is the forward rate, and k−i is the reverse rate. The value of s is defined

as an association equilibrium constant where the forward direction is the formation of a

base pair and this convention is used throughout this work. It is important to know that s

is unitless. As a result k−i will carry the same units as ki. Since both β and σ are unitless,

ki and k−i have the same units as kf which are s-1, which is necessary for the transition

rate matrix. As a result the reverse rate can be solved by simple rearrangement yielding

k−i =
ki
s

(7.12)

For both the nucleation and propagation type moves, as a result of utilizing the free energy

value of each configuration, the reverse rate constants do contain sequence specificity as

mentioned previously. This is because the ∆G value depends on the specific configura-

tions of the initial and final states for a given move. Equation 7.12 is then used to calculate

the reverse rates seen in the reaction scheme shown in Figure 7.1.

It is worth acknowledging here that the equilibrium constant s only factors into the re-
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verse rate meaning this rate carries all of the effect due to the specific identities of the initial

and final configurations defined by that particular s. This results in all base pair specificity

being carried in the reverse rates, an assumption widely utilized in kinetic Monte Carlo

models utilized to study DNA kinetics.20–22,24–26 An explanation for this is that outside

of any diffusion contribution, the formation of a base pair is an elementary reaction. This

elementary reaction is predominately driven by steric and structural considerations which

would not be expected to carry any significant base pair specificity. With respect to the dif-

fusion contribution, it is incorporated for nucleation steps and its omission in propagation

steps was discussed previously with respect to kf.

These rates are inserted into the transition rate matrix L as the indices lij . If lij is

a forward rate it is calculated from the definition based on whether it is a nucleation or

a propagation step and then lji is calculated according to Equation 7.12. There is no

correlation between the values of the indices i and j and which state has more intact base

pairs such that if i > j the given element lij could be either a forward or a backward move.

One final assumption that needs to be addressed is that DNA hybridization and de-

hybridization can be broken down into individual sequential steps making or breaking a

single base pair at a time. To consider this we first note that according to the Chapman-

Kolmogorov equation, given by Equation 3.4, considering a transition between two con-

figurations with the same NBP as two sequential transitions and summing over all inter-

mediates is the same thing as considering it as one transition over a longer period of time.

It is true that making and breaking a base pair could happen simultaneously, particularly

the case where a base pair is being simultaneously made or broken on each end of a

consecutive stretch of intact base pairs. However, the assumption that association and

dissociation can be broken down into rapid individual discrete steps is a hallmark of many

models used to study DNA.11–14,16,20–22,27
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7.2.5 Running Trajectories

The Gillespie algorithm code that generates trajectories is written in C and utilizes

inputs both generated by the user and from an accompanying Matlab script. The transition

ratematrix, L, outlined in the previous section is used by theGillespie algorithm to generate

the trajectories. The steps in the algorithm and the method utilized to select the state that

the trajectory moves to and the time step for that move, also known as the exit time,

are detailed in Section 3.3. For association (dissociation) trajectories the system starts

in the monomer (fully formed dimer) state and runs until reaching the fully formed dimer

(monomer) state. In this context the fully formed dimer state refers to the state where every

base pair is bound to its native pair. Upon reaching the final state it terminates and the first

passage time, time spent in each state, and the states traversed during the barrier crossing

are saved. The first passage time in this context is the entire length of the simulation from

when the trajectory initiates in the initial state at time zero until it reaches the final state.

Logging the states occupied during the barrier crossing event is an important component in

the analysis of the model. The barrier crossing for the association (dissociation) is defined

as the portion of the trajectory starting with the last time the trajectory was in the monomer

(fully formed dimer) state until it reaches the fully formed dimer (monomer) state. If desired

the initial and final states can be changed to allow the model to be initiated or terminated

at an intermediate state where some, but not all, base pairs are intact.

Once the final parameters were determined for the model a large number of traject-

ories were run to ensure proper statistics. For the GC-core sequence 5,000 trajectories

were run for both the association and dissociation trajectories while for all other sequences

100,000 trajectories were run. These large trajectory sets and the transition rate matrices

used to generate them, are the results that are analyzed in this chapter.
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7.2.6 Optimization of Parameters to Experiment

To determine the fit parameters α and kf, the model was parameterized against our

experimental temperature-jump results for sequences of varying base pair composition

and length that have been published previously.28,29 The parameters for each sequence

were fit independently to the observed rate constants from experiment with five or six

temperatures included in the fit for each sequence. To compare the simulations to the

experimental results a set of association and dissociation trajectories were run for a given

set of parameters to determine the mean first passage time for both. The association rate

ka was then calculated from

ka =
1

[M]τa
(7.13)

where [M] is the monomer concentration at the initial temperature prior to the temperature-

jump pulse, and τa is the mean first passage time for association from the model. In the

case of the CG-ends sequence the monomer concentration was drawn from the coarse-

grained lattice model while for GC-core and AT-all it was drawn from experimental results.

However, this distinction is minor as the coarse-grained model has been shown to be in

excellent agreement with the experimental results. The dissociation rate, kd, was determ-

ined by

kd =
1

τd
(7.14)

where τd is the mean first passage time for dissociation from the model. The association

and dissociation rates were used to calculate the observed rate constant according to a

standard two-state kinetic analysis making the assumption that these rates are in response

to a weak perturbation, which our temperature jump is assumed to be.1,28–30 Under this

assumption the observed rate constant is given by

kobs = kd + 4[M]ka (7.15)
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where kobs is the same observed rate constant as the one determined from the exper-

imental data allowing the direct comparison of the two values. The parameters were

optimized utilizing a pattern search algorithm that minimized the sum of the squared re-

siduals at each temperature. It is worth noting that these equations are correct for the

self-complimentary sequences analyzed here and would need to be altered for the case

of non-self-complimentary sequences. The necessary equations for both thermodynamic

and kinetic analysis of a non-self-complimentary two-state system are provided in Ap-

pendix 5A.

The number of trajectory sets run during each iteration of the fitting algorithm is twice

the number of fit parameters, so in the case of fitting kf and α four trajectory sets must

be run each iteration. With thousands of iterations required to optimize the parameters

against the experimental results running a large trajectory set each time is not computa-

tionally feasible. For this reason the trajectory sets run during the course of the fitting are

relatively small, on the order of hundreds of trajectories. Initially a number of optimiza-

tion routines were run for each sequence with randomized initial parameters until a more

concise range in which the parameters were converging was determined. The best para-

meters from these initial fits were selected and used as the initial parameters for additional

optimization routines, using the same method, to determine the final parameters. Once

these parameters were determined a full trajectory set was run with these parameters to

ensure that the values compared to experiment during the fit were representative of the

results of the full trajectory set. This ensured that there was no error due to the small

trajectory sets used during the optimization routines.
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7.3 Results

7.3.1 Final Parameters and Fit Quality

The parameters returned by the fitting algorithm are given in Table 7.1. The result-

ing observed rate constants, calculated from the mean first passage time for association

and dissociation using the two-state analysis, are compared to those determined by ex-

periment in Figure 7.2 for all sequences except AT-all. AT-all was excluded since only

two temperatures are available which makes it a poor metric of fit quality relative to the

other sequences. The model is generally in good agreement with the experimental data,

particularly at higher temperatures.

Before discussing the fit quality, and the resulting parameters, it is important to dis-

cuss the robustness of the fit and the level of confidence in the parameters. There are

a number of local minima in the optimization meaning there is not necessarily one clear

and unique solution of parameters. The reported values are the best quality fit to the ex-

perimental data determined during the optimization. However, there is generally a small

set of other parameters that provide fits that could be considered reasonable results since

the difference in the results is not necessarily significant. As a result, while the analysis of

trends in the fit parameters provides interesting insights, the size of the data set studied,

Table 7.1: Fit parameters returned by the kinetic model for each sequence studied.

sequence length kf (s-1) α

CG-ends

6 5.4344 x 1011 0.6101

8 2.0969 x 1011 1.0790

10 5.9513 x 1010 1.5424

12 4.0526 x 1010 1.5665

14 7.4036 x 109 2.2705

GC-core 10 3.5993 x 1010 3.7285

AT-all 10 3.2769 x 1010 2.8186
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Figure 7.2: Kinetic model observed rate constant (red) compared to the observed
rate constant from experiment (black) for (a) 5’-CATATG-3’, (b) 5’-CATATATG-3’, (c)
5’-CATATATATG-3’, (d) 5’-CATATATATATG-3’, (e) 5’-CATATATATATATG-3’, and (f) 5’-
ATATGCATAT-3’

.

both in the number of sequences and the number of temperature points for each sequence,

should be expanded in the future to help bolster confidence in the results. Additionally,

there are a number of factors and assumptions that go into the parameters utilized in this

mathematical model. This means caution should be taken, and the context of the paramet-

ers within the model should be considered, while making any connections to real physical

processes. It should be noted that the overall mechanistic and pathway information that

is provided by the model is not heavily dependent on the exact parameters used as long

as they are within range of the reported values. This results in greater confidence with

regards to conclusions drawn from the analysis of the overall reaction mechanism relative

to the analysis of the individual fit parameters.

One discrepancy between the model and experimental results is the ability of the

model to replicate the degree to which the different sequences and lengths demonstrate

nonlinear trends in the Arrhenius plots. As demonstrated in Chapter 6 the observed rate
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constant is closely related to the dissociation rate constant, where a linear Arrhenius plot

is indicative of two-state kinetics dictated by a single temperature independent activa-

tion barrier. The model demonstrates a small degree of nonlinearity such that for shorter

CG-ends sequences, where the experimental trends are linear, the model does not fully

replicate the linear trend resulting in some deviation from the experimental rates at low

temperature. The degree of nonlinearity demonstrated by the model appears to be relat-

ively unaffected by sequence length and composition which can be seen by the fact that

the model is unable to fully replicate the degree of nonlinearity observed in the GC-core

sequence, such that it again deviates from the experimental rates at low temperature. A

more thorough discussion of the nonlinear behavior is included in Section 7.4

While discussing the linearity of the rates determined by the model it is worth re-

visiting the model’s construction and the fact that it assumes that DNA association and

dissociation can be modeled as sequential steps making and breaking individual base

pairs. Initially this construction may seem to be at odds with a system that is known to

follow a two-state model, particularly for the shorter CG-ends sequences, which makes

this topic worth discussing briefly. In both the case of the model and the experiment the

Arrhenius plots for the dissociation rate constant are sightly more linear than the observed

rate constant, since some of the nonlinearity in the observed rate is due to the convolution

of the association and dissociation rates. However, the difference between the two should

be the same for both the model and experimental results. While the model does not gen-

erate results that are as linear as experiment for the shortest sequences the curvature of

the plots is in reasonable agreement for most of the CG-ends sequences. This demon-

strates that even though the trajectories generated by the model are made up a large

number of individual steps involving the formation or breaking of a single base pair it is

able to reasonably reproduce the two-state behavior of these sequences. However, this

should be treated with caution since a two-state assumption is utilized both to calculate

the association and dissociation rates from the experimentally determined observed rate
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Figure 7.3: The value of kf as a function of length (a) and the σ values derived from α as a
function of the normalized NBP with (•) marking the position of each base pair for a given
sequence with an associated σi value less than 0.9 (b) for the 5’-C(AT)nG sequences with
n = 2-6.

constant and to calculate the observed rate constant from the association and dissociation

timescales determined by the model.

Now that overall agreement between the model and experiment has been established

it is worth taking a closer look at the resulting fit parameters. Figure 7.3 contains plots of

kf for each length as well as the functional form of σ as a function of NBP normalized by

the total number of base pairs for each length. The dots on Figure 7.3b designate the

location of σi values that are less than 0.9 for each sequence. Base pairs for which the σi

value is larger are not included for the sake of clarity. In Figure 7.3, kf clearly decreases

as a function of length for the CG-ends sequences and is well fit by a single exponential.

However, it is important to note what will be a recurring theme throughout the analysis of

the model. It is difficult to disentangle the numerous variables that impact the dynamics

168



and kinetics of DNA, particularly length, sequence, and temperature. An example of this is

that both length and sequence composition affect duplex stability andmelting temperature.

Sequences with higher melting temperatures must be experimentally studied at higher

temperatures making it hard to disentangle the effects of temperature from the effects

of either sequence or length. This means that the decreasing trend in kf as a function

of length may also have an underlying temperature component. It is worth pointing out

that over the entire temperature range studied across all sequences the viscosity of D2O

changes by approximately a factor of two and as such is not expected to be a significant

factor in the observed trend in kf with sequence length. The potential causes of this trend,

both length and temperature, will be further discussed in Section 7.4.

Figure 7.3b shows that the increasing value of α with increasing length seen in Table

7.1 corresponds to the functional form of σ approaching a value of one faster along the

normalized x-axis. This results in σ approaching a value of one after approximately 4-5

base pairs regardless of length. It is worth noting that this is approximately half of a full

turn of the helix which occurs in 10-11 base pairs. It has been proposed in the literature

that only a few intact base pairs are needed to begin to form the double helix structure

and obtain the associated stability. As a result σ should approach one in less than a single

turn of a helix which is in excellent agreement with our results. An additional note from

looking at Table 7.1 is that the values of α for GC-core and AT-all result in σ values that

approach a value of one within three and four base pairs respectively. It is interesting that

they have the highest α values of all the sequences studied here. While this means that

for each NBP value AT-all and GC-core have larger values of σi compared to the CG-ends

sequence of the same length, they do still approach a value of one in approximately the

same number of intact base pairs.

Finally, with respect to β it is worth noting that the values of β calculated utilizing this

method are in rough agreement with existing literature values, however those values do

cover a large range which, in addition to the wide range of definitions of β that exist in the
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literature, makes direct comparisons difficult.11,12,17,31

7.3.2 Analyzing Trajectories

Before moving ahead to analyze the trajectories themselves it is worth taking a step

back to look at a couple of example trajectories to get a sense for the different aspects

that will be shown. Two full dissociation and two full association trajectories are shown

in Figure 7.4. Additionally, the final ten nanoseconds of both dissociation trajectories are

shown separately. In these figures each dot represents an individual state that the traject-

ory passes through with the y-axis denoting the number of intact base pairs for the state

and the x-axis denoting the time that the trajectory enters that state. Averaging over the
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Figure 7.4: Sample association and dissociation trajectories for 5’-ATATGCATAT-3’ at 333
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highlighting the last 10 nanoseconds of the dissociation trajectories. The black dots in
each trajectory represent the time points included in the overall barrier crossing event.
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different configurations to just focus on the number of intact base pairs was done in these

plots for the sake of clarity. The black dots designate the final barrier crossing event for

the trajectory. Here we define the association (dissociation) barrier crossing event as the

portion of the trajectory from the last time it is in the monomer (fully formed dimer) state

until it reaches the fully formed dimer (monomer) state.

Starting with the dissociation trajectories the first thing to note in Figure 7.4 is the

amount of time spent rapidly moving between configurations with different NBP values

while regularly returning to the fully formed dimer state. This demonstrates the fraying

behavior that is seen to varying degrees across most sequences. The increased fray-

ing behavior for GC-core can be seen by the fact that it both spends more time in states

with fewer intact base pairs during the dissociation trajectory relative to the CG-ends se-

quence and it also reaches states with fewer intact base pairs at an earlier point in time.

The increased amount of time GC-core visits states with fewer intact base pairs is par-

ticularly clear over the final ten nanoseconds. The fact that in both cases the trajectory

regularly returns to the fully formed dimer state throughout the early portion of the traject-

ory demonstrates the picosecond to nanosecond timescale of the zippering component of

the nucleation-zipper model first introduced in Figure 1.1.

The association trajectories in Figure 7.4 help to further highlight the significantly dif-

ferent timescales of the different parts of the nucleation-zipper mechanism seen in in Fig-

ure 1.1. The vast majority of the trajectory is spent going between the monomer state

and a configuration with a single intact base pair before at the very end forming mul-

tiple consecutive base pairs and rapidly zipping up to the fully formed duplex. Due to the

vastly different timescales for forming the first base pair, and breaking that base pair, the

monomer state is occupied for almost the entirety of the trajectory. This clearly demon-

strates the microsecond timescale of the diffusive encounter and pre-equilibrium steps of

the reaction which is significantly slower relative to the picosecond to nanosecond times-

cale of the final zippering which takes up a very small portion of the overall association
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trajectories. The time spent in different phases of the association trajectory and how it

compares to the physical picture is discussed in more detail later on in conjunction with

a closer examination of the rates for forming base pairs, particularly the first base pair,

returned by the model.

The analysis here will have two different foci. The first aspect that we will analyze

in detail is the barrier crossing event in the trajectories. In Figure 7.4 this portion of the

trajectories is highlighted by the black dots. The barrier crossings shown here occur on

a timescale of hundreds of picoseconds for the dissociation and a time scale of nano-

seconds for the association. These barrier crossing events can involve both forward and

backward moves meaning that there is no set number of steps that make up the barrier

crossing. However, the minimum number of steps is equal to the number of base pairs in

the sequence. For certain sequences it is not entirely uncommon for the barrier crossing

event in the trajectory to include two to three times more steps than the minimum amount

required.

The second way the trajectories are analyzed is by examining the entire trajectory as

a whole. The main focus of analyzing the entire trajectory is examining the fast response

observed in experiment for some sequences, particularly GC-core and the longer CG-

ends sequences. To do this we will examine aspects of the entire trajectory such as the

number of times configurations with each NBP are visited and the average duration of

each visit. Doing so will allow us to qualitatively compare the behavior of the dissociation

trajectories for each sequence and compare the resulting trends to changes observed in

the experimental results to further clarify the dynamics behind the experimental results.

7.3.3 Individual Reaction Pathways

Utilizing TPT analysis, the method for which is described in Section 3.6, individual

pathways for barrier crossing events can be isolated and ranked according to the fre-

quency at which they occur. It is important to distinguish what is meant by individual

172



Figure 7.5: Top six pathways for 5’-C(AT)nG-3’ sequences with n = 3-6. The pathways are
shown at a temperature of 334 K for each sequence except 5’-CATATATG-3’ which is 333
K. For each length these pathways are ordered from most probable to least probable from
left to right with their ranking denoted by the number above each column. For each length
6-14 these six pathways, and their symmetric partner, make up 87.0%, 69.0%, 57.5%,
and 49.5% respectively of the total flux between the monomer state and the fully formed
dimer state across all pathways isolated by TPT analysis at the temperatures shown.

pathways from the overall mechanism. Individual pathways are one possible way the sys-

tem can move through different configurations during either an association or dissociation

barrier crossing event. In this context the overall mechanism incorporates the entire dis-

tribution of individual pathways and is a more general view of how the system progresses

through a barrier crossing event.

Figure 7.5 shows the top six association pathways ordered from left to right accord-

ing to the probability that an association event will occur along that particular pathway for

each CG-ends sequence with lengths of 8-14 base pairs at a temperature of either 333 K

or 334 K. The sequences were compared at similar temperatures to isolate mechanistic

changes as a function of length. The eight base pair sequence is in the top row of plots
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Figure 7.6: Percentage of all association barrier crossing events that occur along
each of the top six pathways for (a) 5’-CATATATG-3’, (b) 5’-CATATATATG-3’, (c) 5’-
CATATATATATG-3’, and (d) 5’-CATATATATATATG-3’ at a sample temperature of (a) 333
K or (b-d) 334 K. Note that each pathway has a symmetric pair that shares the same
percentage.

with the sequence length increasing in each subsequent row moving down. Black boxes

represent intact base pairs and the plots are read from the bottom up where the first base

pair formed is in the second row of the plot and the reaction proceeds up the plot to reach

the fully formed dimer state in the top row. It should be noted that this method considers

direct pathways and disregards off pathway loops that occur when a trajectory leaves a

particular state only to eventually return to that exact state. However, as will be demon-

strated later on, this does not significantly impact the ability of the pathways isolated by

TPT to represent the pathways of the trajectories generated by the kinetic model. Since

these sequences are all self-complimentary each pathway has a symmetric partner that

is identical and carries the same probability. For example, the first pathway for each se-

quence in Figure 7.5 initiates at one end and zips up sequentially across the sequence.

The symmetric partner of this pathway is identical except that it starts at the other ter-

minus. For all self-complimentary sequences each pair will be referred to as a unit, for

example referring to the two most dominant pathways refers to the two most dominant

sets of pathways which is actually four pathways. Figure 7.6 contains the probability that

an association event will occur along each particular pathway shown in Figure 7.5 with the

pathways numbered according to their ranking, which proceeds from left to right across

Figure 7.5. The probability is calculated from the percentage of overall flux between the

monomer state and fully formed dimer state that passes through each individual pathway.
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The most obvious conclusion to draw from Figures 7.5 and 7.6 is that the two dom-

inant pathways for all lengths initiate at and directly next to the C:G termini respectively.

This shows that while there is a distribution of pathways, the simplest pathway for the nuc-

leation zipper picture that proceeds by initiating at one end and sequentially zipping across

is the dominant association pathway for this sequence motif. Figure 7.6 shows that there

is a significant decrease in probability between the top pathway and the second pathway,

followed by a smaller, but still noticeable drop after the second pathway. The difference

in the relative probability between the remaining pathways is quite small for all sequences

with almost no decrease observed for the shorter sequences. Figure 7.5 also shows that

it is advantageous for shorter sequences of this motif to form the termini as quickly as

possible. This is best observed in the top four pathways for the shortest sequence all

proceeding directly to the closest terminal base pair. For longer sequences proximity to

the termini, and forming a terminal base pair early on in the process, becomes less signi-

ficant. For the two longest sequences, after the two most probable pathways only one of

the remaining pathways directly proceeds to a termini. These pathways are the fifth and

sixth most probable pathways for the twelve base pair and fourteen base pair sequences

respectively. It is also interesting to note that while forming the terminal base pair early

on does seem to be favorable, the pathway that forms at the fourth position and proceeds

directly to the closest termini is slightly more probable relative to the comparable path-

way that initiates at the third position. However, as mentioned previously since these are

never one of the top two pathways the difference in probability between them is relatively

negligible.

Another interesting observation is that other than forming the first base pair at or next

to the termini it is advantageous to initiate near the center of the sequence. In particu-

lar, the third most dominant pathway for the three longest sequences all share roughly

the same pathway, initiating in the middle and then building out keeping the two frayed

ends roughly equal in length until the sequence is fully hybridized. This demonstrates
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Figure 7.7: Top six pathways for 5’-ATATATATAT-3’ at 308 K (top) and 5’-ATATGCATAT-
3’ at 333 K (bottom). Both pathways are ordered from most probable to least probable
from left to right with their ranking denoted by the number above each column. At the
temperatures shown, these six pathways, and their symmetric partner, make up 64.7%
and 74.2% of the total flux between the monomer state and the fully formed dimer state
across all pathways isolated by TPT analysis for 5’-ATATATATAT-3’ and 5’-ATATGCATAT-
3’ respectively.

that among common pathways there appears to be two main motifs, forming at or next

to G:C base pairs, and forming in the center of the sequence and building symmetrically

towards the ends. The slight, but consistent, preference for forming at the fourth base

pair and proceeding directly to the termini rather than initiating at the third position and

doing the same thing also points to a preference for initiating close to the center. We will

demonstrate later on in the discussion that pathways that initiate at or near a G:C base

pair that forms early on are enthalpically driven, due to the additional stability of G:C base

pairs, while pathways that initiate nearer to the center of the sequence are entropically

driven. One of the major factors behind the entropic driving force is that the entropy of

the configurations that these pathways pass through is more favorable, which has been

demonstrated by the thermodynamic lattice model.2

The CG-ends pathways can be compared to the AT-all and GC-core pathways which

are shown in Figure 7.7 and their corresponding probabilities in Figure 7.8. The two motifs

observed in CG-ends are essentially repeated for AT-all and GC-core. Since AT-all does

not contain any G:C base pairs only the motif of initiating in the center appears. Figure 7.8

shows for AT-all that there is a relatively small difference between the probability of these
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Figure 7.8: Percentage of all association barrier crossing events that occur along each of
the top six pathways for (a) 5’-ATATATATAT-3’ at 308 K and (b) 5’-ATATGCATAT-3’ at 333
K. Note that each pathway has a symmetric pair that shares the same percentage.

pathways and that the top ones do not stand out nearly to the same degree. For GC-

core because the G:C base pairs are in the center the two motifs essentially result in the

same pathways meaning that these pathways are driven by both enthalpic and entropic

driving forces. This results in top pathways that are significantly more dominant than the

top pathways for other sequences. The probability of each pathway also drops off more

significantly across all six pathways. For the CG-ends sequences there is little difference

between the center initiated pathways, AT-all sees a very minor drop across all pathways,

and GC-core sequence sees a steep decrease after each of the top three pathways and

another noticeable drop after the fifth pathway.

7.3.4 Overall Mechanistic Insights

While the individual pathways are informative on a microscopic scale, it is important

to more generally consider the mechanism for monomer-dimer transitions in terms of the

overall two-state reaction. However, our focus at this point remains on the barrier crossing

event itself. One interesting aspect of the overall mechanism is the probability of initiat-

ing a barrier crossing at different positions. Using the pathways isolated by TPT we can

determine the percentage of barrier crossings that initiate at each position by summing

over all of the pathways, the result of which is shown in Figure 7.9. This can be thought

of as the probability that a successful association initiates at a particular position. This

177



Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

5

10

15

20

6

7

8

7

8

9

11

10

9

8 10

11

12

13

14
18

16

14

C GA T A T C GA T A TC GA T A T A T C GA T A T A TC GA T A T A T A T C GA T A T A T A T

C GA T A T A T A TT A C GA T A T A T A TT AA TT A T G C A T A A TT A T G C A T A C GATA T ATATTA TA C GATA T ATATTA TA

315 K 343 K 328 K
Pe

rc
en

ta
ge

 o
f

A
ss

oc
ia

tio
n 

Ev
en

ts

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

342 K 325 K 340 K

319 K 334 K 315 K 333 K 306 K 317K

5’-ATATGCATAT-3’ 5’-CATATATATATATG-3’ 5’-CATATATATATG-3’

5’-CATATATATG-3’ 5’-CATATATG-3’ 5’-CATATG-3’

Figure 7.9: Percentage of all association barrier crossing events that initiate at each pos-
ition for 5’-ATATGCATAT-3’ and 5’-C(AT)nG-3’, n = 2-6, at the highest and lowest temper-
atures each sequence was studied at.

can be compared to the trajectories from the kinetic Monte Carlo model by looking at the

percentage of all trajectories whose barrier crossing event initiates at each position. The

plots generated directly from the trajectories themselves are in excellent agreement with

the plots from the TPT analysis as shown in Appendix 7B. This demonstrates that the as-

sociation pathways isolated utilizing TPT are representative of the association events in

the trajectory even though TPT does not isolate every single possible pathway.

It is also interesting to compare these plots to those generated by the last intact base

pair for a dissociation barrier crossing event. The last intact base pair is of greater interest

than the first base pair to break since the model requires that dissociation initiates at one

of the ends, and for self-complimentary sequences the two termini should be essentially

identical. The model requires that dissociation initiates at one of the ends because break-

ing the first base pair in any other position would form a bubble state, which is not allowed

by the model. The final intact base pair plots for a dissociation event from both the TPT

analysis and the trajectories are in agreement with each other and are also very similar to

those for the first intact base pair to form for an association event. This suggests that the

association and dissociation barrier crossings can be considered reversible in that they

178



follow the same mechanistic pathway, just in the opposite direction. While this is not par-

ticularly surprising for the TPT analysis since the system is reversible due to utilizing the

steady state solution of the transition rate matrix, the trajectories themselves are not run

under equilibrium conditions and reversibility is not required. This is an interesting result

both because it further supports the idea of microscopic reversibility for the association

and dissociation of DNA and also because it provides evidence that enforcing reversibility

to simplify the TPT analysis does not impact the methods ability to accurately represent

the mechanisms followed by the non-equilibrium trajectories.

One of the more interesting observations gained by examining Figures 7.5 and 7.9

is that while the dominant individual pathway for all CG-ends sequences initiates at a ter-

mini those positions are the least likely to initiate a successful association barrier crossing

event. The most probable position is actually either next to the G:C termini, the position

at which the second most probable individual pathway initiates, or in the center of the

sequence depending on temperature. For all sequences except the shortest one, there

is also consistently a drop in probability for the third position, relative to the neighboring

positions. This is due to the energetic driving forces behind the association reaction. The

entropic driving forces preferentially drive barrier crossings that initiate in the center with

the benefit decreasing the closer the initiation point gets to the end of the sequence. This

is both due to the favorable entropy of the configurations these pathways go through, as

mentioned previously, in addition to an additional entropic benefit due to positions in the

center having additional pathways available through which association barrier crossings

can proceed. These entropic factors explain the dome shape observed in the longer se-

quences and explains why the fourth position from the end is more probable than the third

position. The second position is more probable than the third position because it receives

a significant enthalpic benefit from forming next to the G:C base pair at the termini. These

energetic driving forces will be discussed in more detail in the discussion section, including

an explanation of why the terminal G:C base pairs are such an unlikely initiation position
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for CG-ends. The results in Figure 7.9 for CG-ends are in stark contrast to those for the

GC-core sequence that demonstrate a very strong preference for initiating in the middle

of the sequence, which makes sense when considering the pathways in Figure 7.7 and

the overlap between the two main pathway motifs.

The plots in Figure 7.9 show a consistent theme as a function of temperature. For

CG-ends sequences a temperature increase increases the probability of initiating a barrier

crossing at or next to a G:C base pair with a corresponding drop in the probability of

initiating in the center. This would then suggest that the increasing probability of initiating

in the center with increasing temperature for G:C core is driven by the location of the G:C

base pairs rather than a positional effect.

Another way to investigate the association mechanism is to more directly probe the

identity of the transition state or configurations in the transition state ensemble. A common

way to analyze Markov state models and isolate structures in the transition state ensemble

is to use the committor values, which are calculated for TPT analysis. A common method

for determining the transition state ensemble is to select configurations with committor val-

ues within some threshold around 0.5, though it should be noted that this analysis is more

commonly applied to Markov state models created by binning structures from MD simu-

lations together to create the states.7,8 This provides more flexibility and control over the

states and a more continuous set of states than the model presented here. As such the

discussion here will remain broader. Rather than attempting to specifically identify each

configuration in the transition state ensemble we will focus on trends in the committor val-

ues as a function of length, temperature, and sequence composition to better understand

how these variables impact on the makeup of transition state ensemble. We will utilize the

forward committor values, which are the probability of going from that particular configur-

ation to the final state, which in the case of association is the fully formed dimer state. The

forward committor values are introduced and defined in Section 3.6 Recall that since our

TPT analysis presumes reversibility the forward and backward committors sum to one.
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Figure 7.10: All configurations with forward committor values between 0.2 and 0.8
for (a) 5’-CATATATG-3’, (b) 5’-CATATATATG-3’, (c) 5’-CATATATATATG-3’, and (d) 5’-
CATATATATATATG-3’ at a temperature of (a) 333 K or (b-d) 334 K.

We will start with the CG-ends sequences with 8-14 base pairs at 333 K or 334 K to

remove any temperature effects and focus on length. Configurations with a forward com-

mittor value between 0.2 and 0.8 are shown in Figure 7.10. In these plots the black and

white squares designate intact and broken base pairs respectively. The bar graph to the

right of the configurations denotes the forward committor for each of the specific config-

urations shown. These plots also serve as an example as to why a less rigid description

of the transition state ensemble is utilized here. Restricting it to configurations that fall

between a narrow window, such as 0.4 to 0.6, would result in at best a limited number

of configurations and in some instances there would be none. This is a result of basing

the kinetic model on a discrete lattice model whose reaction coordinate is NBP. Even with

our expanded range of forward committor values certain pathways will not pass through

a configuration with a forward committor value in this range. An easy example of which is

the most dominant pathway for sequences of lengths 8, 10, and 12 since the two base pair

configuration with an intact terminal base pair does not have a forward committor value in

this range.

At these temperatures Figure 7.10 shows that the configurations with forward com-

mittor values in this range all have two intact base pairs. The main trend in Figure 7.10 is

that, regardless of position, as the length of the overall sequence increases the forward

committor values for configurations with two intact base pairs decrease. This is best seen

by looking at the configuration with the two central base pairs intact, which is present on

all four plots, whose value decreases as the sequences get longer. This is also true for
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configurations involving the two base pairs closest to the end that are above 0.8 and off

the chart for lengths 8, 10, and 12 but appear for the longest sequence. This shows that

as sequences get longer a specific configuration will become less likely to proceed to the

fully formed dimer state. This demonstrates that the model predicts that the size of the

configurations that make up the transition state ensemble should increase with increasing

length.

Our experimental results, discussed in Section 6.4.6 found that the critical nucleus

increases in size with increasing length and, while the experiments predict a noticeably

larger size increase, it is promising that themodel is in agreement with the overall trend. As

mentioned previously our experimental results were not able to fully decouple length and

temperature. The smaller magnitude of change observed in Figure 7.10, which examines

all lengths at roughly the same temperature, provides evidence that the experimental trend

does contain contributions from both length and temperature.

The second variable examined with the forward committor values is temperature. Fig-

ure 7.11 contains the forward committors for the 14 base pair CG-ends sequence and

Figure 7.11: All configurations with forward committor values between 0.2 and 0.8 for 5’-
ATATGCATAT-3’ at 315 K (a) and 343 K (b) and 5’-CATATATATATATG-3’ at 328 K (c) and
342 K (d).
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GC-core at their highest and lowest temperatures. These sequences were selected be-

cause they represent the clearest example of the trends in the configurations with forward

committors in the range studied as a function of temperature. Though only these two

sequences are shown the trends are representative of all sequences. Like the trend with

increasing length, increasing temperature decreases the stability of the configurations res-

ulting in smaller forward committor values. For both sequences in Figure 7.11 when going

from low to high temperature the forward committor values for a given configuration de-

crease. The degree to which is such that configurations with three intact base pairs at high

temperature have similar forward committor values to configurations with two intact base

pairs at low temperature. Thus, the model clearly demonstrates that the size of the trans-

ition state will increase as a function of increasing temperature. This is in good agreement

with results from MD simulations in the literature.4

This is also in good agreement with our observation above with respect to the ex-

perimentally observed increasing critical nucleus size being a function of both length and

temperature. Figure 7.11 shows that with an increase as small as 14 K the model predicts

the transition state ensemble, as defined here, will include configurations with a single ex-

tra base pair. While small, this is still a significantly larger impact compared to the impact

of increasing sequence length from 6 to 14. The relatively small impact of both temperat-

Figure 7.12: All configurations with forward committor values between 0.2 and 0.8 for
5’-CATATATATG-3’ at 334 K (a) and 5’-ATATGCATAT-3’ at 333 K (b).
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ure and length in the model supports the idea that the experimentally observed increase in

critical nucleus size with increasing length has both length and temperature contributions.

Finally we will take a look at how the placement of G:C base pairs affects the configur-

ations in the transition state ensemble independent of any temperature or length effects.

This can be done by comparing the two sequences shown in Figure 7.12. There are a

few differences between the two that show the impact of changing the position of the G:C

base pairs. The biggest impact is seen in the GC-core configuration with three intact base

pairs that has a forward committor of about 0.7. This shows the effect that shifting the

position of the G:C base pairs has on the stability of configurations with only intact A:T

base pairs. Even though the %GC is the same for the two sequences there is no configur-

ation for the CG-ends sequence with three intact A:T base pairs. Additionally, in the case

of CG-ends the three A:T base pairs could actually be further away from a more stable

G:C base pair. Comparing configurations with two intact A:T base pairs at the same po-

sition for both sequences we see that in all cases the configurations are more stable for

the CG-ends sequence then they are for the GC-core sequence. The sequence effect is

significant enough that the CG-ends configuration with two intact A:T base pairs furthest

from a stabilizing G:C base pair is more stable than the GC-core configuration with two

intact A:T base pairs next to a G:C base pair.

Overall, considering the various sequences, lengths, and temperatures studied here

the forward committor values predict that the configurations in the transition state en-

semble are made up of approximately 2-3 base pairs. This is in good agreement with the

number of base pairs determined by coarse-grained MD simulations for both configura-

tions in the transition state ensemble7,8 and the critical nucleus.4 This result is particularly

promising considering the relative simplicity of the model presented here.
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Figure 7.13: Average percentage of time during the simulation that the trajectories spent
in states with each NBP for a trajectory starting in the fully formed dimer state for 5’-
ATATGCATAT-3’ (a-f) and 5’-CATATATATG-3’ (g-l). The temperatures for 5’-ATATGCATAT-
3’ are 315 K (a), 320 K (b), 327 K (c), 333 K (d), 339 K (e), and 343 K (f). The temperatures
for 5’-CATATATATG-3’ are 319 K (g), 322 K (h), 325 K (i), 328 K (j), 330 K (k), and 334 K
(l).

7.3.5 Full Trajectory Analysis

Now we will step back from looking solely at the barrier crossing event and examine

the entire trajectory, with a particular eye towards insights the trajectories provide on the

experimentally observed fast response. The primary purpose of this is twofold. The first

goal is to understand how fraying appears in the model by looking at GC-core, where fray-

ing has been experimentally observed. The second goal is to use this knowledge to gain

insight into the fast response that grows in with length in the CG-ends sequences. Ana-

lyzing the entire trajectory is difficult since there are thousands of steps in each trajectory

as seen in Figure 7.4. However, due to the construction of the model and the fact that all

dissociation must initiate at the ends we know that any dissociation must be due to fraying.

As a result we do not need to be particularly concerned with the individual configurations

and rather simply need to track NBP at each step.

Figure 7.13 contains plots showing the percentage of time spent in states as a func-

tion of NBP averaged over all trajectories for GC-core and the ten base pair CG-ends

sequence. The CG-ends sequence is used as a point of comparison since it is the same
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overall length and relatively little fast response is observed for this sequence. There is

a clear distinction between the two sequences. GC-core spends a significantly greater

portion of the trajectory in states with multiple broken base pairs, particularly at high tem-

peratures. This demonstrates that the kinetic model replicates the fraying behavior exper-

imentally observed in GC-core while indicating less early time dissociation in the ten base

pair CG-ends sequence, also in agreement with experiment.

Not only does the kinetic model agree with the experimental results but also with the

thermodynamic lattice model it is an extension of. The plots in Figure 7.13 are an almost

exact match to the equilibrium population distribution as a function of NBP from the lattice

model, which is shown in Figure 7.14. This demonstrates that over a sufficient number

of trajectories the amount of time spent in different states in the kinetic model is primarily

dictated by the thermodynamic free energy of the system.

The agreement with experiment is particularly good since the model also demon-

strates that for the GC-core sequence primarily A:T base pairs are dissociating at early

time. Any configuration with six or more intact base pairs must have both G:C base pairs

intact. Among configurations with four or five intact base pairs the vast majority of time is

spent in configurations with both G:C base pairs intact. This is demonstrated by looking at

the equilibrium probability of occupying each configuration for a given NBP since we have

previously established the connection between equilibrium probabilities from the lattice

model and the percentage of time spent in each state in the kinetic model. As an example
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Figure 7.15: Probability of 5’-ATATGCATAT-3’ adopting each possible configuration given
that the model is in a state with four or five intact base pairs at 343 K. ForNBP = 4 andNBP
= 5 the probability of occupying a configuration with both G:C base pairs intact is 99.5%
and 99.7% respectively.

Figure 7.15 contains the relative probability of occupying each possible configuration with

either four or five intact base pairs for GC-core at 343 K. Looking at Figure 7.13, in con-

junction with Figure 7.15, shows that very little time is spent in states with fewer than six

intact base pairs, and when the model is in those states predominately A:T base pairs

are dissociated. This demonstrates that prior to the dissociation barrier crossing almost

exclusively A:T base pairs have dissociated, in excellent agreement with experiment.

The GC-core fraying is in stark contrast to the ten base pair CG-ends sequence where

the overwhelming majority of time, regardless of temperature, is spent in the fully formed

dimer state as seen in Figure 7.13. While the amount of fraying seen for the ten base pair

CG-ends sequence is minimal, it is consistent with GC-core in that there is an increase in

fraying with temperature. However, the magnitude of this change is significantly smaller.

Now that it has been established that the kinetic model demonstrates the fraying be-

havior expected for GC-core the same analysis can be applied to the CG-ends sequences

to understand what is behind the experimentally observed fast response that grows in with

increasing length. Figure 7.16 shows the plots for each length of the CG-ends series at

the highest and lowest temperature at which they were experimentally studied. While the

trends are small, it is clear that at both temperatures there is a slight increase with length

in the time spent in states with broken base pairs. This provides clear evidence that even

187



5’
-C

AT
AT

G
-3

’
%

 T
im

e 
O

cc
up

ie
d

20

40

60

80

100

N
B P

2 4 6

5’
-C

AT
AT

AT
G

-3
’

%
 T

im
e 

O
cc

up
ie

d

20

40

60

80

100

N
B P

2 4 6
N

B P

2 4 6 8
N

B P

2 4 6 8

5’
-C

AT
AT

AT
AT

G
-3

’
%

 T
im

e 
O

cc
up

ie
d

20

40

60

80

100

N
B P

2 4 6 8 10
N

B P

2 4 6 8 10

5’
-C

AT
AT

AT
AT

AT
G

-3
’

%
 T

im
e 

O
cc

up
ie

d

20

40

60

80

100

N
B P

2 4 6 8 1210
N

B P

2 4 6 8 1210 5’
-C

AT
AT

AT
AT

AT
AT

G
-3

’
%

 T
im

e 
O

cc
up

ie
d

20

40

60

80

100

N
B P

2 4 6 8 1210 14
N

B P

2 4 6 8 1210 14

a b c d e f

g h i j

Figure 7.16: Average percentage of time during the simulation that the trajectories spent in
states with eachNBP at the lowest and highest temperatures studied for each 5’-C(AT)nG-
3’ sequence as follows: n = 2 306 K (a) and 317 K (b), n = 3 315 K (c) and 333 K (d), n =
4 319 K (e) and 334 K (f), n = 5 325 K (g) and 340 K (h), and n = 6 328 K (i) and 342 K (j).

with the stabilizing G:C base pairs on the termini these sequences become more sus-

ceptible to fraying with increasing length. While the trends with length are not nearly of

the magnitude observed for GC-core, this is reasonable since the trends observed in the

experimental results for the CG-ends sequences are also of smaller magnitude. This

suggests that fraying is a likely source of the increasing stretching factor observed in the

CG-ends sequences with increasing length.

7.4 Discussion

7.4.1 Kinetic Model Fit and Parameterization

Taking a closer look at the fit quality for the model and trends in the fit parameters

provides additional insight into how the model works and its interpretation. The first aspect

to consider is the difficulty the model has replicating the changing degree of nonlinearity

observed with changing length and sequence. As seen in Figure 7.2 at shorter lengths

the experimental data is more linear than the model, while in the case of the GC-core

sequence the model is more linear than the experimental data. One potential consid-

eration is that the kinetic model is fit presuming the system is two-state by utilizing the
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two-state equation for a small perturbation as described by Equation 7.15, even in cases

where the experimental results deviate from linearity. Applying the same assumption for

all samples could potentially result in the same degree of nonlinearity in the resulting ob-

served rate constant. Extracting the experimental observed rate constant does not require

this assumption. While at first glance this seems to be the obvious explanation, further

examination suggests that it is not the only cause.

The distribution of first passage times for the dissociation and association trajectories

are both a near perfect exponential distribution, a clear sign of two-state kinetics. However,

each individual temperature abiding by a two-state mechanism does not automatically

result in a linear Arrhenius plot. A simple system with two states separated by a single

barrier will demonstrate non-Arrhenius behavior if that barrier is temperature dependent.

This scenario would be consistent with findings in the literature that show that the non-

Arrhenius behavior of DNA association is due to a changing activation barrier caused by

the size of the critical nucleus increasing with increasing temperature.4While this scenario

is plausible it does not rule out the possibility that the model returning two-state results for

both the association and dissociation for all sequences and temperatures contributes to

the difficulty the model has replicating the curvature observed in the GC-core experimental

data. It also does not explain why the observed rate constant for the model demonstrates

more curvature than the experimental data, most easily observed in the eight base pair

CG-ends sequence in Figure 7.2.

The α fit parameter, and corresponding σi parameters provide some interesting in-

sight into the interpretation of the nucleation-zipper model. An interesting observation

about α is that while it shows a clear trend with length for the CG-ends series, GC-core

and AT-all have a significantly larger value than the CG-ends sequence of the same length.

As we have demonstrated both GC-core and AT-all prefer to follow very different associ-

ation pathways, initiating in the center and symmetrically adding base pairs to each side,

compared to the CG-ends sequences, where the top pathways initiate at or next to a
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terminal G:C base pair. While there is not enough evidence, particularly in the case of AT-

all, to make a definitive conclusion this does suggest a link between α and the preferred

mechanistic pathways. Additionally, for longer lengths, which also have larger α values,

the pathways that initiate at the third or fourth positions and directly form sequential base

pairs until a terminal G:C base pair is formed become less favorable relative to pathways

initiating in the middle. This trend can clearly be observed in Figure 7.5. While weaker

evidence relative to what is observed in GC-core and AT-all this also supports the idea

that larger α values may be related to the center initiated pathway motif.

It is also worth considering if GC-core has a larger α value due to the adjacent stronger

G:C base pairs, particularly their stronger stacking interactions compared to A:T base

pairs.32,33 It has been previously proposed that stacking is a significant factor in estab-

lishing the structure and stability that results in σ approaching one,11 so it would logically

follow that the presence of two G:C base pairs at the most probable initiation sites may res-

ult in a larger α. This does not however appear to be the driving factor. The lower α value

in the CG-ends sequences could be explained by the fact that the G:C base pairs do not

have a neighboring G:C base pair. Additionally, when considering all possible pathways

the G:C termini is a relatively unlikely location for initiating a barrier crossing. Furthermore,

the idea that the value of α is tied to preferentially forming G:C base pairs early would not

provide any obvious explanation for α increasing as a function of length. Also, considering

the large α value of AT-all it appears that initiating at the center, regardless of sequence,

is linked to a larger α value. If this is indeed true, the fact that GC-core has the largest α

value could potentially be due to the preference for center initiated pathways in addition

to a small contribution from sequence effects. These two factors may even be linked. It

might be as simple as the fact that the location of the G:C base pairs in GC-core drives

the most significant preference for initiating at one of the center two positions among se-

quences studied here, as seen in Figure 7.9. This would mean that the sequence doesn’t

directly impact the value of α but rather it impacts what pathways are preferred, which in
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turn impacts the value of α. While further investigation is required, the results here sug-

gest that mechanism, and potentially sequence to a lesser degree, may have some very

interesting effects on α and σ.

Examining the values of kf for the CG-ends series provides additional insight into

the parameters themselves in addition to the model’s construction. Two aspects of the

parameter will be evaluated. First the values of kf, and the associated rate of forming the

first base pair from the monomer given by βkf, will be discussed followed by examining

trends in kf as a function of length and temperature. The values of kf returned by the

model presented here range from approximately 5.4 × 1011 to 7.4 × 109 with the value

of kf decreasing as a function of length. Values of kf in the literature range cover mul-

tiple orders of magnitude ranging from being on the order of 106 to 109.11,12,14,19 While

these values cover multiple orders of magnitude, as do the values returned by the model

presented here, the edges of the two ranges do overlap. Even though the values do show

slight agreement with the literature the values are faster than expected, particularly for the

shorter lengths. The trends observed with length and temperature, that will be discussed

in more detail shortly, suggest that these factors may not be fully accounted for. It is also

possible that the magnitude of the rates is a consequence of the construction of the model.

Breaking down the association and dissociation into sequential steps of making and break-

ing individual base pairs, as discussed in Section 7.2.4, is mathematically correct, but may

result in a deviation from the physical system. In reality multiple base pairs can diffuse

together and form simultaneously, rather than having to do so sequentially. The fact that

the model requires the formation of one base pair to occur before the next can start to form

could be responsible for the large values of kf returned by the model. However, further

clarity on the role of other potential factors such as length and temperature is necessary

before drawing any conclusions with regards to the interpretation of the magnitude of kf.

While discussing the magnitude of kf, and its connection to the physical system, it is

also important to consider the value of βkf returned by the model. As mentioned in Section
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7.2.3 the value of β incorporates the diffusion limited association rate of two spheres, and

since this is orders of magnitude slower than the value of kf this dominates the rate of

forming the first base pairs such that it is in close agreement with the diffusion limited

association rate of two spheres itself. This demonstrates that the rate of formation for the

first base pair has a simple physical interpretation since it is so closely tied to the diffusion

limited association rate. The exit time is then determined randomly from an exponential

distribution whose parameter is the sum of the rates for all possible moves leaving the

monomer state as described in Section 3.3. This results in the exponential distribution

having a parameter that is larger than the rate of each individual process for leaving the

monomer, by an order of magnitude in the case of a ten base pair sequence. However,

this is the stochastically correct method for determining the time at which the trajectory

will leave the monomer state and is equivalent to selecting the first reaction that occurs

out of all possible reactions each time the trajectory leaves the monomer state.34 This

can help intuitively explain why the exit time for leaving the monomer state is often, but

not always, faster than the rate for leaving the monomer state given by βkf. Additionally,

the probability of an initial encounter proceeding to the fully formed dimer state has been

determined by coarse-grained MD simulations and forward flux sampling to be very small,

potentially below 1%.4,9 This means that a large number of encounters would be expected

to occur during the process of two monomers associating to form a fully formed dimer

requiring that the formation of the first base pair be multiple orders of magnitude faster

than the timescale for the overall association. This however does not fully account for the

relatively large rate of formation for the first base pair suggesting that other factors are

likely impacting it as well. One such factor that merits further evaluation is the contribution

of diffusion to the process. In the model the two monomers must diffuse into proximity

each time the first base pair is formed. However, this is not physically realistic. When two

monomers are formed due to breaking the only intact base pair they will not necessarily

break apart and could reasonably be expected to quickly reform a base pair without a
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significant contribution of diffusion to that rate. This would occur significantly faster relative

to twomonomers that need to diffuse together prior to forming a base pair. Since themodel

does not distinguish these events, and considers the diffusion contribution to be the same

each time, this could potentially factor into the relatively fast rate of forming the first base

pair between two monomers returned by the model.

Based on the definition of kf it would not be intuitively expected to have any significant

dependence on length. As such we will now examine this relationship further in an attempt

to figure out potential underlying causes of the relationship seen in Figure 7.3a. Base

pairs that form with a rate of kf are at the end of a series of intact base pairs that have

adopted the proper double helix configuration and the associated stability. This assumes

that σ is purely a function of NBP without considering the number of unpaired bases in the

frayed end. If σ approaches a value of one within 4-5 base pairs for all sequence lengths

the length of the remaining frayed end must increase with increasing sequence length,

the effect of which could be considered.21 It has been proposed that diffusion plays a

significant role in the reaction forming a single base pair and it may even be diffusion-

controlled.14,19 A longer frayed end could slow down diffusion, due to increased drag

and a larger mass, and the rate of formation for a single base pair relative to one with

the same number of previously intact base pairs but a shorter frayed end. This could

potentially explain the decreasing value of kf with increasing length. If σi reaches a value

of one too early the model may compensate by reducing kf, an effect that would increase

as the length of the frayed ends increases. This suggests that a better definition of σi

might consider both NBP, for steric and stability considerations, and the length of the

frayed end to account for diffusion. However, over the length of sequences studied here

the changes due to slight differences in frayed end length would likely be small and have

no significant impact.21 This makes it unlikely to be the sole cause of the decrease in kf as

a function of length seen here; especially considering that kf decreases by multiple orders

of magnitude.
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We must also consider the potential role of temperature since the longer sequences

were studied at higher temperature due to their increased thermodynamic stability. The

fact that the trend is fit so well to an exponential suggests that the data would be lin-

ear on an Arrhenius plot, albeit with a negative activation energy, which is inconsistent

with the small positive activation energy expected for a diffusion-controlled process. A

negative activation energy for kf might initially make sense given the well documented

negative activation energy for the overall DNA association reaction that is commonly ob-

served, particularly at high temperatures.11,12,28,29,35 However, both our results and the

literature consistently relate the negative activation energy to the early stages of the asso-

ciation mechanism, the formation of the critical nucleus, rather than the elementary rate of

formation for a single base pair.4,11,12,28 Additionally, if we consider a diffusion-controlled

reaction to have an activation energy around or below 4-5 kcal/mol19 we can use that as

an estimation of a reasonable magnitude for the activation energy of kf regardless of sign.

In this case an estimation of the activation energy for kf observed here would be over five

times greater than the magnitude of a diffusion-controlled reaction.

One final thought on the values of kf focuses on the shorter lengths where the most

significant decrease in kf is observed. It is interesting that for these sequences the value of

σ approaches one at approximately the fifth base pair for both the six and eight base pair

sequences. For longer sequences this remains relatively constant and does not increase

further within this length regime. It is interesting to note that as a result of this the two

shortest sequences, particularly the shortest one, don’t have a significant portion of the

reaction that proceeds by zipping at the ”speed limit”. This does raise some questions

over the conceptual definition of kf as the ”speed limit” for base pair formation since the

shorter sequences do not undergo rapid zipping at the ”speed limit” to nearly the same

extent. While no further conclusions can be drawn based on the current information it is

interesting to note that the value of kf appears to level off once it reaches lengths where a

number of sequential base pairs are formed at the ”speed limit”.
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The final influence on the kf value is its use in calculating the β parameter that at-

tenuates the rate of formation for the first base pair. A smaller kf leads to a larger β so

the model may be using kf to tune β to account for some currently unaccounted for factor.

Since β attenuates the rate of formation for the first base, which includes a significant dif-

fusion component, there should be significant temperature and length components, since

longer monomers have greater mass. While the calculation of β does carry a temperature

and length dependence it may be insufficient and kf is accounting for this as a result, which

could contribute to the observed trend with length.

7.4.2 Energetic Driving Forces Behind DNA Dynamics and Kinetics

Our attention now turns to the driving forces behind the trends observed in the in-

dividual pathways and overall barrier crossing mechanisms. Two general motifs were

observed, initiating association in the center and initiating at or near a G:C base pair that

forms early on. We will now demonstrate that the center initiated motif is entropically

driven while the G:C base pair initiated motif is enthalpically driven. These motifs may

overlap, resulting in the enthalpic and entropic components driving the same pathways,

or they may drive competing pathways.

To demonstrate the entropic nature of the center initiated motif we start with the in-

creased preference for the pathways that follow it, best observed in the top pathway for

AT-all in Figure 7.7. The thermodynamic lattice model shows that for configurations with

a given NBP the highest entropy state is the one with two frayed ends of equal length, or

if an odd number of broken base pairs exists one frayed end is a single base pair longer

than the other. The next highest entropy states are those that have two frayed ends but

with unequal lengths and the entropy decreases as the difference between the two grows.

Finally, the lowest entropy configuration is the one with only a single frayed end. Since

the entropy of the system is reduced each time a base pair is formed it is preferred to go

to the configuration with the highest possible entropy. This explains the ranking of center
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initiated pathways, best seen in AT-all in Figure 7.7.

Since the pathways that initiate at or next to the terminal G:C base pairs in the CG-

ends sequences are expected to have a higher entropic cost, the relative preference for

these pathways must be enthalpically driven. This is not particularly surprising as G:C

base pairs are known to be more stable and it has been previously proposed that they

play a role in the early stages of the association process for this reason.27

The influence of these enthalpic and entropic driving forces is also seen in Figure 7.9.

For GC-core both contribute to the strong dominance of initiating in the center. For the

CG-ends sequences the entropic benefit contributes to the dome shape in the center and

the enthalpic benefit contributes to the preference for the position next to the G:C termini.

However, these factors alone cannot account for how unlikely it is to initiate at the termini

which means there must be an additional factor at play with respect to the probability of

initiating at each position.

This factor is an additional entropic benefit to initiating near the center of the sequence

that does not appear until the entire distribution of pathways is considered. There are more

pathways that can initiate in the center compared to positions nearer to the ends. A clear

example of this is that only one pathway initiates at each terminus, the most dominant CG-

ends pathway that zips straight across, whereas there are numerous pathways initiating

in the middle generated by changing the order in which bases are added to both sides.

Even though these pathways become increasingly unlikely, when combined together the

contribution becomes significant. This provides an explanation for why in Figure 7.9 the

dome shape in the center becomes more prominent with increasing length. As sequence

length increases combinatorics dictates that the number of pathways available to positions

in the center will increase at a faster rate relative to positions closer to the end and there

can only ever be one pathway initiating at the termini. The number of available pathways

for each position along a sequence follows the binomial distribution and can be found by

looking at the row of Pascal’s triangle that contains the number of entries equal to the
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sequence length. The preference for initiating successful association events in the center

is thus the result of both the increased number of pathways and the entropic benefit to

each individual pathway. This also explains why the CG-ends termini are surprisingly

improbable when considering the full distribution of pathways; while it is the most probable

pathway, it is also the only pathway.

Evidence for the energetic driving forces is also observed in how temperature impacts

the preference for different initiation positions. These effects can be seen in Figure 7.9.

With increasing temperature each CG-ends sequence shows a decrease in the prefer-

ence for initiating in the center and a corresponding increase for initiating at or next to a

G:C base pair. With increasing temperature GC-core’s preference for initiating at the G:C

base pairs in the center increases, even though both the entropic and enthalpic driving

forces drive this preference. Increasing temperature magnifies the contribution, to the as-

sociation free energy barrier, of the unfavorable entropy due to forming base pairs. This

means that both increasing the enthalpic gain, by prioritizing G:C base pairs, and minimiz-

ing the entropic penalty, by initiating near the center, would help to minimize the increase

in the association free energy barrier with increasing temperature. The fact that for all

sequences the probability of initiating at G:C base pairs increases suggests that the addi-

tional enthalpic benefit gained from forming G:C base pairs early in the process provides

a more significant benefit, with regards to mitigating the effect of increasing temperature,

relative to minimizing the entropic penalty by initiating in the center.

Additional evidence for the greater significance of the enthalpic driving force is seen

in the ranking of CG-ends pathways in Figure 7.5 where for each length at least the top

two pathways are enthalpically driven. Furthermore, these pathways are expected to be

very entropically unfavorable but, as a result of the favorable enthalpy, are significantly

more probable than the most favorable entropically driven pathway for each length.
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7.4.3 Literature Comparison

Before ending the discussion of individual pathways and the overall mechanistic pic-

ture it is important to make comparisons to the literature. Coarse-grained MD simulations

have found that contacts in the center of the sequence are critical for hybridization, par-

ticularly in the case of more randomized sequences where internal rearrangement is not

possible.7,8 For both randomized and repetitive sequences nucleation is biased towards

the center7 and one study found that middle to middle nucleation events represent more

than 80% of all those possible for all oligos examined.9 All of which is in great agreement

with our findings.

Considering G:C base pairs, it has been proposed that sequences that contain them

are expected to initiate at their position.27,35 While we do find a preference for forming

at or near G:C base pairs, it is still very location dependent and not overwhelming. While

the findings for GC-core do show that a large number of initiations will occur at the G:C

base pairs it is still less than 50% of all initiations for all temperatures in the range studied

here. For CG-ends this number is even lower with initiation at the terminal G:C base pairs

making up less than 28% of all initiations for the shortest sequence and less than 12% for

the longest sequence. This further demonstrates that, for CG-ends, while initiating at a

G:C base pair does appear to result in a dominant individual pathway, when considering

the mechanism as a whole the relative significance of that pathway diminishes, particularly

for longer lengths.

7.4.4 Identity of Critical Nucleus and Transition State

While the identity of the transition state, and the related and often discussed critical

nucleus, has received significant attention in the literature it has remained elusive and

difficult to definitively observe, particularly through experimental methods. In this section

we will start by further clarifying the relationship between the transition state and the critical

nucleus. We will then dive into different angles of analysis that directly probe either the
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critical nucleus or the transition state ensemble. In both cases our primary focus is on

their size and location while also identifying trends as a function of sequence length and

temperature.

Before jumping in it is worth ensuring that the terminology used and the connection

between the terms is clear. The critical nucleus, shown in Figure 1.1 is defined as the

minimum number of base pairs such that the partially formed duplex is stable and the

remaining base pairs rapidly zip up in a sequential and downhill fashion orders of mag-

nitude faster than the formation of the critical nucleus. The transition state is defined as

the configuration at the peak of the reaction free energy diagram such that the probabilities

of going to the monomer and fully formed dimer states are roughly equal. It is important

to recall that there is an ensemble of configurations that fits this definition due to the dy-

namical nature of the reaction and the multitude of available pathways. Comparing the

definitions makes the relationship between them clear. Considering a two-state reaction

diagram for a particular pathway the transition state is at the highest free energy point and

the critical nucleus is just off the peak on the side of the dimer. Throughout this section

the two terms are both used since different analysis methods are focused on one or the

other. However, by keeping their relationship in mind, any insights into one can be applied

to the other.

While it may seem overly complicated to utilize both of these related, but not identical,

reaction intermediates it will hopefully become clear why both are useful components of

the analysis. A concrete example of why it is useful in the context of this model to utilize

both the critical nucleus and the transition state comes from the committor values used to

determine transition state configurations. As mentioned previously, Figure 7.10 demon-

strates how there are a number of pathways that do not have a transition state according

to the definition used here. However, each pathway must have a configuration that fits

the definition of the critical nucleus. While the critical nucleus may not be the most obvi-

ous or intuitive point of emphasis within the association process, each association event
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must contain a critical nucleus, making it a useful configuration to highlight, particularly for

pathways where no transition state exists.

Looking at the individual pathways provides the first insight into the size of the critical

nucleus. For both GC-core and CG-ends, pathways that form a G:C base pair in the

first or second step are more probable than those that form a G:C base pair later, with the

difference being particularly striking when forming the G:C base pair first as can be seen in

Figures 7.6 and 7.8. This suggests that the additional enthalpic benefit from forming a G:C

base pair is significantly less advantageous after the first two base pairs have been formed.

This is also supported by the plots in Figure 7.9 where a decrease in probability is seen

between initiating at the second and third base pairs from the end. Changes in Figure 7.9

with temperature provide support as well. At higher temperature as the enthalpic benefit

from the G:C base pair becomes more important. For both GC-core and CG-ends, the

positions at or next to a G:C base pair increase in probability while all other positions

decrease, further demonstrating that forming a G:C base pair in the third step provides

relatively less benefit. This suggests that the partially formed duplex is stable prior to the

third base pair forming implying a critical nucleus of two base pairs, in good agreement

with the literature.4,11,12 It is also in reasonable agreement with our experimental results

discussed in Chapter 6. While there are no clear trends in critical nucleus size with either

length or temperature, the forward committor values, which already demonstrated that

small trends exist, are better suited for analyzing them and we will do so later on.

Two additional interesting observations can be made based on a critical nucleus size

of two. The first demonstrates an interesting connection between the enthalpic benefit

from forming G:C base pairs and the critical nucleus. The enthalpic benefit is signific-

antly greater if the critical nucleus is not yet formed. The second observation provides

some insight into the relative dominance of the top two CG-ends pathways. These two

dominant pathways are the only ones that contain a critical nucleus with a G:C base pair,

presuming a critical nucleus size of two. Looking at the additional stability of G:C base
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pairs we note that while G:C base pairs do have some additional stability, relative to A:T

base pairs, from the extra hydrogen bond, the larger component of the additional stability

comes from increased stacking interactions.32,33 If one assumes that the full benefit from

stacking requires the neighboring base pair be intact it would be expected that the two

pathways would have roughly the same probability. Since this is not the case, and the dif-

ference in probability between the two is quite large, this might suggest that the G:C base

pair is gaining additional stability due to stacking interactions with its unpaired neighbor.

This would suggest that the frayed end is adopting a relatively structured conformation

that allows for some stacking interactions. While this observation is interesting it is worth

noting that this model does not resolve the conformation of the frayed end and further

investigation is necessary utilizing methods, such as coarse-grained MD, that are better

suited for directly probing frayed end conformations.

The analysis of the critical nucleus also provides insight into the relative likelihood of

it forming at different positions along the sequence. Presuming that the critical nucleus

contains two intact base pairs, looking at the probability of initiating at different positions

shown in Figure 7.9 provides some insight into the location of the critical nucleus. This

suggests that for the GC-core sequence the critical nucleus has a very high probability

of forming near the center while in the case of CG-ends it is likely to be found either

near to the center or contain a terminal G:C base pair, with the balance between the two

having a temperature dependence. This rationale behind this conclusion follows the same

reasoning as the relative probability observing initiations and various locations discussed

earlier.

We now shift to analyzing the transition state ensemble by examining the committor

values that are shown in Figures 7.10, 7.11, and 7.12. Across all of the different tem-

peratures and sequences the configurations with committor values in the range shown

are made up of two or three base pairs which is consistent with the size of the critical

nucleus of two base pairs. This is also in good agreement with the size of the most com-
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mon configurations in transition state ensembles for similar sequences determined utilizing

coarse-grained MD simulations.7,8

Now we will use the transition state analysis utilizing the committors to explore how

the configurations in the transition state evolve as a function of different variables includ-

ing temperature, sequence, and length. It is helpful to discuss these trends in conjunc-

tion with reexamining the experimental critical nucleus analysis presented in Chapter 6

considering the new insight and context provided by the model. This is done because the

analysis of the committors provides the best ability to independently analyze each variable

while controlling for the others. The experimental results found that the critical nucleus re-

quires additional intact base pairs at longer lengths because the additional enthalpic gain

is needed to overcome the increased entropic penalty from binding longer monomers.

One drawback of the experimental data is that even with the ability of IR spectroscopy

to independently resolve A:T and G:C base pairs the kinetic analysis is limited to a relat-

ively broad approach that assumes a two-state mechanism. This means the experimental

data is unable to distinguish where along the sequence the critical nucleus forms but, as

we have demonstrated, the model can. The experimental analysis presumed that the first

dinucleotide to form was the terminal CA dinucleotide, the most likely initiation position ac-

cording to our thermodynamic model and the literature.27,35 Since our work suggests that

the critical nucleus should be made up of two base pairs or more it is not significant which

of the two base pairs in the CA dinucleotide formed first. So the analysis used to determ-

ine the size of the critical nucleus from experiment assumes the association mechanism

follows one of the top two pathways shown in Figure 7.5 for all lengths. While they are

the most dominant their combined probability is still only 20-40% depending on sequence

length. However, utilizing the same analysis assuming that the critical nucleus forms in

the center and contains no G:C base pairs does not significantly change the predicted size

of the critical nucleus. This is because changing a single G:C base pair to an A:T base

pair is not a huge effect, though the effect would become more significant in sequences
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with more G:C base pairs.

However, since this analysis is conducted with the activation enthalpy determined

from a two-state analysis of the data, it assumes the entropic penalty is the same re-

gardless of where the critical nucleus forms. Since the analysis determines the number

of dinucleotides necessary to equal or surpass the experimentally determined activation

enthalpy, changing the initiation point changes what dinucleotide units are included but

not the target enthalpy. The model has demonstrated that the entropic penalty depends

on initiation position, which is not considered in the analysis of the experimental data. So

while changing the initiation position did not change the size of the critical nucleus, it would

be interesting to see if that is still true if the position dependence of the entropic penalty

were fully considered. More generally, the ability to determine the activation enthalpy

and entropy for individual mechanistic pathways would provide the ability to explore these

questions with significantly more detail and provide valuable information on what drives,

and distinguishes, the different available mechanistic pathways.

We continue our analysis by examining trends as a function of temperature and how

they influence our understanding of the kinetics. Figure 7.11 shows that transition state

configuration size increases with increasing temperature. It has also been established that

the critical nucleus size is correlated to the activation enthalpy. Increasing the number of

base pairs in the critical nucleus increases the activation enthalpy as well. Since activation

enthalpy is very closely related to activation energy determined by Arrhenius analysis this

demonstrates a direct connection between the commonly discussed non-Arrhenius beha-

vior of DNA association kinetics with the transition state and critical nucleus.4,35 This also

helps explain why, as mentioned in the literature, the pre-equilibrium step is responsible

for the negative activation energy of association.4,11,12,28 The critical nucleus increases in

size with increasing temperature, and the individual configurations that are formed along

the path to the critical nucleus are less stable and more prone to dissociating back into

the monomers. This makes the critical nucleus harder to form at higher temperatures.
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More time is spent fluctuating between configurations prior to forming the critical nucleus

resulting in a slower rate. Since the zippering portion of the reaction is many orders of

magnitude faster regardless of temperature the overall association rate decreases with

increasing temperature resulting in the negative activation energy of association.

It is interesting to note that the argument for why the critical nucleus increases in size

with increasing temperature is almost identical to the argument for why it should increase

with increasing sequence length. In both cases extra base pairs in the critical nucleus are

necessary to offset additional instability, whether it is due to higher temperature, or the

larger entropic penalty that comes with increased sequence length. The decrease in the

forward committor values for configurations with a given number of intact base pairs that

occurs as a result of increasing length, independent of temperature changes, is shown

in Figure 7.10. The fact that both have similar physical explanations, in addition to the

kinetic model suggesting that both trends exist, further supports the conclusion that both

independent trends in the model are smaller in magnitude then the trend observed in

experiment because the trend in experiment carries contributions from both effects.

The final aspect, as shown in Figure 7.12, is the effect of moving the G:C base pairs

around in the sequence. For the GC-core sequence configurations of three base pairs that

include a terminal base pair have a relatively high probability of returning to the monomer

state. If a configuration with three base pairs includes even a single G:C base pair the

probability of going to the fully formed dimer state is very high. This suggests that even

within a given sequence, the critical nucleus size may differ depending on where along

the sequence it forms and what its base pair composition is.

7.4.5 Fast Dynamics and Fraying

As we have previously established the amount of time GC-core sequences spend,

during the trajectories, as a partially formed duplex is representative of fraying. At longer

lengths the CG-ends sequences are also observed to spend more time as partially formed
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Figure 7.17: Expected number of visits to configurations with eachNBP, normalized to the
total number of expected visits to all configurations during the trajectory, for a trajectory
starting in the fully formed dimer state for 5’-ATATGCATAT-3’ (a-f) and 5’-CATATATATG-3’
(g-l). 5’-ATATGCATAT-3’ was calculated at 315 K (a), 320 K (b), 327 K (c), 333 K (d), 339
K (e), and 343 K (f). 5’-CATATATATG-3’ was calculated at 319 K (g), 322 K (h), 325 K (i),
328 K (j), 330 K (k), and 334 K (l).

duplexes, though the distribution of time as a function of NBP has a different form as seen

in Figure 7.16. The amount of time spent in a state over the course of a trajectory depends

both on the number of times that state is accessed and the duration of each visit. To start to

understand the interplay between these factors we can look at the fundamental matrix from

the absorbing Markov chain analysis introduced in Section 3.5. Briefly, the fundamental

matrix N contains the elements nij which are the expected number of times a trajectory

will visit transient state j given that it started in transient state i. To determine the number

of visits to each possible configuration for a dissociation trajectory the monomer is set

to be the only absorbing state and i is the dimer state. Figure 7.17 shows the values

obtained from the fundamental matrix for the GC-core sequence and the ten base pair

CG-ends sequence at each temperature. Combining the expected number of visits with

the average amount of time spent in states with each NBP value during the course of a

trajectory allows the calculation of the average duration of each visit which is plotted in

Figure 7.18 for the same sequences.
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Figure 7.18: Average time per visit, in seconds, to configurations with each NBP for 5’-
ATATGCATAT-3’ (a-f) and 5’-CATATATATG-3’ (g-l). 5’-ATATGCATAT-3’ was calculated at
315 K (a), 320 K (b), 327 K (c), 333 K (d), 339 K (e), and 343 K (f). 5’-CATATATATG-3’
was calculated at 319 K (g), 322 K (h), 325 K (i), 328 K (j), 330 K (k), and 334 K (l).

Figures 7.17 and 7.18 combine to show that the stark differences seen in Figure 7.13,

both as a function of sequence and temperature, are primarily the result of changes in the

number of visits rather than their duration. The normalized number of visits for GC-core

seen in Figure 7.17 very closely tracks the changes in Figure 7.13. A significant drop in

visits is observed for states with nine or ten intact base pairs and a corresponding increase

is observed for states with fewer intact base pairs. The same is true for the CG-ends

sequence of the same length, while the trends in both Figure 7.13 and Figure 7.17 are

much smaller for CG-ends; they still match up quite well.

Looking at Figure 7.18 the average time per visit does not appear to be significantly

affected by sequence, at least to the same degree as the number of visits in Figure 7.17.

The only real significant difference between GC-core and the ten base pair CG-ends se-

quence is the average time per visit to the fully intact dimer state and the state with a

single intact base pair. In the case of these two states the values between the two se-

quences differ by an order of magnitude with GC-core being an order of magnitude smaller

in both cases. For configurations with a value ofNBP ranging from two to nine the average
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amount of time per visit to these states is very similar, easily within an order of magnitude.

Furthermore, both observe the same relative trend of shorter visits at higher temperature

with the fully intact dimer state seeing a substantially larger effect than other configura-

tions. This suggests that the fraying observed in the GC-core sequence is predominately

due to an increase in the relative accessibility of the frayed states rather than any signific-

ant change in the timescales for entering and leaving them. This in turn further supports

the idea that the frayed response is due more to the thermodynamics and probability of

occupying a given state throughout the course of a trajectory rather than the kinetics of

moving between states. The thermodynamics can be interpreted as changes to the reac-

tion free energy surface, particularly the states in the dimer well, which is in agreement

with the free energy surfaces calculated by the thermodynamic lattice model, as previously

demonstrated. While this agreement may not seem surprising, since the kinetic model util-

Figure 7.19: Lattice model free energy surfaces at 333 K for 5’-ATATGCATAT-3’ where
blue denotes the most favorable free energy and red the least. Configurations on or below
the black dashed line must include at least one bubble and are therefore not allowed. The
white dots represent the top six pathways predicted by TPT in descending order (a-f). The
probability of a successful association event occurring along each pathway according to
TPT is: 10.84% (a), 8.68% (b), 6.45% (c), 4.18% (d), 3.99% (e), and 2.94% (f).
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izes the free energies from the lattice model, the lattice model does not contain any kinetic

considerations. Through incorporating the kinetics of the system into the analysis of the

fraying dynamics we now have clearer evidence that the thermodynamics are the driving

force behind the fast fraying dynamics and role of the kinetics is relatively minimal.

To further examine the role of the thermodynamics as the driving force for the disso-

ciation we can directly examine the free energy surface from the lattice model2 along with

the dominant pathways determined by the TPT analysis which are shown in Figure 7.19.

The free energy surface runs from red (largest free energy) to blue (lowest free energy).

The white dots represent the pathway determined by the TPT analysis. Any configuration

that lies below the dashed black line must include at least one bubble and is thus not in-

cluded in the kinetic model. The top three pathways, particularly the top two, follow a clear

trend where they keep the frayed ends on each side short which also tracks the pathway

with the lowest free energy. In particular when the top pathways have one or two intact

base pairs they enter a clear valley in the free energy surface where the length of the

longest frayed end is 4-6 base pairs and the remaining pathways all have longer frayed

ends at this point. This also provides another method for visualizing the dominant unfold-
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Figure 7.20: Expected number of visits to configurations with eachNBP, normalized to the
total number of expected visits to all configurations during the trajectory, for a trajectory
starting in the fully formed dimer state at the lowest and highest temperatures studied for
each 5’-C(AT)nG-3’ sequence as follows: n = 2 at 306 K (a) and 317 K (b), n = 3 at 315 K
(c) and 333 K (d), n = 4 at 319 K (e) and 334 K (f), n = 5 at 325 K (g) and 340 K (h), and
n = 6 at 328 K (i) and 342 K (j).
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Figure 7.21: Average time per visit, in seconds, to configurations with each NBP at the
lowest and highest temperatures studied for each 5’-C(AT)nG-3’ sequence as follows: n
= 2 at 306 K (a) and 317 K (b), n = 3 at 315 K (c) and 333 K (d), n = 4 at 319 K (e) and
334 K (f), n = 5 at 325 K (g) and 340 K (h), and n = 6 at 328 K (i) and 342 K (j).

ing motif of preferentially maintaining two frayed ends that are of roughly equal length. It

can be clearly seen in Figure 7.19 that pathways four, five, and six have longer frayed

ends along most, if not all, of the NBP values for the dissociation and also make their final

barrier crossing with a longer frayed end, higher up on the y-axis, that clearly has higher

free energy values.

The same analysis used for GC-core can now be applied to CG-ends to obtain more

insight into their fast response. Figure 7.20 shows the normalized number of visits for the

highest and lowest temperatures for each length of CG-ends sequence while Figure 7.21

shows the average duration of each visit both as a function NBP. The changes observed

in Figures 7.20 and 7.21 as a function of length can be compared to those in Figures

7.17 and 7.18 as a function of sequence, while also comparing changes as a function of

temperature to gain insight into the fast dynamics. The trends observed in Figure 7.21

as a function of length and temperature very closely match those seen in Figure 7.18 for

sequence and temperature. In Figure 7.21 the magnitudes vary between plots but they

all have the same general shape. The average visit length also slightly decreases with
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temperature for all states except the fully intact duplex state which sees a sharp decrease.

The trends in Figure 7.20 are a close match to the trends in the average time per visit to

states with each NBP in Figure 7.16, which is again comparable to what was observed for

GC-core. As length increases there is a relative decrease in the number of visits to the

fully intact dimer state and the state with a single broken base pair with a relative increase

observed for states with more broken base pairs. Additionally, temperature has a signific-

antly larger effect on longer sequences relative to shorter sequences which is comparable

to the comparison between GC-core and the ten base pair CG-ends sequence. The strong

correlation between the effect of increasing length and the effect of moving the G:C base

pairs to the center suggests that the source of the increasing fast response observed with

length is also fraying.

One interesting note between GC-core and the longest CG-ends sequence is that the

experimental fast response for GC-core is of the form of a biexponential while CG-ends

Figure 7.22: Lattice model free energy surface at 334 K for 5’-CATATATATG-3’ where blue
denotes the most favorable free energy and red the least. Configurations on or below the
black dashed line must include at least one bubble and are therefore not allowed. The
white dots represent the top six pathways predicted by TPT in descending order (a-f).
The probability of a successful association event occurring along each pathway according
to TPT is: 8.02% (a), 5.82% (b), 5.28% (c), 5.14% (d), 5.12% (e), and 5.12% (f).
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is a stretched exponential. While no conclusive evidence is provided here it is interest-

ing to note that at higher temperatures the shape of the distribution for GC-core in Figure

7.13 significantly changes while for the longest CG-ends sequence it stays relatively ex-

ponential in Figure 7.16. Figures 7.17 and 7.20 also mirror this observation. In Figures

7.13 and 7.17 we see that GC-core does stay relatively exponential for the first three or

four temperatures before the distribution starts to change shape. It would be interesting

to see if pushing to higher temperatures resulted in this change occurring for CG-ends or

if the form of the distribution remains consistent. This possible connection between the

functional form of the experimental kinetics and the percentage of time spent in states as

a function of NBP in the model is interesting. It would imply a connection to the thermody-

namic free energy surface and result in new avenues for understanding the fast dynamics.

The lattice model free energy surfaces with the top six kinetic pathways overlaid for

the ten base pair CG-ends sequence are shown in Figure 7.22. Just like Figure 7.19

for GC-core these show that the most dominant pathways are again closely related to

the thermodynamics. However, in the case of CG-ends the preference for the pathways

after the first one may not seem as inherently obvious since the free energy surface is so

clearly aligned with the top pathway. In particular the third pathway isolated by the kinetic

model seems somewhat counter-intuitive when considering the thermodynamic model.

This helps to illustrate the point that while the thermodynamic model can provide insights

into what the dominant association pathway may be, gaining additional insights requires

a kinetic model.

While the consistencies between the effect of increasing length and changing the

sequence suggest that fraying is a significant contributor to the observed fast response

in CG-ends there are other factors that should be considered. Four other factors will be

considered here as potential sources of the fast response either instead of, or in addition

to, fraying. The first alternative factor is bubble formation which is a partial dissociation

including only internal base pairs. While the final version of the model does not incorpor-
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ate bubble states there are two pieces of evidence from models that we have in addition

to experimental evidence that suggest fraying does not significantly contribute to the fast

response. The first comes from the thermodynamic lattice model that shows that for se-

quences within this length regime bubble states have very high free energies, making

them unlikely to be accessed. This is observed in both Figures 7.19 and 7.22 by looking

at the area outlined by the black dashed line that represents configurations that include

bubbles. This area of the free energy surface has a significantly larger free energy than

any other area on the surface. Knowing the previously established connection between

the thermodynamic free energy and the dominant pathways these plots help to show that

it is highly unlikely for dissociation events to occur that involve passing through these high

energy bubble states. Early iterations of the kinetic model, which also utilized the Gillespie

algorithm but were parameterized differently, included bubble states for short sequences

of six and eight base pairs. In these early trials the bubble states were not significantly

accessed and there was no observable difference between the results of the kinetic model

with and without bubble states. In the CG-ends experimental results the fast response is

observed in both the A:T and G:C response. Bubble formation must keep G:C base pairs

intact, so even if it occurs it cannot be the only fast dynamics occurring since these dynam-

ics involve dissociating G:C base pairs. Thus, while bubble formation cannot entirely be

ruled out it does not appear likely and also cannot be the sole cause of the fast response.

The second possible contributor is an increasingly heterogeneous initial dimer pop-

ulation. Increasing heterogeneity can lead to an increasingly stretched rate distribution

since configurations with fewer intact base pairs could dissociate faster. This would in-

crease with length since longer lengths have more stable intermediates causing a more

diverse equilibrium population distribution. However, the model suggests this would not

generate a stretched exponential rate distribution. Running the model starting in the fully

formed dimer state and a large variety of intermediates results in indistinguishable mean

first passage times. It is worth pointing out that the model itself struggles to capture the
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effect of non-two-state kinetics, so it may be that the model is unable to capture the dif-

ferent timescales. This would likely be tied to the construction of the model as a Markov

state Monte Carlo method. According to the forward committor values, configurations with

more than three intact base pairs are more likely to go to the dimer state than the monomer

state and with more intact base pairs the probability quickly becomes well over 90%. This

means that trajectories that start in an intermediate configuration will likely go to the fully

formed dimer. At that point, since the model is memoryless, this is the same as starting

a trajectory in the fully formed dimer state, but at a time later than time zero. Thus, while

the model predicts that a heterogeneous dimer configuration is not responsible for the fast

response, it could be due to a limitation of the method used rather than a fully accurate

representation of the physical system.

The third possible contributor is similar in that it affects the distribution of rates itself,

but rather than being due to a distribution of initial states it is instead the result of a distri-

bution in mechanistic pathways that share common initial and final states. This has been

proposed as an explanation for stretched exponential kinetics observed in proteins.36 The

model does cast some doubt on this because the distribution of first passage times is an

almost perfect exponential distribution. Since the model does take into account a number

of different pathways across the many trajectories this would suggest that an increased

distribution of pathways is not responsible for the fast response. However, this is another

case where the inability to capture the effect of non-two-state kinetics means that this can-

not fully rule out a distribution of pathways as the cause of the observed fast dynamics.

The final possible explanation discussed here is mismatched initial states. In some

ways this is a more extreme case of the heterogeneous dimer distribution in that partially

formed intermediates in the initial population distribution cause the fast response. These

configurations are inherently less stable than the fully formed duplex and when samples

are properly annealed the number of mismatched sequences should be very low. How-

ever, at longer lengths the repeating AT dinucleotide section in the center does allow for
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numerous consecutive mismatched bases to form making them more stable than they are

for shorter lengths. Additionally, it would not be unreasonable that over the course of a

temperature-jump experiment repeatedly breaking apart and reforming the duplexes for

multiple hours might increase the presence of mismatches. Mismatches are not allowed

by the model so only the experimental results can provide insight into the potential role

of mismatches. While we already discussed why starting from a configuration that is not

a fully formed duplex is an unlikely explanation for the increasingly stretched kinetics a

mismatched sequence would likely result in a more significant deviation in the kinetics.

There are two potential reasons for this, the first is that mismatches by definition can-

not have any intact G:C base pairs for the CG-ends sequences since the complimentary

base pairs must shift out-of-register. This results in a less stable configuration than a par-

tially formed in-register configuration that can contain a G:C base pair. Additionally, an

in-register partially formed configuration can, and for some intermediates likely will, reform

the fully formed duplex state. While a partially formed out-of-register structure could add

additional base pairs in some situations, it cannot reach the fully formed duplex without

either fully dissociating first, or undergoing a more complex mechanism. Thus it has a

lower ceiling for stability and could be expected to dissociate faster. However, the fact

that there is a fast response for the G:C and A:T base pairs means that out-of-register

mismatches cannot be solely responsible for the fast response. This is because a shifted

registry state, the most stable possible mismatch for these sequences, can not include

intact G:C base pairs.

Ultimately, this results in a position where, even with the model, we are still unable

to definitively provide a clear explanation for the cause of the fast response seen in CG-

ends that grows in with length. However, we have gained additional insight beyond the

experimental results. The kinetic model provides strong evidence that fraying dynamics

are occurring and contribute to the CG-ends fast response while also suggesting that it

may be the most significant contributor. While the other alternatives cannot be definit-
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ively ruled out there is evidence that they are less significant or unlikely to contribute at

all. This is especially true for the cases of a heterogeneous dimer population and a distri-

bution of pathways where the model provides some evidence, though inconclusive, that

these factors do not contribute to the fast response. Additionally, mismatches, hetero-

geneous initial populations, and bubble formation would not result in a fast G:C base pair

response. Furthermore, in the given length regime bubble states are not particularly ac-

cessible as suggested by both the thermodynamic lattice model and early iterations of the

kinetic model. This strongly suggests that the driving factor behind the increasing fast dy-

namics is fraying with a possibility that mismatched sequences might provide an additional

small contribution.

7.5 Future Directions

The relative simplicity of the model makes it easily accessible to future researchers

while also providing significant versatility for incorporating further improvements. This can

come in the form of both the incorporation new experimental data in addition to further

improvements to the construction of the model. One aspect that will be critical for future

development is expanding the library of experimental data for comparison and fitting. Any

work to incorporate additional parameterization will benefit greatly from additional data

to avoid concerns of overfitting while also improving the models ability to explore and

decouple parameters such as length, sequence, and temperature.

There are a few particularly clear avenues for potential alterations to the construction

of the model. The first is a direct consideration of temperature with respect to kf. While

preliminary explorations have suggested that the temperature dependence is small and

trends so far have been inconsistent a more explicit consideration of the relationship may

provide new insights. This would be particularly interesting with regards to the CG-ends

sequence where a trend in kf emerged and its dependence on length and temperature
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cannot be fully decoupled. Acquiring a larger range of temperatures in the experimental

data and altering the way in which kf is defined in the model could shed new light on this.

Another interesting avenue for exploration would be decoupling the β and kf parameters.

This might not only clarify the interpretation of both parameters but also provide more in-

sights into the diffusion to capture component of the association mechanism that is known

to be a highly influential and complex portion of the mechanism.

A significant improvement in both our understanding of the model and its parameters

could lead to deciphering trends in the parameters as a function of basic variables such

as length, sequence, temperature, and additional effects such as salt concentrations. If

these trends can be isolated the model could potentially shift from fitting experimental data

to become a predictive model. This would have numerous significant benefits beyond the

ability to provide insights into sequences without experimental data. Currently, a signi-

ficant component of the computational expense lies in the fitting and parameterization of

the model. Eliminating the need for this would allow new avenues to become accessible.

This would open up the possibility of adding in additional allowed configurations such as

bubble states or even out-of-register base pairs. This would provide the ability to extend

the model out to longer sequences that contain richer and more complex dynamics where

these alternative configurations becomemore relevant. Additionally, more complex mech-

anisms such as pseudoknot association, which has been observed by coarse-grained MD

simulations, would become allowed by the model. Not only would this provide the ability

to expand the models out to longer lengths but also could shed some light on the dynam-

ics responsible for the fast response observed for the CG-ends sequences. The ability of

the model to replicate such rich dynamics would nicely compliment ongoing experimental

technique development into new ways to probe the kinetics and dynamics of DNA which

together can continue to provide novel insights into the complex questions surrounding

the association and dissociation of DNA duplexes.
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7.6 Conclusions

The two parameter Markov state Monte Carlo model presented here is able to reas-

onably reproduce the experimental results while also producing findings that are in agree-

ment with existing coarse-grained MD simulations that are significantly more complex and

computationally expensive. The model shows that the initiation position for a success-

ful association barrier crossing, which corresponds to the location of the critical nucleus

and transition state, is driven by two factors. An entropic contribution that preferentially

drives initiating at the center of the sequence and an enthalpic contribution that preferen-

tially drives initiating near G:C base pairs if present in the sequence. The effects of these

energetic forces, particularly the enthalpic benefit, become far less significant after the

formation of the first few base pairs which is in agreement with the canonical nucleation-

zipper mechanism and the corresponding critical nucleus. Based on insights gained by

looking at the dominant association mechanisms and the relative stability of intermediate

configurations the critical nucleus is predicted to be on the order of two to three base pairs,

in excellent agreement with predictions from the literature.4,7,8 Additionally, the model

provides evidence that the critical nucleus is expected to increase in size with increasing

temperature and sequence length. This is consistent with the insights into the energetic

driving forces gained from the model, our own experimental findings on length, and res-

ults in the literature on the effects of temperature.4 With regards to fast dynamics prior to

the full dissociation of the duplex, the model recreates the fast fraying dynamics exper-

imentally observed for GC-core and provides further evidence that these dynamics are

primarily driven by thermodynamic factors and the reshaping of the free energy surface

rather than kinetic factors. Additionally, the model suggests that the origins of the increas-

ing fast response observed with increasing length in the CG-ends series is similar to those

observed in the GC-core sequence suggesting that fraying plays a significant role in these

dynamics.
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Appendix 7A: Kinetic Model Example for a Three Base Pair Sequence

To better visualize the construction of the kinetic model it is useful to demonstrate the

possible states, and allowed moves between them, utilizing a basic example. Considering

a simple model sequence of three base pairs there are initially eight possible configura-

tions the system can adopt. Utilizing a binary representation for the configurations where

a one represents a site with an intact base pair and a zero represents a site with a broken

base pair the possible configurations are given in Table 7.2. With the assumption that

bubble states, such as the state denoted (1,0,1), are not sufficiently populated to have a

significant impact on the simulations we are left with seven remaining configurations that

are indexed. From these seven configurations, utilizing the allowed moves described in

section 7.2.1, there are 18 allowed moves between configurations for this three base pair

sequence. The resulting reaction scheme is shown in Figure 7.23 and shows the 18 al-

lowed moves between the configurations. Now the rates for each allowed moves must

be calculated. Calculating the rates as described in section 7.2.4 for each allowed move

results in the transition rate matrix, L for moving from state i (rows) to state j (columns)

where zeros denote a move that is not allowed by the reaction scheme shown in Figure

7.23. For the sake of making the table easier to read the diagonal elements of the mat-

rix, which are equal to the negative of the sum of the off diagonal elements for that row,

Table 7.2: All possible configurations for a sequence with three base pairs.

index configuration
1 (0,0,0)
2 (1,0,0)
3 (0,1,0)
4 (0,0,1)
5 (1,1,0)
– (1,0,1)
6 (0,1,1)
7 (1,1,1)
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Monomer (M) D1 D2  Fully Formed
Dimer

(D3)

Figure 7.23: Diagram of moves allowed by the kinetic model for a three base pair DNA
sequence.

have been replaced with a dashed line. Here Gi refers to the free energy of the configur-

ation which is calculated from the lattice model, R is the ideal gas constant and T is the

temperature at which the system is evolving.

Table 7.3: Transition rate matrix for a three base pair sequence.

HHHHHHi
j (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (0,1,1) (1,1,1)

(0,0,0) – βk1 βk1 βk1 0 0 0

(1,0,0) βk1

e
−
Gi−Gj
RT

– 0 0 σ1k1 0 0

(0,1,0) βk1

e
−
Gi−Gj
RT

0 – 0 σ1k1 σ1k1 0

(0,0,1) βk1

e
−
Gi−Gj
RT

0 0 – 0 σ1k1 0

(1,1,0) 0 σ1k1

e
−
Gi−Gj
RT

σ1k1

e
−
Gi−Gj
RT

0 – 0 σ2k1

(0,1,1) 0 0 σ1k1

e
−
Gi−Gj
RT

σ1k1

e
−
Gi−Gj
RT

0 – σ2k1

(1,1,1) 0 0 0 0 σ2k1

e
−
Gi−Gj
RT

σ2k1

e
−
Gi−Gj
RT

–
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Appendix 7B: Comparing the Percentage of All Association Barrier

Crossing Events that Initiate at Each Position Determined by Trans-

ition Pathway Theory and the Stochastic Trajectories

This appendix contains plots showing the percentage of all association barrier cross-

ing events that initiate at each position for the CG-ends and GC-core sequences. Each

figure contains the values determined by the TPT analysis, also shown in Figure 7.9, and

directly from the trajectories. These plots show that the results from the two methods are

in good agreement with one another.

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

14

16

18

C A T A T G

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

14

16

18

C A T A T G C A T A T G C A T A T G C A T A T G

a b c d e

f g h i j

Figure 7.24: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATG-3’ from the stochastic trajectories (a-e) and the transition path
theory analysis (f-j). The temperatures are: 306 K (a) and (f), 309 K (b) and (g), 310 K (c)
and (h), 314 K (d) and (i), and 317 K (e) and (j).
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Figure 7.25: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATG-3’ from the stochastic trajectories (a-f) and the transition path
theory analysis (g-l). The temperatures are: 315 K (a) and (g), 321 K (b) and (h), 324 K
(c) and (i), 327 K (d) and (j), 330 K (e) and (k), and 333 K (f) and (l).
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Figure 7.26: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATATG-3’ from the stochastic trajectories (a-f) and the transition path
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Figure 7.28: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATATATG-3’ from the stochastic trajectories (a-f) and the transition
path theory analysis (g-l). The temperatures are: 325 K (a) and (g), 329 K (b) and (h), 331
K (c) and (i), 334 K (d) and (j), 338 K (e) and (k), and 340 K (f) and (l).

226



Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

6

7

8

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

6

7

8
Pe

rc
en

ta
ge

 o
f

A
ss

oc
ia

tio
n 

Ev
en

ts

6

7

8

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

6

7

8

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

6

7

8

Pe
rc

en
ta

ge
 o

f
A

ss
oc

ia
tio

n 
Ev

en
ts

6

7

8

CATAT GATAT ATAT CATAT GATAT ATAT

a

b

c

d

e

f

g

h

i

j

k

l

Figure 7.29: Percentage of all association barrier crossing events that initiate at each
position for 5’-CATATATATATATG-3’ from the stochastic trajectories (a-f) and the transition
path theory analysis (g-l). The temperatures are: 328 K (a) and (g), 331 K (b) and (h), 334
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