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the greatest scientists I have ever met.



“To turn around that close to the summit...,” Hall mused with a shake of his head on May
6 as Kropp plodded past Camp Two on his way down the mountain. “That showed
incredibly good judgment on young Goran’s part. I'm impressed - considerably more

impressed than if he’d continued climbing and made the top.”

— Jon Krakauer, Into Thin Air, pp. 190
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ABSTRACT

The structure and evolution of the universe at large scales is dominated by dark matter,
particularly large clumps of dark matter called “dark matter halos.” Soon after running the
first large scale, high-resolution simulations, researchers realized that the growth of these
dark matter halos was closely tied to their surrounding environment. This connection is
called “assembly bias.” Although this behavior is well-understood for the largest halos, the
cause of assembly bias for smaller dark matter halos (such as the one which contains our
galaxy, the Milky Way) has remained a mystery for the past fifteen years.

This thesis aims to resolve this mystery.

Accomplishing this goal requires constructing a substantial theoretical framework. One
of the leading proposed causes for assembly bias stems from ambiguity of where halos end
and where their surrounding environment begins. To this end, I develop SHELLFISH, the first
code which is capable of measuring the boundary between the two, the “splashback surface.”

Additionally, the study of assembly bias requires detailed analysis of large “cosmological”
dark matter simulations. However, despite the long tenure of these simulations, there remain
main unanswered questions about their accuracy. I perform extensive tests on the reliability
of cosmological simulations, assessing the reliability of every major property of dark matter
halos, and identifying previously unknown numerical biases which significantly impact a
number of widely-used simulations.

Finally, using SHELLFISH to identity halo boundaries and these numerical tests to ensure
reliability, I tackle the problem of galaxy-mass assembly bias. [ identify the exact halos
which are responsible for the assembly bias signal and use this identification to isolate the
processes which lead to assembly bias. This analysis shows that galaxy-mass assembly bias
is primarily caused by misidentified “splashback” subhalos, although a modest fraction of
the effect comes from a small number of halos in massive filaments whose growth is slightly

slowed by the tidal fields of their filaments and by gravitational heating.
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CHAPTER 1
PROLOGUE

The story of this thesis begins on a paper-strewn table inside a Parisian palace in 1758.
Three French mathematicians worked day and night over that table, desperately trying to
beat a comet in a year-long race.

The comet in question was Halley’s Comet. Decades earlier, England’s Royal Astronomer,
Edmund Halley, had predicted that the comet which would eventually bear his name would
return in roughly 1758 [Cook, 1998].1 Halley was an acolyte of the physicist Sir Isaac Newton
and hoped that the comet would be the final proof that the rest of the world needed to accept
Newton’s theories of physics. While Newton had elegantly explained the previously measured
motion of the planets through the solar system, the relatively static nature of the cosmos
meant that there were few opportunities for him to predict new phenomena. Halley saw such
an opportunity in this comet.

Halley had attempted to use Newton’s theories to model the previous appearances of the
comet, but this turned out to be a far more complicated task than he had anticipated and
he was forced to make very crude approximations [Cook, 1998]. His estimates of the comet’s
path ended up being so inaccurate that the satirist Jonathan Swift devoted an entire chapter
of Gulliver’s Travels to relentlessly mocking Halley in specific and the Newtonian project of
predicting celestial motion in general [Swift, 1726].

Halley’s undoing was the existence of Jupiter and Saturn (as Newton had patiently
explained to him several times; e.g., Newton, 1695). As his comet traveled through the solar
system, it would be tugged slightly off its orbit by the gravity of the solar system’s largest

planets, speeding up or delaying its reappearance by up to two years. Predicting the behavior

1. Although the comet now bears his name, Halley certainly did not discover it. The first unambiguous
written record of the comet comes from a Chinese astronomical journal in 239 BC [Kronk, 1999]. Halley
did not discover the comet’s periodic nature either: Raban Yehoshua offhandedly mentions the comet’s
approximate period in the Talmud [b. Hor. 10a]. This passage would have first been written down in
~ 200 — 220 CE, but could have entered Jewish oral tradition as early as 700 years prior to being written
down.



of more than three objects interacting through gravity is a famously intractable task (called
“the three-body problem”). This is not the type of calculation which can be worked out on
a blackboard. Or a warehouse full of blackboards. However, these three French scientists
had decided to attack the issue from a fundamentally new angle.

The leader of the group was Alexis Claude Clairaut. Clairaut’s crowning achievement in
life was mentoring Emilie du Chatelet, the woman who developed the concept of conserva-
tion of energy through a stunning combination of theoretical, empirical, and philosophical
work [Zinsser, 2006]. du Chatelet was widely mocked in her time, so if you had asked his
contemporaries, they would focus on other aspects of his work. They would tell you he was
a titan of the French academy. They would laud his skilled but failed attempts to unseat
Newton’s theory of gravity, and his later defection to Newton’s camp [Bodenmann, 2010].
They would tell you of his bitter (but victorious) rivalries with the terrifying and brilliant
mathematician Leonhard Euler and the timid encyclopedia author Jean le Rond d’Alembert
over long-standing mysteries related to the Moon’s orbit [Bodenmann, 2010]. Clairaut hoped
to leverage these earlier accomplishments to solve the mystery of Halley’s comet and hoped
that such a solution would cement him as the country’s pre-eminent astronomer.

Helping Clairaut was the young astronomer Jérome Lalande. While a capable theorist
in his own right, Lalande’s greatest gift was endurance and attention to detail. He made
his name in the field through the creation of painstakingly detailed astronomical tables and
by performing simple but laborious calculations which other astronomers could not bring
themselves to finish [Grier, 2013]. Like Clairaut, Lalande was one of the few prominent
physicists of the era who actively sought out and mentored female students in physics. One
of these former students made the third member of the team, Nicole-Reine Lepaute.

Lepaute was a noblewoman who spent her spare time publishing mathematics and engi-
neering treatises under her husband’s name. Lalande realized her genius while working with
her husband on a clock-making book and the two became lifelong friends and collaborators

[Grier, 2013]. Lepaute was one of the only women during this time period to have an officially



recognized position within the French scientific community? and spent years as one of the
chief contributors to the French Academy of Science’s astronomical almanac. She had an
inhuman endurance for number-crunching, a skill which even the resolute Lalande marveled
at in his memoirs [Lalande, 1792].

Emboldened by the iron stomachs of his colleagues, Clairaut developed his plan of attack
for predicting the return of Halley’s comet. The three of them would sit at their table for
almost a year. They would work through their meals, they would work late into the nights.
Instead of developing an elegant theory for the path of the comet, Clairaut planned to brute
force a solution.

In detail, Clairaut’s plan was to estimate the lag and gain that Jupiter and Saturn
imparted on the comet as it passed them, month by month and degree by degree [see Wilson,
1993, for a full technical summary]. Lalande and Lepaute would recalculate the locations of
the major bodies in the solar system at each step and worked out those planets’ respective
gravitational influence on the comet. Clairaut, sitting at the opposite end of the table, would
take the final step of working out how these forces would perturb the comet. Throughout
the entire process, Clairaut would continually replot the latest data. He would study these
points like a nervous ship captain might scan the horizon for the faintest sign of storm clouds,
looking for faint changes in curvature that might indicate growing errors.

It was a miserable ordeal: the group had started their calculation well within the window
of time in which Halley’s comet could return, and they worked in constant fear that it would
appear before they finished [Grier, 2013]. Clairaut had already used a host of mathematical
tricks to reduce the calculation to its bare essentials, and he introduced increasingly radical
simplifications as the team’s desperation grew. The endless computation was enough to

make the normally stalwart Lalande suffer a mental breakdown, and at times the project

2. There were, of course, many women contributing to the advancement of European astronomy during
this time period. However, most would be forced to publish under the name of a male family member or
were referred to as “assistants” despite performing work that was indistinguishable from that of their male
peers.



was only pushed forward by Lepaute’s utter unflappability in the face of endless arithmetic
[Lalande, 1792].

At last, Clairaut presented their? results to the French academy of sciences on November
14%h He predicted the comet would return in half a year, with its closest approach to the
Sun occurring on April 150 the following year. The group had gone through the calculation
multiple times, which Clairaut used to tack on an expected error in this prediction: 30 days
[Wilson, 1993].

The real impact of this presentation was somewhat lost on the audience: Clairaut was
not simply outlining one of the first tests of Newton’s theory of gravity, he was reporting the
results of the world’s first true physics simulation.

At the end of March that following year, astronomers saw Halley’s comet appear from
behind the Sun. Due to the geometry of the Sun, the comet, and the Earth, most of the
astronomy community had missed the unfurling of the comet’s dusty tail during its approach.
However, that era’s most prolific comet hunter — a young Charles Messier — had seen Halley’s
comet a few months after Clairaut’s announcement and kept it secret to prevent the more
senior astronomer from changing his answer [Wilson, 1993]. A flurry of calculations took
place to determine when the comet had been closest to the Sun, and the verdict came in:
the prediction was 33 days late.

By the standards of modern error analysis, this was completely consistent with the team’s
estimates. However, Clairaut’s old nemesis, d’Alembert, immediately declared the calcula-
tion a humiliating failure, and many other scientists pointed to a myriad of flaws and errors
in the analysis [Wilson, 1993]. Clairaut argued that not only was the prediction successful,
but that this result was the greatest evidence for Newton’s theory of gravity that the world

had produced to that point. (I am inclined to agree with him.) He would, however, return to

3. Lalande would receive professorship not long afterwards. Lepaute did not get official recognition for
her contributions to the project due to a last minute loss of nerve by Clairaut [Grier, 2013]. Lelande would
use his newfound authority to ensure that she received official scientific positions for the rest of her life
[Ogilvie and Harvey, 2000]



the calculations every few years as the public debate raged on and somehow always managed
to find a way to reduce the error by a few more days.

Detailed reanalysis centuries later showed that the chief failing of Clairaut’s strategy was
perhaps an opportunity for discovery. If the same analysis had included the then-unknown
planets Neptune and Uranus, it would have been wrong by only two weeks [Wilson, 1993].
But given how little attention Clairaut and his team paid to tracking down the sources of
their errors, it is difficult to say if this was a coincidence.

Clairaut, Lalande, and Lepaute’s work serves as a fitting prototype for simulations as a
whole, whether they are performed by hand or on a computer. Their story demonstrates
some of the core principles behind numerical work.

First, even the simplest physics theories lead to complicated and non-obvious results as
soon as one starts to become interested in complicated systems, such as a comet navigating
through the orbits of large planets. While the behavior of these systems can sometimes be
brought into focus through the power of pure algebra, often times brute force is the only real
path to a solution.

Second, these complicated systems are some of the best opportunities to test our theories
of the universe. While there are no shortage of beautiful theories which can predict symmetric
and simple phenomena, like nearly circular orbits around a star, the rubber really meets the
road once you figure out how these theories behave when predictions and interactions get
messy. This differentiating power is why simulations have been with us since the days of
the first physicists and why they will continue to be performed until the days of the last
physicist.

Third, all simulations are approximations and will fail at some level. The inescapable
question which all simulators must confront is how deeply these failures have crept into
their results. A robust error model is the difference between a career-defining achievement
and an embarrassing public debate that never quite goes away. It is the difference between

interpreting a number as the sum of a thousand arithmetic mistakes or interpreting it as the



first evidence for a new planet since the start of recorded history.

This thesis serves as an example what those same principles look like when gravity simu-
lations are fast-forwarded by centuries: past ingenious mechanical models [Holmberg, 1941],
past the first steps into the electronic world [von Hoerner, 1960, Aarseth, 1963], and past
the maturation of cosmological simulations into their current form [e.g. Navarro et al., 1997,
Klypin et al., 1999]. If simulations could prove Newton’s law of gravity when tracing a single
comet pushed human endurance to its limits, what can they do once tracking millions of

galaxies becomes routine?



CHAPTER 2
AN INTERGALACTIC MURDER MYSTERY: WHY DO
DARK MATTER HALOS DIE TOGETHER?

The central focus of this thesis is about how dark matter halos are connected to their
environments. Although this thesis will touch on many aspects of this topic, its primary
goal is to resolve a long-standing mystery: what causes galaxy-mass “assembly bias?” The

goal of this chapter is to help a layperson understand the following:

e The basic astrophysical setting within which this mystery takes place. (section 2.1,

“The Setting: Galaxies and Dark Matter Halos”)

e What the mystery is and the context behind why it is important (section 2.2, “The

Crime: Galaxy-Mass Assembly Bias”)

e The different solutions that have been proposed to solve this mystery (section 2.3, “The

Suspects: Tides, Heating, and Misadventure”)

e The strategy behind this thesis and a qualitative overview of its results (section 2.4,

“The Plan: The Structure of This Thesis”).

I have bolded important scientific terms and jargon the first time they appear.

2.1 The Setting: Galaxies and Dark Matter Halos

2.1.1 Galaxies, Satellite Galazxies, and Distances

If you go out on a clear night in the suburbs, you will probably be able to see about a hundred

stars over the course of the night.! On average, the light from the dimmest of these stars

1. I estimated these numbers through a combination of data-mining the Hipparcos stellar catalog
[ESA, 1997] and the conventional wisdom of amateur astronomers on environmental visibility (e.g.,
http://www.icq.eps.harvard.edu/MagScale.html). The main factors that determine the number of stars
you’ll see are the weather, how close you are to a major city, and whether you can get above the local
treeline.
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takes about about 160 years to reach the earth, which means that their typical distances
is roughly 50 parsecs. A parsec is the standard unit of distance in astrophysics and is
geometrically defined through the impact that the earth’s orbit has on the apparent location
of nearby stars. It is such mind-bogglingly large distance that it is difficult to gain true
intuition for what it means (1 parsec is about 31 trillion kilometers), but it is comparatively
easy to use it as a ruler for understanding other distances in the universe: parsecs measure
distances where it is still possible for the human eye to see individual stars.

If you go out to a dark place — a boat on the ocean, a rural farm field, a mountain top
— you can see much further into the universe. The sky will be more full of stars (about
ten times as many: you'll be able to see stars twice as far away as you could before), but
the main attraction is a dim band of light across the sky: the Milky Way. Most stars
in the universe, including every star we see in the night sky, are members of large clumps
of stars called galaxies. Our own galaxy, the aforementioned Milky Way, is shaped like a
dinner plate and the stars we see in the sky take up the same volume as a mustard seed
near the edge of that dinner plate: our neighborhood of stars is a little more than eight
thousand parsecs from the center of our galaxy [Gravity Collaboration et al., 2019]. As we
look out through the Milky Way, most of its several tens of billions of stars are too dim to
see individually, but collectively blend together into a fuzzy ring of light that encircles the
night sky. This gives us the second rung on our intuitive distance ladder: kiloparsecs — a
thousand parsecs — are used to measure the size of galaxies.?

If the dark place that you traveled to was in the southern hemisphere, you would be able
to see two other dim objects to the south of the Milky Way’s band. These objects are known

as the Magellanic Clouds to modern astronomers.®> They have featured prominently in the

2. Galaxies are quite diverse objects: one of the smallest that I know of is Kim 2, which is 0.024 kpc
(2% Ry /2) across [Drlica-Wagner et al., 2019, and references therein]. It is only visible because it has ventured
dangerously close to the Milky Way. One of the largest that I know of, Abell 2142, is 358 kpc across [Kravtsov
et al., 2018] and is in the process of destroying multiple Milky Way-sized galaxies.

3. This is a regrettable convention, given that Magellan did not discover these objects and — more im-
portantly — that his first actions upon encountering Pacific islanders on Guam was to kill and mutilate
several of them and to burn down a village [Pigafetta, 1522]. T would prefer that they were officially referred
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astronomy and mythology for tens of millennia [e.g. Adams, 1998, Johnson, 1998, Haynes,
1998, Snedegar, 1998, Orchiston, 1998]: by all accounts it would seem that the Magellanic
clouds have been floating in basically the same location since the dawn of human civilization a
hundred thousand years ago. But this apparent lack of movement is an illusion of humanity’s
embarrassingly short tenure relative to the 13.7 billion year lifetime of the universe.* In
actuality, the Magellanic clouds are nearby satellite galaxies of the Milky Way [Leavitt,
1908, Leavitt and Pickering, 1912]. Along with a swarm of other small, dim satellite galaxies
le.g. Drlica-Wagner et al., 2019, and references therein|, the Magellanic Clouds have been
torn from nearby space by the Milky Way’s gravity and now careen around it on a mess of
interlocking orbits.

The term “satellite” invokes images of the serene, regular motion of a communications
spacecraft around the Earth. This is not the case for satellite galaxies, which live erratic,
violent, and (relatively) short lives. Satellite galaxies can form a variety of temporary align-
ments and structures as they whip around their hosts [Pawlowski, 2018] and can slosh from
side to side in response to outside events [Conn et al., 2013]. The Milky Way has shredded
many satellite galaxies which ventured too close to the massive disk of stars we see in the
night sky [Garrison-Kimmel et al., 2017], and some large satellites have had the audacity to
smash into the Milky Way itself [Belokurov et al., 2018, Helmi et al., 2018]. The drama of
these satellites plays out repeatedly as destroyed objects are replaced by new small galaxies
that the Milky Way’s gravity drags from the local universe. This process ticks on as the
Milky Way slowly creeps towards its own eventual fate.

The reminder of this fate can be seen for most of the year in the Northern Hemisphere.
Just to the south of the Milky Way’s disk is gray blob a few degrees across. It is faint:

the blindspot in the center of your vision prevents you from seeing it if you look directly

either by one the many names given to them by cultures native to the Southern Hemisphere [e.g. Adams,
1998, Johnson, 1998, Haynes, 1998, Snedegar, 1998, Orchiston, 1998] or by the constellation-based naming
convention used by modern satellite surveys.

4. Modern measurements indicate that over this time period, the Magellanic Clouds have moved less than
a fiftieth of a degree across the sky [van der Marel and Sahlmann, 2016].

9



at it. This is the Andromeda Galaxy, the nearest major galaxy to the Milky Way. The
two are very similar, although Andromeda is a more dominating presence. Like the Milky
Way, Andromeda is a disk galaxy, only bigger [Sick et al., 2015]. Like the Milky Way,
Andromeda is surrounded by a swarm of satellite galaxies, only the swarm is larger and
deeper [McConnachie et al., 2009]. Recent measurements of Andromeda indicate that it will
collide with the Milky Way in about six billion years, an event which will likely destroy both
galaxies [van der Marel et al., 2012, 2019].

Despite its enormity, Andromeda appears tiny to us due to its distance. It is almost a
hundred times further away from the Earth than the center of our own galaxy: 740 kpc or
0.74 Megaparsecs [Ribas et al., 2005, Vilardell et al., 2010]. This is the last rung on our
qualitative distance ladder and the largest distance which the raw human senses have any
connection to. A Megaparsec is the distance at which the entire expanse of the night sky —
all the stars and constellations, the great disk of the Milky Way, its violent satellites, and its
looming demise — are condensed to a faint smudge that you can block out with your thumb.

This is the realm ruled by dark matter.

2.1.2 Dark Matter

Most astronomers believe that the majority of matter in the universe is a completely clear,
completely dark, and completely collisionless fluid called dark matter. In fact, most of the
evidence for dark matter supports a far stricter model where all galaxies are nestled deep
within the centers of large dark matter clumps. This would mean that the growth of galaxies
and their motion through the universe is almost entirely dominated by dark matter: galaxies
form when dark matter lets them form and move where dark matter tells them to move.

This section will focus on why astronomers believe that dark matter exists, while sections
2.1.3 and 2.1.4 will outline how a universe full of dark matter behaves.

The proposition that the universe is filled with dark matter is both breath-taking and

extremely annoying. Astronomy is a measurement-based science whose practitioners were
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brought up on horror stories of epicycles and spiral nebulae, and accepting a model where
most of important dynamics are governed by a material which is so difficult to observe is a
drastic step. Additionally, decoupling the visible matter from the gravitationally important
matter severely complicates modeling and makes scientific analysis much more difficult. Both
these facts push back strongly against the acceptance of such a model. How on Earth did
the astronomy community end up accepting such a miserable state of affairs?

The question of where this story even starts is an interesting history of science problem.
Many astronomers had caught on to hints of dark matter’s existence since the early 1930’s:
Zwicky [1933] and Smith [1936] noticed that large clusters of galaxies should rip themselves
apart without unseen matter, Babcock [1939] and Oort [1940] measured stars orbiting around
the outskirts of galaxies faster than the visible matter in those galaxies should have allowed,
and Kahn and Woltjer [1959] argued that the Milky Way and Andromeda’s collision course
was only sensible with some form of dark matter. The arguments these authors used were
essentially correct. Perhaps some or all of these authors deserve credit for one of the greatest
discoveries in modern astronomy?

All of these early works were brilliant, but the bar for credit is a bit higher than that. It
is not enough to be right: you must make a strong case. The errors in these early studies
were large and the modeling uncertainties were significant.® Because of this, scientists at
the time found early arguments for dark matter uncompelling and either ignored them or
published more thorough work contradicting the earlier results [e.g. Schwarzschild, 1954, de
Vaucouleurs, 1959, Page, 1959, Peebles, 1970, Rubin, 2006]. The most famous of these early
studies, Zwicky [1933], received only 12 peer-reviewed citations in its first 40 years — most of
them from other papers written by Zwicky — but retroactively received thousands after the
onrush of support for dark matter in the 70’s.

This onrush was started by the astronomers Vera Rubin and Kent Ford. Ford had

5. For example, Babcock [1939]’s velocity measurements were off from more modern studies, like Carignan
et al. [2006], by nearly a factor of two. Astronomers at the time realized that his errors were at least this
large and were poorly characterized.
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recently built a revolutionary new spectrograph and was hoping to find an appropriately
grand target for it. Rubin was an analyst leading an effort to use this telescope to measure
how fast Andromeda rotated [Rubin and Ford, 1970, Rubin, 2006].5 Their plan centered
on a physics principle called the Doppler effect. An observant fan of NASCAR or an
attentive pedestrian listening for an ambulance to pass might notice that passing vehicles
sound higher pitched during their approach and lower pitched as they drive away. This is a
fundamental property of all waves, not just sound, and it causes light emitted by an object
approaching an observer to become slightly bluer and light emitted by an object retreating
from an observer to become redder. Astronomers had attempted to use the Doppler effect
to measure Andromeda’s rotation for decades [e.g. Babcock, 1939], but earlier instruments
had required dozens of hours of exposure time to image the faint sources near Andromeda’s
edge, and jitters and telescope repositionings over that timescale seriously compromised the
measurements [Sofue and Rubin, 2001, Rubin, 2006].

Rubin and Ford found that gas clouds at large distance from the bulk of Andromeda’s
visible matter orbited at roughly the same speed as those embedded within it [Rubin and
Ford, 1970]. This is puzzling. The speed that objects orbit at is directly tied to how strongly
they are pulled on by gravity. For example, in our solar system, Mercury travels at a much
faster speed than the Pluto due to the latter’s large separation from the Sun. Since the
force of gravity decreases with distance, a constant speed meant that there was more mass
contained within the orbits of more distant gas clouds, even though there was no wvisible
matter in those regions. In other words, Andromeda was surrounded by an immense amount
of invisible matter.

Rubin began to give talks about her preliminary results in 1970. She later recounted an

encounter with another astronomer:

After my talk, the esteemed Rudolph Minkowski asked when we would publish

6. Despite my view on who deserves discovery credit, Rubin attributed the discovery of dark matter to
the astronomers Horace Babcock and Jan Oort in a review she coauthored, Sofue and Rubin [2001].
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the paper. I replied, “There are hundreds more regions that we could observe.”
He looked at me sternly and said, emphatically, “I think you should publish the
paper now.” We did. [Rubin, 2006]

This was fantastic advice. The 70’s would bear witness to a torrent of new evidence for dark
matter and if Rubin had waited to perform hundreds of additional measurements, she likely
would have lost priority. Minkowski may have had some sense that the tide was about to
shift, since he had been working on one of these new lines of evidence [Minkowski, 1962].

The line of evidence in question came from measurements of large clusters of galaxies.
It is much easier to measure the Doppler shift of a bright galaxy that it is to measure the
shift of the dim gas clouds targeted by Rubin and Ford, and astronomers had known that
the galaxies in these clusters moved at high speeds — roughly 1000 km/s — since the 30’s
[Zwicky, 1933, Smith, 1936]. This would be not a problem if these clusters of galaxies were
incredibly massive: if these clusters were several thousand times more massive than the
Milky Way's stars, galaxies orbiting through them would naturally reach such high speeds.
However, there were nowhere near enough galaxies in these clusters to account for so much
mass through stars alone. Without enormous masses, these high velocities would mean that
every cluster of galaxies in the universe was in the process of ripping itself apart.

This was not a slam dunk argument at first. One could avoid the inevitable conclusion
of dark matter by questioning the assumed distances to the galaxy clusters,” questioning
the models used to estimate the mass of the stars in a single galaxy, by introducing mostly
dark — but still conventional — plasma in the cluster’s center, or by thinking up any number
of wild dynamical configurations. But by the 70’s, these arguments were becoming almost
impossible to make. By this point, the distances to galaxy clusters were known to about a
factor of two [Tammann, 2006] and the conversion between luminosity and stellar mass had

become reasonably robust (see the review in Faber and Gallagher, 1979). The last remaining

7. This was a rational thing to question in the 30’s, since the prevailing method for measuring distances
to galaxy clusters at the time was through combining mean recession velocities with Hubble [1929]’s wildly
inaccurate Hy ~ 500 km/s/Mpc.
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piece of the puzzle was the weight of the plasma in the centers of these clusters.

While this plasma would emit essentially no visible light, the mass of these galaxy clusters
meant that the plasma would shine brightly in high-energy X-rays. If it was possible to
observe these X-rays, their energy would be an independent test of cluster masses, and their
brightness would measure how much of that mass came from the plasma itself. Unfortunately
for astronomers (and fortunately for the human race as a whole), the Earth’s atmosphere
blocks cosmic X-rays from reaching the ground, meaning that this measurement could only
take place from a telescope orbiting the Earth. The first X-ray space telescope, UHURU,
launched in 1970, allowing scientists to study cluster plasma for the first time [e.g., Gursky
et al., 1971]. These measurements showed that these clusters were as massive as galaxy
velocities had implied, but that the plasma was far too light to account for this extra mass.
This substantial mismatch could only be interpreted as evidence for dark matter.

In addition to observational evidence for dark matter, the nascent field of computer
simulations was also critical to establishing this paradigm. Ostriker and Peebles [1973]
performed a set of simulations which showed that the beautiful disks of the Milky Way,
Andromeda, and countless other galaxies would rapidly collapse into a spherical lump of
stars unless embedded within an object at least as large (for example, a large ball of dark
matter). This study, along with ever-improving measurements of the invisible mass around
galaxies [Ostriker et al., 1974, Einasto et al., 1974, Roberts and Whitehurst, 1975] led to
conversions en masse to the dark matter paradigm. By 1979, the popular sentiment in the
astronomy community was well summarized by a famous review paper: “the case for invisible
mass in the universe is very strong and becoming stronger” [Faber and Gallagher, 1979].

At the end of the 70’s, astronomy was on the precipice of a great adventure. The next

sections give a broad overview of our picture of this dark universe after 50 years of exploration.

2.1.3 Dark Matter Halos and Dark Matter Subhalos

Dark matter halos are at the soul of our current understanding of dark matter [e.g. White
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and Rees, 1978]. Under our current understanding, every galaxy is embedded deep within a
massive dark matter object called a halo. A halo is oblong lump of dark matter that gets
progressively denser and more gravitationally intense as you approach its center.® Although
the Andromeda galaxy appears to be only a few degrees across from the Earth, its dark
matter halo is about the same size as a basketball held a foot from your nose.”?

An image of a simulated dark matter halo is shown in Fig. 2.1. This image demonstrates
the complexity of dark matter halos. The central object is composed of a tempest of inter-
locking streams and smaller halos, and is fed matter from its surroundings by a rich web of
interlocking filaments and sheets (also composed of dark matter). How does such a structure
come into existence?

The expansion and evolution of the universe is at the core of this story. Astronomers
realized that the universe was expanding shortly after discovering that there was a universe
outside the Milky Way [e.g. Friedmann, 1922, Lemaitre, 1927, Hubble, 1929, Einstein and de
Sitter, 1932]. Reversing this expansion backwards in time implies that billions of years in the
past, the universe was a dense and hot mess filled with roiling particles which flitted in and
out of existence due to quantum mechanics. All dark matter halos started as fluctuations
within this turmoil. The early chaos eventually died away as the universe expanded and
cooled, but these fluctuations remained as slight ripples in the density of the otherwise
featureless and endless expanse of gas and dark matter. Ripples were enough.

While every inch of the universe was still filled with white-hot plasma, these ripples
began their eternal battle with the expansion of the universe. Expansion frequently won
out, pushing the ripples apart and flattening them. But gravity wins for many other rip-
ples, pulling their outskirts tighter and tighter together until they collapse [Gunn and Gott,
1972a, Heath, 1977, Lahav et al., 1991]. These are the first dark matter halos. Their bat-

8. The image you should have in mind when you hear the word is less the ring-shaped halo over an angel’s
head and more the diffuse halo of light around the sun.

9. According to the galaxy luminosity-to-halo mass relation that my student, Maria Neuzil, developed as
part of Neuzil et al. [2020].
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Figure 2.1: An image of a dark matter halo from one of the simulations run by Diemer and
Kravtsov [2014]. The color in this image shows the density of dark matter, with brighter
colors indicating higher density. The dark matter halo is the dense concentration of mass in
the center of the image. This is a very large dark matter halo: this image is about twenty
times wider than the separation between Milky way and Andromeda and in the real universe,
such an object would contain many galaxies within it, like the Virgo or Coma clusters. It
is fed matter and smaller dark matter halos from the surrounding universe through a series
of capillary-like filaments. This image was generated by my imaging code called “gotetra”
(github.com/phil-mansfield/gotetra) which is based on the algorithm developed by Abel
et al. [2012b].
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tle against expansion and eventual collapse form a preview for the formation of their much
larger descendants.

To envision a dark matter halo collapsing, imagine a knot in the middle of a sheet.
Imagine twisting that knot and pulling in more and more of the sheet into ever growing
and ever complexifying folds. Imagine pulling in fabric from many sheets in all directions at
once and imagine that this fabric was infused with smaller knots of all sizes. Lastly, imagine
this process in motion, with folds constantly reweaving and oscillating around the knot and
the smaller knots pulling in material as they themselves fall in [see, e.g., Vogelsberger and
White, 2011, Abel et al., 2012b, for visualizations of this process].

What would a human have seen if they were transported back to such an early time?

With a few notable local exceptions, the universe has never been a hospitable place
for humans, and the early universe least of all. For the first few hundred thousand years,
quantum fluctuations and particle collisions would form a wall of instantly blinding light in
all directions. This light would be strong enough to dissolve the human body quite rapidly:
even 400 thousand years after the beginning of the universe, complete atomization would
only take three days.!0 If you arrived during this time period, you would bear witness to a
truly cosmic shift in the universe. All around you, the hot light-emitting plasma would be
in the process of condensing into dark neutral hydrogen.

The switch would not be apparent to you immediately: the light from distant plasma
takes time to reach your eyes. By the time the universe became almost entirely neutralll,
every direction you looked would still be the color and temperature of boiling lead. But
as time progresses, this light must come from increasingly distant and ancient expanses of
plasma, giving the expansion of the universe more time to redden and cool the light. After

three million years, this visible plasma is farther away than Andromeda and has degraded to

10. This estimate takes the 3.6 eV carbon-carbon bond energy as a typical bond strength in the human
body, assumes the human body has 7 x 10?7 atoms [Freitas, 1999] and uses [Mosteller, 1987] to estimate a
1.9 m? surface area to the human body.

11. z = 800, Teup =~ 2100 K, [Dodelson, 2003]
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the muddy red of a horseshoe cooling after time in a blacksmith’s forge [see the temperature
tables in Chapman, 2019]. There is nothing but dark matter and formless gas between you
and this wall of fire.

Soon, this light will slip into the infrared, invisible to human eyes, revealing the endless
emptiness and perfect darkness of the universe you now find yourself in. This is not the
darkness of our current universe, which is largely an illusion of our meager eyesight and can
be solved with enough magnification [e.g. Beckwith et al., 2006]. This is a deeper existential
darkness where there is truly nothing to see as far as you might look in every direction.

[ronically, the universe is saved from this dismal, lightless state by its ever-growing dark
matter halos.

As dark matter halos continue to twist and grow, they pull in gas from their surroundings
and much of this gas condenses until it is trapped in the halo’s center. These clouds of gas
are initially held up by their own internal pressure, but grow until their gravity overpowers
their pressure and they collapse into the first stars [Haiman et al., 1996, Tegmark et al.,
1997]. Single stars begin to form in the hearts of dark matter halos throughout the universe.
These primeval stars are enormous and burn hot: their light breaks apart and ionizes the
surrounding gas. As these dark matter halos continue to grow, the gas clouds trapped inside
form larger groups of stars, and the first galaxies begin peek out from behind the receding
neutral gas. These the stars and black holes in these galaxies accelerate the removal neutral
gas even more. In less than a billion years, it is entirely vanquished.

Still, the dark matter halos continue to grow and their growth provides fuel for their inner
galaxies. It takes a further 13 billion years to reach our current universe, and by this time
galaxies have grown from from relatively paltry collections of stars to the massive configura-
tions seen today. Invisibly, their dark matter halos have undergone a similar transformation,
eventually reaching the incredible masses they enjoy today.

The complexity of halo collapse and formation is worthy adversary for modern computer

simulations. Theorists created “simple” models of halo formation which could mostly be
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worked through by hand [Gunn and Gott, 1972a, Fillmore and Goldreich, 1984, Bertschinger,
1985, Hoffman and Shaham, 1985], but these models did not capture the true mayhem that
accompanies a dark matter halo’s formation and were particularly ineffective at predicting
what halos should look like in the inner regimes where most observations took place. In
pursuit of this issue, many intrepid theorists took a page from Clairaut, Lelande, and Lep-
aute’s book and immediately attempted to brute-force the solution with simulations [White,
1976].12 Unlike their 18t century predecessors, these scientists were not constrained to
simulating a single point: the recent proliferation of Cray-I supercomputers meant that an
astronomer with generous grants and a knack for writing efficient Fortran could simulate a
dark matter halo with several hundred particles. The early stages of this endeavor reached
their conceptual zenith with the publication of Navarro et al. [1997], the first study which
could reliably resolve the inner regions of dark matter halos in realistic environments. (This
paper become one of the most cited theoretical papers in all of astrophysics, according to
the NASA Astrophysics Data System). Since this point, dark matter simulations have con-
tinued to grow exponentially, with largest that I know of containing more than 2 trillion
particles [The Uchuu simulation Ishiyama et al., 2020]. This growth has allowed simulations
to study ever-increasing samples of dark matter halos and to probe the nature of the large

scale structures that they form.

2.1.4 The Cosmic Web and Large Scale Structure

Dark matter halos do not grow in isolation, but as part of a large interconnected structure
of matter which is woven into enormous sheets and filaments. This structure is called the
cosmic web [Bond et al., 1996]. Fig. 2.2 shows a simulated image of a small part of the
cosmic web.

The study of large scale structure is a dense topic, as one might expect from the complex-

12. Simulations of dark matter halos actually predate the dark matter model [Aarseth, 1963, Peebles,
1970]. These early works would simulate collections of “galaxies,” but these galaxies were so simplistically
modeled that the simulations were actually numerically equivalent to dark matter simulations.
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Figure 2.2: An image of of the cosmic web from one of the simulations run by Diemer and
Kravtsov [2014]. This image is similar to Fig. 2.2 except that it shows a much larger scale:
about a 120 times larger than the distance between the Milky Way and Andromeda. At
large scales, the universe is filled with a vast network of filaments and sheets connecting
dark matter halos of all sizes. Galaxy surveys show similar structures in the visible universe
[famously, in Blanton et al., 2003]. The largest dark matter halos are clumped together in
the densest parts of the cosmic web, a fact — called “mass bias” — which is important to
studies of assembly bias.
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ity of Fig. 2.2.13 As such, rather than giving a complete overview, I would like the reader
to take away three specific facts about the large scale structure of matter in the universe.

The first is that the formation of structure is divided into two stages: simple early growth
and extremely complicated later growth. As primordial ripples of dark matter begin to
collapse and become denser, their initial evolution is simple enough that lecturers routinely
work through the equations which govern the behavior of these ripples over the course of
a couple classes. This is called the linear regime. These simple equations become less
accurate as the contracting perturbation becomes denser and break down altogether by the
time the perturbations reach around twice the density of the surrounding universe. This
later growth is called non-linear, and the only way to gain a theoretical understanding of
what happens after this time period is to develop models which are empirically tested against
simulations. On average, it takes longer for larger structures to reach the non-linear stage
than it does for smaller structures.!* This means that at large distance scales the universe is
still evolving simply enough that detailed predictions can be worked out by hand, but that
at small distances it is all-but impossible to predict what should happen without at least
some use of simulations.

The second key fact is that there is a fairly definite limit to how large dark matter halos
can get. In physics we often get comfortable with the idea that there is always “a bigger
fish.” A human is tiny compared to a planet, a planet is tiny compared to a star, a star is
tiny compared to its solar system, a solar system is tiny compared to a galaxy, and so on.
However, this process does eventually end: there is a class of dark matter halos which sit at

the top of the size scale.l?

13. For evidence of this claim, I direct the reader to the 259 page review paper, Desjacques et al. [2018],
which concerns itself only with how common galaxies are in regions of the universe with different densities.

14. This is true in A-Cold Dark Matter, the current leading cosmological model, but different behavior can
occur in other cosmological models.

15. There are collections of nearby dark matter halos which are more massive than the biggest individual
halos — you can pick many of them out by eye in Fig. 2.2 — but these are not gravitationally “bound” objects
yet. Some of these collections are especially large perturbations which are in the process of collapsing but
haven’t had time to complete the journey yet.
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These rulers of the universe have a fairly boring name: galaxy clusters. But this name
belies how intense these objects are. Galaxy clusters can reach sizes that are up to &~ 3000
times larger than the Milky Way 16, they can contain hundreds or thousands of Milky Way-
sized galaxies [e.g. Ge et al., 2019], and their strong gravity heats cluster gas to hundreds
of millions of degrees, causing them to shine brightly in X-rays [e.g. Vikhlinin et al., 2006].
Galaxy clusters play a central role in many of the theoretical models that are discussed in
later sections.

The last key fact about large scale structure is that galaxy clusters are significantly more
common in dense regions of the universe, to the point that you're essentially guaranteed to
find a few of them lurking in the distance if you travel to a dense region. This is not simply
because there are more objects in these dense regions: halos become more biased relative to
underlying density at higher masses [Bahcall and Soneira, 1983, Klypin and Kopylov, 1983,
Kaiser, 1984]. Although there are a host of formal statistical tests which can demonstrate
this fact, you can also see this by eye in Fig. 2.2: while smaller dark matter halos (smaller
blobs) are spread throughout the web, cluster halos (the largest blobs) are mostly found in

the very dense regions where multiple filaments join together.

2.2 The Crime: Assembly Bias

To summarize the previous sections, the story of the universe is one that we read through
measurements of stars, galaxies, and gas, but that story is written by dark matter structures
and their growth. And there is a mystery hidden in the growth of dark matter halos.
Specifically, Sheth and Tormen [2004] and Gao et al. [2005] found that dying galaxy-mass
halos — halos which had gone billions of years without significant growth — were strongly
clustered together. This interaction between clustering and halo growth is called assembly

bias. Assembly bias is illustrated qualitatively in Fig. 2.3, and can measured quantitatively

16. The most massive galaxy cluster I know of is ACT-CL J0102-4915 [Jee et al., 2014]. Its nickname is
El Gordo, “The Fat One.”
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Figure 2.3: The locations of dark matter halos in a cosmological simulation. The dark matter
halos shown here are roughly the same size as the halo surrounding the Milky Way and the
width of the Figure is about a hundred times larger than the distance between the Milky
Way and Andromeda. Halos are colored by age: the “oldest” 15% of halos (the ones growing
the slowest) are shown in black and the “youngest” 15% are shown in red. The black circle
shows the size of the largest halo in the simulation to give a sense of scale. Old halos are
tightly clustered on large scales which exceed the size of even the largest halos. Readers
interested in a technical discussion of this Figure and the associated definitions can find it
in chapter 6.

through a host of statistical tests.

Halo growth is intertwined with nearly every halo property, meaning that this finding
has wide-ranging implications. Consider a dying halo whose supply of matter from the sur-
rounding universe has largely dried up over the past billion years. This dying halo continues
to destroy and consume its subhalos which means that now that its supply is no longer re-
plenished its substructure will slowly be depleted [fg,}, decreases; Gao et al., 2004]. Matter
and substructure stops becomes more centered and symmetric [X,g/Ryir decreases; Maccio
et al., 2007]. Orbital dynamics cause the halo’s core to grow more slowly than the rest of
the halo when it is starved of additional matter [Rs/Ry; decreases; Wechsler et al., 2002].
The outer edge of the halo expands [Rsp/Rooom increases; Diemer and Kravtsov, 2014] and

bulk of the matter starts to relax into rounder shape [¢/a approaches 1; Allgood et al., 2006].
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The halo’s spin — already slight — begins to slow down [\ decreases; Vitvitska et al., 2002].

The connection between the age of dark matter halos and the properties of their inner
galaxies is a far more complex topic [e.g. Wechsler and Tinker, 2018], but there are a host
of reasons to expect that galaxy properties are tightly connected to growth histories of their
dark matter halos. Of particular note is the potential connection between halo growth and the
rate the stars form in the halo’s galaxy, since the star formation rate is closely connected to a
host of galaxy properties, like appearance, color, and dust obscuration. Observational studies
have demonstrated a close connection between halo mass and galaxy mass (see Wechsler
and Tinker, 2018 for an overview and Huang et al., 2020 for a particularly breath-taking
recent study), a correlation which requires that star formation and halo growth are strongly
connected. Theoretical models which assume halo growth is the driving factor behind star
formation can be calibrated to predict a wide range of complex observations [e.g. Behroozi
et al., 2018]. Simulations which attempt to model both processes simultaneously explicitly
show a strong connection between them [e.g. Matthee et al., 2017].17

Put more directly: assembly bias means that dark matter halos and their galazies look
and behave differently in different parts of the universe, even at a fized halo mass.1®

There are a large number of studies which are impacted by this fact. Perhaps no field
of astronomy is more affected than the massive theoretical effort over the past twenty years
to develop theoretical models which attempt to “paint” galaxies onto dark matter halos
so that our observations of the universe can be compared against the unobservable theo-
retical predictions of a dark matter-dominated universe [e.g. Berlind and Weinberg, 2002,

Yang et al., 2003]. However, the majority of these analyses have explicitly assumed that

17. There are some reasons for skepticism. Observationally, some recent studies which purport to measure
halo growth rates in the local universe claim that galaxy and halo growth are uncorrelated [Behroozi et al.,
2015, Tinker et al., 2017, O’Donnell et al., 2020]. The theoretical models which assume a connection between
halo growth and galaxy growth make some incorrect predictions unless ad hoc components (orphan galaxies)
are added to them [e.g. Campbell et al., 2018]. Lastly, simulations that track stars and gas do not resolve
many critical processes, have many tunable parameters, and require complex verification regimens [e.g.
Hopkins et al., 2018], which can make it complicated to interpret how strong a given prediction is. Suffice
to say, there are many papers left to be written on this topic.

18. This statement has been confirmed by a wide array of studies, see the overview in Mao et al. [2018].
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assembly bias never reaches its tendrils into the observable properties of galaxies, meaning
that the existence of assembly bias and the uncertainty in the connection between galax-
ies and their halos has loomed over this field like the Sword of Damocles [Zentner et al.,
2014]. Assembly bias impacts astronomy in less obvious ways, as well. For example, most of
our understanding of dim satellite galaxies comes from observations of a handful of nearby
galaxies [see Carlsten et al., 2020, for an overview|. But all these observations take place in
the same local environment, and that environment is not a particularly common one [Neuzil
et al., 2020]. Any connection between this environment and the structure and character of
these satellite systems could strongly impact our ability to interpret these observations [e.g.
Libeskind et al., 2015].

Efforts to resolve and model the effects of assembly bias have been stymied because it
isn’t clear why assembly bias happens at galaxy masses. Early measurements of assembly
bias were a shot out of the blue: theories of halo growth at the time [most notably Press and
Schechter, 1974] were built on the foundational assumption that large-scale structure had
little-to-no effect on halo properties, and it was clear that radical adaptations were needed
[Gao et al., 2005].

The problem of assembly bias is to theorists as a lantern is to moths, and soon there were
no shortage of reasonable-sounding explanations. However, the proposed causes of assembly
bias would affect halo growth in different ways and would impact different groups of halos,
raising the question of which explanation is actually correct. The following section lists the

most prominent models for this effect.

2.3 The Suspects: Tides, Heating, and Misadventure

The oldest attempted explanations for assembly bias (and those first suggested by Gao et al.,
2005) tried to alter the models of how of primeval dark matter perturbations contract and
collapse [e.g. Sandvik et al., 2007, Desjacques, 2008, Dalal et al., 2008, Chue et al., 2018]. This

undertaking proved to be a fantastic success in understanding how assembly bias impacts
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galaxy clusters [Dalal et al., 2008], but unfortunately, this success did not translate down to
galaxy masses. There was a simple reason for this: galaxy clusters are massive and unlikely
to be disturbed by larger objects while growing. This means that individual perturbations
can largely be considered in isolation at high masses, but that this analysis will insufficient
for many smaller mass halos.

Because of the failures of single-perturbation collapse models, theorists have ventured
into the multi-object complexities of the non-linear regime. What happens to the growth of
halos when they spend their lifetime navigating beneath the shadows of objects thousands
of times their mass?

One of the most pressing concerns in the non-linear world comes from subhalos which
have temporarily wandered far from their host halos. As discussed in section 2.1.1 and
2.1.3, the satellites of large dark matter halos have a tumultuous life. While some distinct
halos may stop growing when they run out of material to accrete, virtually all subhalos stop
growing as they are tossed about and ripped apart by their hosts [van den Bosch, 2017, gives
an astonishingly complete overview of this topic]. This is a problem because researchers
rarely actually check whether an object is a subhalo. Instead, the typical approach is to
draw an ad hoc boundary around each halo or galaxy!® and use this boundary to determine
which objects are or are not subhalos [e.g. Gao et al., 2005, Wechsler et al., 2006, and many
others].

However, subhalos can actually orbit far beyond the boundaries researchers often adopt
[Balogh et al., 2000]. Because of this, when the most massive halos in the universe are
analyzed with standard techniques, it appears as if they are surrounded by swarms of dying
Milky Way-sized galaxies and halos. Because these massive galaxy clusters are only found
in the densest regions of the universe, this misclassification means the oldest galaxy-mass
halos are also found in these regions. Multiple researchers have attempted to quantify the

impact of these errant subhalos on assembly bias, but came to different conclusions over

19. i.e. The so-called “virial radius.”

26



how important they are [Wang et al., 2009, Li et al., 2013, Wetzel et al., 2014, Sunayama
et al., 2016]. This confusion stems from a combination of different definitions, ambiguity
over when a subhalo first enters its host, and disagreements over the difference between a
subhalo which merely has a distant orbit and a subhalo which has been completely ejected
from its host.

Other groups of researchers have proposed that these massive galaxy clusters play a
second, even more important role: their intense gravitational field can stifle the growth of
halos long before those halos fall into the cluster [Hahn et al., 2009, Behroozi et al., 2014,
Hearin et al., 2016b, Salcedo et al., 2018]. Consider a satellite around the Earth. While this
satellite is close to Earth, it has no trouble orbiting. But at large distances, the Sun’s gravity
will become more important and will eventually pull this satellite out of its orbit around the
Earth and into an orbit around the Sun.?Y In this sense, the Sun’s tidal field prevents
objects from orbiting the Earth beyond a certain distance (it’s “tidal radius”). This region
where it is possible to orbit the Earth would decrease in size if the Earth moved closer to the
Sun or if the Sun grew in more massive. Massive galaxy clusters have the same impact on
Milky Way-sized dark matter halos which venture too close to them: the intense tidal fields
limit how far away these smaller halos can attract fresh matter and therefore suppresses
their growth. Because the massive halos hosting these galaxy clusters are clumped together
in the densest regions of the universe, tidal fields can lead to dense portions of the cosmic
web being filled with slowly-growing halos.

A related model proposes that the key factor isn’t tidal fields from individual galaxy
clusters, but instead the fields produced by the filaments and sheets of large scale structure

itself [Hahn et al., 2009, Wang et al., 2011, Paranjape et al., 2018, Musso et al., 2018]. The

20. Where this occurs is a surprisingly subtle topic. The influence of the Sun on objects orbiting the
Earth was the subject of several bitter academic fights during the early years of Newtonian astronomy
[Bodenmann, 2010] and our friend Alexis Clairaut was a central character in this drama. Clairaut’s lifelong
enemy, Leonhard Euler, worked out the fundamentals during the year of Clairuat’s death [Euler, 1765]. Put
simply: at close distances, objects can orbit the Earth. At moderate distances, objects can appear to orbit
the Earth while actually primarily orbiting the Sun (the Moon does this). At large distances neither is
possible and objects can only orbit the Sun.
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largest of these structures contain immense amounts of mass, meaning that their tidal fields
can can have a strong impact on the objects floating inside of them. If true, this would mean
that assembly bias stems from an effect that impacts all halos in these dense regions, rather
than just the ones that happen to be next to galaxy clusters.

Lastly, some scientists have focused on another property of filaments: the velocity of
objects inside them [Wang et al., 2007, Dalal et al., 2008]. As objects fall towards a massive
filament, their velocity increases. This means that every object within these filaments is
moving around at high speeds. This increased speed makes it more difficult for halos within
these filaments to capture the matter around them and slows down their growth. Like large
scale tidal fields, this effect impacts all halos within filaments, but leads to filaments of
different sizes doing most of the heavy lifting.

To date there has been no attempt to compare or unify these explanations. There have
been many papers arguing for one potential cause or the other, but these works rarely address
competing papers and [ am not aware of any which attempted an explicit comparison between
the models. This has led to an unintentional Balkanization of the assembly bias literature,
with authors citing work associated with one class of theories and largely ignoring other
approaches. The goal of this thesis is to unify the theoretical assembly bias literature into a

cohesive model.

2.4 The Plan: The Structure of This Thesis

This thesis compares these different explanations and argues for a synthesized model for
galaxy-mass assembly bias: most assembly bias at this mass scale is caused by misclassified
subhalos. The remainder is caused by the impact of gravitational heating and large-scale tidal
fields on a relatively small fraction of halos in large filaments. I work through how I arrive at
answer this in chapter 6. The journey requires building a substantial theoretical framework:
it requires building tools to measure quantities which have never been measured before and

requires putting simulations through tests which have never been performed before. I build
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this framework up in chapters 4 and 5. Chapter 3 contains technical background information
shared by all three chapters

At the start of my Ph.D, a number of collaborating research groups showed that simulated
dark matter halos have distinct edges: the splashback surface [Diemer and Kravtsov, 2014,
Adhikari et al., 2014, More et al., 2015].21 The splashback surface is an edge in the density
field around halos which is caused by particles and subhalos “piling up” far away from the
halo halfway through their first orbits. These first studies could not reliably measure this
edge in individual halos, but could find it by combining large groups of halos?2 or in simplified
simulations. If it were possible to measure this boundary measure for individual halos, there
would be an unambiguous way to identify subhalos: the splashback boundary splits infalling
matter from all orbiting matter.

Chapter 4 develops the code SHELLFISH, 23 the first tool which could measure splashback
surfaces around individual objects. Although the ultimate goal of this thesis primarily uses
SHELLFISH to identify subhalos, chapter 4 covers other useful features of splashback surfaces,
ranging from shapes and sizes, to their connection to the inner parts of halos, to their
alignment with large scale structure. This chapter corresponds to the paper Mansfield et al.
[2017]

Although dark matter simulations have existed for decades (see section 2.1.3), many
questions about their reliability remain unanswered. In chapter 5, I perform wide-ranging
tests on many of the highest-resolution dark matter simulations available today. I originally
started writing this chapter to determine the reliability of the halos for assembly bias studies,
but its conclusions are further ranging that this. Chapter 5 performs reliability tests on

many dark matter halo properties (in some cases, these are the first tests that have ever

21. This had been predicted by some early models of halo growth [Fillmore and Goldreich, 1984,
Bertschinger, 1985], but the significance of these predictions was not appreciated at the time.

22. This technique would soon be successfully used in observations [More et al., 2016, Chang et al., 2018]

23. The name is an acronym which stands for SHELL Finding In Spheroidal Halos. I came up with the
name during the Physical Sciences Division’s happy hour.
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been performed on these properties), demonstrates that high-resolution simulations disagree
to a larger extent than was previously believed, and shows that many aspects of simulations
depend strongly on a subtle numerical parameter called the “force softening scale” (first
introduced in Aarseth, 1963). Chapter 5 corresponds to the paper Mansfield and Avestruz
[in prep].

With the field set, chapter 6 addresses the central question of this thesis: what causes
galaxy-mass assembly bias? The approach I use in this chapter is to estimate how strongly the
different effects listed in section 2.3 affect every halo in a simulation. Using these estimates, I
determine how efficiently the different effects can create a universe with assembly bias, which
allows me compare how closely connected these different processes are to assembly bias. I
also synthesize the low-mass and high-mass treatments of assembly bias, and resolve some
long-standing disputes over the nature of assembly bias by showing that they are the result
of definitional differences. This chapter continues the tradition of chapters 4 and 5, with a
heavy focus on understanding halo boundaries and an equally heavy focus on demonstrating
the robustness and reliability of various measurements. Chapter 6 corresponds to the paper

Mansfield and Kravtsov [2019].
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CHAPTER 3
TECHNICAL BACKGROUND

This chapter covers the technical background shared by the later chapters in this thesis.
While this chapter is more pedagogical than chapters 4, 5, and 6, it is more technical than

the preceding chapters.

3.1 Simulations

This thesis uses eight simulation suites: Erebos CBol [Diemer and Kravtsov, 2014, 2015],
Erebos_CPla [Diemer and Kravtsov, 2015], Multidark-Planck [Klypin et al., 2016], Chinchilla
[Lehmann et al., 2017], Bolshoi [Klypin et al., 2011], BolshoiP [Klypin et al., 2016], v2-gc
[Ishiyama et al., 2015], and TlustrisTNG-Dark [Naiman et al., 2018, Pillepich et al., 2018,
Nelson et al., 2018, Marinacci et al., 2018, Springel et al., 2018]. The properties of these
simulations are summarized in Tables 3.1 and 3.1. Erebos_CBol is used in chapter 4, every
simulation suite is used in chapter 5, and Bolshoi and BolshoiP are used in chapter 6.

Each simulation suite is the product of one of four simulation codes, each with vary-
ing gravity solvers and timestepping schemes. Bolshoi and BolshoiP were run using ART
[Kravtsov et al., 1997, Kravtsov, 1999, Gottloeber and Klypin, 2008], the Multidark-Planck,
Erebos_CBol, Erebos_CPla, and Chinchilla suites were run with Gadget-2 [Springel, 2005].
MlustrisTNG-Dark was run using AREPO [Springel, 2010, Weinberger et al., 2019] which
performs gravitational calculations using an updated version of the Gadget-2 gravity-solving
algorithm. v2-gc was run with GreeM? [Ishiyama et al., 2012, 2015].

An important aspect of these codes is the scheme they use for setting timestep sizes.
Three of the four codes, Gadget-2, Arepo, and GreeM? use an adaptive timestepping scheme
dependent on the local gravitational acceleration [Springel, 2005, Weinberger et al., 2019,

Ishiyama, personal communication], and ART timesteps are density-dependent [Klypin et al.,
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Code Suite

Q10

hi00 o8 n

Simulation

GreeM? 2-GC

ART Bolshoi
BolshoiP

Gadget-2 Chinchilla

Multidark

Erebos_CBol

Erebos_CPla

Arepo

0.31

0.27
0.307
0.286

0.307

0.27

0.32

MustrisTNG-Dark 0.3089

0.68 0.83 0.045

0.7 0.82 =
0.678  0.823
0.7 0.82 0.025

0.678  0.823 0.01

0.7 0.82 0.025

0.67 0.82 0.025

0.6774 0.8159 0.012

v2-GC-L
v2-GC-H1
v2-GC-H2
Bolshoi
BolshoiP

L125

L250

L400

ESMDPL
VSMDPL
SMDPL
MDPL2
BMDPL
HMDPL
CBol_L63
CBol_L125
CBol_L250
CBol_L500
CBol_L1000
CBol_L2000
CPla_L125
CPla_L250
CPla_L500
TNG100-1-Dark
TNG100-2-Dark
TNG100-3-Dark

Table 3.1: A list of simulations used in this work. The first six columns contain information
common to all simulations in a given suite: the code used to run the suite, the suite name,
the cosmological parameters Q,7, higg = Hp/(100 km/s/Mpc), og, and the Gadget-like
timestepping parameter, 7. Note that ART does not use this timestepping scheme (see
section 3.1 for details). This additional columns of this Table are given in Table 3.1.
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Simulation L N3 mp e/l

(h~'Mpc) (h—1Mg)
12-GC-L 1120 81923 227 x 1085  0.04
v2-GC-H1 140 20483 2.75 x 107 0.04
v2-GC-H2 70 20483 3.44 x 106 0.04
Bolshoi 250 20483 1.36 x 103 0.0082
BolshoiP 250 20483 1.55 x 108 0.0082
1125 125 20482 1.80 x 107 0.0082
1.250 250 20483  1.44 x 103 0.0082
L.400 400 20482 5.91 x 103 0.0082
ESMDPL 64 20482  2.60 x 105 0.032
VSMDPL 160 3840% 6.16 x 106 0.024
SMDPL 400 38403 9.63 x 107 0.014
MDPL2 1000 3840% 1.50 x 109 0.019
BMDPL 2500 38403 2.35 x 1010 0.015
HMDPL 4000 40983 7.92 x 1019 0.026
CBol 163 62.5 10243 1.70 x 107 0.016
CBol 1125 125 10243 1.36 x 108 0.02
CBol 1250 250 10243 1.09 x 109  0.024
CBol_L500 500 10243 8.72 x 109 0.029
CBol_L1000 1000 10243 6.98 x 1010 0.034
CBol_1.2000 2000 10243 5.58 x 1011 0.033
CPla_L.125 125 10243 1.62 x 108 0.02
CPla_1.250 250 10243 1.29 x 107 0.024
CPla_L500 500 10242 1.03 x 1010 0.029
TNG100-1-Dark 75 18203 6.00 x 105 0.018
TNG100-2-Dark 75 9103  4.80 x 107  0.018
TNG100-3-Dark 75 4553 3.84 x 108 0.018

Table 3.2: A continuation of Table 3.1. The last four columns give information specific to
each individual simulation: the simulation name, the box width, L, the number of particles,
N3, the particle mass, my, and the force softening scale at z = 0 in units of the mean
interparticle spacing, €/l. For the last column, we use Eq. 3.4 to convert from the formal
resolution, h, to e.
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2011]. The former use adaptive time steps, with

At = +/2ne/|d|. (3.1)

Here, @ is the local gravitational acceleration, € is the ‘Plummer-equivalent’ force softening
scale which will be discussed below, and 7 is a user-defined parameter (also referred to
as ErrTolIntAcc) that is typically set to 2 0.01. In practice, At is evaluated for each
particle, the values are used to place particles into the coarsest logarithmic timestepping bin,
At; = t927 1, such that At; < At. As such, the actual timestep size a particle experiences
may be smaller than Eq. 3.1 by a factor of two. We note that while the initial GreeM?
implementation used a different adaptive scheme [Ishiyama et al., 2009], GreeM? used the
adaptive scheme described above to produce Vz—gc (Ishiyama, personal communication).
ART timesteps vary at different depths of the refinement tree, meaning that they depend
on density instead of acceleration. Both Bolshoi and BolshoiP use timesteps of Aa ~ 2 —3 x
1073 at the 0" (coarsest) refinement level with time steps decreasing by a factor of two for
each successive level of spatial refinement, leading to timesteps of Aa ~ 2 — 3 x 1079 at the
tenth level [Klypin et al., 2011]. The ART timestepping scheme leads to far finer timesteps

than any of the other simulations considered in this paper.

3.1.1 Force Softening

Cosmological simulations do not model particles as point sources. Infinitesimal point sources
will scatter off one another during close encounters, which leads to aphysical energy exchange
between particles and can potentially thermalize the inner regions of dark matter haloes [see
overview in Ludlow et al., 2019]. Additionally, these close encounters require much finer
timesteps to resolve than typical orbits through a halo’s potential, meaning that codes are
forced to either spend large amounts of computation time resolving an aphysical process

or risk conservation of energy errors (See section 5.6.1). To minimize these effect, codes

34



will ‘soften’ forces to be weaker than Gmjimso/ 2 below some resolution level, h. The exact
meaning of h varies between codes.

The GreeM? code softens forces through a Plummer kernel [Ishiyama et al., 2012, 2015],
the simplest force softening scheme. In this scheme, the gravitational potential of a particle

is given by
GM

2. 12 '
\/T + hPlummer

Here, ¢ is the gravitational potential a distance r away from a particle of mass M.

¢(r) =

(3.2)

In Gadget-based simulations [Springel et al., 2001b, Springel, 2005, 2010], the density
distribution function of particles, d(r), changes from a Dirac delta function to the SPH

kernel of Monaghan and Lattanzio [1985]:

.

1 — 622 + 623, ifa:<%,
8M
0(@) = —592(1—2)3, if L <a<1, (3.3)

0, if x> 1,

\

for z = 1/hGagget- This leads to perfectly Newtonian force beyond 7 > hgaqget-

In ART [Kravtsov et al., 1997, Kravtsov, 1999, Gottloeber and Klypin, 2008], differen-
tiation errors in the underlying grid naturally soften gravitational forces according to the
local grid cell width, hprp. Because ART grids are adaptive, this means that the formal
resolution is also adaptive. Typically, the highest resolution level used within a halo is cited
as the formal resolution of that halo.

The analysis in this paper focuses on the impact of force softening at large scales.
Throughout this thesis I adopt the following convention for converting between formal res-

olutions, which matches their impact on the halo rotation curves for r > e,

€ = 1.284 hPlummer = hART = 0357 hGadget' (34)
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The methodology behind this conversion is laid out in Appendix 5.8.1, along with the best-
fitting impact of large-e on rotation curves.

This conversion differs from those used in previous works. The most common convention
is derived from Kravtsov et al. [1997], Springel et al. [2001b] which demonstrated that the
force errors induced by these schemes are comparable for r < €, where € is the ‘Plummer
equivalent force-softening scale’ given by € = hpjymmer = PART = 0.357 hGadget- Addition-
ally, the depth of each particle’s potential is the same at a constant value of € under this
scale. Different authors have also adopted different conversions between hagrr and € (e.g.
Diemer and Kravtsov, 2015, Klypin et al., 2016) due to the ambiguity of which scales force
errors should be matched on. The parametrization in Eq. 3.4 does not depend on choosing

such a scale.

3.2 Halo Finding and Halo Properties

After a simulation has finished running, the output is a large collection of particles with
different positions and velocities. However, the analysis in this thesis (and in a great many
papers) relies on knowing the location and properties of the simulation’s halos. This data is
produced by a tool known as a “halo finder.” Many different halo finders have been developed
over the years, but the analysis in this thesis focuses on the results of the ROCKSTAR halo
finder [Behroozi et al., 2013c]. The ROCKSTAR halo finder is designed to robustly identify
subhalos and is centered around an adaptive friends-of-friends algorithm performed in 6D
phase space. ROCKSTAR stacks up well against other halo finders in specialized tests [Knebe
et al., 2011] and chapter 5 performs an extensive battery of tests on the output of this code.

After halos are generated, a second piece of software is needed to connect younger and
older versions of the same halo across time. This connection allows the research to study
how halo properties and locations evolve with time and is referred to as a “merger tree.” We
use ROCKSTAR’s sister program, CONSISTENT-TREES [Behroozi et al., 2013b] to generate

merger trees.
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Dark matter halos are complex objects with a number of scientifically useful properties.
Many of these properties are used throughout the remaining chapters of this thesis. The rest
of this section describes many of their most commonly used properties, as computed by the
ROCKSTAR halo finder.

Bound vs. Unbound Particles: ROCKSTAR separates particles into ‘bound’ and ‘un-
bound’ groups and primarily analyses bound particles. This is done because if particles were
classified with a simple geometric cut, subhalos would be contaminated with a large number
of particles from their host halos. There is no unambiguous way to perform this procedure
due to the importance of tidal fields in true boundedness calculations, but ROCKSTAR takes
a reasonable approach and determines boundedness by performing pairwise potential calcu-
lations and comparing against the kinetic energy of particles in the rest frame of the halo
center.

Halo mass: The most basic properties of a halo are its size and, equivalently, its mass.
In most studies, the ‘overdensity radius’ definition of the halo boundary is used to define
these properties. Under this definition, the halo is a sphere of radius Ra which encloses the
bound mass MA = Mpaund(< RA) such that

4m
Mp = ?AprengA' (3.5)

Here, A is some constant and per is a cosmological reference density. The reference density
is typically either the background matter density, py, or the critical density, pc.

The choice of reference density is more of an art than a science. Chapter 4 reviews
the scientific justification (or lack thereof) for different choice of the halo boundary, but
to clarify notation, the primary radius definition in this thesis is Ryj.. Ryip corresponds to
Aprer as given by the relation in Bryan and Norman [1998]. At various points throughout
this thesis, I also consider the bound masses enclosed within Rogom (Aprer = 200pm), R200c

(Apc = 200pc), Rs00c (Apref = 500pc), and Rasnoc (Apret = 2500pc).
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ROCKSTAR computes overdensity radii by constructing radial density profiles using only
particles within the coarse-grained friends-of-friends (FOF) group that contains the halo
center. The linking length parameter used to identify the FOF group has a substantial effect
on the convergence properties of Mg, (see Appendix 6.6.1).

Virial Scaling: M, and Ry; are commonly used as characteristic scales to remove the
dimensionality of other halo properties. Some unscaled halo properties have units of time
in their dimensions, requiring the introduction of a third characteristic scale, the “virial

velocity:”
G M. vir

Viir = R
vir

(3.6)

Maximum circular velocity: One of the most fundamental properties of a dark
matter halo is Vipax. Vmax is the maximum velocity reach by a halo’s “rotation curve,”
Veire(r) = \/GT/'I“ Vimax enjoys widespread use because it is both closely connected both
to the theoretical distribution of dark matter and to observational quantities like rotation
curves [e.g. Rubin and Ford, 1970]. Vinax is also a non-parametric halo property, meaning
that in principle it can be measured without needing to assume a model for the distribution
of mass throughout the halol

Vax is a well-defined halo property in its own right, but when scaled by V,;;, it becomes
a measure of halo “concentration.” Halos whose masses are highly concentrated in their
centers will have higher values of Vinax/Viir and halos with more diffuse mass distributions
will have lower Vipax/Vyir values.

A related, but distinct, quantity is Vims,

V}ms = Zl_fz — <17> (3.7)

1

Here, the sum and average are performed over the velocities of every particle in the halo.

1. In practice, observations of rotation curves generally do not reach radii large enough to resolve Vi ax
[e.g. de Blok et al., 2008]. This means that inferring Vi,.x from observations necessarily has a theoretical
and parametric component.
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Halo concentration: Although Vinax/Viip is a useful measurement of concentration,
the most widely used tracer of concentration is ¢y, = R_o/Ryir, where R_9 is the radius
where the halo’s logarithmic radially-averaged density slope equals -2. Although R_9 can be
measured without adopting a halo model for profiles averaged over large halo populations, the
noise in halo profiles requires fitting a particular functional form if individual measurements
of ¢y are required.

This thesis performs fits against the Navarro-Frenk-White (NFW) profile [Navarro et al.,
1997]. The NFW profile has the form

_ PO
r/Rs(1+1/Rg)%’

p(r) (3.8)

where pg and Rg are free parameters of the fit. For this funcitonal form, R_9 = Ry, cyiy =
Ryir/Rs. This fit is delicate and different fitting strategies lead to different concentration
statistics. ROCKSTAR performs a X2—minimization of Eq. 3.8 against binned density profiles,
ignoring bins with fewer than 15 particles and heavily down-weighting bins with r < 3eg.
Related is 1?4 /2 the radius which encloses half of the bound mass within Ry;;.
Halo shape: ROCKSTAR follows the recommendations of Zemp et al. [2011], and com-
putes halo shapes using iterative, weighted mass distribution tensors. Specifically, ROCK-

STAR first computes the mass distribution tensor

N/ 5 o
DN GG
_ AL

N Y3 172

M;; (3.9)
over all bound particles k£ within Ry, and computes the eigenvalues, A;, of M;;. Then, ROCK-
STAR estimates axis ratios as ,/A;/ Aj for each pair of axes, ¢ and j, repeating the process
for all bound particles in an ellipsoid with the corresponding axis ratios and a minimum axis
length of Ry;,. This process repeats until axis ratios converge to 1%. Note that the axis
ratio measurement is sensitive to the central mass distribution.

Halo spin: To track halo spin, researchers typically use the dimensionless Peebles and
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Bullock spin parameters. The classical Peebles spin parameter [Peebles, 1969] is given by,

| J|
5/2
G|Eiot| M /

vir

)‘Peebles = (3- 10)

where J is the angular momentum vector of the halo and Eit is the total energy of the
bound particles. However, the normalization by Fio¢ presents pragmatic difficulties (see
the discussion of boundedness above) and makes Apgapes Sensitive to recent merger history
which is often undesirable. An alternate dimensionless parameter is the simpler Bullock spin
parameter [Bullock et al., 2001] which normalizes by virial properties:
|J]

. (3.11)
\/§M vir Rvir Vvir

ABullock =

Dynamical State Indicators: There are numerous halo properties which track the
dynamical state of a dark matter halo. These include: T'/|U]|, the ratio of kinetic to potential
energy, Tog = Xof/Rvir, the normalized offset between the density peak of the halo and its
center of mass, and Vg, the offset between the velocity of the halo’s density peak and
the mean velocity of all its particles. The first two have been found to correlate with
recent accretion activity [Power et al., 2012] and age indicators, such as concentration [Neto
et al., 2007]. All three can be used to predict the accretion history prior to the epoch of
measurement.

Mass Accretion History: Beyond the single-epoch halo properties measured by ROCK-
STAR, the merger trees constructed by — for example — the CONSISTENT-TREES code allow
direct measurements of halo growth. The most fundamental such property is the accretion

rate,
Mvir(tO) - Mvir<t0 — At)
At ’

T(At) = (3.12)

where t( is the current age of the universe. This thesis focuses on two different accretion
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rates. Chapter 5 uses I'({gy,) measured over the halo’s dynamical time,

1
tdyn = - : (3.13)
gﬂG(Apm)vir

Here, (Apm)vir is the Bryan and Norman [1998] virial density contrast. This is a very
commonly used accretion rate definition, but for consistency with previous literature [Diemer

and Kravtsov, 2014, More et al., 2015], chapter 4 chiefly considers I'pk14 :

In Maoom (2i+1) — In Mapom(24)
Ina(zj41) — Ina(z;)

I'pkia = : (3.14)

here z; come from a set of redshift intervals which are separated by roughly a dynamical
time. The inverval used by chapter 4 is z; = {0,0.5,1,2,4}.

Accretion rates are most sensitive to recent mass growth. A common measurement used
to trace growth on longer timescales is ag 5. This quantity corresponds to the earliest scale
factor at which a mainline progenitor of the halo has half the mass of the present-day halo.
Another measure that probes similarly long timescales is app, the most recent scale factor
at which CONSISTENT-TREES detected a merger where the secondary-to-primary mass ratio
was larger than 0.3.

Finally, merger trees allow one to compute M,ea) and Vi,eay, the largest values that My,
and Vipax have taken on throughout the lifetime of the halo, respectively. These values are
frequently used when analyzing subhalos because the dark matter halo of a satellite galaxy
is disrupted long before the central stellar component is. ‘Peak’ quantities allow modeling
in which galaxies grow their stellar mass components in step with their dark matter halos
and maintain it after being captured by a host halo. Such modeling has been shown to be
effective at predicting a wide range of observables [e.g., Reddick et al., 2013].

Mass and Velocity Functions Using these halo properties, it is possible to define
differential mass and velocity functions, ¢(X). ¢(X) is defined as the number of halos

in logarithmic bins of a given mass or velocity definition, logyy(X), divided by the log-
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arithmic width of that bin. This thesis considers the mass and velocity definitions of
X € { Myir, Masooe, Msooe, Maooe: M20om, Mpeak> Vinax Vims: Vpeak |-

Isolated Halo vs. Subhalo Classification: The classification of halos into “isolated
halos” and “subhalos” plays a critical role in halo analysis, because subhalos behave very
differently from non-subhalos at the same mass. This is because subhalos tend to be rapidly
losing mass and are within extreme tidal environments. Overwhelmingly, the most common
approach is to classify objects within some overdensity radius, Ra, of a larger halo as sub-
halos and everything else as isolate halos. Chapter 6 critically evaluates this approach at

length.
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CHAPTER 4
SPLASHBACK SHELLS OF COLD DARK MATTER HALOS

This chapter is a modified version of my paper, Mansfield et al. [2017].

4.1 Introduction

In the Cold Dark Matter (CDM) paradigm of structure formation, dark matter halos form
via the collapse of density peaks in the initial random Gaussian perturbation field. In the
commonly used “tophat model” the peak density contrast profile is approximated as uniform
within a given radius [e.g., Tolman, 1934]. The constant overdensity in such approximations
results in a uniform collapse time for different radial shells and a single well-defined collapse
time for the peak. This, along with the assumption that virial equilibrium is reached imme-
diately following collapse, allows one to predict the density contrast within the boundary of
the collapsed objects [Gunn and Gott, 1972b, Heath, 1977, Lahav et al., 1991].
Accordingly, the most commonly used boundary definition for CDM halos is a sphere of
radius R (see Eq. 3.5) for various choices of A. However, the overdensity profile in real
Gaussian peaks is not constant, but decreases with increasing radius [see, e.g., Figure 2 in
Dalal et al., 2010]. Because the overdensity within a given radius controls the timing of
the collapse, the collapse of different radial shells in such peaks is extended in time. Real
halos also undergo mergers during their formation, which further redistribute mass within
them. Real CDM halos thus do not have an edge at the density contrast predicted by simple
uniform peak collapse models [see, e.g., Kravtsov and Borgani, 2012, More et al., 2015],
meaning that Ra radii are a rather arbitrary definition of halo extent and do not correspond
to any particular feature in the density profile or in the profiles of other physical properties
le.g., Diemer et al., 2013a]. This arbitrariness may be problematic when this radius is used
to classify objects into groups which are meant to be qualitatively distinct from one another,

such as subhalos and isolated halos. Indeed, multiple recent studies have suggested that a
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significant fraction of the halo assembly bias effect may be due to the fact that some subhalos
which have orbited larger hosts are misclassified as isolated halos when R is used as a halo
boundary for classification [Wang et al., 2009, Wetzel et al., 2014, Sunayama et al., 2016,
Zentner et al., 2016]. However, these so-called “backsplash” halos would still necessarily be
contained within their hosts’ splashback shells, meaning that switching to a splashback-based
definition could help alleviate this issue.

Furthermore, regardless of the choice of A or p..f, contrast-based radius and mass defi-
nitions encounter several problems when the mass accretion histories of halos are estimated.
First, as mentioned above, during major mergers there is mass redistribution within halos,
with a non-trivial amount of mass moving to radii outside of Ra for typical values of A
[Kazantzidis, Zentner, and Kravtsov, 2006]. This causes spherical overdensity masses to be
non-additive during mergers in excess to the degree that would be expected purely from
slingshot processes. Second, the evolution of both py, and p.it with time causes evolution
in RA and MA, even for completely static density profiles. This “pseudo-evolution” of halo
radius and mass typically results in the near doubling of mass of Milky Way-sized halos
between z = 1 and z = 0, even when there is no accretion of new mass [Diemer et al.,
2013b].

Given the problems with the standard R definition, one can ask whether there is a
more physical way to define halo boundary, one which would separate the matter that has
already collapsed (i.e., orbited within halo at least once) and matter that is still infalling onto
halo for the first time. In collapse models of spherical and ellipsoidal peaks with power law
density profiles, such a boundary exists and is associated with a sudden drop in the density
profile of collapsed halos [Fillmore and Goldreich, 1984, Bertschinger, 1985, Adhikari et al.,
2014, Shi, 2016]. The drop is due to the caustic formed by the “pile up” of mass elements
that have just reached the apocenter of their first orbits and is thus the maximum radius of
matter that has orbited through halo at least once.

Recently, such drops in the density profile have also been detected in both simulated and
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real CDM halos [Diemer and Kravtsov, 2014, Adhikari et al., 2014, More et al., 2015, 2016,
Adhikari et al., 2016]. The most distant apocenters of orbits in real halos form a surface
that we will call the splashback shell. This shell can be viewed as the halo boundary. Due to
the assumption of spherical symmetry, all previous studies have necessarily been restricted
to analyzing the characteristic scale of this shell, the splashback radius, Rgp.

The primary challenge in using the splashback shell as a physical boundary definition for
halos is that it is technically challenging to detect and quantify in individual objects, both
in cosmological simulations and in observations. The key problem is that splashback shells
are generally located at low densities, where the presence of individual neighboring halos or
filaments can complicate the interpretation of the density field.

Consequently, analyses of the splashback radius have so far been carried out using stacked
radial density profiles of either mass or subhalo abundance [Diemer and Kravtsov, 2014,
Adhikari et al., 2014, 2016, More et al., 2015, 2016]. After stacking, Rsp for the popula-
tion is operationally defined as the radius of the steepest logarithmic slope, dIn p/dInr (or
dInng,,/dInr). In principle, this procedure averages out the noise in the individual pro-
files, allowing for comparisons of the splashback radius between different halo populations.
However, stacking of different halo profiles can also “wash out” the sharp density gradient
associated with the splashback shells, if such shells exhibit scatter for individual halos.

Studies of the splashback radius based on stacked density profiles have shown that there
is a strong relation between Rsp/Rogom and halo mass accretion rate, I'pki4, [Diemer and
Kravtsov, 2014, More et al., 2015]. I'pgi4 is defined in Eq. 3.14 (although future studies
may benefit strongly from revisiting this choice in definition). Such a dependence is expected
theoretically due to the contraction of particle orbits in a rapidly deepening potential of high-
I'pi14 halos [Diemer and Kravtsov, 2014, Adhikari et al., 2014].

Hints of density steepening due to the splashback radius in the mass and galaxy distri-
bution around individual clusters have been reported in several recent studies [Rines et al.,

2013, Tully, 2015, Patej and Loeb, 2016, Umetsu and Diemer, 2017]. Interestingly, the first
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reliable observational estimates of the splashback radius from the radial number density pro-
files of satellite galaxies in clusters are in tension with the predictions of simulations [More
et al., 2016].

The operational simplicity of the stacked-profile approach makes it very useful, particu-
larly when comparing simulations to observations, but it is not without weaknesses. First,
spherical averaging discards all information about the shapes of the splashback shells, even
though the filamentary nature of the cosmic web causes accretion to be highly aspherical,
which implies that splashback shells should also be highly aspherical. Second, the stacking
procedure removes information about individual halos, making it impossible to study the evo-
lution of a single halo’s shell over time, the properties of subhalos contained within shells,
or the scatter around mean relations. Third, the relationship between the splashback radius
estimated from the stacked profiles and the underlying distribution of individual splash-
back radii is unknown and can be complicated. In particular, as we show in section 4.4.3,
the contribution of massive subhalos in a minority of individual density profiles introduces
significant bias in the estimate of the splashback radius derived from stacked profiles.

To address these issues and to explore the properties of splashback shells around indi-
vidual halos, in this chapter we present an algorithm which identifies the splashback shells
around individual halos using single particle snapshots from cosmological N-body simula-
tions, and an implementation of the algorithm in the code SHELLFISH (SHELL Finding
In Spheroidal Halos), which we use to generate halo catalogs with measured splashback
shells and perform analyses of their basic properties, such as radius and shape, and quantify
their relationships to other halo properties, such as mass accretion rate and peak height.
A public version of SHELLFISH, along with tutorials and documentation can be found at
github.com/phil-mansfield/shellfish with a Digital Object Identifier (DOI) given by
Mansfield [2017].

This chapter is organized as follows. An overview of our method is shown in Figure 4.1

and our key result, the I'pk14 - Rsp relation for individual halos, is shown in Figure 4.9. In
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section 4.2 we describe our algorithm to identify the splashback shells from a halo’s particle
distribution, in section 4.3 we present extensive tests of the correctness and convergence
properties of the shells identified by our implementation of the algorithm. In section 4.4 we
discuss the shapes of the splashback shells and present the relation between shell size and
mass accretion rate. We compare the latter relation to that derived from the stacked profiles,
and show that the stacking introduces significant bias in the estimates of the splashback
radius of rapidly growing halos. We summarize our results in section 4.5. Appendix 4.6.1
contains a description of a high performance ray-tracing algorithm that we developed as a
component of SHELLFISH.

A reader not interested in the details of the algorithm itself, but only in the properties
of identified shells can skip directly to section 4.4. We caution, however, that proper inter-
pretation of the issues discussed in section 4.4 requires at least a basic understanding of our

shell finding algorithm.

4.2 Methods

4.2.1  Simulations

The analysis in this chapter uses a subset of the suite of simulations first introduced in
Diemer and Kravtsov [2014]. These simulations have box sizes between 62.52~! Mpc and
500h~1 Mpc, allowing us to study halos with a wide range of masses and accretion rates.
The simulations, along with the mass ranges which we analyze, are shown in Table 4.2.1.
The numerical details of these simulations are summarized in Tables 3.1 and 3.1 and section
3.1.

Halo catalogs were generated using the ROCKSTAR halo finder [Behroozi et al., 2013d]
and main progenitor lines were found through the merger tree code CONSISTENT-TREES

[Behroozi et al., 2013e].
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Name M200m,min MZOOm,maX
(h'Mo) (h!Ma)

L0500 4 x 1014 -

L0250 5 x 1013 2 x 10l
L0125 7 x 1012 5% 1013
L0063 9 x 1011 7 x 1012

Table 4.1: The mass ranges used for each simulation in this chapter.

4.2.2  Algorithm Description

Our aim is to develop an algorithm which can identify splashback shells around halos using
only their density distribution at a single point in time. In other words, this will be an
algorithm which uses no dynamical information about the halo’s particles and will rely
solely on identifying the density caustic generated by the splashback shell. This restriction
would allow such an algorithm to work on simulations that are only sparsely sampled in
time.

Relaxing this restriction allows for alternative measurements of Rsp which can leverage
the full dynamical information of the simulation. For example, Diemer [2017b] develops
an algorithm, SPARTA, for finding splashback radii by locating the apocenters of orbiting
particles which requires access to approximately 100 snapshots over the lifetime of the target
halos. An extended comparison between SPARTA and SHELLFISH can be found in Diemer
et al. [2017].

Below we describe such an algorithm which does not require any dynamical information
and demonstrate that it identifies correct splashback shells, provided that target halos are
resolved with a sufficient number of particles (see section 4.3) and provided that target halos
are not embedded in very dense environments (see section 4.4.3).

Specifically, our algorithm consists of four steps:
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Figure 4.1: An overview of the steps in our shell-finding algorithm for a cluster-sized halo
(This halo is also shown in Figure 4.2(d) below). Figure 4.1(a) shows a random line of sight
traced through this halo’s density field (see §4.2.2 and Appendix 4.6.1). Figures 4.1(b) shows
a density profile measured along along this line of sight before smoothing (black line) and
after smoothing with a Savitzky-Golay filter (red line). The arrow indicates the point of
steepest slope in the smoothed profile (see §4.2.2). Figure 4.1(c) shows the points of steepest
slope for the 256 lines of sight in the viewing plane and shows the point classification that
the algorithm generates for these points (see Appendix 4.6.2). The white curve shows the
filtering spline created during the point selection process. Points which are close enough to
this curve to pass the filter are shown in white and those which are too far away are shown
in red. Figure 4.1(d) shows the cross-section of the best fit Penna-Dines surface from the
overall distribution of splashback points from 100 randomly oriented planes in which such a
procedure was carried out (see §4.2.2). See the text in the corresponding sections for details.
All analysis is done with the parameter values listed in Table 4.2.4, but the underlying images

are rendered using spherical kernels of radius 0.05R9ggm to make the structures around halos
more clear.
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. The density field is sampled along tens of thousands 1-d lines of sight anchored at the
center of a halo. The specific design decisions governing how the lines of sight are
oriented and how densities along them are estimated are described in section 4.2.2 and

Appendix 4.6.1, respectively, and are depicted in Figure 4.1(a).

. The locations of the steepest slope in the density profiles of each line of sight are
estimated using a smoothing filter. This part of the algorithm is described in section

4.2.2 and is depicted in Figure 4.1(c).

. The set of profiles is pruned to remove the profiles where the point of steepest slope
corresponds to the splashback associated with a nearby halo or filament. The pruning
procedure is described in section 4.2.2 and Appendix 4.6.2 and is depicted in Figure
4.1(c).

. We fit the 3-d shape of the shell with a smooth, flexible, functional form using the
locations of the steepest slope in the profiles that remain after the pruning step. This

is described in section 4.2.2 and is depicted in Figure 4.1(d).

The design choices made in step 1 are the most important for ensuring good performance

of the algorithm and the design choices made in step 3 are the most important for ensuring

that the identified shells are correct.

The free parameters of the algorithm that will be introduced and discussed in the subse-

quent sections are summarized in Table 4.2.4. The logic and procedures of specific parameter

choices are discussed in Appendix 4.6.3.

Density Estimation Along Lines of Sight

To construct a density profile along a given line of sight we must choose a way to interpolate

particle positions and masses onto that line. For simplicity, we choose to approximate parti-

cles as tophat spheres of radius Ryeme) uniform density. Other choices, such as tetrahedral,
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trilinear, or tricubic tessellations of phase space [e.g., Abel et al., 2012a, Hahn and Angulo,
2016], are also implemented in SHELLFISH and could in principle be used in this work. How-
ever, we find that these estimators converge slowly and do not allow splashback shells for
halos with Noggm < 107 to be identified reliably and thus do not use them in practice. A
detailed convergence study of phase space density estimators will be the subject of future
work.

The algorithm represents every line of sight as an array of Ny, bins logarithmically
distributed between the radii Ry, and Rmax. The density along a line of sight, [, which
passes through a set of constant-density spheres is given by

<N
pi(r) = TingeitpiH(r = rin) H (rous — 7). (4.1)
i=0

Here, ¢ indexes over all particles, Ijy, ;; is an indicator function which is 1 if [ intersects with
the sphere of particle ¢ and is 0 otherwise, p; is the density of sphere i, H is the Heaviside
step function, and r;, and 7oyt are the distances to entrance and exit intersection points of
[ for a given sphere, respectively.

Evaluating Equation 4.1 is easy if a conventional estimator (such as cloud-in-cell or SPH)
is used to write densities to an intermediate grid before they are translated onto the lines of
sight, since the grid cell that corresponds to a point at radius r of given ray can be calculated
in O(1) operations. However, using an intermediate grid has a number of disadvantages.
First, maintaining the high-resolution grid required to accurately measure the contours of
the splashback shell consumes a large amount of memory. This restricts the number of halos
which can be maintained in memory at once; when generating large catalogs of shells, this
can force particle catalogs to be read many times, leading to a significant performance cost.
Second, writing the density estimate to a grid is expensive as it involves either an exact
rasterization scheme (see, for example, Powell and Abel 2014) of the objects, or Monte Carlo

sampling of each solid with sufficiently many points to eliminate shot noise in each cell.
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Both approaches also require that density estimates are calculated for grid cells which are
not intersected by any line of sight. Third, introducing an intermediate grid reduces the
fidelity of the line of sight density estimates due to pixelation. This is most apparent as
small radii.

We find that in practice these three disadvantages, particularly the second, are significant
and make the use of grids for density estimation undesirable. For this reason we evaluate
Equation 4.1 by directly computing the intersection radii between every line of sight and
every sphere with no intermediary grid. Attempting this evaluation naively would be com-
putationally intensive, so we use a specialty ray-tracing algorithm, described in the Appendix
4.6.1, which takes advantage of the fact that the vast majority of the terms in Equation 4.1
are zero. This algorithm speeds up density assignment by several orders of magnitude com-
pared to both the brute-force geometric approach and the grid-based approach, while still
maintaining a comparatively light memory footprint.

The nature of the ray-tracing algorithm requires that the lines of sight are confined in
Nplanes Planes and are uniformly spaced in polar angle within these planes. Each plane then
contains V. lines of sight within it. This means that the line shown in in Figure 4.1(a) could
not be evaluated alone and would need to be evaluated simultaneously along with several

hundred other other profiles within the viewing plane. This turns out to be a convenient

configuration for later steps in the shell finding algorithm.

Measuring the Point of Steepest Slope for Line of Sight Profiles

After the density estimation step, we smooth the density profiles of each line of sight using a
fourth order Savitzky-Golay filter [Savitzky and Golay, 1964] with a window length of Ngg
bins in logr - logp space. A filter is necessary because a high precision determination of
Tsteep Tequires that Ny, be large, but using a large number of bins allows for noise in low-
density regions. For bins in which p(r) = 0, the density is set equal to a small background

density value, pp,e. Once the density profile of a line of sight is smoothed, we find the radius
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of the steepest logarithmic slope, rgteep-

We choose to use a Savitzky-Golay filter because it is effective at removing small scale
noise and because it generally doesn’t move the location of the point of steepest slope, even
for large window sizes.

We find that the best results are obtained for Ngq ~ Ny, /4 to Ny, /2, as this allows the
filter to remove even moderately large features, such as subhalos. The exact value chosen is
given in Table 4.2.4. For most lines of sight, the density drop associated with crossing the
splashback shell is the most prominent feature in the profile, and thus such an aggressive
filter window does not remove it. The smoothing process will flatten the slope at rsteep, but
the actual value of the slope is not used by our algorithm.

This process is illustrated in Figure 4.1(b), which shows the line of sight highlighted
in Figure 4.1(a). The black curve shows the raw profile after the density estimation step,
the red curve shows the profile after applying a Savitzky-Golay filter with a window size
of Nsg = Npin/2. The vertical arrow shows rgteep for the smoothed profile. This figure
demonstrates several key points. First, the discontinuity due the splashback shell is very
strong. Second, the unsmoothed profile contains several points with slopes steeper than the
splashback discontinuity due to particle noise. Lastly, the location of rgteep has not moved
significantly between the smoothed and unsmoothed profiles.

As mentioned in section 4.2.2 (see also Appendix 4.6.1), the density estimation step of our
algorithm requires that lines of sight are confined to a set of planes. The locations of rgteep, for
256 such lines of sight are shown in Figure 4.1(c). This illustrates that, generally, the values
of rgteep found by this step are in good agreement with the visual appearance of density
discontinuities. However, some of the density discontinuities are clearly not associated with
the halo itself but are due to nearby filaments or nearby halos. Although this happens
in the minority of lines of sight, these can bias the shape of the inferred splashback shell
significantly. Therefore, the algorithm makes an additional step in which lines of sight for

which the steepest slope points are likely associated with other halos and filaments are pruned
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from the set.

Filtering Out Problematic Points of Steepest Slope

We remove lines of sight with points of steepest slope that are likely to be associated with
other halos and filaments candidate points through an additional filtering step. Filaments
have their own elongated splashback shells which are created by the apocenters of matter
accreted onto filaments from surrounding void regions. The density jumps associated with
these surfaces are comparable to those found around halos. Therefore, it is difficult to
differentiate between steepest slope points caused by central halos splashbacks and points
caused by filament splashbacks using only the information contained in a single line of sight
profile. We experimented with a number of different heuristic approaches of this type and
found that they generally require extensive fine-tuning and are, at best, modestly effective
at removing filament points.

To classify the splashback points, we consider all of the splashback points within a given
plane simultaneously and filter out points which deviate too sharply from the locations of
their neighbors. We do this by heuristically constructing a filtering loop, a curve which
smoothly passes close to most of the plane’s candidate points but which is too stiff to
accommodate sharp changes in radius. We then remove points which are too far away from
the filtering loop.

Our filtering algorithm employs a spline curve to approximate the shape of the splashback
in a given slice and is described in detail in Appendix 4.6.2. The algorithm introduces two
new free parameters, 1, which controls the strictness of the filter and the “stiffness” of the
loop, and Nyee, which affects the angular resolution of the filtering loop. Larger values of n
will remove outliers more aggressively, but would also likely prune a larger number of points
associated with halo. Qualitatively, points which come from features that deviate by more
than Rmax/n from neighboring regions on angular scales of 27 /2MVrec will be removed from

the set of lines of sight.
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Fitting the Shape of the Splashback Shell

After the filtering step, we fit the remaining points using a family of spheroidal functions
introduced by Penna and Dines [2007, hereafter “Penna-Dines functions”]. A Penna-Dines
function of order P is defined by 2P? coefficients, Cijk> where ¢ and j range from 0 to P —1
and k ranges from 0 to 1. The shape of a shell with a particular set of coefficients is given

by the function
P-1 1

r(¢,0) = Z Z Cijk sin't7 6 cos® 0 sind ¢ cos’ ¢, (4.2)

i,j=0 k=0
where @ is the polar angle and ¢ is the azimuthal angle. Penna-Dines functions are similar
to spherical harmonics in that adding higher order terms allows for the representation of
increasingly aspherical shells. We choose to fit these functions because their low order forms
are qualitatively similar to the shapes found in splashback shells (this class of functions is
specifically designed to represent lobed shapes) and because an optimal fit can be found
through the relatively simple and efficient pseudoinverse matrix operation.

Namely, for a set of N points with coordinates given by 7, = /22 + y2 + 22, the best

fit coefficients can be computed by the operation
2P—13,T T\—1
Cijk =Tn M7 (MM”)". (4.3)

Here, T%P —1 is a height N vector containing the radii of every point and M is a N x 2P2
matrix with elements

OP—1—i—j—k i j k
M ipigp2n =Tn T YnZn- (4.4)

4.2.8 Definitions of Basic Splashback Shell Properties

While a full set of Penna-Dines coefficients is necessary for computing subhalo/particle mem-
bership and for visualizing shells, it is also useful to encapsulate key properties of the splash-

back shells in a few representative parameters. To this end, we use a set of properties which
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parameterize the shape of the splashback shells: Rgp, the volume-equivalent splashback ra-
dius; psp, the net density of shell; agp, bsp, and csp, the inertia tensor equivalent major axes

of the shell; Egp, the shell ellipticity; and Agp, the shell asphericity:

3Vip ) /2
Ryp = ( 4;13) (4.5)
Psp = Msp/vsp (4 6)
afsp, bsp, CSp = AXeS([m, [y, [Z> (47)
Q
Eop = % — (4.8)
Ss
Ap=1— —2 4.9
Sp (3677‘/5%)1/3 ( )

Here, Vgp is the volume enclosed by the shell, Mg, is the mass of all the particles contained
within the shell, Ssp is the surface area of the shell, and Axes(/y, Iy, 1) is a function which
computes the axes of a uniform density ellipsoidal shell which has the moments of inertia [,
Iy, and I,. The construction of this function is described in Appendix 4.6.6. In Equation 4.8,
we take the standard convention that agp is the major axis and cgp is the minor axis.

FEgp is defined such that it is zero for a sphere and increases for increasingly elliptical
shells. Agyp, is defined such that it is zero for a sphere and increases for increasingly aspherical
shells. Our numerical experiments with randomly-shaped shells indicate that it is probable

that prolate ellipsoids are the surfaces which minimize Agp for a given value of Egp,.

4.2.4  Summary of the Algorithm Parameters

The splashback shell finding algorithm described above has 11 free parameters. The pa-
rameters and their adopted fiducial values in in SHELLFISH are summarized in Table 4.2.4.
Fortunately, there are three empirical properties of this parameter family, which allow for
a fairly straightforward way of choosing their values. First, the shapes of the final splash-

back shells depend only weakly on most of these parameters. Second, the optimal set of
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Figure 4.2: Density slices of six halos are shown within boxes of size 5 Roggm along with cross-
sections of each halo’s splashback shell identified by our algorithm (white lines) and cross-
sections of spheres with the same volume as the splashback shell (black circles). The six halos
were picked randomly by sampling halos uniformly from within in the log Mogom — I'DK14
plane in our L0063 simulation box. Note that Figure 4.2(d) shows the halo used to illustrate
our algorithm in Figure 4.1.
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Parameter Definition Value Optimization Method
Rin §4.2.2 0.3 Ro2gom A
Rmax §4.2.2 3 Rooom A

Ryernel §4.2.2 0.2 Rogom 64.6.4
Pbg §4.2.2 0.5 pm B
Nlanes §4.2.2 100 §4.6.5
Niog §4.2.2 256 A
Ny §4.2.2 256 A
Nsg §4.2.2 121 B & §4.2.2
n §4.6.2 10 C
Nrec §4.6.2 3 C
P §4.2.2 3 C

Table 4.2: The first column gives the parameter name, the second column gives the section
where we define this parameter, the third column is the adopted fiducial value of each
parameter within SHELLFISH, and the fourth column indicates the method used to identify
the fiducial value. Methods A, B, and C are described in Appendix 4.6.3.

parameters does not appear to change for different halo masses or different halo accretion

rates. Third, the optimal value of a particular parameter generally does not change as other

parameters are changed or can be easily rescaled to reflect such changes.

A discussion on the procedure we use for choosing specific parameter values can be found

in the Appendix 4.6.3.

4.3 Tests

In this section we present several tests of the algorithm described in the previous section.

The parameters of the algorithm have been set to the default values listed in Table 4.2.4.

The first basic test is a qualitative visual assessment of the correctness of the splashback

shells identified by SHELLFISH.

We find that, in general, the identified shells trace the sharp discontinuities in the density

field around halos. We illustrate this for six randomly-selected example halos in Figure 4.2,
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Figure 4.3: Convergence tests for the properties of splashback shells defined in Equation 4.5 -
Equation 4.9 : enclosed mass, Mgp, radius of the sphere of equivalent radius, Rsp, ellipticity,
Egp, and asphericity, Agp as a function of the number of dark matter particles within Rogom
Nogom- The vertical dashed line corresponds to Noggm = 50,000, the lower limit used for
the analysis in this chapter, and the shaded vertical region indicates bins which contain two
or fewer halos and are therefore dominated by individual halo error. Within the converged
particle count range there is typically a scatter of ~ 2% about the median relation, which
has not been plotted here for visual clarity. See section 4.3 for details and discussion on this
figure.
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where the white curves show the cross-sections of the identified shells and the black circles
show cross-sections of spheres with radii Rsp for those halos. Here Rgp, corresponds to the
volume-equivalent definition given in Equation 4.5. While we found that this type of simple
visual inspection proved to be very effective in identifying ineffective filtering algorithms and
parameter sets, it is necessarily a qualitative test and cannot provide a quantitative error
estimate.

In our second test, we compare the values of Rg, measured by SHELLFISH to halos which
have an unambiguous steepening in their profiles relative to the asymptotic high-R NFW
slope due to the splashback shell. SHELLFISH is unambiguously incorrect for any halos where
it measures Rgp outside of this steepening region. The difficulty with this test is that is that
it is hard to programmatically detect the extent of this steepening region in a robust way.
Additionally, large substructure and dense filaments can create steepening regions in the
outskirts of host halos which appears similar to the steepening caused by the splashback
shell, but occurs in the wrong locations. For these reasons, we resort to manual inspection
of halos to perform this test.

We inspected the outer profiles of roughly 5,000 z = 0 halos with Noggy, > 50,000 and
identified 906 which had a clear steepening of the density profile in their outskirts and did
not have a significant subhalo presence in that region. We then identified the starting and
ending radii that bracketed the steepening region of each of these halos, Rgtart and Rep,
by eye. We then compared these radial ranges to Rgp calculated through Equation 4.5. We
found that only four halos had Rsp measurements outside of the ranges measured from the
profiles, corresponding to a minimum failure rate of ~ 0.5%. Rgtart and Rg,q can span a
wide range of radii (see, e.g., Figure 4.7(a) and Figure 4.16(a)), so this test is not effective at
catching ~ 20% errors. This test is chiefly sensitive to catastrophic failures, which we found
could be as common as 25% for poorly constructed filtering algorithms or improperly set
parameters. Figure 4.4 shows an example of a typical catastrophic failure. In this case, there

is no strong feature in the surrounding density field which forces SHELLFISH to generate an
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Figure 4.4: A density slice around one of the halos which fails the second test described in
section 4.3 (i.e. a “catastrophic failure”). The image dimensions and the meanings of the
white and black curves are identical to those in Figure 4.2. We found that these halos can be
very common for improperly calibrated filtering algorithms, but when the parameters shown
in Table 4.2.4 are used, these halos make up only ~ 0.5% of our total halo population.
unphysical shell. Achieving a low failure rate on this test is a necessary, but not sufficient,
condition for any accurate splashback-measuring code.

As a third test, we also carried out a convergence study of the shell properties defined
in Equations 4.5 - 4.9 with respect to the number of dark matter particles within a halo,
Nogom- These were performed by generating a representative sample of halos and fitting
two Penna-Dines shells to each of them. The first shell is calculated using only one eighth
of the halo’s particles and the second is calculated using all the halo’s particles. We use the
notation that the number of particles in subsampled halos is Nogon, /8 = Ngyp, and that the
number of particles in fully sampled halos is Noggm = Npy- The results of this test are
shown in Figure 4.3.

Figure 4.3 shows that for Noggy, > 50,000, the systematic error due to particle count in
Mgy, is at the per cent to sub per cent level, and that the error in Rgp, 1+ Egp, and 1+ Agp
in the same range is at the few per cent level. The shaded region in Figure 4.3 indicates

bins in which our simulation suite produced two or fewer halos. Figure 4.3 indicates that to

identify splashback shells reliably, halos need to be resolved with at least 5 x 10 particles.

61



It is not clear to what extent there is a second order trend in radius after the first order
convergence at Noggm. It would not be unreasonable to see a trend of this type: as Nogom
increases, SHELLFISH may be able to resolve and fit smaller scale features in halos which
could result in small changes in volume. For this reason, we cannot yet rule out that there

is a systematic < 5% trend with mass for Rygp.

4.3.1 Comparison to Particle Trajectories

As a fourth test of the algorithm, we inspect the trajectories of individual particles near the
splashback shell. Particles near the correctly identified splashback shells can be expected to
be either infalling for the first time or to be at the apocenter of their first orbit. Trajectories
of the infalling particles should be roughly perpendicular to the shell locally and should
not show any deflection when crossing the shell. The trajectories of the particles that have
orbited through the halo should show a sharp turnaround at the shell location. The relative
fractions of particles of these two types will depend on the mass accretion rate of each specific
halo, but the apocenters of particles of the second type should coincide with the identified
splashback shell. Given that our algorithm does not use any information about particles
trajectory, this test is a useful independent check on whether our algorithm identifies shells
corresponding to the actual outermost apocenters of particle orbits.

To perform this test on a target halo, we first use SHELLFISH to identify a splashback
shell around the halo at some redshift z; > 0. We then find all particles within some small
distance ¢ of this shell and track their trajectories through a redshift range zg < 21 < 29.

The results of such a test are shown for four representative clusters with Mooy, =~
1014p1 Mg from the L0250 simulation in Figure 4.5, where we used 6 = Roggm /50, 29 =
0.32, z1 = 0.13, and z9 = 0. The location of the particles at z = 21 is shown by red points.
The trajectories of particles from zg to z1 are shown as red curves and the trajectories from
z1 to z9 are shown as yellow curves. Infalling particles have red curves pointing outside of

the halo and yellow curves pointing inside the halo. Particles moving outwards have reversed
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colors: yellow curves pointing to the outside and red curves pointing to the inside. Particles
at their apocenters will have both curves pointing to the inside.

Figure 4.5 shows that for the cluster-sized halos shown, most particles around the splash-
back shell are infalling, as can be expected for rapidly accreting halos. At the same time,
there is a fraction of particles that exhibit a sharp turnaround near the identified splashback
shell: i.e., the apocenters of their orbit coincide with the splashback shell identified from the
density field.

Figure 4.5(c) does show several trajectories in the southern portion of the halo which
travel outside the identified shell. It is not clear whether this is because SHELLFISH was
unable to identify the correct splashback shell due to the high-density filament or whether
those particles were perturbed from their orbits in later time steps by the nearby subhalo.
Such trajectories, however, are a small fraction of the total.

We have carried out such visual inspection of trajectories for a large number of halos
and found results qualitatively similar to those shown in Figure 4.5. This indicates that
our algorithm is reliably picking out splashback shells that coincide with the most distant
apocenters of particle orbits. This analysis has been confirmed by comparison with an
alternative splashback-measuring code, SPARTA, which showed that the radii measured by
SHELLFISH correspond to high-percentile moments of a halo’s apocenter distribution [Diemer

et al., 2017].

4.4 Results

4.4.1 Sample Selection

To analyze the properties of splashback shells identified using our algorithm we construct
a sample of halos drawn from the halo catalogs of all the simulations listed in Table 4.2.1.
Based on the convergence test results reported in section 4.3 (see Figure 4.3), we select

halos with Nogoy, > 50,000, so that shell properties are converged to the level < 5%. We
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Figure 4.5: Trajectories for particles during the redshift interval z € [0.32, 0] near the splash-
back shell of four clusters from the L0250 simulation with Maggy, =~ 1014471 M, identified
at z; = 0.13. Each figure shows a slice through the density field in a region centered on the
halo with a width of 5Rogg, and a depth of Raoggm /5. Every particle in this slice located
within Rogom /50 of the splashback shell identified by SHELLFISH at z; = 0.13 is shown as a
red point. The trajectory of each particle during the redshift interval [0.31,0.13] is shown by
red line, while the trajectory during the redshift interval [0.13,0] is shown by yellow lines.
See section 4.3.1 for details.

64



also restrict the maximum mass of halos drawn from the smaller box simulations so that
the I'pk4 distribution of the largest halos in those simulations is similar to that of halos
of the same mass in the larger boxes. This limit is imposed because small box size may
limit the mass accretion time of the largest halos, as evolution becomes nonlinear on scales
comparable to the box size. The mass ranges sampled by each box are given in Table 4.2.1.

With these mass limits in place, we construct the halo sample for analysis by subsampling
all host halos within the mass range of each box in such a way as to obtain a uniform
distribution of halos in both log Mygg, and I'pgyg. This procedure is repeated for z = 0,
z=10.5, z=1, and z = 2, resulting in a total sample sizes of 1095, 1198, 846, and 467 halos,

respectively.

4.4.2  Comparison With Stacked Radial Density Profiles

Figure 4.6 presents a comparison between the distribution of Rsp/Ragom values measured
by SHELLFISH and the predictions of stacked profile analysis as a function of accretion rate.
In particular, we choose to compare against the I'pg4 vs. Rsp/Rooom fit reported in More
et al. [2015]. We have chosen z = 0.5 for illustration in this figure, because the z = 0.5 halo
sample contains a good mix of well-converged, high particle-count halos which become more
abundant as redshift decreases, and halos with large accretion rates, which become more
abundant as redshift increases.

The figure shows that at I'pi14 < 1.5 our algorithm estimates splashback radii similar to
those from stacked profiles, while for I'pk14 2 1.5, SHELLFISH estimates progressively larger
Rgp values compared to the values from the stacked profiles. The discrepancy in Rsp/Ro0om
is ~ 30% for I'pkq4 ~ 4. This discrepancy exists at all redshifts.

Given that the tests presented in section 4.3 indicate that our code identifies splashback
shells reliably and estimates their properties to better than 5% accuracy at the resolution
level shown in Figure 4.6, it is highly unlikely that the discrepancy is due to any issue of our

algorithm. In particular, a systematic overestimation of Rgp by 30% would be immediately
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Figure 4.6: Comparison between the distribution of Rgsp/Rogom values measured by SHELL-
FISH to the prediction of stacked density profile analysis at z = 0.5. The black curve shows
the best fit to location of steepest slope in the stacked density profiles as a function of ac-
cretion rate, 'piy4. We use the parameterization for this fit reported in More et al. [2015].
The blue points show SHELLFISH Rgp/R2g0m measurements for individual halos, the blue
curve shows the median measurement, and the blue contours show the 68% envelope. The
SHELLFISH curve differs from stacked profiles in both amplitude and shape, becoming ~30%
larger for halos with I'pii4 > 4. A qualitatively similar difference can be seen at all red-
shifts. We argue that this difference is due to stacked profiles splashback measurements
being artificially biased inwards by massive subhalos in section 4.4.2.
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apparent in the visual comparison of the identified splashback shells and the underlying
density field. Instead, we find a good agreement in such comparisons. Additionally, we
were able to independently reproduce the results of More et al. [2015] using the halo sample
described in section 4.4.1. Thus, the discrepancy shown in in Figure 4.6 is the real difference
between the two methods.

To better understand the origin of this difference, we visually inspected the radial density
profiles of all the halos in our sample and classified them into one of three qualitative classes.
First, we flagged every halo as either containing a visually distinct steepening region in its
outskirts or as containing no such region. Halos of the latter type we classify as “featureless”-
type profiles. The red curve in Figure 4.7 is an example of such a halo.

The remaining halos contain distinct regions in the density profiles where the logarithmic
slope steepens considerably over a limited range of radii. For these halos we visually identify
the starting radii, Rstart, and ending radii, Re,q of their respective steepening regions.
We find that almost all such halos separate neatly into one of two classes: 1) halos which
have relatively sharp and narrow steepening regions that closely correspond to the radial
range of the splashback shell found by SHELLFISH for that halo; and 2) halos which have a
relatively shallow and wide steepening region with an Rgap¢ value significantly smaller than
the minimum radius of the shell found by SHELLFISH. We refer to halos of the first type as
“short”-type profiles and halos of the second type as “long”-type profiles, respectively. The
blue and yellow curves in Figure 4.7 are examples of these two types of profiles, respectively.
The number of halos is roughly similar in the three classes of “featureless”, “short”, and
“long” profile types, but the exact fractions of halos in each class changes with accretion
rate and with mass.

We find that when we derive splashback radii from the stacked density profiles using only
halos of the short and featureless types, the difference from the median Ry, measured by
SHELLFISH decreases to < 5% at high I'pki4. This is not surprising, given that we noted

that the steepening range in the short-type profiles is consistent with the radial range of the
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splashback shells derived by SHELLFISH, but demonstrates that the difference in Rgp is due
almost entirely to the effect of the halos with the long-type profiles on the stacked density
profile.

Our analysis shows that the steepening region in the density profiles of long-type halos
is not caused by the splashback shell, but by the presence of massive subhalos. Specifically,
visual inspection of the density fields of long-type halos generally reveals that no portion
of the splashback shell can be found as far inwards as Rgtart for these halos. Instead, we
almost always find that a massive subhalo is present at R ~ Rgtart for these halos. Thus, the
steepening region is associated with the presence of subhalo, not the splashback. Given that
subhalos in different halos with the same accretion rate will be located at different R, the
combined effect of the massive subhalos on the stacked profile is to “wash out” the signature
of the splashback shell and to bias the start of the steepening region to smaller radii.

Thus, halos with no massive subhalos in the outskirts have the short-type profiles, while
those that do have such subhalos have long-type profiles. Halos that either have large
neighboring halos outside their splashback shells or which exist in dense filaments have the
steepening due to splashback shell erased completely and thus have featureless-type profiles.
The expectation is then that if contribution of massive subhalos is removed from the density
profiles the Ry}, derived from the stacked density profiles should be consistent with the values

estimated by SHELLFISH. We demonstrate that this is the case in the next subsection.

4.4.8  Angular Median Density Profiles of Halos

There are many possible ways of mitigating the contribution of subhalos to the density
profiles of their host halos. We choose one of the simplest methods for doing this, one which
does not rely on the availability of robust subhalo catalogs, and which could, in principle, be
adapted for use on observed galaxy clusters. The idea is to construct density profiles using
the median estimate of density in each radial shell instead of the mean density. A similar

approach has been used in the analysis of the gas distribution in clusters [Zhuravleva et al.,
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Figure 4.7: Comparison between spherically averaged radial density profiles (Figure 4.7(a))
and the angular median density profiles described in 4.4.3 (Figure 4.7(b)). The top panels
show density and the bottom panels show logarithmic slope after the density profiles have
been smoothed with a fourth-order Savitzky-Golay filter with smoothing windows a third
of a decade wide. Both density and slope profiles have had their radii normalized by Rgp
as measured by SHELLFISH. The three halos are chosen to be representative of the three
qualitative classes of halo profiles we identified in section 4.4.2. Because angular median
profiles are designed to remove interfering substructure, they have deeper and more well-
defined points of steepest slope. The level of agreement between the radius of steepest
slope of the angular median profiles shown here and the Rgp values derived by SHELLFISH
is typical.
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2013].

Namely, we split each radial shell of the density profile into N solid angle segments,
e.g., using a two-hemisphere variation on the algorithm described by Gringorten and Yepez
[1992], or the HEALPix pixelation algorithm [Gorski et al., 2005]. We then estimate density,
pi(r), for each segment ¢ and construct the halo density profile by taking the median of
these densities in each radial shell, p;.q(r) = med [p;(r)]. This approach is based on the
basic intuition that subhalos are generally much smaller in extent than the host and thus
contribute to a fraction of the solid angle in a given radial shell, while most of the solid
angle will be dominated by the diffuse matter of the host halo. The median density then will
estimate the density of that diffuse component and will be largely insensitive to the outlier
solid angle segments associated with massive subhalos.

Figure 4.7 shows comparisons between usual spherically averaged mean density profiles,
p(r), and angular median density profiles p,q(r) for three representative halos of the dif-
ferent classes described in section 4.4.2. The comparison of the profiles in the two panels
of the figure shows that the angular median profiles of the halos are much more similar to
each other than the mean profile. Unlike the mean density profiles, which have very different
shapes, the angular median density profiles all behave similarly: there is a narrow, sharp
steepening region in the logarithmic profile centered on the radius that SHELLFISH reports
as Rsp. Thus, the diversity of profile types noted in 4.4.2 is largely absent for profiles of this
type. We also note that the point of steepest slope in angular median profiles is significantly
sharper than it is in mean profiles. Thus the signature of the splashback shell is easier to
detect when halos are analyzed in this way.

To compare Ry, gpepl measured by SHELLFISH to Rgp peq derived from the individual
angular median profiles, we follow the procedure described above for every halo in the sample
described in section 4.4.1. We use 50 solid angle segments per halo with 30 logarithmically-
distributed radial bins per decade. This relatively coarse spacing is needed to make up for the

fifty-fold loss in number statistics and has a non-trivial impact on the maximum fidelity of our
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angular median profiles: the width of every bin is 8% of the radius at which is occurs. Once
the median profile is computed from these segments, we apply a Savitzky-Golay smoothing
filter with a window size comparable to the characteristic radial width of the regions where
profile slope steepens quickly. We set the window size to a 0.33 dex with the caveat that other
reasonable choices, such as a sixth of half of dex, can induce systematic changes to the mean
Rgp med of a halo population of ~ 5%. Thus, the population statistics on Ry}, eq cannot be
trusted to accuracies smaller than 5% regardless of any additional statistical error bars, and
that individual Rgp, eq values measured this way cannot be measured more accurately than
13%, regardless of additional profile noise. We leave more nuanced accuracy analysis on this
method to a future work, but note that this level of accuracy is sufficient for our purposes,
which is merely to test whether reducing effect of subhalos on the radial profiles results in
Rgp estimates which are qualitatively consistent with the results of SHELLFISH.

We compare the Mogom and I'pg4 trends between Rg, shen and Bgp eq for our 2 = 0.5
halo sample in Figure 4.8 and see fairly good agreement. The high I'pk14 disagreement has
dropped from = 30% to =~ 5%. This is consistent with the known systematic uncertainties
in both methods and confirms that the high ['pk14 disagreement with the estimates of the
splashback radius from the stacked mean density profiles is due to the bias introduced into
these profiles by massive subhalos.

At the same time, at I'pgyq S 0.5 there is &~ 15% disagreement between Rgp derived
from the stacked angular median profiles and the median measurements of SHELLFISH. In
principle, this difference could be caused by either the angular median profile method or
SHELLFISH, but comparison against another splashback-measuring code, SPARTA, which ex-
plicitly tracks particle orbits to find their apocenters, shows tight agreement with SHELLFISH
at I'pkq4 > 0.5 and a level of discrepancy comparable to that seen for angular median pro-
files at I'pg14 < 0.5. An extended discussion on how these two methods compare against
one another can be found in Diemer et al. [2017].

It is not surprising that the splashback shell is difficult to measure at these accretion rates.
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Figure 4.8: Comparison between the mean Rgp/Ragom values measured by SHELLFISH and
by the angular median profile method described in section 4.4.3. The left panel shows
measurements made by the two methods for different I'pgq4 and Mgy bins at z = 0.5.
Shellfish measurements are shown as circles on the left side of their respective I'pg 4 bins,
and angular median profile measurements are shown as triangles on the right side of their
respective I'pyq4 bins. Error bars represent only the bootstrapped error on the mean and
do not account for known systematic uncertainty in the angular median profile method (see
section 4.4.3). The right panel shows the median value of Rgpelifish/ Rmedian — 1, for every
halo in our sample at z = 0, 0.5, 1, and 2. The dashed blue lines show the shape of this curve
when the angular median profile’s Savitzky-Golay window width is varied to the edges of its
physically reasonable value range to give a sense of the systematic variability in this method
(see section 4.4.3). These two figures illustrate that when large subhalos are removed from
the density profiles of halos, the location of the point of steepest slope becomes consistent
with the value of Rgp, measured by SHELLFISH. They also illustrate that there is a non-trivial
disagreement between the two methods for very small I'pyq4.
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At z = 0, pseudo-evolution causes static NF'W halos with cyj, 2 7 to report I'pgig > 0.5
purely due to the cosmological evolution of py, [Diemer et al., 2013b]. This means that the
majority of halos with accretion rates this low must be actively losing particles in order to
offset their illusory accretion rates caused by pseudo-evolution. This particle loss is typically
caused by dense environments, either because the halo is embedded in a massive filament
feeding a cluster or because it is about to merge with a larger halo.

For this reason we believe that our algorithm should not be used to measure halos with
I'pr1a < 0.5 unless 2 15%-level systematic errors are acceptable. We exclude such halos
from all subsequent analysis. This is an aggressive cut for Milky Way-sized halos at low
redshifts, where 20% of halos have I'pky4 < 0.5. The cut is less severe for halos in all other
mass bins and at all other redshifts, affecting less than 5% of halos in all such parameter

slices. Clusters and high redshift halos in particular are almost completely unaffected by

this cutoff.

4.4.4  The Relationship Between Mass, Accretion Rate, and Splashback

Radius

One of the key results obtained by previous analyses of splashback shells using stacked radial
density profiles [Diemer and Kravtsov, 2014, More et al., 2015, 2016, Adhikari et al., 2016]
is the dependence of the splashback radius in units of the Roggy, on the mass accretion
rate I'pg14 (see Equation 3.14): halos with larger accretion rates have smaller values of
Rsp/Rogom = J;’Sp. In this section we present the result of fits to Rsp using the measurements
from SHELLFISH.

Specifically, we fit the following log-normal distribution to Rsp as a function of vogom,
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Figure 4.9: Comparison between our fit and SHELLFISH’s measurements of Rsp/Rooom =
Rsp(FDKMa 200m, #). The thick lines represent the median value of Rgp/Rogom in each
I'pKk14 bin and the shaded regions indicate the 68% errors on those medians, as determined
by bootstrapping. The thin lines show the median of the distribution given by Equations
4.10 -4.12 evaluated at the median voggy, value within the corresponding roggy bin.
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Figure 4.10: Comparison between our fit and SHELLFISH’s measurements for Msp,/Mogom =
MSP(FDK147 V9200m;, 2). The visualization scheme is identical to the one used in Figure 4.10,
with the thin line corresponding to the median of the distribution given by Equations 4.13
and 4.14. Note that unlike the fit displayed in Figure 4.9, our Msp has no v9qo, dependence,
so only a single thin line is plotted. There are several important caveats to this fit, which
we discuss in section 4.4.5.
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Figure 4.11: Comparison between the ]\Z/Sp median and 68% contours for our data and our
fit given by Equations 4.13 and 4.14 at z = 0. This Figure was made to emphasize the
weaknesses in our Mgp fit and shows an ~ 2% — 4% overestimation of the median at high
I'pk14 and a similar overestimation of the logarithmic scatter, ogey. An extended discussion
of this Figure can be found in section 4.4.5.
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I'pk14s and

P(Rgp) o< exp(—log?(Rsp/ Ried) /2030y )+ (4.10)
Ried = (RoSkm + R1) exp (ol'pki14) + A, (4.11)
a = 1902, + 11 Qm + 12 + Evaom.- (4.12)

Here Ry, Ry, A, &, ng, 1, and 19 are fit parameters.

As discussed above, our sample only includes halos with I'pkq4 > 0.5. We fit the func-
tional form given by Equations 4.10-4.12 using an implementation of the affine-invariant
Markov Chain Monte Carlo sampling algorithm of Goodman and Weare [2010]. We also
adopt a Heaviside prior on the logarithmic scatter, 04ex, to prevent it from becoming non-
positive.

We find that the best fit parameters are

Ry = 0.2181, no = —0.1742,

Ry = 0.4996, n = 0.3386,
A = 0.8533, ne = —0.1929,
£ = —0.04668, Odox = 0.046.

The resulting function is plotted against our data in Figure 4.9.

It is interesting that the radii estimated by SHELLFISH exhibit a strong dependence on
both mass accretion rate and peak height. This trend can also be seen in other methods
for measuring individual splashback shells around halos, such as the median angular pro-
file method described in section 4.4.3 and the apocenter-based splashback-measuring code
SPARTA [Diemer et al., 2017]. The trend cannot be attributed to convergence trends because
all halos used in the sample have Naggy above the convergence limit of 5 x 10% found in

section 4.3 and because the mass bounds given in Table 4.2.1 restrict the halos in our sample
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to a single decade in particle count.

Previous estimates from stacked density profiles only found a strong dependence on
I'DKi14, while a v9g0y, dependence was either not apparent or weak [e.g., More et al., 2015].
The vogom dependence is also not predicted in the collapse models of isolated peaks [e.g.,
Adhikari et al., 2014], even though they successfully predict a I'pi14 dependence. The origin
of the 90, dependence and the seeming discrepancy with the collapse model is not clear.
Additionally, although we have made an empirical argument that stacked profiles are biased
by massive subhalos, we do not yet propose a physical picture for why this bias should also

erase or decrease trends with v9g0p,-

4.4.5 Splashback Shell Masses

In contrast to overdensity-based halo definitions, Msp and Rgp are independent (albeit cor-
related) quantities. For this reason we do not fit the same functional form to both R, and
Mgp,. We fit the following log-normal distribution to Msp = Msp/Magom as a function of

FDK14 and Qmi

P<Msp> oc exp(— 10g%o(Msp/Mmed)/20§eX), (4.13)

Tpkig | “08m e
Mpea = (Mo + M) < )

(4.14)
Fpivot

Here I'piyor = 3 is a characteristic pivot value, and My, My, ap, and oy are fit parameters.

Using the same procedure described in section 4.4.4 we obtain the parameters

Ap = 0.192 ag = —0.0781
Ay =1.072 a; = —0.0284
O o = 0.054
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The median of this fit is shown in Figure 4.10. Note that unlike our fit to Rsp, we do not
model Msp as having a v9q0, dependence because there is not strong evidence for such a
trend in our data. This contrasts with the results of SPARTA, which did find a strong 990,
trend [Diemer et al., 2017]. Tt is currently not clear whether higher quality data would reveal
a small mass trend in the SHELLFISH data as well.

The left panel of Figure 4.10 shows a deviation between our fit and SHELLFISH'S mea-
surements at high I'pk4 for 2 = 0. We investigate this further in Figure 4.11 which shows
the median and 68% contours of the Msp distribution at z = 0. This Figure shows that al-
though the median of our data is well approximated by a power law, our Bayesian fit reports
a shallower slope. This results in a ~ 2% — 4% overestimation of ]\7[Sp at high accretion rates
for this redshift.

This overestimation is caused by the fact that at high I'pkg Msp follows an skewed
log-normal distribution. Since our model assumes a log-normal distribution, our fit’s median
is pulled high relative to our data’s median. The offset between the two medians also leads
to an overestimation of the logarithmic scatter, o4ox by a comparable amount.

Despite this, we deliberately choose not to model the skew for three reasons. The first
reason is simplicity: our experiments with explicitly modeling the skew show that it has non-
linear dependencies on I'pk4 and z. The second reason is that this reduction in simplicity
would result in an increase in accuracy for only a small number of halos: high accreting halos
at z = 0 are rare. The third reason is that this effect is comparable to our stated systematic
uncertainty in the radii and masses reported by SHELLFISH, so any subsequent analysis
which would reach a qualitatively different conclusion from an improvement in fit modeling
is not respecting the known uncertainty in SHELLFISH shells. Instead, we choose to use an
extremely simple model - a power law with log-normal residuals and a linear dependence on
Q- and leave more precise modeling to future work.

The skew seen in the low redshift, high I'piq4 has a simple explanation. The scatter in

Msp has two sources: the first is the variation in shell sizes which also causes the scatter in
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Rsp, the second is the presence or non-presence of high mass subhalos. Since halos with high
accretion rates are more likely to have high mass subhalos than halos with low accretion
rates, the second effect is particularly important for them. If a halo has a massive subhalo
outside of Rogony, but inside its splashback shell, ]\Zfsp is scattered high. If a halo has a massive
subhalo inside Rogom, both Mogoy, and Mgy increase, so Msp scatters towards 1. When the
median of the of the Msp distribution is close to 1, this means that the presence of massive
subhalos has the effect of reducing down scatter and increasing upscatter relative to what

we would expect from variation in shell sizes alone.

4.4.6  Splashback Shell Overdensities

We model the distribution of Agp, = 200]\7[Sp / Rogom by taking the ratios of our mass fit
(Equations 4.13 and 4.14) and our radius fit (Equations 4.10 - 4.12). Because our Agp
model is derived from our Msp fit, it is subject to the same caveats discussed in section
4.4.5. However, because the dynamic range of Agp is larger than that of Msp, the affect of
a few-percent disparity in masses is minimal.

This ratio is shown in Figure 4.12. Median overdensities range between ~ 70 and ~ 200
with strong dependencies on peak height, accretion rate, and redshift. The most important
consequence of these relations is that there is not a single classical overdensity boundary

which corresponds to to the splashback shell.

4.4.7  Splashback Shell Shapes

We also investigate the shapes of splashback shells using the asphericity, Agp, and ellipticity,
Egp, parameters defined in Equations 4.9 and 4.8, respectively. A plot of these two quantities
is shown in Figure 4.13. The shaded blue region shows the values of these parameters for
ellipsoids with different axis ratios. The fact that As, and Egp for all splashback shells
lie above the shaded regions means that the shells are significantly more aspherical than

ellipsoids.
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Figure 4.12: Comparison between our fits and SHELLFISH’s measurements for Ay, =
200Msp/Rooom using the ratio of our mass and radius fits. The visualization scheme is

identical to the one used in Figure 4.10, with the thin line corresponding to the median of
the distribution given by Equations 4.13 and 4.14. There are several important caveats to
this fit, which we discuss in section 4.4.5.

We perform checks for correlation between Asp, Esp and each of Maogom, I'pri4, Rsp,
and redshift, but find no evidence of such correlations.

We also calculated the angle 8o between the major axis of a halo’s splashback shell
and the major axis of the underlying dark matter distribution, as reported by the Rockstar
halo finder [Behroozi et al., 2013a]. In Figure 4.14 we show the correlation function for the
angle between these two axes, 5. We find anti-correlation at high values of A and a high
degree of correlation at low values of 6, indicating that splashback shells are preferentially
aligned with major axis of the central dark matter distribution. This is consistent with
earlier studies, which have shown that the axis ratios of the matter distribution near the

centers of halos tend to be roughly aligned with the axis ratios near the outskirts of halos

[Jing and Suto, 2002].
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Figure 4.13: The asphericity parameter, Agp, versus the ellipticity parameter, Egsp (defined
in Equations. 4.9 and Equation 4.8, respectively) for our z = 0 halo sample. The blue
shaded region shows the range of values of these quantities for ellipsoids with different axis
ratios. The fact that Agp and Egp of the splashback shells lie above the shaded regions means
that the shells have significantly higher surface areas than ellipsoids of similar ellipticity and
volume.
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Figure 4.14: The correlation function, £(6a), between the major axes of splashback shells
and the major axes of total dark matter distribution. The dashed black line shows £(6A) = 0,
and indicates the level of correlation expected for random alignment.
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4.5 Summary and Conclusions

In this chapter we presented a new algorithm which identifies the splashback shells around
individual halos in simulations. These shells are caused by the caustics formed by matter
at the first apocenter of their orbits around the halo and correspond to rapid drops in the
density field. Our algorithm relies only on the density distribution within a single simulation
snapshot, and is capable of identifying shells with highly aspherical shapes.

We implemented our algorithm in the publicly available! code SHELLFISH and performed
extensive tests on the correctness of this code. We performed convergence tests on the
splashback shells found by our code and found that above a convergence limit of Noggy, =
5 x 10%, SHELLFISH can measure properties of splashback shells with < 5% systematic error
(see Figure 4.3 and Figure 4.8(b)) and percent-level stochastic error (see Figure 4.16(b)).
However, we identified a sub-population of halos with low mass accretion rates, I'pki4 < 0.5,
for which the splashback shell radii estimated by SHELLFISH are biased low by = 10%. We
therefore recommend that our code not be used for measurements of splashback shells for
halos with T'pgy4 < 0.5. This cutoff removes 20% of Milky Way-sized halos at z = 0 and
has a negligible effect on all larger mass scales and all earlier redshift slices.

We presented the first measurements of several basic properties of splashback shells which

are summarized below:

1. We confirmed that splashback radii generally decrease with increasing mass accretion
rate, as previously found by analyses of stacked halo density profiles. However, we
found that the splashback radii found by SHELLFISH are larger than these earlier
estimates by 20%-30% for halos with high accretion rates, I'pki4 2 3. We showed
that the estimate of the splashback radius obtained from the stacked density profiles

is biased low due to the existence of high-mass subhalos in many of these profiles.

2. We used a simple method, completely independent from SHELLFISH, for mitigating

1. github.com/phil-mansfield/shellfish
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the effect of substructure on density profiles: the so-called “angular median profile”
method. In this method, radial shells are split into solid angle segments with an
estimate of density in each segment. The halo density at a given radius is then taken to
be the median of all the segments in the corresponding shell. We showed that the effect
of subhalos on these profiles is greatly reduced. Moreover, the angular median profiles
are more self-similar in their outskirts and exhibit a sharper region of profile steepening
(i.e., a much more distinct splashback feature). We showed that the splashback radii
estimated from the stacked angular median profiles are in good agreement with the

results of SHELLFISH for halos with I'pgk14 2 0.5.

. We investigated the correlation between splashback radius and mass accretion rate,
the scatter around it, and its evolution with redshift. We presented the first evidence
that the splashback radius depends not only on accretion rate, but also has a strong
dependence on the peak height, voggm, With larger vogg, halos having systematically
smaller Rsp/Rooom at a fixed I'pky4 and 2. We found that the scatter of Rsp/Rogom
around the median at a given accretion rate is significant, exceeding 10%. We provided
an accurate fit for Rsp/Raoom, and its scatter as a function of I'pk14, v200m, and Qm
(see Equations 4.10-4.12 and Figure 4.9). We provided a similar fit for Msg,/Magom
(see Equations 4.13 and 4.14 and Figure 4.10). Unlike our fit to Rsp, there are several

minor caveats to our Mg, fit, which we discuss in section 4.4.5.

. We argued that a single classical overdensity density cannot be used as a model of
the location of Rgp because the overdensity of splashback shells have a large dynamic

range and have strong dependencies on mass, accretion rate, and redshift.

. We studied the shapes of the splashback shells using an ellipticity parameter, Egp, and
an asphericity parameter, Agp (defined in Equations 4.8 and 4.9, respectively). We
showed that splashback shells are generally highly aspherical, with non-ellipsoidal oval

shapes being particularly common.

83



Figure 4.15: An illustration of the UPDATEPROFILES’ algorithm described in Appendix
4.6.1. Panel A shows three, S;, associated with three dark matter particles around the
center of a halo, shown as a solid circle. Panel B shows one of the random planes, P € Py,
passing through the halo center and intersections of P with each S;. The top and left spheres
intersect P while the remaining sphere does not. Panel C shows intersection checks being
performed between the 2D intersection, Cj, of S; and P along a set of lines of sight, Lp;, in
the plane. Inspection of the angular locations of the edges of the C; shows that only the red
lines of sight could intersect them, and thus these spheres contribute to density profiles only
along the red lines. This last panel corresponds to the code inside the innermost conditional
of the algorithm.
6. We investigated potential correlations between splashback shell properties and other
halo properties, but found no significant correlations between Egp and Agp with either
mass accretion rate, mass, splashback radius or redshift. However, we did find that the

major axes of splashback shells were correlated with the major axis of mass distribution

within the inner regions of halos.

This chapter is a pilot study of splashback shells of individual halos. Further applications
of the algorithm presented here include investigation of alternative classifications of isolated
halos and subhalos using the splashback shell instead of the virial radius, investigation of the
systematic differences in halo masses and halo mass accretion histories when Mg, is compared

to Ma, and a comparisons with other methods for measuring individual splashback shells.
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4.6 Appendices

4.6.1 An Algorithm for Fast Line of Sight Density Estimates

In this Appendix we describe the method our algorithm uses to construct density profiles
along a set of lines of sight via the evaluation of Equation 4.1. Generally, this can be
broken up into two steps: first, the set of all spheres which intersect with a particular
halo, H, is found, and second, for every sphere, S, which intersects with H a procedure
UPDATEPROFILES(S, H) is run, which evaluates a term in Equation 4.1 corresponding to
S for every line of sight in H.

In general, the first step is straightforward to perform efficiently. Even rudimentary
spatial partitioning (such as breaking the simulation’s particles into = 102 — 10° spatially
coherent segments) results in this step being highly subdominant to the second, making Up-
DATEPROFILES the only performance bottleneck of this algorithm. A naive implementation

of UPDATEPROFILES would look like the following:

procedure UPDATEPROFILES(S, H)
for each L in Ly do
if S intersects L then
Renter; Rexit < INTERSECTIONRADII(L, S)
INSERTTOPROFILE(L, pg, Renter; Rexit)
end if
end for

end procedure

Here, Ly is the set of all line of sight profiles belonging to the halo H and pg is the
density of the sphere S. The existence of two simple functions has been assumed: INTER-
SECTIONRADII(L, S) calculates the radii at which the line of sight L enters and exits the
sphere S, respectively, and INSERTTOPROFILE(L, p, R, R') inserts a rectangular function

with amplitude p between R and R’ to the profile corresponding to the line of sight L.
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Because UPDATEPROFILES performs an intersection check for every line of sight in Ly,
the asymptotic cost of this approach is O(|Ly|). Because |Ly| is on the order of 10* for
the parameter set used in this chapter, this leads to a large number of expensive intersection
checks being performed for every particle, with the vast majority of these checks failing.

We take an alternative approach that allows us to avoid performing explicit calculations
on any line of sight which does not intersect S. We require that lines of sight exist within
a set of planes, Py, that |Py| < |Lg|, and that lines of sight are oriented in uniformly-
spaced “rings” within their respective planes. This strong geometric restriction allows for two
optimizations: first, intersection checks are performed on entire planes before any calculations
are done on individual lines of sight, and second, we calculate the angle subtended by S in
intersected planes, which allows us to find the exact set of lines of sight intersected by S in

the plane. Concretely, our approach is:

procedure UPDATEPROFILES (S, H)
for each P in Py do
if S intersects P then
C' < SLICESPHERE(S, P)
Olows Onigh < ANGULARRANGE(P, C, H)
Uows 1oy ¢ PROFILEINDICES(fqy,)
Thighs ifligh < PROFILEINDICES (;gn)
for each i in [ijgy, it gh] do
Renter, Rexit < INTERSECTIONRADII(Lp;, S)
INSERTTOPROFILE(L p;, p3, Renter, Rexit)
end for
end if
end for

end procedure
Here, Pp is the set of all planes of profiles belonging to the halo H and Lp; is the §th
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profile within the profile ring corresponding to the plane P. Here, the existence of several
simple functions has been assumed: SLICESPHERE(S, P) returns the circle created by slicing
the sphere S by the plane P; ANGULARRANGE(P, C, H) returns two angles specifying the
angular wedge within the plane P which the circle C' subtends relative to the center of the
halo H; and PROFILEINDICES() returns the indices of the two nearest profiles to the angle
0, with the profile corresponding to the lower angle being returned first. For ease of reading,
the pseudocode which would handle the periodicity of angles at # = 0 = 27 has been omitted.

This method is illustrated in Figure 4.15. Panel A shows a collection of spheres collected
around a halo center, panel B shows the results of calling SLICESPHERE on each of these
spheres for a particular plane, and panel C shows the profiles (in red) which would recieve
intersection checks within the innermost loop of UPDATEPROFILES'.

The asymptotic cost of UPDATEPROFILES is O(|Pr|+ If7 g), where Iy g is the number
of profiles in the halo H which intersect the sphere S. Since both |Py| and Iy g are multiple
orders of magnitude smaller than |Lg|, this results in a significant increase in performance.
In practice we find that the plane intersection checks are subdominant to the cost of the
innermost loop.

The method described above is further optimized in several ways:

e [f INSERTTOPROFILE is implemented naively - by representing profiles as arrays con-
taining p(r) and updating every element of the profile which is within the inserted
rectangular function - it is the dominant cost of UPDATEPROFILES'. To prevent this,
we represent our profiles as arrays containing dp(r)/dr. Since the derivative of a
rectangular function is two delta functions, updating the derivative profile only re-
quires updating array elements close to the edges of the rectangular function (note
that in the discrete case this requires four element updates: two for each edge). Once
UPDATEPROFILES' has been called on every target sphere, each derivative profile is

integrated to obtain p(r).

e Instead of explicitly performing the 3D INTERSECTIONRADII(Lp;, S), a faster 2D
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analog is used to find the intersection radii of the projection of Lp; onto P with the

circle C.

e A successful intersection check between P and S is performed in a way which imme-
diately results in the value that would be returned by SLICESPHERE(S, P), as these

two calculations share many geometric operations.

This algorithm is straightforward to generalize to non-constant density spheres and to
density estimates constructed from other geometric solids (most notably tetrahedra), al-

though the publicly released version of SHELLFISH does not allow access to either feature.

4.6.2  Splashback Candidate Filtering Algorithm

The Appendix will outline the filtering algorithm which we qualitatively introduced in section
4.2.2

The first step of constructing the filtering loop is dividing the point distribution into
2Nree uniformly spaced angular wedges, for some user-defined Nyee. We calculate an anchor
point for each wedge, which is an estimate of the average location of the splashback shell
within that wedge.

The location of the anchor point within the 7*2 wedge is given by

1+ 0.5
2Nrec '

Ranchor,i> Panchor,i = ANCHORRADIUS(0, i), 27 (4.15)

Here, 7 is zero-indexed and ANCHORRADIUS is the following recursive algorithm:

function ANCHORRADIUS(K, ©)
Olow < 2| /2K |2k~ Nrec
Opigh < 2m([i/2F] + 1)2F—Nrec
f < WEDGEKDE (014, Opigh)
if k = Nrec then

return GLOBALMAXIMUM( f)
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else
Ronchor ¢ ANCHORRADIUS(K + 1, 7)
maxes <— LOCALMAXIMA(f)
R or < Minp{|Ranchor — B| V R € maxes}

if |Ranchor —R! ’ < Ryefine then

anchor
return Ranchor
else
return R, chor
end if
end if

end function

We assume the existence of three simple functions: GLOBALMAXIMUM(f), which re-
turns the global maximum of the function f; LOCALMAXIMA( f), which returns all the local
maxima of the function f; and WEDGEKDE(0)4y, Opign), which returns a kernel density
estimate (KDE) corresponding to the points contained within the wedge with boundaries
Orow and Opign,. A KDE is a method for converting a set of discrete points into a continuous
density estimate by applying a smoothing kernel to every point. It performs much the same
role as a histogram, except that an explicit choice of bin edges is replaced by an explicit
choice of the smoothing kernel. For our purposes, the most useful property of a KDE is that
it provides a simple way to estimate the point of maximum density. We define our KDE as

the function

KDE(r Zexp ( - Tj)2> (4.16)

2RIQ(DE
where Rgpg is a user-defined smoothing scale, and r; is a set of points.
The intuition behind this approach is that most candidate points in the plane correspond
to lines of sight crossing the splashback shell, so the maximum of the k£ = Ny KDE is

Oth

a good order estimate of of its location. Smaller wedges give more refined estimates.
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But if their estimate deviates too far from the coarser estimates, it’s likely that the region
corresponds to a filament or a subhalo.

Once anchor points have been found for each wedge, we fit a cubic interpolating spline
to them in the # - R plane. This spline is the aforementioned filtering loop. To remove
boundary effects, the range of the anchor points is extended to [—2m, 47) prior to fitting,
but the spline is only ever evaluated in the [0 27) range. We then remove all points which
are further than some distance, Rgjie, from this spline.

This procedure introduces three new free parameters, Rxkpg, Rrefine; and Rgjier- Lests
indicate that the final shells are robust to changes in Rxpg and Rgjier, as long as they are of

the same order of magnitude as R,.fpe. For this reason we simplify parameters by requiring

RKDE = Rriefine = Relter = Rmax/1- (4.17)

Here 7 is a tunable parameter which dictates how strict the filtering process is. Higher values

of n are stricter than lower values of 7.

4.6.3  Parameter-Specific Convergence Tests

Most of the fiducial values of parameters of our algorithm listed in Table 4.2.4 were set using
one of the following three approaches, which start with constructing a representative sample
of halos and identifying their splashback shells and estimating their properties for a range of

values p; for the selected parameter p.

A: Many parameters are known to be optimized when taken to either the low value or
high value limit, but also decrease the performance of the algorithm as the parameter
approaches this limit. In addition to the shells for the p; values, we also fit a shell with
p set to some very large value, pj;t. For each halo we calculate a curve representing
the fractional difference between the shells calculated with p; and with pj;;; for each
of the properties defined in Equations 4.5 - 4.9. We then set the parameter to the
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lowest p; which leads to an average fractional error of < 1%.

B: Some parameters are not optimized in either the low or high value limit. For each
halo we construct curves for each of the properties defined in Equations 4.5 - 4.9. We
manually inspect these curves: if they generally show an unchanging “plateau” for
these properties over a wide range of p; values, we set the parameter to an arbitrary
p; in the center of the plateau. The existence of a plateau over a wide range of p;

indicates that the shell shapes depend only weakly on this parameter.

C: For parameters where method B was attempted but a no wide plateau was found, we
incorporate qualitative assessment of the shells into the selection procedure. For a pair
of parameter values, p; and p;, we visually inspect every halo in the test set, compare
the shells produced by both values to the underlying density field, and select one of the
two as a qualitatively better fit. Once this has been completed for every halo, we label
the parameter value with more successful fits as the better value. This allows us to
construct an fitness ordering on all the values of p;. We then select the maximally fit
parameter. In principle, this methodology could lead to researcher-dependent results,
but for the three parameters where we used this method, the optimal value was not

ambiguous.

The specific methods we used to set each algorithm parameter are listed in Table 4.2.4. In
all cases the halo sample is divided into Maggm-selected and ['piq4-selected subsets to test
for parameter dependence on halo properties. In all cases, we found no such dependence.

Parameters which involved additional testing methodology are described below:

4.6.4  Setting Ryermel

In order for our algorithm to identify the splashback shell reliably, we need to sample the
density distribution around the shell well. However, typical densities in this region are (0.1 —

10) X pm (see Figure 4.1(b)) and there are often relatively few particles. To compensate for
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this, we need to make the radius of the spheres associated with particles, Ry sufficiently
large.

To find the optimal value of Ry.p0], We use an approach similar to the approach A above.
We generate a representative sample of halos and fit Penna-Dines shells to each halo in the
sample for different values of Ryqme). We then find the smallest converged value of Ryerpel
for each halo. An example of this comparison is shown in Figure 4.16(a). This figure also
illustrates the second test described in section 4.3: in ;99% of cases, Rsp falls within the
visual fall-off region of the halo.

We find that for halos with Noggy, > 109, properties of the splashback shells converge
for Ryemel = 0.1R200m and for halos with Noggm &~ 5 x 10* for Ryerme = 0.2Ro00m. For

simplicity, we set Ryerpel t0 0.2R900n for all halos.

4.6.5  Setting Npjanes

The parameter which has the largest effect on the stochastic error, as opposed to systematic
error, in estimating shell shape is Npjanes. To determine a value for this parameter, we follow
a procedure similar to method A. We identify the splashback shells for a representative sample
of halos for five values of Npjapes, using randomly oriented normal vectors for each plane
so that no lines of sight are shared between two different realizations. We then calculate
the fractional standard deviation between shell properties determined for different random
realizations of a given number of planes Npjanes; V(Q?) — (Q)2/(Q) for each quantity Q
defined in Equations 4.5 - 4.9. This standard deviation is plotted as a function of Npjanes
in Figure 4.16(b). For Npjanes = 100, SHELLFISH achieves sub-percent level per-halo scatter
in Rgp, Msp, and 1+ Agp and less than 2% scatter in 1+ Egsp. We do not find any evidence
that the amplitudes of the curves shown in Figure 4.16(b) depend on halo mass or accretion

rate.
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Figure 4.16: Left: Convergence test of Rgp as a function of kernel radius for a representative
halo. The black curve is the density profile of the halo obtained through conventional particle
binning, the points are the Rgp values measured from density fields generated with different
kernel radii, the horizontal lines show the range spanned by the minimum and maximum
radii of these shells, and the shaded red region corresponds to the radial range which was
visually identified as corresponding to the splashback range. This region was found by eye
without knowledge of the measurements made by SHELLFISH in accordance with the proce-
dure outlined in section 4.3. For this halo, Rgp is converged for kernel radii above 0.15R.
Right:The mean fractional stochastic error in shell parameters (defined in Equations 4.5 -
4.9) as a function of Npjanes- The vertical dashed line corresponds to Npjapes = 100, the
value given in Table 4.2.4.
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4.6.6  Computing Moment of Inertia-FEquivalent Ellipsoidal Shell Azes

It is non-trivial to analytically compute axis ratios from the moments of inertia for a constant-
density ellipsoidal shell. Assuming that the shell is sampled by some collection of particles
with weights my., the moments can be obtained by calculating the eigenvalues of the mass-

distribution tensor,

Mg = my(7)i(7);. (4.18)
2

The eigenvalues of the mass-distribution tensor are straightforward to calculate for a ho-
moeoid: the volume enclosed by two ellipsoids with the same axes ratios and with aligned

major axes a and a’. In the limit where @’ — a, the eigenvalues are given by
a2
M; = Mtotgz, (4.19)

where M; and a; are the moment and ellipsoid axis aligned with the ith Cartesian axis and
Miot = Y, mg. Note that this notation for ellipsoid axes is different that the convention
used in Equation 4.7. Although an infinitely thin homoeoid is often equated with a uniform-
density ellipsoid surface in the literature [see, for example Zemp et al., 2011], it actually
corresponds to an ellipsoid surface with a non-uniform density. This non-uniformity means
that major (minor) axes derived from Equation 4.19 are too small (large). This bias increases
with increasing ellipticity: for ellipsoidal shells with axes ratio of ~ 2 : 1, this can bias
measured axes ratios by tens of per cent.

A more accurate approximation would be to model a uniform density ellipsoidal shell by
the volume enclosed by two ellipsoids with axes a, b, ¢c and a + §, b+ 6, ¢ + ¢ and to take

0 — 0. This shape gives eigenvalues of

2
a? (a;a; + 3ajap + apa;
M; = Mgy < Tk T Z) (4.20)
5 \ a;aj + ajap + apa;

which can then be numerically solved to obtain ellipsoid axes. Although for ellipsoids with
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large axes ratios Equation 4.20 is a closer approximation than Equation 4.19, it still in-
troduces errors close to our Ny, = 100 stochastic noise limit. Thus for large axes-ratio
ellipsoids we compute the mapping empirically.

We define the quantities A; = \/M;/Miot and R = (MiMij/Mg’ot)l/G. Note that both
A; and R can be measured directly from the input point distribution. First, we generate
a grid of ellipsoids in ag/a; - ag/ag space. Next we numerically compute Ag/Ay, Ag/As,
and ag/Ry for each ellipsoid. The resultant Ay/A; and Ag/As values form a sheared grid,
so we Delaunay triangulate [Delaunay, 1934] the Ag/A; - Ag/A2 plane and perform linear
interpolation on the resulting triangles. We construct three such interpolators which map
from (Ag/A1, Ag/A2) pairs to ag/ay, ag/as, and ag/R, respectively. These interpolators
can then be used to find ag, a1, and ag using only the eigenvalues of the mass-distribution

tensor.
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CHAPTER 5
HOW BIASED ARE COSMOLOGICAL SIMULATIONS?

This chapter is a modified version of my paper, Masfield & Avestruz [in prep].

5.1 Introduction

Understanding the non-linear predictions of the A Cold Dark Matter (ACDM) model requires
the use of simulations. Simulations are required to understand the behavior of almost every
system smaller than the Lagrangian footprint of a large dark matter halo, whether it be the
structure of dark matter halos [e.g. de Blok, 2010}, the abundances of galaxies [e.g. Klypin
et al., 2015a] and satellites [e.g. Moore et al., 1999], or the properties of local dark matter
streams [e.g. Vogelsberger et al., 2009].

The most common class of ACDM simulation is the N-body simulation that has been
used to model both individual collapsed structures [see review in Griffen et al., 2016] and
large cosmological volumes (see review in section 3.1). While the predictions of ACDM
include the behavior of baryons, many simulators and analysts focus on “dark matter only”
(DMO) simulations. Beyond the relative computational efficiency of DMO simulations, the
fundamental reason for the popularity of DMO simulations lies in their parametrization.
Baryonic simulations have a wide range of parameters, many of which have true physical
meaning [e.g. table 2 in Hopkins et al., 2018]. On the other hand, once a cosmology is
specified, a DMO simulation has much smaller set of parameters and all these parameters
are purely numerical. This leads to the core fact that underpins all tests of DMO simulations:
any dependence on parametrization is evidence for numerical bias or error.

In principle, the results of DMO simulations may depend on numerical parameters that
determine initial condition generation, the starting redshift, box size, and “zoom-in” strategy.
Simulations that follow conventional “best practices” usually avoid these effects at small

scales [e.g. Power and Knebe, 2006, Crocce et al., 2006, Knebe et al., 2009, Hahn and Abel,
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2011]. Beyond this, every N-body code has its own idiosyncratic parametrization, such as the
node opening criteria for a force tree [e.g. Springel et al., 2001b], Adaptive Refinement Tree
(ART) refinement criteria [e.g. Kravtsov et al., 1997], and light-bulb wattage [Holmberg,
1941]. These parametrizations are important, but generally ironed out during the early
development and usage of a particular code.

Instead, our study — similar to most other DMO convergence studies — focuses on the
three most important parameters of DMO simulations: particle mass, my (or interparticle
spacing, [ = L/N), timestepping, and the distribution of mass around each particle (“force
softening”). Statements about the correctness and biases associated with these three param-

eters come from a combination of four classes of analyzes:

e A priori models of numerical effects [e.g. van Kampen, 2000, Dehnen, 2001, Power
et al., 2003, Ludlow et al., 2019] In these studies, simulators create a model of how the
numerical components of a simulation behave, often validating the predictions of this
model with appropriate test simulations, and use that model to infer the correctness

of other simulations.

e Simulations of idealized systems [e.g. Klypin et al., 2015b, van den Bosch and
Ogiya, 2018, Joyce et al., 2020] In these studies, simulators either have a priori knowl-
edge of the exact solution the simulation is expected to produce (such as the simula-
tions of NFW halos in van den Bosch and Ogiya, 2018), or a priori knowledge of some
invariant property of the system (such as the self-similar power spectra analyzed in
Joyce et al., 2020). Measured deviations from a priori expectations are unambiguous

numerical biases.

e Resimulations of realistic systems [e.g. Power et al., 2003, Navarro et al., 2010,
Ludlow et al., 2019] In these studies, simulators resimulate a ACDM system with a
variety of numerical parameters. Systems are typically either a single halo [e.g. Power

et al., 2003, Navarro et al., 2010], or a small cosmological box [Ludlow et al., 2019].
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Since there is no a priori expectation for these simulations, simulators will identify a
region of numerical parameter space where results are locally independent of numerical

parameters and measure deviations relative to this “converged” region.

e Comparison of independent simulations [e.g. Klypin et al., 2015b, Villarreal et al.,
2017b, Child et al., 2018, Fig. 5.3] In these studies, simulators compare independently
run simulations which inhomogogenously sample numerical parameter space, with the
goal of identifying converged parameter ranges. While this type of test is particularly
vulnerable to “false” convergence, it is substantially less labour-intensive than the pre-
vious classes of studies, and is often the only test available for assessing the correctness

of expensive simulations which were not performed as part of a multi-resolution suite.

A simulator interested in assessing the biases of large cosmological DM O simulations — the
class of simulations targeted by this chapter — must rely on tests of all four types of studies.
Although the last class of tests mentioned above will always be a necessary component of
such assessments, simply comparing the results of cosmological simulations cannot establish
that the “converged” solutions which these tests identify are correct. Such an inference must
come from detailed comparison with the other classes of tests.

Despite the vast literature on convergence testing in cosmological DMO simulations,
there are still unknowns, disparities, and limitations to the tests performed. Tests of the
first three types mentioned above focus almost exclusively on radial density profiles at fixed
radii. However, dark matter halos are complex objects with a myriad of scientifically useful
properties. To the best of our knowledge, there are no published reliability requirements for
many commonly used halo properties, such as the offset between a halo”s center of mass and
its most bound particle, X g. Even for the most well-tested halo properties, there is no clear
consensus on what is required for reliability; examples including the peak of the rotation
curve, Viax, or the radius at which the logarithmic slope of the denisty profile is -2, r_o. We
surveyed twelve studies on the concentration mass-relation, all of which measure some form

of r_o. From this survey, we found that the minimum particle counts (Nyj,) which different
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studies analyzed ranged from from 500 to 10,000 particles, with the 1o scatter spanning
more than a decade [Neto et al., 2007, Duffy et al., 2008, Gao et al., 2008, Zhao et al., 2009,
Prada et al., 2012, Bhattacharya et al., 2013, Ludlow et al., 2013, Dutton and Maccio, 2014,
Diemer and Kravtsov, 2015, Klypin et al., 2016, Poveda-Ruiz et al., 2016, Child et al., 2018].
Lastly, tests focused solely on how many particles halos are resolved with dominate much
of the literature, despite demonstrations that force softening and timestepping have large
effects on halo properties (see sections 5.5 and 5.6.1).

In this work, we aim to complete several components of the analysis needed to rectify
these issues, incorporating components of all four classes of tests discussed above. We per-
form convergence tests using a large inhomogenous suite of publicly available cosmological
simulations. These tests are performed over a wide range of halo properties, including halo
properties which are traditionally overlooked by the testing literature. We also analyze
the impact of timestepping and force softening parameters to extend beyond the standard
particle count parameter. We organise the chapter as follows. In section 5.2 we outline
our methods for comparing cosmological simulations and extracting empirical convergence
limits. In section 5.3 we report these empirical limits and consider the variation in limits
between simulations. In section 5.4, we study the dependence of various halo properties on
the force softening scale. In section 5.5, we outline a model for estimating the impact of
large force softening scales on halo profiles and apply this model to our simulation suites.
Lastly, in section 5.6 we discuss our results (particularly the impact of timestepping), and

in section 5.7 we summarise and conclude our analysis.

5.2 Methods

5.2.1 Simulations and Halo Finding

This chapter uses all the simulations listed in Table 3.1.

We use catalogs constructed by the ROCKSTAR halo finder [Behroozi et al., 2013d]. When
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available, we also used merger trees constructed by CONSISTENT-TREES [Behroozi et al.,
2013e] to determine growth history-dependent halo properties. The v2-gc and IlustrisTNG-
Dark simulation suites do not currently have merger trees available.

The simulations we consider use a number of different versions of the ROCKSTAR halo
finding software. ROCKSTAR has undergone a number of bug fixes since its original release,
and halo catalogs generated with different versions can have significantly different prop-
erty distributions. To understand the impact of different software versions, we obtained
the approximate ROCKSTAR download times and configuration files for every suite consid-
ered in this chapter to identify the corresponding software version (Diemer; Klypin; Becker;
Ishiyama; Behroozi, personal communication).

We then isolated the source of version-dependent results. First, we regenerated halo
catalogs for the CBol_LL125 simulation using the different versions — matching the exact
commit hash if known — as well as the relevant parameters in each respective configuration
file, and we cross-matched these catalogs against one another. Second, we performed an
extensive review of the ROCKSTAR and consistent-trees version control commit histories?.
By combining these two analyzes, we determined that there were two sets of variables which
gave version-dependent results and that all other variables were consistent between versions.
These variables are (1) the axis ratios calculated within Rggg. and (2) properties that depend
on internal energy calculations. The ROCKSTAR changelogs document both of these issues,
meaning that, fortunately, our cross-matching of catalogs did not reveal any new significant
inconsistencies.

Incorrect axis ratio measurements affect Erebos_CBol and Erebos CPla, which used
ROCKSTAR catalogs generated with code downloaded prior to October 22nd 9013, There
is no method for correcting this issue, but as discussed below the convergence properties of

these inner axis ratios are largely similar to the conventional larger axis ratios. We therefore

1. available at https://bitbucket.org/gfcstanford/rockstar and
https://bitbucket.org/pbehroozi/consistent-trees
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do not analyze this property. ROCKSTAR catalogs generated with code downloaded prior to
May 15t 2014 have internal energies which are too large by a factor of two. This can be
corrected by replacing variables, X, with updated versions, X’. In the cases of virial ratio

and Peebles spin parameter, the replacement variables would appear as,

T/\U|"=21/|U]| (5.1)
/T — 7
APechles = APecbles \/%;:Z:, (5.2)
We apply the corrections of Eq. 5.1 to catalogs for the Erebos_CBol, Erebos_CPla, Bol-
shoi, and BolshoiP suites. We also applied these corrections to Chinchilla_.250 and Chin-
chilla_L.400, but Chinchilla_LL125 did not require these corrections.

Another potential source of variation amongst ROCKSTAR catalogs is the choice of pri-
mary mass definition, which changes the values of other reported halo properties (see section
4 and appendix A of Mansfield and Kravtsov [2019] for a full discussion). However, we
confirmed that all of the halo catalogs that we consider in our analyzes used My;, as the
primary mass definition. This particular source of variation does not impact our results.

We also generate ROCKSTAR catalogs for the z = 0 snapshots of the IllustrisTNG-
Dark simulations listed in Table 3.1, made available through the IllustrisTNG public data
release [Nelson et al., 2019]. We used the ROCKSTAR version corresponding to the git hash
99d56672092e88dbed446{87f6eed87c48{f0e77, downloaded on June 10t 2019. We use M as
our primary mass definition, consistent with other catalogs. As with the other catalogs in this
chapter, we do not use strict spherical overdensity masses and removed “unbound” particles
prior to analysis. We use a coarse-grained friends-of-friends linking length of b = 0.281 for
load-balancing. Note that this last setting leads to inaccurate Msgpy, masses [section 4.3 and
appendix A of Mansfield and Kravtsov, 2019], but we choose this setting for consistency with
the other catalogs used in this study. Some analysis in this chapter also uses ROCKSTAR

catalogs generated for the baryonic IllustisTNG simulations. In these cases, we use the same
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ROCKSTAR parameters as we do with IllustrisTNG-Dark, but only consider dark matter

particles when computing halo properties.

5.2.2 Halo Properties

The halo properties considered in this chapter are defined and discussed in section 3.2.

There are a number of quantities in ROCKSTAR and consistent-trees catalogs which we do
not explicitly study in this chapter. In most cases this is because the convergence behavior of
these properties is identical to that of another property: we find that the convergence limits
for T'(tqyn) are essentially the same as accretion rates defined over any other time scale
tracked by any version of consistent-trees. We therefore only consider I‘(tdyn). Similarly, we
find that the convergence properties of b/a, (¢/a)(< Rsooc), and (b/a)(< Rsopc) are nearly
identical to those of ¢/a and thus only consider ¢/a. Later versions of ROCKSTAR track the
maximum single-halo tidal force on each halo, but we do not track convergence behavior
for tidal force calculations. This is because too few of our catalogs contain this property
to achieve meaningful statistics. We additionally note that computing the tidal force on
halos has subtleties that indicate that the approximation used by ROCKSTAR may not be
sufficiently physical (see section 2 of van den Bosch et al., 2018 and section 2.5 and appendix
C of Mansfield and Kravtsov, 2019).

5.2.8  Finding Empirical “Convergence Limits”

In this section, we describe our procedure to establish particle count-based convergence limits
for each halo property. We identify these limits for target accuracy levels. Finally, we note
that this procedure does not rule out the possibility of false convergence.

To identify the corresponding convergence limits for a halo property, X, we:

1. group simulations by approximate cosmology and by subhalo status. We analyze each

subgroup separately.
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Figure 5.1: Ilustration of the procedure used to determine the particle counts at which
simulations diverge from the global, high-resolution mass trend. This is illustrated with z.g.
We collect all simulations with measured z, g values and visually identify a conservative
Nyir cutoff such that all simulations fall along a single mass relation. This is shown for
Planck-cosmology simulations in the left panel, with masses above this cutoff shown as solid
curves and masses below this cutoff shown as dashed lines. Simulations are colored by the
suite which they belong to (Table 3.1). We then fit a low-order polynomial to Planck- and
WMAP-cosmology simulations separately, as shown by the black line in the right panel.
After this, we estimate the significance of deviations from the fit using Eq. 5.3. We consider
mass ranges which deviate from the fit by more than 2% with more than 20 significance to be

non-converged. This is shown in the right panel, where curves are colored by the significance
of the deviation. This procedure is described with greater detail in section 5.2.3.
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2. visually identify a conservative high-particle count cutoff above which all My; — X

relations agree.
3. fit a polynomial-centered distribution to all high-resolution My;. — X relations.

4. identify the highest particle count at which each simulation has a statistically significant
deviation from the fitted distribution which is larger than a target accuracy level. This

particle count, N¢yt is the “convergence limit” for that simulation.

All the steps in this procedure are described in greater depth below and are illustrated in
Fig. 5.1. Some aspects of this procedure are altered for properties which particularly poor

convergence behavior. All such properties are described in depth in section 5.3.

Separation into Subgroups

Because many halo properties depend on cosmology (especially properties which depend
on accretion histories), we separate simulations by cosmology to avoid misinterpreting these
cosmological dependencies as non-convergence. We analyze the WMAP suites Bolshoi, Chin-
chilla, and Erebos_CBol as a group and the Planck suites v2-GC, BolshoiP, Multidark, and
Erebos_CPla as a group. The exact parameters used still vary from suite-to-suite, mostly
due to the year of each mission which these simulations attempt to match. This is most
apparent when comparing the Chinchilla suite to other WMAP simulations like Bolshoi or
Erebos_CBol (see Table 3.1).

We tested the impact of these small cosmology differences by repeating our analysis with
groups based on the exact cosmological parameters and did not find a meaningful difference
in our results. Because this split significantly reduces the number of simulations which have
higher-resolution boxes available for comparison, we do not use this approach in the rest of
this chapter.

We also separate halos by subhalo and isolated halo status (see section 5.2.2). This

is important both because subhalos and isolated halos may have difference convergence
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properties and because numerical parametrization can lead to changes in the artificial subhalo
disruption rate [e.g. van den Bosch et al., 2018, van den Bosch and Ogiya, 2018, see also
section 5.4.1]. Artificial disruption would lead to isolated halos being over-represented at a
constant mass, and in cases where host halos and subhalos follow different mass relations
this would propagate to a change in the global mass relation.

Using Ry, to define subhalo status (as we do here) is suboptimal. There is a large popu-
lation of “splashback subhalos” which are qualitatively indistinguishable from other subhalos
but whose orbits have apocenters outside the arbitrarily-defined virialy radius [Balogh et al.,
2000, Mamon et al., 2004, Gill et al., 2005, Ludlow et al., 2009, Bahé et al., 2013, Wetzel
et al., 2014, Xie and Gao, 2015]. Mansfield and Kravtsov [2019] showed that this popu-
lation of misidentified subhalos is responsible for the entire high-concentration tail of the
“isolated” halo population, thus opening the possibility that numerical subhalo disruption
could affect our convergence limits. Although many schemes for identifying splashback sub-
halos exist [see Mansfield and Kravtsov, 2019, for review|, we do not use them here: they
rely on merger tree information and/or raw particles data, which are not available for all
the simulations considered here, and these methods have not trivial convergence properties
themselves [Mansfield et al., 2017] which would be a larger complicating issue than subhalo

contamination.

Defining High-Resolution Particle Ranges

For each simulation, we measure the mean value of each property, X, as a function of My;,
within logarithmic 0.125 dex mass bins. We restrict analysis to mass bins containing at least
100 halos.

We identify non-convergence by identifying where simulations deviate from the mass-
relation implied by the high-resolution regimes of other simulations. We identify a such a
corresponding high-resolution cutoff, Nggr, by eye such that no simulations in our sample

deviate from others in their subgroup when mass relations are constructed for halos with
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Nyir > NHR-

This cutoff is chosen separately for each halo property and each analysis subgroup, al-
though we use the same cutoffs for both Planck and WMAP cosmology. These cutoffs are
shown in Appendix 5.8.2, Table 5.5. Our tests indicate that our results are not sensitive to
the exact Ngr choices used.

The cutoff chosen for the M, — X g relation is shown as the transition of from solid to
dashed lines in the left panel of Fig. 5.1.

As discussed in section 5.2.3 and 5.3.2, several simulations diverge significantly from other
simulations at aberrant high particle counts for various halo properties. These simulations
are not included in our determination of Npgr and are discussed extensively throughout

section 5.3.

Fitting Mean Relations

For each halo property, X, we fit the logyo(Myir) — X relation with a Gaussian distribution
with a centroid given by a mass-dependent d-degree polynomial and a 1o dispersion given
by (. Since the posterior distributions for these fits are smooth and unimodal, we do this by
maximising the likelihood function of this model across its parameter space. For each mass
relation, we scale masses by the pivot mass Mpiyet = 10129~ M to increase numerical
stability and scale X by (Myir/Mpivot)® to decrease the polynomial degree needed to fit the
relation. We show the values of d and « used for each halo property in Table 5.5. In the
case of mass and velocity functions relative to the halo property X, we perform fits relative
to logio(¢(X)). We use a pivot value of Vot = 1 km/s for velocity functions.

The best-fitting relation for the My — Xog relation is shown as the black curves in
Fig. 5.1, and o is shown as the gray shaded contour around those curves.

For many halo properties, a subset of simulations diverge significantly from other simu-
lations within the same suite. We manually remove these simulations prior to fitting. The

number of outliers removed for each property is listed in Table 5.5. We remove all VQ—gc
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boxes, all TNG boxes, VSMDPL, HMDPL, and Chinchilla_1.250 prior to fitting the M;,—c/a
relation, Chinchilla_L250 before fitting the cy;, relation, all v2-gc boxes, VSMDPL, SMDPL,
and CHinchilla_L.250 prior to fitting the Vinax relation, and Chinchilla_1.250 prior to fitting
the Va1 relation.

Three sets of outlier removals require special comment. We found that the My — cyiy
relation was well fit by a power law for each simulation suite individually, but that amplitude
and power law index of these relations were noticeably different for each suite. As such, we
fit each suite independently with the additional removal of Chinchilla_L.250.

As is discussed in section 5.3.2; Illustris-TNG and the high resolution MDPL simulations
appear to “converge” to different Myi — Vinax relations. Because v2-ge-H2 and v2-ge-H1
give aberrant results, the only Planck-cosmology simulations in Table 3.1 which probe halo
masses below My, < 101 h=1M fall into one of these two suites. To avoid a fit which
“splits the difference” between the two, we perform two fits removing VSMDPL and SMDPL
from one fit and all the TNG-Dark boxes from a second fit. We analyze both fits.

This removal of outlier simulations serves to emphasize that these fits cannot be inter-
preted as approximating the “correct” converged solutions for these mass relations, but as
approximating the high-resolution solutions for a particular subset of simulations: we ex-
plicitly do not claim that any individual simulation considered in this chapter is converged
or correct (or that the inverse is true). As such, we do not provide any of the fits produced

from this part of this analysis to prevent their potential misuse.

Identifying Deviations

Traditional convergence tests are either performed by eye or by measuring the mass at which
halo properties deviate from a reference relation by more than some fixed level of acceptable
bias. We do not take these approaches for three reasons: first, even the mass relations
of converged simulations can deviate from the high resolution relation due to Poissonian

noise, cosmic variance, and uncertainties in the underlying fit. This makes percentage cuts
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Property Simulation Nis0,0.00  Nsub,0.00  Niso,0.01

Toff Bolshoi 2.8 x 103 — 2.8 x 103
Toff BolshoiP 42x10% 1.8x10% 4.2x103
Toff Chinchilla_L125 — — —

Toff Chinchilla_L250 1.4 x 10* 6.0 x 103 1.4 x 10*

Table 5.1: An excerpt of the measured particle count cutoffs, Ny, associated with different
halo properties, simulations, halo isolation classifications, and tolerance levels. Niy, 5 indi-
cates the number of particles where fractional deviations larger than a tolerance level of §
can be reliably measured from the mean value of the given halo property for isolated halos.
Ngup,s indicates the corresponding value for subhalos. An empty value indicates that we
cannot make a reliable measurement, often due to the high resolution of the simulation. The
full table will be available in the online supplement to Mansfield & Avestruz [in prep] upon
publication and ranges from § = 0.00 to § = 0.10.

sub-optimal. Second, visual identification is time-consuming, especially given the number
of simulations, sub-groups, and halo properties considered in this chapter. Third, we noted
unintentional researcher confirmation bias in our own tests of visually identified convergence
limits. For these reasons, we have opted to use a different statistical test.

To do this, we measure the likelihood that that the sample of halos in each simulation is
drawn from the same population as the high-resolution sample. This is performed separately
for each mass bin. The field of statistics has no shortage of tests which can detect whether
two samples are pulled from different populations, but we adopt the test which most closely
resembles the conventional convergence testing procedure: the frequentist z-test. The z-test
computes the probability that two samples, X and X9, could have the observed difference in
means (X1)— (X») if the null hypothesis is true: that both samples are drawn from Gaussian

populations with mean values that differ by exactly Ajo. To do this the z-test constructs

the z statistic:

_ (X)) (X)) A
Verr((X1))? + err((X7))?

(5.3)

Here, err((X1)) and err((X7)) are the 1o uncertainties on the means of the two samples.

Under the null hypothesis, z is distributed under normal distribution with mean zero and

108



Variable Niso Naub
M2500C/Mvir * *
Msooe/Myiy 8.5 x 102 3.2 x 102
Mogoe/Myiy 1.3 x 102 1.4 x 102
Moo /Myiy 1.1 x 102 1.2 x 102
Vmax * *
Vrms * *
Cvyir * *
Ry/9 3.5 x 10 4.6 x 103
c/a * *
APeebles 4.5 x 102 3.9 x 102
ABullock 1.1 x 102 4.9 x 102
T/|U| * *
Toff 29x10% 1.2 x 103
Vot 48 x 103 1.7 x 103
T(tayn) 1.1x10% 83
ao.5 1.4 x 102 93
anM 2.7x 102 1.3 x 102
Mpear/Myiy - 3.5 x 107 1.1 x 10
Vpeak * *
¢(Maspoe) — * *
d(Ms00c) 1.6 x 102 «
d(Magoc) 1.6 x 102 «
A(Myiy) 1.5 x 102 %
d(Mogon) 12x10% %
P(Mpeak) 1.4 x 102 «
Qb(vmax) * *
Qb(vrms) * *
¢(Vpeak) * *
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Table 5.2: The particle count cutoffs at which 90% of the simulations in our sample show no
measurable deviation in their mass relation, (X)(My;;), relations with respect to fits against
high-resolution halo samples. We show these cutoffs, Ny;;, for mean mass relations in the
top block. The middle block shows the particle count cutoff, Ny, for each corresponding
mass function ¢(Mx). We provide cutoffs for both isolated and subhalo populations. Stars
indicate limits that we cannot express with Ny;,. alone because of a strong dependence on e.
All numbers are accurate to 0.125 dex. The online supplement to Mansfield & Avestruz [in
prep] will contain the corresponding cutoffs for individual simulations at varying degrees of
accuracy. This will be available upon publication.



standard deviation 1. From this the probability, p, of the measurement under the null
hypothesis can be calculated.

To apply the z-test to a single simulation and a single mass bin centered at the mass M,
we take the amplitude and 1o dispersion of best-fitting high resolution relation as (X7) and
err((X1)), respectively, and the sample mean and the 1o bootstrapping error of X for the
simulation in that mass bin as (X3) and err((Xs)), respectively. We adopt the convention
that deviations with a probability of less than 5% under the null hypothesis indicate that a
simulation is not converged to the high-resolution relation at that mass.

We show this test in the right panel of Fig. 5.1. Mass relations are color-coded by the
value of p as a function of mass.

In some cases, the derivative of the difference between unconverged mass relations and
the high resolution fit can change sign as a function of mass. This means that as a mass
decreases, an unconverged simulation can briefly cross the high-resolution fit and can falsely
appear to be converged for one or two mass bins. Additionally, since we adopted a 20
significance cutoff for non-convergence, some poorly sampled very high resolution bins can
appear to be unconverged. This latter effect can be seen in Fig. 5.1. To handle these edge
cases, we consider only “strings” of consecutive mass bins which all falsify the null hypothesis
with p > 0.05. We take the convergence limit of a simulation to correspond to the lower edge
of the lowest mass bin which is a member of such a string containing at least three mass
bins.

To confirm this procedure, we visually identified convergence limits for every simulation
and halo property in each sub-group without knowledge of the bins that our statistical
method selected. Visual identifications were generally within 0.125-0.25 dex of the statistical
measurements with A9 = 0. Qualitatively, no major results in this chapter change if these
visual cutoffs are used. However, as noted above, the particle cutoffs for some halo properties
showed somewhat smaller dispersions when visual cutoffs were used. Inspection of individual

cases caused us to interpret this as confirmation bias.
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There are some simulations which are converged across the entire mass range used to
fit the high-resolution relation. This is the case for the highest resolution fits in Fig. 5.1.
Rather than extrapolate our fits, the convergence limits of these simulations are left as upper
limits. This is almost always the case for the highest resolution simulation in a sub-group.
In rarer cases, there are simulations which are unconverged across the entire high-resolution
mass range. The convergence limits for these boxes are left as lower limits.

Although all fiducial results reported in this chapter make use of the z-test as described
above, we also extend it to account for the “practical significance” of deviations. Ultimately,
the purpose of cosmological simulations is to facilitate a wide range of analyzes, and different
types of analysis can tolerate different levels of non-convergence. To account for this, we
introduce the parameter ¢, which represents a minimum acceptable deviation as a percentage
of the high resolution relation. We then add three additional conditions for a mass bin to

be considered unconverged:
L [{X1) — (X9)| > 6(Xq),
2. pz(A12 = 6(X7)) < 0.05,
3. pz(A1o = —6(X1)) < 0.05.

Here, p,(A12) is the probability that the two samples have means that differ by as much as
observed under the null hypothesis that they are drawn from populations which means that

differ by Aqs.

5.3 The Empirical N,;, Convergence Limits of Simulations

5.3.1 Typical Convergence Limits

We use the procedure described in section 5.2.3 to find the particle count, Ny, at which each
simulation in Table 3.1 deviates from high resolution fits for a given mass relation, (X)) (M),

of a halo property X. Table 5.2.3 shows example particle count cutoffs for X = z g, with
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Figure 5.2: The Ny;, values below which numerical effects measurably bias mean Viyax value
for each simulation in Table 3.1. These are conservative limits: all analysis can accept some
level of numerical bias. There is significant variation in these limits from simulation to simu-
lation. We first use color to group simulations by suite, then vertically order the simulations
by particle mass; the bottom dot in each suite corresponds to the highest resolution box of
that suite. We use points to indicate simulations where we measure diverging behavior and
upper limits for simulations where we were not able to measure a divergence. As discussed
in section 5.2.3 and shown in Fig. 5.3, the two highest resolution Planck suites, TNG-Dark
and Multidark, appear to converge to two different My; — Vinax relations. The solid circles
show cutoff values when the high-resolution fit does not include Multidark boxes and the
open circles show cutoff values when the high-resolution fit does not include TNG-Dark.
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Figure 5.3: The convergence behavior of (Vinax/Vyir) and (c¢/a) as functions of M. Top:
“Classical” convergence tests using the six boxes from the Erebos_CBol suite. Each curve

color corresponds to a different box, and the linestyle transitions from solid to dashed at
Nyir < 500. In isolation, these plots imply that rotation curve peaks and halo shapes mea-
sured for halos above 500 particles are converged. Bottom: The My, — Vinax/Viir and
My — ¢/a for every Planck-cosmology simulation suite in Table 3.1. Simulations are colored
by suite and the solid-to-dashed transition still occurs at Ny, < 500. There is disagreement
between the mass relations above the convergence limit implied by the top plots. The bottom
two panels contain a number of noteworthy features which we highlight in section 5.3.2.
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particle count cutoffs provided for both isolated halos and subhalos and example accuracy
tolerances of 6 = 0.00 and § = 0.01. The online supplement of Mansfield & Avestruz [in
prep] will contain results for all properties listed in section 5.2.2 with accuracy tolerances
ranging from 6 = 0.00 to § = 0.10, which will be available upon publication. Blank table
entries indicate that we were not able to make a reliable measurement of a deviation from
the mean mass relation for that property at that accuracy tolerance.

In Table 5.2.3, we show conservative “convergence limits” for many halo properties. These
correspond to Ny;, values at which 90% of the simulations in our sample show no measurable
deviation from high resolution fits (6 = 0; section 5.2.3). These limits should be viewed as a
guideline in assessing the acceptable level of numerical bias in an analysis. We recommend
that any analysis using halos with smaller Ny;, either use accuracy-dependent limits in Table
5.2.3 or explicitly test for numerical biases and include the systematic uncertainty in the error
estimates.

For each halo property in Table 5.2.3, we have performed detailed tests on how strongly
this property depends on € (see section 5.4). Properties which strongly depend on e have
been marked by a x, as we cannot express convergence limits in terms of Ny, alone.

It is difficult to compare this table to previous tests in the literature. For most of the
common properties with existing testing literature (e.g., Vims; Evrard et al., 2008 or T'/|U];
Power et al., 2012), we conclude that there is such a strong dependence on € that we cannot
endorse a single Ny limit. For many of the remaining properties, such as, z,g or apray,
we are not aware of any previous convergence tests. That said, we note that our cutoff for
APeebles 18 consistent with the results of Villarreal et al. [2017b], and that our criteria for
isolated halo abundances are consistent with existing literature on the topic [e.g. Angulo
et al., 2012, Ishiyama et al., 2015, Ludlow et al., 2019], although different authors adopt
different target accuracies. Finally, we note that our input catalogs did not have subhalos
with fewer than 50 particles; we were not able to put competitive constraints on mass

definitions with limits near or below this value.
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5.3.2 Variation in Limaits Between Simulations

Fig. 5.2 shows the Ny;; values at which every simulation in our suite measurably deviates
from from high resolution fits to (Vinax)(Myir). These values correspond to Nig, (.09 in Table
5.2.3. These Ny, limits are conservative (6 = 0; see section 5.2.3), and applications which
can accommodate modest biases in (Vipnax) may be able to use halos with smaller values of
Nyir- Nevertheless, the limits shown in Fig. 5.2 show the resolution scales at which numerical
effects begin to measurably influence the behavior of the Vijax distribution.

There is substantial variation in these convergence limits from simulation to simulation,
with many simulations only reaching full statistical convergence at 10° — 10% particles. Be-
cause TNG-Dark and Multidark appear to converge to different Vijax relations (see section
5.3.3), we perform this analysis twice with separate fits to both suites. The filled in circles
correspond to the fit to TNG-Dark and the unfilled circles correspond to the fit to Multidark.
Noe that the limits for TNG-Dark become higher when Multidark is used to fit low-mass
halos, and the opposite is true when TNG-Dark is used. However, the overall scatter in the
convergence limits does not depend on this choice. Note that simulations with WMAP-like
cosmologies (Chinchilla, Erebos_CBol, Bolshoi) are unaffected by this fitting choice because
they were fit separately.

The simulations-to-simulation variation in convergence limits is not an artifact of our
convergence procedure. In Fig. 5.3 we qualitatively demonstrate this effect for Vinax and
another commonly used halo property, ¢/a.

The top panels of Fig. 5.3 show the “classical” convergence test for Vipax and ¢/a using
the seven boxes in the Erebos_CBol suite. We show the mass relations, Vipax — My, and
c/a — My, for isolated halos using different colors for each box in the suite. The curves
are solid for halo masses corresponding to particle numbers above 500 and dashed for halo
masses below this particle count. These simulations strongly agree with one another above
this visually-identified convergence limit. There is some slight variation in the amplitude
due to cosmic variance. The agreement seems to indicate that both quantities are converged

115



above 103 particles.

However, we do not find such agreement when comparing across simulation suites. The
bottom two panels of Fig. 5.3 show the same mass relations for all of our Planck-cosmology
simulations. Most of the simulations have many times more particles than the Erebos_CBol
suite. Asin the top panels, the curves are solid above 500 particles and dashed below. Unlike
the top panels, there is disagreement between the simulations at halo masses corresponding
to approximately 10° particles, even for simulations in the same suite.

We have ruled out many factors outside of numerical non-convergence that could poten-
tially cause a difference in these mass relations. We address these factors in other sections

of this chapter, but we collect them here for convenience.

e As discussed in section 5.2.1, we cross-matched catalogs to demonstrate that varying
versions and parametrizations of the ROCKSTAR halo finder cannot cause this disagree-

ment.

e The statistically estimated cutoffs shown in Fig. 5.2 are consistent in detail with the
qualitative disagreement shown in Fig. 5.3. As described in section 5.2.3, our statis-
tical cutoffs explicitly account for cosmic variance, estimated by jackknife resampling.
Additionally, the disagreement extends to some very large boxes, such as v2-ge-L. This

means that the disagreement is not caused by cosmic variance.

e Fig. 5.3 only contains isolated halos, so this disagreement cannot be due to the stricter
convergence criteria on subhalo resolution. We have also inspected the distribution of
halo properties at a constant mass to determine that a small population of outliers is

not driving the differences.

e We also see disagreement between simulations in the same suite. Simulations within
the same suite use identical codes, identical cosmologies, and nearly identical initial
conditions setups. This means that differences of this type cannot be the sole cause of

the disagreement.
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Figure 5.4: The same as the lower left panel of Fig. 5.3, except restricted to TNG-Dark and
Multidark boxes. TNG100-1-Dark and VSMDPL, which have very similar parametrizations,
are emphasized with darker colors. The two suites have converged to different solutions.

5.3.8  Differences Between Multidark and Illustris-TNG

As discussed above, the Multidark suite and the Illustris-TNG suite have converged to two
different (Vipax(Myiy)) relations. We illustrate this in Fig. 5.4. This difference emphasizes
that convergence alone is not sufficient to establish that a simulation is unbiased, a point
which is discussed further in section 5.1. In the rest of this section we focus on isolating
the cause of such a “false convergence” in detail. In particular, we focus on the TNG100-1-
Dark and VSMDPL boxes, which have very similar parametrizations and are emphasized in
Fig. 5.4.

Numerical differences between cosmological simulations come from a finite list of sources:
cosmology, cosmic variance, halo finders, box size, m,, timestepping, force softening scheme,
€, initial condition generation, code parameters, and code algorithms.

Cosmology cannot cause the difference between TNG100-1-Dark (2 = 0.309, higg =
0.677, og = 0.8159) and VSMDPL (€, = 0.307, higgp = 0.678, o5 = 0.832), as the

Planck-like parameters they adopt are almost identical. Cosmic variance can never lead
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to false convergence because such fluctuations would be uncorrelated with simulation suite.
Additionally, we find that the cosmic variance estimated through jackknife resampling for
(Vinax(Myiy)) is small relative to the difference between the suites. As discussed at length
in section 5.2.1, we have ruled out halo finder inconsistencies as a potential cause of non-
convergence. Although TNG100-1 (L = 75h~Mpc) and VSMDPL (L = 160 h~Mpc)
have different box sizes, any small-box effects this large in an L = 75 h~1Mpc box would
have been detected in the tests performed by Power and Knebe [2006]. TNG100-1-Dark
(mp = 6.00 x 106 =1 Mg) and VSMDPL (mj, = 6.16 x 10° k=1 M) have virtually iden-
tical particle masses, meaning that the source of the false convergence cannot be related
to mass resolution. Gadget-2 and Arepo use the same timestepping criteria, Eq. 3.1, and
TNG100-1 (n = 0.012) and VSMDPL (n = 0.01) use nearly identical values of 7, meaning
that timestepping is very similar between the simulations.

Both simulations use the same softening scheme, Eq. 3.3, but TNG100-1-Dark (¢/l =
0.018) and VSMDPL (e/l = 0.024) use softening lengths that differ by 25%. While small,
this difference could, in principle contribute to the false convergence. However, in section 5.5
we construct an explicit model for the impact of €/[ in this regime. This model predicts that
while both simulations should be biased to slightly low in Vijax due to the adopted values
of €, this effect is too small to account for the false convergence.

After review of the configuration files for both simulations [Nelson et al., 2019, Yepes,
personal communication], the only meaningful difference between parametrizations is « (also
referred to as facc, and ErrTolForceAcc), which sets the node opening criteria in Gadget’s
force tree. VSMDPL adopts a = 0.01, while TNG100-1-Dark adopts a more conservative
a = 0.0025. The tests in Power et al. [2003] indicate that v = 0.01 can lead to density
biases in regions of halos with N(< R) ~ 100, but that this effect is also dependent on mass
resolution, meaning that it’s unlikely to contribute to biases which persist across multiple
resolutions. However, the impact of a deserves further study.

Based on the process of elimination, we consider the most likely cause of the false con-
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vergence seen in Fig. 5.4 to be updates in the Gadget force solver which were made during
the development of Arepo. Gadget-2 dynamically updates force trees to avoid needing to
reconstruct the entire tree for each step taken by particles in the finer time bins [Springel,
2005]. However, Weinberger et al. [2019] found that this process leads to force errors which
are correlated with timestep size, leading to errors which occur predominantly in the central
regions of halos where particles are on short orbits and scattering off one another on short
timescales. This effect would depend chiefly on the acceleration felt by each particle, opening
an avenue for a numerical effect which depends primarily on halo mass and not on resolution.

The cause of this false convergence must be established before high-accuracy measure-
ments of rotation curves at low masses (Myj, < 1010h_1M@) can be performed. No state-
ment can be made about which simulation suite(s) have and have not falsely converged until

there is a positive identification of the source of the issue.

5.4 The Dependence of Halo Properties on Force Softening Scale

To investigate the dependence of halo properties on €, we make use of four convergence
boxes which were initially run as part of the Chinchilla simulation suite (as seen in, e.g.,
Mao et al.; 2015, Desmond and Wechsler, 2015, Lehmann et al., 2017).2 These boxes are
resimulations of the same set of initial conditions but with different force softening scales (see
Table 5.4). They were run with L = 125h~1 Mpc, N3 = 10243, Q5 = 0.286, higo = 0.7,
and my, = 1.44 x 108 h=1 M. Aside from force softening scale, these boxes are very similar
to the Erebos_CBol_1.125 box (the orange curve in the upper panels of Fig. 5.3). We refer
to this as the Chinchilla-e suite.

The force softening scales in these boxes span a wide range. In units of the mean in-
terparticle spacing, the smallest force softening scale, in Chinchilla_1.125_el, corresponds to
¢/l = 0.0082 a small but not uncommon length which is similar to simulations like Bol-

shoi or any of the Chinchilla boxes. The next smallest, Chinchilla_.L125_e2, corresponds

2. Access to these catalogs was generously provided by Matthew Becker.
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Simulations name ¢ (h~'kpe) €/l
Chinchilla_ L1251 1 0.0082
Chinchilla_ L1252 2 0.016
Chinchilla_ L1255 5 0.041
Chinchilla_L125 e14 14 0.115

Table 5.3: Simulation parameters of the resimulated convergence boxes of the Chinchilla-e
resimulation suite. Shared parameters of these simulations are discussed in section 5.4.

to a fairly typical €/l = 0.016 which is similar to SMDPL or Erebos CBol L63. Next is
Chinchilla_L125_e5, €/l = 0.041 which is close to the upper limit of € typically found in cos-
mological simulations and is similar to Erebos_.CBol_L1000 or the v2-gc boxes. The last box,
Chinchilla_1L125_e14, has a force softening scale much larger than any box in our simulation
suite: €/l = 0.115, but which is comparable to the e suggested by some convergence studies
(see section 5.6.1). Timestepping in each simulation is performed via Eq. 3.1 with n = 0.025,
meaning that timesteps are not constant between simulations.

We compare the mass-trends for every halo property described in section 5.2.2 across the
boxes in the Chinchilla-e resimulation suite. Most properties, such as X g or Agyjock show
either little to no dependence on € or show agreement for typical values of € and some mild
non-convergence in Chinchilla_1.125_e14. This is not true for all halo properties.

In Fig. 5.5 we show the Vinax — Myir, ¢/a— Myiy, Vims — Myir, and T'/|U| — My, relations
for isolated halos in each of the Chinchilla resimulation boxes. The curves are solid above
the cutoffs listed in Table 5.2.3 and dashed below it. If the traditional convergence tests in
this chapter are correct, one would expect that these trends would not depend on numerical
parametrization above these cutoffs. We find that all four properties vary meaningfully with
€. These mass relations vary continuously in amplitude and slope across the entire € range.

To give a sense of the “practical significance” of these trends, we overplot the difference
between the DMO TNG100-2-Dark and the baryonic TNG100-2 as a gray shaded region.
For Vinax and ¢/a, the shift in halo properties due to numerical effects is comparable to or

greater than the impact of baryons.
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Figure 5.5: The dependence of various halo properties on force softening scale. Each panel
shows the mean mass relation for various halo properties in isolated halos for four boxes which
were resimulated from the same initial conditions The purple, blue, and yellow curves have
e in the range typically chosen by cosmological simulations. The red curves probes e values
suggested by some convergence studies (e.g., Power et al., 2003; see section 5.6.1). The curves
transition from dashed to solid at the median Ny, cutoff from Table 5.2.3 and continue to
Nyir &~ 2 X 109. ¢/a, Vinax, and Vipg are strongly dependent on €, and T'/|U]| is dependent on
¢ for softening scales smaller than €/] ~ 0.016. To give a sense of the “practical significance”
of these dependencies, we show the impact of baryons in the Illustris-TNG simulations as
gray shaded regions. The dashed edges of these regions correspond to mass relations from the
baryonic TNG100-2 box and the solid edges correspond to mass relations from non-baryonic

TNG100-2-Dark box.
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Figure 5.6: The impact of force softening on the subhalo abundance within 50 host halos
from the Chinchilla-e resimulation suite with masses Moy ~ 1014, Left: The dependence
of the cumulative subhalo mass function on force softening scale. Plotted are the mean mean
functions. The solid lines show all subhalos, and the dashed lines show all subhalos within
0.25 Roqc of their hosts. The fractional deviation from the e = 0.016 simulation is shown in
the bottom panel. center: the same for the mean Viax subhalo velocity function. Right: the
same for the mean V}ea1c subhalo velocity function. The lowest mass subhalos shown in each
plot have ~ 70 particles. Note that the red curve corresponds to an atypically large value
of €. The subhalo mass function exhibits only a weak dependence on € in the outer regimes
of the halo. This dependence becomes stronger at small radii, confirming that artificial
disruption is stronger in this regime. The subhalo velocity functions depend more strongly
on €, even at large radii. Although the impact of € velocity functions becomes stronger at
small radii, the strength of the dependence at large radii relative to the dependence seen in
the subhalo mass function implies that most of this effect is from artificial suppression of
Vinax and not artificial subhalo disruption.

5.4.1 Dependence of the Subhalo Mass Function on €

In Fig. 5.6 we show the dependence of the subhalo mass and velocity functions on e. The
left panel shows the mean subhalo mass functions functions of the 50 largest halos in the
Chinchilla-e resimulation suite, the middle panel shows the mean subhalo Vi ax functions
for these halos, and the right panel shows the mean subhalo V},e,i functions of these halos.
The host halos have particle counts ranging across 5 X 10° < Nogge < 1.4 x 105, We use the
high-density Mogg. mass definition to study subhalos over the lower density M,;, definition
favored elsewhere in this chapter, as higher density regions survive longer prior to disruption.

Both types of subhalo velocity functions show a strong dependence on force softening scale
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that becomes stronger when considering subhalos close to the center of the host. Subhalo
mass functions have a weaker dependence on €, although it also becomes stronger for central
subhalos, implying that artificial subhalo disruption/stripping becomes stronger at small
radii. The difference in e-dependence between the mass and velocity functions implies that
velocity functions are primarily impacted by artificial suppression of the velocity curve (which
does not affect mass functions and which does not have a radial dependence) more than
artificial subhalo disruption, but that artificial subhalo disruption likely leads to the radial
dependence in e-dependence.

Note that, as discussed in section 5.1, convergence between independent cosmological
simulations cannot establish correctness. The lack of a strong e dependence at larger radii
or larger particle counts does not imply that artificial disruption of subhalos is a weak
effect: such a statement requires comparison with idealized simulations. However, these
measurements can be used to constrain disruption models which predict that disruption
rates depend on e.

The idealized tests in van den Bosch and Ogiya [2018] suggest that some aspects of
artificial subhalo disruption have a strong dependence on force softening scale. They find
that simulations of idealized subhalos experience substantial artificial disruption and that this
disruption occurs even at high subhalo resolutions. The rate of tidal stripping is dependent
on € across the range of € values adopted by the Chinchilla-¢ test suite. Our results are not
in conflict with these findings, despite the weak dependence of the subhalo mass function on
€.

van den Bosch and Ogiya [2018] found that numerical factors begin to artificially accel-
erate disruption once halos have already lost = 90 — 95 per cent of their mass due to physical
disruption. Due to the slope of infalling halo mass function, at any particular snapshot,
the majority of subhalos at a given mass have not yet experienced this level of disruption.
Additionally, the effect of artificial disruption due to force softening is strongest in subhalos

on close orbits, with effect becoming particularly strong at R ~ 0.1 Ry;;, a regime which
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our simulations do not have sufficient resolution to probe. Subhalos on close-orbits are both
located in the deepest part of the host halo’s potential and are most likely to have already
experienced many orbits. While close orbit subhalos make up a small fraction of the host’s
overall volume (and thus of our sample), the best constraints on the faint end of the satel-
lite luminosity function come from the corresponding satellite population of the Milky Way
[e.g. Drlica-Wagner et al., 2019]. Furthermore, the radial dependence of artificial disruption
affects makes it more difficult to compare observed satellite number density profiles to the
predictions of ACDM [e.g. Carlsten et al., 2020]. These effects are therefore still important
for cosmological constraints.

The locations of even the most massive subhalos are altered substantially by changes in
€. It is possible that this is due to chaotic errors in halo phase while orbiting their hosts, but
given that the tidal disruption rate in the host’s central region is dependent on ¢, it is also
possible that this is caused by an € dependence in the dynamical fiction experienced by each
subhalo. This change in positions makes it impossible to directly measure subhalo disruption
using only single-snapshot information. Such analysis would be possible by comparing the
trajectories of subhalo progenitors prior to accretion. We defer such analysis of subhalo
trajectories to future work.

Note that these tests only study the impact of € on subhalo abundance. Particle count
also substantially impacts the reliability of subhalo velocity functions [e.g. Guo and White,

2014, Klypin et al., 2015b] and must be accounted for accordingly.

5.5 Estimating the Impact of Large ¢ on V,,

In sections 5.3.1 and 5.3.2 of this chapter, we showed that the distribution of halo properties
measured in different simulations diverge from one another at unexpectedly high particle
counts. In section 5.4, we showed that varying e across the range typically used in cosmo-
logical simulations has a large impact on many commonly studied halo properties. In this

section, we construct a model that predicts this behavior for the simplest property we have
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considered: Viax.

Previous convergence studies have established three channels that allow halo rotation
curves to depend on €. In the large e limit, non-Newtonian forces suppress V(R) with
increasing €. The suppression is primarily due to how softening reduces centripetal forces
le.g. Klypin et al., 2015b, van den Bosch and Ogiya, 2018, Ludlow et al., 2019]. As we
show in Fig. 5.9, the suppression of V(R) continues into regimes where the force kernel
is Newtonian because the entire halo responds to the creation of a low-density core. As
we discuss in section 5.6.1, some of this effect may be caused by poor timestep resolution
under some timestepping schemes. In the limit where € is small, two-body collisions begin to
thermalize the dark matter particles over some local relaxation timescale [e.g. Power et al.,
2003, Navarro et al., 2010, Ludlow et al., 2019]. This causes the otherwise adiabatic orbits of
dark matter particles [e.g. Dalal et al., 2010] to become adiabatic and for the radial velocity
dispersion profile to flatten [e.g. fig. 6 of van den Bosch and Ogiya, 2018]. The dominant
effect of this transformation is that particles in the high velocity tails are transported to
higher radii, leading to decreasing V' (r) as this timescale decreases. This timescale depends
primarily on the size of r relative to [ [Ludlow et al., 2019], although excessively small € and
> tHubble M€asurement timescales increase cause € dependencies to become more important
[van den Bosch and Ogiya, 2018|. Lastly, in the limit where € is small and timestepping is
coarse, integration errors (e.g. fig. 9 of Knebe et al., 2000). This last effect is discussed at
length in section 5.6.1. The “art” of configuring a cosmological simulation is in selecting an
e and € in a safe regime that avoids all three effects.

We illustrate the dominant trend in the top right panel of Fig. 5.5. Here, we see that
Vmax decreases with increasing e, implying that large values of € is the most likely driver of
suppressed rotation curves.

When simulators account for large-¢ effects, they typically restrict their analysis to halos
where R > Xe, where X is some constant. To give an idea of the typical values of X

used, we surveyed several papers which studied the concentration-mass relation to identify
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values for X = (r_o)(Myir min)/€. We found that the minimum values identified ranged from
2.5 < X < 6.4 [Neto et al., 2007, Duffy et al., 2008, Gao et al., 2008, Zhao et al., 2009, Prada
et al., 2012, Bhattacharya et al., 2013, Ludlow et al., 2013, Dutton and Maccio, 2014, Klypin
et al., 2016, Poveda-Ruiz et al., 2016, Child et al., 2018]. This is broadly consistent with
the behavior of ROCKSTAR, which downweights radii larger than 3e. Diemer and Kravtsov
[2015] performed a detailed review use the results of several zoom-in simulations to conclude
that analysis is safe above > 3¢ for individual halos, and that analysis of (r_s)(My;,) should
be restricted to masses where (r_9)(Myi,) 2 8¢ to account for scatter in the My, — cyir
relation. Below, we take a different approach and use out direct measurements of the impact
of € on rotation curves (Eq. 5.13) to estimate the impact of € on the distribution of Vijax in
a halo population.

The left panel of Fig. 5.7 illustrates the rotation curve bias due to the Gadget force
softening scale, as predicted by Eq. 5.13 for different halo profile shapes. We reference Klypin
et al. [2015b] for a mathematical summary of NFW rotation curves and Garrison-Kimmel
et al. [2014] for a similar summary of Einasto rotation curves. Einasto profiles require a
second parameter beyond Rg, o, and provide a more accurate fit than NFW profiles [e.g. Gao
et al., 2008, Springel et al., 2008]. The solid curves in Figure 5.7 show the unbiased rotation
curves for an NFW profile in black and Einasto profiles with a=0.14, 0.18, and 0.22 in red,
yellow, and blue, respectively. The selected « values roughly correspond to the range spanned
by z = 0 halos [e.g. Child et al., 2018]. The dashed lines show the biased rotation curves
predicted by Eq. 5.13 for hGadget = Rmax (€ = 0.278 Rpax). The biased maximum velocity,
Vinax bias: ranges from 0.943 Vinax to 0.949 Vipax, exhibiting a small systematic uncertainty
due to halo profile shape, which is ~ 10 percent of Vinax — Vinax bias- This uncertainty
consistently stays at or below this level relative to Vinax — Vinax bias regardless of Rmax/€

By evaluating &p,ias = Vimax/Vinax,bias for a range of €/ Rmax, we can empirically construct

the invertible function &};,6(€/ Rmax) for a given halo profile shape. For convenience, we note

126



that for both NF'W and Einasto profiles this function is well-fit by,
2\ A
bins =2 — (14 (Ae/ Ruax)?) (5.4)

We fit this relation for Gadget-like kernels over the range of 0.01 €/ Rmax S hGadget S
5 ¢/ Rmax. Below this range, Vimax/Vinax bias i 1 for all practical purposes. Above this range,
Eq. 5.13 is poorly constrained. By minimizing the least-squared error on Vinax/Vinax bias: We
find that the parameters A = 6.049 and 8 = 0.05440 lead to errors in Vi,ax hias Which are S
1073 Vinax for NFW profiles and that the parameters A = 5.884 and () = 0.02754 In () +
0.15566 lead to errors which are < 2 x 1073 Vinax for Einasto profiles with o ranging from
0.12 to 0.32. However, we use the raw empirical functions in all subsequent analyzes, derived
from whichever force softening kernel is appropriate.

Note, no function describing &p;aq(€/Rmax) can be applied on its own to evaluate the bias
in Vinax because these functions depend on the unbiased value of Rpyax, which is unknown.
Therefore, such a function must be combined with a second, independent equation relating
Ebias 10 Lmax-

For our application, the systematic errors in &};,s due to profile shape are small. We
therefore restrict our analysis to NFW profiles because they depend on only a single param-
eter. With an NFW parametrization, we can directly compute an estimate for j;,s from

the unbiased cyj, and Vijy piag from the halo catalog. The estimate comes in the form of,

Viir,bias ( Cyir > 1/2 Viir
e = 0.469 : 9.5
Sbias (Vmax,bias f(cvir) Vvir,bias (5:5)

where Viir/Viir bias 18 Eq. 5.13 evaluated at R/e = 0.469 cyiy Bmax and f(z) = In(1+z) —

€

1/(1+z). We compute the ratio Viir pias/ Vinax,bias from halo catalogs, whose measurements
are biased due to e.
For NFW halos, Rpax = 2.164Rs. This and Eq. 5.5 provide two independent equations

for &pias(€/Rmax). For halos with Ryax pias > Ryir bias (2 criterion that holds for virtually
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all halos in cosmological simulations), these two relations intersect at exactly one point: a
unique solution for &pias = Vinax/Vinax bias- This statement is only true for single parameter
profile models, such as NFW profiles or Einasto profiles with fixed a.

With this de-biasing procedure, we can estimate the unbiased Vipax/Vyir for each halo in
a given cosmological simulation from the biased measurements of Vijax bias/Vvir bias: We can
then estimate the mean unbiased Vinax/Viir(Myir) in that simulation. Note that the scatter
in the My, — Vinax relation means that this estimate cannot only be applied to the mean of
a particular mass bin, but must first be applied to individual halos before finding the mean
relation as described.

The right panel of Fig. 5.7 shows the result of the “de-biased” estimate of Vipax/Vyiy for
the Chinchilla resimulation boxes. From this figure, we see that this procedure completely
removes the e dependence from this sample, implying that the numerical bias of Vinax/Vyir
18 primarily due to large €.

There is a few-per cent dispersion between curves at moderate-to-high masses. While
other numerical effects could cause this dispersion, the level of dispersion is consistent with
the error level associated with the assumption of an NFW profile in our analysis. As dis-
cussed above, assuming a profile shape results in systematic errors in Vipax on the order of
0.1 (Vinax — Vinax,bias)- Given that some simulations are estimated to be biased at the 20% -
30% level, a 2%-3% error is to be expected. The dispersion increases at low particle counts
(low halo masses) and small Ryax/e. While numerical effects could cause this as well, the
dispersion occurs in a regime where corrections are large and Eq. 5.13 is poorly constrained.

In Fig. 5.8, we show the results of applying these bias estimates to various Planck cosmol-
ogy simulations. In this Figure, dashed lines show the measured mean mass trends in each
simulation. The solid lines show results from our de-biasing procedure, which are estimates
of what these trends would have been if not for the large € bias. We cut off the estimated
trend when they disagree from the measured trend by more than one per cent. As with the

Chinchilla boxes, we are able to account for all of the visibly-apparent deviations from the

128



mean measured trend using our de-biasing procedure for biases due to large e.

We note that there is still a non-trivial amount of scatter between simulation suites along
the mean trend. While is is possible that this dispersion is also due to numerical factors,
another possible explanation is in variations due to exact cosmology. Despite the fact that all
are “Planck” cosmology simulations, different suites are either associated with data releases
from different years or round their cosmological parameters to a different number of decimal
places.

Lastly, we note that the de-biasing procedure outlined in this section is appropriate for
either qualitatively estimating the impact of € on a simulation suite (such as the right panel
of Fig. 5.7) or estimating mass ranges robust to biases due to large € (such as Fig. 5.8). The
procedure should not be used to “correct” the Viax distribution. The primary reason for
this is that our model assumes an underlying halo profile. In applications where the true

underlying profile is known, there is no need to measure its properties in a simulation.

5.6 Discussion

5.6.1 Timestepping as an Additional Source of Biases

Coarse timesteps have two well-discussed effects on halo profiles [e.g. Power et al., 2003].
First, particles orbiting a smooth potential can artificially gain or lose energy if their orbits
are too poorly resolved in time (e.g. fig. 4 and fig. 6 of Springel, 2005). The exact effect on
these orbits is dependent on a number of factors including the integration scheme, the local
slope of the potential, the ellipticity of the orbits, and the adaptive timestepping scheme
[Springel et al., 2001a, Springel, 2005]. The second effect occurs with particles orbiting
potentials with noise due to small force softening scales. Here, particle-particle scattering
can lead to integration errors (e.g. fig. 9 of Knebe et al., 2000). These collisions do not
conserve energy and will add/remove energy from the affected regions of the halo at a rate

which depends on the collision rate, the depth of each particle’s potential, the length of the
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Figure 5.7: Left: An illustration of the bias estimate due to large softening scale on different
halo profile shapes. Different colors correspond to the profile shape corresponding to the
labeled parametrization. Dashed curves show rotation curves unbiased by force softening,
and solid curves show predictions of the biased rotation curves from Eq. 5.13 for a Gadget
simulation with € = 0.357 Rmax ( hGadget = Fmax). The systemic uncertainty in Vijax bias
across the profile parameters shown here is ~ 0.007Viax for the given value of hgaqget-
Right: The result of applying the bias estimates described in section 5.5 to the top right
panel of Fig. 5.5 (note, however, the change of axis range between these Figures). The
dashed curves show the same mean Vyax values measured in each mass bin and the solid
curves the de-biased rotation curves, estimating what Vi,ax would be if there were no bias
due to force softening. The dependence on € is almost entirely removed through the bias
estimates, indicating that the majority of the ¢ dependence is due to large € biases.
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Figure 5.8: Fig. 5.3 recreated with the bias estimates from section 5.5. As in the right panel
of Fig. 5.7, dashed curves show the mean mass trends measured in each simulation and the
solid curves show estimates of what these mean trends would have been if not for large €
biases. To emphasize the mass ranges which are affected by these biases, we only plot solid
curves down to mass bins at which they agree with the measured trend to 1 per cent or
better. Although there is still some dispersion around a mean relation between simulation
suites, all the strong, visually apparent divergences from the mean trend are consistent with
being caused by large €. Note that there are many science applications where a Vipax bias
of larger magnitudes is perfectly acceptable. This cutoff choice is only meant to mimic the
divergences seen by the eye and does not imply the “usable” mass ranges of these simulations
for arbitrary analysis. Such a mass range must be developed with the tolerances of a given
analysis in mind.
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timestep relative to the collisional timescale.

We will focus our analysis on the standard Gadget timestepping criteria, Eq. 3.1. Only
two of the simulations in Table 3.1 use alternative schemes: Bolshoi and BolshoiP. For
a spherically symmetric NF'W potential, Bolshoi and BolshoiP will always have timesteps
that are a factor of ~ 102 — 10% smaller than a Gadget simulation run with n = 0.025.
Timestepping errors can be ignored for these two boxes.

For any spherically symmetric mass distribution, the Gadget timestepping criteria can

be conveniently rewritten in terms of the number of timesteps per circular orbit:

leire R 1/2 Ui —1/2
At~ 281 (?) (0.025) ' (56)

We use this relationship to quantify integration errors in sections 5.6.1 and 5.6.1.

Integration Errors in Smooth Potentials

Integration errors in smooth potentials, are essentially irrelevant with the conventional Gad-
get integration settings. Tests of smooth integration errors in Power et al. [2003] show that
simulations with constant timestepping converge to AV/Vies = 0.1 above radii at which

timesteps per circular orbit satisfy,

teire(R)/t200c > A(At/ty)?, (5.7)

with A ~ 15 and a ~ 5/6. Empirical criteria determine if the underlying potential is smooth
for halos in their study. The results from Power et al. [2003] agree with first-principles
estimates of this class of integration errors. Combining the relation in Eq. 5.7 with Eq. 5.6

and the feir/t200c profile of an NFW halo, we arrive at the requirement,

o | =

n Y (o flen )
4 42/a 200c
> 4.96 x 10744 (0‘025) < e ) . (5.8)
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Here, x = R/Rs, c200c = Rogoc/Rs, and f(x) =In(1+ x) —2/(1+ z). R/e has only a weak
dependence on ¢y and x. For example, concentrations in the range of 5 < c9gge < 15, a
10 per cent error in Vipax due to smooth integration errors requires a corresponding range
of 0.6 < Rpax/€ < 1.2.

We note that smooth integration errors are typically subdominant or comparable to
softening-induced errors in the centripetal force. As a comparison, Eq. 5.13 gives AV/V ~
0.20 — 0.30 at distances where Eq. 5.8 predicts a fractional error of 0.1. It is possible that
even this is an overestimate: concentration- and radius-dependence at the level predicted
by Eq. 5.8 — while small — would have been detectable in our tests described in Appendix
5.8.1. However, it is possible that the values in Table 5.8.1 have some dependence on Gadget
timestepping parameter, 7, and that high-precision estimates of AV/V,..¢ require measure-
ments at the same 7 as the target simulation. This is a question which deserves further

study.

Integration Errors During Scattering

Excessively small force softening leads to noise in the halo potential. In sufficiently noisy
potentials, integration errors from particle-particle scattering become more severe and require
much smaller timesteps to suppress. The landmark study on these integration errors is
Power et al. [2003]. Empirically, they find that integration errors during scattering occur for

€ < €opt, P03, Where we can express the limit on € with both,

2.9 Roooc

60pt,PO3 - \/m ) (59)
and,
0.\ 1/3 Naoo -1/6
€opt,P03/l = 0.076 (o ;7) ( 103C) . (5.10)
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Here, [ is the mean interparticle spacing. Eq. 5.10 is substantially larger than the €/l values
adopted by virtually all cosmological simulations. Fig. 5.5 shows that any cosmological sim-
ulations which abide by such a limit risk substantial biases in halo properties due to softened
centripetal forces. Subsequent authors have suggested that Eq. 5.9 is too conservative by a
factor of < 2 [Zhang et al., 2019, Ludlow et al., 2019]. However, part of the disagreement
can be accounted for with a correction of the (now non-standard) Plummer equivalence scale
which Power et al. [2003] used: € = 0.5 hgadget-

The most straightforward interpretation of the Power et al. [2003] tests is that particle-
particle scattering in noisy halo potentials should lead to catastrophic non-convergence
in cosmological simulations. Fig. 5 in Power et al. [2003] shows that for halos run at
€/€opt, P03,w ~ 9, fractional errors in V/(R) should be larger than 0.1 for radii at which
timesteps per circular orbit satisfy Eq. 5.7, with A = 11.2 and a = 0.57. These large
fractional errors would be predicted for the Chinchilla-e simulation, represented by the blue
curves in Fig. 5.5 at Nogge &~ 103. The small o causes this level of bias to be reached at very
large values of R/e and to become strongly dependent on cogge and z. A cogg. = 10 halo
would be predicted to have biases in Vipax larger than 0.1Viax for € > 0.018 Ryax!

However, the massive biases predicted by the analysis in the previous paragraph (and
comparable predicted biases used to argue for € S €yt pog) are an artefact of the constant
timesteps used in the Power et al. [2003]. Under constant timestepping schemes, the size of a
timestep relative to the smallest possible collisional timescale, teiye(mp(< €),€)/At, varies as
32, This dependence on € means that the resolution of close orbits worsens as € decreases.
However, Eq. 5.6 shows that with the standard Gadget timestepping criteria, teipe(mp(<
€),€)/At is independent of €. Timestepping errors are therefore far less catastrophic with the
standard Gadget timestepping criteria.

Other recent convergence studies have investigated the impact of timestepping in the
€ < €opr,po3 regime. Ludlow et al. [2019] performed tests on halos across a wide range of €

values for n = 0.025 and 1 = 0.0025. These tests find catastrophic contraction of halos out
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to large radii at n = 0.025 for €/1 < 0.003, but find that halos in the range of the typical €
of cosmological simulations are relatively unaffected (see Ludlow et al., 2019 fig. 2).

The non-monotonic behavior in € is surprising and deserves further study. The onset of
profile contraction occurs at €/l values that are close to what is needed to avoid large-e biases
in halo properties. A full characterisation of the profile contraction is therefore of practical
relevance.

One potential explanation for the non-monotonicity is that Eq. 5.6 ensures that collisions
occurring at distances with € < 7o are well-resolved, and the fraction of particle collisions
which occur at € & rpepq decreases as € decreases. Although the Gadget timestepping scheme
ensures that such collisions are never catastrophically unresolved, modest integration errors
are sill possible. Springel [2005] shows that when using the adaptive timestepping of Gadget-
2, small integration errors tend to decrease the energy of the system. Thus, as epsilon
decreases, the average energy lost per collision increases as the potential of each particle
decreases. In this case, however, the range of collision parameters that lead to rpericenter ~ €
also decreases until these collisions are so rare that they are not relevant to the internal

dynamics of the halo.

5.6.2 What is the “Optimal” €?

A number of studies aim to identify an optimal choice for e. The [Power et al., 2003]
suggestion for an optimal value, €4, pp3, 18 shown in Eq. 5.9 and discussed at length in
section 5.6.1. However, cosmological simulations universally use scales smaller than eyt po3-
The use of smaller € values is in part because — as Fig. 5.5 and Fig. 5.6 show — halos simulated
at € = €opt exhibit large biases at the particle counts that cosmological simulations typically
consider. Klypin et al. [2015b] has also noted this effect in their analysis.

Recent convergence studies [van den Bosch and Ogiya, 2018, Ludlow et al., 2019] have
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argued for an alternative optimal choice in e:

EOpt,VOlS/l = 0.017. (5.11)

The level of bias implied by Fig. 5.5 and Fig. 5.6 at €t vo18 would be acceptable for many
applications, but is not zero. These Figures do not conclusively establish convergence in ¢,

but, the model presented in section 5.5 would predict that

€opt,Vimax/! = 0.008 (5.12)

simulation would exhibit bias in Vinax which is smaller than cosmic variance for simulations
with comparable resolution and box sizes to the Chinchilla-e.

However, we caution against uncritically accepting Eq. 5.12 as a blanket prescription
for € for three reasons. Most importantly, the level of acceptable bias in a measurement is
highly dependent on the science target. While striving for zero numerical bias (a formally
impossible goal) is the safest generic option, all analyzes can tolerate at least some deviation
from the true predictions of ACDM. Second, this recommendation is based solely on reducing
bias in Vipax. Halo properties which depend on the mass distribution at radii smaller than
Rmax will require smaller e. Third, our simulation suites did not explicitly establish a range
of converged € and this recommendation is thus model-dependent. Fourth, poorly-explored
timestepping effects can cause catastrophic halo contraction for e values somewhat smaller
than Eq. 5.12 for standard timestepping schemes. All four considerations must be accounted

for before applying Eq. 5.12 or any other €qpt prescription.

5.7 Conclusion

In this chapter, we study the impact of DMO simulation parameters on halo properties.

We provide several tools to help analysts avoid and quantify these numerical biases. We
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do this by comparing a number of publicly available cosmological simulation suites against
one another and by measuring the dependence of halo properties on both particle mass and
several secondary simulation parameters. The most important of these is the “force softening
scale”, which controls the effective radius of dark matter particles. We also consider the

impact of coarse timestep size.

e We report the Ny, cutoffs where our cosmological simulations have converged to shared
mass relations (section 5.3.1). We do this for a wide range of halo properties and error

tolerances.

e There are many halo properties (e.g. Z.f, a1 /2) where these cutoffs are consistent
between simulations. For these properties, most analyzes can simply use a set of

conservative “convergence limits” at modest values of Ny, (Table 5.2.3).

e For similarly high levels of agreement, other commonly used properties (e.g. Vipax,
c/a) behave differently between simulations. Such levels of agreement can require Nyi;

as large as ~ 10° — 109 (section 5.3.2 and Fig. 5.3).

e This disagreement is partially because some simulation suites have internally converged
to different solutions. We demonstrate this for Multidark and IllustrisTNG-Dark (sec-
tion 5.3.3). The reasons for this disagreement between converged simulations are cur-

rently unknown.

e We show that many halo properties (e.g., Vinax, ¢/a, and subhalo abundances) exhibit
a strong dependence on force softening (section 5.4). The biases associated with this

dependence can be comparable to the impact of baryons on these properties.

o We develop a model which estimates the bias in Vi ax due to large force softening scales
(section 5.5). This model predicts the dependence of Vipax on force softening and most

of the dispersion in simulation results for this property.

137



e We review previous studies on timestep size and conclude that commonly used timestep-
ping schemes are unlikely to significantly bias halo properties (section 5.6.1). However,

we outline several open questions in this topic.

We emphasize that all analyzes can accommodate some level of numerical bias. This
chapter does not assert what those levels are. There is nothing incorrect about studying halos
below the most conservative convergence limits, however such analyzes should incorporate
some estimate of the associated systematic uncertainty. The results of this chapter will help

analysts to identify the regimes where this is necessary and to estimate the resultant biases.

5.8 Appendices

5.8.1 Recalibrating the Plummer-Equivalence Scale

Rather than adopting a conversion based on the functional forms of kernels, in this work we
use a novel Plummer equivalence scale, which has been calibrated from the empirical impact
of varying h on halo velocity profiles. As is discussed at length in sections 5.5 and 5.6.1,
large force softening scales can lower the inner densities of halos through a combination of
lowering centripetal accelerations and (in some timestepping schemes) lowering the number
of timesteps per orbit. These effects can impact the density of the halo at radii where forces
are Newtonian as outer layers of the halo correctly respond to numerical density changes in
the halo center.

We compare the results of Klypin et al. [2015b], van den Bosch and Ogiya [2018] and
Ludlow et al. [2019], which measured circular velocity profiles for halos simulated with vary-
ing h for Plummer and Gadget kernels. Klypin et al. [2015b] and van den Bosch and Ogiya
[2018] considered idealized isolated NFW halos, while Ludlow et al. [2019] studied stacked
mass profiles from a series of small cosmological boxes.

We first consider the profiles in Ludlow et al. [2019]. These tests were performed with

a “standard” Gadget timestepping parameter of n = 0.025 and with a higher resolution
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Figure 5.9: Left: The acceleration errors associated with different force softening schemes
for a test point some distance r from a particle. Distances are noramalized by h, the scheme-
specific formal resolution described in section 3.1.1. The points for ART are taken from
Kravtsov et al. [1997]. The dashed red line shows the Gadget force error scaled by h =
0.357 hGadget- This plot illustrates the known fact that the traditional “Plummer-equivalent”
conversion between formal resolution parameters leads to similar force errors for r < €4, but
highly discrepant force errors at larger radii. Right: The impact of different force softening
schemes on halo circular velocity profiles. The points in this plot show the measured errors in
circular velocity profiles as a function of the formal resolution, A, for different force softening
schemes. Gadget measurements are from Ludlow et al. [2019], and Plummer measurements
are from Klypin et al. [2015b] and van den Bosch and Ogiya [2018]. Points shown as red “x”s
correspond to measurements from Ludlow et al. [2019] where deviations from the reference
rotation curve were caused by timestepping errors. Curves show the results of fits against
Eq. 5.13. These fits form the basis for our conversion of formal resolutions onto a shared
scale. See Appendix 5.8.1 for discussion.
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n = 0.0025. The n = 0.025 boxes were run with formal resolutions of hAgageet(2 = 0) =
{276 275 . 24} x hGadget,fid 0T hGadget,fid =0-6642 h=1 kpc and the n = 0.0025 boxes
were run with hgagget (2 = 0) = {276,275 . 29} x hGadget,fia- These profiles were stacked
in mass bins centered on Magg. = {107, 1010, 1011, 1012} =1 M), and widths of 0.3 dex,
corresponding to median Nogg. values of {6.4 x 10°, 6.5 x 104, 6.3 x 103,6.7 x 102}, respec-
tively.

This range of parameters means that the Ludlow et al. [2019] measurements can probe the
impact of hgadget across a wide range of halo radii, particle counts, and concentrations. The
1 = 0.0025 simulations allow the impact of numerical scattering due to coarse timesteps to be
separated from timestep-independent effects like two-body relaxation effects and overly-large
h.

The variation in profiles between 1 = 0.0025 boxes is at the per cent level and does not
show strong dependence on h for the small h sclaes probed by these boxes, so we take the
hGadget = NGadget,fid> 1 = 0.0025 box as our “reference” simulation. Our results are nearly
identical if smaller values of h are used.

For each mass bin and hgagget value in the n = 0.025 boxes, we measure the value of
Veire(R)/Veire ref (R) for R = {274, 273 . 22}x Rinax ref, where V(R) is the circular velocity
at radius R, Rmax is the radius at which the circular velocity profile reaches its maximum
value, and quantities subscripted with “ref” are measured in the reference simulation. We
discard Veire(R)/Veire ref values at radii smaller than the convergence radii advocated for by
Ludlow et al. [2019], although we find that our fits are strongly insensitive to this minimum
radius. We also remove values which deviate by more than two per cent from values measured
in n = 0.0025 simulations with identical hgagget- While deviations in these regimes are
relevant to convergence studies, they are caused by two-body scattering and time integration
errors and not by errors due to large hgadget-

We find that V(R)/V}er has no meaningful dependence on particle count, radius, or halo

concentration when scaled by hgaqget/ I [see also, the first three panels of fig. 5 in Ludlow
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Fit type Scheme A 6]

Free Gadget 0.172 £0.006 —0.522 4+0.010
Plummer 0.580 £0.026 —0.497 + 0.016

Fixed g = —0.522 Plummer 0.616 4+0.011

Fixed g = —0.497 Gadget 0.160 £ 0.002

Table 5.4: The best-fitting parameters for Eq. 5.13 for different force softening schemes.
Gadget velocity deviations are measured at n = 0.025.

et al., 2019]. Because of this, we fit these measurements against a function of the form

V(R;h)/ Vet (R), specifically:

—1—exp (-(Ah/R)ﬁ) . (5.13)

Here, A and 8 are free parameters. We perform our fit using non-linear least squares mini-
mization, because manual inspection of the likelihood posterior confirms that it is unimodal
and approximately Gaussian near the minimum.

We show this fit in the right panel of Fig. 5.9 and give its best-fitting parameters in
Table 5.8.1. V/V, ot measurements removed prior to fitting due to timestepping dependence
are shown as “x”s. As an internal consistency check, we find that this fit predicts deviations
equal to 0.1 V(R; h) at 0.76 h, which is consistent with fig. 5 in Ludlow et al. [2019].

The lack of dependence on R, particle count, or concentration means that we can safely
compare these fits against tests performed on narrower radius, particle count, and concen-
tration ranges. We combine the R = Ry ax measurements from Klypin et al. [2015b] and the
R = Rs/2 measurements from van den Bosch and Ogiya [2018] for our Plummer kernel data
set. Our results are unchanged if we restrict ourselves to the results of either paper.Both
studies analyze idealized NF'W profiles instead of cosmological boxes, so we use NF'W profiles
as our reference V,.t(R) curves. The timestepping schemes used in both papers are substan-
tially more aggressive than an n = 0.025 Gadget simulation, so we do not need to remove
any simulations due to integration errors, as was done for the Ludlow et al. [2019] data set.

However, we do remove the h = 10_4Rvir simulation from van den Bosch and Ogiya [2018§]
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before fitting because that halo is undergoing thermalization at R = Rs/2.

We show this fit in the right panel of Fig. 5.9 and give its best-fitting parameters in Table
5.8.1.

Because A and [ are slightly covariant, comparison between the A values of different
fits can only be performed at a constant 5. If £ is fixed to —0.522 for the Plummer fit,
APlummer = 0.616 + 0.011, indicating that €qadget = APlummer/AGadget = 0279 £ 0.006.
Fixing f = —0.497 for the Gadget fit results in €qaqget = 0.27740.006. Because Gadget-like
softening kernels are more common in modern simulations than Plummer kernels, we choose
to noramalize the relation to preserve the commonly-used conversion between hgagger and

€

€ = 1.284 hplummer = hART = 0.357 hGadget- (5.14)

Note that without comparable ART-based tests, we have arbitrarily chosen to take the
convention from Klypin et al. [2016] that harr = 0.357 hgaqget- This leads to comparable
mean force errors to Gadget at all radii. No analysis in this chapter relies on this portion of
the convention.

We have performed this fit with several other functional forms in the place of Eq. 5.13 and
found results which are similar. For example, when using V (R; h)/Viet(R) = (1+(Ah/R)2)P
— a form similar to the one used in Klypin et al. [2015b] — we find that e ranges from
1.29, hplummer 10 1.28 AGadget-

While Eq. 5.14 is most appropriate when estimating the effects of reduced centripetal
forces on halo profiles, force softening also impacts halo profiles through two-body scattering
and time integration errors. In regimes where these effects dominate, the depths and shapes
of the kernel potentials may be more important than the long-distance deviations from
Newtonian gravity. If so, these two body-scattering effects would be be best analyzed through

€ To prevent readers from needing to frequently convert between e conventions, we have
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converted all values used in this chapter to €, except in cases of specifying an algorithm
which depends on €.

We note that Eq. 5.13 appears to “predict” that € can be made arbitrarily small without
error. This is only true over the R/e range fitted here and only when timesteps are very
fine. Coarse timesteps lead to very real errors at small € (see section 5.6.1), the “convergence
radius” which we use to select our fitting ranges has a weak dependence on e [Ludlow et al.,
2019], and fig. 6 of van den Bosch and Ogiya [2018] shows that aggresively small softening
scales (€ < 10_4Rvir) can accelerate the impact of two-body scattering. Similar effects can

be seen in fig. 13 of Klypin et al. [2015b]. Large € effects are only a portion of the story.

5.8.2  Fitting Parameters For Mean Halo Property Relations

In this Appendix we give the fitting parameters for each halo property considered in this

chapter. These are listed in Table 5.5.
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Variable log1o(Ngr) d o  Nyutlier
Ma500c 4 4.0 0
Ms00¢ 3.25 40 0
Mapoc 2 < 00
Mooom 2 £ 00
Vims 4.5 4 0 0
Vi 2.75 4 0 4
Cvir 3.5 40 17
Ry /2 4 4 0 0
c/a 2.70 3 0 9%
)‘Peebles 3 40 0
ABullock 3 1400
T/|U] 3.5 4 0 O
Xof 4 2 0 0
Vo 4 2 0 0
1j(tdyn) 2 5 00
ag.s 2.5 200
N 3 140 0
Mo 25 2 0 0
Vieak 3.25 2 0 1
P(Masooc) 2.5 6 1 0
¢(Ms00c) 2.5 6 1 0
¢(Magoe) 2.5 6 1 0
¢(Mvir) 2.5 6 1 0
(Magom) 2.5 6 1 0
¢(Mpeak) 2.5 6 1 0
¢ (Vinax) 3.5 6 3 0
(b(Vrms) 3.75 6 3 0
¢(Vpeak> 3.5 6 3 0

Table 5.5: The fitting parameters used for each halo property according to the procedure
described in section 5.2.3. NyR is the number of particles required for halos to be included in
the fit, d is the degree of the fitted polynomial, « is the power law index of the mass scaling
applied to data prior to fitting, and N ey indicates the number of simulations which were
removed from the fit because they disagreed with other simulations within their own suite at
high particle counts. Properties where outlier removal receives special discussion are marked

with a *.
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CHAPTER 6
THE THREE CAUSES OF LOW-MASS ASSEMBLY BIAS

This chapter is a modified version of my paper, Mansfield and Kravtsov [2019].

6.1 Introduction

The most visually striking feature of the large-scale structure of the universe is the clustered,
web-like distribution of galaxies, with vast voids separated by walls and filaments [e.g., Bond
et al., 1996]. Understanding the clustering of galaxies within the context of the A+Cold
Dark Matter (ACDM) model relies on the generic model in which galaxies are formed by
the dissipation of diffuse baryon plasma within growing dark matter halos [e.g., White and
Rees, 1978]. Galaxy clustering is then interpreted in terms of the clustering of dark matter
halos [e.g., see Desjacques et al., 2018, Wechsler and Tinker, 2018, for recent reviews|, which
is generally different from that of matter, i.e. the distribution of halos is “biased,” relative
to the mass distribution [Kaiser, 1984].

Halo bias depends primarily on halo mass [e.g., Mo and White, 1996, Sheth and Tormen,
1999] and this dependence is now both well-understood theoretically and well-calibrated
numerically [Desjacques et al., 2018]. It is also now known that halo bias has secondary
dependencies on other halo properties, such as formation time, concentration, spin, and
ellipticity [Gao et al., 2005, Wechsler et al., 2006, Harker et al., 2006, Gao and White, 2007,
Jing et al., 2007, Li et al., 2008, Faltenbacher and White, 2010, Villarreal et al., 2017a, Sato-
Polito et al., 2018, Han et al., 2019]. The first such secondary dependence was found for halo
formation time and its closely related proxy — halo concentration [Gao et al., 2005, Wechsler
et al., 2006, Harker et al., 2006, Jing et al., 2007] and has become known as “assembly bias.”
Specifically, the bias of “old” halos (early formation time) is generally different than that
of “young” (late formation time) halos, with the difference depending on halo mass and the

definition of formation timele.g., Li et al., 2008].
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Assembly bias is important for the theoretical interpretation of galaxy clustering and its
potential to provide useful cosmological constraints [e.g., Abazajian et al., 2005]. There have
been significant observational efforts to detect halo assembly bias on galactic scales [see §5.4
and 6.2 of Wechsler and Tinker, 2018, for a review]. Nevertheless, unambiguous detection
of halo assembly bias on galactic scales proved to be elusive due to the general difficulty
of ensuring that host halo masses of galaxy subsamples with different clustering are similar
[Campbell et al., 2015, Lin et al., 2016]. Lehmann et al. [2017] and Zentner et al. [2019]
showed that simulation-based models with inherent assembly bias due to concentration de-
pendence of halo clustering provide a better fit to clustering of Sloan Digital Sky Survey
(SDSS) galaxies at some luminosities. However, it is not clear whether this is an unam-
biguous detection of assembly bias or improved fit is due to larger flexibility of the model
compensating for a deficiency of the abundance matching assignment of galaxy luminosities.
Hearin et al. [2015, 2016b] showed theoretically that the presence of galaxy conformity — the
tendency of red galaxies to cluster around other red central galaxies — on large scales (i.e., in
the “two-halo regime”) would be a smoking gun of the halo assembly bias. However, this test
also proved to be a non-trivial challenge due both to observational selection biases [Sin et al.,
2017, Tinker et al., 2018] and due to the overall weakness of the two-halo conformity signal
[Berti et al., 2017, Calderon et al., 2018, Tinker et al., 2018]. If low-mass halo assembly bias
does have a signature in galaxy clustering, it would be important to understand its physical
origin in order to construct robust and accurate models. Conversely, if halo assembly bias
does not have observational signatures, it would be important to understand why tracers of
halo age and tracers of galaxy age behave differently.

The focus of this chapter is to understand the physical origin of halo assembly bias,
particularly in the regime of galaxy-scale halo masses. This is distinct from the origin
of assembly bias at large masses, which is related to the properties of the peaks of the
initial Gaussian density perturbations from which these massive halos collapse [Zentner,

2007, Dalal et al., 2008]. Peaks with the same mass but different curvature will cluster
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differently because peaks with larger curvatures are located in lower-density environments,
while peaks with smaller curvatures are in higher-density regions. This gives rise to assembly
bias because peak curvature is directly related to a halo’s mass accretion history, which is
also affected by tidal torques from the surrounding anisotropic mass distribution [Desjacques,
2008]. Although this curvature-related bias can be reduced by compensating effects found in
some proxies of halo age [Zentner, 2007, Sandvik et al., 2007, Mao et al., 2018], it is present
for other age definitions and when more physical definitions of halo boundaries and masses
are used [Chue et al., 2018].

At smaller halo masses, however, the physics of assembly bias is more complex because
the mass evolution of halos is determined by a combination of the properties of their initial
density peaks, and also by non-linear processes [e.g., Wang et al., 2007, Hahn et al., 2009].
The simple and striking manifestation of this is that the sign of assembly bias switches for
small-mass halos when cyj, is used as a measure of halo age [Wechsler et al., 2006, Dalal
et al., 2008].

A number of studies have explored the physical processes that can give rise to halo
assembly bias in the small-mass regime. One readily apparent process is the non-linear effects
that a massive host halo can exert on its smaller-mass neighbors. In particular, “splashback”
(often also called “backsplash”) subhalos pass within the inner regions of a larger halo but
are located outside its virial radius at the epoch of analysis. Typically, analysis is done using
only a single simulation snapshot, and the single-epoch isolation criteria used to distinguish
subhalos from distinct halos will mix splashback subhalos into the distinct halo population.
However, splashback subhalos will have had their mass accretion histories truncated due to
their previous close encounters with their hosts and have thus been studied as a potential
source of low-mass assembly bias [Wang et al., 2009, Li et al., 2008, Wetzel et al., 2014,
Sunayama et al., 2016]

Although splashback subhalos are mostly found within three virial radii of their host

halo, they can give rise to an assembly bias signal at much larger distances. This is because
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at large scales the spatial distribution of splashback subhalos will track the distribution of
their massive hosts and will therefore be more strongly clustered than that of distinct halos.
A similar effect would occur if subhalos located within the virial radius of their host were
included in the sample used to measure halo clustering and assembly bias. This is illustrated
in Fig. 6.1, which compares the clustering of early- and late-forming halos with splashback
subhalos included and removed, respectively. Removing splashback subhalos significantly
reduces the difference in clustering between the two halo samples, even on scales much
larger than the virial radius of the most massive halos within the volume. Nevertheless,
multiple studies have demonstrated that splashback subhalos alone cannot be responsible
for the entire assembly bias signal [Wang et al., 2009, Sunayama et al., 2016], a fact that can
be seen visually in Fig. 6.1. A similar conclusion was reached by Hearin et al. [2015], albeit
in the related but distinct context of galactic conformity:.

Another process that could contribute to assembly bias is the truncation of a halo’s
mass growth by the tidal force generated its most gravitationally-dominant neighbor [Hahn
et al., 2009, Behroozi et al., 2014, Hearin et al., 2016b, Salcedo et al., 2018, Johnson et al.,
2019]. Even though single-halo tidal forces become small beyond ~ 3 — 5 x Ry, of the
host, the halos truncated by these forces can give rise to large-scale assembly bias in a way
similar to splashback subhalos. A similar truncation of halo mass growth can be caused
by the overall tidal force from all of the surrounding halos and structures in the matter
distribution [Hahn et al., 2009, Wang et al., 2011, Paranjape et al., 2018, Musso et al., 2018],
as the largest filaments and sheets generate strong tidal fields throughout their volumes.
Since these structures can be several tens of Mpc in size, they can comfortably give rise to
assembly bias on large scales. This effect has been characterized in terms of both the tidal
force and the anisotropy of the tidal field, although, in practice, a high degree of anisotropy
tends to correlate with the magnitude of the tidal force, so it is not clear that the two effects
can be separated cleanly.

Finally, the gravitational heating of matter within large-scale structure structure has
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Figure 6.1: The effect of subhalo classification on the apparent distribution of “old” and
“young” halos and their relative clustering. Both panels show the distribution of halos in a
25 h~Mpc cube centered on the largest cluster in the Bolshoi simulation. In the left panel,
halos within the virial radii of larger hosts have been classified as subhalos and removed.
The 15% of halos with the smallest ¢y, (“young” halos) are plotted in red, while the 15%
of halos with the largest ¢y, (“old” halos) are plotted in black. For scale, the virial radius
of the central cluster is shown as a black circle. While both young and old halo samples are
distributed non-uniformly, old halos cluster more strongly and form prominent structures
on scales exceeding ~ 20 h~Mpc. Right panel: the same volume but all halos within the
splashback shell of a larger host have been classified as subhalos and removed. For scale, the
splashback shell of the central cluster is plotted in black. The age-dependent clustering of
halos in the right panel, while still visually apparent, is significantly weaker. This is because
splashback subhalos are preferentially old and trace the more clustered distribution of their
massive hosts.
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been proposed as a process that can contribute to assembly bias [Wang et al., 2007, Dalal
et al., 2008]. For example, matter within the deep potentials of filaments can acquire large
velocities during accretion, and thus cannot be accreted by small-mass halos located within
the filament. The smaller accretion rates of such halos would thus give rise to assembly bias.
Note that although gravitational heating and strong tidal forces generally happen in similar
regions, they are physically distinct phenomena: tidal forces arise via large second derivatives
in the gravitational potential, while gravitational heating is caused by the potential depth.

Although significant effort has been devoted to studying these effects [Wang et al., 2007,
Dalal et al., 2008, Wang et al., 2009, Hahn et al., 2009, Wang et al., 2011, Li et al., 2013,
Wetzel et al., 2014, Sunayama et al., 2016, Hearin et al., 2016b, Paranjape et al., 2018,
Salcedo et al., 2018, Musso et al., 2018, Johnson et al., 2019], their relative importance and
a coherent physical picture for the origin of low-mass halo assembly bias has not yet been
established. The primary goal of this chapter is to rectify this. To this end, we define a set
of quantitative proxies for each of the different processes outlined above and use them to
investigate the relative contribution of these processes to the low-mass assembly bias signal.
Specifically, we examine how efficiently sample cuts defined by each proxy can remove the
signal.

The chapter is organized as follows. In section 6.2 we describe basic definitions and
measurements and describe our cosmological simulations and halo sample, with sections
6.2.5-6.2.6 focusing on the proxies of the processes described above, and section 6.2.8 de-
scribing the core methodology of this chapter. In section 6.3 we present measurements and
estimates of the relative contribution of different processes to low-mass assembly bias. We
discuss topics related to the interpretation of this work in section 6.4 and summarize our

results in 6.5. The key results of this study are presented in Fig. 6.5.
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6.2 Methods

6.2.1 Simulations and codes

This chapter makes use of the Bolshoi and BolshoiP simulations described in Tables 3.1 and
3.1. We also use the simulations in the Erebos_CBol suite for some convergence testing.
Halos in the Bolshoi and BolshoiP simulations were identified using version 0.99RC2+ of
the ROCKSTAR halo finder [Behroozi et al., 2013c|, and version 1.0+ of the related consistent-
trees method [Behroozi et al., 2013b] was used to construct halo merger trees. The catalogs
and merger trees we use were downloaded from the CosmoSim database. We use the SHELL-
FISH algorithm to identify splashback shells — the 3D surfaces formed by the outermost
apocenters of accreted matter [Mansfield et al., 2017]1. We use the Colossus python pack-
age [Diemer, 2018]? to calculate various relevant cosmological quantities and statistics and

the halotools package [Hearin et al., 2016&]3 to calculate correlation functions efficiently.

6.2.2 Basic halo properties

As discussed in section 3.2, there are many ways to define halo mass. One can use Ma
for a variety of overdensity contrasts, A, a non-parametric velocity-based tracer of poten-
tial depth, like Vinax, or a peak-based definition, like Myea or Viyeax. It is non-trivial to
compare assembly bias results across different mass definitions. This primarily manifests in
the difference between peak and single-epoch definitions, which treat tidally stripped halos
differently. The choice between Vipax- and Ma-based definitions also affects the strength of
assembly bias because Vipax/Vyir is correlated with halo age. We explore these definitional
choices at length in section 6.4.2, and urge readers to consider the discussion there before

applying our results to alternative definitions.

1. https://github.com/phil-mansfield /shellfish
2. http://www.benediktdiemer.com/code/colossus/
3. https://halotools.readthedocs.io

151



As further discussed in section 3.2, there are a number of definitions of halo age used
in the literature: single-epoch accretion rates [e.g., Lacey and Cole, 1993, Li et al., 2008],
current halo properties - such as concentration - related to a halo’s mass accretion history
le.g., Wechsler et al., 2006, Villarreal et al., 2017a, Sato-Polito et al., 2018], the epoch at
which a halo first achieved half of its current mass [e.g., Gao et al., 2005], or a characteristic
timescale of an analytic fit to halo mass accretion history [e.g., Wechsler et al., 2002, Zentner,
2007]. In this chapter, we primarily adopt cy;, as a tracer of halo age, with older halos having
larger concentrations. We briefly explore the effect of using different definitions in section
6.4.2.

We focus on ¢y for several reasons. First, ¢y has been demonstrated to strongly
correlate with a number of explicit indicators of halo age [Bullock et al., 2001, Wechsler
et al., 2002, Zhao et al., 2003, Lu et al., 2006, Ludlow et al., 2013, 2014]. ) Although the
correlation of two halo properties does not guarantee a similar effect on clustering [see Mao
et al., 2018], this is not a concern for cyj, because it has been shown that low-mass halo
assembly bias behaves similarly for c,;, and for the halo age proxy ay /2 [Gao et al., 2005,
Wechsler et al., 2006, Gao and White, 2007, see also our results in section 6.4.2]. Second,
the connection between accretion history and ¢, has a solid theoretical underpinning [Zhao
et al., 2003, Lu et al., 2006, Dalal et al., 2010], as demonstrated by the accuracy of the
concentration models based on halo mass accretion history [e.g. Zhao et al., 2003, 2009, Dalal
et al., 2010, Ludlow et al., 2014, Diemer and Joyce, 2019]. Third, the convergence criteria for
halo density profiles [e.g. Power et al., 2003, Navarro et al., 2004, Springel et al., 2008], and
for concentrations [see, e.g., section 3.2 in Diemer and Kravtsov, 2015] are well studied and
it is thus relatively straightforward to identify regimes in which numerical concentrations

can be trusted.
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6.2.3 Definition of Halo Boundaries and Subhalos

Throughout this chapter, we define subhalos as the halos located within the boundary of
a larger “host halo,” and refer to all non-subhalos as “distinct halos.” Of course, this
classification depends on the definition of halo boundary and will have a clear meaning only
if we use halo boundary definition that corresponds to an actual physical boundary.

Traditionally, spheres of radius Ry (or some other overdensity radius) are used as halo
boundaries, but this choice has a number of issues [see, e.g., Diemer et al., 2013b, More
et al., 2015]. The first issue is that that there is no commonly-used overdensity radius
that corresponds to any physical change or feature in the radial profiles of various halo
properties [see, e.g., fig. 3 of Diemer et al., 2013a]. The second issue is that many studies
have established that a substantial fraction of bound subhalos and matter have first orbits
whose apocenters take objects out to as far as & 2 — 3 X Ryj, of the host halo [Gill et al.,
2005, Ludlow et al., 2012, Mansfield et al., 2017, Diemer, 2017a).

Fortunately, halos do have unambiguous edges manifested as sharp drops in density and
caused by the pileup of particles at the apocenters of their first orbits. These edges in
form 3D surfaces called “splashback shells,” and enclose almost all matter and subhalos ever
accreted by a halo. Halos outside Ry, of their host, but within its splashback shell are called
“splashback subhalos.” 4

Splashback subhalos can be identified and removed in one of two ways. The first is a
classification based on the past halo trajectories, where merger trees are used to determine
whether a halo has ever been within a larger host [e.g., Ludlow et al., 2009, Wang et al.,
2009, Diemer, 2017a, Diemer et al., 2017]. The second is to directly identify splashback shells
of halos and flag all halos within them as subhalos. We adopt the second approach as our

fiducial classification method, but employ both throughout the chapter to ensure that our

4. The terminology used to refer to these objects is varied: different authors refer to them as “backsplash
suhalos” or “splashback subhalos,” and often refer to them as “halos” instead of “subhalos.” All these
terms refer to the same concept. Some authors may use the term “flyby [sub]halos” interchangeably with
“splashback [sub]halos,” although the former term generally implies that merger tree analysis has been used.
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results are robust and do not rely on the specifics of either approach.

For lexical clarity, we refer to subhalos identified through merger tree analysis as “flyby
subhalos” and subhalos identified through the construction of splashback shells as “splash-
back subhalos.”

Flyby Subhalos

To identify flyby subhalos, we use the following procedure for each halo in the z = 0 halo
catalog. First, using consistent-trees [Behroozi et al., 2013b], we identify the main-line branch
for the halo, labeling the z = 0 halo the “root halo” and all other halos on the branch its
“progenitor halos.” If any halos on the branch are within the virial radius of another halo
at any redshift, the root is flagged as a flyby subhalo.

This process is complicated by the fact that during major mergers the virial radii of
both merging halos fluctuate significantly and it is common for both host halos to be at
least temporarily identified as subhalos of one another. This can lead to the final host halo
being misidentified as a flyby subhalo of an object that no longer exists once the merger
is complete. To rectify this, if the search of a root halo’s progenitors reveals that some
progenitor, P, is within Ry, of a host halo, H, we only classify the root halo of P as a flyby

subhalo when the following three conditions are met:

1. H must have a root halo at z = 0.
2. The root halo of H must not be within R, of the root halo of P.

3. The root halo of H must have a strictly larger mass than the root halo of P.

Our tests indicate that just enforcing conditions 1 and 2 is sufficient to correct the over-
whelming majority of false classifications. This procedure can be extended to root redshifts
other than z = 0.

Although the identification of flyby subhalos is well-defined and only requires the use

of a merger tree, it is not without drawbacks. First, the method uses R, which as we
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discussed above does not correspond to a physical halo boundary. Second, this approach
does not distinguish between ordinary subhalos with apocenters outside R,;;, and subhalos
that may have undergone dynamical three body interactions that resulted in their unbinding
and ejection and are a qualitatively distinct population from splashback subhalos. Although
a substantial fraction of subhalos may have undergone such interactions [Sales et al., 2007,
Ludlow et al., 2009], we find that halos which have been ejected from the splashback shell
are rare and do not have an impact on our analysis (see section 6.3.5). Third, this method
does not count halos within the splashback shell on their first infall as subhalos, even though
this population is similar to first-infall halos within Ry;,, which this method does classify as

subhalos.

Splashback Shell Subhalos

The simplest way to estimate the size of a halo’s splashback shell it to approximate it as a
sphere and estimate its radius from the location of sharp steepening it causes in the halo’s
density and subhalo number density profiles [e.g. Fillmore and Goldreich, 1984, Bertschinger,
1985, Diemer and Kravtsov, 2014, Adhikari et al., 2014, More et al., 2015, Diemer, 2017a,
Diemer et al., 2017]. This radius is then called the “splashback radius,” Rgsp. However, the
application of this method for individual halos is not straightforward [see Mansfield et al.,
2017]. In addition, actual splashback shells are not spherical and spherical approximation
may result in misclassification of a certain fraction of subhalos. For this reason, we use the
SHELLFISH algorithm [Mansfield et al., 2017] to identify fully 3D splashback shells.

The SHELLFISH algorithm identifies splashback shells by measuring sharp density drops
in many 1D density profiles along tens of thousands of lines of sight around a halo and fits
a flexible smooth 3D surface to their location [Mansfield et al., 2017]. Once SHELLFISH has
identified splashback shells, we use the efficient intersection-checking method described in
Appendix 6.6.2 to flag all halos within the splashback shell of any larger halo as splashback

subhalos.
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There are three complications to using SHELLFISH which must be addressed before it
can be used to construct subhalo catalogs: its Ngggy, convergence limit, the occurrence of
rare but catastrophic fitting failures, and its behavior for low-accreting hosts. We perform
extensive tests on all three issues and find that once accounted for in the ways described
below, they do not have a significant effect on our results.

First, SHELLFISH has a rather stringent convergence limit and requires that halos have
more than 5 x 10% particles within Roggy,, the overdensity radius corresponding to A =
200 pm, to achieve Rgp measurements with accuracy better than 5%. This corresponds to
the Mogom 2 7 — 8 x 1012 h™ Mg or Vjeax 2 280 km s™! in the Bolshoi and BolshoiP
boxes. Below this mass, we use the fitting formula for the median Rgp provided in Mansfield
et al. [2017], and flag halos within spheres of radius Rgp instead. Tests using the higher
resolution L0O063-CBol box from Diemer and Kravtsov [2014] indicate that this results in a
negligible number of subhalo misclassifications compared to using real SHELLFISH-identified
splashback shells because the majority of the splashback subhalos in our mass range have
hosts larger than 280 km s~ 1.

The second complication is that for a small number of host halos [~ 1%, Mansfield
et al., 2017], irregularities in the local density field cause SHELLFISH to fail to identify the
correct surface shape, adopting a barbell-shaped surface instead, which can cause subhalos
well within Ry, to be misclassified as distinct halos. To mitigate this, we mark halos as
splashback subhalos if they fall within either their host’s splashback shell or within a sphere
centered on that host of radius R;,. We analyzed the distribution of the minimum radii
of SHELLFISH shells in halos which were visually-identified to be unaffected by this surface
fitting failure and found that the minimum radii are generally larger than Ry;.. Thus, the
procedure we adopt is unlikely to result in misclassification of distinct host halos as subhalos.

The third complication is that the SHELLFISH algorithm underestimates the size of splash-
back shells for halos that are accreting slower than the baseline pseudo-evolution accretion

rate [Mansfield et al., 2017]. However, this only lowers the splashback radius by ~ 10%
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and few halos massive enough to host subhalos in our target mass range accrete this slowly,
so it is not expected to be a significant issue. Empirically, we find that virtually all flyby
splashback subhalos whose hosts are in this accretion regime are also within the splashback

shells of their hosts (see section 6.3.5), so we do not explicitly account for this effect.

6.2.4 Halo Sample

Although we will examine the mass-dependence of assembly bias in section 6.3.4, the majority
of our analysis focuses specifically on low-mass halos. Our primary concern when defining
a halo sample is to prevent the inclusion of halos whose convergence radii are large enough
that they introduce numerical effects into ROCKSTAR’s measurements of ¢y ;. As mentioned
above, the numerical reliability of density profiles has been well studied, but for cosmological
simulations with small softening scales the exact convergence properties are covariant with
particle count, softening scale, halo mass, and time stepping scheme [Power et al., 2003,
Ludlow et al., 2018], so determining convergence limits for an individual simulation should
always be done through the comparison of carefully constructed multi-box suites.

Because there is only a single Bolshoi box, we place an upper bound on the convergence
limit using the CBol simulation suite described in Diemer and Kravtsov [2015]. Of particular
note is the box CBol L0125, which has the same particle mass to Bolshoi, but which has
much larger timesteps within halo centers, implying that the convergence radius of Bolshoi
should be smaller than that of CBol_.L0125.5 We find that when using the same ROCKSTAR
version and configuration variables as our Bolshoi catalog, the Veaic — ¢yir relation for the
CBol L0125 box agrees with the higher resolution CBol-L0063 box above Vj,ea = 120 km
s—1 corresponding to a somewhat conservative cutoff particle count of Npeqi = 1.3 X 103.

Our low-mass halo sample includes halos with 120 km s™! < Vbeak < 220 km s—1 (ap-

proximately 1.7 x 1011 p=1 Mg < Mpeak < 1.2% 1012 =1 M). Due to the slope of the halo

5. The difference in softening scale between these boxes makes an exact comparison difficult without a
detailed analysis beyond the scope of this chapter. See Diemer and Joyce [2019] for some additional discussion
on the subtleties of comparing Bolshoi to this simulation suite.
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mass function, the majority of halos will be close to the lower mass limit, making the choice
in upper mass limit less important. We chose the upper mass limit so our sample spans
roughly a factor of eight in Mp,e,x and find that our results are not particularly sensitive to

this choice.

6.2.5 Measuring Tidal Force Strength

Tidal forces have been proposed as a potential cause of assembly bias [Hahn et al., 2009,
Wang et al., 2009, Hearin et al., 2016b, Salcedo et al., 2018, Paranjape et al., 2018, Johnson
et al., 2019] because they can slow down, stop, or reverse mass accretion. These fields are
strongest in dense environments, such as within large-scale filaments or near the outskirts
of massive halos, allowing distant halos in similar environments to have correlated accretion
histories. Below, we describe methods for measuring the strength of both the single-halo

tidal field, and the large-scale tidal field.

Tidal Force From a Single Halo

A typical simplifying assumption when calculating the tidal force felt by a halo is to assume
that it is primarily caused by a single massive halo. If one also assumes that the point
of interest is orbiting around that halo on a circular orbit, one can compute the tidal Hill
radius, Ry, corresponding to the distance to the nearest two Lagrangian points when the
effective potential is approximated to second order. However, the assumptions that are made
in calculating Ry are not correct for distinct halos in a ACDM cosmology. This is because
these halos are almost never on circular orbits around each other and, as we discuss in section
6.2.5, the tidal force generally has a significant contribution from multiple halos and from the
large-scale matter distribution. Thus, formally, the Hill radius is not a physically meaningful
quantity for distinct halos. Nevertheless, the classical Hill radius can be used to estimate
the tidal force of a halo’s most gravitationally-dominant neighbor.

As a simple and definitionally robust proxy for Ry we use the virial radius-scaled
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distance, Dy;; 4, for every distinct halo i:

R;;
Do i — i J 6.1
vir,i mif, {Rvir,j} ( )
1/3
— 313 i { 11 ( Moirs ) Pl _ g T (6.2)
Rvir,i 3Mvir,j Rvir,i

where j runs over all distinct halos within some search radius, Ry, which are more massive
than the halo, and R;; is the distance between halos ¢ and j. halos with smaller Dy,
experience larger tidal forces and halos with larger Dy, have smaller tidal forces. As Eq. 6.2
shows, Dy;, is proportional to Rpjy. This means that a rank-ordering by Dy, is equivalent
to a rank-ordering by Ry /Ryir, while formally Dy;, is always a well-defined quantity and
also allows for easy comparison with other assembly bias studies [e.g., Villarreal et al., 2017a,
Salcedo et al., 2018, Johnson et al., 2019]

1

Our tests indicate that Dy, is well-converged for halos in the mass range 120 km s <

Vieak < 220 km s™1 for R a2 100 Ry,

Large-Scale Tidal Radius and Mass

Although the single-source approximation is reasonably accurate for subhalos, our tests in-
dicate that most distinct halos have multiple neighbors which contribute significantly to
the tidal forces they feel. Moreover, we found that large-scale structures in mass distribu-
tion, such as filaments can contribute to the tidal force experienced by halos substantially.
For example, by combining the assumption of cylindrical symmetry with the radial density
profiles of filaments reported in Cautun et al. [2014], we construct a toy model for fila-
ment potentials. Applying this model, we find that even in moderate-sized filaments with
Relament = 3h ™1 Mpe, the tidal force generated by the filament is comparable to or stronger
than the typical tidal force generated by a halo’s single most gravitationally dominant neigh-
bor.

For this reason, we compute the tidal radius of a halo calculated from the overall matter
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distribution around a halo, R;jqa1, as a proxy for the combined tidal force from all neighbor
halos and structures. To compute Ry;q,), we first construct the tidal tensor, T, the Hessian
of the external potential:

G
T:Z 2 mk

X
(22 + y2 + 22)5/2

k
Vit 2= 2w —3upy =32y (6.3)
—3T LYk x% + z]% — Qy% —3Yr2k
—3x12} —3Y 2 xi + y,% — 2,2]%

Here, k runs over all particles between two search radii, Ryi, and Rmax, my, is the mass of
particle k, and zj, y;., and zj, are the components of the displacement vector from the halo
center to particle k. The tidal radius lies along the steepest repulsive axis of the tidal field,
and since the tidal tensor, like all Hessians, equivalently describes the second derivatives at
the origin of a paraboloid with eigenvectors pointing along the paraboloid’s axes, the tidal

field along the chief repulsive axis is given by

1
(I)steepest (r1) = §Q1T%a (6.4)

where a7 is the most negative eigenvalue of T, and r; is the radial distance along the cor-
responding eigenvector. We then assume that all non-tidal pseudo-forces (most notably the
centrifugal force) are small and that at large distances the halo’s mass is well-approximated
by My, making the tidal radius and the corresponding tidal mass

G My

1/3
a1) ; Miqal = M(< Rijqal) (6.5)

Riigal = (—

To increase computational efficiency, we make two further approximations. First, we
do not add the tidal contribution from any particles further than 100 Ry, and second, we

subsample particles by a factor of 64 and multiply mj by 64 in Equation 6.3. Our tests
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indicate that the combined effects of both these approximations on Ry, are at the sub-
percent level. We set the minimum cutoff radius, Ry, to 10 Ry;. This choice is discussed
in detail in Appendix 6.6.3.

Some authors have suggested that the primary feature of interest in the tidal field is its
anisotropy, which can be defined in a number of ways [Wang et al., 2011, Paranjape et al.,
2018]. We chose to use Ryijqq1 as a proxy for the total tidal force for two reasons. First, there
are a number of different proxies for anisotropy and it is not clear a priori which definition
is optimal. Second, we carried out analysis of assembly bias described in sections 6.2.7 and
6.2.8 using ag and gp from Paranjape et al. [2018] and ¢ from Wang et al. [2011] as proxies
for the tidal anisotropy and found that all of these proxies were not as efficient at removing

assembly bias as Ryjqal-

6.2.6 Measuring Gravitational Heating

To gauge the contribution of gravitational heating to assembly bias, we use the mass of

bound matter within the tidal radius, Rjq,), defined in the previous section:

u Riidal iR Vese(R) v dM 6.6
tidal,b = /o /0 TRdV (6.6)

Here, V is the absolute velocity of a particle relative to the halo center, while Vesc(R) is
the escape velocity at a radius R from the halo center computed assuming that the halo is

well-approximated by an NFW profile:

(14 cyir) In (1 + cyip) 1/2
] } : (6.7)

Ve = Vi 42
esc vir { x [(1 + Cvir) In (1 + Cvir) — Cvir

Here, x = r/Ryiy, Voir = VG Myir/ Ryir, and ¢yip is halo concentration. To speed up particle
containment checks when computing mass profiles, we apply the algorithm described in

Appendix 6.6.2.

161



We also construct the variable

B Ryir Vesc(R) dM
Mgy = d AV —— .
o /0 & /0 ViRav (6.8)

for some constant 5. Mg, allows us to isolate the effect of gravitational heating from the
effect of external tidal fields because it does not include a dependence on Rjq,. Although
a range of # were used in our analysis, our results are primarily reported in terms of § = 3,
for reasons we describe in section 6.3.2.

While these approximations are standard practice for computing particle boundedness,
it is likely that they break down significantly in the outskirts of halos. We discuss this in
greater depth in Appendix 6.6.4 and argue that this should not have a significant effect on

our results in section 6.4.1.

6.2.7 Assembly Bias Statistics

To study assembly bias, one must have a statistic that measures how clustering strength
depends on a halo age proxy, cyi, in our case. The most direct approach is to split halos into
high-cy;, and low-cy;, samples, measure the clustering strength of each sample independently
using correlation functions, and compare them. There are multiple ways of doing this,
ranging from measuring the two-point correlation function of halos, &}, in each cyj-selected
subsample to measuring the bias function, b(r) = &,,/émm [e-g, Gao et al., 2005, Gao and
White, 2007, Faltenbacher and White, 2010]. While this family of approaches is a valid and
commonly-used, there are a number of associated issues. First, the definition of subsamples
is arbitrary, and the strength of the measured signal depends on this definition somewhat.
Second, if small ¢y, ranges are chosen to maximize signal strength, statistical errors increase
due to the comparatively small number of halos used.

We use an alternative statistic — the marked correlation function [the MCF, Beisbart and

Kerscher, 2000, Gottlober et al., 2002] — which avoids this issue and which has been used in
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a number of assembly bias studies [e.g., Wechsler et al., 2006, Villarreal et al., 2017a]. For a

sample of objects with assigned mark, m, the MCF is computed as:

<mimj>i,j6P(r) - <m>2

M) = =y~ 2

(6.9)

Here, P(r) is the set of all pairs which are separated by a distance within the same radial bin
as r. Following Villarreal et al. [2017a], we define concentration marks for halos in narrow
circular velocity bins as their percentile within the ¢, distribution of that bin. Specifically,
we use ten logarithmic bins in Vj,ea) from 120 km s~1 to 220 km s~!. The narrow bin width
is required because the c;, distribution is mass-dependent. This, combined with the mass-
dependence of clustering, would result in illusory assembly bias signals in any halo sample

defined over a sufficiently large mass range.

6.2.8 Measuring the Connection Between Assembly Bias and Other

Variables

To evaluate the relative contribution of different physical processes to assembly bias, we
need a way to gauge how strongly proxies for these processes, such as Dyiy, Riidal, Mg p,
Miiqal, or Miiqalp, are related to assembly bias. One simple way to do this is to measure
the correlation coefficient between cy;, and each variable. However, as discussed in section
6.2.8, any approach that relies on measuring the connection between a proxy and formation
time has serious issues.

Instead, in this chapter, we follow an approach similar to that of Villarreal et al. [2017a].
We determine the strength of the connection between assembly bias and a proxy X by
finding the percentage of halos ranked by X that need to be removed from the sample to
eliminate the assembly bias signal. For example, if 30% of halos must be removed according
to X before the assembly bias signal is eliminated, but only 5% of halos must be removed

to achieve this for another proxy, Y, we conclude that the physical process traced by Y has
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a more significant contribution to assembly bias than the process traced by X.

Specifically, we first sort distinct halos according to a proxy X, then remove a fraction of
halos f = Niemoved/Ntot for a series of f values ranging from 0.01 to Nyistinet/Ntot in steps
of 0.01. We then define fiemoveq @8 the minimum f for which the MCF is within 1 — o of
zero. The sample variance of the MCF is estimated by dividing the simulation box into eight
octants, and performing jackknife resampling these octants at a constant fepoveq- Note that
our definition of femoved is normalized by the total number of halos and not by the number
of distinct halos to make it easier to combine with different subhalo classification schemes.

We use a similar method to estimate the sample variance of fiemoveq itself, comput-
ing fremoved With each octant removed and performing jackknife resampling. Note that
these errors on fiemoved account for contributions from sample variance computed using the
same octants, which means that while the uncertainties accurately estimate the scatter on
measurements in independent boxes, there is likely covariance between the fromoved €rrors
measured for different proxies within the same simulation. This means that the uncertainty
on the relative ordering of fremoveq Values for multiple proxies within a single simulation
is likely to be smaller than these errors would estimate. We discuss this further in section
6.3.2.

When calculating fremoved, We compute the MCF in the radial range [6,10] comoving
h~1 Mpc. We have repeated all analysis in this chapter with several other choices of radial
ranges and did not find any significant qualitative difference in results. The primary result of
moving to larger radii is that the amplitude of the reference MCF becomes smaller relative
to the error, meaning that smaller cutoffs are able to make the signal consistent with zero.
Thus, to be conservative, we use a relatively small-radius cutoff. We illustrate this in Fig. 6.2,
which shows the MCF after distinct halos below the fiemovea cutoff for Mijqa)1,/Myir have
been removed from the sample: the MCF is consistent with zero out to 18 h~1 Mpc. We
have repeated all analysis in this chapter using several different radial ranges and results

remain qualitatively similar.
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We note that this method is effective only for assembly bias models in which halos
are initially unbiased or negatively biased but where a small subset of halos in extreme
environments are pushed to older ages by some non-linear process. If, instead, assembly bias
is strongly present in all environments, there will be no value of f.omoveq Which can remove
it. It is known that assembly bias is present across all halo ages [e.g., see fig. 3 in Wechsler
et al., 2006], so a finding that there are variables with small values of fiemoveq Would already
put interesting constraints on the physics of assembly bias. We discuss this in more depth
in section 6.3.

An important point to note about this approach is that the assembly bias signal may not
remain zero at f values larger than fiopoved- In the model that we will outline in section 6.3,
all halos experience “primordial” assembly bias due to the statistics of initial Gaussian
peaks (following the arguments of Dalal et al. 2010), which corresponds to a negative MCF
amplitude. halos below the non-linear mass scale experience various non-linear interactions
which alter their ages in a way which correlates with density, thereby leading to the positive
observed assembly bias. This evolution in the sign of assembly bias for low-mass halos can be
seen in Appendix A of Hahn et al. [2009]. Since very aggressive cuts will eventually reduce
the sample to halos which are within low-density void regions, and are thus in environments
with lower effective non-linear mass scales, the samples of halos defined by larger f values
can display this residual primordial assembly bias signal. Thus, in general we can expect
assembly bias to either remain close to zero or become negative (the sign of the primordial
bias) for larger values of f. Nevertheless, for the fiducial radial range of 6 — 10—t Mpe
adopted in our analyses, the assembly bias does remain consistent with zero for larger values
of f.

Note that these considerations do not invalidate our statement that cuts according to
fremoved have “removed” assembly bias: these cuts result in a halo sample with assembly
bias consistent with zero within uncertainties at all radii. Our arguments about what causes

the observed positive assembly bias signal depend on how efficiently a given proxy allows
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for the construction of such a sample. In principle these arguments could also be made by
measuring how efficiently one recovers the primordial assembly bias signal, but it is not clear

how this would be done in practice.

Difference Between fromoveda and Age Correlation

A number of previous studies evaluated the contribution of a given physical process with
an associated proxy, X, by measuring the correlation between X and a proxy of halo age,
A [e.g., Hahn et al., 2009, Wang et al., 2011, Hearin et al., 2016b, Salcedo et al., 2018].
This can be done using the Spearman’s rank coefficient, pg(A, X), or by measuring the
slope of the average trend X (A). While this approach provides indications of which proxies
correlate well with halo age, by itself it cannot be used to gauge the relative contribution
of different physical processes to assembly bias. This is because a correlation between age
and proxy can only lead to assembly bias if clustering strength also varies strongly as a
function of X. Comparison of the proxy—halo age correlation strength thus does not provide
enough information to unambiguously gauge the contribution of the corresponding process to
assembly bias. For example, Dyi and Ry;qa1/ Rvir have roughly the same level of correlation
with cyip, but halos experience wildly different differential clustering with with respect to
both variables. Consequently, assembly bias is not connected to these two variables with the
same strength.

As an illustration, Table 6.3.2 lists values of fiemoved @and the Spearman’s rank correlation
coefficient, pg, between cyj, and several different proxies and shows that these two quantities
are almost completely unrelated. We therefore strongly recommend against drawing conclu-
sions about assembly bias from measurements of correlation with halo age [see Mao et al.,
2018, for additional discussion and caveats associated with using correlation coefficients in

the context of assembly bias].
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Figure 6.2: The effect of removing different halo populations on the low-mass (120 km sl <

Vbeak < 220 km s_l) halo assembly bias signal. The left panel shows assembly bias measured

as the ratio of the CF of the halos in the highest and lowest 15 percentiles of ¢y, while
the right panel shows assembly bias measured as the cyj-based MCF. Lines are labeled by
the groups of halos which were removed from the sample before measurement. The grey
contours around zero show the 1-o sample variance of the red curve. Uncertainties of the
three other curves are comparable and not shown for visual clarity. Splashback subhalos
have been removed in addition to the Mjjqqyp, cut for the red curve. Although high-cy;,
halos cluster more strongly than low-c;, halos when subhalos are excluded by Ry;,, most of
this signal is due to splashback halos. When a small number of tidally truncated halos (10%
of distinct halos, 6% of the total sample) are also removed, the difference becomes consistent
with zero.

6.3 Analysis

6.3.1 Splashback Subhalos and Assembly Bias

We first test whether splashback subhalos misclassified as distinct halos by standard subhalo
definitions (i.e., splashback subhalos outside Ry, of a larger host) are responsible for low-
mass halo assembly bias. The number of halos removed by our different subhalo definitions
is shown in Table 6.3.2. Our results are shown in Figure 6.2, using both methods discussed
in section 6.2.7 for measuring assembly bias. The figure shows that splashback subhalos

cannot account for the entirety of assembly bias, although they contribute about two thirds
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Figure 6.3: The fraction of distinct halos, fremoved, rank-ordered by a given physical process
proxy that need to be removed to eliminate ¢, assembly bias. Note that splashback subhalos
have already been removed from the sample prior to computing fremoved- 1Lhe error bars
indicate 1-o sample variance. Each quantity listed on the z-axis is a proxy for a different
physical process: Mgy is a proxy for gravitational heating with S adjusted to minimize
fremoved (see §6.2.6), Dy is a proxy for single-halo tidal fields (see §6.2.5), N5 is an estimate
of environmental density (see §6.3.2), M;q, and Ry;qa1 are proxies for large-scale tidal fields
(see §6.2.5), and Mi;qq 1, is a proxy for a combination of large scale fields and tidal heating.
The fremoved values for Mg, are outside the vertical range of the plot, which is indicated by
arrows (see Tables 6.3.2 and 6.3.2 for their actual values). T'wo proxies have been highlighted
with colors: N5 and Miiqa11,- N5 acts as our control: any variable which has a larger fremoved
than N5 is more weakly connected to assembly bias than a simple density proxy. A blue
band has been added to the figure to make such comparisons easier. Mg, 1, is the most
effective proxy at eliminating assembly bias, as it requires only ~ 6% of all halos (10% of
distinct halos) to be removed.

168



of the signal. This is consistent with conclusions of the previous studies [Wang et al., 2009,
Sunayama et al., 2016]. The novel feature of this analysis is that we find a similar effect for
two independent definitions of the splashback halos: using evolutionary trajectories (§6.2.3)
and using non-spherical 3D splashback shells identified using the SHELLFISH code (§6.2.3).

Note also that although results for the two definitions are similar, the two samples of halos
are not identical. Flyby subhalos identified using merger trees are guaranteed to have passed
their orbital pericenter and thus likely have experienced a strong tidal interaction with the
host. On the other hand, when we use SHELLFISH all subhalos within the splashback shell
are classified as splashback subhalos, including those halos that have entered the shell, but
have not yet passed their pericenter. Given that both halo samples have exactly the same
local environments, the fact that removal of infalling splashback subhalos results only in a
small decrease of the assembly bias signal means that this portion of the assembly bias signal
is due to the stripping subhalos experience during their pericenter passage. Conversely, any
mass growth suppression subhalos experience on their way to pericenter is comparatively
unimportant important.

We further compare the splashback subhalos and flyby subhalos in section 6.3.5.

6.3.2 Contribution of Tidal Truncation and Gravitational Heating to

Assembly Bias

We now investigate how the truncation of halo mass growth by the tidal forces, both from
a halo’s most gravitationally-dominant neighbor and from the entire large-scale matter dis-
tribution, contributes to assembly bias. We also investigate the contribution of dynamical
heating caused by the collapse of matter into sheets and filaments. To this end we use the
five proxies of these processes defined in sections 6.2.5-6.2.6 — Dyir, Riigal, Mg, Miidal,
and Mi;qa p — and evaluate what fraction of the distinct halo sample ranked by each of the
proxies must be removed to eliminate the assembly bias signal.

Dy is the Ryj-normalized distance to the most tidally dominant halo. It is a proxy of
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Subhalo definition fsubhalo section
Ry subhalos 0.27 §6.2.3
flyby subhalos 0.33 §6.2.3
splashback subhalos 0.37 §6.2.3
Removal criterion fremoved s section
Mgy, /My < 1.70 £0.05 0.448 £0.033 -0.47 §6.2.6
Dy < 4.57£0.25 0.183£0.016 -0.16 §6.2.5
Ny >18=£1 0.158 £0.018 0.09 §6.3.2
Miidal/Myir < 1.67£0.07  0.107£0.025 -0.23 §6.2.5
Riidal/ Rvir < 2.80 +0.09 0.089 £0.011 -0.19 §6.2.5
Miidaln/Myir < 1.38 £0.02  0.060 +0.005 -0.36  §6.2.6

Table 6.1: The fraction of halos in the Bolshoi simulation which are removed by the dif-
ferent cuts described in the text. The first three rows show the subhalo fraction, fqiphalos
for the different subhalo cuts described in section 6.2.3. The last six rows correspond to
the assembly-bias-removing cuts described in section 6.3.2 for different proxies and show
fremoved, the fraction of halos which must be removed after splashback subhalos have been
cut from the sample, and pg, the Spearman correlation coefficient between ¢y, and a given
proxy. Note that fremoved and pg(cyir, X ) are completely uncorrelated, as discussed in sec-

tion 6.2.8.

Subhalo definition fsubhalo section
R, subhalos 0.28 §6.2.3
flyby subhalos 0.33 §6.2.3
splashback subhalos 0.38 §6.2.3
Removal criterion fremoved J2s section
Mg, /Myir < 1.64 £0.05 0.401 £0.043 -0.47 §6.2.6
Dy <4.27£0.21 0.167 £0.014 -0.18 §6.2.5
N5 >21+2 0.152£0.025 0.09 §6.3.2
Miiqal/Myir < 1.58 £0.04  0.091 £0.016 -0.24 §6.2.5
Riidal/ Ryir < 2.74 £0.08 0.093 £0.010 -0.20 §6.2.5
Miidalb/Myir < 1.35 £0.02  0.059 £0.005 -0.36 §6.2.6

Table 6.2: The same as Table 6.3.2, but for the BolshoiP simulation
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the one-halo contribution to the tidal force proportional to the traditional Hill radius. Ryjqa
is the tidal radius calculated using only the distant matter distribution and Mj;q,1 is the
mass contained within the tidal radius. Mgy, is the bound mass within J Ry;; for a specified
constant § and serves as a proxy of dynamical heating. Finally, Mjjqa) 1, is the bound mass
contained within the tidal radius and serves as a proxy for the combined effects of the total
tidal force and gravitational heating.

Some care needs to be taken in setting 5 for the proxy Mg},. The most straightforward
option would be minimize the value of fremoveq across all values of 3, but this procedure
selects 0 ~ 1.5, which will typically be within the halo’s own splashback shell. Mg}, therefore
correlates with cyi, simply because the latter determines the mass distribution within the
halo. Indeed, we find the Spearman rank coefficient pg(M(< 1.5 X Ryiy), ¢yir) = —0.26,
even before any unbinding procedure has been used. Instead, we choose to set § = 3. At
this distance, correlations between the total enclosed mass and cy;, are negligible, and £ Ry;y
will generally be larger than Rsp. This choice has little effect on fiopoveq, Which remains
approximately the same for § = 2.

The proxies described above are strongly (anti-)correlated with local matter density.
Thus, when we rank-order halos using these proxies and make cuts, we need to distinguish
this procedure from simple density cuts, which do not differentiate between particular physi-
cal processes that operate in high-density regions. To this end, we use the number of distinct
halos with 120 kms™! < Vpeak < 220km s~1 located within X comoving h~! Mpc of the
center of a halo, Ny, as a proxy of the density of the local environment. We tested radii
ranging from 1 — 10 A~ Mpc and found that the assembly bias signal can be eliminated by
removing the smallest fraction of halos for X = 5. We thus use N5 as our fiducial local
environmental density proxy.

In Fig. 6.3 we show the fraction, fremoved, Of all halos rank-ordered by different proxies
that must be removed to eliminate the assembly bias signal (see section 6.2.8). The corre-

sponding fremoved thresholds for each proxy are presented in Table 6.3.2, and the red curves
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in Fig. 6.2 show clustering strength as a function of distance after such a cut has been made
to Mijgal - Note that statistical errors on the MCF are smaller relative to its amplitude
than errors on the pign (1) /Elow () curve, which is one of the chief reasons that we use the
former in calculations of fremoved-

The first feature apparent in Fig. 6.3 is that it is possible to remove assembly bias by
making a cut on the local density, meaning that assembly bias is only present in high-
density regions. This is consistent with models which predict that low-mass assembly bias
is caused by non-linear processes, but is not necessarily a generic prediction of such models,
as one could imagine assembly bias existing in all regions to different degrees of severity.
Fig. 6.3 also shows that the portion of assembly bias which is not caused by misclassified
splashback subhalos is due to a small number of halos in extreme environments: the cut
Miidal,b/Myir < 1.38 removes only 6% of all halos but reduces assembly bias to statistically
undetectable levels. For comparison, the cut to the density proxy Ny removes assembly bias
when 14% of halos are removed.

Further testing shows that there are two reasons why assembly bias can be eliminated by
removing only a small fraction of halos. First, the mean value of ¢, ceases to be a strong
function of these proxies once the halos below the f.omoveq cutoff have been removed from
the sample. Second, halo clustering strength varies strongly as a function of proxy value
within the cutoff range, but is almost constant throughout the remaining sample.

Finally, Fig. 6.3 shows that fremoved for both Dy, a proxy for the single-halo tidal force,
and Mgy, a proxy for dynamical heating, are at least as large as fremoved for N5. Even
if Mg}, uses values of § small enough that it is primarily picking up features in the halo’s
own density profile, fremoved Stays above 0.25. This means that the effect of single-halo
tidal forces and dynamical heating on assembly bias cannot be distinguished from the trivial
effect of environmental density on halo bias, which means that neither can account for the
assembly bias on their own.

In contrast, fremoved f0r Riidal, Mtidal, and Mijga) p are smaller than for Nj, indicating
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that these proxies are more closely connected to assembly bias than local density. The fact
that Rijqa and Miiqa), which are calculated using only the large-scale contribution to the
tidal field, have lower fiomoved than Dy, shows that it is the tidal force from large-scale
structures, not from individual halos, that play the dominant role in the assembly bias.
Miiqarp has the lowest fremoved and is thus the most closely connected to assembly bias of
all the proxies we consider.

To summarize, the results of this and previous subsections show that ~ 70% of the low-
mass assembly bias signal in ¢, is due to splashback subhalos. The remaining = 30% of the
signal is due to 10% of distinct halos (6% of all halos) that are affected by a combination of
the truncation of their mass growth by large-scale tidal fields and dynamical heating caused
by the collapse of sheets and filaments. There are thus three different physical processes that

affect halo mass growth which all contribute significantly to the assembly bias signal.

6.3.3 The Spatial and Concentration Distributions of the Halos

Responsible for Assembly Bias

In Fig. 6.4 we show the spatial distribution of splashback subhalos located outside Ry;. of
their hosts in a 25 A~ Mpec thick slice of the Bolshoi simulation volume. In the same
volume, we show the sets of distinct halos that are removed under the criteria N5 > 18 and
Miidal b/ Myir < 1.38, which each independently eliminate assembly bias. We also show the
spatial distribution of a random x5 subsample of the set of distinct halos that were not
removed by the Mi;qa11,/Myir < 1.38 cut.

Fig. 6.4 shows that both splashback subhalos and halos with low Mj;qa) ,/Myir values are
strongly clustered in the fabric of the cosmic web: they lie within filaments, sheets, and nodes
with characteristic scales of tens of k=1 Mpec. Splashback subhalos cluster strongly because
they trace the spatial distribution of their massive host halos, which are predominantly found
in these dense environments. halos with low Mjjqa) p/Myir, on the other hand, are strongly

clustered because the two physical processes that reduce Myiqq) 1,/Myir — strong tidal forces
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Figure 6.4: The spatial distribution of different classes of halos within a 25 A~ !Mpc-thick
slice of the Bolshoi simulation. The top left panel shows the location of splashback subhalos
outside Ry;, of their hosts, the top right panel shows distinct halos with M;qa) p/Myir < 1.38,
the bottom left panel shows distinct halos with N5 > 18, and the bottom right panel shows
the remaining halos after halos in the two top panels have been removed. The halos in the
bottom right panel have been subsampled by a factor of five. Note that the assembly bias
signal for the halos in the bottom right panel is consistent with zero.
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Figure 6.5: A zoomed-in view of the lower left corner of the panels in Fig. 6.4 with the halos
that are removed by different criteria plotted with different colors. Splashback subhalos
outside the virial radii of their hosts are shown as orange points, distinct halos cut using
the Mijqar ), criterion are shown as red points, halos removed by the N5 cut are shown as
dark grey points, and halos surviving all of the cuts are shown by the light grey points. The
assembly bias signal is consistent with zero when orange and red points are removed.

and gravitational heating — are strongest in similarly dense regions. The distributions of
halos with larger values of Mi;qa) 1,/ Myir or smaller values of Ny are less clustered. We also
provide a zoomed-in view of the distribution of these different groups in Figure 6.5.

Fig. 6.6 shows concentration distributions for different groups of halos: all halos outside
Ry of any host, splashback subhalos outside R, that have not passed through pericen-
ter of their orbit, splashback subhalos outside R.;. which have passed their first pericenter,
and distinct halos outside the splashback shell of any host which have low Miiqa)p/Myir-
This figure shows that the ¢y, distribution of post-pericenter splashback subhalos is biased
to much larger values and are responsible for almost the entire high-cy;, tail of the overall
concentration distribution. This indicates that the concentrations of such halos are affected
substantially by the strong tidal interaction they experienced during their pericenter passage,

which strips mass preferentially at the outskirts of halos, thereby increasing their concentra-

tion [e.g., Kazantzidis et al., 2004]. In contrast, splashback subhalos that are on their first
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Figure 6.6: The distribution of concentrations for different low-mass halo populations. The
black curve shows the concentration distribution for all halos outside Ry;, of any host. The
Cyir distributions of splashback subhalos on their first orbit are shown in blue and yellow. The
blue curve corresponds to halos on first infall which have passed the splashback shell but not
their first pericenter, and the yellow curve corresponds to splashback subhalos which have
passed their first pericenter and have re-entered the region between Ry;, and the splashback
shell. The red curve shows the cy;, distribution for halos with Mi;qa1,/Myir < 1.38. Vertical
dashed lines show the medians of each distribution. Note that when halos corresponding to
the red, yellow, and blue curves have been removed from the general sample, the c;, assembly
bias signal is consistent with zero. Note also that post-pericenter splashback subhalos are
responsible for almost all of the high-cy;, tail of the general population.
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Figure 6.7: The dependence of assembly bias on M;,, scaled by the non-linear collapse mass
scale, M. This plot was created from the z = 0, 1, 1.4, and 3 snapshots of Bolshoi and
shows the median values of My, /My in thin Vj,,x bins versus the MCF between 6 h~1 Mpec

and 10 h~1 Mpec for each bin. 1 — ¢ sample variance of the MCFs are plotted as shaded
regions. Lines of different color show MCFs for halo samples with different cuts indicated
in the legend. Vjeqi bins below our convergence limit of 120 km s~ and bins with errors

on the MCF larger than 0.1 are not plotted (this typically occurs at Vjeax ~ 300 km s71).
Non-linear effects strongly reduce assembly bias at low masses but have no impact on high-
mass assembly bias because this effect has a different physical origin. However, a single cut
to local density is effective at removing assembly bias at all masses.

infall and distinct halos with Mi;qa1 1/ Myir < 1.38 have comparable concentration distribu-
tions and are only slightly shifted relative to the overall distribution of concentrations. The
modest shift in ¢y, is consistent with an older age of these halos, rather than the large con-
centration boost in halos that have experienced tidal stripping. We note that the strength
of the high cy;, tail becomes weaker if the halo sample is defined by M, or Vipax. This is

because halos that lost mass after their first pericenter passage drop out of the M,;.~defined

sample, but stay within the Ve, defined sample.
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6.3.4 Time and Mass Dependence of Assembly Bias

As discussed in section 6.1, ¢y, halo assembly bias has opposite signs at masses above and
below the non-linear collapse mass scale, M. Fig. 6.7 shows the dependence of assembly bias
on Myi /My in the Bolshoi simulation for the entire sample of distinct halos (black line and
shading), and samples in which subsets of halos have been removed using different criteria
discussed earlier in this section (colored lines). We first divide halos into logarithmic bins
of Vpeak with 0.08 dex width. We use bins of Vjeqi to be consistent with the rest of our
analysis, although we show the assembly bias signal as a function of the median My;. /M.
within each bin. For each bin above the convergence limit of Ve, = 120 km s~1 we measure
the MCF in the separation range of 6 — 10 comoving h~1 Mpc and split the simulation into
eight equal-size sub-boxes to estimate the 1-o error on the MCF amplitude. To probe a wide
range of My, /My values, we use the z = 0, 1, 1.4, and 3 Bolshoi snapshots, with the z =0
snapshot giving us access to the lowest values of My, /My and z = 3 giving us access to the
highest.

The dependence of assembly bias on My;. /M, for distinct halos outside Ry;, of any
larger host is consistent with the results of Wechsler et al. [2006]. Removing splashback

< 10, but does not eliminate

[l

subhalos reduces the assembly bias substantially at My, /My
it completely, and does not affect assembly bias at larger masses. Removing further distinct
halos using Mijqa1p/Myir < 1.38 cut eliminates assembly bias entirely at My /M < 5,
but likewise does not affect the assembly bias at larger My;./M,. This illustrates that the
physical origin of assembly bias in the high-mass regime is not related to tidal forces or
dynamical heating.

Interestingly, Fig.6.7 also shows that removing halos using environmental density, N3,
does remove assembly bias at all My, /M. Visual inspection reveals that this is because
this cut removes the same spatial regions across time.

Given that halos and large-scale structure evolve with time, we also redid this analysis by
removing a constant fraction of distinct halos ranked by Mi;qa11,/Myir and by N5 at different
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redshifts rather than using a fixed cut as in Fig. 6.7. The results of such analysis are almost

identical, albeit with slightly higher fiomoved-

6.3.5 Sensitivity to Splashback Subhalo Identification Method

As discussed above, we use two different methods to identify splashback subhalos: 1) halos
that move within Ry; of a larger halo at some point during their evolution and (“flyby
subhalos”) 2) halos located within the splashback shell identified by the SHELLFISH algorithm
(“splashback subhalos™). It is clear that the samples of subhalos identified using these
methods cannot be identical: halos that are on their first approach to a host and are already
within the splashback shell but are still outside Ry, will be classified as splashback subhalos
by the second method, but not the first. Conversely, halos that previously passed within
R of the host, but are now outside of the splashback shell identified by SHELLFISH will be
identified by the first method, but not the second.

We find that ~ 40% of splashback subhalos (= 4% of all halos) are not identified as flyby
halos, but only ~ 6 — 8% of flyby subhalos (0.4 — 0.5% of all halos) are not identified as
splashback subhalos. The latter subhalos are misidentified largely around host halos below
convergence limit of the SHELLFISH algorithm: if we restrict this analysis to host halos that
meet the convergence requirements of Nogom > 5 x 10% and I'pkia > 0.5 [see Mansfield
et al., 2017, for details], we find that only 1 — 2% of flyby halos (< 0.1% of all halos) are
not identified by the second method. This small fraction indicates that the splashback shells
identified by SHELLFISH for well-resolved halos capture the vast majority of the splashback
subhalos identified by the traditional subhalo trajectory method. This also indicates that
the fraction of subhalos ejected by three-body interactions via the slingshot process beyond
the splashback shell [Kravtsov et al., 2004, Sales et al., 2007] is quite small and that most of
the subhalos outside R,;, are on their natural dynamical orbit around their host halo. We
note that this conclusion should not be extended to Vj,eai < 120 without further testing: it

is plausible that slingshot processes become more significant at lower masses.
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This is consistent with earlier studies that analyzed the radial distribution of flyby sub-
halos [Ludlow et al., 2009, Wang et al., 2009, Li et al., 2013] and found that flyby subhalos
are common at distances up to 2 Rogg., with numbers decreasing quickly at larger radii but
with a small population present out to =~ 4 Rogp.. We find that the radial distribution of
flyby subhalos is due to large size of the splashback shell relative to Rogg., its non-spherical
shape, and the substantial scatter between Rogg. and the maximum radius of the splashback
shell. For our sample of distinct halos, the mean value of Rsp/Ragoc is 2.16 and the mean
value of Rsp max/R200c is 2.80 with a 1 — o scatter of = 0.6, where Rsp max is the maximum
radius of any point on the splashback shell.

Lastly, Figure 6.2 compares the MCF after both methods have been used to remove
splashback subhalos. The difference is small relative to the overall amplitude of the signal.
We also find that when the procedure described in sections 6.2.8 and 6.2.8 is used, both
classification schemes find similar cutoff values. However, fromoved 1S necessarily ~ 3%
larger when flyby flagging is used to remove splashback subhalos because these cuts must
also remove infalling splashback subhalos. The exception to this is the M;;4,; proxy, which is
higher for almost all splashback subhalos than it is for almost all distinct halos. Thus, M};qa1
cannot remove assembly bias without removing the entire sample. This leads us to conclude

that our general results are robust to differences in the subhalo classification scheme.

6.3.6  Comparison of the Bolshoi and BolshoiP Simulations

All analysis presented above was done using the Bolshoi simulation with cosmological pa-
rameters consistent with the final WMAP mission constraints (see section 6.2.1). To test the
dependence of our results on the assumed cosmology, we repeated all analysis using the Bol-
shoiP simulation, which assumes cosmological parameters consistent with the Planck mission
constraints and found that all of the results are qualitatively consistent. The difference in
O in the Bolshoi and BolshoiP simulations leads to small changes in the cutoff values for

Mgy, Dyirs Miidals Btidal, and Miigar, but the values of fremoveq are within 0.01 of the
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values found for the Bolshoi simulation for all cuts, which the exception of the high-error

Jremoved value for our least efficient proxy, Mgy,.

6.4 Discussion

6.4.1 Issues Associated with Proxy Definitions

In this study we define and use several proxies of physical processes that could conceiv-
ably contribute to assembly bias. Of these, Dyir, Riiqal, Miidal, Mg 1, and Mijqa) 1, require
estimating the local tidal force and/or determining whether a given particle is bound or
unbound. However, it is not trivial to accurately determine whether a particle is bound in
the outskirts of halos [see, e.g., Behroozi et al., 2013a, for an extended discussion of related
issues|, and strong assumptions and approximations must be employed in the estimates of
tidal forces. Errors made in estimating a particular proxy should result in additional scat-
ter in its correlation with cy;, and should increase the uncertainty in our estimate of its
contribution to the assembly bias. As a corollary, improvements in proxy definitions should
only decrease the measured fremoved values. In practice, only Mijqay, is strongly affected
both by uncertainties in the tidal force estimate and by issues of identifying bound parti-
cles, which means that improvements in proxy estimates would primarily reduce f,omoveq for
Miiqal,b, while having an equal or lesser effect on our other proxies. This means that such
improvements would not change our conclusions.

A detailed analysis of the errors associated with the approximations necessary for tidal
force calculation can be found in Appendix 6.6.3. A discussion of the issues related to

identification of bound particles can be found in Appendix 6.6.4.

6.4.2 Sensitivity of Results to Definitional Choices

In this section we discuss the impact of the choices and assumptions made in our fiducial
analysis on our results. We have already discussed how our choice of clustering statistic
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Figure 6.8: The same as Fig. 6.7, but for MCFs defined in terms of —ay /o instead of cyi;.
See section 6.4.2 for discussion.

used to estimate assembly bias affects out results in sections 6.2.7 and 6.3.2 (see Fig. 6.2),
so here we focus on the effect of our choices of Ve, for defining halo samples, Ry as our
reference halo boundary, and halo concentration as our formation time proxy. Although we
did present justifications for our choices in section 6.2, it is important to assess how sensitive
our results and conclusions are to these choices.

As an alternative to V},ea1, we could define halo samples using Mpeak, Vimax, or Myj,. We
find that sample selection by M, leads to results similar to our fiducial case, but using
Vimax or My, leads to a somewhat different behaviour. The amplitude of the MCF with
only R, subhalos removed is closer to the amplitude of the MCF with splashback subhalos
removed for a Vi,ea or Mpeqi cut. However, further removing splashback subhalos with a
Vimax or My, cut results in only a small decrease in amplitude. This is because subhalos
generally experience significant mass loss and therefore sample selection based on their peak
mass or circular velocity results in larger subhalo fractions compared to selection on current
mass [cf., also Nagai and Kravtsov, 2005]. The large-cy;, tail seen in Fig. 6.6 is weaker when

Vinax or My is used to define the halo samples for the same reason. Our other results,
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such as the values of f.omoveq OF the spatial distribution of different halo subsets, are largely
unaffected. This is because the halos removed by these cuts have merely had their accretion
histories slowed: they have not experienced significant mass loss.

Although most analysis in this chapter uses splashback shells as halo boundaries, we use
spheres of radius Ry; as halo boundaries when we compute fiducial M(r) curves and when
we classify “fyby” subhalos. We have repeated these analyses using other commonly used
values of App,, and found that the main difference, unsurprisingly, is in the change of the
amplitude of the reference MCF. Definitions with high values of density contrast, such as
Apm = 200pc or Apy = 500p¢, result in a modest increase of the reference MCF amplitude,
while definitions with low density contrasts, such as Ap = 200py,, result in a modest decrease
of the MCF amplitude. To decrease the reference MCF amplitude to the level of the MCF
after removal of splashback subhalos requires Apy, ~ 100p, — close to the typical density
contrast enclosed by the splashback shell [see Fig. 12 in Mansfield et al., 2017]. Changes
in A used for radius definition have little effect on the amplitude of the MCF when flyby
subhalos have been removed because most subhalos have their first pericenters at radii well
within all of the commonly-used definitions of halo radius.

We have chosen to use ¢y as a proxy of halo age, but assembly bias behaves differently
for different proxies [e.g., Villarreal et al., 2017a, Mao et al., 2018, Salcedo et al., 2018],
so one would reasonably wonder if halo removal criteria also depend on this choice. A full
investigation of different definitions is beyond the scope of this work, but as a preliminary
discussion, we repeat our analysis for the most commonly used alternative age proxy — the
expansion factor at which the virial mass of the main progenitor of a halo was half of the

halo’s current mass, ay /o:
1
Mvir(a1/2) ~ 5 Myir(acurrent)- (6.10)
Note that although large (small) ¢y values correspond to old (young) halos, the opposite is
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true for aq /2- To simplify comparison with cyj-based results, we use —a /2 as the formation
time proxy, so the sign of the MCF retains the same qualitative meaning.

Results for the —a, /2 Proxy are shown in Fig. 6.8, where we use the same cuts that
removed the assembly bias in the cyj-based analysis. The figure shows that stricter cuts
are required to eliminate —ay /2 assembly bias. When we follow the procedure described in
section 6.2.8, the Mijga) 1, cut that removes —a; /2 assembly bias results in fiomoved = 0-14,
compared to fremoved = 0.06 for cyi, assembly bias. Other proxies experience similar in-
creases in fromoved, With the exception of Ny, which removes assembly bias for both defini-
tions in almost all bins. The fact that Bolshoi and BolshoiP measurements of fromoved agree
to within 0.01 for all variables (see §6.3.6) indicates that the differences in fremoved Detween
the cyjp and —ay /2 definitions are significant.

Another difference is that in contrast to the ¢y, MCF, the amplitude of the —a; /2 MCF
does not reverse sign at large halo masses (see Fig. 6.8 and several previous studies: Gao
et al. 2005, Gao and White 2007, Wetzel et al. 2007, Mao et al. 2018, Sato-Polito et al.
2018). This puzzling behaviour at first appears to be inconsistent with the physical origin of
the high-mass assembly bias argued for by Dalal et al. [2008, see also section 9.4 of Zentner
2007]. However, Chue et al. [2018] showed that a;/, and similar measures of formation
time can be problematic if measured relative to a standard overdensity mass. Because these
definitions do not account for mass in the splashback shell, halos measured at a constant
M actually have a range of “true” splashback-enclosed masses, and the high-mass halos
will preferentially have early ay /25 which increases the level of bias measured for early ay /2

halos. The intersection of this behaviour with Fig. 6.8 requires further study.

6.4.3 Comparison with Previous Work

The effect of splashback subhalos on assembly bias was investigated in a number of recent
studies [Wang et al., 2009, Li et al., 2013, Sunayama et al., 2016], which concluded that

splashback subhalos contribute significantly to low-mass halo assembly bias, but cannot ac-
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count for the entire signal. These studies used the “flyby” approach to classify subhalos
(similar to the method described in 6.2.3), which can include bona fide splashback subha-
los, as well as subhalos ejected via slingshot effect after dynamical interactions with other
subhalos. However, this classification cannot account for a large number of subhalos within
splashback shells that are on their first infall. This left open the question of the contribution
of such infalling subhalos on assembly bias. In this study we answer this question in section
6.3.5.

Additionally, these studies have not demonstrated the physical origin of the remaining
assembly bias signal. Our results differ from those of Sunayama et al. [2016], which find that
splashback subhalos have little effect on the MCF at large distances (R > 102! Mpc).
Sunayama et al. [2016] used the same simulation and underlying halo catalogs as this chapter,
so this difference is likely due to the fact that their samples are defined by My, (see section
6.4.2) and their use of halo bias ratios to measure assembly bias. This statistic results in
larger errors than the MCF, as we discussed in § 6.2.7 and 6.3.2. For example, comparison
of the bin-to-bin scatter in Fig. 3 and Fig. 4 of Sunayama et al. [2016] to the 1-o error
contours in the right panel of our Fig. 6.2 indicates that their measurements may not have
been sensitive enough to probe large-scale assembly bias.

The conjecture that non-linear tidal and dynamical heating effects can be responsible for
low-mass halo assembly bias was discussed in a number of studies [e.g. Wang et al., 2007,
Dalal et al., 2008, Hahn et al., 2009, Wang et al., 2011, Hearin et al., 2016b, Paranjape et al.,
2018, Salcedo et al., 2018, Musso et al., 2018, Johnson et al., 2019]. Often, arguments for a
particular process are based on establishing existence of a correlation between halo formation
time or halo bias and a proxy for a particular process, such as Ryj;yj, bound mass fraction,
the magnitude of tidal eigenvectors, or various measures of tidal anisotropy. While such
correlations provide useful information, by themselves they are not sufficient to establish
that a given physical process is responsible for assembly bias. This is because the proxies of

all these processes are all strongly correlated: an explicit comparison, such as that shown in
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Fig. 6.3, is more direct and compelling in identifying the responsible process.

Furthermore, looking at the global connection between halo formation time and a proxy
is problematic for two reasons. First, we show that after splashback subhalos are removed
low-mass halo assembly bias is due to only a small fraction of distinct halos. Thus, analysis
relying on the global correlation strength is not optimal. Second, as discussed in section 6.2.8,
the correlation between a proxy and halo formation time by itself contains no information
about how closely that proxy is related to assembly bias: a strongly correlated proxy which
experiences weak differential clustering, such as Mg ,, will not contribute to assembly bias.
We avoid both these issues with the procedure described in section 6.2.8.

We find a strong connection between tidal forces from the large-scale mass distribution
and assembly bias in agreement with the conclusions of Hahn et al. [2009], Hearin et al.
[2016D], Salcedo et al. [2018], and Johnson et al. [2019]. However, in contrast with these
studies, we find that this this effect cannot be effectively approximated by assuming that
halos only feel the tidal force of their most gravitationally dominant neighbor. In fact, we
find that when such an approximation is made, the connection is sufficiently weak that
it is likely caused simply because the Hill radius is a crude estimate of local density (see
section 6.3.2). This discrepancy is due to two factors. First, some of these studies do not
perform the type of multi-variate analysis that would be necessary to differentiate between
different contributing physical processes. Second, while these studies effectively map out the
connection between formation time and single-halo tidal proxies, this is unrelated to the
connection between assembly bias and these proxies, an argument we make in section 6.2.8.

Also, contrary to the conclusion of Paranjape et al. [2018], we do not find a compelling
evidence that large-scale tidal anisotropy contributes significantly to assembly bias beyond
what is expected from its correlation with tidal field strength. Nevertheless, given the inac-
curacies associated with all methods based on second-order approximations to the tidal field
(see Appendix 6.6.3), a more detailed study of tidal field anisotropy could prove fruitful,

especially in the context of explicitly studying the tidal environments within structures like
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sheets and filaments.

Although our results are in qualitative agreement with the conjectures of Wang et al.
[2007] and Dalal et al. [2008] that gravitational heating is a significant component of assembly
bias, we also find that this connection only becomes strong when tracers simultaneously
incorporate both gravitational heating and a halo’s zone of influence over the local tidal
field, such as Mjqa) b-

Our work uses an approach similar to that of Villarreal et al. [2017a], so we have performed
an in-depth comparison with their results. We find broad qualitative agreement between our
Dy, results and the results of Villarreal et al. [2017a], but find that quantitatively the A
values they report imply Dy values smaller than our findings by =~ 25%.

This difference is due to two factors. First, we find that the sample variance in the
boxes used by Villarreal et al. [2017a] is larger than than they estimated. We estimate the
sample variance using subvolumes of the BolshoiP simulation, which has nearly identical
mass resolution and cosmology to the CPla_1.0125 box used by Villarreal et al. [2017a] and
find that the actual variance is larger than the uncertainty they estimated by repeatedly
shuffling marks among halos. This means that MCFs in the CPla_1.0125 box could be
lower due to sample variance, which could thus result in less aggressive conditions for the
removal of assembly bias. Second, while the ROCKSTAR halo finder used in Villarreal et al.
[2017a] and in this chapter is a state-of-the-art tool for measuring the properties of halos
with density contrasts of A 2 Ay, [e.g., Knebe et al., 2013], it cannot effectively measure
halo properties at lower density contrasts, such as the A = 20 contrast used by Villarreal
et al. [2017a]. This is because there is no FOF linking length which can fully percolate all
matter out to such large overdensity radii, while also allowing for efficient load-balancing.
This leads to underestimates of halo masses and artefacts in the density profile. Contrary
to the findings of Villarreal et al. [2017a], we find that even with an unusually large linking
length of b = 0.5, virtually all halos have underestimated Mg, masses. The ratio Miye(<

Ro0m Rockstar)/M20m,all Rockstar has 1 — o contours of 1.04 — 1.13, with 20 fluctuations
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reaching ~ 2.5. The magnitude of underestimation is significantly worse at more commonly-
used linking lengths. This and the fact that halos no longer follow NF'W profiles at large
radii [e.g., Becker and Kravtsov, 2011, Diemer and Kravtsov, 2014], adds biases and noise to
the Rs and Rgkiypin values measured by ROCKSTAR. This, in turn, artificially reduces the
amplitude of the MCF. We discuss this issue in greater depth in Appendix 6.6.1.

Our interpretation is consistent with the test presented in Figure 11 of Villarreal et al.
[2017a], which shows that when Rogy, is used to exclude subhalos, but concentrations are
measured from the halo catalogs constructed using larger A, the MCF is not consistent with
zero. We find that when we replicate their analysis using manually-constructed overdensity
profiles, excluding “subhalos” by spheres of radius Roqy, is no longer capable of mitigating
assembly bias. Larger overdensity radii that are comparable with our reported Dy, cutoft

values are required.

6.4.4 Directions for Future Work

In this chapter, we focus on the dependence of halo bias on cy;;, but galaxy properties are
likely related to a number of halo properties. This means that the effects of secondary biases
on galaxy clustering may not be confined to the cy;; bias dependence and may remain even if
¢vir dependence of bias is removed. As discussed in 6.4.2, this is true even for an alternative
choice of halo formation time proxy, —ay /5. Furthermore, Villarreal et al. [2017a] show that
mitigating secondary biases in axis ratio and spin parameter is more difficult than removing
bias in ¢y, although the discussion in section 6.4.3 should be kept in mind when assessing
these results. It would be useful to perform analysis comparable to the one presented here
for a number of other key halo properties to build a more complete understanding of the
physical origin of the corresponding dependencies of halo bias.

One of our key results is that despite the large contribution of tidal forces to ¢, assembly
bias, this cannot be shown conclusively when using rough and inaccurate estimates of the

tidal force, such as Dy;, or the single-halo Ry;;. Although Rijq.1 defined in section 6.2.5
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accounts for tidal forces from multiple halos, it still is rather inaccurate, as we show in
Appendix 6.6.3 and discuss in 6.4.1. The accuracy of the tidal force estimate can be improved
by using a higher order approximation of the tidal field, by iteratively recalculating R;;q,] and
removing nearby sources accordingly, or by explicitly evaluating the tidal field outside the
halo and identifying the turnover associated with the tidal radius directly. More accurate
estimate of the tidal radius could result in a better identification of halos responsible for
assembly bias. This effort could also be aided by incorporating cosmic web classifiers [see
review by Libeskind et al., 2018], which would allow higher accuracy analytic calculation
of the tidal fields associated with nearby large-scale structure, rather than the low-order
approximations that are required for generic point distributions.

Finally, all of the tidal field and dynamical heating proxy estimators discussed and used in
this chapter are computed from simulated quantities and cannot be immediately be applied
to observations. A follow-up exploration of possible observable proxies that can remove
particular flavors of secondary halo bias using mock catalogs will be a useful future avenue

of research.

6.5 Summary and Conclusions

In this study, we present analysis of the physical causes of assembly bias — the dependence
of halo clustering on proxies of halo age. We present results for assembly bias across a broad
range of masses, redshifts, and several definitions of halo age. Our main focus, however,
is on the detailed analysis of nonlinear processes that modify the primordial assembly bias
during the non-linear stages of structure formation using concentration as our primary age
indicator.

Our results indicate a scenario in which halos of all masses initially exhibit primordial
assembly bias arising from the properties of the initial Gaussian field of density perturbations.
However, the assembly bias of halos with masses smaller than the current nonlinear mass

scale is reduced to zero or to negative levels by three non-linear processes as mass decreases.
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We first explore the contribution of “splashback subhalos” to assembly bias, where splash-
back subhalos are defined either as halos that have passed within the virial radius of a larger
halo at some point in the past or as halos are located within the splashback shell of a larger
halo, as determined by the method of Mansfield et al. [2017]. Assembly bias is measured
both before and after the removal of these subhalos. We show that splashback subhalos are
responsible for about two thirds of the assembly bias signal, but do not account for the entire
effect. Moreover, it is the subhalos that have passed the pericenter of their orbit at least
once that are responsible for the contribution of subhalos to assembly bias. In addition, we
find that the high-cy;, tail of the distinct halo distribution is due almost entirely to these
same post-pericenter subhalos.

At the mass ranges considered in this chapter, we find that the fraction of halos which
have passed within the splashback shells of their hosts but are later located outside them is
small, which indicates that the fraction of halos ejected beyond the splashback shell due to
three-body interactions is small.

We then investigate which additional physical processes contribute to assembly bias.
We do this by constructing proxies of these processes for each halo, ranking distinct halos
according to each proxy, and measuring what fraction of the ranked halos need to be removed
in order for the assembly bias signal to be statistically consistent with zero. We find that
assembly bias is caused by a relatively small number of halos in dense regions. These halos
have had their accretion histories truncated by a combination of large-scale tidal fields and
the high velocities of ambient particles. We also demonstrate that neither process can cause
assembly bias on its own and that these tidal fields are not well-modeled by assuming that the
dominant tidal contribution comes from a single massive neighbor. We further argue that
the commonly-used approach of measuring the correlation between a physical proxy and
halo age cannot be used on its own to draw conclusions about the strength of the connection
between that proxy and assembly bias.

A key finding of this study is that after splashback subhalos are removed, the residual
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“negative” assembly bias is due to only 10% of distinct halos (5% of all halos). To summarize,
27% of halos are removed due to a traditional Ry;-based subhalo cut, a further 10% are
removed due to a splashback subhalo cut, and finally 6% of all halos are removed due to
the cut based on Myiqqa) 1,/ Myir- These low Miiqa1 1,/ Myir halos are located within the largest
filaments and are only slightly more concentrated than the general population. However,
their strong spatial clustering results in an outsized effect on the global assembly bias signal.

We find that in the WMAP cosmology, the removal of halos above a certain local density,
as measured by the number of halos within 521 comoving Mpc, N, 5 > 18, removes assembly
bias for both cyi and aq /2 at all distances across all mass scales and redshifts and that a
similar cut exists in a Planck cosmology. Such a cut removes a much larger fraction of
halos from the sample than the cut in Mi;qa) ,/Myir, and thus does not correspond to a real
physical process contributing to assembly bias. Nevertheless, this result indicates that it
may be fruitful to explore whether density-based cuts on mock galaxy catalogs can be used

to remove assembly bias from galaxy samples and motivates further studies in this direction.

6.6 Appendices

6.6.1 Effects of Halo Definition on Concentration in the Rockstar Halo

Finder

The ROCKSTAR halo finder works by dividing the simulation into 3D friends-of-friends (FOF)
groups, adaptively creating smaller 6D FOF groups in phase space, placing halo centers at
the most refined 6D FOF groups, and finally calculating halo properties relative to those
centers [Behroozi et al., 2013c|. The size of the initial 3D FOF groups is set by the input
linking length in units of the mean interparticle separation, b. The accuracy of the halo
properties computed by ROCKSTAR depends on the original 3D FOF groups percolating out
to the baseline overdensity radius of the corresponding halos [More et al., 2011, Behroozi
et al., 2013c]. This is particularly important when fitting halo density profiles: if halo bound-
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aries extend into the unpercolated regions of the FOF group, the density in the outermost
radial bins will be systematically underestimated, shifting the location of profile features.
In this Appendix, we examine the effect of using different halo definitions on the measured
concentrations.

Behroozi et al. [2013c] perform convergence tests that show that using linking length
of b = 0.28 leads to full percolation within Ry;;. They note that when one defines halo
boundary larger than R.;;, a larger linking length should be used and additional tests should
be performed to ensure full percolation within such boundary. We test the effect of the
halo boundary choice by running ROCKSTAR repeatedly on the CBol_L.0125 simulation from
Diemer and Kravtsov [2015] for a variety of overdensity radii, R, with overdensity ranging
from A = 20py to A = 1600 py, for b = 0.28,0.5 and for a reference catalog with A = Ay,
and b = 0.28. We then matched halos across the catalogs to our reference R.;, catalog. Our
tests indicate that results are not sensitive to the way this matching is done, so we use a
simple procedure where a halo is considered a “match” if its center lies within 0.25 kpc of
the center of a counterpart in the R catalog. This criterion is sufficient to unambiguously
match most halos, but in the event that multiple halos meet it, we match to the halo in that
group with the closest My;, to the reference halo. Subhalo and distinct halo status are not
factored in to this matching. We restrict our sample to halos classified as hosts by the Ay,
catalog with 10115 =1 Me < My;, < 1012 h=1 Mg, as measured by the same catalog. The
choice of mass range has only a slight effect on results.

Fig. 6.9 shows the ratio of Rg measured in catalogs constructed for different values of A,
denoted Ry A, to Rs measured in the reference catalog, denoted Ry yi,. We show this ratio as
a function of A for two values of b. We find that creating catalogs with larger linking lengths
takes an inordinate amount of time, presumably because a large fraction of the simulation
is placed into the same FOF group. The figure shows that .Rs measurements for A < 200
are biased low relative to the values found for A = Ay;, and there is a significant scatter

between the two. The bias is about twice larger for b = 0.28 compared to b = 0.5.
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Figure 6.9: The value of Rs measured by ROCKSTAR using different overdensities, A, to
define halo radius, RA. The scale radii are normalized by the value of Rg measured for
the same halos in a catalog with a primary definition of A;, for two different values of the
ROCKSTAR’s 3D FOF linking length, b. The median values of this ratio are shown as solid
lines and the contours enclosing 68% of ratios are shown as shaded regions. Note that Rg
measurements for A < 200 are biased low relative to the values found for A = Ay, and
there is a significant scatter between the two. The bias is larger for smaller b.
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The primary implication of this result is that concentrations measured for halos identified
and analyzed by ROCKSTAR using low A, such as A = 20 py,, should not be trusted due to
large systematic bias and scatter. This is due to lack of FOF percolation in the outskirts
of halos, which biases densities in the outskirts low and this, in turn, biases the best-fit Rg
values low. This is also true for other ways of estimating concentration, such as deriving it
from Vinax/Vyir- The context of this fact in relation to our work on assembly bias is discussed
in section 4.3.

Behaviour at commonly used choices, such as A = 200 py,, 200 p¢, 500 p¢ is also note-
worthy. For b = 0.28, the systematic biases on Rg for these three definitions relative to
our reference A = Ay, catalog are +6%, -5%, and -5%, respectively. While the difference
for A = 200py, has contributions from lack of percolation, the difference between Ay, and
higher density definitions must be due to a different effect, such as deviations of halo pro-
files from the fitted NF'W form. Any attempt to compare, for example, mass-concentration
relations to the ~ 5% level measured with different primary definitions should account for
this effect.

Lastly, as discussed in section 2.3, overdensity radii are fundamentally unphysical choices
for halo boundaries, and Ay cannot be thought of as a more “correct” choice than other
nearby overdensities. Consequently, Fig. 6.9 should not be interpreted as showing deviations
from the true value of Rg, but merely deviations from a particular reference value where the

FOF groups are known to be percolated.

6.6.2 Fast Halo Containment Checks

Numerous components of the analysis presented in this chapter rely on containment checks,
particularly when computing subhalo status, computing Ry;q,], or computing M;;q,;- Out
sample contains &~ 300, 000 halos and the Bolshoi simulations contain 20483 particles each, so
a naive N2 check of every pair of objects would be prohibitively expensive. This is particu-

larly true when identifying splashback subhalos through the surfaces found by SHELLFISH be-
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cause SHELLFISH represents splashback shells using third-order Penna-Dines surfaces, which
take roughly fifty math library function calls to evaluate. In this Appendix, we describe our
approach for computing containment checks.

First, suppose we are given a set of points P, which we must check for containment within
a set of halos, H. First, we construct a uniform 3D grid spanning the simulation volume and
place all elements of P within lists associated with each cell in the grid. Then, for each halo
in H we construct a bounding box fully enclosing its boundary and compute containment
checks for only the particles which reside in grid cells that intersect with it. Because the
lists associated with each grid cell are created once and potentially iterated over many times,
we represent lists as dynamically allocated arrays instead of as linked lists to increase cache
locality. We find that for a grid with 2503 cells containment checks are no longer a significant
component of the runtime cost of any analysis in this chapter.

In the case where a halo boundary is determined by an expensive function f(¢,#), such
as the Penna-Dines functions used by the SHELLFISH code to approximate splashback shells,
we use the following procedure to accelerate containment checks. First, for every halo in H,
we compute the minimum and maximum values of f(¢,0), fmax and fi,in. Since a point at a
distance r is automatically contained if r < f;;, and automatically not contained if r > fiax,

we only evaluate f(¢,0) if the points is at a distance, r, that satisfies fi,in <7 < fmax-

6.6.3 Tidal Force Errors

In this Appendix, we investigate some of the error properties of the tidal radius and discuss
an important approximation made in our calculation of Ry;q,1, the inclusion of a minimum
cutoff radius when adding contributions to a halo’s local tidal tensor. For the purpose of
clarity, we will refer to the tidal radius calculated after a second-order approximation of
the external gravitational potential has been made as Réiial and the tidal radius when the

exact tidal field is used as Réiﬁl. Other quantities will use an analogous referencing scheme.

(2)

Elsewhere in this chapter, R,

is referred to as Ryjq,- We also take the convention that
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Figure 6.10: Two methods for estimating the error associated with different choices of the
minimum cutoff radius, Ry ;,. Left: Analytic calculation of the error on Rfi da for a model
system where the entire external potential is generated by a point source separated from

the halo by a distance r. The dashed black line shows the median value of R,/ R
(2)

tida
halos in our sample. Solid lines show the median values of R

ti dal
; as a function of Rmin /Ryir for the

tldal/ Rtlda] and the shaded

bands give the 68% contours. R,E d; was estimated by evaluating F; t(i da)l at LgQ) and Lg) and
applying the methods described in Appendix 6.6.3. The black dashed line shows the value
of Ry, used in our analysis. Note that the x-axes of these two plots are scaled by different

characteristic radii.

our sample. Right: The approximate error on R
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the Lagrangian point between a halo and an external source is L; and that the point on
the opposite side of the halo is Lo. In cases where analysis is performed on halos without a

single external source, L is the Lagrangian point with the lowest external potential.

(2)

Like the classical Ry derivation, our calculation of R j . (see Equation 6.5) assumes
that the external tidal field felt by the halo is well-approximated by a second-order hyper-
paraboloid. This is necessary because the tidal tensor which is used to determine the principle
components of the tidal field only contains second derivatives of the gravitational potential.

Note that in the special case where there is only a single external point source,
1/3
2 _ (3 (2)
Riiqar = | 3 Ry (6.11)

so the discussion below can be extended to error analysis on the classical Hill radius. Note

that the factor of (3/2)1/3 is because the derivation of Rgi)u assumes that the halo is on a

circular orbit around the external point source and thus experiences a centrifugal force in

(2)

addition to a tidal force, while the derivation of R;j., assumes that all non-tidal pseudo-
forces are zero. Given the scale of errors discussed below, and the fact that this factor
decreases as halos deviate from circular orbits — a configuration which is very rare for distinct

halos — we do not consider this difference to be significant.

We perform two complementary tests on the accuracy of R‘E?c%al' First, we analytically
E?)al / R,Eigl for a single source at a distance r from a halo, and second, we measure

(2)

qa for our halo sample and combine this with reasonable assumptions

compute R

exact the error on F H

about the shape of the tidal field to estimate upper limits on Rggal / RE?S&.

We show the results of this first calculation in the left panel of Fig. 6.10. Although
(ex)

there is no closed-form expression for R4/, it can be found numerically by maximizing the

(2)

effective potential. We parameterize the error as a function of r/R ;.

1 which also absorbs
the dependence on the mass ratio. We recover the well-known fact that as the mass ratio

between the halo and the external source decreases and the tidal radius increases, the two
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Lagrangian points become asymmetric and that errors become increasingly significant. This
can also be interpreted as an estimate of the error associated with a particular value inner
cutoff radius for r = R,,;, when following the procedure described in section 6.2.5. This

(2)

can be considered a worst-case estimate of the error at a given R, because the true
matter distribution will generally contain many points at distances larger than R,,;, which
contribute significantly to the tidal field.

We perform our second test by first computing Lg2), ng), REiQd)lal’ and Ft(ifl)al for every

halo in our sample for a particular choice of R,. Then, we use the raw particle data to

compute the radial and tangential components of t(iil}gl([’gz)) and Ft(iz)gl(Lg)) for these halos.
(ex)

Particles within R,,;;, are not included in this calculation. To obtain an estimate of Rt?dal

from this, we make two simplifying assumptions about the shape of the tidal field. First,
we assume that the exact Lagrangian points lie along the same axis as a halo’s second-order
Lagrangian points. We find that the tangential components of t(i?i}gl(LgZ)) and F, t(iil}gl([’g) )
are small compared to the radial components, implying that this is a reasonable assumption.

Second, we assume that along the lines connecting ng) to Lgex) and ng) to Lgex), the tidal

force varies slowly enough that it can be well approximated by

1+a
(ex) r
Ftidal(r) o 9 , (6.12)
Rtidal

Here, a is an arbitrary constant which varies from halo to halo and may be different for
different Lagrangian points within the same halo. It represents the deviation from the

scaling seen when the tidal potential is approximated to second order. In this case,

1

ex ex 2 3+a
2 2 2 ’ ’
Rt \Foau(L”)

where ¢ indexes over Lagrangian points. This assumption is informed by tests on single-
source effective potentials, which find that for all but the smallest external point sources,
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(2) (2)

tidalr We would expect that at a constant Rti Jal
(2)

i

—1 < a < 0. For halos where R, > R
the tidal field would be varying more quickly at L;”’ when the field is generated by a single
point source than when it is generated by a more diffuse matter distribution, so it’s likely

that this range of a values holds for our simulated halos as well. For this reason we can

place the following upper bound on the error in tidal radius:
2 2 ~1/2
’Rgiec}gl/ R‘Ei(ial — 1| <[|F t(iz}gl/ E t(id)al — 1712 (6.14)

We show the fractional error in Ry;q,; using this limit in the right panel of Fig. 6.10 as a
function of the adopted Ry;,. Errors balloon uncontrollably for Ry, < 4 Ry but are more
well-behaved at larger radii, with errors dropping to the &~ 10% level at ~ 10 Ry;;.

One interesting feature of this Figure is that for Ry, < 2 Ry, the error on the location
L1 becomes positive. This is likely because this is the characteristic size of the splashback
radius, meaning that the halo’s own particles will be incorporated into the calculation of
F t('ec)il);)l‘ Since the tidal force is repulsive, this inclusion of halo particles will reduce the apparent
strength of the field and increase Ry;qa1-

These tests indicate that for Ry,;;, = 10 Ry;., the errors in Rgcial which are specifically
due to the second order approximation of the tidal field are small. However, this analysis is
performed at a constant R;,, so it doesn’t account for errors due to the removal of significant
sources close to the halo. This is not an issue for our analysis because Ryjq,) is explicitly
a proxy for the large-scale tidal field, and our proxy Dy, is better suited for close sources.
This would, however, become a significant issue for studies which need Ry;q, for purposes
other than rank-ordering halos. Further discussion on the impact that improvements in the
accuracy of Rtjq,) would have on our results can be found in section 6.4.1.

More generally, while the issue of measuring tidal radii around halos with only a single

significant source is well-explored [see §2 in van den Bosch et al., 2018, for a review|, and

the tidal radius due to the large scale field can be measured effectively with the tidal tensor,
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there currently does not exist an effective method for combining these two regimes. We
outline a number of potential approaches which could be used to address this issue in 6.4.4,
but consider the testing and calibration of such methods to be beyond the scope of this

chapter.

6.6.4 Identifying Bound Particles in Halo QOutskirts

While the concept of gravitational binding is straightforward to define for particles near
the center of a non-accelerating halo, the same is not true for particles in the outskirts of
halos, especially those experiencing a strong tidal force. These difficulties arise from two key
areas: first, it is difficult to disentangle the potential caused by a halo from the potential
of its surroundings. Although halos have a non-trivial amount of mass stored outside Ry,
the so-called “two-halo” term starts to dominate the density distribution at r 2 1 — 2Ry,
le.g. Diemer and Kravtsov, 2014, meaning that any calculation of the potential which is
done directly from the density profile or from the particle distribution must be done with
care. Second, for particles near the tidal radius, the effective potential due to the external
tidal field becomes significant. While this issue could in principle be solved by defining
escape velocities relative to the minimum potential at either Lagrangian point, it also means
that boundedness calculations will suffer from the same accuracy issues as the tidal radius
calculations (see Appendix 6.6.3).

The effect of tidal forces on particle escape velocities presents another issue for the analy-
sis in this chapter, specifically. If this effect is taken into account, it means that gravitational
heating and tidal forces can no longer be disentangled. Even a “control” variable like Mg,
would depend on the tidal field, and could potentially make gravitational heating appear
to be more a more significant contributor to assembly bias than it actually is. Primarily
because of this reason, and to a lesser extent because of the issues described in the previous
paragraph, we take on the simple and standard boundedness condition given in Eq. 6.7,

but note that the fremoved value for Miiqa 1, could become even lower if more sophisticated
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approaches were used.

201



REFERENCES

S. J. Aarseth. Dynamical evolution of clusters of galaxies, I. MNRAS, 126:223, January

1963. doi: 10.1093/mnras/126.3.223.

K. Abazajian, Z. Zheng, 1. Zehavi, D. H. Weinberg, J. A. Frieman, A. A. Berlind, M. R.
Blanton, N. A. Bahcall, J. Brinkmann, D. P. Schneider, and M. Tegmark. Cosmology and
the Halo Occupation Distribution from Small-Scale Galaxy Clustering in the Sloan Digital
Sky Survey. ApJ, 625:613-620, June 2005. doi: 10.1086/429685.

T. Abel, O. Hahn, and R. Kaehler. Tracing the dark matter sheet in phase space. MNRAS,
427:61-76, November 2012a. doi: 10.1111/j.1365-2966.2012.21754..x.

Tom Abel, Oliver Hahn, and Ralf Kaehler. Tracing the dark matter sheet in phase space.
MNRAS, 427(1):61-76, November 2012b. doi: 10.1111/j.1365-2966.2012.21754.x.

Tamra Adams. Dictionary of Nature Myths: Legends of Farth, Sea, and Sky. ABC-CLIO

Inc., 1998.

S. Adhikari, N. Dalal, and R. T. Chamberlain. Splashback in accreting dark matter halos.
JCAP, 11:019, November 2014. doi: 10.1088/1475-7516/2014/11/019.

S. Adhikari, N. Dalal, and J. Clampitt. Observing dynamical friction in galaxy clusters.

ArXiv e-prints, May 2016.

Brandon Allgood, Ricardo A. Flores, Joel R. Primack, Andrey V. Kravtsov, Risa H. Wech-
sler, Andreas Faltenbacher, and James S. Bullock. The shape of dark matter haloes:
dependence on mass, redshift, radius and formation. MNRAS, 367(4):1781-1796, April

2006. doi: 10.1111/j.1365-2966.2006.10094.x.

R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins, C. M. Baugh, and C. S. Frenk.
Scaling relations for galaxy clusters in the Millennium-XXL simulation. MNRAS, 426(3):

20462062, November 2012. doi: 10.1111/j.1365-2966.2012.21830.x.
202



Horace W. Babcock. The rotation of the Andromeda Nebula. Lick Observatory Bulletin,

498:41-51, January 1939. doi: 10.5479/ADS/bib/1939LicOB.19.41B.

N. A. Bahcall and R. M. Soneira. The spatial correlation function of rich clusters of galaxies.

ApJ, 270:20-38, July 1983. doi: 10.1086/161094.

Yannick M. Bahé, Tan G. McCarthy, Michael L. Balogh, and Andreea S. Font. Why does
the environmental influence on group and cluster galaxies extend beyond the virial radius?

MNRAS, 430(4):3017-3031, April 2013. doi: 10.1093/mnras/stt109.

Michael L. Balogh, Julio F. Navarro, and Simon L. Morris. The Origin of Star Forma-
tion Gradients in Rich Galaxy Clusters. ApJ, 540(1):113-121, September 2000. doi:
10.1086/309323.

M. R. Becker and A. V. Kravtsov. On the Accuracy of Weak-lensing Cluster Mass Recon-
structions. ApJ, 740:25, October 2011. doi: 10.1088/0004-637X/740/1/25.

Steven V. W. Beckwith, Massimo Stiavelli, Anton M. Koekemoer, John A. R. Caldwell,
Henry C. Ferguson, Richard Hook, Ray A. Lucas, Louis E. Bergeron, Michael Corbin,
Shardha Jogee, Nino Panagia, Massimo Robberto, Patricia Royle, Rachel S. Somerville,
and Megan Sosey. The Hubble Ultra Deep Field. AJ, 132(5):1729-1755, November 2006.
doi: 10.1086/507302.

P. Behroozi, R. Wechsler, A. Hearin, and C. Conroy. UniverseMachine: The Correlation
between Galaxy Growth and Dark Matter Halo Assembly from z=0-10. ArXiv e-prints,
June 2018.

P. S. Behroozi, A. Loeb, and R. H. Wechsler. Unbound particles in dark matter halos. JCAP,
6:019, June 2013a. doi: 10.1088/1475-7516,/2013/06,/019.

P. S. Behroozi, R. H. Wechsler, and C. Conroy. The Average Star Formation Histories of

203



Galaxies in Dark Matter Halos from z = 0-8. ApJ, 770:57, June 2013b. doi: 10.1088/0004-
637X/770/1/57.

P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu. The ROCKSTAR Phase-space Temporal
Halo Finder and the Velocity Offsets of Cluster Cores. ApJ, 762:109, January 2013c. doi:
10.1088/0004-637X/762/2/109.

P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu. The ROCKSTAR Phase-space Temporal

Halo Finder and the Velocity Offsets of Cluster Cores. ApJ, 762:109, January 2013d. doi:
10.1088,/0004-637X/762/2/109.

P. S. Behroozi, R. H. Wechsler, H.-Y. Wu, M. T. Busha, A. A. Klypin, and J. R. Primack.
Gravitationally Consistent Halo Catalogs and Merger Trees for Precision Cosmology. Ap.J,
763:18, January 2013e. doi: 10.1088,/0004-637X/763/1/18.

P. S. Behroozi, R. H. Wechsler, Y. Lu, O. Hahn, M. T. Busha, A. Klypin, and J. R. Primack.
Mergers and Mass Accretion for Infalling Halos Both End Well Outside Cluster Virial
Radii. ApJ, 787:156, June 2014. doi: 10.1088/0004-637X/787/2/156.

Peter S. Behroozi, Guangtun Zhu, Henry C. Ferguson, Andrew P. Hearin, Jennifer Lotz,
Joseph Silk, Susan Kassin, Yu Lu, Darren Croton, Rachel S. Somerville, and Douglas F.
Watson. Using galaxy pairs to probe star formation during major halo mergers. MNRAS,

450(2):1546-1564, June 2015. doi: 10.1093/mnras/stv728.

C. Beisbart and M. Kerscher. Luminosity- and Morphology-dependent Clustering of Galax-
ies. ApJ, 545:6-25, December 2000. doi: 10.1086/317788.

V. Belokurov, D. Erkal, N. W. Evans, S. E. Koposov, and A. J. Deason. Co-formation of the
disc and the stellar halo. MNRAS, 478(1):611-619, July 2018. doi: 10.1093/mnras/sty982.

Andreas A. Berlind and David H. Weinberg. The Halo Occupation Distribution: Toward

204



an Empirical Determination of the Relation between Galaxies and Mass. ApJ, 575(2):
587616, August 2002. doi: 10.1086/341469.

A. M. Berti, A. L. Coil, P. S. Behroozi, D. J. Eisenstein, A. D. Bray, R. J. Cool, and
J. Moustakas. PRIMUS: One- and Two-halo Galactic Conformity at 0.2 jz | 1. ApJ, 834:
87, January 2017. doi: 10.3847/1538-4357/834/1/87.

E. Bertschinger. Self-similar secondary infall and accretion in an Einstein-de Sitter universe.

ApJs, 58:39-65, May 1985. doi: 10.1086/191028.

Suman Bhattacharya, Salman Habib, Katrin Heitmann, and Alexey Vikhlinin. Dark Matter
Halo Profiles of Massive Clusters: Theory versus Observations. ApJ, 766(1):32, Mar 2013.
doi: 10.1088/0004-637X/766/1/32.

Michael R. Blanton, David W. Hogg, Neta A. Bahcall, J. Brinkmann, Malcolm Britton,
Andrew J. Connolly, Istvan Csabai, Masataka Fukugita, Jon Loveday, Avery Meiksin,
Jeffrey A. Munn, R. C. Nichol, Sadanori Okamura, Thomas Quinn, Donald P. Schneider,
Kazuhiro Shimasaku, Michael A. Strauss, Max Tegmark, Michael S. Vogeley, and David H.
Weinberg. The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1.
ApJ, 592(2):819-838, August 2003. doi: 10.1086/375776.

Siegfried Bodenmann. The 18th-century battle over lunar motion. Physics Today, 63(1):27,
January 2010. doi: 10.1063/1.3293410.

J. R. Bond, L. Kofman, and D. Pogosyan. How filaments of galaxies are woven into the

cosmic web. Nature, 380:603-606, April 1996. doi: 10.1038/380603a0.

G. L. Bryan and M. L. Norman. Statistical Properties of X-Ray Clusters: Analytic and

Numerical Comparisons. Ap.J, 495:80-99, March 1998. doi: 10.1086/305262.

J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov, A. A. Klypin,

205



J. R. Primack, and A. Dekel. Profiles of dark haloes: evolution, scatter and environment.

MNRAS, 321:559-575, March 2001. doi: 10.1046/j.1365-8711.2001.04068.x.

V. F. Calderon, A. A. Berlind, and M. Sinha. Small- and large-scale galactic conformity in
SDSS DR7. MNRAS, 480:2031-2045, October 2018. doi: 10.1093/mnras/sty2000.

D. Campbell, F. C. van den Bosch, A. Hearin, N. Padmanabhan, A. Berlind, H. J. Mo, J. Tin-
ker, and X. Yang. Assessing colour-dependent occupation statistics inferred from galaxy

group catalogues. MNRAS, 452:444-469, September 2015. doi: 10.1093 /mnras/stv1091.

Duncan Campbell, Frank C. van den Bosch, Nikhil Padmanabhan, Yao-Yuan Mao, An-
drew R. Zentner, Johannes U. Lange, Fangzhou Jiang, and Antonio Villarreal. The
galaxy clustering crisis in abundance matching. MNRAS, 477(1):359-383, June 2018.
doi: 10.1093/mnras/sty495.

Claude Carignan, Laurent Chemin, Walter K. Huchtmeier, and Felix J. Lockman. The
Extended H I Rotation Curve and Mass Distribution of M31. ApJL, 641(2):1.109-L112,
April 2006. doi: 10.1086/503869.

Scott G. Carlsten, Jenny E. Greene, Annika H. G. Peter, Johnny P. Greco, and Rachael L.
Beaton. Radial Distributions of Dwarf Satellite Systems in the Local Volume. arXiv

e-prints, art. arXiv:2006.02444, June 2020.

M. Cautun, R. van de Weygaert, B. J. T. Jones, and C. S. Frenk. Evolution of the cosmic

web. MNRAS, 441:2923-2973, July 2014. doi: 10.1093/mnras/stu768.

C. Chang, E. Baxter, B. Jain, C. Sanchez, S. Adhikari, T. N. Varga, Y. Fang, E. Rozo, E. S.
Rykoff, A. Kravtsov, D. Gruen, W. Hartley, E. M. Huff, M. Jarvis, A. G. Kim, J. Prat,
N. MacCrann, T. McClintock, A. Palmese, D. Rapetti, R. P. Rollins, S. Samuroff, E. Shel-
don, M. A. Troxel, R. H. Wechsler, Y. Zhang, J. Zuntz, T. M. C. Abbott, F. B. Abdalla,
S. Allam, J. Annis, K. Bechtol, A. Benoit-Lévy, G. M. Bernstein, D. Brooks, E. Buckley-

Geer, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. B. D’Andrea, L. N. da Costa,
206



C. Davis, S. Desai, H. T. Diehl, J. P. Dietrich, A. Drlica-Wagner, T. F. Eifler, B. Flaugher,
P. Fosalba, J. Frieman, J. Garcia-Bellido, E. Gaztanaga, D. W. Gerdes, R. A. Gruendl,
J. Gschwend, G. Gutierrez, K. Honscheid, D. J. James, T. Jeltema, E. Krause, K. Kuehn,
O. Lahav, M. Lima, M. March, J. L. Marshall, P. Martini, P. Melchior, F. Menanteau,
R. Miquel, J. J. Mohr, B. Nord, R. L. C. Ogando, A. A. Plazas, E. Sanchez, V. Scarpine,
R. Schindler, M. Schubnell, I. Sevilla-Noarbe, M. Smith, R. C. Smith, M. Soares-Santos,
F. Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle, J. Weller, and DES Collaboration.
The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing
Profiles. ApJ, 864(1):83, September 2018. doi: 10.3847/1538-4357 /aadbeT.

William Chapman. Workshop Technology Part 1. Routledge, 2019.

Hillary L. Child, Salman Habib, Katrin Heitmann, Nicholas Frontiere, Hal Finkel, Adrian
Pope, and Vitali Morozov. Halo Profiles and the Concentration-Mass Relation for a ACDM

Universe. ApJ, 859(1):55, May 2018. doi: 10.3847/1538-4357 /aabf95.

C. Y. R. Chue, N. Dalal, and M. White. Some assembly required: assembly bias in massive
dark matter halos. JCAP, 10:012, October 2018. doi: 10.1088/1475-7516/2018/10/012.

A. R. Conn, G. F. Lewis, R. A. Ibata, Q. A. Parker, D. B. Zucker, A. W. McConnachie, N. F.
Martin, D. Valls-Gabaud, N. Tanvir, M. J. Irwin, A. M. N. Ferguson, and S. C. Chapman.
The Three-dimensional Structure of the M31 Satellite System; Strong Evidence for an
Inhomogeneous Distribution of Satellites. ApJ, 766(2):120, April 2013. doi: 10.1088/0004-
637X/766/2/120.

Alan Cook. Edmond Halley. Charting the heavens and the seas. 1998.

Martin Crocce, Sebastian Pueblas, and Roman Scoccimarro. Transients from initial con-
ditions in cosmological simulations. MNRAS, 373(1):369-381, November 2006. doi:
10.1111/j.1365-2966.2006.11040.x.

207



N. Dalal, M. White, J. R. Bond, and A. Shirokov. Halo Assembly Bias in Hierarchical
Structure Formation. ApJ, 687:12-21, November 2008. doi: 10.1086/591512.

N. Dalal, Y. Lithwick, and M. Kuhlen. The Origin of Dark Matter Halo Profiles. ArXiv

e-prints, October 2010.

W. J. G. de Blok. The Core-Cusp Problem. Advances in Astronomy, 2010:789293, January
2010. doi: 10.1155/2010,/789293.

W. J. G. de Blok, F. Walter, E. Brinks, C. Trachternach, S. H. Oh, and Jr. Kennicutt, R. C.
High-Resolution Rotation Curves and Galaxy Mass Models from THINGS. AJ, 136(6):
2648-2719, December 2008. doi: 10.1088/0004-6256/136/6/2648.

Gerard de Vaucouleurs. Classification and Morphology of External Galaxies. Handbuch der

Physik, 53:275, January 1959. doi: 10.1007/978-3-642-45932-07.

Walter Dehnen. Towards optimal softening in three-dimensional N-body codes - 1. Min-
imizing the force error. MNRAS, 324(2):273-291, June 2001. doi: 10.1046/j.1365-

8711.2001.04237 .x.

B. Delaunay. Sur la sphere vide. Bulletin de I’Académie des Sciences de I’URSS, Classe des

sciences mathématiques et naturelles, 6:793-800, 1934.

V. Desjacques. Environmental dependence in the ellipsoidal collapse model. MNRAS, 388:
638658, August 2008. doi: 10.1111/j.1365-2966.2008.13420.x.

V. Desjacques, D. Jeong, and F. Schmidt. Large-scale galaxy bias. Physics Reports, 733:
1-193, February 2018. doi: 10.1016/j.physrep.2017.12.002.

Harry Desmond and Risa H. Wechsler. The Tully-Fisher and mass-size relations from
halo abundance matching. MNRAS, 454(1):322-343, November 2015. doi: 10.1093/mn-

ras/stv1978.

208



B. Diemer. The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algo-
rithm. ApJs, 231:5, July 2017a. doi: 10.3847/1538-4365/aa799c.

B. Diemer. The splashback radius of halos from particle dynamics: 1. The SPARTA algo-

rithm. ArXiv e-prints, March 2017b.

B. Diemer. COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark
Matter Halos. ApJs, 239:35, December 2018. doi: 10.3847/1538-4365/aaee8c.

B. Diemer and M. Joyce. An Accurate Physical Model for Halo Concentrations. ApJ, 871:
168, February 2019. doi: 10.3847/1538-4357 /aafad6.

B. Diemer and A. V. Kravtsov. Dependence of the Outer Density Profiles of Halos on Their

Mass Accretion Rate. ApJ, 789:1, July 2014. doi: 10.1088/0004-637X/789/1/1.

B. Diemer and A. V. Kravtsov. A Universal Model for Halo Concentrations. ApJ, 799:108,
January 2015. doi: 10.1088/0004-637X/799/1/108.

B. Diemer, A. V. Kravtsov, and S. More. On the Evolution of Cluster Scaling Relations.

ApJ, 779:159, December 2013a. doi: 10.1088/0004-637X/779/2/1509.

B. Diemer, S. More, and A. V. Kravtsov. The Pseudo-evolution of Halo Mass. ApJ, 766:25,
March 2013b. doi: 10.1088/0004-637X/766/1/25.

B. Diemer, P. Mansfield, A. V. Kravtsov, and S. More. The Splashback Radius of Halos from
Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology.
Apd, 843:140, July 2017. doi: 10.3847/1538-4357 /aa79ab.

Scott Dodelson. Modern cosmology. 2003.

A. Drlica-Wagner, K. Bechtol, S. Mau, M. McNanna, E. O. Nadler, A. B. Pace, T. S. Li,
A. Pieres, E. Rozo, J. D. Simon, A. R. Walker, R. H. Wechsler, T. M. C. Abbott, S. Allam,

209



J. Annis, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Car-
retero, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, H. T. Diehl, P. Doel, T. F. Ei-
fler, S. Everett, B. Flaugher, J. Frieman, J. Garcia-Bellido, E. Gaztanaga, D. Gruen, R. A.
Gruendl, J. Gschwend, G. Gutierrez, K. Honscheid, D. J. James, E. Krause, K. Kuehn,
N. Kuropatkin, O. Lahav, M. A. G. Maia, J. L. Marshall, P. Melchior, F. Menanteau,
R. Miquel, A. Palmese, A. A. Plazas, E. Sanchez, V. Scarpine, M. Schubnell, S. Serrano,
I. Sevilla-Noarbe, M. Smith, E. Suchyta, and G. Tarle. Milky Way Satellite Census — I. The
Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS
DR1. arXwv e-prints, art. arXiv:1912.03302, December 2019.

Alan R. Duffy, Joop Schaye, Scott T. Kay, and Claudio Dalla Vecchia. Dark matter halo
concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology. MNRAS,

390(1):L64-L68, Oct 2008. doi: 10.1111/j.1745-3933.2008.00537 .x.

Aaron A. Dutton and Andrea V. Maccio. Cold dark matter haloes in the Planck era:
evolution of structural parameters for Einasto and NFW profiles. MNRAS, 441(4):3359—
3374, Jul 2014. doi: 10.1093/mnras/stu742.

Jaan Einasto, Ants Kaasik, and Enn Saar. Dynamic evidence on massive coronas of galaxies.

Nature, 250(5464):309-310, July 1974. doi: 10.1038/250309a0.

A. Einstein and W. de Sitter. On the Relation between the Expansion and the Mean Density
of the Universe. Proceedings of the National Academy of Science, 18(3):213-214, March
1932. doi: 10.1073/pnas.18.3.213.

The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues de-
rived from the ESA HIPPARCOS Space Astrometry Mission, volume 1200 of ESA Special
Publication, January 1997. ESA.

Leonhard Euler. De motu rectilineo trium corporum se mutuo attrahentium. 1765. URL

http://eulerarchive.maa.org//docs/originals/E327.pdf.
210



A. E. Evrard, J. Bialek, M. Busha, M. White, S. Habib, K. Heitmann, M. Warren, E. Rasia,
G. Tormen, L. Moscardini, C. Power, A. R. Jenkins, L. Gao, C. S. Frenk, V. Springel,
S. D. M. White, and J. Diemand. Virial Scaling of Massive Dark Matter Halos: Why
Clusters Prefer a High Normalization Cosmology. ApJ, 672(1):122-137, January 2008.
doi: 10.1086/521616.

S. M. Faber and J. S. Gallagher. Masses and mass-to-light ratios of galaxies. ARA&A, 17:
135-187, January 1979. doi: 10.1146/annurev.aa.17.090179.001031.

A. Faltenbacher and S. D. M. White. Assembly Bias and the Dynamical Structure of Dark
Matter Halos. ApJ, 708:469-473, January 2010. doi: 10.1088/0004-637X/708/1/469.

J. A. Fillmore and P. Goldreich. Self-similar gravitational collapse in an expanding universe.

ApJ, 281:1-8, June 1984. doi: 10.1086,/162070.

Robert A Freitas. Nanomedicine, volume I: basic capabilities, volume 1. Landes Bioscience

Georgetown, TX, 1999.

A. Friedmann. Uber die Kriimmung des Raumes. Zeitschrift fur Physik, 10:377-386, January

1922. doi: 10.1007/BF01332580.

L. Gao and S. D. M. White. Assembly bias in the clustering of dark matter haloes. MNRAS,
377:L5-L9, April 2007. doi: 10.1111/;.1745-3933.2007.00292.x.

L. Gao, S. D. M. White, A. Jenkins, F. Stoehr, and V. Springel. The subhalo populations
of ACDM dark haloes. MNRAS, 355(3):819-834, December 2004. doi: 10.1111/j.1365-
2966.2004.08360.x.

L. Gao, V. Springel, and S. D. M. White. The age dependence of halo clustering. MNRAS,
363:L66-L70, October 2005. doi: 10.1111/j.1745-3933.2005.00084.x.

Liang Gao, Julio F. Navarro, Shaun Cole, Carlos S. Frenk, Simon D. M. White, Volker

Springel, Adrian Jenkins, and Angelo F. Neto. The redshift dependence of the struc-
211



ture of massive A cold dark matter haloes. MNRAS, 387(2):536-544, Jun 2008. doi:
10.1111/3.1365-2966.2008.13277 x.

Shea Garrison-Kimmel, Michael Boylan-Kolchin, James S. Bullock, and Evan N. Kirby. Too
big to fail in the Local Group. MNRAS, 444(1):222-236, October 2014. doi: 10.1093/mn-
ras/stuld77.

Shea Garrison-Kimmel, Andrew Wetzel, James S. Bullock, Philip F. Hopkins, Michael
Boylan-Kolchin, Claude-André Faucher-Giguere, Dusan Keres, Eliot Quataert, Robyn E.
Sanderson, Andrew S. Graus, and Tyler Kelley. Not so lumpy after all: modelling the de-
pletion of dark matter subhaloes by Milky Way-like galaxies. MNRAS, 471(2):1709-1727,
October 2017. doi: 10.1093/mnras/stx1710.

Chong Ge, Ming Sun, Eduardo Rozo, Neelima Sehgal, Alexey Vikhlinin, William Forman,
Christine Jones, and Daisuke Nagai. X-ray scaling relations from a complete sample of
the richest maxBCG clusters. MNRAS, 484(2):1946-1971, April 2019. doi: 10.1093/mn-
ras/stz088.

S. P. D. Gill, A. Knebe, and B. K. Gibson. The evolution of substructure - ITI. The outskirts of
clusters. MNRAS, 356:1327-1332, February 2005. doi: 10.1111/j.1365-2966.2004.08562.x.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Communications in Ap-
plied Mathematics and Computational Science, 5:65-80, January 2010. doi: 10.2140/cam-
€0s.2010.5.65.

K. M. Gérski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke,
and M. Bartelmann. HEALPix: A Framework for High-Resolution Discretization and
Fast Analysis of Data Distributed on the Sphere. ApJ, 622:759-771, April 2005. doi:
10.1086,/427976.

S. Gottlober, M. Kerscher, A. V. Kravtsov, A. Faltenbacher, A. Klypin, and V. Miiller.

212



Spatial distribution of galactic halos and their merger histories. A&Ap, 387:778-787, June

2002. doi: 10.1051/0004-6361:20020339.

Stefan Gottloeber and Anatoly Klypin. The ART of Cosmological Simulations. arXiv e-
prints, art. arXiv:0803.4343, Mar 2008.

Gravity Collaboration, R. Abuter, A. Amorim, M. Baubock, J. P. Berger, H. Bonnet,
W. Brand ner, Y. Clénet, V. Coudé Du Foresto, P. T. de Zeeuw, J. Dexter, G. Du-
vert, A. Eckart, F. Eisenhauer, N. M. Forster Schreiber, P. Garcia, F. Gao, E. Gendron,
R. Genzel, O. Gerhard, S. Gillessen, M. Habibi, X. Haubois, T. Henning, S. Hippler,
M. Horrobin, A. Jiménez-Rosales, L. Jocou, P. Kervella, S. Lacour, V. Lapeyrere, J. B.
Le Bouquin, P. Léna, T. Ott, T. Paumard, K. Perraut, G. Perrin, O. Pfuhl, S. Rabien,
G. Rodriguez Coira, G. Rousset, S. Scheithauer, A. Sternberg, O. Straub, C. Straub-
meier, E. Sturm, L. J. Tacconi, F. Vincent, S. von Fellenberg, I. Waisberg, F. Widmann,
E. Wieprecht, E. Wiezorrek, J. Woillez, and S. Yazici. A geometric distance measurement
to the Galactic center black hole with 0.3% uncertainty. AAp, 625:L10, May 2019. doi:
10.1051,/0004-6361,/201935656.

Alan Grier. When Computers Were Human. Princeton University Press, 2013.

Brendan F. Griffen, Alexander P. Ji, Gregory A. Dooley, Facundo A. Gémez, Mark Vogels-
berger, Brian W. O’Shea, and Anna Frebel. The Caterpillar Project: A Large Suite of
Milky Way Sized Halos. ApJ, 818(1):10, Feb 2016. doi: 10.3847,/0004-637X/818/1/10.

I. I. Gringorten and P. J. Yepez. The Division of a Circular or Spherical Surface Into Equal-

Area Cells or Pixels. Instrumentation Papers, 343:1-7, June 1992.

J. E. Gunn and J. R. Gott, III. On the Infall of Matter Into Clusters of Galaxies and Some
Effects on Their Evolution. ApJ, 176:1, August 1972a. doi: 10.1086/151605.

J. E. Gunn and J. R. Gott, III. On the Infall of Matter Into Clusters of Galaxies and Some

Effects on Their Evolution. ApJ, 176:1, August 1972b. doi: 10.1086/151605.
213



Qi Guo and Simon White. Numerical resolution limits on subhalo abundance matching.

MNRAS, 437(4):3228-3235, February 2014. doi: 10.1093/mnras/stt2116.

H. Gursky, E. Kellogg, S. Murray, C. Leong, H. Tananbaum, and R. Giacconi. A Strong
X-Ray Source in the Coma Cluster Observed by UHURU. ApJL, 167:1.81, August 1971.
doi: 10.1086/180765.

O. Hahn and R. E. Angulo. An adaptively refined phase-space element method for cosmolog-
ical simulations and collisionless dynamics. MNRAS, 455:1115-1133, January 2016. doi:
10.1093/mnras/stv2304.

O. Hahn, C. Porciani, A. Dekel, and C. M. Carollo. Tidal effects and the environment
dependence of halo assembly. MNRAS, 398:1742-1756, October 2009. doi: 10.1111/j.1365-
2966.2009.15271 .x.

Oliver Hahn and Tom Abel. Multi-scale initial conditions for cosmological simulations.

MNRAS, 415(3):2101-2121, August 2011. doi: 10.1111/j.1365-2966.2011.18820.x.

Zoltan Haiman, Anne A. Thoul, and Abraham Loeb. Cosmological Formation of Low-Mass

Objects. ApJ, 464:523, June 1996. doi: 10.1086/177343.

J. Han, Y. Li, Y. Jing, T. Nishimichi, W. Wang, and C. Jiang. The multidimensional
dependence of halo bias in the eye of a machine: a tale of halo structure, assembly, and

environment. MNRAS, 482:1900-1919, January 2019. doi: 10.1093/mnras/sty2822.

G. Harker, S. Cole, J. Helly, C. Frenk, and A. Jenkins. A marked correlation function
analysis of halo formation times in the Millennium Simulation. MNRAS, 367:1039-1049,

April 2006. doi: 10.1111/j.1365-2966.2006.10022.x.

Roslynn D Haynes. Astronomy and the Dreaming: The Astronomy of the Aboriginal Aus-

tralians. Springer Science Business Media, B. V., 1998.

214



A. Hearin, E. Tollerud, T. Robitaille, M. Droettboom, A. Zentner, E. Bray, M. Craig,
L. Bradley, K. Barbary, C. Deil, K. Tan, M. R. Becker, S. More, H. M. Giinther, and

B. Sipocz. Halotools: Galaxy-Halo connection models. Astrophysics Source Code Library,

April 2016a.

A. P. Hearin, D. F. Watson, and F. C. van den Bosch. Beyond halo mass: galactic conformity
as a smoking gun of central galaxy assembly bias. MNRAS, 452:1958-1969, September
2015. doi: 10.1093/mnras/stv1358.

A. P. Hearin, P. S. Behroozi, and F. C. van den Bosch. On the physical origin of galactic
conformity. MNRAS, 461:2135-2145, September 2016b. doi: 10.1093/mnras/stw1462.

D. J. Heath. The growth of density perturbations in zero pressure Friedmann-Lemaitre

universes. MNRAS, 179:351-358, May 1977. doi: 10.1093/mnras/179.3.351.

Amina Helmi, Carine Babusiaux, Helmer H. Koppelman, Davide Massari, Jovan Veljanoski,
and Anthony G. A. Brown. The merger that led to the formation of the Milky Way’s inner
stellar halo and thick disk. Nature, 563(7729):85-88, October 2018. doi: 10.1038/s41586-
018-0625-x.

Y. Hoffman and J. Shaham. Local density maxima: progenitors of structure. ApJ, 297:
16-22, October 1985. doi: 10.1086/163498.

Erik Holmberg. On the Clustering Tendencies among the Nebulae. I1. a Study of Encounters
Between Laboratory Models of Stellar Systems by a New Integration Procedure. ApJ, 94:
385, November 1941. doi: 10.1086/144344.

Philip F. Hopkins, Andrew Wetzel, Dusan Keres, Claude-André Faucher-Giguere, Eliot
Quataert, Michael Boylan-Kolchin, Norman Murray, Christopher C. Hayward, Shea
Garrison-Kimmel, Cameron Hummels, Robert Feldmann, Paul Torrey, Xiangcheng Ma,

Daniel Anglés-Alcazar, Kung-Yi Su, Matthew Orr, Denise Schmitz, Ivanna Escala, Robyn

215



Sanderson, Michael Y. Grudi¢, Zachary Hafen, Ji-Hoon Kim, Alex Fitts, James S. Bullock,
Coral Wheeler, T. K. Chan, Oliver D. Elbert, and Desika Narayanan. FIRE-2 simulations:
physics versus numerics in galaxy formation. MNRAS, 480(1):800-863, Oct 2018. doi:

10.1093 /mnras/sty1690.

Song Huang, Alexie Leauthaud, Andrew Hearin, Peter Behroozi, Christopher Bradshaw,
Felipe Ardila, Joshua Speagle, Ananth Tenneti, Kevin Bundy, Jenny Greene, Cristébal
Sifén, and Neta Bahcall. Weak lensing reveals a tight connection between dark matter halo
mass and the distribution of stellar mass in massive galaxies. MNRAS, 492(3):3685-3707,
March 2020. doi: 10.1093/mnras/stz3314.

Edwin Hubble. A Relation between Distance and Radial Velocity among Extra-Galactic
Nebulae. Proceedings of the National Academy of Science, 15(3):168-173, March 1929.
doi: 10.1073/pnas.15.3.168.

Tomoaki Ishiyama, Toshiyuki Fukushige, and Junichiro Makino. GreeM: Massively Parallel
TreePM Code for Large Cosmological N -body Simulations. PASJ, 61:1319, Dec 2009.
doi: 10.1093/pasj/61.6.1319.

Tomoaki Ishiyama, Keigo Nitadori, and Junichiro Makino. 4.45 Pflops Astrophysical N-Body
Simulation on K computer — The Gravitational Trillion-Body Problem. arXiv e-prints,

art. arXiv:1211.4406, Nov 2012.

Tomoaki Ishiyama, Motohiro Enoki, Masakazu A. R. Kobayashi, Ryu Makiya, Masahiro
Nagashima, and Taira Oogi. The v2GC simulations: Quantifying the dark side of the
universe in the Planck cosmology. PASJ, 67(4):61, Aug 2015. doi: 10.1093/pasj/psv021.

Tomoaki Ishiyama, Francisco Prada, Anatoly A. Klypin, Manodeep Sinha, R. Benton Met-
calf, Eric Jullo, Bruno Altieri, Sofia A. Cora, Darren Croton, Sylvain de la Torre, David E.

Millan-Calero, Taira Oogi, José Ruedas, and Cristian A. Vega-Martinez. The Uchuu Sim-

216



ulations: Data Release 1 and Dark Matter Halo Concentrations. arXiv e-prints, art.

arXiv:2007.14720, July 2020.

M. James Jee, John P. Hughes, Felipe Menanteau, Cristébal Sifén, Rachel Mandelbaum,
L. Felipe Barrientos, Leopoldo Infante, and Karen Y. Ng. Weighing “El Gordo” with a
Precision Scale: Hubble Space Telescope Weak-lensing Analysis of the Merging Galaxy
Cluster ACT-CL J0102-4915 at z = 0.87. ApJ, 785(1):20, April 2014. doi: 10.1088/0004-
637X/785/1/20.

Y. P. Jing and Y. Suto. Triaxial Modeling of Halo Density Profiles with High-Resolution
N-Body Simulations. ApJ, 574:538-553, August 2002. doi: 10.1086/341065.

Y. P. Jing, Y. Suto, and H. J. Mo. The Dependence of Dark Halo Clustering on For-
mation Epoch and Concentration Parameter. ApJ, 657:664-668, March 2007. doi:
10.1086,/511130.

Diane Johnson. Night Skies of Aboriginal Australia: a Noctuary. Sydney University Press,
1998.

J. W. Johnson, A. H. Maller, A. A. Berlind, M. Sinha, and J. K. Holley-Bockelmann. The
secondary spin bias of dark matter haloes. MNRAS, 486:1156-1166, June 2019. doi:
10.1093/mnras/stz942.

Michael Joyce, Lehman Garrison, and Daniel Eisenstein. Quantifying resolution in cosmolog-
ical N-body simulations using self-similarity. arXiv e-prints, art. arXiv:2004.07256, April
2020.

F. D. Kahn and L. Woltjer. Intergalactic Matter and the Galaxy. ApJ, 130:705, November
1959. doi: 10.1086/146762.

N. Kaiser. On the spatial correlations of Abell clusters. ApJl, 284:1L9-L12, September 1984.
doi: 10.1086/184341.
217



S. Kazantzidis, L. Mayer, C. Mastropietro, J. Diemand, J. Stadel, and B. Moore. Den-
sity Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites
Problem. ApJ, 608:663-679, June 2004. doi: 10.1086/420840.

S. Kazantzidis, A. R. Zentner, and A. V. Kravtsov. The Robustness of Dark Matter Density

Profiles in Dissipationless Mergers. ApJ, 641:647-664, April 2006. doi: 10.1086/500579.

A. Klypin, G. Yepes, S. Gottlober, F. Prada, and S. Hef}. MultiDark simulations: the story
of dark matter halo concentrations and density profiles. MNRAS, 457:4340-4359, April
2016. doi: 10.1093/mnras/stw248.

A. A. Klypin and A. I. Kopylov. The Spatial Covariance Function for Rich Clusters of

Galaxies. Soviet Astronomy Letters, 9:41-44, February 1983.

A. A. Klypin, S. Trujillo-Gomez, and J. Primack. Dark Matter Halos in the Standard
Cosmological Model: Results from the Bolshoi Simulation. ApJ, 740:102, October 2011.
doi: 10.1088/0004-637X/740/2/102.

Anatoly Klypin, Stefan Gottlober, Andrey V. Kravtsov, and Alexei M. Khokhlov. Galaxies
in N-Body Simulations: Overcoming the Overmerging Problem. ApJ, 516(2):530-551,
May 1999. doi: 10.1086/307122.

Anatoly Klypin, Igor Karachentsev, Dmitry Makarov, and Olga Nasonova. Abundance of
field galaxies. MNRAS, 454(2):1798-1810, December 2015a. doi: 10.1093/mnras/stv2040.

Anatoly Klypin, Francisco Prada, Gustavo Yepes, Steffen Hef, and Stefan Gottlober. Halo
abundance matching: accuracy and conditions for numerical convergence. MNRAS, 447

(4):3693-3707, Mar 2015b. doi: 10.1093/mnras/stu2685.

A. Knebe, F. R. Pearce, H. Lux, Y. Ascasibar, P. Behroozi, J. Casado, C. C. Moran,
J. Diemand, K. Dolag, R. Dominguez-Tenreiro, P. Elahi, B. Falck, S. Gottléber, J. Han,
A. Klypin, Z. Luki¢, M. Maciejewski, C. K. McBride, M. E. Merchan, S. I. Muldrew,

218



M. Neyrinck, J. Onions, S. Planelles, D. Potter, V. Quilis, Y. Rasera, P. M. Ricker,
F. Roy, A. N. Ruiz, M. A. Sgré, V. Springel, J. Stadel, P. M. Sutter, D. Tweed, and
M. Zemp. Structure finding in cosmological simulations: the state of affairs. MNRAS,
435:1618-1658, October 2013. doi: 10.1093 /mnras/stt1403.

Alexander Knebe, Andrey V. Kravtsov, Stefan Gottlober, and Anatoly A. Klypin. On the
effects of resolution in dissipationless cosmological simulations. MNRAS, 317(3):630-648,
Sep 2000. doi: 10.1046/;.1365-8711.2000.03673.x.

Alexander Knebe, Christian Wagner, Steffen Knollmann, Tobias Diekershoff, and Fabian
Krause. On the Starting Redshift Cosmological Simulations: Focusing on Halo Properties.

ApJ, 698(1):266-274, June 2009. doi: 10.1088/0004-637X/698/1/266.

Alexander Knebe, Steffen R. Knollmann, Stuart I. Muldrew, Frazer R. Pearce, Miguel Angel
Aragon-Calvo, Yago Ascasibar, Peter S. Behroozi, Daniel Ceverino, Stephane Colombi,
Juerg Diemand, Klaus Dolag, Bridget L. Falck, Patricia Fasel, Jeff Gardner, Stefan
Gottlober, Chung-Hsing Hsu, Francesca lannuzzi, Anatoly Klypin, Zarija Luki¢, Michal
Maciejewski, Cameron McBride, Mark C. Neyrinck, Susana Planelles, Doug Potter, Vicent
Quilis, Yann Rasera, Justin I. Read, Paul M. Ricker, Fabrice Roy, Volker Springel, Joachim
Stadel, Greg Stinson, P. M. Sutter, Victor Turchaninov, Dylan Tweed, Gustavo Yepes,
and Marcel Zemp. Haloes gone MAD: The Halo-Finder Comparison Project. MNRAS,
415(3):2293-2318, August 2011. doi: 10.1111/j.1365-2966.2011.18858.x.

A. V. Kravtsov and S. Borgani. Formation of Galaxy Clusters. Annual Reviews of Astronomy

& Astrophysics, 50:353-409, September 2012. doi: 10.1146 /annurev-astro-081811-125502.

A. V. Kravtsov, A. A. Berlind, R. H. Wechsler, A. A. Klypin, S. Gottlober, B. Allgood, and
J. R. Primack. The Dark Side of the Halo Occupation Distribution. ApJ, 609:35-49, July
2004. doi: 10.1086/420959.

A. V. Kravtsov, A. A. Vikhlinin, and A. V. Meshcheryakov. Stellar Mass—Halo Mass
219



Relation and Star Formation Efficiency in High-Mass Halos. Astronomy Letters, 44(1):
8-34, January 2018. doi: 10.1134/S1063773717120015.

Andrey V. Kravtsov. High-resolution simulations of structure formation in the universe.

PhD thesis, NEW MEXICO STATE UNIVERSITY, Jan 1999.

Andrey V. Kravtsov, Anatoly A. Klypin, and Alexei M. Khokhlov. Adaptive Refinement
Tree: A New High-Resolution N-Body Code for Cosmological Simulations. ApJs, 111(1):
73-94, Jul 1997. doi: 10.1086/313015.

Gary Kronk. Cometography: A Catalog of Comets, volume 1. Cambridge University Press,
1999.

C. Lacey and S. Cole. Merger rates in hierarchical models of galaxy formation. MNRAS,
262:627-649, June 1993. doi: 10.1093/mnras/262.3.627.

O. Lahav, P. B. Lilje, J. R. Primack, and M. J. Rees. Dynamical effects of the cosmological
constant. MNRAS, 251:128-136, July 1991. doi: 10.1093/mnras/251.1.128.

Jérome Lalande. Astronomie. 1792.

Henrietta S. Leavitt. 1777 variables in the Magellanic Clouds. Annals of Harvard College

Observatory, 60:87-108.3, January 1908.

Henrietta S. Leavitt and Edward C. Pickering. Periods of 25 Variable Stars in the Small

Magellanic Cloud. Harvard College Observatory Clircular, 173:1-3, March 1912.

B. V. Lehmann, Y.-Y. Mao, M. R. Becker, S. W. Skillman, and R. H. Wechsler. The
Concentration Dependence of the Galaxy-Halo Connection: Modeling Assembly Bias with

Abundance Matching. ApJ, 834:37, January 2017. doi: 10.3847/1538-4357/834/1/37.

G. Lemaitre. Un Univers homogene de masse constante et de rayon croissant rendant compte
de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Sociéeacute;téeacute;

Scientifique de Bruxelles, 47:49-59, January 1927.
220



R. Li, L. Gao, L. Xie, and Q. Guo. Assembly bias of dwarf-sized dark matter haloes. MNRAS,
435:3592-3599, November 2013. doi: 10.1093/mnras/stt1551.

Y. Li, H. J. Mo, and L. Gao. On halo formation times and assembly bias. MNRAS, 389:
1419-1426, September 2008. doi: 10.1111/j.1365-2966.2008.13667.x.

N. I. Libeskind, R. van de Weygaert, M. Cautun, B. Falck, E. Tempel, T. Abel, M. Alpaslan,
M. A. Aragén-Calvo, J. E. Forero-Romero, R. Gonzalez, S. Gottléber, O. Hahn, W. A.
Hellwing, Y. Hoffman, B. J. T. Jones, F. Kitaura, A. Knebe, S. Manti, M. Neyrinck,
S. E. Nuza, N. Padilla, E. Platen, N. Ramachandra, A. Robotham, E. Saar, S. Shandarin,
M. Steinmetz, R. S. Stoica, T. Sousbie, and G. Yepes. Tracing the cosmic web. MNRAS,
473:1195-1217, January 2018. doi: 10.1093/mnras/stx1976.

Noam I. Libeskind, Yehuda Hoffman, R. Brent Tully, Helene M. Courtois, Daniel Pomarede,
Stefan Gottlober, and Matthias Steinmetz. Planes of satellite galaxies and the cosmic

web. MNRAS, 452(1):1052-1059, September 2015. doi: 10.1093 /mnras/stv1302.

Y.-T. Lin, R. Mandelbaum, Y.-H. Huang, H.-J. Huang, N. Dalal, B. Diemer, H.-Y. Jian,
and A. Kravtsov. On Detecting Halo Assembly Bias with Galaxy Populations. ApJ, 819:
119, March 2016. doi: 10.3847,/0004-637X/819/2/119.

Y. Lu, H. J. Mo, N. Katz, and M. D. Weinberg. On the origin of cold dark matter halo density
profiles. MNRAS, 368:1931-1940, June 2006. doi: 10.1111/j.1365-2966.2006.10270.x.

A. D. Ludlow, J. F. Navarro, V. Springel, A. Jenkins, C. S. Frenk, and A. Helmi. The
Unorthodox Orbits of Substructure Halos. ApJ, 692:931-941, February 2009. doi:
10.1088,/0004-637X/692/1/931.

A. D. Ludlow, J. F. Navarro, M. Li, R. E. Angulo, M. Boylan-Kolchin, and P. E. Bett.
The dynamical state and mass-concentration relation of galaxy clusters. MNRAS, 427:

1322-1328, December 2012. doi: 10.1111/j.1365-2966.2012.21892.x.

221



A. D. Ludlow, J. F. Navarro, M. Boylan-Kolchin, P. E. Bett, R. E. Angulo, M. Li, S. D. M.
White, C. Frenk, and V. Springel. The mass profile and accretion history of cold dark
matter haloes. MNRAS, 432:1103-1113, June 2013. doi: 10.1093/mnras/stt526.

A. D. Ludlow, J. F. Navarro, R. E. Angulo, M. Boylan-Kolchin, V. Springel, C. Frenk, and
S. D. M. White. The mass-concentration-redshift relation of cold dark matter haloes.

MNRAS, 441:378-388, June 2014. doi: 10.1093/mnras/stu483.

A. D. Ludlow, J. Schaye, and R. Bower. Numerical convergence of simulations of galaxy
formation: the abundance and internal structure of cold dark matter haloes. arXiv e-

prints, page 1, December 2018.

Aaron D. Ludlow, Joop Schaye, and Richard Bower. Numerical convergence of simulations
of galaxy formation: the abundance and internal structure of cold dark matter haloes.

MNRAS, 488(3):3663-3684, Sep 2019. doi: 10.1093/mnras/stz1821.

Andrea V. Maccio, Aaron A. Dutton, Frank C. van den Bosch, Ben Moore, Doug Pot-
ter, and Joachim Stadel. Concentration, spin and shape of dark matter haloes: scatter
and the dependence on mass and environment. MNRAS, 378(1):55-71, June 2007. doi:
10.1111/j.1365-2966.2007.11720.x.

G. A. Mamon, T. Sanchis, E. Salvador-Solé, and J. M. Solanes. The origin of H I-deficiency
in galaxies on the outskirts of the Virgo cluster. I. How far can galaxies bounce out of

clusters? AAp, 414:445-451, February 2004. doi: 10.1051/0004-6361:20034155.

P. Mansfield, A. V. Kravtsov, and B. Diemer. Splashback Shells of Cold Dark Matter Halos.
ApJ, 841:34, May 2017. doi: 10.3847/1538-4357 /aa7047.

Phil Mansfield. phil-mansfield /shellfish: Version 1.0.0, April 2017. URL

https://doi.org/10.5281/zenodo.569034.

222



Philip Mansfield and Andrey V. Kravtsov. The Three Causes of Low-Mass Assembly Bias.
arXiv e-prints, art. arXiv:1902.00030, Jan 2019.

Y.-Y. Mao, A. R. Zentner, and R. H. Wechsler. Beyond assembly bias: exploring secondary
halo biases for cluster-size haloes. MNRAS, 474:5143-5157, March 2018. doi: 10.1093/mn-

ras/stx3111.

Yao-Yuan Mao, Marc Williamson, and Risa H. Wechsler. The Dependence of Subhalo
Abundance on Halo Concentration. ApJ, 810(1):21, September 2015. doi: 10.1088/0004-
637X/810/1/21.

Federico Marinacci, Mark Vogelsberger, Riidiger Pakmor, Paul Torrey, Volker Springel, Lars
Hernquist, Dylan Nelson, Rainer Weinberger, Annalisa Pillepich, Jill Naiman, and Shy
Genel. First results from the IllustrisTNG simulations: radio haloes and magnetic fields.

MNRAS, 480(4):5113-5139, Nov 2018. doi: 10.1093/mnras/sty2206.

Jorryt Matthee, Joop Schaye, Robert A. Crain, Matthieu Schaller, Richard Bower, and Tom
Theuns. The origin of scatter in the stellar mass-halo mass relation of central galaxies
in the EAGLE simulation. MNRAS, 465(2):2381-2396, February 2017. doi: 10.1093/mn-
ras/stw2884.

Alan W. McConnachie, Michael J. Irwin, Rodrigo A. Ibata, John Dubinski, Lawrence M.
Widrow, Nicolas F. Martin, Patrick Coté, Aaron L. Dotter, Julio F. Navarro, Annette
M. N. Ferguson, Thomas H. Puzia, Geraint F. Lewis, Arif Babul, Pauline Barmby, Olivier
Bienaymé, Scott C. Chapman, Robert Cockcroft, Michelle L. M. Collins, Mark A. Fardal,
William E. Harris, Avon Huxor, A. Dougal Mackey, Jorge Penarrubia, R. Michael Rich,
Harvey B. Richer, Arnaud Siebert, Nial Tanvir, David Valls-Gabaud, and Kimberly A.
Venn. The remnants of galaxy formation from a panoramic survey of the region around

M31. Nature, 461(7260):66—69, September 2009. doi: 10.1038/nature08327.

R. Minkowski. Internal Dispersion of Velocities in Other Galaxies. In George Cunliffe

223



McVittie, editor, Problems of Extra-Galactic Research, volume 15 of TAU Symposium,

page 112, January 1962.

H. J. Mo and S. D. M. White. An analytic model for the spatial clustering of dark matter

haloes. MNRAS, 282:347-361, September 1996. doi: 10.1093/mnras/282.2.347.

J. J. Monaghan and J. C. Lattanzio. A refined particle method for astrophysical problems.
AAp, 149(1):135-143, Aug 1985.

Ben Moore, Sebastiano Ghigna, Fabio Governato, George Lake, Thomas Quinn, Joachim
Stadel, and Paolo Tozzi. Dark Matter Substructure within Galactic Halos. ApJl, 524(1):

L19-1.22, October 1999. doi: 10.1086/312287.

S. More, A. V. Kravtsov, N. Dalal, and S. Gottlober. The Overdensity and Masses of the
Friends-of-friends Halos and Universality of Halo Mass Function. ApJs, 195:4, July 2011.

doi: 10.1088,/0067-0049/195/1/4.

S. More, B. Diemer, and A. V. Kravtsov. The Splashback Radius as a Physical Halo Bound-
ary and the Growth of Halo Mass. ApJ, 810:36, September 2015. doi: 10.1088/0004-
637X/810/1/36.

S. More, H. Miyatake, M. Takada, B. Diemer, A. V. Kravtsov, N. K. Dalal, A. More,
R. Murata, R. Mandelbaum, E. Rozo, E. S. Rykoff, M. Oguri, and D. N. Spergel. Detection
of the Splashback Radius and Halo Assembly bias of Massive Galaxy Clusters. ArXiv e-

prints, January 2016.

RD Mosteller. Simplified calculation of body-surface area. The New England journal of
medicine, 317(17):1098-1098, 1987.

M. Musso, C. Cadiou, C. Pichon, S. Codis, K. Kraljic, and Y. Dubois. How does the
cosmic web impact assembly bias? MNRAS, 476:4877-4906, June 2018. doi: 10.1093/mn-
ras/sty191.

224



D. Nagai and A. V. Kravtsov. The Radial Distribution of Galaxies in A Cold Dark Matter
Clusters. ApJ, 618:557-568, January 2005. doi: 10.1086/426016.

Jill P. Naiman, Annalisa Pillepich, Volker Springel, Enrico Ramirez-Ruiz, Paul Torrey, Mark
Vogelsberger, Riidiger Pakmor, Dylan Nelson, Federico Marinacci, Lars Hernquist, Rainer
Weinberger, and Shy Genel. First results from the IllustrisTNG simulations: a tale of two
elements - chemical evolution of magnesium and europium. MNRAS, 477(1):1206-1224,
Jun 2018. doi: 10.1093/mnras/sty618.

J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical
Clustering. ApJ, 490:493-508, December 1997. doi: 10.1086/304888.

J. F. Navarro, E. Hayashi, C. Power, A. R. Jenkins, C. S. Frenk, S. D. M. White, V. Springel,
J. Stadel, and T. R. Quinn. The inner structure of ACDM haloes - III. Universal-
ity and asymptotic slopes. MNRAS, 349:1039-1051, April 2004. doi: 10.1111/j.1365-
2966.2004.07586.x.

J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, S. D. M. White, A. Jenkins,
C. S. Frenk, and A. Helmi. The diversity and similarity of simulated cold dark matter
haloes. MNRAS, 402:21-34, February 2010. doi: 10.1111/j.1365-2966.2009.15878.x.

Dylan Nelson, Annalisa Pillepich, Volker Springel, Rainer Weinberger, Lars Hernquist,
Riidiger Pakmor, Shy Genel, Paul Torrey, Mark Vogelsberger, Guinevere Kauffmann,
Federico Marinacci, and Jill Naiman. First results from the IllustrisTNG simulations:
the galaxy colour bimodality. MNRAS, 475(1):624-647, Mar 2018. doi: 10.1093/mn-
ras/stx3040.

Dylan Nelson, Volker Springel, Annalisa Pillepich, Vicente Rodriguez-Gomez, Paul Torrey,
Shy Genel, Mark Vogelsberger, Ruediger Pakmor, Federico Marinacci, Rainer Weinberger,
Luke Kelley, Mark Lovell, Benedikt Diemer, and Lars Hernquist. The [llustrisTNG sim-

225



ulations: public data release. Computational Astrophysics and Cosmology, 6(1):2, May
2019. doi: 10.1186/s40668-019-0028-x.

Angelo F. Neto, Liang Gao, Philip Bett, Shaun Cole, Julio F. Navarro, Carlos S. Frenk, Si-
mon D. M. White, Volker Springel, and Adrian Jenkins. The statistics of A CDM halo con-
centrations. MNRAS, 381(4):1450-1462, Nov 2007. doi: 10.1111/j.1365-2966.2007.12381.x.

Maria K. Neuzil, Philip Mansfield, and Andrey V. Kravtsov. The Sheet of Giants: Unusual
properties of the Milky Way’s immediate neighbourhood. MNRAS, 494(2):2600-2617,
April 2020. doi: 10.1093/mnras/staa898.

Isaac Newton. Newton, isaac (sir), 1642-1727 to halley, edmond, 1656-1742, Oct 1695.

Christine O’Donnell, Peter Behroozi, and Surhud More. Observing Correlations Between
Dark Matter Accretion and Galaxy Growth: I. Recent Star Formation Activity in Isolated
Milky Way-Mass Galaxies. arXiv e-prints, art. arXiv:2005.08995, May 2020.

Marilyn Bailey Ogilvie and Joy Dorothy Harvey. The biographical dictionary of women
in science @ pioneering lives from ancient times to the mid-20th century. New York:

Routledge, 2000.

J. H. Oort. Some Problems Concerning the Structure and Dynamics of the Galactic Sys-
tem and the Elliptical Nebulae NGC 3115 and 4494. ApJ, 91:273, April 1940. doi:
10.1086,/144167.

Wayne Orchiston. A Polynesian Astronomical Perspective: the Maori of New Zealand.

Springer Science Business Media, B. V., 1998.

J. P. Ostriker and P. J. E. Peebles. A Numerical Study of the Stability of Flattened Galaxies:
or, can Cold Galaxies Survive? ApJ, 186:467-480, December 1973. doi: 10.1086/152513.

J. P. Ostriker, P. J. E. Peebles, and A. Yahil. The Size and Mass of Galaxies, and the Mass

of the Universe. ApJL, 193:L1, October 1974. doi: 10.1086/181617.
226



Thornton Page. Masses of the double galaxies. AJ, 64:53, March 1959. doi: 10.1086/107865.

A. Paranjape, O. Hahn, and R. K. Sheth. Halo assembly bias and the tidal anisotropy of the
local halo environment. MNRAS, 476:3631-3647, May 2018. doi: 10.1093/mnras/sty496.

A. Patej and A. Loeb. Density Jumps Near the Virial Radius of Galaxy Clusters. ApJ, 824:

69, June 2016. doi: 10.3847/0004-637X/824/2/69.

Marcel S. Pawlowski. The planes of satellite galaxies problem, suggested solutions,
and open questions. Modern Physics Letters A, 33(6):1830004, February 2018. doi:

10.1142/50217732318300045.

P. J. E. Peebles. Origin of the Angular Momentum of Galaxies. Ap.J, 155:393, Feb 1969.
doi: 10.1086/149876.

P. J. E. Peebles. Structure of the Coma Cluster of Galaxies. AJ, 75:13, February 1970. doi:
10.1086,/110933.

Michael A. Penna and Kris A. Dines. A simple method for fitting sphere-like surfaces. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(9):1673, 2007.

Antonio Pigafetta. First Voyage Round the World by Magellan: Translated from the Accounts
of Pigafetta and Other Contemporary Writers. Number 52. Cambridge University Press,
1522.

Annalisa Pillepich, Dylan Nelson, Lars Hernquist, Volker Springel, Riidiger Pakmor, Paul
Torrey, Rainer Weinberger, Shy Genel, Jill P. Naiman, Federico Marinacci, and Mark Vo-
gelsberger. First results from the IllustrisTNG simulations: the stellar mass content of
groups and clusters of galaxies. MNRAS, 475(1):648-675, Mar 2018. doi: 10.1093/mn-

ras/stx3112.

227



C. N. Poveda-Ruiz, J. E. Forero-Romero, and J. C. Munoz-Cuartas. Quantifying and Con-
trolling Biases in Estimates of Dark Matter Halo Concentration. ApJ, 832(2):169, Dec

2016. doi: 10.3847/0004-637X/832/2/169.

D. Powell and T. Abel. An exact general remeshing scheme applied to physically conservative

voxelization. ArXiv e-prints, December 2014.

C. Power, J. F. Navarro, A. Jenkins, C. S. Frenk, S. D. M. White, V. Springel, J. Stadel,
and T. Quinn. The inner structure of ACDM haloes - I. A numerical convergence study.

MNRAS, 338:14-34, January 2003. doi: 10.1046/j.1365-8711.2003.05925.x.

Chris Power and Alexander Knebe. The impact of box size on the properties of dark
matter haloes in cosmological simulations. MNRAS, 370(2):691-701, August 2006. doi:
10.1111/j.1365-2966.2006.10562.x.

Chris Power, Alexander Knebe, and Steffen R. Knollmann. The dynamical state of dark
matter haloes in cosmological simulations - I. Correlations with mass assembly history.

MNRAS, 419(2):1576-1587, January 2012. doi: 10.1111/j.1365-2966.2011.19820.x.

Francisco Prada, Anatoly A. Klypin, Antonio J. Cuesta, Juan E. Betancort-Rijo, and Joel
Primack. Halo concentrations in the standard A cold dark matter cosmology. MNRAS,
423(4):3018-3030, Jul 2012. doi: 10.1111/j.1365-2966.2012.21007 .x.

W. H. Press and P. Schechter. Formation of Galaxies and Clusters of Galaxies by Self-Similar
Gravitational Condensation. ApJ, 187:425-438, February 1974. doi: 10.1086/152650.

Rachel M. Reddick, Risa H. Wechsler, Jeremy L. Tinker, and Peter S. Behroozi. The Con-
nection between Galaxies and Dark Matter Structures in the Local Universe. ApJ, 771

(1):30, Jul 2013. doi: 10.1088,/0004-637X/771/1/30.

Ignasi Ribas, Carme Jordi, Francesc Vilardell, Edward L. Fitzpatrick, Ron W. Hilditch, and
Edward F. Guinan. First Determination of the Distance and Fundamental Properties of

228



an Eclipsing Binary in the Andromeda Galaxy. ApJL, 635(1):L37-L40, December 2005.
doi: 10.1086/499161.

K. Rines, M. J. Geller, A. Diaferio, and M. J. Kurtz. Measuring the Ultimate Halo Mass of
Galaxy Clusters: Redshifts and Mass Profiles from the Hectospec Cluster Survey (HeCS).

AplJ, 767:15, April 2013. doi: 10.1088/0004-637X /767 /1/15.

M. S. Roberts and R. N. Whitehurst. The rotation curve and geometry of M31 at large

galactocentric distances. ApJ, 201:327-346, October 1975. doi: 10.1086/153889.

Vera Rubin. Seeing Dark Matter in the Andromeda Galaxy. Physics Today, 59(12):8,
January 2006. doi: 10.1063/1.2435662.

Vera C. Rubin and Jr. Ford, W. Kent. Rotation of the Andromeda Nebula from a Spectro-

scopic Survey of Emission Regions. ApJ, 159:379, February 1970. doi: 10.1086/150317.

A. N. Salcedo, A. H. Maller, A. A. Berlind, M. Sinha, C. K. McBride, P. S. Behroozi, R. H.
Wechsler, and D. H. Weinberg. Spatial clustering of dark matter haloes: secondary bias,
neighbour bias, and the influence of massive neighbours on halo properties. MNRAS, 475:
44114423, April 2018. doi: 10.1093 /mnras/sty109.

L. V. Sales, J. F. Navarro, M. G. Abadi, and M. Steinmetz. Cosmic ménage a trois: the
origin of satellite galaxies on extreme orbits. MNRAS, 379:1475-1483, August 2007. doi:
10.1111/j.1365-2966.2007.12026.x.

H. B. Sandvik, O. Mdller, J. Lee, and S. D. M. White. Why does the clustering of haloes
depend on their formation history? MNRAS, 377:234-244, May 2007. doi: 10.1111/j.1365-
2966.2007.11595.x.

G. Sato-Polito, A. D. Montero-Dorta, L. R. Abramo, F. Prada, and A. Klypin. The depen-

dence of halo bias on age, concentration and spin. ArXiv e-prints, October 2018.

229



A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least

squares procedures. Analytical Chemistry, 36(8):1627, 1964.

M. Schwarzschild. Mass distribution and mass-luminosity ratio in galaxies. AJ, 59:273,

September 1954. doi: 10.1086/107013.

R. K. Sheth and G. Tormen. Large-scale bias and the peak background split. MNRAS, 308:
119-126, September 1999. doi: 10.1046/;.1365-8711.1999.02692.x.

Ravi K. Sheth and Giuseppe Tormen. On the environmental dependence of halo formation.

MNRAS, 350(4):1385-1390, June 2004. doi: 10.1111/j.1365-2966.2004.07733.x.

X. Shi. The outer profile of dark matter haloes: an analytical approach. MNRAS, 459:
3711-3720, July 2016. doi: 10.1093/mnras/stw925.

Jonathan Sick, Stephane Courteau, Jean-Charles Cuilland re, Julianne Dalcanton, Roelof de
Jong, Michael McDonald, Dana Simard, and R. Brent Tully. The Stellar Mass of M31 as
inferred by the Andromeda Optical &amp; Infrared Disk Survey. In Michele Cappellari and
Stéphane Courteau, editors, Galaxy Masses as Constraints of Formation Models, volume

311 of IAU Symposium, pages 82-85, April 2015. doi: 10.1017/51743921315003440.

L. P. T. Sin, S. J. Lilly, and B. M. B. Henriques. On The Evidence For Large-Scale Galac-
tic Conformity In The Local Universe. MNRAS, 471:1192-1207, October 2017. doi:
10.1093 /mnras/stx1674.

Sinclair Smith. The Mass of the Virgo Cluster. ApJ, 83:23, January 1936. doi:
10.1086,/143697.

Keith Snedegar. Astronomical Practices in Africa South of the Sahara. Springer Science

Business Media, B. V., 1998.

Yoshiaki Sofue and Vera Rubin. Rotation Curves of Spiral Galaxies. ARA&A, 39:137-174,

January 2001. doi: 10.1146/annurev.astro.39.1.137.
230



V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro,
C. S. Frenk, and S. D. M. White. The Aquarius Project: the subhaloes of galactic haloes.

MNRAS, 391:1685-1711, December 2008. doi: 10.1111/j.1365-2966.2008.14066.x.

Volker Springel. The cosmological simulation code GADGET-2. MNRAS, 364(4):1105-1134,
December 2005. doi: 10.1111/j.1365-2966.2005.09655.x.

Volker Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simu-
lations on a moving mesh. MNRAS, 401(2):791-851, Jan 2010. doi: 10.1111/j.1365-
2966.2009.15715.x.

Volker Springel, Naoki Yoshida, and Simon D. M. White. GADGET: a code for collisionless
and gasdynamical cosmological simulations. New Astron., 6(2):79-117, April 2001a. doi:
10.1016/S1384-1076(01)00042-2.

Volker Springel, Naoki Yoshida, and Simon D. M. White. GADGET: a code for collisionless
and gasdynamical cosmological simulations. New Astron., 6(2):79-117, Apr 2001b. doi:
10.1016/S1384-1076(01)00042-2.

Volker Springel, Riidiger Pakmor, Annalisa Pillepich, Rainer Weinberger, Dylan Nelson,
Lars Hernquist, Mark Vogelsberger, Shy Genel, Paul Torrey, Federico Marinacci, and Jill
Naiman. First results from the [lustrisTNG simulations: matter and galaxy clustering.

MNRAS, 475(1):676-698, Mar 2018. doi: 10.1093/mnras/stx3304.

T. Sunayama, A. P. Hearin, N. Padmanabhan, and A. Leauthaud. The scale-dependence of
halo assembly bias. MNRAS, 458:1510-1516, May 2016. doi: 10.1093/mnras/stw332.

Johnathan Swift. Gulliver’s Travels. 1726.

G. Andreas Tammann. Karl Schwarzschild Lecture: The Ups and Downs of the Hubble
Constant (With 12 Figures). Reviews in Modern Astronomy, 19:1, January 2006. doi:
10.1002/9783527619030.ch1.

231



Max Tegmark, Joseph Silk, Martin J. Rees, Alain Blanchard, Tom Abel, and Francesco
Palla. How Small Were the First Cosmological Objects? ApJ, 474:1, January 1997. doi:

10.1086,/303434.

J. L. Tinker, C. Hahn, Y.-Y. Mao, A. R. Wetzel, and C. Conroy. Halo histories versus galaxy
properties at z = 0 II: large-scale galactic conformity. MNRAS, 477:935-945, June 2018.

doi: 10.1093/mnras/sty666.

Jeremy L. Tinker, Andrew R. Wetzel, Charlie Conroy, and Yao-Yuan Mao. Halo histories
versus Galaxy properties at z = 0 - I. The quenching of star formation. MNRAS, 472(2):
2504-2516, December 2017. doi: 10.1093/mnras/stx2066.

R. C. Tolman. Effect of Inhomogeneity on Cosmological Models. Proceedings of the National
Academy of Science, 20:169-176, March 1934. doi: 10.1073/pnas.20.3.169.

R. B. Tully. Galaxy Groups. The Astronomical Journal, 149:54, February 2015. doi:
10.1088,/0004-6256/149/2/54.

K. Umetsu and B. Diemer. Lensing Constraints on the Mass Profile Shape and the Splashback
Radius of Galaxy Clusters. ApJ, 836:231, February 2017. doi: 10.3847/1538-4357 /aa5c90.

F. C. van den Bosch, G. Ogiya, O. Hahn, and A. Burkert. Disruption of dark matter substruc-

ture: fact or fiction? MNRAS, 474:3043-3066, March 2018. doi: 10.1093/mnras/stx2956.

Frank C. van den Bosch. Dissecting the evolution of dark matter subhaloes in the Bolshoi

simulation. MNRAS, 468(1):885-909, June 2017. doi: 10.1093/mnras/stx520.

Frank C. van den Bosch and Go Ogiya. Dark matter substructure in numerical simulations:
a tale of discreteness noise, runaway instabilities, and artificial disruption. MNRAS, 475

(3):4066—4087, Apr 2018. doi: 10.1093/mnras/sty084.

Roeland P. van der Marel and Johannes Sahlmann. First Gaia Local Group Dynamics:

232



Magellanic Clouds Proper Motion and Rotation. ApJL, 832(2):L23, December 2016. doi:
10.3847/2041-8205/832/2/1.23.

Roeland P. van der Marel, Gurtina Besla, T. J. Cox, Sangmo Tony Sohn, and Jay Anderson.
The M31 Velocity Vector. III. Future Milky Way M31-M33 Orbital Evolution, Merging,
and Fate of the Sun. ApJ, 753(1):9, July 2012. doi: 10.1088/0004-637X/753/1/9.

Roeland P. van der Marel, Mark A. Fardal, Sangmo Tony Sohn, Ekta Patel, Gurtina Besla,
Andrés del Pino, Johannes Sahlmann, and Laura L. Watkins. First Gaia Dynamics of the
Andromeda System: DR2 Proper Motions, Orbits, and Rotation of M31 and M33. ApJ,
872(1):24, February 2019. doi: 10.3847/1538-4357/ab001b.

Eelco van Kampen. Overmerging in N-body simulations. arXiv e-prints, art. astro-

ph/0002027, February 2000.

A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S. S. Murray, and L. Van
Speybroeck. Chandra Sample of Nearby Relaxed Galaxy Clusters: Mass, Gas Fraction,
and Mass-Temperature Relation. ApJ, 640(2):691-709, April 2006. doi: 10.1086/500288.

F. Vilardell, I. Ribas, C. Jordi, E. L. Fitzpatrick, and E. F. Guinan. The distance to the An-
dromeda galaxy from eclipsing binaries. A&Ap, 509:A70, January 2010. doi: 10.1051/0004-
6361,/200913299.

A. S. Villarreal, A. R. Zentner, Y.-Y. Mao, C. W. Purcell, F. C. van den Bosch, B. Diemer,
J. U. Lange, K. Wang, and D. Campbell. The immitigable nature of assembly bias: the
impact of halo definition on assembly bias. MNRAS, 472:1088-1105, November 2017a.
doi: 10.1093/mnras/stx2045.

Antonio S. Villarreal, Andrew R. Zentner, Yao-Yuan Mao, Chris W. Purcell, Frank C. van
den Bosch, Benedikt Diemer, Johannes U. Lange, Kuan Wang, and Duncan Campbell.
The immitigable nature of assembly bias: the impact of halo definition on assembly bias.

MNRAS, 472(1):1088-1105, Nov 2017b. doi: 10.1093 /mnras/stx2045.
233



Maya Vitvitska, Anatoly A. Klypin, Andrey V. Kravtsov, Risa H. Wechsler, Joel R. Primack,
and James S. Bullock. The Origin of Angular Momentum in Dark Matter Halos. ApJ,
581(2):799-809, December 2002. doi: 10.1086/344361.

Mark Vogelsberger and Simon D. M. White. Streams and caustics: the fine-grained structure
of A cold dark matter haloes. MNRAS, 413(2):1419-1438, May 2011. doi: 10.1111/j.1365-
2966.2011.18224 x.

Mark Vogelsberger, Amina Helmi, Volker Springel, Simon D. M. White, Jie Wang, Carlos S.
Frenk, Adrian Jenkins, Aaron Ludlow, and Julio F. Navarro. Phase-space structure in the

local dark matter distribution and its signature in direct detection experiments. MNRAS,

395(2):797-811, May 2009. doi: 10.1111/j.1365-2966.2009.14630.x.

S. von Hoerner. Die numerische Integration des n-Korper-Problemes fiir Sternhaufen. I. ZAp,

50:184-214, January 1960.

H. Wang, H. J. Mo, and Y. P. Jing. The distribution of ejected subhaloes and its impli-
cation for halo assembly bias. MNRAS, 396:2249-2256, July 2009. doi: 10.1111/j.1365-
2966.2009.14884 x.

H. Wang, H. J. Mo, Y. P. Jing, X. Yang, and Y. Wang. Internal properties and environ-
ments of dark matter haloes. MNRAS, 413:1973-1990, May 2011. doi: 10.1111/j.1365-
2966.2011.18301.x.

H. Y. Wang, H. J. Mo, and Y. P. Jing. Environmental dependence of cold dark matter halo
formation. MNRAS, 375:633-639, February 2007. doi: 10.1111/j.1365-2966.2006.11316.x.

R. H. Wechsler and J. L. Tinker. The Connection Between Galaxies and Their Dark Matter
Halos. Annual Review of Astronomy and Astrophysics, 56:435-487, September 2018. doi:
10.1146/annurev-astro-081817-051756.

234



R. H. Wechsler, J. S. Bullock, J. R. Primack, A. V. Kravtsov, and A. Dekel. Concentra-
tions of Dark Halos from Their Assembly Histories. ApJ, 568:52-70, March 2002. doi:
10.1086/338765.

R. H. Wechsler, A. R. Zentner, J. S. Bullock, A. V. Kravtsov, and B. Allgood. The De-
pendence of Halo Clustering on Halo Formation History, Concentration, and Occupation.

ApJ, 652:71-84, November 2006. doi: 10.1086/507120.

Rainer Weinberger, Volker Springel, and Riidiger Pakmor. The Arepo public code release.

arXiv e-prints, art. arXiv:1909.04667, September 2019.

A. R. Wetzel, J. D. Cohn, M. White, D. E. Holz, and M. S. Warren. The Clustering of
Massive Halos. ApJ, 656:139-147, February 2007. doi: 10.1086/510444.

A. R. Wetzel, J. L. Tinker, C. Conroy, and F. C. van den Bosch. Galaxy evolution near
groups and clusters: ejected satellites and the spatial extent of environmental quenching.

MNRAS, 439:2687-2700, April 2014. doi: 10.1093/mnras/stul22.

S. D. M. White. The dynamics of rich clusters of galaxies. MNRAS, 177:717-733, December
1976. doi: 10.1093/mnras/177.3.717.

S. D. M. White and M. J. Rees. Core condensation in heavy halos - A two-stage theory
for galaxy formation and clustering. MNRAS, 183:341-358, May 1978. doi: 10.1093/mn-
ras/183.3.341.

Curtis Wilson. Clairut’s Calculation of the Eighteenth-century Return of Halley’s Comet.
Journal for the History of Astronomy, 24:1, May 1993. doi: 10.1177/002182869302400101.

Lizhi Xie and Liang Gao. Assembly history of subhalo populations in galactic and clus-
ter sized dark haloes. MNRAS, 454(2):1697-1703, December 2015. doi: 10.1093/mn-
ras/stv2077.

235



Xiaohu Yang, H. J. Mo, and Frank C. van den Bosch. Constraining galaxy formation and
cosmology with the conditional luminosity function of galaxies. MNRAS, 339(4):1057—
1080, March 2003. doi: 10.1046/j.1365-8711.2003.06254.x.

M. Zemp, O. Y. Gnedin, N. Y. Gnedin, and A. V. Kravtsov. On Determining the Shape of
Matter Distributions. ApJs, 197:30, December 2011. doi: 10.1088/0067-0049/197/2/30.

A. R. Zentner. The Excursion Set Theory of Halo Mass Functions, Halo Clustering,
and Halo Growth. International Journal of Modern Physics D, 16:763-815, 2007. doi:
10.1142/S0218271807010511.

A. R. Zentner, A. P. Hearin, and F. C. van den Bosch. Galaxy assembly bias: a signifi-
cant source of systematic error in the galaxy-halo relationship. MNRAS, 443:3044-3067,

October 2014. doi: 10.1093/mnras/stul383.

A. R. Zentner, A. Hearin, F. C. van den Bosch, J. U. Lange, and A. Villarreal. Constraints

on Assembly Bias from Galaxy Clustering. ArXiv e-prints, June 2016.

A. R. Zentner, A. Hearin, F. C. van den Bosch, J. U. Lange, and A. Villarreal. Con-
straints on assembly bias from galaxy clustering. MNRAS, 485:1196-1209, May 2019. doi:
10.1093 /mnras/stz470.

Tianchi Zhang, Shihong Liao, Ming Li, and Liang Gao. The optimal gravitational softening
length for cosmological N-body simulations. Monthly Notices of the Royal Astronomical
Society, 487(1):1227-1232, Jul 2019. doi: 10.1093/mnras/stz1370.

D. H. Zhao, H. J. Mo, Y. P. Jing, and G. Borner. The growth and structure of dark matter
haloes. MNRAS, 339:12-24, February 2003. doi: 10.1046/j.1365-8711.2003.06135.x.

D. H. Zhao, Y. P. Jing, H. J. Mo, and G. Borner. Accurate Universal Models for the
Mass Accretion Histories and Concentrations of Dark Matter Halos. ApJ, 707:354-369,
December 2009. doi: 10.1088/0004-637X/707/1/354.

236



I. Zhuravleva, E. Churazov, A. Kravtsov, E. T. Lau, D. Nagai, and R. Sunyaev. Quanti-
fying properties of ICM inhomogeneities. MNRAS, 428:3274-3287, February 2013. doi:
10.1093/mnras/sts275.

Judith Zinsser. FEmile du Chatelet: Daring Genius of the Enlilghtenment. The Penguin

Group, 2006.

F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:
110-127, January 1933.

237



