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ABSTRACT

This dissertation focuses on the control of service and manufacturing systems through the two

levers of pricing and matching. Chapters 1 and 2 focus on the ride-hailing industry. Chapter

3 studies a make-to-stock manufacturing system. This dissertation is the culmination of Ata

and Barjesteh [20], Ata et al. [21], and Ata et al. [22].

In Chapter 1, we study how spatial pricing and search friction can impact the taxi

market in New York City. We use a mean field model, in which the taxi drivers strategically

search for customers in different neighborhoods across the city, taking into account the

spatial and temporal distribution of the supply and demand as well as the prices across

the city. Our model captures the interplay between spatial pricing, where prices depend on

either the origin of the ride alone or both its origin and destination, and search friction,

due to empty taxis and customers within the same neighborhood failing to pair efficiently.

Spatial pricing can incentivize relocation of empty taxis to a neighborhood while the use

of mobile applications can alleviate search friction within that neighborhood. We fit our

model to a dataset of New York City taxi rides over four years and conduct a series of

counterfactual studies to explore how spatial pricing impacts demand for and supply of

rides, consumer welfare, and drivers’ profit. Our analysis reveals that spatial prices that

only use origin information can increase consumer surplus by 7.0% of the average fare and

serve 2.6% more customers without hurting the drivers’ profit. Moreover, we find that

eliminating the (local) search inefficiency alone can increase consumer surplus by 13.9%

of the average fare and serve 4.3% more customers while simultaneously increasing drivers’

profit by 2.5% of the average fare. We also observe that improving search efficiency primarily

impacts under-served neighborhoods such as upper Manhattan, Brooklyn and Queens, while

pricing primarily impacts well-served neighborhoods, for example, the airports, midtown,

and downtown Manhattan. This underscores the value of a hybrid mechanism. We propose

a mechanism in which (local) search is eliminated in all neighborhoods while spatial pricing

is only used in well-served neighborhoods. This mechanism increases consumer surplus by
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21.5% of the average fare and serves 8.7% more customers, while avoiding price discrimination

in less affluent neighborhoods of the city. The proposed mechanism achieves 96.3% of the

benefits of a citywide spatial pricing and friction removal mechanism.

In Chapter 2, we consider a ride-hailing platform that seeks to maximize its profit by

dynamically dispatching cars to pick up customers and centrally relocating cars from one

area to another. We model the ride-hailing platform as a closed stochastic processing net-

work. Because the problem appears intractable, we resort to an approximate analysis in the

heavy-traffic regime and consider the resulting Brownian control problem. This problem is

simplified considerably and reduced to a lower-dimensional singular control problem called

the workload formulation. We develop a novel algorithm to solve the workload problem

numerically. We apply this algorithm to the workload problem derived from the New York

City taxi dataset. The solution helps us derive a dynamic control policy for the New York

City application. In doing so, we prescribe the ride-hailing platform to first solve an offline

linear program, whose optimal solution can be interpreted as the optimal static control pol-

icy. This solution helps partition the areas of the city into pools of areas. The platform

only uses the information on the fraction of cars in the various pools, which reduces the

state space dimension significantly, making the problem computationally tractable. When

the distribution of cars among the pools is balanced, the platform follows the optimal static

control policy. Otherwise, the platform intervenes to move the system to a more balanced

state by either dropping demand or using a dispatch or relocation activity that is not used

under the optimal static control policy. We demonstrate the effectiveness of the proposed

dynamic control policy for the New York City application using a simulation study.

In Chapter 3, we consider a make-to-stock manufacturing system selling multiple products

to price-sensitive customers. The system manager seeks to maximize the long-run average

profit by making dynamic pricing, outsourcing, and scheduling decisions: First, she adjusts

prices dynamically depending on the system state. Second, when the backlog of work is

judged excessive, she may outsource (or reject) new orders thereby incurring outsourcing

xiv



costs. Third, she decides dynamically on which product to prioritize in the manufacturing

process, i.e., she makes dynamic scheduling decisions. This problem appears analytically

intractable. Thus, we resort to an approximate analysis in the heavy-traffic regime and con-

sider the resulting Brownian control problem. We solve this problem explicitly by exploiting

the solution to a particular Riccati equation. The optimal solution to the Brownian control

problem is a two-sided barrier policy with drift rate control: Outsourcing and idling pro-

cesses are used to keep the workload process above the lower reflecting barrier and below

the upper reflecting barrier, respectively. Between the two barriers, a state-dependent drift

rate is used to control the workload process.
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CHAPTER 1

AN EMPIRICAL ANALYSIS OF TAXI RIDES IN NEW YORK

CITY

1.1 Introduction

Taxi industry is an essential part of the transportation sector.1 For example, in New York

City (NYC), taxis offer over 150 million rides per year (TLC 1). In this market, taxis and

customers search for each other. This search friction results in a substantial welfare loss.

Prices set by the taxi industry affect the inter-temporal and spatial distribution of the supply

and demand and the interaction between them, impacting the consumer surplus and drivers’

profit. This chapter explores spatial pricing, a mechanism that prices rides based on their

origin and destination. In this context, we study the following questions: How does spatial

pricing impact consumer surplus and drivers’ profit? What is the pattern of the optimal

spatial prices? How does pricing based solely on the origin of the ride compare with pricing

based on the origin-destination pair? How does spatial pricing compare with removing the

local search friction using mobile applications?2

We consider two inefficiencies: First, the mismatch between supply and demand. Second,

the (local) search friction. To address these, we consider spatial pricing and friction removal

(through a better matching technology) as levers. Although spatial pricing3 is not widely

used in the taxi industry or ride-sharing platforms, it can help match supply and demand.

Supply can be redistributed since the profitability of different neighborhoods is closely tied to

prices and taxi drivers make relocation decisions to maximize their profit. The distribution

of demand can also be adjusted since customers are price sensitive. By adjusting both supply

1. With an annual revenue of $18.9 billion and annual profit of $1.5 billion, taxi and limousine industry
is one of the major segments of the US economy; see e.g., Sayler [185].

2. Internet-based mobile applications such as Arro and Curb can provide a better match between cus-
tomers and taxis; see https://www.ridearro.com and https://main.gocurb.com.

3. Spatial pricing should not be confused with dynamic pricing.
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and demand, spatial pricing provides the policy maker with a unique and powerful tool to

intervene in the details of the market. Moreover, spatial pricing can be implemented with

the existing equipment4 and technological solutions such an mobile applications.

Spatial pricing does not resolve all the inefficiencies. The search by customers for taxis

is spatially localized. A customer looks for a taxi only within a relatively small geographical

area at any given time. Although empty taxis have more freedom and may relocate to dif-

ferent areas to seek customers, within any single area their ability to connect with customers

is imperfect. As the spatial densities of customers and taxis increase, a higher fraction of

customers are matched with taxis. However, it is not uncommon to find both empty taxis

and unfulfilled customers in the same area. On the one hand, spatial pricing can impact the

relocation decisions of the empty taxis. This in turn, impacts the spatial density of taxis,

and consequently, the efficacy of the search. On the other hand, mobile (search) applications

can improve the search efficacy as well, enabling better connections between empty taxis

and customers even in locations with low density of customers and empty taxis, as measured

by the number of customers and the number of empty taxis per street mile, respectively.

Relocation of empty taxis induced by spatial pricing and the reduction of search friction

complement each other. Understanding the interplay between spatial pricing and the re-

moval of (local) search friction is the primary focus of this chapter. Although removing

the (local) search friction resolves the issue of having unfulfilled customers and unutilized

taxis simultaneously at the same location, it is merely a local solution. It has little to no

impact on neighborhoods with high density of supply and demand, where the majority of

rides initiate (due to the already high efficacy of search in these neighborhoods). In other

words, removing the (local) search friction does not address the global mismatch between

supply and demand; see e.g., Lagos [149].

Our model captures the interaction of supply and demand both locally and globally. To

4. Smart meters installed on all NYC yellow taxis (since 2009) report all the information (longitude and
latitude of the pick-up and drop-off locations) required for the implementation of spatial prices. Mobile
applications such as Arro and Curb can inform customers of their fare before they hail a taxi.
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capture the global aspect, we use a mean field model that approaches the problem from a

macroscopic perspective. In this model, an individual taxi driver is irrelevant and the focus

is on the distribution of the taxis. To capture the local aspect, we use an aggregate matching

function that captures the spatial and microscopic aspect of the search.

We take the view of a social planner and optimize total consumer surplus. We observe

that a spatial pricing scheme that prices rides based on their origin and destination and

allows prices to change between 50% and 150% of the current prices5 in NYC can increase

consumer surplus by $168, 000 in every day shift ($0.79 per ride or 8.5% of the average fare),

serve 3.2% more customers, and increase customer miles (total number of miles traveled by

customers) by 7.4%, without hurting the drivers’ profit. A similar spatial pricing scheme

that only uses origin information can increase consumer surplus by $135, 000 in every day

shift ($0.63 per ride or 7.0% of the average fare), serve 2.6% more customers, and increase

customer miles by 3.9%.

Prices in under-served areas (such as upper Manhattan, Brooklyn, and Queens)6 increase

to attract more taxi drivers. Due to higher prices, each served customer in under-served areas

is worse off. However, this effect is offset by the increase in the number of served customers.

In well-served areas, prices increase in nodes with low demand or shorter trips and decrease

in nodes with high demand and longer trips.

Considerably higher prices in the less affluent neighborhoods of the city (upper Man-

hattan, Brooklyn, and Queens) is an undesirable outcome of using spatial pricing alone.

This effect can be mitigated by removing the (local) search friction. Table 1.1 compares the

impact of origin-only spatial pricing (with price deviation smaller than 50%) and removing

friction on various metrics of interest. Removing the (local) search friction alone (with no

spatial pricing) can increase consumer surplus by $1.26 per ride, serve 4.3% more customers,

and increase drivers’ profit by $0.22 per ride. The majority of the benefits of removing the

5. In this disseration, we do not change the ratio of the price per mile to the fixed portion of the fare.
Instead, we use price multipliers to change the fares; see Section 1.6.

6. See Figure A.1 for the definition of these geographical areas.
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Table 1.1: Improvement in various parameters of interest under spatial pricing and removing
friction (prices deviation is limited to 50% ).

Origin-Only

Pricing

Origin-

Destination
Pricing

Removing

Local Search
Friction

Hybrid

Mechanism

Proposed

Mechanism

Citywide Origin-

Only Pricing &

Friction Removal

Consumer Surplus
Total increase $135K $168K $268K $322K $417K $433K
Per ride $0.63 $0.79 $1.26 $1.52 $1.96 $2.04
In terms of average fare 7.0% 8.5% 13.9% 16.7% 21.5% 22.4%

Number of served customers 2.6% 3.2% 4.3% 5.7% 8.7% 8.9%
Miles traveled by customers 3.9% 7.4% 6.2% 8.1% 11.7% 12.0%
Drivers’ Profit $0 $0 $48K $0 $0 $0

(local) search friction come from under-served nodes while the majority of the benefits of

spatial pricing are from well-served nodes. This highlights the value of a hybrid mechanism.

A hybrid mechanism, that uses spatial pricing in well-served neighborhoods and removes

friction in under-served neighborhoods (keeping the price pattern), can increase consumer

surplus by $1.52 per ride. Under the hybrid mechanism, we need only a little price variation

to achieve the majority of the benefits. Table 1.1 also presents the impact of citywide spa-

tial pricing and friction removal. This mechanism (with only 50% price variation) increases

consumer surplus by $2.04 per ride, which is considerably higher than spatial pricing or

removing friction alone. Since policy makers prefer avoiding price discrimination in less af-

fluent neighborhoods of the city, we propose a mechanism in which friction is removed in the

entire city while spatial pricing is used only in well-served neighborhoods. The mechanism

captures almost all the benefits of citywide spatial pricing and friction removal.

Spatial prices can increase drivers’ profits, as well. Spatial prices, that only use origin

information and do not deviate from the current prices in NYC by more than 50%, can

increase drivers’ profits by $100, 000 in every day shift ($0.47 per ride or 5.3% of the average

base-fare), without lowering consumer surplus.

The rest of the chapter is organized as follows. Section 1.2 reviews the literature. Sec-

tion 1.3 introduces the mean field model. Section 1.4 describes the data. Section 1.5 de-

scribes the estimation procedure and results. Section 1.6 describes the counterfactual anal-
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ysis and Section 1.7 concludes. Appendix A.1 discusses the procedure used to define the

nodes/neighborhoods. Appendix A.2 provides complementary discussions on the matching

model. Appendices A.3-A.4 provides supplementary material for the Data and Estimations

sections, respectively. Appendix A.5 describes a Monte Carlo simulation study to illustrate

the identification of our model. Appendix A.6 uses five-fold cross-validation to examine the

ability of our model in predicting the relocation decisions of the drivers. Appendix A.7

provides supplementary material for the counterfactual analysis and Appendix A.8 stud-

ies spatial pricing for maximizing drivers’ profit. Appendix A.9 provides the proofs and

derivations.

1.2 Literature Review

This chapter is related to four streams of literature. The first stream focuses on mechanisms

and regulations used for improving the performance of the taxi market. The second stream

studies spatial models of search with an emphasis on the ride-hailing industry. The third

stream focuses on dynamic discrete choice models. The last stream studies mean field games

and their applications.

Mechanisms and regulations used for improving the performance of the taxi market have

been studied extensively. Entry restrictions and price controls are the most studied mech-

anisms in the literature; see e.g., Coffman and Shreiber [75], Foerster and Gilbert [91],

Schroeter [187], and Häckner and Nyberg [105]. The common theme in many of these papers

is that price regulations and entry restrictions are helpful since they increase the availability

of taxis in times and locations with low demand.7 Frechette et al. [92] follows this literature

by showing that search frictions and entry restrictions are important inefficiencies in the

taxi market, and one reason for the success of ride-sharing platforms is the fact that they

can address these issues. Similar to Frechette et al. [92], we observe that search friction is

7. This is achieved by reducing the friction of price negotiation and ensuring a suitable minimum profit
for the drivers. For example, in exchange for serving all neighborhoods of a city, a firm could be granted a
monopoly position.
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a major issue and removing it increases consumer surplus and drivers’ profit by $1.26 and

$0.22 per ride, respectively.

Following the success of ride-sharing platforms, taxi industry has received increasing

scrutiny. Cramer and Krueger [79] shows that the utilization of Uber drivers is higher

than the utilization of taxi drivers. They argue that this is in part due to Uber’s efficient

matching technology and inefficient regulations in the taxi industry. Buchholz [56] proposes

a model of spatial search of taxi rides and computes the gain in consumer surplus from

perfect matching of customers and taxis in each neighborhood. Buchholz concludes that

although the elimination of the (local) search friction in NYC results in a 7.1% increase in

the number of served customers, it has a negative impact on consumer surplus. In contrast,

we observe that the elimination of the (local) search friction results in a 4.3% increase in

the number of served customers while increasing consumer surplus by $1.26 per ride. The

majority of these benefits come from neighborhoods with low density of supply and demand.

Our observation is consistent with the conclusions made in Lam and Liu [150] and Shapiro

[189] that a platform that posses a superior matching technology outperforms NYC yellow

taxis primarily in neighborhoods with low density of supply and demand.

Another class of mechanisms closely related to this chapter is dynamic and spatial pric-

ing in ride-hailing networks. This literature can be divided into spatial and non-spatial

treatments of the problem. Banerjee et al. [41], Bai et al. [36], Özkan and Ward [172], and

Cachon et al. [61] use a non-spatial analytical approach. Banerjee et al. [41] models the

problem of dynamic pricing of rides in a single region as a queueing system. It shows that

the throughput and revenue of no dynamic pricing strategy can exceed that of the optimal

static pricing policy. However, dynamic pricing strategies are more robust to fluctuations

in the system parameters. Relevant empirical non-spatial studies include Hall et al. [106],

Cohen et al. [76], Ming et al. [166], Lam and Liu [150], and Shapiro [189]. Cohen et al.

[76] uses data on Uber rides in four major cities in the United States and estimates that for

each dollar spent by customers, 1.6 dollars of consumer surplus is generated. Lam and Liu
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[150] uses a dynamic choice model in which customers in NYC choose between Uber, Lyft,

and Taxi rides. It finds that customers who use ride-sharing platforms gain 0.72 dollars for

every dollar spent on rides and 64% of this gain is due to dynamic pricing. Although this

chapter focuses on spatial pricing and we observe more modest increases in consumer surplus

from pricing and using a better matching technology (e.g., an increase in consumer surplus of

$2.04 per ride, 22.4% of the average ride, from city-wide spatial pricing and friction removal),

important qualitative insights of Lam and Liu [150] agree with ours. For example, Lam and

Liu [150] observes that pricing is more welfare-enhancing in thick markets (such as midtown

Manhattan) while the matching technology is most beneficial in the outer boroughs.

The second stream of literature studies spatial search models. Lagos [149] is one of the

first papers that studied the taxi market with an emphasis on its spatial aspect and the

strategic behavior of its drivers. Lagos [149] proposed a model in which taxi drivers search

for customers on a graph, and highlighted the friction resulting from this search. A number

of papers followed this work, by generalizing it, or using it to address other issues in the

ride-hailing industry.

Bimpikis et al. [52] builds on Lagos [149] to study spatial pricing in ride-sharing platforms.

It shows that if the demand pattern is not balanced, spatial pricing is beneficial and optimal

prices can be written in terms of the optimal dual variables corresponding to the flow balance

equations. Under the assumption that prices and compensations can be decoupled, the

authors are able to solve for the optimal prices by focusing on the mass balance equations

only. Since in the taxi market in NYC the entire fare is collected by the drivers and the

Taxi and Limousine Commission (TLC) does not collect a fee, prices and compensations

cannot be decomposed in our setting. Hence, no such simplification occurs in our analysis.

We allow for a non-complete graph with different distances/travel times between nodes, a

non-uniform demand pattern on the graph, and inter-temporal variations in the system.

Buchholz [56] builds upon Lagos [149] to study the pricing of taxi rides based on pick-up

location, time of day, and the distance of the ride. It concludes that distance-based pricing
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outperforms pricing based on the pick-up location and time of day. Buchholz finds that

distance-based pricing outperforms origin-only pricing by 766% with respect to the increase

in consumer surplus and by 356% with respect to the increase in the number of served

customers. Although we do not analyze distance-based pricing, the origin-destination pricing

subsumes distance-based pricing. However, we see a more modest increase with respect to

consumer surplus (24%) and the number of served customers (23%) in origin-destination

compared to origin-only pricing.

Other related papers in the spatial literature are Braverman et al. [55], Banerjee et al.

[39], Yang et al. [218], Afèche et al. [10], and Besbes et al. [50]. Braverman et al. [55]

studies centralized empty car routing in ride-shairng platforms. It shows that a fluid-based

optimization can be used to solve for the optimal network utility, which is an upper bound

on the utility of all static and dynamic routing policies in the finite-car system. Banerjee

et al. [39] studies pricing in shared vehicle systems where taxis do not relocate when they

are empty. It proposes a static spatial pricing algorithm with an approximation ratio that

improves as the average number of vehicles per location grows. Afèche et al. [10] takes prices

as fixed and studies admission control of customers and centralized re-positioning of drivers

and shows that the value of these control policies are largest at moderate capacity and they

increase with demand imbalances. Besbes et al. [50] uses a stylized model on a line, where

taxis make myopic decisions based on the next ride and can relocate instantaneously. They

show that the pricing problem can be spatially decomposed based on the attraction regions.

The platform can use prices to create regions in which driver congestion is artificially high

in order to motivate drivers to relocate to more profitable regions.

The third stream of literature studies discrete choice theory and structural estimation;

see Ben-Akiva et al. [46] for an introduction and Anderson et al. [16] for examples. The most

relevant papers in this area are Rust [183], Nair [169], and Su and Judd [194]. Rust [183]

studies a structural model in which a manager has to decide in each period whether to replace

a bus engine or postpone the decision. Nair [169] studies an equilibrium model in which
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consumers decide when to purchase a durable product based on their expectation of future

prices and the seller decides on the optimal temporal pricing scheme. In a setting similar to

Nair [169], in this chapter, taxi drivers make relocation decisions based on their expectation

of future supply and demand, and the central planner sets the prices hoping to impact

the relocation decisions of the drivers. Su and Judd [194] shows that structural estimation

problems can be viewed as constrained optimization problems. We use an approach similar

to Su and Judd [194] in Sections 1.5-1.6. Other relevant papers in this area include Akşin

et al. [13, 14]8, Ata et al. [23, 24], Li et al. [155], Zheng [222], and Zheng et al. [223].

The last stream of literature studies mean field games. The mean field games theory was

developed to study systems with an infinite number of rational agents in competition. The

theory was developed independently by the mathematics community in Lasry and Lions

[152] and by the engineering community in Huang et al. [131]. This framework has been

used to model various economic and engineering systems. Examples of such papers in the

operations community include Adlakha and Johari [5], Xu and Hajek [215], Iyer et al. [133],

Adlakha et al. [6], Gummadi et al. [103], and Balseiro et al. [37].

1.3 Model

This section introduces the empirical model used to estimate the effect of spatial pricing

of taxi rides in NYC. We index the months between January 2010 and December 2013 by

k ∈ {1, . . . , K} (K = 48). In what follows, we fix k and focus on non-holiday weekdays of

month k. We assume that the primitives of the model are the same in all weekdays of the same

month. In other words, although there is variation across months, we assume that the non-

holiday weekdays in a month are i.i.d. copies of each other. Consider a connected directed

graph G = (V , E) with n nodes, i.e. |V| = n. Each node represents an area in Manhattan,

Brooklyn, Queens or one of the airports (La Guardia and JFK). Any pair of distinct nodes

8. Ata et al. [25] and Ata and Peng [32] rigorously establish the existence and uniqueness of the equilibria
in a similar setting.
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are connected with at most two directed edges, denoted by (i, j) and (j, i), respectively.

Furthermore, each node has a loop, which represents travel within the area/node.

Let t ∈ {1, . . . , T} index time. Each t represents a five-minute interval between the

hours of 6AM and 4PM (a typical NYC day-time shift), corresponding to T = 120. For all

i, j ∈ V , the average time and distance to travel from node i to node j are denoted by τij

and dij , respectively.9 We allow (τij , dij) to be different from (τji, dji)
10 and do not impose

a relationship between τij and dij . We assume that τij is integer-valued for all i, j ∈ V and

τii = 1 for all i. To facilitate the analysis to follow, define

Sij =

{
1 if (i, j) ∈ E ,

0 otherwise.

Let Pij and Fij denote the price per mile and the fixed portion of the fare, respectively,

for a ride from node i to node j. The fare paid by a customer to his driver for a ride from

node i to node j is Fij + Pijdij . The fixed portion is used to model the flag-drop and the

JFK flat fare.11 Taxes and tolls are not included in the calculations as they are fixed (over

time) and taxis do not keep them. The price per mile and the fixed portion of the fare are

allowed to depend on the origin and the destination of the ride in order to capture the flat

fare structure of rides between JFK and Manhattan.12 This also gives us sufficient flexibility

to explore the origin-destination pricing in our counterfactual study.

Given prices F = [Fij ]
n
ij=1 and P = [Pij ]

n
ij=1, the arrival rate (per period) of potential

9. If (i, j) ∈ E , τij and dij are the travel time/distance on the edge connecting i to j. Otherwise, τij and
dij correspond to the travel time/distance of full taxis, that are calculated from the data.

10. This allows us to capture the spatial variation in the traffic speed as well as the impact of one-way
streets and streets with different traffic speeds in each direction.

11. The fare of a ride from JFK to Manhattan (and vice versa) after September 2012 is $52 plus the $4.5
rush hour surcharge (4PM to 8PM on weekdays, excluding legal holidays). Since this chapter focuses on the
day shift (6AM to 4PM) on weekdays, the rush hour surcharge is not included in the calculations.

12. Consider a customer at JFK airport at a non-rush hour time in September of 2012. If he is headed
to Manhattan, his fare is $52. This corresponds to Fij = 52 and Pij = 0. However, if he is headed to
another location, for example to La Guardia airport for a connecting flight, his fare is calculated based on
the distance he intends to travel. In this case, Fij = 2.5 and Pij = 2.5 per mile.

10



Starts Ends?

Full taxis
deliver their
customers

?

Relocating
empty taxis

arrive

?

Customers
arrive

?

6

Matching
occurs

6

Full taxis &
unmatched

customers leave

6

Remaining
empty taxis

relocate

mti, V (i, t) λti f tij mtij

Figure 1.1: Timing of events and definition of variables in each period.

customers who wish to go to node j from node i in period t, denoted by Λtij(F,P ), is given

as follows:

Λtij(F,P ) = Atij
[
Fij + Pijdij

]α
exp(βk) for all i, j, t. (1.1)

The parameter Atij is the fixed effect of demand and α < 0 is the price-elasticity. As will be

shown in Section 1.4, our data exhibits a trend over time (see Figure 1.3) and β captures

the monthly trend in demand. Since α does not depend on the fare, the demand model in

(1.1) is a constant-elasticity demand model.13 The (potential) demand at node i in period

t, denoted by Λti(F,P ), is given by

Λti(F,P ) =
n∑

j=1

Λtij(F,P ) for all i, t.

The probability that a customer at node i is headed to node j, denoted by πtij(F,P ), is equal

to

πtij(F,P ) =
Λtij(F,P )

Λti(F,P )
for all i, j, t. (1.2)

In what follows, we denote satisfied demand at node i in period t by λti. Note that λti ≤

Λti(F,P ).

The timing of events in each period is depicted in Figure 1.1. We denote the number of

active taxis during the day shift by M and the average of M across the 48 month by M .

13. See Van Zandt [199, Page 152] for a discussion on constant-elasticity demand models.
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We normalize the number of active taxis to an M/M mass (as done usually in mean field

models).14 The mass of empty cars at node i at the begining of period t is denoted by mt
i.

Also, let mt
ij denote the mass of empty cars that decide to relocate from node i to node j at

the end of period t, and f tij denote the mass of full cars that picked up a customer at node

i, who wishes to go to node j, in period t.

An empty taxi at node i in period t that could not pick up a customer relocates to node j

with probability qtij . In particular, it stays idle at node i until the next period with probability

qtii. These probabilities arise endogenously as drivers make their relocation decisions. Letting

A(i) = {j : Sij = 1} denote the set of nodes that can be reached from node i, an empty

taxi at node i can only relocate to nodes in A(i). Moreover, since qti· = {qtij : j ∈ A(i)} is a

probability distribution for all i, it follows that

∑

j∈A(i)

qtij = 1 for all i, t,

qtij = 0 for all j /∈ A(i),

qtij ≥ 0 for all i, j, t.

Let c denote the mean travel cost per mile (incurred by the drivers). We assume that the

cost of traveling from node i to node j is equal to c dij + εij , where εij denotes a Gumbel

Min15 (minimum extreme value type I) distributed idiosyncratic shock to the travel cost

of the driver. The idiosyncratic cost shocks correspond to unobservable variables in the

empirical industrial organization literature (see, e.g., Rust [183]), which are observed by the

driver but not recorded in the data. The cost shocks are assumed to be i.i.d. with mean zero

and scale parameter σ. Furthermore, we let V (i, t) denote the value function of an empty

taxi’s driver at node i in period t (before customers arrive); and Ni denotes the number of

14. Using M/M as opposed to the unit mass in all months allows us to capture the variation in the number
of active taxis while ensuring that all quantities of interest are comparable across months.

15. A Gumbel Min distributed random variable has the same distribution as the negative of a Gumbel
Max (commonly referred to as Gumbel) distributed random variable.
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regions in node i. What constitutes a region will be discussed below in detail.

For the remainder of this section, we assume that the problem primitives M , M , Ni, c,

Fij , Pij , τij , dij , Sij , A
t
ij , α, β, k, σ, and the initial distribution of empty taxis, m1

i , are

given for all i, j, t. We then proceed to characterize λti, m
t
i, m

t
ij , f

t
ij , q

t
ij , and V (i, t) by

deriving a set of equations they must satisfy. To characterize the satisfied demand λti, we

focus on the following question: If there are m taxis and Λ customers at the beginning of a

period in an area (node), what is the expected number of served customers (matches between

taxis and customers)? The answer depends on whether the matching of customers and taxis

is perfect (frictionless) or imperfect (with friction). Matching can be perfect in nodes where

customers and taxis are matched through a mobile application. In most other cases, the

matching is imperfect and taxis need to search for customers block by block.

Perfect Matching. When matching is perfect, the number of matches is the minimum of

the number of taxis and customers in the node in that period, i.e.

λti = min
(
mt
i,Λ

t
i(F,P )

)
. (1.3a)

When matching is imperfect, there can be unfulfilled customers and unutilized taxis

simultaneously. We propose the following matching model in this case. Consider a node

partitioned into N ≥ 2 regions, which can be done so that it takes one period (i.e. five

minutes) for a taxi to explore any of the regions.16 We assume that customers and taxis

randomly choose one of N regions (with equal probabilities) to explore and the number of

matches in each region is the minimum of the number of customers and taxis in that region.

The total number of matches in the node is equal to the sum of the matches made in the N

regions.

Since customers and taxis choose regions with equal probabilities, all regions have the

16. Regions are the smallest geographic units in our model and they are obtained by dividing the street
miles in a node such that each region takes exactly one period to explore. One way to compute the number
of regions N is to use the data on the average speed of taxis and the total street-miles in that node.

13



same expected number of matches. Consider an arbitrarily chosen region. Let X and Y

denote the number of taxis and customers that chose that region. Since there are m taxis

and each taxi chooses this region with probability 1/N , we have X ∼ Binomial(m, 1/N).

Similarly, Y ∼ Binomial(Λ, 1/N). Therefore, the expected number of matches in the region

is equal to E
[

min(X, Y )
]
, and that in the node is equal to N × E

[
min(X, Y )

]
. We would

like to find a tractable approximation for N × E
[

min(X, Y )
]

that is monotone in Λ and

equals zero when Λ = 0. To do so, we use a normal approximation to the Binomial distribu-

tion that is further refined by a linear approximation for small values of demand to ensure

monotonicity.17

Imperfect Matching. When matching is imperfect, we propose the following model:

λti =





G
(
Λti;m

t
i

)
if Λti ≥ Λ̂mt

i
,

G
(
Λ̂mt

i
;mt

i

) Λti
Λ̂
mti

otherwise,
(1.3b)

where G(Λ;m) = Λ Φ(ν) + mΦ(−ν) − (m−Λ)φ(ν)/ν with Φ(·) and φ(·) denoting the cdf

and pdf of the standard normal distribution, respectively,

ν ,

√
M

Ni − 1

m− Λ√
m+ Λ

,

and Λ̂m = min
{

Λ ≥ 0 : G(Λ;m) is strictly increasing on (Λ,∞)
}

; see Appendix A.9 for the

derivation of (1.3b).

The term G(Λ;m) in (1.3b) is derived using a normal approximation for the Binomial

distributions. Although this approximation elegantly captures the key features of search

friction that we seek to model, it is not monotone in a neighborhood of the origin and fails

to satisfy λti = 0 when Λti = 0. The linear approximation at Λti < Λ̂mt
i

in (1.3b) remedies

17. Our numerical results are robust to the approximation used in small values of demand. This approxi-
mation is required at demand values much smaller than one customer per period, which are observed in less
than 1% of the (i, t) pairs in the numerical experiments of Section 1.6.
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these two issues and retains the other desirable features of the normal approximation.

Buchholz [56] tailors the imperfect matching model proposed in Burdett et al. [59] to

the taxi market. In Buchholz [56]’s model, first the number of drivers and their locations

are revealed to the customers. Then, each customer chooses a taxi. When more than one

customer chooses a taxi, only one of the customers is served and the others leave the system

unfulfilled. In our matching model, taxis and customers in each region observe each other

(and not the taxis and customers in other regions) and matching in each region is frictionless.

Due to this frictionless matching in each region, our matching model results in a higher

expected number of matches when the number of taxis and customers are sufficiently higher

than the number of regions (nodes with high density of supply and demand). However, when

the number of taxis or customers is low (nodes with low density of supply or demand), due to

the fact that taxis can be matched only with customers in their region, our matching model

results in a lower number of matches. For a detailed comparison of our matching model with

the matching model of Buchholz [56], see Appendix A.2.

Next, we describe the flow balance equations and the Bellman equation, governing the

system dynamics and the relocation decisions of empty taxis, respectively. These equations

hold under both the perfect and imperfect matching.

Flow Balance of Full Cars. The mass of empty cars that picked up a customer at node

i headed to node j in period t, f tij , must be equal to λti, the satisfied demand at node i in

period t, multiplied by the probability that the customers are headed to node j, πtij(F,P ).

Therefore, we must have

f tij = λti π
t
ij(F,P ) for all i, j, t. (1.4)

Flow Balance of Empty Cars. The mass of empty cars that decided to relocate from i

to j at the end of period t (after they could not obtain a customer), mt
ij , must be equal to the

mass of empty cars after the customers are served,
(
mt
i − λti

)
, multiplied by the probability
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that a car will relocate to node j, qtij ; see Figure 1.1 for the timing of events in a period.

Therefore, we must have

mt
ij =

(
mt
i − λti

)
qtij for all i, j, t. (1.5)

Flow Balance at Nodes. The mass of empty cars in node i at the begining of period t is

equal to the sum of the mass of empty cars that arrived at node i in period t and the mass

of full cars that dropped their customer at node i in period t. Therefore, we must have

mt
i =

∑

j∈A(i)

m
t−τji
ji +

n∑

j=1

f
t−τji
ji for all i, t. (1.6)

Mass Balance. Since taxis are either empty or full and the mass of (relocating) empty

taxis and full taxis at any period t must sum to M/M , the total mass of taxis on the graph,

we must have

n∑

i=1

∑

j∈A(i)

τij∑

s=1

mt−s
ij +

n∑

i=1

n∑

j=1

τij∑

s=1

f t−sij = M/M for all t. (1.7)

Next, we describe how taxi drivers make their relocation decisions.

Bellman Equation. Consider an infinitesimal driver and assume that the mass of the

empty and full taxis, [mt
ij ]
n
i,j=1 and [f tij ]

n
i,j=1, and satisfied demands, [λti]

n
i=1, are given for

all t ∈ {1, . . . , T}. The driver moves around on the graph until t = T , picks up customers,

delivers them to their destination and makes relocation decisions when he can not pick up

a customer. The objective of the driver is to maximize his total profit. Recall that the

travel cost of the infinitesimal driver from node i to node j is equal to c dij + εij , where εij

denotes a Gumbel Min (minimum extreme value type I) distributed idiosyncratic shock to

the travel cost of the driver. The cost shocks are assumed to be i.i.d. with mean zero and

scale parameter σ.
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The state of the empty infinitesimal taxi is s = (i, t, ε(i)), where i ∈ {1, . . . , n} denotes

the location (node) of the taxi, t ∈ {1, . . . , T} denotes the period, and ε(i) =
(
εij ; j ∈ A(i)

)

is the vector of iid cost shocks. Each element of ε(i) has a Gumbel Min (minimum extreme

value type I) distribution with mean zero and scale parameter σ. We denote the observable

(to the researcher) state of the empty taxi by x = (i, t). Therefore, s = (i, t, ε(i)) = (x, ε(i)).

The driver of the empty taxi at state s = (i, t, ε(i)) can choose to relocate to node j ∈ A(i).

Therefore, the action set of the driver at state s = (i, t, ε(i)) isA(i). The following proposition

characterizes the driver’s value function and the relocation probabilities; see Appendix A.9

for its proof.

Proposition 1. The value function of the infinitesimal empty taxi is given by

V (i, t) =
λti
mt
i

(
n∑

j=1

πtij(F,P )
(
Fij + [Pij − c] dij

)
+

n∑

j=1

πtij(F,P )V (j, t+ τij)

)

+ σ
(

1− λti
mt
i

)
log

[ ∑

j∈A(i)

exp
(V (j, t+ τij)− c dij

σ

)]
for all i and t ≤ T , (1.8)

and V (i, t) = 0 for all i and t > T . The relocation probabilities are given by

qtij =





exp

([
V (j,t+τij)−c dij

]
/σ

)

∑
l∈A(i) exp

([
V (l,t+τil)−c dil

]
/σ

) for j ∈ A(i),

0 otherwise.

(1.9)

Proposition 1 applies to any matching model. The first term on the right-hand side of

Equation (1.8) captures the expected value of picking up a customer and the second term

captures the expected value of the best relocation decision, where λti/m
t
i is the probability

of picking up a customer. The value of picking up a customer is the expected fare of the

ride plus the expected value function at the destination of the ride. Note that the arguments

in the exponential function are the scaled values of the value function at the destination of

the ride minus the travel cost. For an analysis of strategic relocation of the drivers that is
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similar to ours, see Lagos [149] and Buchholz [56].

Next, we define the mean field equilibrium, and Theorem 1 establishes its existence; see

Appendix A.9 for its proof.

Definition 1. Given the problem primitives M , M , Ni, c, Fij, Pij, τij, dij, Sij, A
t
ij, α, β,

k, σ, and m1
i , the solution

(
λti,m

t
i,m

t
ij , f

t
ij , q

t
ij , V (i, t)

)
to Equations (1.3)-(1.9) is called the

mean field equilibrium.

Theorem 1. Given the problem primitives M , M , Ni, c, Fij, Pij, τij, dij, Sij, A
t
ij, α, β,

k, σ, and m1
i , there exists a mean field equilibrium.

1.4 Data

Our data set is the NYC yellow taxi trip record data spanning four years from January 2010

to December 2013.18 In this time-span, NYC yellow taxis offered an average of 477,497 rides

per day (174.3 Million per year). NYC yellow taxis are only available through street hails.19

For each ride, the data set specifies the time-stamp (date and time up to the second) and

location (longitude and latitude) of the pick-up/drop-off and itemized fares (fares, taxes,

tolls, and tips) paid by the customers. The data set also includes identifiers for the taxi

drivers that offered each ride. Therefore, we observe the status (full/empty) of the taxis at

all times, the times at which taxis pick up or drop off customers, and the destinations of the

customers. Note that we only observe the location of the taxis when they pick up or drop

off a customer.

A preliminary look at the data indicates that weekdays and weekends as well as day and

night shifts exhibit significant spatial and inter-temporal variations in the ride traffic. Figure

1.2 depicts the number of pick-ups per minute in the entire city on an average day. The

number of pick-ups fluctuates between a minimum of 66 customers per minute (around 5:00

18. NYC taxi trip record data set is released by the NYC Taxi and Limousine Commission (TLC).

19. Prearranged services are offered by For-Hire-Vehicles (FHV).
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AM) and a maximum of 507 customers per minute (around 7:30PM).20 To focus on relatively

busy hours of the day when the ride traffic is relatively stable, in the remainder of this

chapter, we focus on the day shift on weekdays (i.e., 6AM to 4PM). Furthermore, we disregard

trips with a duration more than three hours or a distance longer than a hundred miles. These

instances are a combination of out-of-town trips and inaccurate data entries and account for

less than 0.5% of the trips. Figure 1.3 depicts the average number of pick-ups during the

day shift on a weekday in each month between January 2010 and August 2012. Prices did

not change in this time-span. The dashed line in Figure 1.3, which depicts the regression of

the average number of pick-ups on the month index k as in (1.1), highlights the trend in the

average number pick-ups.
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Figure 1.2: Average number of pick-ups
per minute in NYC. The dashed vertical
lines depict the begining and the end of
the day shift (6AM and 4PM, respectively).
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Figure 1.3: Average number of pick-ups in
NYC during the day shift on a weekday
of each month. The dashed line highlights
the monthly trend.

There is significant spatial variation in the number of pick-ups across the city, with 93.8%

of the rides (during the day shift) originating at Manhattan, 3.5% in the airports, 1.2% in

Brooklyn, 1.4% in Queens, and less than 0.1% of the rides originating in Staten Island and

Bronx. We focus our analysis on the rides taking place between the two airports (JFK and La

Guardia) and parts of Manhattan, Brooklyn, and Queens that have sufficiently high traffic;

see Appendix A.1. This area constitutes 99.4% of the pick-ups, 98.5% of the drop-offs, and

20. A similar analysis can be carried out for the night shift.
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97.9% of the pick-up, drop-off pairs in NYC.21 We divide this area into seventy five nodes

and study trip statistics in each of them; see Figure A.3 for the nodes. This node definition

provides sufficient separation between the major hubs of the city. Note that in the definition

of the nodes, both size and density matter. This gives rise to a trade-off between size and

density; for further details on the node definitions, see Appendix A.1. The average number

of pick-ups and drop-offs in each of the seventy five nodes are depicted in Figure 1.4. Half

of the pick-ups belong to the top ten nodes, with the top four nodes constituting a quarter

of all pick-ups.

95% - 100% [10956,18425]
75% - 95% [4685,10956)
50% - 75% [450,4685)
25% - 50% [80,450)
0% - 25% [0,80)

(a) Average number of pick-ups.

95% - 100% [11669,22957]
75% - 95% [3996,11669)
50% - 75% [408,3996)
25% - 50% [124,408)
0% - 25% [0,124)

(b) Average number of drop-offs.

Figure 1.4: Average number of pick-ups and drop-offs during the day shift on weekdays in
each node.

A trip on average is 2.7 miles and 13.2 minutes long. There is considerable spatial

variation in the average trip duration and distance across the city; see Figures A.6-A.7 in

Appendix A.3. Trips originating in Manhattan are the shortest with an average of less

than three miles in most nodes and trips originating in the airports are the longest with an

21. Note that only 97.5% of the trips in the data set have pick-up coordinates that fall within the boundaries
of NYC. Inaccurate pick-up coordinates (zero entry for longitude or latitude) account for 2.0% of the trips
and out-of-town trips account for the remaining 0.5% of the trips.
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average of nine miles in La Guardia and fifteen miles in JFK. Trips originating in Brooklyn

and Queens fall in between with an average of three to five miles.

In summary, our analysis focuses on 217,051,494 taxi rides taken place between 6AM and

4PM on weekdays (excluding federal holidays) from January 2010 to December 2013, with

pick-up and drop-off coordinates in the shaded area in Figure A.3.

1.5 Estimation

This section uses the nodes depicted in Figure A.3 to estimate the primitives of the model;

see Appendix A.4 for a summary of the primitives. The procedure used to construct the

nodes is outlined in Appendix A.1. The estimation is carried out in three steps. First, we

directly estimate the problem primitives τij , dij , Sij , c, Ni, M , and m1
i . Second, given

τij , dij , Sij , c, Ni, M , and m1
i , for each σ, we characterize the mean field equilibrium

(
λti,m

t
i,m

t
ij , f

t
ij , q

t
ij , V (i, t)

)
at each month. The data set provides the sequence of pick-ups

and drop-offs of the taxi drivers. For each σ, we use the equilibrium relocation probabilities

to calculate the likelihood of the observed sequence of pick-ups and drop-offs. Then, we use

maximum likelihood estimation to estimate σ. Third, we use the estimated (potential) de-

mand at the estimated σ to estimate the demand curve parameters, Atij , α, and β. Appendix

A.6 uses five-fold cross validation to examine the performance of our model in capturing the

strategic relocations of the taxi drivers.

1.5.1 Offline Estimation of the Primitives τij, dij, Sij, c, Ni, M , and m1
i

We use the trip duration and distances in the data set to estimate τij and dij . We set

Sij = 1 if nodes i and j share a border or they are connected through a tunnel or bridge.

Since JFK is geographically isolated and it does not share a border with any node, we add an

arc between JFK and all nodes on the eastern border of Queens and Brooklyn. We use the

fuel cost per mile and the depreciation cost per mile to estimate the cost of travel c, in each
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month. The fuel cost can be estimated from the historical gas prices22 and the depreciation

cost can be estimated from the salvage value of the taxis and the miles driven at the time of

salvage.23 Following Farber [87] and Frechette et al. [92], we define a shift of a taxi driver as

a consecutive sequence of trips, where breaks between two trips cannot be longer than five

hours. We use the shifts of the taxis drivers to calculate the number of active taxi drivers

during the day. From 8AM to 4PM, the number of active taxi drivers shows little variation.

Although the number of active taxi drivers between 6AM and 8AM is considerably lower than

the rest of the day shift, for simplicity, we assume that the number of active taxis is fixed

throughout the shift and let M equal to the average (across weekdays) of the maximum

number of active taxi drivers during the day shift. Moreover, we use the distribution of the

first pick-up of the taxis in the first fifteen minutes (average search time of the taxis until

their next pick-up) of the day shift as the initial distribution of cars.

We estimate the number of regions in non-airport nodes as follows: Consider node i.

Regions in node i are defined such that it takes a taxi exactly one period (five minutes) to

explore each region. Therefore, it takes a taxi Ni periods (5×Ni minutes) to search all the

streets in node i. Thus, Ni can be estimated by dividing the average time it takes a taxi

drivers to search all the streets of node i by the length of a period (five minutes). We use

the average traffic speed in each zone and the shape file of NYC streets24 to compute the

average time it takes to explore all the streets in a node; see Table A.1 and Figure A.1 in

Appendix A.1 for the average traffic speeds. At the airports, we set Ni equal to the number

of taxi stands in that airport.25

22. https://www.nyserda.ny.gov/Researchers-and-Policymakers/Energy-Prices/Motor-Gasoline/
Monthly-Average-Motor-Gasoline-Prices.

23. In this calculation, we use the price of the dominant NYC Taxi model (Camry), $24, 000 including
taxes, the average retired taxi salvage value of $3, 000, and the average mileage of the NYC taxis at the time
of retirement, 350, 000; See https://nycitycab.com/Business/cabsforsalelist.aspx.

24. https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b/data.

25. Taxi operation in airports is accurately captured by (1.3b). In each stand, taxis and customers see
each other and matching is perfect. However, taxis and customers in different stands cannot be matched.
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1.5.2 Estimation of the Standard Deviation of Cost Shocks

Identification. We assume that taxi drivers in our dataset relocated rationally based on

the model in Proposition 1. As proved in Proposition 1, taxi drivers relocate to those nodes

for which the difference of their value function and the travel cost is higher with higher

probabilities. However, the impact of the value function at the destination diminishes with

σ. For small values of σ, taxi drivers almost always relocate to the destination with the

highest value function minus travel cost. As σ increases, drivers relocate to destinations with

lower value function minus travel cost with a higher probability, i.e., relocation probabilities

become more uniform. Intuitively, the impact of σ on the relocation probabilities helps us

identify σ.

Estimation. We estimate σ in two steps. First, for each σ, we characterize the equilibrium.

We use the equilibrium relocation probabilities to calculate the likelihood of the sequence of

pick-ups and drop-offs observed in the data set for each feasible σ. We then use maximum

likelihood estimation to estimate σ.

Recall that we index the months with k ∈ {1, . . . , K} and our data covers the months

January 2010 through December 2013, i.e., K = 48. To emphasize the month dependence,

we attach superscript k to various quantities of interest in the remainder of this section.

We estimate λtki , the satisfied demand at node i in period t of month k, and πtkij (F k,P k),

the distribution of the destinations of the customers at node i in period t of month k at

fare structure (F k,P k)26, directly from the data. Given M , Mk, Ni, m
1k
i , ck, F kij , P

k
ij ,

πtkij (F k,P k), and λtki , for each σ, we solve for the mean field equilibrium that satisfies the

Equations (1.4)-(1.9) and λtki ≤ mtk
i .27

26. Between January 2010 and August 2012, during the day shift, the fare of a ride between JFK and
Manhattan was $45 and the fixed portion of the fare and price per mile in the rest of the city were $2.5 and
$2.0, respectively. On September 4th 2012, the fare structure of NYC taxi rides changed. The fare of a ride
between JFK and Manhattan increased to $52 and the price per mile increased to $2.5. No price changes
occurred between September 2012 and December 2013. We do not include Monday September 3rd 2012 in
our analysis.

27. This approach and Definition 1 both characterize the mean field equilibrium. In Definition 1, λti satisfies
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Next, we discuss how to use the equilibrium relocation probabilities and the sequence

of pick-ups and drop-offs observed in the dataset to estimate σ. Let m ∈ {1, . . . ,Mk} and

d ∈ {1, . . . , Dk} index taxis and days, respectively, where Dk denotes the number of non-

holiday weekdays in month k. Let Lm,d,k(σ) denote the likelihood of taxi m having the

set of drop-off and subsequent pick-ups observed in the data on day d of month k that are

not longer than two hours apart; see Appendix A.4 for the calculation of Lm,d,k(σ). In the

dataset, a taxi driver on average searches for 2.5 periods after a drop-off until it picks up his

next customer. Therefore, we omit drop-off and subsequent pick-up tuples that are longer

than two hours apart from the likelihood function because they are likely due to breaks the

drivers may be taking in their shifts. Indeed, the great majority of these occur around noon

and likely correspond to lunch breaks. Such drop-off and pick-up tuples constitute less than

3% of all such tuples.

The likelihood of observing the set of drop-off and subsequent pick-ups (that are not

longer than two hours apart) observed in the data set given σ is

L(σ) =
K∏

k=1

M∏

m=1

Dk∏

d=1

Lm,d,k(σ),

where Lm,d,k(σ) is given in Equation (A.1) of Appendix A.4. Therefore, the maximum

likelihood estimator of σ is the solution to

maximize log
(
L(σ)

)
subject to (1.4) - (1.9), (P1)

given M , Mk, Ni, m
1k
i , ck, F k, P k, πtkij (F k,P k), and λtki (estimated directly from data) for

all i, j, t, k. We solve Equations (1.4)-(1.9) for each month k ∈ {0, . . . , K} and σ using the

nonlinear optimization solver Knitro (Byrd et al. [60]). Then, we compute the likelihood

of each σ and search R+ with a precision of 0.0001 for the solution to Problem (P1). We

equation (1.3) while in this characterization, λti is estimated from the data.
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obtain the maximum likelihood estimate of σ = 1.4048; see Figure A.8 for a graph of log-

likelihood values. To compute its standard error, we use the parametric bootstrap method

(see e.g., Horowitz [127]). We generate 100 simulated datasets with the same size as our

dataset using the estimated σ. We then estimate parameters of the simulated datasets and

compute the standard error. This procedure results in the standard error of 0.001, a 95%

confidence interval of (1.4015, 1.4056). We also conduct a Monte Carlo experiment to show

that Problem (P1) can recover the true σ; see Appendix A.5 for details.

1.5.3 Estimation of Demand Curve Parameters

In this section, we use the mean field equilibrium at the estimated σ to estimate the demand

curve parameters Atij , α, and β. Recall that demand model parameters are assumed to

be the same in all non-holiday weekdays of the same month. Equation (1.3b) is monotone

in Λti for all mt
i. Therefore, given the satisfied demand λti and the mass of empty taxis

mt
i, there exists a unique estimate for (potential) demand Λtkij (F k, P k) that satisfies (1.3b).

Using this estimate, we set28 Λtkij (F k, P k) = πtkij (F k, P k) Λtki (F k, P k) for all i, j, t, k. This

gives the demand for rides from node i to node j in period t of a day in month k. Recall

that πtkij (F k, P k) has been estimated directly from the data. Since there are Dk non-holiday

weekdays in month k, the (realized) total demand for rides from node i to node j in period

t across all non-holiday weekdays in month k is Y tkij = MDkΛtkij (F k, P k) customers.29

Similarly, given the demand curve parameters Atij , α, and β, by equation (1.1), the expected

total demand for the same rides is MDkAtij
[
F kij + P kijdij

]α
exp(βk) customers.

We use a negative binomial (NB-2) model30 to estimate the primitives of the demand

28. Since customers who hailed a taxi are randomly chosen from all customers who needed a ride, the
distribution of the destination of the served customers coincides with the distribution of the destinations of
all customers.

29. The term Λtk
ij (F k, P k) is the (normalized) mean field demand. By multiplying Λtk

ij (F k, P k) by the average

number of active taxis M and the number of weekdays Dk in month k, we obtain the expected total number
of customers who wanted a ride from node i to node j in period t on a weekday in month k.

30. A random variable Y is said to have a negative binomial distribution with parameters (µ, δ) if Y ∼
Poisson(λu), where u ∼ Γ(δ, 1/δ). In other words, a negative binomial model can be thought of as a Poisson
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model. To be more specific, we assume

Y tkij ∼ Negative Binomial
(
MDkAtij

[
F kij + P kijdij

]α
exp(βk), δ

)
(1.10)

and use maximum likelihood estimation to estimate its parameters. The parameter δ cap-

tures the over-dispersion of the estimated demands. As δ goes to zero, the negative binomial

model approaches the Poisson model. For similar treatments and further details on negative

binomial regression, see Hilbe [126], Hardin et al. [109, Chapter 13], and Lawless [153]. We

obtain a price-elasticity estimate of α = −0.4735 with standard error 0.0033, a monthly

trend estimate of β = 0.0024 with standard error 1.7E-5 (equivalent to an annual trend of

2.92% with standard error 0.02%)31, and a dispersion parameter estimate of δ = 0.1082 with

standard error 1.5E-4. The estimated demand across the forty eight months do not show

drastic changes. For brevity, we focus on September 2012 and provide an overview of the

demand estimates in this month. The estimated potential and satisfied demand during the

day in the entire city and Brooklyn are depicted in Figure 1.5. As discussed in Section 1.3,

the efficiency of matching is positively correlated with the density of supply and demand.

Therefore, in Manhattan, where the density of supply and demand is high (see Figure 1.6),

the majority of customers are served. In Brooklyn, however, due to high friction as a re-

sult of low density of supply and demand, only a small fraction of customers are served.

Increasing matching efficiency could add substantial value, particularly in locations with

low density of supply/demand, by increasing the number of served customers. Furthermore,

better matching could impact the power of spatial prices; see Section 1.6.2 for further details.

model with gamma heteregeneity, where the gamma noise has a mean of one. As a result, negative binomial
is commonly referred to as the Poisson-Gamma mixture. In a negative binomial model, the ratio of variance
to mean is 1 + δµ. As δ goes to zero, the gamma noise vanishes and the negative binomial model approaches
the underlying Poisson model. We use the negative binomial model as opposed to the commonly used Poisson
model because it can capture the over-dispersion (variance being greater than the mean) observed in the
estimated demand.

31. Note that the trend of potential demand is not equal to the trend of satisfied demand; see Figure 1.3.
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Figure 1.5: Estimated potential and satisfied demand (per period) during the day shift.
The solid lines correspond to potential demand and the dashed lines correspond to satisfied
demand.

1.6 Counterfactual Analysis

Using the model primitives estimated in Section 1.5, this section studies the impact of spatial

pricing of taxi rides and removing the (local) search friction on the taxi market in NYC.

Following Section 1.5, we focus our analysis on September 2012 and study spatial prices

that maximize the consumer surplus; see Appendix A.8 for a similar analysis that focuses on

maximizing drivers’ profit. In what follows, we denote the fixed portion of the fare and the

price per mile that were used in September 2012 by F ij and P ij , respectively, and refer to

them as the base prices. We assume that Fij = ηijF ij and Pij = ηijP ij , where ηij denotes

the ratio of the price/fare to the base price/fare for rides from node i to node j. We refer to

ηij as the price multiplier for rides from node i to node j. We assume this particular form

because of computational simplicity. Moreover, for the case of origin-destination pricing,

this form is without loss of generality.
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Figure 1.6: Average number of customers and empty taxis (in a five-minute period) during
the day shift on weekdays in September 2012 (these are obtained through estimation; see
Problem (P1) in Section 1.5).

1.6.1 Spatial Pricing

Since the demand curve introduced in Equation (1.1) has a constant price-elasticity and

demand is (locally) inelastic,32 consumer surplus under this demand model is infinite. We

use a truncation approach to tackle this issue (for a similar treatment, see Cohen et al.

[76] and Buchholz [56]). We truncate the demand at some price multiplier η̂ > 1. This is

equivalent to assuming that no customer is willing to pay more than η̂ times the base fare

for a ride. We refer to η̂ as the maximum price multiplier. The next proposition derives the

consumer surplus; see Appendix A.9 for its proof.

Proposition 2. Consumer surplus resulting from the rides from node i to node j in period

t under price multiplier ηij is equal to

CS tij(ηij) =
λti

Λti(F, P )
Λtij(F, P )

[
F ij + P ijdij

] [η̂(α+1) − ηij(α+1)
]

1 + α
. (1.11)

32. The absolute value of the price-elasticity of rides around the base prices is less than one.
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We start by studying pricing based on the origin of the rides. Let V (i, t) denote the

value function of the taxi drivers under the base prices (P ij , F ij) and consider the following

pricing formulation.

maximize
ηi

n∑

i=1

n∑

j=1

T∑

t=1

CStij(ηi) (P2)

subject to (1.3) - (1.9) and

|ηi − 1| ≤ η (P2a)

(Fij , Pij) = ηi (P ij , P ij) (P2b)

n∑

i=1

m1
iV (i, 0) ≥

n∑

i=1

m1
iV (i, 0). (P2c)

We call the solution {ηi}i∈V to Problem (P2) the optimal origin-only price multipliers (or

equivalently the optimal origin-only prices) with a maximum price variation of η. Note that

in Problem (P2), price multipliers only depend on the origin of the ride. Constraints (1.3)-

(1.9) ensure that equilibrium conditions are satisfied. Constraints (P2a)-(P2b) ensure that

prices do not deviate from the base prices by more than a factor of η. Constraint (P2c)

ensures that the drivers’ profit is not hurt by the new pricing scheme (i.e., the average value

function of the drivers in the begining of the day shift under the new pricing scheme is

greater than or equal to the average value function of the taxi drivers in the begining of the

day shift under the base prices.).

The increase in consumer surplus for four plausible values of maximum price multiplier

η̂ is presented in Table 1.2. As shown in Table 1.2, using an origin-only pricing scheme with

a maximum price variation of 20% results in an increase in consumer surplus of $94, 000 -

$325, 000 on every day shift on weekdays. This is equivalent to an increase in consumer

surplus of $0.44 - $1.53 per ride (4.9% - 17.0% of the average fare paid by the customers).

Although the increase in consumer surplus is sensitive to maximum price multiplier η̂ (as

shown in Table 1.2), the pattern of prices is not sensitive to η̂; see Figure A.11 in Section
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A.7.3. Therefore, in the remainder of this section we use maximum price multiplier η̂ = 5,

which is equivalent to assuming that for a ride of $9 (average fare before tax and tips in

September 2012), no customer is willing to pay more than $45. This is a conservative choice

for η̂ considering its impact on consumer surplus (see Table 1.2).33

Table 1.2: Consumer surplus under origin-only optimal spatial prices, with maximum price
variation η = 0.2.

Maximum price multiplier (η̂) 5 10 20 50

Total CS under the base prices $4.8M $8.4M $13.7M $24.4M
Total increase in CS $94K $130K $196K $325K
Increase in CS per ride $0.44 $0.61 $0.90 $1.53
Increase in CS in terms of average fare 4.9% 6.8% 10.0% 17.0%

Table 1.3 presents the increase in consumer surplus, number of served customers, and

the miles traveled by customers for different maximum price variations, η. We observe

that larger values of η results in larger increases in consumer surplus, as one would expect.

However, the returns to the change in η are diminishing. The reason for the diminishing

returns is illustrated in Figure 1.7. As the maximum price variation η increases, fewer nodes

require a price variation higher than η. Table 1.3 indicates that the optimal origin-only

pricing scheme (for maximizing consumer surplus) results in a 2.6% increase in the number

of served customers and a 3.9% increase in the miles traveled by customers for a maximum

price variation of η = 0.5.34

Given the decomposition of the consumer surplus provided in Proposition 2, we expect

the average fraction of customers served, demand, and the fare to impact the optimal price

multiplier of a node. In what follows, we study the impact of these parameters on the optimal

origin-only price multipliers.

The price multiplier of rides from node i to node j impacts consumer surplus only through

33. In a similar setting, Cohen et al. [76, Section 4] makes the conservative assumption that no customer
is willing to pay more than 4.9 times the base prices for an Uber ride.

34. By using the total number of served customers or miles traveled by customers as objectives in Problem
(P2), we can find spatial prices that result in larger increases in these metrics. However, such spatial prices
result in a lower consumer surplus.
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Table 1.3: Impact of maximum price variation on various performance metrics (maximum
price multiplier η̂ = 5).

Maximum price variation (η) 10% 20% 30% 40% 50%
Consumer surplus

Total increase $62K $94K $113K $126K $135K
Per ride $0.29 $0.44 $0.53 $0.59 $0.63
In terms of average fare 3.3% 4.9% 5.9% 6.6% 7.0%

Number of served customers 1.1% 1.7% 2.1% 2.4% 2.6%
Miles traveled by customers 1.8% 2.7% 3.2% 3.6% 3.9%
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(b) Maximum price variation η = 0.5

Figure 1.7: Optimal origin-only price multipliers for different maximum price variations η
(maximum price multiplier η̂ = 5).

the fraction of customers served, λti/Λ
t
i(F, P ), and the term

(
η̂(α+1) − η(α+1)

)/(
1 + α

)
. As

higher prices attract more drivers, they increase the fraction of customers served. The term
(
η̂(α+1)−η(α+1)

)/(
1+α

)
, however, decreases in price. Depending on which term dominates,

the consumer surplus of a node could be increasing or decreasing in its price multiplier.

In well-served nodes, a high fraction of customers are served and the impact of price

multiplier on the fraction of customers served is minimal. Therefore, in such nodes, the last

term dominates and the consumer surplus is decreasing in the price multiplier. In contrast,

in under-served nodes, a lower fraction of customers are served and the impact of price

multiplier on the fraction of customers served is substantial. In under-served nodes, the first
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term dominates and the consumer surplus is locally increasing in the price multiplier. In

such nodes, both customers and drivers benefit from higher prices. Therefore, the optimal

price multiplier of these nodes is expected to be greater than one.

Nodes in which less than 80% of the customers are served (under the base prices) are

marked with a star in Figure 1.8. We refer to these as under-served nodes. These nodes

belong to upper Manhattan, Brooklyn and Queens, in which the supply of taxis is low; see

Figure 1.6 for the map of the average supply and demand under the base prices. These nodes

have a price multiplier greater than one. In response to a increase in prices in these nodes,

more taxis relocate to them, which increases the supply of rides at these nodes; see Figure

1.8a. As a result of this increase in supply, a higher fraction of customers are served; see

Figure 1.8b for the change in the fraction of customers served. This indicates that in these

nodes the first term on the right hand-side of Equation (1.11) is dominant.

The fact that prices increase in less affluent neighborhoods in the city (upper Manhattan,

Brooklyn, and Queens) highlights the necessity to use other mechanisms in addition to

spatial prices (such as facilitating matching between customers and taxis through mobile

applications) or subsidizing these neighborhoods. This issue is further explored in Section

1.6.2.

We refer to nodes in which at least 80% of the customers are served under the base prices

as well-served nodes. For such nodes, the terms Λtij(F, P ) and F ij + P ijdij are the critical

drivers of consumer surplus. To see this, consider the potential revenue that can be collected

at a node,
∑T
t=1

∑n
j=1 Λtij(F, P )

[
F ij + P ijdij

]
. Note that both demand and fare impact

the potential revenue of a node. In the majority of the well-served nodes with high potential

revenue prices decrease while in the majority of well-served nodes with low potential revenue

prices increase; see Figure 1.9.

Next, we study origin-destination pricing; see Appendix A.7.1 for its mathematical for-

mulation. Similar to origin-only pricing, we use maximum price variation η = 0.5 and

maximum price multiplier η̂ = 5; see Appendix A.7.2 for further details. Origin-destination
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(a) Average number of empty taxis.
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Figure 1.8: Percentage change in the average number of empty taxis and the fraction of served
customers under the optimal origin-only prices compared to the base prices (maximum price
variation η = 0.5 and maximum price multiplier η̂ = 5).
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Figure 1.9: Well-served nodes with high
(star) and low (diamond) potential rev-
enue. Prices decrease in 88% of the nodes
with high potential revenue and increase in
92% of the nodes with low potential rev-
enue.
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Figure 1.10: Average price multipliers
for rides originating at each node in the
city under origin-destination spatial pric-
ing (the average is calculated with respect
to the demand from the node to each des-
tination).

prices result in a $0.79 increase in consumer surplus per ride, which is 24.4% higher than the

increase in consumer surplus from origin-only pricing. They also results in a 3.2% increase

in the number of served customers and an 7.4% increase in the miles traveled by customers.
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The average optimal origin-destination price multipliers for the maximum price variation

of 50% are depicted in Figure 1.10. Comparing Figures 1.7b and 1.10, we observe that the

pattern of the average optimal origin-destination prices looks similar to the pattern of optimal

origin-only prices. In the (majority of) under-served nodes, the same price is used for all

destinations. In these nodes, the benefit of attracting more drivers by using higher average

prices outweighs the benefit of price discrimination based on destinations. In the well-served

nodes, however, price discrimination based on destinations is valuable. Figure 1.11 provides

two examples of how destinations could impact the prices. Let us start with the node marked

by a star in Figure 1.11a. Under origin-only pricing (see Figure 1.7b), the price of all rides

from this node increase by 39%. However, under origin-destination pricing, the price of rides

from this node to (parts of) Brooklyn are reduced. This reduction in prices increases the

demand for rides to Brooklyn, which in turn, helps further increase the average number of the

empty taxis in this region. That is, this increases the supply of taxis in Brooklyn for future

rides. Since only 15% of the customers are headed to these destinations, this pricing pattern

maintains (almost) the same average price as the origin-only pricing scheme. The pattern

of reducing the price of rides headed to (some) under-served neighborhoods while increasing

the price of rides headed to (some) well-served nodes is observed frequently. Figure 1.11b

depicts another example of this pattern. Under origin-only pricing (see Figure 1.7b), the

price of all rides from this node decrease by 3% (almost no change in prices). Under origin-

destination pricing, the price of rides to midtown and parts of downtown increase while the

price of all other rides decrease. This decreases the future supply in midtown and parts of

downtown and increases the future supply in the rest of the city, particularly in Brooklyn

and Queens. The price multiplier of the rides originating at this node range between 0.5

and 1.35 (a substantial change in prices). These examples exhibit how using destinations

alongside origins in the pricing scheme allows us to maintain an average price similar to the

origin-only pricing scheme while adjusting supply and demand in a more refined manner.
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(a) A node in downtown Manhattan.
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(b) A node in upper east side.

Figure 1.11: Optimal price multipliers under origin-destination pricing for the rides origi-
nating at the node denoted by a star (maximum price variation η = 0.5 and maximum price
multiplier η̂ = 5).

1.6.2 Removing Local Search Friction

Mobile application (such as Arro and Curb) can remove the local search friction by matching

customers and taxi drivers in each neighborhood. The impact of such applications can be

modeled by replacing the matching model (1.3b) with that in (1.3a).

Table 1.4 shows removing the local search friction alone results in a $268, 000 increase

in consumer surplus in every day shift, a 4.3% increase in the number of served customers,

and an 6.2% increase in customer miles. It also compares the improvement with those from

spatial pricing. Removing the (local) search friction is on par with spatial pricing in terms

of the number of served customers and customer miles. However, its impact on consumer

surplus is considerably higher. Furthermore, although spatial prices introduced in Section

1.6.1 have no impact on drivers’ profit by design, since removing the local search friction

increases the total number of served customers without changing the prices, drivers’ profit

increase by $48, 000 in every day shift when search friction is removed.

For brevity, we focus on origin-only pricing in the remainder of this section. Figure 1.12

depicts the change in consumer surplus from origin-only spatial pricing and removing the
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(local) search friction alone. The majority of the change in consumer surplus from spatial

pricing is due to nodes with high demand and average fare, such as midtown Manhattan

and the airports. Contrary to spatial pricing, when the local search friction is removed,

well-served nodes (the majority of the nodes in Manhattan and the airports) do not benefit

much, whereas under-served nodes enjoy the highest increase in consumer surplus. Under-

served nodes benefit more from removing the (local) search friction than form spatial prices.

In such nodes, matching is the key. In contrast, well-served nodes benefit more from spatial

pricing than from removing the local search friction. In such nodes, spatial pricing is the

key. This suggest that the impact of spatial prices and removing local search friction are

complementary to each other. Therefore, we study a hybrid mechanism.
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(a) Origin spatial pricing (η = 0.5).
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(b) Removing the (local) search friction.

Figure 1.12: Change in consumer surplus from spatial pricing and removing the search
friction (maximum price multiplier η̂ = 5).

To be specific, the hybrid mechanism removes (local) search friction in under-served

nodes and uses spatial prices in well-served nodes; see Appendix A.7.1 for its mathematical

formulation. Table 1.4 provides a comparison of the impact of spatial prices, removing the

(local) search friction, and the hybrid mechanism on consumer surplus and drivers’ profits.

The hybrid mechanism with maximum price variation η = 0.2 captures 99.4% of the increase

in consumer surplus from a hybrid mechanism with η = 0.5. This mechanism needs only a
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little price variation, because the optimal price multipliers of the well-served nodes are close

to one (see Figure 1.7).

Table 1.4: Comparison between spatial prices, removing local search friction, and the hybrid
mechanism (η = 0.5).

Origin-Only

Pricing

Origin-

Destination
Pricing

Removing

Local Search
Friction

Hybrid

Mechanism

Proposed

Mechanism

Citywide Origin-

Only Pricing &

Friction Removal

Consumer Surplus
Total increase $135K $168K $268K $322K $417K $433K

well-served nodes $79K $109K $33K $82K $182K $186
under-served nodes $56K $59K $235K $240K $235K $247K

Per ride $0.63 $0.79 $1.26 $1.52 $1.96 $2.04
In terms of average fare 7.0% 8.5% 13.9% 16.7% 21.5% 22.4%

Number of served customers 2.6% 3.2% 4.3% 5.7% 8.7% 8.9%
Miles traveled by customers 3.9% 7.4% 6.2% 8.1% 11.7% 12.0%
Drivers’ Profit

Total increase $0 $0 $48K $0 $0 $0
Per ride $0 $0 $0.22 $0 $0 $0
In terms of average fare 0% 0% 2.5% 0% 0% 0%

Next, we study citywide spatial pricing and friction removal. The optimal price multipli-

ers of this mechanism are the solution to Problem (P2), where (1.3b) is replaced with (1.3a).

As shown in Table 1.4, using citywide spatial pricing and friction removal generates $433, 000

of consumer surplus. This is equivalent to a 34.4% improvement over the hybrid mechanism.

The majority of this improvement is in well-served nodes. The optimal price multipliers

under this mechanism are depicted in Figure 1.13. Although the pattern of optimal prices

in well-served nodes (under the base prices) is similar to the pattern of optimal prices in

presence of friction (see Figure 1.7a), once (local) search friction is removed in well-served

nodes, it is optimal to use more aggressive price variations in these nodes (i.e., we observe a

larger deviation from the base-prices, both in nodes that have a price multiplier greater than

one and those that have a price multiplier less than one). This implies that in the absence

of friction, spatial prices are more powerful.

Policy makers may prefer to avoid price discrimination in less affluent neighborhoods of

the city. As such, we propose a mechanism in which friction is removed in the entire city
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while spatial pricing is used only in well-served neighborhoods; see Appendix A.7.1 for its

mathematical formulation. The proposed mechanism increases consumer surplus by $1.96

per ride (96.3% of the consumer surplus generated by citywide spatial pricing and friction

removal), serves 8.7% more customers, and increases customer miles by 11.7%.
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Figure 1.13: Optimal price multipliers under citywide origin-only pricing and friction removal
(maximum price variation η = 0.5 and maximum price multiplier η̂ = 5).

1.7 Concluding Remarks

We study the impact of spatial pricing on the taxi market in New York City. We use a mean

field model, in which taxi drivers strategically search for customers in different neighborhoods

across the city taking into account the spatial and temporal distribution of the supply and

demand as well as the prices across the city. Our analysis reveals that spatial prices that

only use origin information can increase consumer surplus by $0.63 per ride, 7.0% of the

average fare, and serve 2.6% more customers without hurting the drivers’ profit. Similarly,

spatial prices that utilize both origin and destination information can increase consumer

surplus by $0.79 per ride, 8.5% of the average fare, and serve 3.2% more customers. The

optimal spatial prices increase in the under-served areas (e.g., Brooklyn, Queens, and upper

Manhattan) whereas they decrease in some well-served areas (e.g., midtown), encouraging

38



the taxis to relocate accordingly, and hence, redistributing supply so as to increase consumer

welfare.

We find that removing the local spatial search friction alone can increase consumer sur-

plus by $1.26 per ride, 13.9% of the average fare, and serve 4.3% more customers while

simultaneously increasing drivers’ profit by $0.22 per ride. Removing the local search fric-

tion primarily impacts the under-served neighborhoods, whereas spatial prices primarily

impact the well-served neighborhoods. This underscores the value of a hybrid mechanism.

We propose a mechanism in which (local) search is eliminated in all neighborhoods while spa-

tial pricing is only used in well-served neighborhoods. This mechanism increases consumer

surplus by 21.5% of the average fare and serves 8.7% more customers, while avoiding price

discrimination in less affluent neighborhoods of the city. The proposed mechanism achieves

96.3% of the benefits of a citywide spatial pricing and friction removal mechanism.

Our analysis has some limitations. First, a social planner might be most concerned with

the impact of spatial pricing on the customer that is hurt by it the most. We limit the

worst case impact of spatial pricing by introducing a maximum price constraint. Moreover,

although we show that both customers and taxi drivers benefit from higher prices in the

under-served areas in the presence of search friction, we do not study the implications of

this phenomena fully. This phenomena leads to interesting work on subsidies and voucher

mechanisms that is beyond the scope of our work. However, our study of the hybrid mech-

anisms is motivated by this concern. Lastly, this dissertation uses the NYC taxi dataset

from an era, 2010-2013, in which taxi substitutes were limited.35 Future work in this area is

needed to study the impact of spatial pricing on customers and taxi drivers in the presence

of competition.

35. Ride-sharing platforms and street hail liveries (green taxis) had less than 5% market share in May
2014, five months after the period this dissertation studies ends; see TLC [2] and Schneider [186].
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CHAPTER 2

DYNAMIC DISPATCH AND CENTRALIZED RELOCATION

OF CARS IN RIDE-HAILING PLATFORMS

2.1 Introduction

This chapter studies a ride-hailing platform that offers on-demand transportation services.

A major operational concern of the ride-hailing platform is to match cars and customers.

This is challenging because customers arrive randomly over time at various areas of the city,

the distribution of cars across the city evolves randomly over time, the geography of the city

imposes constraints on the matching of cars and customers, and the value generated by a

match can depend on features of both the car and the customer involved. Motivated by this

operational concern, this chapter considers a ride-hailing platform in steady state that seeks

to maximize its profit by making dynamic dispatch and centralized relocation decisions. To

be more specific, we study a platform that dynamically decides the following: First, which

car, if any, to dispatch to each arriving customer. Second, which car, if any, to relocate from

its current area to another area. The joint consideration of dispatch and relocation decisions

makes the ride-hailing platform more responsive to the variability in the demand process

and better equipped to tackle any inherent asymmetries in the system. For example, merely

considering dispatch decisions can result in an undesirably high demand dropping probability

independent of the number of cars due to possible asymmetries in demand; see e.g., Figure

2.12 in Section 2.9. Throughout the chapter, we apply our model to study the case of New

York City (NYC) using the NYC yellow taxi dataset; see Chapter 1 for a description and

empirical analysis of the NYC taxi market. Section 2.9 describes our results for the NYC

application.

In determining the joint dynamic dispatch and relocation policy, the platform takes into

account the distribution of cars, the demand patterns, the uncertainty of the demand, the set

of available dispatch and relocation activities, the values of different dispatch activities, and
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the costs of different relocation activities. We divide the city into disjoint areas and classify

the cars into car classes based on their current area as well as other relevant information such

as their size and luxury status. Similarly, we classify the customers into classes based on

their pickup area as well as other relevant information such as the list of preferred car sizes

and luxury status. In the NYC application, we divide the city into nine areas as depicted in

Figure 2.1 and classify the cars and customers based on their location, i.e., we consider nine

car classes and nine customer classes. Also, we assume the platform can dispatch cars to pick

up customers who are less than fifteen minutes away. This corresponds to nineteen dispatch

activities: nine local dispatch activities in which cars are dispatched to pick up the next

customer in the same area, and ten non-local dispatch activities in which cars are dispatched

to pick up the next customer in another area. The non-local dispatch activities are depicted

with arrows in Figure 2.1; an arrow from area i to area k depicts the activity of dispatching

a car from area i to pick up the next customer in area k. For concreteness, we assume the

platform in the NYC application keeps a quarter of the fare paid by the customers1 and

incurs a dispatch cost of twenty cents per mile.2 We assume the platform can also relocate

cars from any area to any other area for a fee. This corresponds to seventy two relocation

activities. For visual clarity, the relocation activities are not depicted in Figure 2.1. For

concreteness, we assume the platform in the NYC application incurs a one dollar and twenty

five cents per mile relocation cost for relocating each car.3

We assume cars move between areas instantaneously; see Banerjee et al. [40], Kanoria

and Qian [136], and Besbes et al. [50] for similar assumptions. This modeling assumption

allows us to obtain a tractable formulation by avoiding a control problem whose dimension

grows quadratically with the number of areas in the city; see Alwan and Ata [15] for further

details. The solution to our formulation provides structural insights into the dynamic control

1. This assumption is motivated by Uber’s practice of collecting 25% of the fares paid by customers as a
service fee; for further details, see https://www.uber.com/gh/en/drive/basics/tracking-your-earnings.

2. The dispatch cost is solely used in the NYC application and the simulation study in Section 2.9.

3. This relocation cost is one half of the price per mile for NYC yellow taxis.
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Figure 2.1: A map of NYC and the nine areas considered. The arrows represent the non-
local dispatch activities. The local dispatch activities are not depicted for visual clarity. An
arrow from area i to area k represents the activity of dispatching a car in area i to pick up
the next customer in area k.

of ride-hailing platforms and its prescribed control policy performs well in the presence of

non-zero travel times as we illustrate through a simulation study in Section 2.9.

We model the ride-hailing platform as a closed stochastic processing network as described

in Harrison [114]. A stochastic processing network has three basic elements: jobs, servers,

and activities. In our setting, jobs correspond to cars (job classes correspond to car classes),

servers correspond to customer classes, and activities correspond to either the dispatch or

the centralized relocation of cars. Each job class has a dedicated buffer, in which the jobs of

this class are stored. In the context of the stochastic processing network, a dispatch activity

corresponds to a server processing a job, followed by the job probabilistically transitioning

into another job class. Dropping demand corresponds to idling a server. Similarly, a reloca-

tion activity corresponds to moving a job from one buffer to another. No server is involved

in this activity.

The closed stochastic processing network model of the NYC application is depicted in

Figure 2.2. The customers arriving at each of the nine areas in the ride-hailing system are

modeled as the nine servers. There is a buffer corresponding to each area, and the cars

waiting in an area are modeled as the jobs waiting in the corresponding buffer. The jobs
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Figure 2.2: The closed stochastic processing network model of the NYC application and the
numbering of the dispatch activities.

waiting in each buffer constitute a job class. There are nine job classes in total. The activity

of dispatching a car waiting in an area to pick up the next customer arriving in another

area is modeled as the activity of the server corresponding to the customer’s area serving

the buffer corresponding to the car’s area. The nineteen dispatch activities are depicted

as arrows in Figure 2.2. An arrow from buffer i to server k depicts the dispatch activity of

serving buffer i with server k. We number the dispatch activities as shown in Figure 2.2. The

activities are numbered in a manner consistent with the numbering of basic and non-basic

activities introduced in Section 2.4. The activity of relocating a car from one area to another

is modeled as the activity of moving a job from one buffer to the other. For visual clarity,

the relocation activities are not depicted in Figure 2.2; see Table B.1 in Appendix B.1.2 for

a list of the relocation activities.

In the absence of randomness, a linear program called the static planning problem can

be used to solve for the optimal control policy; see Figure 2.3 for the optimal solution to the

static planning problem of the NYC application. This optimal solution partitions the set of

activities into two: basic (or efficient) activities and non-basic (or inefficient) activities. The

basic activities are used under the optimal solution, whereas the non-basic activities are not.

A key assumption of our work is that the optimal solution to the static planning problem

perfectly matches the supply and demand in the absence of randomness. In other words, the

value generated by dispatch activities, the relocation costs, and the demand flow are such that

it is worth serving the entire demand in the absence of randomness. This assumption holds for
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the NYC application and it facilitates the formulation of an approximating Brownian control

problem that is far more tractable than the stochastic processing network model. Under

uncertainty, however, a stochastic mismatch between supply and demand arises. Because

the solution to the static planning problem cannot address this stochastic mismatch, it is

not optimal in that case. The approximating Brownian control problem seeks to find the

deviations from the solution to the static planning problem that provide the best match

between the supply and demand under uncertainty.

The optimal solution to the static planning problem helps the platform pool the demand

of different customer classes using the basic dispatch and relocation activities. In the context

of the stochastic processing network, this corresponds to pooling servers or resource pooling.

The NYC example has three such pools; see Figure 2.4. The four areas of Manhattan

(downtown Manhattan, midtown Manhattan, central park area, and upper Manhattan) and

southern Brooklyn constitute the first pool, northern Brooklyn is the second pool, and

Queens, La Guardia airport, and JFK airport constitute the third pool. The pooling leads

to a workload formulation that is equivalent to the Brownian control problem, but has

a significantly lower dimension. Due to the dimension reduction, it suffices for purposes

of optimal control to keep track of only the total number of cars that can be served by

each resource pool using basic activities. The equivalent workload formulation is a singular

stochastic control problem. Although the dimension reduction significantly simplifies the

problem, multidimensional singular control problems are not analytically tractable in general.

However, we are able to solve this problem numerically for the NYC example. To do so,

we extend the computational method of Kumar and Muthuraman [145] to control problems

with state space constraints and arbitrary number of oblique pushing directions. This could

be of interest in its own right.

Interpreting the solution to the equivalent workload formulation in the context of the

stochastic processing network model of the ride-hailing problem leads to a simple, intuitively

appealing, and easily implementable policy: When there are sufficiently many cars to meet
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the demand in each pool using basic activities, that is, when the workload is balanced, the

policy uses the optimal solution to the static planning problem. That is, it uses the basic

dispatch and relocation activities at rates prescribed by the static planning problem. When

there are not sufficiently many cars to meet the demand in a pool using basic activities,

that is, when the workload is sufficiently imbalanced, the platform intervenes to balance

the workload. The interventions are in the form of dropping demand and using a non-basic

dispatch or relocation activity. For the NYC application, they are dropping demand and

using non-basic dispatch activities; see Figure 2.8c and Table 2.1 for a list of the interventions

and when they are undertaken. For example, when no cars are in pool 2 (northern Brooklyn),

depending on the distribution of cars in the other pools, the platform makes one of the

following interventions: When a higher fraction of cars are in pool 3 (Queens, La Guardia,

and JFK), cars from Queens are dispatched to pick up the customers in pool 2. However,

when a lower fraction of cars are in pool 3, customers in pool 2 are dropped.

This work builds on and extends the existing literature and makes the following con-

tributions. First, it studies the joint dynamic dispatch and centralized relocation of cars

in ride-hailing platforms, thereby extending the literature that has focused on either the

dispatch or the relocation control of ride-hailing platforms. Second, it contributes to the

modeling and analysis of the ride-hailing platforms by modeling the platform as a closed

stochastic processing network, which we study in the heavy traffic asymptotic regime and

arrive at a far more tractable formulation. Third, it derives a simple and intuitive policy

that is verifiably good for the NYC application. To be specific, we show through a simula-

tion study for NYC that when the supply of cars is nearly adequate, our proposed policy

outperforms the closest-driver policy, the MaxWeight policy, and the mirror backpressure

policy. It also provides the following structural insights from the derived policy: The plat-

form can pool the demand of different customer classes and the information on the total

number of cars in each pool is sufficient to dynamically control the platform. Moreover,

only when the distribution of cars is (sufficiently) imbalanced, e.g., there are not sufficiently
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many cars to meet the demand in a pool using basic activities, the platform deviates from its

static control policy to drop demand or to engage in a non-basic dispatch or relocation activ-

ity. Furthermore, the deviations from the static control policy cannot be determined solely

based on the local information; that is, global information, such as the demand distribution

and the distribution of cars across different pools, is required. Fourth, it develops a com-

putationally efficient and numerically robust algorithm to solve multi-dimensional singular

stochastic control problems with state space constraints, which have an arbitrary number of

(oblique) pushing control directions at each face. This algorithm can be of interest beyond

ride-hailing platforms. For example, it could be useful to study other stochastic network

models or portfolio optimization problems that often give rise to multidimensional singular

control problems.

The rest of the chapter is organized as follows. Section 2.2 reviews the literature. Section

2.3 introduces the control problem for the ride-hailing platform. Section 2.4 introduces the

static planning problem and the approximating Brownian control problem. Section 2.5 intro-

duces the reduced Brownian control problem. Section 2.6 introduces the equivalent workload

formulation. Section 2.7 develops a numerical solution method for the equivalent workload

formulation. Section 2.8 interprets the solution to the equivalent workload formulation in

the context of the control problem laid out in Section 2.3. Section 2.9 provides a simula-

tion study to demonstrate the effectiveness of the proposed policy. Section 2.10 concludes.

Appendices B.1-B.3 provide auxiliary technical material.

2.2 Literature Review

This chapter is related to three streams of literature. The first stream studies the control of

ride-hailing platforms. The second stream studies the control of queueing systems. The third

stream studies singular stochastic control problems. The control of ride-hailing systems has

received a great deal of attention. The majority of this literature has focused on pricing,

dispatch, and relocation as the primary levers of control. Banerjee et al. [41] is one of the early
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papers that study the control of ride-hailing platforms. The authors focus on the dynamic

pricing of a single-location ride-hailing platform. They show that although the optimal static

pricing policy is asymptotically optimal in the fluid-scale, dynamic pricing policies are more

robust to fluctuations in the system parameters. Banerjee et al. [39] designs an approximately

optimal pricing policy and shows that the approximation ratio of the pricing policy improves

as the number of cars in each region grows. Despite the negative publicity of surge pricing,

Cachon et al. [61] demonstrates that surge pricing in ride-hailing platforms can make both

the platform and the customers better off. Besbes et al. [50] uses a stylized model on a line,

where drivers make myopic decisions based on the next ride and can relocate instantaneously.

The authors show the pricing problem can be spatially decomposed based on the attraction

regions. The platform can use prices to create regions in which driver congestion is artificially

high in order to motivate drivers to relocate to more profitable regions. Bimpikis et al. [52]

focuses on the spatial pricing of rides in ride-hailing platforms. The authors show that if

the demand pattern is not balanced, spatial pricing is beneficial and optimal prices can be

written in terms of the optimal dual variables corresponding to the flow balance equations.

Under the assumption that prices and compensations can be decoupled, the authors solve

for the optimal prices by focusing on the mass balance equations only.

Selcuk and Gokpinar [188] studies the optimal design of spatial prices and commissions

in ride-hailing platforms. The authors show that a flexible commission policy is a more

effective tool than a flexible pricing policy. In particular, unless the commissions are flexible,

the platform runs into bottlenecks at locations associated with short trip lengths. Garg and

Nazerzadeh [94] studies surge pricing using a dynamic stochastic model. The authors show

that multiplicative surge is not incentive compatible in a dynamic setting. They propose

an incentive-compatible pricing mechanism, which is well-approximated by Uber’s additive

surge pricing mechanism.

Hu et al. [129] studies the impact of surge pricing in response to a demand shock on

customers and drivers in ride-hailing platforms. The authors focus on two pricing policies:
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The skimming policy, where an initial high price is followed by a lower price, and the pen-

etration policy, where a low price is followed by a high price. The authors show that the

penetration policy is superior to the skimming policy in terms of the number of matches and

the social efficiency and can often result in higher platform profits. However, the penetra-

tion policy requires the platform to share demand and supply information with the drivers.

Afèche et al. [11] studies the optimal dynamic pricing and dispatch control of a ride-hailing

platform in the presence of demand shocks and obtains structural insights into the impact

of demand shocks on the optimal prices. For example, if the demand shock is predictable,

the change in prices could start prior to the demand shock. Chen et al. [71] focuses on the

spatial-intertemporal pricing of ride-hailing platforms. The authors propose a static pricing

policy as well as a dynamic node-based and a dynamic arc-based pricing policy. They show

that all three pricing policies are asymptotically optimal in a large market regime, where

the demand and supply are large. However, they have different optimality gaps. Examples

of other papers that use pricing as a lever to control ride-hailing platforms include Chen

and Sheldon [70], Luo and Saigal [158], Ming et al. [166], Castillo et al. [66], Jacob and

Roet-Green [134], Castillo [65], Abhishek et al. [3], Lu et al. [157], Balseiro et al. [38], and

Hu and Zhou [130].

Özkan and Ward [172] studies the dispatch control of ride-haling platforms. The authors

use a non-stationary open queueing network model and propose a dispatch policy based on

the solution to a continuous linear program. They demonstrate that this policy is asymp-

totically optimal in a large market regime where the arrival rates of drivers and customers

are large. Varma et al. [200] studies the joint dispatch and pricing control of ride-hailing

platforms using an open queueing network model. The authors propose a dynamic pricing

policy as well as a modified MaxWeight policy for ride-hailing platforms. They show that

these policies are asymptotically optimal among a broad class of control policies. To be spe-

cific, they show that in an asymptotic regime where arrival rates are scaled by n, all control

policies have an optimality gap that is lower bounded by O(n1/3). Moreover, their proposed
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policies achieve this lower bound. Özkan [171] studies the joint dispatch and pricing control

of ride-hailing platforms using a closed network model. Using a fluid model, the author

demonstrates that a joint dispatch and pricing policy significantly outperforms a control

policy that solely uses pricing or dispatch control.

Banerjee et al. [40] studies the dynamic dispatch control of ride-hailing platforms using a

closed queueing network model. The authors propose a family of state-dependent dispatch

policies called the Scaled MaxWeight policies.4 They show that under the complete resource

pooling assumption, as the number of cars increases, the rate at which demand is dropped

under each Scaled MaxWeight policy decays exponentially. Banerjee et al. [40] and this work

have similarities in their modelling assumptions. However, our work allows for joint dynamic

dispatch and relocation control of ride-hailing platforms. Moreover, unlike to Banerjee et al.

[40], our work does not assume the complete resource pooling assumption necessarily holds.

Indeed, our numerical solution approach is most useful when the complete resource pooling

assumption does not hold. Furthermore, in contrast to Banerjee et al. [40] that focuses on

minimizing the demand dropping probability, we assign a value to each dispatch and reloca-

tion activity and consider the objective of maximizing the total discounted value generated.

Kanoria and Qian [136] studies the dynamic control of a ride-hailing platform, where be-

sides dispatch decisions, the platform can use either an entry control or dynamic prices to

control the demand. The authors propose a family of Mirror-Backpressure policies to dy-

namically control the platform. They show that this family of policies has an optimality gap

of O(K/T + 1/K) per customer, where K denotes the number of cars and T denotes the

total number of customers (who will arrive over a given time horizon).

Bertsimas et al. [48] develops an optimization framework, coupled with a backbone al-

gorithm, to dispatch cars. The authors use the NYC taxi dataset to show their proposed

4. Dai and Lin [83] shows that the maximum pressure policies are asymptotically optimal for stochastic
networks under the complete resource pooling assumption. Ata and Lin [29] studies the maximum pressure
policies in heavy traffic when the complete resource pooling assumption does not hold, i.e. the workload
formulation is multidimensional.
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policy does well. Examples of other papers that use dispatch as a control lever include Wang

et al. [206], Lam and Liu [150], Feng et al. [88], Yan et al. [217], Guda and Subramanian

[102], Chen et al. [69], Lyu et al. [159], Wang et al. [205], Rheingans-Yoo et al. [179], Aouad

and Saritac [17], Blanchet et al. [53], and Feng et al. [89].

Examples of papers that focus on the relocation of cars in ride-hailing platforms include

[55], Afèche et al. [10], and Benjaafar et al. [47]. Braverman et al. [55] focuses on centralized

empty car routing in ride-hailing platforms and uses a closed queueing network model. The

authors propose a static policy based on a fluid model and show that this policy is asymptot-

ically optimal in the fluid-scale. Afèche et al. [10] studies the admission control of customers

and the re-positioning of cars in ride-hailing platforms. The authors develop several insights

into the interplay between centralized and de-centralized admission and re-positioning con-

trol and show that the value of these control policies are largest at moderate capacity and

they increase with demand imbalances. Benjaafar et al. [47] studies the relocation problem in

a multi-location rental network with a fixed number of rental units. The authors show that

the optimal relocation policy can be described in terms of a desired set of states. Within

this set, it is optimal not to relocate, whereas, outside this set, it is optimal to relocate.

The relocation is undertaken in a minimal amount to move the state onto the boundary of

the desired set. This observation is consistent with the region-of-inaction type policy we

propose for ride-hailing platforms. However, contrary to Benjaafar et al. [47], our proposed

policy uses both dispatch and relocation activities to move the state onto the boundary of

our desired set. Examples of other papers that use relocation as a control lever include Hao

et al. [108], He et al. [125], and Hosseini et al. [128].

Contrary to the previous papers, Chu et al. [73] focuses on information sharing as a

control lever. To be specific, the authors study a ride-hailing platform that can reveal the

destination of customers to idle drivers. They show that providing this information may

hurt the platform’s profits. They propose a routing policy that can align the incentives of

the platform and the driver to achieve the first-best solution. Besbes et al. [49] is another
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related paper that studies the capacity (required number of drivers) planning of a ride-

hailing system. The focus in this paper is the impact of travel times in the capacity planning

problem. The authors show that the platform should use a safety factor proportional to the

offered load to the power of 2/3, which is higher than the commonly used square-root safety

factor in the queueing theory literature. Yu et al. [220] is another related paper that studies

the impact of capacity controls in ride-hailing platforms. The authors show that a carefully

designed regulatory policy can perform better than strict and no capacity control policies by

striking a balance between the objectives of the customers, the drivers, and the platform.

The second stream of literature studies the control of queueing systems; see Stidham

[190, 192] for a survey. Our work is closely related to the literature on the dynamic control

of queueing systems in heavy traffic, pioneered by Harrison [110, 113, 114]. In this stream

of literature, one approximates the queueing system with a Brownian model, which is easier

to analyze. Early examples of this approach include Harrison and Wein [121], that studies

an optimal sequencing problem for a criss-cross network, and Harrison and Wein [122],

that studies a multiclass two-station closed queueing network. In both cases, the limiting

Brownian models admit pathwise optimal solutions that have straightforward interpretations

in the original problem. Harrison and Wein show that their policies perform well. Since then,

many other researchers followed the heavy traffic approach to study manufacturing and

queueing systems; see for example Wein [211, 212, 214], Chevalier and Wein [72], Krichagina

and Wein [142], Reiman and Wein [178], Kumar [144], Bell and Williams [44], Plambeck

et al. [175], Markowitz and Wein [163], Plambeck [176], Ata and Olsen [30, 31], [198], and

Dai and Tezcan [80].

The heavy traffic approximations often give rise to singular stochastic control problems,

which is the third stream of literature we review. Examples of papers that study a one-

dimensional singular stochastic control problem include Harrison and Taksar [118], Taksar

[195], and Dai and Yao [81, 82]. Harrison and Taksar [118] considers a singular control

problem that seeks to minimize discounted costs of control that are linear and convex hold-
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ing costs. The authors establish the optimality of a two-sided barrier policy. Taksar [195]

extends the results to the average cost formulation. Dai and Yao [81, 82] extend the lit-

erature by considering a general impulse (and singular) control problem under the average

and discounted cost objectives, respectively. They show that the impulse (singular) control

problem admits a four-parameter control band (two-sided barrier) policy.

Most problems successfully analyzed in the literature by following Harrison’s approach

either have limiting formulations that admit a pathwise optimal solution, e.g., Harrison [112],

Bell and Williams [44, 45], Ata and Kumar [27], Dai and Lin [83], or they involve solving a

one-dimensional HJB equation, see for example Ata et al. [26], Ata [19], Ward and Kumar

[208], Rubino and Ata [181], Ghamami and Ward [98], and Ata et al. [28]. Examples of

papers that consider multidimensional singular stochastic control problems include Kushner

and Martins [148], Taksar [196], and Kumar and Muthuraman [145]. Kushner and Martins

[148] proposes an approximate solution to multidimensional singular stochastic control prob-

lems by considering a Markov decision process whose value function approximates the value

function of the singular stochastic control problem; see Appendix B.1.8 for details. This

approach is quite general. However, because it requires the solution of a Markov decision

problem, it is computationally expensive, and therefore slow, for high dimensional control

problems. Moreover, this method corresponds to a finite difference scheme for solving the

partial differential equations (PDE), commonly referred to as the HJB equations, associated

with singular control problems. Finite difference schemes tend to have a larger numerical er-

ror than other schemes that solve PDEs, such as the finite element method; see e.g., Le Dret

and Lucquin [154, Sections 2.6 and 5.3]. As such, we develop a numerical method that can

use the finite element method for solving the PDEs. Because the finite element method

has a lower numerical error and is computationally more efficient, the method we develop is

numerically robust and computationally efficient.

Taksar [196] formulates a multidimensional singular stochastic control problem as an

infinite-dimensional linear program. Then, using the dual linear program, the author charac-
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terizes the optimal cost function as a maximal solution to a variational inequality, commonly

referred to as the HJB inequality. Kumar and Muthuraman [145] develops a numerical so-

lution to multidimensional singular stochastic control problems with convex holding costs

with two pushing directions along each axis, in the positive and negative directions, respec-

tively. The authors limit their search to region-of-inaction policies. In these policies, there

exists a region, called the region of inaction, in which no control is exerted. Once the state

process reaches the boundary of the region, control is exerted to keep the process inside the

region. The numerical procedure developed in Kumar and Muthuraman [145] starts with an

initial guess at the region of inaction and the controls used on each point on the boundary of

the region of inaction. Then, using the convexity of the value function and HJB equations,

which are motivated by the HJB inequalities of Taksar [196], the boundary of the region of

inaction is updated. This procedure is continued until no further updates are required. For

the case of a one-dimensional control problem, the authors prove their numerical procedure

converges to the optimal solution. The authors demonstrate the effectiveness of their solu-

tion in multi-dimensional settings through well-known numerical examples. The numerical

solution developed in this chapter differs from the one developed in Kumar and Muthuraman

[145] in three aspects: First, Kumar and Muthuraman [145] does not have state space con-

straints, unlike this dissertation. Second, the pushing directions in Kumar and Muthuraman

[145] are restricted to be parallel to the axis, whereas we allow for general (oblique) pushing

directions. Third, the numerical procedure developed in this dissertation can change the

pushing directions as it updates the boundary of the region of inaction, whereas the proce-

dure developed in Kumar and Muthuraman [145] only allows for updating the boundary and

pushing directions are fixed.

2.3 Model

We divide the city into disjoint areas. An example of this for the NYC application is given

in Figure 2.1. Then, we classify the cars into car classes based on their current area as well
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as other relevant information such as their size and luxury status. Similarly, we classify

the customers into customer classes based on their pickup area as well as other relevant

information such as the list of preferred car sizes and luxury status. The number of car and

customer classes need not be equal. We model the ride-hailing platform as a closed stochastic

processing network as described in Harrison [113, 114]. A stochastic processing network has

three basic elements: jobs, servers, and activities. In our setting, jobs correspond to cars

(job classes correspond to car classes), servers correspond to customer classes, and activities

correspond to either the dispatch or the centralized relocation of cars; see Figure 2.2 for the

stochastic processing network model of the NYC application. Each job class has a dedicated

buffer, in which the jobs of this class are stored.

A dispatch activity starts with the platform dispatching a car to pick up the next customer

of a class and ends with the transition of the car from its current area to the customer’s

destination upon her arrival. We assume the ride-hailing platform does not know a priori the

destination of the customers. However, it is aware of the distribution of the destinations for

each customer class.5 In the context of the stochastic processing network, a dispatch activity

corresponds to a server processing a job after which the job probabilistically transitions

into another job class.6 A centralized relocation activity involves the platform relocating a

car from one area to another for a fee.7 No customer is involved in this activity. In the

context of the stochastic processing network, a relocation activity corresponds to moving

a job from one buffer to another. Hereafter, we use the terminology of jobs and servers

as opposed to cars and customers, respectively. We let Λ denote the total number of jobs

circulating in the system, q denote the number of job classes, m denote the number of servers

5. Note that this model allows for the case in which the customers destinations are known. This can be
modeled by using a larger set of customer classes and a routing matrix of zeros and ones.

6. That is, the arrival of a customer in the ride-hailing platform corresponds to the completion of a
dispatch activity (by the server corresponding to the customer class) in the stochastic processing network.

7. We assume there is a known relocation fee that drivers will accept to relocate to the platform’s desired
area. This fee could depend on the car’s current area as well as the platform’s intended area; see Garg and
Nazerzadeh [94] for an example of such a mechanism.
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(resources), n denote the number of different dispatch activities, and ñ denote the number

of different relocation activities available to the platform. For the NYC application, q = 9,

m = 9, n = 19, and ñ = 72. We start by discussing the activities: dispatch and centralized

relocation.

Dispatch Activities. For dispatch activity j, let i(j) and k(j) denote the unique job class

and unique server associated with the activity, respectively.8 Denote the rate at which class

k customers arrive at the ride-hailing system by µk for k = 1, . . . ,m. Dispatch activity j

corresponds to dispatching a class i(j) car to pick up the next class k(j) customer in the

ride-hailing system and it is conducted at rate µk(j). In particular, one unit of dispatch

activity j corresponds to the processing of class i(j) jobs by server k(j) for one time unit.

Thus, letting {Sj(t) : t ≥ 0} be a Poisson process of rate µk(j), Sj(t) denotes the number of

jobs served by dispatch activity j during [0, t] if it is used continuously on that time interval.

We describe the transition of jobs between buffers upon service competitions of dispatch

activity j by the cumulative routing process {Φj(t) : t ≥ 0} for j = 1, . . . , n. In particular,

Φ
j
i (l) is the cumulative decrease in the number of class i jobs as a result of the first l jobs

processed by dispatch activity j; see Appendix B.1.1 for its derivation. Now, we define the

flow process {F j(t) : t ≥ 0} associated with dispatch activity j as F j(t) = Φj
(
Sj(t)

)
for

t ≥ 0. Then, F
j
i (t) is the cumulative decrease in the number of class i jobs as a result of the

first t units of dispatch activity j undertaken. In definitions of both Φj and F j , a negative

value indicates a net increase in the number of jobs.

We assume a class i(j) job processed by dispatch activity j next becomes a class l job

with probability Pjl. In particular, Φ
j
l (k)/k → Pjl as k → ∞. Also, we refer to the n × q

stochastic matrix P = (Pjl) as the routing matrix. Now, we define R as the q × n matrix

8. Bramson and Williams [54] introduces the class of unitary networks, where at most one activity is
associated with each buffer-server pair and each activity serves exactly one buffer and uses at most one
server. The stochastic processing network introduced in this chapter is a unitary network because each
dispatch activity is associated with a unique buffer and a unique server, the matrix P defined below is
stochastic, and each relocation activity relocates a job from a unique origin buffer to a unique destination
buffer without using any servers.
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whose (i, j)-th component is given as follows:

Rij = µk(j)(δi,i(j) − Pji), (2.1)

where δil = 1 if i = l, and it is zero otherwise. Harrison [110, Equation 4.11] argues that

E[F j(t)] ∼ Rjt and Cov[F j(t)] ∼ Γjt, where

Γj = µk(j)Ω
j +Rj(Rj)′/µk(j), (2.2)

the vector Rj is the j-th column of R, and Ωj is an q × q matrix whose (i, l)-th component

is equal to Ω
j
il = Pji(δil − Pjl). In fact, by the Strong Law of Large Numbers (SLLN)

for renewal processes, it follows that F j(t)/t → Rj as t → ∞. Thus, we refer to Rj as

the asymptotic drift of F j and interpret Rij as the rate at which activity j decreases the

number of class i jobs. Moreover, one can deduce from the Functional Central Limit Theorem

(FCLT) for renewal processes that as t→∞,

F j(t·)− tRj ·√
t

⇒ BM(0,Γj),

where BM(0,Γj) denotes an q-dimensional driftless Brownian motion with covariance matrix

Γj . Thus, we refer to Γj as the asymptotic covariance of F j for dispatch activity j.

To facilitate the analysis to follow, we let A denote the m × n capacity consumption

matrix for the dispatch activities, where

Akj =





1 if resource k undertakes dispatch activity j, i.e., k = k(j),

0 otherwise.
(2.3)

Centralized Relocation Activities. For relocation activity j, let o(j) and d(j) denote

the origin and destination job classes associated with the relocation, respectively. We let
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µ̃ denote the number of jobs relocated per unit of activity. In other words, one unit of

relocation activity j corresponds to the relocation of µ̃ jobs from buffer o(j) to buffer d(j).

To formalize this, we let the flow process {F̃ j(t) : t ≥ 0} associated with relocation activity

j be the q-dimensional deterministic process with

F̃
j
i (t) =





bµ̃tc for i = o(j),

−bµ̃tc for i = d(j),

0 otherwise,

(2.4)

for t ≥ 0; F̃
j
i (t) is the cumulative decrease in the number of class i jobs as a result of

the first t units of relocation activity j undertaken. The units of relocation and dispatch

activities differ in the sense that the argument of F̃ j(·) is the cumulative units of relocation

activity j undertaken, whereas that for F j(·) is the total time the platform has engaged

in dispatch activity j. Note that µ̃ does not depend on j, the index of the relocation

activity. We need not set µ̃ = 1. As the reader will see in Section 2.4, this facilitates our

derivation of the approximating Brownian control problem. Recall that in our model, cars

travel instantaneously. Thus, we let R̃ be the q × ñ matrix, whose (i, j)-th component is

R̃ij =





µ̃ for i = o(j),

−µ̃ for i = d(j),

0 otherwise.

(2.5)

It follows from Equation (2.4) that {F̃ j(t) : t ≥ 0} is a deterministic flow process and

|F̃ ji (t)− R̃ijt| ≤ 1 for i = 1, . . . , q and t ≥ 0. Thus, F̃ j(t)/t→ R̃j as t→∞ and we refer to

R̃j as the asymptotic drift of F̃ j . We interpret R̃ij as the rate at which relocation activity

j decreases the number of class i jobs.

Because relocation activities do not consume resources, we need not define a capacity

consumption matrix for them. In other words, the capacity consumption matrix is only
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defined for the dispatch activities. Moreover, we assume that each job class can be served by

at least one dispatch activity and each server can undertake at least one dispatch activity.

Let Qi(t) ≥ 0 denote the number of jobs in class i and Q(t) =
(
Qi(t)

)
denote the q-

dimensional queue length vector at time t. The process Q = {Q(t), t ≥ 0} is called the queue

length process. A dynamic control policy takes the form of a pair of processes (T, T̃ ), where

T = {T (t), t ≥ 0} and T̃ = {T̃ (t), t ≥ 0} are non-decreasing n and ñ dimensional stochastic

processes, respectively. We refer to T and T̃ as the allocation processes for dispatch and

relocation activities, respectively. To be more specific, we interpret Tj(t) and T̃j(t) as the

cumulative amount of dispatch and relocation activity j undertaken up to time t, respectively.

To repeat, the units of T is time while the units of T̃ is cars. As a result, relocation activity

j for j = 1, . . . , ñ can be undertaken in any amount as long as there are jobs at the origin

buffer o(j) to relocate. Under policy (T, T̃ ), the queue length process evolves as follows:

Q(t) = Q(0) −
n∑

j=1

F j
(
Tj(t)

)
−

ñ∑

j=1

F̃ j
(
T̃j(t)

)
, t ≥ 0, (2.6)

where Q(0) is the initial queue length vector. We let q0 = Q(0). Note that the total number

of jobs in the system remains fixed. That is,

Q(t) ≥ 0 and

q∑

i=1

Qi(t) = Λ, t ≥ 0. (2.7)

Throughout the chapter, we let e denote the vector with appropriate dimension, which will be

clear from the context. The r-dimensional idleness process associated with dispatch control

T is defined as follows:

I(t) = te− AT (t), t ≥ 0. (2.8)
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The allocation pair (T, T̃ ) is said to be feasible if it is non-anticipating and

Allocation processes T and T̃ are non-decreasing with T (0) = 0 and T̃ (0) = 0, (2.9)

Idleness process I is continuous and non-decreasing. (2.10)

Let α > 0 denote the interest rate, let c ∈ Rñ+ denote the cost vector for the relocation

activities, and let v ∈ Rn+ denote the value vector for the dispatch activities. In other words,

cj denotes the cost incurred by moving a car using relocation activity j and vj denotes the

value obtained by dispatching a car using dispatch activity j; see Appendix B.1.2 for the

vectors c and v of the NYC application. Given (c, v), we define the cumulative net value

generated by policy (T, T̃ ) up to time t as V (t) =
∑n
j=1 vjµk(j)Tj(t) −

∑ñ
j=1 cj µ̃T̃j(t) for

t ≥ 0. The platform seeks to choose a control policy (T, T̃ ) to

maximize liminf
t→∞

E
[ ∫ t

0
e−αsdV (s)

]
subject to (2.6)− (2.10). (2.11)

This problem appears analytically intractable. Therefore, we pursue an approximate

analysis in the heavy traffic asymptotic regime below.

2.4 Approximating Brownian Control Problem

Following Harrison [114], this section advances a Brownian approximation for the problem

described above. To do so, we consider a sequence of closely related systems indexed by a

parameter r, whose formal limit is the Brownian control problem. We attach a superscript

r to various quantities of interest corresponding to the r-th system in this sequence. The

asymptotic regime we focus on is the one where the activity rates grow with r, the total

number of jobs grows with
√
r, and the initial distribution of cars is the same. To be
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specific, we assume that for all r ∈ N and k = 1 . . . ,m,

µrk = rµk, µ̃r = rµ̃, Λr =
√
r, and qr0 =

√
rq0. (2.12)

The assumption that µrk = rµk and µ̃r = rµ̃ can be viewed as choosing a larger time unit

for the r-th system so that they are the corresponding rates per time unit. It follows from

Equations (2.1), (2.2), (2.5), and (2.12) that

Rr = rR, R̃r = rR̃r, and Γr = rΓ. (2.13)

See Appendix B.1.2 for the matrices A, R, and R̃ of the NYC application. Next, we introduce

the static planning problem, which helps us articulate the heavy traffic assumption and

facilitates the derivation of the Brownian control problem.

Static Planning Problem. For choosing the long-run average activity rates, we consider

the following linear program that ignores the randomness in the system: Find (x, x̃) ∈

Rn × Rñ of activity rates so as to

maximize
n∑

j=1

vjµk(j)xj −
ñ∑

j=1

cj µ̃x̃j (2.14)

subject to

Rx+R̃x̃ = 0, (2.15)

Ax ≤ e, (2.16)

x, x̃ ≥ 0. (2.17)

This formulation seeks to maximize the net rate at which value is generated by processing

activities subject to three sets of constraints: Equation (2.15) ensures that the input and

output rates for each buffer are equal. Equation (2.16) imposes the capacity constraints for

the resources associated with dispatch activities. Equation (2.17) ensures activity rates are
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non-negative. Note that the static planning problem could equivalently be stated using the

matrices Rr, R̃r in place of R, R̃, respectively, for the r-th system. That formulation has the

same feasible and optimal activity rates.

Next, we state the heavy traffic assumption that is crucially used in deriving the approx-

imating Brownian control problem.

Assumption 1 (Heavy-Traffic Assumption). The static planning problem (2.14)-(2.17) has

a unique optimal solution (x?, x̃?) and Ax? = e.

We refer to (x?, x̃?) as the platform’s nominal plan. Dispatch activity j is called basic

if x?j > 0. Similarly, relocation activity j is called basic if x̃?j > 0. Let b and b̃ denote the

numbers of basic dispatch and relocation activities, respectively. Without loss of generality,

the basic dispatch activities are numbered 1, . . . , b and the basic relocation activities are

numbered 1, . . . , b̃. The remaining activities will be referred to as nonbasic activities. We

partition x? and x̃? such that

x? =

(
x?
B

x?
N

)
and x̃? =

(
x̃?
B

x̃?
N

)
, (2.18)

where x?
B
> 0 and x?

N
= 0 denote the vectors of basic and nonbasic dispatch activity rates,

respectively, and x̃?
B
> 0 and x̃?

N
= 0 denote the vectors of basic and nonbasic relocation

activity rates, respectively. Hereafter, we attach subscripts B and N to various vectors of

interest to denote the components corresponding to basic and non-basic activities, respec-

tively. Moreover, following Harrison [114], we partition the matrices R and A such that

R = [H J ] and A = [B N ], (2.19)

where H and B have b columns; H and B are the sub-matrices of R and A that correspond

to basic dispatch activities. Similarly, we partition the matrix R̃ such that R̃ = [H̃ J̃ ],
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1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0.93 0.07 1 0.15 0.83 0.02 1 1 1 0.83 0.17 1 1

0.010.07

Figure 2.3: A graphical representation of the optimal solution to the static planning problem
of the NYC application. The solid arrows from the buffers to the servers depict the basic
dispatch activities and the rate at which they are conducted. The solid arrows between the
buffers depict the basic relocation activities and the rate at which they are conducted. The
dashed arrows depict the nonbasic dispatch activities. The non-basic relocation activities
are not shown for visual clarity.

where H̃ has b̃ columns. For the NYC application, we have that b = 13, b̃ = 2, and

x?
B

=
(
0.93 0.07 1.00 0.15 0.83 0.02 1.00 1.00 1.00 0.83 0.17 1.00 1.00

)′
, x̃?

B
=
(
0.07 0.01

)′
;

see Figure 2.3 for a graphical representation of this solution. The solid arrows depict the basic

dispatch and relocation activities and the rate at which these activities are conducted. The

dashed arrows depict the nonbasic dispatch activities. The non-basic relocation activities

are not shown for visual clarity. Server 1 serves buffers 1 and 2, server 3 serves buffers 1,

2, and 3, server 7 serves buffers 7 and 8, and all other servers only serve one buffer (the

buffer with the same number). Moreover, jobs are relocated from buffer 9 to buffer 8 and

from buffer 1 to buffer 5. This solution satisfies Assumption 1 and has b = 13 basic dispatch

activities and b̃ = 2 basic relocation activities.

If the platform were to ignore the randomness in the system, thus ignore all congestion-

related costs, it would undertake the dispatch and relocation activities at rate (x?, x̃?).

However, because of the randomness, the platform may benefit from (dynamic) adjustments

to the dispatch and relocation activity rates. To model these dynamic adjustment decisions,

we let S =
{
z ≥ 0 : z′e = 1

}
denote the q-dimensional simplex, which will eventually be the
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state space of the approximating Brownian control problems. We denote the scaled initial

queue length and the scaled queue length process by

z =
qr0√
r

and Zr(t) =
Qr(t)√

r
, t ≥ 0, (2.20)

respectively, where qr0 is the initial queue length vector (in the first system in the sequence)

and zi denotes the fraction of jobs that are initially in buffer i (in all systems in the sequence).

Similarly, the stochastic process {Zri (t) : t ≥ 0} captures the evolution of the fraction of jobs

in buffer i in the r-th system over time for i = 1, . . . , q. Also, we define the centered and

scaled dispatch and relocation control processes by

Y r(t) =
√
r(x?t− T r(t)) and Ỹ r(t) =

√
r(x̃?t− T̃ r(t)),

respectively. Lastly, we define the centered and scaled cumulative cost process as follows:

ξr(t) =

(∑n
j=1 vjµk(j)x

?
j −

∑ñ
j=1 cj µ̃x̃

?
j

)
t− V r(t)

√
r

. (2.21)

The scaling considered in this chapter is equivalent to one considered in Harrison [114].

Therefore, using an argument similar to Harrison [114], one can argue that in the heavy

traffic limit, the scaled processes Zr, Y r, Ỹ r, and ξr converge weakly to Z, Y, Ỹ, and ξ that
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jointly satisfy the following for t ≥ 0:

Z(t) = X(t) + RY (t) + R̃ Ỹ (t), (2.22)

U(t) = KY (t), (2.23)

Ũ(t) = −ỸN(t), (2.24)

U, Ũ are nondecreasing with U(0), Ũ(0) ≥ 0, (2.25)

Z(t) ∈ S, (2.26)

ξ(t) =
n∑

j=1

vjµk(j)Yj(t) −
ñ∑

j=1

cj µ̃Ỹj(t), (2.27)

where X = {X(t), t ≥ 0} is a (0,Σ) Brownian motion with initial value z and covariance

matrix Σ = x?1Γ1 + . . .+ x?nΓn, and

K =

[
B N

0 −I

]
, (2.28)

see Appendix B.1.2 for Σ and K of the NYC application.

Remark 1. The first m components of U(t) correspond to the (scaled) idleness processes

for the m servers that undertake the dispatch activities. The requirement that these com-

ponents are non-decreasing ensures that dispatch controls do not use more resources than

what is available at each of the m servers. The requirement that the remaining components

of U(t) are non-decreasing ensures that the non-basic dispatch activities are performed in

non-decreasing amounts. Similarly, the requirement that Ũ(t) is non-decreasing ensures that

the non-basic relocation activities are performed in non-decreasing amounts. Because the

relocation activities do not use any resources, there are no constraints on ỸB(t), deviations

from the nominal plan corresponding to basic relocation activities. Also, note that U(t) and

Ũ(t) are Rm+n−b and Rñ−b̃-valued, respectively.

Hereafter, we refer to (2.22)-(2.27) as the Brownian formulation and call the adapted
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pair (Y, Ỹ ) an admissible control if there exists (Z,U, Ũ) that satisfies (2.22)-(2.26) and the

regularity condition

E
[ ∫ ∞

0
e−αtd(e′U)(t)

]
< ∞ and E

[ ∫ ∞

0
e−αtd(e′Ũ)(t)

]
< ∞. (2.29)

We refer to (Z,U, Ũ) as the extended state process associated with control (Y, Ỹ ). Next,

we make an assumption on the primitives of the Brownian formulation that ensures the

existence of an admissible control.

Assumption 2. We assume that
{
Ry + R̃ỹ : Ky ≥ 0, ỹN ≤ 0, y ∈ Rn, ỹ ∈ Rñ

}
= Rq.

This assumption ensures that the platform has controls available to impose an instanta-

neous displacement in any direction, although there are state constraints and a possible cost

associated with such a displacement. Harrison and Williams [123, Theorem A.1 and Lemma

A.2] proves that Assumption 2 is necessary and sufficient for the existence of an admissi-

ble control to (2.22)-(2.27). This assumption holds for the NYC application; see Appendix

B.1.2.

Given the initial state vector z, we seek to minimize the expected discounted costs given by

Jz(Y, Ỹ ) = E
[ ∫ ∞

0
e−αtdξ(t)

]
. (2.30)

Using integration-by-parts, Harrison and Williams [123, Lemma 3.2] shows that

Jz(Y, Ỹ ) = E
[
α

∫ ∞

0
e−αt

( n∑

j=1

vjµk(j)Yj(t) −
ñ∑

j=1

cj µ̃Ỹj(t)
)
dt
]
. (2.31)

Thus, the platform’s problem is given as follows:9 Choose an adapted control (Y, Ỹ ) so as to

inf Jz(Y, Ỹ ) subject to (2.22)− (2.26). (2.32)

9. Proposition 8 in Appendix B.1.3 shows that there is no opportunity for arbitrage in this formulation.
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We refer to this formulation as the Brownian Control Problem (BCP), and formulate an

equivalent problem that has a lower-dimensional state descriptor in the next section.

2.5 Reduced Brownian Control Problem

This section develops an equivalent formulation that is of lower dimension. To this end, we

define the space of reversible displacements, denoted by R, as follows:10

R = {HyB + H̃ỹB : ByB = 0}, (2.33)

and let the space M = R⊥ denote its orthogonal complement. Then, let M be a matrix

whose rows are a basis of spaceM. We refer to M as the workload matrix and the dimension

of the space M, denoted by dimM, as the workload dimension, which is characterized in

Lemma 1; see Appendix B.2 for its proof. Lemma 1 crucially uses the fact that each dispatch

activity is associated with a unique server.

Lemma 1. The workload dimension is equal to p = q +m−
(
b+ b̃

)
.

We propose a natural choice for the workload matrix M based on the notion of commu-

nicating buffers, which is defined next.11

Definition 2 (Communicating buffers). Buffers i and i′ communicate directly if either

(i) there exists a server that serves both buffers using basic dispatch activities, or12

(ii) there exists a basic relocation activity that moves jobs either from i to i′ or from i′ to

i.

10. If the difference between two state vectors is reversible, the platform can instantaneously exchange
either of the state vectors for the other without affecting (U, Ũ).

11. Harrison and Williams [124, Theorem 7.2] proposes a canonical choice for the workload matrix. Because
this canonical choice requires the computation of all dual extreme point optimal solutions, it is computa-
tionally expensive.

12. This condition, where buffers share a server, has been studied in the literature. Complete Resource
Pooling (CRP) takes advantage of this; see e.g., Harrison and López [116] and Ata and Kumar [27].
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Buffer i communicates with buffer i′ if there exist buffers i1, . . . , il such that i1 = i, il = i′,

and buffer is communicates directly with buffer is+1 for s = 1, . . . , l − 1.

Communication is an equivalence relation, so buffers can be partitioned into disjoint

subsets such that each buffer communicates only with the buffers in the same subset. We

call each communicating subset a buffer pool and denote the set of buffers in buffer pool l

by Pl for l = 1, . . . , p. We also define resource pool l as follows:

Sl = {k(j) : j = 1, . . . , b, such that i(j) ∈ Pl}, l = 1, . . . , p.

Each server in resource pools Sl serves a buffer in Pl using a basic dispatch activity. And,

all servers that serve the buffers in Pl are in the set Sl. Moreover, resource pool Sl for

l = 1, . . . , p are disjoint because Pl for l =, 1 . . . , p are disjoint sets and because of Definition

2(i). Lemma 2 shows that the workload dimension is p and proposes a natural choice for the

workload matrix; see Appendix B.2 for its proof. Lemma 2 crucially uses the fact that all

dispatch activities associated with server k for k = 1, . . . ,m are conducted at rate µk. That

is, the service rates depend on the servers only and not the activity types.

Lemma 2. The workload dimension is equal to the number of buffer pools. Furthermore,

the workload matrix M = (Mhi) is given as follows:13

Mhi =

{
1 if buffer i belongs to buffer pool h,

0 otherwise.

13. Buffers i and i′ communicate if and only if any displacement of jobs between them is reversible; see
Equation (2.33) and Harrison and Williams [124, Theorem 6.2]. Reversible displacements under Condition (i)
of Definition 2 are well-understood; see e.g., Harrison and López [116] and Ata and Kumar [27]. A reversible
displacement under Condition (ii) is achieved by increasing or decreasing the basic relocation activity rate.
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Figure 2.4: A graphical representation of the optimal solution to the static planning problem
and the resulting pools. All local dispatch activities are basic. The basic non-local dispatch
activities are depicted with solid black arrows. The basic relocation activities are depicted
with dashed gray arrows. Areas with the same shading pattern belong to the same pool.
There are three pools in total.

For the NYC application, the workload dimension is p = 3 and the workload matrix is

M =




1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 1


.

See Figure 2.4 for a graphical representation of the pools in the context of the ride-hailing

system. In the NYC application, the buffer pools and the server pools correspond to the same

set of areas. The solid black arrows depict the basic non-local dispatch activities (activities

in which a car is dispatched to pick up a customer in another area). The dashed gray

arrows depict the basic relocation activities. Areas with the same shading pattern belong

to the same pool. There are three pools in total. The four areas of Manhattan (downtown

Manhattan, midtown Manhattan, central park area, and upper Manhattan) and southern

Brooklyn create the first pool, i.e., P1 = {1, 2, 3, 4, 5}, northern Brooklyn is the second pool,

i.e., P2 = {6}, and Queens, La Guardia, and JFK create the third pool, i.e., P3 = {7, 8, 9}.

Given the workload matrix M characterized in Lemma 2, we define the setW =
{
Mz : z ∈

S
}

. Corollary 1 shows that W is the p-dimensional simplex; see Appendix B.2 for its proof.
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Corollary 1. The set W is the p-dimensional simplex, i.e., W =
{
w : w′e = 1, w ∈ Rp+

}
.

To facilitate the analysis to follow, we define

G̃ = −MJ̃, (2.34)

and let the p× (m+ n− b) dimensional matrix G be a solution14 to

GK = MR. (2.35)

Next, we introduce the reduced Brownian formulation, where the system state is given

by the workload process W and the control is the adapted pair (U, Ũ). To be more specific,

W and (U, Ũ) must jointly satisfy the following for t ≥ 0,

W (t) = χ(t) + GU(t) + G̃Ũ(t), (2.36)

U, Ũ are nondecreasing with U(0), Ũ(0) ≥ 0, (2.37)

W (t) ∈ W , (2.38)

where χ = {χ(t), t ≥ 0} is a (0,MΣM ′) Brownian motion with initial value w = Mz.

Recall that the matrix G is p × (m + n − b) dimensional. Its first r columns correspond

to the displacements in the workload process resulting from idling a server, whereas its last

n− b columns correspond to displacements in the workload process resulting from non-basic

dispatch activities. Similarly, G̃ is p × (ñ − b̃) dimensional and its columns correspond to

displacements in the workload process resulting from non-basic relocation activities. The

adapted control (U, Ũ) is admissible for the reduced Brownian formulation if it satisfies

the regularity condition (2.29) and there exists a workload process W that satisfies (2.36)-

14. Harrison and Williams [123, Lemma 4.2] proves that such a G exists. Given K, M , and R, Equation
(2.35) corresponds to a system of linear equations and we can solve for G by solving this system of linear
equations.
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(2.38).15

Lemma 3 facilitates a cost structure for the reduced Brownian formulation (2.36)-(2.38)

that is equivalent to the cost structure of the Brownian formulation (2.22)-(2.27).

Lemma 3 (Harrison and Williams [123, Lemmas 4.3 and 4.4]). There exists π ∈ Rq, κ ∈

Rm+n−b, and κ̃ ∈ Rñ−b̃ that solve

π′R + κ′K = v′, π′H̃ = −c′
B
, and π′J̃ − κ̃′ = −c′

N
.

Moreover, if z ∈ Rq, u ∈ Rm+n−b, and ũ ∈ Rñ−b̃ satisfy Mz = Gu+ G̃ũ, then, there exists

a unique (y, ỹ) ∈ Rn × Rñ such that z = Ry + R̃ỹ, u = Ky, and ũ = −ỹN . Furthermore,

π′z + κ′u+ κ̃′ũ = v′y − c′ỹ.

Lemma 3 helps us express the costs and values of the activities in terms of buffer and

idleness costs. Namely, we interpret πi as the holding cost rate for class i queue. Similarly,

we interpret each component of κ and κ̃ as the cost rate of an increase in the corresponding

component of U and Ũ , e.g., the increase in cost due to idling a server or engaging in a

non-basic activity. We observe from Equations (2.1) and (2.5) that the columns of R and R̃

sum to zero. Therefore, π is defined only up to an additive constant; see Appendix B.1.2 for

the vectors π, κ, and κ̃ of the NYC application.

In what follows, without loss of generality, we assume π ≥ e and define the effective holding

cost function as follows:

g(w) = min{απ′z : Mz = w, z ∈ S}. (2.39)

The effective holding cost function g is well defined since S is compact. Also, we define

15. The reduced Brownian formulation introduced in Harrison and Williams [123] includes the extra con-
dition that U(t) ∈

{
Ky : y ∈ Rn

}
for t ≥ 0. This condition is necessary for ensuring that there exists

an admissible control (Y, Ỹ ) to (2.22)-(2.27) whose extended state process includes U . We can omit this
condition because {Ky : y ∈ Rn} = Rm+n−b in our case; see Lemma 12 in Appendix B.1.4.
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i? : {1, . . . , p} → {1, . . . ,m} as follows:

i?(l) = argmin
{
πi : i ∈ Pl

}
, l = 1, . . . , p. (2.40)

The function i?(·) identifies the cheapest buffer in each buffer pool to hold the workload in.

If there is a tie in (2.40), the buffer with the smallest index is chosen. We then define the

lifting map ∆ :W → S as follows:

∆(w)i =




wl if i ∈ Pl and i = i?(l),

0 otherwise

for i = 1, . . . , q. Note that w = M∆(w).

Lemma 4 shows the effective holding cost function is linear and that for each buffer pool

l it is optimal to keep all its workload wl in the cheapest buffer in the pool (i.e., buffer i?(l))

as prescribed by the lifting map ∆; see Appendix B.2 for its proof.

Lemma 4. The effective holding cost function g can be expressed as follows:

g(w) = απ′∆(w) = α

p∑

l=1

πi?(l)wl, w ∈ W .

For the NYC application, we have that

g(w) = α (12.52w1 + 16.05w2 + w3) and ∆(w) =
(
0 0 0 w1 0 w2 0 0 w3

)′
.

Given the initial value of the workload process W (0) = w, we let

J̌w(U, Ũ) =E
[ ∫ ∞

0
e−αtg(W (t))dt

]
+ E

[ ∫ ∞

0
e−αtd(κ′U + κ̃′Ũ)(t)

]
. (2.41)

The Reduced Brownian Control Problem (RBCP) can be stated as follows: Choose an
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adapted control (U, Ũ) so as to

inf J̌w(U, Ũ) subject to (2.36)− (2.38). (2.42)

Harrison and Williams [123] establishes an equivalence between the BCP (2.32) and the

RBCP (2.42). In particular, given the state Z(t) in the BCP, one sets W (t) = MZ(t) to

arrive at the equivalent state descriptor in the RBCP. To go in the other direction, given

the state W (t) in the RBCP, one sets Z(t) = ∆
(
W (t)

)
to arrive at the equivalent state

descriptor in the BCP; see Lemma 13 in Appendix B.1.5 for further details.

The analysis of the one-dimensional case, i.e., p = 1, is trivial.16 Henceforth, we as-

sume p > 1, and derive a (p − 1)-dimensional equivalent workload formulation in the next

subsection.

2.6 Equivalent Workload Formulation

As a preliminary to introducing the equivalent workload formulation, we introduce the fol-

lowing notation. First, letting I denote the (p − 1)-dimensional identity matrix, we define

the (p − 1) × p dimensional matrix L = [I 0]. Then, we define the set Ŵ on which the

workload process lives as follows:

Ŵ =
{
ŵ ∈ Rp−1 : ŵ′e ≤ 1, ŵ ≥ 0}.

The matrix L can be viewed as a projection with domain W , i.e., L : W → Rp−1. In

particular, it projects the set W onto Ŵ as shown in Lemma 5; see Appendix B.2 for its

proof.

Lemma 5. We have that Ŵ = L(W). Moreover, the mapping L : W → Ŵ is one-to-one

and onto.

16. To see this, note that when p = 1, W = {1} and χ is a driftless Brownian motion with initial value
w = 1 and covariance matrix Σ = 0. Therefore, it is optimal to use no controls.
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Figure 2.5: An illustration of the projec-
tion mapping L and its inverse L−1 for
p = 2. The dashed gray and solid black
lines represents W and Ŵ , respectively;
L maps w ∈ W to ŵ ∈ Ŵ .

W

Ŵ
w1

w2

w3

Figure 2.6: An illustration of the rela-
tionship between W and Ŵ for p = 3.
The gray and black curves depict a sam-
ple path of W and Ŵ , respectively.

In essence, the projection Lw of w drops the last component of w; see Figure 2.5. Then,

defining

Ŵ (t) = LW (t), t ≥ 0,

we note that for t ≥ 0 and k = 1, . . . , p − 1, we have Ŵk(t) = Wk(t). That is, Ŵ (t) is the

projection of W (t) on Ŵ ; see Figure 2.6.

Next, we formulate a control problem with state process Ŵ that is equivalent to the

RBCP (2.42). For technical convenience, we replace g (defined on W) with an equivalent

holding cost function h defined on Ŵ . To be specific, we let

h(ŵ) = g
(
L−1ŵ

)
, ŵ ∈ Ŵ , (2.43)

where L−1 : Ŵ → W is the inverse of the projection L. Note, in particular, that

h(ŵ) = α

p−1∑

l=1

πi?(l)ŵl + απi?(p)

(
1−

p−1∑

l=1

ŵl

)
, ŵ ∈ Ŵ .
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Then, we define the d = m+ (n− b) + (ñ− b̃)-dimensional vector κ̂ as follows:

κ̂ =

(
κ

κ̃

)
. (2.44)

We also define the (p− 1)× d dimensional matrix Ĝ as follows:

Ĝ = L [G G̃]. (2.45)

Note that Ĝ is the sub-matrix of [G G̃], which comprises of its first p− 1 rows.

Given a d-dimensional, adapted, non-decreasing stochastic process Û and a (p − 1)-

dimensional (0, Σ̂) Brownian motion χ̂ with covariance matrix Σ̂ = LMΣM ′L′ and initial

value ŵ = LMz, define Ŵ as follows:

Ŵ (t) = χ̂(t) + ĜÛ(t), t ≥ 0.

Moreover, we define the cost Ĵŵ(Û) associated with control Û as follows:

Ĵŵ(Û) =E
[ ∫ ∞

0
e−αth(Ŵ (t))dt

]
+ E

[ ∫ ∞

0
e−αtd(κ̂′Û)(t)

]
. (2.46)

The Equivalent Workload Formulation (EWF) is defined as follows: Choose an adapted

control Û so as to

inf Ĵŵ(Û) (2.47)

subject to

Ŵ (t) = χ̂(t) + ĜÛ(t), t ≥ 0, (2.48)

Û is nondecreasing with Û(0) ≥ 0,t ≥ 0, (2.49)

Ŵ (t) ∈ Ŵ , t ≥ 0, (2.50)

74



where χ̂ is a (0, Σ̂) Brownian motion with initial value ŵ. We call the control Û admissible

if there exists Ŵ that satisfies (2.48)-(2.50) and the regularity condition

E
[ ∫ ∞

0
e−αtd(e′Û)(t)

]
< ∞. (2.51)

We refer to Ŵ as the state process associated with control Û . Corollary 2 establishes an

equivalence between the RBCP (2.42) and the EWF (2.47)-(2.50).

Corollary 2. The EWF (2.47)-(2.50) is equivalent to the RBCP (2.42) in the following

sense: Fix ε ≥ 0.

(i) Suppose that (U, Ũ) is an ε-optimal control for the RBCP (2.42) with Brownian mo-

tion χ and state process W . Then, Û =
(
U

Ũ

)
is an ε-optimal control for the EWF

(2.47)-(2.50) with Brownian motion χ̂ and state process Ŵ given by χ̂k(t) = χ
k(t) and

Ŵk(t) = Wk(t) for k = 1, . . . , p− 1 and t ≥ 0.

(ii) Suppose that Û is an ε-optimal control for the EWF (2.47)-(2.50) with Brownian mo-

tion χ̂ and state process Ŵ . Let U denote the first m + n − b components of Û and

let Ũ denote the remaining ñ− b̃ components. Then, (U, Ũ) is an ε-optimal control for

the RBCP (2.42) with Brownian motion χ and state process W given for t ≥ 0 by

χ(t) =
(
χ̂1(t) , . . . , χ̂p−1(t) , −

p−1∑

l=1

χ̂
l(t)

)
,

W (t) =
(
Ŵ1(t) , . . . , Ŵp−1(t) , 1−

p−1∑

l=1

Ŵl(t)
)
.

Then, it follows from Corollary 2, by virtue of Lemma 13 (see Appendix B.1.5), that the

EWF (2.47)-(2.50) is equivalent to the BCP (2.32). Recall that control Û is a d-dimensional

stochastic process. Hereafter, for ease of exposition, we refer to l = 1, . . . , d as pushing

controls and refer to Ĝl for l = 1, . . . , d as the corresponding pushing directions.

Definition 3 (Dominated Pushing Control). Pushing control j is dominated if there exist

a subset L ⊂ {1, . . . , d}\{j} of pushing controls and scalars ûl > 0 for l ∈ L that jointly
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satisfy

Ĝj =
∑

l∈L
Ĝlûl and κ̂j ≥

∑

l∈L
κ̂lûl. (2.52)

Lemma 6 shows that it suffices to focus on pushing controls that are not dominated; see

Appendix B.2 for its proof.

Lemma 6. In the EWF (2.47)-(2.50), we can set Ûl ≡ 0 for dominated pushing controls l

without loss of optimality.

In light of Lemma 6, the analysis below assumes that no pushing control is dominated

in the sense of Definition 3. Furthermore, without loss of generality, we assume Ĝl for

l = 1, . . . , d are normalized such that ‖Ĝl‖ = 1, where ‖ · ‖ denotes the Euclidean norm.17

For the NYC application, we have

Ŵ =
{
ŵ : ŵ1 + ŵ2 ≤ 1, ŵ ∈ R2

+

}
and h(ŵ) = α (11.52 ŵ1 + 15.05 ŵ2 + 1), ŵ ∈ Ŵ ,

and the covariance matrix is

Σ̂ =

[
0.21 -0.01

-0.01 0.02

]
.

The NYC application has five non-dominated pushing controls with

κ̂ =
(

0.01, 0.70, 1.50, 0.41, 0.53
)′
.

The pushing directions, Ĝl, of the non-dominated pushing controls are depicted in Figure

2.7. Three of these pushing controls correspond to idling servers and two of them correspond

to undertaking non-basic dispatch activities. Pushing control 1, depicted in yellow in Figure

17. The normalization is achieved by multiplying Ĝl and κ̂l by the same factor for each l = 1, . . . , d.
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Serve Buffer 6 with Server 7

Serve Buffer 7 with Server 6

Figure 2.7: The non-dominated pushing controls and the corresponding pushing directions
for the NYC application.

2.7, corresponds to idling server 5 (southern Brooklyn). Pushing control 2, depicted in red,

corresponds to idling server 6 (northern Brooklyn). Pushing control 3, depicted in blue,

corresponds to idling server 7 (Queens). Pushing control 4, depicted in black, corresponds

to the non-basic dispatch activity of serving buffer 6 (northern Brooklyn) with server 7

(Queens). Pushing control 5, depicted in purple, corresponds to the non-basic dispatch

activity of serving buffer 7 (Queens) with server 6 (northern Brooklyn).

2.7 Solving the Equivalent Workload Formulation

This section develops a computational method to solve the EWF (2.47)-(2.50). For notational

simplicity, in the remainder of this section, we use dummy variables w and u instead of ŵ

and û. We let A(w) denote the set of admissible controls Û to the EWF (2.47)-(2.50) with

initial workload w ∈ Ŵ and define its (optimal) value function φ : Ŵ → R as follows:

φ(w) = inf
Û∈A(w)

Ĵw(Û), w∈Ŵ . (2.53)

Proposition 3 shows that the value function is convex; see Appendix B.2 for its proof.

Proposition 3. The (optimal) value function φ : Ŵ → R is convex.

We let C2(Ŵ) denote the space of functions f : Ŵ → R that are twice continuously differ-
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entiable up to the boundary. As it is often done in the singular stochastic control literature

(see e.g., Kumar and Muthuraman [145]), we make the following two assumptions on the

EWF (2.47)-(2.50).

Assumption 3. There exist constants C1, C2 > 0 such that C1‖w‖ ≤
∑p−1
i,j=1 σ̂ijwiwj ≤

C2‖w‖ for w ∈ Rp−1.

Assumption 4. For each initial workload w ∈ Ŵ, there exists an optimal control process

Ûw, under which there is a unique Markovian state process. Moreover, the optimal value

function is twice continuously differentiable, i.e., φ ∈ C2(Ŵ ).18

We define the elliptic linear operator L = 1
2

∑p−1
i,j=1 σ̂ij∂ij , where σ̂ij denotes the (i, j)-th

component of the covariance matrix Σ̂ and ∂ij denotes the differential operator ∂2/∂wi∂wj

for i, j = 1, . . . , p − 1. The next proposition introduces a set of inequalities that will be

useful for our solution approach. It extends Proposition 1 of Kumar and Muthuraman [145]

to the case with an arbitrary number of pushing controls, oblique pushing directions, and

state space constraints; see Appendix B.2 for its proof.

Proposition 4. For ε ≥ 0, suppose there exists a bounded f ∈ C2(Ŵ) such that

Lf(w)− αf(w) + h(w) ≥ −ε,w ∈ Ŵ (2.54)

∇f(w)′ Ĝl + κ̂l ≥ −ε, w ∈ Ŵ and l = 1, . . . , d. (2.55)

Then, there exists a function η : Ŵ → R+ such that

f(w) ≤ φ(w) + εη(w), w∈Ŵ . (2.56)

18. Budhiraja and Ross [58] establishes the existence of an optimal control for the case in which Ŵ is a
closed convex cone.
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Proposition 4 subsumes the usual ”verification theorem” as follows: If f ∈ C2(Ŵ) satisfies

(2.54)-(2.55) with ε = 0, then it follows from Proposition 4 that φ(w) = f(w) for w ∈ Ŵ .

It is not known whether there exists f ∈ C2(Ŵ) that satisfies (2.54)-(2.55) with ε = 0.

However, Taksar [196, Proposition 7.4] shows that when Ŵ = Rp−1, for any ε > 0, there

exists a bounded f ∈ C2(Ŵ) that satisfies (2.54)-(2.55).

Next, we introduce some preliminary definitions in order to describe our algorithm. First,

for w,w′ ∈ Ŵ , we let

C(w,w′) = minimize
u

κ̂′u (2.57)

subject to Ĝu = w′ − w, (2.58)

u ≥ 0 (2.59)

denote the cost of an instantaneous displacement from w to w′. In (2.57)-(2.59), the objective

is to find u ≥ 0 with the lowest cost such that it creates a displacement in the amount of

w′−w. Second, restricting attention to the region-of-inaction type control policies and given

a region of inaction B along with the pushing directions on its boundary, we define the

corresponding value function and the control policy achieving it. To this end, let B be a

convex subset of Ŵ and assume there is a partition ∂B1, . . . , ∂Bd of its boundary, ∂B, such

that pushing control l is used for w ∈ ∂Bl. Then, we associate with the region of inaction

B and the partition ∂B1, . . . , ∂Bd of its boundary ∂B the function f : Ŵ → R that satisfies

the following linear elliptic partial differential equation (PDE) on B :

Lf(w)− αf(w) + h(w) = 0, w ∈ int(B) (2.60)

subject to the boundary condition

∇f(w)′ Ĝl + κ̂l = 0, w ∈ ∂Bl and l = 1, . . . , d. (2.61)
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Moreover, f is defined on Ŵ\B as follows:

f(w) = min
w′∈∂B

{
C(w,w′) + f(w′)

}
, w ∈ Ŵ\B. (2.62)

We interpret this function as the value function corresponding to the following region-of-

inaction type control policy Û : Exert no control in the interior of B, int(B), and keep the

state process Ŵ in B by using pushing control l on ∂Bl minimally for l = 1, . . . , d. If the

initial workload w ∈ Ŵ\B, we move the state process Ŵ instantaneously from w to the

point argminw′∈∂B{C(w,w′) + f(w′)}, i.e., the point on the boundary ∂B for which the

cost associated with this instantaneous move plus the value function at the new point is the

smallest. To be more specific, as shown in Appendix B.1.6, f(w) can be interpreted as the

expected discounted cost (see Equation (2.46)) starting at the initial workload w ∈ Ŵ under

the control policy Û .

As is commonly done in the singular stochastic control literature (see e.g., Kumar and

Muthuraman [145] and Muthuraman and Kumar [167]), we limit our search to the region-of-

inaction type control policies. In other words, we limit our search to functions f that satisfy

(2.60)-(2.62) for some closed convex set B and some partition ∂B1, . . . , ∂Bd of its boundary

∂B such that pushing control l is used for w ∈ ∂Bl.

Initialization. The algorithm is initialized (step 0) with the region on inaction set B0 =

Ŵ , a closed convex set, and a partition ∂B0,1, . . . , ∂B0,d of its boundary, ∂B0, such that

pushing control l is used for w ∈ ∂B0,l. Let Û0 denote the region-of-inaction type control

policy associated with the region of inaction B0 and the partition ∂B0,1, . . . , ∂B0,d. For

the NYC application, we start with the partition depicted in Figure 2.8a. The arrows on

each part of the boundary represent the pushing control used on that part of the boundary;

see Figure 2.7 for the complete list of the non-dominated pushing controls for the NYC

application. As depicted in Figure 2.8a, pushing control 1 is used on the vertical face,

pushing control 2 is used on the horizontal face, and pushing control 3 is used on the the
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(b) Step 1.
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(c) Step 2.

Figure 2.8: An illustration of the region of inaction and the pushing controls used on its
boundary in each step of the algorithm for the NYC application.

diagonal face. Pushing controls 4 and 5 are not used under control policy Û0. In the interior

of B0, int(B0), no control is exerted. As will be discussed in Section 2.8, in the context of

the ride-hailing system, Û0 corresponds to using the optimal solution to the static planning

problem (2.14)-(2.17) in the interior int(B0) and using the pushing controls depicted in

Figure 2.8a on the boundary ∂B0.

To characterize the system performance under control policy Û0, we consider the func-

tion f0 characterized by (2.60)-(2.62). We refer to f0 : Ŵ → R as the value function

corresponding to control policy Û0. To be specific, as explained in Appendix B.1.6, f0(w)

can be interpreted as the expected discounted cost (see Equation (2.46)) starting at the ini-

tial workload w ∈ B0 under the control policy Û0, depicted in Figure 2.8a. One can use any

numerical method of choice to solve Equations (2.60)-(2.61) and the specific method used

does not impact our algorithm. In Appendix B.1.7, we describe a numerical solution based

on the finite element method, which is numerically robust and computationally efficient. To

this end, we discretize the region of inaction as illustrated in Figure 2.9 and iterate over the

boundary points as discussed next. Keeping all else the same as they were at the beginning

of the iteration, we decide whether each boundary point should be moved inward, outward,

or kept the same. If the boundary point is moved, the pushing control is not updated. If the
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Figure 2.9: An example of the discretized region of inaction with a discretization step size
of 0.05.

boundary point is not moved, we then decide whether the pushing control at the boundary

point should be changed. Because each boundary point is considered in isolation while keep-

ing others the same, the order in which we consider different boundary points is immaterial

as the reader will see below. After each boundary point is considered, we check if the up-

dated region of inaction is convex. If not, a convexification step follows. Next, we describe

each step of the update procedure in detail.

The Update Procedure. Fix a pushing control l and a boundary point w ∈ ∂B0,l. We

decide whether to move the boundary point w by checking the local behavior of the value

function f0 along the currently used pushing direction Ĝl at w, i.e., whether it is locally

concave, locally convex, or locally linear. Consequently, we have three cases to consider.

As a preliminary to discussing these three cases, consider the following scenario: The

directional derivative of the value function f0 along a feasible pushing direction Ĝj is strictly

smaller than −κ̂j , the negative of the control cost, in the vicinity of a boundary point w.

That is, for some δ > 0,

∇f0(w + zĜj)′ Ĝj < −κ̂j , z ∈ (0, δ); (2.63)

see Figures 2.10a and 2.10b for an illustration of the two cases for which (2.63) holds. By
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integrating both sides of (2.63) along the pushing direction Ĝj , we arrive at the following:

f0(w + δĜj)− f0(w) =

∫ δ

0
∇f0(w + zĜj)′ Ĝjdz < −κ̂jδ. (2.64)

We consider the control policy Ǔ that moves the process from w to w+ δĜj instantaneously

and then follows Û0. It follows from (2.64) that

Ĵw(Ǔ) = κ̂jδ + f0(w + δĜj) < f0(w) = Ĵw(Û0).

In other words, the initial deviation reduces the discounted cost and Ǔ is an improvement

over Û0. This observation is used crucially in the updating procedure as discussed below.

Our algorithm updates the region of inaction in one of two instances: either the control

policy can be improved with an initial deviation as discussed above, or the boundary of the

region of inaction can be moved to smoothly paste the value function. The first instance is

illustrated in Figures 2.10a and 2.10b. The second instance is illustrated in Figure 2.10c.

Therefore, the three panels of Figure 2.10 are the only relevant instances.

Case 1. The value function is locally concave along the pushing direction Ĝl, i.e.,

(Ĝl)′∇2f0(w) Ĝl < 0 . In this case, we move the boundary point w inward along Ĝl by

δ? = min
{
δ ∈ R+ : δ is a local minimizer of ∇f0(w + δĜl)

}
.

Because the second derivative of the value function f0 along the pushing direction Ĝl at

w ∈ ∂B0,l is negative, i.e., (Ĝl)′∇2f0(w) Ĝl < 0, as illustrated in Figure 2.10a, the directional

derivative of the value function f0 along the pushing direction Ĝl is decreasing and strictly

smaller than −κ̂l in the vicinity of w, i.e., (2.63) holds, because f0 satisfies the boundary

condition (2.61) at w. Therefore, we can improve the control policy by initially deviating

from Û0 and moving w inward along the pushing direction Ĝl. Moving the boundary point

w to w+ δ?Ĝl not only yields the lowest directional derivative as illustrated in Figure 2.10a
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∇f0(w + δĜj)′ Ĝj

−κ̂j

(a) ∇f0(w)′Ĝj + κ̂j = 0 and
(Ĝj)′∇2f0(w)Ĝj < 0.

δ0

∇f0(w + δĜj)′ Ĝj

−κ̂j

(b) ∇f0(w)′Ĝj + κ̂j < 0.

δ0

∇f0(w + δĜj)′ Ĝj

−κ̂j

(c) ∇f0(w)′Ĝj + κ̂j = 0 and
(Ĝj)′∇2f0(w)Ĝj > 0.

Figure 2.10: An illustration of the three instances in which the control policy can be im-
proved.

(with index j replaced by l), but also sets the second directional derivative to zero. Recall

that the value function can be extended linearly outside the region of inaction, thus, having

a second derivative of zero there. Consequently, the choice of δ? is also motivated by the

principle of smooth pasting.

Case 2. The value function is locally linear along the pushing direction Ĝl, i.e.,

(Ĝl)′∇2f0(w) Ĝl = 0 . In this case, we do not move the boundary point w. However, we

change the pushing control if there exists another feasible pushing direction Ĝj such that the

directional derivative of f0 along Ĝj is smaller than −κ̂j in an interval {w+zĜj : z ∈ (0, δ)},

which can happen in two ways as illustrated in Figures 2.10a and 2.10b. First, there exists

a feasible pushing control j such that ∇f0(w)′Ĝj + κ̂j < 0 (see Figure 2.10b). Second,

for all feasible pushing controls i, we have ∇f0(w)′Ĝi + κ̂i ≥ 0. However, there exists a

feasible pushing control j such that ∇f0(w)′Ĝj + κ̂j = 0, but (Ĝj)′∇2f0(w)Ĝj < 0, i.e.,

f0 is locally concave along the pushing direction Ĝj (see Figure 2.10a). In both cases, the

directional derivative of the value function along the pushing direction Ĝj is strictly smaller

than −κj in the vicinity of the boundary point w and we can improve the performance by

instantaneously moving the process from w inward. Motivated by this observation, we keep

the boundary point the same, but change the pushing control to j?. Namely, in the first
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case, we choose the pushing control

j? = argmin
{
∇f0(w)′ Ĝj + κ̂j : j is a feasible pushing control at w

}
.

In the second case, we choose the pushing control

j? = argmin
{

(Ĝj)′∇2f0(w) Ĝj :j is a feasible pushing control at w with ∇f0(w)′Ĝj + κ̂j = 0
}
.

In both cases, tie are broken in favor of smaller indices.

Case 3. The value function is locally convex along the the pushing direction Ĝl,

i.e., (Ĝl)′∇2f0(w) Ĝl > 0 . The directional derivative of f0 along the pushing direction Ĝl

is shown in Figure 2.10c (with index j replaced by l). We consider two subcases in general:

(a) w can be moved outwards, i.e., w ∈ int(Ŵ); and (b) w cannot be moved outwards, i.e.,

w ∈ ∂Ŵ . In case (a), we move the boundary point w outward along the pushing direction

Ĝl by δ0, where δ0 is a tunable parameter, or until the boundary of Ŵ is reached. In case

(b), we cannot move the boundary outward. Therefore, we consider changing the pushing

control. To do so, we proceed as in Case 2 described above. Note that at the initiation step,

only case 3(b) is relevant if B0 = Ŵ . However, in future iterations or with a different region

of inaction, case 3(a) can be relevant as well. Next, we discuss the convexification of the

updated region of inaction. This step is is not necessary for the NYC application, but it is

included for completeness.

Convexification. Since the boundary points may move in the update procedure, the up-

dated region of inaction may not be convex. Therefore, we convexify the updated region

of inaction by taking the convex hull of the updated boundary points. Then, we use the

pushing controls used on the updated (before convexification) boundary points to assign a

pushing control to each point on the boundary of the convexified region of inaction. We do

so by projecting each point on the boundary of the convexified region of inaction to the set
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of updated (before convexification) boundary points. To be specific, letting U denote the set

of updated (before convexification) boundary points and B1 denote the convexified region

of inaction, to w ∈ ∂B1, we assign the pushing control used at argmin{‖w − w′‖ : w′ ∈ U},

where ‖ · ‖ denotes the Euclidean norm. Namely, for each boundary point w of the convexi-

fied region of inaction B1, we first find the closest point w′ ∈ U to w, and assign the pushing

control at w′ to w.

We denote the partition of ∂B1 by ∂B1,1, . . . , ∂B1,d, where pushing control l is used for

w ∈ B1,l for l = 1, . . . , d; see Figure 2.8b for the updated region of inaction B1 and the

partition of its boundary for the NYC application.

Step k ≥ 1. For expositional clarity, we first discuss step 1. We use the new region

of inaction B1 and the partition of its boundary ∂B1,1, . . . , ∂B1,d to define the region-of-

inaction type control policy Û1 as done in step 0. Then, we solve a linear elliptic PDE

similar to the one in (2.60)-(2.61) to compute the value function associated with Û1 and

proceed in the same way as described above. Step k for k > 1 is identical to step 1.

Termination. The algorithm terminates once ∂Bk,1, . . . , ∂Bk,d are sufficiently close to

∂Bk+1,1, . . . , ∂Bk+1,d for some k. More specifically, we terminate the algorithm when the

set of mesh nodes (points) that belong to ∂Bk+1,l is identical to the set of mesh nodes that

belong to ∂Bk+1,l for l = 1, . . . , d. For the NYC application, given the initialization depicted

in Figure 2.8a and a discretization step size of 0.01, the algorithm terminates after step 3.

Of course, with a different initialization, it could take longer. In all examples considered,

the algorithm converges in fewer than four steps. The solution depicted in Figure 2.8c

outperforms the solution derived by the Markov chain approximation method; see Appendix

B.1.8 for details. For the NYC application, the control policy obtained in each step is an

improvement over the previous control policy. Lemma 17 in Appendix B.1.9 establishes this

property under certain assumptions.
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2.8 Proposed Policy

This section proposes a dynamic control policy for the problem introduced in Section 2.3

by interpreting the solution to the EWF (2.47)-(2.50) in the context of the original control

problem. Recall that we consider a sequence of systems indexed by the system parameter r,

whose formal limit is the BCP (2.32). The original control problem introduced in Section

2.3 can be viewed as a specific element of this sequence of problems, which is determined

by the particular choice of r. Therefore, first, we determine the system parameter r. In

our case, by Equation (2.12), we have r = (Λr)2, where Λr is the total number of cars; see

Section 2.3. The underlying assumption of the Brownian approximation is that the system

parameter r is large enough that the various (scaled) performance-relevant processes of the

original control problem can be approximated by the corresponding processes of the Brownian

control problem. Recall that the scaled workload process of the EWF (2.47)-(2.50) can be

expressed in terms of the queue length process of the original control problem (formulated

in Section 2.3) as follows: Ŵ (t) = LMQ(t)/
√
r for t ≥ 0.

It has long been observed in the heavy traffic literature that the idleness can be avoided

for all servers serving a buffer pool that has positive workload. As articulated in Harrison

[111], this behavior can be achieved by keeping positive but small queues in each buffer, e.g.,

safety stocks, for further details see Harrison [111, 112], Harrison and López [116], Maglaras

[160], and Ata and Kumar [27]. Therefore, as is customary in the heavy traffic literature, we

put small safety stocks in various buffers. The safety stock for buffer i is denoted by si for

i = 1, . . . , q; the values si can be calibrated via simulation as done in Wein [213].

To complete the policy description, we consider two cases: Ŵ (t) ∈ int(B) and Ŵ (t) 6∈

int(B). Recall that in the solution to the equivalent workload formulation, no action is

taken when the workload process is in the interior of the region of inaction. In the context

of the original problem formulation introduced in Section 2.3, this can be interpreted as

undertaking the dispatch and relocation activities at the rates dictated by the solution to

the static planning problem, (x?, x̃?), while avoiding server idleness, when Ŵ (t) ∈ int(B).
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In the solution to the equivalent workload formulation, when the workload process reaches

the boundary of the region of inaction, pushing controls are exerted. Next, we elaborate on

these two cases further in the context of the problem introduced in Section 2.3:

Case 1. Ŵ (t) ∈ int(B). For k = 1, . . . ,m, when server k becomes available, it chooses a

buffer to serve as follows: First, it only considers those buffers that are above their safety

stock thresholds and that it can serve using basic dispatch activities only. Then, it ran-

domizes among them with probabilities proportional to the nominal activity rates given

by the static planning problem. That is, the server engages in one of dispatch activities

{j : k(j) = k, Qi(j)(t) ≥ si, j = 1, . . . , b} with probabilities proportional to x?j . If no such

activity exists, then the server engages in one of the basic dispatch activities available to it

that serve a buffer that is non-empty currently, i.e., {j : k(j) = k, Qi(j)(t) > 0, j = 1, . . . , b},

with probabilities proportional to x?j . If no such activity exists either, the server idles.

Moreover, the platform undertakes basic relocation activities j = 1, . . . , b̃ at rates x̃?j for

j = 1, . . . , b̃ as long as the number of cars at the origin buffer is greater than or equal to the

safety stock, i.e., Qo(j)(t) ≥ so(j).

Case 2. Ŵ (t) 6∈ int(B). In this case, the platform modifies the policy described in Case 1

by using the pushing controls prescribed by the solution to the EWF (2.47)-(2.50). Namely,

at each boundary point, the platform modifies the policy described in Case 1 by undertaking

the activity corresponding to the pushing control prescribed by the solution to the EWF

(2.47)-(2.50). Each such activity may be in addition to the basic activities or it may replace

a basic activity as discussed next. For example, if the solution prescribes idling server k,

server k idles instead of undertaking the basic dispatch activity prescribed by the policy

described in Case 1. If the solution prescribes taking part in non-basic dispatch activity j,

server k(j) serves buffer i(j) as long as there are jobs in buffer i(j) to serve, i.e., Qi(j)(t) > 0,

instead of undertaking the basic dispatch activity assigned to it by the policy described in

Case 1. If the solution prescribes taking part in non-basic relocation activity j, the platform

relocates jobs from buffer o(j) to buffer d(j) as long as there are jobs available at the origin
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Table 2.1: Pushing controls used in the solution (derived by our computational method) to
the EWF (2.47)-(2.50) for the NYC application.

Pushing Control

State Number Action

{w : w1 = 0, 0<w2< 1} 1 Idle Server 5
{w : w2 = 0, w1 < 0.35} 5 Serve Buffer 7 with Server 6
{w : w2 = 0, w1 ≥ 0.35} 2 Idle Server 6
{w : w1 + w2 = 1, w1 < 0.95} 4 Serve Buffer 6 with Server 7
{w : w1 + w2 = 1, w1 ≥ 0.95, w2> 0} 3 Idle Server 7

to relocate, i.e., Qo(j)(t) > 0, in addition to the policy described in Case 1. These will be

illustrated further for the NYC application in Section 2.9.

The solution to the EWF (2.47)-(2.50) for the NYC application is depicted in Figure

2.8c. In this solution, B = Ŵ . Since the solution to the EWF (2.47)-(2.50) exerts no control

when Ŵ (t) ∈ int(Ŵ), the optimal solution to the static planning problem (2.14)-(2.17) is

implemented as discussed in Case 1 above. Similarly, since the solution to the EWF (2.47)-

(2.50) exerts pushing controls when Ŵ (t) ∈ ∂Ŵ , pushing controls are used as discussed in

Case 2. Table 2.1 lists the pushing controls used on each part of ∂Ŵ . For example, on the

horizontal face of ∂Ŵ , which corresponds to zero workload in pool 2, the following pushing

controls are exerted in the solution to the EWF (2.47)-(2.50): If the scaled workload of pool

1 is less than 0.35, pushing control 5 is exerted. Otherwise, pushing control 2 is exerted.

This corresponds to server 6 serving buffer 7 in the first case and server 6 idling in the second

case.

2.9 Simulation Study and Discussion

This section undertakes a simulation study to illustrate the effectiveness of the proposed

control policy. The simulation study focuses on the NYC application introduced in Section

2.1. In doing so, we crucially relax the assumption of zero travel times. Instead, we use

the travel times estimated from the NYC data mentioned in Section 2.1. We compare the

proposed policy with nine other policies: the static policy, the closest-driver policy and its
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modified version, the MaxWeight policy and its modified version, the penalized MaxWeight

policy and its modified version, and the mirror backpressure policy and its modified version.

The static policy implements the optimal solution to the static planning problem (2.14)-

(2.17); see Özkan and Ward [172] for a similar policy. The closest-driver policy is a natural

policy that dispatches a car from the closest area from which cars can be dispatched to the

customer (i.e., the dispatch activity with the highest value is undertaken).19 The closest-

driver policy is commonly used as a benchmark in the ride-hailing literature; see e.g., Özkan

and Ward [172]. The MaxWeight policy, also known as maximum pressure or backpressure

policy, dispatches a car from the area with the largest number of empty cars among the areas

from which cars can be dispatched to the customer. This is a popular policy in the queueing

literature; see e.g., Dai and Lin [83] and Ata and Lin [29]. Banerjee et al. [40] shows that

the MaxWeight policy has an exponentially decaying demand dropping probability under

the complete resource pooling assumption, i.e., p = 1. The penalized MaxWeight policy

dispatches a car from the area with the largest number of empty cars minus a linear travel

cost among the areas from which cars can be dispatched to the customer. This policy is

proposed as an improvement over the original MaxWeight policy in Banerjee et al. [40]. The

mirror backpressure policy dispatches a car from the area where the immediate payoff of

serving the customer plus the difference of the congestion costs at the car’s current location

and the customer’s destination is maximized. The mirror backpressure policy differs from

our proposed policy as well as the other policies considered in terms of the information

structure, since it requires knowledge of the destinations of the customers. Kanoria and

Qian [136] shows that the mirror backpressure policy is a near-optimal dispatch policy.

The demand flow in the NYC application is not symmetric, i.e., the rate at which cus-

tomers depart an area is not equal to the rate at which they enter the area. Consequently,

under the closest-driver, MaxWeight, penalized MaxWeight, and mirror backpressure poli-

19. As stated in Section 2.1, in the NYC application, the platform incurs a dispatch cost of $0.2 per mile.
Consequently, the platform generates a larger (immediate) value by dispatching a car from the closest areas.
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cies, empty cars tend to pile up in certain areas. To alleviate this issue, we also consider suit-

ably modified versions of the closest-driver, MaxWeight, penalized MaxWeight, and mirror

backpressure policies. In the modified policies, the closest-driver, the MaxWeight, penalized

MaxWeight, and the mirror backpressure policies are enhanced by incorporating (static) relo-

cation decisions adopted from the static planning problem as explained below; see Appendix

B.1.10 for a detailed description of the nine policies considered.

As mentioned above, we relax the assumption that cars move between different areas

instantaneously and incorporate travel times. This allows us to test the performance of the

proposed policy in a realistic setting. In relaxing this assumption, we include the travel time

to pick up the customer, the travel time to deliver the customer, and the travel time to

relocate from one area to another in the simulation. The number of (empty) cars at various

areas in the simulation study can differ from those in the model studied above because of

the travel times. To map the proposed policy to an implementable policy in the setting with

travel times, we use Ŵ (t) = LMQ(t)/
∑9
i=1Qi(t) for t ≥ 0; Ŵl(t) denotes the fraction of

empty cars in pool l at time t for l = 1, 2 and t ≥ 0.

In the simulation study, the annual interest rate is α = 0.05. Moreover, as done by Wein

[213], for simplicity, we focus on safety stock parameters of the form si = s1 for i = 2, . . . , 9.

That is, we choose identical safety stocks for all buffers. We assume that all cars are initially

empty and waiting for customers to arrive. We also assume that the initial number of cars

in each area is proportional to the demand in that area.20 As a preliminary to reviewing

the simulation results, let Λ0 denote the average number of traveling cars just to sustain the

basic activity rates (x?, x̃?) derived from the static planning problem. To be specific, letting

20. The assumption that all cars are initially empty and waiting for customers to arrive has a negligible
impact on our results as the ride-hailing system reaches steady-state in less than an hour. Note that we
simulate the ride-hailing system under each policy 100 times for 300 years. Preliminary checks show that
costs incurred beyond this point account for less than 0.0001% of the discounted cost.
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τil denote the average travel time from area i to area l for i, l = 1, . . . , 9, we have that

Λ0 =
19∑

j=1

µk(j)x
?
j τi(j)k(j) +

19∑

j=1

9∑

l=1

µk(j)x
?
jPjlτk(j)l +

72∑

j=1

x̃?j τo(j)d(j), (2.65)

where the first term on the right-hand side is the average number of cars en route to pick

up customers, the second term is the average number of cars en route to deliver customers,

and the third term is the average number of relocating cars (under the static policy if

the entire demand is satisfied).21 For the NYC application, Λ0 = 8200.22 To assess the

impact of the number of cars Λ on the system performance, we vary Λ from 0.5Λ0 = 4100

cars to 1.5Λ0 = 12300 cars, corresponding to a ±50% range around Λ0. This wide range of

values for Λ helps us thoroughly compare the performance of the different policies considered.

Hereafter, we refer to Λ−Λ0 as the (percentage) excess supply. To compare the performance

of the aforementioned policies, we report the expected discounted cost of each policy in

Figure 2.11 below as well as in Tables B.4-B.5 in Appendix B.1.11. To be more specific,

Figure 2.11 and Tables B.4-B.5 report the unscaled expected discounted costs ΛJz for each

policy; see Equation (2.30) for the definition of Jz as well as Equations (2.11), (2.21), (2.30),

and (2.31) for further details on Equation (2.30). Moreover, Tables B.6-B.7 in Appendix

B.1.11 provide a comparison of the scaled expected discounted costs, i.e. Jz or the expected

discounted cost per car. Tables B.8-B.9 in Appendix B.1.11 report the percentage difference

of the various policies considered from the proposed policy. We also report the demand

dropping probabilities in Figure 2.12 below as well as in Tables B.10-B.11 in Appendix B.1.11.

For brevity, among possible aforementioned mirror backpressure policies corresponding to

different congestion functions, we report the simulation results only for the best performing

21. Equation (2.65) follows from Little’s law. Let us illustrate this for the first term on its right-hand
side. Note that µk(j)x

?
j is the rate at which customers are picked up under basic dispatch activity j for

j = 1, . . . , 13. Therefore, µk(j)x
?
j τi(j)k(j) is the average number of cars en route to pick up customers under

basic dispatch activity j for j = 1, . . . , 13. Summing over j for j = 1, . . . , 13 gives the average number of
cars en route to pick up customers, which is the first term on the right-hand side of Equation (2.65).

22. From the 8200 traveling cars, about 4800 are en route to deliver customers, 3300 are en route to pick
up customers, and 100 are in the relocation process.
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Figure 2.11: The expected discounted cost under various policies.

one, which uses the logarithmic congestion function. Moreover, for visual clarity, we refer to

the penalized MaxWeight policy as MaxWeight+ in the figures and tables.

Figures 2.11-2.12 show that the performance of all policies improves as the total number

of cars increases. The proposed policy outperforms the static policy as well as the original

and the modified closest-driver, MaxWeight, and penalized MaxWeight policies both in terms

of the cost and the demand dropping probability. This demonstrates the effectiveness of the

proposed policy. Interestingly, the static policy has a lower expected discounted cost than

the following policies: the original and the modified closest-driver policies, the original and

the modified MaxWeight policies, and the original and the modified penalized MaxWeight

policies. The static policy also has a lower demand dropping probability than all the policies

mentioned above except for the modified MaxWeight policy. When excess supply is large,

i.e., Λ = 1.4Λ0, 0.16% of the demand is dropped under the modified MaxWeight policy,

whereas 0.11% of the demand is dropped under the static policy.

The proposed policy is slightly outperformed by both the original and the modified mirror

backpressure policies when supply is too limited, e.g., the proposed policy is outperformed

by the original mirror backpressure policy by up to 11% when the excess supply is less

than −10%. In this range of supply, demand significantly exceeds supply and the mirror

backpressure policies can not only drop the least profitable customers, but also avoid the
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Figure 2.12: Percentage of the demand dropped under various policies.

accumulation of empty cars in an area, because they use the customer’s destination infor-

mation. The proposed policy outperforms the original and the modified mirror backpressure

policies otherwise, i.e. when the excess supply is greater than or equal to −10%. This

demonstrates that the proposed policy performs well in the regime for which it is designed.

Namely, when the system is critically loaded, i.e., it is in heavy traffic, but it is not over-

loaded. Moreover, the fact that our proposed policy (which uses the demand distribution

and not the destination information) outperforms the mirror backpressure policy (which

uses the destination information and not the demand distribution) suggests that knowing

the demand distribution may be more valuable to ride-hailing platforms that the destination

information, although they are both valuable.

The original closest-driver, MaxWeight, and penalized MaxWeight policies, which focus

only on dispatch control, cannot meet the entire demand even when there is an abundant

supply of cars. This is due to their inability to address the asymmetry of the demand flow.

Although the original mirror backpressure policy performs better than the original closest-

driver, MaxWeight, and penalized MaxWeight policies, it also has the same shortcoming.

The modified closest-driver, the modified MaxWeight, the modified penalized MaxWeight,

and the modified mirror backpressure policies, which take advantage of the static relocation

policy to offset the asymmetric flow of demand, alleviate this concern especially when there
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is sufficient supply. We also observe that the fraction of the demand dropped appears to

decay faster under the modified MaxWeight policy, the modified penalized MaxWeight policy,

and the mirror backpressure policies in comparison to the closest-driver and static control

policies.23 Lastly, we observe that our proposed dynamic control policy outperforms all other

policies considered in terms of the fraction of the demand dropped.24

As reported in Chapter 1, on an average day during the period our NYC application

focuses on, there were approximately 11200 active taxis in NYC. However, there is a major

difference between our setting and the taxi market in NYC. The NYC taxi and limousine

commission did not centrally control the taxi market during the period on which our NYC

application focuses. During this period, taxis had to search for customers street by street.

As shown in Chapter 1, this street-by-street search for customers introduced substantial

(search) friction. In contrast, our paper focuses on a platform that centrally controls the

market. Given this major difference, the reader should not associate the 11200-car case of

the NYC taxi market with the +40% excess supply case in our simulation study. As shown

in Chapter 1, about 4.3% of the demand was dropped during the period on which our NYC

application focuses. Our proposed control policy, however, achieves a 4.3% demand dropping

probability with about 7950 cars. This corresponds to 3250 fewer taxis than the NYC taxi

and limousine commission was using. This highlights the value of centrally controlling the

market or the cost of lack-of-coordination.

23. Banerjee et al. [40] shows that the original MaxWeight policy has an exponentially decaying demand
dropping probability under the complete resource pooling assumption, i.e., p = 1. Our findings for the
modified MaxWeight policy shown in Table B.11 appear to support its finding beyond the complete resource
pooling case, i.e., for p > 1.

24. Note that the safety stock in our proposed dynamic control policy as well as the tuning parameter in
the penalized MaxWeight policies and the mirror backpressure policies are calibrated such that the expected
discounted cost is minimized.
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2.10 Concluding Remarks

This chapter studies the control of a ride-hailing platform that offers on-demand transporta-

tion to heterogeneous customers by dynamically making dispatch and centralized relocation

decisions. An offline linear program, called the static planning problem, is solved. The opti-

mal solution to the static planning problem, which can be interpreted as the optimal static

control policy, partitions the set of activities into two: basic or efficient activities and non-

basic or inefficient activities. The basic activities are used under the optimal solution to the

static planning problem, whereas the non-basic activities are not. The platform partitions

the areas of the city into pools of areas and only uses the information on the fraction of

cars in the various pools as opposed to the fraction of cars in each area. This significantly

reduces the state space dimension, making the solution of the associated HJB equations

computationally feasible.

We propose a dynamic control policy that involves a so-called region of inaction, a convex

set of states, where the state of the system is defined as the fraction of cars in the various

pools. When the system state is in the interior of the region of inaction, the policy uses the

optimal solution to the static planning problem, i.e., it uses the basic or efficient dispatch

and relocation activities. When the system state reaches the boundary of the region of

inaction, the platform exerts additional controls by dropping demand or undertaking a non-

basic dispatch or relocation activity to keep the system state in the region of inaction. It is

demonstrated through a simulation study that the proposed policy performs well.
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CHAPTER 3

DYNAMIC PRICING OF A MULTICLASS MAKE-TO-STOCK

QUEUE

3.1 Introduction

This chapter studies the dynamic control of a make-to-stock manufacturing system that sells

multiple products to price-sensitive customers. In make-to-stock manufacturing systems,

the products are manufactured based on a forecast of the demand and stored in finished

goods inventory. Customers are dynamically quoted a price. When a customer order is

received, it is served from the finished goods inventory if the item requested is in stock.

Otherwise, it is backordered. The manufacturer incurs a holding cost for each product in

inventory and a backorder cost for each request on backorder (per unit of time). The make-

to-stock manufacturing system is modeled as a multi-class single-server queueing system.

The system manager seeks to maximize the long-run average profit by making dynamic

pricing, outsourcing, and scheduling decisions: First, she controls the demand by dynamically

adjusting the prices. Second, when the backlog of work is judged excessive, she outsources

(or rejects) customer orders. Finally, she dynamically decides when and what products to

manufacture. The joint consideration of pricing and operational decisions, such as scheduling

and outsourcing, leads to a manufacturing system that is more responsive to the variability

in the demand and production processes. Moreover, dynamic prices provide the system

manager with the opportunity to take advantage of the heterogeneity of customers in their

price sensitivity to increase profits. In determining the prices, she takes into account the

price-sensitivity of demand, the holding, backlog, and outsourcing costs, the variability in

the demand and production processes, and the production capacity of the manufacturing

system.

Because the joint dynamic pricing, outsourcing, and scheduling control problem appears

intractable in its exact form, we follow Harrison [110] and approximate it by a far more
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tractable formulation referred to as the Brownian control problem. We do so in the so-called

heavy traffic asymptotic regime which assumes both the demand and the system capacity

are large, and the average server utilization is near one. We derive an effective and intuitive

joint dynamic pricing, outsourcing, and scheduling policy for the manufacturing system by

solving the approximating Brownian control problem explicitly and interpreting its solution

in the context of the original control problem.

The approximating Brownian control problem is equivalent to a one-dimensional drift

rate control problem, whose state process, called the workload process, represents the total

(scaled) inventory (or backlog) in the system measured in hours of total work for the server.

An important feature of this drift rate control problem is the presence of state costs that

capture the holding and backorder costs in the original control problem. The drift rate

control problem is solved explicitly by exploiting the solution to a Riccati equation. The

optimal policy comprises of the drift rate control policy and a two-sided barrier policy. The

outsourcing and idling processes are used to keep the workload process between the lower

and upper reflecting barriers. Between the two barriers, a state-dependent drift rate is used

to control the workload process, which is ultimately interpreted as a dynamic pricing policy.

The optimal solution to the approximating Brownian control problem leads to an in-

tuitively appealing and easily implementable policy and reveals several structural insights.

First, the system manager’s pricing, outsourcing, and sequencing decisions depend primarily

on the (aggregate) workload. In particular, the prescribed prices tend to vary on a slower

time-scale than the demand and production processes. Second, in large systems, the mag-

nitude of the prescribed price changes are small. Third, as the backlog of work increases

and the inventory of products decreases, prices should be adjusted to decrease the (effec-

tive) demand rate. Finally, only when the backlog of work is too excessive, outsourcing is

worthwhile.

The rest of the chapter is organized as follows. Section 3.2 reviews the relevant litera-

ture. Section 3.3 introduces the control problem for a make-to-stock manufacturing system.

98



Section 3.4 formally derives the approximating Brownian control problem. Section 3.5 de-

velops the one-dimensional equivalent workload formulation. Section 3.6 derives an optimal

solution to the equivalent workload formulation by solving the associated Bellman equation.

Section 3.7 interprets the solution to the equivalent workload formulation in the context of

the control problem laid out in Section 3.3, proposes a policy in that context, and provides

a simulation study to show the effectiveness of the proposed policy. Section 3.8 concludes

the chapter.

3.2 Literature Review

This chapter is related to three streams of literature. The first stream studies the scheduling

of make-to-stock manufacturing systems. The second stream studies the control of queueing

systems. The third stream studies the revenue management of manufacturing and queueing

systems. The literature on the scheduling of manufacturing systems is vast; see Nahmias and

Olsen [168, Chapter 9] for a brief overview. To the best of our knowledge, the scheduling of a

multi-class make-to-stock manufacturing system was first studied by Zheng and Zipkin [224].

Zheng and Zipkin [224] showed that in the case of two symmetric products with exponential

production times, the policy that serves the longest queue outperforms the First-Come-

First-Served (FCFS) policy. Zipkin [225] extended the results to the case with multiple

products and general production times. Another early paper in this area and an important

antecedent of our work is Wein [213], that studies the dynamic scheduling of a multiclass

single-machine make-to-stock manufacturing system in heavy traffic. Wein [213] proposes

a scheduling policy to minimize the long-run average holding and backorder costs. We

build on Wein [213] by introducing dynamic pricing and outsourcing. These extra features

lead to a different workload formulation, where the analytical solution of the associated

Bellman equation dictates both a specific dynamic pricing policy and a novel discretionary

outsourcing threshold in addition to the scheduling policy that is similar to Wein [213]’s.

Ha [104] provides theoretical justification for some of the ideas proposed in Wein [213]. In
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particular, it shows that in a two-product system, it is optimal to produce the product with

the larger bµ index if it backordered (independent of the inventory of the other product).

Typically, Brownian models fall short of providing complete scheduling prescriptions

under linear state costs. Rather they would reveal the cheapest buffers to keep the inventory

and backlog. The prioritization of the other buffers are done through safety stocks, which are

in turn determined by ad hoc methods such as simulation studies. Veatch and Wein [202]

seeks complete scheduling prescriptions that are effective and computationally tractable.

The authors limit their attention to index policies, where an index is dynamically calculated

for each product and the product with the smallest index is manufactured. Rubio and Wein

[182] considers a multi-product/multi-server model of make-to-stock manufacturing system

using a Jackson queueing network model. They focus on base-stock policies and show that

the optimal base-stock level of each product corresponds to a critical fractile of the steady

state distribution of the product’s total work-in-progress inventory. Then, using results from

product-form queueing networks, the authors derive closed-form expressions for the optimal

base-stock levels.

Véricourt et al. [203] focuses on the optimal scheduling of a two-product make-to-stock

manufacturing system. It characterizes the hedging point for a particular region of the

state space and shows that in this region, the monotone switching curve, that separates the

priority regions of the two products, is a straight line. Veatch and Véricourt [201] studies

the scheduling of a two-part-type single-product make-to-stock queue using the model of

Wein [213]. For the case with exponential inter-arrival and production times, it identifies

the necessary and sufficient conditions for a zero-inventory policy to be optimal. Sanajian

et al. [184] is another relevant paper in this literature that compares the performance of the

static FCFS, preemptive, and non-preemptive priority policies for a make-to-stock system

with general production times. It provides conditions under which it is optimal to produce

according to a make-to-order policy. Kim and Van Oyen [138] studies the scheduling of a

make-to-stock manufacturing system with setup and switching costs. Karaesmen et al. [137]
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studies a system with advance order information.

The second stream of literature studies the control of queueing systems; see Stidham

[190, 192] for surveys. Our work is closely related to the literature on the dynamic control

of queueing systems in heavy traffic, pioneered by Harrison [110, 113, 114]. In this stream of

literature, one approximates the queueing system with a Brownian system, which is simpler

to analyze. Early examples of this approach include Harrison and Wein [121], that studies

an optimal sequencing problem for a criss-cross network, and Harrison and Wein [122],

that studies a multiclass two-station closed queueing network. In both cases, the limiting

Brownian models admit pathwise optimal solutions that have straightforward interpretations

in the original problem. Harrison and Wein show that their policies perform well. Since then

many other researchers followed the heavy traffic approach to study manufacturing and

queueing systems; see for example Wein [211, 212, 214], Chevalier and Wein [72], Krichagina

and Wein [142], Reiman and Wein [178], Kumar [144], Bell and Williams [44], Plambeck

et al. [175], Markowitz and Wein [163], Maglaras and Zeevi [161, 162], Plambeck [176], Ward

and Kumar [208], Reed and Ward [177], Ata and Olsen [30], Tezcan and Dai [198], Dai and

Tezcan [80], and Ward and Armony [207].

The heavy traffic approximations often give rise to singular control problems. Harrison

and Taylor [119] considers the problem of minimizing the discounted cost of control plus

linear holding costs while ensuring that inventory stays non-negative. First, the authors

consider a singular control formulation and show that a single-barrier policy is optimal in

this case. The authors also consider a variation where the control is a step function and

a fixed cost is incurred each time the control is exercised. Harrison and Taylor show that

a control band policy is optimal in this case. Harrison et al. [117] consider the impulse

control problem where the system manager can increase (or decrease) the inventory by any

amount by incurring a fixed plus a proportional cost for displacement. The authors show

that a three-parameter control band policy is optimal. Harrison and Taksar [118] considers

a singular control problem that seeks to minimize discounted costs of control that are linear
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and convex holding costs. The authors establish the optimality of a two-sided barrier policy.

Taksar [195] extends the results to the average cost formulation. Dai and Yao [81, 82] extend

the literature by considering a general impulse (and singular) control problem under the

average and discounted cost objectives, respectively. They show that the impulse (singular)

control problem admits a four-parameter control band (two-sided barrier) policy. In a related

problem, Weerasinghe [210] considers a one-dimensional Brownian motion plus a process of

bounded variation, where the controller can control the drift and variance of the Brownian

motion as well as a bounded variation pushing process. The objective is to minimize the

long-run average holding cost plus linear cost of using the bounded variation process. It

is shown that the optimal solution results in a reflected Brownian motion on a bounded

interval.

Control of queueing systems often boils down to admission or service rate control, which

have been tackled either by heavy traffic approximations or Markov decision processes in the

literature. The heavy traffic approximations often result in drift rate control problems for

Brownian models, which we review next. Krichagina and Taksar [141] and Krichagina et al.

[140] study service rate control problems and establish the optimality of threshold-type poli-

cies. An important antecedent of our work is Ata et al. [26], that studies a (one-dimensional)

drift rate control problem of a reflected Brownian motion on a bounded interval. The formu-

lation of Ata et al. [26] is motivated by a service rate control problem in wireless communica-

tion. Under the average cost criterion, the authors derive a closed-form solution. Although

Ata et al. [26] is closely related to our work methodologically, it differs in important ways,

which render its solution technique incapable in our setting: First, its solution technique

hinges on the absence of state costs, whereas our formulation crucially has state costs, i.e,

holding and backlog costs. Second, Ata et al. [26] considers the drift rate control problem

on a bounded interval which simplifies the solution of the Bellman equation considerably. In

contrast, we consider the problem on the entire real line and part of our analysis involves

choosing the discretionary lower and upper reflecting barriers using the smooth pasting
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technique. Third, our problem requires combining the solutions on the negative and positive

parts of the state space in a smooth fashion while the problem studied in Ata et al. [26] does

not involve such intricacies. Ata [19] considers an admission control problem for a multiclass

single-server queueing system as a model of make-to-order production system with due date

leadtimes and builds on Ata et al. [26] methodologically. Its novel feature is that all but one

class are ”thin”. Consequently, the admission control problem can be approximated by a

drift-rate control problem in the heavy traffic asymptotic regime. Solving this problem yields

a nested threshold policy as the optimal admission control policy. Another methodologically

relevant paper is Ghosh and Weerasinghe [99], that extends Ata et al. [26] by incorporating

holding costs and allowing the system manager to choose the upper barrier endogenously.

The authors establish that an optimal solution exists and that it can be characterized by

solving the Bellman equation. We build on Ghosh and Weerasinghe [99] by considering a

drift rate control problem on the entire real line and derive an explicit solution by solving

the Bellman equation in closed-form.

Ghosh and Weerasinghe [100] extends the earlier work Ghosh and Weerasinghe [99] by

introducing abandonments. Budhiraja et al. [57] studies the joint admission and service rate

control in a queueing network and constructs asymptotically optimal control policies. Ata

and Tongarlak [34] studies the dynamic scheduling in a multiclass queueing system with

abandonments and general costs of delay. It considers convex, concave, and convex-concave

costs of delay. Its solution to the Brownian control problem yields a non-greedy dynamic

index policy as the optimal scheduling policy. Rubino and Ata [181] and Ghamami and Ward

[98] both study a dynamic scheduling problem for a parallel-server system with abandon-

ments and derive the optimal policy by solving the Bellman equation for the approximating

Brownian control problem. Ghamami and Ward [98] also shows that its proposed policy

is asymptotically optimal for the original system. Cao and Yao [63] studies the joint drift

rate and impulse control for a one-dimensional diffusion process subject to the condition

that the diffusion process must remain non-negative. It shows that the optimal solution
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is a three-parameter control band policy with drift control. Weerasinghe [209] studies the

service rate control of a single class G/M/n + GI queue. The objective is to minimize the

discounted convex cost of service rate control plus linear delay and server idling costs and

linear abandonment cost. It is shown that the solution to the Brownian control problem

is of the feedback type. An asymptotically optimal policy is obtained by interpreting this

solution in the context of the original problem. Ata et al. [28] models the gleaning operation

as a novel queueing system and formulates an approximating drift rate control problem. The

authors derive a nested threshold policy as the optimal staffing policy.

As mentioned above, various authors tackled admission or service rate control problems

using Markov decision processes. Crabill [77] studies the control of an M/M/1 queueing

system with a finite number of service rates. Crabill [78] considers a machine repair problem

where a finite number of failure-prone machines require repair once they fail and the repair

facility can decide the speed of the repair. Stidham and Weber [193] considers the problem of

controlling the arrival and service rate of a queueing system with the objective of minimizing

the total expected cost to reach state zero and shows that the optimal policy is monotone

in the number of customers in the system. George and Harrison [97] studies the service rate

control of a Markovian single-server queue with the objective of minimizing the long-run

average holding cost plus cost-of-effort. It solves for the optimal state-dependent service

rate and shows that the service rate is increasing in the queue length. Ata [18] considers

a service rate control problem for a finite buffer Markovian queue motivated by a wireless

communication application. The objective is to minimize the average service rate cost subject

to an upper bound on the blocking probability. The author solves this problem explicitly,

deriving the optimal service rate in closed-form. Ata and Zachariadis [35] extends this

to multiple queues and channel fading, whereby the cost of service rate is modulated by

a Markov chain. The authors derive the optimal service rates for each buffer, explicitly.

Adusumilli and Hasenbein [7] studies the admission (through rejecting customers) and service

rate control in a single-server queueing system. The authors propose an algorithm to solve
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for the optimal policy that minimizes the long-run average holding cost, service control cost,

and customer rejection cost. Kumar et al. [143] studies the dynamic service rate control of a

single-server queue with a finite-state Markov-modulated Poisson arrival process. It is shown

that the optimal service rate is non-decreasing in the number of customers in the system.

The third stream of literature studies the revenue management and pricing of queueing

and manufacturing systems; see Elmaghraby and Keskinocak [85] and Gallego and Topaloglu

[93] for overviews of this literature. The revenue management of manufacturing systems has

been studied using various techniques. Caldentey and Wein [62] considers a single-product

make-to-stock queue that uses two alternative selling channels: long-term contracts and a

spot market of electronic orders. Under heavy traffic conditions, the problem is approximated

by a diffusion-control problem, and analytical approximations are used to derive an effective

policy. The closest paper to our work in this stream of literature is Çelik and Maglaras

[67], that studies the problem of dynamic pricing, lead-time quotation, outsourcing, and

scheduling in a make-to-order manufacturing system. It approximates the original problem

with a drift rate control problem. The solution to the drift rate control problem is used to

propose an effective dynamic control policy. Ata and Olsen [31] is another related paper

that considers the problem of dynamically quoting price and leadtime menus for customers

in a system where two classes of customers compete for a given resource. Customers have

convex–concave delay costs. The authors derive a policy that is asymptotically optimal in

the heavy traffic limit.

Many papers, as done in this chapter, study the revenue management of manufacturing

and queueing systems by mapping them to admission and service rate control problems.

Stidham [191] is among the first papers in this literature. Yoon and Lewis [219] studies

congestion control in a non-stationary queueing system. It is shown that under the infinite

horizon discounted and average reward optimality criteria, for each fixed time, optimal pric-

ing and admission control strategies are non-decreasing in the number of customers in the

system. Vulcano [204] studies the problem of dynamic pricing in a single-class make-to-stock
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queue. The system manager can set the prices and a threshold for the admissible backlog.

For the linear demand model, Vulcano [204] obtains closed-form expressions for the optimal

demand rates, which are then used as an approximate solution to the original problem. An-

other related paper, Xu and Chao [216], studies the production rate control and pricing in a

single-product make-to-stock queueing system. The controller aims to maximize the long-run

average profit, which consists of the sales profit minus holding, backlog, and the linear cost of

production effort. The controller can dynamically choose between a high and a low price and

choose a production rate within a bounded interval. A closed-from solution for the prices is

obtained and an algorithm is proposed to compute the optimal state-dependent price and

production rates. A related paper to this stream of literature is Mendelson [164], that studies

the static pricing of a queueing system with the objective of maximizing social welfare. In a

related setting, Ata and Shneorson [33] studies the problem of dynamic arrival and service

rate control in a state-dependent M/M/1 queueing system with the objective of maximizing

social welfare. Mendelson and Whang [165] extends Mendelson [164] by considering a price

menu design problem where the objective of the controller is to design a mechanism that

is both (socially) optimal and incentive-compatible. Afèche [8] builds on this literature by

considering a price/delay menu design problem with the objective of revenue maximization

for a manufacturing system with two classes of customers. A novel problem formulation

and solution method that combines the achievable region approach with mechanism design

is developed. It is also shown that the work conserving cµ rule, known to be delay cost

minimizing, incentive-compatible, and socially optimal, need not be revenue maximizing.

A strategic delay policy may be optimal. Necessary and sufficient conditions for optimal

strategic delay are also identified.

Other related papers in this literature include Ziya et al. [226, 227], Chao and Zhou [68],

Gayon and Dallery [95], and Afèche et al. [9]. Ziya et al. [226] considers the problem of setting

the optimal static price for a G/G/s/m queueing system. A lower bound on the optimal

price is proved and the optimal price expressions for M/M/1/m and M/GI/s/s systems are
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obtained. It is also shown that the optimal prices are monotone in the buffer size. Whether

the prices are increasing or decreasing depends on whether the offered load is above or below

a certain critical threshold. Ziya et al. [227] extends the results of Ziya et al. [226] to the

multiclass case. Gayon and Dallery [95] studies the pricing and production control in a

single-product make-to-stock manufacturing system with lost sales. Afèche et al. [9] studies

revenue-maximizing tariffs that depend on realized leadtimes for a provider serving multiple

time-sensitive customer types.

3.3 Model

This section advances a model of a make-to-stock manufacturing system selling K different

products to price-sensitive customers. We model the manufacturing system as a multiclass

single server queue. Class k products have a general production time distribution with mean

mk and squared coefficient of variation ν2
sk for k = 1, . . . , K; we refer to µk = m−1

k as the

production rate of class k products. Define m = (mk) and let Sk(t) for k = 1, . . . K denote

the number of class k products manufactured until time t if the system were to continuously

work on class k products up to time t. We model the demand over time as a non-homogeneous

Poisson process whose intensity depends on the prices the system manager charges. To be

specific, demand for product k arrives according to a non-homogeneous Poisson process with

instantaneous rate λk(t) for t ≥ 0 and k = 1, . . . , K. That is, the demand for product k up

to time t is

Nk

(∫ t

0
λk(s)ds

)
,

where Nk is a unit rate Poisson process. We assume that for k = 1, . . . , K, the processes

Nk and Sk are independent of each other. Letting λ(t) = (λk(t)) denote the instantaneous

demand rate vector at time t, we refer to λ = {λ(t) : t ≥ 0} as the instantaneous demand

rate process.
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The system manager chooses the price vector p(t) = (pk(t)) ∈ P for t ≥ 0, where pk(t)

denotes the price of product k at time t for k = 1, . . . , K and P ⊂ RK+ denotes the set of

admissible price vectors.1 We refer to p = {p(t) : t ≥ 0} as the price process. The price-

sensitivity of demand is captured by a non-negative demand function Λ that maps the price

vector to an instantaneous demand rate vector. That is,

λ(t) = Λ(p(t)), t ≥ 0.

The set of admissible instantaneous demand rate vectors, denoted by L, is given as follows:

L =
{

Λ(p) for some p ∈ P
}
.

Note that L ⊂ RK+ because Λ is non-negative by definition. Following Çelik and Maglaras

[67], we make the following regularity assumptions on the demand function.

Assumption 5. The demand function Λ satisfies the following:

(i) It is bounded and continuously differentiable on P.

(i) For each product k = 1, . . . , K, Λk is strictly decreasing in pk for all p ∈ P.

(iii) The set of admissible instantaneous demand rate vectors L is convex.

(iv) There exists a unique inverse demand function Λ-1 : L → P that maps each admissible

instantaneous demand rate vector to the price vector that induces it.

We denote the variable cost of manufacturing for product k by δk for k = 1, . . . , K and

let δ = (δk) denote the associated cost rate vector. Then, we define the profit rate function

π as follows:

π(x) = x′(Λ−1(x)− δ), x ∈ L.

1. We assume that prices can be changed instantaneously at no cost.
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For simplicity, we make the following regularity assumption on the profit rate function.

Assumption 6. The profit rate function π is twice continuously differentiable on L and has

a negative definite Hessian matrix.

An immediate consequence of Assumption 6 is that the profit rate function is strictly con-

cave. Many common demand functions satisfy Assumptions 5-6; see Talluri and Van Ryzin

[197, Section 7.3.3] for examples.

In what follows, we view the instantaneous demand rate process λ as the system man-

ager’s control, from which the price process p can be inferred using the inverse demand

function Λ−1, i.e., p(t) = Λ−1(λ(t)) for t ≥ 0. In order to avoid high backorder costs

(due to long wait times), the system manager may outsource (or reject) customer orders

when the backlog of work is judged excessive, thereby incurring outsourcing (or rejection)

costs. We denote the number of class k orders outsourced (or rejected) up to time t by

Ok(t) for k = 1, . . . , K. Then, letting O(t) = (Ok(t)), we define O = {O(t) : t ≥ 0} to be

K-dimensional outsourcing process. In addition to pricing and outsourcing decisions, the sys-

tem manager makes dynamic scheduling decisions. We allow preemptive-resume scheduling

and focus on head-of-line scheduling policies. Letting Tk(t) denote the cumulative amount

of time devoted to class k until time t, the system manager’s dynamic scheduling policy can

be described by a K-dimensional allocation process T = (Tk). In summary, the dynamic

control policy is denoted by (O, T, λ), where O is the outsourcing process, T is the allocation

process, and λ is the instantaneous demand process.

We let Qk(t) denote the (possibly negative) number of class k products in inventory

at time t. Letting Q(t) =
(
Qk(t)

)
, the process Q = {Q(t), t ≥ 0} is called the inventory

process. Assuming the system is empty initially, under policy (O, T, λ), the inventory process

Q evolves as follows: For k = 1, . . . , K and t ≥ 0,

Qk(t) = Sk(Tk(t)) − Nk

(∫ t

0
λk(s)ds

)
+ Ok(t). (3.1)
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The cumulative idleness process associated with scheduling policy T is defined as follows:

I(t) = t−
K∑

k=1

Tk(t), t ≥ 0. (3.2)

The dynamic control policy (O, T, λ) is said to be feasible if it is non-anticipating and

I, O, T are non-decreasing with I(0) = O(0) = T (0) = 0, (3.3)

I, T are continuous, (3.4)

λ(t) ∈ L for t ≥ 0. (3.5)

We define the state cost function qk : R→ R+ that comprises of holding and backlogging

costs as follows: For k = 1, . . . , K and x ∈ R,

qk(x) =

{
αk x, x ≥ 0,

−βk x, x < 0,

where αk > 0 and βk > 0 are the per unit holding and backorder cost of class k products,

respectively. We denote the cost associated with outsourcing (or rejecting) a class k order

by νk > 0 for k = 1, . . . , K. Given π, qk, and νk for k = 1, . . . , K, we define the cumulative

profit process2 associated with policy (O, T, λ) as follows:

V (t) =

∫ t

0
π(λ(s))ds −

K∑

k=1

∫ t

0
qk(Qk(s))ds −

K∑

k=1

νkOk(t), t ≥ 0. (3.6)

The first term on the right-hand side of (3.6) is a surrogate for the revenue (minus the

variable costs) obtained from selling the products. This term can be interpreted as the

expected revenue obtained from selling the products; see Plambeck et al. [175], Çelik and

Maglaras [67], and Rubino and Ata [181] for similar treatments. The second term captures

2. Since the fixed cost of manufacturing does not depend on the policy, it is excluded from the profit
calculation.
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the holding cost associated with the unsold products and the backorder cost associated with

the unfulfilled orders. The third term is the cost associated with the outsourced orders.

Adopting the long-run average cost criterion, the system manager seeks to find the policy

(O, T, λ) so as to

maximize liminf
t→∞

1

t
E
[
V (t)

]
subject to (3.1)− (3.5).

Unfortunately, this formulation is not analytically tractable. Following Harrison [110,

114], Section 3.4 considers a sequence of closely related systems in the heavy-traffic regime

and formulates the approximating Brownian control problem, which is tractable analytically.

To facilitate the analysis to follow, ignoring the randomness in the system, consider the

following static planning problem: Find the instantaneous demand rate vector λ so as to

maximize π(λ) subject to λ ∈ L. (3.7)

This formulation seeks to maximize the profit rate subject to the constraint λ ∈ L that

ensures the instantaneous demand rate vector λ is achievable. The following assumption is

crucial in deriving the approximating Brownian control problem and states that the profit

maximizing demand rate puts the system in heavy traffic.

Assumption 7 (Balanced Loading Assumption). The static planning problem (3.7) has a

unique optimal solution λ? ∈ interior(L). Moreover,
∑K
k=1 λ

?
kmk = 1.

Since L ⊂ RK+ , it follows from Assumption 7 that λ?k > 0 for k = 1, . . . , K. We refer

to λ? as the nominal instantaneous demand rate. This name reflects the fact that λ? is

derived from an idealized planning problem in which stochastic variability is suppressed. In

the presence of such variability, it may be desirable for actual instantaneous demand rate to

vary around the nominal rates λ? depending on system status, which is the topic of the next

section.

111



3.4 Approximating Brownian Control Problem

In Brownian approximations, one considers a sequence of closely related systems indexed by

a parameter n, whose formal limit is the Brownian control problem. We attach a superscript

n to various quantities of interest corresponding to the n-th system in this sequence. The

asymptotic regime we focus on is the one where both the demand and system capacity grow

with n. To be specific, we assume that for all n ∈ N and some η ∈ RK+ ,

Λn(x) = nΛ(x), x ∈ P , (3.8)

µnk = nµk +
√
nηk, k = 1, . . . , K. (3.9)

It is straightforward to show using (3.8) that for n ∈ N and x ∈ L,

(Λn)-1(nx) = Λ-1(x) and πn(nx) = nπ(x). (3.10)

It is evident from (3.7) and (3.10) that if the system manager were to ignore the randomness

in the system, thus ignore all congestion-related and backlog-related costs, she would choose

the instantaneous demand rate of nλ?. However, in response to the system state, she may

benefit from (dynamic) adjustments to the instantaneous demand rate. Moreover, the system

inventory is of second order relative to the system size in the heavy-traffic asymptotic regime.

Therefore, we focus our attention on instantaneous demand rate vectors of the following form:

For all n ∈ N and some ζ : [0,∞)→ RK ,

λn(t) = nλ? +
√
nζ(t), t ≥ 0; (3.11)

see Ata [19], Çelik and Maglaras [67], and Ata et al. [28] for similar treatments.

In other words, we study a large balanced-flow system for large n. For such systems,

the inventory and outsourcing processes are expected to be of order
√
n. Thus, we scale

them accordingly. To be specific, for t ≥ 0, we define the scaled inventory and outsourcing
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processes as follows:

Zn(t) =
Qn(t)√

n
and Rn(t) =

On(t)√
n
. (3.12)

For k = 1, . . . , K, let ρk = λ?k/µk denote the proportion of time the system should devote

to class k. We define the centered and scaled allocation and the scaled idleness processes for

product k = 1, . . . , K as follows:

Y nk (t) =
√
n(ρkt − Tn(t)) and Un(t) =

√
nIn(t), t ≥ 0. (3.13)

We assume that the outsourcing cost νnk , holding cost αnk , and backorder cost βnk vary with

n as follows: For k = 1, . . . , K,

νnk =
rk√
n
, αnk =

hk√
n
, and βnk =

bk√
n
, (3.14)

where rk, hk, and bk are given constants. It is then immediate from (3.14) that for k =

1, . . . , K and x ∈ R,

qnk (x) =
gk(x)√
n
. (3.15)

where

gk(x) =





hk x, x ≥ 0,

−bk x, x < 0.

Moreover, we define the cumulative cost process as the deviation of the cumulative profit

process V n from that in the corresponding deterministic system, nπ(λ?)t, which is an upper
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bound on system performance. That is,

ξn(t) = nπ(λ?)t− V n(t), t ≥ 0. (3.16)

In a similar fashion to Harrison [110], Appendix C.2.1 formally derives the approximating

Brownian control problem as n gets large. In the approximating Brownian control problem,

the performance-related processes ξn, Zn, Y n, Un, and Rn are replaced with their formal

limits ξ, Z, Y , U , and R, which jointly satisfy the following for t ≥ 0:

ξ(t) =

∫ t

0
ζ(s)′Hζ(s)ds +

K∑

k=1

∫ t

0
gk(Zk(s))ds +

K∑

k=1

rkRk(t), (3.17)

Zk(t) = Xk(t) −
∫ t

0
ζk(s)ds − µkYk(t) + Rk(t), k = 1, . . . , K, (3.18)

U(t) =
K∑

k=1

Yk(t), (3.19)

U,R are nondecreasing with U(0) = R(0) = 0, (3.20)

where H = −∇2π(λ?)/2 and Xk = {Xk(t), t ≥ 0} are independent Brownian motions with

infinitesimal drift ρkηk and infinitesimal variance σ2
k = λ?k(1 + ν2

sk).

Hereafter, we refer to (3.18)-(3.20) as the Brownian formulation and call the adapted

control (R, Y, ζ) admissible if the corresponding state process Z satisfies

limsup
t→∞

E[‖Z(t)‖]
t

= 0, (3.21)

where ‖ · ‖ denotes the Euclidean norm. The approximating Brownian Control Problem

(BCP) can now be stated as follows: Choose the adapted control (R, Y, ζ) to

minimize limsup
t→∞

1

t
E
[
ξ(t)

]
subject to (3.17)− (3.21). (3.22)

As mentioned earlier, we consider a sequence of closely related systems indexed by n,
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whose formal limit is the Brownian control problem. The original control problem can

be viewed as a specific element of this sequence of problems, which is determined by the

particular choice of the system parameter n. Therefore, the final step in the Brownian ap-

proximation is to choose a system parameter n, which will be used to unscale the processes.

The underlying assumption of the Brownian approximation is that the production and in-

stantaneous demand rates (for the original problem of interest modeled in Section 3.3) are

large enough so that various (scaled) processes of the original system can be approximated

by the corresponding processes of the Brownian control problem. Eventually, one uses the

same system parameter to interpret the solution to the Brownian control problem in the

context of the original control problem.

We conclude this section by discussing the dynamic pricing policy prescribed by the

BCP (3.22). Recall from (3.11) that the instantaneous demand rate λn(t) is of the form

λn(t) = nλ? +
√
nζ(t). It follows from Equation (3.8) and the one-to-one correspondence

between the instantaneous demand rate process and the price process that the proposed

price process in the n-th system is equal to the nominal price vector, Λ-1(λ?), plus a term

of order 1/
√
n. To be specific, we have that

pn(t) ' Λ-1(λ?) +
∇Λ-1(λ?) ζ(t)√

n
, t ≥ 0, (3.23)

where ∇Λ-1(λ?) denotes the Jacobian of Λ-1 evaluated at λ?; see Appendix C.2.2 for a

derivation of (3.23).

3.5 Equivalent Workload Formulation

Although the Brownian control problem advanced in Section 3.4 is much simpler than the

original control problem it approximates, its solution is not easy since it is a multidimensional

control problem. This section develops a one-dimensional formulation that is equivalent to

the Brownian control problem and is considerably more tractable. To this end, we define
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the one-dimensional workload process W as follows:

W (t) =
K∑

k=1

mkZk(t), t ≥ 0, (3.24)

which represents the total (scaled) inventory (or backlog) in the system at time t measured

in hours of total work for the server. Pre-multiplying Equation (3.18) by m′ gives

W (t) = B(t) −
∫ t

0
θ(s)ds − U(t) + L(t), t ≥ 0,

that describes the evolution of the workload process, where for t ≥ 0,

B(t) =
K∑

k=1

mkXk(t), θ(t) =
K∑

k=1

mkζk(t), U(t) =
K∑

k=1

Yk(t), L(t) =
K∑

k=1

mkRk(t). (3.25)

We refer to L = {L(t) : t ≥ 0} as the effective outsourcing process and refer to θ = {θ(t) :

t ≥ 0} as the effective drift rate control process. One can interpret U(t) as the cumulative

(scaled) idleness by time t and interpret L(t) as the cumulative (scaled) amount of work

outsourced by time t. Defining the indices j? and l? as

j? = argmin
{ hk
mk

: k = 1, . . . , K
}

and l? = argmin
{ bk
mk

: k = 1, . . . , K
}
,

we let h? = hj?/mj? and b? = bl?/ml? and define the effective holding cost function as

follows: For w ∈ R,

h(w) =





h?w, w ≥ 0,

−b?w, w < 0.
(3.26)

The effective holding cost function h can be interpreted as the state cost associated with the

following policy: If workload is positive, it is held as inventory of product j?, the cheapest

product to hold inventory per unit of work. If workload is negative, it is held as backordered
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requests of product l?, the cheapest product to have backordered requests per unit of work;

see Wein [213] for a similar interpretation. Also, define the effective outsourcing cost and

the corresponding class as follows:

i? = argmin
{ rk
mk

: k = 1, . . . , K
}

and κ =
ri?

mi?
. (3.27)

The effective outsourcing cost κ is the outsourcing cost associated with the greedy outsourc-

ing policy that only outsources product i?, which is the cheapest product to outsource in the

sense that it has the minimal outsourcing cost per unit of work outsourced. Moreover, we

define the cost function c(x) associated with the effective drift rate x and the corresponding

optimal drift rate vector ζ?(x) as follows: For x ∈ R,

c(x) = min
{
ζ ′Hζ : m′ζ = x, ζ ∈ RK

}
and ζ?(x) = argmin

{
ζ ′Hζ : m′ζ = x, ζ ∈ RK

}
.

The next lemma provides closed-form expressions for c and ζ?.

Lemma 7. For x ∈ R, we have that c(x) =
1

m′H -1m
x2 and ζ?(x) =

H -1m

m′H -1m
x.

The Equivalent Workload Formulation (EWF) is then formulated as follows: Choose the

adapted control (L,U, θ) to

minimize limsup
t→∞

1

t
E
[ ∫ t

0
c(θ(s))ds +

∫ t

0
h(W (s))ds + κL(t)

]
(3.28)

subject to

W (t) = B(t) −
∫ t

0
θ(s)ds − U(t) + L(t), (3.29)

L,U are nondecreasing with L(0) = U(0) = 0, (3.30)

where B is a Brownian motion with infinitesimal drift µ =
∑K
k=1mkρkηk and infinitesimal

variance σ2 =
∑K
k=1m

2
kσ

2
k. We call the adapted control (L,U, θ) admissible if it satisfies
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(3.29)-(3.30) and

limsup
t→∞

E[|W (t)|]
t

= 0. (3.31)

We refer to W as the workload process associated with control (L,U, θ). Proposition 5

establishes the equivalence of the EWF (3.28)-(3.30) and the BCP (3.22). As a preliminary

to Proposition 5, we define the optimal workload configuration (or, the lifting map) ∆ : R→

RK by

∆k(w) =





w
mk
, if k = j? and w ≥ 0,

w
mk
, if k = l? and w < 0,

0, otherwise,

(3.32)

for k = 1, . . . , K. The optimal workload configuration distributes the workload as follows:

If workload is positive, it is held as inventory of product j?, the cheapest product to hold

inventory per unit of work. If workload is negative, it is held as backordered requests of

product l?, the cheapest product to have backordered requests per unit of work.

Proposition 5. The EWF (3.28)-(3.30) is equivalent to the BCP (3.22) in the following

sense:

(i) Suppose that (R, Y, ζ) is an admissible control for the BCP (3.22) with Brownian mo-

tion X and state process Z. Then (L,U, θ) defined by (3.19) and (3.25) is an admissible

control for the EWF (3.28)-(3.30) with Brownian motion B given by (3.25) and state

process W given by (3.24). Moreover, the cost of control (L,U, θ) for the EWF (3.28)-

(3.30) is less than or equal to the cost of control (R, Y, ζ) for the BCP (3.22).

(ii) Suppose that (L,U, θ) is an admissible control for the EWF (3.28)-(3.30) with Brownian

motion B and state process W . Then, there exists a Brownian motion X that satisfies

(3.25). Furthermore, there exists (R, Y, ζ) that is an admissible control for the BCP

(3.22) with Brownian motion X and state process {∆(W (t)) : t ≥ 0}, where ∆ is given
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by (3.32). These two policies have the same cost.

3.6 Solution to the Equivalent Workload Formulation

In this section, we propose an optimal solution to the EWF (3.28)-(3.30). To minimize

technical complexity, we restrict our attention to stationary Markov control policies. That

is, the (effective) drift rate θ(t) chosen at any time t is assumed to depend on past history

only through the workload W (t) at time t. To reflect this assumption, in what follows, we

write θ(W (t)) as opposed to θ(t). The optimal outsourcing and idling policies we derive can

be viewed as a barrier policy, which we define in Section 3.6.1.

3.6.1 Barrier Policies

Following Harrison [115, Section 7.7], we define a barrier policy as follows.

Definition 4 (Barrier Policy). Given policy parameters l, u ∈ R with l < u, we call (L,U, θ)

a barrier policy if it is an admissible control for the EWF (3.28)-(3.30), and it satisfies

W (t) ∈ [l, u],

∫ t

0
1{W (s)>l}dL(s) = 0 and

∫ t

0
1{W (s)<u}dU(s) = 0, t ≥ 0. (3.33)

Processes L and U enforce the lower and upper reflecting barriers at l and u, respectively.

Let C2[l, u] denote the space of functions f : [l, u]→ R that are twice continuously differen-

tiable up to the boundary (i.e., f is twice continuously differentiable on the interior of the

interval, and its first and second derivatives both approach finite limits at the end points).

For a given real-valued function θ(·), define the differential operator Γθ as follows:

Γθf(w) =
1

2
σ2f ′′(w) + µf ′(w) − θ(w)f ′(w), w ∈ (l, u).
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Consider γ ∈ R and f ∈ C2([l, u]) and assume that they jointly satisfy

Γθf(w) + c
(
θ(w)

)
+ h(w) = γ, w ∈ (l, u), (3.34)

subject to the boundary conditions

f ′(l) = −κ and f ′(u) = 0. (3.35)

Proposition 6 provides a useful identity and will help motivate the Bellman equation; see

Appendix C.3 for its proof.

Proposition 6. Consider the barrier policy (L,U, θ) with a lower barrier at l and an upper

barrier at u. If γ ∈ R and f ∈ C2([l, u]) jointly satisfy (3.34)-(3.35), then

lim
t→∞

1

t
E
[ ∫ t

0
c(θ(W (s)))ds +

∫ t

0
h(W (s))ds + κL(t)

]
= γ.

3.6.2 Bellman Equation

Proposition 6 and the smooth pasting arguments (see e.g., Harrison [115, Section 7.7]) mo-

tivate the following Bellman equation: find l, u, γ ∈ R and f ∈ C2([l, u]) that satisfy

min
x∈R

{1
2σ

2f ′′(w) + µf ′(w) − xf ′(w) + c(x) + h(w)
}

= γ, w ∈ (l, u), (3.36)

subject to the boundary conditions

f ′(l) = −κ and f ′(u) = 0, (3.37)

and the smooth pasting conditions

f ′′(l) = 0 and f ′′(u) = 0. (3.38)
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Motivated by Proposition 6, we interpret γ as a guess at the minimum average cost and

interpret l and u as the lower and upper reflecting barriers to be imposed on the workload

process. The unknown function f is often called the relative value function in average cost

dynamic programming.

The Bellman equation is introduced primarily to motivate our solution approach; the

properties of the Bellman equation that we require will be proved from first principles.

We shall develop an explicit solution (l, u, γ, f) for this Bellman equation, and define the

candidate policy as the one that chooses in each state w the (effective) drift rate θ(w) equal

to the minimizer x in (3.36). Then, we will prove that this candidate policy is optimal.

As a preliminary to analyzing (3.36)-(3.38), following Ata et al. [26, Section 2], define

the convex conjugate φ of c, and its derivative as follows:

φ(y) = sup
x∈R

{
yx− c(x)

}
and ψ(y) = argmax

x∈R

{
yx− c(x)

}
, y ∈ R. (3.39)

The following lemma provides closed-form expressions for φ and ψ.

Lemma 8. For y ∈ R, we have that

φ(y) =
m′H -1m

4
y2 and ψ(y) =

m′H -1m

2
y. (3.40)

Since Equation (3.36) does not involve the unknown function f itself, it is really a first-

order equation. Setting v(w) = f ′(w) and recalling the definition (3.39), we can rewrite

(3.36) as

1
2σ

2v′(w) + µv(w) + h(w) − φ
(
v(w)

)
= γ, w ∈ (l, u). (3.41)

Then, using Lemma 8 and rearranging the terms in (3.41), we rewrite the Bellman equation
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as follows: find l, u, γ ∈ R and v ∈ C1[l, u] that satisfy3

v′(w) =
m′H -1m

2σ2
v2(w) − 2µ

σ2
v(w) +

2(γ − h(w))

σ2
, w ∈ (l, u), (3.42)

subject to the boundary conditions

v(l) = −κ and v(u) = 0, (3.43)

and the smooth pasting conditions

v′(l) = 0 and v′(u) = 0. (3.44)

Equation (3.42) is a Riccati equation; see Appendix C.1 for a brief overview of Riccati

equations.

3.6.3 Solution to the Bellman Equation

To solve the Bellman equation, we proceed in three steps. First, we use the boundary

and smooth pasting conditions (3.43)-(3.44) to express l, u in terms of γ and show that

l < 0 < u. Second, for each γ, we solve Equation (3.42) on [l, 0] and [0, u], separately. This

step exploits the special structure of the Bellman equation, i.e., the solution of the Riccati

equation. Finally, we use the desired continuity of v(w) at w = 0 to pin down γ, which

completes the solution of the Bellman equation.

To this end, we substitute v(l) = −κ and v′(l) = 0 into Equation (3.42) for w = l to

obtain

γ = h(l) − µκ − m′H -1m

4
κ2. (3.45)

3. Note that C1[l, u] denotes the space of functions v : [l, u] → R that are continuously differentiable up
to the boundary (i.e., v is continuously differentiable on the interior of the interval, and its first derivative
approaches finite limits at the end points).
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Similarly, substituting v(u) = v′(u) = 0 into Equation (3.42) for w = u gives

γ = h(u). (3.46)

Combining (3.45) and (3.46) gives

h(u) = h(l) − µκ − m′H -1m

4
κ2. (3.47)

The next result uses Equations (3.45)-(3.47) to obtain useful structural insights.

Lemma 9. Assume l, u, γ ∈ R and v ∈ C1([l, u]) jointly satisfy (3.42)-(3.44). Then, we

have that γ > 0 and

l =
−1

b?
(
γ + µκ+

m′H -1m

4
κ2) < 0 and u =

γ

h?
> 0. (3.48)

Next, we split the analysis of the Bellman equation (3.42)-(3.44) into two sub-intervals:

[l, 0] and [0, u]. We fix γ and solve the Bellman equation (3.42)-(3.44) on each sub-interval,

separately. Then, we use the continuity of v at zero to pin down γ. To do so, fix γ ≥ 0 and

define4

lγ =
−1

b?
(
γ + µκ+

m′H -1m

4
κ2) < 0 and uγ =

γ

h?
≥ 0.

Substituting (3.45) into (3.42) and focusing on the interval (lγ , 0] yields the following:

v′(w) =
m′H -1m

2σ2

(
v2(w)− κ2) − 2µ

σ2

(
v(w) + κ

)
+

2
(
h(lγ)− h(w)

)

σ2
, w ∈ (lγ , 0], (3.49)

4. Although Lemma 9 proves that the average cost parameter γ that solves the Bellman equation (3.42)-
(3.44) is strictly positive, we do not assume this apriori and allow γ ≥ 0 for mathematical convenience.
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subject to the boundary condition

v(lγ) = −κ. (3.50)

It is straightforward to verify by substituting (3.50) into (3.49) for w = lγ that the solution

to (3.49)-(3.50) satisfies the smooth pasting condition v′(lγ) = 0.

Similarly, substituting (3.46) into (3.42) and focusing on the interval [0, uγ) yields the fol-

lowing:

v′(w) =
m′H -1m

2σ2
v2(w) − 2µ

σ2
v(w) +

2
(
h(uγ)− h(w)

)

σ2
, w ∈ [0, uγ) (3.51)

subject to the boundary condition

v(uγ) = 0. (3.52)

It is again straightforward to verify by substituting (3.52) into (3.51) for w = uγ that the

solution to (3.51)-(3.52) satisfies the smooth pasting condition v′(uγ) = 0.

It is straightforward to show that (3.49)-(3.50) has a unique continuously differentiable

solution, denoted by v-γ : [lγ , 0]→ R for each γ ≥ 0. Similarly, for γ ≥ 0, (3.51)-(3.52) has a

unique continuously differentiable solution, denoted by v+γ : [0, uγ ] → R.5 Lemma 10 shows

that v-γ(0) is strictly increasing in γ and v+γ(0) is strictly decreasing in γ; see Appendix C.3

for its proof.

Lemma 10. We have the following:

(i) v-γ(0) is continuous and strictly increasing in γ with v-0(0) < 0 and lim
γ→∞ v

-
γ(0) = ∞.

(ii) v+γ(0) is continuous and strictly decreasing in γ with v+0(0) = 0 and lim
γ→∞ v

+
γ(0) = −∞.

5. Equations (3.49)-(3.50) and (3.51)-(3.52) belong to a class of Riccati differential equations that admits
unique C1 solutions; see e.g., Zaitsev and Polyanin [221, Section 1.2.2].
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v-γ (0)

v+γ (0)

γ?

Figure 3.1: v-γ(0) and v+γ(0) as a function
of the average cost γ.
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Figure 3.2: Airy functions of the first and
second kind.

The following corollary is immediate from Lemma 10 and the unique γ characterized in

the corollary is illustrated in Figure 3.1. Corollary 3 is crucially used in solving the Bellman

equation (3.42)-(3.44).

Corollary 3. There exists a unique γ? such that v-γ?(0) = v+γ?(0).

As mentioned earlier, Equations (3.49)-(3.50) and (3.51)-(3.52) both fall in the class of

Riccati differential equations; e.g., see Zaitsev and Polyanin [221, Section 1.2]. Next, we use

the structure of the Riccati differential equations to obtain closed-form expressions for v-γ

and v+γ . To facilitate our analysis, define Ai : R→ R and Bi : R→ R as

Ai(w) =
1

π

∫ ∞

0
cos(1

3x
3 + xw)dx, w ∈ R.

Bi(w) =
1

π

∫ ∞

0

(
cos(−1

3x
3 + xw) + sin(1

3x
3 + xw)

)
dx, w ∈ R.

Functions Ai and Bi are referred to as the Airy functions of the first and second kind,

respectively. The Airy functions of the first and second kind are depicted in Figure 3.2.

The Airy functions oscillate on (−∞, 0) and are monotone on (0,∞).6 As a preliminary to

6. The Airy functions can be expressed in terms of the Bessel functions and the modified Bessel functions
of order 1/3; see e.g., Abramowitz and Stegun [4, Section 10.4].
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discussing closed-form expressions for v-γ and v+γ , define the functions

z̄(w) =
(
m′H -1mb?σ2)−2/3 (

µ2 −m′H -1m (b?w + b?lγ + γ)
)
, w ∈ [0,−lγ ]

ẑ(w) =
(
m′H -1mh?σ2)−2/3 (

µ2 −m′H -1mh?w
)
, w ∈ [0, uγ ].

Similarly, define the constants

C̄1 =
Bi′(z̄(0)) + Bi(z̄(0))(m′H -1mb?σ2)−1/3(1

2m
′H -1mκ+ µ)

Ai(z̄(0))Bi′(z̄(0))− Ai′(z̄(0))Bi(z̄(0))

C̄2 =
−Ai′(z̄(0))− Ai(z̄(0))(m′H -1mb?σ2)−1/3(1

2m
′H -1mκ+ µ)

Ai(z̄(0))Bi′(z̄(0))− Ai′(z̄(0))Bi(z̄(0))

Ĉ1 =
Bi′(ẑ(0))− Bi(ẑ(0))

(
m′H -1mh?σ2

)−1/3
µ

Ai(ẑ(0))Bi′(ẑ(0))− Ai′(ẑ(0))Bi(ẑ(0))

Ĉ2 =
−Ai′(ẑ(0)) + Ai(ẑ(0))

(
m′H -1mh?σ2

)−1/3
µ

Ai(ẑ(0))Bi′(ẑ(0))− Ai′(ẑ(0))Bi(ẑ(0))

and define the functions

ȳ(w) = C̄1 exp(−µw/σ2) Ai(z̄(w)) + C̄2 exp(−µw/σ2) Bi(z̄(w)), w ∈ [0,−lγ ]

ŷ(w) = Ĉ1 exp(µw/σ2) Ai(ẑ(w)) + Ĉ2 exp(µw/σ2) Bi(ẑ(w)), w ∈ [0, uγ ].

Lemma 11 provides closed-form expressions for v-γ and v+γ in terms of the Airy functions; see

Appendix C.3 for its proof.

Lemma 11. We have the following closed form solutions for v-γ and v+γ:

v-γ(w) = − 2σ2

m′H -1m

ȳ′(w − lγ)

ȳ(w − lγ)
,w ∈ [lγ , 0],

v+γ(w) =
2σ2

m′H -1m

ŷ′(uγ − w)

ŷ(bγ − w)
,w ∈ [0, uγ ].

The parameter γ?, characterized in Corollary 3, can be computed using the closed-form

expressions for v-γ and v+γ provided in Lemma 11. By Lemma 10, this computation can be
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done using a simple line search. Given γ?, we define

v(w) =




v-γ?(w), w ∈ [lγ? , 0],

v+γ?(w), w ∈ (0, uγ?].
(3.53)

Proposition 7 shows that (lγ? , uγ? , γ
?, v) is the unique solution to the Bellman equation

(3.42)-(3.44); see Appendix C.3 for its proof.

Proposition 7. The function v is non-positive, strictly increasing, and continuously dif-

ferentiable on [lγ? , uγ? ]. Moreover, (lγ? , uγ? , γ
?, v) is the unique solution to (3.42)-(3.44).

To solve the Bellman equation (3.36)-(3.38), define

f(x) =

∫ w

lγ?
v(x)dx, w ∈ [lγ? , uγ? ], (3.54)

where v is given by (3.53). The following corollary provides the unique solution to the

Bellman equation (3.36)-(3.38).

Corollary 4. The function f is strictly decreasing, strictly convex, and twice continuously

differentiable. Moreover, (lγ? , uγ? , γ
?, f) solves the Bellman equation (3.36) subject to the

boundary condition (3.37) and the smooth pasting condition (3.38). Furthermore, f is unique

up to an additive constant.

3.6.4 Candidate Policy and Its Optimality for the Equivalent Workload

Formulation

Our candidate policy is the barrier policy with the lower barrier at lγ? , the upper barrier

at uγ? , and the (effective) drift rate that is the minimizer of the left-hand side of Equation
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(3.36) at every w ∈ [lγ? , uγ? ], i.e.,

θ(w) =
m′H -1m

2
v(w), w ∈ [lγ? , uγ? ], (3.55)

where v is given by (3.53). The candidate policy is stationary and its (effective) drift rate

is non-positive, continuous, and strictly increasing in the workload. Under the candidate

policy, the workload process W evolves as a diffusion process with a strictly increasing

state-dependent drift rate and reflecting barriers at lγ? and uγ? . Theorem 2 shows that the

candidate policy is optimal for the EWF (3.28)-(3.30); see Appendix C.3 for its proof.

Theorem 2. The barrier policy with the lower barrier at lγ?, the upper barrier at uγ?, and

the (effective) drift rate control θ(·) given by (3.55) is optimal for the EWF (3.28)-(3.30)

and it has a long-run average cost of γ?.

3.7 Proposed Policy and Its Performance

This section proposes a dynamic control policy for the problem introduced in Section 3.3

by interpreting the solution to the EWF (3.28)-(3.30) in the context of the original control

problem. The proposed policy has three components: pricing, outsourcing, and scheduling.

To describe the policy, recall that we consider a sequence of systems indexed by n, whose

formal limit is the BCP (3.22). The original control problem introduced in Section 3.3

is a specific element of this sequence of problems, which is determined by the particular

choice of n. Therefore, in order to describe the proposed policy, first, we need to choose the

system parameter n that will be used to unscale the processes of interest. Given n, define

W = {W(t) : t ≥ 0} as the unscaled, or nominal, workload process associated with the

control problem introduced in Section 3.3. To be specific, W(t) =
∑K
k=1mkQ

n
k(t) for t ≥ 0.
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Pricing Policy. Given the nominal workload process W, we choose the price vector

p(t) = Λ-1(λ?) +
∇Λ-1(λ?)√

n

H -1m

2
v
(
lγ?∨(

W(t)√
n
∧uγ?)

)
, t ≥ 0, (3.56)

where v is given by (3.53) and ∇Λ-1(λ?) denotes the Jacobian of Λ-1 evaluated at λ?.

This pricing policy follows from Theorem 2, Lemma 7, and Equation (3.23). The term

lγ?∨((W(t)/
√
n)∧uγ?), which projects W(t)/

√
n onto [lγ? , uγ?], enables us to prescribe a price

for any value of the nominal workload process. Note that although the workload process

W in the equivalent workload formulation lives in [lγ? , uγ?], the scaled nominal workload

process W(t)/
√
n in the original control problem may leave the interval [lγ? , uγ?], albeit

with vanishing likelihood as the system gets large. Recall that the optimal effective drift

rate control θ is non-positive and strictly increasing in the workload. Thus, our proposed

pricing policy induces an effective demand rate
∑K
k=1 λk(t)mk that is strictly increasing in

the workload and less than or equal to
∑K
k=1 λ

?
kmk = 1.

Outsourcing Policy. Outsource orders of product i? when the nominal workload W is

less than or equal to the outsourcing threshold ln =
√
nlγ? < 0.

The optimal solution to the EWF (3.28)-(3.30) imposes a lower barrier on the workload

process W at lγ? using the effective outsourcing process L. We interpret this in the context

of the original control problem as stated above. The intuition behind this policy is that

when the backlog is so large that W < ln, it is worthwhile to outsource orders as opposed

to letting the backlog grow further. Furthermore, the system manager only outsources the

”cheapest” product, i.e., product i?; see Equation (3.27).

The approximating Brownian control problem sets all but one of the inventory levels to

zero (whenever the total workload is positive). As articulated in Harrison [111], the zeros in

the Brownian control problem correspond to positive but small inventory levels, e.g., safety

stocks, for further details see Harrison [111, 112], Harrison and López [116], Maglaras [160],

and Ata and Kumar [27]. Therefore, as is customary in the heavy traffic literature, we will

129



put small safety stocks in various buffers. The safety stock for buffer k is denoted by sk for

k = 1, . . . , K; the values sk can be calibrated via simulation as done in Wein [213].

Scheduling Policy. Interpreting the solution to the equivalent workload formulation in the

context of the original control problem, we propose idling the server whenever the nominal

workload W exceeds the idling threshold un =
√
nuγ? and Qnk ≥ sk for k = 1, . . . , K.

Whenever the server is working, it first prioritizes those products for which Qnk < sk, i.e.,

the inventory is below the safety stock. Among such products, the system manager prioritizes

them in the descending order of bk/mk. Finally, if Qnk ≥ sk for all k = 1, . . . , K and W < un,

i.e., the server is working, then the server focuses solely on product j?, i.e., the cheapest

product to hold in inventory.

Next, we consider an example that illustrates the effectiveness of the proposed policy.

Following Wein [213, Section 10], we consider a manufacturing system with K = 3 products.

We assume the production times are exponentially distributed with production rates µ1 =

100, µ2 = 100/2, and µ3 = 100/3; the production rates in our example are hundred times the

corresponding values in Wein [213]. Following Wein [213], we take the holding and backorder

costs to be α1 = α2 = α3 = 1 and β1 = β2 = β3 = 2, respectively. We take the outsourcing

costs to be higher but in the same order as the holding and backorder costs. To be specific,

we take ν1 = ν2 = ν3 = 3. Following Çelik and Maglaras [67], we use a multinomial logit

demand model. We assume customers arrive according to a Poisson process with rate 100

and choose to order product k with probability

P(Ordering Product k) =
exp(ak − dkpk(t))

1 +
∑3
i=1 exp(ai − dipi(t))

,

where a1 = 1.87, a2 = 2.46, a3 = 0.13, d1 = 1, d2 = 2, and d3 = 1/2. The nominal instan-

taneous demand rate under this demand model is λ? = (30, 15, 10) and the corresponding

average server utilization is
∑3
k=1 λ

?
k/µk = 0.9. Demand model primitives ak and dk are

chosen such that the nominal instantaneous demand rate λ? is 100 times the demand rate
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in Wein [213].7

We take the system parameter to be n = 100. As done by Wein [213], for simplicity,

we focus on safety stock parameters of the form s1 = s2 = s3. Throughout the simulation

study, we observe that the optimal (common) safety stock parameter is s1 = s2 = s3 = 1.

Table 3.1 reports the simulation results. Our proposed policy is compared against two other

policies. The first policy is the optimal joint dynamic pricing, outsourcing, and scheduling

policy that is computed using the dynamic programming approach numerically. The second

policy, indicated by ”Static Policy”, uses the static price Λ-1(λ?) alongside the outsourcing

and scheduling policies proposed in Section 3.7. Each policy is simulated 100 times for 106

time units starting from an initial inventory of zero. In order to assess the steady state

performance of the system, the initial 20% of each run is discarded. The values inside

the parenthesis in Table 3.1 indicate the 95% confidence interval. Table 3.1 shows that

the dynamic pricing policy is effective and has a small optimality gap. Moreover, the gap

between the static policy and the proposed policy (that uses dynamic prices) is substantial,

which highlights the value of dynamic pricing.

Table 3.1: Simulation output.

Profit (per unit of time) Optimality Gap

Utilization Static Policy Proposed Policy Optimal Policy Static Policy Proposed Policy

0.90 116.75 (±0.03) 120.66 (±0.03) 122.72 4.86% 1.68%
0.95 114.04 (±0.03) 120.03 (±0.03) 122.09 6.82% 1.69%
0.97 113.00 (±0.03) 119.74 (±0.03) 121.82 7.24% 1.70%
0.99 112.14 (±0.03) 119.25 (±0.03) 121.54 7.73% 1.88%

Next, we decrease the production rates with the same factor to achieve server utilization

values of 0.95, 0.97, and 0.99. Table 3.1 shows that the gap between the static and proposed

policies grows with utilization, which shows that the value of dynamic pricing increases with

the utilization of the system.

7. These values of λ?k and µk for k = 1, 2, 3 are consistent with Wein [213] in the heavy traffic limit,
because Wein [213] scales time by n = 100 to arrive at the approximating Brownian control problem whereas
we scale the instantaneous demand and service rates by n = 100.
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Finally, to gain a better understanding of the parameters impacting the optimality gap

of the static and proposed policies, we take the demand parameters d1 = d̄, d2 = 2d̄, and

d3 = d̄/2, where d̄ is a tunable parameter. Tables 3.2 and 3.3 depict the impact of d̄ and

the (common) outsourcing cost on the optimality gap of the static and proposed policies,

respectively. In these simulations, server utilization is maintained at 0.90. We observe that

as the price sensitivity of demand increases the proposed policy significantly outperforms the

static one, although both their performances degrade relative to the optimal policy computed

numerically by dynamic programming. Moreover, the gap between the static and proposed

policies grows with the outsourcing cost, which shows that the dynamic pricing policy is

more effective when the outsourcing cost is higher since dynamic pricing can decrease the

chances of an outsourcing event by reducing the effective demand rate when backlog is high.

Table 3.2: Opt. gap of the static policy.

Outsourcing Cost

d̄ 1 2 3 4

1 1.69% 3.32% 4.86% 6.01%
2 4.48% 10.19% 14.45% 16.31%
3 8.12% 18.19% 24.49% 24.98%

Table 3.3: Opt. gap of the proposed policy.

Outsourcing Cost

d̄ 1 2 3 4

1 1.27% 1.64% 1.68% 1.69%
2 2.50% 3.12% 3.12% 3.13%
3 3.81% 4.30% 4.30% 4.30%

Table 3.4: Optimality gaps.

3.8 Concluding Remarks

This chapter studies the joint dynamic pricing, outsourcing, and scheduling of a multiclass

make-to-stock manufacturing system. By considering the manufacturing system under the

heavy traffic regime, an approximating Brownian control problem is obtained. It is shown

that the Brownian control problem is equivalent to a one-dimensional workload formulation,

whose state process, the workload process, represents the total (scaled) inventory (or backlog)

in the system measured in hours of total work for the manufacturing system. The optimal
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solution to the equivalent workload formulation is a two-sided barrier policy with state-

dependent drift rate. Outsourcing and idling processes are used to keep the workload process

between the lower and upper reflecting barriers. Between the two barriers, a state-dependent

drift rate is used to control the workload process. By interpreting this solution in the context

of the original problem, a dynamic pricing, outsourcing, and scheduling policy is proposed for

the manufacturing system. It is demonstrated through a simulation study that the proposed

policy performs well compared to the optimal control policy.

Although this chapter focuses on a make-to-stock manufacturing system with backlogged

orders, its solution technique can be easily adapted to the lost sales case by imposing an

exogenous lower reflecting barrier at zero on the workload process. Letting κ denote the

(effective) lost sales cost in the workload formulation, the Bellman equation would be: find

u, γ ∈ R and f ∈ C2([0, u]) that satisfy Equation (3.36) for w ∈ (0, u) subject to the

boundary conditions f ′(0) = −κ and f ′(u) = 0 and the smooth pasting condition f ′′(u) =

0.8 As done in Section 3.6.2, the Bellman equation can be equivalently written in terms of

u, γ ∈ R and v ∈ C1[0, u]. Then, uγ and vγ : [0, uγ ] → R can be defined for each γ ≥ 0

as done in Section 3.6.3. It is straightforward to characterize vγ as done in Lemma 11,

argue that γ? is the unique solution to vγ?(0) = −κ, and show that the optimal policy is

characterized by (uγ? , γ
?, vγ?). This two-sided barrier policy with drift rate control can then

be interpreted in the context of the original control problem to obtain an effective dynamic

control policy for the manufacturing system with lost sales as done above for the backlog

case.

8. Note that since the lower reflecting barrier is exogenous, no smooth pasting condition is needed for it.
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APPENDIX A

APPENDIX OF CHAPTER 1

A.1 Node Definitions

This section discusses the procedure used to draw the boundaries of the nodes in Figure A.3.

We use the approach commonly referred to as regionalization/districting (e.g., see Duque

et al. [84]). In this approach, one starts with a set of small districts and aggregates them

to create nodes of appropriate size. We use 2010 census tracts1 as districts in our analysis

and use a MIP (Mixed Integer Program) to aggregate the census tracts into nodes. Census

tracts are permanent statistical subdivisions of a county defined by the United States Census

Bureau and used in many statistical spatial analyses that require this level of granularity.

NYC consists of 2166 census tracts of various shapes and sizes.2 We limit our analysis to

the 488 census tracts that have a minimum of one customer per street mile per day and are

not isolated from the rest of the cluster (except for JFK airport). These census tracts cover

99.42% of the pick-ups in NYC between January 2010 and December 2013.

Objective. One of the assumptions used in the matching model introduced in Section 1.3

is that customers are uniformly distributed within the node. Therefore, we would like the

census tracts that are aggregated to create a node to share similar demand densities (we

use the number of pick-ups as a proxy for demand). We would also like the nodes to satisfy

certain spatial contiguity, shape, and demand constraints. Specifically, we would like to avoid

isolated census tracts in a node, avoid long and narrow nodes, and ensure a minimum number

of pick-ups in each node. Moreover, we would like the number of regions (the only notion of

node size in the matching model; see Section 1.3) in the nodes to show little variation across

1. Census tracts should not be confused with the regions discussed in Section 1.3. Regions are defined
in the matching section of this dissertation to model the search of taxi drivers for customers within a node.
Census tracts, however, are permanent subdivisions of a county defined by the US Census Bureau that
provide a stable set of geographic units for the presentation of statistical data.

2. See https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku/data.
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the city. This prevents the size of nodes from being a factor in the relocation decisions of

the taxi drivers. We aim to achieve this goal by ensuring that the street miles in a node are

such that it takes a taxi between t and t hours to search all the streets in the node.3 Due to

the significant spatial variation in the average traffic speed and density of pick-ups in NYC,

we divide the city into six zones; see Figure A.1 for the boundaries of the zones. These zones

correspond to i) downtown/lower Manhattan (south of 14th street), ii) midtown Manhattan

(14th street to 59th street), iii) central park area (59th street to about 110th street excluding

central park), iv) upper Manhattan (north of 110th street to Inwood),4 v) Brooklyn, and vi)

Queens (excluding La Guardia and JFK airports). The average traffic speed and the density

of pick-ups in each zone are presented in Table A.1.

Formulation. Next, we discuss the formulation we use to aggregate the census tracts

in a fixed zone into nodes whilst satisfying the aforementioned conditions. We start by

introducing the notation. Then, we proceed to the formulation and discuss each constraint

in detail. This formulation is conceptually similar to the formulation used in Gentry et al.

[96]. Let (Vc, Ec) denote the graph of the census tracts that we would like to aggregate into

nodes, where (i, i) 6∈ Ec and for i 6= j, (i, j) ∈ Ec if census tracts i and j share a border (of

positive length). Let Ac denote the adjacency matrix of the graph, i.e, Acij = 1 if (i, j) ∈ Ec

and zero otherwise.

We would like the census tracts that will be aggregated into a node to be physically close

to each other, i.e., we would like to avoid long and narrow nodes if possible. Therefore, we

use an approach similar to Gentry et al. [96] and choose a census tract as the center of each

node and assign each census tract to the node whose center is physically closer to it. To

that end, let zi be a binary decision variable such that zi is equal to one if census tract i

3. The lower bound ensures that nodes are sufficiently large for computational tractability of the equilib-
rium. The upper bound helps avoid long travel times between adjacent nodes. Long travel times on adjacent
nodes create an unintended incentive for taxi drivers to stay in their current node and avoid relocation due
to the opportunity cost of long travels.

4. For further information on Manhattan zones, see https://www.nybits.com/manhattan.
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is chosen as the center of a node and zero otherwise. Let xij be a binary variable that is

equal to one if census tract i is assigned to the node whose center is census tract j and let

yj be a non-negative decision variable that denotes the maximum variation in the density

of pick-ups (pick-ups per mile) across the census tracts assigned to the node whose center is

census tract j. If census tract j is not the center of a node, yj = 0.

Denote the average number of pick-ups per period in census tract i by Di and the street

miles of this census tract by Si. Similarly, denote the lower bound on the number of pick-

ups per period in a node by D and the lower and upper bounds on the street miles in a

node by S and S, respectively. Let δ̂ij denote the distance between the geometric centers

of census tracts i and j and δ̃ijk = 1 if δ̂ij < δ̂ik and zero otherwise. Also, let δ denote the

maximum allowable distance between the census tracts assigned to a node. We use a δ that

is equivalent to 10 minutes of travel in the zone.
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The optimal node definition is the solution to

minimize
x,y,z

∑

j∈Vc
yj (P0)

subject to
∑

i∈Vc
Dixij ≥ Dzj for all j, (P0a)

∑

i∈Vc
Sixij ≤ Szj for all j, (P0b)

∑

i∈Vc
Sixij ≥ Szj for all j, (P0c)

δ ≥ δ̂ik

(
xij + xkj − 1

)
for all i, j, k, (P0d)

∑

k∈Vc
Ackixkj ≥ xij for all i 6= j, (P0e)

∑

k∈Vc
δ̃ijk xik ≤ 1− zj for all i, j, (P0f)

∑

j∈Vc
xij = 1 for all i, (P0g)

xij ≤ zj for all i, j, (P0h)

yj ≥
∣∣∣∣
Di
Si
− Dk
Sk

∣∣∣∣
(
xij + xkj − 1

)
for all i, j, k (P0i)

xij , zi ∈
{

0, 1
}
, yj ≥ 0 for all i, j. (P0j)

Problem (P0) minimizes the sum of the maximum variations in the density of pick-ups in

each node (a measure of the heterogeneity in the density of demand within the nodes). We

will show that in the optimal solution, if census tract j is not the center of a node, yj = 0.

The constraints of Problem (P0) can be categorized into three groups: constraints con-

cerning the demand and size of the nodes, constraints concerning the assignment of the

census tracts, and constraints concerning the definition of the decision variables. We start

with Constraints (P0a)-(P0d) that focus on the demand and size of the nodes. Constraint

(P0a) ensures that all nodes have a minimum of D pick-ups per period. Similarly, Con-

straints (P0b)-(P0c) ensure that the street miles in each nodes fall between the lower bound
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of S and the upper bound of S. Constraint (P0d) ensures that the census tracts in a node

are not more that δ miles apart. This constraint helps avoid long and narrow nodes. Note

that the right hand-side of (P0d) is less than or equal to zero unless both census tracts i and

k are assigned to the node whose center is census tract j, in which case the right-hand side

of (P0d) is equal to δ̂ik.

Constraints (P0e)-(P0g) focus on the assignment of the census tracts. Constraint (P0e)

ensures that a census tract that is not the center of its node is connected to at least one other

census tract in that node. Because, if census tract i is assigned to the node whose center is

census tract j, the right-hand side of (P0e) is equal to one. Therefore, there must be at least

one census tract connected to census tract i who is also assigned to the node whose center is

census tract j.5 Constraint (P0f) ensures that census tracts are assigned to the node whose

center is closest to them. Because, if census tract j is the center of a node, the right hand

side of (P0f) is equal to zero. This ensures that xkj = 0 for all nodes k in which δ̃ijk = 1. In

other words, if census tract j is the center of a node, census tract i can not be assigned to a

node whose center is further from i than census tract j; see Gentry et al. [96] for a similar

treatment. Constraints (P0g) ensures that all census tracts are assigned to a node.

Constraints (P0h)-(P0j) focus on the consistency in the definition of the decision vari-

ables. Constraint (P0h) ensures the consistency in the definitions of xij and zi, i.e., if census

tract i is assigned to the node whose center is census tract j, then zj = 1. Constraint (P0i),

alongside the objective function, ensures that yj (at the optimal solution) is equal to the

maximum variation in the density of pick-ups among the census tracts assigned to the node

whose center is census tract j. Note that if census tract j is not the center of a node, the

right-hand side of (P0i) is less than or equal to zero and yj = 0 at the optimal solution.

Finally, Constraint (P0j) enforces that xij and zi are binary decision variables and yj are

5. Note that Constraint (P0e) does not enforce spatial contiguity, rather it ensures that no census tract
is isolated (unless it is the center of a node). One can enforce spatial contiguity by using the notion of
contiguity order (e.g., see Duque et al. [84]). Such constraints increase the size of the MIP significantly,
which has motivated Duque et al. [84] to propose an approximation algorithm to their problem. Motivated
by this observation, we do not introduce such constraints in Problem (P0).

138



non-negative.

Inputs. In what follows, we attach a subscript l to various quantities to indicate they

correspond to zone l. Note that Sl = Average Traffic Speed in Zone l × tl, where Sl de-

notes the lower bound on the total number of miles in nodes in zone l and tl is the

minimum time a taxi has to spend to travel all streets in a node in zone l. Similarly,

Sl = Average Traffic Speed in zone l × tl, where Sl and tl are the analogous upper bounds.

Recall that Di/Si denotes the pick-up density of census tract i and Vcl denotes the set of

census tracts in zone l for l = 1, . . . , L, where L denotes the number of zones. We observe

that {Di/Si : i ∈ Vcl } exhibits significant variation for all zones; see the third column of

Table A.1 for their coefficient of variation. Define

PDl =

∑
i∈Vcl Di∑
i∈Vcl Si

for l = 1, . . . , L

as the average pick-up density for zone l. There is also substantial variation in {PDl : l =

1, . . . , L}; see the second column of Table A.1. For example, the pick-up density in midtown

Manhattan is two orders of magnitude higher than pick-up density in Brooklyn. Therefore,

to avoid vacuous constraints in nodes with high pick-up density, we use a lower bound Dl

(for zone l) on demand that is proportional to the average pick-up density of zone l. That

is, defining the overall pick-up density PD =
∑
iDi/

∑
i Si, we set

Dl =
PDl

PD
D̂,

where D̂ is a tuning parameter that relates the lower bounds across zones. We use tl =
(
1 − 0.25 CVl

)
t̂ and tl =

(
1 + 0.25 CVl

)
t̂, where t̂ is a tuning parameter common across

zones and CVl is the coefficient of variation of pick-up density in zone l.6 Note that the

term 0.25 CVl is used to allow variation in the pick-up densities of various tracts in a node in

6. Sensitivity analysis displays that node definitions show little sensitivity to the choice of the coefficient
of CVl.
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zone l in Problem (P0); and it is equivalent to controlling the variation in pick-up densities

of the various tracts in zone l.

Let LT(t̂, D̂) denote the fraction of arcs in E (see Section 1.3) which take longer than one

period to traverse. That is,

LT(t̂, D̂) =

∣∣{(i, j) ∈ E : τij > 1}
∣∣

|E| .

We would like to choose t̂ and D̂ such that this fraction is sufficiently small and that D̂ is

sufficiently large to ensure considerable demand in all nodes. Next, for each fixed D̂, we

consider min
t̂

LT(t̂, D̂). As depicted in Figure A.2, this shows a steady increase for D̂ ≤ 5.9

and a sharp increase beyond D̂ = 5.9. Therefore, to accommodate both goals, we choose

D̂ = 5.9 and t̂ = argmin
t̂

LT(t̂, 5.9) = 1.2.

Results. The solution to Problem (P0) for (t̂, D̂) = (1.2, 5.9) is depicted in Figure A.3. In

particular, this node definition provides sufficient separation between the major hubs of the

city. In Figure A.3, the nodes that accommodate the major hubs of the city are highlighted.

JFK and La Guardia airports are colored in red and blue, respectively. The nodes accommo-

dating the major railroad terminals, Penn Station and Grand Central Terminal, are colored

in yellow and purple, respectively. The node accommodating the major bus terminal, Port

Authority Bus Terminal, is colored in green.

Table A.1: Parameters used in Problem (P0).

Traffic
speed1

Average density
of pick-ups2

CV of density
of pick-ups

Maximum distance
within a node (δ)3

Lower Manhattan 11.8 2.36 0.8 2.0
Midtown Manhattan 8.6 6.92 0.8 1.4
Central Park Area 10.2 4.75 0.7 1.7
Upper Manhattan 11.8 0.16 1.7 2.0
Brooklyn 11.4 0.08 1.8 1.9
Queens 12.8 0.08 1.6 2.1

1 Miles per hour. 2 Pick-ups per period per mile. 3 Miles.
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Figure A.1: Boundaries of the zones used
in node generation.
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Figure A.2: Minimum achievable fraction
of arcs between adjacent nodes with travel
time longer than one period for given D̂.

A.2 Further Discussion on the Matching Model

This section compares our matching model with that of Buchholz [56]. Buchholz uses the

friction model introduced in Burdett et al. [59].7 Burdett et al. [59] provides a formula for

friction in the following setting: Suppose that n buyers each want one unit of a good and m

sellers each have one unit. First, sellers are revealed to buyers, and then each buyer chooses

a seller. If more than one buyer chooses a seller, the seller can serve only one of the buyers.

Burdett et al. [59] refers to this phenomena as friction and calculates the expected number

of sales (matches between buyers and sellers) given n and m. Burdett et al. [59] does not

allow the buyers to search for sellers if they fail in their first attempt. It also assumes that

buyers know the number of sellers and their exact location (sellers are revealed to buyers).

Buchholz [56] tailors the imperfect matching model proposed in Burdett et al. [59] to the

taxi market. This imperfect matching model is equivalent to the following setting: First the

number of drivers and their locations are revealed to the customers. Then, each customer

chooses a taxi. When more than one customer chooses a taxi, only one of the customers is

served and the others leave the system unfulfilled. Therefore, given m taxis and Λ customers

7. This was initially formulated as an urn-ball problem in Hall [107], where n balls are randomly placed
in m urns. In this problem, a match (only) occurs for the first ball placed in any urn.
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Figure A.3: The boundaries of the seventy five nodes used in the analysis and the area under
consideration.

in a node, the expected number of matches (served customers) is m
(
1 − [1 − 1/m]Λ

)
; see

Burdett et al. [59] for the derivation. Buchholz introduces an efficiency parameter γ and

models the expected number of matches as follows:

Expected Number of Matches = m
(

1−
[
1− 1

γm

]Λ)
.

Lower values of γ correspond to more efficient matching.

Figure A.4a depicts an example of matching under the model of Buchholz [56]. In this

example, Customers 1 and 2 choose Taxi 1 and Customer 3 chooses Taxi 3. Taxi 1 chooses

Customer 1 and Customer 2 is left without a taxi. He can not choose Taxi 2 although they

are very close to each other. Figure A.4b depicts the matches in the same example under

our matching model with three regions. In this case, after failure to obtain a taxi in the first

attempt, Customer 2 is allowed to re-choose among the remaining empty taxis in its region.

Customer 2 chooses Taxi 2 and there are no unfulfilled customers left.

Figure A.5 depicts the percentage increase in the number of matches under our matching

model with N = 10 and N = 20, respectively, compared to the matching model of Buchholz
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(a) Matching in the model of Buchholz [56]. (b) Matching in our model with three regions.

Figure A.4: An illustration of matching in our imperfect matching model and the model of
Buchholz [56].

[56] with γ = 0.84 (as estimated by Buchholz for midtown Manhattan).8 We observe that

for small number of taxis and customers, which is common in areas such as Brooklyn and

Queens, our matching model results in fewer matches. However, for large number of taxis

and customers, which is common in areas such as midtown Manhattan, our matching model

results in more matches.
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Figure A.5: Percentage change in the number of matches in our imperfect matching model
compared to the imperfect matching model of Buchholz [56].

8. We use N = 10 and 20 as the number of regions in the overwhelming majority of the nodes in Figure
A.3 fall between these numbers.
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A.3 Supplemental Material for Section 1.4

The histograms of the average trip duration and distance (for rides originating at each node)

are depicted in Figure A.6. Recall that a trip on average is 2.7 miles and 13.2 minutes long.

There is considerable spatial variation in the average trip duration and distance across the

city. Figure A.7 depicts the average trip duration and distance for rides originating at each

node.
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(a) Average trip durations (in five-min periods).
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(b) Average trip distances (in miles).

Figure A.6: Histograms of the average trip duration and distances across nodes.

A.4 Supplemental Material for Section 1.5

Table A.2 provides a summary of the model primitives. The estimation of these primitives

is carried out in three steps; see Section 1.5 for further detail.

Next, we discusses the calculation of the likelihood of taxi m observing the sequence of

drop-off and subsequent pick-ups on day d of month k that are no longer than two hours

apart. We start by introducing some notation. Then, we calculate the likelihood of taxi m

observing the entire sequence of drop-off and subsequent pick-ups on day d of month k. We

conclude this section by removing the drop-off and subsequent pick-up tuples that are longer

than two hours apart.
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Figure A.7: Average trip duration and distance for rides originating at each node.

Let Nm,d,k denote the number of riders that taxi m served on day d of month k. We

denote the pick-up periods of taxi m on day d of month k by t
(1)
m,d,k ,. . . ,t

(l)
m,d,k ,. . . ,t

(Nm,d,k)

m,d,k ,

where superscript l denotes the number of the pick-up. Similarly, we denote the pick-up and

drop-off nodes of taxi m on day d of month k by i
(1)
m,d,k , . . . ,i

(l)
m,d,k , . . . ,i

(Nm,d,k)

m,d,k and j
(1)
m,d,k ,

. . . , j
(l)
m,d,k , . . . , j

(Nm,d,k)

m,d,k , respectively. Then, the likelihood of taxi m observing the entire

sequence of pick-ups on day d of month k is

P

{(
t
(1)
m,d,k,i

(1)
m,d,k, j

(1)
m,d,k

)
, . . . ,

(
t
(Nm,d,k)

m,d,k , i
(Nm,d,k)

m,d,k , j
(Nm,d,k)

m,d,k

)}

=

[Nm,d,k∏

l=2

P

{
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

∣∣∣t(l−1)
m,d,k, i

(l−1)
m,d,k, j

(l−1)
m,d,k

}]

×PI
{
t
(1)
m,d,k, i

(1)
m,d,k, j

(1)
m,d,k

}
×PF

{
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

}
, (A.1)

where the term PI
{
t
(1)
m,d,k, i

(1)
m,d,k, j

(1)
m,d,k

}
is the probability that the customer picked up

at period t
(1)
m,d,k at node i

(1)
m,d,k for destination j

(1)
m,d,k is the first pick-up of the driver,

the term PF
{
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

}
is the probability that the customer picked up at pe-
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Table A.2: Summary of the primitives.

Parameter Number of elements Estimation type

α 1 Endogenous
β 1 Endogenous
σ 1 Endogenous
Atij 120× 75× 75 Endogenous

Sij 75× 75 Exogenous
τij 75× 75 Exogenous
dij 75× 75 Exogenous

m1
i 75× 48 Exogenous

Ni 75 Exogenous
M 48 Exogenous
c 48 Exogenous

riod t
(l)
m,d,k at node i

(l)
m,d,k for destination j

(l)
m,d,k is the final pick-up of the driver, and

P

{
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

∣∣t(l−1)
m,d,k, i

(l−1)
m,d,k, j

(l−1)
m,d,k

}
is the probability that the driver picks up his

l-th customer in period t
(l)
m,d,k at node i

(l)
m,d,k for destination j

(l)
m,d,k given that his previous

customer was picked up in period t
(l−1)
m,d,k at node i

(l−1)
m,d,k for destination j

(l−1)
m,d,k. Note that

the distribution of
(
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

)
depends on all elements of

(
t
(l−1)
m,d,k, i

(l−1)
m,d,k, j

(l−1)
m,d,k

)
.

Because, all three elements of
(
t
(l−1)
m,d,k, i

(l−1)
m,d,k, j

(l−1)
m,d,k

)
impact the period and node at which

the taxi drops its (l − 1)-th customer and starts the search for the l-th customer. Since it

takes τi,j periods to transport a customer from node i to node j, the term

P

{
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

∣∣∣t(l−1)
m,d,k, i

(l−1)
m,d,k, j

(l−1)
m,d,k

}
(A.2)

is equal to the probability that driver m picks up his next customer in period t
(l)
m,d,k at node

i
(l)
m,d,k for destination j

(l)
m,d,k if he starts empty in period t

(l−1)
m,d,k + τ

i
(l−1)
m,d,k,j

(l−1)
m,d,k

at node j
(l−1)
m,d,k.

We are interested in the likelihood of drop-off and subsequent pick-ups that are no longer

than two hours apart. Therefore, we must omit drop-off and subsequent pick-up tuples that

take longer than two hours. To do so, let J
(
t2, i2, j2

∣∣t1, i1, j1
)

= P
{
t2, i2, j2

∣∣t1, i1, j1
}

if

t2− t1− τj1,i2 > 24 and one otherwise. Define JI and JF in a similar manner for the initial
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and final pick-up. Then, the likelihood of taxi m observing the sequence of drop-off and

subsequent pick-ups on day d of month k that are no longer than two hours apart is

Lm,d,k(σ) =

[Nm,d,k∏

l=2

J
(
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

∣∣∣t(l−1)
m,d,k, i

(l−1)
m,d,k, j

(l−1)
m,d,k

)]

× JI
(
t
(1)
m,d,k, i

(1)
m,d,k, j

(1)
m,d,k

)
× JF

(
t
(l)
m,d,k, i

(l)
m,d,k, j

(l)
m,d,k

)
. (A.3)

To compute (A.2), we transform the graph of the problem to an augmented graph, in

which all arcs have length one. This can be achieved by adding n− 1 auxiliary equi-spaced

nodes on each arc of length n (for all n). Movements of an empty taxi on the augmented

graph follow a non-homogeneous discrete time Markov Chain and (A.2) can be computed

from the transition matrix of this Markov chain. As discussed in Section 1.5, solving (P1)

using (A.3) gives an estimate of σ = 1.4048; see Figure A.8 for log likelihood values in the

vicinity of the maximum likelihood estimate σ = 1.4048.
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Figure A.8: Log likelihood values in the vicinity of the maximum likelihood estimate σ =
1.4048.

Next, let us illustrates through an example how an augmented graph is created and used

to compute (A.2). Consider the graph in Figure A.9, where τ12 = τ21 = 1 and τ23 = τ32 =

2. The augmented graph is generated by placing node 4 on arc (2, 3) and node 5 on arc

(3, 2), such that τ24 = τ43 = τ35 = τ52 = 1 and nodes 4 and 5 do not have a loop. The

147



augmented graph is depicted in Figure A.10. The relocation decisions of an empty taxi on
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Figure A.9: Original graph.
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Figure A.10: Augmented graph.

the augmented graph correspond to the relocation decisions of the same taxi on the original

graph. Consequently, the (path-wise) relocations of an empty taxi on the augmented graph

are defined as follows:

1. If the taxi decides to relocate on an arc of unit length in the original graph, it relocates

on the same arc in the augmented graph. For example, a taxi relocating from node

1 to node 2 in the original graph relocates from node 1 to node 2 in the augmented

graph.

2. If the taxi decides to relocate on a long arc (arc of length longer than one period) in

the original graph, it relocates to the first node created as a replacement of the long

arc in the augmented graph. For example, a taxi relocating from node 2 to node 3 in

the original graph relocates from node 2 to node 4 in the augmented graph.

3. If the taxi is currently on an auxiliary node in the augmented graph (which corresponds

to a taxi relocating on a long arc in the original graph), it relocates on the only arc

originating from the auxiliary node. For example, a taxi on node 4 of the augmented

graph relocates to node 3 and a taxi on node 5 of the augmented graph relocates to

node 2.

Given the aforementioned relocation policy on the augmented graph, the transition matrix
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of the augmented graph in period t is

Q̃t =




qt11 qt12 0 0 0

qt21 qt22 0 qt23 0

0 0 qt33 0 qt32

0 0 1 0 0

0 1 0 0 0




, (A.4)

where qtij are relocation probabilities on the original graph. Let Bt be a matrix whose

(i, j)-th element is given by

Btij =





(
1− λti

mt
i

)
Q̃tij for i ≤ n,

Q̃tij for i > n,

and denotes the probability that an empty taxi at node i does not pick up a customer in

period t and relocates to node j. Following the numbering in Figure A.10, since n is the

number of nodes on the original graph, i < n corresponds to a node common to the original

and the augmented graph and i > n corresponds to an auxiliary node on the augmented

graph.

Next, let us compute the probability that the taxi driver picks up his next customer in

period t1 at node i1 for destination j1 if he starts empty in period t0 at node j0, denoted by

P
{
t1, i1, j1

∣∣t0, j0
}

. Computing this probability is equivalent to computing (A.2).9 By the

definition of Bt, we have

P
{
t1, i1, j1

∣∣t0, j0
}

=
[
Πt1−1
t=t0

Bt
]∣∣∣∣
i=j0,j=i1

λt1i1

mt1
i1

πt1i1,j1
(F,P ). (A.5)

The first term on the right hand side is the probability that a taxi driver who starts empty

9. Note that (A.2) is equal to the probability that driver m picks up his next customer in period t
(l)
m,d,k

at node i
(l)
m,d,k for destination j

(l)
m,d,k if he starts empty in period t

(l−1)
m,d,k + τ

i
(l−1)
m,d,k,j

(l−1)
m,d,k

at node j
(l−1)
m,d,k.
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at period t0 in node j0 unsuccessfully searches for customers until he arrives in period t1 at

node i1. The second term on the right hand side is the probability that the driver picks up a

customer in period t1 at node i1, and the third term is the probability that the destination

of the customer is node j1.

We conclude this section by discussing the details of the equilibrium calculations. Given

M , Mk, Ni, c
k, F kij , P

k
ij , π

tk
ij (F k,P k), and λtki , for each σ, we would like to solve for the

mean field equilibrium that satisfies Equations (1.4)-(1.9) and λtki ≤ mtk
i , with m1

i having

the same distribution as the first pick-up of the taxis in the first fifteen minutes of the day

shift. However, due to the potential misspecification of the initial distribution of taxis m1
i ,

such an equilibrium may not exist (in some months). Consider the following formulation:

minimize
m1
i

n∑

i=1

∣∣m1
i − m̂1

i

∣∣2 (A.6)

subject to (1.4) - (1.9) and λti ≤ mt
i (A.7)

In this formulation, m1
i denotes the initial distribution of empty taxis used in equilibrium

calculations and m̂1
i represents the desired (empirical) distribution (distribution of the first

pick-up of the taxis in the first fifteen minutes of the day shift). Problem (A.6) searches

among all mean-field equilibria (that satisfy constraints (A.7) given the estimated primitives)

for the equilibrium whose initial distribution is closest (in the L2 sense) to the desired

(empirical) initial distribution. Numerical experiments show that the optimal objective

function value of Problem (A.6) is non-zero in less than a handful of months. In other

words, in the overwhelming majority of the months, there exists an equilibrium whose m1
i

has the desired distribution.
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A.5 Monte Carlo Experiments

This section uses Monte Carlo experiments to evaluate the capability of the maximum likeli-

hood estimator described in Section 1.5 in identifying the true σ. We generate 100 simulated

datasets (of pick-ups and drop-offs) assuming a true σ and estimate new σ’s from the sim-

ulated datasets. Then, we construct the 95% confidence interval and check whether the

assumed true value falls within the confidence interval.

Assuming the true value of σ = 0.7 and using the estimated values of M , Mk, Ni, m
1k
i ,

ck, F kij , P
k
ij , π

tk
ij (F k,P k), and λtki from Section 1.5, we calculate the mean field equilibrium

for each month. For simplicity, the month index k is suppressed in the remainder of this

section. Using the mean field equilibria (for all months), we generate 100 simulated datasets

with the same size as the original dataset (same number of months/days/active taxi drivers).

To simulate the movements of the drivers, we use the following procedure for each active

taxi driver on each weekday of each month.

1. Set t = 1 and generate a discrete r.v. with distribution m1· = {m1
j : 1 ≤ j ≤ n}. This

r.v. corresponds to the initial location of the taxi. Set i equal to this location.

2. For an empty taxi in period t at node i, generate a Bernoulli r.v. with success proba-

bility λti/m
t
i, to simulate the search of the taxi for customers.

(a) If the Bernoulli r.v. is equal to one (driver picking up a customer), generate r.v.

X with distribution πti,· = {πti,j : 1 ≤ j ≤ n}.

(b) If the Bernoulli r.v. is equal to zero (driver failing to pick up a customer), generate

r.v. X with distribution qti,· = {qti,j : j ∈ A(i)}.

3. Update i← X and add t← t+ τij .

4. If t < T , return to Step 2.

Estimating σ from the simulated datasets results in the 95% confidence interval of (0.699, 0.702).
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We observe that the (assumed) true σ falls within the confidence interval. This shows that

our estimator can recover the true structural parameter σ from the data.

A.6 Cross-Validation

This section uses five-fold cross-validation to examine the ability of our model in predicting

the relocation decisions of the empty taxi drivers (Kohavi et al. [139]). We randomly split

the non-holiday weekdays in the dataset into five groups of roughly equal sizes. Keeping the

node definitions in Figure A.3, we hold out one of the groups and use the other groups to

estimate the primitives of the model (see Appendix A.4 for a summary of the primitives and

Section 1.5 for the estimation procedure). The goal is to use the estimated primitives from

the other groups to make predictions about the hold-out group and assess the accuracy of

the prediction. The relocation probabilities would be an ideal performance metric. However,

in the data, we do not observe the location of the empty taxis at all times. Therefore, we

use the distribution of the next pick-up location as a proxy.

Let µklit denote the ex ante distribution of the next pick-up location for a taxi driver who

dropped off his customer at node i in period t of a weekday in month k and group l. Let νklit

denote the corresponding empirical quantity and wklit denote the number of drop-offs at node

i in period t of a weekday in month k and group l. Furthermore, let D(·, ·) be a measure of

similarity between two (spatial) distributions. We take

∑5
l=1

∑K
k=1

∑n
i=1

∑T
t=1w

kl
it D(µklit , ν

kl
it )

∑5
l=1

∑K
k=1

∑n
i=1

∑T
t=1w

kl
it

, (A.8)

the weighted average10 of the similarity between the ex ante and empirical distributions of

next pick-up location, as the performance metric for cross-validation. We consider three

10. We use the number of drop-offs in a period at a node as weights in the performance metric since µk
it

and νkit describe the relocation behavior of a taxi driver who just dropped off his customer. Recall that we
only observe the sequence of pick-ups and drop-offs of the taxi drivers.
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different similarity measures. The first similarity measure is the total variation distance

DT (µ, ν) = max
E⊆E

∣∣µ(E)− ν(E)
∣∣ =

1

2

n∑

i=1

∣∣µ(i)− ν(i)
∣∣ ∈ [0, 1].

Total variation distance is the most well-known tool for quantifying the similarity between

two probability distributions. It captures the largest difference in the probability assigned

to sets E ⊆ E . We also consider Bhattacharyya distance (Bhattacharyya [51])

DB(µ, ν) = − log
( n∑

i=1

√
µ(i)ν(i)

)
∈ [0,∞]

that is commonly used in the information theory and pattern recognition literature; e.g.,

see Kailath [135], Basseville [43], and Aherne et al. [12]. Since the total variation and

Bhattacharyya distances do not take advantage of the spatial aspect of the problem, we also

consider earth mover’s distance (also referred to as Wasserstein distance). Earth mover’s

distance, that is commonly used in the transportation literature, is defined as the minimum

cost of turning one distribution (or pile of dirt) into the other, where the cost is assumed to

be the mass moved from one node/location to the other times the distance between them

(Carlsson et al. [64], Pele and Werman [173]). In other words,

DE(µ, ν) = inf
γ∈P(µ,ν)

n∑

i=1

n∑

j=1

∆ijγij ∈ [0,max
ij

∆ij ],

where P(µ, ν) denotes the collection of all probability measures on E × E with marginals

µ and ν, and [∆ij ]i,j∈E is a metric distance matrix. The distance matrix ∆ must have

zero diagonal entries, positive off-diagonal entries, be symmetric, and satisfy the triangle

inequality. We use

∆ij =





(dij + dji)/2 for i 6= j,

0 for i = j,
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that satisfies the necessary conditions of a metric distance and it is derived from the travel

distances (dij , dji) estimated from the data.

Table A.3 provides a summary of the cross-validation results. A performance metric

of 0.22 under total variation distance can be interpreted as a maximum deviation of 22%

between the ex ante and empirical distributions (in estimating the number of pick-ups in

any set of nodes/locations). A performance metric of 0.52 under earth mover’s distance can

be interpreted as an average deviation of 0.52 miles between the next pick-up location under

the ex ante and empirical distributions. This performance metric is particularly meaningful

when we compare it to the 2.26 miles average distance between (distinct) adjacent nodes or

the 1.41 miles average distance between (distinct) non-airport adjacent nodes.

Table A.3: Cross-validation results.

Performance Metric

Total variation distance 0.22
Bhattacharyya distance 0.08
Earth mover’s distance 0.52

A.7 Supplemental Material for Section 1.6

This section provides the mathematical formulation of the mechanisms discussed in Chapter

1 and a discussion on origin-destination spatial pricing.

A.7.1 Mathematical Formulations of the Mechanisms

This section discusses the mathematical formulation of the mechanisms introduced in Chap-

ter 1. The mathematical formulations are introduced in the order they appear in Chapter

1. For numerical results and discussions on each mechanism, see Section 1.6.
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Origin-Destination Pricing. Consider the following pricing formulation.

maximize
ηij

n∑

i=1

n∑

j=1

T∑

t=1

CStij(ηij) (P3)

subject to (1.3) - (1.9) and

|ηij − 1| ≤ η

(Fij , Pij) = ηij (P ij , P ij)

n∑

i=1

m1
iV (i, 0) ≥

n∑

i=1

m1
i V (i, 0).

We call the solution {ηij}i,j∈V to Problem (P3) the optimal origin-destination price multi-

pliers (or equivalently the optimal origin-destination prices) with a maximum price variation

of η. Note that in Problem (P2), price-multipliers only depend on the origin of the ride while

in Problem (P3), price multipliers depend on the origin-destination pair.

Hybrid Mechanism. Let R denote the set of nodes in which less than 80% of customers

are served under the base prices and refer to them as under-served nodes. Consider the

following pricing formulation.

maximize
ηi

n∑

i=1

n∑

j=1

T∑

t=1

CStij(ηi) (P4)

subject to (1.4) - (1.9) and

(1.3b) and |ηi − 1| ≤ η ∀ i 6∈ R (P4a)

(1.3a) and ηi = 1 ∀ i ∈ R (P4b)

(Fij , Pij) = ηi (P ij , P ij)

n∑

i=1

m1
iV (i, 0) ≥

n∑

i=1

m1
iV (i, 0).
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We call the solution {ηi}i∈V to Problem (P4) the optimal price multipliers for the hybrid

mechanism (with origin-only pricing). In Problem (P4), local search friction is removed

in under-served nodes and spatial pricing is used in well-served nodes. Constraint (P4a)

ensures that in well-served nodes, friction is present and spatial pricing is used. In contrast,

Constraint (P4b) ensures that in under-served nodes, friction is removed and spatial pricing

is not used. The remaining constraints are similar to the ones in Problem (P2) in Section

1.6.1.

Proposed Mechanism. Similar to Section A.7.1, let R denote the under-served nodes.

Consider the following pricing formulation.

maximize
ηi

n∑

i=1

n∑

j=1

T∑

t=1

CStij(ηi) (P5)

subject to (1.4) - (1.9) and

(1.3a) and |ηi − 1| ≤ η ∀ i 6∈ R (P5a)

(1.3a) and ηi = 1 ∀ i ∈ R (P5b)

(Fij , Pij) = ηi (P ij , P ij)

n∑

i=1

m1
iV (i, 0) ≥

n∑

i=1

m1
iV (i, 0).

We call the solution {ηi}i∈V to Problem (P5) the optimal price multipliers for the proposed

mechanism (with origin-only pricing). In Problem (P5), local search friction is removed in

all nodes while spatial pricing is limited to well-served nodes. Constraint (P5a) ensures

that in well-served nodes, both friction removal and spatial pricing are used. In contrast,

Constraint (P5b) ensures that in under-served nodes, friction is removed while spatial pricing

is not used. The remaining constraints are similar to the ones in Problem (P2) in Section

1.6.1.
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A.7.2 Further Discussion on Origin-Destination Pricing

Table A.4 presents the increase in consumer surplus for different maximum price variations

η when using the optimal origin-destination pricing scheme. Similar to origin-only pricing,

when using origin-destination pricing, larger values of η results in larger increases in consumer

surplus. However, there are diminishing returns to change in η. Origin-destination pricing

with a maximum price variation of 50% results in a $0.79 increase in consumer surplus

per ride, which is 24.4% higher than the increase in consumer surplus from origin-only

pricing. The gap between origin-destination pricing and origin-only pricing is increasing in

the maximum price variation η. Origin-destination pricing (with a maximum price variation

of 50%) also results in a 3.2% increase in the number of served customers and an 7.4%

increase in the miles traveled by customers.

Table A.4: Impact of maximum price variation when using origin-destination pricing on
various performance metrics (maximum price multiplier η̂ = 5).

Maximum price variation (η) 10% 20% 50%
Consumer surplus

Total increase $69K $112K $168
Per ride $0.33 $0.53 $0.79
In terms of average fare 3.6% 5.8% 8.5%
Over origin-only pricing 11.3% 19.1% 24.4%

Number of served customers 1.3% 1.8% 3.2%
Miles traveled by customers 2.0% 3.9% 7.4%

A.7.3 Further Discussion on the Impact of Maximum price multiplier on

optimal spatial prices

The optimal origin-only price multipliers for the maximum price multipliers of η̂ = 5 and

η̂ = 50 are depicted in Figure A.11. The pattern of prices is not sensitive to η̂. Therefore,

in Chapter 1, we use maximum price multiplier η̂ = 5, which is equivalent to assuming that

for a ride of $9, no customer is willing to pay more than $45. This is a conservative choice

for η̂ considering its impact on consumer surplus (see Table 1.2).
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(a) Maximum price multiplier η̂ = 5
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(b) Maximum price multiplier η̂ = 50

Figure A.11: Optimal origin-only price multipliers for different maximum price multipliers
η̂ (maximum price variation η = 0.2).

A.8 Maximizing Drivers’ Profit

This section focuses on the spatial prices that maximize drivers’ profit. Consider the following

pricing formulation.

maximize
ηi

n∑

i=1

m1
i V (i, 0) (P6)

subject to (1.3) - (1.9) and

|ηi − 1| ≤ η

(Fij , Pij) = ηi (P ij , P ij)

n∑

i=1

n∑

j=1

T∑

t=1

CStij(ηi) ≥
n∑

i=1

n∑

j=1

T∑

t=1

CStij(1). (P6a)

We call the solution {ηi}i∈V to Problem (P6) the optimal origin-only price multipliers (or

equivalently the optimal origin-only prices) subject to minimum consumer surplus with a

maximum price variation of η. Note that in Problem (P6), price multipliers only depend on

the origin of the ride. Constraint (P6a) ensures that the consumers surplus is not hurt by
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the new pricing scheme. The remaining constraints are similar to the ones in Problem (P2)

in Section 1.6.1.

The increase in drivers’ profit for four plausible values of maximum price multiplier η̂ is

presented in Table A.5. As shown in Table A.5, using a origin-only pricing scheme with a

maximum variation of 20% results in an increase in driver’s profit of $64, 000 - $144, 000 on

every day shift on weekdays. This is equivalent to an increase in drivers’ profit of $0.30 -

$0.71 per ride (3.4% - 7.9% of the average fare paid by the customers). Since similar to

Section 1.6.1, the pattern of the optimal origin-only prices is insensitive to the maximum

price multiplier η̂, in the remainder of this section we use η̂ = 5. This is a conservative choice

for η̂ considering its impact on drivers’ profit (see Table A.5).11

Table A.5: Impact of origin-only prices on drivers’ profit (maximum price variation η = 0.2).

Maximum price multiplier (η̂) 5 10 20 50

Total increase $64K $81K $105K $144K
Increase per ride $0.30 $0.39 $0.51 $0.71
Increase in terms of average fare 3.4% 4.3% 5.6% 7.9%

Table A.6 presents the increase in drivers’ profit for different maximum price variations

η. We observe that larger values of η results in larger increases in consumer surplus. Table

A.6 indicates that the optimal origin-only pricing scheme (for maximizing drivers’ profit) has

minimal impact on the the number of served customers and the miles traveled by customers.

This is not surprising since the objective function of Problem (P6) is drivers’ profit as opposed

to a measure of consumer welfare.

The optimal origin-only price multipliers (with a maximum price variation of 50%) for

maximizing consumer surplus and drivers’ profit are depicted in Figure A.12. The pattern of

the optimal prices are similar. In upper Manhattan, Brooklyn, and Queens, prices increase

since both customers and drivers benefit from the increase in prices. Higher prices in the high

demand/fare areas in downtown and midtown Manhattan as well as the airports generate

11. In a similar setting, Cohen et al. [76, Section 4] makes the conservative assumption that no customer
is willing to pay more than 4.9 times the base prices for an Uber ride.
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Table A.6: Impact of maximum price variation on drivers’ profit (maximum price multiplier
η̂ = 5).

Maximum price variation (η) 10% 20% 30% 40% 50%
Drivers’ profit

Total increase $43K $64K $79K $91K $100K
Per ride $0.20 $0.30 $0.38 $0.43 $0.47
In terms of average fare 2.3% 3.4% 4.2% 4.8% 5.3%

Number of served customers -0.5% -0.6% -0.7% -0.8% -0.8%
Miles traveled by customers 0.3% 0.4% 0.4% 0.5% 0.5%

consumer surplus. This consumer surplus is then transformed into drivers’ profits through

higher prices in low demand/fare neighborhoods. In Figure A.12b, the increase in consumer

surplus from better serving the under-served neighborhoods is transformed into drivers’ profit

through (slightly) higher prices compared to Figure A.12a in the well-served neighborhoods.
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(a) Maximizing consumer surplus.
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(b) Maximizing drivers’ profit.

Figure A.12: Comparison of the optimal origin-only price multipliers for maximizing con-
sumer surplus and drivers’ profit (maximum price variation η = 0.5 and maximum price
multiplier η̂ = 5).
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A.9 Miscellaneous Proofs and Derivations

This section provides a collection of proofs and derivations for the propositions, theorems,

and equations discussed in Chapter 1. The proofs/derivations are discussed in the order they

appear in the chapter.

Derivation of (1.3b) We start by derivingG(Λ,m). Then, we discuss the non-monotonicity

of G(·,m) at small values of Λ and use a linear approximation to resolve this issue. Con-

sider node i in period t. Let us denote the de-normalized mass of empty taxis by m, the

de-normalized potential demand by Λ, and the de-normalized satisfied demand by λ. Then,

m = M mt
i, Λ = M Λti(F,P ), λ = M λti. (A.9)

Recall that the expected number of matches in node i is λ = Ni×E
[

min(X, Y )
]
, where X ∼

Binomial(m, 1
Ni

) and Y ∼ Binomial(Λ, 1
Ni

). By approximating the Binomial distributions

with Normal distributions, we obtain

λ ' Ni ×E
[

min(X, Y )
]
, (A.10)

where X ∼ N (µm, σm) and Y ∼ N (µΛ, σΛ) are independent random variables with

µm =
m

Ni
, and σ2

m =
m

Ni
(1− 1

Ni
),

µΛ =
Λ

Ni
, and σ2

Λ =
Λ

Ni
(1− 1

Ni
).

By substituting (A.9) into (A.10), we obtain

λti =
1

M
×Ni ×E

[
min(X, Y )

]
, (A.11)
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where X ∼ N (µm, σm) and Y ∼ N (µΛ, σΛ) are independent random variables with

µm =
Mmt

i

Ni
and σ2

m = µm (1− 1

Ni
), (A.12)

µΛ =
MΛti
Ni

and σ2
Λ = µΛ (1− 1

Ni
). (A.13)

Using Equation (2) of Clark [74], (A.11) simplifies to

λti = −Ni

M

[
− µmΦ

( µΛ − µm√
σ2
m + σ2

Λ

)
− µΛΦ

( µm − µΛ√
σ2
m + σ2

Λ

)
+
√
σ2
m + σ2

Λφ
( µΛ − µm√

σ2
m + σ2

Λ

)]

=
Ni

M

[
µmΦ

( µΛ − µm√
σ2
m + σ2

Λ

)
+ µΛΦ

( µm − µΛ√
σ2
m + σ2

Λ

)
−
√
σ2
m + σ2

Λφ
( µm − µΛ√

σ2
m + σ2

Λ

)]
, (A.14)

where Φ(·) and φ(·) are the cumulative distribution function and probability density function

of the standard normal distribution. Then, by plugging ν , (µm − µΛ)/
√
σ2
m + σ2

Λ into

(A.14), we obtain

λti =
Ni
M

(
µmΦ(−ν) + µΛΦ(ν) −

√
σ2
m + σ2

Λ φ(ν)

)
,

=
Ni
M

(
µmΦ(−ν) + µΛΦ(ν) − µm − µΛ

ν
φ(ν)

)
, (A.15)

=
Ni
M

(
Mmt

i

Ni
Φ(−ν) +

MΛti
Ni

Φ(ν) −
Mmt

i
Ni
− MΛti

Ni

ν
φ(ν)

)
, (A.16)

= mt
i Φ(−ν) + Λti Φ(ν) − mt

i − Λti
ν

φ(ν), (A.17)
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where (A.15) follows from the definition of ν and (A.16) follows from (A.12)-(A.13). Next,

we rewrite ν in terms of mt
i and Λti as follows:

ν =
(µm − µΛ)√
σ2
m + σ2

Λ

=
(µm − µΛ)√

(1− 1
Ni

)(µm + µΛ)
, (A.18)

=
(
Mmt

i
Ni
− MΛti

Ni
)

√
1− 1

Ni

√
Mmt

i
Ni

+
MΛti
Ni

, (A.19)

=

M
Ni

(mt
i − Λti)√

1− 1
Ni

√
M
Ni

√
mt
i + Λti

,

=

√
M
Ni√

1− 1
Ni

mt
i − Λti√
mt
i + Λti

,

=

√
M

Ni − 1

mt
i − Λti√
mt
i + Λti

,

where (A.18)-(A.19) follow from (A.12)-(A.13).

For small value of mt
i, (A.17) is not monotone in Λti for small values of Λti. This issue

follows from the inaccuracy of the normal approximation for the binomial distributions of

X and Y at small values of mt
i and Λti. We use a linear approximation to resolve the issue.

In other words, we use

λti =





G
(
Λti,m

t
i

)
if Λti ≥ Λ̂mt

i
,

G
(
Λ̂mt

i
,mt

i

) Λti
Λ̂
mti

otherwise,

where G(Λ,m) = Λ Φ(ν) + mΦ(−ν) − m−Λ
ν φ(ν) follows from (A.17) and Λ̂m = min

{
Λ ≥

0 : G(Λ,m) is strictly increasing on (Λ,∞)
}

.

Proof of Proposition 1 First, we derive the expected payoff of the driver in each state

from each action. Then, we derive the state transition matrix of the driver. We conclude
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the proof by writing out the Bellman equation and simplifying it. Consider the empty

infinitesimal driver at state s = (i, t, ε). For readability and ease of notation, in the remainder

of this proof, we write ε(i) as ε and εij as εj . Assume that the driver chooses action j ∈

A(s) = {j : Sij > 0}. The driver picks up a customer with probability p(s) =
λti
mt
i

and

relocates to node j with probability 1− p(s). If the driver picks up a customer, his expected

payoff will be
∑n
l=1 π

t
il(F,P )

(
Fil +Pildil − cil

)
, where cil = c dil + εl is the cost of traveling

from node i to node l at state s = (i, t, ε). If the driver does not pick up a customer, he

will receive the payoff −cij = −cdij − εj . Therefore, the expected (immediate) payoff of the

driver at state s = (i, t, ε) from action j ∈ A(s) is

uj(s) , p(s)
[ n∑

l=1

πtil(F,P )
(
Fil + Pildil − cil

)]
−
[
1− p(s)

]
cij

= p(s)
n∑

l=1

πtil(F,P )
(
Fil + Pil dil − c dil − εl

)
−
[
1− p(s)

](
c dij + εj

)

and the state transition probabilities are

P

(
s′ = (i′, t′, ε′)

∣∣∣s = (i, t, ε), a = j
)

= P

(
x′ = (i′, t′)

∣∣∣x = (i, t), a = j
)
× g(ε′),

where

P

(
x′ = (i′, t′)

∣∣∣x = (i, t), a = j

)
=





p(s) πtii′(F,P ) if i′ 6= j and t = t+ dii′ ,

p(s) πtii′(F,P ) +
(
1− p(s)

)
if i′ = j and t = t+ dii′ ,

0 otherwise.
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Let v(i, t, ε) denote the value function of the driver at state s = (i, t, ε). Then, by Bellman’s

equation, the value function must satisfy

v(s) = max
j∈A(s)

{
uj(s) + Es′

[
v(s′|s, a = j)

]}

= max
j∈A(s)

{
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
−
[
1− p(s)

](
c dij + εj

)

+

∫ (
p(s)

n∑

l=1

πtil(F,P ) v(l, t+ τil, ε
′) −

[
1− p(s)

]
v(t+ τij , j, ξ

′)
)
g(ε′)dε′

}
.

Let V (i, t) =
∫
v(i, t, ε)dε denote the integrated value function of the driver at (the observ-

able state) x = (i, t). Then,

V (i, t) =

∫
v(i, t, ε)g(ε)dε

=

∫
max
j∈A(s)

{
uj(s) + Es′

[
v(s′|s, a = j)

]}
g(ε)dε

=

∫
max
j∈A(s)

{
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
−
[
1− p(s)

](
c dij + εj

)

+

∫ (
p(s)

n∑

l=1

πtil(F,P ) v(l, t+ τil, ε
′) +

[
1− p(s)

]
v(j, t+ τij , ε

′)
)

g(ε′)dε′
}
g(ε)dε

=

∫
max
j∈A(s)

{
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
−
[
1− p(s)

](
c dij + εj

)

+

∫
p(s)

n∑

l=1

πtil(F,P ) v(l, t+ τil, ε
′)g(ε′)dε′

+

∫ [
1− p(s)

]
v(j, t+ τij , ε

′)g(ε′)dε′
}
g(ε)dε,
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where in the last equality we have separated the integral over ε′ into two parts. Then, by

linearity of integration, we have

V (i, t) =

∫
max
j∈A(s)

{
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
−
[
1− p(s)

](
c dij + εj

)

+ p(s)
n∑

l=1

πtil(F,P )

∫
v(l, t+ τil, ε

′)g(ε′)dε′

+
[
1− p(s)

] ∫
v(j, t+ τij , ε

′)g(ε′)dε′
}
g(ε)dε.

Next, using the definition of the integrated value function, we obtain

V (i, t) =

∫
max
j∈A(s)

{
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
−
[
1− p(s)

](
c dij + εj

)

+ p(s)
n∑

l=1

πtil(F,P )V (l, t+ τil) +
[
1− p(s)

]
V (j, t+ τij)

}
g(ε)dε.

The first term in the maximum does not depend on j. Therefore, we can take it out. Thus,

V (i, t) =

∫ (
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
+ max

j∈A(s)

{
−
[
1− p(s)

](
c dij + εj

)

+ p(s)
n∑

l=1

πtil(F,P )V (l, t+ τil) +
[
1− p(s)

]
V (j, t+ τij)

})
g(ε)dε

=

∫
p(s)

n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil − εl

)
g(ε)dε

+

∫
max
j∈A(s)

{
−
[
1− p(s)

](
c dij + εj

)

+ p(s)
n∑

l=1

πtil(F,P )V (l, t+ τil) +
[
1− p(s)

]
V (j, t+ τij)

}
g(ε)dε.

The expected value of the cost shocks is zero. Thus, we can simplify the first term of the

equation. Furthermore, the second term in the maximum does not depend on j and ε.

Therefore, we can take it out of the maximization and integration. Combining these two
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steps gives

V (i, t) = p(s)
n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil

)
+ p(s)

n∑

l=1

πtil(F,P )V (l, t+ τil)

+

∫
max
j∈A(s)

{
−
[
1− p(s)

](
c dij + εj

)
−
[
1− p(s)

]
V (j, t+ τij)

}
g(ε)dε

= p(s)
n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil

)
+ p(s)

n∑

l=1

πtil(F,P )V (l, t+ τil)

+
[
1− p(s)

] ∫
max
j∈A(s)

{
V (j, t+ τij) − c dij − εtj

}
g(ε)dε

= p(s)
n∑

l=1

πtil(F,P )
(
Fil + Pildil − cdil

)
+ p(s)

n∑

l=1

πtil(F,P )V (l, t+ τil)

+ σ
[
1− p(s)

]
log

[ ∑

j∈A(s)

exp
(V (j, t+ τij) − c dij

σ

)]

= p(s)

( n∑

l=1

πtil(F,P )
(
Fil + [Pil − c]dil

)
+

n∑

l=1

πtil(F,P )V (l, t+ τil)

)

+ σ
[
1− p(s)

]
log

[ ∑

j∈A(s)

exp
(V (j, t+ τij) − c dij

σ

)]
,

where p(s) = λti/m
t
i, and

qtij =





exp

([
V (j,t+τij)−c dij

]
/σ

)

∑
l∈A(s) exp

([
V (l,t+τil)−c dil

]
/σ

) for j ∈ A(s),

0 otherwise.

Proof of Theorem 1 First, we show that a mean field equilibrium is a solution
(
mt
i, V (i, t)

)

to Equations (1.6) and (1.8), where λti, m
t
ij , f

t
ij , and qtij are characterized by Equations (1.3),

(1.4), (1.5), and (1.9). Next, we use Brouwer’s Fixed Point Theorem to show that there exists

a solution
(
mt
i, V (i, t)

)
to Equations (1.6) and (1.8).

Assume that the problem primitives M , M , Ni, c, Fij , Pij , τij , dij , Sij , A
t
ij , αi, βi,

k, σ, and the initial distribution of (empty) cars m1
i are given. By Definition 1, a mean
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field equilibrium is a solution
(
λti,m

t
i,m

t
ij , f

t
ij , q

t
ij , V (i, t)

)
to Equations (1.3)-(1.9). Given

(
mt
i, V (i, t)

)
, the equilibrium values λti, m

t
ij , f

t
ij , and qtij are uniquely determined by Equa-

tions (1.3), (1.4), (1.5), and (1.9). In fact, Equations (1.3), (1.4), (1.5), and (1.9), provide no

further information besides determining the values of λti, m
t
ij , f

t
ij , and qtij given

(
mt
i, V (i, t)

)
.

Therefore, we can think of a mean field equilibrium as a solution
(
mt
i, V (i, t)

)
to Equations

(1.6) and (1.8), where λti, m
t
ij , f

t
ij , and qtij are characterized by Equations (1.3), (1.4), (1.5),

and (1.9). Note that Equation (1.7) is satisfied by any solution to Equations (1.4)-(1.6) and

we need not worry about it.

Let

V =
(
V (i, t) : i ∈ {1, . . . , n} , t ∈ {1, . . . , T}

)

m =
(
mt
i : i ∈ {1, . . . , n} , t ∈ {1, . . . , T}

)

denote the n×T dimensional vectors of the value function and the distribution of the empty

taxis. Furthermore, let

SV =
{
V : |V (i, t)| ≤

(
max
ij
{Fij + Pijdij}+ log(n)

)
× (T − i)

}

Sm =
{
m : ‖m‖1 ≤ T,m ≥ 0

}

Let G : Sm × SV → SV be the continuous function on the right-hand side of (1.8), i.e.,

G(m,V )it =
λti
mt
i

(
n∑

j=1

πtij(F,P )
(
Fij + [Pij − c] dij

)
+

n∑

j=1

πtij(F,P )V (j, t+ τij)

)

+ σ
(

1− λti
mt
i

)
log

[ ∑

j∈A(i)

exp
(V (j, t+ τij)− c dij

σ

)]
.

Similarly, let F : Sm × SV → Sm be (a continuous function) such that the (i, t)-th element
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of F for t = 1 is the initial condition, m1
i , and (i, t)-th element of F for t > 1 is given by

Fit(m,V ) =
∑

j∈A(i)

q
t−τji
ji

(
m
t−τji
j − λt−τjij

)
+

n∑

j=1

λ
t−τji
j π

t−τji
ji (F,P ),

where λti and qtij are given by (1.3b) and (1.9). A mean field equilibrium is a solution
(
mt
i, V (i, t)

)
to Equations (1.6) and (1.8), which is equivalent to a solution (m,V ) to the

fixed point equation

(m,V ) =
(
F(m,V ),G(m,V )

)
(A.20)

given the initial distribution m1
i and terminal value V (i, t) = 0 for t > T . Since F and G

are continuous mappings, (m,V ) →
(
F(m,V ),G(m,V )

)
is a continuous mapping from the

compact convex set Sm×SV onto itself. Therefore, by Brouwer’s Fixed Point Theorem (see

Royden and Fitzpatrick [180, Section 10.3]), there exists a solution to (A.20). Hence, there

exists a mean field equilibrium.

Proof of Proposition 2 Let Hij = Fij +Pijdij denote the total fare paid for a ride from

node i to node j. Following the notation introduced in Section 1.6, Hij denotes the fare

paid under the base prices (P ij , F ij), and Hij denotes the fare paid under (Pij , Fij). By

the definition of ηij , it follows that Hij = ηijHij for all i, j. By Equation (1.1), the demand

for rides from i to j in period t at fare level Hij is equal to Λtij(Hij) = Atij H
α
ij . Therefore,

the consumer surplus12 generated by all customers who want a ride from node i to node j

12. See Van Zandt [199, Page 59] for an introduction to consumer surplus.
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in period t at fare level Hij < η̂ Hij is equal to

C̃S
t
ij(ηij) =

∫ η̂Hij

Hij

Λtij(h)dh (A.21)

=

∫ η̂Hij

Hij

Atijh
αdh

=

∫ η̂Hij

Hij

Atij [ηHij ]
αd(ηHij) (A.22)

=

∫ η̂

1
AtijH

(α+1)
ij ηαdη (A.23)

= AtijH
(α+1)
ij

∫ η̂

1
ηαdη

= AtijH
(α+1)
ij

[
η̂(α+1) − η(α+1)

]

1 + α

= Λtij(Hij)Hij

[
η̂(α+1) − η(α+1)

]

1 + α

= Λtij(F, P )
[
F ij + P ijdij

] [η̂(α+1) − η(α+1)
]

1 + α
. (A.24)

Equation (A.21) follows from the definition of consumer surplus,13 Equations (A.22)-(A.23)

use the change of variables h = ηHij , and Equation (A.24) uses the definition of demand

curve and Hij .

Since λti/Λ
t
i(F, P ) fraction of the customers who want a ride originating at node i in

period t are served, the consumer surplus generated by the served customers for rides from

node i to node j in period t is equal to

CStij(ηij) =
λti

Λti(F, P )
C̃S

t
ij(ηij)

=
λti

Λti(F, P )
Λtij(F, P )

[
F ij + P ijdij

] [η̂(α+1) − η(α+1)
]

1 + α
.

13. Consumer surplus is defined as the difference between the total amount that consumers are willing to
pay for a ride (indicated by the demand curve) and the total amount that they pay (fare).
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APPENDIX B

APPENDIX OF CHAPTER 2

B.1 Supplemental Material

B.1.1 Derivation of the Routing Process

This section provides a derivation for the routing process introduced in Section 2.3 to describe

the transition of jobs between buffers upon service completion. Let ζ
j
i (l) be a random variable

such that

ζ
j
i (l) =

{
1 if the l-th job processed by dispatch activity j becomes a class i job next,

0 otherwise.

Let ζj(l) denote the q-vector with these components. Following Harrison [110, Section 4], we

call {ζj(1), ζj(2), . . .} the sequence of routing indicators for dispatch activity j. We assume

the routing indicators for a given class form an i.i.d sequence, and the service processes and

routing indicators of various activities are mutually independent. Letting φj(l) = ei(j)−ζj(l),

where ei is the q-vector with a one in the i-th component and zeros elsewhere, define the

partial sums Φj(l) = φj(1) + . . .+ φj(l), with Φj(0) = 0 (the q-vector of zeros). Then, φ
j
i (l)

is the decrease in the number of class i jobs as a result of the l-th job processed by dispatch

activity j and Φj(l) is the cumulative decrease in the number of class i jobs as a result of

the first l jobs processed by dispatch activity j.

B.1.2 Additional Model Primitives for the Motivating Example

This section provides additional model primitives for the NYC application introduced in

Section 2.1. We use the system parameter of r = 82002, which corresponds to the base

case discussed in Section 2.9, i.e., the case with Λ = Λ0 = 8200 cars; see Equation (2.65).

The service rates of the nine servers in the Brownian Control Problem (BCP) are as follows:
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µ1 = 0.46, µ2 = 1.30, µ3 = 0.84, µ4 = 0.05, µ5 = 0.07, µ6 = 0.01, µ7 = 0.05, µ8 = 0.05, and

µ9 = 0.03 jobs per year; see Equation (2.13). In the BCP, we set µ̃ = 1. The matrix R of

the BCP is as follows:

R =




0.29-0.17-0.20-0.04-0.04-0.04-0.00-0.02-0.00-0.00-0.00-0.01-0.00 1.10-0.20-0.00-0.00-0.00-0.01

-0.24 0.22 0.49 0.51-0.33-0.33-0.02-0.03-0.01-0.02-0.02-0.03-0.03-0.81-0.82-0.02-0.02-0.01-0.03

-0.03-0.03-0.21-0.42 0.42-0.42-0.02-0.00-0.00-0.01-0.01-0.01-0.00-0.21 1.10 0.03-0.01-0.00-0.01

-0.00-0.00-0.01-0.03-0.03 0.81 0.04-0.00-0.00-0.00-0.00-0.00-0.00-0.01-0.01-0.01-0.00-0.00-0.00

-0.01-0.01-0.01-0.00-0.00-0.00-0.00 0.05-0.00-0.00-0.00-0.00-0.00-0.01-0.01-0.00-0.00-0.00-0.00

-0.00-0.00-0.00-0.00-0.00-0.00-0.00-0.00 0.01-0.00-0.00-0.00-0.00-0.00-0.00-0.00 0.05-0.00-0.00

-0.00-0.00-0.01-0.00-0.00-0.00-0.00-0.00-0.00 0.03-0.02-0.00-0.00-0.01-0.01-0.00-0.02 0.01 0.05

-0.01-0.01-0.03-0.01-0.01-0.01-0.00-0.00-0.00-0.00 0.05 0.05-0.00-0.03-0.03-0.00-0.00-0.00-0.00

-0.00-0.00-0.02-0.01-0.01-0.01-0.00-0.00-0.00-0.00-0.00-0.00 0.03-0.02-0.02-0.00-0.00-0.00-0.00




;

see Equation (2.13). The capacity consumption matrix for the dispatch activities A is as

follows:

A =




1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0




.

Table B.1 provides a list of the seventy two relocation activities. The resulting 9 × 72

relocation activity input-output matrix R̃ is defined as follows:

R̃j = eo(j) − ed(j), j = 1, . . . , 72,
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Table B.1: The list of the relocation activities of the NYC application.

Number Origin Destination Number Origin Destination Number Origin Destination

1 1 5 25 3 9 49 6 9
2 9 8 26 4 1 50 7 1
3 1 2 27 4 2 51 7 2
4 1 3 28 4 3 52 7 3
5 1 4 29 4 5 53 7 4
6 1 6 30 4 6 54 7 5
7 1 7 31 4 7 55 7 6
8 1 8 32 4 8 56 7 8
9 1 9 33 4 9 57 7 9
10 2 1 34 5 1 58 8 1
11 2 3 35 5 2 59 8 2
12 2 4 36 5 3 60 8 3
13 2 5 37 5 4 61 8 4
14 2 6 38 5 6 62 8 5
15 2 7 39 5 7 63 8 6
16 2 8 40 5 8 64 8 7
17 2 9 41 5 9 65 8 9
18 3 1 42 6 1 66 9 1
19 3 2 43 6 2 67 9 2
20 3 4 44 6 3 68 9 3
21 3 5 45 6 4 69 9 4
22 3 6 46 6 5 70 9 5
23 3 7 47 6 7 71 9 6
24 3 8 48 6 8 72 9 7

where R̃j denotes the j-th column of R̃. The value vector for the dispatch activities is

v =
(

2.1 1.7 1.7 1.5 1.7 1.4 2.5 3.3 2.7 2.5 1.9 6.3 11.2 1.4 1.5 2.3 1.9 2.4 5.9
)′

and the cost vector for the relocation activities is

c =
(

4.1 14.7 3.3 6.0 10.1 4.5 10.3 15.0 22.9 3.5 2.6 6.9 7.7 6.2 7.4

12.6 21.0 6.9 2.7 3.4 10.7 8.0 6.4 11.4 23.3 10.3 6.6 3.2 14.9 12.2

8.4 10.2 22.6 4.1 7.7 10.5 14.7 5.0 10.5 13.6 21.5 4.2 6.2 7.4 12.2

4.8 5.9 9.4 20.0 9.4 5.9 5.4 8.0 9.6 4.0 5.6 17.7 15.7 12.7 11.5

10.2 13.7 9.5 5.7 15.2 23.3 21.3 23.2 23.0 20.8 20.1 18.1
)′
.

The covariance matrix of the BCP is as follows:
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Σ =




0.57-0.43-0.07 0.00-0.03-0.01 0.00-0.02-0.01

-0.43 1.16-0.54-0.03-0.03-0.01-0.02-0.07-0.03

-0.07-0.54 0.71-0.05-0.01 0.00-0.01-0.02-0.01

0.00-0.03-0.05 0.10 0.00 0.00 0.00 0.00 0.00

-0.03-0.03-0.01 0.00 0.07 0.00 0.00 0.00 0.00

-0.01-0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.00-0.02-0.01 0.00 0.00 0.00 0.04-0.01 0.00

-0.02-0.07-0.02 0.00 0.00 0.00-0.01 0.12 0.00

-0.01-0.03-0.01 0.00 0.00 0.00 0.00 0.00 0.06




.

Matrix K the BCP is as follows:

K =




1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1




.

Next, we numerically verify that Assumption 2 holds for the NYC application, i.e.,

{
Ry + R̃ỹ : Ky ≥ 0, ỹN ≤ 0, y ∈ Rn, ỹ ∈ Rñ

}
= Rq. (B.1)

Since the left-hand side of (B.1) is a convex cone, it holds if

±ei ∈
{
Ry + R̃ỹ : Ky ≥ 0, ỹN ≤ 0, y ∈ Rn, ỹ ∈ Rñ

}
, i = 1, . . . , q, (B.2)
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where ei is the q-vector with a one in the i-th component and zeros elsewhere. We verify

(B.2) by numerically showing that there exists (y1, ỹ1) and (y2, ỹ2) for i = 1 . . . , q such that1

Ry1 + R̃ỹ1 = −ei, Ky1 ≥ 0, ỹ1
N
≤ 0, y1 ∈ Rn, ỹ1 ∈ Rñ, (B.3)

Ry2 + R̃ỹ2 = +ei, Ky2 ≥ 0, ỹ2
N
≤ 0, y2 ∈ Rn, ỹ2 ∈ Rñ. (B.4)

The matrices G and G̃ of the Reduced Brownian Control Problem (RBCP) are as follows:2

G =




0.02 0.06 0.02 0.00 0.01-0.01-0.02-0.05-0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00-0.05 0.01 0.00

-0.01-0.06-0.02 0.00 0.00 0.00 0.02 0.05 0.02 0.00 0.00 0.00 0.05-0.01 0.00




and G̃ = [G̃L G̃R], where

G̃L =




0 0 0 -1-1-1-1 0 0 0 0 -1-1-1-1 0 0 0 0 -1-1-1-1 0 0 0 0 -1-1-1-1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0


,

G̃R =



-1-1-1-1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0

1 0 0 0 -1-1-1-1-1-1-1-1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 1 1 1 0 0 0 0 0 1 1 1 -1-1-1-1-1-1 0 0 -1-1-1-1-1-1 0 0 -1-1-1-1-1-1 0


.

The vectors π, κ, and κ̃ of the RBCP are as follows:

π =
(

12.93 12.62 12.78 12.52 17.04 16.05 16.26 15.68 1.00
)′
,

κ =
(

0.87 2.3 1.37 0.13 0.0 0.01 0.03 0.2 0.65 0.78 0.46 0.03 0.02 0.01 0.05
)′
,

1. The existence of (y1, ỹ1) and (y2, ỹ2) satisfying (B.3)-(B.4) can be numerically verified using a linear
program, where the objective is zero and the constraints are (B.3)-(B.4).

2. This is one particular choice of the matrix G. As discussed in Section 2.5, any solution to Equation
(2.35) is acceptable.
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κ̃ =
(

3.61 6.18 10.54 1.37 6.95 12.28 34.82 3.24 2.42 7.04 3.26 2.8 3.73 9.56

32.61 6.74 2.85 3.68 6.4 4.73 2.89 8.52 35.05 9.9 6.47 2.96 10.41 8.69

4.71 7.07 34.12 8.20 12.16 14.75 19.24 5.95 11.26 14.98 37.53 7.33 9.63 10.7

15.74 3.78 5.72 9.79 35.06 12.69 9.53 8.9 11.71 8.82 4.19 6.13 32.98 18.4

15.75 14.4 13.38 12.34 9.13 5.12 29.87 11.36 9.65 11.41 11.47 4.76 5.08 2.83
)′
.

B.1.3 No Opportunity for Arbitrage

Proposition 8 shows that there is no opportunity for arbitrage in the BCP (2.32). To be

specific, it states that the platform cannot reduce costs by deviating from the nominal plan

without creating a queue length displacement, idling servers, or taking part in non-basic

dispatch or relocation activities.

Proposition 8 (Harrison [114, Proposition 1]). There is no opportunity for arbitrage, i.e.,

minimize
y,ỹ

v′y − c′ỹ subject to Ry + R̃ỹ = 0, Ky ≥ 0, and ỹN ≤ 0 (B.5)

has the unique optimal solution of y? = 0 and ỹ? = 0.

To see the relationship between Problem (B.5) and the opportunity for arbitrage, assume

that there exists (y, ỹ) such that Ry + R̃ỹ = 0, Ky ≥ 0, ỹN ≤ 0, and v′y − c′ỹ < 0.

Consider a control (Y, Ỹ ) that has jumps Y (t) − Y (t-) = y and Ỹ (t) − Ỹ (t-) = ỹ at

some fixed time t > 0. From Equation (2.22) and equality Ry + R̃ỹ = 0, we have that

Z(t)− Z(t-) = R(Y (t)− Y (t-)) + R̃(Ỹ (t)− Ỹ (t-)) = 0, which means that the jumps in Y

and Ỹ do not violate the state space constraint (2.26). Also, Equations (2.23)-(2.24) and

inequalities Ky ≥ 0, and ỹN ≤ 0 ensure that Equation (2.25) holds. Finally, inequality

v′y − c′ỹ < 0 states that the control jumps of Y and Ỹ generate a strictly negative jump in

the cumulative cost so by considering arbitrarily large multiples of y and ỹ as control jumps,

we can drive the cost to −∞.
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B.1.4 A Simplification of the Reduced Brownian Formulation

The reduced Brownian formulation introduced in Harrison and Williams [123] includes the

extra condition that U(t) ∈
{
Ky : y ∈ Rn

}
for t ≥ 0. This condition is necessary for

ensuring that there exists an admissible control (Y, Ỹ ) to (2.22)-(2.27) whose extended state

process includes U . Lemma 12 shows that {Ky : y ∈ Rn} = Rm+n−b in our case. Therefore,

we can omit this condition; see Pesic and Williams [174, Lemma 3.1] for a similar result in

the context of parallel server systems. The crucial feature of our model that gives rise to

this property is the fact that each dispatch activity is associated with a unique server.

Lemma 12. We have that {Ky : y ∈ Rn} = Rm+n−b.

Proof. The proof resembles the proof of Pesic and Williams [174, Lemma 3.1]. For simplicity,

we use the notation Range(K) to denote {Ky : y ∈ Rn}. It is sufficient to show that el ∈

Range(K) for l = 1, . . . ,m+n−b. We show this for l = 1, . . . ,m and l = m+1, . . . ,m+n−b,

separately.

Case 1. Consider l ∈ {1, . . . ,m}. By Assumption 1, Ax? = e. Therefore, there exists a

basic dispatch activity j such that k(j) = l. Then, by Equations (2.3), (2.19), and (2.28),

we have Kj = el, which gives el ∈ Range(K).

Case 2. Consider l ∈ {m + 1, . . . ,m + n − b} and the non-basic dispatch activity j =

l −m + b. It follows from Equations (2.3), (2.19), and (2.28) that Kj = ek(j) − el. Since

ek(j) ∈ Range(K), by Case 1, and Kj ∈ Range(K), we have ek(j)−Kj = el ∈ Range(K).

B.1.5 Equivalence of the BCP and the RBCP

Lemma 13 establishes an equivalence between the BCP (2.32) and the RBCP (2.42). In

particular, it shows that given the state Z(t) in the BCP, one sets W (t) = MZ(t) to arrive

at the equivalent state descriptor in the RBCP. To go in the other direction, given the state

W (t) in the RBCP, one sets Z(t) = ∆
(
W (t)

)
to arrive at the equivalent state descriptor in

the BCP.
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Lemma 13 (Harrison and Williams [123, Theorem 6.1]). The RBCP (2.42) is equivalent to

the BCP (2.32) in the following sense: Fix ε ≥ 0.

(i) Suppose that (Y, Ỹ ) is an ε-optimal control for the BCP (2.32) with Brownian motion

X and extended state process (Z,U, Ũ). Then (U, Ũ) is an ε-optimal control for the

RBCP (2.42) with Brownian motion χ and state process W given by χ(t) = MX(t)

and W (t) = MZ(t) for t ≥ 0.

(ii) Suppose that (U, Ũ) is an ε-optimal control for the RBCP (2.42) with Brownian motion

χ and state process W . Then, there exists a Brownian motion X such that MX(t) =

χ(t) for t ≥ 0. Furthermore, there exists a pair (Y, Ỹ ) that is an ε-optimal control for

the BCP (2.32) with Brownian motion X and extended state process (Z,U, Ũ), where

Z(t) = ∆(W (t)) for t ≥ 0.

B.1.6 The Value Function of a Region of Inaction Type Policy.

Consider a closed set B and let ∂B1, . . . , ∂Bd be a partition of its boundary such that

pushing control l is used for w ∈ ∂Bl. Given the initial workload w ∈ Ŵ , consider the

following control policy, denoted by Ûw: Exert no control in the interior of B and keep the

state process Ŵ in B by using pushing control l on ∂Bl minimally for l = 1, . . . , d. Moreover,

if w 6∈ B, move the state process Ŵ instantaneously from w to the point w′ ∈ ∂B for which

the cost associated with this instantaneous move is the smallest; see Equations (2.57)-(2.59).

On the other hand, consider a function f ∈ C2(Ŵ) and assume that it solves the following

PDE on B:

Lf(w)− αf(w) + h(w) = 0, w ∈ int(B) (B.6)

subject to the boundary condition

∇f(w)′ Ĝl + κ̂l = 0, w ∈ ∂Bl and l = 1, . . . , d, (B.7)
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and that it is defined on Ŵ\B as follows:

f(w) = min
w′∈∂B

{
C(w,w′) + f(w′)

}
, w ∈ Ŵ\B, (B.8)

where C is given by (2.57)-(2.59). Next, we show that f(w) is the expected discounted cost

of policy Ûw that starts at state w. To this end, note that by Lemma 18, we have

f(w) = −E
[ ∫ ∞

0
e−αt

(
Lf(w)− αf(w)

)
dt
]
− E

[ d∑

l=1

∫ ∞

0
e−αt∇f(Ŵ (t))′ĜldÛw,l(t)

]
(B.9)

for w ∈ Ŵ . Substituting Equations (B.6)-(B.8) into Equation (B.9) gives the desired result:

f(w) = E
[ ∫ ∞

0
e−αth(w)dt

]
+ E

[ ∫ ∞

0
e−αtd(κ̂′Ûw)(t)

]
, w ∈ Ŵ .

B.1.7 Numerical Solution of the Partial Differential Equation

This section develops a numerical method for solving the PDE discussed in Section 2.7. To

be specific, suppose we are given a closed convex set B ⊆ Ŵ , referred to as the region of

inaction, and a partition ∂B1, . . . , ∂Bd of its boundary, ∂B, such that pushing control l is

used for w ∈ ∂Bl. This section develops a numerical solution to the PDE

Lf(w)− αf(w) + h(w) = 0, w ∈ int(B) (B.10)

subject to the boundary condition

∇f(w)′ Ĝl + κ̂l = 0, w ∈ ∂Bl and l = 1, . . . , d. (B.11)

This PDE falls under the category of second-order linear elliptic PDE with oblique derivative

boundary conditions; see Lieberman [156] and Gilbarg and Trudinger [101] for an overview.

One can use any numerical method of choice to solve Equations (B.10)-(B.11). The specific
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method used does not impact the algorithm discussed in Section 2.7. Following Kumar and

Muthuraman [145], we choose to adapt the Finite Element Method (FEM) for two reasons:

First, it provides an approximate solution with bounded error. Second, it can handle complex

and irregular boundaries in high dimensions. Note that since irregular regions of inaction

may arise in the algorithm discussed in Section 2.7, it is crucial to use a numerical method

that can handle irregular boundaries; see Hughes [132] and Larson and Bengzon [151] for

further details on FEM. For simplicity, in this section, we reuse some of the notation that

was already introduced.

FEM transforms Equations (B.10)-(B.11) into a variational form and uses the notion of

orthogonality in function spaces to obtain an approximate solution. To be specific, FEM

constructs an approximate solution of the form

f̂(w) =
M∑

m=1

βmψ
m(w), w ∈ B, (B.12)

where ψm are real-valued functions commonly referred to as the basis function, M denotes

the number of (distinct) basis functions, and βm are coefficients. The choice of the basis

functions will be discussed later and for the moment, it is assumed the basis functions are

given. FEM seeks to find the set of coefficients βm for m = 1, . . . ,M that minimize an

error criterion. We use the so-called Galerkin method, which uses a specific error criterion.

Letting β = (βm) denote the vector of coefficients, we define the residual function as

R(w, β) = Lf̂(w)− αf̂(w) + h(w) (B.13)

at all points w ∈ int(B) in which the derivatives exist. Ideally, we would like to ensure that

Equation (B.10) holds, which is equivalent to ensuring that R(w, β) = 0 for all w ∈ int(B).
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However, this need not be possible. The Galerkin method instead aims for the following:

∫

B
R(w, β)ψk(w)dw = 0, k = 1, . . . ,M. (B.14)

Loosely speaking, this is equivalent to requiring the error to be orthogonal to the basis

functions. Similarly, instead of requiring Equation (B.11) to hold for w ∈ ∂B, the Galerkin

method aims for

d∑

l=1

∫

∂Bl
(
∇f̂(w)′ Ĝl + κ̂l

)
ψk(w)dw = 0, k = 1, . . . ,M. (B.15)

Lemma 14 provides an integration by parts result that is crucially used in the Galerkin

method; see Le Dret and Lucquin [154, Proposition 3.15 and Section 4.4] for further details.

As a preliminary to Lemma 14, let n(w) denote the normal unit exterior vector (the unit

vector normal to the boundary in the exterior direction) for w ∈ ∂B.

Lemma 14 (Green’s Formula). Suppose f, φ∈L2(B) such that ∂if, ∂ijf ∈L2(B) and ∂iφ∈

L2(B) for i, j = 1, . . . , p− 1. Then,

∫

B

p−1∑

i,j=1

σ̂ij∂ijf(w)ψ(w)dw = −
∫

B

p−1∑

i,j=1

σ̂ij∂jf(w)∂iψ(w)dw

+

∫

∂B

p−1∑

i,j=1

σ̂ij∂jf(w)ni(w)ψ(w)dw (B.16)

By substituting Equation (B.12) into Equation (B.14) and using Lemma 14 as well as

Equation (B.15), Lemma 15 obtains a set of linear equations. As a preliminary to stating
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Lemma 15, we introduce the following notation: Define Dkm and qk as follows:

Dkm =

p−1∑

i,j=1

1

2
σ̂ij

∫

B
∂jψ

m(w)∂iψ
k(w)dw + α

∫

B
ψm(w)ψk(w)dw

−
p−1∑

i,j=1

1

2
σ̂ij

∫

∂B
∂jψ

m(w)ni(w)ψk(w)dw −
d∑

l=1

∫

∂Bl
∇ψm(w)′ Ĝlψk(w)dw, (B.17)

where ni(w) denotes the i-th component of n(w) and

qk =

∫

B
h(w)ψk(w)dw +

d∑

l=1

∫

∂Bl
κ̂lψ

k(w)dw (B.18)

for k,m = 1, . . . ,M . Then, we define the M ×M dimensional matrix D = [Dkm] and the

M -dimensional vector q = (qk).

Lemma 15. If the coefficient vector β satisfies (B.14)-(B.15), then Dβ = q.

Proof. First, we use Lemma 14 to write the left-hand side of (B.14) in terms of first order

derivatives. Then, we combine (B.14) and (B.15) to arrive at the desired result. It follows

from Equation (B.13) and the definition of operator L that for k = 1, . . . ,M ,

∫

B
R(w, β)ψk(w)dw =

∫

B
Lf̂(w)ψk(w)dw −

∫

B
αf̂(w)ψk(w)dw +

∫

B
h(w)ψk(w)dw

=
1

2

∫

B

p−1∑

i,j=1

σ̂ij∂ij f̂(w)ψk(w)dw −
∫

B
αf̂(w)ψk(w)dw

+

∫

B
h(w)ψk(w)dw. (B.19)
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Substituting (B.16) into (B.19) gives

∫

B
R(w, β)ψk(w)dw =− 1

2

∫

B

p−1∑

i,j=1

σ̂ij∂j f̂(w)∂iψ
k(w)dw

+
1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂j f̂(w)ni(w)ψk(w)dw

−
∫

B
αf̂(w)ψk(w)dw +

∫

B
h(w)ψk(w)dw, k = 1, . . . ,M. (B.20)

Substituting (B.20) into (B.14) gives

− 1

2

∫

B

p−1∑

i,j=1

σ̂ij∂j f̂(w)∂iψ
k(w)dw +

1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂j f̂(w)ni(w)ψk(w)dw

−
∫

B
αf̂(w)ψk(w)dw +

∫

B
h(w)ψk(w)dw = 0, k = 1, . . . ,M. (B.21)

Adding the left-hand side of (B.15) to the left-hand side of (B.21), the right-hand side of

(B.15) to the right-hand side of (B.21) gives

− 1

2

∫

B

p−1∑

i,j=1

σ̂ij∂j f̂(w)∂iψ
k(w)dw +

1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂j f̂(w)ni(w)ψk(w)dw

−
∫

B
αf̂(w)ψk(w)dw +

∫

B
h(w)ψk(w)dw

+
d∑

l=1

∫

∂Bl
(
∇f̂(w)′ Ĝl + κ̂l

)
ψk(w)dw = 0, k = 1, . . . ,M.

183



Then, rearranging the terms gives

1

2

∫

B

p−1∑

i,j=1

σ̂ij∂j f̂(w)∂iψ
k(w)dw +

∫

B
αf̂(w)ψk(w)dw

− 1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂j f̂(w)ni(w)ψk(w)dw −
d∑

l=1

∫

∂Bl
∇f̂(w)′ Ĝlψk(w)dw

=

∫

B
h(w)ψk(w)dw +

d∑

l=1

∫

∂Bl
κ̂lψ

k(w)dw, k = 1, . . . ,M. (B.22)

Substituting Equation (B.12) into Equation (B.22) gives

1

2

M∑

m=1

p−1∑

i,j=1

∫

B
σ̂ijβm∂jψ

m(w)∂iψ
k(w)dw +

M∑

m=1

∫

B
αβmψ

m(w)ψk(w)dw

− 1

2

M∑

m=1

p−1∑

i,j=1

∫

∂B
σ̂ijβm∂jψ

m(w)ni(w)ψk(w)dw −
M∑

m=1

d∑

l=1

∫

∂Bl
βm∇ψm(w)′ Ĝlψk(w)dw

=

∫

B
h(w)ψk(w)dw +

d∑

l=1

∫

∂Bl
κ̂lψ

k(w)dw, k = 1, . . . ,M. (B.23)

Finally, we write (B.23) as Dβ = q using the definitions of D and q; see Equations (B.17)-

(B.18).

Motivated by Lemma 15, the Galerkin method seeks to find the coefficient vector β that

solves Dβ = q. Before discussing the choice of the basis functions, let us show that the

approximation error of FEM is bounded. To do so, let F denote the space spanned by the

basis functions ψ1, . . . , ψM and define the symmetric bilinear form b(·, ·) as follows:

b(ψ, η) =

p−1∑

i,j=1

1

2
σ̂ij

∫

B
∂jψ(w)∂iη(w)dw + α

∫

B
ψ(w)η(w)dw

−
p−1∑

i,j=1

1

2
σ̂ij

∫

∂B
∂jψ(w)ni(w)η(w)dw −

d∑

l=1

∫

∂Bl
∇ψ(w)′ Ĝlη(w)dw
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for ψ and η that are twice continuously differentiable almost everywhere on Ŵ . This bilinear

form defines a seminorm on the space of functions that are twice continuously differentiable

almost everywhere on Ŵ .3 Proposition 9, which extends Kumar and Muthuraman [145,

Proposition 5] to our case, shows that the function f̂ characterized by the the solution to

Dβ = q is the ”best approximation” to the solution to Equations (B.10)-(B.11) in the space

F as measured by the seminorm defined by b.

Proposition 9. Assume f satisfies (B.10)-(B.11) and f̂ is characterized by the solution to

Dβ = q. Then,

b(f − f̂ , f − f̂) ≤ b(f − ψ, f − ψ), ψ ∈ F . (B.24)

Proof. The proof closely resembles the proof of Kumar and Muthuraman [145, Proposition

5]. First, we assume b(f − f̂ , ψ) = 0 for ψ ∈ F and use the bilinearity of b to arrive at

(B.24). Then, we prove b(f − f̂ , ψ) = 0 for ψ ∈ F . Assume we have b(f − f̂ , ψ) = 0 for

ψ ∈ F . Then, by the bilinearity of b, for η ∈ F , we have

b(f − f̂ + η, f − f̂ + η) = b(f − f̂ , f − f̂) + 2b(f − f̂ , η) + b(η, η)

= b(f − f̂ , f − f̂) + b(η, η)

≥ b(f − f̂ , f − f̂),

where the equality follows from b(f − f̂ , η) = 0 and the inequality follows from the fact that

the bilinear form defines a seminorm. The result then follows form this and the fact that

any ψ ∈ F can be written as f̂ − η for some η ∈ F .

It just remains to show that b(f − f̂ , ψ) = 0 for ψ ∈ F . We prove this in two steps. In the

3. The bilinear form b is said to be a seminorm if (i) b(ψ, η) ≤ b(ψ,ψ) + b(η, η) and (ii) b(aψ, aψ) =
|a|b(ψ,ψ) for a ∈ R and ψ, η that are twice continuously differentiable almost everywhere on Ŵ.
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first step, we show that

b(f, ψ) =

∫

B
h(w)ψ(w)dw +

d∑

l=1

∫

∂Bl
κ̂lψ(w)dw, ψ ∈ F . (B.25)

In the second step, we show that

b(f̂ , ψ) =

∫

B
h(w)ψ(w)dw +

d∑

l=1

∫

∂Bl
κ̂lψ(w)dw, ψ ∈ F . (B.26)

The desired equality, i.e., b(f − f̂ , ψ) = 0 for ψ ∈ F , follows from (B.25)-(B.26).

Step 1. Since f satisfies (B.10)-(B.11), we have

∫

B

(
Lf(w)− αf(w) + h(w)

)
ψ(w)dw = 0,ψ ∈ F . (B.27)

d∑

l=1

∫

∂Bl
(
∇f(w)′ Ĝl + κ̂l

)
ψ(w)dw = 0, ψ ∈ F . (B.28)

First, we use Lemma 14 to write (B.27) in terms of first order derivatives. Then, we combine

(B.27) and (B.28) to arrive at the desired result. By writing out the differential operator L

in (B.27), we obtain

1

2

∫

B

p−1∑

i,j=1

σ̂ij∂ijf(w)ψ(w)dw −
∫

B
αf(w)ψ(w)dw +

∫

B
h(w)ψ(w)dw = 0, ψ ∈ F . (B.29)

Substituting (B.16) into (B.29) gives

− 1

2

∫

B

p−1∑

i,j=1

σ̂ij∂jf(w)∂iψ(w)dw +
1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂jf(w)ni(w)ψ(w)dw

−
∫

B
αf(w)ψ(w)dw +

∫

B
h(w)ψ(w)dw = 0, ψ ∈ F (B.30)

Adding the left-hand side of (B.28) to the left-hand side of (B.30), the right-hand side of
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(B.28) to the right-hand side of (B.30) gives

− 1

2

∫

B

p−1∑

i,j=1

σ̂ij∂jf(w)∂iψ(w)dw +
1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂jf(w)ni(w)ψ(w)dw

−
∫

B
αf(w)ψ(w)dw +

∫

B
h(w)ψ(w)dw +

d∑

l=1

∫

∂Bl
(
∇f(w)′ Ĝl + κ̂l

)
ψ(w)dw = 0, ψ ∈ F .

Then, by rearranging the terms, we obtain

1

2

∫

B

p−1∑

i,j=1

σ̂ij∂jf(w)∂iψ(w)dw +

∫

B
αf(w)ψ(w)dw − 1

2

∫

∂B

p−1∑

i,j=1

σ̂ij∂jf(w)ni(w)ψ(w)dw

−
d∑

l=1

∫

∂Bl
∇f(w)′ Ĝlψ(w)dw =

∫

B
h(w)ψ(w)dw +

d∑

l=1

∫

∂Bl
κ̂lψ(w)dw, ψ ∈ F ,

which concludes step 1.

Step 2. This step is almost identical to the first step with the exception that we use

(B.14)-(B.15) instead of (B.27)-(B.28).

Next, we discuss the choice of the basis functions ψm for m = 1, . . . ,M . First, we choose

a finite number of closed sets T 1, . . . , T N such that their intersection has a Lebesgue measure

zero and their union is the region of inaction B. These sets will be used to decompose the

integrals over B into sums of integrals over T 1, . . . , T N . Such a partition of B is called a mesh

or triangulation on B. The sets T 1, . . . , T N are called the elements and their vertices are

called nodes. For the NYC application, we use triangular elements. Triangular elements can

accommodate any polygonal B, which provides great flexibility for the algorithm discussed

in Section 2.7. Following Larson and Bengzon [151, Section 1.1.3], we first discretize the

region of inaction B; see Figure B.2 for an illustration of the discretized region of inaction in

two dimensions. Then, we construct a mesh of the region of inaction B such that the nodes

coincide with the discretized points. We use the Delaunay triangulation algorithm of Barber

et al. [42] to construct the mesh. We denote the nodes by wm for m = 1, . . . ,M and define
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ψm

wm
r

Figure B.1: An example of a hat func-
tion in two dimensions. The shaded area
depicts the support of the hat function.
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Figure B.2: An example of a mesh of Ŵ in
two dimensions, i.e., p = 3. Each triangle
is an element.

the basis functions on the nodes as follows:

ψm(w) =





1 if w = wm,

0 if w = wl, l 6= m.
(B.31)

The basis functions ψm can be defined in a variety of manners at points in B other than the

mesh points. For second-order PDEs, linear interpolation in each element T n is the most

common approach. These (linearly interpolated) basis functions are referred to as the ”hat”

functions; see Figure B.1 for an illustration of the hat functions in two dimensions. Each hat

function corresponds to a node. The hat function is non-zero only on the elements for which

the corresponding node is a vertex. The elements on which the hat function is non-zero are

shaded in Figure B.1.

We conclude this section by providing closed-form expressions for matrix D and vector q

defined in Equations (B.17)-(B.18), in the two-dimensional case, which is the relevant case

for the NYC application. Our discussion closely follows Larson and Bengzon [151, Sections

3.5-3.6 and 4.6]. We first express the integrals over B and ∂B as sums of integrals over the
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elements T n for n = 1, . . . , N , i.e.,

Dkm =
N∑

n=1

p−1∑

i,j=1

1

2
σ̂ij

∫

T n
∂jψ

m(w)∂iψ
k(w)dw + α

N∑

n=1

∫

T n
ψm(w)ψk(w)dw

−
N∑

n=1

p−1∑

i,j=1

1

2
σ̂ij

∫

∂B∩T n
∂jψ

m(w)ni(w)ψk(w)dw −
N∑

n=1

d∑

l=1

∫

∂Bl∩T n
∇ψm(w)′ Ĝlψk(w)dw (B.32)

and

qk =
N∑

n=1

∫

T n
h(w)ψk(w)dw +

N∑

n=1

d∑

l=1

κ̂l

∫

∂Bl∩T n
ψk(w)dw (B.33)

for k,m = 1, . . . ,M . Then, we use the following identities to compute the matrix D and the

vector q: For k,m = 1, . . . ,M and n = 1, . . . , N , we have

∫

T n
ψm(w)ψk(w)dw =





Area(T n)/12 if wm and wk are vertices of T n and m 6= k,

Area(T n)/6 if wm and wk are vertices of T n and m = k,

0 otherwise,

∫

T n
h(w)ψk(w)dw '




h(wk)Area(T n)/3 if wk is a vertex of T n,

0 otherwise,

∫

T n
ψk(w)dw =





Area(T n)/3 if wk is a vertex of T n,

0 otherwise,

where a ' b denotes a = b+ o
(
Area(T n)

)
.4 Now, we fix n ∈ {1, . . . , N} and let w1, w2, and

w3 denote be the vertices of T n. Then, ψi(w) = (ai+ biw1 + ciw2)/2Area(T n) for i = 1, 2, 3

4. We can ensure that the sum (over n) of the error terms is negligible, i.e., converges to zero as n→∞,
by making sure that the mesh satisfies maxn Area(T n) = O(1/n).
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and w ∈ T n, where

a1 = w2
1w

3
2 − w3

1w
2
2, b1 = w2

2 − w3
2, c1 = w3

1 − w2
1

a2 = w3
1w

1
2 − w1

1w
3
2, b2 = w3

2 − w1
2, c2 = w1

1 − w3
1

a3 = w1
1w

2
2 − w2

1w
1
2, b3 = w1

2 − w2
2, c3 = w2

1 − w1
1,

and ∇ψi(w) =
(
bi/2Area(T n), ci/2Area(T n)

)′
for w ∈ T n.

B.1.8 Solving the Equivalent Workload Formulation using the Markov

Chain Approximation Method

This section describes the Markov chain approximation method that provides an approximate

numerical solution to the EWF (2.47)-(2.50). This method constructs a Markov chain and

an associated control problem whose value function approximates the value function of the

EWF (2.47)-(2.50) at a discrete subset of the states space, i.e., the state space of the Markov

chain. Then, it numerically solves the control problem and interprets its solution in the

context of the EWF (2.47)-(2.50) in order to obtain an approximate solution for the EWF

(2.47)-(2.50). This method was initially introduced in Kushner [146]; also see Kushner and

Martins [148] and Kushner and Dupuis [147]. We first discuss the intuition behind the

approximation method. Then, we describe the state space, the action space, and the state

transitions of the approximating Markov chain. In doing so, we focus on the two-dimensional

case as this is the relevant case for the NYC application. In the remainder of this section,

similar to Section 2.7, dummy variables w and u are used instead of ŵ and û.

The Markov chain approximation method takes advantage of the hypothesis that the

(optimal) value function of the EWF (2.47)-(2.50) is the unique solution of the following
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dynamic programming equation:

(
Lφ(w)− αφ(w) + h(w)

)
∧ inf
‖Ĝu‖=1

{
∇φ(w)′Ĝu+ κ̂′u

}
= 0, w ∈ Ŵ . (B.34)

The Markov chain approximation method seeks a discrete-time, discrete state-space Markov

chain and an associated control problem, whose value function approximates the solution of

the dynamic programming equation (B.34).

State Space. Let δ denote the discretization step size and define the δ-grid W̄ and the

extended δ-grid W̄+ as follows:5

W̄ =
{

(iδ, jδ) ∈ Ŵ : i, j ∈ N
}

and

W̄+ =
{

(iδ + i′δ, jδ + j′δ) : i′, j′∈ {−1, 0,+1}, (iδ, jδ) ∈ W̄
}
.

The extended grid is the super-set of W̄ and includes the states that the approximating

Markov chain could transition to from w ∈ W̄ . The state space of the approximating Markov

chain is the extended grid W̄+. We define ∂W̄+ = W̄+ \ W̄ and call it the reflecting

boundary. The grid W̄ and the reflecting boundary ∂W̄+ for the NYC application are

depicted in Figure B.3; black dots represent the grid W̄ and gray circles represent the

reflecting boundary ∂W̄+. The inclusion of this reflecting boundary in the state space

is essential for capturing the behavior of the Brownian motion χ̂ on the boundary of the

state space Ŵ of the EWF (2.47)-(2.50). Let φ̄(w) denote the (optimal) value function of

the approximating Markov chain at state w ∈ W̄+, i.e., the minimum achievable expected

discounted cost starting at w.

5. We choose δ = 1/n ∈ (0, 1) so that 1/δ = n is an integer.
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Figure B.3: State space of the approxi-
mating Markov chain with δ = 0.05 for
the NYC application. Black dots repre-
sent the grid W̄ and gray circles repre-
sents the reflecting boundary ∂W̄+.

w

w′

w′(1)

w′(2)

w′(2)w′(1) w′

υ1

υ2

Figure B.4: Two examples of con-
trols in the approximating Markov chain
method. Each control in the approximat-
ing Markov chain method results in a ran-
dom transition to one of two neighboring
states.

Actions and Transitions on W̄. At state w ∈ W̄ , we can take one of the following

actions: (i) exert no control, or (ii) exert control in some direction υ. When we exert no

control, we want the value function of the Markov chain φ̄ to locally approximate the solution

φ to the PDE

Lφ(w)− αφ(w) + h(w) = 0. (B.35)

When we exert control, we want the value function of the Markov chain φ̄ to locally approx-

imate the solution φ to

inf
‖Ĝu‖=1

{
∇φ(w)′Ĝu+ κ̂′u

}
= 0. (B.36)

Equation (B.36) states that when control is exerted, the change in value function (as a result

of the control displacement) must cancel out the control cost.

Next, we discuss the transitions (for the approximating Markov chain) that give rise to this
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desired behavior.

The Case of No Control. In this case, we set the period length for the approximating

Markov chain as ∆t = δ2/Q, where

Q =

p−1∑

i=1

σ̂ii −
p−1∑

i,j=1
j 6=i

|σ̂ij |/2 > 0.

Also, we let the (immediate) cost to be

C̄(w,No Control) = h(w) ∆t.

Lastly, the transition probabilities are as follows:

P(w′ |w,No Control) =





2σ̂ii −
∑p−1
i,j=1,j 6=i |σ̂ij |/2Q if w′ = w ± eiδ,

σ̂+
i,j/2Q if w′ = w + eiδ + ejδ, i 6= j,

σ̂+
i,j/2Q if w′ = w − eiδ − ejδ, i 6= j,

σ−i,j/2Q if w′ = w − eiδ + ejδ, i 6= j,

0 otherwise,

(B.37)

By replacing the differential operator L in Equation (B.35) with finite difference ap-

proximations, Lemma 16 obtains a discrete approximation to Equation (B.35). Letting

x+ = max(x, 0) and x− = min(x, 0), we next state the lemma.
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Lemma 16. The solution to (B.35) satisfies

φ(w) = exp(−αδ
2

Q
)

p−1∑

i=1

1

2Q

(
2σ̂ii −

p−1∑

j=1
j 6=i

|σ̂ij |
)
φ(w + eiδ)

+ exp(−αδ
2

Q
)

p−1∑

i=1

1

2Q

(
2σ̂ii −

p−1∑

j=1
j 6=i

|σ̂ij |
)
φ(w − eiδ)

+ exp(−αδ
2

Q
)

p−1∑

i,j=1
j 6=i

1

2Q
σ̂+
ij φ(w + eiδ + ejδ)

+ exp(−αδ
2

Q
)

p−1∑

i,j=1
j 6=i

1

2Q
σ̂+
ij φ(w − eiδ − ejδ)

+ exp(−αδ
2

Q
)

p−1∑

i,j=1
j 6=i

1

2Q
σ̂−ij φ(w − eiδ + ejδ)

+ exp(−αδ
2

Q
)

p−1∑

i,j=1
j 6=i

1

2Q
σ̂−ij φ(w + eiδ − ejδ)

+ exp(−αδ
2

Q
)
δ2

Q
h(w) + O(δ4). (B.38)

Proof. Note that Equation (B.35) can be written more explicitly as follows:

1

2

p−1∑

i,j=1

σ̂ij∂ijφ(w)− αφ(w) + h(w) = 0.

which we then rewrite as below.

1

2

p−1∑

i=1

σ̂ii∂iiφ(w) +
1

2

p−1∑

i=1

∑

j 6=i
σ̂ij≥0

σ̂ij∂ijφ(w) +
1

2

p−1∑

i=1

∑

j 6=i
σ̂ij<0

σ̂ij∂ijφ(w)− αφ(w) + h(w) = 0. (B.39)

Consider the following finite difference approximations (see e.g., Kushner and Martins [148,
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Equations (5.2)-(5.4)]): For i, j = 1, . . . , p− 1, i 6= j, and σ̂ij ≥ 0,

∂iiφ(w) =
φ(w + eiδ) + φ(w − eiδ)− 2φ(w)

δ2
+ O(δ2),

∂ijφ(w) =
2φ(w) + φ(w + eiδ + ejδ) + φ(w − eiδ − ejδ)

2δ2

− φ(w + eiδ) + φ(w − eiδ) + φ(w + ejδ) + φ(w − ejδ)
2δ2

+ O(δ2), i 6= j, σ̂ij ≥ 0,

∂ijφ(w) = − 2φ(w) + φ(w + eiδ − ejδ) + φ(w − eiδ + ejδ)

2δ2

+
φ(w + eiδ) + φ(w − eiδ) + φ(w + ejδ) + φ(ŵ − ejδ)

2δ2
+ O(δ2), i 6= j, σ̂ij < 0.

Substituting these finite difference approximations into Equation (B.39) gives

1

2

p−1∑

i=1

σ̂ii
δ2

(
φ(w + eiδ) + φ(w − eiδ)− 2φ(w)

)

+
1

2

p−1∑

i,j=1,j 6=i
σ̂ij≥0

σ̂ij

2δ2

(
2φ(w) + φ(ŵ + eiδ + ejδ) + φ(w − eiδ − ejδ)

)

− 1

2

p−1∑

i,j=1,j 6=i
σ̂ij≥0

σ̂ij

2δ2

(
φ(w + eiδ) + φ(w − eiδ) + φ(w + ejδ) + φ(w − ejδ)

)

− 1

2

p−1∑

i,j=1,j 6=i
σ̂ij<0

σ̂ij

2δ2

(
2φ(w) + φ(w + eiδ − ejδ) + φ(w − eiδ + ejδ)

)

+
1

2

p−1∑

i,j=1,j 6=i
σ̂ij<0

σ̂ij

2δ2

(
φ(w + eiδ) + φ(w − eiδ) + φ(w + ejδ) + φ(w − ejδ)

)

− αφ(w) + h(w) + O(δ2) = 0.
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Multiplying both sides by δ2 and rearranging the terms gives

( p−1∑

i=1

σ̂ii −
1

2

p−1∑

i=1

∑

j 6=i
|σ̂ij |+ αδ2)φ(w) =

p−1∑

i=1

(
σ̂ii −

1

2

∑

j 6=i
|σ̂ij |

)
φ(w + eiδ)

+

p−1∑

i=1

(
σ̂ii −

1

2

∑

j 6=i
|σ̂ij |

)
φ(w − eiδ)

+

p−1∑

i=1

∑

j 6=i

1

2
σ̂+
ij φ(w + eiδ + ejδ)

+

p−1∑

i=1

∑

j 6=i

1

2
σ̂+
ij φ(w − eiδ − ejδ)

+

p−1∑

i=1

∑

j 6=i

1

2
σ̂−ij φ(w − eiδ + ejδ)

+

p−1∑

i=1

∑

j 6=i

1

2
σ̂−ij φ(w + eiδ − ejδ)

+ δ2h(w) + O(δ4). (B.40)

Dividing both sides of Equation (B.40) by Q gives

(
1 +

αδ2

Q

)
φ(w) =

p−1∑

i=1

1

2Q

(
2σ̂ii −

∑

j 6=i
|σ̂ij |

)
φ(w + eiδ) +

p−1∑

i=1

1

2Q

(
2σ̂ii −

∑

j 6=i
|σ̂ij |

)
φ(w − eiδ)

+

p−1∑

i=1

∑

j 6=i

1

2Q
σ̂+
ij φ(w + eiδ + ejδ) +

p−1∑

i=1

∑

j 6=i

1

2Q
σ̂+
ij φ(w − eiδ − ejδ)

+

p−1∑

i=1

∑

j 6=i

1

2Q
σ̂−ij φ(w − eiδ + ejδ) +

p−1∑

i=1

∑

j 6=i

1

2Q
σ̂−ij φ(w + eiδ − ejδ)

+
δ2

Q
h(w) + O(δ4). (B.41)

Then, substituting the approximation exp(αδ2/Q) = 1 + αδ2/Q + O(δ4) into Equation

(B.41) and multiplying both sides by exp(−αδ2/Q) gives the result.

We interpret Equation (B.38) as the Bellman equation of a discounted infinite horizon
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Markov chain with period length ∆t = δ2/Q, immediate cost C̄(w,No Control) = h(w) ∆t,

and transition probabilities given by (B.37); see Kushner and Dupuis [147, Section 5.3.1] for

further details.

As a preliminary to discussing the case where we exert control at direction υ, let w′ denote

the intersection of the ray emanating from w in direction υ with the grid lines surrounding

w as depicted in Figure B.4. Note that w′ is uniquely determined by the state w and the

direction υ. If w′ ∈ W̄ , the Markov chain transitions with probability one to w′. However,

w′ need not belong to W̄ , i.e., it need not be a grid point. To address this issue, we define

the states w′(1), w′(2) ∈ W as the two grid points that are neighboring w and closest to it

on either side on the grid line depicted in Figure B.4.

The Case of Exerting Control in Direction υ. In this case, the Markov chain tran-

sitions from state w to w′′ ∈ {w′(1), w′(2)} instantaneously with the following transition

probabilities:

P(w′′ |w,Control v) =





|w′ − w′(2)|/δ if w′′ = w′(1),

|w′ − w′(1)|/δ if w′′ = w′(2),

0 otherwise,

(B.42)

Since controls create an instantaneous displacement in the EWF (2.47)-(2.50), the (im-

mediate) cost of control is C̄(w,Control υ) = C(w,w′), where C is defined in Equations

(2.57)-(2.59). Figure B.4 illustrates the transitions in this case. When we exert control at

direction υ, the transition function of the approximating Markov chain is chosen by a ran-

domization between states w′(1) and w′(2) such that the mean increment is w′−w. In other

words, P(w′(1) |w,Control υ) and P(w′(2) |w,Control υ) are chosen such that

(w′(1) − w)× P(w′(1) |w,Control υ) + (w′(2) − w)× P(w′(2) |w,Control υ) = w′ − w,

i.e., mean increment is w′ − w, and P(w′(1) |w,Control υ) + P(w′(2) |w,Control υ) = 1. This
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Figure B.5: The discretized control directions for the NYC application.

gives rise to the transition probabilities given in Equation (B.42). Note that w′(1) and w′(2)

are introduced merely to address the problem that w′ need not belong to W̄ . The states w′(1)

and w′(2) play no role in determining the (immediate) cost of control. The (immediate) cost

of control is derived directly from w′. To be more specific, the (immediate) cost of control

at direction υ is C̄(w,Control υ) = C(w,w′); see Equations (2.57)-(2.59).

Kushner and Martins [148] and Kushner and Dupuis [147] assume that control has to

be exerted in one of finitely many directions. In our case, however, there are an infinite

number of directions available to the decision maker as the decision maker can use any linear

combination of the pushing controls to move the state process. We remedy this problem by

discretizing the set of control directions; see Figure B.5 for an illustration. For the NYC

application, we use a discretization step size of five degrees. Let C denote the set of discretized

control directions. The action set at w ∈ W̄ is

Ā(w) = {No Control} ∪ C, w ∈ W̄ .

Actions and Transitions on ∂W̄+. At w ∈ ∂W̄+, the decision maker has to exert

control. However, only a limited set of control directions are feasible. The action set at
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w ∈ ∂W̄+ is

Ā(w) =
{
υ ∈ C : ∃ε > 0 such that w + ευ ∈ Ŵ

}
, w ∈ ∂W̄+.

Given a feasible control direction υ ∈ Ā(w), the state transitions are the same as those given

by Equation (B.42).

Bellman Equation. The (optimal) value function of the approximating Markov chain

must satisfy

φ̄(w) = min
a∈Ā(w)

{
C̄(w, a) +

∑

w′∈W̄+

exp(−α∆ta)P(w′ |w, a) φ̄(w′)
}
, w ∈ W̄+. (B.43)

Note that when the decision maker does not exert control, ∆ta = δ2/Q > 0. However,

when the decision exerts control (at any direction), we set ∆t = 0 because the transition is

instantaneous.

Kushner and Martins [148, Theorem 7.1] shows that as δ → 0, the (optimal) value

function of the control problem discussed above converges pointwise to the (optimal) value

function of the EWF (2.47)-(2.50), i.e., φ̄(w)→ φ(w) for w ∈ W̄ .

Interpretation. We interpret the optimal solution to the control problem discussed above

as a control policy for the EWF (2.47)-(2.50) as follows: In the interior points of the state

space, i.e., w ∈ int(Ŵ), we use the action prescribed by the Bellman equation (Equation

(B.43)) at the grid point w′ of the state space W̄ of the Markov chain that is closest to w,

i.e., w′ = argminw̄∈W̄ ‖w̄−w‖. Recall that W̄ is the δ-grid of Ŵ . At the boundary points of

the state space, i.e., w ∈ ∂Ŵ , we use the action prescribed by the Bellman equation at the

grid point w′ of the reflecting boundary ∂W̄+ of the Markov chain that is closest to w, i.e.,

w′ = argminw̄∈∂W̄+ ‖w̄−w‖. In both cases, ties are broken in favor of the smaller (pushing

control) indices.
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(a) Our computational method.
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(b) Markov chain approximation
method.

Figure B.6: The control policies derived by our computational method and the Markov chain
approximation method for the NYC application (δ = 0.01).

Table B.2: Pushing controls used under the control policy derived by the Markov chain
approximation method for the EWF (2.47)-(2.50) of the NYC application (δ = 0.01).

Pushing Control

State Number Action

{w : w1 = 0, 0<w2< 1} 1 Idle Server 5
{w : w2 = 0, w1 < 0.385} 5 Serve Buffer 7 with Server 6
{w : w2 = 0, w1 ≥ 0.385} 2 Idle Server 6
{w : w1 + w2 = 1, w1 < 0.975} 4 Serve Buffer 6 with Server 7
{w : w1 + w2 = 1, w1 ≥ 0.975, w2> 0} 3 Idle Server 7

Comparison with Our Method. We conclude this section by comparing the perfor-

mances of the two policies: the policy derived by our computational method (presented

in Section 2.7) versus the one derived by the Markov chain approximation method. The

control policy derived by our computational method is depicted in Figure B.6a and fur-

ther explained in Table 2.1. The control policy derived by the Markov chain approxima-

tion method is depicted in Figure B.6b and further explained in Table B.2. Similar to the

policy derived by our computational method, the policy derived by the Markov chain ap-

proximation method is a region-of-inaction type policy. In fact, the two control policies

are quite similar. They only differ on two parts of the boundary ∂Ŵ . The first part is

{w : w2 = 0, 0.35 ≤ w1 < 0.385}. The policy derived by our computational method pre-
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Table B.3: The expected discounted cost of the control policies derived by our computational
method and the Markov chain approximation method for different discretization step sizes.

Our Computational Method Markov Chain Approximation

δ Cost (in millions) Percentage Difference Cost (in millions) Percentage Difference

0.04 4.389 1.64% 4.422 2.40%
0.02 4.337 0.43% 4.419 2.33%
0.01 4.318 0.00% 4.326 0.17%

scribes pushing control 2 for w ∈ {w : w2 = 0, 0.35 ≤ w1 < 0.385} while the policy derived

by the Markov chain approximation method prescribes pushing control 5. The second part

is {w : w1 + w2 = 1, 0.95 ≤ w1 < 0.975}. The policy derived by our computational method

prescribes pushing control 3 for w ∈ {w : w1 + w2 = 1, 0.95 ≤ w1 < 0.975} while the policy

derived by the Markov chain approximation method prescribes pushing control 4.

Table B.3 reports the expected discounted cost of the control policies derived by the two

methods for different discretization step sizes.6 We take the control policy derived by our

computational method with δ = 0.01 as reference. We observe that for all w ∈ Ŵ , the value

function of the control policy derived by our computational method is lower than the value

function of the control policy derived by the Markov chain approximation method. Table

B.3 reports the minimal percentage difference between the value function of the control

policy derived by the Markov chain approximation method and the value function of the

control policy derived by our computational method. Table B.3 demonstrates that our

computational method, outperforms the Markov chain approximation method in terms of

the expected discounted cost.

We use the policy iteration algorithm to solve the Bellman equation (B.43). Our com-

putational method terminates in three steps for all discretization step sizes considered while

the Markov chain approximation method requires seven to nine (policy iteration) steps. This

demonstrates that our computational method is (considerably) more computationally effi-

6. Note that the expected discounted costs in Table B.3 are reported in thousands. Then, since
maxw∈Ŵ f(w) − minw∈Ŵ f(w) << 1000 for the region-of-inaction type policies considered here, we have
not specified the initial workload.
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cient than the Markov chain approximation method. Recall that our computational method

takes advantage of the special structure of the EWF (2.47)-(2.50) while the Markov chain

approximation method is a general purpose method (used for solving many stochastic control

problems). Note that the steps of our computational method are no more computationally

expensive than the steps of the Markov chain approximation method. To see this, note that

the policy iteration algorithm solves a system of linear equations (in the policy evaluation

step) that has one variable for each state in the state space W̄+ of the Markov chain. Our

computational method solves a similar system of linear equations with a slightly smaller num-

ber of variables (one variable for each state in W̄); see Appendix B.1.7 for details. Moreover,

the Markov chain approximation method iterates over all states (in the policy improvement

step) while our computational method only iterates over the boundary points.

B.1.9 Policy Improvement

Lemma 17 shows that under certain assumptions, the control policy obtained in each step

of the computational method discussed in Section 2.7 is an improvement over the previous

control policy.

Lemma 17. Suppose in step k no boundary point w ∈ ∂Bk is moved outwards and the

(updated) region of inaction Bk+1 does not require convexification. Moreover, suppose the

PDEs solved in steps k and k+1 have twice continuously differentiable solutions denoted by fk

and fk+1, respectively. Furthermore, suppose there exists a region-of-inaction type control

policy associated with the region of inaction Bk+1 and the partition ∂Bk+1,1, . . . , ∂Bk+1,d

of its boundary ∂Bk+1. Then, Bk+1 ⊆ Bk, i.e., the region of inaction has not expanded.

Moreover, fk+1(w) ≤ fk(w) for w ∈ Bk+1.

Proof. Consider a step k+1 in which no boundary point w ∈ ∂Bk is moved outwards and the

(updated) region of inaction Bk+1 does not require convexification. Note that in this step,

the region of inaction has not expanded, i.e., Bk+1 ⊆ Bk. First, we show that g = fk+1− fk
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satisfies

Lg(w)− αg(w) = 0, w ∈ int(Bk+1), (B.44)

∇g(w)′ Ĝl ≥ 0, w ∈ ∂Bk+1,l and l = 1, . . . , d. (B.45)

Then, we use Lemma 18 to show that g(w) ≤ 0 for w ∈ Bk+1, which gives fk+1(w)−fk(w) ≤

0 for w ∈ Bk+1.

Step 1. Define g ∈ C2(Bk+1) as follows: g(w) = fk+1(w) − fk(w) for w ∈ Bk+1. It

follows from the fact that fk and fk+1 satisfy (2.60) for w ∈ int(Bk+1) that g satisfies

(B.44). It remains to show that g satisfies (B.45). Consider a pushing control l = 1, . . . , d

and a boundary point w ∈ ∂Bk+1,l. Since the region of inaction has not expanded, one of

the following updates has occurred in step k: (i) some boundary point w′ ∈ ∂Bk,l has been

moved inwards along pushing direction Ĝl to w ∈ ∂Bk+1,l, (ii) the boundary point w has not

moved in the update, but the pushing control has been updated to l, or (iii) the boundary

point w has not moved in the update and the pushing control has not been updated.

Next, we show that ∇g(w)′ Ĝl ≥ 0 in all three cases. Since ∇fk+1(w)′Ĝl = −κ̂l by

Equation (2.61) and g = fk+1 − fk, it suffices to show that ∇fk(w)′Ĝl ≤ −κ̂l. In the first

case, ∇fk(w)′Ĝl < −κ̂l as illustrated in Figure 2.10a. In the second case, since the pushing

control has been updated to l, we have ∇fk(w)′Ĝl ≤ −κ̂l as illustrated in Figures 2.10a

and 2.10b. In the third case, since the region of inaction has not expanded and the pushing

control has not been updated, we have ∇fk(w)′Ĝl = −κ̂l.

Step 2. Fix w ∈ Bk+1. Let Û denote the region-of-inaction type control policy for initial

workload w, the region of inaction Bk+1, and the partition ∂Bk+1,1, . . . , ∂Bk+1,d of its

boundary ∂Bk+1. We will use the generalized Ito’s formula to show the desired result. Let

Ûc denote the continuous part of Û , ∆Û denote its jumps, and D(Û) denote the set of its
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discontinuities. To be specific, for t ≥ 0,

∆Û(t) = Û(t)− Û(t-), D(Û) = {t : ∆Û(t) 6= 0}, and Ûc(t) = Û(t) −
∑

s∈D(Û),s≤t
∆Û(s).

Moreover, let Ŵ denote state process associated with Û . By Lemma 18, we have

−g(w) = E
[ ∫ ∞

0
e−αt(Lg − αg)(Ŵ (t))dt

]
+ E

[ d∑

l=1

∫ ∞

0
e−αt∇g(Ŵ (t))′ĜldÛcl (t)

]

+E
[ ∑

t∈D(Û)

e−αt
(
g(Ŵ (t-) + Ĝ∆Û(t))− g(Ŵ (t-))

)]
. (B.46)

Since Û is a region-of-inaction type control policy with region of inaction Bk+1 and the initial

workload w ∈ Bk+1, we have Ŵ (t) ∈ Bk+1 for t ≥ 0. Then, it follows from (B.44) that

the first term on the right-hand side of (B.46) is zero. Moreover, since the initial workload

w ∈ Bk+1, the third term on the right-hand side of (B.46) is zero. Therefore,

−g(w) = E
[ d∑

l=1

∫ ∞

0
e−αt∇g(Ŵ (t))′ĜldÛcl (t)

]
. (B.47)

Then, it follows from (B.45) and the fact that pushing control l is only used when Ŵ (t) ∈

∂Bk+1,l that g(w) ≤ 0 for w ∈ Bk+1.

B.1.10 Detailed Description of the Alternative Policies

In this section, we describe the alternative policies considered in Section 2.9 in more detail.

Static Policy. Under the static policy, when server k for k = 1, . . . , 9 becomes available,

it engages in one of the basic dispatch activities available to it that serve a non-empty buffer,

i.e., {j : k(j) = k, Qi(j)(t) > 0, j = 1, . . . , 13}, with probabilities proportional to the basic

activity rates x?j . If no such activity exists, the server idles. Moreover, the platform engages
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in basic relocation activities j = 1, 2 at the rate x̃?j as long as there are jobs available at the

origin to relocate, i.e., Qo(j)(t) > 0.

Closest-Driver Policy. Let dik denote the travel distance (in miles) from area i to area

k for i, k = 1, . . . , 9. Under the closest-driver policy, when server k for k = 1, . . . , 9 becomes

available, it undertakes the dispatch activity that serves the closest non-empty buffer, i.e.,

the dispatch activity j? = argmin{di(j)k : k(j) = k, Qi(j)(t) > 0, j = 1, . . . , 19}. If no such

activity exists, the server idles.

MaxWeight Policy. Under the MaxWeight policy, when server k for k = 1, . . . , 9 becomes

available, it engages in the dispatch activity that serves the buffer with the largest queue,

i.e., the dispatch activity j? = argmax{Qi(j)(t) : k(j) = k, Qi(j)(t) > 0, j = 1, . . . , 19}. In

case of a tie, the activity with the smallest distance di(j)k is undertaken i.e., ties are broken

in favor of proximity. If no such activity exists, the server idles.

Penalized MaxWeight Policy. Under the penalized MaxWeight policy, when server k for

k = 1, . . . , 9 becomes available, it engages in the dispatch activity that serves the buffer with

the largest queue minus a linear travel cost, i.e., the dispatch activity j? = argmax{Qi(j)(t)−

adi(j)k : k(j) = k, Qi(j)(t) > 0, j = 1, . . . , 19}, where a is a tuning parameter. In case of a

tie, the activity with the smallest distance di(j)k is undertaken i.e., ties are broken in favor

of proximity. If no such activity exists, the server idles.

Mirror Backpressure Policy. The mirror backpressure (MBP) policies are parameter-

ized by a congestion function η : (0,∞) → R. Following Kanoria and Qian [136], we

consider the following congestion functions: (i) linear, i.e., η(x) = ax, (ii) logarithmic, i.e.,

η(x) = a log(x), and (iii) inverse square-root, i.e., η(x) = −a/√x, where a > 0 is tuning

parameter that is calibrated via simulation. Letting Z̃i(t) = (Qi(t) +
√

Λ)/(Λ + m
√

Λ) de-

note the centered and normalized queue length at time t in buffer i, the congestion cost of

buffer i at time t is defined as η(Z̃i(t)) for i = 1, . . . , 9 and t ≥ 0. Unlike the other policies

discussed above, the mirror backpressure policies require knowledge of the buffer the next
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job served by a server will transition into. That is, under mirror backpressure policies, when

server k for k = 1, . . . , 9 becomes available, it knows the buffer its next job will transition

into (independent of the dispatch activity the server undertakes). In other words, the mirror

backpressure policies use the destination of the customers, whereas the other policies includ-

ing our proposed policy do not require the destination information. We use the notation l to

denote a customer’s destination, which also corresponds to the next buffer for the car trans-

porting the customer. In order to decide the activity j?, that server k is to engage at time

t, the mirror backpressure policy ranks activities with respect to the index vj + η(Z̃i(j)(t)),

i.e., the value of service per job plus the congestion cost at the origin. In doing so, it only

considers the non-empty buffers for which the index vj + η(Z̃i(j)(t)) is greater than or equal

to the congestion cost at the destination, i.e., η(Z̃l(t)). That is, the dispatch activity j? =

argmax{vj + η(Z̃i(j)(t)) : k(j) = k, Qi(j)(t) > 0, vj + η(Z̃i(j)(t)) ≥ η(Z̃l(t)), j = 1, . . . , 19}

is undertaken. If no such activity exists, the server idles.

Modified Policies. Under the modified closest-driver policy, the modified MaxWeight

policy, the modified penalized MaxWeight policy, and the modified mirror backpressure

policy, in addition to the dispatch activities described above, the platform engages in basic

relocation activities j = 1, 2 at the rate x̃?j as long as there are jobs available at the origin

to relocate, i.e., Qo(j)(t) > 0.

B.1.11 Auxiliary Simulation Results

This section reports the results of the simulation study discussed in Section 2.9. Tables

B.4-B.5 report the expected discounted cost of the various policies as defined in Section

2.4; see Equations (2.11), (2.21), (2.30), and (2.31). To be more specific, Tables B.4-B.5

report the unscaled expected discounted costs ΛJz for each policy; see Equation (2.30) for

the definition of Jz. Tables B.6-B.7 report the scaled expected discounted costs, i.e., Jz or

the expected discounted cost per car. Tables B.8-B.9 report the percentage difference of the

various policies considered from the proposed policy. Tables B.10-B.11 report the demand
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dropping probabilities.

Table B.4: The expected discounted cost ΛJz in millions of dollars under the proposed policy,
the static policy, and the original alternative policies (the values denoted in the parentheses
indicate the 95% confidence interval).

Excess Supply Original

Total Percentage Proposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 3642.5 (±1.6) 3691.4 (±1.6) 4026.3 (±0.1) 4107.0 (±0.1) 3937.7 (±0.1) 3363.0 (±0.1)
-3280 -40% 2837.8 (±1.4) 2908.4 (±2.2) 3393.7 (±0.1) 3518.3 (±0.1) 3344.4 (±0.1) 2613.3 (±0.1)
-2460 -30% 2050.7 (±0.8) 2157.8 (±0.3) 2748.3 (±0.1) 2928.5 (±0.1) 2759.2 (±0.1) 1869.0 (±0.1)
-1640 -20% 1300.3 (±0.4) 1432.5 (±0.2) 2074.9 (±0.2) 2338.9 (±0.1) 2182.1 (±0.1) 1155.4 (±0.1)
-820 -10% 610.2 (±0.3) 723.6 (±0.2) 1156.6 (±1.0) 1751.5 (±0.1) 1607.3 (±0.1) 717.8 (±0.8)
-410 -5% 318.5 (±0.3) 399.5 (±0.2) 659.6 (±0.7) 1460.2 (±0.1) 1323.4 (±0.1) 636.0 (±1.4)
-246 -3% 218.3 (±0.0) 289.3 (±0.3) 513.2 (±1.2) 1344.7 (±0.1) 1211.1 (±0.1) 586.9 (±0.7)
-82 -1% 137.6 (±0.3) 200.7 (±0.5) 466.3 (±1.8) 1230.2 (±0.1) 1100.1 (±0.1) 537.4 (±0.8)
0 0% 106.6 (±0.4) 166.0 (±0.7) 462.5 (±2.0) 1173.6 (±0.1) 1045.0 (±0.1) 526.1 (±0.9)
82 1% 82.9 (±0.5) 138.4 (±0.6) 461.6 (±1.7) 1117.3 (±0.1) 990.5 (±0.1) 519.7 (±1.0)
246 3% 51.9 (±0.5) 99.2 (±0.7) 460.2 (±2.0) 1007.3 (±0.1) 883.0 (±0.1) 508.3 (±1.4)
410 5% 34.9 (±0.5) 75.6 (±0.8) 457.2 (±1.6) 903.8 (±0.2) 780.2 (±0.2) 463.7 (±1.2)
820 10% 17.4 (±0.5) 45.6 (±0.7) 451.9 (±1.7) 761.7 (±1.5) 601.6 (±1.2) 352.3 (±1.6)
1640 20% 4.7 (±0.2) 24.8 (±0.6) 440.8 (±1.9) 750.9 (±1.4) 582.6 (±1.5) 333.7 (±0.2)
2460 30% 3.2 (±0.2) 16.2 (±0.4) 431.2 (±1.6) 742.1 (±1.5) 575.4 (±1.3) 232.4 (±0.2)
3280 40% 2.7 (±0.2) 12.5 (±0.4) 419.7 (±1.8) 733.9 (±1.7) 568.6 (±1.4) 198.9 (±0.3)
4100 50% 2.5 (±0.3) 10.3 (±0.3) 410.1 (±1.8) 726.9 (±1.6) 561.5 (±1.3) 179.1 (±0.3)
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Table B.5: The expected discounted cost ΛJz in millions of dollars under the proposed policy,
the static policy, and the modified alternative policies (the values denoted in the parentheses
indicate the 95% confidence interval).

Excess Supply Modified

Total Percentage Proposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 3642.5 (±1.6) 3691.4 (±1.6) 4081.1 (±0.1) 4168.6 (±0.1) 4139.7 (±0.1) 3494.1 (±0.1)
-3280 -40% 2837.8 (±1.4) 2908.4 (±2.2) 3462.7 (±0.1) 3595.2 (±0.1) 3544.5 (±0.5) 2768.5 (±0.1)
-2460 -30% 2050.7 (±0.8) 2157.8 (±0.3) 2833.6 (±0.2) 3021.9 (±0.1) 2957.6 (±0.5) 2047.3 (±0.1)
-1640 -20% 1300.3 (±0.4) 1432.5 (±0.2) 2181.6 (±0.2) 2449.9 (±0.1) 2378.1 (±0.8) 1355.9 (±0.1)
-820 -10% 610.2 (±0.3) 723.6 (±0.2) 1338.3 (±1.2) 1881.1 (±0.1) 1802.7 (±0.5) 1142.5 (±1.1)
-410 -5% 318.5 (±0.3) 399.5 (±0.2) 829.8 (±0.8) 1598.6 (±0.1) 1518.6 (±0.5) 982.1 (±0.9)
-246 -3% 218.3 (±0.0) 289.3 (±0.3) 633.5 (±0.9) 1486.3 (±0.1) 1406.1 (±0.5) 969.0 (±1.3)
-82 -1% 137.6 (±0.3) 200.7 (±0.5) 442.9 (±0.9) 1374.7 (±0.1) 1294.4 (±0.4) 964.8 (±1.4)
0 0% 106.6 (±0.4) 166.0 (±0.7) 355.0 (±0.8) 1318.9 (±0.1) 1239.4 (±0.6) 911.1 (±0.4)
82 1% 82.9 (±0.5) 138.4 (±0.6) 276.3 (±0.6) 1263.7 (±0.1) 1183.9 (±0.5) 863.9 (±0.3)
246 3% 51.9 (±0.5) 99.2 (±0.7) 162.6 (±0.5) 1153.5 (±0.1) 1074.3 (±0.5) 758.0 (±0.4)
410 5% 34.9 (±0.5) 75.6 (±0.8) 108.7 (±0.5) 1044.6 (±0.1) 965.8 (±0.4) 648.0 (±0.3)
820 10% 17.4 (±0.5) 45.6 (±0.7) 73.2 (±0.3) 782.1 (±0.1) 707.2 (±0.6) 376.1 (±0.3)
1640 20% 4.7 (±0.2) 24.8 (±0.6) 70.4 (±0.2) 438.9 (±0.5) 338.2 (±3.1) 36.9 (±0.5)
2460 30% 3.2 (±0.2) 16.2 (±0.4) 70.5 (±0.2) 405.0 (±0.6) 280.4 (±2.1) 17.1 (±0.5)
3280 40% 2.7 (±0.2) 12.5 (±0.4) 70.1 (±0.2) 398.3 (±0.4) 267.4 (±1.8) 10.7 (±0.5)
4100 50% 2.5 (±0.3) 10.3 (±0.3) 70.0 (±0.3) 395.6 (±0.3) 265.7 (±0.5) 7.7 (±0.2)

Table B.6: The expected discounted cost per driver Jz in thousands of dollars under the
proposed policy, the static policy, and the original alternative policies (the values inside the
parentheses indicate the 95% confidence interval).

Excess Supply Original

Total Percentage Proposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 888.4 (±0.4) 900.3 (±0.4) 982.0 (±0.0) 1001.7 (±0.0) 960.4 (±0.0) 820.2 (±0.0)
-3280 -40% 576.8 (±0.3) 591.1 (±0.4) 689.8 (±0.0) 715.1 (±0.0) 679.8 (±0.0) 531.2 (±0.0)
-2460 -30% 357.3 (±0.1) 375.9 (±0.1) 478.8 (±0.0) 510.2 (±0.0) 480.7 (±0.0) 325.6 (±0.0)
-1640 -20% 198.2 (±0.1) 218.4 (±0.0) 316.3 (±0.0) 356.5 (±0.0) 332.6 (±0.0) 176.1 (±0.0)
-820 -10% 82.7 (±0.0) 98.0 (±0.0) 156.7 (±0.1) 237.3 (±0.0) 217.8 (±0.0) 97.3 (±0.1)
-410 -5% 40.9 (±0.0) 51.3 (±0.0) 84.7 (±0.1) 187.4 (±0.0) 169.9 (±0.0) 81.6 (±0.2)
-246 -3% 27.4 (±0.0) 36.4 (±0.0) 64.5 (±0.1) 169.1 (±0.0) 152.3 (±0.0) 73.8 (±0.1)
-82 -1% 17.0 (±0.0) 24.7 (±0.1) 57.4 (±0.2) 151.5 (±0.0) 135.5 (±0.0) 66.2 (±0.1)
0 0% 13.0 (±0.0) 20.2 (±0.1) 56.4 (±0.2) 143.1 (±0.0) 127.4 (±0.0) 64.2 (±0.1)
82 1% 10.0 (±0.1) 16.7 (±0.1) 55.7 (±0.2) 134.9 (±0.0) 119.6 (±0.0) 62.8 (±0.1)
246 3% 6.1 (±0.1) 11.7 (±0.1) 54.5 (±0.2) 119.3 (±0.0) 104.5 (±0.0) 60.2 (±0.2)
410 5% 4.0 (±0.1) 8.8 (±0.1) 53.1 (±0.2) 105.0 (±0.0) 90.6 (±0.0) 53.9 (±0.1)
820 10% 1.9 (±0.1) 5.1 (±0.1) 50.1 (±0.2) 84.5 (±0.2) 66.7 (±0.1) 39.1 (±0.2)
1640 20% 0.5 (±0.0) 2.5 (±0.1) 44.8 (±0.2) 76.3 (±0.1) 59.2 (±0.2) 33.9 (±0.0)
2460 30% 0.3 (±0.0) 1.5 (±0.0) 40.4 (±0.2) 69.6 (±0.1) 54.0 (±0.1) 21.8 (±0.0)
3280 40% 0.2 (±0.0) 1.1 (±0.0) 36.6 (±0.2) 63.9 (±0.1) 49.5 (±0.1) 17.3 (±0.0)
4100 50% 0.2 (±0.0) 0.8 (±0.0) 33.3 (±0.1) 59.1 (±0.1) 45.6 (±0.1) 14.6 (±0.0)
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Table B.7: The expected discounted cost per driver Jz in thousands of dollars under the
proposed policy, the static policy, and the modified alternative policies (the values inside the
parentheses indicate the 95% confidence interval).

Excess Supply Modified

Total Percentage Proposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 888.4 (±0.4) 900.3 (±0.4) 995.4 (±0.0) 1016.7 (±0.0) 1009.7 (±0.0) 852.2 (±0.0)
-3280 -40% 576.8 (±0.3) 591.1 (±0.4) 703.8 (±0.0) 730.7 (±0.0) 720.4 (±0.1) 562.7 (±0.0)
-2460 -30% 357.3 (±0.1) 375.9 (±0.1) 493.7 (±0.0) 526.5 (±0.0) 515.3 (±0.1) 356.7 (±0.0)
-1640 -20% 198.2 (±0.1) 218.4 (±0.0) 332.6 (±0.0) 373.5 (±0.0) 362.5 (±0.1) 206.7 (±0.0)
-820 -10% 82.7 (±0.0) 98.0 (±0.0) 181.3 (±0.2) 254.9 (±0.0) 244.3 (±0.1) 154.8 (±0.1)
-410 -5% 40.9 (±0.0) 51.3 (±0.0) 106.5 (±0.1) 205.2 (±0.0) 194.9 (±0.1) 126.1 (±0.1)
-246 -3% 27.4 (±0.0) 36.4 (±0.0) 79.7 (±0.1) 186.9 (±0.0) 176.8 (±0.1) 121.8 (±0.2)
-82 -1% 17.0 (±0.0) 24.7 (±0.1) 54.6 (±0.1) 169.3 (±0.0) 159.5 (±0.1) 118.8 (±0.2)
0 0% 13.0 (±0.0) 20.2 (±0.1) 43.3 (±0.1) 160.8 (±0.0) 151.2 (±0.1) 111.1 (±0.1)
82 1% 10.0 (±0.1) 16.7 (±0.1) 33.4 (±0.1) 152.6 (±0.0) 143.0 (±0.1) 104.3 (±0.0)
246 3% 6.1 (±0.1) 11.7 (±0.1) 19.2 (±0.1) 136.6 (±0.0) 127.2 (±0.1) 89.8 (±0.0)
410 5% 4.0 (±0.1) 8.8 (±0.1) 12.6 (±0.1) 121.3 (±0.0) 112.2 (±0.0) 75.3 (±0.0)
820 10% 1.9 (±0.1) 5.1 (±0.1) 8.1 (±0.0) 86.7 (±0.0) 78.4 (±0.1) 41.7 (±0.0)
1640 20% 0.5 (±0.0) 2.5 (±0.1) 7.2 (±0.0) 44.6 (±0.0) 34.4 (±0.3) 3.7 (±0.1)
2460 30% 0.3 (±0.0) 1.5 (±0.0) 6.6 (±0.0) 38.0 (±0.1) 26.3 (±0.2) 1.6 (±0.0)
3280 40% 0.2 (±0.0) 1.1 (±0.0) 6.1 (±0.0) 34.7 (±0.0) 23.3 (±0.2) 0.9 (±0.0)
4100 50% 0.2 (±0.0) 0.8 (±0.0) 5.7 (±0.0) 32.2 (±0.0) 21.6 (±0.0) 0.6 (±0.0)

Table B.8: The expected discounted cost in millions of dollars under the proposed policy and
the percentage difference of the static policy as well as the original alternative policies from
the proposed policy (the values inside the parentheses indicate the 95% confidence interval).

Excess Supply Original

Total PercentageProposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 3642.5 (±1.6) 1%(±0.1%) 10%(±0.0%) 12%(±0.0%) 8%(±0.0%) −7%(±0.0%)
-3280 -40% 2837.8 (±1.4) 2%(±0.2%) 19%(±0.1%) 23%(±0.1%) 17%(±0.1%) −7%(±0.0%)
-2460 -30% 2050.7 (±0.8) 5%(±0.1%) 34%(±0.1%) 42%(±0.1%) 34%(±0.1%) −8%(±0.0%)
-1640 -20% 1300.3 (±0.4)10%(±0.0%) 59%(±0.1%) 79%(±0.1%) 67%(±0.1%) −11%(±0.0%)
-820 -10% 610.2 (±0.3) 18%(±0.1%) 89%(±0.3%) 187%(±0.2%) 163%(±0.1%) 17%(±0.3%)
-410 -5% 318.5 (±0.3) 25%(±0.2%) 107%(±0.5%) 358%(±0.4%) 315%(±0.4%) 99%(±0%)
-246 -3% 218.3 (±0.0) 32%(±0.3%) 135%(±1%) 515%(±0.1%) 454%(±0.1%) 168%(±0%)
-82 -1% 137.6 (±0.3) 45%(±0%) 238%(±2%) 793%(±1%) 699%(±1%) 290%(±1%)
0 0% 106.6 (±0.4) 55%(±1%) 334%(±3%) 1001%(±3%) 880%(±3%) 393%(±2%)
82 1% 82.9 (±0.5) 66%(±1%) 456%(±5%) 1247%(±8%) 1094%(±7%) 526%(±4%)
246 3% 51.9 (±0.5) 91%(±3%) 787%(±12%) 1842%(±20%) 1602%(±17%) 880%(±11%)
410 5% 34.9 (±0.5) 116%(±5%) 1211%(±21%) 2492%(±39%) 2138%(±33%) 1230%(±21%)
820 10% 17.4 (±0.5) 161%(±11%) 2490%(±76%) 4266%(±125%) 3348%(±99%) 1919%(±60%)
1640 20% 4.7 (±0.2) 422%(±33%) 9208%(±415%) 15757%(±697%) 12203%(±542%) 6946%(±308%)
2460 30% 3.2 (±0.2) 399%(±44%)13181%(±979%)22759%(±1680%)17623%(±1303%)7059%(±525%)
3280 40% 2.7 (±0.2) 355%(±47%)15247%(±1302%)26735%(±2268%)20691%(±1757%)7173%(±614%)
4100 50% 2.5 (±0.3) 303%(±51%)16000%(±1838%)28439%(±3252%)21943%(±2512%)6933%(±801%)
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Table B.9: The expected discounted cost in millions of dollars under the proposed policy and
the percentage difference of the static policy as well as the modified alternative policies from
the proposed policy (the values inside the parentheses indicate the 95% confidence interval).

Excess Supply Modified

Total PercentageProposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 3642.5 (±1.6) 1%(±0.1%) 12%(±0.0%) 14%(±0.0%) 13%(±0.0%) −4%(±0.0%)
-3280 -40% 2837.8 (±1.4) 2%(±0.2%) 22%(±0.1%) 26%(±0.1%) 24%(±0.1%) −2%(±0.0%)
-2460 -30% 2050.7 (±0.8) 5%(±0.1%) 38%(±0.1%) 47%(±0.1%) 44%(±0.1%) 0%(±0.0%)
-1640 -20% 1300.3 (±0.4)10%(±0.0%) 67%(±0.1%) 88%(±0.1%) 82%(±0.1%) 4%(±0.0%)
-820 -10% 610.2 (±0.3) 18%(±0.1%) 119%(±0.4%) 208%(±0.2%) 195%(±0.2%) 87%(±0.4%)
-410 -5% 318.5 (±0.3) 25%(±0.2%) 160%(±0%) 401%(±0.5%) 376%(±0%) 208%(±0%)
-246 -3% 218.3 (±0.0) 32%(±0.3%) 190%(±0%) 580%(±0.1%) 544%(±0.4%) 343%(±1%)
-82 -1% 137.6 (±0.3) 45%(±0%) 221%(±1%) 898%(±2%) 840%(±2%) 601%(±2%)
0 0% 106.6 (±0.4) 55%(±1%) 233%(±1%) 1137%(±4%) 1063%(±4%) 754%(±3%)
82 1% 82.9 (±0.5) 66%(±1%) 233%(±2%) 1424%(±9%) 1328%(±8%) 942%(±6%)
246 3% 51.9 (±0.5) 91%(±3%) 213%(±3%) 2124%(±23%) 1971%(±21%) 1361%(±15%)
410 5% 34.9 (±0.5) 116%(±5%) 211%(±5%) 2896%(±45%) 2670%(±41%) 1758%(±28%)
820 10% 17.4 (±0.5) 161%(±11%) 319%(±12%) 4383%(±127%) 3953%(±115%) 2055%(±61%)
1640 20% 4.7 (±0.2) 422%(±33%) 1387%(±65%) 9169%(±406%) 7043%(±339%) 679%(±40%)
2460 30% 3.2 (±0.2) 399%(±44%) 2070%(±159%) 12374%(±916%) 8538%(±647%) 426%(±50%)
3280 40% 2.7 (±0.2) 355%(±47%) 2464%(±217%) 14463%(±1229%)9678%(±835%) 292%(±47%)
4100 50% 2.5 (±0.3) 303%(±51%) 2649%(±313%) 15433%(±1768%)10330%(±1188%) 202%(±39%)

Table B.10: Percentage of the demand dropped under the proposed policy, the static policy,
and the original alternative policies (the standard deviation of all estimates is less than or
equal to 0.01%).

Excess Supply Modified

Total Percentage Proposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 50.25% 50.51% 54.94% 55.67% 55.39% 49.18%
-3280 -40% 39.19% 39.49% 46.02% 47.09% 46.83% 39.06%
-2460 -30% 28.60% 29.03% 37.05% 38.52% 38.46% 29.02%
-1640 -20% 18.51% 19.09% 27.87% 29.98% 30.22% 19.38%
-820 -10% 9.12% 9.53% 16.17% 21.50% 21.90% 13.25%
-410 -5% 4.83% 5.22% 9.87% 17.31% 17.77% 11.74%
-246 -3% 3.40% 3.76% 8.03% 15.65% 16.14% 10.57%
-82 -1% 2.13% 2.60% 7.45% 14.01% 14.51% 9.77%
0 0% 1.64% 2.14% 7.42% 13.19% 13.71% 9.63%
82 1% 1.26% 1.78% 7.42% 12.39% 12.91% 9.58%
246 3% 0.79% 1.27% 7.42% 10.82% 11.34% 9.42%
410 5% 0.54% 0.96% 7.41% 9.33% 9.84% 8.81%
820 10% 0.28% 0.58% 7.41% 7.33% 7.22% 7.17%
1640 20% 0.25% 0.30% 7.40% 7.30% 7.09% 2.21%
2460 30% 0.10% 0.21% 7.40% 7.29% 7.08% 1.41%
3280 40% 0.06% 0.16% 7.39% 7.28% 7.07% 1.30%
4100 50% 0.05% 0.12% 7.37% 7.27% 7.06% 1.27%
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Table B.11: Percentage of the demand dropped under the proposed policy, the static policy,
and the modified alternative policies (the standard deviation of all estimates is less than or
equal to 0.01%).

Excess Supply Modified

Total Percentage Proposed Static Closest-Driver MaxWeight MaxWeight+ MBP

-4100 -50% 50.25% 50.51% 55.06% 55.85% 56.22% 49.81%
-3280 -40% 39.19% 39.49% 46.18% 47.31% 47.67% 39.80%
-2460 -30% 28.60% 29.03% 37.26% 38.80% 39.27% 29.86%
-1640 -20% 18.51% 19.09% 28.18% 30.33% 30.98% 20.34%
-820 -10% 9.12% 9.53% 17.02% 21.92% 22.66% 17.44%
-410 -5% 4.83% 5.22% 10.42% 17.75% 18.52% 13.98%
-246 -3% 3.40% 3.76% 7.85% 16.10% 16.87% 13.84%
-82 -1% 2.13% 2.60% 5.38% 14.45% 15.24% 13.80%
0 0% 1.64% 2.14% 4.25% 13.63% 14.42% 12.61%
82 1% 1.26% 1.78% 3.26% 12.81% 13.61% 11.92%
246 3% 0.79% 1.27% 1.85% 11.19% 12.00% 10.39%
410 5% 0.54% 0.96% 1.20% 9.59% 10.41% 8.80%
820 10% 0.28% 0.58% 0.78% 5.73% 6.59% 4.89%
1640 20% 0.25% 0.30% 0.75% 0.70% 1.19% 0.49%
2460 30% 0.10% 0.21% 0.75% 0.20% 0.36% 0.22%
3280 40% 0.06% 0.16% 0.75% 0.11% 0.17% 0.13%
4100 50% 0.05% 0.12% 0.75% 0.08% 0.13% 0.09%
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B.2 Miscellaneous Proofs

Proof of Lemma 1. The proof closely follows the steps outlined in Bramson and Williams

[54, Theorem 6.1]. First, we show that dimR = b+ b̃−m. Then, usingM = R⊥, we arrive

at dimM = q − (b+ b̃−m), which concludes the proof. By definition,

R =
{
HyB + H̃ỹB : ByB = 0, yB ∈ Rb, ỹB ∈ Rb̃

}
. (B.48)

Next, we show that the dimension of R is equal to

dim
{

(yB, ỹB) : ByB = 0, yB ∈ Rb, ỹB ∈ Rb̃
}

= b+ b̃− Rank(B). (B.49)

It suffices to prove that HyB + H̃ỹB = 0 and ByB = 0 only holds for (yB, ỹB) = 0. We prove

this by contradiction. Assume that HyB + H̃ỹB = 0 and ByB = 0 for some (yB, ỹB) 6= 0.

Extend (yB, ỹB) to (y, ỹ), where y ∈ Rn and ỹ ∈ Rñ, by setting (yN , ỹN) = 0. Then, since

yN = 0 and ByB = 0, we have Ay = 0. Similarly, since (yN , ỹN) = 0 and HyB + H̃ỹB = 0,

we have Ry+ R̃y = 0. Since (x?, x̃?) is the optimal solution to the Static Planning Problem

(2.14)-(2.17), it satisfies x?
B
> 0, x̃?

B
> 0, Rx? + R̃x̃? = 0, and Ax? = e. Therefore, there

exists a small enough ε > 0 such that (x, x̃) = (x? + εy, x̃? + εỹ) satisfies x ≥ 0, x̃ ≥ 0,

Rx + R̃x̃ = 0, and Ax = e. This contradicts the uniqueness of the optimal solution; see

Assumption 1. Thus, such a (yB, ỹB) 6= 0 does not exist and the dimension of R is equal to

b+ b̃− Rank(B).

Now, it remains to prove that Rank(B) = m. This follows from the fact that B has more

rows than columns and each column of B has exactly one non-zero component; see (2.3).

Proof of Lemma 2. The proof consists of two steps. In the first step, we show that the

space of reversible displacements R is spanned by the vectors ei− ei′ for buffers i and i′ that

communicate directly. In the second step, we use the result from the first step andM = R⊥

to show that the rows of the matrix M defined in Lemma 2 form a basis for M.
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Step 1. Let

C1 =
{

(j, j′) : j and j′ are basic dispatch activities with k(j) = k(j′)
}
,

C̃1 =
{
j : j is a basic relocation activity

}
.

Let ei denote the unit vector (with appropriate dimension, which will be clear from the

context) with a one in its i-th component and zeros elsewhere. We define C2 =
{
ej − ej′ :

(j, j′) ∈ C1, ej ∈ Rn, ej′ ∈ Rn
}

and C̃2 =
{
ej : j ∈ C̃1, ej ∈ Rñ

}
. Then,

Span
(
C2
)

=
{
y : Ay = 0, yN = 0, y ∈ Rn

}
and Span

(
C̃2
)

=
{
ỹ : ỹN = 0, ỹ ∈ Rñ

}
. (B.50)

To see the first equality, consider y ∈
{
y : Ay = 0, yN = 0, y ∈ Rn

}
. By the definition of A

in Equation (2.3) and the fact that ByB = 0, y can be written as a linear combination of the

vectors in C2. Similarly, since any linear combination of the vectors in C2 satisfies ByB = 0,

it belongs to
{
y : Ay = 0, yN = 0, y ∈ Rn

}
. This proves the first equality in (B.50). The

second equality follows from the fact that C̃2 is a basis for
{
ỹ : ỹN = 0, ỹ ∈ Rñ

}
. The space

of reversible displacements R can be written as

R =
{
HyB + H̃ỹB : ByB = 0, y ∈ Rn, ỹ ∈ Rñ

}

=
{
Ry + R̃ỹ : Ay = 0, yN = 0, ỹN = 0, y ∈ Rn, ỹ ∈ Rñ

}

=
{
Ry : Ay = 0, yN = 0, y ∈ Rn

}
⊕
{
R̃ỹ : ỹN = 0, ỹ ∈ Rñ

}
. (B.51)

It follows from (B.50)-(B.51) that R = Span(C3 ∪ C̃3), where

C3 =
{
Ry : y ∈ C2

}
=
{
R(ej − ej′) : (j, j′) ∈ C1, ej ∈ Rn, ej

′ ∈ Rn
}

=
{
µk(j)(e

i(j) − ei(j′)) : (j, j′) ∈ C1, ei(j) ∈ Rq, ei(j
′) ∈ Rq

}
(B.52)
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and

C̃3 =
{
R̃ỹ : ỹ ∈ C̃2

}

=
{
R̃ej : j ∈ C̃1, ej ∈ Rñ

}

=
{
eo(j) − ed(j) : j ∈ C̃1, eo(j) ∈ Rq, ed(j) ∈ Rq

}
. (B.53)

Equation (B.52) follows from (2.1) and the fact that Pjl = Pj′l for j, j′ = 1, . . . , n with

k(j) = k(j′) and l = 1, . . . , q. The last equality in (B.53) follows from (2.5). Let

C =
{
ei − ei′ : buffers i and i′ communicate directly, ei ∈ Rq, ei

′ ∈ Rq
}
. (B.54)

Since µk(j) > 0 for j = 1, . . . , n and R = Span(C3 ∪ C̃3), it follows from Definition 2 that

R = Span(C).

Step 2. Let p̄ denote the number of buffer pools and define al ∈ Rq for l = 1, . . . , p̄ to be

vectors such that for i = 1, . . . , q, we have

ali =

{
1 if buffer i belongs to buffer pool l,

0 otherwise.
(B.55)

Note that a1, . . . , ap̄ are the rows of the matrix M defined in Lemma 2. If we show that

M = Span(a1, . . . , ap̄), it would follow from the linear independence of a1, . . . , ap̄ that

a1, . . . , ap̄ form a basis for M. Moreover, the workload dimension would be equal to the

number of buffer pools, i.e., p = p̄ and the matrix M whose rows are a1, . . . , ap would be a

workload matrix. It just remains to show that M = Span(a1, . . . , ap̄).

As a preliminary to showing that M = Span(a1, . . . , ap̄), note that since M = R⊥ and

R = Span(C),

a ∈M ⇔ a · z = 0 for all z ∈ C. (B.56)
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It follows from (B.56) that if a ∈M, we have ai = ai′ for buffers i and i′ that communicate.

To see this, consider a ∈M. By (B.54) and (B.56), we have ai = ai′ for buffers i and i′ that

communicate directly. Then, it follows from Definition 2 that ai = ai′ for buffers i and i′ that

communicate, i.e., belong to the same buffer pool. Consequently, M⊆ Span(a1, . . . , ap̄).

Next, we show that Span(a1, . . . , ap̄) ⊆M. To prove this, it suffices to show that al ∈M for

l = 1, . . . , p̄. By (B.54) and (B.56), this holds if and only if al · (ei − ei′) = 0 for l = 1, . . . , p̄

and buffers i and i′ that communicate directly. This trivially holds since for l = 1, . . . , p̄, we

have

al · (ei − ei′) = ali − ali′ = 0,

where the second equality follows from (B.55) and the fact that buffers i and i′ belong to the

same buffer pool; see Definition 2. CombiningM⊆ Span(a1, . . . , ap̄) and Span(a1, . . . , ap̄) ⊆

M, we arrive at the desired result, i.e., M = Span(a1, . . . , ap̄).

Proof of Corollary 1. By the definition of W , we have

W =
{
Mz : z ∈ S

}

=
{
w : wl =

∑

i∈Pl
zi for l = 1, . . . , p, z′e = 1, z ∈ Rq+

}

=
{
w : w′e = 1, w ∈ Rp+

}
,

where the second equality follows from Lemma 2.
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Proof of Lemma 4. By (2.39), for w ∈ W , we have

g(w) = inf
z
{απ′z : Mz = w, z ∈ S}

= inf
z
{απ′z :

∑

i∈Pl
zi = wl for l = 1, . . . , p, z ≥ 0} (B.57)

= α

p∑

l=1

πi?(l)wl, (B.58)

where (B.57) follows from Lemma 2 and (B.58) follows from (2.40).

Proof of Lemma 5. We prove that L :W → Ŵ is one-to-one by contradiction. Assume

that L :W → Ŵ is not one-to-one. Then, there exist distinct w,w ∈ W such that Lw = Lw.

By the definition of L, since w 6= w and Lw = Lw, we must have wp 6= wp. This gives,

w′e 6= w′e, which contradicts the fact that w,w ∈ W , i.e., w′e = w′e = 1. Therefore, the

assumption that L :W → Ŵ is not one-to-one is incorrect. To see that L :W → Ŵ is onto,

consider an arbitrarily chosen ŵ ∈ Ŵ and let w =
(
ŵ1, . . . , ŵp−1, 1−

∑p−1
l=1 ŵl

)
. We observe

that w ∈ W and Lw = ŵ.

Proof of Lemma 6. Assume l is a dominated pushing control and ŵ ∈ Ŵ is an arbitrarily

chosen initial workload. We want to show that for any control process Û1 with Û1
l 6≡ 0 that

satisfies (2.48)-(2.50), there exists a control process Û2 with Û2
l ≡ 0 that satisfies (2.48)-

(2.50) and Ĵŵ(Û2) ≤ Ĵŵ(Û1). First, we introduce a candidate control process Û2. Then, we

show that it satisfies Û2
l ≡ 0, (2.48)-(2.50), and Ĵŵ(Û2) ≤ Ĵŵ(Û1).

Since l is a dominated pushing control, By Definition 3, there exist a subset L ⊂ {1, . . . , d}\{l}

of pushing controls and scalars ûk > 0 for k ∈ L that jointly satisfy Ĝl =
∑
k∈L Ĝ

kûk and

κ̂l ≥
∑
k∈L κ̂kûk. For ease of notation, define û ∈ Rd to be a vector such that its k-th com-

ponent is equal to the scalar ûk (discussed above) for k ∈ L and its remaining components
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are zero. Then,

Ĝl = Ĝû and κ̂l ≥ κ̂′û. (B.59)

Let Ŵ denote the state process associated with Û1 and define

Û2(t) = Û1(t) + (û− el) Û1
l (t), t ≥ 0. (B.60)

It follows from (B.60) that Û2
l ≡ 0. Moreover,

ĜÛ2(t) = ĜÛ1(t) + Ĝ(û− el) Û1
l (t)

= ĜÛ1(t) + (Ĝû− Ĝl) Û1
l (t)

= ĜÛ1(t), t ≥ 0, (B.61)

where the last equality follows from (B.59). By Equation (B.61), the control process Û2

satisfies (2.48) and (2.50) with state process Ŵ , and by Equation (B.60) and the fact that

û ≥ 0, it satisfies (2.49). It just remains to show that Ĵŵ(Û2) ≤ Ĵŵ(Û1). This follows from

Ĵ(Û2) =E
[ ∫ ∞

0
e−αth(Ŵt)dt

]
+ E

[ ∫ ∞

0
e−αtd(κ′Û2)(t)

]
(B.62)

=E
[ ∫ ∞

0
e−αth(Ŵt)dt

]
+ E

[ ∫ ∞

0
e−αtd(κ′Û1 + κ′(û− el)Û1

l )(t)
]

(B.63)

=E
[ ∫ ∞

0
e−αth(Ŵt)dt

]
+ E

[ ∫ ∞

0
e−αtd(κ′Û1)(t)

]
+ E

[ ∫ ∞

0
e−αt(κ′û− κl)dÛ1

l (t)
]

≤ E
[ ∫ ∞

0
e−αth(Ŵt)dt

]
+ E

[ ∫ ∞

0
e−αtd(κ′Û1)(t)

]
(B.64)

= Ĵ(Û1),

where (B.62) follows from (2.46), (B.63) follows from (B.60), and (B.64) follows from (B.59).

217



Proof of Proposition 3. The proof resembles the proof of Fleming and Soner [90, Lemma

3.2] and Kumar and Muthuraman [145, Proposition 2]. Since Ŵ , the domain of the value

function, is a convex polyhedron, to prove the convexity of the optimal value function, it

suffices to show that for any two arbitrarily chosen initial workloads w1, w2 ∈ Ŵ and scalar

δ ∈ [0, 1], we have

φ(δw1 + (1− δ)w2) ≤ δφ(w1) + (1− δ)φ(w2). (B.65)

We prove this in two steps. First, we show that for any Û1 ∈ A(w1) and Û2 ∈ A(w2), there

exists Û ∈ A(w), where w = δw1+(1−δ)w2, such that Ĵw(Û) = δ Ĵw1(Û1)+(1−δ) Ĵw2(Û2).

Then, we use the definition of the optimal value function in (2.53) to arrive at (B.65).

Consider two arbitrarily chosen controls Û1 ∈ A(w1) and Û2 ∈ A(w2) and let Ŵ 1 and Ŵ 2

denote their respective state processes. For t ≥ 0, define

w = δw1+(1− δ)w2, Ŵ (t) = δŴ 1(t)+(1− δ)Ŵ 2(t), Û(t) = δÛ1(t)+(1− δ)Û2(t). (B.66)

By the convexity of Ŵ and (B.66), we have w ∈ Ŵ and Ŵt ∈ Ŵ for t ≥ 0. Moreover, it

follows from (B.66) that Û satisfies (2.48)-(2.51) with initial workload w and state process

Ŵ . Therefore, Û ∈ A(w). By Equation (2.43) and Lemma 4, the holding cost function h is

linear. Therefore,

h
(
δŴ 1

t + (1− δ)Ŵ 2
t

)
= δh(Ŵ 1

t ) + (1− δ)h(Ŵ 2
t ), t ≥ 0. (B.67)
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Then, by (2.46), we have

Ĵw(Û) = E

[ ∫ ∞

0
e−αth(Ŵt)dt

]
+ E

[ ∫ ∞

0
e−αtd(κ′Û)(t)

]

= E

[ ∫ ∞

0
e−αth

(
δŴ 1

t + (1− δ)Ŵ 2
t

)
dt
]

+ E

[ ∫ ∞

0
e−αtd(κ′δÛ1 + κ′(1− δ)Û2)(t)

]
(B.68)

= δE
[ ∫ ∞

0
e−αth(Ŵ 1

t )dt
]

+ (1− δ)E
[ ∫ ∞

0
e−αth(Ŵ 2

t )dt
]

+ δE
[ ∫ ∞

0
e−αtd(κ′Û1)(t)

]
+ (1− δ)E

[ ∫ ∞

0
e−αtd(κ′Û2)(t)

]
(B.69)

= δ Ĵw1(Û1) + (1− δ) Ĵw2(Û2), (B.70)

where (B.68) follows from (B.66) and (B.69) follows from (B.67). Thus,

δ φ(w1) + (1− δ)φ(w2) = δ inf
Û1∈A(w1)

Ĵw1(Û1) + (1− δ) inf
Û2∈A(w2)

Ĵw2(Û2)

= inf
Û1∈A(w1)

Û2∈A(w2)

(
δ Ĵw1(Û1) + (1− δ) Ĵw2(Û2)

)

= inf
Û1∈A(w1)

Û2∈A(w2)

Ĵw(δÛ1 + (1− δ)Û2) (B.71)

≥ inf
U∈A(w)

Ĵw(Û) (B.72)

= φ(w),

where (B.71) follows from (B.70) and (B.72) follows from the fact that {δÛ1 + (1 − δ)Û2 :

Û1 ∈ A(w1), Û2 ∈ A(w2)} ⊆ A(w).

Proof of Proposition 4.

Step 1. The proof of Equation (2.56) resembles the proof of Kumar and Muthuraman [145,

Proposition 1]. Suppose the bounded f ∈ C2(Ŵ) and ε ≥ 0 jointly satisfy Equations (2.54)-

(2.55). Consider an initial workload w ∈ Ŵ and let Û ∈ A(w) be an optimal control for

the initial workload w. First, we use the generalized Ito’s formula to write Ĵw(Û)− f(w) in

219



terms of the sum of a few integrals. Then, we use (2.54)-(2.55) and the optimality of Û to

arrive at the desired result. By Lemma 18, we have

−f(w) = E
[ ∫ ∞

0
e−αt(Lf − αf)(Ŵ (t))dt

]
+ E

[ d∑

l=1

∫ ∞

0
e−αt∇f(Ŵ (t))′ĜldÛcl (t)

]

+E
[ ∑

t∈D(Û)

e−αt
(
f(Ŵ (t-) + Ĝ∆Û(t))− f(Ŵ (t-))

)]
, (B.73)

where Ûc denotes the continuous part of Û , ∆Û denotes its jumps, and D(Û) denotes the

set of its discontinuities. To be specific, for t ≥ 0,

∆Û(t) = Û(t)− Û(t-), D(Û) = {t : ∆Û(t) 6= 0}, and Ûc(t) = Û(t) −
∑

s∈D(Û),s≤t
∆Û(s).

Adding the left-hand side of Equation (2.46) to the left-hand side of Equation (B.73) and

the right-hand side of Equation (2.46) to the right-hand side of Equation (B.73) gives

Ĵw(Û) − f(w) = E
[∫ ∞

0
e−αt(Lf − αf + h)(Ŵ (t))dt

]

+ E
[ d∑

l=1

∫ ∞

0
e−αt(∇f(Ŵ (t))′Ĝl + κl)dÛ

c
l (t)

]

+ E
[ ∑

t∈D(Û)

e−αt
(
f(Ŵ (t-) + Ĝ∆Û(t))− f(Ŵ (t-)) + κ′∆Û(t)

)]
. (B.74)

Next, we provide a lower bound for the right-hand side of Equation (B.74). The lower bound

for the first two terms is straightforward and follows from (2.54)-(2.55). In particular,

E
[∫ ∞

0
e−αt(Lf − αf + h)(Ŵ (t))dt

]
≥ −ε

∫ ∞

0
e−αtdt (B.75)
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and

E
[ d∑

l=1

∫ ∞

0
e−αt(∇f(Ŵ (t))′Ĝl + κl)dÛ

c
l (t)

]
≥ −εE

[ ∫ ∞

0
e−αtd(e′Ûc)(t)

]
. (B.76)

For the third term on the right-hand side of Equation (B.74), we have

E
[ ∑

t∈D(Û)

e−αt
(
f(Ŵ (t-) + Ĝ∆Û(t))− f(Ŵ (t-)) + κ′∆Û(t)

)]

= E
[ ∑

t∈D(Û)

e−αt
∫ ‖∆Û(t)‖

0

(
∇f(Ŵ (t-)+Ĝ

∆Û(t)

‖∆Û(t)‖
z)′Ĝ

∆Û(t)

‖∆Û(t)‖
+κ′

∆Û(t)

‖∆Û(t)‖
)
dz
]
, (B.77)

where ‖ · ‖ denotes the Euclidean norm. Substituting (2.55) into (B.77) gives

E
[ ∑

t∈D(Û)

e−αt
(
f(Ŵ (t-) + Ĝ∆Û(t))− f(Ŵ (t-)) + κ′∆Û(t)

)]

≥ E
[ ∑

t∈D(Û)

e−αt
∫ ‖∆Û(t)‖

0
−εe′ ∆Û(t)

‖∆Û(t)‖
dz
]

= E
[
− ε

∑

t∈D(Û)

e−αte′∆Û(t)
]
. (B.78)

Substituting (B.75)-(B.76) and (B.78) into (B.74) and rearranging the terms gives the fol-

lowing bound:

f(w) ≤ Ĵw(Û) + ε

∫ ∞

0
e−αtdt + εE

[ ∫ ∞

0
e−αtd(e′Ûc)(t) +

∑

t∈D(Û)

e−αte′∆Û(t)
]
. (B.79)
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Since Û is an optimal control for the initial workload w, we have Ĵw(Û) = φ(w). Substituting

this into Equation (B.79) gives

f(w) ≤φ(w) + ε

∫ ∞

0
e−αtdt + εE

[ ∫ ∞

0
e−αtd(e′Ûc)(t) +

∑

t∈D(Û)

e−αte′∆Û(t)
]

=φ(w) + ε

∫ ∞

0
e−αtdt + εE

[ ∫ ∞

0
e−αtd(e′Û)(t)

]
, (B.80)

where the right-hand side is finite by (2.51). Defining

η(w) =

∫ ∞

0
e−αtdt + E

[ ∫ ∞

0
e−αtd(e′Û)(t)

]

and substituting it into (B.80) gives (2.56).

B.3 Auxiliary Results

This section discusses an auxiliary result that is used multiple times in Appendices B.1-B.2.

As a preliminary to the result, consider an admissible control Û to the EWF (2.47)-(2.50).

Let Ûc denote the continuous part of Û , ∆Û denote its jumps, and D(Û) denote the set of

its discontinuities. To be specific, for t ≥ 0,

∆Û(t) = Û(t)− Û(t-), D(Û) = {t : ∆Û(t) 6= 0}, Ûc(t) = Û(t) −
∑

s∈D(Û),s≤t
∆Û(s). (B.81)

Lemma 18 extends Taksar [196, Lemma 7.1] to our setting.

Lemma 18. Let Û be an admissible control to the EWF (2.47)-(2.50) and Ŵ denote the
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associated state process. Then, for f ∈ C2(Ŵ) and w ∈ Ŵ, we have

−f(w) = E
[ ∫ ∞

0
e−αt(Lf − αf)(Ŵ (t))dt

]
+ E

[ d∑

l=1

∫ ∞

0
e−αt∇f(Ŵ (t))′ĜldÛcl (t)

]

+E
[ ∑

t∈D(Û)

e−αt
(
f(Ŵ (t-) + Ĝ∆Û(t))− f(Ŵ (t-))

)]
. (B.82)

Proof. First, we use generalized Ito’s formula to write f in terms of sum of a few integrals.

Then, we use the Martingale property of the stochastic integral to simplify the equation.

Finally, we take the limit as t → ∞ and show that the various integrals converge to the

integrals in (B.82). By the generalized Ito’s formula (see e.g., Øksendal and Sulem [170,

Section 1.2]), we have

E
[
e−αtf(Ŵ (t))

]
− f(w) = E

[ ∫ t

0
e−αs∇f(Ŵ (s))dχ̂(s)

]
+ E

[ ∫ t

0
e−αs(Lf − αf)(Ŵ (s))ds

]

+ E
[ d∑

l=1

∫ t

0
e−αs∇f(Ŵ (s))′ĜldÛcl (s)

]

+ E
[∑

s∈D(Û),s≤t
e−αs

(
f(Ŵ (s))− f(Ŵ (s-))

)]
, t ≥ 0. (B.83)

Since f ∈ C2(Ŵ) and Ŵ is a compact set, f , ∇f , and Lf are bounded. Thus,

∫ t

0
e−αs∇f(Ŵ (s))dχ̂(s)

is a square integrable Martingale. Therefore, its expectation, i.e., the first term on the
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right-hand side of (B.83), is zero. Substituting this into (B.83) gives

E
[
e−αtf(Ŵ (t))

]
− f(w) = E

[ ∫ t

0
e−αs(Lf − αf)(Ŵ (s))ds

]

+ E
[ d∑

l=1

∫ t

0
e−αs∇f(Ŵ (s))′ĜldÛcl (s)

]

+ E
[∑

s∈D(Û),s≤t
e−αs

(
f(Ŵ (s))− f(Ŵ (s-))

)]
, t ≥ 0. (B.84)

Then, substituting W (s) = W (s-) + Ĝ∆Û for s ∈ D(Û) into (B.84) gives

E
[
e−αtf(Ŵ (t))

]
− f(w) = E

[ ∫ t

0
e−αs(Lf − αf)(Ŵ (s))ds

]

+ E
[ d∑

l=1

∫ t

0
e−αs∇f(Ŵ (s))′ĜldÛcl (s)

]

+ E
[∑

s∈D(Û),s≤t
e−αs

(
f(Ŵ (s-) + Ĝ∆Û(s))− f(Ŵ (s-))

)]
(B.85)

for t ≥ 0. It just remains to show that as t → ∞, the left-hand side of (B.85) converges to

the left-hand side of (B.82) and the right-hand side of (B.85) converges to the right-hand

side of (B.82). Since f is bounded, the first term on the left-had side of (B.85) converges

to zero. Similarly, since Lf − αf is bounded, it follows from the dominated convergence

theorem that the first term on the right-hand side of (B.85) converges to the first term on

the right-hand side of (B.82). Finally, since ∇f is bounded, we can write

∣∣∣
d∑

l=1

∫ t

0
e−αs∇f(Ŵ (s))′ĜldÛcl (s)

∣∣∣ +
∣∣∣
∑

s∈D(Û),s≤t
e−αs

(
f(Ŵ (s-) + Ĝ∆Û(s))− f(Ŵ (s-))

)∣∣∣

≤ K
∣∣∣
d∑

l=1

∫ t

0
e−αsdÛcl (s)

∣∣∣ +
∣∣∣
∑

s∈D(Û),s≤t
e−αse′∆Û(s))

∣∣∣

≤ K
∣∣∣
∫ t

0
e−αsd(e′Û)(s)

∣∣∣, t ≥ 0 (B.86)
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for some finite K. Then, it follows from (2.51), (B.86), and the dominated convergence

theorem that the second and third terms on the right-hand side of (B.85) converge to the

second and third terms on the right-hand side of (B.82).
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APPENDIX C

APPENDIX OF CHAPTER 3

C.1 Riccati Equation

This section discusses a special case of the Riccati equation and its solution. First, we

introduce the Riccati equation. Then, we provide its general solution in terms of the Bessel

functions. Finally, we use this characterization and the relationship between the Bessel

functions and the Airy functions to write the solution in terms of the Airy functions. Fix

c0, c1, c2, ĉ, y0 ∈ R such that c2 6= 0 and consider the differential equation

y′(x) = c2y
2(x) + c1y(x) + ĉx+ c0 (C.1)

for x ∈ (0,∞) subject to the boundary condition y(0) = y0. This equation falls in the class

of Riccati equations; see e.g., Zaitsev and Polyanin [221, Section 1.2.2.24]. The next lemma

provides a closed-form expression for the general solution to Equation (C.1) in terms of the

Bessel functions of order 1/3, i.e., J1/3 and Y1/3. As a preliminary to this lemma, let C1

and C2 be fixed constants and define

z(x) = x +
4c0c2 − c21

4ĉc2

u(x) = C1 exp(c1x
2

)
√
z(x) J1/3(2

3

√
ĉc2z

3/2(x)) + C2 exp(c1x
2

)
√
z(x)Y1/3(2

3

√
ĉc2z

3/2(x))

for x ∈ [0,∞), where J1/3 and Y1/3 are the order 1/3 Bessel functions of the first and second

kind.

Lemma 19. Zaitsev and Polyanin [221, Sections 1.2.1.2 and 2.1.2.12]. The (general) solu-

tion to the differential equation (C.1) is

y(x) = − 1

c2

u′(x)

u(x)
, x ∈ [0,∞).
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Proof. First, we transform the Riccati equation into a second-order linear differential equa-

tion. Then, we write the solution to the second-order equation in terms of the Bessel functions

of order 1/3. Following Zaitsev and Polyanin [221, Section 1.2.1.2], we substitute

u(x) = exp
(
− c2

∫ x

0
y(w)dw

)
, x ∈ [0,∞) (C.2)

into Equation (C.1) to obtain

u′′(x) − c1u
′(x) + c2(ĉx+ c0)u(x) = 0, x ∈ (0,∞). (C.3)

By Zaitsev and Polyanin [221, Section 2.1.2.12], the (general) solution to the differential

equation (C.3) is of the form

u(x) = C1 exp(c1x
2

)
√
z(x) J1/3(2

3

√
ĉc2z

3/2(x)) + C2 exp(c1x
2

)
√
z(x)Y1/3(2

3

√
ĉc2z

3/2(x))

for x ∈ [0,∞), where C1 and C2 are constants, J1/3 and Y1/3 are the order 1/3 Bessel

functions of the first and second kind, respectively, and

z(x) = x +
4c0c2 − c21

4ĉc2
, x ∈ [0,∞).

Note that Equation (C.2) can be equivalently written as

y(x) = − 1

c2

u′(x)

u(x)
, x ∈ [0,∞).

This completes the proof.

Next, we use the relationship between the Airy functions and the Bessel functions to write

the solution to the differential equation (C.1) subject to the boundary condition y(0) = y0 in

terms of the Airy functions. The Airy function of the first kind Ai : R→ R and the second
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kind Bi : R→ R are defined as follows:

Ai(x) =
1

π

∫ ∞

0
cos(1

3z
3 + zx)dz, x ∈ R

Bi(x) =
1

π

∫ ∞

0

(
cos(−1

3z
3 + zx) + sin(1

3z
3 + zx)

)
dz, x ∈ R.

The Airy functions and the Bessel functions of order 1/3 can be expressed in terms of each

other; see e.g., Abramowitz and Stegun [4, Section 10.4]. The following lemma uses this

relationship to provide a closed-form solution for the differential equation (C.1) in terms of

the Airy functions. This result is crucially used in solving the Bellman equation in Section

3.6.3. In particular, Lemma 11 solves Equations (3.49)-(3.50) and (3.51)-(3.52) by showing

that they belong to the class of Riccati equations studied here. As a preliminary to the next

lemma, define the function

z̃(x) =
c21 − 4c2(ĉx+ c0)

4(ĉc2)2/3
, x ∈ [0,∞)

define the constants

C̃1 =
Bi′(z̃(0))− Bi(z̃(0))(ĉc2)−1/3(c2y0 + c1

2 )

Ai(z̃(0))Bi′(z̃(0))− Ai′(z̃(0))Bi(z̃(0))

C̃2 =
−Ai′(z̃(0)) + Ai(z̃(0))(ĉc2)−1/3(c2y0 + c1

2 )

Ai(z̃(0))Bi′(z̃(0))− Ai′(z̃(0))Bi(z̃(0))
,

and the function

ũ(x) = C̃1 exp(c1x
2

) Ai(z̃(x)) + C̃2 exp(c1x
2

) Bi(z̃(x)), x ∈ [0,∞). (C.4)

Lemma 20. The (unique) solution to the differential equation (C.1) subject to the boundary
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condition y(0) = y0 is

y(x) = − 1

c2

ũ′(x)

ũ(x)
, x ∈ [0,∞).

Proof. By Lemma 19, the (general) solution to the differential equation (C.1) is of the form

y(x) = − 1

c2

u′(x)

u(x)
, x ∈ [0,∞) (C.5)

where

u(x) =C1 exp(c1x
2

)
√
z(x) J1/3(2

3

√
ĉc2z

3/2(x))

+ C2 exp(c1x
2

)
√
z(x)Y1/3(2

3

√
ĉc2z

3/2(x)), x ∈ [0,∞) (C.6)

the functions J1/3 and Y1/3 are the order 1/3 Bessel functions of the first and second kind,

respectively, and

z(x) = x +
4c0c2 − c21

4ĉc2
, x ∈ [0,∞). (C.7)

First, we use the relationship between the Bessel functions of the first and second kind

to write u solely in terms of the Bessel functions of the first kind. To do so, note that by

Abramowitz and Stegun [4, Equation (9.1.2)],

Y1/3(x) =
J1/3(x) cos(π/3)− J−1/3(x)

sin(π/3)
, x ∈ R. (C.8)

It follows from Equations (C.6) and (C.8) that u can be written as

u(x) = Ĉ1 exp(c1x
2

)
√
z(x) J1/3(2

3

√
ĉc2z

3/2(x))

+ Ĉ2 exp(c1x
2

)
√
z(x) J−1/3(2

3

√
ĉc2z

3/2(x)), x ∈ [0,∞) (C.9)
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for some Ĉ1, Ĉ2 ∈ R. Next, we use the relationship between the Airy functions and the

Bessel functions to write u in terms of the Airy functions. By Abramowitz and Stegun [4,

Equation (10.4.22)],

√
ẑJ±1/3(2

3 ẑ
3/2) = 3

2Ai(−ẑ) ∓
√

3
2 Bi(−ẑ), ẑ ∈ R, (C.10)

where Ai and Bi are the Airy functions of the first and second kind, respectively. It follows

from Equations (C.9)-(C.10) and the change of variable ẑ = 3
√
ĉc2z that u = ũ, where

ũ(x) = C̃1 exp(c1x
2

) Ai(z̃(x)) + C̃2 exp(c1x
2

) Bi(z̃(x)), (C.11)

for x ∈ [0,∞), C̃1 and C̃2 are constants and for x ∈ [0,∞),

z̃(x) = − 3
√
ĉc2z(x)

= − 3
√
ĉc2
(
x +

4c0c2 − c21
4ĉc2

)

= −4(ĉc2)2/3

4(ĉc2)2/3
3
√
ĉc2
(
x +

4c0c2 − c21
4ĉc2

)

=
c21 − 4c2(ĉx+ c0)

4(ĉc2)2/3
. (C.12)

Moreover, it follows from u = ũ, Equation (C.5), and boundary condition y(0) = y0 that

ũ(0) = 1 and ũ′(0) = −c2y0. (C.13)

It follows from Equations (C.11) and (C.13) that the constants C̃1 and C̃2 must satisfy

(
C̃1Ai

(
z̃(x)

)
+ C̃2Bi

(
z̃(x)

))∣∣∣
x=0

= exp(−c1x
2

) ũ(x)
∣∣∣
x=0(

C̃1Ai
(
z̃(x)

)
+ C̃2Bi

(
z̃(x)

))′∣∣∣
x=0

=
(

exp(−c1x
2

) ũ(x)
)′∣∣∣

x=0
,
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which can be simplified to

C̃1Ai
(
z̃(0)

)
+ C̃2Bi

(
z̃(0)

)
= 1

C̃1Ai′
(
z̃(0)

)
+ C̃2Bi′

(
z̃(0)

)
= (ĉc2)−1/3(c2y0 +

c1
2

).

Thus,

[
C̃1

C̃2

]
=

[
Ai(z̃(0)) Bi(z̃(0))

Ai′(z̃(0)) Bi′(z̃(0))

]−1 [
1

(ĉc2)−1/3(c2y0 + c1
2 )

]
,

which gives

[
C̃1

C̃2

]
= β

[
Bi′(z̃(0)) −Bi(z̃(0))

−Ai′(z̃(0)) Ai(z̃(0))

][
1

(ĉc2)−1/3(c2y0 + c1
2 )

]

= β

[
Bi′(z̃(0))− Bi(z̃(0))(ĉc2)−1/3(c2y0 + c1

2 )

−Ai′(z̃(0)) + Ai(z̃(0))(ĉc2)−1/3(c2y0 + c1
2 )

]
. (C.14)

where

β =
1

Ai(z̃(0))Bi′(z̃(0))− Ai′(z̃(0))Bi(z̃(0))
.

In conclusion,

y(x) = − 1

c2

ũ′(x)

ũ(x)
, x ∈ [0,∞),

where ũ is given by Equation (C.11), z̃ is given by Equation (C.12), and C̃1 and C̃2 are given

by Equation (C.14). This completes the proof.
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C.2 Derivations

C.2.1 Formal Derivation of the Approximating Brownian System

We start by writing the scaled inventory and the cumulative cost processes in terms of other

scaled processes. Then, we formally take the limit to obtain the approximating Brownian

system.

Scaled Inventory Process. By Equation (3.1), for k = 1, . . . , K and t ≥ 0, we have

Qnk(t) = Snk (Tnk (t)) − Nk

(∫ t

0
λnk(s)ds

)
+ Onk (t)

= Snk (Tnk (t)) +
[
µnkT

n
k (t)− µnkTnk (t)

]
+
[
µnkρkt− µnkρkt

]

+
[ ∫ t

0
λnk(s)ds−

∫ t

0
λnk(s)ds

]
− Nn

k

(∫ t

0
λnk(s)ds

)
+ Onk (t) (C.15)

=
[
Snk (Tnk (t))− µnkTnk (t)

]
− µnk

[
ρkt− Tnk (t)

]
+ µnkρkt −

∫ t

0
λnk(s)ds

−
[
Nn
k

(∫ t

0
λnk(s)ds

)
−
∫ t

0
λnk(s)ds

]
+ Onk (t), (C.16)

where (C.15) is obtained by adding and subtracting the terms insides the brackets and (C.16)

is obtained by rearranging the terms. It follows from the functional strong approximations

(Ethier and Kurtz [86, Section 7.5]) that for t ≥ 0,

Snk (t) = µnk t +
√
nµkνskχ̂

n
k(t) + o(

√
n) (C.17)

Nn
k (nt) = nt +

√
nχ̃

n
k(t) + o(

√
n), (C.18)

almost surely, where χ̂
n
k and χ̃

n
k are independent standard Brownian motions and the notation

f(n) = o(g(n)) denotes that f(n)/g(n)→ 0 as n→∞. Plugging (C.17)-(C.18) into (C.16)
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gives

Qnk(t) =
√
nµkνskχ̂

n
k

(
Tnk (t)

)
− µnk

[
ρkt− Tnk (t)

]
+ µnkρkt −

∫ t

0
λnk(s)ds

− √nχ̃nk
( 1

n

∫ t

0
λnk(s)ds

)
+ Onk (t) + o(

√
n), t ≥ 0. (C.19)

Dividing all terms in (C.19) by
√
n and plugging in (3.9)-(3.13) gives

Qnk(t)√
n

=
√
µkνskχ̂

n
k

(
Tnk (t)

)
− µkY

n
k (t) +

√
nρkµkt + ρkηkt −

√
nλ?kt −

∫ t

0
ζk(s)ds

− χ̃n
k

(
λ?kt+

1√
n

∫ t

0
ζk(s)ds

)
+ Rnk (t) + o(1), t ≥ 0. (C.20)

Then, plugging ρkµk = λ?k into (C.20) gives

Qnk(t)√
n

=
√
µkνskχ̂

n
k

(
Tnk (t)

)
− µkY

n
k (t) + ρkηkt −

∫ t

0
ζk(s)ds

− χ̃n
k

(
λ?kt+

1√
n

∫ t

0
ζk(s)ds

)
+ Rnk (t) + o(1), t ≥ 0.

Next, using a straightforward application of the random time change theorem (on the fifth

term), we obtain

Qnk(t)√
n

=
√
µkνskχ̂

n
k

(
Tnk (t)

)
− µkY

n
k (t) + ρkηkt −

∫ t

0
ζk(s)ds − χ̃n

k(λ?kt) + Rnk (t) + o(1)

for t ≥ 0. Finally, letting

χn
k(t) =

√
µkνskχ̂

n
k

(
Tnk (t)

)
+ ρkηkt − χ̃n

k(λ?kt),

for k = 1, . . . , K and t ≥ 0, we arrive at

Znk (t) = χn
k(t) − µkY

n
k (t) −

∫ t

0
ζk(s)ds + Rnk (t) + o(1)
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for k = 1, . . . , K and t ≥ 0.

Cost Process. By Equation (3.6), we have

V n(t) =

∫ t

0
πn(λn(s))ds −

K∑

k=1

∫ t

0
qnk
(
Qnk(s)

)
ds −

K∑

k=1

νnkO
n
k (t), t ≥ 0. (C.21)

Let us start by focusing on the first term:

πn
(
λn(s)

)
= πn

(
nλ? +

√
nζ(s)

)
= nπ

(
λ? +

ζ(s)√
n

)
, (C.22)

where (C.22) follows from (3.10). By Taylor’s expansion, we have

π
(
λ? +

ζ(s)√
n

)
= π(λ?) +

1√
n
∇π(λ?)ζ(s) +

1

2n
ζ(s)′∇2π(λ?)ζ(s) + o

( 1

n

)

= π(λ?) +
1

2n
ζ(s)′∇2π(λ?)ζ(s) + o

( 1

n

)
, (C.23)

where (C.23) follows the fact that ∇π(λ?) = 0 by Assumption 7. Therefore,

∫ t

0
πn(λn(s))ds = π(λ?)nt +

1

2

∫ t

0
ζ(s)′∇2π(λ?)ζ(s)ds + o(1), t ≥ 0. (C.24)

Then, by (3.16), (C.21), and (C.24), we have for t ≥ 0,

ξn(t) = − 1

2

∫ t

0
ζ(s)′∇2π(λ?)ζ(s)ds+

K∑

k=1

∫ t

0
qnk
(
Qnk(s)

)
ds+

K∑

k=1

νnkO
n
k (t) + o(1)

= − 1

2

∫ t

0
ζ(s)′∇2π(λ?)ζ(s)ds+

K∑

k=1

∫ t

0
gk
(
Znk (s)

)
ds+

K∑

k=1

rkR
n
k (t) + o(1), (C.25)

where (C.25) follows from (3.12) and (3.14)-(3.15).
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Approximating Brownian System. So far, we have established that for k = 1, . . . , K

and t ≥ 0,

Znk (t) = χn
k(t) − µkY

n
k (t) −

∫ t

0
ζk(s)ds + Rnk (t) + o(1), (C.26)

where

χn
k(t) =

√
µkνskχ̂

n
k

(
Tnk (t)

)
+ ρkηkt − χ̃n

k(λ?kt), t ≥ 0.

Moreover, for k = 1, . . . , K and t ≥ 0,

ξn(t) = − 1

2

∫ t

0
ζ(s)′∇2π(λ?)ζ(s)ds+

K∑

k=1

∫ t

0
gk
(
Znk (s)

)
ds+

K∑

k=1

rkR
n
k (t) + o(1). (C.27)

The key step in the development of our Brownian approximation is the following claim: If n

is large, the only interesting allocation policies are those for which

Tnk (t) ≈ ρk t (C.28)

for k = 1, . . . , K and t ≥ 0. For a defense of this claim, let us first restrict attention to policies

that do not idle the manufacturing system as long as there are backordered requests. If n is

large and t > 0 is moderate, it can be shown to follow from Assumption 7 and Equations (3.9)

and (3.11) that In(t) ≈ 0. Moreover, the relative amount of time the manufacturing system

manufactures different products over the interval [0, t] must be approximately equal to ρk.

Thus, we conclude that the difference between Tnk (t) and ρkt must be small, i.e., (C.28). The

same conclusion holds for policies that allow idleness while there are backordered requests

provided In(t) ≈ 0. Under plausible assumptions, it can be shown that no greater amount

of idleness could ever be desirable. The heart of the matter is that backorders of order n

result inevitably if In(t) 6≈ 0 but can be otherwise avoided; see Harrison [110, Sections 5
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and 11] for a similar informal argument. Next, using a straightforward application of the

random time change theorem and Equation (C.28), we obtain

χn
k ⇒ Xk (C.29)

for k = 1, . . . , K, where X1, . . . , XK are independent Brownian motions with infinitesimal

drift ρkηk, infinitesimal variance σ2
k = λ?k(1 + ν2

sk), and initial value zero.

Motivated by (C.26), (C.27), and (C.29), we argue similar to Harrison [110] that as the

system gets large, the scaled processes defined above converge weakly to ξ, Z, Y , U , and R

that satisfy the following for t ≥ 0,

ξ(t) =

∫ t

0
ζ(s)′Hζ(s)ds +

K∑

k=1

∫ t

0
gk(Zk(s))ds +

K∑

k=1

rkRk(t),

Zk(t) = Xk(t) − µkYk(t) −
∫ t

0
ζk(s)ds + Rk(t), k = 1, . . . , K,

U(t) =
K∑

k=1

Yk(t),

U,R are nondecreasing with U(0) = R(0) = 0,

where H = −∇2π(λ?)/2 and Xk = {Xk(t), t ≥ 0} are independent (ηkρk, σ
2
k) Brownian

motions with initial value zero.

C.2.2 Derivation of Equation (3.23)

Recall that the instantaneous demand rate in the n-th system is of the form

λn(t) = nλ? +
√
nζ(t), t ≥ 0.
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It follows from the definition of the inverse demand function that for t ≥ 0,

pn(t) = (Λn)-1(λn(t))

= (Λn)-1(nλ? +
√
nζ(t)

)

= Λ-1(λ? +
ζ(t)√
n

)
, (C.30)

where (C.30) follows from (3.10). Then, by Taylor’s expansion, we have

pn(t) = Λ-1(λ?) +
∇Λ-1(λ?) ζ(t)√

n
+ o(

1√
n

),

for t ≥ 0, where ∇Λ-1(λ?) denotes the Jocobian of Λ-1 evaluated at λ?.

C.3 Miscellaneous Proofs

Proof of Proposition 5. The proof is almost identical to the proof of Rubino and Ata

[181, Proposition 3] and closely follows the proof of Harrison and Van Mieghem [120, Propo-

sitions 3-4 and Theorem 2] using the approach outlined in the appendix of Harrison and

Van Mieghem [120]. The only minor modification needed is the generalization of the ar-

guments in Harrison and Van Mieghem [120] to allow a state-dependent drift term and an

outsourcing term. However, the analysis of Harrison and Van Mieghem [120] is not sensitive

to the drift term or the inclusion of an outsourcing process, and therefore, a state-dependent

drift term and an outsourcing term can be accommodated easily.

Proof of Proposition 6. Consider the barrier policy (L,U, θ) and assume γ ∈ R and
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f ∈ C2([l, u]) jointly satisfy (3.34)-(3.35). A routine application of Ito’s lemma gives

E
[
f(W (t))

]
− f(W (0)) =E

[ ∫ t

0
Γθf(W (s))ds

]
+ E

[ ∫ t

0
f ′(W (s))dL(s)

]

− E
[ ∫ t

0
f ′(W (s))dU(s)

]

=E
[ ∫ t

0
Γθf(W (s))ds

]
+ E

[ ∫ t

0
−κdL(s)

]
(C.31)

= γt − E
[ ∫ t

0
c(θ(W (s)))ds+

∫ t

0
h(W (s))ds

]
− E

[
κL(t)

]
, (C.32)

where (C.31) follows from (3.33) and (3.35), and (C.32) follows from (3.34). Divide both

sides of (C.32) by t and take the limit as t → ∞. The first term on the left hand side

vanishes, because f ′ is bounded and W (t) ∈ [l, u] for t ≥ 0. The second term on the left

hand side vanishes since W (0) = 0. Consequently, we arrive at

lim
t→∞

1

t
E
[ ∫ t

0
c(θ(W (s)))ds +

∫ t

0
h(W (s))ds + κL(t)

]
= γ.

This completes the proof.

Proof of Lemma 9. It is straightforward to write l and u in terms of γ using Equations

(3.45)-(3.46). Here, we prove that l < 0 and u > 0, from which γ > 0 follows.

Lower barrier is negative. Recall that κ is non-negative by definition, µ is non-negative

since η ≥ 0, and H is positive definite by Assumption 6. Plugging these into Equation

(3.47) gives h(u) ≤ h(l). Next, we prove l < 0 by contradiction. Assume l ≥ 0. Since h

is strictly increasing on [0,∞), u ≥ l by definition, and h(u) ≤ h(l), we must have l = u.

This, however, contradicts v(l) = −κ and v(u) = 0. Therefore, the assumption that l ≥ 0 is

incorrect.

Upper barrier is positive. We prove u > 0 by contradiction. Assume u ≤ 0. Since

v ∈ C1([l, u]), the quadratic function is smooth, and h is continuously differentiable on

(l, u), it follows from (3.42) that v ∈ C2([l, u]); i.e., v′′ is well-defined on [l, 0]. Therefore, we
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can differentiate both sides of (3.42) to get

v′′(w) =
m′H -1m

σ2
v(w) v′(w) − 2µ

σ2
v′(w) − 2h′(w)

σ2
, w ∈ (l, u). (C.33)

Since v and v′ are continuous on [l, u], v(u) = v′(u) = 0, and h′(w) = −b? < 0 for w ∈ [l, u),

it follows from (C.33) that there exists w0 ∈ (l, u) such that v′′ > 0 on (w0, u). On the other

hand, since l, u ≤ 0, by Lemma 22, v′ > 0 on (l, u). Putting these two together, we arrive at

the following contradiction: v′, v′′ > 0 on (w0, u) imply v′(u) > 0 while we know v′(u) = 0

by (3.44). Therefore, the assumption that u ≤ 0 is incorrect. This completes the proof.

Proof of Lemma 10. Recall that γ ≥ 0.

Part 1A: v-0(0) < 0. We prove v-0(0) < 0 by contradiction. Assume that v-0(0) ≥ 0. It

follows from the continuity of v-0 , the fact that v-0(lγ) = −κ < 0, and the assumption that

v-0(0) ≥ 0 that there exists w0 ∈ [lγ , 0] such that v-0(w0) = 0. By Equation (3.49) and the

continuity of v′, for w ∈ (lγ , 0], we have

∂

∂w
v-0(w0) =

m′H -1m

2σ2

(
(v-0)2(w0)− κ2) − 2µ

σ2

(
v-0(w0) + κ

)
+

2
(
h(lγ)− h(w0)

)

σ2

= −m
′H -1m

2σ2
κ2 − 2µ

σ2
κ +

2
(
h(lγ)− h(w0)

)

σ2
(C.34)

≤ −m
′H -1m

2σ2
κ2 − 2µ

σ2
κ +

2h(lγ)

σ2
(C.35)

= 0, (C.36)

where (C.34) follows v-0(w0) = 0, (C.35) follows from the non-negativity of h, and (C.36)

follows from (3.45). However, by Lemma 22, we must have ∂v-0(w)/∂w > 0 for w ∈ (lγ , 0],

which contradicts (C.36). Therefore, the initial assumption that v-0(0) ≥ 0 is incorrect.

Part 1B: v-γ(0) is strictly increasing in γ and v-γ(0) → ∞ as γ → ∞. Consider the

differential equation

v̂′(w) =
m′H -1m

2σ2

(
v̂2(w)− κ2) − 2µ

σ2

(
v̂(w) + κ

)
+

2b?

σ2
w, w ∈ (0,∞) (C.37)
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subject to the boundary condition v̂(0) = −κ. It is straightforward to see that

v-γ(w) = v̂(w − lγ), w ∈ [lγ , 0]. (C.38)

Then, it follows from Lemma 22 that v̂′(w) = ∂v-γ(w + lγ)/∂w > 0 for w ∈ (0,∞). Thus,

for γ > 0,

∂

∂γ
v-γ(0) =

∂

∂γ
v̂(−lγ) =

1

b?
v̂′(−lγ) > 0, (C.39)

where the second equality in (C.39) follows from (3.48). Thus, v-γ(0) is strictly increasing. It

remains to show that v-γ(0)→∞ as γ →∞. By (3.48) and (C.38), it suffices to show that

v̂(w)→∞ as w →∞. First, we show that v̂′(w)→∞ as w →∞. To see this, note that

m′H -1m

2σ2

(
v̂2(w)− κ2) − 2µ

σ2

(
v̂(w) + κ

)

is lower bounded since m′H-1m
2σ2 > 0. Then, since 2b?

σ2 w → ∞ as w → ∞, it follows from

(C.37) that v̂(w)→∞ as w →∞. Then, by the fundamental theorem of calculus,

v̂(w) =

∫ w

0
v̂′(w′)dw′ + v̂(0) → ∞. (C.40)

Part 2: v+0(0) = 0, v+γ(0) is strictly decreasing in γ and v+γ(0) → −∞ as γ → ∞.

The proof of Part 2 resembles the proof of Part 1. The equality v+0(0) = 0 follows from the

boundary condition (3.52). Consider the differential equation

ṽ′(w) = −m
′H -1m

2σ2
ṽ2(w) +

2µ

σ2
ṽ(w) − 2h?

σ2
w, w ∈ (0,∞) (C.41)

subject to the boundary condition ṽ(0) = 0. It is straightforward to see that

v+γ(w) = ṽ(uγ − w), w ∈ [0, uγ ]. (C.42)
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By Lemma 23, ṽ, ṽ′ < 0 on (0,∞). Therefore, for γ > 0,

∂

∂γ
v+γ(0) =

∂

∂γ
v̂(uγ) =

1

h?
ṽ′(uγ) < 0.

Thus, v+γ(0) is strictly decreasing in γ. It remains to show that v+γ(0)→ −∞ as γ →∞. By

(C.42), it suffices to show that ṽ(w)→ −∞ as w →∞. Note that

−m
′H -1m

2σ2
ṽ2(w) +

2µ

σ2
ṽ(w)

is upper bounded and −2h?

σ2 w → −∞ as w →∞. Thus, by (C.41), ṽ(w)′ → −∞ as w →∞.

Therefore,

ṽ(w) =

∫ w

0
ṽ′(w′)dw′ + ṽ(0) → −∞. (C.43)

This completes the proof.

Proof of Lemma 11. We prove the statements for v-γ and v+γ , separately.

Part 1. We start by focusing on v-γ . Consider the differential equation

v̂′(w) =
m′H -1m

2σ2

(
v̂2(w)− κ2) − 2µ

σ2

(
v̂′(w) + κ

)
+

2b?

σ2
w, w ∈ (0,∞) (C.44)

subject to the boundary condition v̂(0) = −κ. It is straightforward to see that

v-γ(w) = v̂(w − lγ), w ∈ [lγ , 0]. (C.45)

Equation (C.44) is a Riccati equation of the form (C.1) with

c0 = −m
′H -1m

2σ2
κ2 − 2µ

σ2
κ, c1 = −2µ

σ2
, c2 =

m′H -1m

2σ2
, and ĉ =

2b?

σ2
.

The closed-form expression for v-γ follows from Lemma 20 and the fact that by (3.45), c0 =
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γ + b?lγ .

Part 2. Next, we focus on v+γ . Consider the differential equation

ṽ′(w) = −m
′H -1m

2σ2
ṽ2(w) +

2µ

σ2
ṽ′(w) − 2h?

σ2
w, w ∈ (0,∞) (C.46)

subject to the boundary condition ṽ(0) = 0. It is straightforward to see that

v+γ(w) = ṽ(uγ − w), w ∈ [0, uγ ]. (C.47)

Equation (C.46) is a Riccati equation of the form (C.1) with

c0 = 0, c1 =
2µ

σ2
, c2 = −m

′H -1m

2σ2
, and ĉ = −2h?

σ2
.

The closed-form expression for v+γ follows from Lemma 20.

Proof of Proposition 7. We prove the result in several steps.

Step 1: v satisfies (3.42) on (lγ? , 0) ∪ (0, uγ?), v(lγ?) = −κ, and v(uγ?) = 0. It follows

from the definition of lγ? and uγ? , the fact that v-γ? solves (3.49)-(3.50), and the definition

of v in (3.53) that v satisfies (3.42) on (lγ? , 0) and v(lγ?) = −κ. Similarly, it follows from

the definition of v in (3.53) and the fact that v+γ? satisfies (3.51)-(3.52) that v satisfies (3.42)

on (0, uγ?) and v(uγ?) = 0. To prove that (lγ? , uγ? , γ
?, v) is a solution to (3.42)-(3.44) it

remains to show that v and v′ are continuous at the origin and v′(lγ?) = v′(uγ?) = 0.

Step 2: v and v′ are continuous at the origin. The continuity of v at the origin follows

from Corollary 3 and the definition of v in (3.53). To show the continuity of v′, we calculate

the left and right limits of v′(w) at the origin and show that the two limits coincide. By
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(3.49)-(3.50) and (3.53),

lim
w→0-

v′(w) = lim
w→0-

∂

∂w
v-γ?(w) =

m′H -1m

2σ2

(
(v-γ?)

2(0)− κ2) − 2µ

σ2

(
v-γ?(0) + κ

)
+

2h(lγ?)

σ2
.

(C.48)

Similarly, by (3.51)-(3.52) and (3.53),

lim
w→0+

v′(w) = lim
w→0+

∂

∂w
v+γ?(w) =

m′H -1m

2σ2
(v+γ?)

2(w) − 2µ

σ2
v+γ?(0) +

2h(uγ?)

σ2
. (C.49)

Then, it follows from Corollary 3, Equations (C.48)-(C.49) and the definition of lγ? and uγ?

that

lim
w→0-

v′(w) = lim
w→0+

v′(w). (C.50)

It follows from (C.50), the definition of v in (3.53), and the fact that v-γ? ∈ C1([lγ? , 0]) and

v+γ? ∈ C1([0, uγ? ]) that v ∈ C1([lγ? , uγ? ]).

Step 3: v′(lγ?) = v′(uγ?) = 0. It follows from (3.49)-(3.50) that ∂v-γ?(lγ?)/∂w = 0.

Similarly, it follows from (3.51)-(3.52) that ∂v+γ?(lγ?)/∂w = 0. Plugging ∂v-γ?(lγ?)/∂w =

∂v+γ?(lγ?)/∂w = 0 into the definition of v in (3.53) gives v′(lγ?) = v′(uγ?) = 0.

Step 4: v is strictly increasing on [lγ? , uγ? ]. It follows from the definition of v in (3.53)

and Lemma 22 that v′(w) > 0 for w ∈ (lγ? , 0]. Moreover, note that v+γ?(w) = ṽ(uγ? −w) for

w ∈ [0, uγ? ], where ṽ solves

ṽ′(w) = −m
′H -1m

2σ2
ṽ2(w) +

2µ

σ2
ṽ(w) − 2h?

σ2
w, w ∈ (0,∞)

subject to the boundary condition ṽ(0) = 0. Then, it follows from Lemma 23 that v′(w) > 0

for w ∈ [0, uγ?). By combining v′(w) > 0 for w ∈ (lγ? , 0] and v′(w) > 0 for w ∈ [0, uγ?), we

arrive at v′(w) > 0 for w ∈ (lγ? , uγ?).

Step 5: The solution to (3.42)-(3.44) is unique. The uniqueness of the solution follows
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from Corollary 3 and the fact that v is uniquely determined given γ?. This completes the

proof.

Proof of Theorem 2. Consider v given by (3.53) and define f : R→ R as follows:

f(w) =





κ(lγ? − w), w ∈ (−∞, lγ?),
∫ w

lγ?
v(x)dx, w ∈ [lγ? , uγ? ],

∫ uγ?

lγ?
v(x)dx, w ∈ (uγ? ,∞).

(C.51)

Note that (C.51) extends the domain of f in (3.54) from [lγ? , uγ? ] to the entire real line. In

Step 1, we show that −κ ≤ f ′(w) ≤ 0 for w ∈ R and

min
x∈R

{1
2σ

2f ′′(w) + µf ′(w)− xf ′(w) + c(x) + h(w)
}
≥ γ?, w ∈ R. (C.52)

Then, in Step 2, we show that the average cost of any arbitrarily chosen policy (L,U, θ) is

greater than or equal to the average cost of our candidate policy.

Step 1. Since v is strictly increasing on (lγ? , uγ?) (by Lemma 7), v(lγ?) = −κ, and v(uγ?) =

0, we have −κ ≤ v(w) ≤ 0 for w ∈ [lγ? , uγ? ], which gives −κ ≤ f ′(w) ≤ 0 for w ∈ R.

Moreover, by Corollary 4, (lγ? , uγ? , γ
?, f) solves (3.36)-(3.37). Equation (C.52), then, follows

from (3.36) and the fact that h is strictly decreasing on (−∞, lγ?) and strictly increasing on

(uγ? ,∞).

Step 2. Let (L,U, θ) be an arbitrary admissible policy and denote its state process with W .

A routine application of Ito’s lemma gives

E
[
f(W (t))

]
− f(W (0)) =E

[ ∫ t

0

1
2σ

2f ′′(W (s))ds+

∫ t

0
µf ′(W (s))ds−

∫ t

0
θ(s)f ′(W (s))ds

]

+ E
[ ∫ t

0
f ′(W (s))dL(s)

]
− E

[ ∫ t

0
f ′(W (s))dU(s)

]
(C.53)
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for ≥ 0. The second term on the right hand side of (C.53) can be written out as

E
[ ∫ t

0
f ′(W (s))dL(s)

]
= E

[ ∫ t

0
f ′(W (s))dLc(s)

+
∑

s≤t

(
f
(
W (s-) + ∆L(s)

)
− f(W (s-)

)]
, (C.54)

where Lc denotes the continuous part of L and ∆L denotes its jumps. To be specific, for

t ≥ 0,

∆L(t) = L(t)− L(t-) and Lc(t) = L(t)−
∑

L(s)6=L(s-)
0≤s≤t

∆L(t).

Plugging f ′(w) ≥ −κ for w ∈ R into (C.54) gives

E
[ ∫ t

0
f ′(W (s))dL(s)

]
≥ − E

[ ∫ t

0
κ dLc(s) +

∑

s≤t
κ∆L(s)

]

= − κE
[
L(t)

]
, t ≥ 0. (C.55)

Using a similar argument, we obtain

E
[ ∫ t

0
f ′(W (s))dU(s)

]
≤ 0, t ≥ 0. (C.56)

Moreover, by (C.52),

1
2σ

2f ′′(W (t)) + µf ′(W (t))− θ(t)f ′(W (t)) + c(θ(t)) + h(W (t)) ≥ γ?, t ≥ 0. (C.57)
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It follows from (C.57) that for t ≥ 0,

E
[∫ t

0

1
2σ

2f ′′(W (s))ds+

∫ t

0
µf ′(W (s))ds−

∫ t

0
θ(s)f ′(W (s))ds

]
≥γ?t− E

[∫ t

0
c(θ(s))ds

]

−E
[∫ t

0
h(W (s))ds

]
. (C.58)

Plugging (C.55)-(C.56) and (C.58) into (C.53) gives

E
[
f(W (t))

]
− f(W (0)) ≥ γ?t − E

[ ∫ t

0
c(θ(s))ds −

∫ t

0
h(W (s))ds − κL(t)

]
(C.59)

for t ≥ 0. Divide both sides of (C.59) by t and take the lim inf as t→∞. The first term on

the left hand side vanishes, because f ′ is bounded and W satisfies (3.31). The second term

on the left hand side vanishes since W (0) = 0. Consequently, we arrive at

liminft→∞
1

t
E
[ ∫ t

0
c(θ(s))ds +

∫ t

0
h(W (s))ds + κL(t)

]
≥ γ?.

This completes the proof.

C.4 Auxiliary Results

This sections discusses a number of auxiliary results that are crucially used in proving various

lemmas and propositions in Appendix C.3.

Lemma 21. Given l < 0, let v ∈ C1([l, 0]) be the solution to

v′(w) =
m′H -1m

2σ2

(
v2(w)− κ2) − 2µ

σ2

(
v(w) + κ

)
+

2
(
h(l)− h(w)

)

σ2
, w ∈ (l, 0) (C.60)

subject to the boundary condition v(l) = −κ. Then, v(w) ≥ −κ for w ∈ [l, 0].

Proof. We prove the lemma by contradiction. Assume that there exists w0 ∈ (l, 0] such that

v(w0) < −κ. Then, it follows from the continuity of v and v′ that there exists w1 ∈ (l, w0)
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such that v(w1) < −κ and v′(w1) < 0. Plugging v(w1) < −κ into (C.60) gives

v′(w1) ≥ 2
(
h(l)− h(w1)

)

σ2
> 0, (C.61)

which contradicts v′(w1) < 0. Therefore, the assumption that there exists w0 ∈ (l, 0] with

v(w0) < −κ is incorrect. This completes the proof.

Lemma 22. Given l < 0, let v ∈ C1([l, 0]) be the solution to

v′(w) =
m′H -1m

2σ2

(
v2(w)− κ2) − 2µ

σ2

(
v(w) + κ

)
+

2
(
h(l)− h(w)

)

σ2
, w ∈ (l, 0) (C.62)

subject to the boundary condition v(l) = −κ. Then, v′(w) > 0 for w ∈ (l, 0].

Proof. Since v ∈ C1([l, 0]), the quadratic function is smooth, and h is continuously differ-

entiable on [l, 0], it follows from (C.62) that v ∈ C2([l, 0]), i.e., v′′ is well-define on [l, 0].

Therefore, we can differentiate both sides of (C.62) to get

v′′(w) =
m′H -1m

σ2
v(w) v′(w) − 2µ

σ2
v′(w) − 2h′(w)

σ2
, w ∈ (l, 0). (C.63)

By continuous differentiability of v, Equation (C.62), and boundary condition v(l) = −κ, we

have v′(l) = 0. Then, since v and v′ are continuous on [l, 0], v′(l) = 0, and h′(w) = −b? < 0

for w ∈ [l, 0], it follows from (C.63) that there exists w0 ∈ (l, 0] such that v′′(w) > 0 for

w ∈ (l, w0). Then, since v′(l) = 0, we conclude that v′(w) > 0 for w ∈ (l, w0]. It remains to

show that v′(w) > 0 for w ∈ (w0, 0]. To do so, let

w1 = inf
{
w ∈ (l, 0) : v(w) =

2µ

m′H -1m

}
. (C.64)

Without loss of generality, we assume w0 < w1. We prove v′(w) > 0 for w ∈ (w0, w1) and

[w1, 0], separately.
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Case 1: w ∈ (w0, w1). By (C.63), if v′′(w) < 0,

m′H -1m

σ2
v(w) v′(w) − 2µ

σ2
v′(w) − 2h′(w)

σ2
< 0,

which is equivalent to

2b? <
(
2µ−m′H -1mv(w)

)
v′(w). (C.65)

By (C.64), the fact that w < w1, v(l) = −κ < 0, and the continuity of v, we have 2µ −

m′H -1mv(w) > 0. Thus, dividing both sides of (C.65) by 2µ−m′H -1mv(w) gives

v′(w) >
2b?

2µ−m′H -1mv(w)
. (C.66)

It follows from (C.66) and the fact that v(w) ≥ −κ (by Lemma 21) that if v′′(w) < 0,

v′(w) >
2b?

2µ+m′H -1mκ
. (C.67)

In other words, letting

a2 =
2b?

2µ+m′H -1mκ
> 0, (C.68)

if v′(w) ≤ a2, we have v′′(w) > 0. Then, since a1 = v′(w0) > 0, we conclude that v′(w) ≥

min(a1, a2) > 0 for w ∈ (w0, w1).

Case 2: w ∈ [w1, 0]. It follows from (C.63) that v′′(w1) > 0. Then, by the continuity

of v′ and the fact that v′(w) ≥ min(a1, a2) > 0 for w ∈ (a, w1), we have a3 = v′(w1) ≥

min(a1, a2) > 0. It remains to show that v′(w) > 0 for w ∈ (w1, 0]. We prove this by

contradiction. Assume that there exists w2 ∈ (w1, 0] such that v′(w2) ≤ 0. Since v′(w1) > 0

and v′(w2) ≤ 0, there exists w3 ∈ (w1, w2) such that v′(w3) > 0 and v′′(w3) ≤ 0. Without

loss of generality, assume w3 is the smallest such number, i.e., v′(w) > 0 for w ∈ (w1, w3).
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Then, it follows from v(w1) = 0 (by (C.64)) and v′(w) > 0 for w ∈ (w1, w3] that v(w) >

2µ/(m′H -1m). Plugging this into (C.63) gives v′′(w3) > 0. This, however, contradicts the

assumption that v′′(w3) < 0. Therefore, the initial assumption that there exists w2 ∈ (w1, 0]

such that v′(w2) ≤ 0 is incorrect. This completes the proof.

Lemma 23. Let v ∈ C1([0,∞)) be the solution to

v′(w) = −m
′H -1m

2σ2
v2(w) +

2µ

σ2
v(w) − 2h?

σ2
w, w ∈ (0,∞) (C.69)

subject to the boundary condition v(0) = 0. Then, v, v′ < 0 on (0,∞).

Proof. Since v ∈ C1([0,∞)) and the quadratic function is smooth, it follows from (C.69)

that v ∈ C2([0,∞)), i.e., v′′ is well-define on [0,∞). Therefore, we can differentiate both

sides of (C.69) to get

v′′(w) = −m
′H -1m

σ2
v(w) v′(w) +

2µ

σ2
v′(w) − 2h?

σ2
, w ∈ (0,∞). (C.70)

By continuous differentiability of v, Equation (C.69), and boundary condition v(0) = 0, we

have v′(0) = 0. Then, since v and v′ are continuous on [0,∞), v′(0) = 0, and −2h?/σ2 < 0,

it follows from (C.70) that there exists w0 ∈ (0,∞) such that v′′(w) < 0 for w ∈ (0, w0).

Then, since v(0) = 0, we have v′(w) < 0 for w ∈ (0, w0].

Next, we show that v′(w) < 0 for w ∈ (w0,∞). Let us prove this statement by contra-

diction. Assume that there exists w1 ∈ (w0,∞) such that v(w1) ≥ 0. Then, there must

exist w2 ∈ (w0, w1) such that v′′(w2) ≥ 0. Without loss of generality, assume that w2 is the

smallest value such that v′′(w2) ≥ 0. Then, by plugging v(w0), v′(w0) < 0 into (C.70), we

arrive at the contradiction v′′(w2) < 0. Thus, the assumption that there exists w1 ∈ (w0,∞)

such that v(w1) ≥ 0 is incorrect, i.e., v′ < 0 on (0,∞). Consequently, v < 0 on (0,∞). This

completes the proof.
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[172] Özkan, E. and Ward, A. R. (2020). Dynamic matching for real-time ride sharing.

Stochastic Systems, 10(1):29–70.

[173] Pele, O. and Werman, M. (2009). Fast and robust earth mover’s distances. In 2009

IEEE 12th International Conference on Computer Vision, pages 460–467. IEEE.

[174] Pesic, V. and Williams, R. J. (2016). Dynamic scheduling for parallel server systems

in heavy traffic: Graphical structure, decoupled workload matrix and some sufficient con-

ditions for solvability of the brownian control problem. Stochastic Systems, 6(1):26–89.

[175] Plambeck, E., Kumar, S., and Harrison, J. M. (2001). A multiclass queue in heavy traf-

fic with throughput time constraints: Asymptotically optimal dynamic controls. Queueing

Systems, 39(1):23–54.

[176] Plambeck, E. L. (2004). Optimal leadtime differentiation via diffusion approximations.

Oper. Res., 52(2):213–228.

265



[177] Reed, J. and Ward, A. R. (2008). Approximating the GI/GI/1+GI queue with a

nonlinear drift diffusion: Hazard rate scaling in heavy traffic. Math. Oper. Res., 33(3):606–

644.

[178] Reiman, M. I. and Wein, L. M. (1998). Dynamic scheduling of a two-class queue with

setups. Oper. Res., 46(4):532–547.

[179] Rheingans-Yoo, D., Kominers, S. D., Ma, H., and Parkes, D. C. (2019). Ridesharing

with driver location preferences. Working paper.

[180] Royden, H. L. and Fitzpatrick, P. (1968). Real analysis. Macmillan New York, 4

edition.

[181] Rubino, M. and Ata, B. (2009). Dynamic control of a make-to-order, parallel-server

system with cancellations. Oper. Res., 57(1):94–108.

[182] Rubio, R. and Wein, L. M. (1996). Setting base stock levels using product-form queue-

ing networks. Manage. Sci., 42(2):259–268.

[183] Rust, J. (1987). Optimal replacement of gmc bus engines: An empirical model of

harold zurcher. Econometrica, pages 999–1033.

[184] Sanajian, N., Abouee-Mehrizi, H., and Balcıoglu, B. (2010). Scheduling policies in the

M/G/1 make-to-stock queue. J. Oper. Res. Soc., 61(1):115–123.

[185] Sayler, B. (2017). IBISWorld industry report 48533 taxi & limousine services in the

US.

[186] Schneider, T. W. (2018). Analyzing 1.1 billion NYC taxi and Uber trips, with a

vengeance.

[187] Schroeter, J. R. (1983). A model of taxi service under fare structure and fleet size

regulation. Bell J. Econ., pages 81–96.

266



[188] Selcuk, C. and Gokpinar, B. (2019). The selection of prices and commissions in a

spatial model of ride-hailing. Working paper.

[189] Shapiro, M. H. (2018). Density of demand and the benefit of Uber. Working paper.

[190] Stidham, S. (1988). Scheduling, routing, and flow control in stochastic networks. In

Stochastic Differential Systems, Stochastic Control Theory and Applications, pages 529–

561. Springer.

[191] Stidham, S. (1992). Pricing and capacity decisions for a service facility: Stability and

multiple local optima. Manage. Sci., 38(8):1121–1139.

[192] Stidham, S. (2002). Analysis, design, and control of queueing systems. Oper. Res.,

50(1):197–216.

[193] Stidham, S. and Weber, R. R. (1989). Monotonic and insensitive optimal policies for

control of queues with undiscounted costs. Oper. Res., 37(4):611–625.

[194] Su, C.-L. and Judd, K. L. (2012). Constrained optimization approaches to estimation

of structural models. Econometrica, 80(5):2213–2230.

[195] Taksar, M. I. (1985). Average optimal singular control and a related stopping problem.

Math. Oper. Res., 10(1):63–81.

[196] Taksar, M. I. (1997). Infinite-dimensional linear programming approach to singular

stochastic control. SIAM J. Control Optim., 35(2):604–625.

[197] Talluri, K. T. and Van Ryzin, G. J. (2006). The theory and practice of revenue man-

agement, volume 68. Springer Science & Business Media.

[198] Tezcan, T. and Dai, J. (2010). Dynamic control of N-systems with many servers:

Asymptotic optimality of a static priority policy in heavy traffic. Oper. Res., 58(1):94–

110.

267



[199] Van Zandt, T. (2012). Firms, Prices, and Markets.

[200] Varma, S. M., Bumpensanti, P., Maguluri, S. T., and Wang, H. (2019). Dynamic

pricing and matching for two-sided queues. Working paper.

[201] Veatch, M. H. and Véricourt, F. D. (2003). Zero-inventory conditions for a two-part-

type make-to-stock production system. Queueing systems, 43(3):251–266.

[202] Veatch, M. H. and Wein, L. M. (1996). Scheduling a make-to-stock queue: Index

policies and hedging points. Oper. Res., 44(4):634–647.

[203] Véricourt, F. D., Karaesmen, F., and Dallery, Y. (2000). Dynamic scheduling in

a make-to-stock system: A partial characterization of optimal policies. Oper. Res.,

48(5):811–819.

[204] Vulcano, G. (2008). Dynamic pricing for an M/M/1 make-to-stock system with con-

trollable backlog. Working paper.

[205] Wang, G., Zhang, H., and Zhang, J. (2019). On-demand ride-matching in a spatial

model with abandonment and cancellation. Working paper.

[206] Wang, X., Agatz, N., and Erera, A. (2017). Stable matching for dynamic ride-sharing

systems. Transport. Sci., 52(4):850–867.

[207] Ward, A. R. and Armony, M. (2013). Blind fair routing in large-scale service systems

with heterogeneous customers and servers. Oper. Res., 61(1):228–243.

[208] Ward, A. R. and Kumar, S. (2008). Asymptotically optimal admission control of a

queue with impatient customers. Math. Oper. Res., 33(1):167–202.

[209] Weerasinghe, A. (2015). Optimal service rate perturbations of many server queues in

heavy traffic. Queueing Systems, 79(3-4):321–363.

268



[210] Weerasinghe, A. P. (2002). Stationary stochastic control for itô processes. Adv. Appl.
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