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Abstract 

Micromobility companies and some policymakers tout scooters as an emissions-reducing 

solution to the last-mile problem of public transportation and a boon to low-income mobility. Yet 

there is surprisingly little empirical understanding of whether scooters are living up to these 

aspirations. With a focus on Washington, DC and comparisons to Los Angeles and Louisville, 

this paper uses 2-stage least squares methods to model variations in supply and demand for 

scooter rides across locations within cities. Interpretations of this model generate insights about 

(1) destination patterns within Washington and other cities (2) the demographic profile of riders 

and capacity utilization in low-income areas, (3) whether scooter usage complements or 

substitutes for public transportation and ultimately reduces greenhouse emissions. The analysis 

concludes that three non-demographic landuse factors (metro stations, businesses with alcohol 

licenses, and proximity to the downtown) explain 60-80% of variations in scooter ridership 

within most American cities. Scooters are primarily used for travel to leisure destinations. 

Moreover, scooters in low-income areas are systematically underutilized due to low effective 

demand. This result casts doubt on whether the current municipal policy focus on expanding 

supply will be effective in boosting low income mobility. Trip pattern analysis suggests that 

scooter usage is deeply interconnected with the light-rail network in Washington, DC, and may 

offer a scalable solution to public transit’s last-mile problem. 
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Introduction 

Scooter share services are a burgeoning phenomenon in the urban mobility scene, 

expanding from just 5 US cities in the beginning of 2018 to over 200 today (“Mapping” 2019). 

At 38.5 million scooter trips in their first year in operation, scooter usage already outstripped 

bikeshare trips (NACTO 2019). Scooter trips even approached the order of magnitude of bus 

trips in some places. In Austin, TX in September 2019, for example, approximately 20,000 

scooters were ridden 535,000 times, nearly a third of the 1.7 million bus rides that month 

(“Ridership” 2019). This is especially impressive considering the number of scooters is strictly 

limited by municipal operating permits, while city buses are supported and subsidized. The 

scooter appears to be on its way to becoming a legitimate, quantitatively important mode of 

public transportation, like the city bus. 

Amidst scooters’ sudden ubiquity, there is surprisingly little empirical understanding of 

what they are used for. Companies claim that scooters are a lifeline to the poor in areas 

underserved by public transportation. Social media and popular news coverage claim that 

scooters are just toys for tourists and college students. Anecdotal evidence indicates that urban 

residents use scooters for essential trips such as errands. Perhaps some young white-collar 

professionals even use scooters as their principal commute mode, including a quarter of all 

scooter users in one survey (NACTO 2019). Amid this cacophony, this paper attempts to shed 

light on key empirical issues of (1) destination patterns, and (2) demographics of use. Regarding 

(1) destination patterns, (A) What drives where scooter rides are concentrated, and what can we 

infer is the primary purpose of scooter trips: commuting, leisure, or just joyriding? (B) Are these 

destination patterns consistent in cities across the country? Regarding (2) demographic patterns: 

(A) What demographic patterns characterize scooter ridership, and (B) will supplying more 
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scooters to low-income neighborhoods generate more scooter use there, contributing to low-

income mobility? This paper has the advantage of an unprecedentedly granular “thousandth-of-a-

degree” block group-level analysis of scooter trip origins and destinations: Carefully using 

location as a proxy for demographics and destination, this paper models patterns in scooter usage 

using 2-Stage Least Squares (2SLS) methods to identify key drivers. 

The notion that scooters could help low-income people might raise eyebrows. Yet, 

evidence about potential usage suggests that low-income commuters can access more jobs by 

scooter than by public transit in some places (“Job Access” 2018). Moreover, Washington, DC 

and many other cities already require companies to offer low-income users heavily discounted 

rides and the option to sign up without a smartphone or credit card. Further, Washington, DC 

requires scooter companies to place a minimum amount of their fleet in low-income areas. This 

minimum is set to increase from dozens to hundreds. Will municipal policies to increase the 

supply of scooters be effective, or is there a demand-side issue that needs to be addressed? 

Extending the 2SLS model, we can identify whether the existing number of scooters in low-

income areas is underutilized; if so, this indicates that there is a lack of demand, and city policies 

to induce low-income usage through increased supply alone may fail.  

This paper also addresses a third key empirical issue: (3) Public transit complementarity 

and carbon footprint. What exactly is the relationship between the scooter and other forms of 

transportation, such as the city bus and the subway? If people are using scooters to reach transit 

stops that were otherwise prohibitively out of walking distance, the presence of the scooter may 

enable people to complete trips by bus or light-rail that otherwise would have required a car. Is 

the scooter replacing the car for some short-distance trips? What if, on the other hand, people 

who would have taken public transit are instead using scooters to go directly to their final 
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destination? At stake is whether the expansion of scooters –which pollute more than buses but 

less than cars per passenger mile travelled– will increase or decrease greenhouse gas emissions 

from transportation (Hollingsworth et al 2019). With an unprecedentedly granular trip pattern 

analysis of origin-destination scooter trip data, this paper explores whether scooter usage (3A) 

complements and substitutes for public transit ridership, and (3B) reduces or increases net 

greenhouse gas emissions, considering its substitution for autos and walking. 

Background 

Not everyone is happy with scooters. Amid high-profile media stories about scooters 

cluttering sidewalks, inviting vandalism, and causing crashes, criticism has been directed at local 

policymakers for insufficiently protecting citizens from these hazards (NACTO 2018). In Austin, 

TX, scooters have been the subject of hundreds of 311 complaints every month (“Austin” 2019). 

Across cities, scooters have spawned a variety of regulatory responses. Some major cities such as 

Washington, DC, Austin, TX, and Los Angeles, CA took a robust managerial stance, delineating 

tightly-regulated scooter ‘pilot’ frameworks: scooter companies apply for permits to operate 

under strict fleet size limitations, subject to a plethora of equity, safety, and data-sharing rules 

and significant fees (Herrman 2019). The legal basis for these regulations is that the scooters 

operate in the public “right-of-way” (sidewalks and streets), and therefore require discretionary 

permits. In these places, the apparent discord of scooters on the streets contrasts with orderly, 

top-down regulatory efforts. These three cities in particular have chosen to significantly expand 

their programs after an initial evaluation phase. In other cities, however, resources were not 

allocated towards robust processes for enforcing comprehensive regulatory frameworks 

(Herrman 2019). This is especially true for smaller cities with less available resources. Some 

cities large and small, some as big as New York, NY, and Chicago, IL, have maintained bans on 
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scooters following brief pilot programs that appeared chaotic or politically unpopular. In these 

locations, the regulatory environment is rapidly evolving. 

Identifying key segments of scooter users and destination activities is very relevant to 

current municipal policy dilemmas. One way to frame the municipality’s scooter regulatory 

decision is a weighing of costs against benefits. By some measures, safety hazard appears to be 

the most salient cost of allowing scooters. Out of concern for safety, the governor of New York 

recently vetoed a bill to overturn a statewide scooter ban. But what exactly are the benefits? As a 

mode of transportation, scooters benefit those who use them by enabling access to certain 

destinations in order to perform certain activities (such as commuting to work, going to a 

restaurant, etc). This mobility is an important benefit of scooters; but mobility for whom, and to 

what end? Policymakers may weigh the mobility benefits of scooters differently based on 

whether the group of people receiving those benefits has historically unmet mobility needs. 

Likewise, policymakers may value this form of mobility more highly if they believe the 

destination activities are normatively important. For instance, if scooters have the potential to 

ease low-income people’s access to jobs, policymakers may value the scooters enough to tolerate 

a certain amount of safety hazard. On the other hand, if scooter usage is primarily recreational1, 

they may opt to restrict or ban scooters instead. Therefore, producing a quantitative 

understanding of the profile of users and destinations is important as policymakers weigh the 

mobility benefits of scooters against their safety costs. 

 
1 All scooter rides can be categorized as either ‘destination-driven’ or ‘recreational’. 

‘Destination-driven’ refers to all rides initiated in order to arrive at a destination (i.e. the scooter 

is an actual mode of transport), regardless of whether that destination is a workplace or a friend’s 

house. ‘Recreational’ includes only those rides where the purpose of using the scooter is solely to 

enjoy the experience of the ride itself (i.e. a joyride). 
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Literature Review 

Given the importance established above, surprisingly little research has been produced on 

basic questions surrounding scooters. This is especially the case regarding low-income usage. 

While a micro-simulation in Nashville showed that scooters could more than double the number 

of jobs accessible in 45 minutes from many low-income areas (in comparison to jobs accessible 

by public transit), no study of usage has attempted to empirically confirm whether poor people 

are actually using scooters in this way (“Dockless” 2018). The few studies that have commented 

on the demographics of scooter usage simply note very low usage in black and low-income 

neighborhoods in Washington, DC (McKenzie 2019a, McKenzie 2019b). However, no research 

exists attempting to explain why volume is low. Poor people could have a low propensity to use 

scooters, or scooter companies could be placing inadequate numbers of scooters in low-income 

areas. Neither the degree to which scooters have been supplied to low-income neighborhoods nor 

the scooter preferences of low-income people have been studied. Policy efforts are underway to 

induce scooter usage in low-income areas and ensure equitable geographic coverage in 

practically every city where scooters are present (Herrman 2019). To what degree have these 

policies been successful? City regulations mandating a minimum number of scooters be placed 

in low-income areas have not been evaluated. In addition, there is almost no research on the 

design, implementation, or uptake of scooter ride discount programs for low-income residents, 

even though these programs exist in nearly every city with scooters. This paper will shed light on 

these ignored but important issues by offering a more thorough understanding of scooter usage 

patterns in low-income areas and throughout cities. 

A somewhat greater volume of research comments on the profile of usage. One theory is 

that scooter usage is primarily recreational. It requires a certain amount of physical fitness that 
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could be especially discouraging for the elderly and perhaps even the middle-aged: exposure to 

the elements and the necessity of remaining standing and balanced on the moving scooter for the 

duration of the trip. Under this reasoning, most of the population would not want to rely on 

scooters to make a necessary trip or get to work on time. Some, though, might take pleasure in 

the sensation of moving quickly through the air on paved surfaces where foot and car traffic is 

low and when conditions are pleasant. Interestingly, most of the evidence supporting the 

purported unsuitability of scooters for destination-driven usage is derived from temporal rather 

than spatial evidence (Noland 2018, McKenzie 2019a). One study of scooter trips in Louisville, 

KY indeed found that usage was largely recreational, noting that weather has a statistically 

significant influence on trip volume (Noland 2018). However, that study did not attempt to 

actually examine origin-destination trip patterns. A study in Washington, DC found that scooter 

usage is recreational because volume is lower during weekday rush hours but rises in the 

afternoons and on weekends (McKenzie 2019a). However, this study does not account for the 

possibility of multiple discrete segments of usage; a large portion of usage could be leisure-

driven, but a small segment could be commuting; if this were the case, rush-hour peaks would 

not be detectable looking at all of the data combined. Indeed, in a national survey, on the other 

hand, 25% of scooter riders nationally report commuting as their primary trip, while 30% report 

their purpose as recreational (NACTO 2019). This paper will deepen the understanding of 

scooter usage by examining spatial patterns rather than temporal patterns. 

 Research suggests that scooters have incredible potential to reshape the urban 

transportation scene and lower greenhouse gas emissions, but the literature lacks empirical 

evidence on how this is progressing. Based on an examination of all stages of production and 

usage in a scooter’s lifetime, researchers have estimated the level of per passenger-mile (PPM) 
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greenhouse gas emissions of scooters in comparison to other modes: Scooters produce less than 

half the PPM emissions of cars, but more than twice the PPM emissions of high-ridership buses 

(Hollingsworth 2019). Needless to say, scooters produce far higher PPM emissions than walking 

or biking. It is worth noting that there is some disagreement among studies on the exact degree to 

which scooters reduce greenhouse gas emissions. This is because the majority of the emissions 

are not from the actual scooter rides, but from initial manufacturing and daily van routes that 

deploy the scooters. The Hollingsworth estimates are therefore quite sensitive to assumptions 

about scooter service lifespan and number of uses per day; the greater these are, the more trips 

needed to defray manufacturing and van emissions. Even taking for granted that the 

Hollingsworth assumptions of a six-month lifespan and several uses per day are roughly 

accurate, scooters have the potential to decrease greenhouse gas emissions from transportation 

only if they are substituting for car trips (Bordes Roca 2019). One simulation involving data on 

real scooter rides conducted in Munich, Germany found that scooters have the potential to 

become the main transit mode for residents of core cities and substitute for cars (Hardt & 

Bogenberger 2019). However, this study was a mini-pilot involving only six scooters given to 

individuals as their property rather than as shared devices; generalizations cannot be made to the 

networks of tens of thousands of shared scooters.  

 Perhaps the most plausible and most well-studied way that scooters could influence the 

urban transportation landscape is as a new solution to an old problem: the first/last-mile problem 

of public transportation. While a person can drive a car directly from origin to their final 

destination, one can only take public transit from the closest station to their origin to the closest 

station to their destination. Often, light-rail (and to a lesser extent the bus) is able to compete 

with or outperform car travel in terms of speed of the vehicle; however, the public transit vehicle 
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cannot get all the way to the destination. Travelling the “last mile” between the destination 

transit station and the actual destination can involve the sizable inconvenience of having to 

transfer to a bus or walk. The first and last mile of a transit trip constitute an outsize share of 

door-to-door time; this can ultimately lead people to choose cars over public transportation 

(Wang & Amadeo 2016; Zellner 2016; Desheng 2016). Much empirical evidence shows people 

are typically unwilling to use public transit if there is not a station within 0.5 miles of their origin 

and destination (Kuby & Barranda 2004; FTA 2017; Guerra, Cervero & Tischler 2012). The key: 

Some hope that dockless scooters can change the equation by providing a way for a person to 

quickly get from wherever they are to a public transit station that may be a mile away (Bordes 

Roca 2019). While a mile-long walk still can take 20-30 minutes, a mile-long scooter ride can 

take only 6 minutes. One survey found that 25% of scooter users’ primary trip purpose is to 

connect to public transit (NACTO 2019). However, a lack of analysis of empirical data leaves 

the matter uncertain. 
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Key Research Questions (RQs) 

RQ 1 – Destination Patterns & Geographic Comparison 

This paper hypothesizes that there exist certain locational attributes that can powerfully 

predict the variation in scooter usage across place and time within any American city. If trip 

pattern analysis or an econometric model can identify which locational attributes are the key 

drivers of scooter supply and demand, then we can understand the latent forces that underly 

patterns in scooter activity across the various areas of any city. Because different destinations are 

associated with different activities, identifying the locational drivers of scooter usage can 

illuminate the activities that motivate scooter use. An econometric analysis would involve 

aggregating scooter rides by location of origin or destination and identifying characteristics that 

distinguish between high- and low- ridership locations. Trip pattern analysis would involve 

identifying characteristics of pairs of locations that are connected to each other by a high volume 

of scooter trips. (A) First, we can perform these analyses in Washington, DC. (B) Then, we can 

see if the same patterns hold in other cities throughout the country, specifically Los Angeles, CA 

and Louisville, KY.  

RQ 2 – Demographic Patterns & Low-Income Mobility 

 (A) What are the major demographic patterns in scooter usage? Because certain locations 

are associated with different types of people, the pattern of destinations can give clues as to the 

demographic profile of scooter users. (B) Can scooters help low-income people who cannot 

afford cars access their jobs or other activities? When future Washington, DC regulations 

requiring a high number of scooters be deployed in low-income areas go into effect, econometric 

analysis could be used to identify whether ridership increases. However, that is a task for future 
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research. First, this paper will attempt to characterize the current volume and patterns of scooter 

usage by low-income individuals. Trip pattern analysis and econometric modeling will both 

assist in answering this question. 

RQ 3 – Public Transit & Carbon Footprint 

Another question is how scooters interact with other modes of transportation, especially 

public transit. (A) Trip pattern analysis can be used to look at existing connections between 

scooters and public transit. If scooters are used to go between transit deserts and transit stations, 

scooters likely complement transit, helping solve transit’s last-mile problem by expanding the 

effective catchment zone of transit stations. Meanwhile, if scooters are used to go between 

locations within walking distance of transit stations on the same line, they likely substitute for 

transit, cannibalizing its ridership. This is important because it impacts greenhouse gas 

emissions. Do scooters substitute for cars, complement transit, and decrease emissions? Or do 

scooters substitute for transit and add to emissions? What modes scooter riders would have 

chosen in the absence of scooters is a difficult question to answer; it is hard to know how 

individual people would have made decisions under unobservable, hypothetical conditions. 

Geography Selection Rationale 

Washington, DC is selected as the main city of study in this paper because it satisfies a 

number of desirable characteristics. Washington, DC is a mid-size American city with a large 

scooter program, making its results more generalizable to cities across the country considering 

scaling their scooter programs. A notable attribute of Washington, DC is that its public transit 

system is highly developed compared to other American cities of the same size: Washington, 

DC’s light-rail subway system has nearly 100 stations and notches 600,000 trips per weekday (in 
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a city of 700,000 people) (“Ridership” 2020). The presence of a robust bus and light-rail system 

makes DC ideal for observing interactions between public transit and scooters which are the 

focus of RQ 3. In addition, Washington, DC has mandated generous low-income discounts as 

well as minimum requirements for scooter supply in low-income areas, making it ideal for 

observing low-income usage as per RQ 2.  

Louisville, KY and Los Angeles, CA were selected as comparison cities with DC to 

maximize the generalizability of common patterns. Los Angeles is the second-largest city in the 

country, while the others are medium-sized. Washington has a robust, well-utilized public transit 

network, which the others lack. Louisville is in the nation’s hinterland, while Los Angeles and 

Washington are on opposite coasts. The year-round warmth of Los Angeles precludes any notion 

that the wintry study period could discourage certain demographics or types of scooter usage that 

would change the results. Given the intrinsic differences across these three cities, any common 

destination pattern found among them is unlikely to be specific to these three cities and more 

likely to be nationally generalizable. In addition, the unique granularity and historical span of 

Louisville’s scooter trip data makes possible laser-focused trip pattern analyses on two spatially 

distinct “scooter ecosystems” in the city: The University of Louisville campus and the historic 

downtown.  
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Data 

The number of scooter rides originating in a given census block group within a given city 

on a given day was the unit of observation for the final dataset after aggregation and cleaning. 

Each observation was paired with demographic and economic data from the American 

Community Survey (ACS) and landuse data from city data portals. The cleaning and aggregation 

of the data was a very intensive process, described below, and relies on the ability to make 

inferences about scooter’s status based on patterns in the API. As is the case in Washington, DC, 

municipal governments typically require scooter companies to provide APIs to the public. Data 

was collected and cleaned in the manner described below for Washington, DC and (separately) 

Los Angeles, CA from November 2019 through January 2020. On the other hand, Louisville, KY 

made available pre-cleaned scooter data at the trip level showing origin and destination 

coordinates and timestamps. Louisville’s already-clean data was used to validate the data 

cleaning process for Washington, DC and Los Angeles, CA. After aggregation, the scale and 

patterns of Louisville scooter trips largely cohere with those of the data from Washington, DC 

and Los Angeles, CA. 

The data collection for Washington, DC and Los Angeles, CA consisted of pulling the 

real-time latitude and longitude coordinates of every available scooter from the publicly 

available API every 2 minutes. Here, an available scooter is one that is available to be ridden by 

a customer. If a customer begins a ride on scooter A at a particular time, scooter A will disappear 

from the API at that time (see table 1 below).   

Time The Data: Scooter A 

is present in API?  

Our inference about what is happening to Scooter A 

T=0 Yes, Location A Scooter A is not being ridden by anyone, and is 

available to be ridden 
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 Table 1: Example scooter status inference from API 

Further, scooter data could be aggregated in order to discern the number of available scooters in 

each census block group in a city throughout the day at a 2-minute temporal resolution. This 

enables the detection of the number of scooter rides starting in a given census block group on a 

given day (after intensive data cleaning). For instance, if the number of scooters in a block group 

decreases by one over a time increment (a 2- minute period), this means one scooter ride began 

in that block group during the time increment (see table 2 below): 

 Table 2: Example aggregate scooter ride inference from scooter status data 

This inference pattern makes possible the construction of a dataset in which the unit of 

observation is the number of scooter rides originating in a block group in one day.  

The assumption in block-group aggregation is that scooter rides will not both end and 

start in the same census block group in the same 2-minute time increment. If one scooter ride 

T=1 Scooter A 

disappears from API 

customer began a ride on scooter A (at location A) 

T=2 No Customer is currently riding on scooter, so scooter is 

not available to other customers 

T=3 Scooter A reappears 

in API 

customer ends ride  

(at location B) 

T=4 Yes, Location B Scooter A is not being ridden by anyone, but is 

available to be ridden (at location B) 

Time Number of 

scooters present 

in API located 

within block 

group A  

Inference  

7:00am 10 10 scooters are present in block group A at 7:00 

7:02 9 1 ride began in block group A between 7:00 and 7:02 

7:04 9 0 rides began in block group A between 7:02 and 7:04 

7:06 11 2 rides ended in block group A between 7:04 and 7:06 

7:08 10 1 ride began in block group A between 7:06 and 7:08 

Total Inference: 2 scooter rides began in block group A between 7:00 and 7:08 
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ended and another scooter ride started in the same block group in the same minute, the inference 

would be that zero rides occurred. The relatively low spatial-temporal density of scooter rides as 

reported by official sources and the small land area of a census block group validates the 

likelihood that this assumption is correct. Washington, DC DOT reports that approximately 

10,000 rides per day occur in the city. This means ~26 rides starting and ending in an average 2-

minute increment, and these rides are spread across 450 census blocks of (on average) .15 square 

miles each. Viewed another way, the average block group experiences roughly 21 rides starting 

and 21 rides ending per day, spread across 330 time increments (assuming rides occur during 

daylight and into early evening). Although there might be some instances of undercounting in 

high-traffic outlier census block groups, the impact on overall analysis is minimal. Experiments 

were conducted where the data collection frequency was increased to 1-minute time increments 

to see if more rides could be detected; increases in rides were negligible.  

Another element complicating the data cleaning is that agents of the scooter companies 

will occasionally remove a scooter from a census block group in order to charge it or deploy 

fully-charged scooters to a census block group. Without data cleaning, it is impossible to tell 

whether the number of scooters in a block group decreasing by one would be due to a customer 

beginning a ride on a scooter or due to a company removing a scooter in order to charge it. 

Under this scenario, inferring change in number of scooters as equal to number of scooter rides 

would lead to inaccuracies. Fortunately, the scooter battery level percentage provided in the API 

allows us to distinguish between scooters taken offline for charging versus those taken offline for 

riding. If a block group’s scooter count increases as a result of a full-battery scooter appearing, 

that scooter must have been deployed by a company agent after charging and cannot possible be 

the result of the end of a ride (which would have decreased the battery level). Similarly, the 
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disappearance of a scooter whose battery level is extremely low is not likely to be the start of a 

ride. Therefore, the disappearance from a block group of a low-battery scooter was not counted 

towards the total of rides, nor was the appearance of a high-battery scooter. 

Another complexity arising from the data is the daily ‘rebalancing’ cycle, in which 

scooter company agents collect scooters each evening and move them to another area by early 

morning the following day. DDOT requires rebalancing to be completed by 7:00am, and the data 

shows a large drop in the number of scooters available beginning at 8:00pm (this time is also 

mentioned by a number of journalistic accounts as the beginning of rebalancing). In order to 

avoid confusing an agent of the company rebalancing a scooter with a customer riding a scooter, 

data collected after 8:00pm and before 7:00am was excluded from the dataset. Therefore, the 

number of scooters in a given block group at 7:00am is taken as the output of the scooter 

company’s rebalancing efforts, and therefore the initial supply of scooters to that block group. 

Therefore, an initial supply number as well as a daily ridership number can be obtained for each 

block group. 

For most scooter companies in most cities, usage cannot be analyzed with confidence on 

the level of individual scooter trips because the identification numbers of the scooters are 

intentionally stripped or scrambled by companies in order to make origin-destination linkage 

impossible for researchers (e.g., scooter A from table 1 might appear in the API with a different 

ID number at T=3 than at T=1). For this reason, block group aggregation as described above was 

the chosen data processing method. Fortunately, there are two exceptions: First, all time-

stamped, origin-destination linked scooter trips in Louisville, KY are available for public 

download due to a decision of that city’s Chief Data Officer. Second, the identification numbers 

on Jump scooters in Washington, DC and Los Angeles, CA do not appear to have been 
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scrambled, enabling the backing-out of timestamped, origin-destination linked scooter trips. 

Origin-destination data (data from the two exceptions above) are used for trip pattern analysis, 

while the aggregated data (data from APIs processed in census block groups as described 

extensively in this section), will be used for econometric modelling, described in the following 

section.  
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Methodology: Locational Characteristics and Supply & Demand Modeling 

This paper hypothesizes that there exist certain locational attributes that can powerfully 

predict the variation in scooter usage across place and time within any American city. In order to 

test this hypothesis, various locational characteristics were paired with scooter ride data 

aggregated on the block group level. Thus, one observation consists of the total number of 

scooter rides originating in a particular location (one census block group) over a particular period 

of time (one day).  

2SLS Model: 

This paper proposes the following general econometric model for estimating supply 

(number of scooters) and demand (scooter rides) across locations (subscripted L) and times 

(subscripted T) within a city. The demand equation below summarizes all relevant exogenous 

variables as locational effects; the actual model, elaborated later, will decompose this grouping 

into individual covariates. The supply equation below also describes “deployment effects” (to be 

represented as “company fixed effects” later on). Deployment effects account for the 

characteristics of the network of organizations and employees that distribute scooters subject to 

municipal regulations. The inclusion below of scooter ridership as a predictor of scooter supply, 

and scooter supply as a predictor of scooter ridership, is a notable endogeneity. This setup posits 

that (1) the number of scooters supplied to an area creates the conditions of possibility for 

scooter rides, and (2) scooter companies collect and analyze scooter trip data to identify which 

locations have the highest ridership and optimize scooter supply choices for maximal revenue. 

This means that locational factors affect ridership directly as well as indirectly through their 

effect on company scooter supply decisions which effect ridership.  
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Demand: 

Scooter Rides  
 L,T = 𝐵0 + 𝐵1Scooters SuppliedL,T +  𝐵2Location EffectsL  + 𝑒𝐿,𝑇 

Supply: 

Scooters SuppliedL,T = 𝐵0 +  𝐵1Scooter RidesL,T + 𝐵2Deployment EffectsL +  𝑒𝐿,𝑇 

 

 This endogeneity between supply and demand dictates use of 2SLS modeling. This 

technique separates out the direct effect of locational factors on ridership from the indirect effect 

of locational factors on ridership by way of ridership-anticipating company scooter supply 

decisions. This is critically important because if we observe that there is low ridership in low-

income areas, 2SLS is the only way to determine whether this is primarily because people in 

low-income areas have low demand for scooter rides (direct effect) or because companies choose 

not to supply scooters to low-income areas (indirect effect). This is a central question of the 

paper. Given a demographic characteristic A such that the number of rides for locations with that 

characteristic tends to be lower than average: if characteristic A is significant and negative in the 

demand equation above (which controls for the effects of supply), then this means that people of 

that demographic group (e.g. low income people of color) have a lower propensity to ride 

scooters (direct effect of characteristic A on demand). However, if such a demographic 

characteristic is significant and negative in the supply equation, this would mean that the 

decreased ridership for that demographic is principally due to company supply decision. 

The model requires only conservative assumptions based on simple facts about the 

scooter business. The assumption of endogeneity of supply and demand described above is 

highly typical for all goods and services in the economy (though for most goods, this 

endogeneity occurs through prices). For scooters, however, prices are constant over the short 

term relative to supply and demand due to municipal regulations. Throughout, supply refers to 
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the number of scooters supplied to a particular area by the companies, while demand refers to the 

number of scooter rides initiated in that area (e.g. ridership). Regarding the effect of supply on 

demand, the number of scooters placed in an area strictly limits the number of scooter rides that 

can begin in that area (no rides can start in an area if there are no scooters there). Further, the 

more scooters supplied to an area, the lower the average walking distance between any local 

consumer and the closest scooter in the area, and therefore the easier for a potential consumer to 

locate a scooter and initiate a ride. Regarding the effect of demand on supply, the decision to 

supply a certain number of scooters to an area should theoretically be a business decision 

calibrated to maximize profit. Scooter companies employ data scientists to analyze GPS data on 

the entire scooter fleet, generating organizational knowledge of which areas have more scooter 

rides and which have more scooters that are left unridden. Given this fact, rational firms use 

demand data in order to distribute their fleets of scooters across a city in a manner that would 

maximize the likelihood that each scooter is ridden, deploying more scooters (supply) to areas 

with historically more scooter rides (demand). 

Econometric analysis under 2SLS is able to separate out direct and indirect effects of 

supply and demand if the researcher can identify “instrumental variables” or “instruments”; 

exogenous variables that affect supply without affecting demand (here, deployment affects), and 

those that affect demand without affecting supply (here, location effects). The first stage of 2SLS 

consists of two regressions predicting supply and demand, respectively, using the instrumental 

variables for each. Note that all instrumental variables are included in both of the equations. 

Stage 1D: 

Scooter Rides  
 L,T = 𝑏0 +  𝑏1Location EffectsL+ 𝑏2Deployment EffectsL + 𝑒𝐿,𝑇 

Stage 1S: 

Scooters SuppliedL,T = 𝑏0 +  𝑏1Location EffectsL + 𝑏2Deployment EffectsL + 𝑒𝐿,𝑇 
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The second stage of 2SLS consists of estimating supply and demand again, this time 

dividing the instruments between the two equations according to the dependent variable. Instead 

of using the raw data for demand in the second-stage supply equation and vice versa, the 

predicted values for supply and demand from the first-stage regressions are used as “stand-ins” 

for supply and demand when they are represented as explanatory variables in the second stage: 

Stage 2D: 

Scooter Rides  
 L,T

= 𝑏0 +  𝑏1Location EffectsL  + 𝑏2Scooters Supplied 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 𝐟𝐫𝐨𝐦 𝐬𝐭𝐚𝐠𝐞 𝟏𝐒 L,T

+ 𝑒𝐿,𝑇 

Stage 2S: 

Scooters SuppliedL,T

= 𝑏0 +  𝑏1Scooter Rides 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 𝐟𝐫𝐨𝐦 𝐬𝐭𝐚𝐠𝐞 𝟏𝐃 L,T

+  𝑏2Deployment EffectsL +  𝑒𝐿,𝑇 

 

This set up ensures that the coefficients of the exogenous variables in the second stage reflect 

direct effects only; the second stage estimate of supply (2S, above) uses the predicted values of 

demand from stage 1D to ‘control for’ demand, and the second stage estimate of demand (2D, 

above) uses the predicted values of demand from stage 1S to ‘control for’ supply. Therefore, the 

effect size for proximity to public transit station, in stage 2D represents the direct effect of the 

presence of a transit station on scooter ridership, independent of company supply decisions. On 

the other hand, effect sizes in the first stage regressions include indirect effects (e.g., an attribute 

effecting demand through its effect on supply).  

Exogenous Variables: 
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Block group demographic and socioeconomic characteristics are included in order to 

proxy for the characteristics of the population of people who could have been the riders for the 

scooter rides originating in that block group. In purely residential areas, it is unlikely that people 

who do not live in the area are walking around looking for scooters as a means of transportation; 

foot traffic in residential areas almost entirely consists of nearby residents. It is true that average 

characteristics such as median age or income are not homogenous within a block group. 

However, even if the individual riders of scooters in a block group on a given day do not reflect 

the demographic distribution of that block group, the demographic distribution of the block 

group still characterizes the ‘market of potential buyers’ for a ride on the scooters in that block 

group, in the sense that the potential buyers are any individuals who would plausibly find 

themselves within walking distance of that scooter over the course of their day. If young people 

are more likely to use a scooter compared to elderly and middle-aged people, census block 

groups with a lower median age (or a larger population of 18-29-year-olds) may have a higher 

amount of scooter rides on average than other block groups when controlling for other factors. 

Spillover between neighboring block groups could potentially be a concern, as urban block 

groups are typically around a third of a mile across. Lack of spatial dependence weighting or 

spatial interaction modeling is a limitation of the methods in this paper and an avenue for future 

research.  

Many key locational characteristics added to the data (in order to conduct the 

econometric analysis above) describe physical attributes of a place rather than 

demographic/socioeconomic attributes about the people who live in the place. These “abiotic” 

attributes are powerful analytical tools because they are applicable in downtown and non-

residential areas, where the majority of the scooter rides are located. One key attribute is the 
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landuse and zoning designation: downtown and commercial zones have a much higher density of 

potential destinations and foot traffic than residential zones. Another important attribute is the 

distance from the block group centroid to the geographic center of the city, relevant to downtown 

spillover effects. A critical variable for destination-purpose inference is the quantity of particular 

types of destinations in a block group. In particular, the number of businesses with liquor 

licenses in each block group was paired with the dataset. This includes destinations such as 

restaurants, bars and nightclubs, hotels, and grocery stores. Liquor license and zoning data were 

found in city Open Data Portal datasets (“Existing” 2019, “Liquor” 2019). 

Another important locational characteristic to add to the dataset are transportation 

characteristics. These include block group-level behavioral characteristics, especially relating to 

commute mode. ACS data about median commute length as well as percentage commuting to 

work by car, public transit, and walking were added as variables. A binary variable indicating the 

presence of a metro station within a block group was added. Regarding demographic 

characteristics added to the data from the ACS, note that “low-income” block groups throughout 

the paper are defined as block groups with median household income below $50,000, 

approximately 200% of the federal poverty line for a family of four (DHCD 2017). The final 

dataset looked like this (see table 3 below, some characteristics not included): 

  unique to a block 

group on a particular 

day: 

unique to each block group (regardless of 

day) 

Block 

Group 

Day Daily 

Scooter 

rides 

Initial daily 

supply 

Dominant 

land use: 

Median 

income 

(census) 

Median 

age 

(census) 

Metro 

Station 

Block 

Group 

#1 

1/1/2020 N rides [# scooters 

present at 

7:00am, 1/1] 

residential X $$$ Y years 0 



Whyman 26 

 

Whyman 26 

 

Block 

Group 

# 1 

1/2/2020 M rides [# scooters 

present at 

7:00am, 1/2] 

residential X $$$ Y years 0 

 Table 3: Example block group level scooter dataframe paired with locational data 

Specification of Instruments 

The instrumental variable format for supply (“deployment effects” placeholder in the 

equations above) is company fixed effects. This specification of deployment effects meets the 

exogeneity condition of a valid instrumental variable because company supply decisions directly 

affect supply and do not directly affect demand (they only affect demand indirectly through the 

effect on supply). The specification of company fixed effects is the number of companies that 

have served a particular census block group with scooters in the past week. Because the goods 

offered by the companies are functionally identical (the only difference between scooters of 

different companies are minor aesthetics such as color scheme) and easily substitutable 

(switching costs are simply downloading a free app), differences in supply behavior between 

companies in the same location can only be due to company-specific factors, such as location of 

the company warehouse and other deployment logistics. While these company-specific factors 

directly affect company supply behavior and thus total supply of scooters in a location, they are 

utterly invisible to users. Therefore, the only effect these company-specific factors could have on 

consumers is indirect, via their end effect on total supply. Therefore, company fixed effects 

meets the exogeneity criteria of only affecting demand through supply. Company fixed effects 

also satisfy the relevance criteria, meeting the .001 significance threshold and having a univariate 

R2 of 0.24 (see appendix). 

The various landuse and demographic variables mentioned are valid instruments for 

demand (“location fixed effects” placeholder in the equations above). They directly affect 

demand and do not directly affect supply (they only affect supply indirectly through the effect on 
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demand). Non-demographic locational variables relating to landuse might affect the volume of 

street traffic, the density of nearby destinations, and the types of people living in a place. All of 

these things could affect the quantity of scooter rides demanded in a location. However, they 

would not affect company decisions about scooter supply directly. It is true that the landuse 

characteristics are observable in some form by the scooter companies. However, given that 

profit-maximizing companies are optimizing deployment to maximize rides, and given that these 

companies have the ability to collect and analyze granular data on rides, companies are likely to 

make deployment decisions based on landuse features only insofar as they believe those landuse 

features affect ridership. In this sense, landuse characteristics affect supply only through their 

effect on demand as perceived by the various companies. Because companies have access to 

granular population data on their customers and historic scooter rides, it is reasonable to believe 

company perceptions of landuse feature’s effect on rides is likely to be close to the truth. 

Trip Pattern Analysis Methodology 

The objective of trip pattern analysis is to infer trip purpose as confidently as possible for 

as many scooter trips as possible within a given city over a given timeframe. The general 

approach to this inference will be to identify particular segments of trips whose origin-

destination locations indicate a trip purpose. Just as ride counts can be aggregated by the 

geographical unit of census block group, they can be aggregated for any series of geographical 

subdivisions related to destination. For instance, one could measure the number of rides starting 

and ending in close proximity to retail establishments, restaurants, movie theaters, offices, or 

schools, in a given city – even transit stations. One limitation of destination-purpose inference is 

that many different destinations can be spatially crowded together in downtown areas, making 

the exact purpose of some scooter trips hard to infer from location alone. In some cities with low 
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densities, on the other hand, different types of destinations are clustered in different areas, 

forming distinct, separable “ecosystems” of scooter use. The scale of these ecosystems can be 

analyzed to gage their relative importance within citywide scooter usage.  

Another key application of trip pattern analysis is identifying how scooter ridership 

interacts with other modes of transportation. This goes to the question of whether scooters 

complement or substitute for public transport, walking, and buses, and the net impact of scooters 

on greenhouse gas emissions. Given the known origin and destination coordinates and timestamp 

of each Washington, DC, Jump scooter trip, Bing Maps API can calculate the counterfactual 

travel time for each scooter trip had that trip been taken by bus, rideshare, or walking 

(accounting for congestion, waiting for the bus, etc). This allows us to discern how much time 

each rider saved (or sacrificed) to take a scooter as opposed to other modes. This information can 

be used to discern which modes would be feasible substitutes in absence of scooters, and which 

would be least preferred. This assumes that consumers strive to minimize expended money and 

travel time when choosing between modes.  
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Results 

RQ 1(A): Destination Patterns 

Given all locational variables examined, the following four factors were found to be 

highly-significant and strongly predictive of scooter usage in the econometric model (in 

descending order of explanatory power): number of businesses with alcohol licenses, downtown 

zoning designation, (inverse) distance to city center, and the presence of a public transit station. 

A fifth factor, presence of a large university campus in a given location, was also important in 

cities with such campuses, specifically Louisville. The land area of each census block group was 

included in the regression to prevent very densely populated but small block groups and very 

sparsely populated, geographically large block groups from skewing results. These several 

factors alone explain over 70% (R-squared>0.7) of the variation in the number of scooter rides 

between places within Washington, DC (see table 4). For Louisville and Los Angeles, the model 

explained approximately 80% and 60% (respectively) of the variation in rides (see appendix). 

Various demographic data (race, age, income, car ownership, and commuting behaviors) as well 

as other landuse and zoning data (commercial zoning and housing density) were omitted from 

the model because adding them did not result in increased explanatory power. Further, these 

patterns hold when rides are aggregated at the thousandth-of-a-degree level. As expected, scooter 

supply is also found to be a highly significant predictor of scooter ridership, both alone and when 

added to all configurations of exogenous locational factors. The analysis in this section focuses 

on the results from data from Washington, DC scooter trips in December 2019. Table 4 below 

contains the full 2SLS results for Washington, DC. 

 



Whyman 30 

 

Whyman 30 

 

 

  

Table 4: Final 2SLS model and Washington DC results.  

2 

2 
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Regarding the final 2SLS results for Washington (table 4 above), alcohol licenses and 

downtown-related factors are significant in both demand stages 1 and 2, while the presence of 

metro stations is significant only in stage 1. The positive significance in demand stage 1 means 

that metro stations have more rides relative to other places, but the lack of significance in 

demand stage 2 indicates that metro stations don’t have any more rides than would be expected 

given the amount of scooters supplied to them. This significance pattern may indicate that 

companies are aware that metro stations are high-demand areas, and therefore supply them with 

a correspondingly high amount of scooters. Therefore, the lack of significance of metro stations 

in demand stage 2 does not mean that metro stations aren’t good predictors of higher ridership, 

but that companies have adjusted their behavior to supply metro stations adequately relative to 

demand. Meanwhile, not only are there more scooter rides in downtown areas and areas with 

many businesses with alcohol licenses than other areas, but there are also more scooter rides than 

the number of scooters would suggest. This indicates that people are riding their scooters from 

other locations to downtown and commercial areas, and that these scooters are then being ridden 

again after arrival there. This validates the hypothesis that the center organizes scooter activity as 

a hub with decaying influence over distance. 
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Table 5 above displays the explanatory power (R2) of all the instruments (column 5) used 

in stage 1 of the demand model as well as each instrument alone. The instruments are clearly 

valid, with very high levels of significance and a combined R2 of greater than 0.75. Alcohol 

licenses appear to be the most significant alone of all the factors, explaining nearly half of the 

entire variation of scooter rides in DC (R2 = 0.47, column 1). On average, there are ~4-5 more 

scooter rides for each additional business with an alcohol license after other variables in the 

model are controlled for. It is important to note that number of businesses with alcohol licenses 

is not simply a proxy for number of businesses in general. When percentage of the block group 

zoned for commercial development is controlled for, businesses with alcohol licenses remain 

highly significant and explanatory, while commercial zoning is much less significant. Therefore, 

businesses with alcohol licenses rather than commercial businesses as a whole drive scooter 

usage. Counterintuitively, the vast majority of businesses with alcohol licenses in the alcohol 

Table 5: Demand instruments regressed on scooter rides alone and combined; Washington, DC results 
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license dataset are not liquor stores, bars, or nightclubs, but are actually full-service restaurants. 

Also included in the dataset are supermarkets, general convenience stores, and hotels. Controlled 

regressions where each block group’s count of businesses with alcohol licenses is disaggregated 

by the type of business show that almost the entire explanatory power of alcohol licenses on 

scooter rides comes from restaurants with alcohol licenses, while bars and liquor stores have no 

explanatory power. Hotels with alcohol licenses have some explanatory power as well.   

The high explanatory power of the downtown, downtown distance, and downtown 

distance squared coefficients confirm the gravitational force exerted by the downtown area on 

scooter ride patterns. The binary variable for whether or not a census block group is in the 

downtown area predicts that even after controls, places in the downtown have an incredible 265 

more scooter rides than places outside of the downtown on a given day! Further, table 5 column 

(3) indicates that as one moves away from the downtown area, the number of scooters diminishes 

Figure 1: alcohol licenses (left) and scooter rides (right) by block group in DC 
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(downtown distance coefficient is negative), though at a diminishing rate (downtown distance 

squared coefficient is positive).  This complicates the narrative of a sharp break between the 

scooter-dense downtown and scooter-sparse non-downtown: areas nearby the downtown zone 

also see high “spillover” ridership. This means that in addition to many scooter rides between 

places within the downtown zone, there are a high number of scooter rides from near-downtown 

areas into the downtown. This could indicate commuting behavior, but it could also indicate 

leisure or sightseeing destinations. These patterns can be explored more deeply through trip 

pattern analysis. 

The final powerful predictor of scooter ridership, the presence of a metro station, could 

indicate high intermodal connectivity between scooter usage and transit. While the explanatory 

power is lower than for downtown-related measures or alcohol licenses, the effect size is still 

strong after these factors are controlled for: the average census block group with a metro station 

has 49 more scooters than the average census block group without one (table 5, column 5). This 

Figure 2: Downtown areas colored green (left) and scooter rides (right) by block group in DC 
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high effect size is especially impressive given the strong collinearity between metro stations and 

downtown zoning. Trip analysis further explores the strong implication that riders could be using 

scooters to go between metro stations and their final origins and/or destinations in light-rail 

scooter intermodal trips.  

RQ 1(B) Geographic Comparison 

When the econometric analysis trained on data from Washington, DC was applied to 

scooter rides from 2019 in Louisville, KY, similar results were produced. In stage 1D, alcohol 

licenses, factors relating to proximity to downtown, and the University of Louisville campus 

explained nearly 80% of the variation in the quantity of scooter rides (R2 =0.798, see appendix). 

Campus was substituted for metro stations because unlike Washington, DC, Louisville lacks a 

light-rail system and its bus network is poorly utilized. Trip pattern analysis of Louisville, KY 

concludes that amusement destinations are the dominant usage pattern in downtown areas; this is 

Figure 3: Areas with metro stations colored green (left) and scooter rides (right) by block group in DC 
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the numerically largest form of usage, accounting for only somewhat less than half of all rides 

(concert venues, stadiums, museums, and major parks). The second largest component of usage 

is college students using scooters to get to class on time when they are running late, highly 

detectable on the University of Louisville campus. The third component of usage represents trips 

to restaurants and nightlife, which was also identifiable in Washington, DC. Due to destination 

crowding, most scooter trips could not be definitively pinned down in Washington, DC and Los 

Angeles. Connections to light-rail stations in DC is a fourth component of scooter usage 

identified. There is a concentration of ride endpoints near DC metro stations in low-income areas 

during the AM and PM rush hours that could suggest intermodal commuting behavior. However, 

these potential-commute rides were very small in number. Across the three cities studied, 

connections between downtown and residential areas were only a small proportion of trips.  

More than 75% of Louisville scooter rides start or end in the downtown (56%) or on the 

University of Louisville campus (22%), yet rides connecting between the two are limited (<1%). 

This suggests that the two areas are separate scooter “ecosystems”, with different types of people 

using scooters for different purposes. The two zones also have starkly different temporal 

patterns. Trips in the downtown area always peak on weekends compared to weekdays, and 

always peak in early afternoons and are low during the morning rush hour, suggesting that the 

dominant pattern is not commuting, but leisure-related. Trips on campus, on the other hand, 

always peak on weekdays compared to weekends and always during the late morning, when 

many students have their first classes. In both downtown and campus areas, use is strictly 

concentrated at a small number of identifiable destinations. This discovery was made possible by 

aggregating the data at the 1000th of a degree level: In the maps below (figures 4 and 5), the size 
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of a green circle is the number of scooter ride origins at that location, the size of a red circle 

represents the number of destinations, and yellow lines indicate flows between locations. 

Downtown Louisville 

 As shown in figure 4 below, a very high proportion of downtown trips start or end at the 

following five attractions: slugger museum, tourism information center, concert hall, stadium, 

and a waterfront park (marked by blue stars).  This implies that usage is associated with tourism. 

It is important to note that amusement destination ridership did not significantly increase during 

the Kentucky Derby; therefore, it is likely that a large portion of amusement destination users are 

locals engaging in leisure activities that tourists also frequent. 

 

Figure 4: Concentrations of scooter ride origins (green circles) and destinations (red circles) 

within Downtown Louisville, KY (bigger circles = more rides). Yellow lines indicate flows of 

scooter rides (thicker lines = more rides). Blue stars mark tourist destinations. 
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University of Louisville 

On the University of Louisville campus, a high proportion of morning origins are at a large 

dormitory building (big green circle at top left corner of Figure 5), while destinations are 

buildings throughout campus. This adds evidence to the hypothesis that primary usage here is 

students going to class.  

Figure 5: Concentrations of scooter ride origins (green circles) and destinations (red circles) on 

the University of Louisville campus in Louisville, KY (bigger circles = more rides). Yellow lines 

indicate flows of scooter rides (thicker lines = more rides) 



Whyman 39 

 

Whyman 39 

 

 It is also instructive to divide morning and afternoon campus usage. It is clear that morning 

origins are much more concentrated at the dorm than are afternoon origins, and that morning 

origins are higher than are afternoon origins on weekdays (which have higher daily ridership 

than weekends). Given the lack of daily consistency in individual destination but high 

consistency in aggregate flows, it is likely that campus scooter usage represents students who are 

running late to their classes. Students would be less inclined to pay for a scooter to get back to 

the dorm after classes have ended in the afternoon because there is no longer the threat of being 

late to class. 

RQ2(A): Demographic Patterns 

 

Table 6: Selected demographic characteristics regressed on scooter rides alone and 

combined; Washington, DC results (non-2SLS) 
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Refocusing on Washington, DC, it is instructive to observe the demographic patterns present in 

the data. In table 6 (above), demographic variables are simply regressed on rides aggregated at 

the census block level, without locational effects or 2SLS procedures. Among the demographic 

variables of race, income, age, and car ownership, some are highly statistically significant alone 

and when combined, but explain far less than the 2SLS model. Notably, income is not significant 

even when alone, while race is highly significant. Age loses significance after the other variables 

are controlled for. Notably, demographic characteristics such as income and age added no 

predictive power and are statistically insignificant when added to the model, yet collinearity with 

other model explainers is modest. The lack of significance for age is especially surprising given 

the commonly held view that scooter usage is highest among the young. One possible 

explanation for the divergence between residential demography and expected ridership patterns 

is that most riders are not initiating scooter rides near their residences. It is possible that scooters 

could be primarily used as a last-mile solution or a connection from traditional modes.  

Figure 6: Median income (left) and scooter rides (right) by census block group in DC. Blue 

oval denotes areas of highest income, purple triangle denotes areas of lowest income, black 

dashed polygon denotes downtown areas. 
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The explanation for the significance of race but not income in predicting demand in 

Washington, DC (see table 6) is revealing: Both the highest-income and lowest-income areas 

consist of single-family housing located far (in opposite directions) from the city center and 

downtown area where scooters are concentrated. The scooter-dense downtown areas (black 

dashed polygon in figures 6 ), meanwhile, are higher in income than the lowest-income single 

family housing (purple triangular shape in figure 6), but not as high in income as the highest-

income outlying single family housing (blue oval in figure 6).  

But with regard to race, consider that both the highest income single-family housing areas 

and the downtown areas in Washington, DC are mostly white, while the lowest income single-

family areas are overwhelmingly African American. Accounting for race appears to produce the 

correlation with rides one may have expected from income alone. The areas in DC that have high 

scooter ridership (green, figure 7 center) appear to be all the areas that are neither very high in 

income (green, figure 7 left) nor high in black resident percentage (green, figure 7 right). 

  Figure 7: Median income (left), scooter rides (center), and percentage Black (right) by census block group 

in DC. Blue oval denotes areas of highest income, purple triangle denotes areas of lowest income, black 

dashed polygon denotes downtown areas. 
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At first glance, the figures 6 and 7 above suggest that these two demographic factors 

(race and income) would have high predictive power on the number of scooter rides. However, 

while a moderate correlation is present (correlation coefficient between rides and interaction of 

race and income is -0.37), the R-squared (a measure of what proportion of the variation in 

scooter rides is explained by those factors) is only .10 (albeit with extremely high statistical 

significance p<.001). In addition, the change in R-squared when a race-income composite is 

added to the 2SLS demand model is negligible. This high correlation and low R-squared 

combination indicates that while the race-income composite and scooter rides do rise and fall 

together, there are other factors that explain a far greater share of the variation in scooter rides 

than race and income. Additionally, other likely demographic factors such as age and car 

ownership are insignificant when added to the model. This suggests that spatial characteristics 

(such as the downtown designation and distance to city center included in the 2SLS model), not 

residential demographic characteristics, organize patterns of scooter usage.  

If the variation in scooter use is driven by their relatively high usefulness near the 

destination-dense downtown, the observed demographic disparities in scooter usage could 

simply be reflections of disparities in which populations are near the downtown areas (black 

dashed line in figure 6). In this line of reasoning, low-income people exhibit low scooter use 

because they have access only to housing far from the city center (purple triangle in Figure 7), 

while the highest-income people also exhibit low scooter use because they choose to live in 

suburban neighborhoods far from the city center (blue oval in figure 7). Because the downtown 

is mostly mid- to high- income, income appears somewhat positively correlated with scooter-

rides, but the low-scooter ride, wealthy suburbs throw off the explanatory power.  
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RQ 2(B) Low-Income Mobility 

Even if the demographic factors are not important for explaining variation in scooter 

rides overall, they are important for presenting demographic disparities. One possible 

explanation for the demographic profile of usage is as follows: High income people in single-

family suburban areas can easily afford cars or rideshare and perhaps as a result of this (or for 

whatever reason) have a low propensity for scooter usage, while low-income people with fewer 

alternatives have a high propensity to ride but qualify for reduced fares that are not very 

profitable for scooter companies. Therefore, it would make sense that scooter companies would 

place few scooters in either of these areas (except as required by city geographic coverage 

regulations). In this hypothesis, disadvantaged-area usage is low because of low supply relative 

to demand, and increasing supply would increase usage. However, it is also possible that the 

above hypothesis is false: low-income people do not see scooters as a desirable and affordable 

mode (regardless of if it be due to lack of awareness of the equity discount program, insufficient 

density of destinations, physical discomfort while riding, or any other reason). If our hypothesis 

is false, low-income ridership is low because of low demand among low income people rather 

than inadequate supply of scooters by companies. We can add a dummy variable for 

disadvantaged areas to the second stage demand equation to find an answer to this question. As 

per the analysis leading up to figure 7, disadvantaged areas refer to low-income, majority African 

American block groups. If the disadvantaged area coefficient is significant and positive when 

added to the 2SLS second stage supply equation, it would indicate that these areas have more 

scooters than anticipated given the level of demand. If it is significant and negative, this means 
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that companies are inadequately 

supplying low income areas with 

scooters in proportion to their demand 

for scooter rides. 

When disadvantaged areas are 

added to the second stage supply 

equation (table 7), the coefficient is 

positive and significant, indicating that 

disadvantaged areas are generally 

oversupplied with scooters relative to 

demand. As such, a lack of rides in low-

income areas is unlikely to be due to 

inadequate aggregate supply. It is likely 

that ridership is low due to low demand 

of scooters in disadvantaged areas. 

Furthermore, an analysis of 

fluctuations in the number of scooters supplied to metro stations in disadvantaged areas in the 7th 

and 8th wards show that increasing the number of scooters supplied does not increase the number 

of rides (table 8 below). Metro stations were selected because most scooters in low-income areas 

tend to be located at metro stations. For metro stations in non-disadvantaged areas, there is an 

induced demand effect, such that supplying more scooters will generate more rides. This 

indicates that increasing scooters supplied near light-rail stations outside of low-income areas 

Table 7: 2SLS Supply 2 on Washington, adding 

binary dummy for low-income and African 

American areas. “Demand” refers to predicted 

values from 2SLS Demand 1 
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would lead to increased last-mile scooter connections, but that increasing scooter supply in low-

income areas will not increase use.  

  

 As shown in table 8, one additional scooter translates into .535 additional rides per block 

group (for every two more scooters supplied, roughly one more scooter is ridden), showing some 

induced demand propensity. The effect of adding an additional scooter to a station on the number 

of scooter rides specifically in disadvantaged wards 7 and 8 can be found by summing the 

coefficients for the first explanatory variable (general effect of supplying another scooter on 

scooter rides) and the third one (interaction term showing additional affect for Wards 7 and 8 of 

supplying another scooter on scooter rides). Because the interaction term is negative, we see that 

an additional scooter in wards 7 and 8 translates into only .535 + -.482 = ~.05 additional rides on 

Table 8: Non-2SLS relationship between scooters supplied and rides; results from DC 

metro stations, adding binary dummy for wards 7 and 8 in interaction with supply. 

 



Whyman 46 

 

Whyman 46 

 

average (roughly 20 scooters would need to be added to generate an additional ride in wards 7 

and 8). Therefore, existing capacity of scooters is underutilized in low-income areas especially 

relative to other areas: A metro station with four scooters outside of wards 7 or 8 would have two 

rides, while a metro station with four scooters in wards 7 or 8 would only have 0 rides on 

average (ignoring the constant). This demonstrates that low scooter usage in disadvantaged areas 

is largely to due to inadequate demand, not inadequate supply. This may be an indicator that the 

discount program is inadequately publicized, but it could also simply reflect modal preferences 

of the population. To the above claim, one could respond that perhaps there is high demand to 

ride scooters from disadvantaged areas far from metro stations, and companies are simply not 

“chasing” this demand by reconfiguring their supply. If this were true, then fluctuations in the 

number of scooters in disadvantaged block groups far from metro stations would be powerfully 

correlated with rides; however, the following table shows this is not the case (table 9 below).  

Table 9: Comparison of supply-induced demand across DC wards, excluding metro 

stations. “intrinsic locational demand” refers to predicted values from 2SLS demand 2 
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The side-by-side regressions above (table 9) show the effect of scooter supply 

fluctuations on rides in block groups without metro stations when intrinsic demand (as calculated 

by 2SLS model) is controlled for. The results show that scooter supply induces far more demand 

in wards 1-6 than wards 7 and 8 (when the population is restricted to areas far from stations). An 

additional scooter deployed in wards 7 and 8 far from a station translates into only 0.076 more 

rides (deploying 12 additional scooters generates only one new ride), while an additional scooter 

elsewhere translates into 0.426 rides (two rides for every five additional scooters deployed). 

While 12 scooters per ride in non-metro areas in wards 7-8 is indeed higher than the scooters-to-

ride ratio near metro stations in wards 7-8, it is still quite low, and a far cry from the utilization in 

the rest of the city. The evidence is clear the scooters are underutilized in disadvantaged areas: 

this is a demand-side problem, not a supply-side one. 

RQ 3(A) Public Transit Complementarity 

Scooters are playing a last-mile role in light-rail transit trips in Washington, DC (figures 

8 and 9: blue lines indicate trips starting or ending at metro stations). While it may be difficult to 

distinguish trips to metro stations in the downtown areas where stations are surrounded by other 

destinations, a large majority (61%) of the ridership outside of the downtown core clearly 

consists of trips that either start or end at metro stations (the estimate for downtown areas is 

41%). This follows from the high explanatory power of metro stations in predicting ridership in 

the econometric model. Figures 8 and 9 clearly indicate that many scooter rides are serving as 

critical last-mile links in intermodal transit trips. Riders are using scooters to get from their 

origin to the metro station, or to get from the metro station to their final destination; meanwhile, 

the number of trips between stations on the same line appears to be low. This implies that 

scooters are complementing light-rail in Washington, DC rather than substituting for it. (In 
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figures 8 and 9, blue lines represent trips starting or ending at metro stations, while orange lines 

are all other trips. Blue circles are the metro stations themselves). 

Although it is clear many scooter trips link with public transit trips, it is difficult to know 

how many of those public transit trips would have happened anyway if the scooters had been 

absent. It is possible that many riders would have completed their transit trip by walking or 

taking the bus to or from the metro station if the scooters had been absent. In this case, the 

scooters would not be subtracting from greenhouse emissions. However, it is also possible that 

many riders would have used automobile rideshare to get to the metro station in the absence of 

Figure 8  Scooter trips (blue lines) starting or ending at metro stations (blue circles) and other scooter trips 

(orange lines) in Washington, DC 
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scooters or cut out public transit entirely and drove or rideshared directly to their destination. In 

these cases, the presence of scooters is enabling public transit to substitute for car trips, creating 

net reductions in greenhouse emissions. It is impossible to know exactly what proportion of the 

scooter trips subtracted from greenhouse emissions. However, revealed preferences can be 

invoked to argue that the presence of the scooter reduces the disutility (perhaps in the form of 

total travel time) from a public transit trip: If people are choosing to use scooters to get to a 

metro station instead of walking or the bus, it is because their lives are improved by doing so 

(whether this be because of long wait times for buses, the enjoyment of riding a scooter, or any 

number of reasons). Therefore, in a strictly economic sense, the presence of the scooters lowers 

the “price” of using public transportation, thereby increasing the quantity of use (here price could 

mean the disutility of having to wait for the bus, for instance).  

 

Figure 9: Scooter trips (blue lines) starting or ending at metro stations (blue circles) and other 

scooter trips (orange lines) in Washington, DC 
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Another interesting feature of the scooter and light-rail pattern is that scooter rides appear 

to some degree to be making up for geographical “gaps” in the light-rail system: There appear to 

be an especially high density of scooters trips between metro stations and “hip” neighborhoods 

with bustling commercial attractions that are inconveniently beyond walking distance from the 

closest metro station and where parking is scarce and expensive. DC residents have for many 

years complained about the difficulty of getting to the diverse cuisine and nightlife scene in the 

“hip” Adams Morgan and U-Street corridors and the upscale restaurant and retail scene of 

Georgetown. The lack of a metro station within walking distance of Georgetown University is a 

particularly long-maligned gap in the light-rail system. Before the advent of rideshare, travelling 

between these neighborhoods and the rest of the city without a car required walking for nearly a 

mile or waiting for a local bus to a rail station, creating long travel times. This was especially 

burdensome during the hours of peak nightlife and leisure activities in the late evening, when bus 

service is less frequent. The scooter data clearly show a high volume of trips between these areas 

and the closest metro stations. (U-Street and Adams Morgan in figure 10A and Georgetown in 

figure 10B below: scooter trips starting or ending near metro entrances are lines marked blue; 

metro stations are light blue circles). In these situations, the scooter is very clearly filling an 

unmet need for last-mile travel. Scooters are increasing the accessibility of these desirable areas 

and making public transit more competitive with rideshare by decreasing travel times for a linked 

transit trip.  
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U-Street corridor 

Figure 10A: Scooter rides (blue lines) between popular DC neighborhoods and metro 

stations (blue circles). Other scooter rides (orange lines) 
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Notably, scooter trips to and from light-rail stations are central to ridership patterns in 

both high- and low-income areas. However, the type of trip that light-rail to scooter connections 

are enabling is different for the metro stations in low-income areas. Unlike leisure destinations 

such as restaurants or nightlife in Adams Morgan, U-Street, and Georgetown described above, 

trips in low-income areas tend to connect with people’s homes. Although there are far fewer trips 

in low-income areas, the pattern of association with metro stations is very clear: See trips from 

Union Station to low-income neighborhoods (figure 11 top), and trips to metro stations in low-

density, disadvantaged 8th ward (figure 11 bottom). The metro-residential connecting trips could 

be an indicator of commuting pattern; in addition, trips to metro stations from low-income areas 

are more likely to occur during the AM and PM rush hour. 

Georgetown 

Figure 10B: Scooter rides (blue lines) from popular DC neighborhoods to or from 

metro stations (blue circles). Other scooter rides are orange lines. 
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Figure 11: Scooter rides (blue lines) in low-income areas in Washington, DC nearly always start or 

end at metro stations (blue circles). Above: far Southeast DC, Anacostia and Congress Heights 

metro stations. Bottom: Noma neighborhood in DC, Union Station 
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RQ 3(B) Carbon Footprint 

 Distinct types of modal substitution likely associated with certain usage segments 

were identified. Short, on-campus scooter trips appear to substitute for walking, so this segment 

of usage will net increase greenhouse gas emissions. Intermodal scooter trips to light-rail stations 

would decrease net greenhouse gas emissions if the scooter-absent counterfactual would have 

been a car trip (but not if the alternative is to walk or ride the bus to the light-rail station). Trips 

in downtown areas could substitute for a mix of car (rideshare) and walking trips. Due to the 

greenhouse gas emissions estimates for scooters in Hollingsworth et al, they can only 

meaningfully reduce emissions if they are substituting for cars rather than buses and walking. 

Segmenting the usage produces an inconclusive picture of net carbon footprint. 

Note that light-rail is not a plausible substitute for scooters. With the median scooter trip 

in all cities studied under 3/4ths of a mile and 90% of trips under a mile, scooter trip distances 

appear too short for light-rail to be a plausible alternative. Light-rail stations are rarely less than 

0.75 miles apart, and light-rail trips of only one stop are quite rare. Further, the trip pattern 

analysis in RQ 3(A) revealed that very few trips start near one metro station and end near another 

on the same line. This finding reinforces the important result that scooters largely complement 

light-rail rather than substitute for it. 

Another approach to estimating net carbon footprint is exploring modal substitution on 

the basis of counterfactual travel time. By comparing the known travel times of scooter trips to 

the counterfactual travel times if riders had chosen the bus, ridesharing, or walking, it might be 

possible to guess whether more-polluting or less-polluting modes would have been chosen in 

absence of the scooters. First, the actual scooter trips (red) are scatter plotted by trip time and trip 

distance (figure 12). Next, those same actual trips (red) are plotted against hypothetical travel 
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times for bus (black), walking (blue), and driving (yellow) trips between the same origin and 

destination (figure 13).  

 

 

 Driving 

Bus 

Figure 13: 

actual 

Washington 

scooter trips 

(red) are plotted 

against 

hypothetical 

travel times for 

bus (black), 

walking (blue), 

and driving 

(yellow) trips 

between the 

same origin and 

destination 

Figure 12: 

actual 

Washington 

scooter trips 

are plotted by 

trip time and 

distance 
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If we assume that the rider cares about minimizing trip time and trip expense, we can see 

from figure 12 that in a world where the scooter is unavailable, the rider would have rarely 

chosen the bus. This is because in almost all cases, the bus would have taken practically as much 

time as walking and cost more money (walking is free). Scooter rides are typically for short 

distances which can be walked in little more than the time required to wait for the bus. 

Therefore, most consumers would have either chosen walking or automobiles in absence of the 

scooter. The important conclusion of this analysis is that it is very unlikely that scooters are 

cannibalizing bus ridership.  

Whether scooters are substituting for more rideshare than walking –and therefore net 

subtracting from greenhouse gas emissions– is inconclusive based on the graph above. Those in 

a rush would choose rideshare, which guarantees similar travel times to scooters at twice the cost 

or more. Those opting to save money would walk, which would take substantially more time 

than scooters and rideshare but save money. While it is impossible to see inside the brains of 

scooter riders to know what they would have chosen, we can see their revealed preferences: All 

actual scooter trips represent people who had the option to walk for free yet chose scooters 

instead. The fact that the scooter riders chose not to walk even when the distances were so short 

(one third were less than 0.5 miles) indicates a high disutility from walking among scooter riders. 

This behavior suggests that those same scooter riders would be inclined to continue to avoid 

walking in absence of the scooters and many would choose to take rideshare. However, whether 

scooters net add or subtract from greenhouse gas emissions hinges on what proportion would 

have chosen rideshare and what proportion would have walked. On one hand, this indicates that 

greater research is necessary to pin down the modal substitution of scooters and quantify their 

carbon footprint. Regardless, it can be said that some indeterminate proportion of scooter rides 
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do substitute for rideshare, meaning that some proportion of scooter rides do produce net 

reductions in greenhouse gas emissions. 
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Limitations and Future Research 

Several general limitations were present in the results and interpretation of the 2SLS model. 

First, as in any study, the results are only as accurate as the data. Any inaccuracies or spatial or 

temporal lags in the APIs provided by scooter companies would bias the results. Because 

documentation for these APIs was never made available, logical inferences had to be used to 

interpret vehicle identification numbers. Any errors in these inferences or in the numeration of 

vehicles within the APIs would also greatly bias the results. Second, spatial weighting, spatial 

autocorrelation, and formal clustering analysis was not used in the 2SLS model. Therefore, any 

spatial spillover effects would not be captured by the results. A future study incorporating these 

advanced spatial techniques may be useful in confirming the general ideas laid out by the 

econometric analysis of this paper. 

RQ 1(A) 

The destination-inference method, while powerful, does have its limitations. It is unknowable 

whether scooter riders who rode to certain destinations actually entered them and performed 

activities there. Further, destination-inference is even more uncertain in downtown areas, when 

many different types of destination are clustered close together.  

Attempts to detect commuting behavior were inconclusive. This was largely because many 

workplaces also serve commercial functions, are in mixed-use buildings, and/or are in downtown 

areas, complicating destination-inference techniques. Future research using novel techniques to 

isolate commuting trips would be very valuable. 

RQ 1(B) 



Whyman 59 

 

Whyman 59 

 

The three cities discussed in this paper (Louisville, Los Angeles, and Washington) were selected 

for maximum generalizability, and the general destination patterns hold across all three to a large 

extent. However, it is not impossible that other cities might have unique features and produce 

different results. Comparisons to more cities might be useful in confirming the generality of the 

destination pattern discovered in this paper. 

RQ 2(A) 

The most basic limitation with regard to demographic patterns is that demography could only be 

inferred from location of the ride, and the actual demographics of the riders themselves were 

unknowable in this analysis. It is not impossible that many of the users in predominantly low-

income areas are simply high-income outliers, and that many of the users in downtown areas are 

low-income people. Another study that somehow gained access to granular rider demographic 

data would be extremely helpful in pinning down the demographic profile of scooter use.  

While leisure destinations were widely found to be a key driver of scooter use in this paper, the 

split between tourists and local residents among leisure-driven users could not be definitively 

identified. 

 RQ 2(B) 

This paper is able to make the fundamental conclusion that demand is low relative to supply in 

low-income areas; this creates an avenue for future research to answer the basic question of why 

demand is low. This paper offers two potential hypotheses that could generate confirmatory 

studies: (1) that Washington’s low-income discount programs are inadequately publicized, and 

(2) that scooters are just fundamentally ill-suited to the travel preferences and needs of low-

income people and/or not useful given the low density and distance from the city center of many 
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low income areas. Very little is known about the actual travel preferences of low-income people 

and their knowledge of the Micromobility discount programs available to them. Even basic 

quantitative facts about the discount programs, such as sign ups and discounted rides are 

unknown, let alone more complex issues such as ease of use. 

Little is known about the decision-making of scooter companies with regard to market entry and 

exit, as well as long term citywide supply changes. The threshold at which increased use of 

generous discounts could trigger company market exit is unknown. Research here could inform 

policy decisions about the optimal generosity of discount programs.  

RQ 3(A) 

This paper is able to find a high degree of complementarity between scooters and the metro. 

However, it is not possible to actually know for certain that all riders get on the metro (some 

might go to businesses near the metro) after disembarking the scooter.  

RQ 3(B) 

Attempts to quantify the degree to which scooters net contribute to greenhouse gas emissions 

were inconclusive. In order to conclusively estimate net carbon footprint, it would be necessary 

to estimate what modes scooter riders would have taken if the scooters had not been present. A 

study employing a discrete choice model to estimate modal split would be extremely useful. 

Further, this paper did not account for the role of biking and bikeshare; this mode could be 

experiencing cannibalization by scooter usage`q1, leading to net increased emissions. 

Natural Experiment 
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Overall scooter volume is low in comparison to metro volume and other modes in Washington, 

so any scooter impact on carbon footprint and low-income mobility is currently limited. A 

planned policy change would quadruple the number of scooters and increase low-income area 

supply requirements; if this change occurs, scooters would become much more quantitatively 

important and create an exciting natural experiment. 
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Conclusion & Policy Recommendation 

RQ 1 – Destination Patterns  

The trip pattern analysis conclusions largely cohere with the econometric analysis, which 

finds that 60-80% of the variation in scooter ridership across locations within Washington, DC, 

Louisville, KY, and Los Angeles, CA can be explained by three key drivers: proximity to the 

downtown area, the number of businesses with alcohol licenses (mostly restaurants), and the 

presence of light-rail transit stations (or campuses in Louisville and Los Angeles). Interestingly, 

scooter companies appear to have increased supply to match the high demand at light-rail 

stations more so than for the high demand in downtown areas and alcohol license business areas. 

Surprisingly, the three factors above overpower demographic factors (age, race, car ownership, 

income, and commuting behavior): demographic factors did not increase explanatory power 

when added to the model in the cities studied. While moderate correlations with the final model 

covariates were present, the demographic model explained much less. This implies that the 

demographic disparities in scooter usage may be due to disparities in the spatial distribution of 

demographic characteristics with respect to downtown areas and transit access. Scooter rides are 

overwhelmingly clustered in downtown hubs, and to a lesser extent in large campuses, important 

commercial corridors near downtown areas, and light-rail stations. Destination inference 

concludes that a majority of usage is related to leisure destinations, especially restaurants though 

to a lesser extent nightlife as well as grocery errands.  

RQ 2 – Demographics & Low-Income Usage 

In Washington, ridership is clustered in middle-income, white, downtown areas; 

meanwhile, far from the city center, both high-income white areas and low-income African 
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American areas show low scooter usage. Similar patterns are replicated in both Los Angeles and 

Louisville. A key policy-relevant finding is that the status quo dynamics of scooter usage do not 

deliver mobility benefits to low-income people. The existing supply in low-income areas appears 

to be greatly underutilized, calling into question the wisdom of municipal regulatory stances that 

aim to increase low-income usage by expanding supply. Analysis of temporal fluctuations in the 

number of scooters supplied to low-income areas show that increases in supply do not induce 

increases in demand. The current oversupply implies that the binding constraint on low-income 

scooter usage is demand; demand, then, should be the focus of city policy efforts. One possible 

candidate for policy focus is the low-income discount program. It is very possible that this 

program is inadequately publicized, or perhaps other barriers to program uptake exist. Another 

possibility is that structural dynamics such as fundamental transportation preferences of low-

income people, the low density of some low-income DC areas, or the distance from those areas 

to the city center result in conditions inhospitable to scooter use. If this is true, then no matter 

how accessible and well publicized the discount programs are, scooter use among the poor will 

not increase. This would follow from the observation that middle- and high-income areas at 

distances as far from the city center as DC’s low-income areas also have few scooter rides.  

RQ 2 Policy Recommendation 

The Washington, DC government ought to engage in the following actions: 

(1) Publicize Scooter Discount Programs – A program that no one knows is available to them is 

little different in practice than a program that does not exist. Require scooter companies to 

expend resources advertising scooter discount programs in low income areas. This publicity push 

should also include billboards and posters on the sides of city buses and in metro stations, 

scooter company partnerships with local retailers, and information mailed directly to homes 
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informing residents of discount program eligibility. This could also include events: A registration 

fair or block party featuring a booth for low-income residents to sign up for discounts. Local 

civic associations and other neighborhood groups could also be used to disseminate this 

information. Especially if the binding constraint on scooter usage is effective demand, this action 

has the capacity to greatly increase usage of scooters by people who could benefit from them, 

while incurring minimal financial cost to municipal government. Without an effective, well-

publicized discount program in place, efforts to increase low-income mobility by supplying more 

scooters may be futile. 

(2) Study Travel Preferences – Conduct a fact-finding study to narrow down the binding 

constraint on low-income scooter use: Determine the knowledge and preferences of low-income 

people with regard to scooter use. At what price point would many low-income people consider 

scooters as a mode of transit? What factors could make scooter usage impractical for these 

groups? An understanding of these basic facts is necessary to inform any successful strategy to 

increase low-income mobility. 

RQ 3 – Public Transit Complementarity & Carbon Footprint 

The connection between a light-rail network and scooter usage discovered in DC is 

especially notable. Washington, DC’s light-rail network organizes scooter ride patterns outside 

of downtown areas -- including in historically disadvantaged neighborhoods -- implying a high 

degree of transit-scooter intermodality. Fully 40% of downtown scooter rides and 61% of rides 

outside the downtown area either start or end at a metro station. Faster than walking or waiting 

for the bus, scooters are a convenient link between light-rail stations and final origins or 

destinations. As a last-mile solution in many places, scooters are effectively making areas that 

had before been transit deserts more convenient to reach without a car or ridesharing. The 
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presence of scooters in effect reduces door-to-door travel time for light-rail trips, making them 

more competitive with rideshare and automobile travel. By expanding the reach of transit 

networks, scooters increase mobility for those who do not own cars and potentially reduce net 

greenhouse gas emissions. Notably, scooter trips may also substitute for walking; attempts to 

determine the net carbon footprint of scooters were inconclusive. 

RQ 3 Policy Recommendation 

Municipal governments in cities with light-rail networks should engage in the following action: 

 Promote Scooters as a Last-Mile Solution – Encourage scooter companies to maintain 

capacity in and around metro stations. Companies ought to be encouraged to place scooters at 

metro stations as well as in areas that are out of walking distance from public transit stations but 

within scootering distance: the radial zone greater than a half-mile but less than one mile from 

stations. This will maximize micromobility complementarity with the public transit system, 

potentially enabling residents to scooter to and from public transit instead of taking rideshare. If 

scaled up, these measures could enhance the environmental sustainability and emissions profile 

of urban transportation networks. 
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Appendix 

Relevance of Company Fixed Effects as Supply Instrument 
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Demand 1 Model on Louisville 

Note: metro station is replaced with campus, because Louisville has a major campus hub but 

lacks a well-utilized public transit system. High numerical values for coefficients due to 

dataframe containing aggregated rides from the entire year 2019. 
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Demand 1 Model on Los Angeles 

Note: campus is added because Los Angeles has a major campus hub 

 

 


