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ABSTRACT

We consider the parameter space U; of smooth plane curves of degree d. The universal
smooth plane curve of degree d is a fiber bundle £; — U, with fiber diffeomorphic to a surface
¥g. This bundle gives rise to a monodromy homomorphism pg : 71 (Uy) — Mod(3g), where
Mod(Ey) := 70(D1ﬁ+(zg)) is the mapping class group of ¥4. The main result of this paper
is that the kernel of p4 : w1 (Uy) — Mod(X3) is isomorphic to Fixo X Z/3Z, where Fi is a free
group of countably infinite rank. In the process of proving this theorem, we show that the
complement Teich(X,) \ Hq of the hyperelliptic locus H4 in Teichmiiller space Teich(34) has
the homotopy type of an infinite wedge of spheres. As a corollary, we obtain that the moduli
space of plane quartic curves is aspherical. The proofs use results from the Weil-Petersson

geometry of Teichmiiller space together with results from algebraic geometry.

vi



CHAPTER 1
INTRODUCTION

Let P (Symd (C?’)) = PV, where N = (d;2> — 1, be the parameter space of plane curves
of degree d > 0. Elements of PN are homogeneous degree d polynomials in variables x, y, z.
Let U; denote the parameter space of smooth plane curves of degree d. More precisely,
Uy = PN \ A, is the complement of the discriminant locus Ay C PV which is the set of
polynomials f such that the curve V(f) = {p € P2 : f(p) = 0} is singular.

The universal smooth plane curve of degree d is the fiber bundle £; — U; defined by

Eq={(f.p) €Uy x P*: f(p) =0} — Uy

(fip) = f
There exists a monodromy homomorphism
Pd Tl (Z/[d) — MOd(Eg),

where Mod(Z,) := 7o(Diff T (X)) is the mapping class group. We omit reference to the
basepoint in 71 (Uy), however, it can be taken to be the Fermat curve fr(z,y, z) = 2% +y% +

24 = 0. The homomorphism p, is called the geometric monodromy of the universal smooth

plane curve of degree d. A finite presentation for m1(U,;) has been given by Lonne [1.09, Main
Theorem)].
Two natural questions are to determine the image Im(p,;) and kernel K := ker(py).

Dolgachev and Libgober have given a description of 71(U3) as an extension
0 — Heisg(Z/3Z) — w1 (Us) 225 Mod(E1) — 0

[ , Exact Squence 4.8] of Mod(X1) by the Z/3Z-points of the 3-dimensional Heisenberg
1



group | , Page 12]

1 *
Heis3(Z/3Z) = 0 1 % |:x€Z/3Z

0 01

The action Mod(21) ¢ Hy (Heis3(Z/37);Z) = (Z/37)? is the action on the Weierstraf
points of the elliptic curve. This action is exactly the composition Mod(X1) —\Ii1—> SLe(Z) —
SLo(Z/37Z), where Wy : Mod(X1) = SLo(Z) is the action on Hi(X1;7Z), see | , Theorem
2.5], and SLo(Z) — SL9(Z/37Z) is the natural projection.

For higher degrees d > 4, there is an exact sequence
0 — Kq — m1(Uyg) £ Mod ().

The map pg is, in general, not surjective. However, Salter | , Theorem A] has shown
that Im(p,) always has finite index in Mod(3y). For d = 4, Kuno has shown that Im(p4) =
Mod(X3) and that Ky is infinite | , Proposition 6.3]. For d = 5, Salter | , Theorem
A] shows that Im(ps) is the stabilizer Mod(Xg)[¢] of a certain spin structure ¢ on g, the
spin structure ¢ = e*@(1) induced on Xg by its embedding e : ¥ — P? as a plane curve. For
odd d > 5, Salter shows that the monodromy group Im(p,) is the stabilizer of a (d — 3)-spin
structure on X4, for g = (d;l). For even d > 6, Im(pg ) is only known to be finite index in
this stabilizer, hence in Mod(Xy) | , Theorem A].

Another result in this vein m1(U;) can be found in | ]. Recall that Mod(X,) acts on

H1(3g; Z) preserving the intersection form. This gives rise to the symplectic representation

Wy : Mod(Xg) — Spay(Z). Consider the composition

Wy opg:mi(Ug) — Spay(Z).



This representation is called the algebraic monodromy of the universal smooth plane curve of
degree d. Carlson and Toledo show that K := ker(W, 0 pg) is large | , Theorem 1.2], i.e.
there is a homomorphism K 4 — G to a noncompact semisimple real algebraic Lie group G
with Zariski-dense image.

We prove the following theorem, which is a refinement of Kuno’s theorem | ,
Proposition 6.3] that K4 is infinite. In the statement, SMod(2,) < Mod(%,) denotes the
centralizer of a fixed hyperelliptic involution, the homotopy class of an order 2 homeomorphism

T : 34 — X4 which acts on Hy(34;Z) by multiplication by —1.

Theorem 1.0.1. The group Ky is isomorphic to Fso X 7 /37, where Fuo is an infinite rank
free group. Moreover, Fng has a free generating set in bijection with the set of cosets of the

hyperelliptic mapping class group SMod(X3), and
H1(Ky; Q) = Q[Mod(£3)/SMod(33)]

as Mod(X3)-modules.

The idea for the proof of Theorem 1.0.1 is to exhibit the cover L[Z[“”k — Uy corresponding
to K4 as a principal fiber bundle over the complement Teich(X3) \ H3 of the hyperelliptic
locus H3 in Teichmiiller space Teich(33). The following theorem determines the homotopy

type of Teich(X3) \ Hs.

Theorem 1.0.2. Let g > 3. The hyperelliptic complement Teich(Xg) \ Hy has the homotopy

0
type of a wedge \/ S™ of infinitely many n-spheres, where n = 2g — 5.
=1

From Theorem 1.0.2; we can conclude that Mi’“”ﬁk — Teich(33)\ H3 is trivial and Theorem
1.0.1 follows.
We will also show that the structure of the group K is closely related to that of the

hyperelliptic mapping class group. The failure of our proof method in Theorem 1.0.1 for
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degrees d > 4 is due to the lack of knowledge of the topology of the locus of planar curves in
the moduli space of Riemann surfaces; there are many more obstructions to being planar
than being hyperelliptic.

This thesis is organized as follows. Chapter 2 recalls basic facts about the Weil-Petersson
metric on Teichmiiller space and the hyperelliptic locus. Chapter 3 introduces the geodesic
length functions. These will then be used to prove Theorem 1.0.2. The proof of Theorem

1.0.1 is carried out in chapter 4.



CHAPTER 2
THE HYPERELLIPTIC LOCUS AND THE WEIL-PETERSSON
METRIC

For the rest of the paper, let ¢ > 2 unless otherwise stated. In this chapter we give the
necessary background on Teichmiiller space and its geometry. We review the Weil-Petersson
metric on Teichmiiller space and describe the geometric properties of the hyperelliptic locus

in terms of this metric, see Proposition 2.3.1.

2.1 Teichmiiller Space

We recall the basic theory of Teichmiiller space and of the moduli space of Riemann surfaces
of genus g. For additional background, see e.g. | ]. Let Teich(X,) denote the Teichmiiller
space of genus g > 2 curves. That is, Teich(¥) is the set of equivalence classes [X, h] of pairs
(X, h), where X is a complex curve of genus g and h is a marking, i.e. a homeomorphism
¥y — X. Two pairs (X, h) and (Y, g) are equivalent if h o gl Y — X is isotopic to a
biholomorphism. We will also denote such an equivalence class [ X, h| by X. The (complex)
dimension of Teich(X,) is 3g — 3.

The mapping class group Mod(Xy) acts on Teich(X4) by
11X R) = (X ho f7]

where [f] € Mod(Xg). This action is properly discontinuous | , Theorem 12.2] so that the
quotient space Mg := Mod(X4)\Teich(3y), the moduli space of genus g Riemann surfaces,
is an orbifold. Let 7 : Teich(¥X4) — My denote the quotient map. The space My can also
be defined as the space of all complex curves of genus g, up to biholomorphism. Note that

the orbifold fundamental group m¢"*(M,) of My is Mod(%,).



2.2 Weil-Petersson Metric

In this section we recall the Weil-Petersson (WP) metric and some of its properties. The WP
metric is a certain Kéhler metric on Teich(34) which gives rise to a Riemannian structure on
Teich(Xy). For more on the Weil-Petersson metric, see the survey | ]

The cotangent space Ty Teich(Xy) at a point X' = [X, h] € Teich(Xy) can be identified
with the space Q(X) of holomorphic quadratic differentials on X. Define a (co)metric on
Ty Teich(Xg) by

(o) = [ pwas?) ™,

where ds? is the hyperbolic metric on X and (ds?)~! is its dual. The Weil-Petersson (WP)

metric is defined to be the dual of ((-,-)).

The WP metric is a Mod(X4)-invariant, incomplete | , Section 2|, smooth Riemannian
metric of negative sectional curvature [ , Theorem 2|. Teichmiiller space Teich(Xy)
equipped with the WP metric is geodesically convez | , Subsection 5.4], meaning that

any two points X', ) € Teich(X,) are connected by a unique geodesic. When referring to
any metric properties of Teichmiiller space, we will assume they are with respect to the WP

metric unless otherwise stated.

2.3 Hyperelliptic Locus

A hyperelliptic curve X is a complex curve equipped with a biholomorphic involution 7 :
X — X such that X/7 is isomorphic to PL. Such a map 7, if it exists, is called a hyperelliptic
involution. An element [7] € Mod(X) is called a hyperelliptic mapping class if [7]2 =1 and
¥¢/7 is homeomorphic to P!, or equivalently, if [r] acts on Hj (X¢;Z) by multiplication by
—1.

Let 7Tg C My denote the locus of hyperelliptic curves and let Hy := 7r_1(77g), where

7 : Teich(¥X4) — My is the quotient map. The set H is called the hyperelliptic locus. It has

6



(complex) dimension 2g — 1. Note that when g = 3, the hyperelliptic locus ‘H3 has complex
codimension 1 in Teich(¥y).

The following proposition collects some facts that will be useful in later sections.

Proposition 2.3.1. The locus Hg is a complex-analytic submanifold of Teich(Xy). Moreover,
Hg has infinitely many connected components (see Figure 1). If H is any component of
Hg then H is totally geodesic in Teich(Xy) and H is biholomorphic to Teich(2¢.2442), the
Teichmiiller space of a sphere with 2g + 2 punctures. In particular, each component of Hq is

contractible.

Proof. Let [1] € Mod(Xg) be a hyperelliptic mapping class. Then [7] acts on Teich(¥,) with
fixed set

Fix([7]) := {[Y, g] € Teich(Xg) : [Y, 9] = [V, g o 7]}.

First, we show that

Hg = U Fix([r]),
[7] hyperelliptic

where the union is taken over all hyperelliptic mapping classes [7] € Mod(Xy). If [ X, h] €
Fix([r]) then 7 : X — X is isotopic to a biholomorphism 7;,. The map 7, must be a
hyperelliptic involution, and so [X,h] € Hy. Conversely, if [X,h] € Hy then there is a
hyperelliptic involution 7 : X — X which is a biholomorphism and so [X, h] € Fix([7]).

If [7] and [n] are two distinct hyperelliptic mapping classes, then Fix([7]) N Fix([n]) =
@. More explicitly, if [X, h] € Fix([7]) N Fix([n]) then, [r] and [n] contain biholomorphic
representatives 75,7, : X — X. By | , Section I11.7.9, Corollary 2|, we must have 75, = ;.

Each set Fix([r]) is totally geodesic in Teich(34). This follows from the uniqueness of
geodesics in the WP metric: if 7 is any geodesic with endpoints lying in Fix([7]), then [7] - v
must be another geodesic with the same endpoints as 7, hence v must be fixed by 7.

For a proof that H, is a complex-analytic submanifold of Teich(3,) and that each

component is biholomorphic to Teich(¥g 2442), we refer the reader to | , Section
7
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Figure 2.1: A schematic of the hyperelliptic locus Hg in Teich(¥X,). The submanifold
Hg C Teich(X) has infinitely many connected components, each of which is totally geodesic
with respect to the Weil-Petersson metric.



CHAPTER 3
HOMOTOPY TYPE OF THE HYPERELLIPTIC
COMPLEMENT

In Section 3.1, we prove, Lemma 3.1.1, the existence of certain Morse functions on Teich(¥).

These functions will be used to prove Theorem 1.0.2 in Section 3.2.

3.1 Geodesic Length Functions

This section is devoted to proving the existence of sufficiently well-behaved functions on

Teich(3g).

Lemma 3.1.1. Let g > 3. There exists a function f : Teich(Xy) — Ry which satisfies the

following properties.
1. The function f is proper, strictly convex and has positive-definite Hessian everywhere.
2. The function f has a unique critical point in Teich(3g), denoted x(.

3. For any component H of Hg, the restriction f|g has a unique critical point, denoted

TH-

4. Any two critical values are distinct. That is, for any component H of Hy, f(xp) #
f(x0). Also, if H' is any other component of Hg, then f(xy) = f(xg) if and only if
H=H.

5. The set of critical values

{f(xg) : H is a component of Hg} U{f(x0)}

is a discrete subset of Ry .



In particular, such a function f is Morse on Teich(Xg) and for each component H of Hg,

the restriction f|g is Morse.

Proof. The function f is built using geodesic length functions. These functions are defined
as follows. Let a be a free homotopy class of simple closed curves on ¥4 and let [ X, h] be a
point in Teich(X4). Then h(a) is a free homotopy class of simple closed curves in X. Recall
that h(a) contains a unique geodesic 7. The geodesic length function £ : Teich(¥Xy) — Ry

associated to « is defined by
Lo (X) := length of the unique geodesic in the free homotopy class h(a) on X,

where X = [X,h]. Any other choice (X', h’) of representative of [X,h] would differ from
(X, h) by an isometry, hence £, is well-defined. Fix a finite collection A of (homotopy classes
of) simple closed curves which fills ¥4, and let ¢ = (cq) € Rf} be a collection of positive real

numbers for each o € A. For each choice of ¢ € ]RA, there is a function

Lac:= Y, cala: Teich(Xy) — Ry.
acA

The function f in the statement of the theorem will be defined to be £ 4 ¢ for a specific value
of c.

Wolpert [ , Theorem 4.6] states that for any free homotopy class of simple closed
curves o on Yg, the geodesic length function £, has positive-definite Hessian everywhere. In
particular, ¢, is strictly convex along WP geodesics.

Recall that the Hessian operator Hess is given in local coordinates by

o°f g O\ i

10



where Ffj are the Christoffel symbols given by g. Thus, Hess is R-linear. It follows that

Hess Loc = Y, co- (Hess ly).
acA

For any v € Ty Teich(X),

Hess L g c(v,v) = Y ca - (Hess ly) (v,0) >0
acA

and so Hess £ 4 ¢ is positive-definite. This also shows that £ 4 ¢ is strictly convex.
Let 1 denote the element of R“j_‘ such that ¢, =1 for all @ € A. For ¢ = (cq) € R“frl, let
Cmin 1= MiNge g Co. Then,

CminﬁA,l < ['A,o

Kerckhoff | , Lemma 3.1] states that the functions £ 4 1 are proper. If K = [a,b] C R+

is compact, then

(Lae) (K) C (La2) 7 0,b/cmin]

so (L A’c)_l(K ) is a closed subset of a compact set, hence is compact. Thus, £ 4 ¢ is proper.
This proves (1) in the statement of the theorem.

If £ 4 ¢ has distinct critical points zg and g in Teich(3y), then these are local minima
of £ 4 ¢ since Hess L 4 ¢ is positive definite at both zg and x6 Without loss of generality,
assume L _A)C(.Cﬁf)) < L g ¢(rp). However, by strict convexity, this is impossible. Let v be the

unique geodesic with v(0) = z¢ and (1) = x{. Then

Lacr(®) < (1 =t)Lac(ro) +tLac(x)) < Laclo)

for all ¢ € (0, 1], contradicting the fact that zo must be a local minimum. Hence zg = z{, and

L 4 ¢ has a unique critical point in Teich(¥y), denoted . This proves property (2).

11



Since the components of H4 are totally geodesic in the WP metric, the same argument
shows that the restriction £ 4 c|f will have a unique critical point, denoted xf, for each
component H of Hg. This proves property (3) of the theorem. Thus, properties (1) through
(3) of the theorem above are satisfied by the function £ 4 ¢ for any value of c.

Let S = {H : H is a component of Hg} U {0}. For each pair ¢, j € S of distinct elements,

there is an open dense subset U; ; of R“frl given by

Uij={c € RY: Lyelwi) # Laelz))}-

By the Baire Category Theorem, ;; U; ; is open and dense in R“f}. Let ¢/ € Mix; Ui - We
now define f:= L 4 . Then, f satisfies property (4).

Lastly, we wish to show that f(.S) is discrete. Choose a neighborhood Uy of zg and U of
x g, for each component H of Hy which are mutually disjoint. Properness of f then implies

that f(S) is discrete. This shows that f satisfies property (5). O

3.2 Relative Morse theory of the pair (Teich(%,), H,)

The goal of this section is to prove Theorem 1.0.2. The idea is that the Morse function f
found in Lemma 3.1.1 may be used to determine a handle decomposition of both H4 and

Teich(Xg) \ Hg. For a reference on relative Morse theory, see e.g. | , Section 3].

Theorem 1.0.2. Let g > 3. The hyperelliptic complement Teich(X4) \ Hq has the homotopy

0
type of a wedge \/ S™ of infinitely many n-spheres, where n = 2g — 5.
=1

Note that since every curve of genus g = 2 is hyperelliptic, Teich(39) \ Ho = &. The
proof of Theorem 1.0.2 is similar to Mess’s proof that the image of the period mapping on
Teich(X9) has the homotopy type of an infinite wedge of circles | , Proposition 4]. We

now prove Theorem 1.0.2.

12



Proof. The idea behind relative Morse theory is that such a function as given by Lemma
3.1.1 can be used to determine a handle decomposition not only of H4, but of its complement
Teich(Xy) \ Hg. Let f be the function that satisfies the conclusion of Lemma 3.1.1. We let
r( denote the unique minimum point of f in Teich(3,). For each component H of Hgy, let
x g denote the unique critical point of f|g. We refer to xg as a critical point of f of type
I and each x g are referred to as critical points of f of type 1. The values cg = f(xg) and
cg = f(xg) are called critical values of type I and II, respectively.

For r a real number, let X, := {&X € Teich(Xy) : f(X) < r}. If (cp, co + €] contains no
type II critical values, then X ie \ Hg is diffeomorphic to a 0-handle, i.e. a closed ball.
Consider an arbitrary interval [a,b] C R. If [a, b] contains no critical value of type I or II of
f, then X, \ Hg is diffeomorphic to X3 \ Hy. To see this, we can construct a vector field
V' which is equal to grad(f) outside a neighborhood of Hy and such that V{4 is equal to
grad(f \Hg). The flow along this vector field gives the required diffeomorphism.

Let x be a critical point of type II, and let ¢ = f(x). By Lemma 3.1.1, the set of critical
values of f is discrete, so there exists some ¢ > 0 such that [c — €, ¢ + €] contains no other
critical values of f. We wish to show that X.i¢ \ Hq is diffeomorphic to X, \ Hy with an
n-handle attached, where n = 2g — 5 (see Figure 2).

Let H be the component of H, containing x. There exists a coordinate system (u,y) €
R29~4 x R¥~2 in a neighborhood U of z such that | , 3.3]

1. UN H is given by u = 0,

2. f=c+|ly|? on UNH.

The coordinates y are “tangent” coordinates to H and the coordinates u are “normal”
coordinates to . Note that since H has complex dimension 2¢g — 1, it has real dimension
4g — 2.

Then, Xcie \ Hg is diffeomorphic to the union of X. ¢ \ H4 and a tubular neighborhood

13
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(Xe-¢)U(1-handle)

Figure 3.1: Start with X._¢. As ¢ — € increases to ¢ + ¢, the level set X 4, intersects exactly
one more component H of Hg, the component containing the critical point x. Here, the g = 3
case is depicted.

of
{(u,0) : ||ull® = 5},

for some small § > 0. This tubular neighborhood deformation retracts to the (2g — 5)-sphere
{(u,0) : |Jul|®> = §}. Hence, Teich(X,) \ Hy has a handle decomposition consisting of a
0-handle with infinitely many (one for each component of H4) n-handles attached, where

n =29 —5. [

Let Mghyp denote the moduli space of hyperelliptic curves of genus g. Since Teich(X3)\H3

. . n
is a covering space for M3

hyp , the moduli space Mghyp has contractible universal cover and
Mghyp is aspherical. If ¢ > 4 then Wn(MZhyp), where n = 2g — 5 > 1, is an infinite rank
abelian group. In particular, ./\/lghyp is not aspherical for g > 4.

We can be even more precise. The components of the hyperelliptic locus H4 are enumerated
by the set of cosets of the group SMod(Xy) in Mod(3g). Recall that SMod(Xy) is the
centralizer in Mod(3y) of a fixed hyperelliptic involution 7 € Mod(X4). The group SMod(3)
is called the hyperelliptic mapping class group of genus g. If n is another hyperelliptic

involution, then the centralizers of 7 and 1 are conjugate in Mod(2).

14



Corollary 3.2.1. Let g > 3. There is a homotopy equivalence

Teich(3g) \ Hg = \ 52975,
[h]leMod(Z4)/SMod ()

In particular,

Hoy 5(Teich(Xg) \ Hg; Z) = Z[Mod(X4)/SMod(Xg)]
as Mod(Xq)-modules.

Proof. The mapping class group Mod(X4) acts on the set of components of 4 by permuta-

tions. Let Hy be a fixed component of H4. Then, there is a map

Orb(Hp) — Mod(X4)/Stab(H))

h - Hy — hStab(Hp)

from the orbit Orb(Hg) of Hy to the left coset space of the stabilizer Stab(Hy). It suffices to
show that Stab(Hp) = SMod(X,) and Mod(3,) acts transitively on the set of components of
Hy.

First, since Hy = Fix(7), the mapping class h € Stab(Hj) if and only if
h - Fix(r) = FiX(hThil) = Fix(7).

Since no hyperelliptic curve can have two distinct hyperelliptic involutions, it must follow
that hrh~! = 7 s0 h € SMod(%). Therefore, Stab(Hy) = SMod(%).

Secondly, if H is any other component of Hy, then H = Fix(n) for some hyperelliptic
involution n € Mod(Xy). Since hyperelliptic involutions in Mod(3,) are conjugate, there

exists some h € SMod(X,) such that

H = Fix(n) = Fix(hth™!) = h - Fix(r) = h - Hy.
15



Therefore, Mod(X,) acts transitively on the set of components of H.
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CHAPTER 4
THE PARAMETER SPACE OF SMOOTH PLANE CURVES

In this chapter, we prove Proposition 4.1.2, showing that the cover of U,; determined by the
subgroup K of m1(Uy) carries the structure of a principal fiber bundle. This will be critical

in the proof of Theorem 1.0.1 in Section 4.2.

4.1 Covers of U; and principal fiber bundles

The main result of this section is to prove Proposition 4.1.2, exhibiting a cover of U, as a
principal fiber bundle over a certain subspace of Teich(3g).

Associating each point of Uy to the curve it determines gives rise to a map g : Uy — My
into the moduli space of Riemann surfaces of genus ¢(d), where g = g(d) := <d51> by
the degree-genus formula. Let ./\/lgl denote the image of this map. For d > 4, the locus
Mgl C My and for d = 3, MY = M.

There is a (disconnected) covering Z/{Zlnark of Uy defined as follows. A point (f, [h]) € Ugmrk
is an ordered pair consiting of f € Uy and a homotopy class [h] of orientation-preserving
homeomorphisms h : ¥4 — V(f) of some fixed ¥4 with the complex curve V(f) given by
f(z,y,2) =0.

Let m (Z/{g“”"k) be the fundamental group of a chosen component of L{gm’"k . Note that

m (UTR) = K.
Remark 4.1.1. There is a commutative diagram

yark P Teich(3)

Uy

Pd

17



The map g : Uy — My lifts to a map @q : L[Z{Lark — Teich(Xy) into Teichmiiller space
defined by

v - (f;[h]) = V(f), hl.
Let Teich(Eg)pl denote the image of .

Recall that a principal G-bundle is a fiber bundle P — X with a G-action that acts freely

and transitively on the fibers.

Proposition 4.1.2. For d > 4, the map ¢4 : L[Zim”k — Teich(X4)?! is a principal PGL3(C)-

bundle.

Proof. First, PGL3(C) acts on Z/{(’i”ark by g - (f,[h]) = (g f,[g o h]) where ¢g - f denotes
the action of g on polynomials f(z,y, z), by acting on the triple of variables (z,y, z). This
induces a map g : V(f) = V(g- f) and go h is the composition of this map with the marking
h:Xg—=V(f).

This action is free. Indeed, if g - (f,[h]) = (f,[h]) then g- f = f and [g o h] = [h]. Thus ¢
induces an automorphism on the curve V(f). Moreover, this automorphism acts trivially on
the marking, hence trivially on H1(V(f);Z). An automorphism of V' (f) acting trivially on
homology must be the identity | , Theorem 6.8]. The fixed set of any automorphism of
P2 is a linear subspace, so any g € PGL3(C) point-wise fixing a smooth quartic curve must
be the identity automorphism.

Next, we show that this action is transitive on fibers. It suffices to show that if
Qal(f1, [P1]) = &4l f2, [h2]), then the (f;, [h;]) lie in the same PGL3(C)-orbit. By assumption,
[V (f1),h1] = [V (f2), ho] and there is some biholomorphism ¢ : V(f1) — V(f2) such that
[t o h1] = [ha]. Then the pullback of the hyperplane bundle H along the embeddings
e; - V(f;) — P2 gives line bundles L; := e (H) on V(f;) of degree d with hO(L;) = 3.

A g}, line bundle is a line bundle L — C such that deg(L) = d and hO(L) > r+1. Smooth

plane curves have a unique 9621 given by the pullback of the hyperplane bundle | , Theorem
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3.13]. Therefore, L1 and ¢* Lo are isomorphic line bundles on V' (f1).

For any smooth curve C, there is a correspondence between maps C' — P" up to the
action of PGL,1(C) and pairs (L, V) where L is a line bundle over C' and V ¢ HY(C; L)
is an (r + 1)-dimensional subspace. The fact that there is a unique line bundle L on V(f)
with hY(L) > 3 implies that there is only one such map V(f1) — P2 up to the action of
PGL3(C). Therefore, the two embeddings e; and e o ¥ are equivalent up to the action
of PGLy(C), i.e. there is some g € PGLg(C) such that g o e; = eg 0 ¢. This implies that
g-f1=faand g:V(f1) = V(f2) coincides with 1. Thus, (f1, [h1]) and (fa2, [ho]) lie in the
same PGL3(C)-orbit.

Finally, it remains to prove local triviality. This is a consequence of a much more general
fact that if G acts on a manifold P freely such that P/G is a manifold, then ¢ : P — P/G
is locally trivial. Indeed, a local trivialization of ¢ : P — P/G can be built over any
contractible subset U by first taking a section o : U — P and defining ¢ : ¢"1(U) = U x G

by ¢(z) = (¢(x), g(x)), where g(z) € G is the unique element such that z = g(x)-o(q(z)). O

Proposition 4.1.3. Let d > 3 and g = (dgl). The space L{Zl"ark has finitely many compon-

ents. Consequently, Teich(Zg)pl has finitely many components.

Proof. A single component of Ug”‘”“k is the connected covering space of U, corresponding to
K ;. Hence, its deck transformation group is the image of the homomorphism p; : 71 (Uy) —
Mod(34). The components of Z/{Zl'm’“k are enumerated by the cosets of Im(pg) in Mod(Xg). It

was shown in and | , Theorem A] that the index [Mod(Xy) : Im(pg)] < oo. O

4.2 The kernel of the geometric monodromy of the universal
quartic
In this section, we prove Theorem 1.0.1.

Theorem 1.0.1. The group Ky is isomorphic to Fo X Z/37, where F is an infinite rank
19



free group. Moreover, Fg has a free generating set in bijection with the set of cosets of the

hyperelliptic mapping class group SMod(X3), and
H1(Ky; Q) = Q[Mod(£3) /SMod(3)]

as Mod(33)-modules.

Proof of Theorem 1.0.1. Classically, Teich(33)P! is exactly the complement of the hyperel-

liptic locus Hg in Teich(33): the canonical map C' — P2 is an embedding precisely when C

is nonhyperelliptic | , Pages 246-7]. Consider the following principal fiber bundle.
PGL3(C) upark
¥4

Teich(X3) \ H3

Because py : m1(Uy) — Mod(X3) is surjective | , Proposition 6.3], Mi’mrk is connected.

By Theorem 1.0.2, Teich(X3)\ H3 is homotopy equivalent to an infinite wedge of circles and,
since PGL3(C) is connected, there must exist some continuous section o : Teich(X3) \ Hg —
L{Zlnark. Because ¢4 is a principal PGL3(C)-bundle, the existence of such a section implies

that UJ*** is homeomorphic to PGL3(C) x (Teich(¥3) \ H3), and so

ZJ3Z x Fro, fori=1
T (UPOEY = (4.2.1)
m;(PGL3(C)), fori> 1.

This also shows that m;(Uy) = m;(PGL3(C)) for i > 2.
We now wish to show that Hi(Ky;Q) is isomorphic to Q[Mod(X3)/SMod(X3)] as

Mod(X3)-modules. The calculation of K4 = m (Ufark) in equation 4.2.1 shows that the
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projection

Uk =, PGL3(C) x (Teich(S3) \ Hs3) — Teich(S3) \ Hs

induces an isomorphism
H1(K4; Q) = Hy(Teich(X3) \ H3; Q).
The action of Mod(33) on Uinark commutes with the projection map
Uffwm — Teich(X3) \ Hs,

so that the above isomorphism of Q-vector spaces is an isomorphism of Mod(X3)-modules.
The group H1(Teich(X3)\#H3; Z) is the free abelian group on the set of cycles in Teich(X3)\
Hs represented by meridians around the components of the hyperelliptic locus Hs; that is,
the boundaries of disks transversely intersecting H3 in a single point. Such cycles are in
bijection with the cosets of Mod(33)/SMod(X3) (see proof of Corollary 3.2.1). This bijection
commutes with the action of Mod(33) and therefore this Mod(X3)-module is isomorphic to

the permutation representation Q[Mod(X3)/SMod(X3)]. O

The following table shows m;(Uy) = m;(PGL3(C)) for small values of i > 2 (c.f. |

)

Introduction|, where we have used the fact that SL3(C) covers PGL3(C) and is homotopy

equivalent to SU(3)).

1 2131415 6 7 8 9 10 11 12

mi(U) |0 Z 0| 2Z|2/6Z|0|2/12Z | Z/3Z | Z/30Z | Z/AZ | Z./60Z
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