
THE UNIVERSITY OF CHICAGO

THE KERNEL OF THE MONODROMY OF THE UNIVERSAL FAMILY OF DEGREE D

SMOOTH PLANE CURVES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

BY

REID HARRIS

CHICAGO, ILLINOIS

JUNE 2020



Copyright © 2020 by Reid Harris

All Rights Reserved



To Buddy and Patsy



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THE HYPERELLIPTIC LOCUS AND THE WEIL-PETERSSON METRIC . . . 5
2.1 Teichmüller Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Weil-Petersson Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Hyperelliptic Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 HOMOTOPY TYPE OF THE HYPERELLIPTIC COMPLEMENT . . . . . . . 9
3.1 Geodesic Length Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Relative Morse theory of the pair (Teich(Σg),Hg) . . . . . . . . . . . . . . . 12

4 THE PARAMETER SPACE OF SMOOTH PLANE CURVES . . . . . . . . . . . 17
4.1 Covers of Ud and principal fiber bundles . . . . . . . . . . . . . . . . . . . . 17
4.2 The kernel of the geometric monodromy of the universal quartic . . . . . . . 19

iv



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Benson Farb for his continued support,

patience, and encouragement throughout my graduate career as well as his seeming inability

to contain his excitement for mathematics. I cannot think of anyone else who has such a

contagious enthusiasm for learning and I could not have hoped for a better advisor for the

past several years.

I would additionally like to thank Howard Masur for our conversations and for specifically

pointing me towards Weil-Petersson Metric and geometric length functions. I also thank

Shmuel Weinberger for his mentorship and guidance. I would further like to acknowledge the

contributions of Madhav Nori, Scott Wolpert, Tara Brendle, Stephen Bigelow, Nick Salter,

and Neil Fullarton for their input and advice during my graduate career.

I would also like to acknowledge and thank Ralph Howard, Jesse Kass, and Anton Schep,

for my years as an undergraduate student at the University of South Carolina, and Kana

Sriskandarajah, Clyde Smith, Mark Godwin, and Gary Salazar, for my years as a student at

South Carolina Governor’s School for Science and Mathematics.

v



ABSTRACT

We consider the parameter space Ud of smooth plane curves of degree d. The universal

smooth plane curve of degree d is a fiber bundle Ed → Ud with fiber diffeomorphic to a surface

Σg. This bundle gives rise to a monodromy homomorphism ρd : π1(Ud)→ Mod(Σg), where

Mod(Σg) := π0(Diff+(Σg)) is the mapping class group of Σg. The main result of this paper

is that the kernel of ρ4 : π1(U4)→ Mod(Σ3) is isomorphic to F∞×Z/3Z, where F∞ is a free

group of countably infinite rank. In the process of proving this theorem, we show that the

complement Teich(Σg) \Hg of the hyperelliptic locus Hg in Teichmüller space Teich(Σg) has

the homotopy type of an infinite wedge of spheres. As a corollary, we obtain that the moduli

space of plane quartic curves is aspherical. The proofs use results from the Weil-Petersson

geometry of Teichmüller space together with results from algebraic geometry.
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CHAPTER 1

INTRODUCTION

Let P
(
Symd

(
C3
))

= PN , where N =
(
d+2

2
)
− 1, be the parameter space of plane curves

of degree d > 0. Elements of PN are homogeneous degree d polynomials in variables x, y, z.

Let Ud denote the parameter space of smooth plane curves of degree d. More precisely,

Ud = PN \ ∆d is the complement of the discriminant locus ∆d ⊂ PN which is the set of

polynomials f such that the curve V (f) = {p ∈ P2 : f(p) = 0} is singular.

The universal smooth plane curve of degree d is the fiber bundle Ed → Ud defined by

Ed := {(f, p) ∈ Ud × P2 : f(p) = 0} → Ud

(f, p) 7→ f

There exists a monodromy homomorphism

ρd : π1 (Ud)→ Mod(Σg),

where Mod(Σg) := π0(Diff+(Σg)) is the mapping class group. We omit reference to the

basepoint in π1 (Ud), however, it can be taken to be the Fermat curve fF (x, y, z) = xd + yd +

zd = 0. The homomorphism ρd is called the geometric monodromy of the universal smooth

plane curve of degree d. A finite presentation for π1(Ud) has been given by Lönne [L0̈9, Main

Theorem].

Two natural questions are to determine the image Im(ρd) and kernel Kd := ker(ρd).

Dolgachev and Libgober have given a description of π1(U3) as an extension

0→ Heis3(Z/3Z)→ π1(U3) ρ3−→ Mod(Σ1)→ 0

[DL81, Exact Squence 4.8] of Mod(Σ1) by the Z/3Z-points of the 3-dimensional Heisenberg
1



group [DL81, Page 12]

Heis3(Z/3Z) :=




1 ∗ ∗

0 1 ∗

0 0 1

 : ∗ ∈ Z/3Z


The action Mod(Σ1) 	 H1 (Heis3(Z/3Z);Z) ∼= (Z/3Z)2 is the action on the Weierstraß

points of the elliptic curve. This action is exactly the composition Mod(Σ1) Ψ1−−→ SL2(Z)→

SL2(Z/3Z), where Ψ1 : Mod(Σ1) ∼= SL2(Z) is the action on H1(Σ1;Z), see [FM12, Theorem

2.5], and SL2(Z)→ SL2(Z/3Z) is the natural projection.

For higher degrees d ≥ 4, there is an exact sequence

0→ Kd → π1(Ud)
ρd−→ Mod(Σg).

The map ρd is, in general, not surjective. However, Salter [Sal19, Theorem A] has shown

that Im(ρd) always has finite index in Mod(Σg). For d = 4, Kuno has shown that Im(ρ4) =

Mod(Σ3) and that K4 is infinite [Kun08, Proposition 6.3]. For d = 5, Salter [Sal16, Theorem

A] shows that Im(ρ5) is the stabilizer Mod(Σ6)[φ] of a certain spin structure φ on Σ6, the

spin structure φ = e∗O(1) induced on Σ6 by its embedding e : Σ6 → P2 as a plane curve. For

odd d ≥ 5, Salter shows that the monodromy group Im(ρd) is the stabilizer of a (d− 3)-spin

structure on Σg, for g =
(
d−1

2
)
. For even d ≥ 6, Im(ρd) is only known to be finite index in

this stabilizer, hence in Mod(Σg) [Sal19, Theorem A].

Another result in this vein π1(Ud) can be found in [CT99]. Recall that Mod(Σg) acts on

H1(Σg;Z) preserving the intersection form. This gives rise to the symplectic representation

Ψg : Mod(Σg)→ Sp2g(Z). Consider the composition

Ψg ◦ ρd : π1(Ud)→ Sp2g(Z).

2



This representation is called the algebraic monodromy of the universal smooth plane curve of

degree d. Carlson and Toledo show that K̃d := ker(Ψg ◦ ρd) is large [CT99, Theorem 1.2], i.e.

there is a homomorphism K̃d → G to a noncompact semisimple real algebraic Lie group G

with Zariski-dense image.

We prove the following theorem, which is a refinement of Kuno’s theorem [Kun08,

Proposition 6.3] that K4 is infinite. In the statement, SMod(Σg) < Mod(Σg) denotes the

centralizer of a fixed hyperelliptic involution, the homotopy class of an order 2 homeomorphism

τ : Σg → Σg which acts on H1(Σg;Z) by multiplication by −1.

Theorem 1.0.1. The group K4 is isomorphic to F∞ × Z/3Z, where F∞ is an infinite rank

free group. Moreover, F∞ has a free generating set in bijection with the set of cosets of the

hyperelliptic mapping class group SMod(Σ3), and

H1(K4;Q) ∼= Q[Mod(Σ3)/SMod(Σ3)]

as Mod(Σ3)-modules.

The idea for the proof of Theorem 1.0.1 is to exhibit the cover Umark4 → U4 corresponding

to K4 as a principal fiber bundle over the complement Teich(Σ3) \ H3 of the hyperelliptic

locus H3 in Teichmüller space Teich(Σ3). The following theorem determines the homotopy

type of Teich(Σ3) \ H3.

Theorem 1.0.2. Let g ≥ 3. The hyperelliptic complement Teich(Σg) \Hg has the homotopy

type of a wedge
∞∨
i=1

Sn of infinitely many n-spheres, where n = 2g − 5.

From Theorem 1.0.2, we can conclude that Umark4 → Teich(Σ3)\H3 is trivial and Theorem

1.0.1 follows.

We will also show that the structure of the group Kd is closely related to that of the

hyperelliptic mapping class group. The failure of our proof method in Theorem 1.0.1 for

3



degrees d > 4 is due to the lack of knowledge of the topology of the locus of planar curves in

the moduli space of Riemann surfaces; there are many more obstructions to being planar

than being hyperelliptic.

This thesis is organized as follows. Chapter 2 recalls basic facts about the Weil-Petersson

metric on Teichmüller space and the hyperelliptic locus. Chapter 3 introduces the geodesic

length functions. These will then be used to prove Theorem 1.0.2. The proof of Theorem

1.0.1 is carried out in chapter 4.
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CHAPTER 2

THE HYPERELLIPTIC LOCUS AND THE WEIL-PETERSSON

METRIC

For the rest of the paper, let g ≥ 2 unless otherwise stated. In this chapter we give the

necessary background on Teichmüller space and its geometry. We review the Weil-Petersson

metric on Teichmüller space and describe the geometric properties of the hyperelliptic locus

in terms of this metric, see Proposition 2.3.1.

2.1 Teichmüller Space

We recall the basic theory of Teichmüller space and of the moduli space of Riemann surfaces

of genus g. For additional background, see e.g. [FM12]. Let Teich(Σg) denote the Teichmüller

space of genus g ≥ 2 curves. That is, Teich(Σg) is the set of equivalence classes [X, h] of pairs

(X, h), where X is a complex curve of genus g and h is a marking, i.e. a homeomorphism

Σg → X. Two pairs (X, h) and (Y, g) are equivalent if h ◦ g−1 : Y → X is isotopic to a

biholomorphism. We will also denote such an equivalence class [X, h] by X . The (complex)

dimension of Teich(Σg) is 3g − 3.

The mapping class group Mod(Σg) acts on Teich(Σg) by

[f ] · [X, h] = [X, h ◦ f−1]

where [f ] ∈ Mod(Σg). This action is properly discontinuous [FM12, Theorem 12.2] so that the

quotient space Mg := Mod(Σg)\Teich(Σg), the moduli space of genus g Riemann surfaces,

is an orbifold. Let π : Teich(Σg)→Mg denote the quotient map. The space Mg can also

be defined as the space of all complex curves of genus g, up to biholomorphism. Note that

the orbifold fundamental group πorb1 (Mg) of Mg is Mod(Σg).
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2.2 Weil-Petersson Metric

In this section we recall the Weil-Petersson (WP) metric and some of its properties. The WP

metric is a certain Kähler metric on Teich(Σg) which gives rise to a Riemannian structure on

Teich(Σg). For more on the Weil-Petersson metric, see the survey [Wol09].

The cotangent space T ∗XTeich(Σg) at a point X = [X, h] ∈ Teich(Σg) can be identified

with the space Q(X) of holomorphic quadratic differentials on X. Define a (co)metric on

T ∗XTeich(Σg) by

〈〈ϕ, ψ〉〉 :=
∫
X
ϕψ(ds2)−1,

where ds2 is the hyperbolic metric on X and (ds2)−1 is its dual. The Weil-Petersson (WP)

metric is defined to be the dual of 〈〈·, ·〉〉.

The WP metric is a Mod(Σg)-invariant, incomplete [Wol75, Section 2], smooth Riemannian

metric of negative sectional curvature [Tro86, Theorem 2]. Teichmüller space Teich(Σg)

equipped with the WP metric is geodesically convex [Wol87, Subsection 5.4], meaning that

any two points X ,Y ∈ Teich(Σg) are connected by a unique geodesic. When referring to

any metric properties of Teichmüller space, we will assume they are with respect to the WP

metric unless otherwise stated.

2.3 Hyperelliptic Locus

A hyperelliptic curve X is a complex curve equipped with a biholomorphic involution τ :

X → X such that X/τ is isomorphic to P1. Such a map τ , if it exists, is called a hyperelliptic

involution. An element [τ ] ∈ Mod(Σg) is called a hyperelliptic mapping class if [τ ]2 = 1 and

Σg/τ is homeomorphic to P1, or equivalently, if [τ ] acts on H1(Σg;Z) by multiplication by

−1.

Let Hg ⊂ Mg denote the locus of hyperelliptic curves and let Hg := π−1(Hg), where

π : Teich(Σg)→Mg is the quotient map. The set Hg is called the hyperelliptic locus. It has

6



(complex) dimension 2g − 1. Note that when g = 3, the hyperelliptic locus H3 has complex

codimension 1 in Teich(Σg).

The following proposition collects some facts that will be useful in later sections.

Proposition 2.3.1. The locus Hg is a complex-analytic submanifold of Teich(Σg). Moreover,

Hg has infinitely many connected components (see Figure 1). If H is any component of

Hg then H is totally geodesic in Teich(Σg) and H is biholomorphic to Teich(Σ0,2g+2), the

Teichmüller space of a sphere with 2g + 2 punctures. In particular, each component of Hg is

contractible.

Proof. Let [τ ] ∈ Mod(Σg) be a hyperelliptic mapping class. Then [τ ] acts on Teich(Σg) with

fixed set

Fix([τ ]) := {[Y, g] ∈ Teich(Σg) : [Y, g] = [Y, g ◦ τ ]}.

First, we show that

Hg =
⋃

[τ ] hyperelliptic
Fix([τ ]),

where the union is taken over all hyperelliptic mapping classes [τ ] ∈ Mod(Σg). If [X, h] ∈

Fix([τ ]) then τ : X → X is isotopic to a biholomorphism τb. The map τb must be a

hyperelliptic involution, and so [X, h] ∈ Hg. Conversely, if [X, h] ∈ Hg then there is a

hyperelliptic involution τ : X → X which is a biholomorphism and so [X, h] ∈ Fix([τ ]).

If [τ ] and [η] are two distinct hyperelliptic mapping classes, then Fix([τ ]) ∩ Fix([η]) =

∅. More explicitly, if [X, h] ∈ Fix([τ ]) ∩ Fix([η]) then, [τ ] and [η] contain biholomorphic

representatives τb, ηb : X → X. By [FK80, Section III.7.9, Corollary 2], we must have τb = ηb.

Each set Fix([τ ]) is totally geodesic in Teich(Σg). This follows from the uniqueness of

geodesics in the WP metric: if γ is any geodesic with endpoints lying in Fix([τ ]), then [τ ] · γ

must be another geodesic with the same endpoints as γ, hence γ must be fixed by τ .

For a proof that Hg is a complex-analytic submanifold of Teich(Σg) and that each

component is biholomorphic to Teich(Σ0,2g+2), we refer the reader to [Nag88, Section
7



4.1.5].

Figure 2.1: A schematic of the hyperelliptic locus Hg in Teich(Σg). The submanifold
Hg ⊂ Teich(Σg) has infinitely many connected components, each of which is totally geodesic
with respect to the Weil-Petersson metric.
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CHAPTER 3

HOMOTOPY TYPE OF THE HYPERELLIPTIC

COMPLEMENT

In Section 3.1, we prove, Lemma 3.1.1, the existence of certain Morse functions on Teich(Σg).

These functions will be used to prove Theorem 1.0.2 in Section 3.2.

3.1 Geodesic Length Functions

This section is devoted to proving the existence of sufficiently well-behaved functions on

Teich(Σg).

Lemma 3.1.1. Let g ≥ 3. There exists a function f : Teich(Σg)→ R+ which satisfies the

following properties.

1. The function f is proper, strictly convex and has positive-definite Hessian everywhere.

2. The function f has a unique critical point in Teich(Σg), denoted x0.

3. For any component H of Hg, the restriction f |H has a unique critical point, denoted

xH .

4. Any two critical values are distinct. That is, for any component H of Hg, f(xH) 6=

f(x0). Also, if H ′ is any other component of Hg, then f(xH) = f(xH ′) if and only if

H = H ′.

5. The set of critical values

{f(xH) : H is a component of Hg} ∪ {f(x0)}

is a discrete subset of R+.

9



In particular, such a function f is Morse on Teich(Σg) and for each component H of Hg,

the restriction f |H is Morse.

Proof. The function f is built using geodesic length functions. These functions are defined

as follows. Let α be a free homotopy class of simple closed curves on Σg and let [X, h] be a

point in Teich(Σg). Then h(α) is a free homotopy class of simple closed curves in X. Recall

that h(α) contains a unique geodesic γ. The geodesic length function `α : Teich(Σg)→ R+

associated to α is defined by

`α(X ) := length of the unique geodesic in the free homotopy class h(α) on X,

where X = [X, h]. Any other choice (X ′, h′) of representative of [X, h] would differ from

(X, h) by an isometry, hence `α is well-defined. Fix a finite collection A of (homotopy classes

of) simple closed curves which fills Σg, and let c = (cα) ∈ RA+ be a collection of positive real

numbers for each α ∈ A. For each choice of c ∈ RA+, there is a function

LA,c :=
∑
α∈A

cα`α : Teich(Σg)→ R+.

The function f in the statement of the theorem will be defined to be LA,c for a specific value

of c.

Wolpert [Wol87, Theorem 4.6] states that for any free homotopy class of simple closed

curves α on Σg, the geodesic length function `α has positive-definite Hessian everywhere. In

particular, `α is strictly convex along WP geodesics.

Recall that the Hessian operator Hess is given in local coordinates by

f 7→
(

∂2f
∂xi∂xj

+ Γkij
∂f

∂xk

)
dxi ⊗ dxj ,

10



where Γkij are the Christoffel symbols given by g. Thus, Hess is R-linear. It follows that

Hess LA,c =
∑
α∈A

cα · (Hess `α) .

For any v ∈ TXTeich(Σg),

Hess LA,c(v, v) =
∑
α∈A

cα · (Hess `α) (v, v) > 0

and so Hess LA,c is positive-definite. This also shows that LA,c is strictly convex.

Let 1 denote the element of RA+ such that cα = 1 for all α ∈ A. For c = (cα) ∈ RA+, let

cmin := minα∈A cα. Then,

cminLA,1 ≤ LA,c.

Kerckhoff [Ker83, Lemma 3.1] states that the functions LA,1 are proper. If K = [a, b] ⊂ R+

is compact, then

(LA,c)−1(K) ⊂ (LA,1)−1 [0, b/cmin] ,

so (LA,c)−1(K) is a closed subset of a compact set, hence is compact. Thus, LA,c is proper.

This proves (1) in the statement of the theorem.

If LA,c has distinct critical points x0 and x′0 in Teich(Σg), then these are local minima

of LA,c since Hess LA,c is positive definite at both x0 and x′0. Without loss of generality,

assume LA,c(x′0) ≤ LA,c(x0). However, by strict convexity, this is impossible. Let γ be the

unique geodesic with γ(0) = x0 and γ(1) = x′0. Then

LA,c(γ(t)) < (1− t)LA,c(x0) + tLA,c(x′0) ≤ LA,c(x0)

for all t ∈ (0, 1], contradicting the fact that x0 must be a local minimum. Hence x0 = x′0 and

LA,c has a unique critical point in Teich(Σg), denoted x0. This proves property (2).

11



Since the components of Hg are totally geodesic in the WP metric, the same argument

shows that the restriction LA,c|H will have a unique critical point, denoted xH , for each

component H of Hg. This proves property (3) of the theorem. Thus, properties (1) through

(3) of the theorem above are satisfied by the function LA,c for any value of c.

Let S = {H : H is a component of Hg} ∪ {0}. For each pair i, j ∈ S of distinct elements,

there is an open dense subset Ui,j of RA+ given by

Ui,j =
{
c ∈ RA+ : LA,c(xi) 6= LA,c(xj)

}
.

By the Baire Category Theorem, ⋂i6=j Ui,j is open and dense in RA+. Let c′ ∈ ⋂i6=j Ui,j . We

now define f := LA,c′ . Then, f satisfies property (4).

Lastly, we wish to show that f(S) is discrete. Choose a neighborhood U0 of x0 and UH of

xH , for each component H of Hg which are mutually disjoint. Properness of f then implies

that f(S) is discrete. This shows that f satisfies property (5).

3.2 Relative Morse theory of the pair (Teich(Σg),Hg)

The goal of this section is to prove Theorem 1.0.2. The idea is that the Morse function f

found in Lemma 3.1.1 may be used to determine a handle decomposition of both Hg and

Teich(Σg) \ Hg. For a reference on relative Morse theory, see e.g. [Sha88, Section 3].

Theorem 1.0.2. Let g ≥ 3. The hyperelliptic complement Teich(Σg) \Hg has the homotopy

type of a wedge
∞∨
i=1

Sn of infinitely many n-spheres, where n = 2g − 5.

Note that since every curve of genus g = 2 is hyperelliptic, Teich(Σ2) \ H2 = ∅. The

proof of Theorem 1.0.2 is similar to Mess’s proof that the image of the period mapping on

Teich(Σ2) has the homotopy type of an infinite wedge of circles [Mes92, Proposition 4]. We

now prove Theorem 1.0.2.

12



Proof. The idea behind relative Morse theory is that such a function as given by Lemma

3.1.1 can be used to determine a handle decomposition not only of Hg, but of its complement

Teich(Σg) \ Hg. Let f be the function that satisfies the conclusion of Lemma 3.1.1. We let

x0 denote the unique minimum point of f in Teich(Σg). For each component H of Hg, let

xH denote the unique critical point of f |H . We refer to x0 as a critical point of f of type

I and each xH are referred to as critical points of f of type II. The values c0 = f(x0) and

cH = f(xH) are called critical values of type I and II, respectively.

For r a real number, let Xr := {X ∈ Teich(Σg) : f(X ) ≤ r}. If (c0, c0 + ε] contains no

type II critical values, then Xc0+ε \ Hg is diffeomorphic to a 0-handle, i.e. a closed ball.

Consider an arbitrary interval [a, b] ⊂ R. If [a, b] contains no critical value of type I or II of

f , then Xa \ Hg is diffeomorphic to Xb \ Hg. To see this, we can construct a vector field

V which is equal to grad(f) outside a neighborhood of Hg and such that V |Hg
is equal to

grad(f |Hg
). The flow along this vector field gives the required diffeomorphism.

Let x be a critical point of type II, and let c = f(x). By Lemma 3.1.1, the set of critical

values of f is discrete, so there exists some ε > 0 such that [c− ε, c + ε] contains no other

critical values of f . We wish to show that Xc+ε \ Hg is diffeomorphic to Xc−ε \ Hg with an

n-handle attached, where n = 2g − 5 (see Figure 2).

Let H be the component of Hg containing x. There exists a coordinate system (u, y) ∈

R2g−4 × R4g−2 in a neighborhood U of x such that [Sha88, 3.3]

1. U ∩H is given by u = 0,

2. f = c+ ‖y‖2 on U ∩H.

The coordinates y are “tangent” coordinates to H and the coordinates u are “normal”

coordinates to H. Note that since H has complex dimension 2g − 1, it has real dimension

4g − 2.

Then, Xc+ε \ Hg is diffeomorphic to the union of Xc−ε \ Hg and a tubular neighborhood

13



Figure 3.1: Start with Xc−ε. As c− ε increases to c+ ε, the level set Xc+ε intersects exactly
one more component H of Hg, the component containing the critical point x. Here, the g = 3
case is depicted.

of

{(u, 0) : ‖u‖2 = δ},

for some small δ > 0. This tubular neighborhood deformation retracts to the (2g − 5)-sphere

{(u, 0) : ‖u‖2 = δ}. Hence, Teich(Σg) \ Hg has a handle decomposition consisting of a

0-handle with infinitely many (one for each component of Hg) n-handles attached, where

n = 2g − 5.

LetMnhyp
g denote the moduli space of hyperelliptic curves of genus g. Since Teich(Σ3)\H3

is a covering space for Mnhyp
3 , the moduli space Mnhyp

3 has contractible universal cover and

Mnhyp
3 is aspherical. If g ≥ 4 then πn(Mnhyp

g ), where n = 2g − 5 > 1, is an infinite rank

abelian group. In particular, Mnhyp
g is not aspherical for g ≥ 4.

We can be even more precise. The components of the hyperelliptic locusHg are enumerated

by the set of cosets of the group SMod(Σg) in Mod(Σg). Recall that SMod(Σg) is the

centralizer in Mod(Σg) of a fixed hyperelliptic involution τ ∈ Mod(Σg). The group SMod(Σg)

is called the hyperelliptic mapping class group of genus g. If η is another hyperelliptic

involution, then the centralizers of τ and η are conjugate in Mod(Σg).

14



Corollary 3.2.1. Let g ≥ 3. There is a homotopy equivalence

Teich(Σg) \ Hg ∼=
∨

[h]∈Mod(Σg)/SMod(Σg)
S2g−5.

In particular,

H2g−5(Teich(Σg) \ Hg;Z) ∼= Z[Mod(Σg)/SMod(Σg)]

as Mod(Σg)-modules.

Proof. The mapping class group Mod(Σg) acts on the set of components of Hg by permuta-

tions. Let H0 be a fixed component of Hg. Then, there is a map

Orb(H0)→ Mod(Σg)/Stab(H0)

h ·H0 7→ hStab(H0)

from the orbit Orb(H0) of H0 to the left coset space of the stabilizer Stab(H0). It suffices to

show that Stab(H0) = SMod(Σg) and Mod(Σg) acts transitively on the set of components of

Hg.

First, since H0 = Fix(τ), the mapping class h ∈ Stab(H0) if and only if

h · Fix(τ) = Fix(hτh−1) = Fix(τ).

Since no hyperelliptic curve can have two distinct hyperelliptic involutions, it must follow

that hτh−1 = τ so h ∈ SMod(Σg). Therefore, Stab(H0) = SMod(Σg).

Secondly, if H is any other component of Hg, then H = Fix(η) for some hyperelliptic

involution η ∈ Mod(Σg). Since hyperelliptic involutions in Mod(Σg) are conjugate, there

exists some h ∈ SMod(Σg) such that

H = Fix(η) = Fix(hτh−1) = h · Fix(τ) = h ·H0.
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Therefore, Mod(Σg) acts transitively on the set of components of Hg.
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CHAPTER 4

THE PARAMETER SPACE OF SMOOTH PLANE CURVES

In this chapter, we prove Proposition 4.1.2, showing that the cover of Ud determined by the

subgroup Kd of π1(Ud) carries the structure of a principal fiber bundle. This will be critical

in the proof of Theorem 1.0.1 in Section 4.2.

4.1 Covers of Ud and principal fiber bundles

The main result of this section is to prove Proposition 4.1.2, exhibiting a cover of Ud as a

principal fiber bundle over a certain subspace of Teich(Σg).

Associating each point of Ud to the curve it determines gives rise to a map ϕd : Ud →Mg

into the moduli space of Riemann surfaces of genus g(d), where g = g(d) :=
(
d−1

2
)

by

the degree-genus formula. Let Mpl
g denote the image of this map. For d ≥ 4, the locus

Mpl
g (Mg and for d = 3, Mpl

1 =M1.

There is a (disconnected) covering Umarkd of Ud defined as follows. A point (f, [h]) ∈ Umarkd

is an ordered pair consiting of f ∈ Ud and a homotopy class [h] of orientation-preserving

homeomorphisms h : Σg → V (f) of some fixed Σg with the complex curve V (f) given by

f(x, y, z) = 0.

Let π1(Umarkd ) be the fundamental group of a chosen component of Umarkd . Note that

π1(Umarkd ) ∼= Kd.

Remark 4.1.1. There is a commutative diagram

Umarkd
ϕ̃d- Teich(Σg)

Ud
?

ϕd
-Mg

π

?
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The map ϕd : Ud → Mg lifts to a map ϕ̃d : Umarkd → Teich(Σg) into Teichmüller space

defined by

ϕd : (f, [h]) 7→ [V (f), h].

Let Teich(Σg)pl denote the image of ϕd.

Recall that a principal G-bundle is a fiber bundle P → X with a G-action that acts freely

and transitively on the fibers.

Proposition 4.1.2. For d ≥ 4, the map ϕ̃d : Umarkd → Teich(Σg)pl is a principal PGL3(C)-

bundle.

Proof. First, PGL3(C) acts on Umarkd by g · (f, [h]) = (g · f, [g ◦ h]) where g · f denotes

the action of g on polynomials f(x, y, z), by acting on the triple of variables (x, y, z). This

induces a map g : V (f)→ V (g · f) and g ◦ h is the composition of this map with the marking

h : Σg → V (f).

This action is free. Indeed, if g · (f, [h]) = (f, [h]) then g · f = f and [g ◦ h] = [h]. Thus g

induces an automorphism on the curve V (f). Moreover, this automorphism acts trivially on

the marking, hence trivially on H1(V (f);Z). An automorphism of V (f) acting trivially on

homology must be the identity [FM12, Theorem 6.8]. The fixed set of any automorphism of

P2 is a linear subspace, so any g ∈ PGL3(C) point-wise fixing a smooth quartic curve must

be the identity automorphism.

Next, we show that this action is transitive on fibers. It suffices to show that if

ϕ̃d(f1, [h1]) = ϕ̃d(f2, [h2]), then the (fi, [hi]) lie in the same PGL3(C)-orbit. By assumption,

[V (f1), h1] = [V (f2), h2] and there is some biholomorphism ψ : V (f1) → V (f2) such that

[ψ ◦ h1] = [h2]. Then the pullback of the hyperplane bundle H along the embeddings

ei : V (fi)→ P2 gives line bundles Li := e∗i (H) on V (fi) of degree d with h0(Li) = 3.

A grd line bundle is a line bundle L→ C such that deg(L) = d and h0(L) ≥ r+ 1. Smooth

plane curves have a unique g2
d given by the pullback of the hyperplane bundle [Ser87, Theorem
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3.13]. Therefore, L1 and ψ∗L2 are isomorphic line bundles on V (f1).

For any smooth curve C, there is a correspondence between maps C → Pr up to the

action of PGLr+1(C) and pairs (L, V ) where L is a line bundle over C and V ⊂ H0(C;L)

is an (r + 1)-dimensional subspace. The fact that there is a unique line bundle L on V (f1)

with h0(L) ≥ 3 implies that there is only one such map V (f1) → P2 up to the action of

PGL3(C). Therefore, the two embeddings e1 and e2 ◦ ψ are equivalent up to the action

of PGL2(C), i.e. there is some g ∈ PGL2(C) such that g ◦ e1 = e2 ◦ ψ. This implies that

g · f1 = f2 and g : V (f1)→ V (f2) coincides with ψ. Thus, (f1, [h1]) and (f2, [h2]) lie in the

same PGL3(C)-orbit.

Finally, it remains to prove local triviality. This is a consequence of a much more general

fact that if G acts on a manifold P freely such that P/G is a manifold, then q : P → P/G

is locally trivial. Indeed, a local trivialization of q : P → P/G can be built over any

contractible subset U by first taking a section σ : U → P and defining ϕ : q−1(U)→ U ×G

by ϕ(x) = (q(x), g(x)), where g(x) ∈ G is the unique element such that x = g(x) ·σ(q(x)).

Proposition 4.1.3. Let d ≥ 3 and g =
(
d−1

2
)

. The space Umarkd has finitely many compon-

ents. Consequently, Teich(Σg)pl has finitely many components.

Proof. A single component of Umarkd is the connected covering space of Ud corresponding to

Kd. Hence, its deck transformation group is the image of the homomorphism ρd : π1(Ud)→

Mod(Σg). The components of Umarkd are enumerated by the cosets of Im(ρd) in Mod(Σg). It

was shown in and [Sal19, Theorem A] that the index [Mod(Σg) : Im(ρd)] <∞.

4.2 The kernel of the geometric monodromy of the universal

quartic

In this section, we prove Theorem 1.0.1.

Theorem 1.0.1. The group K4 is isomorphic to F∞ × Z/3Z, where F∞ is an infinite rank
19



free group. Moreover, F∞ has a free generating set in bijection with the set of cosets of the

hyperelliptic mapping class group SMod(Σ3), and

H1(K4;Q) ∼= Q[Mod(Σ3)/SMod(Σ3)]

as Mod(Σ3)-modules.

Proof of Theorem 1.0.1. Classically, Teich(Σ3)pl is exactly the complement of the hyperel-

liptic locus H3 in Teich(Σ3): the canonical map C → P2 is an embedding precisely when C

is nonhyperelliptic [GH94, Pages 246-7]. Consider the following principal fiber bundle.

PGL3(C) - Umark4

Teich(Σ3) \ H3

ϕ4

?

Because ρ4 : π1(U4)→ Mod(Σ3) is surjective [Kun08, Proposition 6.3], Umark4 is connected.

By Theorem 1.0.2, Teich(Σ3)\H3 is homotopy equivalent to an infinite wedge of circles and,

since PGL3(C) is connected, there must exist some continuous section σ : Teich(Σ3) \ H3 →

Umark4 . Because ϕ4 is a principal PGL3(C)-bundle, the existence of such a section implies

that Umark4 is homeomorphic to PGL3(C)× (Teich(Σ3) \ H3), and so

πi(Umark4 ) =


Z/3Z× F∞, for i = 1

πi(PGL3(C)), for i > 1.
(4.2.1)

This also shows that πi(U4) ∼= πi(PGL3(C)) for i ≥ 2.

We now wish to show that H1(K4;Q) is isomorphic to Q [Mod(Σ3)/SMod(Σ3)] as

Mod(Σ3)-modules. The calculation of K4 ∼= π1(Umark4 ) in equation 4.2.1 shows that the
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projection

Umark4
∼=−→ PGL3(C)× (Teich(Σ3) \ H3)→ Teich(Σ3) \ H3

induces an isomorphism

H1(K4;Q) ∼= H1(Teich(Σ3) \ H3;Q).

The action of Mod(Σ3) on Umark4 commutes with the projection map

Umark4 → Teich(Σ3) \ H3,

so that the above isomorphism of Q-vector spaces is an isomorphism of Mod(Σ3)-modules.

The group H1(Teich(Σ3)\H3;Z) is the free abelian group on the set of cycles in Teich(Σ3)\

H3 represented by meridians around the components of the hyperelliptic locus H3; that is,

the boundaries of disks transversely intersecting H3 in a single point. Such cycles are in

bijection with the cosets of Mod(Σ3)/SMod(Σ3) (see proof of Corollary 3.2.1). This bijection

commutes with the action of Mod(Σ3) and therefore this Mod(Σ3)-module is isomorphic to

the permutation representation Q[Mod(Σ3)/SMod(Σ3)].

The following table shows πi(U4) ∼= πi(PGL3(C)) for small values of i ≥ 2 (c.f. [MT64,

Introduction], where we have used the fact that SL3(C) covers PGL3(C) and is homotopy

equivalent to SU(3)).

i 2 3 4 5 6 7 8 9 10 11 12

πi(U4) 0 Z 0 Z Z/6Z 0 Z/12Z Z/3Z Z/30Z Z/4Z Z/60Z
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