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ABSTRACT

This dissertation develops a novel stochastic tree ensemble method for nonlinear regression,

which I refer to as XBART, short for Accelerated Bayesian Additive Regression Trees. By

combining regularization and stochastic search strategies from Bayesian modeling with com-

putationally efficient techniques from recursive partitioning approaches, the new method

attains state-of-the-art performance: in many settings it is both faster and more accurate

than the widely-used XGBoost algorithm. Via careful simulation studies, I demonstrate

that our new approach provides accurate point-wise estimates of the mean function and

does so faster than popular alternatives, such as BART, XGBoost and neural networks (us-

ing Keras). This dissertation also prove a number of basic theoretical results about the

new algorithm, including consistency of the single tree version of the model and stationarity

of the Markov chain produced by the ensemble version. Furthermore, I demonstrate that

initializing standard Bayesian additive regression trees Markov chain Monte Carlo (MCMC)

at XBART-fitted trees considerably improves credible interval coverage and reduces total

run-time.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Tree-based algorithms for supervised learning, such as Classification and Regression Trees

(CART) (Breiman et al., 1984), random forests (Breiman, 1996, 2001), AdaBoost (Freund

and Schapire, 1997), gradient boosting (Breiman, 1997; Friedman, 2001, 2002), and XGboost

(Chen and Guestrin, 2016) are widely used for applied supervised learning. As a whole, these

methods are popular in applied settings due to their speed and accuracy in mean estimation

and out-of-sample prediction tasks. One limitation of such methods is their well-known

sensitivity to tuning parameters, which require costly cross-validation to optimize. Bayesian

additive regression trees (BART) (Chipman et al., 2007, 2010) is a popular Bayesian model-

based alternative that is often more accurate than other tree-based methods; specifically,

BART boasts valuable robustness to the choice of tuning-parameters. However, relative to

random forests and boosting, BART’s wider adoption has been slowed by its more severe

computational demands, owing to its reliance on a random walk Metropolis-Hastings Markov

chain Monte Carlo (MCMC) algorithm.

Despite this limitation, BART has inspired a considerable body of research in recent

years. Applications to causal inference (Hill, 2011; Hahn et al., 2020; Logan et al., 2019;

Starling et al., 2019), extensions to novel model settings (Murray, 2017; Linero and Yang,

2018; Linero et al., 2019; Kindo et al., 2016; Pratola et al., 2017; Starling et al., 2018; van der

Pas and Ročková, 2017), computational innovations (Pratola et al., 2014; Pratola, 2016),

and posterior consistency theory (Ročková and Saha, 2019; Rocková, 2019) are some of the

notable active research areas. For a more comprehensive review of this literature, see Linero

(2017) and Hill et al. (2020). Important precursors of the BART model include Chipman

et al. (1998), Denison et al. (1998), and Gramacy and Lee (2008). The primary reason of
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BART’s success is its ability to learn non-linear main and interaction effects without having

to specify the mechanism. A strong regularizing prior is placed on the tree structure to

prevent overfitting.

This dissertation contributes to this growing literature by developing a novel stochastic

tree ensemble method that combines the hyper-parameter robustness of BART with the

efficient recursive computational techniques of traditional tree-based methods. Specifically,

I propose a novel tree splitting criterion derived from an integrated-likelihood calculation

and suggest a parameter-sampling approach (as opposed to a bootstrapping approach, as in

random forests) for avoiding over-fitting. These modifications lead to a tree sampling algo-

rithm that is substantially faster than BART while retaining its state-of-the-art predictive

accuracy. This new approach to Bayesian tree models both leads to a substantial speed-up of

model fitting and also opens the door for new theoretical results adapted from the literature

on random forests (Scornet et al., 2015).

This dissertation proceeds as follows: The remainder of chapter 1 reviews tree based algo-

rithms including CART, random forests, boosting and BART. Chapter 2 introduces XBART

for Gaussian mean regression. Chapter 3 shows theory of consistency of XBART. Chapter

4 demonstrates XBART on simulation studies and empirical examples. Chapter 5 extends

XBART to binary classification and multinomial classification. Chapter 6 summarizes some

conjectures and future research directions.

1.2 Classification and regression tree

Trees are a family of non-parametric models that are built from data directly. The essential

idea behind the tree model is to learn a high-dimensional function locally and provide a

simple representation by a sequence of decision rules. In specific, a tree partitions the

covariate space into a group of rectangles (leaf nodes), then fits a simple model in each leaf,

such as a constant or linear regression. A single decision tree is simple to visualize and
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understand as it follows how do humans make decisions by a chain of rules.

Consider a nonparametric regression model

y = f(x) + ε (1.1)

where y is the response, x ∈ [0, 1]p a p-dimensional vector predictors, f an unknown re-

gression function of interest and ε ∼ N(0, σ2). Regression tree model assumes that the true

function is a tree,

f(x) = g(x, T, µ), (1.2)

where T denotes a regression tree and µ is a vector of scalars associated to each leaf node

of T . Tree T consists of a set of decision rules which define a partition of the covariate

space, denote it as A1, · · · ,AB where B is total number of leaf nodes in tree T . Each node

of the partition is associated with a leaf parameter µb. Both the partition T and the leaf

parameters µ together define a piecewise step function,

g(x) =
B∑
b=1

µb1{x ∈ Ab}, (1.3)

where 1{x ∈ Ab} is the indicator that x is in leaf node Ab in tree T .

Despite the existence of multi-way split trees (Kass, 1980), most tree methods have a

binary partition of the covariate space. One concern of multi-way split is the combinato-

rial explosion in practice, furthermore Laurent and Rivest (1976) show that constructing

an optimal binary decision tree is NP-complete. Therefore I focus on binary trees in this

dissertation.

Figure (1.1) illustrates a simple binary decision tree, where all split lines are parallel

to the coordinate axes. To fit a tree model, we first evaluate the split criterion on all

cutpoint candidates, pick the best one, and split the entire space into two nodes. Then the

3



process is repeated for two nodes recursively until some pre-set stopping rules are achieved,

see Algorithm 1. Efficiency and interpretability are two primary advantages of a recursive

binary tree. It is straightforward to implement the recursion algorithm and interpret split

rules even for non-experts.

x1 < 0.8

µ1 x2 < 0.4

µ2 µ3

no yes

no yes

0.4

0.8
x1

x2 µ1

µ2

µ3

Figure 1.1: (Top) An example binary tree, with internal nodes labelled by their splitting
rules and terminal nodes labelled with the corresponding parameters µlb. (Bottom) The
corresponding partition of the sample space and the step function.

Algorithm 1 Pseudocode of growing a tree recursively.

1: Start at a root node.
2: Select a cutpoint by some pre-specified split criterion, then partition the root node into

two child nodes according to the selected decision rule.
3: If pre-specified stop conditions are satisfied, stop the algorithm and estimate leaf param-

eters based on data in each leaf node. Otherwise, apply step 2 to each child node.

Similar to other machine learning approaches, tree models face the problem of bias-

variance trade-off (Pedro, 2000). If a tree grows deep, it partitions the space into many

smaller nodes and tends to overfit the data. In an extreme case, a tree can achieve zero

in-sample error if it partitions the space until each node has one and only one training data.

However, it cannot generalize well to out-of-the-sample data. On the other hand, a shallow

tree with only a few leaf nodes tends to have a higher bias of estimating the true function.

As a result, proper regularization of the tree structure is necessary for better generalization.

This section reviews the Classification and regression tree (CART), one of the most
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adopted decision tree models. Consider spitting at variable j and cutpoint s, CART searches

for the combination (split point) (j, s) that minimizes the sum of squares,

min
(j,s)

min
cleft

∑
xi∈ALeft

(yi − cleft)
2 + min

cright

∑
xi∈Aright

(yi − cright)
2

 . (1.4)

For any (j, s), the inner minimization is simply average of data in the nodes,

ĉleft = mean(yi | xi ∈ Aleft), ĉright = mean(yi | xi ∈ Aright). (1.5)

At each recursion, scanning all possible split variables and cutpoint (j, s) is feasible and can

be done efficiently. After finding the best split, the data is partitioned into two child nodes,

and the process is repeated for both child nodes until some terminating conditions are met.

Two remarks are noteworthy regarding the split criterion (1.4) of CART. First, it is a

function of both cutpoint (j, s) and leaf parameters (cleft, cright). Intuitively, estimation of

the leaf parameters is not accurate with noisy data, which might make a bad cutpoint have

better criterion evaluation. Second, CART optimizes the split criterion to select cutpoint

rather than randomization. In practice, it is hard to conclude that the second-best cutpoint

candidate is a bad one, especially when the criterion evaluations of the best two candidates

are close. The difference in evaluations might be a result of noise in the data. XBART is

inspired by these two remarks above; it estimates cutpoints and leaf parameters separately

and selects cutpoints stochastically. Details of XBART will be introduced in the following

chapters.

Another key question is, when should the algorithm terminate? Traditional stop rules

include setting a max depth for the tree or minimal leaf size. The algorithm terminates if

the current node is too deep or has only a few data within it. Another approach is stopping

if the decrease of sum-of-squares loss cannot exceed a threshold. These conditions cannot

guarantee proper regularization of the tree. Besides that, a frequently used strategy is to
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grow a large tree, then prune it and remove some nodes. Next we discuss about the pruning

algorithm of CART.

Tree size is a key tuning parameter that controls complexity. To prune a grown tree T ,

we first define a loss function that measures error and complexity by

Lα(T ) = L(T ) + α|T |, (1.6)

where L(T ) is the error of tree T on the testing set, |T | is number of nodes or tree size, and

α is tuning parameter that controls the strength of penalty. If α = 0, we do not care about

the complexity of the tree but only the prediction error.

Denote TB < TA if TB is a subtree of TA, or TB can be achieved by removing or collapsing

some leaf nodes of TA. Breiman et al. (1984) prove that for a given α, there exists a unique

best subtree Tα < T . Furthermore, 0 = α0 < α1, · · · , αn < +∞ generating intervals

[αi, αi+1), i = 0, 1, · · · , n. The set of all best subtrees {T0, · · · , Tn} on each interval of α

is a sequence such that Tn < Tn−1 < · · · < T0. As a result the pruning algorithm can be

done recursively, we collapse the internal nodes successively and continue until getting a root

(single node). Algorithm 2 presents the pruning procedue. Estimation of α is usually done

by cross validation.

Algorithm 2 Prune classification and regression tree.

1: Calculate loss function (1.6) of the current tree Lα(T ).
2: for each leaf nodes do
3: Calculate loss function (1.6) for subtree Tsub if the leaf node is pruned, denote it as
Lα(Tsub).

4: If Lα(Tsub) ≤ Lα(T ), prune the leaf node. Its ancestor becomes a new leaf node.
5: end for
6: Repeat the process for all leaf nodes until none of them can be pruned.

Rather than pruning an overgrown tree, Bayesian CART (Chipman et al., 1998) and

Bayesian additive regression trees (Chipman et al., 2010) take a fundamentally different

approach. They alleviate overfitting problems by putting a strong shrinkage prior on the

6



tree space and terminate splitting early. This shrinkage prior is introduced later in this

chapter.

Lastly, a single decision tree is prone to overfitting, sensitive to noisy data, and does not

generalize well. Ensemble learning methods overcome this problem by combining predictions

of many trees. The next two sections review two major ways for combining trees: random

forests and boosting.

1.3 Random forests

Random forests (Breiman, 2001) reduce variance of prediction function by bootstrap aggre-

gation approach, or bagging (Breiman, 1996). Bagging averages over trees that are trained

on randomly sampled (with replacement) subset of training data. Suppose the training data

is D = {(x1, y1), · · · , (xN , yN )}, for each bootstrap sample Db, b = 1, · · · , B, a CART

tree Tb(x) is fitted using m out of total p randomly drawn covariates. The random forests

estimator is simply average of all trees

f̂B(x) =
1

B

B∑
b=1

Tb(x). (1.7)

Each tree in the random forests is independent of others since it fits an independent bootstrap

subset of data. Therefore random forests can be parallelized naturally.

Bagging reduces variance of prediction dramatically, to see this, assume the training data

{(xi, yi)}i=1,··· ,N are drawn independently from probability distribution P . A tree Tb(x) fits

the bootstrap data {(x∗i , y
∗
i )}i=1,··· ,N . Consider the theoretical bagging estimate EPTb(x)

7



that draws samples from the real distribution P rather than the data. We write

EP [Y − Tb(x)]2 = EP [Y − EPTb(x) + EPTb(x)− Tb(x)]2

= EP [Y − EPTb(x)]2 + EP [Tb(x)− EPTb(x)]2

≥ EP [Y − EPTb(x)]2.

(1.8)

This shows that population aggregation does not increase mean squared loss. However, it is

not true for classification under 0-1 loss since the bias and variance are not addable.

Note that random forests take one more extra step than bagging; it samples both data

observations and covariate variables. If variables have positive pairwise correlation ρ and

variance σ2, the variance of the average is

ρσ2 +
1− ρ
B

σ2, (1.9)

where the first term never reduces as B increases. Random forests fit trees on a subset of

variables to reduce the correlation between the trees. Algorithm 3 summarizes the fitting

procedure of random forests.

Algorithm 3 Random Forests.

1: Draw a size N bootstrap sample (with replacement) from the training data.
2: Grow a CART tree Tb on the bootstrap data, for each recursion, pick the best cutpoint

based on m randomly drawn variables from all p variables.
3: Repeat step 1-2 for b = 1, · · · , B.

For more discussion about bagging or random forests, see Hastie et al. (2005). Other

notable reference about random forests include Scornet et al. (2015) for proving consistency

of random forests in L2 norm. Wright and Ziegler (2015) is a fast R package of random

forests for high dimensional data.
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1.4 Boosting

Boosting tree has shown remarkable results for a variety of prediction problems. It is a

solution to a classification problem: is it possible to boost weak classifiers (the one whose

prediction error rate is slightly better than random guess) to a powerful classifier? The

idea behind boosting is to apply the weak learners repeatedly to generate a sequence of

classifiers; each one is based on the prediction of all previous classifiers. The final prediction

is then combined through a weighted vote of this committee. Initially, boosting is proposed

to solve classification problems, and the idea applies to regression problems as well. The

first boosting procedure are Schapire (1990); Freund (1995). Gradient boosting regression

tree (GBDT) (Friedman, 2001, 2002) and Extreme Gradient Boosting (XGboost) (Chen

and Guestrin, 2016) are the current state-of-the-art tree-based algorithms. Although both

algorithms optimize loss function and approximate gradients by trees, there are a number of

major differences between them. I review both methods briefly in this section and emphasis

the differences. Other notable boosting algorithms includes AdaBoost (Freund et al., 1996;

Freund and Schapire, 1997), LightGBM (Ke et al., 2017). I focus on boosting trees in

this dissertation while boosting applies to general machine learning algorithms. For more

discussion from the perspective of learning theory and PAC learnability, see Valiant (1984);

Schapire (1990); Shalev-Shwartz and Ben-David (2014). For a comprehensive review of

ensemble methods, see Zhou (2012) and Hastie et al. (2005).

1.4.1 Gradient boosting

Gradient boosting (Friedman, 2001) works as its name shown, it takes gradient descend

method in a functional space. It has been observed to be successful particularly for tree

models (GBDT). In specific, gradient boosting trees fit a new tree to the negative gradient

of the loss function and produce a sequence of trees.

Suppose the aim is to learn a sum of trees model fM (x) = f1(x)+· · ·+fM (x) to minimize

9



the loss function on data {(yi, xi)}i=1,··· ,N

L(fM ) =
N∑
i=1

L(yi, f
M (xi))

=
N∑
i=1

L(yi, f
M−1(xi) + fM (xi))

(1.10)

Steepest descent method optimizes the objective function by multiple iterations. The m-th

iteration takes step in the direction of −αgm where α is learning rate and the i-th element

of the gradient vector is

gm,i = −
[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=fm−1(x)

. (1.11)

The fitted function is then updated to

fm = fm−1 − αgm. (1.12)

Optimizing (1.14) can be easily achieved by steepest descent. However, notice that

the gradient is defined on the training set, to gain better generalization we fit a tree to

approximate the gradient such that

T (x | Θ̂) = arg min
Θ

N∑
i=1

(−gm,i − T (xi | Θ))2, (1.13)

where we fit tree T with parameters Θ̂. Loop over M iterations, the corresponding sum of

trees is learnt by algorithm 4.
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Algorithm 4 Gradient Boosting Trees.

1: Initialization: f0(x) = arg minc
∑N
i=1 L(y, c).

2: for m = 1, 2, · · · ,M do
3: for i = 1, 2, · · · , N do
4: Calculate

rm,i = −
[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=fm−1(x)

.

5: end for
6: Fit a regression tree to rm,i, get leaf nodes Rmj , j = 1, · · · , J where J is total number

of leaf nodes.
7: for j = 1, 2, · · · , J do
8: Calculate

cm,j = arg min
c

∑
xi∈Rm,j

L(yi, f
m−1(xi) + c).

9: end for
10: The m-th tree is

∑J
j=1 cm,jI(x ∈ Rm,j), update sum of trees: fm(x) = fm−1(x) +∑J

j=1 cm,jI(x ∈ Rm,j).
11: end for
12: The output predictive function is fM (x).

1.4.2 XGboost

XGboost (Chen and Guestrin, 2016) stands for Extreme Gradient Boosting; it is an im-

plementation of the gradient boosting methods while more accurate approximation and

engineering optimization are applied. XGboost optimizes the loss function by Newton’s

method while the regular gradient boosting trees uses gradient descend. Furthermore, it

employs a number of tricks that make it is exceptionally efficient and is widely used in many

applications.

XGboost computes second-order gradients of the loss function to gain more information

of the direction of gradients. Not like GBDT, XGboost has penalty of tree complexity in the

loss function to improve model generalization. The loss function of XGboost has the form

of
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L(fM ) =
N∑
i=1

L(yi, f
M (xi)) +

M∑
m=1

Ω(fm)

where Ω(fm) = γGm +
1

2
λ||µ(fm)||2.

(1.14)

Here Ω(fm) term penalizes the complexity of the regression tree model, where Gm is number

of leaf nodes of tree fm and µ(fm) is a vector of all leaf parameters of the tree. Comparing

to GBDT, the extra penalization term in the objective function helps to smooth the final

tree to avoid overfitting.

Another notable improvement of XGboost is that it expands the loss function to the

second order derivative. From respectives of optimization, GBDT optimizes the objective

function by gradient descent and fit CART to negative gradients, but XGboost approximates

the change of loss function by second order derivatives and finds corresponding analytical

solutions. Consider Taylor expansion of the loss function at a new tree fM (x),

L(fM ) =
N∑
i=1

L(yi, f
M (xi)) + Ω(fM )

=
N∑
i=1

L(yi, f
M−1(xi)) + gifM (xi) +

1

2
hif

2
M (xi) + Ω(fM )

where gi =

[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=fm−1(x)

and hi =

[
∂2L(yi, f(xi))

∂f(xi)2

]
f(x)=fm−1(x)

.

(1.15)

Remove the constants, the simplified objective function is

L̃(fM ) =
N∑
i=1

gifM (xi) +
1

2
hif

2
M (xi) + γGm +

1

2
λ

Gm∑
i=1

µ2
i

=

Gm∑
j=1

∑
i∈Ij

gi

µj +
1

2

∑
i∈Ij

hi + λ

µ2
j + γGm

 (1.16)

where Ij denotes set of data in the j-th leaf node. The optimal leaf parameter of leaf j is
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given by

µ∗j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
(1.17)

and the corresponding optimal value of the objective function is

L̃∗ = −1

2

Gm∑
j=1

(∑
i∈Ij gi

)2∑
i∈Ij hi + λ

+ γGm. (1.18)

Equation (1.18) can be used as split criterion to evaluate goodness of a cutpoint candidate.

Beyond penalty of tree, XGboost deploys similar covariate variables subsampling strategy

as random forest to prevent overfitting.

XGboost deploys tricks of computer system to improve the performance further, such

as missing value handling, store data in compressed column format for parallel computing,

cache-aware access, and blocks for out-of-core computation. For more details, see Chen and

Guestrin (2016). Nielsen (2016) attempt to explain the reason of XGboost’s remarkable

performance.

1.5 Bayesian CART and Bayesian additive regression trees

The earliest attempt to apply Bayesian approach to tree models is arguably Buntine (1990).

Chipman et al. (1998) and Denison et al. (1998) propose Bayesian classification and regression

tree models independently. Denison et al. (1998) estimate the model via maximum likelihood

but not a full Bayesian inference approach. Chipman et al. (1998) propose a shrinkage prior

on tree space and a random-walk Metropolis-Hastings algorithm to sample from the full

posterior. In this dissertation, I will more closely follow that outlined by Chipman et al.

(1998). For a book treatment of Bayesian nonlinear classification and regression models, see

Denison et al. (2002).

Bayesian additive regression trees (BART) (Chipman et al., 2010) uses a sum of trees
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model, imposes a regularizing prior that keeps individual tree effect small. The BART model

uses the same prior forms of Bayesian CART, although the choice of hyper-parameters is

markedly different. BART is not merely a simple Bayesian version of random forest or

boosting, in which prior distributions are placed over parameters. Instead, the Bayesian

perspective inspires a fundamentally new tree growing split criterion. It achieves state-of-art

prediction accuracy with robustness to the choice of hyper-parameters.

In the following text, I view the BART model and sampling algorithm. Consider the

fundamental problem of learning an unknown function that predicts y by p dimensional

covariate vector x,

y = f(x) + ε (1.19)

where x = (x(1), · · ·x(p)) is a vector of p covariates, ε is assumed to be independent N(0, σ2)

distributed and f(x) is an unknown mean function f(x) = E[Y | x]. BART prior assume f

to be a sum of regression trees

f(x) =
L∑
i=1

gl(x, Tl, µl), (1.20)

where Tl denotes a regression tree (a partition of the space of X) and µl is a vector of scalars

associated to each leaf node of Tl. Each tree Tl consists of a set of decision rules which define

a partition of the covariate space, denote it as A1, · · · ,AB(l) where B(l) is total number

of leaf nodes in tree Tl. Each node of the partition is associated with a leaf parameter µlb.

Both the partition Tl and the leaf parameters µl together define a piecewise step function,

gl(x) =

B(l)∑
b=1

µlb1{x ∈ Ab}, (1.21)

where 1{x ∈ Ab} is the indicator that x is in leaf node Ab in tree Tl. See Figure (1.1) for

an illustration.
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Following Chipman et al. (2010), the tree prior p(Tl) is a branching process prior which

can be interpreted as a tree generating process with three components.

p
(

(T1, µ1), · · · , (TL, µL), σ2
)

=

 L∏
l=1

p(Tl, µl)

 p(σ2)

=

 L∏
l=1

p(µl | Tl)p(Tl)

 p(σ2)

=

 L∏
l=1

B(l)∏
b=1

(µlb | Tl)p(Tl)

 p(σ2)

(1.22)

• p(Tl): Each node at depth d has children with probability α(1+d)−β . Hyperparameters

α ∈ (0, 1) and β ∈ [0,∞) controls prior belief of size of the tree. Chipman et al. (2010)

recommend α = 0.95 and β = 2 to enforce small trees. If a node has children, it is

assigned a split rule xi ≤ Mb. We assume uniform prior on the splitting variable xi

and also uniform prior on a discrete set of possible splitting values Mb.

• p(µlb | Tl) : Leaf parameter µlb is assumed independent and identical Gaussian prior

N(0, τ). Note that the implied prior on response Y is N(0, τL).

• p(σ2): The residual standard deviation is assumed a standard inverse-Gamma prior

iG(a, b).

Note that the regularizing prior p(Tl) has a strong penalty on complex trees if the default

parameters are chosen. It plays the same role as the penalty term in the loss function of

XGboost.

Chipman et al. (2010) explore the posterior of BART via a Bayesian backfitting Markov

chain Monte Carlo (MCMC) scheme of Hastie et al. (2000). Leaf parameter µl and residual

variance σ2 are drawn from standard conjugate posterior and tree structure Tl is updated by a

random walk Metropolis-Hastings (MH) step. Let T = {T1, · · · , TL} andM = {µ1, · · · , µl}
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denote the set of all trees and leaf parameter vectors respectively. Set T−l = Tl/Tl denotes all

trees except the l-th tree. Notation M−l is analogous. The Bayesian backfitting algorithm

is presented as follows,

1. Tl, µl | T−l,M−l, σ2, y, for l = 1, . . . , L, which is done compositionally (for each l) as

(a) Tl | T−l,M−l, σ2, y,

(b) µl | T ,M−l, σ2, y,

2. σ2 | T ,M, y.

Taking advantage of the additive structure of the model, these updates can be written as

1. Tl, µl | rl, σ2, for l = 1, . . . , L, which is done compositionally (for each l) as

(a) Tl | rl, σ2,

(b) µl | Tl, rl, σ2,

2. σ2 | r.

for “residuals” defined as

r
(k+1)
l ≡ y −

∑
l′<l

g(X;Tl′ , µl′)
(k+1) −

∑
l′>l

g(X;Tl′ , µl′)
(k),

and

r(k) ≡ y −
L∑
l=1

g(X;Tl, µl)
(k), (1.23)

The draw of Tl | rl, σ
2 can be achieved using the random walk Metropolis-Hastings

algorithm of Chipman et al. (1998) which proposes a tree based on the current tree via four

possible moves. The four moves are as follows:

1. Grow: Uniformly draw a leaf node and split it to two children.
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2. Prune: Uniformly draw a leaf node and collapse it.

3. Swap: Swap split rules of two interior nodes.

4. Change: Uniformly draw an interior node and update its split rule.

The probability of four moves is 0.25, 0.25, 0.1, and 0.4, respectively. Note that Grow and

Prune only operate at a leaf node, Swap and Change make it possible to update nodes on

the top when the current tree is deep. Figure (1.2) illustrates the random walk proposals.

Grow

Prune
Swap Change

Figure 1.2: Four possible moves for the random walk proposal of BART MCMC. Square
nodes are intermediate nodes and circles are leaf nodes. We denote swapping decision rules
of two nodes by swapping their color in the graph.

Denote the proposal as T ′l , the probability to accept the proposal is

p(Tl → T ′l ) = min

{
1,
q(T ′l , Tl)

q(Tl, T
′
l )

L(rl | X,T ′l , µl)
L(rl | X,Tl, µl)

P (T ′l )

P (Tl)

}
. (1.24)

The transition ratio
q(T ′l ,Tl)
q(Tl,T

′
l )

is calculated by the probability of four moves.

Next, the draw of µl is only independent draws of the leaf node parameter from a con-

jugate normal posterior distribution. Then the residual updates for the subsequent j + 1-th

tree to fit. Lastly, the draw of σ2 is a draw from an inverse gamma distribution, and it is

the standard sampling scheme of residual variance.

The backfitting MCMC algorithm mixes surprisingly much better than the single tree

model of Chipman et al. (1998). If we only consider a single tree model, the MCMC algorithm

tends to stuck in a local neighborhood of a giant tree. In contrast, the backfitting MCMC
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of BART regrows each tree in every iteration, which helps to explore the posterior better.

Furthermore, experiments show that the MCMC algorithm gives similar robust results if we

restart the fitting process with different random seeds.

1.6 Comparison of tree-based methods

This section compares popular tree algorithms with XBART. Table 1.1 lists comparisons of

CART, random forest, boosting, XBART, and BART on various aspects. CART, random

forests, and boosting take likelihood equation 1.4 as the criterion, which is both a function

of cutpoint and leaf parameters. Thus they have to optimize cutpoint and leaf parameters

jointly. BART and XBART integrate out leaf parameters for split criterion and estimate

them after growing the tree. Boosting, XBART and BART fit trees sequentially and take

the sum of them, while random forest averages (aggregation) of multiple independent trees.

Here iteration indicates whether the algorithm learns multiple forests or not, both XBART

and BART sample multiple forests sequentially. Finally, BART fits trees by an inefficient

random-walk Metropolis-Hastings algorithm rather than a recursive partition algorithm and

has much higher computational demands.

Table 1.1: Comparison of tree-based methods.

CART RF XGBoost XBART BART

Leaf optimized optimized optimized integrate out at split integrate out at split
Parameters with splits with splits with splits then sample then sample

Criteria likelihood likelihood likelihood marginal likelihood marginal likelihood

Aggregation No
aggregation

No
aggregation aggregation

of trees of forests of forests
Sequential

No No Yes Yes Yes
fitting

Iterations No No No Yes Yes

Recursion Yes Yes Yes Yes No
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1.7 Contributions of this dissertation

BART has shown a promising prediction model in many applications recently, but its wider

adoption has been slowed by severe computational demands relative to alternatives. The

random walk Metropolis-Hastings Markov-chain Monte Carlo sampling approach makes pos-

terior exploration inefficient. This dissertation develops a variant of BART that gives rapid

posterior estimation, making it as fast as XGboost and still retaining BART’s accuracy and

robustness to hyper-parameters. XBART fits tree recursively similar to CART while the

regularizing prior of BART is attained. The algorithm of XBART for Gaussian regression

and computational tricks are summarized in He et al. (2019) and He and Hahn (2020). In

addition to computation, this dissertation also contributes to the theory of XBART. I prove

consistency in L2 norm sense for a simplified model of XBART. Lastly, this dissertation

concludes with discussion about directions for future research.
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CHAPTER 2

XBART REGRESSION

Let y denote a continuous outcome in R1. Our goal is to predict y by a length p covariate

vector x = (x(1), · · · ,x(p)). I demonstrate the general framework of the algorithm in this

section; details of the regression setting are introduced in the following section. This section

begin with the algorithm for fitting a single tree, then proceed to tree ensembles, or forests.

Next I show computational strategies in implementing an efficient algorithm. Lastly, I discuss

about the model implied by the recursively growing algorithm.

2.1 Fitting a single tree recursively and stochastically

A tree Tl (1 ≤ l ≤ L) is a set of decision rules defining a rectangular partition of the covariate

space {Al1, · · · ,AlBl}. Each terminal node Alb is associated with a vector of leaf parameter

µlb. I denote a tree g(x;Tl, µl) where µl = (µl1, · · · , µlBl) is a vector of all leaf parameters.

Each pair of (Tl, µl) parameterizes a step function on covariate space,

g(x;Tl, µl) = µlb, if x ∈ Alb.

Figure 1.1 depicts a regression tree. The left panel shows a decision rule structure, and

the right panel plots the corresponding partition of the space as well as the associated leaf

parameters. Ideally, a tree partitions the space into fine irregular mesh where outcome

observations within each leaf node (defining a hyperrectangle in covariate space) are nearly

homogeneous. Predicting the outcome of a new observation then follows according to the

leaf parameter associated with the node it falls within.

Usually, a tree algorithm learns the partition by recursively partitioning the data set one

x variable at a time, and partitions the child nodes similarly as parent node until reaching

terminating conditions. Algorithm 1 gives the pseudocode for the essential step of fitting a
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tree recursively.

Most popular tree-based methods deploy Algorithm 1 varying in terms of their split crite-

ria and stopping conditions. Essentially, split criteria are functions of a cutpoint, measuring

homogeneity within the two child nodes produced by the implied split. CART (Breiman

et al., 1984), for instance, uses mean squared error to define its split criterion. Note also

that CART and other recursive tree algorithms optimize their split criteria over the set

of all cutpoint candidates in order to select a cutpoint. Frequently used stop conditions

include maximum depth of a tree, minimal number of data observations within leaf node

or a threshold for percent change of split criterion from parent to child nodes. Despite its

simplicity and elegance, the exhaustive search approach tends to grow a tree unnecessarily

deep, thereby over-fitting the data, thus pruning (the merge of some leaf nodes via a bottom

up process) after model fitting is usual necessary to further throttle model complexity. In

contast, BART provides a Bayesian perspective on tree models by using a regularization

prior on tree space which preferences smaller trees. The excellent empirical performance of

BART suggests that this prior regularization is beneficial. However, BART does not fit trees

recursively but rather explores the posterior distribution over trees via a Bayesian backfit-

ting MCMC scheme, which is computationally intensive, especially for large scale data. This

computational burden hampers BART’s usefulness on large scale data.

Inspired by both CART and BART, our proposed XBART framework combines strength

from each. XBART is a sum of trees in which each individual tree is grown according to a

model-based split criterion derived from an integrated-likelihood, but draws a cutpoint with

probability proportional to split criterion. Furthermore, XBART stochastically terminates

the growing process, the so-called no-split option; this allows trees to stop growing before

reaching stop conditions and helps to prevent over-fitting.

Let’s briefly clarify notation before turning to details of the algorithm. The predictor

matrix X, with dimension n× p, defines a set of splitting rule candidates, denoted C, which
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are indexed as (j, k) where j = 1, . . . p indexes a variable (column) of X and k indexes

a set of candidate cutpoints. Let |C| denote the total number of candidate splitting rules

(cutpoints). Let Φ denote prior hyper-parameters and Ψ denote model parameters, which

are both considered given and fixed when growing a single tree (a distinction that will be

clarified in specific examples).

Inspired by the Bayesian approach, we define a likelihood L(yb;µb,Ψb) on one leaf node

b with leaf-specific parameter µb and other model parameters Φb (given and fixed during the

tree growing process). In the following text, we omit subscript b for simplicity. For instance,

the likelihood can be Gaussian for regression, details of which are given in section 3. The

leaf parameter µ is given a prior π(µ | Φ). We derive our split criterion by integrating out

the leaf parameter µ:

m(s | Φ,Ψ) :=

∫
L(y;µ,Ψ)π(µ | Φ)dµ, (2.1)

where s represents sufficient statistics of data y falling in the current node.

A cutpoint (j, k) partitions the current node to left and right child nodes, with sufficient

statistics sljk and srjk calculated based on y respectively. Assuming that observations in

separate leaf nodes are independent, the joint integrated-likelihood is simply the product of

the two sides

m(sljk | Φ,Ψ)m(srjk | Φ,Ψ), (2.2)

which defines the split criterion for cutpoint (j, k). Furthermore, the split criterion for no-

split is defined as

|C|

(
(1 + d)β

α
− 1

)
m(s∅ | Φ,Ψ) (2.3)

where d is depth of the current node, s∅ represents sufficient statistics on current node and

α, β are hyper-parameters. The weight of no-split increases significantly as a tree grows

deeper, strongly penalizing deep trees and thereby favoring “weak learners” in the parlance
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of the boosting literature. Besides the no-split option, traditional stopping conditions are

also imposed, such as setting a maximum depth or a minimal number of observations per

node.

Once the split criterion has been evaluated at all cutpoint candidates, as well as the

no-split option (retained from the previous split), a cutpoint is randomly sampled with

probability proportional to its split criterion value. Unlike non-model-based tree algorithms,

XBART’s split criterion has a natural probabilistic interpretation as it is derived as an

integrated-likelihood and sampling follows according to Bayes rule. Indeed, the prior proba-

bility of the no-split option (after normalizing with respect to all other cutpoint candidates)

matches that of the tree prior used in standard BART (Chipman et al., 2010).

Theorem 1. The a priori probability of splitting at a node of depth d implied by algorithm

5 (grow-from-root) is α(1 + d)−β.

Proof. The proof is by direct calculation. Ignore the data contribution from the marginal

likelihood function m(·) by setting these terms to 1 in the expressions in line 8. Accordingly,

the probability of any cutpoint (j, k) ∈ C has prior probability proportional to 1 and the

prior probability of no-split is proportional to |C|
(

(1+d)β

α − 1

)
. Therefore, the total weight

given to splitting is
∑
C 1 = |C| and normalizing gives the prior probability of splitting as

split weight

split weight + no split weight
=

|C|

|C|
(

(1+d)β

α − 1
)

+ |C|
= α(1 + d)−β .

Remark Observe that sampling a cutpoint stochastically rather than optimizing the split

criterion substantially improves performance, based on simulation experiments. Intuitively,

sampling cutpoints rather than optimizing them helps alleviate over-fitting and encourages

wider exploration of the tree space.
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Algorithm 5 GrowFromRoot

1: procedure GFR(y,X,Ψ,Φ, d, T , node)
2: outcome Modifies T by adding nodes and sampling associated leaf parameters.
3: s∅ ← s(y,X,Ψ, C, all). . Compute sufficient statistic of not splitting.
4: for (j, k) ∈ C do . Calculated recursively in a single sweep of the data per variable.
5: sljk ← s(y,X,Ψ, C, j, k, left). . Compute sufficient statistic of left candidate node.
6: srjk ← s(y,X,Ψ, C, j, k, right). . Compute sufficient statistic of right candidate node.
7: end for
8: Sample cutpoint (j, k) proportional to integrated likelihoods

m(sljk)m(srjk)

or

|C|
(

(1 + d)β

α
− 1

)
m(s∅)

for the no-split option.
9: if no-split is selected or stop conditions are reached then

10: θnode ← SampleParameters(s∅)
11: return.
12: else
13: Create two new nodes, denoted left node and right node, and growing T by designat-

ing them as the current node’s (node) children.
14: Sift the data into left and right parts, according to the selected cutpoint xij′ ≤ x∗kj and

xij′ > x∗kj , respectively, where x∗kj is the value corresponding to the sampled cutpoint (j, k).
15: GFR(yleft,Xleft,Ψ,Φ, d+ 1, T , left node)
16: GFR(yright,Xright,Ψ,Φ, d+ 1,T , right node)
17: end if
18: end procedure

Once the no-split option is selected or stopping conditions are met, the current node

becomes a terminating node or a leaf. The leaf parameter µlb is then updated based on

data in the current leaf by standard Bayesian posterior sampling using conjugate likelihood

and prior. Algorithm 5 presents the GrowFromRoot function that grows a single tree for

XBART.

In summary, XBART implies the same prior probability as BART by the design of the

split criterion, while fitting a tree recursively. This framework enjoys great flexibility of

potential applications. In this dissertation I focus on the case where the marginal likelihood

arises from a Gaussian mean regression model (section 2.6), but it is straightforward to
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substitute an integrated-likelihood function m(s | Φ,Ψ) from other models.

2.2 Forest

A forest, as the name sugggests, is an ensemble of trees. Ensemble learning is a widely used

technique to combine multiple learning algorithms to improve the overall prediction accuracy.

Random forests (Breiman, 1996, 2001) takes an average of trees fitting bootstrap resampled

data; adaBoost (Freund and Schapire, 1997), gradient boosting (Breiman, 1997; Friedman,

2001, 2002) and BART (Chipman et al., 2010) explicitly fit a sum of trees. XBART Gaussian

nonlinear regression takes the same sum of trees form as BART does:

f(x) =
L∑
i=1

gl(x;Tl, µl), (2.4)

where step function gl(x;Tl, µl) denotes a tree defined by partition Tl and corresponding leaf

parameters µl.

The stochastic tree ensemble method proceeds similarly to an MCMC algorithm. Suppose

we draw I samples (sweeps) of forests, and each forest contains L trees. When updating the

h-th tree in the iter-th iteration, a new tree is grown to fit the partial residuals r
(iter)
h , which

are defined as the partial residual of the target (y) after subtracting off the contribution of

all the other trees. Specifically, the partial residuals are defined as

r
(iter+1)
h ≡ y −

∑
h′<h

g(X;Th′ , µh′)
(iter+1) −

∑
h′>h

g(X;Th′ , µh′)
(iter),

while the total residual is taken with respect to all trees

r̃
(iter+1)
h ≡ r

(iter+1)
h − g(X;Th, µh)(iter+1).

Algorithm 6 draws I samples of the forest; we refer to one pass of the algorithm, sampling
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each tree, as a sweep. Every tree is updated by algorithm 5 GrowFromRoot in each iteration,

where the “data” are the partial residuals as calculated at the current iteration. Extra model-

dependent non-tree parameters Ψ are updated in between sampling each tree; specifically,

the residual standard deviation σ is sampled after each tree. Details are summarized in the

following sections.

Algorithm 6 Accelerated Bayesian Additive Regression Trees (XBART)

1: procedure XBART(y,X,Φ, L, I)
2: output I posterior draws of a forest (and associated leaf parameters) comprising L trees.
3: Initialize Ψ, partial fit Riterh .
4: for iter in 1 to I do
5: for h in 1 to L do
6: Create new node.
7: Initialize tree T iterh consisting only of new node.
8: GFR(riterh , X,Ψ,Φ, T iterh , d = 0, new node)
9: Update riterh+1 (or riter+1

1 if h = L), the target to fit for the next tree and full residual

r̃
(iter+1)
h .

10: Sample non-tree parameters of Ψ, probably based on the full residual r̃
(iter+1)
h .

11: end for
12: end for
13: end procedure

Next, I study theoretical properties of Algorithm 6.

Theorem 2. The algorithm sampling F = {Th}1≤h≤L is a finite-state Markov chain with

stationary distribution.

Proof. We consider the process F = {Th}1≤h≤L. Leaf parameters µ = {µh}1≤h≤L are

updated conditional on forest F based on standard conjugate Bayesian posterior draws and

are not to be regarded as part of the Markov chain of the forest.

First, observe that each tree has a maximum depth and all cutpoint candidates are defined

on a finite covariate matrix X. Therefore a single tree has finite states. The forest is an

ensemble of a finite number of trees, thus has a finite number of states as well. The probability

of the GrowFromRoot algorithm drawing a single tree is a product of the probabilities

of drawing specific cutpoints at each node, thus p(Tj | T−j , µ−j) > 0. In addition, the
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GrowFromRoot algorithm updates T iterh fitting riterh , which is defined by trees and leaf

parameters with subscript 1 < j < h in iter-th sweeps and h + 1 < j < L in (iter − 1)-th

sweeps. Therefore, the forest process is a finite-state Markov chain.

Second, I claim that because the split criterion is defined by an integrated likelihood,

it has non-zero evaluations for all cutpoint candidates (including the no-split option) given

fitting data riterh . Let T−j = {Th}1≤h≤L/Tj and µ−j = {µh}1≤h≤L/µj be trees and leaf

parameters excepting the j-th one, respectively. We have

p(Tj | T−j) =

∫ ∫
p(Tj | y, T−j , µ−j ,Ψ)f(µ−j | y, T−j)f(Ψ)dΨdµ−j > 0, (2.5)

since f(µ−j | y, T−j), the usual Bayesian posterior of drawing leaf parameters, is non-zero.

Note that this integral arises via the algorithmic implementation that draws Tj by first

drawing µ−j and Ψ, and then drawing Tj via GrowFromRoot.

Lastly, consider the transition probability between any two forests, F 1 = {T 1
h}1≤h≤L

and F 2 = {T 2
h}1≤h≤L. Observe that there is at least one way to transition from one forest

to another, which is to regrow each tree and replace them one by one. Therefore, we have

P (F2 | F1) ≥
L∏
j=1

p
(
T 2
j | {T

2
h}1≤h<j , {T

1
h}j+1≤h<L

)
> 0,

where the last inequality is from equation (2.5).

In conclusion, the forest process has a finite number of possible states, and the transition

probability between any two states is positive. Therefore, by standard results, it is a finite-

state Markov chain with a stationary distribution.

To obtain a prediction from XBART, we take posterior averages as if the sampled trees

were draws from a standard Bayesian Monte Carlo algorithm. That is, given I iterations of

the algorithm, the final I − I0 samples are used to compute a point-wise average function
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evaluation, where I0 < I denotes the length of the burn-in period. We recommend I = 40

and I0 = 15 for routine use. The final estimator is therefore expressible as

f̄(X) =
1

I − I0

I∑
k>I0

f (k)(X).

where f (k) denotes a sample of the forest, as in equation 2.4, drawn by algorithm 6. This

would correspond to the Bayes optimal estimator under mean squared error estimation loss, if

we regard our samples as coming from a proper posterior distribution. As the GrowFromRoot

strategy is not a proper full conditional, this estimator must be considered an approximation

of some sort. Nonetheless, simulation results strongly suggest that the approximation is

adequate. In subsequent sections we also provide some theory suggesting that XBART is a

consistent estimator in its own right.

As for quantification of estimation uncertainty, note that with only I = 40 sweeps, the

XBART posterior would certainly understate the estimation uncertainty even if we had

independent Monte Carlo draws from a valid posterior distribution. However, the standard

BART MCMC is probably not mixing well in most contexts, either, and yet still provides

useful, if approximate, uncertainty quantification. It is noteworthy that experiments with a

version of an XBART estimate based on only the final sweep (that is, letting I − I0 = 1)

perform worse than XBART with I−I0 > 1, suggesting that the posterior exploration, while

partial, is still beneficial. In any event, the next section describes how to combine XBART

with standard BART MCMC to get full Bayesian inference that appears to be both faster

and more accurate than BART MCMC alone.

2.3 Warm-start BART MCMC

Standard BART MCMC (Chipman et al., 2010) initializes each tree at the root (i.e., a tree

only one node) and explores the posterior over trees via a random-walk Metropolis-Hastings
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algorithm. This approach works surprisingly well in practice, but it is natural to wonder if

it takes unnecessarily long to find favorable regions in tree space. Because XBART provides

a fast approximation to the BART posterior, initializing BART MCMC at XBART trees

rather than roots is a promising strategy to help speed convergence and also to accelerate

posterior exploration by running multiple chains. In fact, we find that this approach yields

improved point estimation and posterior credible intervals with substantially higher pointwise

frequentist coverage of the mean function, and in a fraction of the total run time. These

simulation results are reported in section 4.2.

2.4 Adaptive variable importance weights

Our XBART implementation strikes an intermediate balance between the local BART up-

dates, which randomly consider one variable at a time, and the all-variables Bayes rule

described above. Specifically, we consider only m ≤ V variables at a time when sampling

each splitting rule. Rather than drawing these variables uniformly at random as is done in

random forests, we introduce a parameter vector w which denotes the prior probability that

a given variable is chosen to be split on, as suggested in Linero (2018). Before sampling

each splitting rule, we randomly select m variables (without replacement) with probability

proportional to w.

2.5 Computational strategies

In the remainder of this section, I catalogue implementation details that improve the com-

putational efficiency of the algorithm. These implementational details serve to make the al-

gorithm competitive with state-of-the-art supervised learning algorithms, such as XGBoost.

These particular strategies, such as variable presorting and careful handling of categorical co-

variates, are inapplicable in the standard BART MCMC and XBART’s ability to incorporate
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them is the basis of its improved performance.

2.5.1 Pre-sorting predictor variables

Observe that the XBART split criterion depends on sufficient statistics only, namely the

sum of the observations in a node (that is, at a given level of the recursion). An important

implication of this, for computation, is that with sorted predictor variables, the various

cutpoint integrated likelihoods can be computed rapidly via a single sweep through the data

(per variable), taking cumulative sums. Let O denote the V -by-n array such that ovh denotes

the index, in the data, of the observation with the h-th smallest value of the v-th predictor

variable xv. Then, taking the cumulative sums gives

s(≤, v, c) =
∑
h≤c

rovh

and

s(>, v, c) =
n∑
h=1

rlh − s(≤, v, c).

The subscript l on the residual indicates that these evaluations pertain to the update of the

lth tree.

The above formulation is useful if the data can be presorted and, furthermore, the sorting

can be maintained at all levels of the recursive tree-growing process. To achieve this, we must

“sift” each of the variables before passing to the next level of the recursion. Specifically, we

form two new index matrices O≤ and O> that partition the data according to the selected

cutpoint. For the selected split variable v and selected split c, this is automatic: O≤v = Ov,1:c

and O>v = Ov,(c+1):n. For the other V − 1 variables, we sift them by looping through all

n available observations, populating O≤q and O>q , for q 6= v, sequentially, with values oqj

according to whether xvoqj ≤ c or xvoqj > c, for j = 1, . . . , n.

Because the data is processed in sorted order, the ordering will be preserved in each of

30



the new matrices O≤ and O>. This strategy was first presented in Mehta et al. (1996) in

the context of classification algorithms and has be rediscovered a number of times since then.

The pre-sorting and sifting O strategy is easy to implement for continuous covariates, but

not for categorical covariates due to the possibility of ties in the data. Appendix A describes

a special data structure for dealing with ties efficiently.

2.5.2 Adaptive cutpoint grid

Evaluating the integrated likelihood criterion is straightforward, but the summation and

normalization required to sample the cutpoints contributes a substantial computational bur-

den itself. Therefore, it is helpful to consider a restricted number of cutpoints C. This

can be achieved simply by taking every jth value (starting from the smallest) as an eligible

cutpoint with j = bnb−2
C c. As the tree grows deeper, the amount of data that is skipped

over diminishes. Eventually, we get nb < C, and each data point defines a unique cutpoint.

In this way, the data could, without regularization, be fit perfectly, even though the number

of cutpoints at any given level is given an upper limit. As a default, we set the number of

cutpoints to min (n, 100), where n is the sample size of the entire data set.

Our cutpoint subsampling strategy is more straightforward than the elaborate cutpoint

subselection search heuristics used by XGBoost (Chen and Guestrin, 2016) and LightGBM

(Ke et al., 2017), which both consider the gradient evaluated at each cutpoint when deter-

mining the next split. Our approach does not consider the response information at all, but

rather defines a predictor-dependent prior on the response surface. That is, given a design

matrix X, sample functions can be drawn from the prior distribution by sampling trees,

splitting uniformly at random among the cutpoints defined by the node-specific quantiles,

in a sequential fashion.
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2.5.3 Variable importance weights

The variable weight parameter w is given a Dirichlet prior with hyper-parameters w̄ that is

initialized to all ones. At each iteration of the first sweep through the forest, w̄ is incremented

to count the total number of splits across all trees. The split counts are then updated in

between each tree sampling/growth step:

w̄← w̄ − w̄
(k−1)
l + w̄

(k)
l

where w̄
(k)
l denotes the length-V vector recording the number of splits on each variable in

tree l at iteration k. The weight parameter is then re-sampled as w ∼ Dirichlet(w̄), which is

a standard practice sampling weights (Blei et al., 2003; Kolar et al., 2017; Yu et al., 2018a,

2017a). Splits that improve the likelihood function will be chosen more often than those

that don’t. The parameter w is then updated to reflect that, making chosen variables more

likely to be considered in subsequent sweeps. In practice, we find it is helpful to use all V

variables during an initialization phase, to more rapidly obtain an accurate initial estimate

of w.

2.6 Tree-based models for nonlinear regression

This section provides details of XBART in the Gaussian nonlinear regression setting. We

derive specific split criteria and sampling strategies for leaf parameters µ and non-tree pa-

rameters Ψ. We begin by considering a nonlinear mean regression additive error model

y = f(x) + ε, (2.6)

where f is the unknown mean regression function f(x) = E[y | x] and ε ∼ N(0, σ2).

The extra non-tree parameter is residual variance σ2, which is given a standard inverse-
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Gamma(a, b) prior and updated in between each tree update. Reviewing notation, x =

(x(1), · · · ,x(p)) is a p dimensional covariate vector and y ∈ R is the real response variable.

Capital letters represent a vector or matrix of data, Y = (y1, · · · , yn) is a vector of n

observations and X = (x′1, · · · ,xn)′ is a n× p matrix of covariate data. Leaf parameters are

given independent and identical Gaussian priors, µ ∼ N(0, τ). In the notation from above,

these modeling choices correspond to hyper-parameter and model parameters Φ = (a, b, τ)

and Ψ = (σ), respectively.

Assuming that observations in the same leaf node share a common mean parameter, the

prior predictive distribution — obtained by integrating out the unknown group-specific mean

— is simply a mean-zero multivariate Gaussian distribution with covariance matrix V,

p(Y | τ, σ2) =

∫
N(Y | µ, σ2In)N(µ | 0, τ)dµ = N(0,V), (2.7)

where N(Y | µ, σ2In) denotes the density of multivariate Gaussian distribution with mean µ

and covariance matrix σ2In, n is number of data observations in the current node. We have

V = τJJt + σ2In, V−1 = σ−2I− τ

σ2(σ2 + τn)
JJt,

where J is a length n column vector of all ones. Observe that the prior predictive density of

Y ∼ N(0,V) is

p(Y | τ, σ2) = (2π)−n/2 det(V)−1/2 exp

(
−1

2
Y tV−1Y

)
,

which can be simplified by a direct application of the matrix inversion lemma to V−1.

Applying Sylvester’s determinant theorem to det V−1 yields

det V−1 = σ−2n
(

1− τn

σ2 + τn

)
= σ−2n

(
σ2

σ2 + τn

)
.
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Taking logarithms yields a marginal log-likelihood of

−n
2

log (2π)− n log (σ) +
1

2
log

(
σ2

σ2 + τn

)
− 1

2

Y tY

σ2
+

1

2

τ

σ2(σ2 + τn)
s2,

where we write the sufficient statistics s ≡ Y tJ =
∑
i yi so that Y ′JJtY = (

∑
i yi)

2 = s2.

This likelihood is applied separately to two child nodes of a single cutpoint (j, k). Because

observations in different leaf nodes are independent (conditional on σ2), the full marginal

log-likelihood is given by

2∑
b=1

{
−nb

2
log (2π)− nb log (σ) +

1

2
log

(
σ2

σ2 + τnb

)
− 1

2

Y tb Yb
σ2

+
1

2

τ

σ2(σ2 + τnb)
s2
b

}

=− n

2
log (2π)− n log (σ)− 1

2

Y tY

σ2
+

1

2

2∑
b=1

{
log

(
σ2

σ2 + τnb

)
+

τ

σ2(σ2 + τnb)
s2
b

}
,

where index b runs over two child nodes and
∑2
b=1 nb = n. Notice that the first three terms

are not functions of the partition (the tree parameter), and so may be ignored, leaving

1

2

2∑
b=1

{
log

(
σ2

σ2 + τnb

)
+

τ

σ2(σ2 + τnb)
s2
b

}

as the model-based split criterion, where (nb, sb) are functions of the data. Therefore, we

define the log-integrated-likelihood

log(m(s)) = log

(
σ2

σ2 + τn

)
+

τ

σ2(σ2 + τn)
s2. (2.8)
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The logarithm of split criterion (j, k) is

log
(
m(sljk)m(srjk)

)
= log

(
σ2

σ2 + τnljk

)
+

τ

σ2(σ2 + τnljk)

(
sljk

)2

+ log

(
σ2

σ2 + τnrjk

)
+

τ

σ2(σ2 + τnrjk)

(
srjk

)2
,

(2.9)

where nljk = |AL(j, k)| and nrjk = |AR(j, k)| are number of data observations on left or right

child node if split at cutpoint (j, k). sljk and srjk are sufficient statistics

sljk =
∑

i:xi∈AL(j,k)

yi, srjk =
∑

i:xi∈AR(j,k)

yi.

Similarly, the log-probability of no-split is

log

(
|C|

(
(1 + d)β

α
− 1

))
+ log

(
σ2

σ2 + τn

)
+

τ

σ2(σ2 + τn)
s2. (2.10)

For notational simplicity, we overload n as the number of data observations in the current

node and s is sum of all y in the current node. It is apparent that n = nljk + nrjk and

s = sljk + srjk for all cutpoints (j, k). Note that the split criterion involves residual standard

error σ, meaning that it is adaptively regularizing within the model fitting process.

If the no-split option is selected or stopping conditions are satsified, we label this node

as leaf Alb, the b-th leaf of l-th tree. Leaf parameter µlb associated with leaf Alb is updated

in step 10 of Algorithm 5. We assume a conjugate Gaussian prior µlb ∼ N(0, τ), therefore

the posterior to sample from is

µlb ∼ N

 slb

σ2
(

1
τ + nlb

σ2

) , 1
1
τ + nlb

σ2

 , (2.11)

where nlb is number of data observations and slb =
∑
y∈Alb y is the sufficient statistic in the
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leaf node corresponding to leaf parameter µlb.

Next, we describe the model parameter sampling steps in Algorithm 6. The only non-

tree model parameter for Gaussian nonlinear regression is the residual variance σ2, which

updates after one draw of a tree in step 10 of Algorithm 6. For σ2 we assume a standard

inverse-Gamma prior, σ2 ∼ inverse-Gamma(a, b), and the posterior is

σ2 ∼ inverse-Gamma
(
N + a, r̃

(iter)t
h r̃

(iter)
h + b

)
, (2.12)

where r̃
(iter)
h is the total residual after updating the h-th tree in the iter-th Monte Carlo

iteration, defined as

r̃
(iter)
h ≡ y −

∑
h′≤h

g(X;Th′ , µh′)
(iter+1) −

∑
h′>h

g(X;Th′ , µh′)
(iter).

Remark The derivations above pertain to growing a single tree by Algorithm 5. Note that

in the context of the forest, the data y in the above would instead be the residual rh.

The default parameters, used in all simulations reported here, are L = 30 trees and

τ = Var(y)/L.

2.7 Model implied by the GrowFromRoot algorithm

The XBART cutpoint sampling, while based on Bayes rule, is myopic in the sense that it does

not consider the entire tree structure when evaluating its (marginal) likelihood. In particular,

the recursive structure of a binary tree implies that the data is “reused” at different levels

of the tree.

However, interestingly, in the case of a single tree it is possible to show that GrowFrom-

Root can be interpreted as a proper Bayesian model, as follows. From equation (2.7), the

integrated likelihood of a single leaf is Gaussian with mean a vector of zeros and precision

36



matrix

Ω := V−1 = σ−2I− τ

σ2(σ2 + τn)
JJt,

where I is a n× n identity matrix and J is a vector of ones with length n. Now, regard the

tree growing algorithm as an exhaustive one, always growing maximum depth trees (relative

to X): while the tree keeps splitting, the integrated likelihood is a Gaussian likelihood; once

a node stops splitting, the likelihood of all the nodes beneath it degenerate to 1.

The posterior of a single tree model is

πgfr(T | y) ∝
B∏
i=0

φ(y; 0,Ωi)P (i), (2.13)

where B is number of all nodes in the tree, and φ(y; 0,Ω) is a multivariate Gaussian PDF

with precision matrix Ω and P (i) = α(1 + di)
−β is the BART prior probability of the i-

th node reaching depth di. Figure 2.1 illustrates the assignment and structure of precision

matrices. All precision matrices have the same dimension n, the total number of observations.

Since each non-root node only has a subset of the data, the precision matrix has a block-

diagonal structure with a non-zero sub-matrix on the diagonal indicating correlation of data

observations in that node and 0 elsewhere (it is always possible to rearrange order of the

data to make the precision matrix block-diagonal). The cumulative product of Gaussian

kernels in equation (2.13) represents another Gaussian kernel up to a normalizing constant

B∏
i=1

φ(y; 0,Ωi)P (i) = exp
(
ξi=1,··· ,B − ξB

)
exp

(
ξB −

1

2
ytΩBy

) B∏
i=1

P (i), (2.14)

where ΩB =
∑B
i=1 Ωi, the normalizing constants ξB = −1

2

(
N log(2π)− log |ΩB |

)
and

ξi=1,··· ,B =
∑B
i=1−

1
2 (N log(2π)− log |Ωi|). Therefore, we may consider the GrowFrom-
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φ(y; 0,Ω0)π(Ω0)

φ(y; 0,Ω1)π(Ω1 | Ω0) φ(y; 0,Ω2)π(Ω2 | Ω0)

φ(y; 0,Ω3)π(Ω3 | Ω2) φ(y; 0,Ω4)π(Ω4 | Ω2)

no yes

no yes

(a) Nodes and corresponding precision matrices.

Ω0 =


 ,Ω1 =


 ,Ω2 =




Ω3 =


Ω4 =




(b) Precision matrices

Figure 2.1: An illustration of the precision matrices at each node, from root to leaves. Left
panel: assignment of precision matrix at each node. Right panel: illustration of precision
matrices, where grey block represents non-zero elements and white blocks are 0.
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Root likelihood to be the single multivariate Gaussian

φ(y; 0,ΩB) = exp

(
ξB −

1

2
ytΩBy

)
, (2.15)

in which the data only appear once, and the implied prior of GrowFromRoot (which does

not include y), is

exp
(
ξi=1,··· ,B

) B∏
i=1

P (i). (2.16)

On the other hand, the BART posterior is

πbart(T | y) ∝
∏

i∈Leaf

φ(y; 0,Ωi)
B∏
i=1

P (i), (2.17)

Here the likelihood is
∏
i∈Leaf φ(y; 0,Ωi) and the prior is

∏B
i=1 P (i).

Remark The discussion above is only to show that the GrowFromRoot sampling process

can be considered a well defined model, but it is not the one that is used to sample leaf

parameters. Indeed, the multivariate Gaussian model above corresponds to building up

the mean function from a weighted average of node-specific mean vectors. We attempted

estimating the mean parameters in this fashion and it was dramatically outperformed by

using only the leaf parameters, as in BART. Nonetheless, the GrowFromRoot algorithm

appears to produce samples of trees that perform well in conjunction with the leaf-only

estimation method of the conditional means.
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CHAPTER 3

CONSISTENCY OF REGRESSION TREE

3.1 Overview of theoretical results

Tree-based methods have a substantial, if incomplete, body of theory going back several

decades. Gordon and Olshen (1980) analyze the consistency of recursive partitioning irre-

spective of the specific split criterion; to achieve this they assume that the diameter of leaf

node hyperrectangles shrink to zero at a certain rate. Breiman (2001) gives an upper bound

of the generalization error of random forest, and Lin and Jeon (2006) show a lower bound

of the generalization error of a nonadaptive forest. Biau et al. (2008) and Ishwaran et al.

(2008) establish consistency of a simplified random forest model. Scornet et al. (2015) is

the first consistency result of the original random forest algorithm, and their theory applies

to the consistency of CART directly. Wager and Athey (2018) study the asymptotic sam-

pling distribution of random forest. Zhang et al. (2005) prove consistency and derive the

convergence rate for boosting with early stopping, although the result is non-constructive in

that their results are not known to apply to any specific stopping-rule. Bartlett and Traskin

(2007) establish consistency theory for the adaBoost algorithm.

There has also been a surge of recent theoretical results for BART. Coram et al. (2006)

prove consistency for Bayesian histograms of binary regression. Rocková and van der Pas

(2017) prove posterior consistency for a variant of the BART prior and Ročková and Saha

(2019) study posterior concentration of the exact BART prior. Linero and Yang (2018)

establish posterior consistency for a fractional posterior of soft BART (SBART), whose trees

have soft decision rules.

In this chapter, I prove the consistency of a single tree of the XBART algorithm for

the Gaussian nonlinear regression case. First, we establish the connection of our XBART

sampling strategy to the optimization approach in CART by applying the perturb-max
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theorem. Having reconciled the sampling versus optimizing distinction, we are then able to

adapt the consistency proof for CART to the XBART split criterion. The key step of the

proof is to show that variation of the true function is small in each hyper-rectangular cells

associated to a leaf node, as the number of data observations grows large enough, either

because the diameter of the cell shrinks to zero or because the true function is flat over that

region. I follow the proof of Scornet et al. (2015) closely.

3.2 Theory of consistency

Before diving into the theorem and proofs, I again review notations. Suppose x ∈ [0, 1]p

is a vector of input variables and y ∈ R1 is the corresponding outcome variable. Our goal

is to estimate the regression function f(x) = E[y | x] as fn : (0, 1)p → R based on data

{(y1,x1), · · · , (yn,xn)}. Let dn denote maximum depth of a tree.

A key assumption of Scornet et al. (2015) is that the regression function is additive,

Assumption 1 (A1).

y =

p∑
j=1

fj(x
(j)) + ε

where x = (x(1), · · · ,x(p)) is uniformly distributed on [0, 1]p. ε ∼ N(0, σ2).

See the remark following Lemma 2 concerning the possibility of relaxing this strong

assumption.

I show consistency for the case of regression with Gaussian noise and focus on a variant

of XBART algorithm which only contains a single tree. Our main theorem states that a

single XBART regression tree approximates the true underlying mean function in L2 norm

if maximum depth goes to infinity slower than a function of the number of data points.

Theorem 3. Assume (A1) holds. Let n → ∞, dn → ∞ and (2dn − 1)(log n)9/n → 0,
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XBART is consistent in the sense that

lim
n→∞

E[fn(x)− f(x)]2 = 0. (3.1)

Both a single-tree XBART and CART learn decision rules by a recursive algorithm, but

with a different way of selecting cutpoints. CART optimizes its split criterion while XBART

draws cutpoints randomly with probability proportional to the split criterion. However,

sampling from a so-called perturb-max model is equivalent to optimizing an objective func-

tion with an additional random draw from Gumbel(0, 1) distribution, see Corollary 6.2 from

Hazan et al. (2016), restated here for the sake of completeness.

Lemma 1 (Perturb-max theorem). Suppose there are |C| finite cutpoint candidates {cjk} at

a specific node. We are interested in drawing one of them according to probability P (cjk) =

exp(l(cjk))∑
cjk∈C

exp(l(cjk))
. We have

exp(l(cjk))∑
cjk∈C exp(l(cjk))

= P

(
cjk = arg max

cjk∈C
{l(cjk) + γjk}

)
(3.2)

where {γjk} are independent random draws from a Gumbel(0, 1) distribution with density

p(x) = exp(−x+ exp(−x)).

The independent random draws {γjk} can be treated as known constants if conditioning

on a random seed Θ, as in Scornet et al. (2015). That is, Θ is used to sample Gumbel random

draws, and we always assume taking the condition of Θ in the following proof. Lemma 1

states that XBART’s sampling cutpoint strategy is equivalent to optimizing an objective

function. Thus CART and XBART fitting algorithms only differ in the specific form of

the split criterion to optimize. Our proof of consistency is based on the work of Scornet

et al. (2015), where only Lemma 1 and Lemma 2 involve the specific function form of split

criterion. Therefore I only have to check that Lemma 1 and Lemma 2 of Scornet et al. (2015)
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are still valid for the XBART split criterion. Recalling equation (2.9), the logarithm of the

split criterion cjk is

l(cjk) = log

(
σ2

σ2 + τnljk

)
+

τ

σ2
(
σ2 + τnljk

)
 ∑
i:xi∈AL(j,k)

yi

2

+ log

(
σ2

σ2 + τnrjk

)
+

τ

σ2
(
σ2 + τnrjk

)
 ∑
i:xi∈AR(j,k)

yi

2

=
τ

σ2
(
σ2 + τnljk

)
nljk ∑

i:xi∈AL(j,k)

y2
i − (nljk − 1)

∑
i:xi∈AL(j,k)

(yi − ȳl)2


+

τ

σ2
(
σ2 + τnrjk

)
nrjk ∑

i:xi∈AR(j,k)

y2
i − (nrjk − 1)

∑
i:xi∈AR(j,k)

(yi − ȳr)2


+ log

(
σ2

σ2 + τnljk

)
+ log

(
σ2

σ2 + τnrjk

)
,

where ȳl = 1
nljk

∑
i:xi∈AL(j,k) yi and ȳr = 1

nrjk

∑
i:xi∈AR(j,k) yi are averagea of y in the left

and right children respectively. Following Lemma 1, we optimize

c∗jk = arg max
cjk∈C

{l(cjk) + γjk},

where γi are random draws from Gumbel(0, 1) and can be treated as fixed constant if we

condition on random seed Θ. Note that the optimization problem is invariant if the objective

function is scaled by a constant n, used here to denote the number of observations in the

current node, so that

arg max
cjk∈C

l(cjk)

n
+
γjk
n
.

and our “empirical” split criterion (in the terminology of Scornet et al. (2015)) is defined as

Ln(cjk) =
l(cjk)

n
+
γx
n
. (3.3)
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Letting n → ∞, our empirical split criterion function Ln(x) converges to the “theoretical”

version

L∗(j, cjk) =
1

σ2
P (x(j) ≤ cjk)

[
E(y | x(j) ≤ cjk)

]2
+

1

σ2
P (x(j) > cjk)

[
E(y | x(j) > cjk)

]2
.

(3.4)

Importantly, L∗(j, cjk) does not rely on the training data because, by the strong law of large

numbers, Ln(cjk)→ L∗(cjk) almost surely as n→∞. Again following Scornet et al. (2015),

we refer to a tree grown according to the empirical split criterion Ln(cjk) or the theoretical

criterion L∗(cjk) as an empirical tree or theoretical tree, respectively. It worth emphasizing

that the theoretical split criterion of XBART and CART are the same up to a multiplicative

constant 1/σ2.

In the rest of the section, we recap the proof of consistency for CART and random forest

by Scornet et al. (2015) and verify that all lemmas involving the CART split criterion are

also valid for that of XBART, equation (3.3).

More notation is needed for the proof. Write c = (c(1), c(2)) to represent a cutpoint, where

c(1) ∈ {1, · · · , p} indicates cut variables and c(2) ∈ [0, 1] indicates cut values. Let An(x,Θ)

denote the leaf node of an empirical tree built with random parameter Θ that contains x.

Let A∗k(x,Θ) be a cell of the theoretical tree at depth k containing x. Additionally, A(x, ck)

is the node containing x built with sequence of cuts ck. This node is reached via a sequence

of cuts ck = (c1, · · · , ck) and we call Ak(x) the set of all possible k ≥ 1 cuts used to create

the node containing x. The distance between two cut sequences ck, c
′
k ∈ Ak(x) is defined as

||ck − c′k||∞ = sup
1≤j≤k

max
(∣∣∣c(1)

j − c
′(1)
j

∣∣∣ , ∣∣∣c(2)
j − c

′(2)
j

∣∣∣) .
The distance between a cut ck and a set A ⊂ Ak(x) is

c∞(ck,A) = inf
c∈A
||ck − c||∞.
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We define the total variation of the true function f within any leaf node A as

∆(f,A) = sup
x,x′∈A

|f(x)− f(x′)|.

The proof of Theorem 3 relies critically on the following proposition:

Proposition 1. Assume (A1) holds. For all ρ > 0 and ξ > 0, there exists an N ∈ N∗ such

that, for all n > N ,

P [∆(f,An(x,Θ)) ≤ ξ] ≥ 1− ρ. (3.5)

Proposition 1 states that the total variation of the true function f within any leaf node

of the empirical tree is small if the number of observations, n, used to fit the tree is large

enough. In general, the consistency result controling the behavior of the true function on

each of the partitions defined by the leaf nodes, in that either the cell diameter shrinks to zero

or else the true function is constant over any non-vanishing cell. The proof of Proposition 1

is based on three lemmas below. Lemma 2 and Lemma 3 are the only two pieces involving

the specific functional form of the split criterion in the complete proof of Theorem 3.

Lemma 2. Assume that (A1) holds. Then for all x ∈ (0, 1)p,

∆(f,A∗k(x,Θ))→ 0 almost surely as k →∞.

Lemma 2 shows that as n → ∞ and tree grows deeper, variation of the true function f

tends to zero in the leaf node of a theoretical tree.

Remark Assumption (A1) is used in the proof of Lemma 2 only. If the true function f is

additive, Lemma 2 is valid. However, a weaker replacement of assumption (A1) is to assume

Lemma 2 is valid directly. Although this is perhaps less interpretable than an assumption

of an additive model, it is also presumably a weaker assumption in that it may be satisfied

by non-additive models.
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Next, we show that the cuts of an empirical tree will be close to its associated theoretical

tree in a certain sense. Suppose the empirical tree has grown following a sequence of cuts

ck−1, and consider splitting node A(x, ck−1). Let AL(x, ck−1) = A(x, ck−1)∩{x : x(c
(1)
k ) ≤

c
(2)
k } and AR(x, ck−1) = A(x, ck−1) ∩ {x : x(c

(1)
k ) > c

(2)
k } be left and right child nodes

of node A(x, ck−1) given cut ck. We write the split criterion equation (3.3) explicitly for

A(x, ck−1),

Ln,k(x, ck) =
1

n

τ

σ2
(
σ2 + τNn(AL(x, ck−1))

)
Nn(AL(x, ck−1))

∑
i:xi∈Nn(AL(x,ck−1))

y2
i

−(Nn(AL(x, ck−1))− 1)
∑

i:xi∈Nn(AL(x,ck−1))

(yi − ȳAL(x,ck−1))
2


+

1

n

τ

σ2
(
σ2 + τNn(AL(x, ck−1))

)
Nn(AL(x, ck−1))

∑
i:xi∈AR(x,ck−1)

y2
i

−(Nn(AL(x, ck−1))− 1)
∑

i:xi∈AR(x,ck−1)

(yi − ȳr)2


+

1

n
log

(
σ2

σ2 + τNn(AL(x, ck−1))

)
+

1

n
log

(
σ2

σ2 + τNn(AR(x, ck−1))

)
.

Lemma 3 below states that Ln,k(x, ck) is “stochastically equicontinuous” on ck for all x ∈

[0, 1]p. For all ξ > 0 and x ∈ [0, 1]p, Aξk−1(x) ⊂ Ak−1(x) denotes the set of all sequences of

cuts ck−1 such that the node A(x, ck−1) contains a hypercube with edge length ξ. The set

Āξk(x) = {ck : ck−1 ∈ Aξk−1(x)} is equipped with norm || · ||∞.

Lemma 3. Assume that (A1) holds. Fix x ∈ [0, 1]p, k ∈ N∗ and let ξ > 0. Then Ln,k(x, )̇ is
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stochastically equicontinuous on Āξk(x), that is, for all α, ρ > 0, there exist δ > 0 such that

lim
n→∞

P

 sup
||ck−c′k||∞≤δ
ck,c

′
k∈Ā

ξ
k(x)

∣∣Ln,k(x, ck)− Ln,k(x, c′k)
∣∣ > α

 ≤ ρ.

Lemma 3 is used in the proof of Lemma 4 below.

Lemma 4. Assume that (A1) holds. Fix ξ > 0, ρ > 0, and k ∈ N∗. Then there exists

N ∈ N∗ such that for all n ≥ N ,

P
[
c∞(ĉk,n(x,Θ),A∗k(x,Θ)) ≤ ξ

]
≥ 1− ρ. (3.6)

Lemma 4 states that the empirical tree converges to the theoretical tree in probability.

The proof of Proposition 1 is the same as in Scornet et al. (2015) and so is omitted here.

Only proofs of Lemma 2 and 3 rely on the specific form of split criterion; complete proofs

are presented in the Appendix.

Finally, we are equipped to prove Theorem 3. Proposition 1 offers good control of ap-

proximation error if the tree is grown by the XBART split criterion. There are two steps for

the proof. First, the result is proved for the case of a truncated estimator, which is based on

Theorem 10.2 of Györfi et al. (2006), presented as Theorem 4 below. Then, the truncation

is released to prove the untruncated case.

The truncation Tβn is defined as


Tβn(u) = u if |u| ≤ βn

Tβn(u) = sign(u)βn if |u| > βn

where {βn} is a sequence of positive real numbers. The partition obtained with random
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variable Θ and data set Dn is denoted by Pn. Let Mn(Θ) is the set of all functions m :

[0, 1]p → R which is piecewise constant on each node of the partition Pn(Θ).

Theorem 4 (Györfi et al. (2006)). Assume that

1. limn→∞ βn =∞;

2. limn→∞ E

infm∈Mn(Θ)
||m||∞≤βn

EX [m(x)− f(x)]2

 = 0;

3. for all truncations at L > 0,

lim
n→∞

E

 sup
m∈Mn(Θ)
||f ||∞≤βn

∣∣∣∣∣ 1

an

n∑
i=1

[m(xi)− TL (yi)]
2 − E [m(x)− TL(y)]2

∣∣∣∣∣
 = 0.

Then

lim
n→∞

E[Tβn (fn(X,Θ))− f(X)]2 = 0.

It is sufficient to verify the three assumptions of Theorem 4 to show that the truncated

estimator is consistent. Intuitively, the first condition says that the truncation is relaxed as

n → ∞, and the next two conditions control the approximation error and the estimation

error, respectively. For the sake of brevity, we skip the proof. Interested readers may refer

to Scornet et al. (2015) for details.
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CHAPTER 4

SIMULATION STUDIES OF XBART REGRESSION

4.1 Time-accuracy comparisons to other popular machine

learning methods

4.1.1 Synthetic regression data

To demonstrate the performance of XBART, we estimate function evaluations with a hold-

out set that is a quarter of the training sample size and judge accuracy according to root

mean squared (estimation) error (RMSE). We consider four different challenging functions,

f , as defined in Table 4.1. In all cases, xj
iid∼N(0, 1) for j = 1, . . . , d = 30. The data is

generated according to the additive error mode, with εi
iid∼N(0, 1). We consider σ = κVar(f)

for κ ∈ {1, 10}.

Table 4.1: Four true f functions

Name Function

Linear xtγ; γj = −2 + 4(j−1)
d−1

Single index 10
√
a+ sin (5a); a =

∑10
j=1(xj − γj)2; γj = −1.5 + j−1

3 .

Trig + poly 5 sin(3x1) + 2x22 + 3x3x4
Max max(x1, x2, x3)

We compare to leading machine learning algorithms: random forests, gradient boosting

machines, neural networks, and BART. All implementations had an R interface and were

the current fastest implementations to our knowledge: ranger (Wright and Ziegler, 2015),

xgboost (Chen and Guestrin, 2016), and Keras (Chollet et al., 2015), dbarts respectively.

For Keras we used a single architecture but varied the number of training epochs depending

on the noise level of the problem. For xgboost we consider two specifications, one using

the software defaults and another determined by a 5-fold cross-validated grid optimization

(see Table 4.2); a reduced grid of parameter values was used at sample sizes n > 10, 000.
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Comparison with ranger and dbarts are shown in supplementary material.

Table 4.2: Hyperparameter Grid for XGBoost

Parameter name N = 10K N > 10K

eta {0.1, 0.3} {0.1, 0.3}
max depth {4, 8, 12} {4, 12}
colsample bytree {0.7, 1} {0.7, 1}
min child weight {1, 10, 15} 10
subsample 0.8 0.8
gamma 0.1 0.1

The software used is R version 3.4.4 with XGBoost 0.71.2, dbarts version 0.9.1, ranger

0.10.1 and keras 2.2.0. The default hyperparameter settings for XGBoost are eta = 0.3,

colsample bytree = 1, min child weight = 1 and max depth = 6. Ranger was fit with

num.trees = 500 and mtry = 5 ≈
√
d. BART, with the package dbarts, was fit with the

defaults of ntrees = 200, alpha = 0.95, beta = 2, with a burn-in of 5,000 samples (nskip

= 5000) and 2,000 retrained posterior samples (ndpost = 2000).

The default dbarts algorithm uses an evenly spaced grid of 100 cutpoint candidates along

the observed range of each variable (numcuts = 100, usequants = FALSE). For Keras we

build a network with two fully connected hidden layers (15 nodes each) using ReLU activation

function, `1 regularization at 0.01, and with 50/20 epochs depending on the signal to noise

ratio.

4.1.2 Results

The performance of the new XBART algorithm was excellent, showing superior speed and

performance relative to all the considered alternatives on virtually every data generating

process. The full results, averaged across five Monte Carlo replications, are reported in

Table 4.3. Neural networks perform as well as XBART in the low noise settings under

the Max and Linear functions. Unsurprisingly, neural networks outperform XBART under

the linear function with low noise. Across all data generating processes and sample sizes,

50



XBART was 31% more accurate than the cross-validated XGBoost method and typically

faster. Specifically, the supplement examines the empirical examples given in Chipman

et al. (2010).

The XBART method was slower than the untuned default XGBoost method but was

350% more accurate. This pattern points to one of the main benefits of the proposed method,

which is that it has excellent performance using the same hyperparameter settings across all

data generating processes. Importantly, these default hyperparameter settings were decided

on the basis of prior elicitation experiments using different true functions than were used in

the reported simulations. While XGBoost is quite fast, the tuning processes are left to the

user and can increase the total computational burden by orders of magnitude.

Random forests and BART were prohibitively slow at larger sample sizes. However, at

n = 10, 000 several notable patterns did emerge; see the supplementary material for full

details. First was that BART and XBART typically gave very similar results, as would be

expected. BART performed slightly better in the low noise setting and quite a bit worse in

the high noise setting (likely due to inadequate burn-in period). Similarly, random forests

do well in higher noise settings, while XGBoost and neural networks perform better in lower

noise settings.

4.2 Warm-start BART MCMC

In this section, we demonstrate the advantage of initializing BART MCMC at XBART

draws. The data generating process is the same as section 4.1.1, and the data size is fixed

at 10,000 while noise level κ varies. We fit 40 XBART forests, the first 15 are thrown out

as burn-in draws, and 25 forest draws are retained. BART was fit with a burn-in of 1,000

samples, and 2,500 retrained posterior samples. For the warm-start BART, 25 independent

BART MCMC chains were initialized at the 25 forest draws obtained from XBART and each

was run for 100 iterations with no burn-in. Note that the total number of posterior draws
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Table 4.3: Root mean squared error (RMSE) of each method. Column XGBoost +CV is
result of XGBoost with tuning parameter by cross validation and column NN is result of
neural networks. The number in parenthesis is running time in seconds. First column is
number of data observations (in thousands).

κ = 1

n XBART XGBoost +CV XGBoost NN

Linear

10k 1.74 (20) 2.63 (64) 3.23 (0) 1.39 (26)
50k 1.04 (180) 1.99 (142) 2.56 (4) 0.66 (28)

250k 0.67 (1774) 1.50 (1399) 2.00 (55) 0.28 (40)

Max

10k 0.39 (16) 0.42 (62) 0.79 (0) 0.40 (30)
50k 0.25 (134) 0.29 (140) 0.58 (4) 0.20 (32)

250k 0.14 (1188) 0.21 (1554) 0.41 (60) 0.16 (44)

Single Index

10k 2.27 (17) 2.65 (61) 3.65 (0) 2.76 (28)
50k 1.54 (153) 1.61 (141) 2.81 (4) 1.93 (31)

250k 1.14 (1484) 1.18 (1424) 2.16 (55) 1.67 (41)

Trig + Poly

10k 1.31 (17) 2.08 (61) 2.70 (0) 3.96 (26)
50k 0.74 (147) 1.29 (141) 1.67 (4) 3.33 (29)

250k 0.45 (1324) 0.82 (1474) 1.11 (59) 2.56 (41)

κ = 10

n XBART XGBoost +CV XGBoost NN

Linear

10k 5.07 (16) 8.04 (61) 21.25 (0) 7.39 (12)
50k 3.16 (135) 5.47 (140) 16.17 (4) 3.62 (14)

250k 2.03 (1228) 3.15 (1473) 11.49 (54) 1.89 (19)

Max

10k 1.94 (16) 2.76 (60) 7.18 (0) 2.98 (15)
50k 1.22 (133) 1.85 (139) 5.49 (4) 1.63 (16)

250k 0.75 (1196) 1.05 (1485) 3.85 (54) 0.85 (22)

Single Index

10k 7.13 (16) 10.61 (61) 28.68 (0) 9.43 (14)
50k 4.51 (133) 6.91 (139) 21.18 (4) 6.42 (16)

250k 3.06 (1214) 4.10 (1547) 14.82 (54) 4.72 (21)

Trig + Poly

10k 4.94 (16) 7.16 (61) 17.97 (0) 8.20 (13)
50k 3.01 (132) 4.92 (139) 13.30 (4) 5.53 (14)

250k 1.87 (1216) 3.17 (1462) 9.37 (49) 4.13 (20)
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is 2,500, the same as the number of posterior draws by BART. We repeat drawing synthetic

data and computing intervals 100 times, all measurement below were taken average with

respect to those 100 replications.

Table 4.4 shows the credible interval coverage, length, RMSE of the point estimate, and

running time of the three approaches. The running time for warm-start BART is reported

as time in seconds for a single indepedent BART MCMC, while the number in parenthesis is

the running time of the entire warm-start BART fitting process, including XBART fit and

assuming all 25 indepedent warm-start BART MCMC were fitted sequentially rather than

in parallel. In other words, the number in parentheses is the most conservative estimation of

the total running time, because the 25 independent BART chains can be trivially parallelized

to achieve much lower total running time. Indeed, with 25 processors, the run time would

be the XBART run time plus the warm-start run time (not in parentheses).

The warm-start BART boasts a substantial advantage in terms of credible interval cover-

age and root mean squared error. In all cases, warm-start BART has the best coverage and

RMSE among all three approaches and is still faster than BART under the most conservative

estimation of running time. Especially when the true function is linear, warm-start initial-

ization helps BART get a considerable improvement in estimation, which may indicated

inadequate chain length of BART (that is, poor mixing).
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Table 4.4: Coverage and length of credible interval of f at 95% level for warm-start BART
MCMC. The table also shows running time (in seconds) and root mean squared error (RMSE)
of all approaches.

κ = 1

XBART BART Warm-start BART

Max

coverage 0.86 0.78 0.95
interval length 0.36 0.35 0.46
running time 1.57 44.41 1.21 (31.82)
RMSE 0.11 0.14 0.11

Trig + Poly

coverage 0.90 0.74 0.96
interval length 3.61 2.89 4.23
running time 4.68 92.75 3.02 (80.18)
RMSE 1.03 1.27 1.01

Single Index

coverage 0.77 0.73 0.87
interval length 4.84 4.62 5.88
running time 5.10 102.87 2.97 (79.35)
RMSE 1.94 2.08 1.92

Linear

coverage 0.78 0.77 0.99
interval length 7.82 6.14 9.92
running time 5.61 131.17 3.85 (101.86)
RMSE 3.11 2.51 1.81

κ = 2

XBART BART Warm-start BART

Max

coverage 0.88 0.84 0.97
interval length 0.58 0.64 0.76
running time 1.35 40.23 1.22 (31.85)
RMSE 0.17 0.22 0.17

Trig + Poly

coverage 0.90 0.82 0.96
interval length 5.62 5.06 6.86
running time 3.68 86.81 2.90 (74.17)
RMSE 1.65 1.87 1.60

Single Index

coverage 0.81 0.83 0.91
interval length 6.81 7.67 8.49
running time 3.92 90.70 2.81 (74.0490)
RMSE 2.51 2.73 2.47

Linear

coverage 0.50 0.83 0.98
interval length 6.53 8.82 11.84
running time 3.61 109.43 3.33 (86.86)
RMSE 4.74 4.13 2.53
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CHAPTER 5

XBART CLASSIFICATION

5.1 Log-Logit multinomial classification

The original Bayesian additive regression trees (Chipman et al. (2013)) is limited to Gaussian

models. Chipman et al. (2013) introduce binary classification BART using a probit link func-

tion and Albert and Chib (1993) data augmentation strategies. Murray (2017) develops new

data augmentation strategies, prior distributions and corresponding efficient MCMC sam-

plers for log-linear BART. In this chapter, we show the similar data augmentation strategies

for multinomial classification apply to XBART as well. Note that the integrated likelihood

(2.1) does not assume a specific form of the likelihood, thus the extension is not limited to

multinomial classification. Interested readers may extend XBART to other models such as

probit, or Poisson count model as in Murray (2017) similarly.

For easier comparison with previous literature, I follow notations of Murray (2017) closely.

Consider a classification problem of C categories. Suppose xi = (xi1, · · · , xip) represents a

vector of covariate variables, which are observed ni times in the data set. The response yij is

the number of observations with covariate xi in category j, where 1 ≤ i ≤ n and 1 ≤ j ≤ C,

then
∑C
j=1 yij = ni. The probability of response of xi belongs to category j is

πj(xi) =
f (j)(xi)∑C
h=1 f

(h)(xi)
. (5.1)

We assume a sum of trees form

log
(
f (j)(x)

)
=

L∑
l=1

g
(
x, T

(j)
l , µ

(j)
l

)
,
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which leads to a multinomial logistic trees model:

πj(xi) =
exp

[∑L
l=1 g

(
x, T

(j)
l , µ

(j)
l

)]
∑C
h=1 exp

[∑L
l=1 g

(
x, T

(h)
l , µ

(h)
l

)] . (5.2)

Taking exponents of a tree g(x, Tl, µl) only affects leaf parameter µl but not tree structure

Tl. Let λlt = exp(µlt) and Λl = (λl1, · · · , λlbl)
′, a sum of trees becomes a product of trees

as

f(x) = exp

 L∑
l=1

g(x, Tl, µl)

 =
L∏
l=1

g(x, Tl,Λl), (5.3)

where g(x, Tl,Λl) = λht if x ∈ Aht for 1 ≤ t ≤ bh. Let θ collects all additional parameters

or latent variables, the corresponding integrated likelihood is

L(Tl;T(l),Λ(l), θ, y) =

∫
L(Tl,Λl;T(l),Λ(l), θ, y)p(Λl)dΛl. (5.4)

It is straightforward to calculate the integrated likelihood in Gaussian case since the con-

jugate prior. However there is no simple conjugate prior for general log-linear model. We

follow Murray (2017), rearrange terms of the full likelihood L(Tl,Λl;T(l),Λ(l), θ, y) as

L(Tl,Λl;T(l),Λ(l), y) =
n∏
i=1

wif(xi)
ui exp[vif(xi)]

=
n∏
i=1

wi[f(l)(xi)g(xi, Tl,Λl)]
ui exp[vif(l)(xi)g(xi, Tl,Λl)]

=

bl∏
t=1

∏
1:xi∈Alt

wi[f(l)(xi)λlt]
ui exp[vif(l)(xi)λlt]

= cl

bl∏
t=1

λ
rlt
lt exp[−sltλlt]

(5.5)

where the outer product runs over all leaf nodes of the tree Tl and inner product runs over
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all observations inside one leaf node, and

cl =
n∏
i=1

wif(l)(xi)
ui , rlt =

∑
i:xi∈Alt

ui, slt =
∑

i:xi∈Alt

f(l)(xi)vi. (5.6)

with rlt and slt working as sufficient statistics. In order to derive split criterion for XBART,

it is still necessary to calculate the integrated likelihood of (5.4). Murray (2017) propose a

symmetric, conditionally conjugate prior for the likelihood has the form of (5.5). I review it

briefly in the following text.

We first assume the symmetric prior on sum of trees is approximately normal log[f(x)]
approx∼

N(0, a2
0). The hyper parameter a0 plays the same role as σ2

µ in the original BART prior.

Therefore for the independent prior on each leaf parameter λlt should have E (log[λlt]) = 0

and Var (log[λlt]) = a2
0/m. Murray (2017) introduce a mixture of generalized inverse Gaus-

sian (GIG) distribution

pλ(λlt | c, d) =
1

2
pGIG(λlt | −c, 2d, 0) +

1

2
pGIG(λlt | c, 0, 2d), (5.7)

where c and d are hyper-parameters determined by a0. If a2
0/m is small, let c ≈ m/a2

0 and

d ≈ m/a2
0 can guarantee Var(lambda) ≈ a2

0/m as desired. The GIG distribution has density

pGIG(λ | η, χ, ψ) =
λη−1 exp

[
−1

2 (χ/λ+ ψλ)
]

Z(η, χ, ψ)
(5.8)

with normalizing constants

Z (η, χ, ψ) =


Γ(η)

(
2
ψ

)η
if η > 0, χ = 0, ψ > 0

Gamma(−η)
(

2
χ

)−η
if η < 0, χ > 0, ψ = 0

2Kη(
√
ψχ)

(ψ/χ)η/2
if χ > 0, ψ > 0

(5.9)
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where Kη(x) is the modified Bessel function of the second kind.

Next we show the data augmentation strategies for multinomial likelihood of the form

pMN (yi) =

(
ni

yi1yi2 · · · yic

)∏c
j=1 f

(j)(xi)
yij

[
∑c
l=1 f

(l)(xi)]ni
. (5.10)

We take the data augmentation scheme of Murray (2017), assume a new latent variable φi

and define the joint likelihood of (yi, φi) as

pMN (yi, φi) =

(
ni

yi1yi2 · · · yic

) c∏
j=1

f (j)(xi)
yij

 φni−1
i

Γ(ni)
exp

−φi c∑
j=1

f (j)(xi)


=

(
ni

yi1yi2 · · · yic

)
φni−1

Γ(ni)

c∏
j=1

f (j)(xi)
yij exp

[
−φif (j)(xi)

]
,

(5.11)

where the likelihood of yi has form of (5.5) if conditional on φi.

For any pair outcome categories j 6= j′, the log odds in favor of j′ are log[f (j′)(xi)] −

log[f j(xi)] and each f (l)(x) has an independent log-linear BART prior. Further we assume

each f (l)(x) uses the same number of trees m and prior parameter a0. The induced prior on

the log odds is approximately N(0, 2a2
0), therefore a0 is chosen to reflect prior beliefs of the

log odds. Murray (2017) recommends default choice a0 = 3.5/
√

2.

We fit C separate forests for each category, where the fitting algorithm of each forest

follows the general framework of Algorithm 5 and 6, despite details of sampling leaf param-

eters and latent variables. Due to the transformation of equation (5.3), we present the final

prediction as product rather than sum of trees, as a result the h-th tree for category j is

defined accordingly as

r
(iter+1),(j)
h ≡

∏L
h′=1 f

(j)(X;Th′ , µh′)
(iter)∏

h′<h f
(j)(X;Th′ , µh′)

(iter+1) ×
∏
h′>h f

(j)(X;Th′ , µh′)
(iter)

,
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while the total residual is taken with respect to all trees

r̃
(iter+1),(j)
h ≡

r
(iter+1),(j)
h

f (j)(X;Th, µh)(iter+1)
.

Thus step 10 of Algorithm 5 that drawing leaf parameters based on sufficient statistics cl

and slt is

• For i ≤ j ≤ c, draw parameters of f (j) independently with

rlt =
∑

i:xi∈A
(j)
lt

yij , slt =
∑

i:xi∈A
(j)
lt

φif
(j)
(l)

(xi), (5.12)

where f
(j)
(l)

(xi) =
∏
l 6=h g

(
x, T

(j)
l ,Λ

(j)
l

)
is the partial residual for the l-th tree.

Furthermore, the latent variables φi, 1 ≤ i ≤ n are updated after fitting a tree at step 9 of

Algorithm 6 by

• For 1 ≤ i ≤ n, sample φi ∼ Gamma
(

1,
∑c
j=1 f

(j)(xi)
)

.

There is only one augmented latent variable per observation, regardless of number of cate-

gories, and they are sampled from standard Gamma distribution.

XBART classification is still working in progress. There are a few questions that re-

mained unsolved. First, the data augmentation strategy described above does not include

a parameter that plays the role of “residual variance”, similar as σ2 in the regression case.

The residual variance of regression case appears in the split criterion thus help stop splitting

when the information is vague (i.e. residual variance is high). A potential solution is a new

hierarchical prior over τ . Second, although the extra computational burden induced by la-

tent variables is often light, it could be a problem if the number of observations is extremely

large. In that case, stop sampling some latent variables with tiny value and fix them at

zero might speed up sampling without loose to much accuracy. Lastly, the current algorithm
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assumes same weight on all observations, while putting more weights on data that are hard

to predict (similar to AdaBoost) might improve the overall performance.

5.2 Simulation studies

We illustrate the performance of XBART by simulation studies. We consider a synthetic

data with 5 categories, the outcome is drawn from multinomial distribution with probability

of each category proportional to the following functions,

p1 ∝ exp (2× |2× x1 − x2|)

p2 ∝ exp (1)

p3 ∝ exp
(

3× x2
3

)
p4 ∝ exp (x3 × |x4|)

p5 ∝ exp
(
x2

5 + x3

)
(5.13)

where the covariate variables x = (x1, x2, · · · , xp), the number of training observations n

and number of variables p ≥ 5 vary. When p > 5, the extra variables are non-informative

for the outcome category.

We compare to random forests (ranger,Wright and Ziegler (2015)) and XGboost (xgboost,

Chen and Guestrin (2016)). Similar to chapter 4, we use R version 3.4.4 with xgboost

0.71.2, ranger version 0.10.1. The default hyperparameters for xgboost are eta=0.3,

colsample bytree = 1, min child weight = 1, max depth = 6 and . For ranger, we set

num.trees = 500 and mtry =
√
p.

Table 5.1 reports the prediction accuracy on testing sets and running time for various

p and n. Overall, this 5 categories data generating process is hard and all three methods

obtain accuracy less than 0.6. Across all sample sizes, XBART is about similar accurate

as XGboost and usually faster. Unsurprisingly, random forest underperform as p increases
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Table 5.1: Prediction accuracy on synthetic testing set and running time of each method for
multinomial classification.

p n
XBART Random Forests XGboost

Accuracy Time Accuracy Time Accuracy Time

5 100 0.457 0.189 0.476 0.098 0.485 0.609
5 500 0.503 0.343 0.504 0.289 0.514 1.735
5 5000 0.530 1.056 0.525 4.059 0.532 6.609

20 100 0.466 0.512 0.466 0.108 0.464 0.761
20 500 0.503 0.849 0.493 0.363 0.501 1.789
20 5000 0.526 2.458 0.513 5.575 0.529 9.276

100 100 0.468 2.548 0.472 0.155 0.459 2.840
100 500 0.498 3.888 0.474 0.592 0.494 5.089
100 5000 0.525 9.738 0.485 12.852 0.523 28.016

since less chance drawing informative variables.

5.3 Empirical studies

This section compares multinomial classification XBART with several popular classification

models on 20 datasets from the UCI repository. We process similarly as Fernández-Delgado

et al. (2014) and Murray (2017). The purpose of this study is not to show that multinomial

XBART outperforms all methods on all datasets, but it can give reasonable results on various

real datasets.

The alternative methods include random forests, gradient boosting trees, penalized multi-

nomial probit regression, support vector machine with radial basis function, and neural nets.

All methods use default parameter grid for 10-fold cross validation in the R package caret

(Kuhn et al., 2008).

We choose datasets that have 3-6 categories, 100-3000 observations. Each dataset is split

into 80% training and 20% testing. We perform 10-fold cross validation for the methods

using CV on the training set and evaluate performance on testing set. We repeat the random

partition 50 times and generate 50 out-of-sample prediction accuracy.
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Table 5.2: Results of classification studies on UCI machine learning repository. Asterisks
denote best performing methods. Entries in italic are statistically significantly different from
XBART while the gray ones are significantly worse than XBART.

rf gbm mno svm nnet xbart

balance-scale 0.848 (0.023) 0.925 (0.010) 0.897 (0.021) 0.909 (0.025) 0.961 (0.019)* 0.911 (0.012)
car 0.983 (0.006)* 0.979 (0.008) 0.834 (0.019) 0.774 (0.033) 0.947 (0.015) 0.938 (0.015)

cardiotocography-3clases 0.937 (0.009) 0.949 (0.009)* 0.894 (0.011) 0.911 (0.011) 0.909 (0.013) 0.931 (0.011)
contrac 0.546 (0.024) 0.557 (0.023) 0.516 (0.028) 0.551 (0.024) 0.556 (0.028)* 0.409 (0.020)

dermatology 0.970 (0.016) 0.972 (0.020)* 0.968 (0.020) 0.759 (0.024) 0.970 (0.022) 0.976 (0.018)*
glass 0.798* (0.062) 0.771 (0.055) 0.622 (0.066) 0.679 (0.054) 0.673 (0.064) 0.702 (0.076)

heart-cleveland 0.578 (0.033) 0.586 (0.039) 0.587 (0.039) 0.620 (0.038)* 0.603 (0.052) 0.583 (0.034)
heart-va 0.357 (0.071)* 0.320 (0.067) 0.349 (0.069) 0.315 (0.069) 0.302 (0.08) 0.308 (0.064)

iris 0.948 (0.034) 0.945 (0.034) 0.965 (0.029)* 0.947 (0.034) 0.954 (0.045) 0.954 (0.033)
lymphography 0.866 (0.063)* 0.853 (0.057) 0.821 (0.069) 0.850 (0.062) 0.818 (0.077) 0.835 (0.058)

pittsburg-bridges-MATERIAL 0.840 (0.058) 0.844 (0.049) 0.834 (0.061) 0.860 (0.048)* 0.824 (0.066) 0.849 (0.046)
pittsburg-bridges-REL-L 0.725 (0.084)* 0.681 (0.093) 0.650 (0.087) 0.692 (0.082) 0.659 (0.091) 0.680 (0.083)
pittsburg-bridges-SPAN 0.637 (0.098) 0.648 (0.101) 0.675 (0.100) 0.681 (0.099)* 0.647 (0.102) 0.631 (0.105)
pittsburg-bridges-TYPE 0.609 (0.088)* 0.581 (0.089) 0.549 (0.089) 0.540 (0.075) 0.565 (0.092) 0.585 (0.093)

seeds 0.940 (0.030) 0.940 (0.031) 0.948 (0.035)* 0.929 (0.029) 0.944 (0.034) 0.945 (0.042)
synthetic-control 0.984 (0.012) 0.971 (0.015) 0.984 (0.012) 0.716 (0.024) 0.987 (0.011)* 0.983 (0.017)

teaching 0.622 (0.085)* 0.557 (0.086) 0.526 (0.072) 0.547 (0.073) 0.525 (0.087) 0.491 (0.086)
vertebral-column-3clases 0.847 (0.038) 0.829 (0.038) 0.861 (0.033)* 0.839 (0.042) 0.859 (0.033) 0.842 (0.039)

wine-quality-red 0.702 (0.021)* 0.631 (0.026) 0.597 (0.024) 0.576 (0.026) 0.597 (0.025) 0.613 (0.022)
wine 0.985 (0.018)* 0.979 (0.021) 0.979 (0.026) 0.980 (0.025) 0.977 (0.027) 0.969 (0.032)

Table 5.2 illustrates the average and standard deviation of accuracy on the testing

datasets. We test the null hypothesis of no different between XBART and each method

by a paired Wilcoxon test. Italics entries are significantly different than XBART at 0.05

level and gray entries are statistically different and worse than XBART. Random forests

and XBART have statistically different out-of-sample accuracy on 9 datasets, where random

forest is better in 5 and worse in 4. None of the methods dominate others on all datasets. In

conclusion, XBART has competitive performance comparing with other popular alternatives

in machine learning toolbox.
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CHAPTER 6

DISCUSSION

In this dissertation, I have introduced a novel tree-based ensemble framework, XBART, for

supervised learning, that has a wide range of applicability. I demonstrated the advantage of

the algorithm in simulation studies: XBART has state-of-the-art prediction accuracy with

computational demands that are competitive with alternatives. While this paper has fo-

cused on Gaussian nonlinear regression, the proposed algorithm extends to other settings

straightforwardly, such as logit multi-class classification, binary probit classification, Pois-

son regression, or classification by a central-limit approximation; these extensions will be

described in separate forthcoming manuscripts.

While I proved the consistency of a single XBART tree in this paper, an open question

is whether the forest is consistent or not. One proof strategy would be to make a minor

modification of the model wherein an initial tree is fit to the data, and then a forest is fit to

the residual. By consistency of the initial tree, the residual will eventually converge to pure

noise, and a proof would need to show that the resulting Markov Chain had expectation of

zero in the large data limit.

Another interesting research topic is the connection between XBART and full Bayesian

methods. In this dissertation, I show that the warm-start provided by XBART helps the

MCMC algorithm converge faster and attain better credible interval coverage. Although I

show the forest is a Markov chain with stationary distribution, it is still not clear if the

algorithm is a Gibbs sampler corresponding to a valid posterior.

There are several new extensions of XBART I am working on, including the joint work

with P. Richard Hahn and Nikolay Krantsevich to apply XBART to Bayesian causal forest

(Hahn et al., 2020). As previously mentioned in chapter 5, there are a few potential di-

rections to improve the performance of the XBART classification, which is currently under

investigation with P. Richard Hahn, Maggie Wang, and Jared Murray.
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The software package XBART is available online in R and python. The package is still

undergoing active development for further extensions and speed optimization.
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APPENDIX A

CATEGORICAL COVARIATES

Section 2.5.1 suggests pre-sorting covariates to compute sufficient statistics efficiently, this

strategy is straightforward for continuous covariates. However, because of possible ties in

ordered categorical covariates, a more efficient algorithm is needed to calculate sufficient

statistics.

We restate notations in section 2.5.1. Without loss of generality, we assume that all

covariates are categorical. Let O denote the V -by-n array such that ovh denotes the index,

in the data, of the observation with the h-th smallest value of the v-th predictor variable xv.

Then, taking the cumulative sums gives

s(≤, v, c) =
∑
h≤c

rovh

and

s(>, v, c) =
n∑
h=1

rlh − s(≤, v, c).

The subscript l on the residual indicates that these evaluations pertain to the update of

the lth tree. Notice that when covariates are categorical, xvh is not necessarily smaller than

xv(h+1) due to potential ties in x. As a result, the number of unique cutpoint candidates

is less than n. We propose an extra data structure to bookkeeping unique cutpoint and

number of ties as follows. For the v-th categorical predictor variable xv, let unique val be

a vector of unique values (sorted, from small to large) in xv and val count be a vector of

counts of replication for each unique value. Therefore, the cutpoint candidate is a element

in the vector unique val, say the i-th element. Then the cumulative sums is

s(≤, v, unique val[i]) =
∑

h∈[
∑i−1
m=1 val count[m],

∑i
m=1 val count[m]]

rovh .

65



Algorithm 7 Pseudocode of calculating sufficient statistics for categorical covariates.

1: Sort categorical covariates, create O matrix. Count number of unique observations
unique val and val count vector (suppose vectors are length K).

2: for i from 1 to K do
3: Calculate sufficient statistics for cutpoint candidate unique val[i] as

s(≤, v, unique val[i]) =
∑

h∈[
∑i−1
m=1 val count[m],

∑i
m=1 val count[m]]

rovh .

and

s(>, v, c) =
n∑
h=1

rlh − s(≤, v, c).

4: end for
5: Calculate split criterion, determine a cutpoint.
6: if no-split is selected or stop conditions are reached then
7: Draw leaf parameters and return.
8: else
9: Sift unique val and val count for left and right child nodes. Repeat step 3 when

evaluate split criterion at child nodes.
10: end if

When sifting data to left and right child after drawing a cutpoint, we create the same

unique val and val count vector for all categorical covariates with data in two child nodes

respectively. See Algorithm 7 for details.
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APPENDIX B

PROOF OF LEMMA 2

First we establish the connection between theoretical split criterion of XBART (equation

(3.4)) and CART. For current node A, the theoretical split criterion of XBART for candidate

split at variable i and value x is

L∗(x) =
1

σ2
P(x(i) ≤ x | x ∈ A)

[
E(y | x(i) ≤ x,x ∈ A)

]2
+

1

σ2
P(x(i) > x | x ∈ A)

[
E(y | x(i) > x,x ∈ A)

]2
.

(B.1)

The CART theoretical split criterion is

L∗CART(x) = V(y | x ∈ A)− P(x(j) ≤ x | x ∈ A)V(y | x(j) ≤ x,x ∈ A)

− P(x(j) > x | x ∈ A)V(y | x(j) > x,x ∈ A).

(B.2)

Remember that the cuts is always parallel to axis,

V(y | x(j) ≤ x,x ∈ A) = E(y2 | x(j) ≤ x,x ∈ A)−
[
E(y | x(j) ≤ x,x ∈ A)

]2
. (B.3)

We have

E(y2 | x(j) ≤ x,x ∈ A) =
1

Ω
({

x(j) ≤ x,x ∈ A
}) ∫

x∈{x(j)≤x,x∈A}
m2(x)dx, (B.4)

where Ω(A) represents volume of a cube A. Observe that

P(x(j) ≤ x | x ∈ A) =
Ω
({

x(j) ≤ x,x ∈ A
})

Ω(A)
,
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by easy calculation, we obtain

E(y2 | x ∈ A)− P(x(j) ≤ x | x ∈ A)E(y2 | x(j) ≤ x,x ∈ A)

− P(x(j) > x | x ∈ A)E(y2 | x(j) > x,x ∈ A)

=
1

Ω(A)

∫
x∈A

m2(x)dx− 1

Ω(A)

∫
x∈{x(j)≤x,x∈A}

m2(x)dx− 1

Ω(A)

∫
x∈{x(j)>x,x∈A}

m2(x)dx

= 0.

(B.5)

As a result, the CART theoretical split criterion is equivalent to

L∗CART(x) = [E(y | x ∈ A)]2 − P(x(i) ≤ x | x ∈ A)
[
E(y | x(i) ≤ x,x ∈ A)

]2
− P(x(i) > x | x ∈ A)

[
E(y | x(i) > x,x ∈ A)

]2
= [E(y | x ∈ A)]2 − σ2L∗XBART(x).

(B.6)

Since [E(y | x ∈ A)]2 and σ2 are constant, and we maximize L∗XBART(x) but minimize

L∗CART(x) in practice, we claim that the two theoretical split criterions are equivalent. There-

fore, the proof of lemma 2 for CART case in Scornet et al. (2015) can be applied directly

without modification. We refer readers to Scornet et al. (2015) for details.
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APPENDIX C

PROOF OF LEMMA 3

C.1 Proof of Lemma 3 for the case k = 1

Preliminary results Let Zi = max1≤i≤n |εi|, we have

P(Zi ≥ t) = 1− exp [n ln(1− 2P(εi ≥ t))] .

The tail of Gaussian distribution has a standard bound:

P(εi ≥ t) ≤
σ

t
√

2π

(
− t2

2σ2

)
. (C.1)

As a result, there exist a positive constant Cρ and N1 ∈ N∗ such that with probability 1 − ρ, for

all n > N1,

max
1≤i≤n

|εi| ≤ Cρ
√

log(n). (C.2)

In addition, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≥ α
]
≤ σ

α
√
n

exp

(
−α

2n

2σ2

)
. (C.3)

Let Nn(A) denotes number of data observations in a set A. Next we derive from the inequality

above and union bound inequality that there exists N2 ∈ N∗ such that with probability 1 − ρ, for

all n > N2 and all 0 ≤ an ≤ bn ≤ 1 satisfying Nn([an, bn]× [0, 1]p−1) >
√
n,

∣∣∣∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

εi

∣∣∣∣∣∣ ≤ α. (C.4)

and

1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

ε2i ≤ σ̃2. (C.5)

69



Furthermore, it’s easy to verify

∣∣∣∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

Yi

∣∣∣∣∣∣ ≤ ||m||∞ + α, (C.6)

and ∣∣∣∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

Y 2
i

∣∣∣∣∣∣ ≤ ||m||2∞ + σ̃2 + 2α||m||∞. (C.7)

By the Glivenko-Cantelli theorem, there exist N3 ∈ N∗ such that with probability 1 − ρ, for all

0 ≤ a ≤ b ≤ 1 and all n > N3,

(b− a− δ2)n ≤ Nn([an, bn]× [0, 1]p−1) ≤ (b− a+ δ2)n. (C.8)

In the following proof, we assume to be on the event that all claims above holds with probability

1 − 3ρ for all n > N = max{N1, N2, N3}. Take x1, x2 ∈ [0, 1] such that |x1 − x2| < δ and assume

that x1 < x2. We partition the space [0, 1]p into several pieces as follows, see Figure C.1 for an

illustration of notations for p = 2.



AL,
√
δ = [0,

√
δ]× [0, 1]p−1

AR,
√
δ = [1−

√
δ, 1]× [0, 1]p−1

AC,
√
δ = [

√
δ, 1−

√
δ]× [0, 1]p−1

. (C.9)

Similarly, 

AL,1 = [0, x1]× [0, 1]p−1

AR,1 = [x1, 1]× [0, 1]p−1

AL,2 = [0, x2]× [0, 1]p−1

AR,2 = [x2, 1]× [0, 1]p−1

AC = [x1, x2]× [0, 1]p−1

. (C.10)

Figure C.1 illustrates notations
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AL,1 AR,1

AL,2 AR,2

A
C,
√
δ

A
L,
√
δ

A
R,
√
δ

AC

√
δ 1−

√
δx1 x20 1

Figure C.1: Illustration of notations for p = 2.

For simplicity, we write the split criterion of the first cut as Ln,1(1, x) denoting split at the first

variable, at value x. Recall that our split criterion is defined as

Ln,1(1, x) =
τ

σ2 (σ2 + τNn(AL))

1

n

Nn(AL)
∑

i:x
(1)
i ≤x

y2i − (Nn(AL)− 1)
∑

i:x
(1)
i ≤x

(yi − ȳl)2


+

τ

σ2 (σ2 + τNn(AR))

1

n

Nn(AR)
∑

i:x
(1)
i >x

y2i − (Nn(AR)− 1)
∑

i:x
(1)
i >x

(yi − ȳr)2


+
γx
n
.

(C.11)
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The difference of split criterion on two cutpoints x1 and x2 is

Ln,1(1, x1)− Ln,1(1, x2)

=
τ

σ2 (σ2 + τNn(AL,1))

1

n

Nn(AL,1)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,1)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,1
)2


+

τ

σ2 (σ2 + τNn(AR,1))

1

n

Nn(AR,1)
∑

i:x
(1)
i >x1

y2i − (Nn(AR,1)− 1)
∑

i:x
(1)
i >x1

(yi − ȳAR,1
)2


− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ≤x2

y2i − (Nn(AL,2)− 1)
∑

i:x
(1)
i ≤x2

(yi − ȳAL,2
)2


− τ

σ2 (σ2 + τNn(AR,2))

1

n

Nn(AR,2)
∑

i:x
(1)
i >x2

y2i − (Nn(AR,2)− 1)
∑

i:x
(1)
i >x2

(yi − ȳAR,2
)2


+
γx1
n
− γx2

n
.

(C.12)

We need to prove lemma 3 for all possible cases depending on location of x1 and x2. For notation

simplicity, note that after collecting terms, the difference of split criterion can be represented as

summation of points for the range of index {i : x
(1)
i < x1}, {i : x

(1)
i ∈ [x1, x2]} and {i : x

(1)
i > x2}.

We will use the same decomposition throughout the proof.

First case

Assume that x1, x2 ∈ AC,√δ, two cutpoint candidates are not close to the edge. Consider the
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split criterion

Ln,1(1, x1)− Ln,1(1, x2)

=
τ

σ2 (σ2 + τNn(AL,1))

1

n

Nn(AL,1)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,1)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,1
)2


+

τ

σ2 (σ2 + τNn(AR,1))

1

n

Nn(AR,1)
∑

i:x
(1)
i >x1

y2i − (Nn(AR,1)− 1)
∑

i:x
(1)
i >x1

(yi − ȳAR,1
)2


− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ≤x2

y2i − (Nn(AL,2)− 1)
∑

i:x
(1)
i ≤x2

(yi − ȳAL,2
)2


− τ

σ2 (σ2 + τNn(AR,2))

1

n

Nn(AR,2)
∑

i:x
(1)
i >x2

y2i − (Nn(AR,2)− 1)
∑

i:x
(1)
i >x2

(yi − ȳAR,2
)2


+
γx1
n
− γx2

n

= J1 + J2 + J3 +
γx1
n
− γx2

n
.

(C.13)

First, take n large enough, we have ∣∣∣γx1
n
− γx2

n

∣∣∣ ≤ α. (C.14)

73



Let J2 corresponding to {i | x(1)
i ∈ [x1, x2]}

J2 =
τ

σ2 (σ2 + τNn(AR,1))

1

n

Nn(AR,1)
∑

i:x
(1)
i ∈[x1,x2]

y2i − (Nn(AR,1)− 1)
∑

i:x
(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2


− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ∈[x1,x2]

y2i

−(Nn(AL,2)− 1)
∑

i:x
(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2


=

τNn(AR,1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i


+

τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2


−

τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2


= J21 + J22.

(C.15)

Note that |ax− by| ≤ |a||x− y|+ |a− b||y|, we have

|J22| =

∣∣∣∣∣∣∣
τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2


−

τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2


∣∣∣∣∣∣∣

≤
∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣
+

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
−

τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣ .

(C.16)
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Since we assume that x1, x2 ∈ AC,√δ, by equation (C.8)

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣ ≤
∣∣∣∣∣ τ(δ2 −

√
δ)n

σ2(σ2 + τ(1− δ2 −
√
δ)n)

∣∣∣∣∣
≤

∣∣∣∣∣ τ(δ2 −
√
δ)

σ2(τ(1− δ2 −
√
δ))

∣∣∣∣∣
= C(δ)→ 0 as δ → 0.

(C.17)

Note that this bound is valid for Nn(AL,1),Nn(AL,2),Nn(AR,1) and Nn(AR,2). By inequality (C.6)

and (C.7), it is obvious that

∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

1

N(AC)

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣ ≤M (C.18)

by a constant M . Furthermore

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
−

τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

∣∣∣∣ ≤ 2C(δ). (C.19)

The bound of second term follows equation (8) in supplementary materials of Scornet et al. (2015)

directly,

|J22| ≤ C(δ)× 4(||m||∞ + α)
(
(δ + δ2)(2||m||∞ + α) + α

)
+ 2C(δ)M. (C.20)

The other term J21 is

|J21| =

∣∣∣∣∣∣∣
τNn(AR,1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i


∣∣∣∣∣∣∣

≤
∣∣∣∣ τNn(AR,1)

σ2 (σ2 + τNn(AR,1))
−

τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

∣∣∣∣∣∣∣ .
(C.21)
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The bound of coefficient here is slightly different from equation (C.17) and (C.19)

∣∣∣∣ τNn(AR,1)

σ2 (σ2 + τNn(AR,1))
−

τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣
=

∣∣∣∣ τ(Nn(AR,1)−Nn(AL,2))

(σ2 + τNn(AR,1))(σ2 + τNn(AL,2))

∣∣∣∣
≤
∣∣∣∣ τ

(σ2 + τNn(AR,1))(σ2 + τNn(AL,2))

∣∣∣∣ (|Nn(AR,1)|+ |Nn(AL,2)|)

≤ 2τ(1−
√
δ + δ2)n(

σ2 + τ(1−
√
δ − δ2)n

)2 = g(δ, n)→ 0 when n is large.

(C.22)

Note that the upper bounds in equation (C.17) and (C.19) can be arbitrarily small if δ → 0, but

the upper bound in equation (C.22) relies on making n large. Use the tail bound of non-central χ2

distribution, result of supplementary materials of Scornet et al. (2015), and similar to J22

|J21| ≤ g(δ, n)M, (C.23)

which can be arbitrarily small when n is large.
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Now we switch to J1, corresponding to i | X(1)
i ∈ [0, x1], we proceed with similar decomposition.

J1 =
τ

σ2 (σ2 + τNn(AL,1))

1

n

Nn(AL,1)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,1)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,1
)2


− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,2)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,2
)2


=

τNn(AL,1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

y2i


+

τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2


−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2


= J11 + J12.

(C.24)

|J12| =

∣∣∣∣∣∣∣
τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2


−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2


∣∣∣∣∣∣∣

≤
∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
+

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣ .

(C.25)
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Same as J22,

|J12| ≤ C(δ)×

∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣+ 2C(δ)M

≤ C(δ)× 5(||m||∞
√
δ + α) + 2C(δ)M.

(C.26)

The second equation above use result of equation (9) of supplementary material of Scornet et al.

(2015). Similar to J21, we have

|J11| =

∣∣∣∣∣∣∣
τNn(AL,1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

y2i


∣∣∣∣∣∣∣

≤
∣∣∣∣ τNn(AL,1)

σ2 (σ2 + τNn(AL,1))
−

τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

y2i

∣∣∣∣∣∣∣
≤ g(δ, n)M.

(C.27)

J3 have the same bound as J1. Collect all terms, we have

|J1| ≤ g(δ, n)M + C(δ)× 25(||m||∞
√
δ + α) + 2C(δ)M

|J2| ≤ g(δ, n)M + C(δ)× 4(||m||∞ + α)
(
(δ + δ2)(2||m||∞ + α) + α

)
+ 2C(δ)M

|J3| ≤ g(δ, n)M + C(δ)× 25(||m||∞
√
δ + α) + 2C(δ)M

|Ln,1(1, x1)− Ln,1(1, x2)| ≤ |J1|+ |J2|+ |J3|

. (C.28)

Consequently, for all n large enough and δ small enough, we have

|Ln,1(1, x1)− Ln,1(1, x2)| ≤ 3α. (C.29)
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Second case

Assume that x1, x2 ∈ AL,√δ, take same arguments as above, we have

Nn(AL,1),Nn(AL,2) ≤ (
√
δ + δ2)n. (C.30)

Different from the first case, now both x1 and x2 are close to the left edge, which is corresponding

to term J1. Note that |J2| and |J3| are the same as the first case since the control over region AC

and AR,1 ×AR,2 and not changed.

|J12| =

∣∣∣∣∣∣∣
τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2


−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2


∣∣∣∣∣∣∣

≤
∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
+

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣ .

(C.31)

We have ∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣ ≤ ∣∣∣∣ τNn(AL,2)

σ2τNn(AL,2)

∣∣∣∣ =
1

σ2
(C.32)
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∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
= 2|ȳAL,1

− ȳAL,2
| × 1

n

∣∣∣∣∣∣∣
∑

i:x
(1)
i <x1

(
yi −

ȳAL,1
+ ȳAL,2

2

)∣∣∣∣∣∣∣
≤ 4(||m||∞ + α)

(||m||∞ + α)Nn(AL,1)

n
+

1

n

∣∣∣∣∣∣∣
∑

i:x
(1)
i <x1

m(xi) + εi

∣∣∣∣∣∣∣


≤ 4(||m||∞ + α)

(
(||m||∞ + α)(

√
δ + δ2) +

Nn(AL,1)

n
(||m||∞ + α)

)
≤ 4(||m||∞ + α)

(
(||m||∞ + α+ 1)(

√
δ + δ2)

)

(C.33)

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
=

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
−

τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣× Nn(AL,1)

n

∣∣∣∣∣∣∣
1

Nn(AL,1)

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
≤ 2

σ2
(
√
δ + δ2)M.

(C.34)

As a result

|J12| ≤
1

σ2
4(||m||∞ + α)

(
(||m||∞ + α+ 1)(

√
δ + δ2)

)
+

2

σ2
(
√
δ + δ2)M → 0. (C.35)

|J11| =

∣∣∣∣∣∣∣
τNn(AL,1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

y2i


∣∣∣∣∣∣∣

≤
∣∣∣∣ τNn(AL,1)

σ2 (σ2 + τNn(AL,1))
−

τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

y2i

∣∣∣∣∣∣∣
≤ 2

σ2
(
√
δ + δ2)M → 0.

(C.36)
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Consequently we conclude that for all n > N and all δ small enough,

|Ln,1(1, x1)− Ln,1(1, x2)| ≤ 3α. (C.37)

The other cases {x1, x2 ∈ AR,√δ}, {x1 ∈ AL,√δ, x2 ∈ AC,√δ} and {x1 ∈ AC,√δ, x2 ∈ AR,√δ} can

be proved in the same way. Details are omitted.
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C.2 Proof of Lemma 3 for the case k = 2

Preliminary results

Similarly, Laurent and Massart (2000) gives tail bound of χ2 distribution,

P[χ2
n ≥ 5n] ≤ exp(−n).

By the tail bound above, it’s straightforward to show that

Suppose x follows χ2 distribution with degrees of freedom k and non-central parameter λ

P (x ≥ x) ≤
√
π

2e
Φ(
√
x)I k

2
(1)Mk−1, (C.38)

where Iv is a modified Bessel function of the first kind, Mk−1 = E(yk−1) and y is a Gaussian (µ, 1)

random variable truncated on (
√
x,∞). So we can claim that with probability 1 − ρ, the term

1
n

∑n
i=1 y

2
i is bounded.

Follow the notation of Scornet et al. (2015), let d′1 = (1, x′1) and d′2 = (2, x′2 be such that

|x1 − x′1| ≤ δ and |x2 − x′2| ≤ δ.

There exist a constant Cρ > 0 and N1 such that, with probability 1− ρ, for all n > N1,

max
1≤i≤n

|εi| ≤ Cρ
√

log(n) (C.39)

and

max
1≤i≤n

|ε2i | ≤ C2
ρ log(n). (C.40)

Fix ρ > 0, there exist N2 such that, with probability 1− ρ, for all n > N2 and all An = [a
(1)
n , b

(1)
n ]×

[a
(2)
n , b

(2)
n ] ⊂ [0, 1]2 satisfying Nn(An) >

√
n,

∣∣∣∣∣∣ 1

Nn(An)

∑
i:xi∈An

εi

∣∣∣∣∣∣ ≤ α (C.41)
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and

1

Nn(An)

∑
i:xi∈An

ε2i ≤ σ̃2. (C.42)

Furthermore, it’s easy to verify

∣∣∣∣∣∣ 1

Nn(An)

∑
i:xi∈An

yi

∣∣∣∣∣∣ ≤ ||m||∞ + α (C.43)

and ∣∣∣∣∣∣ 1

Nn(An)

∑
i:xi∈An

y2i

∣∣∣∣∣∣ ≤ ||m||2∞ + σ̃2 + 2α||m||∞. (C.44)

Similar to the k = 1 case, we denote partition of space as



AR,1 = [x1, 1]× [0, 1]p−1

AB,2 = [x1, 1]× [0, x2]× [0, 1]p−1

AH,2 = [x1, 1]× [x2, 1]× [0, 1]p−1

A′B,2 = [x′1, 1]× [0, x′2]× [0, 1]p−1

A′H,2 = [x′1, 1]× [x′2, 1]× [0, 1]p−1.

(C.45)

See Figure C.2 for an illustration of notations.

Let d1 = (1, x1), d2 = (2, x2), d
′
1 = (1, x′1) and d′2 = (2, x′2) be four cutpoints and |x1 − x′1| < δ,

|x2 − x′2| < δ, then

Ln(d1, d2)− Ln(d′1, d
′
2) = Ln(d1, d2)− Ln(d′1, d2) + Ln(d′1, d2)− Ln(d′1, d

′
2). (C.46)
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x2

x′2
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Figure C.2: Illustration of notations for k = 2.
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Ln(d1, d2)− Ln(d′1, d2)

=
τ

σ2 (σ2 + τNn(AB,2))

1

Nn(AR,1)

Nn(AB,2)
∑

i:x
(2)
i ≤x2

y2i 1x
(1)
i >x1

−(Nn(AB,2)− 1)
∑

i:x
(2)
i ≤x2

(yi − ȳAB,2
)21

x
(1)
i >x1


+

τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x1


− τ

σ2
(
σ2 + τNn(A′B,2)

) 1

Nn(A′R,1)

Nn(A′B,2)
∑

i:x
(2)
i ≤x2

y2i 1x
(1)
i >x′1

−(Nn(A′B,2)− 1)
∑

i:x
(2)
i ≤x2

(yi − ȳA′B,2
)21

x
(1)
i >x′1


− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


+

γx1,x2
Nn(AR,1)

−
γx′1,x2

Nn(A′R,1)

= A1 +B1

(C.47)
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A1 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x1


− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


=A1,1 +A1,2 +A1,3

(C.48)

A1,1 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x′1


− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1



(C.49)
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A1,2 =
τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1



(C.50)

A1,3 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i ∈[x1,x′1]

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]


(C.51)
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A1,1 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x′1


− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


=

 τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)

Nn(AR,1)
− τ

σ2
(
σ2 + τNn(A′H,2)

)Nn(A′H,2)

Nn(AR,1)

 ∑
i:x

(2)
i >x2

y2i 1x
(1)
i >x′1

+

 τ

σ2
(
σ2 + τNn(A′H,2)

) (Nn(A′H,2)− 1)

Nn(AR,1)

∑
i:x

(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

− τ

σ2 (σ2 + τNn(AH,2))

(Nn(AH,2)− 1)

Nn(AR,1)

∑
i:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x′1


(C.52)

which goes to zero using the same argument as k = 1 case.
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A1,2 =
τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


=

 τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)
− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)


×

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

− (Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1


(C.53)

|A1,2| ≤

∣∣∣∣∣∣ τNn(A′H,2)

σ2
(
σ2 + τNn(A′H,2)

)Nn(A′H,2)

Nn(AR,1)
−

τNn(A′H,2)

σ2
(
σ2 + τNn(A′H,2)

)Nn(A′H,2)

Nn(A′R,1)

∣∣∣∣∣∣
×


∣∣∣∣∣∣∣

1

Nn(A′H,2)

∑
i:x

(2)
i >x2

y2i 1x
(1)
i >x′1

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
1

Nn(A′H,2)

∑
i:x

(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

∣∣∣∣∣∣∣


(C.54)

Same as before, the second term is bounded and

|A1,2| ≤M

∣∣∣∣∣Nn(A′H,2)

Nn(AR,1)
−

Nn(A′H,2)

Nn(A′R,1)

∣∣∣∣∣→ 0 (C.55)
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|A1,3| ≤
∣∣∣∣ τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)

Nn(AR,1)
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})∣∣∣∣
×

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{
x
(2)
i > x2

}) ∑
i:x

(2)
i >x2

y2i 1x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣
+

∣∣∣∣ τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)− 1

Nn(AR,1)
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})∣∣∣∣
×

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{
x
(2)
i > x2

}) ∑
i:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣
= A1,3,1 +A1,3,2.

(C.56)

Note that
τNn(AH,2)

σ2(σ2+τNn(AH,2))
is bounded by a constant M as n is large,

∣∣∣∣ τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)

Nn(AR,1)
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})∣∣∣∣ ≤M δ2 + δ

δ2 −
√
δ
→ 0. (C.57)

So we have A1,3,1 → 0 if n is large and δ is small.

If Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})
<
√
n,

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{
x
(2)
i > x2

}) ∑
l:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣ ≤
C2
ρ log(n)
√
n

. (C.58)

If Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})
>
√
n, note that |1 − x1| ≥ ξ, Nn(AR,1) > Nn(ξ) > (ξ −

δ2)n, Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})
≤ Nn

({
x
(1)
i ∈ [x1, x

′
1]
})
≤ (δ + δ2)n. As a result

∣∣∣∣∣∣
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{
x
(2)
i > x2

})
Nn(AR,1)

∣∣∣∣∣∣ ≤ δ − δ2

ξ + δ2
≤ δ

ξ
(C.59)
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∣∣∣∣∣∣
Nn
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x
(1)
i ∈ [x1, x
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x
(2)
i > x2

})
Nn(AR,1)

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{
x
(2)
i > x2
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(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣
≤ δ

ξ

(
3(||m||∞ + α)2 + ||m||2∞ + σ̃2 + 2||m||2∞α

)
.

(C.60)

Therefore A1,3,2 → 0. Collecting all bounds, we conclude that A1 → 0. It is straightforward to

prove with similar arguments that B1 → 0 and Ln(d1, d2)− Ln(d′1, d
′
2)→ 0.
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Rocková, V. and van der Pas, S. (2017) Posterior concentration for Bayesian regression trees and
forests. arXiv preprint arXiv:1708.08734.
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