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ABSTRACT

The remarkable properties and processability of polymers have made them ubiquitous in our

lives in the form of products, technologies, foods, medical devices, and more. These giant

molecules have also presented many scientific challenges which have been met with a diverse

array of elegant theories over the past century. Today, polymer scientists and engineers turn

their attention to ever more sophisticated macromolecules in search of new frontiers in poly-

mer physics and new solutions to modern technological needs. Some of the most intriguing

avenues of research center on mechanically-interlocked polymers (MIPs), which contain com-

plex and permanent topological interactions in the form of mechanical bonds. Topological

interactions (or constraints), such as entanglements, are crucial in determining the proper-

ties of polymeric materials with practical implications in many industrial processes. Owing

to the unique and long-lived nature of the mechanical bond, certain systems of MIPs have

been found to exhibit a host of unusual material properties including excellent toughness and

resilience, which has made them promising candidates for a variety of technological applica-

tions, ultimately leading to their recent commercialization as scratch-resistance coatings.

Despite the promise of MIPs, scientists and engineers must still contend with many

challenges in applying these polymers to new technologies. In addition to the well-known

synthetic difficulties associated with crafting new MIP architectures, researchers are also

faced with a relative dearth of knowledge concerning the material properties of MIP systems,

both in the basic phenomenology and the underlying physics. This is especially apparent in

the case of poly[n]catenanes - polymers which consist entirely of interlocking ring molecules.

Such systems have been targeted by chemists for many decades and were recently synthesized

for the first time, but their mechanical and dynamical properties remain largely unexplored.

This dissertation alleviates some of these difficulties by using molecular simulations to

examine the physics of poly[n]catenanes. To begin, the force-extension behavior of the poly-

mers is studied with atomistic resolution and the results are found to agree very well with

x



dynamic light scattering experiments. To access longer length and time scales, coarse-grained

models are then used to study poly[n]catenane structure and dynamics in good solvent con-

ditions. It is found that topological interactions greatly slow the dynamics of the system at

short and intermediate length scales in a manner similar to entanglement in linear polymer

systems. Next, the effect of hydrodynamic interactions in catenated polymers is considered

using both theory and simulation and we find that the symmetries of ring molecules greatly

simplify the physical situation and the effects of topology and hydrodynamics may be con-

sidered as roughly independent. Large scale molecular dynamics simulations are then used

to study poly[n]catenanes in the melt. It is found that the mechanical bonds cause large

reductions in the pressure and lead to complex polymer conformations that resist interchain

entanglement. Despite the lack of such entanglements, the dynamics of poly[n]catenane

melts are extremely rich, although some qualitative features can be explained by a simply,

analytically solvable model. Most strikingly, the viscosity exhibits a non-monotonic depen-

dence on the ring size, with larger rings (i.e. bigger polymers) leading to lower viscosities up

to a critical ring size, above which the trend reverses and the viscosity increases with ring

size as expected. To conclude, implications for chemical synthesis and materials design are

discussed and directions for future research are proposed.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Mechanically Interlocking Polymers

Over the past century, polymeric materials have been produced and applied at an astound-

ing scale, becoming integral parts of our lives. As polymer engineers have shifted their

focus to modern scientific and technological challenges, they have developed increasingly

sophisticated macromolecular architectures for the purpose. Indeed, aside from chemical

composition, polymer architecture has the largest effect on the material properties of poly-

mer systems. For instance, even the “simple” modification of joining the ends of an ordinary

linear polymer to form a loop results in dramatically different properties [1–4]. As a result,

the synthesis and characterization of exotic architectures has been a major part of poly-

mer science for several decades and remains an active area of research [5]. For instance,

in addition to the cyclic/ring polymers mentioned above, researchers have also examined

dendimers [6, 7], star polymers and miktoarms [8, 9], combs and bottlebrushes [10–12], and

more. As polymer science rises to meet new societal and technological challenges, the design

and development of new architectures will no doubt play a vital role.

Taking polymer architecture a step further, mechanically interlocked polymers (MIPs)

have seen enormous growth in preparation and study over the last few decades. Unlike the

other architectures discussed above, these polymers contain multiple components connected

by one or more mechanical bonds, which are a form of permanent topological interaction [13].

Such mechanically-bound components are not covalently joined to each other, but cannot

be separated without breaking a covalent bond. Mechanical bonds allow for many more

degrees of freedom than covalent linkages and different components of the same molecule

can be engineered to perform concerted motions relative to one another, allowing for the

design of molecular machines [14]. The most commonly synthesized MIPs are polyrotaxanes
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[15], which typically consist of rings (or macrocycles) threaded on a polymer “axle.” The

materials made from these polymers exhibit excellent toughness and recoverability [16, 17]

and have even been commercialized as anti-scratch coatings [16].

The success of polyrotaxanes can be attributed to their relatively facile synthesis. Much

more challenging is the synthesis of polycatenanes [18], which are polymers containing in-

terlocking macrocycles. However, these polymers have great potential as they can contain

enormous numbers of mechanical bonds. For instance, poly[n]catenanes are composed en-

tirely of interlocking rings, with no covalent attachments in the polymer backbone, leading

to the highest concentration of mechanical bonds possible. This novel polymer architec-

ture was recently synthesized for the first time [19] and is depicted in Figure 1.1. For many

decades, researchers had speculated that poly[n]catenanes would exhibit a variety of unusual

behaviors [17, 18, 20]. In particular, it had been suggested that poly[n]catenanes could ex-

hibit “high loss modulus, rapid stress relaxation, and low activation energy for viscous flow”

[20]. While such potential properties motivated many chemists to target polycatenanes syn-

thetically [17], to date no rheological studies have been carried out to confirm such claims

and only a few theoretical or computational studies have been conducted [21, 22]. As a

result, the static and dynamic properties of poly[n]catenanes are not known at this time. As

poly[n]catenane synthesis remains an active area of research, a better understanding of the

properties of these polymers will help chemists design and target the most promising can-

didates for new materials. On the other hand, mechanical bonds represent permanent and

well-defined topological interactions, which have been actively studied in polymer physics

for many decades, making the behaviors of poly[n]catenanes a topic of fundamental physical

interest. This dissertation describes the results of molecular simulations of poly[n]catenanes

in solution and in the melt state.
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Figure 1.1: Visualization of a simulated poly[n]catenane. Alternating rings are colored
differently to more easily discern the interlocking structure.

1.2 Topological Interactions in Polymer Systems

Polymer liquids are often dominated by topological interactions, which arise because chains

cannot pass through one another [13]. In linear polymer systems, these topological con-

straints do not greatly affect small chains since the interactions are transient and the relevant

time and length scales are quite short. However, for systems of long chains, the polymers

are severely restricted in their motion by their neighbors. These restrictions greatly in-

crease polymer relaxation times, and dramatically alter diffusion and rheological behavior

[13, 23]. Over the past few decades, many theories have attempted to explain and predict

the effects of topological interactions in linear polymer systems, for instance the phenomeno-

logical tube/reptation [24–29], and slip-link [30–35] models, or more fundamental force-level

theories [36–39].

Despite these impressive effects on dynamical behavior, linear polymers do not show any

meaningful changes in melt structure or chain conformations associated with the onset of en-

tanglement, either at the intra- or inter-molecular level, as shown by experiment [40–42] and

simulation [23, 43, 44]. Thus, the topological interactions do not disallow any chain or sys-
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tem configurations, but instead prevent certain dynamical paths between them. To connect

structure and dynamics, many authors have attempted to formulate microscopic definitions

of an “entanglement” so that molecular simulations could be used to unambiguously identify

such topological interactions and analyze their statistics and dynamics [45–54]. However,

researchers have yet to reach consensus about how entanglements should be defined and

what kinds of relative chain conformations constitute them. On account of these challenges,

linear polymers and their topological interactions remain an active subject of research.

Non-concatenated (unlinked) ring polymers present an entirely distinct challenge since

topological interactions manifest themselves very differently in these systems. For example,

linear polymers do not show changes in structural features, including scaling of radius of

gyration, Rg, due to entanglement, as mentioned above. However, at intermediate molecular

weight, ring polymers in the melt appeared to scale in size according to Rg ∼ N2/5 in early

work, owing to the topological interactions [1, 55–60]. However, more recent studies have

demonstrated that this is not a true scaling regime but rather a crossover between ideal

scaling at small N , Rg ∼ N1/2, and collapsed, globule-like scaling at large N , Rg ∼ N1/3

[59, 61–63]. The topological interactions also affect the dynamics in a unique way in ring

polymer melts. Although the diffusion constants scale similarly to those of entangled linear

polymers: D ∼ N−a with a ≈ 1.9 − 2.3 (a major puzzle) [60–62, 64], the stress relaxation

modulus shows no rubbery plateau and polymer relaxation times scale much more slowly

than those of entangled linear polymers, suggesting a decoupling of internal and center-of-

mass dynamics [63–68].

These differences between linear and ring polymer systems can be attributed to the fact

that the topological interactions are quite different in the two systems. While linear poly-

mers can interpenetrate each other freely, ring polymers cannot, as they must remain non-

concatenated, prohibiting certain configurations. As a result, the topological interactions

affect both structure and dynamics in ring polymer systems, as opposed to linear polymer
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systems in which only dynamics are impacted. This kind of non-concatenation constraint

has been studied theoretically for quite a long time using topological invariants such as

the Gauss linking number [69, 70]. For instance, these constraints are known to lead to a

positive second virial coefficient, even when excluded volume interactions disappear [71–73].

Based on this observation, ring polymer melts should exhibit topological contributions to

thermodynamic quantities such as the pressure, but these effects have not yet been observed

[64].

Ring polymers melts and solutions also behave uniquely in non-equilibrium scenarios,

exhibiting thickening in weak extensional flows as a result of long-lived inter-ring threadings

in the form of “reef knots” [74, 75]; these systems even show glass-like dynamics on the

macromolecular scale under certain conditions [76–78]. In blends of ring and linear polymers,

the linear chains can thread the rings, leading to an entirely different set of rheological

responses [79–81]. Although the aforementioned ring polymer systems exhibit significant

threading of the rings by neighboring polymers, there are no true topological (or otherwise

permanent) concatenations or links, so nearby molecules will eventually diffuse away from

one another (glassy dynamics notwithstanding).

Catenated ring polymers represent yet another form of topological constraint, and have

been a fixture in the biophysics literature for many decades [71, 82–84]. However, the me-

chanical and dynamical properties of such systems have not been characterized as extensively

as those polymer systems described previously. Nevertheless, some theoretical and compu-

tational work has indeed been devoted to the topic. For instance Otto and Vilgis [85, 86]

examined the elasticity of large (asymptotic) linked Gaussian ring polymers (i.e. polymeric

[2]catenanes) and found that when segments on opposite rings are stretched to a distance

R > Rg,r where Rg,r is the size of a single ring, the free energy scales as F ∼ R4, much

faster than an ordinary Gaussian linear or ring polymer, which exhibits scaling of F ∼ R2

[87]. Such behavior was not apparent in recent simulations [88], but this may be due to the
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presence of excluded volume interactions or insufficient polymer size. Polymeric [2]catenanes

have also been studied in the melt using a lattice model by Rane and Mattice [89], but those

authors focused on fairly small, stiff rings and did not characterize the dynamics beyond the

mean-squared displacement of monomers at short times/distances. Moreover, lattice-based

models such as the one used in that work (and others) are known to introduce artifacts into

the dynamics of catenated polymers [90], making the results difficult to interpret.

More complex interlocking systems systems have also been studied. For instance, Vilgis

and Otto [91] used scaling arguments to study the elasticity of catenated networks, also

known as Olympic gels, finding two distinct regimes. At small deformations, the free energy

is predicted to be linear in the deformation, λ, therefore having constant modulus, unlike a

typical polymer network [87]. However, at large deformations, the free energy is expected to

scale as F ∼ λ5/2, exhibiting significant strain-hardening. Unfortunately, the synthesis and

characterization of such materials is difficult so these results have not yet been tested either

by experiment or simulation.

Based on the discussion above, we expect topological interactions to play a key role

in the properties and dynamics of poly[n]catenane materials, as the molecules contain a

large number of interacting and interlocked ring polymers. In fact, even a single, iso-

lated poly[n]catenane possesses a great many topological constraints, both between mutually

linked and un-linked macrocycles. Meanwhile, in dense melt states, intermolecular interac-

tions will also become important and the overall linear character of the polymer and its

potential for interchain entanglement may also play a a role.

1.3 Properties of Poly[n]catenanes

Poly[n]catenanes have only recently been synthesized for the first time, so the physical

characterization of the systems is still in its infancy; in fact, this is the topic of Chapter 2.

As a result, existing literature on poly[n]catenanes has leveraged theory and simulation rather
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than experiment. There are a limited number of such works and all of them have focused on

isolated poly[n]catenanes, typically under good solvent conditions. The polymers were first

studied using an athermal lattice-based Monte Carlo method by Pakula and Jeszka [22], who

examined a variety of ring sizes and chain lengths. The end-to-end vector in poly[n]catenanes

was found to obey Gaussian statistics, indicating that the chains could be “renormalized” to

ordinary linear polymers at large length scales; this conclusion was further supported by later

theoretical work of Brereton [21]. Pakula and Jeszka also showed that poly[n]catenane radius

of gyration and end-to-end distance obey the same scaling relations, Rg ∼ Re ∼ (nm)ν , as

ordinary linear polymers in good solvent conditions (ν ≈ 0.588 ≈ 3/5) and the data for

polymer dimensions collapse to a master curve when normalized by the size of the individual

rings. However, this observation has been challenged by a more recent simulation study

by Ahmadian Dehaghani et al. [92] who used a continuum molecular dynamics method to

show that Rg ∼ mµnν with ν ≈ 3/5 and µ ≈ 0.658; this result was rationalized using a

Flory-type theory. Those authors also observed that poly[n]catenanes exhibit a higher θ-

temperature than linear or ring polymers; it is suspected that the threading segments act

as additional “points of attraction,” for the macrocycles, allowing more facile chain collapse.

Other authors [93] have also examined poly[n]catenanes by molecular simulations, extending

the chain lengths up to n = 100 rings. These extremely long poly[n]catenanes showed highly

unusual structural properties, including unexpected scaling behavior and large, long-lived

orientational correlations along the chain. However, the simulation times appear to be short

relative to the relaxation times of the polymers (and in some cases only half as long) so the

results may be complicated by inadequate sampling.

Although the structural features of poly[n]catenanes have been only sparingly studied,

the dynamical properties are an even greater mystery. For instance, although Pakula and

Jeszka [22] did indeed examine monomer displacements, orientational relaxation times, and

diffusion coefficients of poly[n]catenanes, these properties were only characterized in detail
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for systems with very small ring sizes (comparable to the lattice spacing in their model). As

mentioned in the previous section, this is known to cause dynamical artifacts [90] and indeed

the polymer center-of-mass diffusion coefficients do not follow a 1/N dependence, despite the

absence of intermolecular and/or hydrodynamic interactions. These issues make it difficult to

draw meaningful conclusions concerning poly[n]catenane dynamics. More recently, Kanaeda

and Deguchi [94] simulated linear and cyclic catenanes including hydrodynamic interactions

via Brownian dynamics. However, only the diffusion constant and radius of gyration were

examined and the results were not compared to non-concatenated systems in any detail, so

the effect of the topological linking on these properties is unknown. Other authors have also

studied poly[n]catenane dynamics by molecular simulations, but only as a test system for a

mode analysis method; the properties of the polymers themselves were not discussed [95].

Clearly, the structural and dynamical characteristics of poly[n]catenanes are not well

understood at this time, even at the single-molecule level, and the polymers remain com-

pletely unstudied in the melt. Now that the synthesis of poly[n]catenanes has finally been

achieved, it is important to understand the properties of these molecules and how they may

be controlled and engineered at the molecular level. Since poly[n]catenanes are still difficult

to synthesis and study, molecular simulations are an excellent tool for the task.

1.4 Outline

The remainder of this dissertation is organized as follows. In Chapter 2, we describe the

synthesis and physical properties of poly[n]catenanes and use detailed molecular dynamics

simulations to interpret the observations. Chapter 3 then uses a coarse-grained molecular

model to study the structure and dynamics of isolated poly[n]catenanes and how these

properties are affected by ring size and segment stiffness. In Chapter 4, use theory and

simulation to study the effect of hydrodynamics interactions on the dynamics of interlocked

polymers. Chapters 5 and 6 use large scale molecular dynamics simulations to characterize
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the structure and dynamics, respectively, of poly[n]catenanes in the melt. We conclude by

reflecting on the future of the field and avenues for further research.
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CHAPTER 2

ATOMISTIC CHARACTERIZATION OF POLY[N ]CATENANES

2.1 Introduction

As discussed in the Introduction, the structure of a poly[n]catenane can be considered the

molecular equivalent of a macroscopic chain, which retains its flexibility no matter the stiff-

ness of its components on account of the unique topology. Such structures allow access

to both high strength and excellent flexibility and several authors have suggested that

poly[n]catenanes could exhibit a large loss modulus and a low activation energy for flow,

and could potentially act as outstanding energy damping materials and/or elastomers with

excellent toughness and stimuli-responsive mechanical properties [18, 20]. Although chemists

have targeted poly[n]catenanes for many decades, until recently, no successful synthesis had

been achieved and therefore little was actually known about their properties, despite am-

ple speculation. In this chapter, we describe the synthesis and some physical properties of

poly[n]catenanes which were recently reported by our group [19] and represent a major ad-

vance in the preparation of mechanically interlocked polymers. Furthermore, we develop an

all-atom molecular model of the polymers and use molecular dynamics simulations to study

the force-extension and diffusive behaviors of the polymers, comparing the results with ex-

periment. Since this dissertation focuses primarily on the physics of these novel polymers,

only a cursory discussion of the chemical synthesis will be offered; a comprehensive account

can be found in the original publication [19].

2.2 Poly[n]catenane Synthesis and Properties

The synthesis of poly[n]catenanes is a major challenge. Before the work of Wu et al. [19],

the confirmed synthesis of this molecular topology for a relatively high molecular weight had

yet to be reported. Most of the prior work on polycatenanes has focused on poly[2]catenanes
10



in which [2]catenane moieties are incorporated into the backbone of conventional polymers

[20, 96–102], poly/oligocatenanes with unclearly-defined architectures [103, 104], and poly-

meric [2]catenanes (i.e. two interlocked cyclic polymers) [105]. These materials have afforded

insights into the potentially interesting properties of MIPs. For example, poly[2]catenanes

have shown conformational flexibility along the polymer chain in solution (indicated by a

shorter Kuhn segment length than the length of its [2]catenane moiety) [20] and temperature-

dependent motion of the rings in solution [98] or in bulk materials [101]. It is worthwhile

pointing out that poly[2]catenanes (shown in Figure 2.1a) have covalent linking groups along

the backbone, in addition to the topological bonds, which can limit the degree of rota-

tion of the ring component. Poly[n]catenanes, on the other hand, are linked solely by

topological bonds allowing full rotational mobility of every ring (with sufficient ring size)

and, as such, more conformational freedom. One of the most successful attempts to access

oligo[n]catenanes with at least seven interlocked rings was recently achieved via the ring-

opening polymerization of metallo-[2]catenanes by Meijer, Di Stefano and their coworkers

[104]. However, the specific architecture of the product (i.e., linear, branched, etc.) could not

be clearly defined. Prior to 2017, the longest interlocked molecular chain with clearly defined

structure was a linear [5]catenane (olympiadane) reported by Stoddart and coworkers [106]

and, more recently, by Iwamoto et al. [107], both via stepwise approaches. Stoddart and

coworkers have also used a similar strategy to access a branched [7]catenane [108]. These

step-wise strategies, however, are not efficient methodologies for the synthesis of long chain

poly[n]catenanes. One key challenge in the synthesis of poly[n]catenanes is the conflicting

reaction conditions for accessing macrocycles (requiring low concentration) and polymers

(requiring high concentration). Takata, Kihara and coworkers proposed an elegant solution

to this conflict by converting a bridged poly[2]catenane into poly[n]catenane [100], but to

date there is no report of a poly[n]catenane synthesized via this route.

The synthetic strategy toward poly[n]catenanes outlined herein, illustrated in Figure 2.1b,
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Figure 2.1: Poly[n]catenanes and their synthesis. a) Comparison of ring mobility in
poly[2]catenanes and poly[n]catenanes, b) Synthesis of poly[n]catenane 3 via assembly of
1 and 2 into a metallosupramolecular polymer (MSP), followed by ring-closing and demet-
allation, c) Structure of thread 1 and macrocycles 2 and 4; the box highlights the structure
of the Bip moiety.

decouples the above-mentioned conflicting synthetic requirements through the pre-assembly

of a metallosupramolecular polymer (MSP) as a template, followed by an efficient ring-closing

reaction and demetallation. Pioneered by Sauvage, metal-ligand coordination has been one

of the most successful synthetic routes toward mechanically interlocked (small) molecules

(MIMs) [109–112]. The terdentate ligand, 2,6-bis(N -alkyl-benzimidazolyl)pyridine (Bip, Fig-

ure 2.1c), which binds transition metal ions such as Zn2+ or Fe2+ in a 2:1 stoichiometry, was

chosen as it has already been shown to access a wide range of functional metallosupramolec-

ular polymers that exhibit photo-healing [113], stimuli-responsive [114], shape memory [115]

and actuation [116] properties. Furthermore, we have recently shown that [3]catenanes can

be accessed via a near quantitative ring-closing reaction of a pseudo[3]rotaxane assembled

from a monotopic Bip-containing macrocycle, Zn2+, and a ditopic thread (1 with R = hexyl,

see Figure 2.1), in a ratio of 2:2:1 [112].

Building on these studies, we targeted the MSP assembly of the rationally designed 68-
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membered ditopic Bip-macrocycle 2 with the threading molecule 1 and the subsequent ring

closing of 1 (Figure 2.1c). Upon the addition of two equivalents of Zn2+ to the 1:1 mixture

of 1 and 2, the components self-assembled into the alternating supramolecular copolymer

(Figure 2.1b). The alternation is a consequence of the principle of maximal site occupancy

[117]: two Bip moieties in the same (or different) macrocycle 2 cannot bind the same Zn2+

ion; therefore, each Bip unit in 2 must form a 2:1 Bip:Zn2+ ion complex with a Bip unit

in 1 in order to maximize enthalpic gain. The formation of an MSP was confirmed by

Diffusion-Ordered Spectroscopy (DOSY). The large binding constant (> 106M−1 in acetoni-

trile) between Bip and Zn2+ [118] maintains the MSP under the relatively dilute conditions

required to favor the ring closing reaction (although cyclic MSPs should be favored un-

der very dilute conditions). The ring-closing metathesis (RCM) reaction showed excellent

olefin conversion at 2.5 mM (with respect to 1), and the resulting reaction mixture could

be readily demetallated with tetrabutylammonium hydroxide. The synthesis of a mixture

of cyclic, linear, and branched poly[n]catenanes in approximately 80% yield was confirmed

by a combination of size exclusion chromatography, light scattering measurements, mass

spectrometry, and nuclear magnetic resonance spectroscopy. The details of the purification

and characterization of the reaction products are outside the scope of this work, but may be

found in ref. [19].

It is known that catenanes prepared via metal templating exhibit metallo-responsive be-

havior [119] and, as such, the metallo stimuli-responsive properties of these poly[n]catenanes

were investigated in the bulk and in solution, by measuring the glass transition temper-

ature, Tg (by differential scanning calorimetry, DSC), and the hydordynamic radius, Rh

(with dynamic light scattering, DLS), respectively. In particular, a sample/fraction of

poly[n]catenanes, 3c, believed to be predominantly linear in overall architecture, was an-

alyzed closely. In the bulk, the Tg of fraction 3c was found to be 97◦C, compared to 137◦C

for 5, a chemically similar linear (covalent) polymer of 1 formed by acyclic diene metathesis
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Figure 2.2: Some physical properties of polycatenanes. a) DSC data for linear
poly[n]catenane (fraction 3c) in the metallated and demetallated state compared with data
for ADMET polymer 5 (Tg calculated by half-height midpoint). b) Illustration of the
metallo-responsive conformational change of a linear poly[n]catenane between flexible and
semi-flexible structures as indicated by change in hydrodynamic radius, Rh.

(ADMET) polymerization (Figure 2.2a). In general, polymers with greater segmental motion

show lower Tg, which is consistent with the more facile conformational motions expected in

the poly[n]catenane backbones. Metallation with Zn2+ locks these conformational motions

as the Bip-Zn2+ complexes reform, significantly reducing the flexibility of poly[n]catenanes;

as such, no Tg is observed upon heating up to 160◦C for the metallated polymers. This re-

sult suggests that addition of Zn2+ ions into poly[n]catenanes induces a switch from a highly

flexible polymer to a rigid one. In solution (with 1,1,2,2-tetrachloroethane, TCE, as solvent),

fraction 3c showed a significant (∼ 70%) increase in Rh from 3.9 nm to 6.6 nm, upon addition

of Zn2+ as seen in Figure 2.2b. However, the increase is not as large as might be expected

if the metallated polymer were truly rigid. In order to understand this behavior, we must

examine the polymers in greater detail, using atomistic molecular dynamics simulations. To

do so, we first develop a molecular model for the various components within the polymers,

and then conduct in silico experiments to probe the quantities of interest. In particular,

we wish to determine Rh for metallated, linear poly[n]catenanes to compare with the DLS
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experiments described above to confirm that a sample of primarily linear poly[n]catenane

has indeed been successfully isolated. These efforts are described in the following sections.

2.3 Simulation Details and Molecular Model

All simulations in this chapter were conducted with the GROMACS [120, 121] molecular

dynamics package. The OPLS-AA force field [122–126] was used with a 1.2 nm cutoff radius

for Coulombic and Lennard-Jones interactions. Mean-field tail corrections to the energy and

pressure were included to account for the cutoff of the short-range non-bonded interactions

[127]. Long-range electrostatics were calculated using the particle mesh Ewald (PME) algo-

rithm [128, 129] with a Fourier grid spacing of 0.16 nm. For production simulations, a con-

stant temperature of 293.15 K was maintained using the Nosé-Hoover thermostat algorithm

[130, 131] with a time constant of 0.5 ps; the catenanes (macrocycles and metal ions) and

solvent (TCE and counterions) were coupled separately to the heat bath. Where applicable,

a constant pressure of 1 bar was maintained using the Parrinello-Rahman pressure coupling

algorithm [132] with a time constant of 2.0 ps and a compressibility of 6.5 × 10−5bar−1,

which is the room-temperature compressibility of the solvent [133, 134]. The LINCS algo-

rithm [135, 136] was used to constrain all bonds and allowed the use of a 2 fs time step using

a leapfrog integrator [137]. Periodic boundary conditions were applied in all directions. The

rigorous development of a complete force field for the system in question is outside the scope

of this work. As mentioned above, we instead use the well-known OPLS-AA force field and

make small modifications and additions as needed to describe the system components in a

first-order approximation. In particular, additional parametrization was necessary for the

macrocycles, solvent, and metal ions.

The macrocycles 1 and 2 within poly[n]catenanes can be thought of as two extended Bip

molecules connected by two linking groups. These linkers (oligoethylene glycol, xanthene,

and an unsaturated alkane) can be easily described using existing OPLS atom types and
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parameters. However, to our knowledge, the Bip moieties have not been parametrized in

the context of the OPLS-AA force field. The atoms types, charges, and bonded parameters

were therefore taken by analogy with existing OPLS atom types found in benzene [122],

imidazole [123], and pyridine [124]. However, a dihedral potential for rotation around the bi-

aryl pyridine-benzimidazole bond was not available. Since rotation around this bond greatly

changes the shape of the Bip molecule - switching from a “V”-shape to a linear conformation

as shown in Figure 2.3 - a small parametrization effort was required. In addition, partial

charges were unavailable forN1-substituted imidazoles, which necessitated additional efforts.

Figure 2.3: a) Linear and b) “V”-shaped conformers of the extended Bip ligand. Rotation
around the central bi-aryl bonds allows for transitions between the two states.

Following previous work by the developers of the force field [126], we use quantum me-

chanical calculations to determine the bi-aryl torsional energetics of two model molecules,

6 and 7, shown in Figure 2.4. All quantum mechanical calculations were performed using

the Gaussian09 software [138]. The molecules had their geometries optimized at dihedral

angles ranging from 0◦ to 180◦ in increments of 10◦ at the MP2(full)/6-311G(d,p) level

[139]. Single point energies were calculated at each of the resulting configurations at the

MP2(full)/aug-cc-pVTZ level of theory [140]. The results for 6 were compared to the tor-

sional energies obtained from a dihedral scan conducted in GROMACS using the classical
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Figure 2.4: Model molecules used for quantum mechanics calculations to parametrize the
Bip ligand

force field with the default OPLS parameters and no biaryl torsion potential. The dihedral

torsion parameters were updated iteratively until the root-mean-square error between classi-

cal and quantum values was minimized, having a final value of 0.049 kcal/mol. The resulting

parameters were assumed to be transferable to 7 as well as the full Bip moiety. To deter-

mine the partial charges on the alkyl-substituted imidazole, the dihedral potential derived

above was applied to 7 and the partial charges on the imidazole N1 and methyl C atoms

were varied until error between the classical and quantum mechanical torsional energies was

minimized. The methyl hydrogens were assumed to have charge +0.06e (similar to aliphatic

hydrogens in amines for OPLS) and the remaining partial charges were unchanged. Upon

requiring charge neutrality, the optimization is reduced to a one-parameter minimization of

the root mean-squared error, the resulting value being 0.48 kcal/mol. Figure 2.5 shows the

quantum and classical torsion energy profiles for each of the model molecules.

The partial charges and torsional potentials derived from the model molecules were then

applied to the Bip moiety and the two macrocycles in an additive fashion consistent with the

OPLS-AA force field. Coordinate files for the macrocycles were created using the PRODRG

tool [141] and the GROMACS [120, 121] tools were then used to create topology files, which

were checked and edited manually to account for the results of the fitting procedure above.
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Figure 2.5: Bi-aryl torsional energy profiles for the model molecules a) 6 and b) 7. Red
points show the results from quantum chemistry calculations; blue lines show the results
from classical force field calculations.

The alkene segment in the macrocycle 4 was initialized in the E configuration; there are no

other stereocenters in either macrocycle. The Visual Molecular Dynamics (VMD) software

[142] was used to arrange macrocycles into an interlocking structure. It is important to note

that these efforts are not to be taken as a highly detailed or accurate parametrization of the

Bip molecule, only the simplest possible treatment to describe the energetics of the most

important degrees of freedom in the molecule.

1,1,2,2-tetrachlorethane (TCE) was used in the DLS experiments described in the pre-

vious section and is therefore the desired solvent for these simulations. Although the DLS

experiments used deuterated TCE, for simplicity this detail will be omitted here. While the

molecule was part of a recent benchmarking effort for the OPLS-AA force field [134], the

resulting the dielectric constant (a critically important solvent property) is only ∼ 50% of

the experimental value. To improve the quality of the solvent model, the partial charges

were treated as variable parameters to achieve agreement with experiment, in the spirit of

the OPLS force field; the partial charges are expected to have a large impact on the dielectric

without altering the structural properties of the liquid (e.g. density, compressibility, etc.)

which are well-reproduced by the previous study. The partial charges shown in Table 2.1
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were found to reproduce a variety of experimental quantities very well. In particular, excel-

lent agreement is observed for the previously troublesome dielectric constant. All calculated

properties of the updated TCE model are reported and compared to experimental values

in Table 2.2. 95% confidence intervals are reported for each property. For the density and

heat of vaporization, standard errors were obtained by block-averaging error analysis. For

the dielectric constant, thermal expansion coefficient, and isothermal compressibility, the

simulation trajectory (15 ns in total) was divided into fifteen 1.0 ns intervals and analyzed

independently. The resulting data were averaged to obtain a mean value and the associated

confidence intervals. The fluid viscosity was calculated by analyzing the transverse current

autocorrelation functions (TCAFs) as described by Palmer [143], which can be performed

out-of-the-box in GROMACS. The confidence interval for the viscosity was determined from

the variance in the fit of the wave-vector-dependent viscosities. The updated charges for

TCE were used in all catenane simulations.

Table 2.1: Partial charges for 1,1,2,2-tetrachloroethane.

Atom Charge (e)
C 0.122
Cl -0.135
H 0.06

Table 2.2: Experimental and simulated properties of 1,1,2,2-tetrachloroethane at 293.15K
(unless otherwise indicated). Uncertainties are provided as 95% confidence intervals as de-
scribed in the main text.

Property Exp. Value Sim. Value Refs.
Density (g/L) 1594.2 1611.1± 0.5 [144]
Dielectric Constant 8.1− 8.5 8.33± 0.54 [145, 146]
Thermal Expansion Coef. (0.001/K) 0.96 (298.15K) 1.01± 0.03 [134, 147]
Isothermal Compressibility (1/GPa) 0.65 0.61± 0.02 [134]
Heat of Vaporization (kJ/mol) 47.17 47.52± 0.92 [148]
Shear Viscosity (cP) 1.77 1.12± 0.15 [149]
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The Zn2+ ion is used experimentally to metallate the catenane molecules by binding to

two Bip ligands and must therefore be modeled in the simulations. Metal-ion complexes

have been extensively studied in molecular simulations and a wide range of models has been

developed, offering a variety of features and complexities [150]. A detailed parametrization

of the Bip-Zn2+ complex is outside the scope of this work, so a simple yet generally accurate

description is chosen for the Zn2+ ion: the non-bonded model of Stote and Karplus [151]

based on electrostatics and the Lennard-Jones potential. To evaluate the performance of this

model, the structural properties of the Bip-Zn2+-Bip complex obtained from simulations in

vacuum at low temperature are compared to crystallographic data [152]. For simplicity, a

methyl-substituting Bip (Figure 2.1c with R = Me) was used in these simulations. A com-

parison of the N-Zn bond lengths and N-Zn-N angles is shown in Table 2.3 and the agreement

is satisfactory. However, it is worth noting that no efforts were made to validate the strength

of the metal-ligand interaction, only the basic structural characteristics. Experimentally, the

Zn2+ ions are added as a salt with two bistriflimide counterions which are known to be non-

coordinating molecules and as such do not interfere with the Bip-Zn2+ complex. However,

this behavior is not well-described by classical MD simulations and the counterions are able

to displace the Bip ligand. Following previous work in ionic liquids [153–155] and polymer

electrolytes [156–158], the partial charges on all ionic species were scaled down to improve

ion separation. To determine the minimum necessary charge reduction, several simulations

were conducted on solvated complexes; Cl- was chosen as the counterion for simplicity. A

scaling factor of 0.6 was sufficient to prevent direct coordination between the metal and the

counterions and to maintain the integrity of the Bip-Zn2+ complex. Thus, partial charges

of +1.2e and −0.6e were used for Zn2+ and Cl- ions in all catenane simulations.
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Table 2.3: Some key structural parameters for the Bip-Zn2+ complex determined from ex-
periment [152] and simulation. Values were averaged over identical bonds/angles within the
complex. Pyr = Pyridine Nitrogen, Im = Imidazole Nitrogen, Zn = Zinc ion. For the angles
listed, there is additional indication if the angle connects Nitrogen atoms on the same or
different Bip molecules.

Bonds/Angles Experiment Simulation
Bonds Zn-Pyr 2.14 Å 2.09 Å

Zn-Im 2.15 Å 2.15 Å
Angles Pyr-Zn-Pyr (different Bip) 168.8◦ 174.8 ◦

Im-Zn-Im (same Bip) 149.0◦ 151.8 ◦
Im-Zn-Im (different Bip) 94.1◦ 93.3 ◦
Pyr-Zn-Im (same Bip) 74.6◦ 76.1 ◦
Pyr-Zn-Im (different Bip) 105.5◦ 103.9 ◦

2.4 Simulated Properties of Metallated Poly[n]catenanes

Since the poly[n]catenanes synthesized experimentally have average degree of polymerization

(i.e. number of rings) in the range of 11-12 and each ring is approximately 2.5 nm in

diameter, full atomistic simulations of even a single polymer would require many millions of

atoms, which is computationally impractical. Therefore, we must employ more sophisticated

methods to evaluate the properties of the polymers by examining much smaller systems.

The quantity of immediate interest is the hydrodynamic radius, Rh, which is related to the

diffusion coefficient by the Stokes-Einstein equation:

Rh =
kBT

6πηD
(2.1)

where η is the solvent viscosity and D the diffusion coefficient. Although various approx-

imations exist for Rh based solely on structural information, the rigorous definition relies

on dynamical information found in the diffusion coefficient. Fortunately, for polymers, one

expects measures of molecular size such as Rh and the end-to-end distance, Re,to exhibit
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similar scaling [87, 159], so that the ratio between the two values should be relatively con-

stant when the number of macrocycles is varied. Thus, if we have measurements of Rh

and Re for a small poly[n]catenane and an estimate of Re for a larger one, we can ob-

tain an accurate estimate of Rh for the latter. Still, we must be able to estimate Re for

poly[n]catenanes of arbitrary size, which can be done through various analytical formulas

[87] if certain physical parameters of the polymer are known, such as the persistence length

and contour length. Such quantities can be determined from a force-extension experiment

which can be performed in silico.

First, we determine Rh and Re for a small metallated poly[n]catenane with n = 4 to

find the ratio between the two values. Re was calculated by evaluating the average distance

between metal ions bound to the Bip moieties at the chain ends. As discussed below, a

number of independent simulations were run for the system; the distribution of mean end-

to-end distances from each trajectory was used to compute Re and the associated 95%

confidence interval, with the result Re = 7.25 ± 0.33 nm. Strictly speaking, this is not a

true end-to-end distance since a terminal Bip ligand will extend beyond the metal’s position

in the direction of the contour length. However, this value can be directly compared to the

force-extension simulations detailed below since the equivalent measure of molecule size in

that system is simply the box length. Rh was calculated from Eq. 2.1 where the diffusion

coefficient, D, is obtained from the mean squared displacement 〈∆R2〉 of the polymer center-

of-mass using the Einstein relation:

〈∆R2〉 = 6Dt+ C (2.2)

where t is time, and C is a constant of integration. When determining the diffusion coefficient

from molecular dynamics simulations, it is crucial to obtain multiple independent samples,

especially for macromolecules [160]. Accordingly, 20 independent simulations of 25 ns each

were conducted for the system. The first 5 ns were discarded as equilibration time and the
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squared displacements of the catenane center-of-mass from each trajectory were calculated,

averaging over all initial conditions. To estimate error, each trajectory was independently

fit to Eq. 2.2 and the resulting sample of diffusion coefficients was used to calculate a mean

and 95% confidence interval.

Following similar work on the diffusion of oligomeric species [161], a number of corrections

must be made to the raw value of D for accurate analysis. First, the change in viscosity

due to the presence of the solutes must be accounted for. This is done in an approximate

manner by calculating the volume fraction of the non-TCE molecules and using the Einstein

equation:

η = ηs(1 + 2.5φ) (2.3)

where ηs is the viscosity of the pure solvent and φ is the volume fraction of the solutes

(catenane, metal, and counterions). Since the volume fraction of the solute is very small

(∼ 0.0029), the resulting correction to the viscosity is less than 1%. Second, a correction

for finite size effects must be added; this correction accounts for long-range hydrodynamic

interactions between solutes in different periodic images as described by Yeh and Hummer

[162]:

D0 = D +
2.837292kBT

6πηL
(2.4)

where η is the viscosity of the solution, L is the box length (assuming a cubic box), and D0 is

the corrected diffusion coefficient. Finally, it is important to recognize that the viscosities of

liquids are often poorly captured by classical molecular dynamics simulations, which alters

the diffusive behavior of the systems. For instance, the viscosity of TIP4P water is only

about half of the experimental value [143]. To correct for this in the present system, all

diffusion constants were scaled by the ratio of simulated to experimental viscosities of the

pure solvents, 1.12 cP/1.77 cP = 0.633. The corrected diffusion coefficient from Eq. 2.4 was

then substituted into Eq. 2.1 along with the experimental viscosity to obtain the hydrody-
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namic radius. Error was determined by standard propagation of uncertainty in the diffusion

coefficient and the viscosity. The corrected diffusion coefficient of the metallated [4]catenane

was found to be (0.033 ± 0.010) × 10−5cm2/s, resulting in a hydrodynamic radius, Rh, of

2.44± 0.36 nm. The mean end-to-end distance was Re = 7.25± 0.33 nm, resulting in a ratio

Rh/Re ≈ 0.34± 0.05.

Having obtained an estimate of the ratio between Rh and Re, we now use a force-

extension experiment to find to the persistence and contour lengths of poly[n]catenanes, so

that Rh may be estimated for polymers of arbitrary number of rings, n. To determine the

force-extension properties of poly[n]catenanes, a metallated [8]catenane was stretched and

oriented along the z-axis and connected to itself through the periodic boundary conditions

of the simulation cell. After solvating with TCE molecules and equilibrating the system,

the box length in the z-direction was systematically varied in a series of simulations while

the box dimensions in the x- and y-directions were chosen so as to maintain the equilibrium

density at 1 bar. Production simulations at each box length were run for a total of 200 ns.

Since the solvent is a simple liquid, all extra stress in the system must arise from the tension

on the chain. Thus the force, f is written:

f = LxLy

(
Pxx + Pyy

2
− Pzz

)
(2.5)

where Lx and Ly are the box dimensions in the x- and y-directions, respectively, and Pαβ is

the αβ component of the pressure tensor, which is readily available in simulations through

the virial theorem [127]. Meanwhile, the extension is simply the box length in the z-direction.

An illustration of the simulations and the resulting force-extension behavior of the met-

allated [8]catenane are shown in Figure 2.6a. Due to its relatively small size, this model

system is only valid for fairly large forces. This is because the forced periodicity of the poly-

mer places a constraint on the available conformations such that the end-to-end vector must

lie principally along the z-axis with only small transverse fluctuations. By contrast, a real
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polymer will have an average end-to-end distance of zero in any given direction. However,

when subjected to a large force on the chain ends, the polymer backbone will indeed lie

approximately along the vector of that force as the end-to-end distance becomes comparable

to the contour length. As an example, a tension force of ∼10 pN is sufficient to extend

a double-stranded DNA molecule to >95% of its contour length [163]. In this high-force

regime, the periodic [8]catenane becomes a more accurate model of the system. Accord-

ingly, only data points having average tensions >10 pN were included when comparing to

theoretical models.

Figure 2.6: a) Illustration of the force-extension simulations and the resulting data. Green
circles indicate simulation data (size of data point includes error) and the black line is a
fit to the EWLC model, Eq. 2.6. b) Estimated end-to-end distance, Re and hydrodynamic
radius, Rh, obtained from the paramters of the EWLC fit in a); the results agree well with
DLS experiments.

The simulated values can be well-fit by a high-force interpolation [164] of the extensible

worm-like chain (EWLC) model given by Eq. 2.6:

x = Ln

[
1− 1

2

(
kBT

lpf

)1/2

+
f

E

]
(2.6)

where x is the end-to-end distance in the direction of the force, Ln is the contour length

of a poly[n]catenane, f is the force on the chain, lp is the persistence length, and E is the
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stretch modulus. Non-linear least squares fitting was used to obtain the values of Ln(= L8),

lp, and E for the metallated [8]catenane with relative weights of data points given by the

standard error in the tension from each simulation, as determined from block-averaging error

analysis. To generate statistics for the fitting parameters, a bootstrap method was used.

Each trajectory was block-averaged over 1 ns intervals to generate a population of pseudo-

independent values. A bootstrap sample was taken for each box length and the resulting

means were fit to Eq. 2.6. The process was repeated 10,000 times to generate distributions

for the parameters, which were used to determine means and 95% confidence intervals. The

persistence length showed a skewed distribution and is therefore reported as the median and

a symmetric interval containing 95% of the observed values. The resulting fit parameters

are: L8 = 19.22 ± 0.23 nm, lp = 7.46 ± 2.88 nm, and E = 2630 ± 280 pN/nm. Dividing

the counter length by the number of macrocycles gives a per-macrocycle contribution to the

contour length of l = 2.40 ± 0.03 nm (ignoring differences between the macrocycles 2 and

4). This value is considerably smaller than the persistence length, which indicates that the

linear metallated catenanes obtained experimentally (n = 8− 27) are semi-flexible polymers

with contour length Ln ≈ 2.5− 8 lp, not rigid rods as has been expected before. With these

parameters, the end-to-end distance, Re can be calculated for arbitrary n using worm-like

chain (WLC) statistics [87]:

R2
e = 2lpLn

[
1−

lp
Ln

(
1− e−Ln/lp

)]
(2.7)

Error in Re was estimated by randomly sampling the set of EWLC parameters determined

above. It is worth noting that the predicted value of Re for n = 4 is ∼9% larger than the

value found from the simulation of the metallated [4]catenane detailed above. This is likely

due to end effects: the reported persistence length only applies to portions of the chain in

which each macrocycle has two topological bonds, whereas the chain ends have just one. To

reduce the influence of these end effects, the [2]catenane defined by the inner rings of the
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[4]catenane can be studied. The predicted Re for this system differs by only ∼4.5% compared

to the observed value. In general, end effects will become less important as the number of

macrocycles increases so the EWLC parameters reported here should be more accurate for

larger polymers.

Applying the ratio Rh/Re found earlier, Rh is calculated by simple multiplication. Fig-

ure 2.6b shows the resulting values as a function of n. To determine if the fraction 3c is

indeed mostly linear, we compare our results to the earlier DLS experiments, which showed

an average Rh of 6.66 nm. Since the magnitude of DLS signal is proportional to the square

of molecular weight of the scatterers, this value does not correspond to the number-averaged

DP of 11-12, but instead to the weight-squared averaged DP of 14-15, which was determined

from Gel Permeation Chromatography with Multi-Angle Light Scattering (GPC-MALS)

[165]. The Rh value predicted for catenanes of this size from our simulations is 6.89± 1.38

nm, in good agreement with the experimental value, suggesting that sample 3c is indeed

predominantly linear.

Our simulations can also be used to study the origin of the flexibility in metallated

poly[n]catenanes. To study the relative flexibility of the two different types of macrocycles,

the distances between neighboring metal ions along the chain were analyzed. Each pair of

adjacent ions is connected by either macrocycle 2 or 4 so that the fluctuations in the as-

sociated distances, d2 vs. d4, provide a simple measure of macrocycle flexibility. For the

[4]catenane studied above, only the internal rings were considered so as not to include end

effects. Due to the presence of the TEG segments used as linker groups, 2 is expected to

be more flexible than 4, which has a rigid xanthene linker. This is indeed the case in the

[4]catenane system: both distances show a unimodal distribution as seen in Figusre 2.7a,

but d2 shows larger absolute and relative fluctuations compared to d4 as measured by the

standard deviations of σ2 = 0.21 nm and σ4 = 0.11 nm. Furthermore, 2 is extended more

easily under tension. Figure 2.7b shows d2 and d4 as a function of box length for the pe-
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riodic [8]catenane with standard deviations σ2 and σ4 represented by shaded regions. The

macrocycle 2 experiences larger fluctuations in size as well as larger relative and absolute ex-

tensions compared to 4. At large extensions, the mean length of 2 becomes longer than that

of 4 in a reversal of the equilibrium observation. In summary, metallated poly[n]catenanes

are similar to extensible worm-like chains, whose flexibility is related to the linker groups in

the constituent macrocycles.

Figure 2.7: a) Relative probability of inter-metal distances for macrocycles 2 (red) and 4
(blue) within a metallated [4]catenane at equilibrium. b) Inter-metal distances for macro-
cycles 2 (red) and 4 (blue) in a periodic, metallated [8]catenane as a function of box length
(extension). The lines show mean values while the shaded areas show the associated standard
deviations.

2.5 Discussion and Conclusions

The combination of experiments and atomistic simulations detailed in this chapter helped

confirm the first synthesis of high-molecular weight linear poly[n]catenanes [19], which had

been sought after by chemists for many decades without success. Furthermore, the force-

extension and metallo-responsive behaviors of the polymers were examined, again with a

combination of simulation and experiment. Despite these achievements, many difficulties re-

main, particularly in regard to physical characterization. For instance, even non-metallated
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poly[n]catenanes have very high Tg’s and form powders at room temperature, rather than

films, prohibiting rheological measurements in the bulk. Such measurements could poten-

tially be performed on concentrated solutions, but the available solvents have very low vis-

cosities and boiling points, again making such experiments practically challenging. Small

angle neutron scattering (SANS) experiments were performed on poly[n]catenanes but the

measured signal was quite weak due to low scattering contrast with the solvent. Meanwhile,

quasi-elastic neutron scattering (QENS) experiments showed no significant dynamics up to

temperatures of 230◦C, above which the alkene groups in 4 become labile, potentially leading

to undesirable chemical reactions.

There are also difficulties in simulating such systems with atomistic detail. In particular,

the simulations described in this chapter focus only on metallated poly[n]catenanes, in which

the Bip-Zn2+ complexes significantly reduce the conformational freedom of the polymers. In

the absence of the metal ions, longer and more detailed simulations are required to obtain

accurate averages. However, such sampling is computationally expensive since the simulated

metal-free poly[n]catenanes exhibit ubiquitous π − π stacking interactions, whose dynamics

are too slow to access with conventional molecular dynamics methods. To circumvent this

issue, we attempted advanced sampling techniques, such as replica exchange with solute-

tempering (REST) [166, 167]; the sampling of the systems improved, but still suffered from

large statistical error and required enormous computational resources for even modest results.

To address the challenges above, synthetic chemists are exploring new chemistries which

may provide avenues to low-Tg poly[n]catenanes whose physical and rheological properties

can be more easily characterized. In the meantime, to understand the novel properties as-

sociated with this unique architecture and to guide synthetic efforts, physicists have turned

to coarse-grained simulations of poly[n]catenanes, which sacrifice chemical details but pro-

vide enormous computational savings. Indeed, chemically-agnostic coarse-grained molecular

models have become workhorses in polymer physics over the last 40 years and continue
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to provide valuable insight into polymer structure and dynamics. The remaining chapters

of this dissertation will focus on using such coarse-grained models to study the physics of

poly[n]catenanes.
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CHAPTER 3

POLY[N ]CATENANES AS ISOLATED POLYMERS

3.1 Introduction

As discussed in the Introduction, many unique dynamical properties of polymeric materials

depend on molecular architecture and topological interactions [13, 168]. As a result, even a

single poly[n]catenane may have highly unusual properties since the polymers are dominated

by mechanical bonds, rather than traditional covalent linkages. Mechanical bonds have long

been recognized as an important class of topological interactions and have even been used to

identify and characterize entanglements between linear polymers [54, 69, 70]. Therefore, one

may expect poly[n]catenanes to exhibit topological interactions not only between chains (as

in linear polymers), but also between neighboring macrocycles, perhaps offering access to new

dynamical and rheological regimes. With the goal of understanding this new architecture,

in this chapter, molecular dynamics (MD) simulations were conducted on single, isolated

poly[n]catenane molecules (comparable to dilute solution, good solvent conditions), and the

results were compared to those of traditional linear and cyclic polymers. To tackle the

problem, we quantify the structure and dynamics at various length scales using a Rouse

mode analysis [169], which is sensitive to topological interactions in polymeric systems [80,

170–176]. The Rouse theory is the simplest model of polymer dynamics and forms the basis

for many more sophisticated treatments, making it a natural starting point.

3.2 Simulation Methods

To simulate polymers in good solvent conditions, the model of Kremer and Grest [23] is

adopted for all molecules, including linear and cyclic polymers as well as macrocycles within

poly[n]catenanes. This model precludes chain crossings, enforcing topological restrictions,

which makes it suitable for MIPs. All beads have mass µ, diameter σ, and interact with one
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another via a purely-repulsive Lennard-Jones (LJ) potential:

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
(3.1)

where r is the separation distance between the two beads and the interaction is cut off

at rc = 21/6σ. Neighboring beads within covalently-bound segments are connected to one

another with a finitely extensible non-linear elastic (FENE) potential:

UFENE(r) = −1

2
kR2

0 ln

[
1−

(
r

R0

)2
]

(3.2)

with the maximum separation R0 = 1.5σ and stretching constant k = 30ε. To alter chain

stiffness, a cosine bond-angle bending potential was used with the form:

Ubend(θ) = kθ (1 + cos θ) (3.3)

where θ is the angle between adjacent bonds in the molecules, and the bending constant kθ

is an adjustable parameter used to study flexible (kθ = 0.0), semi-flexible (kθ = 1.5), and

rigid (kθ = 10.0) chain segments. The simulation cell was a large cubic box with edge length

much longer than the end-to-end distance of the polymers studied and the molecules were

allowed to drift freely. Equations of motion were integrated for 109 production time steps

using a velocity-Verlet algorithm [127] and a time step of 0.005τ where τ = σ (µ/ε)1/2 is the

Lennard-Jones unit of time. All relaxation times (rates) are reported in terms of τ (1/τ).

Constant temperature and the effect of solvent fluctuations were included through the use

of a Langevin heat bath with temperature T = ε/kB and damping constant γ = 0.5τ−1.

All simulations were conducted using the GPU-accelerated, Python-wrapped MD engine

DASH [177]. Particle coordinates were harvested every 200 time steps (1.0τ) for analysis.

To analyze the rapid relaxations of individual macrocycles and small ring/linear polymers,
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shorter simulations of 2 × 107 time steps were performed and particle coordinates were

harvested every 25 time steps (0.125τ). To ensure adequate sampling of the three longest

Rouse modes in the poly[n]catenanes, 10-20 independent simulations of 109 time steps were

performed for ring sizes of m = 10, 15, 20, and 30, calculating the Rouse modes on-the-fly

every 2000 time-steps.

In this chapter (and those that follow), n denotes the number of macrocycles within a

poly[n]catenane, m denotes the number of beads in a covalently continuous molecule (i.e.

a free polymer or a macrocycle within a poly[n]catenane), and N is the total number of

beads in a polymer. For linear and cyclic polymers, m = N ; for poly[n]catenanes, N =

m×n. Poly[n]catenanes were simulated with n = 25 macrocycles (comparable to the largest

molecules synthesized [19]) with the number of beads-per-ring m = 10, 15, 20, or 30; a

[5]catenane (i.e. a poly[n]catenane with n = 5) having m = 100 was also considered. These

poly[n]catenanes have total number of beads, N = 250, 375, 500, 750, and 500, respectively.

Macrocycles are labeled by an index i, with i = 1 referring to an arbitrarily chosen chain

end. Ring polymers with N = m = 30 and 100 were also simulated and the structure and

dynamics were compared to those of macrocycles within poly[n]catenanes.

Since we wish to compare the conformations and dynamics of poly[n]catenanes with

those of linear polymers, suitable linear analogues must be identified. An analysis of poly-

mers with identical molecular weight, N , results in linear chains with much greater contour

length and overall size than their poly[n]catenane counterparts, setting up a somewhat un-

balanced comparison. To identify more appropriate linear analogues, effective monomers

were defined for linear chains as the centers-of-mass of segments of meff beads, such that

the mean bond length between effective monomers matches the mean inter-macrocycle dis-

tance (or mechanical bond length) of the targeted poly[n]catenane. Accordingly, the linear

polymer analogue for a poly[n]catenane with n macrocycles will have n effective monomers,

and total number of beads N = n×meff, where meff depends on the particular macrocycle
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size m. Using this method, the poly[n]catenanes and linear analogues will have roughly the

same contour length, so that differences in relaxation spectra are primarily related to the

underlying molecular topology. For poly[n]catenanes with n = 25 and m = 10, 20, and 30,

linear analogues have meff = 3,6, and 9, and N = 75, 150, and 225, respectively. No suitable

linear analogue could be defined for poly[n]catenanes with m = 15. Figure 3.1 depicts some

of the molecules studied in this chapter.

(a) (b)

(c)

(d)

i = 1

i = 2

i = 13

i = 3

i = 1

Figure 3.1: Visualization of some of the polymers studied: (a) poly[n]catenane with number
of rings n = 25, macrocycle size m = 30, total size N = 750; (b) poly[n]catenane, n = 5,
m = 100, N = 500; (c) linear polymer, N = m = 225; (d) ring polymer, N = m = 100.
Macrocycles are indexed by position along the chain, i.

3.3 Rouse Theory and Mode Analysis

In recent years, several computational studies [170–174, 176] have examined the dynamics

of polymer melts and blends using a Rouse mode analysis [169]. A detailed derivation of

the Rouse model can be found in Appendix A.4, but the main points will be recapitulated

here. In the Rouse model, the macromolecule is represented by N beads connected to their

neighbors by harmonic springs. The bead coordinates can be transformed into a series of
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normal (i.e. statistically independent) modes, Xp, with mode numbers 0 ≤ p ≤ N − 1. For

the special case of linear polymers, the pth mode roughly represents motions of sub-chains of

N/p beads. The quantity N/p therefore defines a length scale along the polymer backbone,

with low mode numbers corresponding to large length scales and vice versa. Note that the

longest (or “zeroth”) mode corresponds to the polymer center-of-mass and its dynamics will

be ignored in this chapter. The mean squared mode amplitudes 〈X2
p 〉 carry information about

the polymer structure while the mode auto-correlation functions (ACFs) contain dynamical

information at the specified length scale. In particular, the normalized ACFs can be described

by a stretched exponential, 〈Xp(0) · Xp(t)〉/〈X2
p 〉 ≈ exp

[
−
(
t/τp

)βp]. The exponent βp

characterizes the distribution of relaxation times, with βp = 1 indicating simple exponential

decay and smaller values corresponding to broader distributions. Values βp > 1 may be

observed owing to inertial effects. Note, however, that βp 6= 1 does not necessarily imply

coupling between modes. Integrating the ACFs yields effective relaxation times for each

mode, τ effp , which are used to calculate the effective relaxation rate, W eff
p ≡ 1/(λpτ

eff
p ),

where λp is an eigenvalue associated with the mode transformation.

For ideal chains, both W eff
p and βp should be independent of mode number, i.e. they

should not vary with the length scale, N/p. However, recent computational studies using

both coarse-grained and all-atom models have shown that W eff
p and βp do in fact depend on

mode number and are correlated with entanglement effects [170–172]. For instance, Kalathi

et al. [170] showed that both W eff
p and βp decrease dramatically as N/p approaches Ne,

the entanglement length. Hsu and Kremer [172] confirmed these results, demonstrating

that the effective relaxation time exhibits two scaling regimes, revealing the crossover from

Rouse to reptation dynamics. Throughout this chapter, we will refer to such concomitant

reductions in W eff
p and βp as the “entanglement-like effect” (not to be conflated with other

signatures of entangled dynamics). In contrast, when chain crossings are allowed (eliminating

entanglement), βp is relatively constant, while W eff
p increases modestly at higher modes,
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the latter being attributed to local correlations between monomers [170]. Similar results

have been observed in all-atom simulations of unentangled melts of linear poly(ethylene-alt-

propylene) [173] and cyclic polyethylene [174]. Rouse modes are also sensitive to topological

interactions in blends of cyclic and linear polymers: Tsalikis et al. [80, 175] showed that

slow relaxation modes emerge when linear chains thread ring polymers and Papadopoulos

et al. [176] found that this threading is accompanied by a decrease in W eff
p of the rings

at low mode number. In light of these findings, a Rouse mode analysis provides a useful

starting point to study the dynamics of poly[n]catenanes, since these molecules contain

permanent topological interactions in the mechanical bonds. Note that there are no other

relevant topological interactions since the poly[n]catenanes studied here are too short to

self-entangle.

Two different sets of Rouse modes are calculated here to account for the unique structure

of poly[n]catenanes. The first set, denoted Xq, describes the individual macrocycles within

the poly[n]catenanes, and the coordinates of beads within a single macrocycle are used as

monomer positions for the calculation, as in an ordinary analysis [174]. For ring molecules

such as these, these modes are defined according to:

Xq =



(
2

m

)1/2 m∑
i=1

Ri cos

(
qπi

m

)
for q = 2, 4, ..., m2 − 2(

2

N

)1/2 m∑
i=1

Ri sin

(
qπi

m

)
for q = 2, 4, ..., m2 − 2(

1

m

)1/2 m∑
i=1

Ri (−1)i for q = m
2

(3.4)

where Ri is the position of monomer i within the ring (the specific indexing is arbitrary).

Note that the third row of Eq. 3.4 does not apply for odd m. Associated with these modes

are a set of eigenvalues:

λq = 4 sin2
( qπ

2m

)
(3.5)
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These results are equivalent to those given by Ceriotti et al. [178] for the thermostatting

of ring polymers in path integral molecular dynamics. A detailed presentation of the Rouse

theory for ring polymers can be found in [174]. The cosine and sine modes can be related

to one another by a shift in the indexing of the monomers (although not necessarily by

an integer value). However, just as the choice of the “initial” versus “final” chain end in

linear polymers is arbitrary, the indexing in a ring polymer is also arbitrary. Therefore,

by symmetry arguments, it will not affect the averages of any quantities related to the

Rouse modes, including the ACFs. Thus, only a single mode is considered for each value

of q; in analogy with the coordinate transformation for linear chains (see below), the cosine

transformation is chosen (first line of Eq. 3.4). For these ring modes, the length scale of

relaxation is absolute in that it corresponds to a particular number of beads (m/q).

The second set of modes, denoted Xp, describes entire poly[n]catenane molecules in

terms of the macrocycle centers-of-mass, Ri,cm. These modes are defined:

Xp =

(
2

n

)1/2 n∑
i=1

Ri,cm cos

[
pπ

n

(
i− 1

2

)]
for p = 1, 2, ..., n− 1 (3.6)

(3.7)

with eigenvalues:

λp = 4 sin2
(pπ

2n

)
(3.8)

Note that the form of Eq. 3.7 is identical to that of the Rouse modes for ordinary linear

polymers [170], but with ring centers-of-mass taken as the effective monomer positions. In

this case, the relaxation length scale is relative, since it corresponds to a particular number

of macrocycles (n/p), which may comprise different numbers of beads depending on m. Note

that when calculating the Rouse modes for linear polymers, Eq. 3.7 is used in two different

manners. When comparing the results to those of the individual rings/macrocycles, the

unaltered bead positions, Ri are used and the modes are denoted Xq with an associated
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length scale m/q where m = N and 1 ≤ q ≤ m − 1. When comparing the results to those

of the overall poly[n]catenanes, the centers-of-mass of the effective monomers are used and

the modes are denoted Xp with an associated length scale n/p where n = N/meff.

A key aspect of the Rouse theory is that the modes are statistically independent [13,

169]. This orthogonality allows one to interpret mode relaxations as dynamical processes

with well-defined length scales (e.g. m/q or n/p) and enables the calculation of various

material functions, such as shear stress relaxation modulus and dynamic structure factor.

However, if there exist significant cross-correlations between modes, such analyses are invalid

and the Rouse modes no longer have a straight-forward physical interpretation. Therefore, it

is important to assess whether or not the Rouse modes are indeed orthogonal in our systems.

This is particularly important since some authors have found significant cross-correlations at

high mode number for entangled melts of linear polymers i.e. in the presence of topological

interactions [179]. Following previous authors [180, 181], we assess the orthogonality using

a normalized correlation product:

χp,p′ =

∣∣∣〈Xp ·Xp′〉
∣∣∣√

〈X2
p 〉〈X2

p′〉
(3.9)

which takes on a value of unity for p = p′ and zero for p 6= p′ if the modes are indeed

orthogonal. We compute these quantities for both sets of Rouse modes considered; the

subscripts q and p represent the ring-like and linear-like modes, respectively. For the modes

of individual rings within pol[n]catenanes, the longet mode q = 2 shows some coupling with

the others, with the largest correlations reaching χq,q′ ≈ 0.1. However, since the amplitudes

of the lower modes are much larger than the rest, the sum total of un-normalized cross-

correlations is still two orders of magnitude smaller than the self correlation in the low-q

regime, so these couplings are not likely to affect the relaxation behavior meaningfully in

the region of interest. Figure 3.2 shows the cross-correlations (Eq. 3.9) between macrocycle
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modes in the form of a heat map for poly[n]catenanes with m = 30 and m = 100 beads per

macrocycle.

Figure 3.2: Normalized cross-correlations between Rouse modes for macrocycles within poly-
[n]catenanes.
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Figure 3.3: Normalized cross-correlations between Rouse modes of poly[n]catenanes and
linear polymers.
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For the second set of Rouse modes, corresponding to the entire poly[n]catenane chain or

a linear analogue, we observe non-zero coupling between pairs of modes with both even or

both odd mode numbers. The same trend has been observed in the literature [179–181] and

results in a checker-board pattern in the resulting cross-correlation heat map (Figure 3.3).

In agreement with the literature results, the cross-correlations are always at least 1-2 orders

of magnitude smaller than the self-correlation, suggesting that the Rouse modes are indeed

orthogonal to within reasonable approximation. In general, poly[n]catenanes of all ring

sizes exhibit slightly larger couplings at low mode number than do the linear analogues.

However, at higher mode number, the couplings are suppressed and the modes become more

orthogonal; this is clearly seen in the resulting correlation heat map, which shows much more

yellow/orange coloring in the lower left (low mode number) than in the upper right (high

mode number). So while the Rouse analysis is indeed applicable to the entire polymer, the

results will be particularly meaningful at high mode number, which is where the most unusual

dynamics are observed, as discussed later on. In summary, both sets of modes are orthogonal

to within good approximation, ensuring that we obtain meaningful dynamical information at

well-defined length scales in our analysis. Before continuing, we note that cross-correlations

between different rings or between ring and chain type modes vanish identically by symmetry

considerations. These symmetries will be discussed more fully in Chapters 4 and 6.

3.4 Static Properties of Poly[n]catenanes

Here we present a few selected static properties of poly[n]catenanes and their linear coun-

terparts. Since this chapter focuses primarily on the dynamical behaviors, we discuss only

those properties which are useful for understanding and interpreting the dynamics. Further

analysis of the structural characteristics of these polymers in solution has previously been

performed by Pakula and Jeszka [22] and more recently by Ahmadian Dehaghani et al. [92].

Table 3.1 shows various elementary quantities including mean segment length between ef-
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fective monomers/macrocycles (b), radius of gyration (Rg), and end-to-end distance (Re)

for poly[n]catenanes and linear counterparts. Although mean effective bond lengths differ

by at most 2% between architectures, linear polymers have smaller end-to-end distance and

radius of gyration, which is probably caused by local chain swelling and excluded volume

effects. By design, macrocycles and the effective monomers in linear analogues have the

same segmental volume (b3), but the macrocycles contain many more beads (m > 3×meff).

Because of this increased bead density, one may expect poly[n]catenanes to be more strongly

impacted by excluded volume and therefore stiffer than linear polymers. This leads to phys-

ically larger/longer molecules, which slows down the large length-scale dynamics; in the

next section, this expectation is borne out as linear chains tend to relax 50-80% faster than

poly[n]catenanes at the lowest modes.

Table 3.1: Static Properties of Selected Poly[n]catenanes and Linear Analogues

Property Poly[n]catenane Linear Polymer
N 250 75

m or meff 10 3
b(σ) 1.87 1.90
〈R2

g〉1/2 7.74 6.25
〈R2

e〉1/2 19.8 16.0
N 500 150

m or meff 20 6
b(σ) 2.93 3.00
〈R2

g〉1/2 11.5 9.62
〈R2

e〉1/2 29.4 24.4
N 750 225

m or meff 30 9
b(σ) 3.73 3.70
〈R2

g〉1/2 14.5 12.4
〈R2

e〉1/2 36.6 31.6

To understand local chain structure, two additional quantities are calculated: the mean-
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squared amplitudes of the Rouse modes and the mean-squared internal distances between

effective monomers. Physically, these quantities both represent the size of sub-chains, but

are calculated according to different means. For ideal chains, the Rouse mode amplitudes

are given by [13]:

〈X2
p 〉 =

3kBT

kλp
=
b2

λp
(3.10)

where k is the spring constant between neighboring beads. For chains with excluded volume

effects, the following scaling relation holds in the asymptotic limit [181]:

λp〈X2
p 〉 ∼

(
N

p

)2ν−1
(3.11)

where ν is the Flory exponent. The scaled amplitudes for poly[n]catenanes and linear ana-

logues as a function of n/p are shown in Figure 3.4. In all cases, there is a positive slope

at the largest length scales which suggests that the chains are not long enough to reach the

asymptotic limit and are therefore in some intermediate or crossover regime. The values

for poly[n]catenanes generally span a wider range than linear counterparts, indicating that

they are subject to greater local stiffness effects. The linear polymers also appear to level off

more quickly at higher values of n/p, while the poly[n]catenanes seem slower to reach their

asymptotic limit.

The scaled Rouse mode amplitudes for individual macrocycles within poly[n]catenanes,

λqX
2
q can also be calculated and compared to free ring polymers as well as linear polymers

as a function of length scale, m/q. The results for macrocycles of size m = 30 and m = 100

are shown in Figure 3.5 and the results are qualitatively similar. At high mode numbers

(short length scales), the mode amplitudes vary according to the number of threadings, with

poly[n]catenane chain centers having the lowest amplitudes, followed by chain ends, and

then free polymers. In this regime, the dependence on m/q is identical for all systems. At

the lowest mode, however, the situation is reversed, with all three cyclic systems having
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Figure 3.4: Scaled Rouse mode amplitudes for a) linear polymers and b) poly[n]catenanes.

amplitudes larger than the linear polymer. Furthermore, the magnitude of the modes now

increases with increased threading, contrary to the situation at high mode number. These

data suggest that ring polymers and catenane macrocycles are expanded at large length

scales compared to linear chains, and that the mechanical bonds magnify the effect.

Figure 3.5: Scaled Rouse mode amplitudes for macrocycles within poly[n]catenanes with a)
m = 30, and b) m = 100, compared to linear and ring polymers.

The mean-square internal distances between effective monomers are another set of data

which describe the internal structure of polymer chains. They are qualitatively similar to

the Rouse mode amplitudes in that they quantify the size of sub-chains within the molecule.
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Figure 3.6: Normalized mean square internal distances for poly[n]catenanes and linear poly-
mers.

For a polymer with n effective monomers, these data are calculated according to:

R2(l) =
1

n− l

n−l∑
i=1

〈
(Ri+l −Ri)

2
〉

(3.12)

where l > 0, Ri is the position of effective monomer i, and the brackets 〈...〉 indicate an

ensemble average. The quantity R2(l) is typically divided by l so that ideal random walk

statistics correspond to a constant value; to compare the data for various ring and effective

monomer sizes, we will also normalize the distances by the mean square bond lengths, b2.

Figure 3.6 shows these data for linear polymers and poly[n]catenanes. As expected, all

polymers are locally swollen at short length scales, showing increasing values before leveling

off at higher l. However, it is clear from this data that linear polymers are considerably

less expanded than poly[n]catenanes, which is presumably a consequence of the lower bead

density within each segment volume. For poly[n]catenanes, smaller macrocycles lead to

greater relative swelling, which would indicate enhanced excluded volume effects at short

length scales and greater overall stiffness, consistent with the observations from the Rouse
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mode amplitudes. The transition to “ideal” statistics at l ∼ 20 rings in the poly[n]catenanes

is likely the result of increased flexibility/mobility at the chain ends. These data also support

the conclusion that these polymers are not large enough to reach the asymptotic scaling limit.

Beyond these features, there are no other glaring anomalies associated with poly[n]catenane

structure at any length scale (so far as effective monomers are concerned). Indeed, differences

in scaling behavior or theta point observed by other authors are quite subtle [92]. Therefore,

one would expect the dynamical properties at short length scales to be consistent with those

of an ordinary polymer with excluded volume. However, as described in the next section,

there are qualitative differences in dynamics at short length scales between poly[n]catenanes

and linear polymers, and such differences cannot be understood in terms of the static scaling

properties discussed above, which are qualitatively similar for all architectures considered.

3.5 Dynamics of Poly[n]catenanes

The relaxation dynamics of the first set of Rouse modes described above have been calculated

for macrocycles of size m = 30 and m = 100 within poly[n]catenanes of n = 25 and n = 5

total rings, respectively. The macrocycles at the chain end (i = 1) and chain center (i ≈ n/2)

are considered separately since they have different numbers of threadings, which greatly

affects the dynamics [80, 175, 176]. Figure 3.7 compares the results to linear and non-

catenated ring polymers. At high mode number, W eff
q is independent of polymer topology

as all spectra converge. However, at low mode number, W eff
q decreases substantially as

topological restrictions are added: linear chains relax fastest, followed by ring polymers,

poly[n]catenane chain ends, and poly[n]catenane chain centers. This result agrees well with

recent work on blends of cyclic and linear polymers [176]. Interestingly, the largest decrease

in W eff
q occurs at the longest modes, regardless of the macrocycle size, m. This indicates

that the mechanical bond slows dynamics at a length scale relative to the macrocycle itself,

rather than at some absolute length scale (i.e. some specific number of beads). βq also
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decreases with increased threading for the longest modes (Table 3.2); such concomitant

reductions in W eff
q and βq are reminiscent of the entanglement-like effect in linear polymer

melts described baove [170–172], suggesting that this effect may be related to topological

interactions quite generally, rather than just the specific case of linear polymers in melts or

concentrated solutions.

Figure 3.7: Mode-dependent relaxation rates for poly[n]catenane macrocycles at the chain
center (diamonds) and chain ends(downward triangles) as a function of length scale compared
to linear and ring polymers: a) m = 100, b) m = 30.

Table 3.2: Rouse mode stretching exponents, βq, of various polymer architectures (m = 100)
as determined from the first Rouse mode analysis described in the main text.

Architecture q = 2 q = 4 q = 6

Linear Polymer 0.94 0.96 1.05

Ring Polymer 0.90 0.95 0.99

Poly[n]catenane
Chain End (i = 1) 0.76 0.87 0.90

Poly[n]catenane
Chain Center (i = 3) 0.69 0.77 0.85

To describe the overall dynamics of poly[n]catenane molecules, the relaxation dynamics

of the second set of Rouse modes described above, Xp, were also calculated. A represen-
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tative subset of Rouse mode ACFs with stretched exponential fits is shown in Figure 3.8.

We begin by considering the effect of macrocycle size, m; as the ring size is decreased, the

number of mechanical bonds, n − 1, increases relative to the total molecular weight, nm,

so the effects of topological interactions should be magnified. Figure 3.9 compares W eff
p for

poly[n]catenanes with n = 25 and m = 10, 15, 20, and 30 as a function of n/p. Unsurpris-

ingly, W eff
p for all modes increases with decreasing ring size, which is expected since smaller

ring sizes lead to smaller polymers. To compare the spectra on more equal footing, we in-

troduce a theoretically-informed scaling procedure that accounts for: (i) effective drag on

the macrocycles, (ii) effective segment length, and (iii) excluded volume effects, as described

below.

Figure 3.8: A representative subset of normalized Rouse mode ACFs for poly[n]catenanes
with n = 25 and m = 10. Points are simulation data and dotted lines are fits to a stretched
exponential.

To start, we leverage the fact that for ideal polymers, the relaxation rates should be

inversely proportional to the segment size, b2, and the drag coefficient, ζ:

W =
1

λpτp
=

3kBT

ζb2
(3.13)

where we have used the fact τp = ζb2/3kBTλp [13, 170]. This relationship suggests that
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Figure 3.9: Mode-dependent relaxation rates for poly[n]catenanes with various ring sizes.

multiplying W eff
p by b2 and ζ (or quantities directly proportional to them) would allow

for comparisons between polymers of different molecular weight and monomer size. In a

Langevin dynamics simulation, the drag coefficient for a given molecule will be directly pro-

portional to the number of beads in the molecule so that the monomeric drag is proportional

to either m or meff for poly[n]catenanes and linear polymers, respectively. Meanwhile, mean

values of b2 can be obtained directly from simulation trajectories. Accordingly, a scaled

relaxation rate is defined by mb2W eff
p where m and b2 depend on the architecture in ques-

tion. Applying this formula to the relaxation rates for poly[n]catenanes, the spectra are now

much more comparable, as shown in Figure 3.10). However, two features are immediately

apparent: (i) the curves show a dependence on p at low mode numbers, suggesting that they

do not obey ideal Rouse dynamics, and (ii) the relaxation rates increase monotonically with

the size of the effective monomer. Both of these observations may be understood in terms

of excluded volume effects, which can be included using a dynamical scaling argument.

To begin this scaling argument, a similar analysis by Doi and Edwards [13] is summarized.

In the Rouse theory, the longest relaxation time for a linear polymer of N segments, τN , is
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Figure 3.10: Relaxation spectra for poly[n]catenanes with various ring sizes scaled by ring
molecular weight and mean squared bond length.

given by:

τN ∼
ζb2N2

kBT
(3.14)

Using dimensional analysis, an expression can be crafted which contains the same physical

quantities as Eq. 3.14, but assumes no particular dependence on N , so that it may be applied

to non-ideal or non-linear polymers:

τN ∼
ζb2

kBT
f(N) (3.15)

The fraction has units of time, while the function f(N) is dimensionless. By lumping together

groups of κ segments, the following scaling transformation is introduced:

N → N/κ b→ κνb ζ → κζ (3.16)

where ν is the Flory scaling exponent. Since the relaxation time must be unaffected by the
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scaling (i.e. independent of κ), insertion of Eq. 3.16 into Eq. 3.15 yields the form of f(N):

τN ∼ f(N) ∼ N2ν+1 (3.17)

This result was first noted by de Gennes [182] and confirmed by simulations [183, 184] some

time ago. Now roughly speaking, the pth Rouse mode describes relaxations of segments

of N/p beads in linear (or linear-like) polymers. In keeping with the self-similar nature of

polymers, it is assumed that Eq. 3.17 also holds for sub-chains, so that the Rouse relaxation

times may be written as:

τp ∼
(
N

p

)2ν+1

(3.18)

This same approximate scaling has been proposed before by Panja and Barkema [181]. For

small p, the eigenvalues for linear polymers, Eq. 3.8, are approximated as λp ∼ (p/N)2. This

relation, along with Eqs. 3.13 and 3.18, indicates that the relaxation rates scale as

W ∼
(
N

p

)1−2ν
(3.19)

in the small-p range. By analogy, since ν > 1/2 in a good solvent, W will decrease with n/p

for poly[n]catenanes, which is indeed observed in Figure 3.10.

One may use similar arguments to understand why the scaled relaxation rates increase

as the effective monomer size increases. Consider the density of beads within the effective

monomer or macrocycle, ρ ∼ m/b3. Since b ∼ mν with ν ≈ 3/5, this density decreases with

increasing m in a good solvent. Smaller bead densities allow for greater overlap between

effective monomers or macrocycles, which reduces the relative importance of excluded volume

effects, leading to faster dynamics in analogy with Eq. 3.17. To quantitatively account for

this effect, the dynamical scaling argument is used again, for now considering only linear

polymers. In particular, for ordinary linear polymers, it is clear that the relaxation time

for a given chain segment should not depend on the level of discretization, i.e. meff. For
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now, it is assumed that this asos holds for poly[n]catenanes, i.e. for a given total molecular

weight N = nm, the associated relaxation times should not depend on the “discretization”

m; we will return to this point later. Although the level of discretization should not matter,

just such a dependence is introduced into the relaxation rates W eff
p through the eigenvalues

λp, since different discretizations yield different values of n = N/m and therefore different

eigenvalues. Furthermore, the values of ζ and b2 also depend on m as already discussed. To

understand the effect of this discretization, consider a chain (or sub-chain) of N monomers

with a relaxation time τN which obeys Eq. 3.18. For a given effective monomer size m, one

may write:
n

p
=
N

p

1

m
(3.20)

which represents the number of effective monomers in the segment for a given discretization.

Using Eqs. 3.13, 3.18, 3.20, along with the small-p approximation for λp and the relation

b ∼ mν , one finds:

m〈b2〉W eff
p ∼

(
N

pm

)1−2ν
(3.21)

In good solvents, the scaling exponent will be greater than 1/2, so that the scaled relaxation

rates mb2W eff
p increase monotonically with m, which is indeed the observed behavior in

Figure 3.10. Eq. 3.21 indicates that one may correct the relaxation spectra mb2W eff
p by

multiplying the values by the denominator of the right-hand side of Eq. 3.21. The final

result is:

W scale
p = m2−2ν × b2 ×W eff

p (3.22)

For large length scales (low mode number), the resulting spectra should collapse onto a

master curve. This representation accounts for excluded volume effects introduced by the

effective monomer size, allowing for comparisons between polymers with different effective

monomer or macrocycle sizes. However, this approach cannot be expected to yield perfect

agreement in all scenarios. In particular, for any real polymer chain, the effective value
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of the scaling exponent will be non-constant at low molecular weight, which will introduce

discrepancies into the results; however, such errors do not appear to be very large in the

present circumstances as the scaling procedure turns out to be quite successful, as seen below.

Many of the assumptions invoked in the above argument are not obviously valid for

poly[n]catenanes, in which the number of beads in an effective monomer (i.e. macrocycle),

m, has a true physical meaning and is not simply a parameter of the analysis, as is meff

in the case of linear polymers. In general, the scaling behaviors of poly[n]catenanes will be

quite complicated. One can immediately envision at least two different types of scaling: a

familiar one involving changes in the number of rings, and a new one involving changes in

the size of the rings. In fact, Ahmadian Dehaghani et al. [92] recently demonstrated two

such exponents and found that their values are not identical. In general, the second scaling

exponent will violate self-similarity, thus precluding any straightforward scaling analysis. For

instance, it would be unreasonable to assume a priori that a [100]catenane with m = 5 will

relax on the same time scale as a [5]catenane with m = 100 just because they have the same

molecular weight. Such an assumption becomes even more dubious when entanglement-like

effects are considered.

However, the simulations conducted here indicate that for reasonably large catenane

segments, the relaxation times are not strongly dependent on the size of the macrocycles,

provided that the molecular weights are comparable. For example, when n = 25, the values

of τ eff1 for m = 10 and τ eff3 for m = 30 both describe relaxations of ∼250 beads and differ

by only ∼8%. As one might expect, the longer of the relaxation times corresponds to the

system with the smaller macrocycles, i.e. the one with the greater density of mechanical

bonds. Perhaps for the macrocycle and catenane sizes studied here, the polymer can be

thought of as a homogeneous coil of beads, allowing one to neglect the local structure of the

chain at large length scales. In this picture, the two varieties of scaling discussed above are

effectively the same. Naturally, in the limits of either very large or very small macrocycles,
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this behavior would not hold.

To proceed, we fit the values of b to a power law in m, finding that ν ≈ 0.658 in this range

of ring sizes, somewhat larger than the ordinary good-solvent value and in surprisingly good

agreement with a similar exponent studied by Ahmadian Dehaghani et al. [92], who found

a value of 0.65 ± 0.02. However, this agreement may be fortuitous as the rings considered

here are rather small and may therefore be subject to local stiffness and finite size effects.

The scaled relaxation spectra are then calculated according to:

W scale
p = m0.684b2W eff

p (3.23)

With this scaling procedure in hand, the dynamics of catenanes with different macrocycle

sizes can be properly compared to study the effect of the mechanical bond.

Using the scaling procedure developed above, the various poly[n]catenane spectra collapse

onto a master curve at long length scales, as shown in Figure 3.11. However, on the length

scale of about three macrocycles (n/p ∼ 3), smaller ring sizes lead to slower dynamics,

with the effect growing as n/p approaches unity. The exact opposite trend is found in

linear polymers, as discussed later (and also observed in ref. [170]). In order to put this

unusual result in context, it is worthwhile to comment on the physical significance of the

scaling procedure formulated earlier and the limits of its interpretation. The excluded volume

arguments used above are only truly valid in the large-scale asymptotic limit and even

then are merely approximations. As discussed in the previous section, the poly[n]catenanes

studied here are not large enough to reach this regime, at least in terms of static properties.

While the connection between static and dynamic scaling is a subtle issue, it can be safely

assumed that these polymers (and indeed their linear analogues) are in a crossover regime and

therefore do not have a well-defined value of the scaling exponent, ν, which can be formally

applied to a dynamical scaling analysis. Therefore, the excluded volume arguments, whose

correctness is evidenced only by their ability to converge the spectra, should not be taken as
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important results in this chapter. However, this does not affect the key findings of the present

study: if the effects of excluded volume were completely ignored and the spectra were only

scaled according to segment size and monomer drag, the qualitative differences associated

with decreasing ring size would still be apparent, as demonstrated by Figure 3.10. In fact,

if we have eschewed any theoretical basis for scaling the spectra and had simply shifted or

normalized them in an ad hoc manner, the same conclusions would have been reached. The

scaling procedure therefore represents only a means to rationalize the quantitative differences

between the spectra of poly[n]catenanes with various ring sizes, but it does not impact the

qualitative distinctions, which are the key findings.

Figure 3.11: Scaled relaxation spectra for poly[n]catenanes with various ring sizes.

It must also be emphasized that the n/p dependencies at high mode numbers (short

length scales) could not be expected merely on the basis of non-asymptotic behavior. For a

swollen polymer chain, the effective spring constant between segments is increased, leading

to faster dynamics. This effect can be easily seen in the case of linear polymers: various

static properties (see Figs. 3.4 and 3.6) show that the chains are swollen at small length

scales and accordingly show accelerated dynamics in this regime (see Figure 3.12 below and

[170]). One could account for these local stiffness effects by recognizing that (in the ideal
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case) both the Rouse relaxation time and the mean-squared mode amplitudes are inversely

proportional to the effective spring constant, suggesting that the quantity W eff
p λp〈X2

p 〉 (an

effective mobility) should be constant for all modes. Based on common scaling relations, this

result should also hold in the large-length scale limit for chains with excluded volume. This

sort of analysis combining static and dynamic simulation results has been attempted by many

researchers [173, 179, 185–188] with mixed results. In particular, Colmenero and coworkers

[173, 187, 188] have repeatedly shown that local stiffness cannot explain the deviations from

ideal behavior at high mode number and a mode-dependent friction coefficient must be

introduced. A similar observation was made in polymer melts and glasses employing the

same molecular model used here [186]. However, it is unclear what physical factors influence

this effective friction and in what way, precluding further analysis. But even if such a

procedure were applied, it would not affect the results presented here. As discussed above,

poly[n]catenanes are swollen at short length scales, as seen through the static properties

(Figs. 3.4 and 3.6). However, the relaxation rates do not show an upturn at high mode

number as the linear polymers do. In fact, for the smallest ring sizes m = 10 and 15, the

relaxation rates actually decrease at the shortest length scales, where the chains are the most

swollen and should therefore be most accelerated! Therefore, applying this kind of analysis

would only emphasize the differences between the various poly[n]catenanes at short length

scales. In summary, even though these poly[n]catenanes are in a crossover scaling regime

(i.e. not in the asymptotic limit), this cannot explain the differences in relaxation behavior

which occur at small length scales along the polymer backbone.

Interestingly, βp also decreases markedly along with W eff
p , consistent with the entangle-

ment-like effect observed above in individual macrocycles within poly[n]catenanes and in

linear polymer melts. However, this entanglement-like effect occurs at short length scales in

poly[n]catenanes, while ordinary linear polymers are only subject to entanglements at rela-

tively long length scales. These data will be discussed in more detail later on. Interestingly,
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some systems exhibit an overlap between the two sets of Rouse modes. For instance, the

shortest overall modes in poly[n]catenanes with m = 30 relax considerably faster than the

longest modes of the constituent macrocycles, suggesting that poly[n]catenane melts and

glasses may exhibit interesting dynamical responses in these regimes.

At this point it is helpful to compare the dynamics of poly[n]catenanes with their linear

analogues. A naive, direct comparison of the relaxation rates indicates that linear poly-

mers relax far faster than poly[n]catenanes, as shown in Figure 3.12a. However, this is not

a meaningful comparison as the effective monomers in poly[n]catenanes have many more

beads and therefore experience much great friction. To compare the two architectures more

appropriately, we again revisit the scaling procedure detailed above. The arguments pre-

sented above allow one to correct for excluded volume effects for both linear polymers and

poly[n]catenanes separately, but they do not readily indicate a basis for comparing the two

species to one another. Indeed, this analysis is based on the fact that molecules with the same

architecture and molecular weight must relax on the same time scale, no matter the level of

discretization or coarse-graining. However, this does not hold across polymer architectures:

poly[n]catenanes relax much faster than linear polymers of the same molecular weight. This

is not a particularly interesting result since the poly[n]catenanes are far smaller in size than

the linear polymers and therefore should relax faster. It is for this reason that linear poly-

mers and poly[n]catenanes are compared on the basis of segment length and monomer mass.

In practical terms, we consider only the quantity mb2W eff
p , with the understanding that

poly[n]catenanes possess greater excluded volume effects than their linear counterparts, and

that these effects are not controlled for. This limitation is unimportant. As demonstrated

above, any scaling arguments used to account for excluded volume effects will result merely

in a vertical shift of the spectra, which does not change the qualitative character of the data.

Indeed, the key findings which we are about to present are the qualitative differences in

dynamics associated with the novel poly[n]catenane architecture.
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At low mode number, mb2W eff
p for poly[n]catenanes with m = 30 is roughly 50-80% of

W eff
p for the linear analogue (meff = 9), as shown in Figure 3.12a, in agreement with our

expectation of more pronounced excluded volume effects. However, at higher modes, linear

polymers show an increase in W eff
p , attributed to local correlations [170], while catenanes

exhibit the entanglement-like effect instead, which slows dynamics and widens the gap be-

tween the architectures. This behavior is observed for all ring sizes: Figure 3.12b shows

the ratio of linear/catenane mb2W eff
p as a function of n/p for various poly[n]catenane/linear

analogue pairs. At low mode number, the ratio is relatively constant at a factor of 1-2. How-

ever, it increases sharply starting at n/p ∼ 3, where the entanglement-like effect emerges in

poly[n]catenanes and dominates the behavior.

Figure 3.12: a) Raw and scaled relaxation spectra for poly[n]catenane (n = 25,m = 30)
compared to its linear analogue (N = 225, n = 25,meff = 9). b) Ratio of scaled relaxation
rates mb2W eff

p for poly[n]catenanes and linear analogues.

In linear polymer melts, the stretching exponents βp decrease to ∼ 0.5 at length scales

comparable to the entanglement length, Ne, indicating that topological interactions are

correlated with a broadening of relaxation times [170–172]. A similar trend is observed in

poly[n]catenanes, but at relatively short length scales: βp exhibits a shoulder at n/p ≈ 3 and

then decreases dramatically as n/p approaches unity, as shown in Figure 3.13. Interestingly,
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this decrease occurs at the relative length scale of n/p ≈ 3 for all m. These results are in

direct contrast to those for linear polymers, which show an increase in βp at small length

scales, which is attributed to inertial effects. As expected, this upturn is sensitive to meff,

as it always occurs at the same absolute length scale of ∼10 beads, which corresponds to

a difference value of n/p depending on meff. If this dependence is removed by plotting

the exponents βp as a function of n/p × meff, all data collapse onto a master curve as

shown in Figure 3.14. These observations are consistent with the above results for individual

macrocycles: the effect of the mechanical bond is manifested at a length scale relative to

the macrocycles (no matter their size), rather than at some absolute number of beads.

This suggests that the entanglement-like effect is a general feature of the mechanical bond

that distinguishes it from traditional covalent linkages. This result is also suggestive as it

indicates that correlated local motions along the polymer backbone are interrupted by the

mechanical bond. Such motions are a mechanism of phonon transport in solids, which is

why stretched/oriented polymer melts exhibit anisotropic thermal conductivity [189, 190].

Therefore, one may expect that stretched poly[n]catenane systems would not posses such

anisotropy, or that it would be considerably mitigated, since no continuous covalently bonded

path connects one chain end to the other.

Finally, the effect of segmental stiffness is examined by strengthening the angle-bending

potential between neighboring covalent bonds, Eq. 3.3. The results are shown in Figure 3.15.

As stiffness is increased, the (unscaled)W eff
p for linear chains is greatly reduced at low modes,

but remains mostly unperturbed at higher modes. This is not surprising, since the additional

stiffness increases the size of the polymers while also increasing the spring constant between

effective monomers, leading to slower dynamics at low modes and faster dynamics at high

ones. In contrast, W eff
p for poly[n]catenanes is only moderately reduced at low modes, but

more so at high modes. This may be understood in qualitative terms: just as a steel chain

is highly flexible in spite of its rigid links, stiff molecular segments will not greatly affect
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Figure 3.13: Stretching exponents, βp, vs. n/p for poly[n]catenanes (squares) and linear
polymers (triangles).

Figure 3.14: Stretching exponents, βp, for linear polymers as a function of absolute length
scale (i.e., a specific number of beads).

the large-scale mobility in poly[n]catenanes. However, at short length scales, the topological

interactions may be exacerbated by the stiffness, leading to slower dynamics at higher modes.
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Figure 3.15: Unscaled relaxation spectra for a) linear polymers (meff = 9), and b) poly[n]-
catenanes (m = 30), with varying segmental stiffness.

3.6 Discussion and Conclusions

At present, there are limited data on poly[n]catenane dynamics [19], so comparison with

experiment is not possible. However, since the Rouse modes studied here are orthogonal to

good approximation, they can be used to compute various experimental quantities, such as

shear relaxation modulus and dynamic structure factor [13]. The former could be measured

by rheological experiments on poly[n]catenane solutions; since the largest effects are found at

short length scales, high frequencies and/or low temperatures may be required. Meanwhile,

dynamic structure factor can be measured by neutron scattering experiments. In particular,

dynamics of individual rings could be probed by introducing labelled macrocycles during

poly[n]catenane synthesis. As in the rheological measurements, the large wave-vector regime

is likely to be of greatest interest.

The results presented in this chapter highlight the complex dynamics introduced by

mechanical bonds. Since these bonds represent permanent and well-defined topological in-

teractions, it seems fitting that the qualitative character of the dynamics is similar to that

of entangled linear polymer melts, which also experience such constraints, albeit transiently.
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Nevertheless, such a connection is by no means obvious must account for deep physics in

the systems. Indeed, the properties of interlocked ring polymers remain an active and chal-

lenging field of research, but despite the interest over many decades, the results presented in

this chapter represent one of only very few investigations of the dynamics of such systems.

Clearly, further research is warranted, given the unusual and exciting nature of the results.

In particular, more realistic scenarios must be considered, for instance, systems with hydro-

dynamic and/or intermolecular interactions. These are the topics of the subsequent chapters

of this dissertation.
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CHAPTER 4

HYDRODYNAMIC INTERACTIONS IN LINKED POLYMERS

4.1 Introduction

In the previous chapter, we studied the dynamics of poly[n]catenanes in good solvent con-

ditions. Although the behavior of the polymers was remarkable and complex, those stud-

ies neglected the dynamical effects of the solvent. In solution, polymers are subject to

solvent-mediated hydrodynamic interactions (HI), which introduce long-ranged correlations

into segmental motion and significantly alter the dynamics [13]. In particular, the motion

of a polymer segment induces a hydrodynamic flow field in the surrounding solvent. In

turn, the flowing solvent exerts drag forces on other polymer segments. Thus, even if two

beads/monomers on a given polymer have no direct interaction, they still influence each

other through the intervening medium. These interactions cause pronounced changes in the

dynamics of polymers [13]. For instance, the longest relaxation time of a linear polymer

scales as τ ∼ N1+2ν in the Rouse model, but scales as τ ∼ N3ν when HI is taken into ac-

count. Similarly the diffusion coefficient scales as D ∼ 1/N without HI and D ∼ 1/Nν with

HI. To obtain an accurate picture of poly[n]catenane dynamics or compare with experiments,

such effects must be accounted for.

The interplay between topological and hydrodynamic interactions has been a topic of

growing interest in recent years [191], with numerous papers examining the dynamics of both

unknotted [192–201] and knotted [202–206] ring polymers in equilibrium and non-equilibrium

conditions. However, to the best of our knowledge, only a single study has characterized

the dynamics of linked rings with HI [94] and even then, only the diffusion coefficient and

radius of gyration of small linear and cyclic catenanes was considered. The lack of results

in this particular area is perhaps unsurprising: hydrodynamic and topological interactions

are both mathematically challenging subjects and simulations involving such effects require
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great computational expense. On the other hand, the dynamics of poly[n]catenanes without

HI studied in the previous chapter showed pronounced topological effects even within single

isolated polymers, motivating further research in this area.

In this chapter, we use theory and Brownian dynamics (BD) simulations to investigate

the equilibrium dynamics of topologically linked ring polymers in the presence of hydro-

dynamic interactions. Theoretically, HI are usually handled by averaging the mobility (or

HI) matrix with respect to the steady-state configurational distribution function. We show

that any such averaging - even for non-Gaussian polymers and out-of-equilibrium systems -

results in a hydrodynamic decoupling of the internal relaxations of the rings, allowing the

effects of topology and HI to be considered pseudo-independently. We then design efficient

Brownian dynamics simulation methods to study large Hopf links (i.e. polymeric [2]cate-

nanes) in equilibrium and test the theoretical results. From a fundamental perspective, these

results demonstrate how symmetries in topologically complex systems can greatly simplify

the physics of the situation. From a practical point of view, these concepts can be used

to efficiently and accurately simulate large topologically linked systems such as kinetoplasts

[207], Olympic gels [208], and poly[n]catenanes with HI.

4.2 Theory

Consider a group of n topologically linked ring polymers with m interacting Brownian par-

ticles on each ring, thus having total number of particles N = n ×m. We assume that all

rings are topologically bound to one another, even if indirectly; that is, we assume that there

are no disconnected rings or groups of rings. Using the bead radius a, the thermal energy

kBT , and the bead diffusion time τ0 = 6πηa3/kBT (with η the solvent viscosity) as the

units of length, energy, and time, respectively, the dynamics of the particles at equilibrium
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are described by the dimensionless Langevin equation [209]:

dR

dt
= −H · ∂U

∂R
+
√

2B · dW (4.1)

where R is a vector of particle positions, H is the N ×N mobility or hydrodynamic inter-

action (HI) matrix whose elements Hij are tensors that describe the direction-dependent

hydrodynamic coupling between beads i and j, U is the system interaction potential, dW

is an increment of the Wiener process, and BBT = H . Normally, a divergence term of the

form ∂/∂R ·H is included in Eq 4.1, but this will be neglected throughout this work as it

vanishes due to solvent incompressibility for many commonly employed forms of Hij (e.g.

Oseen-Burgers [209], Rotne-Prager-Yamakawa [210, 211], and Zylka-Öttinger [212] tensors).

Eq. 4.1 represents a set of coupled, non-linear equations since both the mobility matrix

and the forces (−∂U/∂R) depend on the particle positions. To make the dynamics of

bead-spring polymers tractable, Zimm [213] replaced the mobility matrix by its equilibrium

average: H −→ 〈H〉eq. The success of these so-called “pre-averaged” hydrodynamics inspired

the closely related “consistently-averaged” HI approach in non-equilibrium conditions [214–

216] and more recently the iterative averaging method of Sing and coworkers for computer

simulations [193]. Following this well established method, we will consider the equilibrium

average of the mobility matrix and study the resulting dynamics.

To begin, we establish a useful indexing convention: the vector R is broken up into

chunks of size m, each of which represents the position of the beads within a single ring,

denoted Rα with 1 ≤ α ≤ n. Following this convention, H may be written as a n× n block

matrix with each m ×m block Hαβ representing the hydrodynamic coupling between the

beads on rings α and β. The diagonal blocks represent the coupling between beads on the

same ring polymer, while the off-diagonal blocks represent the coupling between beads on

different rings; for all blocks, the symmetry of H implies Hαβ = (Hβα)T .

We now consider the equilibrium average of the mobility matrix, 〈H〉 (the subscript “eq”
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has been dropped for brevity). The form of the averaged blocks 〈H〉αβ is constrained by

the symmetry of the system: all particles within ring polymers are statistically identical. In

other words, since our choice of the “first" bead in a ring is completely arbitrary, each of the

rows in a given m×m block will be identical to the others except for a shift in indices. In

mathematical terms, the blocks 〈H〉αβ are circulant matrices. This fact was used by Liu

and Öttinger [217] to calculate the dynamics of bead-spring ring polymers with pre-averaged

hydrodynamics analytically and exactly. This is possible since all circulant matrices have a

known set of eigenvectors, which are given by the Fourier modes:

ωq =
δ√
m

(
1, wq, w

2
q , ..., w

m−1
q

)
(4.2)

where δ is the identity tensor, 0 ≤ q ≤ m− 1, wq = exp(2πiq/m) and i =
√
−1.

The off-diagonal blocks 〈H〉αβ(α 6= β) possess even greater symmetry. Since the average

must not depend on the specific indexing of either ring, all elements must be equal. Thus,

the off-diagonal blocks have the form:

〈H〉αβ =
h
αβ
0

m


1 1 . . .

1 1
... . . .

1

 ≡ h
αβ
0

m
1 (4.3)

where the (isotropic) tensor hαβ0 in general depends on which pair of rings is being considered

(i.e. on α and β) and we have defined the m × m “ones” matrix 1 in the second equality.

The factor of 1/m has been incuded for normalization later on.

Having determined the form of 〈H〉, we can now diagonalize each of its blocks. In

particular, if we denote by ω the m×m matrix whose columns are given by Eq. 4.2, we can
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construct the orthonormal transformation:

Ω =


ω 0 . . .
0 ω
... . . .

ω

 (4.4)

which has the properties ΩΩ† = Ω†Ω = I, where I is the identity matrix. We now wish to

apply this transformation to Eq. 4.1.

Before continuing, it is important to make a key observation. The Fourier modes Eq.

4.2, are physically equivalent to the Rouse modes for ring polymers discussed in the previous

chapter. For ring α, we have Xα = ω†Rα. Accordingly, the mode q = 0 corresponds to

the ring center-of-mass while the modes q > 0 describe the internal configuration of the

polymers. This fact will be crucial for the physical interpretation of the dynamics later on.

Substituting the averaged HI matrix into Eq. 4.1 and applying the transformation Eq.

4.4, we have:
dX

dt
= −Ĥ · ∂U

∂X
+
√

2B̂ · dZ (4.5)

where Ĥ = Ω†〈H〉Ω, B̂ = Ω†〈B〉Ω, and dZ = Ω†dW . The fluctuation-dissipation the-

orem BBT = H and the orthonormal character of Ω imply that B̂B̂T = Ĥ . Note that

despite the fact that Ω is complex, the matrix Ĥ (and therefore B̂) is real and symmetric

owing to the symmetry and positive-definiteness of H and the circulant character of each of

its blocks.

We now consider explicitly the form of Ĥ , which inherits the block structure of H .

The diagonal blocks Ĥαα are themselves diagonal with elements given by the eigenvalues

of the matrices 〈H〉αα, which are denoted hααq with 0 ≤ q ≤ m − 1. This result indicates

that in the pre-averaging approximation, the various internal modes of the rings do not

hydrodynamically couple to one another; this is the key insight in the work of Liu and

Öttinger [217]. The result implies that correlated motions between modes arise only through
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the forces in the pre-averaged approximation.

Now to determine the form of the off-diagonal blocks, we evaluate the product:

ωT1ω = mδ


1 0 . . .
0 0
... . . .

0

 ≡ mδC (4.6)

where we have defined the “corner” matrix C. Using the results Eq. 4.3 and Eq. 4.6, the

matrix Ĥ has the form:

Ĥ =



Ĥ11 h120 C . . .

h120 C Ĥ22

... . . .

Ĥnn


(4.7)

We again emphasize that the on-diagonal blocks Ĥαα are diagonal. Furthermore, the matrix

B̂ can be written in a similar manner (see Section A.1) with diagonal on-diagonal blocks

B̂αα having non-zero entries bααq (0 ≤ q ≤ m− 1) and off-diagonal blocks bαβ0 C. From Eq.

4.7, the elements of the off-diagonal matrices, which represent HI between modes on different

rings, all vanish except those which describe coupling between the “zeroth” modes. But as

discussed above, these modes simply correspond to the polymer centers-of-mass. In light of

this result, the equation of motion Eq. 4.5 can be separated into two equations: one for the

center-of-mass modes Xα
0 and another for the internal modes, Xα

q (q > 0) as follows:

dXα
0

dt
=

n∑
β=1

{
−hαβ0

∂U

∂X
β
0

+
√

2b
αβ
0 dZ

β
0

}
(4.8a)

dXα
q

dt
= −hααq

∂U

∂Xα
q

+
√

2bααq dZαq (4.8b)

Thus, by a combination of pre-averaging the HI and choosing a suitable coordinate basis,
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the set of nm coupled vector equations Eq. 4.1 has been reduced to n coupled equations and

n(m− 1) (hydrodynamically) independent ones.

We now discuss the physical meaning of this result. According to Eq. 4.8b, the inter-

nal modes of the rings (q > 0) are hydrodynamically decoupled from one another: the only

direct hydrodynamic coupling between rings occurs at the coarse center-of-mass level, Eq.

4.8a. A similar decoupling of the Rouse modes for isolated linear polymers is a well-known

approximation [13, 218], but here, the decoupling is exact (within the averaging approxi-

mation) and applies to multiple interacting polymers. Of course, the dynamics of the rings

will still be coupled through the forces (−∂U/∂X), but anomalies in these interactions for

linked rings are primarily topological; hydrodynamic contributions are higher-order effects

(see below). This result is also striking as it does not require that the average be taken over

the equilibrium distribution. Indeed, the hydrodynamic decoupling was obtained purely on

the basis of the symmetries within the rings, which are still present even in non-ideal (non-

Gaussian) polymers or in non-equilibrium conditions. In such cases, Eqs. 4.8 still hold, but

with generally anisotropic tensors hαβ and bαβ . Along similar lines, the precise details of

the topological linking do not affect the result, which should therefore hold for arbitrary

linking complexity.

In light of these results, HI and topology can only act cooperatively on ring dynamics via

three possible mechanisms. First, the values hααq may be altered by topological constraints

as such constraints modify the configurational distribution functions of the rings. Second,

the deviations of hααq from the freely-draining value, δ, affect the non-local-in-time force-

force correlations between modes/segments which are themselves sensitive to topological

interactions, thereby influencing the dynamics. Third, the same force correlations mentioned

above are affected by the dynamics of the ring centers-of-mass, which still experience HI. The

first mechanism is quantitatively negligible, at least for relatively simple links, as discussed

later on, so is not likely to be important. Meanwhile, the latter two are indirect (or higher-
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order) effects in that they describe how the force on a given mode is affected by changes

in the dynamics of other modes at earlier times. Therefore, these effects are expected to

be fairly small. As a result, topology and HI are approximately independent and do not

act cooperatively to influence the dynamics. If this were case, the dynamical consequences

of topological linking would be comparable for systems both with and without HI. In the

remainder of this chapter, we develop and apply BD simulation algorithms to test this result.

Before continuing, we note that although the theory presented above and methods presented

below were developed in the context of linked ring polymers, they apply equally to isolated

(i.e. unlinked) or knotted ring polymers. However, no such theory can be developed for

linear chains as they have only discrete (head-to-tail) symmetry, rather than the continuous

symmetry of rings.

Starting from Eqs. 4.8, it is possible to formulate an efficient scheme for BD simulations

of topologically linked polymer systems which includes the three mechanisms of HI-topology

coupling described above. This method is presented in Algorithm 1. The forces are cal-

culated in the real-space representation (as interaction potentials are typically expressed in

terms of particle positions) while the particle positions are updated in the Fourier mode

representation, i.e. using Eqs. 4.8. The advantage of such an approach is that the cum-

bersome calculations of the matrix-vector products H · ∂U/∂R and B · dW required for

integrating Eq. 4.1 (O(N2) operations, even with pre-averaging) are no longer required in

integrating Eqs. 4.8, in which such calculations are only necessary for the center-of-mass

modes as only these modes are (directly) hydrodynamic coupled. Thus, the bead position

update is split into a O(N) operation for modes q > 0 and a O(n2) operation for modes

q = 0. Of course, one must constantly transform back-and-forth between the real-space and

Fourier-space representations, but by leveraging fast Fourier transform (FFT) packages, the

complexity of these operations is reduced to O(nm logm). As a result, for large rings (i.e.

large m), this algorithm provides substantial improvements in computational performance

70



compared to typical conformationally-averaged simulations.

Algorithm 1 Pre-averaged HI
1: Calculate forces on each bead, −∂U/∂R.
2: Transform R and −∂U/∂R to the Fourier-mode space representations X,−∂U/∂X by

FFT.
3: Calculate/apply displacements for modes q > 0 independently, leveraging the diagonal

character of Ĥαα.
4: Calculate/apply displacements of modes q = 0 including the hydrodynamic interaction

between them as prescribed by Ĥ and B̂.
5: Transform X back to the real space representation, R by inverse FFT.

For systems with large conformational fluctuations, averaged hydrodynamic interactions

may not provide qualitatively correct results. However, it is possible to modify Algorithm

1 such that some information regarding time-dependent structural variation is preserved;

this modification is presented in Algorithm 2. At each time step, the time-dependent HI

matrix H(t) is calculated and each of the on-diagonal blocks Hαα(t) is averaged along its

diagonals such that it becomes circulant. Then, the off-diagonal blocks Hαβ(t) (α 6= β) are

averaged over all elements to obtain the form of Eq. 4.3. Moving to the Fourier space, the

time-dependent matrix Ĥ(t) will have the form of Eq. 4.7 and B̂(t) may be computed with

complexity O(nm) + O(n3), as described in Section A.1. The remainder of the algorithm

is identical to Algorithm 1. In general, the inter-ring couplings hαβ0 and the intra-ring

eigenvalues hααq will not be isotropic tensors. However, as discussed before, this anisotropy

does not invalidate the hydrodynamic decoupling found in Eqs. 4.8, which relies only on the

symmetries of the rings themselves.

Unlike the pre-averaged matrix 〈H〉, the time-dependent “instantaneously-averaged” HI

matrix Ĥ(t) still contains some information regarding the instantaneous polymer conforma-

tion at various length scales at a given moment in time and may therefore capture some

effects of conformational fluctuations with minimal computational expense. As an added

bonus, the equilibrium-averaged HI matrix 〈H〉 need not be known prior to running a simu-

lation. These advantages make Algorithm 2 particularly well-suited to non-equilibrium BD
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Algorithm 2 Instantaneously-Averaged HI
1: Calculate forces on each bead, −∂U/∂R.
2: Calculate the full time/configuration-dependent HI matrix, H(t).
3: Average each of the off-diagonal blocks, Hαβ (α 6= β), over all elements to calculate the

quantities mhαβ0 appearing in (7).
4: Average each of the on-diagonal blocks, Hαα, along their diagonals so that the blocks

become circulant.
5: Obtain the time-dependent eigenvalues ofHαα(t) by FFT and combine with the results

of Step 3 above to construct the time-dependent version of (7), Ĥ(t).
6: Calculate B̂, leveraging the symmetries of Ĥ .
7: Transform R and −∂U/∂R to the Fourier-mode space representations X,−∂U/∂X by

FFT.
8: Calculate/apply displacements of modes q = 0 including the hydrodynamic interaction

between them as prescribed by Ĥ and B̂ (eq 8a).
9: Calculate/apply displacements for modes q > 0 independently, using the diagonal char-

acter of Ĥαα(t) (eq. 8b).
10: Transform X back to the real space representation, R, by inverse FFT.

simulations.

4.3 Brownian Dynamics Simulations

In the remainder of this chapter, we apply the two algorithms developed above to study

the dynamics of topologically linked polymers and test the decoupling predictions. We

have conducted BD simulations of unlinks (n = 1) and Hopf links (n = 2) in equilibrium

conditions, employing a commonly-used molecular model with a vanishing excluded volume

parameter [192, 219]. We consider ring sizes of m = 16, 32, 48, 64, 96, 128, 256, and 512.

The ring polymers are modeled as a series of Lennard-Jones particles connected by harmonic

bonds. The bonded energy has the form:

Ubond =
n∑

α=1

m∑
i=1

k

2

(
|Rα

i −R
α
(i+1)%m| −R0

)2
(4.9)
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where Rα
j is the position of bead j on ring α and the modulo operator ensures ring closure.

The bond strength is chosen as k = 200 and the equilibrium length as R0 = 2. To enforce

topological constraints, nearby beads also interact via a Lennard-Jones potential, whose

energy is written:

ULJ =
N∑
j>i

ε

[(
Rm
Rij

)12

− 2

(
Rm
Rij

)6
]

(4.10)

where Rij is the distance between beads i and j and the sum extends over all pairs of beads

in the system. Following previous literature, we choose Rm = 2 and ε = 0.314 and truncate

the interaction at a distance of 4.454. These parameters lead to a vanishing excluded volume

parameter, i.e. akin to a theta solution. Of course, topological restrictions alter the theta

point in real ring polymers [92, 220] and even lead to excluded-volume type scaling for large

ring sizes [221]. Nevertheless, the polymers studied here do indeed obey ideal scaling, as

discussed later on.

For the hydrodynamic interaction tensorsHij , the Rotne-Prager-Yamakawa tensor [210,

211] is used:

Hij =



δ, i = j

3

4Rij

[(
1 +

2

3R2
ij

)
δ +

(
1− 2

R2
ij

)
RijRij

R2
ij

]
, i 6= j, Rij ≥ 2

(
1−

9Rij
32

)
δ +

3

32

RijRij

Rij
, i 6= j, Rij < 2

(4.11)

where Rij = Ri −Rj , Rij = |Rij | and δ is the identity tensor.

We integrate the equations of motion with a timestep of δt = 10−3τ0 by the Euler

method. For the simulations using Algorithm 1, long freely-draining simulations are first

conducted to determine 〈H〉, which is then processed into an isotropic, block-circulant form
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in accordance with the symmetries discussed above and then used to calculate Ĥ and B̂

(see Section A.1). In the course of this calculation, we obtain the coefficients hααq appearing

in Eq. 4.8b and find that these values differ only slightly between topologies and that these

differences are reduced as m increases. For instance, the values of hαα1 generally experience

the largest changes, but differ by less than 3% for m > 64. When using Algorithm 2, the

HI matrix is updated every 50 to 1000 timesteps. This update interval appears to have no

effect on our results.

For comparison, we have conducted additional simulations with fully fluctuating (non-

averaged) HI. In these simulations, Eq. 4.1 is integrated by a first-order predictor-corrector

scheme with a timestep of δt = 2.5 × 10−3τ0 and the matrix B is calculated by Cholesky

decomposition of H every other step. Such simulations are computationally expensive are

therefore not possible for the larger rings studied here. For statistical analysis, sixteen

independent simulations were conducted for each system with each algorithm.

4.4 Dynamics of Linked Ring Polymers

Here, we focus on the long-time, large-length-scale dynamical properties and determine how

topological linking and HI affect these quantities. In particular, we examine the longest re-

laxation times of the individual rings (τ , determined from the autocorrelation function of the

lowest Rouse mode) and the diffusion coefficient of the whole polymer assembly (D, deter-

mined by linear regression on the center-of-mass mean-squared displacement) with the goal

of understanding how these quantities are affected by the topological linkage. These data are

shown in Figure 4.1. We begin by assessing the validity of the pre-averaging approximation,

i.e. the degree to which Algorithms 1 and 2 reproduce the correct dynamical quantities. At

small m, the pre-averaging and instantaneous averaging algorithms show considerable devia-

tions in the relaxation times compared to the full BD simulations. However, as m increases,

these deviations are reduced and are only about 10% by the time m = 96, comparable to the
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statistical uncertainty in the results. In general, the diffusion constants show better agree-

ment, exhibiting differences of only 5 - 10 % throughout the range of m values. Despite these

differences, all data show roughly the same scaling behavior, as discussed below. Moreover,

the results for pre-averaged and instantaneously-averaged HI are in excellent quantitative

agreement, suggesting that large length scale conformational fluctuations are not important

for the equilibrium dynamics.
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Figure 4.1: a) Longest ring relaxation times, τ , and b) diffusion coefficients, D, for linked
and unlinked ring polymers as a function of ring size, m. Error bars are approximately the
size of the data points.

Zimm theory predicts that the dynamical quantities presented here scale as τ ∼ R3
g,r and

D ∼ R−1g [13] where Rg is the polymer radius of gyration and Rg,r is the radius of gyration

of an individual ring (for unlinked rings, the latter two quantities are identical). Since our

molecular model has a vanishing excluded volume parameter, we expect Rg ∼ Rg,r ∼ m1/2;

the observed scaling exponents are slightly larger, which is not unexpected as ring polymers

exhibit lower θ-temperatures than linear polymers on account of their topological constraints,

as mentioned above. Since these deviations are rather small, we still expect to observe

(roughly) D ∼ m−1/2 and τ ∼ m3/2 in our simulations. This is indeed the case for all

algorithms used, as shown in Figure 4.1.

As in previous simulation studies, the relaxation times of the rings are increased by the
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presence of threading segments [222, 223]. However, this is not an unusual result since

topological linking also causes the rings to swell relative to the unlinked state [92, 222, 224],

which should increase the relaxation times according to the Zimm theory predictions above.

Meanwhile, the increased mass and overall size of the Hopf links compared to the unlinks will

naturally cause smaller diffusion coefficients, which is indeed observed in the simulations. To

understand whether the topology-dependent dynamical properties are simply the result of

changes in ring size, we introduce the effective mobilities defined by µτ (T ) ≡ R3
g,r/τ and

µD(T ) ≡ (RgD)−1 where T is the topological state of the rings, either unlinks, U , of Hopf

links, H. According to the scaling predictions above, these mobilities should be independent

of m, but may still depend on T . To more clearly quantify such topological effects, we

consider the ratios of the effective mobilities, µτ (H)/µτ (U) and µD(H)/µD(U). In this way,

we isolate the dynamical effects which are solely topological in nature. In a similar manner,

we also wish to assess whether or not topological effects are manifested differently in the

presence of HI; the theory of Section 4.2 implies that the two are largely independent. To do

so, we note that in the absence of HI, relaxation times scale as τ ∼ mR2
g,r [13], suggesting

an effective mobility µ0(T ) ≡ mR2
g,r/τ ; as above, the ratio of this mobility for Hopf and un-

links is considered. Note that any effective mobility calculated from the diffusion constant

in freely-draining systems is not a meaningful quantity as these systems have D = 1/N

identically, regardless of polymer architecture or topology.

The ratios between effective mobilities, dubbed relative mobilities, are shown in Figure

4.2. The relative mobility calculated from the diffusion coefficient is approximately unity for

all algorithms and all ring sizes, suggesting that the overall diffusion of the polymer is con-

trolled entirely by its size, so topology and HI couple only insofar as topological constraints

affect the ring/polymer dimensions. However, the relative mobility calculated from ring re-

laxation times shows reductions of ∼ 41% in the absence of HI due to topological effects, in

qualitative agreement with previous results [222, 223]. In the presence of full HI, the relative
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mobility is decreased just ∼ 26%, suggesting that there is indeed some coupling between

topology and HI. Nevertheless, the modesty of this difference is notable given how dramat-

ically both HI and topology alter polymer dynamics. Furthermore, when the higher-order

indirect coupling is included through the pre- and instantaneously-averaged HI simulations,

much of this discrepancy is eliminated, with relative mobilities reduced by ∼ 33%, further

supporting the conclusion that topological interactions and HI are roughly independent ef-

fects. Finally, we note that these data are essentially independent of m, indicating that the

result is broadly applicable.
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Figure 4.2: Relative mobility of Hopf links and un-links as calculated from either the diffusion
coefficient or the ring relaxation times (see main text for details). Statistical uncertainties
for the ring relaxation data (squares) are roughly the size of the data points.

The small difference between the relative mobility for averaged vs. full HI represents

the direct coupling of topology and HI. One potential mechanism for this coupling is offered

by the observation that HI effectively “shields” segments from the viscous drag forces of the

solvent. By necessity, any averaging procedure assumes that all segments on a given ring

share the same local hydrodynamic environment. The data in Figure 4.1 suggest that this

approximation leads to some quantitative differences even in the case of unlinked polymers.

This heterogeneous environment breaks the symmetry of the rings such that the modes

are not truly hydrodynamically decoupled. These errors are likely exacerbated in linked
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polymers: when a segment threads a ring, it is surrounded by beads on the threaded ring,

which shield the segment from solvent drag. Segments on the other side of the ring, which

are farther away from the linked polymer are not as strongly protected. This may explain

why the simulations with averaged HI have slightly poorer agreement for linked vs. unlinked

rings (see Figure 4.1). Since the two topologies are affected differently, the relative mobility

is altered. Nevertheless, these relative mobilities are still quite close to one another, differing

by just ∼ 10%, thus validating the theoretical result that topological interactions and HI are

pseudo-independent.

4.5 Conclusions

This chapter represents the first step in the study of the dynamics of catenaned polymer

systems in solution. We have shown that by leveraging the symmetries inherent in ring

polymers, the effects of topology and HI may be considered roughly independently. Further-

more, we developed efficient Brownian dynamics algorithms which allow in silico access to

large interlocking polymer systems and long time scales. We are now in a position to pose

and answer a wide array of questions about catenated polymers and poly[n]catenanes, both

in equilibrium and non-equilibrium conditions. For instance, we may study the properties

of these molecules in shear and extensional flows, under the influence of molecular activity,

in varying solvent conditions, etc. We can also apply these methods to study more complex

interlocked materials, such as kinetoplasts [207] and Olympic gels [208]. More generally, we

anticipate that additional problems in the physics of topologically linked polymers will be

simplified by considering the high degrees of symmetry in such systems.
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CHAPTER 5

THERMODYNAMICS AND STRUCTURE OF

POLY[N ]CATENANE MELTS

5.1 Introduction

The efforts of the previous chapters have all focused on isolated polymers. However, as

pointed out in the introduction, intermolecular interactions become increasingly important

in the melt state, which is of interest for poly[n]catenanes as it contains the highest pos-

sible density of mechanical bonds. In this chapter and the next, we turn our attention to

simulations of poly[n]catenane melts and find a wide array of exciting results.

As mentioned in the Introduction, poly[n]catenanes are completely unstudied in the melt.

However, the behavior of linear and ring polymers in the melt (discussed in the Introduction)

combined with the properties of these polymers in solution (previous chapters) suggest a

number of questions: (1) Does the mechanical bond contribute to the stress/pressure and

other thermodynamic quantities, (2) is it possible to further quantify how the topological

bond impacts macrocycle conformations, (3) how does ring size affect the conformation and

scaling of catenanes, (4) how do intermolecular interactions and the unusual intramolecular

conformational structure affect poly[n]catenane melt packing correlations, (5) what is the

interplay between intra- and inter-molecular topological interactions, and (6) at what point

is inter-chain entanglement important in poly[n]catenane systems? This chapter endeavors

to answer the above questions (and others) by performing extensive molecular dynamics

simulations of poly[n]catenane melts. Both the degree of polymerization (i.e. the number

of links), n, and the ring size, m, are varied and the results are compared to linear polymer

and unlinked ring (n = 1) melts. Since many different systems have been simulated, it is a

challenge to present the entirety of the data in a clear and concise manner. Therefore, this

chapter will be representative and illustrative, rather than exhaustive.

79



5.2 Simulation Methods

As in Chapter 3, the Kremer-Grest (KG) model [23] is employed. All macrocycles in all

catenanes are composed of identical beads of mass µ which interact with one another via

a shifted Lennard-Jones (LJ) potential (Eq. 3.1). Covalent bonds within ring molecules

are enforced by a finitely-extensible nonlinear elastic (FENE) potential (Eq. 3.2) where

parameter values of k = 30ε/σ2 and R0 = 1.5σ are chosen. No bond angle bending potential

is applied, so the ring molecules are fully flexible. These interaction potentials along with

the indicated parameters have been shown to prevent chain crossings [23], which is crucial

for the simulation of interlocking polymers. The poly[n]catenanes are held together only by

the topological linking, which is specified entirely by the initial configurations of the beads

and maintained only by the interaction potentials mentioned above. The velocity-Verlet

algorithm was used to integrate the equations of motion with a timestep of δt = 0.01τ where

τ = (µσ2/ε)1/2 is the LJ unit of time. The simulations are conducted at a number density

of ρ0.85σ−3 and a temperature of T = 1.0ε/kB , maintained via a Langevin thermostat with

a drag coefficient of Γ = 0.5µ/τ . All results are reported in reduced LJ units. Simulations

were conducted with the GPU-accelerated MD engine DASH [177].

The systems studied here contain a total number of poly[n]catenane molecules of N =

100−500 , with the number of rings in each polymer, n, varied between n = 1, 2, 3, 5, 7, 10, 15,

20, and 25. For each chain length, catenanes with a number of beads-per-ring, m, varied

between m = 15, 20, 30 and 50, are considered. Thus, the total molecular weight, N =

nm, ranges from 15 to 1, 250. Note that these ring sizes are considerably smaller than

the entanglement length of the KG model (Ne ≈ 85) [47] so no significant intermolecular

topological compression is expected between the rings [59, 64]. Linear polymer systems with

N = 500 and degree of polymerization N varying between N = 15, 20, 30, 45, 60, 80, 100, 150,

and 175 have also been simulated for comparison. For statistical analysis, five independent

80



simulations of each system were conducted. Production simulations were run for 106−107τ ,

depending on polymer size. More details concerning the poly[n]catenane and linear polymer

systems and the simulation preparation procedures may be found in Appendix A.2, along

with quantitative analysis confirming system equilibration.

5.3 Thermodynamic Properties

Topological interactions can affect the pressure in certain polymer systems. For example,

in unlinked ring polymers, the topological interactions cause the chains to repel each other

weakly [71–73, 225]. In the melt, these interactions should increase the pressure relative

to linear polymers, but such an increase has not been observed in simulations of high-

MW ring polymer melts [59], likely because such effects are more subtle for these systems.

Nevertheless, topological effects may also contribute to the pressure in poly[n]catenane melts,

but in the opposite manner. The rings must be linked and are therefore prevented from

separating from one another, so they effectively attract each other. Thus, the pressure

should decrease as the number (or concentration) of mechanical bonds increases, even if the

concentration of covalent bonds does not change. Figure 5.1a shows the pressure as function

of the number density of mechanical bonds, defined as:

ρb ≡
N (n− 1)

V
= ρ

n− 1

nm
(5.1)

recalling that ρ is the number density of beads in the melt. The pressure is calculated

according to the virial theorem:

P = ρkBT +
1

3V

〈∑
j>i

Fij · rij

〉
(5.2)
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where V is the system volume, Fij is the force exerted on particle i by particle j, rij = rj−ri

is the vector between the particle positions, and the sum runs over all pairs of particles in

the system. As expected, the pressure decreases as ρb increases, reaching values up to 5%

lower than those of ring polymers. In analogy with the virial pressure given above (Eq. 5.2),

such decreases typically indicate that more attractive forces are present within the system.

The only attractive forces that are specified by the molecular model are the covalent bonds

(Eq. 3.2). However, in all cases, each Lennard-Jones bead is bonded to exactly two others, so

the concentration of such bonds is constant, irrespective of ρb. Also, the beads only interact

repulsively via a truncated LJ potential (Eq. 3.1), and therefore cannot lower the pressure

unless the particle density is also reduced (and it is not). In general, the Hamiltonian is the

same for all systems along with the density and temperature, so any changes in the pressure

must be related to changes in the integration limits (rather than the statistical weights) of the

partition function, i.e. they must be caused by the topological constraints/bonds. In other

words, the mechanical bonds introduce effective (topological) attractions between linked

rings, even though the actual forces are purely repulsive; these attractions in turn modify

the pressure. Evidently, the topological attraction between linked rings is much stronger than

the topological repulsions between non-concatenated rings since pressure increases have not

been observed in simulations of non-concatenated ring polymer melts [59]. In any case, such

repulsions should not be important for the small rings considered here compared to ordinary

excluded volume (i.e. that arising from the finite volume of the beads) since the rings are

much smaller than the entanglement length of the KG model, m < Ne. For n > 2, the

pressure decreases linearly with ρb, with the largest effects observed for the smallest rings.

The dependence on ring size may be related to the fact that the bond length distributions for

small rings are more sharply peaked, which would typically lead to stronger effective forces

between the macrocycles. However, these distributions lead to potentials of mean force which

are highly anharmonic (not shown), precluding any simple interpretation. Since a constant
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slope is only observed when n > 2, the doubly-threaded rings apparently contribute more

strongly to the pressure than the singly-threaded ones.

The potential energy per particle, u = U/NN , also decreases linearly with ρb, as shown

in Figure 5.1b, but the differences are much smaller than those seen in the pressure, being

less than 1% of the value (but still larger than statistical uncertainty). The potential energy

is obtained by time-averaging the instantaneous potential energy of the system calculated

at regular intervals. In contrast to the pressure, u does not depend strongly on m, which

can be rationalized in terms of an equipartition theorem. In a crude sense, the mechanical

bond forces the centers-of-mass of two rings to remain close to each other, removing a

degree of freedom (without actually altering the Hamiltonian!). On average, this degree of

freedom will be associated with some potential energy which depends on the temperature

and if the internal degrees of freedom of the rings are not affected, then this energy will not

depend on m. Denoting this energy by A(T ) and assuming that these degrees of freedom are

independent, the change in potential energy associated with adding mechanical bonds to the

system, ∆U , will be proportional to the number of mechanical bonds: ∆U ≈ A(T )N (n−1).

Dividing this quantity by NN , the total number of particles, leads to a linear relation

between the potential energy and the concentration of mechanical bonds, ∆u ≈ A(T )(n −

1)/nm = A(T )ρb/ρ.

The total system potential energy has both intra- and inter-molecular contributions which

can be related to the appropriate site-site pair correlation functions through statistical me-

chanics. Thus, the small changes in per-particle potential energy (Figure 5.1b) must be

accompanied by small changes in the fluid structure. Indeed, the site-site correlation func-

tions can be used to numerically obtain energy differences in agreement with those of Figure

5.1b (not shown). However, the actual correlation functions themselves are indistinguishable

to the eye, which is unsurprising given the smallness of the energy differences. Moreover,

these correlation functions agree quantitatively with those of linear polymers of high-MW,
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Figure 5.1: a) Pressure, and b) potential energy per particle as a function of the density of
mechanical bonds (Eq. 5.1) for poly[n]catenanes with various m. The statistical errors are
approximately equal to the size of the data points. Note that in part b) a common factor
has been subtracted from the values to more clearly visualize the trend; also the spacing
between tick marks on the vertical axis is only 10−3ε, so the differences in energy are quite
small.

where chain ends effects become negligible. For very small ring sizes (not discussed here),

the fluid structure can indeed be significantly affected by chain length, n, which introduces

a number of unusual static and dynamic properties. Such systems will be discussed in a

separate work.

The results presented in this section represent some of the largest topological effects yet

observed in bulk thermodynamic properties of polymer systems. In particular, the system

pressure shows a strong dependence on the ring size, m, suggesting that topological effects in

poly[n]catenanes will be most prevalent for smaller ring sizes. In other words, the concate-

nation between rings may restrict the available ring conformations more severely for smaller

rings. There is also a strong dependence on the number of rings in each catenane, n, which

modifies the number of mechanical bonds (i.e. concatenation constraints). To more fully

understand poly[n]catenane systems, it is therefore necessary to study the conformational

properties of the polymers both in terms of individual rings and at the level of the overall

chain. These properties are the subject of the next two sections.
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5.4 Ring Conformation

When studying the conformations of individual macrocycles within poly[n]catenanes, chain

centers and chain ends must be handled separately since the former are threaded by two

rings while the latter are threaded by only one; these rings should also be compared with

free ring polymers (n = 1) which are not (permanently) threaded by any other rings. It

was found that the ring conformations do not depend on n for catenanes of n ≥ 5 and all

quantities are therefore calculated from chains of length n = 7 for simplicity. Table 5.1

displays some structural properties of the rings. As expected, mechanical bonds increase

the single macrocycle size relative to that of free rings for all values of m, as measured by

both the mean squared radius of gyration, R2
g,r (the second subscript “r” indicating that

this quantity applies to individual rings), and the mean squared diameter vector, R2
d. The

ratio R2
g,r/R

2
d should equal 1/3 for ideal Gaussian ring polymers and 1/4 for perfectly rigid

circles. The observed ratios are indeed close to the Gaussian value for free ring polymers,

with larger rings having more ideal conformations and smaller ones deviating slightly. Chain

ends and chain centers deviate more strongly from ideal behavior with ratios as small as

0.27 observed for the smallest rings, suggesting that the mechanical bond leads to effectively

stiffer polymer segments and more circular conformations.

Ideal (phantom) ring polymers without topological restrictions have a Gaussian-dist-

ributed diameter vector [174, 226], and real ring polymers in the melt generally obey such a

distribution, even when topological interactions cause non-ideal scaling of the ring size [59].

However, this distribution may be affected by the mechanical bonds in poly[n]catenanes for

the small ring sizes studied here. This effect can be quantified by a non-Gaussian parameter:

α ≡
3〈R4

d〉
5〈R2

d〉
2
− 1 (5.3)

which takes on a value of zero if the diameter vector is Gaussian-distributed and -0.4 if it
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Table 5.1: Data taken from poly[n]catenanes (n = 7) and free rings (n = 1). Mean square
radius of gyration (R2

g,r), apparent scaling exponent (calculated from the radius of gyration
via finite difference, νg,r(m)), mean square diameter vector (R2

d), apparent scaling exponent
(calculated from the diameter vector via finite difference, νd(m)), non-Gaussian parameter
of the diameter vector distribution (α), and ratio of average gyration tensor eigenvalues
(〈λ1〉 : 〈λ2〉 : 〈λ3〉). Statistical uncertainties occur in the decimal places after those reported.

Topology m R2
g,r νg,r(m) R2

d νd(m) α 〈λ1〉 : 〈λ2〉 : 〈λ3〉

Free Rings 15 2.06 6.93 -0.18 1.0:2.7:6.5

20 2.77 0.51 9.15 0.48 -0.15 1.0:2.5:6.3

30 4.14 0.50 13.26 0.46 -0.11 1.0:2.4:6.2

50 6.75 0.48 21.0 0.45 -0.08 1.0:2.3:6.1

Chain Ends 15 2.54 9.06 -0.28 1.0:4.4:8.5

20 3.31 0.46 11.6 0.42 -0.24 1.0:3.5:7.5

30 4.77 0.45 15.9 0.40 -0.18 1.0:2.8:6.8

50 7.49 0.44 23.8 0.40 -0.12 1.0:2.5:6.3

Chain Centers 15 3.01 11.14 -0.32 1.0:6.4:11.5

20 3.89 0.45 14.1 0.42 -0.28 1.0:4.7:9.3

30 5.53 0.43 19.1 0.38 -0.22 1.0:3.5:7.7

50 8.50 0.42 27.9 0.37 -0.15 1.0:2.8:6.8

is delta-function distributed. All systems exhibit negative parameters but the values tend

towards zero with increasing ring size m, achieving nearly ideal statistics for the largest

free rings (m = 50, Table 5.1). At small m, the negative values of α suggest that the

conformational freedom of the rings is limited by the topological restriction that the loop be

closed. In general, the mechanical bonds further reduce the non-Gaussian parameters, again

indicating stiffer polymers, which is consistent with the larger ring sizes discussed above.

The mechanical bonds also affect the shape of the rings which can be determined by

the ratio of the eigenvalues of the gyration tensor, also shown in Table 5.1. As expected,

unthreaded rings show very similar shape for all m since they are nearly ideal ring polymers.
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Threaded rings, however, are highly distorted by the mechanical bonds, particularly at small

m, where they adopt nearly two-dimensional shapes as indicated by the large increases in

the eigenvalue ratios. These shape changes are also observed in the ring density profiles as a

function of the distance from the center-of-mass, shown in Figure 5.2. While the unthreaded

rings show (nearly) monotonically decreasing density profiles for all ring sizes, the threaded

rings exhibit large depletions near the center of mass and form toroidal shapes. As expected,

the magnitude of this effect decreases as the ring size m is increased.
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Figure 5.2: Ring density profile as a function of distance from macrocycle center-of-mass for
poly[n]catenanes and ring polymers. Note that the legend in the lower right pane applies to
all graphs.

As discussed in the Introduction, the size of ring polymers scales more slowly with molec-

ular weight in the melt compared to linear polymers or ideal Gaussian rings. Since this

unusual scaling is driven by topological interactions, the mechanical bonds are expected to

alter the scaling of ring size within the poly[n]catenanes. Of course, the rings considered

here are rather small, with ring size, m, being considerably less than the typical (linear)

entanglement molecular weight for the KG model, so the quantities reported here are only

apparent or crossover scaling exponents. Nevertheless, the exponent values and trends will
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prove insightful in understanding the effect of the mechanical bond on ring conformations.

The m-dependent apparent scaling exponents, νg,r(m) and νd(m), are calculated from R2
g,r

and R2
d, respectively, by finite difference, and are presented in Table 5.1 for various ring

topologies. Free rings scale nearly ideally at small m, with exponents decreasing modestly

as m increases, consistent with other simulations of ring polymer melts [56, 59, 61–63, 227].

For the threaded rings, the scaling exponents also decrease as m is increased, but the values

are much smaller overall, as low as 0.37 for the largest ring sizes. These results lead to an

apparent “paradox”: such small scaling exponents typically indicate topological compression

of rings, leading to smaller polymers, but the mechanical bonds actually expand the rings

(Table 5.1). Perhaps the unusually small scaling exponents arise because the dimensions

of the threaded rings are converging towards those of the unthreaded ones as m increases;

this convergence would naturally lead to smaller apparent scaling exponents. Indeed, the

results shown in Table 5.1 indicate that rings tend to become more ideal as m is increased

for all topologies (i.e. number of threadings). This picture is also supported by the density

profiles in Figure 5.2: the qualitative differences between the profiles of chain centers and

free rings are considerably reduced at large ring sizes. However, this does not appear to be

the case in dilute solution conditions as revealed by recent Monte Carlo simulations of linked

and unlinked rings, which do not exhibit the “paradox” mentioned above. Indeed, linked

rings are still considerably larger than unlinked ones in dilute solution conditions, even for

very large polymers [228], and show nearly identical scaling behavior [225, 228, 229]. The

primary difference between these two scenarios is the presence of intermolecular (inter-chain)

interactions. These observations suggest an interplay of two effects in poly[n]catenane melts:

the mechanical bonds increase the ring size and change the ring shape (Table 5.1), thus al-

tering the intermolecular interactions with other rings in the melt, affecting the scaling of

the ring size with increasing m. In summary, ring dimensions in poly[n]catenanes appear to

be significantly affected by both the mechanical bonds and the intermolecular interactions.
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Thus far, only the overall size and shape of the rings have been considered; now the specific

conformations of the macrocycles are studied. These conformations may be quantitatively

analyzed in terms of the Rouse modes, which are essentially Fourier modes of the chain

[169]. For ring polymers [174], these modes and their eigenvalues are given by Eqs. 3.4 and

3.5, respectively. The mean-squared mode amplitudes 〈X2
q 〉 contain information about the

conformation of the polymer at length scales of m/q along the chain contour and their sum

is proportional to R2
g,r. When scaled by the eigenvalues, the amplitudes represent effective

bond lengths (squared) at the corresponding length scale. For ideal Gaussian chains, these

bond lengths are constant for all length scales; in reality, the bond lengths typically increase

towards a plateau at large length scales (m/q) because of local chain stiffness effects. These

effective bond lengths are plotted as a function of length scale in Figure 5.3 for all ring sizes

and topologies (sets of curves for different m have been shifted vertically for clarity). At the

longest length scales, the rings are expanded by the mechanical bonds, in agreement with

the previously-discussed results on ring dimensions. However, at all shorter length scales,

the mode amplitudes for the threaded macrocycles are smaller than those of the free rings,

indicating that the mechanical bond effectively compresses the segments locally compared

to free rings, with doubly-threaded rings being the most affected. As is the case for other

structural properties, the size of these effects is diminished as m increases. Since these two

effects were also observed in dilute solution conditions (see previous chapter and [222]), they

are likely related to the mechanical bonds alone, rather than inter-molecular interactions.

The single-ring structure factor also shows some signatures of the mechanical bond. For

isotropic systems, this function is defined:

S(k) =
1

m

〈
m∑

i,j=1

sin
(
krij

)(
krij

) 〉
(5.4)

where rij is the distance between beads i and j within the same ring and the angled brackets

denote an ensemble average over all rings of the same topology – i.e. all chain center or
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Figure 5.3: Mean squared amplitudes of the Rouse modes for rings (Eq. 3.4) within
poly[n]catenanes. Sets of curves for each m have been shifted vertically for clarity.

chain end macrocycles in poly[n]catenanes, or all rings in ring polymer melts. This function

provides information on polymer conformation and statistics in reciprocal space and can be

obtained experimentally via neutron scattering. As expected, all systems show a Guinier

regime at low-k and peaks at high-k, the latter being caused by the covalent connectivity

between beads. However, for threaded rings, the structure factor also exhibits a pronounced

shoulder at kRg,r ≈ 4, as shown in Figure 5.4a. This feature appears at the same value of

kRg,r for all ring sizes, indicating that it is not caused by bead connectivity, but is instead

related to the structure of rings at the segmental level. This shoulder is absent for free rings,

as shown in Figure 5.4b, indicating that it is a feature unique to the mechanical bond. As

with other features, the size of the effect is reduced asm is increased. This distinctive feature

may be related to the peaked density profiles seen in Figure 5.2. However, the connection

between the two observations is not entirely clear. For instance, free rings also show a

maximum in the density profile for m = 15, but this system does not show any additional

shoulder in the structure factor. Furthermore, the position of the peak in the density shifts

to lower values of r/Rg,r as m is increased, while the position of the peak/shoulder in the
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structure factor is virtually constant for all m. Ultimately, these two quantities probe the

structure in different ways, so no immediate connection between them is available.
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Figure 5.4: a) Chain center single-ring structure factor for various m, b) Structure factor for
all ring topologies for smallest and largest m values. Note that the k-values have been scaled
by the radius of gyration of each ring. These data were taken from systems with n = 7 but
are in quantitative agreement with other values of n.

5.5 Chain Conformation

As poly[n]catenanes have an overall linear structure, their properties can be conveniently

studied by coarse-graining them into simple linear polymers. Following previous work [222],

each ring is defined as an effective monomer with its position given by the ring center-of-

mass; the conformations of the chains are examined in terms of these effective monomers.

First, structural properties that do not depend on chain length, n, are considered; among

these are the mechanical bond lengths at the chain end, be, and chain center, bc, defined

as the separation distance between ring centers-of-mass at these points in the chain. These

quantities are shown in Table 5.2; since they have essentially no dependence on n (see

Appendix, Figure A.1b), they are calculated from the systems with n = 25 for simplicity. The

bond lengths are somewhat smaller at the chain ends compared to chain centers, consistent

with the previous observation that the rings are smaller at the chain ends (Table 5.1). One
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would expect that these bond lengths scale with m in a manner similar to the ring size (Rg,r

or Rd). Although these apparent scaling exponents, νb, are indeed in the range 0.4 - 0.5

for the chain center bonds (Table 5.2), the exponents actually increase with m, in contrast

to the ring size scaling exponents, which decrease with m (Table 5.1). The reason for this

discrepancy is unclear but may be related to the interplay of the mechanical bonds and

intermolecular interactions mentioned in the previous section; further study is required to

clarify the situation.

Table 5.2: Intrinsic structural properties of poly[n]catenanes: chain center bond length (bc),
apparent scaling of bc with m (νb, calculated by finite difference), chain end bond length
(be), effective bond length (beff), apparent scaling of beff with m (νb,eff, calculated by finite
difference) and normalized effective bond length (beff/bc), persistence length from radius of
gyration (lgp), persistence length from bond vector correlations (lep), estimated entanglement
length (ne, see Section 6 for details and discussion). See main text for additional details.

m bc νb be beff νb,eff beff/bc l
g
p lep ne

15 1.98 - 1.75 3.24 - 1.64 1.48 1.12 43

20 2.23 0.41 2.01 3.52 0.29 1.58 1.38 1.01 45

30 2.69 0.46 2.47 4.02 0.33 1.49 1.23 0.84 45

50 3.46 0.49 3.23 4.79 0.34 1.38 1.07 0.66 42

The effective bond length, beff, measures the polymer stiffness and is defined in terms

of the end-to-end distance as R2
e = (n − 1)b2eff; note that R2

e is the mean-squared distance

between the centers-of-mass of the chain-end macrocycles and will be discussed later. Con-

sistent with the results of Wittmer et al. [230, 231], the quantity R2
e/(n−1) depends linearly

on 1/
√
n, so a simple linear regression can be used to estimate b2eff in the asymptotic limit

(n −→∞); these data and their apparent scaling exponents with m, denoted νb,eff, are shown

in Table 5.2. As expected, the effective bond lengths increase with m, reflecting the larger

size of the elementary macrocycles. Similar to the mean bond lengths discussed above, the

apparent scaling exponents of effective bond lengths increase with m. However, the actual

values of the exponents are considerably smaller: in the range of 0.29-0.34. Essentially, the
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effective bond lengths increase with m more slowly that the true bond lengths. The ratio of

these two values, beff/bc is simply the square root of the characteristic ratio, and therefore

measures the effective stiffness of the polymer; this value (also shown in Table 5.2) decreases

with m, indicating that poly[n]catenanes with larger rings are more flexible, in a relative

sense. This result agrees with our previous work on isolated chains [222]. Finally, the per-

sistence length is calculated in two ways: (i) direct calculation using the polymer radius of

gyration [232] and subsequent normalization by bc , and (ii) by fitting the bond vector orien-

tational correlation function to an exponential decay. The first method includes information

about all beads within the polymer since Rg is calculated using every bead; the second

method only accounts for interactions at the macrocycle center-of-mass level. On account of

this, the numerical values are quite different. In general, these two measures of persistence

length do not agree with each other for “thick” macromolecules [233–235], so the result is

not surprising. Nevertheless, both measures of persistence length follow the same trend as

the normalized effective bond lengths: larger rings lead to more flexible poly[n]catenanes.

The observations above can be explained qualitatively with a simple excluded volume

argument. Because the melt has finite compressibility, segments (i.e. rings) within the same

polymer chain repel each other at short distances due to unscreened excluded volume. In

turn, this excluded volume should be related to the local bead density within the segments.

For poly[n]catenane macrocycles, this bead density decreases with increasing m; this is true

for any molecule that is not completely globular, i.e. R ∼ N1/3. Therefore, poly[n]catenanes

with larger rings experience less intra-chain repulsion between macrocycles, which makes the

chains more flexible compared to those with smaller rings. Of course, the rings will also

exhibit some topological excluded volume [71] which is expected to grow with m [221] but

such effects should be negligible compared to the molecular (bead) excluded volume for the

small rings considered here.

The apparent scaling of poly[n]catenane size with n depends strongly on the particular
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measure: end-to-end distance, Re, or radius of gyration, Rg. The former is calculated as the

distance between the centers-of-mass of the chain-end macrocycles while the latter includes

contributions from all beads in the system. In Appendix A.3, it is shown that the two

quantities may be estimated in terms of the radius of gyration of the rings, Rg,r, and the

effective bond length, beff, by the relations:

R2
e = (n− 1)b2eff ≈ nb2eff (5.5)

R2
g ≈

nb2eff
6

+R2
g,r +

b2eff
6n

(5.6)

Note that quantitative agreement with Eqs. 5.5 and 5.6 is not expected as a variety of

approximations have been employed. Nevertheless, the same qualitative trends should be

apparent in simulation data. For large values of n, Eqs. 5.5 and 5.6 indicate that both Re

and Rg, approach ideal scaling, Re ∼ Rg ∼ n1/2; this result is confirmed in Figure 5.5 for

all poly[n]catenane systems. Furthermore, the distribution of end-to-end vectors becomes

more Gaussian (ideal) for large n as determined by a non-Gaussian parameter similar to

Eq. 5.3 (Figure 5.5 inset). These results demonstrate that poly[n]catenanes are similar to

linear polymers at long length scales. The fact that the ratio R2
e/R

2
g is nearly equal to the

ideal chain value of six at large n further supports this conclusion. However, the apparent

exponents of Re and Rg in the low-n crossover regime approach the ideal limit from different

directions, as shown in Figure 5.6 (calculated by finite difference). The apparent scaling

exponents of Re are much larger than 1/2 at small n and slowly decrease towards the ideal

value while the apparent scaling exponents of Rg are considerably lower than 1/2 at small n,

with values as small as 0.2 observed for the largest ring sizes. The rapid apparent scaling of

Re is typical for linear polymers and is caused by local stiffness of the chain and unscreened

excluded volume effects. On the other hand, the apparent scaling of Rg is quite unusual: such

exceptionally small exponents indicate highly compact conformations which slowly relax to
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ideal coils at large n. This result can be understood in terms of Eq. 5.6, which contains three

terms: an ideal chain contribution (first term), an additive correction that is independent

of n (second term), and a higher order correction that decays quickly with n (third term)

which can be neglected in the present analysis. The second term arises from the detailed

local structure of the polymer, i.e. the macrocycles, and causes reductions in the apparent

scaling with n. In fact, from Eq. 5.6, the apparent scaling exponent can be approximated

as ν ≈ 1/2 − 3R2
g,r/R

2
e (see Appendix A.3), so that corrections to the ideal chain value

are related to the relative size of the macrocycles and the overall polymer. For larger rings

and/or shorter chains, these corrections lead to smaller effective scaling exponents; both of

these trends can be clearly seen in Figure 5.6. At large length scales, the details of the

underlying ring structure become less important and the poly[n]catenanes are dominated by

their overall linear architecture, at which point the ideal scaling exponent of 1/2 is recovered.
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Figure 5.5: Mean-squared end-to-end distance and radius of gyration for poly[n]catenanes
as a function of the number of rings per chain. Inset: non-Gaussian parameter for the
distribution of end-to-end distances.

The m-dependence of Re and Rg can also be understood in terms of Eqs. 5.5 and 5.6.
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Figure 5.6: n-dependent apparent scaling exponents, ν, for end-to-end distance, Re, and
radius of gyration, Rg, of poly[n]catenanes calculated by finite difference. The dashed black
line indicates the ideal (Gaussian) limit.

In particular, Eq. 5.5 indicates that Re should depend on m only through the effective

bond length, beff (neglecting chain end effects). The behavior in Eq. 5.6 is richer, as two

m-dependent quantities are found: the effective bond length, beff, and the ring radius of

gyration, Rg,r. As a result, no power-law behavior is expected except when the second

and third terms of Eq. 5.6 can be ignored (i.e. for large n) or when both beff and Rg,r

have the same power-law dependence on m. However, the latter scenario is not observed

in the simulation data as discussed above (cf. Tables 5.1 and 5.2): even for chain centers,

Rg,r increases considerably faster with m than does beff. As a result, the apparent scaling

exponents of Rg with m systematically decrease with n from the free ring polymer values

(roughly 1/2, see Table 5.1) at small n to the effective bond length values (roughly 1/3,

see Table 5.2) at large n. In light of these observations, it is only useful to consider scaling

behavior in the asymptotic limit of large n, where only the first term in Eq. 5.6 is important.

In this scenario, Re and Rg will have the same m-dependence which, as mentioned above,

enters through beff; this dependence was discussed above near the beginning of this section.

To restate the main points, beff (and therefore Re and Rg) grows very slowly with m owing to

a reduction in effective chain stiffness. However, the rings studied here are not large enough
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to reach any asymptotic limit.

The shape of poly[n]catenanes can be characterized in more detail by the ratios of the

gyration tensor eigenvalues, shown in Figure 5.7. For n = 2, these ratios are smallest,

indicating a more spherical shape. At larger n, the ratios increase to values comparable to

those of ordinary linear polymers (λ2/λ1 ≈ 2.6, λ3/λ1 ≈ 10.7) [23], suggesting a transition

from globular to ideal coil conformations. Note that for linear polymers, the eigenvalue ratios

are larger for smaller N on account of local chain stiffness. In a similar manner, the ratios

for n = 1 (i.e. ring polymers) are greater than those for n = 2.
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Figure 5.7: Ratio between average gyration tensor eigenvalues for poly[n]catenanes. The
values for large n are close to the limiting values for linear polymers. However, the ratios
for linear polymers approach this limit from above, rather than below.

Even at the largest values of n, poly[n]catenanes appear highly globular in the melt

compared to dilute solution. A visualization of the molecule in the two contrasting conditions

is shown in Figure 5.8. In good solvent conditions, the rings are expanded, along with chain

as a whole. However, once intermolecular effects are introduced in the melt, the polymer-

polymer interactions compress the macromolecules drastically, transforming them into dense

globule-like structures with just a few small protruding segments. These configurations are

somewhat similar to those found in ring polymer melts, which is indeed expected since the

lack of (covalent) chain ends in both systems requires that any interpenetrating segments
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must be loops [57, 59, 63]. Similar conformations involving segregated territories are also

observed in cellular chromatin and imply considerable density inhomogeneities within single

chains [229, 236]. When the polymer is examined in terms of the ring centers-of-mass, the

details of the globular structure are lost and the resulting linear polymer appears quite

ordinary. Because of these observations, complex features are expected in the single-chain

structure factor.

Figure 5.8: Visualizations of poly[n]catenanes with n = 25 and m = 50 in a) good solvent
conditions, and b) the melt state. Alternating rings are colored differently for visual clarity.
Also shown in b) are the ring centers-of-mass of the configuration (green) with the mechanical
bonds represented by connections between the beads. The structure in the melt state shows
several segregated territories, similar to those seen in non-concatenated ring polymers and
cellular chromatin.

The single chain structure factor is calculated according to Eq. 5.4, except all pairs of

beads on the same catenane (or linear chain) are included in the sum, and the average is

taken over all chains in the system. For traditional linear polymers, the structure factors

exhibit a large intermediate region where S(k) ∼ k−2 since polymers are statistically fractal

objects, specifically ideal random walks in the melt [87, 159]. At larger k, the structure

factor oscillates because of local connectivity constraints at the bead level [44]. Meanwhile,

for ring polymers, an additional region of S(k) ∼ k−3 has been observed at low-k for high-

MW melts corresponding to a collapsed globule structure at large length scales [59, 237].
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For poly[n]catenanes, several distinct regions are observed, although they are narrow in

wavevector range and therefore not well-developed, as shown in Figure 5.9. At low-k, the

polymers exhibit a Guinier regime, as expected. At higher-k, a regime of ideal statistics with

S(k) ∼ k−2 is expected for large n since the polymers are linear-like at large length scales, as

previously discussed. However, no such regime is easily distinguished in the structure factor.

To more closely examine the behavior, it is helpful to study the differential apparent fractal

dimension, defined as:

df = −d logS(k)

d log k
(5.7)

These functions are shown in Figure 5.10 for various systems. In the low-k range (∼ 0.1 -

0.5), the fractal dimensions exhibit a small shoulder in the neighborhood of df = 2, which

slowly grows towards a quasi-plateau as n is increased. Its value is consistent with Gaussian

chain statistics, and the smallness of the regime suggests that the largest poly[n]catenanes

are only just beginning to display ideal chain behavior.
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Figure 5.9: Single-chain structure factor for poly[n]catenanes of various n and a) m = 15, or
b)m = 50. The dashed black curves show the single-ring structure factor for poly[n]catenane
chain centers (cf. Figure 5.4a). The legend in b) applies to both graphs.

Next a small apparent regime of S(k) ∼ k−4 is observed at intermediate k-values. This

Porod-like behavior is typically associated with scattering from interfaces and other systems

with density inhomogeneities. As we have pointed out above, poly[n]catenanes form segre-
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Figure 5.10: Differential fractal dimension for poly[n]catenanes of various n and a) m = 15,
or b) m = 50. At low k-values (0.1− 0.5), a small plateau develops in the neighborhood of
df = 2, suggesting a slow approach towards ideal chain statistics.

gated territories in the melt (Figure 5.8b) and the scattering from these regions (and their

boundaries) may explain this regime. This will be discussed further below.

At even higher k-values a third regime is observed with a power-law slope that depends on

m, with smaller rings showing “flatter” curves in this region. This feature appears as a small

shoulder in the differential fractal dimension, with the value of df depending strongly on m.

For m = 15, this “shoulder” is actually a small peak. These features are strikingly similar to

the signatures of the mechanical bond in the single-ring structure factor discussed in Section

4. In fact, both these features appear at the same k-values (see Figure 5.9), suggesting that

they are the same phenomenon manifested in two different scattering functions. After this

regime, the structure factor is dominated by local bead connectivity constraints.

To separate out the chain and ring structural contributions, the single polymer total

intramolecular structure factor is computed at the coarse-grained level, considering only the

macrocycle centers-of-mass as the scattering bodies. This function is compared to the full

chain structure factor in Figure 5.11. At the coarsened resolution, the polymers are nearly

ideal, and the structure factors agree quantitatively with the full structure factor at large

length scales (low-k). However, most of the features in the higher-k regions are absent,
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indicating that all of these more unusual phenomena are intimately related to the underling

structure of the rings. At high-k, the structure factor does oscillate very slightly (owing to

the macrocycle connectivity), but this effect is very small and decays quickly.
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Figure 5.11: Single chain structure factor for poly[n]catenanes of various m at the coarse
level compared with the fully detailed level.

Although the high-k regime can be easily interpreted as single-ring structure, the inter-

mediate S(k) ∼ k−4 regime is quite unusual. Such scaling exponents are more typical of

phase-separated systems in which the interface contributes strongly to the scattering [238–

240]. However, the poly[n]catenanes considered here are neutral homopolymers, so there

can be no phase separation in the ordinary sense. Nevertheless, such scaling implies density

inhomogeneities along the chain, which are clearly visible in Figure 5.8b in the form of ring

segments protruding from a globular-like core. To quantity these inhomogeneities, the av-

erage single-chain bead density is calculated as a function of the contour position using the

following procedure. The ring center-of-mass positions of a given polymer are interpolated

by a cubic spline function and twenty equidistant points are placed between each center-of-

mass. The local density of a single chain at a given point is then determined by the number

of beads (in the same catenane) within a given distance of the point. Because each polymer

is considered individually and only the single-chain densities are calculated, the resulting
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values may differ from the overall system density. To resolve differences in density at the

appropriate length scales, the cutoff distance is taken to be one-half the radius-of-gyration

of the chain-center macrocycles (Rg,r); other choices are also possible but give qualitatively

similar results so long as the cutoff is not too large. These data are averaged over all polymers

in the melt and multiple configurations for improved statistics. The resulting density pro-

files (denoted ρc) are shown as a function of contour position (denoted s) in Figure 5.12 for

poly[n]catenanes with n = 10 and various m. For all m, these profiles show small but clear

oscillations with a period of one mechanical bond in the chain contour space, indicating a

“beads-on-a-string” structure. Interestingly, the maxima of the density occur at half-integer

values of s, indicating that the highest densities are found at the “linked portion” of the

macrocycles [54]. For the smallest rings, there is a smaller maximum found at whole integer

values of s, which is likely caused by the threading segments being forced close to the ring

center-of-mass by the small ring size; for larger m, this feature disappears. Different values

of n yield quantitatively similar results. The length scale of the density oscillations in real

space will be dominated by the separation of nearest-neighbor high-density regions. Since

this separation is one mechanical bond in chain contour space, the separation in real space

should be related to the mechanical bond length, bc, and should therefore vary with m.

If these oscillations cause the k−4 scaling in the structure factor, then the length scale of

interest is determined by the position of the maximum in the differential fractal dimension:

d = 2π/kmax. As expected, these length scales do in fact increase with m, and although they

are considerably larger than the bond lengths, bc, the ratio d/bc ≈ 2.28 is fairly constant for

all ring sizes. These observations suggest that the unusually fast decay in the single-chain

structure factor is related to the density variations associated with the linked portions of

the macrocycles. Nevertheless, the quantitative differences in bond length and Porod-like

length scales demand further study to better understand the territorial segregation observed

in these polymers. In particular, it is not clear why the length scale d is so large - even larger
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than beff - so it is possible that there are multiple length scales associated with the density

fluctuations in the polymers.

Figure 5.12: Single-chain density as a function of chain contour position for poly[n]catenanes
of n = 10 and various m and companion illustration. See main text for details of the
calculation. The maxima occur at approximately half-integer values of s, which correspond
to the linked portions of the rings (red shaded areas), while the minima correspond to the
chain centers (green shaded areas). For m = 15, the smaller maxima are caused by the close
interaction of linked segments of next-nearest neighbor rings.

5.6 Intermolecular Structure

In the melt, high-MW linear and ring polymers interact strongly with neighboring chains,

and these interactions can greatly affect both structure and dynamics. In particular, the

inter-polymer packing correlations are a functional of polymer conformation via the intra-

molecular structure factor examined in the previous section and the two functions are self-

consistently coupled. Given the unusual intra-molecular correlations studied earlier, it is

expected that inter-molecular structure may also show signatures of the complex poly[n]cat-

enane architecture. A key quantity is the intermolecular site-site correlation function, g(r).

Results are shown in Figure 5.13 for catenanes of n = 25 and various ring sizes. Like linear

polymers, a pronounced correlation hole effect [159] is observed which is nearly independent

of ring size. For large n, the correlated part of g(r) (defined as h(r) = g(r)− 1)) exhibits an
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exponential decay beyond very local length scales (Figure 5.13 inset), with a decay length of

order the chain Rg. This feature is qualitatively the same as for melts of random coil chains,

however the form of the correlation is for those systems is Yukawa, h(r) ∼ (1/r) exp (−r/Rg).

For a fixed value of m, the depth/width of the correlation hole increases with n as expected,

as shown in Figure 5.14. However, when normalized by Rg, the width of the correlation

hole actually decreases with n (Figure 5.14b inset), indicating that larger poly[n]catenanes

exclude each other less strongly, similar to linear polymers (Figure 5.14a).
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Figure 5.13: Intermolecular bead-bead correlation function for poly[n]catenanes of various
m. Normalizing the distances by the polymer Rg results in collapse to a master curve for a
given n. Inset: the logarithm of the non-random part of the correlation function. The linear
dependence indicates exponential decay.

The dynamics of a tagged polymer in a dense liquid are often intimately related to the

number of neighboring polymers it interacts with; this is true for linear chains, and ring

polymers [59], and is likely important for other complex architectures. Here, the number of

neighbors, np, is calculated using both a direct and indirect method, which reveal different

aspects of the interpenetrating melt structure. In the direct method, the intermolecular pair

correlation function of the poly[n]catenane centers-of-mass is calculated and then integrated

to a separation of Rg [59]. In the indirect method, the intermolecular site-site correlation

function, g(r), is integrated to Rg and then divided by N [237]. The direct method focuses
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Figure 5.14: Intermolecular bead-bead correlation function for a) linear polymers of vari-
able N , and b) poly[n]catenanes of m = 30 and variable n. The depth and width of the
correlation hole effect increases with n and N , although the size of the effect is much larger
for poly[n]catenanes. Inset: the same data with distance normalized by polymer Rg. For
clarity, only the data beyond the third solvation shell is displayed in the inset of a). The two
systems are qualitatively similar, suggesting that poly[n]catenanes are comparable to linear
polymers at long length scales.

on a coordination number at a coarse grained center-of-mass level in the spirit of polymers as

soft particles, while the indirect method is the more local bead level analog. The results are

shown in Figure 5.15. For linear polymers, the two methods give similar numerical values

(Figure 5.15a) which scale nearly ideally with degree of polymerization, np ∼ N1/2. On the

other hand, unlinked ring polymers have far fewer neighbors than linear chains and the two

methods disagree significantly, with the direct method giving values more than an order of

magnitude smaller than the indirect one for small N . The small values of the direct method

indicate that ring centers-of-mass cannot easily approach each other, while the larger values

based on the indirect method reflect bead-bead contacts in the surface region of two partially

overlapping macromolecules. This interpretation is supported by previous simulation results

[59, 237]. For poly[n]catenanes (Figure 5.15b), the indirect method yields np ∼ n1/2, as

expected for ideal polymers. The quantitative values increase with increasing m, suggesting

that larger rings allow for more interpenetration and more neighbors. However, for small

n, the direct method gives values that are several orders of magnitude smaller, indicating
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that poly[n]catenane centers-of-mass cannot easily approach each other. The values do

increase for larger m, but are still far smaller than those of the indirect method. These

results are qualitatively similar to those of unlinked ring polymers, indicating that short

poly[n]catenanes primarily interact with their neighbors at the surface of the polymers and

interpenetrate each other only weakly, consistent with the globular conformations at small

n. At larger values of n, the results of the two methods approach each other, indicating a

transition to more ideal chain behavior. For the KG model considered here, the entanglement

length for linear chains is approximately Ne ≈ 85 [47], at which point np ≈ 4; this value

is considerably larger than that of the longest poly[n]catenanes studied here, which have

np < 2. As a result, it is unlikely that poly[n]catenanes of this length will be able to

entangle in a meaningful way. Of course, the specific values reported in Figure 5.15 could

be altered by adjusting the integration cut off for the two methods, but the same general

trends are observed.
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Figure 5.15: Average number of neighboring chains as calculated by the direct and indi-
rect methods (see main text) for a) linear and ring polymers as a function of N , and b)
poly[n]catenanes of various m as a function of n. Note that the scale bars for the two graphs
are different – the poly[n]catenane values vary over a much larger range and are generally
smaller than those of linear polymers.

The density profiles of individual rings as a function of their distance from the overall

polymer center of mass, also known as the self-density, also provides information on polymer
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structure and interpenetration. The results for the smallest and largest poly[n]catenanes

are shown in Figure 5.16 along with data for linear and ring polymers for comparison. For

poly[n]catenanes with small rings, the profile shows distinct peaks/humps, which likely arise

because of conformational restrictions imposed by the fluid structure, i.e. the molecules are

small enough that the solvation shells still influence the structure significantly; these features

disappear as the molecular weights (and therefore polymer sizes) increase. For all ring sizes,

as n increases, the density profiles become broader and the density at r = 0 decreases,

indicating improved chain interpenetration. In general, the self-densities near r = 0 tend

to be larger for poly[n]catenanes and ring polymers compared to linear chains. For ideal

linear polymers, the self-density in this limit scales as N−1/2 , per the correlation hole effect.

Figure 5.17a shows these data as a function of N for linear and ring polymers. The linear

polymers obey ideal scaling while the self-density of ring polymers is nearly independent of

N , in agreement with previous simulations [59]. The same data for poly[n]catenanes are

displayed in Figure 5.17b, which shows two distinct regimes. At small n, the self-density

at the origin is nearly constant and quite large (note the total density is 0.85), similar to

the behavior of ring polymers. In this region, the polymers strongly exclude their neighbors

due to their globular shape and interpenetration is limited. As n increases, the self-density

then begins to decay according to the ideal scaling law ∼ n1/2, similar to linear polymers.

The two regimes are quite sharply separated at n = 10, suggesting that there is a critical

threshold above which poly[n]catenanes cross over from a globule-like conformation to an

ideal chain conformation, although no such sharp transition is observed in the single-chain

conformational properties (Section 5).

Finally, we consider the question of interchain entanglement of the polymers, which has

important implications for the dynamics of these systems. For linear polymers, entangle-

ments may be defined, identified, and quantified in many ways [45–54]. However, these

methods cannot be directly applied to poly[n]catenanes since these polymers do not have
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Figure 5.16: Single-chain bead density profiles as a function of distance from polymer center
of mass for poly[n]catenanes with various m and n = 2 − 25 (left), compared with profiles
for linear polymers of N = 15− 175 and ring polymers of N = 15− 50 (right). The arrows
indicate increasing molecular weight (n or N).
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Figure 5.17: The single chain bead density at the polymer center of mass (also known as the
self-density) for a) linear and ring polymers as a function of N and b) poly[n]catenanes of
various m as a function of n. The dashed lines indicate the ideal linear polymer scaling laws.
The error bars for the linear and ring polymer data are approximately the size of the data
points and are therefore omitted for clarity. The wayward data point at n = 2 for m = 15
in b) is caused by local bead packing effects.

continuous (covalent) contours. Furthermore, any attempt to generate an equivalent linear

polymer from a poly[n]catenane would necessarily lose information concerning local ring

conformations. To keep the analysis simple, an estimate for the number of rings between
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entanglements, ne, is calculated using the overlap parameter:

O =
ρR3

e

N
=
ρ(nb2eff)3/2

nm
=
ρn1/2b3eff

m
(5.8)

Linear polymers typically become entangled when O ≈ 10 − 20; for instance, the linear

polymers systems studied here have Ne ≈ 85, which corresponds to O ≈ 18. Therefore,

ne is estimated conservatively by setting O = 10 in Eq. 5.8 and solving for n. Of course,

this analysis is highly simplified, as Eq. 5.8 is empirical and generally not applicable for

cyclic or topologically complex polymers. Nevertheless, it provides a useful starting point

for studying the entanglement properties of these polymers as their overall architecture is

linear at long length scales and inter-chain entanglement is fundamentally a large-length

scale phenomenon. The results of the calculation are shown in Table 5.2. The values are

all roughly ne ≈ 45, independent of m, and much larger than the longest chains studied

(n = 25). The large estimates of ne agree well with the earlier observation that these

polymers and their rings do not interpenetrate each other strongly. The lack of dependence

on m is somewhat unexpected since an idealized poly[n]catenane would have an effective

bond length proportional to ring size beff ∼ m1/2 and therefore ne ∼ m−1 by Eq. 5.8.

However, as discussed previously, the effective bond lengths grow slowly with m, leading to

greater relative flexibility and therefore modifying the scaling of ne with ring size. Based on

these results, interchain entanglement should not affect the dynamics of the poly[n]catenanes

studied here, which will be discussed in the next chapter.

5.7 Conclusions

In this chapter, the static properties of poly[n]catenane melts have been systematically stud-

ied by molecular dynamics simulations and the key features that distinguish these unusual

polymers from their linear (and cyclic) counterparts identified. The mechanical bonds signif-
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icantly perturb the thermodynamics of the system, with large deviations in pressure observed

as a consequence of the topological attraction between linked rings. These same mechanical

bonds alter the conformations of the rings within catenanes and lead to nontrivial scaling

with ring size. The polymers possess complicated intramolecular scattering functions which

exhibit many more features than linear polymers, including unusual scaling relationships

which can be attributed to density inhomogeneities along the poly[n]catenane chain con-

tour arising from the mechanical bonds and intermolecular topological effects. For relatively

small degrees of polymerization, the poly[n]catenanes are highly globular and interact with

their neighbors only at the surface of the polymer. As the number of rings is increased, the

conformations of poly[n]catenanes begin to resemble those of ideal chains with the number

of neighboring chains following the expected scaling.

For the current synthetically-accessible chain lengths studied here (n < 25), there is no

indication that inter-chain entanglement plays a significant role. In fact, the large ne values

of poly[n]catenanes may explain some of the properties observed experimentally [19]. In par-

ticular, these polymers form powders, while chemically similar linear polymers of comparable

molecular weight can be processed into stable films. This difference may be caused by the

intermolecular interactions: these molecules contain many rigid aromatic groups (necessary

for the metal-templating synthesis), which can result in pervasive π−π stacking interactions

between the polymers. Such interactions are probably somewhat inhibited by the interlock-

ing structure, reducing the cohesive energy density. However, based on the results presented

here, interchain entanglement is likely also a factor. Since linear polymers entangle at much

lower molecular weights than poly[n]catenanes, the stable films obtained experimentally from

linear polymers of similar chemistries are likely entangled, improving stability below the glass

transition temperature. Experimental linear poly[n]catenanes prepared to date have average

degrees of polymerization (n) of 10-15, far too small to entangle according to our simulations,

which suggest that at least an n of 45 is required in order to access poly[n]catenane materi-
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als suitable for rheological testing. Note, however, that the model poly[n]catenanes studied

here are composed of fully flexible segments with no complex chemical motifs present, so the

results here may not be immediately applicable to synthetically-realizable systems. More

generally, the results presented here suggest that macrocycle size is a key design parameter

for poly[n]catenane systems. The ring size not only influences the polymer contour length,

but also alters its flexibility and may enhance or inhibit interchain entanglement at large n.

More interestingly, catenanes are typically stimuli-responsive moieties, with dynamical mo-

tions that may be switched on or off by the appropriate stimulus [14], and poly[n]catenanes

are no exception [19]. The ring size will control the length scale associated with such switch-

ing behavior and how its effects are propagated along the chain.
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CHAPTER 6

DYNAMICS OF POLY[N ]CATENANE MELTS

6.1 Introduction

As discussed in the Introduction, the dynamics of mechanically interlocking polymers such

as poly[n]catenanes have been only sparingly studied. In Chapter 3 [222], we sought to

address this gap using molecular simulations of isolated poly[n]catenanes, quantifying and

analyzing the dynamics in terms of the Rouse modes [169]. It was found that at length scales

comparable to the size of the mechanical bond, the dynamics are significantly slowed and

the distributions of relaxation times are broadened; these same effects have been observed

in entangled linear polymers but at long length scales [170], suggesting an analogy with

respect to kinetic/topological constraints. Although intriguing, this initial investigation was

conducted on isolated molecules with no solvent effects or intermolecular interactions. Just

as the dynamics of linear polymers are much different in the melt compared to dilute solution,

poly[n]catenane dynamics are also expected to be significantly influenced by the presence of

neighboring molecules in the melt.

In this chapter, we expand our study of poly[n]catenane dynamics into the melt state.

To begin, a minimal Rouse-like model of poly[n]catenane dynamics is presented along with

the key insights found from its analytical solution; this simple model defines “ideal” poly[n]-

catenane dynamics to which simulation results can be compared. The diffusive properties

of poly[n]catenanes and their segments/monomers are examined along with the relaxation

times of both the constituent rings and the overall chain at various length scales; linear and

ring polymer melts are also examined for comparison. While the simplified Rouse model

does produce some qualitative agreement with simulation results, there are a number of

important failures, which can most likely be attributed to topological and/or intermolecular

effects. These effects also become important in the stress relaxation behavior, which shows
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unusual trends as the ring size changes. Directions for future research and implications for

materials synthesis and design are offered in the concluding remarks. The systems studied

are exactly those of Chapter 5; simulation details can be found in Sections 5.2 and A.2.

6.2 Double-Rouse Model for Poly[n]catenanes

In search for an “ideal” model for poly[n]catenane melts, the Rouse model [169] serves as a

natural starting point. Any such model makes several simplifications: (i) the conformational

statistics of the molecules are assumed to be ideal/Gaussian, (ii) it is assumed that the

intermolecular forces on different beads on the same polymer are spatially uncorrelated,

which corresponds to the elementary friction constant being the same on all length scales or

for all Rouse modes, (iii) there is no viscoelastic memory associated with intermolecular forces

corresponding to delta-function in time correlations of intermolecular forces and white noise

fluctuating forces, (iv) the motion of the polymer CM is independent of the internal polymer

relaxations, (v) excluded volume and topological contributions are absent along with all non-

bonded contributions to the stress, (vi) the motions of different chains within the melt are

independent, so the single-chain results can be directly translated to the melt by summing

up the contributions of each polymer independently. Despite these simplifications, the Rouse

model succeeds fairly well in describing the dynamics of unentangled linear and ring polymer

melts [13, 174], and therefore remains a common lens through which polymer systems are

examined. Additionally, the model can be easily extended to arbitrary polymer architectures,

making it a useful starting point for studying poly[n]catenane dynamics, especially since the

polymers simulated here are not long enough to exhibit interchain entanglement [224] and

therefore should not obey reptation-type dynamics. Mathematical details of the Rouse model

for general polymer architectures are reviewed in Appendix A.4 and were also discussed at

a high level in Section 3.3.

A Rouse-like model for poly[n]catenanes must consider two levels of polymer structure:
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the cyclic structure of the macrocycles and the linear structure of the overall chain. To do so,

each macrocycle is modeled as a Rouse ring polymer ofm beads [174, 217, 241]. To introduce

mechanical bonds in as simple a manner as possible, the centers-of-mass of n such rings are

connected in series by additional harmonic bonds of mean-squared length b2, maintaining

an overall linear architecture. Conceptually, the model couples two different versions of the

Rouse theory and is therefore termed the “double-Rouse” model; the model is illustrated

schematically in Figure 6.1 along with a visualization of a poly[n]catenane from a simulation

trajectory. The three parameters n, m, and b2 control dynamics; other parameters such

as temperature and friction constant only shift the time scale of the dynamics in a Rouse

mode-independent manner. In reality, the parameters m and b2 are not truly independent,

since the mechanical bond length will depend on the ring size; intuitively, the bond length

should be on the order of the macrocycle dimensions and therefore scales with m in a manner

similar to the radius of gyration of the ring: b ∼ Rg,r ∼ mν , where ν is the scaling exponent

of the ring. The real situation is more subtle [224], but this approximation will suffice for

determining scaling relationships in poly[n]catenane systems.

Figure 6.1: Visualization of a poly[n]catenane with n = 7 rings of m = 50 beads each and
a cartoon illustration of the double-Rouse model (n ≥ 3, m = 7). Alternating macrocycles
are colored differently to more easily observe the interlocking structure.

The double-Rouse model is formulated in more detail and solved exactly in the Sec-
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tion A.5. However, the qualitative features of the model may be understood intuitively: the

solution is a direct superposition of the ring and linear Rouse models. More specifically,

there are two distinct sets of normal modes: ring-like and linear-like. The ring-like modes,

denoted Xq, are identical in form to those of ordinary ring polymers and an independent

set of these modes exists for each of the n macrocycles. The linear-like modes, denoted Xp,

are identical to the normal modes for traditional linear polymers, but with the macrocycle

centers-of-mass taken as “effective” monomers. For the systems simulated here, both sets of

modes are orthogonal to a good approximation (see Section A.6). Throughout the remainder

of the chapter, ring-like modes and dynamical quantities will appear with a subscript q, while

linear-like ones will appear with a subscript p. This same decomposition into “ring-like” and

“chain-like” modes was introduced in an ad hoc manner in Chapter 3. As a result of this

superposition, the double-Rouse model predicts that the melt dynamics will be separable

into ring-like and chain-like contributions. Furthermore, the diffusion coefficient is expected

to scale as D ∼ 1/(nm), i.e. inversely proportional to the total number of beads. How-

ever, this model neglects the complex topological character of the mechanical bonds and

these complexities affect both structure and dynamics at intermediate length/time scales,as

demonstrated in Chapters 3 and 5, so significant deviations from the double-Rouse model

are expected in the simulation data in these regimes. Indeed, physical insight can be gained

by examining the manner in which the simulated dynamics differ from the predicted ones in

poly[n]catenane systems.

6.3 Monomer and Polymer Motion

The dynamics of polymer melts can be quantified by the mean-squared displacements (MSDs)

of monomers and polymer centers-of-mass (CM). For linear [23, 44] and ring [61, 64, 76, 176]
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polymers, three distinct measures are typically used:

g1(t) =
〈

[Ri(t)−Ri(0)]2
〉

(6.1)

g2(t) =
〈

[(Ri(t)−Rcm(t))− (Ri(0)−Rcm(0))]2
〉

(6.2)

g3(t) =
〈

[Rcm(t)−Rcm(0)]2
〉

(6.3)

where Ri is the position of monomer i in the polymer, Rcm is the position of the polymer

CM, and the angled brackets indicate an average over all initial conditions (i.e. an ensemble

average). For linear polymers (and poly[n]catenanes), the average is also evaluated over all

chains in the system and over a small number of beads near the chain center to improve

statistics and reduce chain end effects. For ring polymers, the average may be taken over all

beads in the system as there are no chain ends and all beads are physically equivalent. These

three quantities represent the MSD of the monomers (Eq. 6.1), the polymer CM (Eq. 6.3),

and the monomers relative to the polymer CM (Eq. 6.2). In all cases, the displacement of

the system CM is subtracted out.

In general, the polymer CM can undergo sub-diffusion in many macromolecular systems,

depending on architecture and molecular weight. For unentangled linear melts, the Rouse

model predicts ordinary diffusive behavior g3(t) ∼ t1 at all time scales with a diffusion

coefficient, D, that is inversely proportional to N , as mentioned in the previous section.

However, the correlation hole effect [159] leads to an early-time regime of g3(t) ∼ t0.75−0.8

before ordinary diffusive motion sets in [242–245]. For entangled linear chains, stronger

sub-diffusion is observed, with a scaling of g3(t) ∼ t1/2 at intermediate timescales before

Fickian diffusion is recovered at long times [13, 25]. In this case, the long-time diffusion

constant scales as D ∼ N−2.3 [246]. High-MW ring polymer melts appear to exhibit similar

correlation hole effects [61, 64, 77, 247, 248] and scaling of the diffusion constant [61, 62, 64,

249, 250], but limited data are available due to the computational cost of simulating such
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systems, so the situation is not yet entirely clear.

The center-of-mass diffusion of poly[n]catenanes resembles closely that of unentangled

linear polymers. Figure 6.2a shows the quantity n × g3(t) for poly[n]catenanes of m = 30

and various n. At long times, these curves should converge if Rouse-like dynamics are obeyed,

which is indeed the case, with only small differences associated with different chain lengths.

At short to intermediate time scales, there is a regime of g3(t) ∼ t0.7−0.8, observed for all

catenanes, which agrees well with the correlation hole effect discussed above. In the previous

chapter on static properties, it was found that poly[n]catenanes are highly globular polymers

at small n and strongly repel their neighbors [224], so significant correlation hole effects are

indeed expected in the dynamics. For all systems (linear, ring, and poly[n]catenanes), free

diffusion (g3(t) ∼ t1) sets in at displacements considerably smaller than the polymer size:

g3(t) ≈ R2
g/2.
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Figure 6.2: a) The center-of-mass mean-squared displacement, g3(t), multiplied by the num-
ber of rings, n, for poly[n]catenanes of m = 30 as a function of time, t. Terms in brackets are
the units of measurement. b) Diffusion constants, D, multiplied by total molecular weight,
N , for ring polymers (circles), linear polymers (triangles) and poly[n]catenanes (squares) of
various m as a function of total molecular weight scaled by estimated entanglement molec-
ular weight, Ne (≈ 45m for poly[n]catenanes, ≈ 85 for linear and ring polymers [47]). 95%
confidence intervals are at most twice the size of the data points.

Interestingly, at intermediate times, the curves in Figure 6.2a cross over one another,

with larger polymers showing larger values of ng3(t) at short times, but smaller ones at long
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times. Halverson et al.[64] observed this same feature in ring polymer melts, and described

it as a distinctive feature of those systems. However, the linear polymer melts studied here

also exhibit this phenomenon (data not shown), albeit at significantly shorter times than

in the ring and catenane systems. Since Halverson et al. only studied diffusive motion on

timescales longer than 103τ , it is possible that this crossover simply occurred at an earlier

time. Based on the data gathered here, it seems that this crossover may be found in many

polymer systems, although the associated timescale appears to be architecture specific.

The long-time diffusion constants, scaled by molecular weight, N × D, are shown in

Figure 6.2b for all systems studied, including ring and linear polymers. To compare the data

on equal footing, the total molecular weight is normalized by the estimated entanglement

molecular weight. For ring/linear polymers, the literature value Ne = 85 is used [47]. For

poly[n]catenanes, it is assumed that all entanglement occurs at the interchain level, so that

Ne = m×ne and the estimates for ne are taken from the prior work on their static properties

(see previous chapter), which found that ne ≈ 45 for all m [224]. While the quantity

ND is relatively constant for ring polymers (for the range of ring sizes considered here),

it has a clear dependence on N/Ne for poly[n]catenanes and linear polymers, with larger

polymers exhibiting relatively slower diffusion, i.e. larger center-of-mass friction. These

changes in friction represent deviations from the double-Rouse model, and since all linear

and poly[n]catenane data collapse onto a single curve, it seems likely that these effects have

the same physical origin in both systems: interchain interactions. Although these deviations

are quite large for the longest linear chains studied, for which N > 2Ne, the poly[n]catenane

systems are clearly far less affected by entanglements, with ND decreasing by only about

∼ 30% at most, and N < 0.6Ne. This conclusion was also demonstrated by an analysis of

the chain overlap parameter in the prior work on structural properties [224].

The MSDs of individual monomers describe the internal dynamics of polymers at short

time and length scales. For instance, the monomer displacement, g1(t), exhibits sub-diffusive
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behavior at intermediate timescales for both linear and ring polymers with the Rouse model

predicting g1(t) ∼ t1/2 at times between the segmental and terminal relaxation times for

unentangled systems. The reptation model predicts multiple sub-diffusive regimes for entan-

gled linear polymers, most notably g1(t) ∼ t1/4 at time scales beyond the entanglement time,

prior to which Rouse-like dynamics are observed [25]. A similar scaling regime has also been

observed in high-MW ring polymer melts [64, 249]. For both linear and ring systems, g2(t)

typically follows the same scaling as g1 at short times, although for entangled linear chains

it disagrees at longer time scales [23, 25]. However, for all systems, g2(t) eventually becomes

constant at a value proportional to the mean squared radius of gyration of the polymer.

Since poly[n]catenanes have a complex internal structure, additional measures of mon-

omer motion beyond Eqs. 6.1 and 6.2 are needed to study the dynamics fully and more

appropriately compare the results with linear/ring polymer systems. The following quantities

are defined for this purpose:

g4(t) =
〈

[(Ri(t)−Rr
cm(t))− (Ri(0)−Rr

cm(0))]2
〉

(6.4)

g5(t) =
〈

[Rr
cm(t)−Rr

cm(0)]2
〉

(6.5)

g6(t) =
〈

[(Rr
cm(t)−Rcm(t))− (Rr

cm(0)−Rcm(0))]2
〉

(6.6)

where Rr
cm is the CM of the individual macrocycle which contains monomer i, the average

is taken over the central rings in all polymers in the system, and the system center-of-

mass motion is subtracted out, as above. These new quantities represent, respectively, the

monomer MSD relative to ring CM, the MSD of the ring CM itself, and the MSD of the

ring CM relative to polymer CM. The first quantity measures the internal dynamics of the

macrocycles while the other two measure large-scale chain-like motion of the polymer. g4(t),

g5(t), and g6(t) have no direct counterparts for linear/ring polymers, but it is expected that

g4(t) will be qualitatively similar to the g2(t) of low-MW ring polymers, and g5(t) and g6(t)
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will be similar to the g1(t) and g2(t), respectively, of unentangled linear chains.

To begin, two representative systems are considered: a linear polymer of N = 80 ≈ Ne,

and a large poly[n]catenane with n = 25 and m = 30, shown in Figures 6.3a and 6.3b,

respectively. First, consider the time at which g2(t) and g3(t) cross, i.e. when the monomers

are effectively moving in concert with the polymer CM; this point can be used to define

the transition to free diffusion. For both linear and poly[n]catenane systems, this crossover

occurs at displacements comparable to the polymer size, g3(t) ≈ 0.9R2
g, in agreement with

previous work [64]. For poly[n]catenanes, the ring CM displacements relative to polymer CM,

g6(t), also crosses g3(t) at approximately the same position. This result is fully consistent

with the observation that poly[n]catenanes and linear polymers have similar structure at

large length scales and should therefore exhibit qualitatively similar dynamics [21, 222, 224].
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Figure 6.3: Measures of monomer and polymer mean-squared displacements, gx(t), for 1 ≤
x ≤ 6, as defined by Eqs. 6.1-6.6 for (a) linear polymers of N = 80, and (b) poly[n]catenanes
of n = 25, and m = 30. Note that the legend in part (a) also applies to part (b).

Next, consider g1(t) and g2(t) (red and blue curves in Figure 6.3, respectively) at short

times. For both architectures, these displacements obey Rouse scaling at short times, but

at longer times ∼ 103τ , the curves appear to “turn over” and increase more slowly before

reaching the terminal diffusive/constant regimes (most easily seen in g2(t)). This behavior

is expected for the linear polymer system owing to interchain entanglements but is unusual
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for the poly[n]catenanes. Indeed, the previous results on CM diffusion indicated that these

poly[n]catenanes are not strongly affected by traditional interchain entanglement, so the

sub-Rouse scaling observed in g1(t) and g2(t) must have a different physical origin. The

same sub-Rouse diffusion behavior is also observed in g4(t), but is not seen in g5(t) or g6(t),

which suggests that these trends are associated with the internal dynamics of the rings.

To better resolve the scaling behavior of the various MSDs, the displacements Eqs. 6.1

- 6.6 are written as apparent power laws with time-dependent (or instantaneous) scaling

exponents following Nahali and Rosa [251]:

gx(t) ∼ tγx(t) (6.7)

for 1 ≤ x ≤ 6. The exponents γx(t) are simply the slopes of the curves in Figure 6.3 and

attain constant values in well-defined scaling regimes. At long times, these values always

converge to either zero (x = 2, 4, 6) or one (x = 1, 3, 5). Figure 6.4 shows the exponents

for the two systems discussed above. As expected, γ3(t) is less than unity at short times

for both architectures and decreases towards a minimum value near 3/4 before recovering

ordinary diffusive scaling, consistent with the earlier analysis of CM motion. For linear

polymers, the scaling exponent γ1(t) decreases smoothly to a minimum just below 1/2 before

transitioning to ordinary diffusion, as expected. γ2(t) behaves similarly but the exponent

decreases sharply to zero near the longest relaxation time of the chain. As discussed above,

γ5(t) in poly[n]catenanes should be qualitatively similar to γ1(t) in linear systems. Indeed,

ring CMs in poly[n]catenanes move in a Rouse-like manner: the exponent γ5(t) decreases to

a plateau of around ∼ 1/2 before recovering ordinary diffusion at long times. However, the

plateau at 1/2 is not fully developed (i.e. constant), suggesting that finite-size chain effects

are still present. A somewhat similar trend is observed in γ6(t), but only a small shoulder is

present in this region before terminal decay.

Certainly, the most remarkable results in Figure 6.4 are the apparent scaling exponents of
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Figure 6.4: Instantaneous scaling exponents, γx(t), (see Eq. 6.7) for various measures of
monomer/polymer motion, gx(t), 1 ≤ x ≤ 6, as defined by Eqs. 6.1-6.6, for a) linear polymer
melts of N = 80 (unentangled) and b) a large poly[n]catenane of n = 25 and m = 30. Note
that the legend in part a) also applies to part b).

the monomer MSDs (γ1(t) and γ2(t)) in poly[n]catenanes: they attain values much smaller

than 1/2, and in some cases, these exponents vary non-monotonically with time. For in-

stance, at short times, γ1 ≈ 1/2 indicating Rouse-like dynamics, consistent with unentangled

ring and linear polymers. However, at around t ∼ 103τ , the exponent drops sharply, reach-

ing a minimum of around 0.35, then increases to a second “plateau” at around 1/2 before

recovering diffusive behavior at long times. The effects are even more dramatic in γ2(t),

which shows extended regions of exponents as small as 0.3; for smaller ring sizes, the local

maximum at long times (e.g. at ∼ 2× 104τ in Figure 6.4) can become quite pronounced.

The two-plateau character of γ1(t) brings to mind the predictions of the double-Rouse

model discussed in Section 6.2: the first plateau corresponds to Rouse-like dynamics within

the rings while the second corresponds to Rouse-like behavior on the scale of the entire

chain (i.e. with the rings as effective monomers). To further demonstrate this, γ1(t) is

examined as a function of n and m. Figure 6.5 shows γ1(t) for poly[n]catenanes of m = 30

for various n. All curves clearly show the initial regime of Rouse-like dynamics, consistent

with the hypothesis of internal ring motion dominating the dynamics at short times. As n

increases, the “dip” in the exponent at t ∼ 5×103τ becomes more pronounced and eventually
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saturates at large n; notably, the position of this minimum is approximately constant for all n,

suggesting that it is a relatively local property. Indeed, the scaling exponent associated with

internal ring motion, γ4, decays to its terminal value (zero) at around this time (Figure 6.4b),

suggesting that any further diffusion arises from ring CM diffusion. Returning to Figure 6.5,

at longer times, a second “plateau” begins to develop in γ1(t), but only for large n; the exact

same behavior may be observed in the Rouse model for linear polymers, lending further

support to the double-Rouse model. Once the monomer displacement reaches approximately

g1(t) ≈ 2R2
g, the polymers transition to ordinary diffusive motion.
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Figure 6.5: Instantaneous scaling exponent (γ1, Eq. 6.7) for monomer mean-squared dis-
placement, g1(t), in poly[n]catenanes with m = 30 and various n. The circles indicate the
times at which the monomer displacement g1(t) = 2R2

g.

The exponent γ1(t) also depends on m, but only at short time and length scales, as

shown in Figure 6.6. Here the time scale has been normalized by the longest Rouse time of

the central rings of the catenane, denoted τR,ring (see next section). Although the curves

show marked differences at short times, they collapse onto one another for times greater than

t ∼ 3τR,ring. This indicates that the large length/time-scale motion of poly[n]catenanes does

not depend on the underlying ring structure but is instead dominated by the overall linear

architecture of the polymers. Indeed, the position of the minimum exponent (γ1 ≈ 0.35 for

all systems) occurs at the same relative timescale for all m, which is considerably larger than
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the longest relaxation time of the rings. Moreover, the monomer displacement at this point

is many times larger than the ring size, g1(t) ≈ 4.7R2
g,ring. These results suggest that this

minimum is associated with a transition between the ring-scale and chain-scale dynamics. At

long times, all systems begin their transition to free diffusion at displacements g1(t) ≈ 2R2
g,

as expected from previous results.
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Figure 6.6: Instantaneous scaling exponent (γ1(t), Eq. 6.7) for monomer mean-squared
displacement,g1(t), in poly[n]catenanes with n = 25 and variable m as a function of time,
scaled by the longest Rouse time of the macrocycles. The squares and circles represent the
points at which the monomer displacements g1(t) are equal to 4.7R2

g,ring and 2R2
g, respec-

tively.

The non-universal behavior of γ1(t) at short times is unusual – the Rouse model would

predict identical behavior for all m and certainly does not predict the non-monotonic be-

havior (i.e. the “hump”) found in the curves for m = 15 and 20. This same behavior is

observed in γ4(t), and is therefore attributed to intra-macrocycle relaxations. The fact that

this “hump” eventually becomes merely a “shoulder” at larger m would seem to indicate that

the dynamical effects of the mechanical bonds become unimportant for large m, in analogy

with various structural properties, as discussed in the previous chapter [224]. However, this

interpretation is not correct, as the dynamics of the largest rings are still significantly af-

fected by the mechanical bonds, as will be discussed in the next section. Rather, we have

found that this hump emerges when the ratio between the longest and second-longest Rouse
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mode relaxation times of the rings becomes much larger than the ideal chain prediction, i.e.

much greater than four (data not shown).

At this point, the double-Rouse model seems to be reasonably well supported by the

simulation data, but even more evidence may be brought to bear. According to this theo-

retical picture, the rings can be considered “effective monomers” in a linear chain and the

motion of these monomers, characterized by g5(t) and γ5(t), should correspond to ordinary

Rouse behavior. The scaling exponent γ5(t) is shown in Figure 6.7a for poly[n]catenanes

with m = 30 and various n. As n is increased in the poly[n]catenane systems, a large plateau

region develops at long times with a lower bound that saturates at γ5(t) = 1/2, in agreement

with the Rouse model. In fact, if we compare this to the analogous γ1(t) behavior of ordinary

linear polymers shown in Figure 6.7b, poly[n]catenanes appear to be more Rouse-like than

linear chains of the same chemical composition. Indeed, for the flexible polymer model con-

sidered here, γ1(t) decreases continuously past 1/2 over time with no true plateau observed

for any N , which is attributed to interchain entanglement effects. Since poly[n]catenanes

resist such entanglement, such γ5(t) does not show this trend. For poly[n]catenanes, the

molecules transition to free diffusion at ring CM displacements of g5(t) ≈ 2R2
g; analogously,

linear polymers become freely diffusive when g1(t) ≈ 2R2
g.

Since γ1(t) exhibits the most unusual features in poly[n]catenanes, the quantitative pre-

dictions of the double-Rouse model for this function are of interest. These predictions are

shown in Figure 6.8 for various n and selected values of m and b; note that the time scale

should not be interpreted in terms of Lennard-Jones units used elsewhere in this paper. Some

qualitative agreement with the simulation data is indeed observed: there are two regimes

of Rouse-like dynamics (γ1(t) ≈ 1/2) separated by a pronounced sub-diffusive region (cf.

Figure 6.5). The latter of the Rouse-like regimes grows in temporal breadth increasing n,

again in agreement with the simulation results (cf. Figure 6.5). Thus, these elementary

features can be attributed purely to the unique connectivity of the polymers, without having

125



 !"

"!#

"!$

"!%

 
 
&!
'

 "
 

 "
(

 "
)

 "
%

 "
*

 "
$

!"  !

+,-./0123456.07

8-90./7,-:1#

$ &!'1;1(%$
&

/' <'
 !"

"!#

"!$

"!%

 
'
&!
'

 "
 

 "
(

 "
)

 "
%

 "
*

 "
$

!"  !

2345=(>9/?.-/-.7
")"*"+,

8-90./7,-:1(

$*&!'1;1(%$
&

Figure 6.7: Instantaneous scaling exponent (γx, see Eq. 6.7) for a) macrocycle center-of-
mass mean square displacement (g5) for poly[n]catenanes of m = 30 and n = 3− 25, and b)
monomer mean squared displacement (g1) for linear polymers of N = 15− 175. The circles
denote the points where a) g5(t) = 2R2

g or b) g1(t) = 2R2
g.

to consider any complicated physics associated with mechanical bonds.
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Figure 6.8: Instantaneous scaling exponent obtained from the double-Rouse model for
poly[n]catenanes with n = 3, 7, 10, 20, 50, or 100 rings, m = 20 beads, and mechanical
bond length b = 2.6 times the covalent bond length. Note that the unit of time is arbitrary
and not related to the Lennard-Jones units used elsewhere in the paper.

Despite the above successes of the double-Rouse model, the simulation data cannot be

quantitatively accounted for without a number of issues arising, as demonstrated in Fig-

ure 6.9. First, the model cannot capture the observed dynamics in the time period directly

after the minimum in scaling exponent, even when very different fit parameter sets are used.
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This regime corresponds to chain-scale dynamics, as the monomer displacements are much

larger than the ring size, but still smaller than the overall chain dimensions (cf. Figures

6.5 and 6.6). Moreover, small values of n are required to simultaneously match the min-

ima of the apparent exponent and the terminal decay (where the exponent is unity), no

matter what values of m and b are used. Specifically, model values of n = 12 − 14 are

required to match simulation data with n = 25. These results suggest that the various re-

laxation times in poly[n]catenanes do not have the same effective friction coefficient, i.e. the

length-scale-invariant friction and/or no memory approximations of the Rouse model are not

appropriate. Furthermore, the non-monotonic variations in the exponents γ1(t) and γ4(t) for

small m cannot be explained since the mechanical bonds are modeled quite crudely. Clearly,

the double-Rouse model is a good starting point for interpreting poly[n]catenane dynamics

but is inadequate in many ways. The limits of validity of the model will be discussed in the

subsequent sections on ring and chain dynamics.
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Figure 6.9: Simulation data for the scaling exponent γ1(t) and sample fits using the double-
Rouse model.
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6.4 Ring Dynamics

As described in the previous section, the double-Rouse model can reproduce some qualitative

features of the monomer motion within poly[n]catenanes. To more thoroughly evaluate

the system, the dynamics of the modes should be studied via their time autocorrelation

functions through a Rouse-mode analysis (see Section 3.3). This section focuses on the

ring-like modes, Xq which describe the internal dynamics of the macrocycles. For ordinary

ring polymers, the Rouse modes are defined according to Eq. 3.4 [174, 217, 241] these same

exact modes also appear in the double-Rouse model (see Eq. A.31) and are therefore useful

in characterizing the macrocycle dynamics. The center-of-mass mode(s), whose motion was

discussed in the previous section (g5(t), g6(t)), will be ignored in this section. For simplicity,

all data presented in this section were obtained from systems with n = 7, although the

results are independent of n for n ≥ 5.

To begin, the longest effective relaxation times (τR,ring = τ eff2 ) are studied as a function of

m, as shown in Figure 6.10 for rings of all sizes and topologies. The predicted Rouse scaling

is τR,ring ∼ m2 for Gaussian ring polymers, but the observed scaling exponent is somewhat

smaller, at approximately 1.85. However, in prior work [224], it was found that the sizes of

macrocycles within catenanes scale considerably slower than those of ideal random walks,

which also affects the dynamics. Scaling arguments (see Section A.4) predict τR,ring ∼ m1+2ν

for arbitrary scaling exponent ν, and the data for free ring polymers therefore suggest a

scaling exponent of ν ≈ 0.425, in reasonable agreement with the scaling observed for ring

radius of gyration (Rg,r) in the prior work on static properties [224].

For poly[n]catenane chain ends, the data appear to exhibit similar scaling, but the expo-

nents are in fact significantly lower, τR,ring ∼ m1.6. Importantly, 95% confidence intervals

are much smaller than the data points in Figure 6.10, so the difference in scaling between

the free rings and the chain ends cannot be dismissed as statistical noise. Although threaded
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Figure 6.10: Longest ring-like Rouse relaxation times (τR,ring = τ eff2 ) of macrocycles within
poly[n]catenanes compared to free ring polymers. Expected scaling is indicated by the solid
line. Statistical uncertainties are much smaller than the data points.

macrocycles do exhibit slower scaling of ring size with m [224], the exponent of ν ≈ 0.3

implied by the dynamics data is unphysical, involving a fractal dimension larger than the

spatial dimension. It is possible that as m increases, the chain ends will behave more and

more like unthreaded rings as the mechanical bond affects the structure of the rings less as m

increases. However, additional studies on larger rings are necessary to test this hypothesis.

The chain centers further confound the situation as their longest relaxation times scale as

τR,ring ∼ m1.9, faster than either the free rings or the chain ends. This result is difficult to

interpret, however, because the apparent scaling exponent depends on m, so the behavior

is clearly not asymptotic. In general, asymptotic dynamical scaling regimes are not always

easy to identify in polymer systems [13] and the chain lengths considered here are certainly

too short to achieve limiting behavior given that m < Ne for all systems. Of course, as

m is increased, the rings will become topologically compressed by their neighbors, which

introduces another set of unusual dynamical consequences [1, 65]. Clearly, the mechanical

bonds affect ring dynamics in a non-trivial way and do not allow for a simple self-consistent

treatment based on static or dynamic scaling arguments. Any further conclusions cannot be

supported by the simulation data collected here, so further study is required.
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As discussed in the previous section, a key issue in the double-Rouse model is the as-

sumption of unique friction coefficient on all length scales. To more closely investigate this

point, the effective friction constant is calculated as a function of the length scale using the

Rouse modes. The former is given by m/q according to the definition of the modes (Eq. 3.4)

while the latter is defined as ξeffq = 3kBTτ
eff
q /〈X2

q 〉 (see Section A.4, Eq. A.22). Larger values

of ξeffq indicate slower dynamics at the associated length scale. For ideal Rouse dynamics,

the effective friction is simply a constant, but topological interactions, such as entanglement

in linear polymers, can cause deviations in this behavior [170, 171, 252]. For example, in

isolated poly[n]catenanes, the dynamics of the lowest modes (longest length scales) of the

macrocycles are reduced by up to an order of magnitude compared to free rings, while dynam-

ics at short length scales are largely unaffected [222]. Moreover, the stretching exponents,

βq, are considerably reduced for rings with more threadings, indicating broader distributions

of relaxation times. Both of these effects have been observed previously in entangled linear

polymers [170], suggesting a common origin in topological constraints on polymer dynamics.

In the poly[n]catenane melts studied here, a similar trend is observed, but somewhat smaller

in magnitude compared to dilute solution, as shown in Figure 6.11, with effective friction

about twice as large for chain centers as compared to free ring polymers. As was the case

in isolated polymers, the mechanical bonds reduce the stretching exponents for the longest

modes, decreasing from values of around 0.9 for free ring polymers to values as low as 0.76

for chain center rings. Interestingly, for the longest wavelength mode, q = 2, the effective

friction and stretching exponent is constant for all m in free ring polymer melts, but for

chain centers, the friction increases and the stretching exponent decreases with increasing

m, indicating that the dynamical effects of the mechanical bond actually grow as m is in-

creased. This directly contrasts with the results of the previous chapter on statics: structural

signatures of the mechanical bonds typically decrease as m increases. This counter-intuitive

result demonstrates that macrocycle dynamics cannot be understood on a single-ring level,
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even in an effective sense. Instead, the topological linking and intermolecular effects should

be considered more directly, which presents a formidable theoretical challenge. Clearly, the

mechanical bond limits the ways in which the rings can move or relax, and this restriction

apparently becomes increasingly important as the rings become larger. Interestingly, such

new physics is apparent even for the relatively short rings studied here, which are far too

small to exhibit the unusual dynamical properties observed in ordinary, unthreaded ring

polymers.
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Figure 6.11: Effective friction coefficients for the ring Rouse modes as a function of cor-
responding length scale for free ring polymers (circles) and chain center macrocycles (dia-
monds) of various m. The data for m = 15 are omitted for visual clarity but follow similar
trends. Statistical uncertainties are smaller than the data points.

6.5 Chain Dynamics

As discussed earlier, at long time and length scales, the dynamics of poly[n]catenanes are

dominated by the overall linear structure of the polymers. Accordingly, this section focuses on

the linear-like modes of the double-Rouse model to more closely study the dynamics on these

larger scales. These modes are given in terms of the ring centers-of-mass according to Eq. 3.7

and, apart from the multiplicative pre-factor, are identical to the modes for ordinary linear

polymers with the macrocycle centers-of-mass (CM) taken as “effective” monomers [169,
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170, 222, 253]. As in the previous section, we perform a mode analysis where autocorrelation

functions are calculated from simulation trajectories and fit to stretched exponential (KWW)

functions to extract effective relaxation times, τ effp , and stretching exponents, βp. For the

modes studied here, the pth mode corresponds to a segment length scale of n/p effective

monomers, i.e. macrocycles.

The longest relaxation times (τR = τ eff1 ) are shown in Figure 6.12 as a function of

chain length, n, for catenanes with various m. For unentangled, linear chains as well as

poly[n]catenanes, the double-Rouse model predicts the scaling τR ∼ n2 (see Section A.5,

Eq. A.33) and this is indeed observed for large n. At small n, the scaling exponent appears

to be slightly larger, which can be attributed to local stiffness effects; these effects are stronger

for small m as these poly[n]catenanes have a larger relative stiffness [224].
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Figure 6.12: Longest Rouse relaxation times τR = τ eff1 for poly[n]catenanes of various m as
a function of n. Ideal Rouse scaling is indicated by the black line. Statistical uncertainties
are smaller than the data points.

The longest relaxation times, τR, also depend strongly on ring size, m. Per the double-

Rouse model, these times are expected to scale as τR ∼ m1+2ν , where ν is the scaling expo-

nent for the effective mechanical bond length, beff (see Section A.5, Eq. A.33 and discussion

thereafter). Within the term m1+2ν , one factor of m is due to the effective friction experi-

enced by the ring center-of-mass while a factor of m2ν is related to the changes in mechanical
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bond length associated with changing the ring size. Along with the longest Rouse time, the

diffusion time, τD = R2
g/6D, is also calculated, which is the time required for the polymer

to diffuse its own size. In the context of the Rouse model, τD may be thought of as the

relaxation time of the zeroth mode (i.e. the polymer center-of-mass). This quantity should

also obey the scaling τD ∼ m1+2ν according to the double-Rouse model since D ∼ 1/nm

and R2
g ∼ nb2eff ∼ nm2ν . The exponent ν is roughly 1/3 [224], suggesting a scaling of approx-

imately τR ∼ τD ∼ m5/3. Note that in the previous section on ring dynamics, the scaling

exponent of interest was that which governed ring dimensions rather than bond lengths;

more discussion on this point can be found in Section A.5. The two relaxation times τR

and τD are shown in Figure 6.13 as a function of m for the longest poly[n]catenanes studied

(n = 25) along with power law fits with the expected scaling exponent of 5/3. The diffusion

times, τD, show the expected m-dependence throughout the range of values investigated to

within the statistical uncertainty of the data. However, the scaling of the Rouse relaxation

times, τR, is somewhat different: at large m, the expected scaling is indeed observed, but

as m is decreased, there is an “upturn” in the relaxation times, indicating slower scaling

and increased friction in this regime. More quantitatively, the apparent scaling exponent

obtained by considering the smallest two m-values is just 0.91, less than half the expected

value. The relaxation times τR have considerably smaller statistical error than τD, so this

deviation is indeed significant.

Both the diffusive and Rouse relaxation times measure polymer dynamics at long length

andtime scales, so the qualitative disagreement between the two is unexpected. It is possible

that the discrepancy can be explained by the underlying forces responsible for the dynamics.

The polymer CM diffusion depends on intermolecular forces. Although these forces are

coupled self-consistently to the polymer structure, it is possible that (to a zeroth order

approximation) these intermolecular forces do not possess any significant non-local features,

either spatially or temporally, and that any differences in polymer structure that result from
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changing m are not significant enough to introduce any additional complications. This idea

is somewhat consistent with the observation that the diffusive friction of poly[n]catenanes

depends only weakly on m (cf. Figure 6.2b); such differences apparently are not enough

to cause τD to deviate significantly from the expected scaling. In this picture, it then

follows that the anomalous m-dependence of the Rouse relaxation times is related to unique

intramolecular force/stress correlations. These comments are merely speculative at this

stage, but also appear to be relevant to stress relaxation, as discussed in the next section.
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Figure 6.13: Rouse times (τR, circles) and diffusion times (τD, diamonds) for
poly[n]catenanes of n = 25 as a function of m. Dashed lines are fits to power-law rela-
tions with the expected scaling exponent. Error bars are much smaller than the data points
for τR and roughly the size of the data points for τD.

As in the previous section, the effective friction constants, denoted ξeffp for linear-like

modes, provide insight into the dynamics at various length scales within the polymer. The

results are shown in Figure 6.14a for ordinary linear polymers of various molecular weights.

At short length scales (small N/p) the effective friction decreases modestly with increasing

length scale and the various systems agree quantitatively. At larger length scales (large

N/p), the friction increases significantly as N is increased, which is attributed to the onset

of entanglement. These results are consistent with previous literature on the topic [170].

Poly[n]catenanes of fixed m and variable n exhibit behavior that is qualitatively similar

to that of unentangled linear polymers, with the friction at long length scales being nearly
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independent of n (data not shown). However, unusual behavior is observed as m is varied,

as shown in Figure 6.14b. The effective friction increases strongly – in some cases by a

factor of almost five – at relatively short length scales (small n/p) as m is decreased. These

observations indicate that the dynamics of small groups of chain segments are significantly

slowed by the mechanical bonds. Such a trend is consistent with what was found in dilute

solutions (see Chapter 3) [222]. Interestingly, the effective friction constant decreases with

m at essentially all length scales; the exact opposite trend was found when examining the

internal ring dynamics in the previous section, although those effects were considerably

smaller (cf. Figure 6.11). The reason for this discrepancy is unclear, but it is possible

that the internal dynamics of the macrocycles may become decoupled from the ring center-

of-mass motion, which is associated with the chain mode relaxations. Such a decoupling

has been suggested in simulations of high-MW ring polymer melts, where the orientational

and diffusive relaxation times scale differently with N [62, 64, 249]. It is not obvious how

mechanical bonds would affect such dynamics and further study is necessary.

Figure 6.14: Effective friction coefficients for the Rouse mode autocorrelation functions in a)
linear polymer melts with N = 15− 175, and b) poly[n]catenanes with n = 25 and various
m. At long length scales, interchain entanglement causes increases in the effective friction
in linear polymers. Statistical uncertainties are roughly the size of the data points.

The stretching exponents, βp, also differ remarkably in linear polymers and poly[n]cat-

enanes, as shown in Figure 6.15. For linear polymers, the exponents remain in the range
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0.8-1.0 at short length scales but decrease towards a minimum at longer length scales as

N is increased. For very long polymers, this minimum has previously been associated with

Ne, and therefore these qualitative changes in the relaxation behavior may be attributed to

interchain entanglement, i.e. kinetic constraints on polymer motion [170, 171, 252, 254]. By

contrast, poly[n]catenanes do not show decreases in stretching exponent at long length scales,

even for the largest chains considered in this study. However, at short length scales, the

exponents are dramatically lowered to values as small as 0.55, comparable with values found

for well-entangled linear chain melts. This finding suggests that poly[n]catenane motion is

restricted at the length scale of individual effective segments, which must be attributed to

the mechanical bonds. The m-dependence of the behavior further supports this picture as

more mild decreases in the stretching exponents are seen for larger rings, just as the increase

in effective friction at short length scales is also mitigated by increasing the ring size (cf.

Figure 6.14b).

Figure 6.15: Stretching exponents for the Rouse mode autocorrelation functions in a) linear
polymer melts with N = 15 − 175, and b) poly[n]catenanes with n = 25 and various m.
Statistical uncertainties are roughly the size of the data points.

Such small stretching exponents in dynamical measures are also associated with “caging”

effects in supercooled liquids [255]. This seems to be a more natural comparison than the

entanglement analogy presented above as the anomalous dynamics appear to be most dra-
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matic at short, rather than long length scales. However, the data does not support this

interpretation. All systems, regardless of n or m, have essentially identical fluid structure

at all length scales, both in terms of the site-site correlation function (radial distribution

function) and the total structure factor, which are essentially indistinguishable [224]. Fur-

thermore, the alpha relaxation times, which determine how easily beads can break out of

their local cages, show no n or m dependence except for very small rings (m = 10), which

are not considered here. Since a variety of ring polymer systems have been shown to ex-

hibit glassy dynamics on the macromolecular scale under various circumstances [76–78], one

may suspect that the caging effect could occur at the level of the ring center-of-mass rather

than the individual beads. However, this explanation is also unsatisfactory, since previous

simulations on isolated poly[n]catenanes – i.e. in the complete absence of intermolecular

interactions - exhibited similar trends in the dynamics [222]. These results indicate that

the retarded dynamics at small length scales are not caused by any glassy behavior, but are

instead related to the topological interaction inherent in the mechanical bond.

This section and the previous ones have shown that the double-Rouse model can describe

many of the qualitative features of poly[n]catenane dynamics, including the separation of

ring-like and linear-like contributions to the monomer displacements and the overall scaling

behavior of the relaxation times. Such success implies that these phenomena can be explained

simply by the unique connectivity of the polymers. However, the model cannot describe the

motion on intermediate length scales without resorting to highly mode-dependent effective

friction, which may have different dependencies on m for different methods of calculation.

These discrepancies are likely related to the fact that the model fails to simultaneously

capture both the terminal ring and chain relaxation times in the monomer MSDs discussed at

the end of Section 6.3 (Figure 6.9). The data further suggest that the topological interactions

of the mechanical bonds are responsible for these non-ideal dynamics at intermediate time

and length scales.

137



6.6 Stress Relaxation

The rheological properties of polymeric liquids have important implications in many indus-

trial and biological processes and a great deal of effort has been invested into determining

the impact of polymer architecture on stress relaxation and linear viscoelastic response.

Near equilibrium, the rheological behavior of fluids at various time scales is described by the

shear stress relaxation modulus, G(t), which is related to the stress autocorrelation function

(SACF):

G(t) =
V

kBT
〈σαβ(t)σαβ(0)〉 (6.8)

where the average is taken over all initial conditions, and σαβ indicates an off-diagonal

component of the stress tensor. In the context of the Rouse model, the modulus can be

expressed as a sum of exponentials with decay times equal to half the mode relaxation times

(Section A.4, Eq. A.28):

G(t) =
ρkBT

N

N−1∑
p=1

e−2t/τp (6.9)

Note that Eq. 6.9 holds generally for all architectures, as long as the sum extends over all

modes which all contribute equally in an amplitude sense to the stress.

Eqs. 6.8 and 6.9 suggest two methods of calculating G(t) in polymer systems: (i) compute

the stress using the virial pressure, evaluate the SACF directly, and insert into Eq. 6.8; (ii)

substitute the empirically determined mode relaxation times into Eq. 6.9. The first method

calculates the true modulus but is prone to large statistical error and long simulations are

required for even modest accuracy. On the other hand, despite much smaller statistical

error, the Rouse-inspired method is plagued by all the usual model assumptions mentioned in

Section 6.2 above. Most crucially, it neglects all non-bonded and intermolecular stresses and

in the case of poly[n]catenanes, inter-macrocycle stresses, even those between neighboring

(linked) rings. The hope is that some of these effects may be included implicitly if they
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also impact the mode relaxation times or effective friction coefficients; indeed, several other

authors have used an analysis of the Rouse modes to obtain accurate estimates of G(t) for

various linear polymer systems [253, 256, 257]. However, it is not clear that such an analysis

will be successful for poly[n]catenanes, even if the friction is strongly mode-dependent, as

shown in the previous sections. Accordingly, data obtained from both the Rouse-mode

analysis and SACF methods will be presented and the similarities and differences will be

used to gain physical insight into the system dynamics.

To reduce statistical noise in the data, the SACF is calculated using the pre-averaged

stress described by Lee and Kremer [258], wherein the stress tensor is averaged over time

periods of 10τ prior to evaluating the SACF. Despite this pre-averaging, the SACF is still

very noisy at long times when calculated directly. To further reduce the scatter, the pre-

averaged stress is passed through a multiple-tau correlator as described by Likhtman and

coworkers [259, 260]. This is conceptually similar to smoothing the SACF at logarithmically-

spaced time points. The short-time data are not perturbed, but the noise in the data at long

times is significantly reduced, allowing for easier analysis of the results.

To calculate G(t) from the Rouse mode relaxations, the exponentials in Eq. 6.9 are re-

placed by the more accurate KWW function determined from simulation and the empirically

determined linear-like and ring-like relaxation times (τp and τq, respectively) and stretching

exponents (βp and βq, respectively) are used to generate an analytic function of time for a

given n and m. For simplicity, the chain center relaxation times are used for each of the

n− 2 doubly-threaded macrocycles in each poly[n]catenane. This analysis is similar to that

developed by Vladkov and Barrat [253] and further utilized by Kuhnhold and Paul [256, 257]

but makes the additional assumption that the different Cartesian components of the modes

are fully independent, i.e. 〈X2
p,xX

2
p,y〉 ≈ 〈X2

p,x〉〈X2
p,y〉 = 〈X2

p,x〉2. For the systems studied

here, this approximation is generally satisfied to within a few percent.

For ideal (unentangled) Gaussian linear and ring polymers, the mode relaxation times
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scale as τp ∼ (N/p)2, which leads to a power-law decay of the form G(t) ∼ t−1/2 at time

scales t < τR [87]. In this intermediate regime, G(t) is predicted to be independent of

N , although chain end effects as well as interchain entanglement may preclude quantitative

agreement. In particular, entangled linear polymer melts exhibit the well-known “rubbery

plateau” where G(t) is roughly constant for an extended period of time due to the topological

constraints of neighboring chains [13, 87]. Figure 6.16a shows G(t) for linear polymers of

various N (calculated from the SACF), in which the trends mentioned above are clearly

visible. At small N , the modulus increases monotonically with N at all times as finite-size

and chain-end effects are reduced. For sufficiently high N , G(t) does indeed saturate at

short times, achieving behavior consistent with the Rouse model. However, for the largest

molecular weights, G(t) shows small deviations from Rouse scaling and the stress decays

slower than ∼ t−1/2, consistent with the emergence of entangled dynamics.

 ! "!

#$
%&

#$
%'

#$
%#

#$
#

#$
'

#$
&

#$
(

#$
)

 !  !

*+,-."/0 123 32456#!76&$

!$! 
% #8'

930:2 4;3<6"

#$
%&

#$
%'

#$
%#

%
= 
!6

 
!
"
8#

&
!

#$
#

#$
'

#$
&

#$
(

#$
)

 !  !

>;32 :6*+,-?2:4

930:2 4;3<6&

!$! 
% #8'

Figure 6.16: Stress relaxation modulus calculated from the stress autocorrelation function
for a) linear polymers with N = 15 (red), 20 (orange), 30 (yellow), 45 (green), 60 (cyan),
80 (blue), 100 (violet), 150 (pink), and 175 (magenta), and b) poly[n]catenanes of m = 30
and n = 2 (orange), 3 (yellow), 5 (green), 7 (cyan), 10 (blue), 15 (violet), 20 (pink), and 25
(magenta). The solid lines indicate the expected scaling for Rouse (ideal) dynamics.

For poly[n]catenanes, the double-Rouse model predicts a decomposition into ring-like

and linear-like stress relaxation contributions, as was also observed in the monomer diffusion

studied previously in Section 6.3. Specifically, the modulus can be written (see Appendix,
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Section A.5, Eq. A.35):

G(t) = Gring(t;m) +
1

m
Glin(t;n,m) (6.10)

where Gring(t;m) and Glin(t;n,m) are the moduli of a melt of pure rings of size m and

a melt of pure linear polymers of size n, respectively, at the specified temperature and

density; their dependencies on the parameters n and m are emphasized. In general, Eq. 6.10

predicts two separate regimes of Rouse-like decay (G(t) ∼ t−1/2) corresponding to ring-like

and linear-like relaxations. These regimes should be separated by a transition region with

rapid, exponential decay owing to the terminal relaxation of the ring contributions. Such a

decomposition is indeed suggested by the simulation data for poly[n]catenanes, as shown in

Figure 6.16b for m = 30 and various n (calculated from the SACF). The stress relaxation

appears to be approximately Rouse-like at short time scales, but at times beyond ∼ 103τ ,

it decays considerably faster. For other values of m, the results appear qualitatively similar,

although there are differences which will be discussed later on.

The general form of Eq. 6.10 also implies a specific n-dependence of G(t). The first

term in Eq. 6.10 has no dependence on n, so the stress relaxation is identical for all systems

at times shorter than the ring relaxation time, t < τR,ring. At longer times, the linear

contribution to the stress relaxation will also have no dependence on n, if the system has

not reached terminal decay, i.e. t < τR. As a result, as n is increased, the exact same

stress relaxation behavior is expected for all systems up to the terminal relaxation time. Of

course, for non-ideal poly[n]catenanes, the differences in dynamics between chain end and

chain center macrocycles (Section 6.4) will lead to considerable chain end effects, which are

clearly observed for small n in Figure 6.16b. Nevertheless, for n > 10, all relaxation curves

agree with one another quantitatively until terminal decay, in qualitative agreement with

the double-Rouse theory.

Following Lihktman and coworkers [259], the stress relaxation can be more easily analyzed

by dividing the modulus by the expected Rouse scaling, t−1/2; these data are shown in

141



Figure 6.17 (calculated from the SACF). In this view, ideal dynamics correspond to a flat

line, G(t)t1/2 = const., as seen for early times in linear polymers (Figure 6.17a). For such

systems, entanglements cause increases in G(t)t1/2 over time, which can be clearly seen for

linear polymers with N > 100. For poly[n]catenanes, three distinct regimes can be clearly

identified, as shown in Figure 6.17b. First, there is a roughly flat regime, suggesting Rouse-

like dynamics at early times associated with the ring-like modes. After about 400τ , the

plateau gives way to a second regime characterized by rapid stress relaxation. The start of

the transition between these regions coincides with the longest relaxation time of the chain

center macrocycles of these polymers (∼ 800τ ; note that the stress relaxation times in the

Rouse model are a factor of two smaller than the mode relaxation times, see Eq. 6.9). At

long times, there is a third regime of stress relaxation which undergoes terminal decay at

long times that increase with n, indicating that this behavior is related to overall chain

relaxation i.e. the linear-like modes. In summary, the observed stress relaxation processes

in poly[n]catenanes are qualitatively consistent with the double-Rouse model. Therefore,

although the scaled modulus never attains a true plateau for the chain lengths studied here,

it is expected that larger values of n will indeed lead to such Rouse-like scaling at long times,

assuming interchain entanglements are still unimportant.

Thus far, only the modulus from the SACF has been discussed, however it is helpful to

examine the modulus as computed from the Rouse mode relaxations, Eq. 6.9. These data

for poly[n]catenanes are shown in the inset of Figure 6.17b. At very early times, there are

pronounced deviations from the “true” SACF-based modulus, but this is not surprising as the

Rouse model does not account for any dynamics associated with local fluid structure i.e. the

“glassy” or “colloidal” relaxations of the liquid [259]. Despite these short-time disagreements,

the same chain-end effects and three-regime stress relaxation can be seen (in an exaggerated

form) in this data as in the SACF-based modulus. Despite this qualitative agreement, the

transition between the ring-like and linear-like regimes is quite sharp in the Rouse mode
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Figure 6.17: Scaled stress relaxation modulus calculated from the stress autocorrelation
function (SACF) for a) linear polymers with N = 15, 20, 30, 45, 60, 80, 100, 150, and 175,
and b) poly[n]catenanes of m = 30 and n = 2, 3, 5, 7, 10, 15, 20, and 25. The various
curves correspond to different molecular weights, which increase from left to right (bottom
to top) as in Figure 16. The dashed lines are included to guide the eye. Part b) inset: Scaled
modulus for the poly[n]catenane systems as determined from the Rouse mode relaxation
times.

analysis (∼ 103τ) but is blurred in the true modulus. This suggests that the Rouse mode

relaxation times – even the empirically determined ones – fail to capture the dynamics at

these time/length scales. It is certainly no coincidence that this is the length scale of the

topological interactions within the chains, i.e. the mechanical bonds and short segments of

catenated rings; these results are fully consistent with those of Sections 6.4 and 6.5.

Even more interesting behavior is observed when comparing the stress relaxation of
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poly[n]catenanes with varying ring sizes at constant n, owing to the 1/m prefactor in Eq. 6.10.

For instance, at times shorter than the longest ring-like relaxation time, t < τR,ring, the ring

stress Gring(t) is expected to relax at the same rate for all ring sizes, m, while the linear-like

modulus Glin(t) should be fairly constant at its initial value, as the linear-like relaxation

times are much longer than the ring-like ones. As a result, at these time scales, systems

with larger m will have lower stress - or will effectively relax stress faster - than those with

smaller m. This result stands in strong contrast to linear polymers, which relax more slowly

when molecular weight N is increased, even at short times (Figure 6.17a). However, since

τR,ring increases with m, the curves for various m will cross in the transition region (cf.

Figure 6.17b) as the smaller rings relax completely while the bigger ones still retain their

large-length scale correlations. Conceptually, the cause of this short-time behavior is similar

to the dilution effect in bottlebrushes, in which increasing side chain length or grafting den-

sity reduces the overall density of polymers in the system [10, 261, 262]; it is possible that

such a result may be found more generally in any polymer system with multiple distinct

mechanisms of stress relaxation.

To test these predictions, Figure 6.18 shows the scaled modulus for poly[n]catenanes of

n = 25 and various m (computed from the SACF). At short times t < 300τ , the stress

relaxation is clearly accelerated for the larger rings, as the early-time plateau values are con-

siderably smaller, consistent with the separation of ring-like and linear-like stress relaxation

described above (note that the initial values G(0) are identical for all systems). Similar

trends are also crudely observed in the modulus as calculated from the Rouse mode relax-

ations (Figure 6.18 inset). Such accelerated stress relaxation for larger polymers is not seen

in linear polymer systems (Figure 6.17a) nor in the ring polymer melts considered here (data

not shown); rather, it follows from the complex poly[n]catenane architecture.

As mentioned above, at intermediate times on the order of τR,ring, the double-Rouse

model predicts that the G(t) curves (or equivalently, G(t)t1/2) will cross. Such behavior is
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Figure 6.18: Stress relaxation modulus normalized by Rouse scaling for poly[n]catenanes of
n = 25 and various m, calculated from the stress autocorrelation function (SACF). Inset:
the same data calculated from the Rouse modes.

indeed observed in the moduli calculated from the Rouse modes (Figure 6.18 inset) but is not

consistently seen in the SACF data. For instance, in the SACF data the curves for m = 15

(orange) and m = 50 (pink) cross at t ≈ 2× 103τ , but the m = 15 and m = 30 (blue) curves

never cross, even at very long times. This behavior is extremely unusual. After all, at long

times, the first term in Eq. 6.10 vanishes, and all stress relaxation should be occurring at

the chain segment level via the linear-like modes, i.e. the second term in Eq 6.10. As the

linear-like mode relaxation times increase with m, the stress relaxation should be slower and

last longer for catenanes with larger m, so G(t) at long times will increase with increasing

m. As with the short-time crossover, this trend is clearly seen in the moduli obtained from

the Rouse modes but is not in the SACF data.

The reasons for these observations are unclear; certainly, they are not related to any

changes in the fluid relaxation times or any “caging” effects at the ring CM level, as dis-

cussed in Section 6.5. However, the fact that the Rouse modes indicate qualitatively dif-

ferent stress relaxation behavior compared to the SACF suggests some possible explana-

tions. The modulus determined from the Rouse mode relaxations, Eq. 6.9, neglects potential
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cross-correlations and stresses which may exist between modes. However, as shown in the

Appendix (Section A.6), the modes are indeed orthogonal to good approximation. The dis-

crepancy between the Rouse-mode and SACF moduli may therefore be related to either the

intermolecular stresses at the ring level (since interchain entanglement is not prevalent, see

Section 6.3) or to inter-ring, intra-chain stresses. In reality, these two effects are coupled, as

discussed in the previous chapter on static properties [224]. Frustratingly, any correlations

between different rings cannot be understood in terms of Rouse mode cross-correlations,

as these vanish identically because of the symmetries inherent in ring polymers (see Sec-

tion A.6). In any case, this line of thinking is merely speculative at this time and further

studies are needed to understand how the dynamics of linked ring polymers couple to one an-

other. Nevertheless, the data presented here demonstrate that the stress relaxation behavior

of poly[n]catenanes cannot be understood in terms of single-chain and single-ring dynamics,

even empirically measured ones

The zero shear-rate viscosity, η, can be determined from the equilibrium dynamics via

the integral of the shear stress relaxation modulus:

η =

∫ ∞
0

G(t)dt (6.11)

In the context of the Rouse model, Eqs. 6.9 and 6.11 indicate that the viscosity is proportional

to the sum of the (effective) mode relaxation times:

η =
ρkBT

N

N−1∑
p=1

τ effp (6.12)

which, like Eq. 6.9, holds for arbitrary polymer architectures. As in the case of G(t), two

methods will be used to calculate and study the viscosities: (i) directly integrate the SACF

(Eq. 6.11, see Section A.7 for details), and (ii) sum the effective mode relaxation times found

in Sections 6.4 and 6.5 (Eq. 6.12).
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The viscosities are shown in Figure 6.19 for all systems studied, calculated according

to the SACF. Linear and ring polymers (Figure 6.19a) show the expected dependence of

viscosity on N [13, 66, 79, 174, 249] and the results are in quantitative agreement with

previous literature values for this model [259, 263]. At low N , the linear polymer melt

viscosity scales roughly linearly with N and curves upward towards more rapid scaling as

interchain entanglement becomes prevalent. The ring polymer viscosities show moderate

sub-linear scaling, consistent with the smaller scaling exponents observed for measures of

ring size.
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Figure 6.19: Zero shear-rate viscosities as computed from the stress autocorrelation function
for a) linear and ring polymers as a function of N , and b) poly[n]catenanes of various m as
a function of n. Error bars indicate 95% confidence intervals.

For poly[n]catenanes, the double-Rouse model predicts a linear form for the viscosity

following directly from Eq. 6.10 (see Appendix, Eq. A.36):

η ∼ (2nb2 +m) (6.13)

where the first term represents the linear-like contributions and the second represents the

ring-like contributions. On account of the additional ring term, the apparent scaling of

viscosity with n will be sub-linear at low n, which is consistent with the simulation data

in Figure 6.19b. However, the observed m-dependence of the viscosity differs greatly from
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the predictions of the double-Rouse model. In particular, scaling arguments can be used

to show that poly[n]catenane viscosity should scale as η ∼ m2/3 for n not too small (see

Section A.5). This trend is obeyed at low n (e.g. n = 5) in the simulation data, but at

larger n, the viscosity first decreases as m increases up to m = 30, and then increases greatly

for m = 50 (e.g. n = 25). Despite the sizable statistical error, the difference between the

viscosities of poly[n]catenanes with n = 25 and m = 15 vs. m = 30 seems statistically

significant (p-value ≈ 0.06). Such a result is also visually apparent from the data in Figure

6.18 as G(t) is greater for m = 15 than for m = 30 at all times. However, even if this

difference at large n is rejected as insignificant and the two samples are deemed statistically

indistinguishable, this would still be an unusual result. After all, the double Rouse model

predicts a viscosity scaling of η ∼ m2/3; thus, a doubling of the ring size, say from m = 15

to m = 30, should increase the viscosity by a factor of at least 1.6. Using this ratio, the

viscosity for the = 30 system is predicted to be far larger than the observed value; in fact, it

is even larger than the viscosity calculated for the largest ring size of m = 50. Clearly, the

dependence of the viscosity on ring size represents a clear qualitative failure of the double-

Rouse model at large length scales.

The n-dependence of the poly[n]catenane viscosities also deviates qualitatively from the

double-Rouse model. Figure 6.20 shows the viscosity as a function of n on a linear-linear

scale along with fits to the functional form Eq. 6.13 (i.e. linear regressions) for each m-value.

Although each data set can be fit by this simple form, the resulting slopes show a non-

monotonic dependence on m, with the slopes decreasing with m up to m = 30 followed by

an increase for m = 50, the same trend observed in the viscosities for large n, as mentioned

above. Visually, the curves for m = 15− 30 cross at n ≈ 10 because of the decreasing slopes

in this range of m-values. In the double-Rouse model, these slopes are related to the product

of the mean-square mechanical bond length, b2, and the effective friction. Since the bond

lengths must (and do) increase with m [224], the reduction in the slope may be interpreted
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as a strong decrease in the friction for increasing m, which agrees qualitatively with the

results of the previous section on chain dynamics (Figure 6.14b), although those changes are

mild by comparison. However, this trend is not obeyed by the largest ring size, m = 50,

where the slope is larger than all other m-values, consistent with increased bond length and

constant friction.
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Figure 6.20: Poly[n]catenane viscosity as a function of n for various m on a linear-linear
scale as determined by the stress autocorrelation function (main figure) and the Rouse mode
relaxation times (inset). The dashed lines are linear fits to the data. The error bars indicate
95% confidence intervals and are smaller than the data points in the inset. The axis labels
apply to both the main figure and the inset.

Since the empirically determined from simulation Rouse relaxation times and the SACF-

determined viscosities both imply decreasing friction with increasingm (at least form < 50),

perhaps the former may predict the latter. The viscosities of poly[n]catenanes obtained from

the Rouse mode relaxation times according to Eq. 6.12 are shown in the inset of Figure 6.20,

along with linear fits of the data. As was the case for the SACF data, the Rouse mode data

predicts slopes that do not simply increase with m. However, the results show only a small

decrease in slope as m is increased from 15 to 20 followed by increases for m = 30, which is

not consistent with the SACF results. On the other hand, although the simulation-deduced
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Rouse relaxation times when combined with Eq. 6.12 do not predict a decrease in viscosity

with increasing m, they do predict viscosities that increase only very slightly, and much less

than that predicted by the naïve (literal) double-Rouse model (η ∼ m2/3). For instance, the

predicted viscosity for n = 25 is the same for m = 15 and m = 20, whereas a ∼20% increase

is expected in the double-Rouse picture.

The qualitative changes in viscosity scaling can be more clearly observed by plotting

the data as a function of m for various n, with the values of each series normalized by

those of m = 15: η(n,m)/η(n, 15). This ratio should increase as ∼ (m/15)2/3 for the

double Rouse model, so we expect a function which increases substantially, although sub-

linearly. The results are shown in Figure 6.21 for n = 1, 5, and 25 for both the SACF and

Rouse-mode viscosities. For simple ring polymers (n = 1), the viscosities do indeed increase

linearly, as expected. As n increases, the data points in the central region (m = 20, 30) are

systematically reduced; in the SACF data, these values actually become smaller than the

initial value, indicating decreases in viscosity with increasing m, as pointed out above. The

same general trend is also observed in the Rouse-mode based data, but in a milder form,

with no values falling below unity. Thus, although the Rouse relaxation times plus Eq. 6.12

are not quantitatively consistent with the SACF results, they do at least suggest some of

the same unusual trends. Therefore, it seems likely that the same physics is responsible

for the mode-dependent variations in friction (cf. Sections 6.4 and 6.5) and the unusual

m-dependence of the viscosity, even if the two effects do not lead to the same quantitative

predictions.

As discussed above in the context of G(t), it is possible that unusual m-dependence at

large n can be explained by inter-ring stresses (see Figure 6.18 and related discussion). For

instance, if such stresses/correlations exist, they should become smaller in magnitude as

m is increased; moreover, these stresses should relax more quickly for larger rings as the

macrocycles would be able to move more easily. However, above a certain ring size, these
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Figure 6.21: Viscosity for poly[n]catenanes of various n as a function of m normalized by the
viscosity for m = 15. Data in the main figure is calculated from the stress autocorrelation
function (SACF) and data in the inset is calculated by summing the Rouse mode relaxation
times per Eq. 6.12 (the main figure axis labels apply to the inset as well).

stresses would be so small and relax so quickly that they ought to be inconsequential; for such

ring sizes, we should recover the expected Rouse-like scaling, where viscosity increases with

m. In the systems studied here, it would seem that such correlations are no longer important

for m > 30, hence the ideal-like scaling for m = 50. The hypothesis of inter-ring stresses is

also consistent with the data presented in Figure 6.21: clearly, such stresses would be more

prominent in doubly threaded rings compared to the singly threaded chain ends. Since the

relative number of chain ends decreases for larger n, we expect that any anomalous scaling

would be more pronounced for larger n. While this is an intuitively appealing explanation, it

requires that the inter-ring stresses are much more long-lived than the intra-ring ones or even

the stresses associated with short segmental modes, which would be quite unusual. Moreover,

it is not clear how one would measure or analyze such stresses (if they do indeed exist) owing

to the symmetries of the rings, which complicate such efforts (see Section A.6). Further

study on single-molecule and/or small-n systems may prove useful in these endeavors.

There are other polymer systems for which the viscosity is known to decrease with in-
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creasing molecular weight. For instance, adding or lengthening side chains in comb or bot-

tlebrush polymers is known to reduce melt viscosity by reducing the number of interchain

entanglements, depending on the architectural parameters of the brush [10, 264]. This dis-

entanglement results from the increased tube diameter of the brush backbone while the

effective Kuhn length and therefore primitive path length may be only slightly modified

[261, 262]. However, this is not the mechanism operating in poly[n]catenanes as increases in

m will not simply expand the tube (even if this concept is relevant), but will also increase

the contour length, so that changes in the entanglement properties are ameliorated. Indeed,

as discussed in the previous chapter on the structural parameters of poly[n]catenanes, the

conservatively estimated entanglement chain length, ne, is fairly constant for all ring sizes

and is considerably larger than even the longest chains considered here (n/ne ≈ 0.6). Fur-

thermore, such disentanglement should reduce the chain reorientation/relaxation times or

at least change their qualitative scaling with n, but these times increase monotonically with

m for all chain lengths and the scaling obeys the Rouse model prediction quite faithfully

(Figure 6.12). Moreover, the fact that the viscosity does indeed increase with m for m > 30

suggests that at larger ring sizes more intuitive behavior is obtained, which further highlights

the unusual nature of the viscosity at small macrocycle sizes and suggests the presence of

other contributions to the stress relaxation.

6.7 Conclusions

In this chapter, the dynamics of unentangled model poly[n]catenanes have been studied by

extensive molecular dynamics simulations. To establish a theoretical baseline, a “double-

Rouse” model has been formulated and solved exactly. This “ideal” poly[n]catenane model

decomposes the dynamics into ring-like and linear-like contributions at short and long times,

respectively. This separation introduces a number of intriguing dynamical signatures which

are indeed observed in simulations. For instance, the monomer motion exhibits numerous

152



sub-diffusive regimes with apparent power-law exponents as low as 0.3, despite the lack

of inter-chain entanglement. This behavior can be explained qualitatively by Rouse-like

motion of the rings at short times and Rouse-like motion of the overall chain at long times,

with a transition period in between, all of which are predicted by the double-Rouse model.

The stress relaxation of the systems also shows clear ring-like and chain-like contributions,

separated by a regime of very fast stress relaxation, again consistent with the double-Rouse

picture. The model also predicts the correct scaling behavior of the ring and chain relaxation

times.

Although the double-Rouse model is qualitatively consistent with the dynamical proper-

ties mentioned above, it is unable to capture the topological effects of the mechanical bonds,

which lead to qualitatively different dynamics at intermediate length and time scales in the

simulated systems. For instance, the dynamics at long length scales within the macrocycles

or at short length scales within the overall chain lead to inconsistent (i.e. mode-dependent)

measures of effective friction. Moreover, the dynamics do not always obey the anticipated

dependence on ring size. However, the most puzzling observation is that the viscosity has

a non-monotonic dependence on macrocycle size for large chain lengths, with intermediate

ring sizes leading to smaller values. This behavior is inconsistent with both the observed

conformational relaxation times and the entanglement properties of the systems and cannot

be explained by the double-Rouse model, even when the empirically determined relaxation

times are used for the analysis. Since the double-Rouse model neglects all inter-ring cor-

relations, it is possible that related stresses may be responsible for these observations, but

further study is required.

For many decades, chemists have eagerly pursued poly[n]catenanes as the ideal inter-

locking polymer architecture. The large number of mechanical bonds within the polymers

led some to speculate that the molecules would have excellent energy damping properties

and rapid stress relaxation [17, 19, 20]. It was supposed that the low activation energy for
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ring “rotation” (and therefore chain motion) would be the primary driver for these dynam-

ics. But even the crude double-Rouse model presented here - in which relative motion of

the rings is completely uninhibited - does not lead to any particularly unusual consequences

and can indeed offer some qualitative agreement with the simulation data. Furthermore,

the mechanical bond actually slows down the dynamics of the polymers considerably, which

ought to lead to slower, not faster, stress relaxation. Nevertheless, the stress relaxation is

indeed surprising: no straightforward arguments can explain the non-monotonic dependence

of the viscosity on ring size for large n. The precise origin of these rheological properties is

unclear, but the evidence presented in this work serves to eliminate a number of possible ex-

planations and offer a plausible hypothesis: the mechanical bonds may introduce long-lived

inter-ring correlations which contribute to the system stress. As the macrocycles become

larger, these stresses are reduced, and the system may return to dynamics consistent with

the double-Rouse model.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

In this dissertation, we have presented the results of molecular simulations of poly[n]cat-

enanes in solution and in the melt and established foundational knowledge regarding the

physics of these systems. Our results, particularly with regards to dynamics, demonstrate

that poly[n]catenanes are not merely a chemical curiosity but rather a novel polymer archi-

tecture with unique and unexpected dynamical properties. The large number of topological

interactions in the system leads to abnormal segmental dynamics at intermediate length

scales and to non-intuitive and fascinating viscoelastic properties, making them excellent

candidates for further synthesis and research.

From a theoretical perspective, we have demonstrated that poly[n]catenanes (and cate-

nated polymers in general) possess high degrees of symmetry which can considerably simplify

otherwise intractable mathematics. Having used these symmetries to develop new Brownian

dynamics simulation algorithms, we can now study a wide variety of interlocking polymer sys-

tems in myriad conditions, both equilibrium and non-equilibrium. In particular, DNA-based

kinetoplasts and Olympic gels represent experimentally relevant systems whose dynamics can

now be studied. The behavior of catenated polymers in shear and extensional flows is also a

promising avenue of research. Many authors have demonstrated a complex coupling between

topology and hydrodynamics in unlinked ring polymers but the topic remains unexplored in

catenanes.

In the melt state, it is clear that macrocycle size will be a key design parameter for

poly[n]catenane materials which may be exploited by chemists and materials engineers to

control the dynamical properties of these polymers. However, the reasons for the unusual

stress relaxation in poly[n]catenane melts is not yet clear. Additional studies of polymeric

[2]catenanes or more direct quantification of inter-ring stresses may prove useful in this

regard.
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Although many of the systems studied in this work were idealized model polymers, this

restriction must be lifted in the future. As demonstrated in the Chapters 2 and 3, the be-

haviors of poly[n]catenanes will be strongly impacted by chemically specific properties such

as ring stiffness and anisotropic segment interactions. It is imperative that these interactions

be included in coarse-grained models in order for meaningful comparison with future exper-

iments. Although the physics of poly[n]catenanes is a very new field, it has already revealed

to us a rich set of phenomena and raised many deep physical questions regarding topology

and dynamics, suggesting many exciting directions for future research.
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APPENDIX A

SUPPORTING INFORMATION

A.1 Brownian Forces in Linked Ring Polymers

To integrate Eqs. 4.8, we must first find a matrix B̂ that satisfies B̂B̂T = Ĥ and that

also has the form of Eq. 4.7. Starting from Eq. 4.7, we first split the transformed mobility

matrix into inter-ring and intra-ring contributions, Ĥ = Ĥinter + Ĥintra, as follows:

Ĥinter = C



h110 h120 . . .

h120 h220
... . . .

hnn0


≡ C ⊗ Ĥ ′inter (A.1)

Ĥintra =



Ĝ11 0 . . .

0 Ĝ22

... . . .

Ĝnn


(A.2)

where we have defined the n× n matrix Ĥ ′inter in Eq. A.1 and Ĝαα = Ĥαα−hαα0 C in Eq.

A.2.

We now notice that square roots can be found quite easily for both Ĥinter and Ĥintra. In

particular, sinceCT = C andCTC = C, finding the square root (or other decomposition) of

Ĥinter is equivalent to finding the square root (or other decomposition) of the much smaller

matrix Ĥ ′inter. In the context of a BD simulation, a Cholesky decomposition is typically

used for such an operation so that this simplification reduces the computational complexity
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from O(n3m3) to O(n3). Since m is on the order of tens to hundreds, the computational

speed up is tremendous. This computation yields a matrix B̂inter = C ⊗ B̂′inter where

B̂′interB̂
′T
inter = Ĥ ′inter. The matrix Ĥintra is also easy to handle as it is fully diagonal,

so a square root is immediately found by taking the square root of each of its elements.

Computationally, this is an O(nm) operation. The result is a new diagonal matrix B̂intra

with elements B̂αα of the same form as Eq. A.2 above.

Crucially, the matrices Ĝαα, and therefore B̂αα, are diagonal with zeros in their up-

per left corners. As a result, we have B̂ααC = CB̂αα = 0, which further implies that

B̂intraB̂
T
inter = B̂interB̂

T
intra = 0. This result indicates that B̂ can be calculated by simply

summing B̂inter and B̂intra:

B̂B̂T =
(
B̂inter + B̂intra

)(
B̂inter + B̂intra

)T
=B̂interB̂

T
inter + B̂intraB̂

T
intra = (A.3)

Ĥinter + Ĥintra = Ĥ (A.4)

Since B̂inter and B̂intra have the same form as Ĥinter and Ĥintra, i.e. Eqs. A.1 and A.2

respectively, the sum B̂ will have the same form as Ĥ , i.e. Eq. 4.7. Furthermore, if we denote

the elements of B̂′inter by b
αβ
0 and the (diagonal) elements of B̂intra by bααq (1 ≤ q ≤ m), we

arrive at the Eqs. 4.8. In summary, the decomposition of Ĥ may be achieved by two fast

operations (O(n3)+O(nm)) rather than one slow one, as in ordinary Cholesky decomposition

during BD simulations (O(n3m3)).

A.2 System Preparation for Poly[n]catenane Melts

Due to very long relaxation times, simulations of high-MW linear polymers require sophis-

ticated techniques for efficient and proper equilibration [265–268]. Unfortunately, many of

these methods allow for chain crossings or otherwise alter the molecular topology and there-

fore cannot be applied to poly[n]catenanes; brute force equilibration must therefore be used.
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The systems studied here were prepared by a multi-step process:

1. A single, isolated poly[n]catenane was constructed and simulated for 5×105τ to achieve

an equilibrium conformation. Note that this time period is many times the longest

relaxation time of the isolated molecule (even for the largest n and m values).

2. The molecule was duplicated and placed with random orientation at the vertices of a

large cubic lattice while ensuring that no two molecules were overlapping.

3. The system was evolved according to the production parameters given in the main text

under the additional influence of a Berendsen barostat [269] with a time constant of 2τ

and a pressure of 5ε/σ3 to compress it while recording particle coordinates periodically.

4. A configuration with density close to the target value (ρ = 0.85σ−3) was selected and

box dimensions were adjusted to precisely match the desired density.

5. The system was equilibrated for 106 − 107τ , depending on its size (see Table A.1 for

details, “Equil. #1”).

6. To generate independent realizations for statistical analysis, the final configuration

from Step 5 was given new particle velocities (drawn from a Boltzmann distribution)

and evolved for an additional 106−5×106τ , depending on the system size (Table A.1,

“Equil. #2”). The process was repeated to generate five independent realizations of the

system. The resulting configurations were used as the starting points for production

simulations.

After this procedure, the systems are well-equilibrated by several common measures.

During Step 5 above, it is observed that the poly[n]catenane center-of-mass mean-squared-

displacement reaches values several times larger than the polymer size and that the average

end-to-end vector autocorrelation function completely decays well before the end of the

equilibration period (note that the end-to-end vector is defined by the centers-of-mass of
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the chain end macrocycles as discussed in the main text). Furthermore, both equilibration

periods are much longer than the longest relaxation times of the polymers (see Figure 6.12).

Table A.1: Summary of poly[n]catenane systems studied and the equilibration/production
simulation times.

N n m Equil. #1 (τ) Equil. #2 (τ) Prod. (τ)
500 1 15 - 50 106 106 106

250 2 15 - 50 106 106 106

250 3 15 - 50 106 106 106

200 5 15 - 50 106 106 106

200 7 15 - 50 106 106 106

200 10 15 - 30 106 106 106

200 10 50 5× 106 106 5× 106

150 15 15 - 30 5× 106 106 2× 106

150 15 50 5× 106 106 5× 106

100 20 15 - 30 5× 106 106 3.5× 106

100 20 50 5× 106 2.5× 106 5× 106

100 25 15 - 30 5× 106 106 5× 106

100 25 50 107 2.5× 106 ×107

Equilibration was also confirmed by examining polymer conformations directly. For linear

polymer melts, the reduced mean squared internal distances (Eq. 3.12) are often used as an

“objective function” to assess equilibration [266]. These values can be obtained directly

from simulation trajectories and then used to assess system equilibration for any N . As

the conformations of poly[n]catenanes are qualitatively similar to those of linear polymers

at large length scales [21, 22, 222], a similar measure may be employed for these systems.

In analogy with linear polymers, this objective function should be independent of n and l

for large l. Systems of long poly[n]catenanes are evaluated by comparing the mean squared

internal distances to those of a slightly shorter polymers; n is built up gradually from n = 1

to 25, ensuring proper equilibration along the way. The reduced mean squared internal

distances are shown in Figure A.1a for poly[n]catenane systems with n > 3. The data

are averaged over the final 10-50% of the first equilibration period (Step 5, above). For
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each value of m, the data for all n and l are in excellent quantitative agreement, indicating

well-equilibrated chain structures. At large l, the values decrease slightly, diverging from

the apparent master curves. These deviations are caused by shortened mechanical bond

lengths at the chain ends (Figure A.1b). The chain ends contribute more strongly to the

mean internal distances at larger l, thus lowering the values. In Figures A.1a and A.1b,

the data sets achieve plateau values at large distances. These plateau values are related

to the squared effective bond length, b2eff, and the central bond length, bc, of the polymers

(Table 5.2), respectively, and are discussed in Section 5.5.
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Figure A.1: a) Reduced mean-squared internal distances for poly[n]catenanes of various
ring sizes, m (Eq. 3.12). b) Mechanical bond length as a function of the number of bonds
away from the catenane chain end. The different symbols indicate different values of n: 5
(pentagons), 7 (triangles), 10 (diamonds), 15 (downward triangles), 20 (squares), and 25
(circles).

Linear polymer systems were equilibrated by the DPD push off method [267], followed

by an additional equilibration period of 106τ . To generate independent samples for statis-

tical analysis, the particles were given new velocities and equilibrated for a further 106τ to

generate five independent realizations of each system to use as starting points for production

simulations. See Table A.2 for details of the linear systems studied in this work. As with

the poly[n]catenanes, the mean squared internal distances were used to validate the systems

and the results (not shown) agree quantitatively with the existing literature [266].
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Table A.2: Summary of linear polymer systems studies and the production simulation times.

N N Prod. (τ)
500 15 106

500 20 106

500 30 106

500 45 106

500 60 106

500 80 106

500 100 106

500 150 3× 106

500 175 5× 106

A.3 Poly[n]catenane Dimensions

The mean-squared radius of gyration of a poly[n]catenane can be calculated from the average

distance between all pairs of beads in the polymer according to the formula:

R2
g =

1

2N2

N∑
i,j=1

〈x2ij〉 (A.5)

where N = nm and 〈x2ij〉 is the mean-squared distance between beads i and j. R2
g is

therefore calculated by evaluating each of the terms in the symmetric N ×N matrix 〈x2ij〉.

It is convenient to break up this matrix into blocks of size m ×m, such that the diagonal

blocks represent the distances between beads on the same ring and off-diagonal ones represent

the distances between beads on different rings. Making the approximation that all n rings

are statistically identical and ignoring chain end effects, Eq. A.5 can be rewritten as:

R2
g ≈

1

2N2

n m∑
i,j=1

〈x2αi,αj〉+
n−1∑
k=1

2(n− k)
m∑

i,j=1

〈x2αi,(α+k)j〉

 (A.6)
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where 〈x2αi,βj〉 represents the mean-squared distance between bead i on ring α and bead j

on ring β. The first term in brackets represents the diagonal blocks of the matrix 〈x2ij〉 while

the second term represents the off-diagonal ones. The diagonal blocks are evaluated directly

using Eq. A.5 applied to individual macrocycles:

R2
g,r =

1

2m2

m∑
i,j=1

〈x2αi,αj〉 (A.7)

Rearranging Eq. A.7 and substituting into the first term in brackets in Eq. A.6, one finds:

R2
g ≈

1

2N2

2nm2R2
g,r +

n−1∑
k=1

2(n− k)
m∑

i,j=1

〈x2αi,(α+k)j〉

 (A.8)

The off-diagonal components (second term in brackets in Eq. A.8) can also be computed

under certain approximations. To do so, 〈x2αi,βj〉 is expressed as the sum of a series of

vectors:

〈x2αi,βj〉 = 〈[(Rαi −Rα,cm) + (Rα,cm −Rβ,cm)− (Rβj −Rβ,cm)]2〉 (A.9)

where Rαi is the position of bead i on ring α and Rα,cm is the position of the center-of-

mass of ring α. The three vectors in Eq. A.9 are approximated as statistically independent,

which is not the case for neighboring (i.e. linked) rings especially at small m, but should be

fairly accurate for separations greater than the Kuhn length and therefore suffices for a first

approximation. Expanding the square and evaluating the average, all cross terms disappear:

〈x2αi,βj〉 ≈ 〈(Rαi −Rα,cm)2 + (Rα,cm −Rβ,cm)2 − (Rβj −Rβ,cm)2〉 (A.10)

It is now helpful to recall that the radius of gyration of a polymer of N segments can also

be expressed as the average mean squared distance between each particle and the polymer
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center-of-mass, denoted Rcm:

R2
g =

1

N

N∑
i=1

〈(Ri −Rcm)2〉 (A.11)

Summing Eq. A.10 over all i and j, substituting Eq. A.11 and assuming Gaussian statistics

for the ring center of mass separations, we find:

m∑
i,j=1

〈x2αi,βj〉 ≈ 2m2R2
g,r +m2|β − α|b2eff (A.12)

This expression is substituted into Eq. A.8 to obtain:

R2
g ≈

1

2N2

[
2nm2R2

g,r +
n−1∑
k=1

2(n− k)(2m2R2
g,r + km2b2eff)

]
(A.13)

The sum can now be evaluated directly and the pre-factor distributed among each of the

terms. Making the substitution N = nm, the result reads:

R2
g ≈

nb2eff
6

+R2
g,r +

b2eff
6n

(A.14)

To estimate the effective scaling of Eq. A.14 with n, the logarithmic derivative is calculated:

ν =
1

2

d logR2
g

d log n
=

n

2R2
g

dR2
g

dn
(A.15)

Evaluating Eq. A.15 up to order n−1, the result after some manipulation is:

ν ≈ 1

2
−

3R2
g,r

R2
e

(A.16)

where R2
e = (n − 1)b2eff is the end-to-end distance squared, defined as the mean squared

distance between the centers-of-mass of chain end macrocycles. The latter follows from the
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assumption of Gaussian statistics for the ring center-of-mass separations invoked prior to

Eq. A.12.

A.4 Rouse Model for General Polymer Architectures

Here the Rouse model [169] is reviewed for macromolecules of arbitrary architecture and a

number of useful relationships are derived for use in the main text. The specific application

to poly[n]catenanes is discussed in Section A.5 of this document. The macromolecule is rep-

resented as an assembly of N beads connected by harmonic springs, undergoing overdamped

Brownian motion. Since the bonds are harmonic, the forces are given by linear combinations

of the bead positions, so the equation of motion for all N beads can be written in the succinct

form:

ξ
dR

dt
= −Π ·R+ f(t) (A.17)

where ξ is the segment or monomer friction constant, R ≡ (R1,R1, ...,RN ) is a vector

of bead positions, Π is a matrix describing the bead connectivity, and f(t) is a vector of

Gaussian random variables that satisfy the fluctuation dissipation theorem:

〈fαi (t)〉 = 0 (A.18)

〈fαi (t)f
β
j (t′)〉 = 2kBTξδijδαβδ(t− t′) (A.19)

where i, j indicate bead numbers/indices and α, β indicate spatial dimensions.

As long as the forces act between beads (or linear combinations thereof), the matrix Π

will be real and symmetric, and each of its rows will sum to zero, regardless of the precise

architecture. Any information about the strength of the bonds (i.e. spring constants) has

been subsumed into Π such that its entries have units of energy per length-squared. Because

of the aforementioned properties, Π can be diagonalized by an orthogonal matrix, U ; one of
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the associated eigenvalues will be zero and the others will be positive. The zero eigenvalue

is related to the polymer center-of-mass and does not contribute to stress or orientational

relaxations. Using the orthonormal basis set to transform Eq. A.17, the resulting equation

of motion is:

ξ
dX

dt
= −λ ·X + g(t) (A.20)

whereX = UT ·R and g(t) = UT ·f(t), and λ is a diagonal matrix with each entry given by

an eigenvalue of Π. Note that because U is orthogonal, the statistical properties of g(t) are

the same as those of f(t) (cf. Eqs. A.18 A.19). The elements of X are the normal modes for

the polymer and their motions are decoupled due to the diagonal character of λ, which has

elements denoted as λp. Thus, a separate, independent equation of motion can be written for

each mode. For all modes p > 0, taking the dot product of each of these equation with the

initial value of the corresponding mode, Xp(0), and performing an ensemble average results

in a differential equation for the autocorrelation functions of the modes. The solution is:

〈Xp(0) ·Xp(t)〉 = 〈X2
p 〉 exp

(
− t

τp

)
(A.21)

where the characteristic times are defined as τp = ξ/λp and the mean-square amplitudes are

given by 〈X2
p 〉 = 3kBT/λp according to the equipartition theorem. For the center-of-mass

mode (p = 0, λp = 0), the equation of motion results in ordinary random walk behavior with

a diffusion coefficient D = kBT/Nξ [13]. The dynamics of the polymer (and its monomers)

can be described entirely in terms of the center-of-mass diffusion and the autocorrelation

functions.

The above results rely on the harmonic nature of the bonds and the absence of excluded

volume or other non-covalent interactions. Any anharmonicity in the Hamiltonian will in-

validate the simple equation of motion, and the resulting modes will no longer be orthogonal

so that cross-correlations are also needed to describe the dynamics. Such interactions and

166



correlations are most pronounced at short length scales along the polymer backbone, which

is why the Rouse model is most successful at larger scales, provided the molecules are not

subject to topological constraints.

All information about monomer/bead connectivity is contained in the matrix Π. There-

fore, the results above are applicable to any polymer architecture as we only made use of

properties of Π that are generically true for any topology. For certain simple architectures

(e.g. linear and cyclic polymers), analytical solutions for the eigenvalues and eigenvectors

can be obtained. In these cases, the structure of the eigenvectors/values can be used to gain

physical insight into the dynamics of the system. However, for more complicated architec-

tures, this may not be possible. Nevertheless, exact solutions for the dynamics can always

be obtained numerically as done in practice to generate the data in Figures 6.8 and 6.9 of

the main text.

Some results are now presented which are used to analyze the dynamics of poly[n]cat-

enanes in the main text. In simulations, the mean-square amplitudes of the modes as well

as effective relaxation times, τ effp , can be directly measured. Using these two quantities and

the relationships above, the effective friction coefficient may be defined:

ξeffp =
3kBTτ

eff
p

〈X2
p 〉

(A.22)

For ideal Rouse-type dynamics, this value will not depend on the mode number, p. How-

ever, deviations from a constant value can be interpreted as non-ideal behavior at certain

length/time scales, although the physical interpretation may not be so simple depending

on the architecture as this information is encoded in the eigenvectors. A similar effective

friction can also be defined in terms of the empirically measured diffusion constant, D:

ξeffD =
kBT

ND
(A.23)
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The monomer mean-squared-displacements considered in Section 4 can also be expressed in

terms of the mode amplitudes and relaxation times. Without loss of generality, the equations

are non-dimensionalized by dividing by the mean squared bond length and incorporating the

friction constant ξ and thermal energy kBT into the unit of time. To start, consider g1(t)

(Eq. 6.1) for a specific monomer, labeled i. Applying the inverse transformation R = U ·X:

gi1(t) = 〈[Ri(t)−Ri(0)]2〉 =
∑
p,q

UipUiq〈[Xp(t)−Xp(0)] · [Xq(t)−Xq(0)]〉 (A.24)

where the sums over p and q run from zero to N − 1. Since the modes are orthogonal, the

ensemble average will eliminate all cross terms in the sum. The resulting expression is:

gi1(t) =
∑
p

U2
ip〈[Xp(t)−Xp(0)]2〉 (A.25)

The first term in the sum (p = 0) corresponds to the mean-squared displacement of the

center-of-mass and the associated eigenvector always has elements equal to Ui0 = N−1/2,

regardless of architecture, since the rows of Π all sum to zero. As a result, the contribution

from this term is proportional to t/N as the polymer center-of-mass undergoes ordinary

diffusion. The rest of the terms in the sum can be found by expanding the dot product and

evaluating the ensemble averages, which can be expressed in terms of the mean-square mode

amplitudes and the autocorrelation functions. The result is:

gi1(t) =
6t

N
+
N−1∑
p=1

2U2
ip〈X

2
p 〉
[
1− exp

(
− t

τp

)]
(A.26)

For certain cases where symmetries exist (for example, ring polymers), it may be useful to
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average this function over all monomers. The function then takes the form:

g1(t) =
6t

N
+

2

N

N−1∑
p=1

〈X2
p 〉
[
1− exp

(
− t

τp

)]
(A.27)

For orthogonal, Gaussian modes, the stress relaxation modulus can be written as a sum

of exponentials [13]:

G(t) =
ρkBT

N
+
N−1∑
p=1

exp
(
−2t/τp

)
(A.28)

where ρ is the monomer number density. The zero shear-rate viscosity follows by integration:

η =
ρkBT

2N

N−1∑
p=1

τp (A.29)

Some qualitative results for Rouse-like dynamics can also be obtained by dimensional

analysis and dynamical scaling arguments for arbitrary polymer architectures [13]. For

instance, if macromolecule size scales as R ∼ Nν , then the diffusion constant still scales

as D ∼ 1/N , but the longest polymer relaxation time, τR, scales as τR ∼ N1+2ν . In analogy

to Eq. A.29, the viscosity can be approximated at the scaling level as η ∼ τR/N ∼ N2ν .

A.5 Double-Rouse Model for Poly[n]catenanes

Having reviewed the Rouse model for general polymer architectures, it is now applied to

poly[n]catenanes and the results are examined. Consider n independent ring polymers of

m beads, each of which is described by the Rouse model. The energy is augmented with

additional harmonic bonds that act on the centers-of-mass of the rings maintaining an overall

linear architecture. Since the forces are all harmonic and act only between the beads (or

between positions given by linear combinations of beads), the interaction matrix Π will have

all the properties necessary for the relationships in Section A.4 above to hold true. Denoting
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the position of the jth bead in the ith ring as Ri,j , the effective energy function is:

U(R) =
n∑
i=1

m∑
j=1

kr
2

(
Ri,j −Ri,(j%m)+1

)2
+

n−1∑
i=1

kc
2

 1

m

m∑
j=1

Ri,j

−
 1

m

m∑
j=1

Ri+1,j

2 (A.30)

where the spring constants kr and kc represent the strength of bonds between beads within

rings and between ring centers-of-mass, respectively; in general, these are different. Note that

the modulo operator is required to ensure proper boundary conditions for the ring polymers.

In this model, the mechanical bonds are introduced explicitly in the effective energy function;

in real interlocking polymers, these bonds are more accurately described by restrictions on

the phase space integral [69, 70]. Nevertheless, in the search for an analytically tractable

model, the explicit bonds between ring centers-of-mass serve the required purpose of ensuring

chain connectivity in a simple manner.

To obtain analytic expressions for the dynamics, the gradient of U(R) is used to generate

an interaction matrix, which is then diagonalized. However, it is helpful to first deduce the

basic form of the result based on intuitive arguments. Since the center-of-mass position

evolves independently in the Rouse model, forces acting on it will not affect any of the other

normal modes. Thus, one may anticipate that the solution of the double-Rouse model will

be a superposition of the linear and ring Rouse model results. This is in fact the case, and
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the full interaction matrix can be diagonalized by the following set of normal modes:

Xp,q =



(
1

nm

)1/2 n∑
i=1

m∑
j=1

Ri,j for p = q = 0

(
2

nm

)1/2 n∑
i=1

m∑
j=1

Ri,j cos

[
pπ

n

(
i− 1

2

)]
for 0 ≤ p ≤ n− 1, q = 0

(
2

nm

)1/2 m∑
j=1

Rp+1,j cos

(
2πjq

m

)
for 1 ≤ q < m/2

(
2

nm

)1/2 m∑
j=1

Rp+1,j (−1)j for q = m/2

(
2

nm

)1/2 m∑
j=1

Rp+1,j sin

(
2πjq

m

)
for m/2 < q ≤ m− 1

(A.31)

Note that the normal modes are most conveniently denoted by two indices, p and q, just as

the bead positions were denoted by the two indices i and j; the ranges of allowable values

for p (0 to n− 1) and q (0 to m− 1), are different from those of i and j. The modes q = 0

(first two lines in Eq. A.31) correspond to the overall linear structure of the molecule as

they have the same form as the linear Rouse modes but taken with respect to the zeroth

Rouse modes of the individual rings [170, 186, 253, 254]. The modes q > 0 (last three lines

in Eq. A.31) are simply the ordinary ring polymer Rouse modes for the (p + 1)th ring in

the catenane [174, 217, 241]. Note that when m is odd, the fourth line is not applicable.

These definitions are equivalent to those given in the main text (cf. main text, Eqs. 3.4,

3.7), although with slightly different notation. A formal (and very tedious) calculation is

also possible and yields the same results. In practice, only line 3 or 5 in Eq. A.31 needs

be considered as the two are identical but for a shift in indices. Thus, in what follows, we

consider only modes 1 ≤ q ≤ m/2. The corresponding eigenvalues for the modes above are:

λp,q =


4kc
m

sin2
(pπ

2n

)
for p > 0, q = 0

4kr sin2
(qπ
m

)
for q 6= 0

(A.32)
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which have the same form as those for linear and ring polymers. Because of the periodic

nature of the sine function, each ring eigenvalue (second line in Eq. A.32) appears twice, thus

having a degeneracy of two within each ring and a total degeneracy of 2n within the whole

polymer [174]. With these eigenvalues, one can now make predictions for the relaxation

times, monomer motion, and viscoelastic behavior using the results discussed previously for

the general Rouse model.

Before continuing, it is helpful to make certain substitutions for the spring constants

appearing in the eigenvalues. For harmonic bonds, the spring constant can be related to a

length scale by k = 3kBT/l
2 where l is a root-mean-squared bond length. The constant kr is

therefore connected with the covalent bond length, which in turn is taken as the generic unit

of length. kc is expressed in terms of the mean-squared mechanical bond length, b2, which

is now an adjustable parameter in the model and given in units of the covalent bond length

defined through kr. As a result, this model has three parameters: n, m, and b2. The latter

two are not in fact independent since the mechanical bond length will be on the order of the

ring dimensions, which depends on m. As a result, the number of independent parameters

is reduced to just n and m for practical purposes. Variations in the other parameters such

as the friction constant and temperature simply shift the characteristic time scale of the

dynamics and do not qualitatively change the results. In what follows, all quantities are

non-dimensionalized and the friction constant and kBT are subsumed into the unit of time.

To obtain scaling relations, it is convenient to adopt a continuum (not discrete bead)

perspective [13]. The eigenvalues are expanded up to quadratic order in p/n or q/m and the

spectrum of relaxation times is determined to be:

τp,q =


mn2b2

3π2p2
for p > 0, q = 0

m2

12π2q2
for q 6= 0

(A.33)

The longest ring relaxation time (second line in Eq. A.33, q = 1) therefore scales as τR,ring ∼
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m2. However, as discussed in Chapter 5, the ring size does not obey typical Gaussian

statistics, so in practice, a scaling of the form τR,ring ∼ m1+2ν is expected (see Section A.4

above) with ν ≈ 0.4−0.45 the scaling exponent associated with ring dimensions (e.g. radius-

of-gyration) [224], leading to a dependence τR,ring ∼ m1.8−1.9. For the overall chain, the

longest relaxation time (first line in Eq. A.33, p = 1) should scale as τR ∼ n2 in agreement

with the standard Rouse model for linear polymers. This quantity also has anm-dependence,

which is found both directly (by a multiplicative factor) and through the mean-squared bond

length, b2. Since the long-length scale behavior is of interest, the effective bond length, beff,

which accounts for chain stiffness effects, should be used in this relation. As described in

Chapter 5 [224], this quantity scales approximately as beff ∼ m1/3, leading to an expected

scaling of τR ∼ m5/3 according to Eq. A.33.

The shear stress relaxation modulus for poly[n]catenanes can be found by employing

the mode relaxation times of Eq. A.33 and Eq. A.28. However, simply by leveraging the

separation of the dynamics into ring-like and linear-like modes, some useful insight can be

obtained. In particular, the modulus can be expressed (in non-dimensionalized units, as

discussed above) as:

G(t) =
ρ

nm

∑
p,q

e−2t/τp,q =
ρ

nm

n−1∑
p=0

m−1∑
q=1

e−2t/τp,q +
n−1∑
p=1

e−2t/τp,0

 (A.34)

where the center-of-mass mode (p = q = 0) is to be excluded from the summation. On the

right-hand side of Eq. A.34 the first sum inside the brackets represents the ring-like dynamics

while the second term represents the chain-like ones. Distributing the pre-factors and using

the fact that all n rings have identical relaxation times, the modulus is then given by:

G(t) =
ρ

m

m−1∑
q=1

exp(−2t/τ0,q) +
ρ

nm

n−1∑
p=1

exp(−2t/τp,0) = Gring(t;m) +
1

m
Glin(t;n,m)

(A.35)
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where Gring(t;m) and Glin(t;n,m) are the moduli of a melt of pure rings of size m and a

melt of pure linear polymers of size n, respectively, at the specified temperature and density;

their dependence on the parameters n and m are emphasized in Eq. A.35.

The viscosity is found by integrating G(t), which is equivalent to summing the relaxation

times with the upper limit on the sum now being infinity for both p and q as in the continuum

description. Accounting for the degeneracy discussed earlier, the viscosity is:

η =
ρ

2nm

n−1∑
p=1

τp,0 + n

m−1∑
q=1

τ0,q

 =
ρ

72
(2nb2 +m) (A.36)

The viscosity has two contributions: one proportional to n (corresponding to the overall chain

relaxation) and another proportional to m (which results from the relaxation of the rings).

For large n, the first term dominates and the viscosity recovers ordinary Rouse scaling of

η ∼ n1. For relatively small n, the two contributions to the viscosity prevent simple power law

scaling as the ring contribution does not depend on n and is effectively an additive constant.

As a result, the apparent scaling exponent will be less than unity for small n. Each term

in the viscosity also has an m-dependence either directly or indirectly through the bond

length, b, which as above is replaced with beff. In general, the ring radius-of-gyration and

the effective bond lengths scale differently [224]. However, for large n, Eq. A.36 indicates

that the former will dominate the scaling behavior. Using the approximate relationship

beff ∼ m1/3) we predict a scaling of η ∼ m2/3 for not-too-small n. We further note that the

ring dimensions scale faster than the effective bond length, with exponents on the order of

0.4 - 0.45, so that the second term in Eq. A.36 would suggest η ∼ m2ν ∼ m0.8−0.9. Thus,

the 2/3 exponent should be considered a lower limit and for small n, larger exponents are

expected.
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A.6 Cross-Correlations in the Double-Rouse Model

Many of the results presented in the previous two sections rely on the fact that the Rouse

modes are orthogonal, i.e. statistically independent. For non-ideal polymers this is not nec-

essarily the case. In this section, cross-correlations in the double-Rouse model are analyzed

mathematically and, where applicable, calculated from simulation data.

To begin, consider the coupling between ring-like modes within the same ring, denoted

Xq as in the main text (Eq. 3.4), keeping in mind that these modes are equivalent to those of

ordinary ring polymers. Cross correlations between different modes, φqq′ are then evaluated

according to:

φqq′ ≡ 〈Xq ·Xq′〉 =

〈(
m∑
i=1

UTqiRi

)
·

 m∑
j=1

UTq′jRj

〉 (A.37)

where Ri is the position of bead i in the ring and U is the Rouse transformation matrix for

ring polymers. We ignore the modes q = 0 as these correspond to linear-like modes in the

double-Rouse model (see Eq. A.31). The translational invariance of the system requires that

the modes q > 0 do not depend on the ring center-of-mass position, Rcm, so this quantity

can be subtracted from the bead positions in Eq. A.37 to achieve a more physically intuitive

form. Making this substitution and expanding the product, the result is:

φqq′ =
m∑

i,j=1

UTqi〈(Ri −Rcm) ·
(
Rj −Rcm

)
〉Ujq′ =

m∑
i,j=1

UTqiRijUjq′ (A.38)

where we have defined the matrix R with elements Rij = 〈(Ri − Rcm) · (Rj − Rcm)〉.

Eq. A.38 can be rewritten as a compact matrix equation:

φ = UTRU (A.39)

Since all beads in a ring polymer are statistically identical, each row/column of R is identical
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but for a shift of indices; in other words, the matrix is circulant. Circulant matrices have

the convenient property that they all share a known set of eigenvectors. Therefore, since the

interaction matrix, Π, for ring polymers is also circulant [174, 217, 241], Π and R share an

eigenbasis. Since U diagonalizes Π by definition (see Section A.4 above), the matrix φ in

Eq. A.39 must also be diagonal, so that all cross-correlations between ring-like modes within

the same ring vanish identically. This result does not require that the ring polymers be ideal

or Gaussian, it only requires that they be closed loops possessing continuous symmetry.

Therefore, this finding holds even for non-ideal rings such as those in poly[n]catenanes.

Next, consider the average cross-correlation, φαβ
qq′ , between two Rouse modes with mode

numbers q and q′ of different rings, α and β. As before, we ignore the center of mass modes

(q = 0, q′ = 0). φαβ
qq′ can be expressed in a manner similar to Eq. A.38:

φ
αβ
qq′ =

m∑
i,j=1

UTqi

〈
(Rα

i −R
α
cm) ·

(
R
β
j −R

β
cm
)〉

Ujq′ (A.40)

where Rα
i is the position of bead i on ring α, Rα

cm is the center-of-mass of ring α, and we

have defined the matrix Rαβ with elements Rαβij =
〈(
Rα
i −R

α
cm
)
·
(
R
β
j −R

β
cm
)〉

. The

elements of the matrix Rαβ cannot depend on i or j, since, as mentioned above, all beads

within ring polymers are statistically identical. The elements Rαβij are therefore all equal

and depend only on α and β even for non-ideal (real) catenanes, as they must also possess

this symmetry. Setting Rαβij = R(α, β), the double-sum in Eq. A.40 then factorizes into a

product of two sums:

φ
αβ
qq′ = R(α, β)

(
m∑
i=1

Uiq

) m∑
j=1

Ujq′

 (A.41)

The second equality holds since the elements of the eigenvectors Uq sum to zero for q 6= 0.

As with the previous analysis, this result does not require that the rings be ideal or Gaussian.

The vanishing of these correlations makes it difficult to quantify inter-ring correlations or

stresses in a meaningful way. The symmetries of the rings also prohibit any cross-correlations
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between ring-like and linear-like modes by similar arguments. This analysis does not mean

that the motions of different rings are not coupled to one another or that they are not coupled

to the dynamics of the overall chain; indeed they must be to some degree. Rather, these

calculations show that that the inherent symmetry of ring polymers makes such correlations

invisible in the Fourier mode space.

Since all cross-correlations involving ring-like modes vanish identically, the only possible

couplings are between linear-like modes. Linear polymers lack the high symmetries of rings,

so these couplings can indeed be non-zero for real chains. To quantify inter-mode coupling, we

compute the normalized absolute cross-correlations χpp′ previously used for isolated polymers

in Chapter 3 (Eq. 3.9). By translational symmetry, cross-correlations with the center-of-mass

mode vanish, so only modes p > 0 are considered. For ideal polymers, χpp′ = δpp′ . Since the

most unusual physical results are observed for long catenanes with small rings, the largest

cross-correlations are expected for the poly[n]catenanes with n = 25 and m = 15. Even

for this system, the largest cross-coupling is just 0.0170 and the mean cross-correlation just

0.0043, nearly three orders of magnitude smaller than the self-correlation. The full range

of cross-correlations for this system is displayed as a heat map in Figure A.2. For systems

with bigger rings, the maximum and mean cross-couplings are reduced, while systems with

smaller chain lengths typically show increased cross-couplings. However, even the largest

cross-correlations observed for any system are still quite small (maximum of 0.070, mean of

0.023 for n = 5, m = 15). These results demonstrate that the modes provided by the double-

Rouse model are indeed orthogonal to a good approximation and that mode cross-couplings

cannot be responsible for the unusual dynamics observed.

A.7 Numerical Calculation of Viscosity

The zero shear-rate viscosity is given by the integral of the stress relaxation modulus G(t)

(main text, Eq. 13). In practice, the integral can be difficult to compute as the long-time
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Figure A.2: Normalized absolute cross-correlations (Eq. 3.9) in poly[n]catenanes with n = 25
and m = 15.

behavior of the modulus is dominated by large statistical noise and must therefore be cutoff

at some upper time limit. Fortunately, including data from such long times is actually

unnecessary as the stress typically decays exponentially after the terminal time, such that

the time-dependent running integral reaches a plateau. According to the Rouse model, this

terminal time is one half the longest Rouse mode relaxation time (Eq. A.28); this result

suggests that if one knows the longest relaxation time of an individual polymer (regardless

of architecture), it can be used to determine a suitable integration limit. Here, an upper-

time limit of 2τR is used, and at this time the slowest stress relaxation mode should have

decayed to about 2% of its initial value. This represents an estimate of the systematic error

in the calculation; it is generally much smaller than the statistical error, so the resulting

data can be regarded as “true” viscosities for practical purposes. To illustrate, in Figure A.3

the running integral of the viscosities is shown for linear polymers of various N :

η(t) =

∫ t

0
G(s)ds (A.42)
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with the integration limits clearly marked. By a time of 2τR, the integral has reached a

terminal plateau region and the resulting viscosities are in very good quantitative agreement

with previous literature [259, 263]. The same approach is used for poly[n]catenane and ring

polymer melts as well. Note that the integration is performed on the raw autocorrelation

functions i.e. before passing them through the multiple-tau correlation (see main text).

However, there is essentially no difference in either the mean values or the statistical errors

when performing the integration on the processed data.
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Figure A.3: Running integrals of the stress relaxation modulus (Eq. A.42) for linear polymers
of various N (15, 20, 30, 45, 60, 80, 100, 150, and 175, from bottom to top). The cutoff of the
integrations (=2τR) for calculating viscosities are marked as points on the curves. At times
beyond these points, the values of the integrals do not change significantly, but statistical
noise increases.
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