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ABSTRACT

This thesis sets out to develop a general method for inductively studying spaces of maps

into complex projective space in terms of subspaces of (non-)degenerate functions and to

exhibit unexpected phenomenon therein. For historical reasons, we describe this method

using Algd(CPm,CPn), the quasiprojective variety of degree d algebraic morphisms (a.k.a.

holomorphic maps) CPm → CPn for m ≤ n, as a primary example. In Chapters 3 and 4, we

compute the associated Q-cohomology ring of Algd(CPm,CPn) explicitly in the case m = 1

and stably for when m > 1, exhibiting homological stability as shown by Segal [Seg79],

Mostovoy [Mos03], Farb–Wolfson [FW15], and others, as well as unexpected phenomenon

regarding a particular subspace of degenerate maps. We also prove, when m = n, that the

orbit space Ratd(CPm,CPm)/PGLm+1(C) under the action on the target is Q-acyclic up

through dimension d − 2, partially generalizing a result of Milgram [Mil97]. In Chapter 5,

using point counts and the Grothendieck–Lefschetz trace formula in étale cohomology, we

conclude with a homological density conjecture regarding the subspace of non-degenerate

functions CP1 → CPn.

v



CHAPTER 1

INTRODUCTION

Any holomorphic map f : CPm → CPn, m ≤ n, can be represented as

f(z) = [f0(z) : · · · : fn(z)] (1.1)

where each fi ∈ C[z0, . . . , zm] is homogeneous of a common degree d and together have no

common root. The degree of f is also characterized by a purely topological formula:

f∗(ωCPn) = d · ωCPm , (1.2)

where we write ωX ∈ H2(X;R) to denote the symplectic form of a Kähler manifold X. This

representation (1.1) is unique up to scaling, so the space of all such maps Algd(CPm,CPn) is

a projective resultant complement of complex dimension (n+ 1)
(m+d

d

)
−1: see, for example,

[DD00] for more details on resultant polynomials.

In the m = 1 case, these functions are historically called rational maps and the notation

Ratnd(C) := Algd(CP1,CPn)

is used. In 1979, based on intuition from Morse theory, Segal [Seg79] proved that the inclusion

Ratnd(C) ↪→ Mapd(CP1,CPn) (1.3)

is a homotopy equivalence through dimension (2n−1)d, where Mapd(CPm,CPn) is the space

of continuous maps satisfying (1.2) equipped with the compact-open topology. This seminal

work inspired many generalizations, for example extending the domain to genus g ≥ 1 curves

and the target to Grassmannians or toric varieties; see, for example, [BHM99, CCMM91,

Gue95, GKY98, KM97, Kir85]. In many cases, these spaces are the minimal sets of some
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energy functional defined on the space of smooth maps and hence are intimately connected

to the study of harmonic functions.

To date, most of the tools used to study the topology of such spaces only make sense when

the domain has complex dimension 1—that is, when the potential singularities arising in ra-

tional maps are restricted only to discrete sets of points. The work of Kozlowski–Yamaguchi

[KY03] and Sasao [Sas74] on linear maps, together with Segal-style stability calculations due

to Mostovoy [Mos03, Mos12] and Munguia-Villanueva [MMV12], are apparently the only

results when the domain has complex dimension greater than 1. In particular, Mostovoy

[Mos12] proved that inclusion of holomorphic maps into the space of continuous functions

induces isomorphisms

Hi(Algd(CPm,CPn);Z)→ Hi(Mapd(CPm,CPn);Z)

for 2 ≤ m ≤ n and i ≤ d(2n− 2m+ 1)− 2.

In 2015, Farb–Wolfson [FW15] showed that the Betti numbers for spaces of based rational

maps CP1 → CPn, written as Ratnd(C)∗, are independent of the degree d. Their proof

involved inducting on degree by “bringing in zeroes from infinity” via a (non-algebraic) map

Ratnd(C)∗ × Cn+1 → Ratnd+1(C)∗

inducing isomorphisms on compactly supported rational cohomology. On the other hand,

by observing that the embedding ψ
m,n
d : Alg1(CPm,CPn)→ Algd(CPm,CPn) given by

ψ
m,n
d (f)([z0 : · · · : zm]) := f([zd0 : · · · : zdm]) (1.4)

induces the map 1 7→ dm on fundamental groups when m = n, Yamaguchi [Yam04] computed

that π1(Algd(CPm,CPm)) ∼= Z/(m+1)dmZ. Our first result explains the invariance of degree

observed by Farb–Wolfson using the homomorphisms induced by ψnd := ψ
1,n
d .
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Theorem 1.1 (Sharp Q-homological stability of Ratnd(C)). Fix n, d ≥ 1. Then

ψnd ∗ : Hi(Ratn1 (C);Q)→ Hi(Ratnd(C);Q)

is an isomorphism for all i ≥ 0. In particular, Hi(Ratnd(C);Q) does not depend on d.

Before proceeding, we recall that Kozlowski-Yamaguchi [KY03] showed that the U(n+1)-

action by post-composition induces a homotopy equivalence between Alg1(CPm,CPn) and

the complex projective Stiefel manifold PWm+1,n+1(C) of orthonormal (m + 1)-frames in

Cn+1. The latter space is defined as the quotient

PWm+1,n+1(C) := U(n+ 1)/(∆m+1 × U(n−m)) (1.5)

where ∆`
∼= U(1) is the center of U(`) and ι : PWm+1,n+1(C) ↪→ Alg1(CPm,CPn) given by

ι([A])([z0 : · · · : zm]) := A · [z0 : · · · : zm : 0 · · · : 0] (1.6)

is a homotopy equivalence corresponding to the Gram–Schmidt process. The topology of

Stiefel manifolds is well known: see, for example, [AGMP99, Rui69].

The composition of (rational) equivalences ψnd ◦ ι, alternatively thought of as inclusion of

the U(n+ 1)-orbit of the element jnd ∈ Ratnd(C) given by

jnd ([x0 : x1]) = [xd0 : xd1 : 0 : · · · : 0],

is the subject of our next result. We remark that the cohomology presentation that follows

is a special case of Theorem 1.5 and Corollary 2.3 of Kallel and Salvatore [KS03].
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Corollary 1.2 (Cohomology as a unitary orbit). The map

ψnd ◦ ι : PW2,n+1(C)→ Ratnd(C) (1.7)

is a rational homotopy equivalence. Hence, there is an isomorphism of graded Q-algebras

H∗(Ratnd(C);Q) ∼= H∗(PW2,n+1(C);Q) ∼= Q[y]/(yn)⊗ Λ(x), (1.8)

where |y| = 2 and |x| = 2n+ 1, for all d ≥ 1.

In Section 2 we define subspaces of Ratnd(C) and, more generally, of Algd(CPm,CPn) by

maps whose image projectively span subspaces of a fixed dimension:

rRatnd(C) := {f ∈ Ratnd(C) : dimLf = r} and, more generally,

rAlg
m,n
d (C) := {f ∈ Algd(CPm,CPn) : dimLf = r},

where Lf is the intersection of all planes containing f(CPm). The subspace mAlg
m,n
d (C),

which can be thought of as the subvariety of “most degenerate” maps, arises naturally since

Lf = Lψm,n
d (f) in an algebraically closed field, so the image of ψ

m,n
d actually lands in this

subvariety. We distinguish targets by writing

mAlg
m,n
d (C) Algd(CPm,CPn)

Alg1(CPm,CPn)

σm,n
d

φm,n
d ψm,n

d

. (1.9)

In the m = 1 case, where we shorten φnd := φ
1,n
d and σnd := σ

1,n
d , we will show in Chapter

3 that all maps in the above diagram are rational homotopy equivalences. More generally,

when m > 1, the maps will be shown to be rational isomorphisms in particular ranges.
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Next, recall that a subset Y ⊂ CPn is said to be degenerate if Y is contained in a

hyperplane of CPn, and that a map f : X → CPn is said to be degenerate if the image f(X)

is degenerate. In this paper we will also study the subspaces of non-degenerate maps

MRatnd(C) := nRatnd(C) = {f ∈ Ratnd(C) : f is non-degenerate} and

MAlg
m,n
d (C) := nAlg

m,n
d (C) = {f ∈ Algd(CPm,CPn) : f is non-degenerate},

where MRatnd(C) = ∅ for all n > d and more generally MAlg
m,n
d (C) = ∅ for all n ≥

(m+d
m

)
.

Our main result concerns the varieties 1Ratnd(C) and MRatnd(C), the subspaces of “most

degenerate” and non-degenerate maps, respectively. Whenever d < n, the variety dRatnd(C)

of “least degenerate” maps is also of note. Part (b) of these results extend a result of

Crawford (Theorem A of [Cra93]) and are further extended in Theorem 1.5 of this paper.

Theorem 1.3 (Topology of non-degenerate rational maps). Fix n, d ≥ 1.

(a) The inclusion σnd : 1Ratnd(C) ↪→ Ratnd(C) is a rational homotopy equivalence.

(b) If d ≥ n then the inclusion of non-degenerate maps induces an isomorphism

Hi(MRatnd(C);Z)→ Hi(Ratnd(C);Z),

for all i ≤ 2(d− n). If instead d ≤ n, then inclusion induces an isomorphism

Hi(
dRatnd(C);Z)→ Hi(Ratnd(C);Z),

for all i ≤ 2(n− d). Moreover, in this case, there is an identification

dRatnd(C) ∼= Alg1(CPd,CPn) ' PWd+1,n+1(C). (1.10)
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Part (a) of Theorem 1.3 is clear: the subspace of “most degenerate” functions CP1 → CPn

carries all the rational homological data of Ratnd(C). However, the latter results take some

digesting. In words, the first part of Theorem 1.3(b) states that, as d grows with n fixed, the

homology of the non-degenerate maps becomes a better approximation for the entire space of

rational maps. On the other hand, as n grows with d fixed, the homology of Ratnd(C) becomes

well-approximated by a projective Stiefel manifold, simply because most of the elements of

the space can be identified in some precise sense with the standard rational normal curve

νd : CP1 → CPd

νd([x0 : x1]) = [xd0 : xd−1
0 x1 : · · · : x0x

d−1
1 : xd1].

(1.11)

Moreover, while 1Ratnd(C) ↪→ Ratnd(C) is a rational homotopy equivalence, the inclusion

fails to be an isomorphism integrally if n > 1; we will show in Chapter 2 that

π1(1Ratnd(C)) = Z/dZ 6= 0 = π1(Ratnd(C)).

Further, the bounds in Theorem 1.3(b) are sharp; in Chapter 2, for all d > 2, we compute

H∗(MRat2
d(C);Q) ∼= H∗(Rat2

d(C)× S2d−3;Q), (1.12)

a result which is originally due to Crawford [Cra93].

As foreshadowed by our more general notation, versions of these results hold when the

domain CP1 is replaced by CPm for m > 1. However, difficulties arise in general because

the modified Vassiliev [Vas14] machinery of truncated resolutions as used by Mostovoy and

Munguia-Villanueva [Mos03, Mos12, MMV12] is the only method used thus far to understand

spaces of polynomial maps CPm → Y when m > 1. In particular, results involving rational

homology become isomorphisms in a stable range rather than outright equivalences:
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Theorem 1.4 (Q-homological stability of Algd(CPm,CPn)). Fix 1 < m ≤ n and 1 ≤ d.

Then the induced homomorphism

ψ
m,n
d ∗ : Hi(Alg1(CPm,CPn);Q)→ Hi(Algd(CPm,CPn);Q),

is an isomorphism for all 0 ≤ i < d(2n− 2m+ 1)− 1. The stable cohomology is given by

H∗(PWm+1,n+1(C);Q) ∼= Q[y]/(yn−m+1)⊗ Λ(x2(n−m)+3, · · · , x2n+1), (1.13)

where |y| = 2 and |x2j+1| = 2j + 1 for all n−m < j ≤ n.

Accordingly, this theorem permits a similar set of results regarding the subspaces of most

degenerate, non-degenerate, and least-degenerate holomorphic functions:

Theorem 1.5 (Topology of non-degenerate algebraic maps). Fix 1 < m ≤ n, 1 ≤ d.

(a) The homomorphism induced by inclusion of most-degenerate maps,

σ
m,n
d ∗ : Hi(

mAlg
m,n
d (C);Q)→ Hi(Algd(CPm,CPn);Q),

is an isomorphism for all i < d− 1.

(b) If
(m+d
m

)
≥ n+ 1 then the inclusion of non-degenerate maps induces an isomorphism

Hi(MAlg
m,n
d (C);Z)→ Hi(Algd(CPm,CPn);Z),

for all i ≤ 2
(m+d
m

)
− 2(n+ 1). If instead

(m+d
m

)
≤ n+ 1, then there is an embedding

PW
(m+d

m ),n+1
(C)→ Algd(CPm,CPn) (1.14)

inducing an integral homology isomorphism through dimension 2(n+ 1)− 2
(m+d
m

)
.
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In 1997, Milgram [Mil97] studied the orbit space Xd := Rat1
d(C)/PGL2(C) under the

post-composition action on the target CP1, exhibiting an isomorphism to the Q-acyclic

space of all projective classes of non-singular d × d Toeplitz matrices. In 2004, Yamaguchi

[Yam04] considered the more generalized space Xmd := Ratd(CPm,CPm)/PGLm+1(C) and

proved that π1(Xmd ) ∼= Z/dmZ. More recently, in 2019, Bergeron–Filom–Nariman [BFN19]

recovered Milgram’s result and also proved a similar theorem for the more complicated

quotient under the conjugation action.

In this paper we generalize Milgram’s result, albeit in weaker form:

Corollary 1.6. Fix m > 1 and d ≥ 3. Then Hi(Xmd ;Q) = 0 for all 0 < i < d− 1.

In the context of maps CPm → CPn, we ultimately have the following setup:

Alg1(CPm,CPn)
ψm,n
d−→ Algd(CPm,CPn) ↪→ Mapd(CPm,CPn),

where the composite map is a rational homotopy equivalence and the rightmost map is an

integral homology equivalence in a stable range. In the case when m = 1, as suggested by

the results of Farb–Wolfson [FW15], each map is a rational equivalence; if this were the case

when m > 1, Equation 1.13 would describe H∗(Algd(CPm,CPn);Q) for any d, the induced

maps in Theorem 1.5(a) would be outright isomorphisms, and Xmd would be truly Q-acyclic.

Although in principal the space Algd(CPm,CPn) could have rational homology outside

the stable range established by Mostovoy [Mos03, Mos12], to date there is no calculation

known to the author which has indicated the above maps are strictly stable rational isomor-

phisms. Indeed, there is some number-theoretic evidence discussed in Chapter 5 to suggest

(or at least not disprove) that no such additional homology exists, using the machinery of

étale cohomology theory introduced by Grothendieck to prove the Weil conjectures.

Our last result concerns counting the number of solutions to the equations defining the

variety MRatnd(C) over a fixed finite field Fq, written # MRatnd(Fq). We compute:
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Theorem 1.7. For any 1 < n ≤ d and q a prime power,

# MRatnd(Fq) = q2d+n(n−3)/2 (qd−1 − 1) · · · (qd+1−n − 1)(qn − 1)(1 + q + · · ·+ qn) (1.15)

In particular, the probability of a random element f ∈ Ratnd(Fq) being non-degenerate is

(1− q−(d−1)) · · · (1− q−(d+1−n)). (1.16)

In addition to counting, Weil established a much more general analogy between number

fields and function fields. The emerging notion of homological density [FWW16], defined as

the ratio of Poincaré polynomials Pt(A)/Pt(X) for a subspace A ⊆ X, was introduced to

compare homological coincidences for spaces of 0-cycles with 19th century calculations, in

particular the limiting density ζK(mn)−1 of the set of relatively n-prime m-tuples of ideals

in a ring of integers OK . All calculations thus far, such as (non-deg 2), support the following

topological interpretation of these point counts:

Conjecture 1.8 (Spherical homological density). Fix integers 1 < n < d. Then

Pt(MRatnd(C))

Pt(Ratnd(C))
=
n−1∏
i=1

(1 + t2(d−i)−1) ∈ Z[t]. (1.17)

In Chapter 2, we establish notation used throughout the paper and define the subvarieties

MAlg
m,n
d (C) and rAlg

m,n
d (C). We also describe the general method used to understand

maps X → CPn developed in this paper, proving part (b) of Theorems 1.3 and 1.5 on the

way. Chapter 3 is devoted to Theorems 1.1 and 1.3 (a) on rational maps, while Chapter 4

studies the analogous Theorems 1.4, 1.5 (a), and 1.6 for holomorphic maps CPm → CPn.

Lastly, Chapter 5 discusses the interplay of arithmetic and topology, including Theorem 1.7,

homological density, and searching for evidence that Theorem 1.4 is not sharp.

We note that much of the which appears here has been submitted by the author [GGed]

to Research in the Mathematical Sciences, under the same title.
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CHAPTER 2

PRELIMINARIES, NOTATION, AND SETUP

In this Chapter we proceed in full generality, considering holomorphic maps CPm → CPn for

any 1 ≤ m ≤ n, since there is nothing gained by specifying the m = 1 case here. Throughout

the paper we make use of the Poincaré series Pt(X) associated to a space X, defined as

Pt(X) :=
∞∑
i=0

dimQH
i(X;Q) ti.

We will also write X 'Q Y to denote a rational homotopy equivalence, meaning a map of

simply-connected spaces inducing isomorphisms on homotopy groups after tensoring with Q.

2.1 Stratification by degeneracy

Recall that the equivalence PWm+1,n+1(C) ↪→ Alg1(CPm,CPn) induced by the orbit of the

natural U(n+ 1)-action can be thought of as an equivalence of bundles via Gram-Schmidt:

PGLm+1(C) Alg1(CPm,CPn)

PU(m+ 1) PWm+1,n+1(C)

Gr(CPm,CPn),

'

(2.1)

where the projections assign an orthonormal frame [A] to its span and a map f to its image.

Our objective is to generalize this setup to nonlinear maps. While the author originally

believed what follows to be a novel construction, similar work was carried out in the 1993

thesis of Crawford [Cra93] using homotopy theory and with a focus on the n = 2 case.

For fixed 1 ≤ m ≤ n and d > 1 we define an increasing family of locally closed subspaces:

r
NAlg

m,n
d (C) := {f ∈ Algd(CPm,CPn) : dimLf ≤ r}, (2.2)

10



where Lf is the projective span of the image f(CPm). Equivalently, we can define rNAlg
m,n
d (C)

as the image of the following map:

{(f, P ) ∈ Algd(CPm,CPn)×Gr(CPr,CPn) : p ◦ f = 0 for all p ∈ ICPn(P )}

Algd(CPm,CPn),

where ICPn(P ) is the homogeneous ideal defining the plane P , generated by n − r linear

polynomials, and the vertical map forgets P . It is often convenient for calculations to think

of the Grassmannian as the space of rank r + 1 Hermitian projections M in Cn+1, where a

plane P ∈ Gr(CPr,CPn) corresponds (uniquely) to the column space of M :

Gr(CPr,CPn) ∼= {M ∈ mat(n+1)×(n+1)(C) : M = M2 = M† and Trace(M) = r + 1}.

With this setup, the condition on (f,M) ∈ Z is im f ⊂ imM = ker(id−M). We write

rAlg
m,n
d (C) := r

NAlg
m,n
d (C)− r−1

NAlg
m,n
d (C) = {f ∈ Algd(CPm,CPn) : dimLf = r} (2.3)

to obtain a stratification of Algd(CPm,CPn) by varying r. Hence there is a spectral sequence

{
E
r,s
k , dk : E

r,s
k → E

r+k,s+1−k
k

}
=⇒ Hr+s

c (Algd(CPm,CPn);Z) (2.4)

with the E1 term given by the cohomology of the strata E
r,s
1 := Hr+s

c (rAlg
m,n
d (C);Z). In

order to study these strata, we introduce notation for the particular case when n = r:

MAlg
m,r
d (C) := rAlg

m,r
d (C) = {f ∈ Algd(CPm,CPr) : f is non-degenerate}. (2.5)

This space can be identified with the fiber of the map

ρd : rAlg
m,n
d (C)→ Gr(CPr,CPn),

11



given by ρd(f) = Lf , over a fixed CPr ⊂ CPn. Indeed, the map ρd is a locally trivial fiber

bundle associated to the principle Stab(CPr)-bundle that defines the Grassmannian variety

as a homogeneous space. All told, we have a spectral sequence computing the compactly

supported cohomology of Algd(CPm,CPn) in terms of the spaces of non-degenerate maps:

E
r,s
1 := Hr+s

c (MAlg
m,r
d (C)×Stab(CPr) PGLn+1(C);Z) =⇒ Hr+s

c (Algd(CPm,CPn);Z)

(2.6)

Next we note that MAlg
m,n
d (C) = ∅ if n < m and that MAlg

m,m
d (C) = Algd(CPm,CPm).

More generally recall that, for an algebraic variety X, a rational map X → CPn can be

thought of as a choice of n+ 1 sections σ0, . . . , σn ∈ H0(X;L) of a line bundle L defined by

f(x) = [σ0(x) : · · · : σn(x)],

where the degree d of L corresponds to the degree of f . In fact there is a bijection

{V ≤ H0(X;L) : dimV = n+ 1 and V has no common zeroes}

←→ {non-degenerate degree d morphisms X → CPn}/Aut(CPn).

Because the degree d monomials in m+ 1 variables can be identified as a basis for the space

of global sections H0(CPm;OCPm(d)), this bijection gives rise to a Zariski-open embedding

MAlg
m,n
d (C)/PGLn+1(C)→ Gr(n+ 1,

(m+d
d

)
). (2.7)

Hence MAlg
m,r
d (C) = ∅ if r ≥

(m+d
d

)
. We also can count dimensions of the associated spaces:

dimC MAlg
m,n
d (C) = (n+ 1)

(m+d
d

)
− 1 and

dimC
rAlg

m,n
d (C) = (r + 1)

(
(n− r) +

(m+d
d

))
− 1.

(2.8)
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2.2 Topology of (non-)degenerate maps

Recall that the rational normal curve is the smooth curve νd : CP1 → CPd given by

νd([x0 : x1]) = [xd0 : xd−1
0 x1 : · · · : x0x

d−1
1 : xd1]. (2.9)

Moreover, every irreducible degree d non-degenerate curve in CPd is PGLd+1(C)-conjugate

to the standard rational normal curve. By this uniqueness property, if n ≥ d we see that

MRatdd(C) ∼= PGLd+1(C) and

dRatnd(C) ∼= Alg1(CPd,CPn) ' PWd+1,n+1(C).

(2.10)

This statement generalizes via the Veronese map νmd : P(Cm+1) → P(SymdCm+1), given

by sending [x0 : · · · : xm] to all possible monomials of total degree d. Hence we have the

following identification:

(m+d
d )−1Alg

m,n
d (C) ∼= Alg1(CP(m+d

d )−1,CPn) ' PW
(m+d

d ),n+1
(C), (2.11)

whenever
(m+d

d

)
≤ n+ 1.

We remark that, away from edge cases, the MAlg
m,r
d (C) are more difficult to understand

without a more sophisticated analysis, although minimal-degree non-degenerate varieties

have been classified due to Bertini: see, for example, [EH87].

Proof of Theorems 1.3 and 1.5 (b). The desired ranges come from the dimension counts

(2.8) and the identifications (2.10, 2.11), together with Poincaré duality and the spectral

sequence (2.6) computing the compactly supported homology of Algd(CPm,CPn).

Corollary 2.1. Fix m, d ≥ 1 and n <
(m+d
m

)
. Then MAlg

m,n
d (C) 6= ∅ for any n <

(m+d
m

)
.
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With these preliminaries established, the maps ψ
m,n
d and φ

m,n
d from (1.9) given by

φ
m,n
d : Alg1(CPm,CPn)→ mAlg

m,n
d (C) and

ψ
m,n
d : Alg1(CPm,CPn)→ Algd(CPm,CPn) via

ψ
m,n
d (f)([x0 : · · · : xm]) := φ

m,n
d (f)([x0 : · · · : xm]) := f([xd0 : · · · : xdm])

together constitute a morphism of bundles:

Algd(CPm,CPm) mAlg
m,n
d (C)

PGLm+1(C) Alg1(CPm,CPn)

Gr(CPm,CPn).

ρd

ψ
m,m
d

ρ1

φ
m,n
d (2.12)

Therefore much of this paper will rely on the rational homological data carried by ψ
m,m
d .

We conclude with a computation of fundamental groups to confirm that the inclusion

mAlg
m,n
d (C) ↪→ Algd(CPm,CPn) fails to be a homotopy equivalence when m < n and d > 1.

Proposition 2.2. Fix 1 ≤ m < n and 1 ≤ d. Then π1(mAlg
m,n
d (C)) ∼= Z/dmZ.

Proof. Since π1(Alg1(CPm,CPn)) = 0 whenever m < n by [Yam04], the result follows

directly by naturality of the long exact sequence in homotopy groups applied to φ
m,n
d :

=Z︷ ︸︸ ︷
π2(Gr(CPm,CPn))

=Z/(m+1)dmZ︷ ︸︸ ︷
π1(Algm,m

d (C)) π1(
mAlgm,n

d (C))

=0︷ ︸︸ ︷
π1(Gr(CPm,CPn))

π2(Gr(CPm,CPn))︸ ︷︷ ︸
=Z

π1(PGLm+1(C))︸ ︷︷ ︸
=Z/(m+1)Z

π1(Alg1(CPm,CPn))︸ ︷︷ ︸
=0

π1(Gr(CPm,CPn))︸ ︷︷ ︸
=0

.

1 7→ dm
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CHAPTER 3

RATIONAL MAPS FROM CP1

The objective of this section is to prove Theorems 1.1 and 1.3(a). We will do so by showing

that both ψnd and φnd in the commutative diagram

1Ratnd(C) Ratnd(C)

Ratn1 (C).

σnd

φnd ψn
d

(3.1)

are rational homotopy equivalences. Note that some of the results and methods in this

section can be found in the literature, for example [KS03, KY03], however we include the

proofs both for continuity and for their instructive use toward later calculations.

Proposition 3.1 (Kozlowski–Yamaguchi [KY03]). For any n ≥ 1,

Pt(Ratn1 (C)) = (1 + t2 + · · ·+ t2(n−1))(1 + t2n+1) (3.2)

Proof. We begin with the evaluation fiber bundle used by Segal [Seg79] and many others

Ratn1 (C)∗ → Ratn1 (C)→ CPn,

whose Serre spectral sequence is determined by the E2n transgression. There is a deformation

retract Ratn1 (C)∗ ' S2n−1, dual to the inclusion is given by

i : S2n−1 ⊂ Cn+1 ↪→ Ratn1 (C)∗

i(b0, . . . , bn)([z0 : z1]) = [z0 : b0z1 : · · · : bnz1].

We can deformation retract the total space fiberwise to a space E wherein the fiber F`

over a line ` ∈ CPn is Cn+1/`− 0. In fact, E is isomorphic to TCPn− 0, where 0 is the zero
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section, via the map

τ : E ↪→ Hom(γ, γ⊥) ∼= TCPn

τ(v)(`) = v,

where γ is the tautological bundle. Thus we can compute the transgression in terms of the

top Chern class cn(TCPn) = (n+ 1)cn, where c = ωCP1 ∈ H
2(CPn;Z) is the Kähler form:

0 2 2n p
0

2n− 1

q

Z Zc . . . Zcn

Za Zac . . . Zacn

.

In particular, H2n−1(Ratn1 (C);Z) ∼= Z/(n+ 1)Z is the only torsion term.

We remark that attempting to write down a section of Ratn1 (C) → CPn amounts to

making a continuous choice of a line distinct to the one determined by f(∞). Indeed, by

identifying these linear maps with matrices, the projection map takes the simple form


a0 b0
...

...

an bn

 7→ [a0 : · · · : an].

No such section exists since the transgression is nonzero. We will show in Section 4 that the

bundle one uses to generalize this proof to Alg1(CPm,CPn) sends a full-rank (n+1)×(m+1)

matrix to a (n + 1) ×m matrix by forgetting the last column. As we have just seen in the

previous proof, the spectral sequence boils down to computing a single transgression whose

non-triviality is tantamount to the impossibility of continuously picking a line distinct from

a varying m-plane in Cn+1.
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Proof of Theorem 1.1. In the context of continuous based functions CP1 → CPn, we define

θnd
′ : Map∗1(CP1,CPn)→ Map∗d(CP

1,CPn)

θnd
′(f)([x0 : x1]) = f([xd0 : xd1]).

Møller [Møl84] showed that Map∗d(CP
1,CPn) is 2(n−1)-connected, that the homotopy group

π2n−1(Map∗d(CP
1,CPn)) ∼= Z,

and that θnd
′
∗ is multiplication by d on π2n−1. On the other hand, ψnd induces a bundle map:

Ratnd(C)∗ Ratnd(C)

S2n−1 ' Ratn1 (C)∗ Ratn1 (C)

CPn,

f 7→ f(∞)

ψn
d
′

f 7→ f(∞)

ψn
d

(3.3)

where ψnd
′ is the restriction to the based rational maps, as studied in Proposition 2.2 of

[KS03]. We apply Segal’s stability [Seg79] for Ratnd(C)∗ ↪→ Map∗d(CP
1,CPn) to see that

ψnd
′
∗ : H2n−1(Ratn1 (C)∗;Z)→ H2n−1(Ratnd(C)∗;Z) (3.4)

is multiplication by d and therefore an isomorphism after tensoring with Q:

H2n−1(Ratnd(C)∗;Z) H2n−1(Map∗d(CP
1,CPn);Z) ∼= Z

H2n−1(Ratn1 (C)∗;Z) H2n−1(Map∗1(CP1,CPn);Z) ∼= Z.

∼= by Segal

∼= by Segal

ψn
d
′
∗ θnd

′
∗ 1 7→ d

Since H∗(Ratnd(C)∗;Q) ∼= H∗(S2n−1;Q) for all d, as shown in [CCMM91] and [FW15],
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the bundles in (3.3) induce spectral sequences whose only differential is the E2n transgression.

The connecting homomorphism (3.4) between the spectral sequences is an isomorphism, so

they must coincide with rational coefficients:

0 2 2n p
0

2n− 1

q

Q Qc . . . Qcn

Qa Qac . . . Qacn
∼= by Prop 3.1

0 2 2n p
0

2n− 1

q

Q Qc . . . Qcn

Qa Qac . . . Qacn

∼= by (3.4)

= .

In fact, we have shown that the E2n(Ratnd(C)) transgression map can be identified with

multiplication by (n+ 1)d:

H2n(CPn;Z) H2n−1(Ratnd(C)∗;Z)

H2n(CPn;Z) H2n−1(Ratn1 (C)∗;Z).

17→(n+1)d

1 7→n+1

1 7→ d

For more details, see [KS03] which computes H∗(Ratnd(C)) with arbitrary field coefficients.

The previous proof can be done entirely in the holomorphic category, much in the style

of Lemmas 3.1 and 3.10 in [BFN19]; note that the map ψd in question traces out the

PGLn+1(C)-orbit via post-composition of the element jnd ∈ Ratnd(C) given by

jnd ([x0 : x1]) := [xd0 : xd1 : 0 : · · · : 0].

We have chosen to include the previous proof due to its thematic suitability for this paper,

as well as its consistency with the style of proof in Chapter 4.
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Lemma 3.2. Fix integers d, n ≥ 1. Then the induced map

φd∗ : Hi(Ratn1 (C);Q)→ Hi(
1Ratnd(C);Q)

is an isomorphism for all i ≥ 0.

Proof. As in the proof of Theorem 1.1, we will show the bundle morphism

Rat1
d(C) 1Ratnd(C)

PGL2(C) Ratn1 (C)

Gr(CP1,CPn).

ρd

ψn
d

ρ1

φnd
(3.5)

induces a natural isomorphism between the Serre spectral sequences after tensoring with Q.

To be explicit, both sequences are determined by their E4 transgression, since

Pt(PGL2(C)) = Pt(Rat1
d(C)) = 1 + t3 (3.6)

by Proposition 3.1. The connecting map

ψnd ∗ : E4
0,3(Ratn1 (C)) = H3(PGL2(C);Q)→ H3(Rat1

d(C);Q) = E4
0,3(1Ratnd(C)) (3.7)

between the spectral sequences is an isomorphism by Theorem 1.1, so the differentials in each

sequence have the same rank as in the previous proof. The result follows by naturality.

Proof of Theorem 1.3. We have shown that two of the three maps, ψnd and φnd , in the com-

mutative diagram (3.1) are rational equivalences. Hence σnd is also a rational equivalence.
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One can now compute the groups Hi(MRatnd(C);Q) inductively via the spectral sequence

(2.6), where the first column and the abutted cohomology have Betti numbers given by (3.2).

In particular, it is easy to show the following corollary:

Corollary 3.3. For any d > 2,

Pt(MRat2
d(C)) = Pt(Rat2

d(C)× S2d−3) = (1 + t2)(1 + t3)(1 + t2d−3). (3.8)

Proof. Using Pt(Rat2
d(C)) = Pt(

1Rat2
d(C)) = (1 + t2)(1 + t3), together with the di mension

counts (2.8), we have the compactly supported cohomology groups:

Hi
c(Rat2

d(C);Q) =

 Q i = 6d− 1, 6d+ 1, 6d+ 2, 6d+ 4

0 otherwise
and

Hi
c(

1Rat2
d(C);Q) =

 Q i = 4d+ 1, 4d+ 3, 4d+ 4, 4d+ 6

0 otherwise

(3.9)

The result follows by the long exact sequence in compactly supported cohomology.

We note that this result was first proved, via different methods, by Crawford [Cra93]. In

Chapter 5 we discuss how arithmetic predicts the Betti numbers of MRatnd(C) for n > 2.
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CHAPTER 4

MAPS FROM CPM , M > 1

Unfortunately, the convenient equivalence S2n−1 'Q Ratnd(C)∗ does not hold when the

domain has complex dimension m > 1. In fact, we will show the following:

Proposition 4.1. Fix 1 ≤ m ≤ n and d ≥ 1. Then

H∗(Map∗d(CP
m,CPn);Q) ∼= Λ(x2(n−m)+1, · · · , x2n+1), (4.1)

where |x2j+1| = 2j + 1 for all n−m ≤ j ≤ n.

In order to proceed, we must generalize the m = 1 technique of the evaluation fibration in

a way which respects the maps ψ
m,n
d and φ

m,n
d , but provides a fiber that is easier to analyze.

An important observation is that evaluating f : CP1 → CPn at ∞ ∈ CP1 is the same as

restricting f to a particular CP0 ⊂ CP1, which gives an alternative means of generalization:

for maps CPm → CPn, we can restrict to a fixed hyperplane CPm−1 ⊂ CPm. The advantage,

as we shall see in the following analysis, is two-fold. In the continuous category, the simple

form of the quotient CPm/CPm−1 ∼= S2m allows for straightforward inductive arguments

via fibrations; in the holomorphic category, the fiber has a resultant locus which is easier to

describe than Alg∗d(CP
m,CPn).

To study such a restriction map we must also introduce notation to describe its fibers.

Given a holomorphic map f : CPm−1 → CPn and the usual inclusion i : CPm−1 ↪→ CPm

into the first m coordinates, setting d = deg(f), we define a subvariety of maps as follows:

Algf (C) := {g ∈ Algd(CPm,CPn) : g ◦ i = f}.

The space Algf (C) is a quasi-affine variety of dimension
(m+d−1

d−1

)
(n+ 1). We use the same
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notation in the context of continuous maps:

Mapf := {g ∈ Mapd(CPm,CPn) : g ◦ i = f}.

These spaces come equipped with a natural basepoint, namely f .

4.1 The continuous category

The usual inclusion i : CPm−1 ↪→ CPm induces a restriction fibration

Mapf ↪→ Mapd(CPm,CPn)� Mapd(CPm−1,CPn). (4.2)

Moreover, since CPm can be identified with the mapping cone of the Hopf map h : S2m−1 →

CPm−1, it follows that there is an equivalence Mapf ' Ω2mCPn. To be more precise, recall

the construction of CPm−1 as the (2m− 1)-skeleton of CPm:

CPm = CPm−1 ∪h D2m = CPm−1 ∪h C(S2m−1),

where C is the reduced cone. Via collapsing the boundary of a smaller 2m-disc inside D2m,

and writing Σ for the reduced suspension, we have a co-action map

ν : CPm = CPm−1 ∪h C(S2m−1)→
(
CPm−1 ∪h C(S2m−1)

)
∨ Σ(S2m−1) = CPm ∨ S2m.

This, in turn, gives rise to a pairing defined by

∗ : Mapf ×Ω2mCPn → Mapf

g ∗ s := ∇ ◦ (f ∨ s) ◦ ν,
(4.3)

where ∇ : CPn∨CPn → CPn is the usual folding map. Pairing with a fixed element in Mapf

induces the desired equivalence Ω2mCPn ' Mapf . For more details, see [Sas74, Møl84].
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Lemma 4.2. Fix 1 < m ≤ n. Then Ω2mCPn is 2(n−m)-connected,

π2(n−m)+1(Ω2mCPn) ∼= Z,

and there is a rational homotopy equivalence S2(n−m)+1 'Q−→ Ω2mCPn.

Proof. The equivalence comes from the Hopf map extended to a sequence

· · · → Ω2mS2n+1 → Ω2mCPn → Ω2m−1S1 → · · · → ΩCPn → S1 → S2n+1 → CPn,

where every two consecutive maps is a fibration, by the standard loop space construction.

Due to the equivalence Ω2m−1S1 ' ∗, we see that Ω2mS2n+1 → Ω2mCPn is a weak equiva-

lence. Therefore, for i ≥ 0, we have

πi(Ω
2mCPn) ∼= πi+2m(S2n+1),

which gives the claim on connectivity and π2(n−m)+1.

Lastly, the map S2(n−m)+1 → Ω2mS2n+1 that is adjoint via reduced suspension to the

identity map Σ2mS2(n−m)+1 → S2n+1 induces isomorphisms

πi(S
2(n−m)+1)→ πi(Ω

2mS2n+1).

for i ≤ 4(n − m) by the Freudenthal suspension theorem. The result follows by tensoring

with Q and recalling the rational homotopy of odd-dimensional spheres due to Serre.

We enumerate a particular basepoint j
m,n
d ∈ Algd(CPm,CPn) by

j
m,n
d ([x0 : · · · : xm]) := [xd0 : · · · : xdm : 0 : · · · : 0],

that we use in referring to two other results from the literature:
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Lemma 4.3. Fix 1 < m ≤ n and d ≥ 1. Then

(a) (Sasao, [Sas74]) Inclusion induces a rational homotopy equivalence

PWd+1,n+1(C) ' Alg1(CPm,CPn)
'Q
↪−→ Map1(CPm,CPn).

(b) (Møller, [Møl84]) The map θ
m,n
d
′

: Map
jm−1,n1

→ Map
jm−1,nd

given by

θ
m,n
d
′
(g) := g ◦ jm,md

induces multiplication by dm on π2(n−m)+1.

Armed with these lemmas, we can prove the following:

Proposition 4.4. Fix integers 1 < m ≤ n and d ≥ 1. Then the map

θ
m,n
d : Map1(CPm,CPn)→ Mapd(CPm,CPn)

given by θ
m,n
d (g) := g ◦ jm,md is a rational homotopy equivalence. Hence

H∗(Mapd(CPm,CPn);Q) ∼= Q[y]/(yn−m+1)⊗ Λ(x2(n−m)+3, · · · , x2n+1), (4.4)

where |y| = 2 and |x2j+1| = 2j + 1 for all n−m < j ≤ n.

Proof. The argument is similar to that of Theorem 1.1 in Section 3, by induction on m:

Map
jm−1,nd

Mapd(CPm,CPn)

Map
jm−1,n1

Map1(CPm,CPn) Mapd(CPm−1,CPn)

Map1(CPm−1,CPn) .

θm,n
d
′

θm,n
d

θm−1,nd

(4.5)
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The inductive hypothesis yields a morphism of spectral sequences, where each is determined

by the transgression on the E2(n−m+1) page:

H2(n−m+1)(Mapd(CPm−1,CPn);Q) H2(n−m)+1(Ω2mCPn;Q)

H2(n−m+1)(Map1(CPm−1,CPn);Q) H2(n−m)+1(Ω2mCPn;Q).∼= by [Sas74]

∼= by hypothesis ∼= by [Møl84]

The result then follows by naturality. Alternatively, one can use the long exact sequence in

(rational) homotopy groups and the Five Lemma to reach the same conclusion.

The former method allows one to additionally recover a result due to Møller,

H2(n−m)+1(Mapd(CPm,CPn);Z) ∼= Z/(n+1
m )dmZ,

which shows that the components of Map(CPm,CPn) are not homotopy equivalent in general.

We can prove a similar result when switching to based maps:

Proof of Proposition 4.1. As before, we proceed by induction on m by noting that the fibra-

tion (4.2) makes sense when preserving basepoints:

Mapf ↪→ Map∗d(CP
m,CPn)� Map∗d(CP

m−1,CPn).

Simply for range reasons, together with the multiplicative structure of the Serre spectral

sequence, there are no differentials which can be nonzero and we can conclude that there is

an isomorphism of graded Q-vector spaces

H∗(Map∗d(CP
m,CPn);Q) ∼= H∗(Map∗d(CP

m−1,CPn)× S2(n−m)+1;Q).

The ring structure can be deduced from the evaluation fibration and Proposition 4.4.
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4.2 The holomorphic category

In the holomorphic category, the restriction map

R : Algd(CPm,CPn)� Algd(CPm−1,CPn)

is not necessarily a fiber bundle. However, Thom’s isotopy lemma can be applied to produce

a finite filtration F0 ⊂ F1 ⊂ · · · ⊂ Fq = Algd(CPm−1,CPn) wherein R is a fiber bundle over

each connected component of the strata Fi+1 − Fi. : see [Mos03] for details. However, in

the d = 1 case, the restriction map becomes a family of bundles familiar from the classical

study of Stiefel manifolds. As such, we begin with the linear case.

For any f ∈ Alg1(CPm,CPn), it is not hard to see that there is a homotopy equivalence

Algf (C) = Cm × (Cn−m+1 − 0) ' S2(n−m)+1.

For example, the inclusion map i : S2(n−m)+1 → Alg
jm−1,n1

(C) given by

i(b0, . . . , bn−m)([z0 : · · · : zm]) = [z0 : · · · : zm−1 : b0zm : · · · : bn−mzm] (4.6)

is dual to a deformation retract Alg
jm−1,n1

(C)→ S2(n−m)+1. Hence the E2(k+1) transgres-

sion determines the Serre spectral sequence induced by the restriction map R:

Q ∼= H2(k+1)(Alg
jm−1,n1

(C);Q)
∂−→ H2k+1(S2k+1;Q) ∼= Q.

As in the proof of Proposition 3.1, this map is determined by the primary obstruction class

as computed by Sasao [Sas74]: the differential is ∂(1) =
(n+1
m

)
.

We are now equipped to conclude this section by proving the remaining theorems.
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Proof of Theorem 1.4. We have the following commutative diagram:

Algd(CPm,CPn) Mapd(CPm,CPn)

Alg1(CPm,CPn) Map1(CPm,CPn)'Q

ψm,n
d θm,n

d

Given Lemma 4.3 and Proposition 4.4, the composition Alg1(CPm,CPn)→ Mapd(CPm,CPn)

is a rational equivalence. The result follows by Mostovoy’s stability theorem [Mos12], which

shows that the top map is a homology equivalence for i < d(2n− 2m+ 1)− 1.

Having studied ψ
m,n
d on rational homology, we can show the final two results:

Proof of Theorem 1.5 (a). As above, we consider bundle morphism (2.12) and the induced

connecting morphisms on the resulting Serre spectral sequences. By Theorem 1.4, the map

on fibers is a rational homotopy equivalence in the range i < d− 1 and we can conclude that

the same is true of the map φ
m,n
d : Alg1(CPm,CPn)→ mAlg

m,n
d (C).

Because ψ
m,n
d factors through φ

m,n
d and has a much larger isomorphism range, namely

i < d(2n−2m+1)−1, the result follows. Indeed, using this fact, one can make the additional

statement that the inclusion

σ
m,n
d : mAlg

m,n
d (C) ↪→ Algd(CPm,CPn)

induces epimorphisms on rational homology through the range i < d(2n− 2m+ 1)− 1.

Proof of Corollary 1.6. We proceed using the Leray-Hirsch theorem. As the PGLm+1(C)-

action is free and proper, the quotient map Algd(CPm,CPm)→ Xmd is a fiber bundle. Hence

the desired result amounts to proving that the inclusion of an orbit induces an epimorphism

Hi(Algd(CPm,CPm);Q)→ Hi(PGLm+1(C);Q)

for all i < d− 1. This is precisely the content of Theorem 1.4.
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CHAPTER 5

ARITHMETIC OF ALGEBRAIC MAPS

5.1 Interplay of topology and arithmetic

The resultant polynomials used to define Algd(CPm,CPn) are defined over Z and hence

make sense over any field, in particular Fq and F̄q. Counting the Fq-points of these varieties

is connected to topology via étale cohomology, together with the Grothendieck–Lefschetz

trace formula. By means of various comparison and base change theorems, predictions can

be made of topology by arithmetic [Che19] and vice versa [FW15].

In short, if Y is a variety over Z, one can reduce modulo an appropriate prime to obtain

a variety over Fq just as easily as one can extend scalars. Hence one can associate to Y the

étale cohomology H∗ét(Y/F̄q ;Q`), where ` is prime to q, and at the same time associate the

usual singular cohomology groups H∗(Y (C);Q). In many instances, in particular when Y is

a smooth projective variety, one can also establish a natural isomorphism

Hi
ét(Y/F̄q ;Q`) ∼= Hi(Y (C);Q)⊗Q`, (5.1)

away from a finite (often empty) set of characteristics: see [Del77].

Recall that, for any variety Y defined over Fq, we can define the Frobenius endomorphism

Frobq : Y (F̄q)→ Y (F̄q) via

Frobq(x) = xq.

We proceed using Hasse’s fundamental observation, that the set Y (Fq) can be extracted

from Y (F̄q) as the fixed points of the Frobenius map:

#Y (Fq) = # Fix
(
Frobq : Y (F̄q)→ Y (F̄q)

)
.
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In topology, the classical Lefschetz fixed point theorem is used to count fixed points of a

continuous endomorphism f : Y (C) → Y (C) in terms of the traces of the induced maps on

singular homology. Fortunately, there is an analogous result for étale cohomology: the vector

spaces Hi
ét(Y/F̄q ;Q`) come as representations of the Galois group Gal(F̄q/Fq), wherein the

eigenvalues of the induced Frobenius action on étale cohomology are known as weights. The

key result we reference is the Grothendieck–Lefschetz trace formula [Mil13], allowing us to

compute the number #Y (Fq) in terms of these weights:

#Y (Fq) =
∑
i≥0

(−1)i Trace(Frobq : Hi
ét(Y/F̄q ;Q`)→ Hi

ét(Y/F̄q ;Q`)).

Unfortunately Algd(CPm,CPn) is not projective, so we cannot directly use the trace for-

mula together with (5.1) to count points. To remedy this, we use the fact that Grothendieck–

Lefschetz holds for any variety of finite type if we switch to compactly supported étale

cohomology [Del77]. When Y is smooth we can apply Poincaré duality [Mil13]:

Hi
ét,c(Y/F̄q ;Q`) ∼= H2 dimY−i

ét (Y/F̄q ;Q`(− dimY ))∗

where ∗ stands for the dual and Q`(j) denotes a shift in Galois representations. Therefore

for any smooth—but not necessarily projective—variety we have the modified formula:

#Y (Fq) = qdimY
∑
i≥0

(−1)i Trace(Frobq : Hi
ét,c(Y/F̄q ;Q`)∗). (5.2)

Deligne proved that the eigenvalues of Frobenius on Hi
ét,c(Y/F̄q ;Q`) have absolute values no

more than qi/2, hence bounding the contributions of a particular cohomology group in terms

of its dimension. In many cases these weights can be known exactly, such as in [FW15],

allowing the direct translation of Poincaré polynomials into point counts:

Pt(Ratnd(C)∗) = 1 + t2n−1 ←→ #(Ratnd(Fq)∗) = qd(n+1)(1− q−n). (5.3)
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5.2 Using point counts to search for higher cohomology

First we discuss the evidence, or lack thereof, for the maps in Theorems 1.4 and 1.5(a) to fail

to be rational homotopy equivalences on the nose, using the machinery of étale cohomology

introduced by Grothendieck and Deligne to prove the Weil conjectures.

The Hodge weights for the generators a2i−1 and ci in the cohomology rings

Hi(PGLm+1(C);Q) = Λ(a3, · · · , x2n+1) and

Hi(Gr(CPm,CPn);Q) = Q[c1, . . . , cm+1]/I,

where |a2i−1| = 2i− 1 and |ci| = 2i, are known to be −i. These correspond to the counts

# PGLm+1(Fq) =
(qm+1 − 1)(qm+1 − q) · · · (qm+1 − qm)

q − 1
and

# Gr(PmFq ,P
n
Fq) =

(qn+1 − 1) · · · (qn+1−m − 1)

(qm+1 − 1) · · · (q − 1)
.

In light of the fiber bundle (2.1) we thus have the following count:

Lemma 5.1. Fix integers 1 ≤ m ≤ n. Then for any prime power q, we have

# Alg1(PmFq ,P
n
Fq) =

(
qn+1 − 1

)
· · ·
(
qn+1 − qm

)
q − 1

= q(n+1)(m+1) (1− q−(n+1)) · · · (1− q−(n−m+1))

q − 1

(5.4)

Assuming a sharp version of Theorem 1.4, we could compute # Algd(PmFq ,P
n
Fq) for d > 1

by appealing to the naturality of spectral sequences and algebraic maps with respect to

Hodge weights. Under these conditions, we would arrive at the count

# Algd(PmFq ,P
n
Fq) = q(n+1)(m+d

d )

(
1− q−(n+1)

)
· · ·
(

1− q−(n−m+1)
)

q − 1
(5.5)
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simply by using codimensions of the subvariety

ψ
m,n
d (Alg1(CPm,CPn)) ⊂ Algd(CPm,CPn)

to modify the leading power of q. Such a result would also give a generalization of the count

established by Farb–Wolfson [FW15], in the form

# Algf (Fq) = q(n+1)(m+d−1
d−1 )

(
1− q−(n−m+1)

)
(5.6)

for each choice of map f ∈ Algd(Pm−1
Fq ,PnFq).

We have carried out point counts via SageMath of the associated spaces for small values

of m,n, d and q (namely m = n = 2, d ≤ 4 and small prime powers as prohibited by

computational limitations) and arrived at exactly the counts predicted by (5.5). It should

be noted that the cardinalities # Algf (Fq) are an auxiliary result of these computations

and in all cases they have matched the prediction (5.6)—that is, they have not depended

on f beyond the data of d, m, and n. This coincidence is surprising because it is not even

clear when the restriction Algd(CPm,CPn)→ Algd(CPm−1,CPn) is a bundle in the analytic

topology.

Such numerical data does not prove the stronger result of rational homotopy equivalence

even in this small extended range, even if they could be carried out for all prime powers q,

but nonetheless the counts are encouraging.

5.3 Predicting the topology of non-degenerate maps

We conclude with a final calculation: computing the number of non-degenerate algebraic

morphisms P1 → Pn of degree d defined over an arbitrary finite field Fq. This can be thought

of as a number-theoretic extension of Corollary 3.3, in light of the previous discussion.
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Proof of Theorem 1.7. The spectral sequence (2.6) is reflected by the point count formula

Ratnd(Fq) =
n∑
r=1

MRatrd(Fq)
(
n+ 1

r + 1

)
q
, (5.7)

where
(n+1
r+1

)
q

:=
(qn+1−1)···(qn+1−r−1)

(qr+1−1)···(q−1)
is the Gaussian binomial coefficient. With the count

Ratnd(Fq) = q(d−1)(n+1) (qn − 1)(qn+1 − 1)

q − 1
(5.8)

and the base case MRat1
d(Fq) = Rat1

d(Fq) = q2(d−1)(q2 − 1), the claim follows by induction.

Taking this point count as a prediction for the singular homology of the varieties MRatnd(C),

together with the use of Hodge weights, we indeed arrive at a conjecture which would extend

Corollary 3.3. The associated spectral sequence (2.6), which would include many nonzero

differentials but collapses at the E2 page, correctly computes the cohomology calculated

in Corollary 1.2. Moreover, in light of the work by Farb–Wolfson–Wood [FWW16], the

prediction should be expressed using the language of homological density:

Conjecture 5.2 (Spherical homological density). Fix integers 1 < n < d. Then

Pt(MRatnd(C))

Pt(Ratnd(C))
=
n−1∏
i=1

(1 + t2(d−i)−1). (5.9)

Note that, if true, the same result would hold when stated with based mapping spaces,

where rational functions correspond to configurations of so-called colored points. Such a

statement could therefore be interpreted as a homological density statement regarding the

subspace of configurations which produce non-degenerate maps, predicted by arithmetic.
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