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ABSTRACT

This thesis sets out to develop a general method for inductively studying spaces of maps
into complex projective space in terms of subspaces of (non-)degenerate functions and to
exhibit unexpected phenomenon therein. For historical reasons, we describe this method
using Alg(CP™, CP"), the quasiprojective variety of degree d algebraic morphisms (a.k.a.
holomorphic maps) CP" — CP" for m < n, as a primary example. In Chapters 3 and 4, we
compute the associated Q-cohomology ring of Alg,;(CP™ CP™) explicitly in the case m = 1
and stably for when m > 1, exhibiting homological stability as shown by Segal [Seg79],
Mostovoy [Mos03], Farb—Wolfson [FW15], and others, as well as unexpected phenomenon
regarding a particular subspace of degenerate maps. We also prove, when m = n, that the
orbit space Rat (CP", CP"™)/PGL,,+1(C) under the action on the target is Q-acyclic up
through dimension d — 2, partially generalizing a result of Milgram [Mil97]. In Chapter 5,
using point counts and the Grothendieck—Lefschetz trace formula in étale cohomology, we

conclude with a homological density conjecture regarding the subspace of non-degenerate

functions CP! — CP".



CHAPTER 1
INTRODUCTION

Any holomorphic map f : CP"™ — CP"™, m < n, can be represented as

f(z) =1fo(2) s - = fu(2)] (1.1)

where each f; € Clzg,. .., zmn] is homogeneous of a common degree d and together have no

common root. The degree of f is also characterized by a purely topological formula:

ff(wepn) = d - wepm, (1.2)

where we write wy € H?(X;R) to denote the symplectic form of a Kéhler manifold X. This
representation (1.1) is unique up to scaling, so the space of all such maps Alg,(CP"™ CP") is
a projective resultant complement of complex dimension (n + 1) (m;}—d) —1: see, for example,

[DDO00] for more details on resultant polynomials.

In the m = 1 case, these functions are historically called rational maps and the notation
Rat”(C) = Algy(CP!, CP")

is used. In 1979, based on intuition from Morse theory, Segal [Seg79] proved that the inclusion

Rat"(C) < Mapy(CP!, CP") (1.3)

is a homotopy equivalence through dimension (2n—1)d, where Map; (CP™, CP") is the space
of continuous maps satisfying (1.2) equipped with the compact-open topology. This seminal
work inspired many generalizations, for example extending the domain to genus g > 1 curves
and the target to Grassmannians or toric varieties; see, for example, [BHM99, CCMM91,

Gue9s, GKY98, KM97, Kir85|. In many cases, these spaces are the minimal sets of some
1



energy functional defined on the space of smooth maps and hence are intimately connected
to the study of harmonic functions.

To date, most of the tools used to study the topology of such spaces only make sense when
the domain has complex dimension 1—that is, when the potential singularities arising in ra-
tional maps are restricted only to discrete sets of points. The work of Kozlowski—Yamaguchi
[KY03] and Sasao [Sas74] on linear maps, together with Segal-style stability calculations due
to Mostovoy [Mos03, Mos12] and Munguia-Villanueva [MMV12], are apparently the only
results when the domain has complex dimension greater than 1. In particular, Mostovoy
[Mos12] proved that inclusion of holomorphic maps into the space of continuous functions

induces isomorphisms
H;(Algy(CP™, CP"); Z) — H;(Mapy(CP™, CP"); Z)

for2<m<mnandi<d(2n—-2m-+1)—2.
In 2015, Farb-Wolfson [FW15] showed that the Betti numbers for spaces of based rational
maps CP! — CP", written as Rat//(C)*, are independent of the degree d. Their proof

involved inducting on degree by “bringing in zeroes from infinity” via a (non-algebraic) map
Rat}(C)* x C"*! — Rat, | (C)*

inducing isomorphisms on compactly supported rational cohomology. On the other hand,

by observing that the embedding @Z):Zn’n : Algy (CP™, CP") — Alg,(CP™, CP") given by

P (20 s em)) = F(EE e 28)) (1.4)

induces the map 1 +— d"" on fundamental groups when m = n, Yamaguchi [Yam04] computed
that m1 (Algy(CP™, CP™)) = Z/(m+1)d™Z. Our first result explains the invariance of degree

observed by Farb-Wolfson using the homomorphisms induced by ¢} := z/;cll’n.



Theorem 1.1 (Sharp Q-homological stability of Rat/;(C)). Fizn,d > 1. Then
Uy« Hi(Raty(C); Q) — H;(Rat;(C); Q)

is an isomorphism for all i > 0. In particular, H;(Rat};(C); Q) does not depend on d.

Before proceeding, we recall that Kozlowski-Yamaguchi [KY03] showed that the U(n+1)-
action by post-composition induces a homotopy equivalence between Alg;(CP"*, CP") and
the complex projective Stiefel manifold PW,;, 11 5,41(C) of orthonormal (m + 1)-frames in

C"*1. The latter space is defined as the quotient
PWon1041(C) i= U + 1)/ (Apys1 x Ul — m)) (15)
where Ay =2 U(1) is the center of U(¢) and ¢ : PWy,, 1 5,41(C) — Algy (CP™, CP") given by
WA (0t ml) o= Azt 2 0+ ) (16)

is a homotopy equivalence corresponding to the Gram—Schmidt process. The topology of
Stiefel manifolds is well known: see, for example, [AGMP99, Rui69].
The composition of (rational) equivalences wg o, alternatively thought of as inclusion of

the U(n + 1)-orbit of the element j); € Rat];(C) given by
i (wo 1)) =[x s a0 -2 0],

is the subject of our next result. We remark that the cohomology presentation that follows

is a special case of Theorem 1.5 and Corollary 2.3 of Kallel and Salvatore [KS03].



Corollary 1.2 (Cohomology as a unitary orbit). The map
'(/)g or:PWy 1 1(C) — Ratg((C) (1.7)
1s a rational homotopy equivalence. Hence, there is an isomorphism of graded Q-algebras

H*(Ratg(C); Q) = H*(PWa,,41(C); Q) = Qlyl/ (v") ® A(x), (1.8)

where ly| =2 and |x| =2n+ 1, for all d > 1.

In Section 2 we define subspaces of Rat];(C) and, more generally, of Alg;(CP", CP") by

maps whose image projectively span subspaces of a fixed dimension:

"Rat]j(C) == {f € Rat};(C) : dim Ly = r} and, more generally,

"Alg)""(C) == {f € Algy(CP™,CP") : dim Ly = r},

where L is the intersection of all planes containing f(CP"™). The subspace mAlg?’n(C),
which can be thought of as the subvariety of “most degenerate” maps, arises naturally since
Ly = L%n,n ) in an algebraically closed field, so the image of 7,/12”’“ actually lands in this

subvariety. We distinguish targets by writing

mn

mAlg)""(C) %4, Alg,(CP™,CP")

qu”’”T % ' (1.9)

Alg; (CP™, CP")

In the m = 1 case, where we shorten ¢7; = gzﬁcll’n and o)) = acli’n, we will show in Chapter

3 that all maps in the above diagram are rational homotopy equivalences. More generally,

when m > 1, the maps will be shown to be rational isomorphisms in particular ranges.



Next, recall that a subset Y C CP" is said to be degenerate if Y is contained in a
hyperplane of CP", and that a map f : X — CP" is said to be degenerate if the image f(X)
is degenerate. In this paper we will also study the subspaces of non-degenerate maps

»Rat](C) = "Rat);(C) = {f € Ratj(C) : f is non-degenerate} and
JAlg) " (C) == "Alg"" (C) = {f € Algy(CP™,CP") : f is non-degenerate},
where ,Rat!/(C) = @ for all n > d and more generally AAlg:ln’n((C) =@ for all n > (mrj;d).

Our main result concerns the varieties 1RatZ((C) and ,Rat};(C), the subspaces of “most

degenerate” and non-degenerate maps, respectively. Whenever d < n, the variety dRatg(C)

of “least degenerate” maps is also of note. Part (b) of these results extend a result of

Crawford (Theorem A of [Cra93]) and are further extended in Theorem 1.5 of this paper.
Theorem 1.3 (Topology of non-degenerate rational maps). Fizn,d > 1.
(a) The inclusion o}y : 1Ratg((C) — Rat}}(C) is a rational homotopy equivalence.

(b) If d > n then the inclusion of non-degenerate maps induces an isomorphism
H;(,Rat}(C);Z) — H;(Raty(C); Z),
for alli < 2(d —n). If instead d < n, then inclusion induces an isomorphism
H;(“Raty;(C); Z) — H;(Rat;(C); Z),
for alli < 2(n —d). Moreover, in this case, there is an identification

IRat?(C) = Alg; (CPY, CP") ~ PWy, 1 11 (C). (1.10)



Part (a) of Theorem 1.3 is clear: the subspace of “most degenerate” functions CP! — CP”
carries all the rational homological data of Rat}(C). However, the latter results take some
digesting. In words, the first part of Theorem 1.3(b) states that, as d grows with n fixed, the
homology of the non-degenerate maps becomes a better approximation for the entire space of
rational maps. On the other hand, as n grows with d fixed, the homology of Rat;(C) becomes
well-approximated by a projective Stiefel manifold, simply because most of the elements of

the space can be identified in some precise sense with the standard rational normal curve

Vg cp! — cp?
(1.11)
va(lzg = x1]) = [xg : nglxl Deee xoxcllfl : x‘li]

Moreover, while 1Rat3((C) — Rat;(C) is a rational homotopy equivalence, the inclusion

fails to be an isomorphism integrally if n > 1; we will show in Chapter 2 that
m (1Rat™(C)) = Z/dZ # 0 = 71 (Rat’}(C)).
Further, the bounds in Theorem 1.3(b) are sharp; in Chapter 2, for all d > 2, we compute
H.(,Rat?(C); Q) = H.(Rat3(C) x §2173;Q), (1.12)

a result which is originally due to Crawford [Cra93].

As foreshadowed by our more general notation, versions of these results hold when the
domain CP! is replaced by CP™ for m > 1. However, difficulties arise in general because
the modified Vassiliev [Vas14] machinery of truncated resolutions as used by Mostovoy and
Munguia-Villanueva [Mos03, Mos12, MMV 12] is the only method used thus far to understand
spaces of polynomial maps CP"" — Y when m > 1. In particular, results involving rational

homology become isomorphisms in a stable range rather than outright equivalences:



Theorem 1.4 (Q-homological stability of Alg,(CP"™, CP")). Fiz1 <m <n and1 <d.

Then the induced homomorphism
vy ", Hi(Alg (CP™, CP"); Q) — H;(Algy(CP™,CP"); Q),
is an isomorphism for all 0 < i < d(2n —2m + 1) — 1. The stable cohomology is given by

H* (PWm+1,n+1(C>§ Q) = Q[y]/(yn—m+1> ® A(xQ(n—m)—i—?)v S Top), (1.13)

where |y| = 2 and |v9j41| =25+ 1 for alln —m < j <n.

Accordingly, this theorem permits a similar set of results regarding the subspaces of most

degenerate, non-degenerate, and least-degenerate holomorphic functions:
Theorem 1.5 (Topology of non-degenerate algebraic maps). Fiz 1 <m <mn, 1 <d.

(a) The homomorphism induced by inclusion of most-degenerate maps,
og ", Hi("Algy ™" (C); Q) — Hi(Algy(CP™, CP"); Q),

s an 1somorphism for all 1 < d — 1.

(b) If (m%d) > n+ 1 then the inclusion of non-degenerate maps induces an isomorphism
H;(,Alg)""(C); Z) — H;(Algy(CP™, CP"); Z),

for all i < Q(m;;d) —2(n+1). If instead (mntd) < n+1, then there is an embedding

inducing an integral homology isomorphism through dimension 2(n + 1) — 2(m7;;d).



In 1997, Milgram [Mil97] studied the orbit space X; = Ratcli((C)/PGLQ(C) under the
post-composition action on the target CP!, exhibiting an isomorphism to the Q-acyclic
space of all projective classes of non-singular d x d Toeplitz matrices. In 2004, Yamaguchi
[Yam04] considered the more generalized space X" := Rat(CP™, CP"™)/PGLy,41(C) and
proved that 71 (X)) = Z/d"™Z. More recently, in 2019, Bergeron-Filom-Nariman [BFN19]
recovered Milgram’s result and also proved a similar theorem for the more complicated
quotient under the conjugation action.

In this paper we generalize Milgram’s result, albeit in weaker form:
Corollary 1.6. Fizm > 1 and d > 3. Then H;(X]";Q) =0 for all0 <i<d—1.

In the context of maps CP"" — CP", we ultimately have the following setup:

m,n

Alg; (CP™, CP") Vi, Alg;(CP™, CP") < Map,(CP™, CP"),

where the composite map is a rational homotopy equivalence and the rightmost map is an
integral homology equivalence in a stable range. In the case when m = 1, as suggested by
the results of Farb—Wolfson [FW15], each map is a rational equivalence; if this were the case
when m > 1, Equation 1.13 would describe H*(Alg,(CP™, CP");Q) for any d, the induced
maps in Theorem 1.5(a) would be outright isomorphisms, and X" would be truly Q-acyclic.

Although in principal the space Alg;(CP"™, CP") could have rational homology outside
the stable range established by Mostovoy [Mos03, Mos12], to date there is no calculation
known to the author which has indicated the above maps are strictly stable rational isomor-
phisms. Indeed, there is some number-theoretic evidence discussed in Chapter 5 to suggest
(or at least not disprove) that no such additional homology exists, using the machinery of
étale cohomology theory introduced by Grothendieck to prove the Weil conjectures.

Our last result concerns counting the number of solutions to the equations defining the

variety ,Rat];(C) over a fixed finite field Fg, written # ,Rat};(F;). We compute:



Theorem 1.7. For any 1 <n < d and q a prime power,
# ,Rat}j(Fy) = @202 (¢ 1) (@ (@ - D g+ g7 (115)
In particular, the probability of a random element f € Rat]}(Fq) being non-degenerate is
(1— g =Dy (1 — g (d+l=n)y, (1.16)

In addition to counting, Weil established a much more general analogy between number
fields and function fields. The emerging notion of homological density [FWW16], defined as
the ratio of Poincaré polynomials Pr(A)/P;(X) for a subspace A C X, was introduced to
compare homological coincidences for spaces of 0-cycles with 19th century calculations, in
particular the limiting density ¢ K(mn)_1 of the set of relatively n-prime m-tuples of ideals
in a ring of integers O . All calculations thus far, such as (non-deg 2), support the following

topological interpretation of these point counts:

Conjecture 1.8 (Spherical homological density). Fiz integers 1 <n < d. Then

n n—1
—ij&ﬁ%ﬂlg? = Z:H1 (1+ 201y e Z[y). (1.17)

In Chapter 2, we establish notation used throughout the paper and define the subvarieties
AAlgl?’n(((:) and TAIg?’”((C). We also describe the general method used to understand
maps X — CP" developed in this paper, proving part (b) of Theorems 1.3 and 1.5 on the
way. Chapter 3 is devoted to Theorems 1.1 and 1.3 (a) on rational maps, while Chapter 4
studies the analogous Theorems 1.4, 1.5 (a), and 1.6 for holomorphic maps CP"* — CP".
Lastly, Chapter 5 discusses the interplay of arithmetic and topology, including Theorem 1.7,
homological density, and searching for evidence that Theorem 1.4 is not sharp.

We note that much of the which appears here has been submitted by the author [GGed]

to Research in the Mathematical Sciences, under the same title.
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CHAPTER 2
PRELIMINARIES, NOTATION, AND SETUP

In this Chapter we proceed in full generality, considering holomorphic maps CP"* — CP" for
any 1 < m < n, since there is nothing gained by specifying the m = 1 case here. Throughout

the paper we make use of the Poincaré series P;(X) associated to a space X, defined as

=Y dimg H'(X;Q) ¢!

1=0

We will also write X ~@ Y to denote a rational homotopy equivalence, meaning a map of

simply-connected spaces inducing isomorphisms on homotopy groups after tensoring with Q.

2.1 Stratification by degeneracy

Recall that the equivalence PW,;, 11 41(C) < Alg; (CP", CP") induced by the orbit of the

natural U(n + 1)-action can be thought of as an equivalence of bundles via Gram-Schmidt:

PGLyy+1(C) —— Alg; (CP™, CP")

=

PU(m +1) s PW,11.041(C) (2.1)

T

Gr(CP™, CP"),

where the projections assign an orthonormal frame [A] to its span and a map f to its image.
Our objective is to generalize this setup to nonlinear maps. While the author originally
believed what follows to be a novel construction, similar work was carried out in the 1993
thesis of Crawford [Cra93] using homotopy theory and with a focus on the n = 2 case.

For fixed 1 < m < n and d > 1 we define an increasing family of locally closed subspaces:

LAlg)""(C) == {f € Algy(CP",CP") : dim Ly < r}, (2.2)
10



where L is the projective span of the image f(CP"™). Equivalently, we can define IAlggn’n (C)

as the image of the following map:

{(f, P) € Algy(CP™,CP") x Gr(CP",CP") : po f =0 for all p € Ipgpn(P)}

Alg,(CP™, CP™),

where Igpn(P) is the homogeneous ideal defining the plane P, generated by n — r linear
polynomials, and the vertical map forgets P. It is often convenient for calculations to think
of the Grassmannian as the space of rank r + 1 Hermitian projections M in C"t! where a

plane P € Gr(CP", CP") corresponds (uniquely) to the column space of M:
Gr(CP",CP") 2 {M € mat ;4 1)x (nt1)(C) : M = M? = M' and Trace(M) =r + 1}.
With this setup, the condition on (f, M) € Z is im f C im M = ker(id —M). We write
"Algh""(C) = [Alg]""(C) — " 1Alg)""(C) = {f € Algy(CP™,CP") : dim Ly =r} (2.3)

to obtain a stratification of Alg;(CP", CP™) by varying r. Hence there is a spectral sequence

{Bi dy s B — B — HE (Algy(CP™, CPY): 2) (2.4)

with the Ej term given by the cohomology of the strata E{’S = HgJFS(TAng%n((C); Z). In

order to study these strata, we introduce notation for the particular case when n = r:
JAlgl"(C) == "Alg)""(C) = {f € Algyg(CP™,CP") : f is non-degenerate}. (2.5)
This space can be identified with the fiber of the map

Pd - TAlgzln’n(C) — Gr(CP",CP"),

11



given by pg(f) = Ly, over a fixed CP" C CP". Indeed, the map pg is a locally trivial fiber
bundle associated to the principle Stab(CP")-bundle that defines the Grassmannian variety
as a homogeneous space. All told, we have a spectral sequence computing the compactly

supported cohomology of Alg;(CP™ CP") in terms of the spaces of non-degenerate maps:

EV" = H{ " (,Alg)"" (C) Xgan(cpr) PGLny1(C); Z) = H{ ™ (Algy(CP™,CP"); Z)
(2.6)
Next we note that AAlggb’n(((:) = @ if n < m and that AAlggn’m((:) = Alg,(CP™, CP™).
More generally recall that, for an algebraic variety X, a rational map X — CP" can be

thought of as a choice of n + 1 sections oq,...,0n € H O(X ; L) of a line bundle L defined by

f(x) =loo(x) - - on(z)],
where the degree d of L corresponds to the degree of f. In fact there is a bijection

{V<HY%X:;L):dimV =n+1and V has no common zeroes}

+— {non-degenerate degree d morphisms X — CP"}/ Aut(CP").

Because the degree d monomials in m + 1 variables can be identified as a basis for the space

of global sections HY(CP™; O¢pm(d)), this bijection gives rise to a Zariski-open embedding
LAl ™(C)/ PGL,41(C) — Gr(n + 1, ("f%). (2.7)

Hence AAngL’T (C)=wifr> (m(_l"d). We also can count dimensions of the associated spaces:

dimg AAng?’n((C) =(n+ 1)(mjd) — 1 and
(2.8)

dimg "AlgT"(C) = (r + 1) ((n —r) + (m;d)) 1

12



2.2 Topology of (non-)degenerate maps

Recall that the rational normal curve is the smooth curve v, : CP! — cp? given by
va(lxg - x1]) = [xg : xg_lxl Do xoxcll_l : xﬁl] (2.9)

Moreover, every irreducible degree d non-degenerate curve in CP? is PGLg1(C)-conjugate

to the standard rational normal curve. By this uniqueness property, if n > d we see that

,Ratd(C) 2 PGLy,1(C) and
(2.10)

9Rat!}(C) = Alg; (CP4, CP") ~ PW g1 5,41(C).

This statement generalizes via the Veronese map v" : P(C™H) — P(Sym? C™ 1), given
by sending [z( : --- : ] to all possible monomials of total degree d. Hence we have the
following identification:
m+d m-4d
("a )T A1g" () = Algy (CP("a )1 CP?) ~ PW ), 4(C) (2.11)
whenever (m;d) <n+1.
We remark that, away from edge cases, the AAngl’r (C) are more difficult to understand

without a more sophisticated analysis, although minimal-degree non-degenerate varieties

have been classified due to Bertini: see, for example, [EH87].

Proof of Theorems 1.3 and 1.5 (b). The desired ranges come from the dimension counts
(2.8) and the identifications (2.10, 2.11), together with Poincaré duality and the spectral

sequence (2.6) computing the compactly supported homology of Alg,(CP™ CP"). ]

Corollary 2.1. Fixm,d > 1 andn < (m+d). Then AAng%’n(C) # & for any n < (m+d)-

m m

13



With these preliminaries established, the maps @b;n’n and gb&n’n from (1.9) given by

¢+ Algy (CP™, CP") — ™Alg""(C) and
¥+ Algy (CP™, CP") — Alg,(CP™, CP") via

v (A lzo o am]) = 0" () o aml) = f(laf s )

together constitute a morphism of bundles:

Algy(CP™, CP™) ——— ™Alg""(C)
PGLyy+1(C) — Alg, (CP™, CP") pa (2.12)

N

Gr(CP™, CP™).

Therefore much of this paper will rely on the rational homological data carried by wzln’m
We conclude with a computation of fundamental groups to confirm that the inclusion

mAngl’”((C) — Alg,(CP™, CP") fails to be a homotopy equivalence when m < n and d > 1.
Proposition 2.2. Fiz 1 <m <n and 1 <d. Then m (mAlg;n’n((C)) =7/d"Z.

Proof. Since m1(Alg(CP",CP")) = 0 whenever m < n by [Yam04], the result follows
directly by naturality of the long exact sequence in homotopy groups applied to gbzin’n

-7 =7/(m+1)d"Z .

T2(Gr(CP™, CP")) — m1(Alg™™(C)) —— m1(™Alg""(C)) —— 71 (Gr(CP™, CP"))

| [ | |

7a(Gr(CP™, CP™)) — 71 (PGLyy1(C)) — m1(Alg, (CP™, CP")) —— 71 (Gr(CP™, CE™)).

=z =2/(m+1)2 =0 A

14



CHAPTER 3
RATIONAL MAPS FROM CP!

The objective of this section is to prove Theorems 1.1 and 1.3(a). We will do so by showing

that both ¢!y and ¢ in the commutative diagram

IRat?(C) —24 Rat?(C)
d d

o] /% (3.1)

Rat](C).

are rational homotopy equivalences. Note that some of the results and methods in this
section can be found in the literature, for example [KS03, KY03], however we include the

proofs both for continuity and for their instructive use toward later calculations.

Proposition 3.1 (Kozlowski-Yamaguchi [KY03]). For any n > 1,
Pr(Rat}(C)) = (1+ 12 + - + 201y (1 4 27+ (3.2)
Proof. We begin with the evaluation fiber bundle used by Segal [Seg79] and many others
Rat](C)* — Rat}(C) — CP",

whose Serre spectral sequence is determined by the Fo,, transgression. There is a deformation

retract Rat}(C)* ~ 527=1 dual to the inclusion is given by

i: 8%l c et < Ratf(C)*

i(by, ... bn)([z0 - 21]) = [20 : boz1 : -+ = bpz].

We can deformation retract the total space fiberwise to a space E' wherein the fiber Fj

over a line ¢ € CP" is C"+1 /€ —0. In fact, E is isomorphic to TCP"™ — 0, where 0 is the zero
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section, via the map

7 E < Hom(v,y") = TCP"

T(0)(0) = v,

where v is the tautological bundle. Thus we can compute the transgression in terms of the

top Chern class ¢, (TCP") = (n + 1)c", where ¢ = wep1 € H 2(CP"; Z) is the Kéhler form:

q A
2n — 1| Za - Zac e Zac"
\
0 | Z Zc Zc" .
0 2 2n b
In particular, Ho,_1(Rat}(C);Z) = Z/(n + 1)Z is the only torsion term. O

We remark that attempting to write down a section of Rat}(C) — CP" amounts to
making a continuous choice of a line distinct to the one determined by f(oc). Indeed, by

identifying these linear maps with matrices, the projection map takes the simple form

ap by
= lag -t ap).

ap by

No such section exists since the transgression is nonzero. We will show in Section 4 that the
bundle one uses to generalize this proof to Algy (CP™, CP") sends a full-rank (n+1) x (m+1)
matrix to a (n + 1) X m matrix by forgetting the last column. As we have just seen in the
previous proof, the spectral sequence boils down to computing a single transgression whose
non-triviality is tantamount to the impossibility of continuously picking a line distinct from

a varying m-plane in C"t1,
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Proof of Theorem 1.1. In the context of continuous based functions CP! — CP", we define

0" : Mapj(CP!, CP") — Map};(CP!, CP")
o . _ d..d
d (Mo = x1]) = f(lag - 29])-
Mgller [Mgl84] showed that Map:l((CIP’l, CP") is 2(n—1)-connected, that the homotopy group

mon—1(Mapjy(CP!,CP")) = Z,

and that 93’* is multiplication by d on 79, 1. On the other hand, 9’7 induces a bundle map:

Rat!}(C)* «—— Rat};(C)

B

g2n—1 Ratn C)* —— Ratn F f(o0) (3.3)

fom

CP",

where @Zzgl is the restriction to the based rational maps, as studied in Proposition 2.2 of

[KS03]. We apply Segal’s stability [Seg79] for Rat!}(C)* — Map;"l(ClPl, CP™) to see that
W' Hop—1(Rat}(C)*; Z) — Hay—1(Rat]}(C)*; Z) (3.4)

is multiplication by d and therefore an isomorphism after tensoring with Q:

2 by Segal
—_

12

Hap—1(Rat!}(C)*; Z) Hap—1(Map}j(CP!, CP"); Z)

wZZ’*T Y

Hop—1(Rat?(C)*; Z) Hay,—1(Map}(CPL,CP"); Z) = Z.

Z

= by Segal
Since H*(Rat);(C)*; Q) = H*(S?=1.Q) for all d, as shown in [CCMM91] and [FW15],
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the bundles in (3.3) induce spectral sequences whose only differential is the E?" transgression.

The connecting homomorphism (3.4) between the spectral sequences is an isomorphism, so

they must coincide with rational coefficients:

q AN g by (3.4) q AN
2n — 1| Qa [Qac| --- |Qac" 2n — 11 Qa | Qac - - Qac"
=~ by Prop 3.1
0| Q[ Qc|--7Q" 0| Q[ Qc - JQ"
0 2 m P |02 2 P

In fact, we have shown that the EQ”(Ratg((C)) transgression map can be identified with

multiplication by (n + 1)d:

1 1d
Hop(CPz) 22UV gy (Rat?(C); 2)
H Tln—>d

Hon(CP™ 2) — a7 Hoan-1(Rat] (C)5 Z).

For more details, see [KS03] which computes Hy(Rat};(C)) with arbitrary field coefficients.
[l

The previous proof can be done entirely in the holomorphic category, much in the style
of Lemmas 3.1 and 3.10 in [BFN19]; note that the map ¥, in question traces out the

PGLj,41(C)-orbit via post-composition of the element j} € Rat];(C) given by

Jglzo = x1]) = [:Eg:mil:O:---:O].

We have chosen to include the previous proof due to its thematic suitability for this paper,

as well as its consistency with the style of proof in Chapter 4.
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Lemma 3.2. Fix integers d,n > 1. Then the induced map
G+ Hi(Rat}(C); Q) — H;('Rat}j(C); Q)

1s an isomorphism for all i > 0.

Proof. As in the proof of Theorem 1.1, we will show the bundle morphism

Ratd( 1Ratg(C)

2 g

PGLy(C) — Rat}(C) pd (3.5)

T

Cr(CP!, CP").

induces a natural isomorphism between the Serre spectral sequences after tensoring with Q.

To be explicit, both sequences are determined by their E4 transgression, since
P(PGLy(C)) = Py(Rath(C)) =1 4¢3 (3.6)
by Proposition 3.1. The connecting map
Ui, o 3(Rat](C)) = H3(PGLy(C): Q) — Hz(Ratg(C): Q) = Ejs('Ratg(C))  (3.7)

between the spectral sequences is an isomorphism by Theorem 1.1, so the differentials in each

sequence have the same rank as in the previous proof. The result follows by naturality. [J

Proof of Theorem 1.3. We have shown that two of the three maps, ¥ and ¢, in the com-

mutative diagram (3.1) are rational equivalences. Hence o7 is also a rational equivalence. [J
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One can now compute the groups H( »Rat!(C); Q) inductively via the spectral sequence
(2.6), where the first column and the abutted cohomology have Betti numbers given by (3.2).

In particular, it is easy to show the following corollary:

Corollary 3.3. For any d > 2,
Pi(,Rat3(C)) = Py(Rat3(C) x $273) = (1 + t2)(1 + £3)(1 4 12373). (3.8)

Proof. Using Pt(Ratz((C)) = Pt(lRatz((C)) — (1 + t?)(1 4 t3), together with the di mension

counts (2.8), we have the compactly supported cohomology groups:

§
) 5 Q i=6d—-1,6d+1,6d+ 2,6d+ 4

Hé(Ratd((C); Q) = and

0  otherwise

> (3.9)

(
i1 5 Q i=4d+1,4d+3,4d+4,4d+ 6
H.("Raty(C); Q) =
0  otherwise

\

The result follows by the long exact sequence in compactly supported cohomology.

]

We note that this result was first proved, via different methods, by Crawford [Cra93]. In

Chapter 5 we discuss how arithmetic predicts the Betti numbers of ,Rat/;(C) for n > 2.
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CHAPTER 4
MAPS FROM CP¥, M > 1

Unfortunately, the convenient equivalence SZn—1 ~@ Ratj(C)* does not hold when the

domain has complex dimension m > 1. In fact, we will show the following:

Proposition 4.1. Fiz 1 <m <n andd > 1. Then
H*(Map(CP™, CP"); Q) = A@o(n—m)+1> " T2n+1), (4.1)

where |r9; 1| =25+ 1 for alln —m < j <n.

In order to proceed, we must generalize the m = 1 technique of the evaluation fibration in
a way which respects the maps w:ln’n and ¢?’n, but provides a fiber that is easier to analyze.
An important observation is that evaluating f : CP! — CP" at co € CP! is the same as
restricting f to a particular CP? ¢ CP!, which gives an alternative means of generalization:
for maps CP™ — CP", we can restrict to a fixed hyperplane CP™~1 ¢ CP™. The advantage,
as we shall see in the following analysis, is two-fold. In the continuous category, the simple
form of the quotient CP™/CP™~! 2 §27 allows for straightforward inductive arguments
via fibrations; in the holomorphic category, the fiber has a resultant locus which is easier to
describe than Alg’(CP™, CP").

To study such a restriction map we must also introduce notation to describe its fibers.
Given a holomorphic map f : CP™~1 — CP" and the usual inclusion i : CP™~1 — CP™

into the first m coordinates, setting d = deg(f), we define a subvariety of maps as follows:

Algf((C) = {g € Algy(CP"" CP") : goi= f}.

The space Alg;(C) is a quasi-affine variety of dimension (mj_df 1) (n+1). We use the same
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notation in the context of continuous maps:
Map s = {g € Mapgy(CP",CP") : goi= f}.

These spaces come equipped with a natural basepoint, namely f.

4.1 The continuous category

The usual inclusion i : CP ! <3 CP™ induces a restriction fibration
Map < Mapg(CP"™, CP") — Mapy(CP™ 1, CP"). (4.2)

Moreover, since CP™ can be identified with the mapping cone of the Hopf map h : §2m—1 —
CP™ 1L, it follows that there is an equivalence Map = Q2MCP". To be more precise, recall

the construction of CP™ 1 as the (2m — 1)-skeleton of CP™:
CP™ = CP™ tu;, D> = cP™ 1y, (5?1,

where C' is the reduced cone. Via collapsing the boundary of a smaller 2m-disc inside D™,

and writing ¥ for the reduced suspension, we have a co-action map
v CP™ = P LU, o821 & (CPm—l Uy, 0(52m—1)) v R (s2m=1y — cpm oy §2m,

This, in turn, gives rise to a pairing defined by

1 Map p x Q2 CP" — Map
(4.3)

gxs=Vo(fVs)or,

where V : CP"VCP" — CP" is the usual folding map. Pairing with a fixed element in Map

induces the desired equivalence Q2MCP" ~ Map . For more details, see [Sas74, Mpl84).
22



Lemma 4.2. Fiz 1 <m <n. Then Q*™CP" is 2(n — m)-connected,
2 ~
To(n—m)4+1(27"CP") = Z,

and there is a rational homotopy equivalence §2(n—m)+1 & o2mepn,

Proof. The equivalence comes from the Hopf map extended to a sequence
e PGt g2mept — 02 lgl L QCPT - ST — 2L Cp,

where every two consecutive maps is a fibration, by the standard loop space construction.
Due to the equivalence Q2151 ~ & we see that Q2752n+l _y O2MCP" is a weak equiva-

lence. Therefore, for i« > 0, we have
T (QPMCP") =2 749 (S*T1),

which gives the claim on connectivity and T9(n—m)+1-
Lastly, the map S2(n=—m)+1 _ 2mg2n+l tha¢ g adjoint via reduced suspension to the

identity map y2mg2(n—m)+1 _y ¢2n+1 iy qyces isomorphisms
Wi(SQ(n—m)—l—1> N Wi<92m82n+1).

for ¢ < 4(n — m) by the Freudenthal suspension theorem. The result follows by tensoring

with @ and recalling the rational homotopy of odd-dimensional spheres due to Serre. O]

We enumerate a particular basepoint jzin’n € Alg,y(CP™, CP") by

.m,n

74 ([xg: - :xm]) ::[xg:-~~::r;g1:():~~:0},

that we use in referring to two other results from the literature:
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Lemma 4.3. Firl<m<nandd>1. Then

(a) (Sasao, [Sas?4]) Inclusion induces a rational homotopy equivalence

~

PW 1 1011(C) = Algy (CP™, CP") —> Mapy (CP"™, CP").

b) (Moller, [Mol84]/) The map g Map .m—1,n = Map .m—1,n given by
d j j
1 d

Hm,n/

d (9) ::gojzln,m

induces multiplication by d™ on T9(n—m)+1-
Armed with these lemmas, we can prove the following:

Proposition 4.4. Fix integers 1 <m < n and d > 1. Then the map
0" : Mapy (CP™, CP") — Map,(CP™, CP")
gien by Hy’n(g) =go j:in’m 1 a rational homotopy equivalence. Hence

H*(Mapd(cpm, CPn)Q Q) = Q[y]/(ynierl) ® A(x2(n—m)+37 e ax2n+1)a (4-4>

where |y| = 2 and |v9j41| =25 + 1 for alln —m < j <n.
Proof. The argument is similar to that of Theorem 1.1 in Section 3, by induction on m:

Map =L —— Mapy( (CIP’m , CPP™)

Map .m—1.n > Mapy (CP™, CP") Mapd Pm L cpn) (4.5)

’ /
-1,
A

Map; (CP™~ L CP")
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The inductive hypothesis yields a morphism of spectral sequences, where each is determined

by the transgression on the E2(n—m+1) page:

H2(nfm+1) (Mapd(cpm_lv CP”)a @) E— H2(n—m)+1(Q2mCPn; Q)
= by hypothesis T Tg by [Mgl84]
Ho(n—m-41)(Mapy (CB™ 1, CP"); Q) et Honm) 41 (27 CP™: Q).

The result then follows by naturality. Alternatively, one can use the long exact sequence in
(rational) homotopy groups and the Five Lemma to reach the same conclusion.

The former method allows one to additionally recover a result due to Mgller,
H L (Mapy (CP™, CP"); Z) 2 Z/ ()™ Z,

which shows that the components of Map(CP™, CP™) are not homotopy equivalent in general.
m
We can prove a similar result when switching to based maps:
Proof of Proposition 4.1. As before, we proceed by induction on m by noting that the fibra-
tion (4.2) makes sense when preserving basepoints:

Map < Map’;(CP"™, CP") — Map’;(CP™ 1, CP").

Simply for range reasons, together with the multiplicative structure of the Serre spectral
sequence, there are no differentials which can be nonzero and we can conclude that there is

an isomorphism of graded Q-vector spaces
H.(Map}(CP™, CP"); Q) = H.(Map},(CP™ ! CP") x s2(n=m)+1. ).

The ring structure can be deduced from the evaluation fibration and Proposition 4.4. O]
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4.2 The holomorphic category

In the holomorphic category, the restriction map
R : Alg,(CP™ CP") — Algy(CP™ ! CP")

is not necessarily a fiber bundle. However, Thom’s isotopy lemma can be applied to produce
a finite filtration Fy C Fy C --- C Fy = Algg(CP™~1 CP") wherein R is a fiber bundle over
each connected component of the strata Fj 1 — Fj. : see [Mos03] for details. However, in
the d = 1 case, the restriction map becomes a family of bundles familiar from the classical
study of Stiefel manifolds. As such, we begin with the linear case.

For any f € Alg;(CP™, CP"), it is not hard to see that there is a homotopy equivalence
Algf(C) = C™ x (C"mF1 - 0) o g2n=m)+L
For example, the inclusion map 7 : S2(n-m)+1 _, Algj{n—Ln(C) given by
i(bgy . bp—m)([z0: - zm]) =20 Zm=1:b02m : -+ bp—mzm) (4.6)

is dual to a deformation retract Algjm_Ln((C) — §2(n=m)+1 Hence the E2(F+1) transgres-
1

sion determines the Serre spectral sequence induced by the restriction map R:

Q= Hyi1) (Algn10(C Q) 5 Hopyn (9450 2 @

As in the proof of Proposition 3.1, this map is determined by the primary obstruction class
as computed by Sasao [Sas74]: the differential is J(1) = (n;rbl)

We are now equipped to conclude this section by proving the remaining theorems.
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Proof of Theorem 1.4. We have the following commutative diagram:

Alg(CP™, CP") —— Map,(CP™, CP")

] I

Given Lemma 4.3 and Proposition 4.4, the composition Alg; (CP™ CP") — Map,(CP™, CP")
is a rational equivalence. The result follows by Mostovoy’s stability theorem [Mos12], which

shows that the top map is a homology equivalence for i < d(2n —2m + 1) — 1. O
Having studied 7,031’” on rational homology, we can show the final two results:

Proof of Theorem 1.5 (a). As above, we consider bundle morphism (2.12) and the induced
connecting morphisms on the resulting Serre spectral sequences. By Theorem 1.4, the map
on fibers is a rational homotopy equivalence in the range i < d —1 and we can conclude that
the same is true of the map qﬁ&n’n : Algy (CP™,CP") — mAlg?’n(C).

Because w;n’n factors through qﬁgl’n and has a much larger isomorphism range, namely
i < d(2n—2m+1)—1, the result follows. Indeed, using this fact, one can make the additional

statement that the inclusion
oy M AIgl " (C) — Algy(CP™,CP")

induces epimorphisms on rational homology through the range i < d(2n —2m +1) — 1. O

Proof of Corollary 1.6. We proceed using the Leray-Hirsch theorem. As the PGL,,41(C)-
action is free and proper, the quotient map Algy(CP™, CP™) — X7 is a fiber bundle. Hence

the desired result amounts to proving that the inclusion of an orbit induces an epimorphism
H' (Algg(CP™, CP™); Q) — H'(PGLyy11(C); Q)

for all ¢ < d — 1. This is precisely the content of Theorem 1.4. O
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CHAPTER 5
ARITHMETIC OF ALGEBRAIC MAPS

5.1 Interplay of topology and arithmetic

The resultant polynomials used to define Alg;(CP"™, CP") are defined over Z and hence
make sense over any field, in particular Iy and Fq. Counting the Fg-points of these varieties
is connected to topology via étale cohomology, together with the Grothendieck—Lefschetz
trace formula. By means of various comparison and base change theorems, predictions can
be made of topology by arithmetic [Chel9] and vice versa [FW15].

In short, if Y is a variety over Z, one can reduce modulo an appropriate prime to obtain
a variety over [Fy just as easily as one can extend scalars. Hence one can associate to Y the

étale cohomology H

et(Y/I_Fq3 Qy), where ¢ is prime to ¢, and at the same time associate the

usual singular cohomology groups H*(Y(C); Q). In many instances, in particular when Y is

a smooth projective variety, one can also establish a natural isomorphism
Hi (Y, ; Qo) = H'(Y(C); Q) @ Qy, (5.1)

away from a finite (often empty) set of characteristics: see [Del77].

Recall that, for any variety ¥ defined over Fy, we can define the Frobenius endomorphism
Froby : Y(Fy) — Y (F,) via

Froby(z) = z1.

We proceed using Hasse’s fundamental observation, that the set Y (Fy) can be extracted

from Y (F;) as the fixed points of the Frobenius map:

HY (Fy) = # Fix (Frobg : Y (Fy) — Y (F,)) .
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In topology, the classical Lefschetz fixed point theorem is used to count fixed points of a
continuous endomorphism f : Y(C) — Y (C) in terms of the traces of the induced maps on
singular homology. Fortunately, there is an analogous result for étale cohomology: the vector
spaces Hét (Y/]Fq ; Q) come as representations of the Galois group Gal(F,/F;), wherein the
eigenvalues of the induced Frobenius action on étale cohomology are known as weights. The
key result we reference is the Grothendieck—Lefschetz trace formula [Mill3], allowing us to

compute the number #Y (Fy) in terms of these weights:

#Y (Fy) = Z(—l)Z Trace(Froby : Hét(Y/I—Fq Q) — Hét(Y/Fq Q).
120

Unfortunately Alg,;(CP™ CP") is not projective, so we cannot directly use the trace for-
mula together with (5.1) to count points. To remedy this, we use the fact that Grothendieck—
Lefschetz holds for any variety of finite type if we switch to compactly supported étale

cohomology [Del77]. When Y is smooth we can apply Poincaré duality [Mill3]:

Hi (Y5, Q) = HZ ™ (Vg 5 Q= dimY))*

where * stands for the dual and Qy(j) denotes a shift in Galois representations. Therefore

for any smooth—but not necessarily projective—variety we have the modified formula:

#Y (Fy) dunYZ ) Trace(Frob, : Hét,c<Y/Fq :Qp)"). (5.2)
1>0

Deligne proved that the eigenvalues of Frobenius on H’ &t c(Y/]F ; Qy) have absolute values no

more than qi/ 2, hence bounding the contributions of a particular cohomology group in terms
of its dimension. In many cases these weights can be known exactly, such as in [FW15],

allowing the direct translation of Poincaré polynomials into point counts:

BRat?(C)) =1+ = #Rath(F)*) =01 —¢g™. (53
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5.2 Using point counts to search for higher cohomology

First we discuss the evidence, or lack thereof, for the maps in Theorems 1.4 and 1.5(a) to fail
to be rational homotopy equivalences on the nose, using the machinery of étale cohomology
introduced by Grothendieck and Deligne to prove the Weil conjectures.

The Hodge weights for the generators ag;_1 and ¢; in the cohomology rings
H'(PGLy41(C); Q) = A(ag, -+, 22n41) and

H'(Gr(CP™,CP");Q) = Qlet, . ., emt1)/1,
where |a9; 1| = 2i — 1 and |¢;| = 24, are known to be —i. These correspond to the counts

(¢" T — 1) (g™ —q) - (g™ — ™)

and
qg—1

#PGLyy41 (]Fq) =

(qn+1 _ 1) . (qn—l—l—m _ 1)
T =1 (g 1)

In light of the fiber bundle (2.1) we thus have the following count:

4 Cr(PR PR ) =

Lemma 5.1. Fiz integers 1 < m <n. Then for any prime power q, we have

(qn—H _ 1) . (qn—H _ qm)

qg—1
f(nJrl)) (11— qf(nferl)) (5-4)

qg—1

#Algl(Pﬁ%?P%q) =

(n+1)(m+1) (L — ¢

=q

Assuming a sharp version of Theorem 1.4, we could compute # Algd(IP’%lq, P%q) for d > 1
by appealing to the naturality of spectral sequences and algebraic maps with respect to

Hodge weights. Under these conditions, we would arrive at the count

(n+1)("5) <1 _ q_(n+1)> q _<i _ q_(n_m+1)> (5.5)

#Algd( ITanaP%q) =dq
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simply by using codimensions of the subvariety
¥"" (Algy (CP™,CP")) C Algy(CP™, CP")

to modify the leading power of ¢q. Such a result would also give a generalization of the count

established by Farb-Wolfson [FW15], in the form
m-+d—1
# Algp(Fy) = q(n+1)( i) (1 — q—(n—m+1)> (5.6)

for each choice of map f € Algd(IF’I?q_l, Pﬁq).

We have carried out point counts via SageMath of the associated spaces for small values
of m,n,d and ¢ (namely m = n = 2, d < 4 and small prime powers as prohibited by
computational limitations) and arrived at exactly the counts predicted by (5.5). It should
be noted that the cardinalities # Alg f(IFq) are an auxiliary result of these computations
and in all cases they have matched the prediction (5.6)—that is, they have not depended
on f beyond the data of d, m, and n. This coincidence is surprising because it is not even
clear when the restriction Alg;(CP™, CP") — Alg;(CP™ ! CP") is a bundle in the analytic
topology.

Such numerical data does not prove the stronger result of rational homotopy equivalence

even in this small extended range, even if they could be carried out for all prime powers ¢,

but nonetheless the counts are encouraging.

5.3 Predicting the topology of non-degenerate maps

We conclude with a final calculation: computing the number of non-degenerate algebraic
morphisms P! — P" of degree d defined over an arbitrary finite field Fg. This can be thought

of as a number-theoretic extension of Corollary 3.3, in light of the previous discussion.

31



Proof of Theorem 1.7. The spectral sequence (2.6) is reflected by the point count formula

n

n+1

Rat!(Fy) = Z Rat’y(Fq) (r+1) , (5.7)
q

n—|—1) o (q"+1—1)---(qn+1_r—l) .

where (T ) =T T ® the Gaussian binomial coefficient. With the count

n+1 _ 1)

Rat!l(F,) = g Do)~ g

p (5.8)

and the base case ARat}l(]F‘q) = Ratgl(Fq) = ¢2(d=1) (42 — 1), the claim follows by induction.

]

Taking this point count as a prediction for the singular homology of the varieties , Rat);(C),
together with the use of Hodge weights, we indeed arrive at a conjecture which would extend
Corollary 3.3. The associated spectral sequence (2.6), which would include many nonzero
differentials but collapses at the E9 page, correctly computes the cohomology calculated
in Corollary 1.2. Moreover, in light of the work by Farb—Wolfson-Wood [FWW16], the

prediction should be expressed using the language of homological density:

Conjecture 5.2 (Spherical homological density). Fiz integers 1 < n < d. Then

_ (1 #2( .
Pt(Ratn 1_1 + ). (5.9)

Note that, if true, the same result would hold when stated with based mapping spaces,
where rational functions correspond to configurations of so-called colored points. Such a
statement could therefore be interpreted as a homological density statement regarding the

subspace of configurations which produce non-degenerate maps, predicted by arithmetic.

32



[AGMP99]

[BFN19)]

[BHMO9]

[CCMMO1]

[Chel9]

[Cra93|

[DDOO]

[Del77]
[EHST]

[FW15]

[FWW16]

[GGed]

[GKY98]

[Gue95]

[Kir85]

[KM97]

REFERENCES

L Astey, S Gitler, E Micha, and G Pastor. Cohomology of complex projective
stiefel manifolds. Canadian Journal of Mathematics, 51(5):897-914, 1999.

Maxime Bergeron, Khashayar Filom, and Sam Nariman. Topological aspects of
the dynamical moduli space of rational maps, 2019.

C. P. Boyer, J. C. Hurtubise, and R. J. Milgram. Stability theorems for spaces
of rational curves, 1999.

F. R. Cohen, R. L. Cohen, B. M. Mann, and R. J. Milgram. The topology of
rational functions and divisors of surfaces. Acta Math., 166:163-221, 1991.

Weiyan Chen. Stability in the cohomology of the space of complex irreducible
polynomials in several variables, 2019.

T. Arleigh Crawford. Full holomorphic maps from the riemann sphere to complex
projective spaces. J. Differential Geom., 38(1):161-189, 1993.

Carlos D’Andrea and Alicia Dickenstein. Explicit formulas for the multivariate
resultant, 2000.

Pierre Deligne. Cohomologie étale. Springer-Verlag, Berlin, Heidelberg, 1977.

David Eisenbud and Joe Harris. On varieties of minimal degree. In Proc. Sympos.
Pure Math, volume 46, pages 3—13, 1987.

Benson Farb and Jesse Wolfson. Topology and arithmetic of resultants, i: spaces
of rational maps, 2015.

Benson Farb, Jesse Wolfson, and Melanie Matchett Wood. Coincidences of
homological densities, predicted by arithmetic, 2016.

Claudio Gémez-Gonzéles. On the topology and arithmetic of spaces of non-
degenerate maps between complex projective spaces. Research in the Mathe-
matical Sciences, submitted.

M. A. Guest, A. Kozlowski, and K. Yamaguchi. Spaces of polynomials with
roots of bounded multiplicity, 1998.

Martin A. Guest. The topology of the space of rational curves on a toric variety.
Acta Math., 174(1):119-145, 1995.

Frances Kirwan. On spaces of maps from riemann surfaces to grassmannians
and applications to the cohomology of moduli of vector bundles. Ark. Mat.,
24(1-2):221-275, 12 1985.

Sadok Kallel and R. James Milgram. The geometry of the space of holomorphic
maps from a riemann surface to a complex projective space. J. Differential

Geom., 47(2):321-375, 1997,
33



[KS03]

[KY03]

[Mi197]

[Mil13]

MMV 12]

[Mpl84]

[Mos03]

[Mos12]

[Rui69)]

[Sas74]

[Seg79]

[Vasl4]

[Yam04]

Sadok Kallel and Paolo Salvatore. Rational maps and string topology, 2003.

A. Kozlowski and K. Yamaguchi. Spaces of holomorphic maps between complex
projective spaces of degree one. Topology and its Applications, 132(2):139 — 145,
2003.

R.J. Milgram. The structure of spaces of toeplitz matrices. Topology, 36(5):1155
~ 1192, 1997.

James S. Milne. Lectures on etale cohomology (v2.21), 2013. Available at
www.jmilne.org/math/.

Jacob Mostovoy and Erendira Munguia-Villanueva. Spaces of morphisms from
a projective space to a toric variety, 2012.

Jesper Michael Mgller. On spaces of maps between complex projective spaces.
Proceedings of the American Mathematical Society, 91(3):471-476, 1984.

Jacob Mostovoy. Spaces of rational maps and the stone-weierstrass theorem,
2003.

Jacob Mostovoy. Truncated simplicial resolutions and spaces of rational maps.
The Quarterly Journal of Mathematics, 63, 03 2012.

Carlos Alfredo Ruiz. The cohomology of the complex projective stiefel manifold.
Transactions of the American Mathematical Society, 146:541-547, 1969.

Seiya Sasao. The homotopy of Map(CP"™, CP"). Journal of the London Mathe-
matical Society, s2-8(2):193-197, 1974.

Graeme Segal. The topology of spaces of rational functions. Acta Math., 143:39—
72, 1979.

Victor A. Vassiliev. How to calculate homology groups of spaces of nonsingular
algebraic projective hypersurfaces, 2014.

Kohhei Yamaguchi. Fundamental groups of spaces of holomorphic maps and
group actions. J. Math. Kyoto Univ., 44(3):479-492, 2004.

34



