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Cicala, who are always supportive during my dissertation and rigorous in their guidance on

my research. Their research and teaching sparked my interests in energy economics: Ali

introduced me to IO and encouraged me to pursue electricity market research in my second

year; Ryan and Koichiro’s PhD courses in energy economics further sharpened my research

skills and expanded my economic perspectives in this field; Steve’s expertise in electricity

market deepened my knowledge of the market. I am also extremely grateful for the countless

hours they spent in hearing my every idea, giving feedback on every aspect of my research,

and guiding me through every difficulty along the way.

My PhD experience has been greatly enriched by working at Energy Policy Institute at

UChicago, where I received continuing supports and guidance from Michael Greenstone, Jim

Sallee, Tom Covert, Mark Templeton, Eyal Frank, and other faculty members there. I have

also benefited so much from the participation in Harris PhD Workshop and IO Lunch at

Economics Department, and I want to thank Scott Ashworth, Dan Black, Roger Myerson,

Michael Dinerstein, John Birge, Luis Martinez, and other attendees who always help me

improve my research.

I am also really fortunate to meet a group of great energy economists during my participation

in NBER Summer Institute, Energy Camp at the University of California at Bekeley, and

Midwest Energy Fest, and I am epsecially thankful to Mar Reguant, Frank Wolak, Severin

Borenstein, Jim Bushnell, Steven Puller, and other participants I met in these conferences

ix



for their helpful comments and invaluable advice.

I would like to thank my parents and my wife for their supports during the whole process

of my PhD program. Their company and encouragement are always the biggest impetus to

me.

Finally, I am grateful for the financial supports from Alfred P. Sloan Foundation and

NBER, which awarded me the two-year NBER Pre-doctoral Fellowship in Energy Economics

and allowed me to fully concentrate on the completion of my dissertation.

x



Abstract

My thesis is aimed at understanding how market design and policy affect firms’ competition

in the context of U.S. electricity markets and, based on the findings, how policies can be

altered to improve welfare. The U.S. deregulated electricity markets are organized through

multi-unit auctions and they are of interest for two reasons: (1) they are undergoing constant

changes in market design, which provides a rare experimental field to enrich economists’

understanding of important topics such as complex auction mechanisms and information

friction; and (2) as an essential part of the ongoing global energy transformation, electricity

markets, operated with a lot of money at stake, have significant implications for private and

social welfare.

I study several important evolutions in electricity markets. These evolutions include

renewable energy development, which implies a change of the paradigm in electricity market

competition; capacity market design, which aims to provide additional payment and incentives

for thermal capacity to stay operational; and retail deregulation, which allows more flexible

retail pricing and demand-side strategy. Each of these papers is described in detail below.

In the first chapter, “The Value of Wind Information in Wholesale Electricity Market:

Evidence from U.S. Midwest,” I study how wind forecasting information affects strategic

competition among electricity producers. In the Midwest market, firms that operate both

thermal and wind plants have better forecasts about wind generation than firms that only

own thermal plants. In theory, there is no a priori answer to whether wind uncertainty would

lead to more or less efficient competition. Using detailed price and bid data, I find empirical

xi



evidence that wind generation not only brings significant uncertainty to market supply, but

also affects local market structures through transmission congestion. I also find that thermal

bidding is more responsive to wind realization for firms that have better wind information. I

then construct a strategic bidding model to estimate firms’ private wind information, which

determines their beliefs about local competition and explains their supply bids. I find that

my model — with estimated information parameters — predicts firms’ bidding behaviors

and actual market results better than the standard oligopoly model of price competition.

Using the model, I predict that when all firms are provided accurate wind information, it

would greatly increase consumer surplus and market efficiency.

The second chapter is titled “Paying for Scarcity at the Right Time: Evidence from

PJM Capacity Market Reform.” In the U.S. deregulated electricity market, capacity market

payment is designed as additional compensation for keeping sufficient capacity to stay

operational. However, its traditional design of constant yearly payment detaches from actual

generation performance and does not reflect real-time scarcity for capacity. As the result, it

has little binding effects for generators to actually be available in electricity production. This

paper investigates a recent capacity market reform in the Pennsylvania-New Jersey-Maryland

(PJM) market, which added performance incentives that adjust producers’ capacity payment

based on actual output and market demand needs. Using PJM’s staggered transition to this

new design and generators in its neighboring market with the similar old design as a control

group, the matched difference-in-differences results show that the reform mitigated strategic

bidding incentives for generators and reduced their average bid price by 10%. This greatly

improved allocative efficiency in PJM market production and led to large savings in total

production cost. A preliminary estimate on the net benefit of the reform is about 1.5 billion

dollars for PJM in 2016, after combining both the capacity payment increase in capacity

market and production cost savings in energy market.

In the third chapter, “Does Retail Deregulation Create Strategic Wholesale Buyers?

Evidence from the U.S. Midwest Electricity Market,” I focus on how demand-side deregulation

xii



affects the electricity market. Specifically, I study whether electricity retail deregulation

brought strategic buyers into the wholesale market with sequential market settings. I find

that electricity buyers in retail-deregulated regions strategically split their purchase between

the day-ahead market and the spot market. Specifically, they tend to underbid more in

the day-ahead market when the day-ahead price premium is higher. In contrast, no such

strategic behaviors are found for buyers in retail-regulated regions. This is consistent with

deregulated buyers’ incentives to minimize procurement costs. The increased flexibility in the

demand-side bidding also helps mitigate some of the producers’ market power that created

the day-ahead price premium in the first place. By exploiting a retail policy change in Illinois

which greatly increased the power purchased by competitive retailers, I find their strategic

bidding in the wholesale market results in lower market prices when compared to retail

regulated regions. This finding suggests the potential benefits of demand-side deregulation

for improving production efficiency and consumer welfare.
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Chapter 1

The Value of Wind Information in

Wholesale Electricity Market:

Evidence from U.S. Midwest

1.1 Introduction

The U.S. electricity market is experiencing a rapid rise in the generation capacity of wind

power. Wind is the top energy source adding to electricity capacity in the U.S. in 2019,1 and

the total installed wind capacity in the U.S. is approaching 100 gigawatts, accounting for

about 17% of electricity generation.2 However, the significant penetration of this energy

source has introduced challenges to the market due to its intermittency. Wind power

production relies on the wind, which by its nature is volatile. This creates significant

uncertainty in market competition. For example, in the U.S. Midwest market, wind generation

can vary from 0% to 30% of market demand within days.

1. U.S. Energy Information Administration (EIA). See Figure A.15 that maps out the electricity capacity
additions by energy source.

2. “States’ Renewable Energy Ambitions”, National Conference of State Legislatures, 2019,
“http://www.ncsl.org/research/energy/states-renewable-energy-ambitions.aspx”.
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Due to its variability, wind generation is costly to predict and a wind forecast is not

commonly available for all market players. Good location-specific forecasts for wind generation

require massive amounts of data, computing power, and human resources to develop a

forecasting model. Currently, in some electricity markets, market organizers only provide

such forecasts to firms owning wind farms to facilitate wind power planning and dispatch.

Firms owning only thermal plants,3 in contrast, do not have access to such forecasts and

must compete in wholesale electricity auctions with little knowledge about potential wind

generation. The goal of this paper is to understand how wind uncertainty and wind information

which reduces that uncertainty affect market competition and market efficiency. From a

policy perspective, this paper specifically addresses the question: should all firms be given

accurate wind forecasts when they compete in wholesale electricity market?

In wholesale electricity market, all power producers compete by bidding full supply

curves in a centrally organized auction to meet demand every hour. Since auctions are

scheduling market production hours in the future, actual market conditions such as demand

and wind generation are unknown to producers at the time they bid. But wind generation

has important implications on market competition; it not only brings uncertainty to market

supply, but also affects market structure through transmission congestion.4 When transmission

lines between regions are congested, firms are segmented into separate local markets with

different local competition and market prices. A firm in the congested region faces less

competition and can further push up the market price for increased profit if it can predict

wind generation and the resulting congestion before it happens. This paper utilizes the

richness of marginal cost and bidding data to identify the role of wind information in firms’

strategic behaviors. Specifically, for power producers, what is the value of wind information

in learning about their competition and improving profit? For consumers and the market, will

3. Thermal power plants include steam-turbine, combustion-turbine and combine-cycle generation units,
fuelled by coal, natural gas, oil, or nuclear.

4. In markets with rapid wind development, wind power is one of the main drivers for the changes in
power flow and transmission congestion across hours. See Figure A.16 from GENSCAPE showing that wind
power development increases transmission constraint frequency in Midwestern states.
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more informative wind forecast improve market efficiency and reduce consumers’ electricity

costs?

The welfare implications of market players holding more information are theoretically

ambiguous when considering the strategic behaviors of firms. Many empirical studies in

industrial organization focused on market inefficiency when firms use the information about

competition to their advantage and exercise market power. However, imperfect information

can also generate inefficiencies when it makes firms deviate from the oligopolistic behaviors

predicted in a full-information model. In the paper, I theoretically show that the price effect

of increased wind information is unclear when comparing the bidding from an informed

firm and an uninformed firm. In fact, informed bids that best respond to different market

conditions could lead to either more or less inefficiency (higher or lower market price on

average) than uninformed bids that best respond to the expectation, depending on the

magnitude of the uncertainty created by wind in residual demands. This motivates my

empirical analysis to quantify the welfare implications of wind information.

I conduct my analysis in the U.S. Midwest market (MISO), which operates with more

than 20% of wind capacity in the U.S. I start by using detailed price data to infer local

market definitions as determined by transmission congestion in each hour, and use the market

definitions to explore the effect of wind generation on market structure. I find that wind

generation has significant impacts in shaping market structure, which determines a firm’s

local competition. In particular, this impact is load-dependent: when demand is relatively

low, wind generation is the main driver of congestion; however, when demand is high and the

market is already congested, additional wind generation adds to local supply and alleviates

congestion.

Based on this data-driven evidence of the wind generation effect on congestion, I test if

firms respond in bidding when wind generation changes their local competition and steepens

or flattens their residual demand. More importantly, I test how such a response might

differ by whether wind forecast information is available to the firm or not. I track the supply

3



curves of 15 major firms from 2012 to 2016 in the MISO real-time market, seven of which own

both thermal and wind units, thus were provided wind generation forecasts by MISO. Eight

firms lack such information as they do not own wind units. I find that both types of firms

respond to higher demand by submitting a less competitive bid, while only firms with wind

units also respond to wind supply shocks. Specifically, how they adjust their bidding slopes

at different demand levels closely tracks the load-dependent patterns of wind impacts on

market structure. This strongly suggests that firms with wind information do recognize this

complicated impact of wind generation and act on it. The results are robust to controlling

for firms’ own wind generation, confirming that the direct effect of wind generation on firms’

supply and its indirect effect on market structure play different roles in shaping firms’ bidding

strategy.

To better explain the bidding strategy of firms with different wind information, I construct

a formal structural model of strategic bidding where firms best respond to their own beliefs

about market competition given the information they possess. In the model, firms first

approximate residual demands they expect for the actual hour from a mixture of informed

and uninformed distributions of the previous auctions. The informed distribution consists

of residual demands in the previous auctions that are matched by both ex-post demand

and wind information, so it is closer to the ex-post market conditions that a firm will face.

Meanwhile, the uninformed distribution matches only with ex-post demand information, so it

is approximating actual residual demands with much less precision. Then firms choose best-

response bids while they weigh the expected residual demands from the two distributions

differently given the wind information they have. In this way, the model takes into account

the impact of wind information in firms’ belief and bidding formation, as better-informed

firms will put more weights on residual demands drawn from the informed distribution.

Fitting the optimal bids solved for different weights to the actual bidding, I can recover the

optimal weight as each firm’s information parameter, which represents the extent of wind

information for each firm.
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The estimation from my structural model shows that firms with wind units bid as if they

are putting a weight of 0.88 on the informed distribution, which is close to ex-post, and a

weight of 0.12 on the uninformed distribution. To the contrary, firms without wind units bid

as if they weight the informed distribution by 0.26 and the uninformed distribution by 0.74,

consistent with the lack of wind forecast information when they bid. I also show that my

model with the estimated information parameters predicts the actual auction clearing price

for each firm better than the ex-post optimal price predicted using the standard oligopoly

pricing model.

I use the structural model to quantify profit and welfare impacts of wind information in

two counterfactual simulations. First, I explore the changes to each firm’s private profits

when unilaterally changing their bid from considering no wind information to considering

perfect wind information. For both types of firms, I find that giving perfect information

to a single firm could reduce its losses by 35%-47% compared to ex-post optimal profit.

Second, I simulate the changes to market welfare when moving from a baseline case of

only wind firms having perfect wind information to a policy counterfactual when all firms

are given perfect wind information. I find significant welfare improvements from this policy

change in both consumer surplus and market production efficiency. The policy counterfactual

reduces the market price by 3.4% on average, which is equivalent to a reduction in wh-

olesale power procurement cost of $45,000 per hour. In addition, as major firms on average

bid more competitively and produce more when given perfect information, this replaces

costly production from small firms and reduces the total production cost especially during

peak demand hours. As the result, the market production cost decreases by 2.8%. This

reveals a potentially large improvement in electricity market efficiency from what would be

a straightforward policy of providing wind forecast information to all production firms.5

5. The magnitude is substantial even when compared to a bigger policy change that happened in many
electricity markets during 1999-2012: according to the estimation in Cicala [2017], the transition from
command-and-control operations to the wholesale electricity market design reduced total production cost by
5-8% in the U.S.
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Related Literature.— This paper makes several contributions to the previous literature.

First, it relates to the economic literature studying the impacts of renewable energy, but

focuses on the information and competition channels, which are less examined. Previous

literature in this vein includes Fell et al. [2018] and Bushnell and Novan [2019] that focus

on the direct welfare impacts of renewable energy on market price and pollution, when

renewable supply replaces thermal generation. Specifically, they note that transmission

constraints might prevent the full realization of social welfare improvement from renewable

energy growth. In addition, several studies examine the competitive behaviors of wind farms

and firms that own wind units. The theoretical work by Acemoglu et al. [2017] considers the

changes in firms’ optimal strategy when wind source is added to their thermal generation

fleet; Ito and Reguant [2016] finds empirical evidence that independent wind farms use their

information advantage about their actual production to arbitrage between day-ahead and

real-time prices in the Spanish electricity market. My study documents that wind generation,

through its impacts on transmission congestion, has broad implications for all production

firms. I further test and confirm that firms do recognize the impact of wind and respond to

it when possessing wind information.

Second, this paper contributes to the industrial organization literature on how uncertainty

or information friction affects firms’ bidding strategies in the auction setting. The theoretical

work dates back to Klemperer and Meyer [1989], and recent empirical studies include Hortaçsu

and Kastl [2012] that finds financial traders use their customers’ information to their own

advantage and extract additional profits in the Canadian treasury bond market. Several

studies particularly focus on the welfare implications of increased information for firms

in energy market auctions. Henricks and Porter [1988] and Fabra and Llobet [2019] find

that when firms have good information in an auction, it facilitates seemingly collusive

equilibria, while Vives [2011] and Holmberg and Wolak [2018] show market competition can

be enhanced when private information is made public. In my study, I focus on a case where

firms have different private information about wind generation in electricity market auctions.
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Empirically I do not find that the firms with information advantage coordinate their bids

with each other. Instead, the results show that more information induces more competition

in bidding than less information, thus improving market efficiency and consumers’ welfare.

Third, my study adds to the electricity market research that examines power producers’

strategic behaviors in the auction-based market. Pioneer work from Wolak [2000], Borenstein,

Bushnell and Wolak [2002] and Wolak [2003] highlights the susceptibility of wholesale electricity

market to market power exercises from power producers and measures this market power

in oligopoly competition models. The later work in this literature further develops the

model to better characterize firms’ bidding behaviors in this market. For example, Gans and

Wolak [2008] and Bushnell, Mansur and Saravia [2008]) examine how firms’ forward contract

affect their incentives to exercise market power and their bidding strategies; Hortaçsu and

Puller [2008] and Hortaçsu et al [2019] consider firms’ different sophistication levels in their

optimization and finds that large and more sophisticated firms bid close to profit-maximizing

oligopoly model, while small and less sophisticated firms significantly deviate from the

model prediction; Reguant [2014] studies the Spanish electricity market and demonstrates

the importance of considering the complementarity between startup cost and marginal

cost in measuring firms’ market power exercise and explaining their seemingly sub-optimal

behaviors. My paper adds to this literature and explores how information friction can

also induce differences in firms’ bidding and their deviations from optimal strategies, in

the context that newly-developed wind power introduces significant uncertainty to market

competition. I show that a large part of heterogeneity in firms’ bidding can be explained

by different information available to them when forming their beliefs and optimizing their

bids based on the beliefs. I also provide empirical evidence that lack of information could

induce more deviation and more inefficiency beyond firms’ market power exercises that are

traditionally considered in full-information or symmetric-information models. My study

closely relates to recent empirical IO research that tries to understand how firms compete

in complex and fast-changing market environments, such as Doraszelski, Lewis and Pakes
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[2019], which demonstrates that the models of adaptive learning and fictitious play better

predict firms’ behaviors in the U.K. electricity frequency response market than a perfect

information equilibrium model does.

The rest of the paper is organized as follows. Section 1.2 gives background and institutional

details about wholesale electricity market competition and wind power operation in the

U.S. Midwest. Section 1.3 presents an analytical framework and discusses the theoretical

prediction of how bidding with uncertainty might affect market efficiency. Section 1.4

describes the data and reports how hourly local market definition is estimated using price

data and a machine learning technique. Section 1.5 presents reduced-form evidence on

the impacts of wind supply on market structure and firms’ bidding strategies. Section

1.6 presents the structural model of firms’ optimal bidding and explains how the wind

information they possess is estimated from the model. Section 1.7 presents the results of the

counterfactual simulations using the structural model, and finally Section 1.8 concludes.

1.2 Institutional Background

1.2.1 Production Competition in Midwest Electricity Market

I study the biggest restructured electricity market in the U.S. Midwest (MISO), which began

in 2005 after electricity market deregulation divested traditionally integrated electric utilities

into separate firms for power generation, transmission/distribution, and retailing. A profit-

neutral system operator organizes the wholesale market in which firms that own power plants

sell wholesale power to transmission and distribution utilities through centrally organized

auctions. Based on the auction results, the system operator will centrally dispatch production

to meet demand at every location across a vast integrated electricity grid covering over 13

states in the U.S.. The MISO market includes central, north and south regions. This study

only focuses on the central and north region, as the south region only joined the market

very recently with no wind capacity and limited transmission connection to the central and
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north.

The auction proceeds in multi-unit uniform-price format, in which each generation of

firms first submit supply bids, the system operator calls firms to produce in increasing price

order until total demand is met, and pays all accepted output at the highest accepted price

offer. Firms are allowed to bid up to 10 price-quantity pairs for each generation unit they

own; therefore, they have very flexible strategy spaces in their supply bid, which essentially

is a full supply function consisting of a set of price-quantity steps.

Most electricity markets plan and schedule power production long before it actual happens.

Months before the operating day, there is a bilateral contract market, where power producers

can sign long-term forward contracts with utility firms. One day before the operating day,

there is a day-ahead market, where producers and utilities bid in the auction, and based on

the auction results, they make initial plans of power delivery for the next day. The final

market before actual production is the real-time market, for which firms need to submit

their final bids by 11:30 pm before the operating day.6 Then after actual demand and wind

generation are realized on the operating day, real-time market clears with firms’ real-time

supply bids, actual wind supply, and actual demand. Firms then start production and get

payment, according to the real-time market clearing results in each hour.

In the following analysis, I will focus on firms’ bidding behaviors in the real-time market,

although the impacts of forward contracts and the day-ahead market on the real-time supply

bids will still be considered. The real-time market is most relevant to this study for two

reasons: (1) it is the only market that clears with actual demand and wind supply, so

accurate demand and wind forecasts are most useful. In contrast, the day-ahead market

clears with demand bids and wind units’ bids, which could deviate significantly from the

actual quantity or the forecasting quantity; (2) real-time market allows me to focus on firms’

6. Theoretically, firms are allowed to change their real-time bids until half an hour before each operating
hour on the operating day. However, the data shows that very few firms do so, except for the wind units,
which need to adjust their bids to wind fluctuation from one hour to another. This is consistent with the
industry reports from generating firms that it usually takes hours to prepare the bids; therefore, it might be
difficult to further update their bids based on any last-minute information.
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response in bidding when holding their supply capacity fixed. In the day-ahead market,

different wind and demand forecasts could also lead to different start-up decisions of each

generator. Incorporating start-up decisions in firms’ strategies requires a dynamic model

and accurate measures of startup costs, which are beyond the scope of this study.

The sequence of events for real-time market competition are summarized in Figure 1.1.

All firms submit real-time bids without knowing actual demand or wind supply. While

demand forecasts are commonly available to all firms when they bid, the wind forecasts are

not. Specifically, for firms with wind units, MISO provides wind forecasting information on

their market portal. Firms without wind units do not have access to such information. After

firms submit their bids, real-time market clears in each operating hour, when actual demand

and wind generation are realized.

Figure 1.1: MISO Market Timelines

Notes: The figure shows the timeline of production firms’ participation in MISO real-time wholesale market

up until the actual production. Source: Midcontinent Independent System Operator (MISO), “Business

Practice Manual Vol.2: Energy and Operating Reserve Markets”, 2018.

One supplemental note for demand-side participation in the wholesale market is that

utility firms can also submit demand bids with price-quantity pairs in the day-ahead market.

However, because of the lack of real-time pricing in electricity retail, in general, real-time

demand is considered inelastic. Therefore, for real-time market auctions, firms are only

allowed to bid the final demand quantity they need. For power generation firms, the more

relevant demand measure is residual demand, which is the inelastic total market demand
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minus the supply offers of all other competing suppliers. The slope of the residual demand

is determined by the willingness to produce by other available suppliers at different market

prices. The more elastic the slope, the more price-sensitive other competitors’ production,

and the more difficult it is for the firm to exercise market power (raise price markups or

withhold output).

1.2.2 Wind Power and Transmission Congestion

More than 40% of the total wind capacity in the U.S. has been installed in the Midwest region,

because of its rich wind resources. In the MISO, installed wind capacity is approaching 20

GW in 2019. The current record for wind production was on March 15, 2019, when wind

generation peaked at 16.3 GW, representing about 29% demand in MISO north and central

region in that hour.7 Wind capacity continues to grow, with more than 30 GW in MISO’s

interconnection queue waiting for approval and installation.

The large penetration of wind power has great impact on power flow in the electric grid.

On one hand, wind power is supplied with zero or even negative price; hence, it is always

dispatched first. On the other hand, wind generation is volatile; therefore, the dispatch

of other resources could be quite different from one hour to another, even when market

demand is unchanged. To see how this directly relates to congestion and market structure,

I illustrate in Figure 1.2 using the power trade between two regions, similar to the model in

Cicala [2017]. Congestion is a grid condition in which power flow is limited across a power

line because of insufficient transmission capacity. When congestion occurs, any further power

flow on the constrained line becomes impossible, and the two local regions connected by the

line are segmented.

Figure 1.2 depicts two regions: region W is where wind units are located and region L is

the demand center. The width of x-axis represents the total demand, which consists of two

7. MISO IMM Quarterly Report: Spring 2019, Potomac Economics, 2019.
https://www.potomaceconomics.com/wp-content/uploads/2019/06/IMM-Quarterly-ReportSpring −
2019F inal.pdf
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Figure 1.2: Two Region Illustration of Transmission Congestion

(a) When market is not congested

(b) When market is congested

Notes: The figure shows a two-region power trade model. Panel A illustrates a case with no congestion

between region W and region L. Panel B shows a case with congestion between the regions. The part

marked with orange color in two regions’ supply curves represents thermal competition a firm in region L

faces in each scenario. 12



local demands from W and L. The total production cost of meeting these local demands can

be minimized when the two regions trade supply. However, the amount of power that can be

traded is constrained by the transmission lines connecting them, and is at most the width

between the two vertical dashed lines. Panel A in Figure 1.2 shows when the transmission

is not constrained and the whole market clears at the intersection of the supply curve in

region L and the supply curve in region W. The trade allows lower-cost region W producers

to supply more than their local demand and export to load center L, reducing the market

clearing price and total production cost. Panel B shows when additional wind supply surges

in region W, the transmission is constrained by excessive supply trying to transport through

the line. This results in two local regions becoming congested with different local clearing

prices; the price in region W is lower, which incentivizes firms to produce less, while region

L is priced up to encourage more local production.

Firms under these two scenarios face very different competition. When the two regions

are uncongested as in Panel A, a firm in region L is competing with all other suppliers in the

market. However, in the congested case in Panel B, some generation in region W (marked

in black in region W’s aggregate supply curve) is blocked from competing with the firm.

Consequently, the firm faces a less elastic local residual demand, enabling it to exercise more

market power.

Alternatively, congestion can also be created by demand increase in a local region. Such

increase in demand leads to local supply shortage and higher local prices, attracting more

generation transported into the region. This would block further transmission and create

congestion in the imported transmission lines.

1.2.3 Wind Generation Forecasting in MISO

MISO started to develop and use the wind power forecasting in market operation since 2011.

The forecasts are generated at the pricing node level (where one or multiple wind units

locate) as well as the region and market levels. The hourly updated forecast looks forward
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to the next six days, and the more granular five-minute forecasts are for the next six hours.8

From the central dispatch perspective, MISO relies on the data to manage transmission

constraints and outages to maintain the reliability of the grid. MISO also provides such

information on the market portals of wind unit owners, in case the owner does not have their

own forecasting, or their forecasting deviates much from the MISO prediction, to ensure the

wind bids are close to what they can produce the next day.

It is generally costly to come up with such forecasting, especially for firms that do not

operate wind units. Wind Forecasts are the combination of different models and diverse set of

input data. First, high-definition real-time satellite data is necessary to develop wind weather

forecasts around the certain heights where wind farms operate. Second, on-site operating

specifics and metering data from each wind turbine are required, including accurate location,

hub height, turbine historical performance, and production curve. Finally, different physical

and statistical models are constructed and simulated to predict each unit’s production, given

the weather forecasts.

MISO constantly collects all the operating information from wind unit owners and contracts

with a third-party vendor to develop the wind forecasting. In 2015, MISO’ budget was 31.4

million dollars for the “outside services”, among which wind forecasting was one of the main

expenses.9 With the investment, MISO gets relatively accurate hourly wind generation

forecast. In 2015, the forecasting error on average is around 5.4% one day ahead, and

around 4.6% four hours ahead.10

8. Porter and Rogers [2012], National Renewable Energy Lab (NREL) report, 2012.

9. “MISO 2016-2018 Budget Planning Presentation”, MISO, December 10, 2015,
“https://cdn.misoenergy.org/20151210%20BOD%20Item%2007a%20Operating%20and%20Capital%20Budgets110764.pdf”

10. “Uncertainty Management in MISO Real-Time Systems: Needs, Opportunities and Challenges ”,
MISO, June 2017, “https://www.ferc.gov/CalendarFiles/20170623124115-RT Uncertainty MISO.pdf”
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1.3 Analytical Framework

I now characterize a firm’s optimal bidding strategy following share auction bidding fra-

mework in Wilson [1979] and Hortaçsu and Puller [2008]. The purpose of this model section

is two-folds: First, I demonstrate that a firm’s bidding strategy depends on the shape of

residual demand, which is derived based on local competition and market structure. Thus

when wind generation or market demand affect the market structure, the firm that has this

information should adjust its bidding accordingly. Second, for a firm that is uninformed

about the realization of wind generation and is bidding against uncertain wind realizations,

I use the model to understand whether its bidding will, in expectation, lead to higher or

lower market price and market quantity than an informed firm’s bids.

1.3.1 Model Setup

I discuss a simplified model with a monopoly firm facing uncertainty about the two states of

the world. Later in the structural estimation section, this is extended to a formal strategic

bidding model with more realistic characterization of firms’ market competition.

Assume there are two states of market structure: uncongested and congested. In the

uncongested state, firm i faces more elastic residual demands, which is the inelastic total

demand minus bids by all other suppliers. In the congested state, firm i faces less elastic

residual demands as some suppliers are blocked by congestion to compete with firm i. In

each state, residual demand is shifted by total demand variation, which is assumed to follow

an uniform distribution from [dL, dH ]. I hold this demand distribution fixed for both states;

therefore different slopes in residual demands can be considered as driven only by high or

low wind generation, with the intuition discussed in the previous section.

For all the following results, with quantity (S) on the x axis and price (p) on the y axis, I

denote a function as steeper if |S′(p)| is smaller or |p′(S)| is larger. Formally I define linear

residual demands in the two states of market structure as follows:
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(1) Flat residual demand (uncongested):

D1(p, d) = −b1p+ η

(2) Steep residual demand (congested):

D2(p, δ) = −b2p+ δ, where b1 > b2 > 0

η and δ represent uncertainty in total demand that shifts the residual demand. The

distribution of total demand is known to all firms. In the following, I separately discuss the

bidding strategy of a firm that also knows the realization of wind supply, thus knows the

realization of residual demand type, and the bidding strategy of a firm that is uncertain

about the realization of residual demand type. The marginal cost of the firm is assumed to

be 0.

1.3.2 Optimization Problem

Firm i, as a monopoly, will maximize expected profit, conditioning on the distribution

of residual demands it faces. Specifically, the expected profit is taken over all possible

realizations of market clearing price:

max
si(p)

∫ p

p
[psi(p)− ci(si(p))]dHi(p, si(p))

where Hi(p, si(p)) is the probability measure for market clearing price pc being lower

than p, i.e. Hi(p, si(p)) = Pr(pc ≤ p|si(p)).

The case pc < p is equivalent to there be excess supply at price p, so Hi(p, si(p) can be

rewritten as follows: Hi(p, si(p)) = Pr(Si(p) ≥ Di(p, d))

Using integration by parts and the Euler-Lagrange necessary condition, the point-wise

optimal supply schedule s∗(p) follows (omit i):

p− c′(s∗(p)) = s∗(p)
Hs(p, s

∗(p))
Hp(p, s∗(p))

(1.1)

This condition is derived following the same procedures in Hortaçsu and Puller [2008].
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1.3.3 Bidding Strategy for an Informed Firm

Now we take the functional form of residual demand into the probability measure H(p, s(p)):

H(p, s(p)) = Pr(s(p) ≥ −b1p+ η) = Γ(s(p) + b1p)

when firm i knows the slope of residual demand is b1. Γ(·) is the CDF of total demand

uncertainty η. Denote γ(·) to be the pdf of d, we have Hs = γ(s(p) + b1p), Hp = γ(s(p) +

b1p) · b1.

Taking them into the equation 1.1, the optimal bid in response to residual demand with

slope b1 can be calculated as follows: s1(p) = b1p. Similarly, for residual demand with slope

b2, the optimal bid is s2(p) = b2p.

The results above show that, when market structure makes residual demands steeper or

flatter, a profit-maximizing firm should bid a steeper or flatter supply curve in response. I

use this prediction in the reduced-form analysis to test how firms’ bid responsiveness to wind

generation depends on information they have on wind forecasts.

1.3.4 Bidding Strategy for an Uninformed Firm

Now I consider an uninformed firm’s strategy when it is uncertain about actual state

realizations of residual demands and believes the two states are equally possible. In this

case, the firm will bid against a mixture distribution. In our model, the probability measure

becomes:

H(p, s(p)) = Pr(b = b1)Pr(s(p) ≥ D1(p, η)) + Pr(b = b2)Pr(s(p) ≥ D2(p, δ))

=
1

2
Γ(s(p) + b1p) +

1

2
Γ(s(p) + b2p)

Therefore we have Hs(p, s(p)) = 1
2γ(s(p) + b1p) + 1

2γ(s(p) + b2p) and Hp(p, s(p)) =
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1
2γ(s(p) + b1p)b1 + 1

2γ(s(p) + b2p)b2. Because η, δ follow uniform distribution, the firm’s bid

strategy against the mixture distribution is simplified as follows:

s(p) =
b1 + b2

2
p

Note that this derivation is only valid when both types of residual demands are possible.

Since demand is bounded at [d0, d1], the space in which two types of residual demands vary

do not fully overlap. As illustrated in Figure 1.3, for anywhere below the lowest RD2 line,

only residual demands with slope b1 are possible, the uncertain bid overlaps with S1 for this

part. For anywhere beyond the highest RD1 line, only residual demands with slope b2 is

possible; therefore the uncertain bid overlaps with S2 for that part.

Using the two bids from the informed firms and the two residual demand lines, we

can solve for the cutoff points for the three sections on the uncertain bid. A complete

characterization of the uncertain firm’s bidding strategy is as follows:

su(p) =


b2p if p ≥ d1

b1+b2

b1+b2
2 p if d0

b1+b2
< p < d1

b1+b2

b1p if p ≤ d0
b1+b2

1.3.5 Intuition of Market Outcomes Under Uncertain Bid

Will an uninformed firm, in expectation, lead to higher prices and lower quantities than

will an informed firm? This comparison can be illustrated in Figure 1.4. First, as shown in

(a), when residual demands with b1 are realized, the informed firm will bid S1. Then, the

uninformed firm with bid SU will over-bid the price and under-bid the quantity compared

to the informed firm. Second, as shown in (b), when residual demands with b2 are realized,

the informed firm will bid S2. Then, the uninformed firm with bid SU will under-bid the

price and over-bid the quantity compared to the informed firm.
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Figure 1.3: Illustration of Uncertain Firm’s Bidding Strategy

Notes: The figure illustrates the optimal bids for a firm certain about residual demand realizations and a

firm uncertain about them. A certain firm will bid with S1 in response to flatter type of residual demand

realizations (RD1), and bid with S2 in response to steeper type of residual demand realizations (RD2). A

firm that is uncertain about the realizations of residual demand types will bid against a mixture distribution.

Since demand variation is fixed and bounded, the two types of residual demands are not always overlapped.

RD1
max marked in the figure is the highest flatter residual demand (with highest demand realization), and

RD2
min is the lowest steeper residual demand (with lowest demand realization). So the uncertain firm will

bid as same as S1 for the space below RD2
min, bid as same as S2 for the space beyond RD1

max, and bid in

the middle for the space between (where both types of residual demands are possible).

Therefore whether the uncertain bid would increase or decrease market price depends

on whether the overpriced cases under residual demands with b1 dominates the underpriced

cases under b2. In Figure 1.4, this is the comparison between the residual demand realizations

that pass through AB on S1 and those that pass through CD on S2. Higher the relative

size of AB/CD, more residual demands with b1 will pass through AB relative to residual

demands with b2 that pass through CD. Then, the uncertain bid is more likely to result in

higher market prices on average.

The interpretation of the relative size AB/CD is straightforward. This ratio is determined

by the ratio of b1/b2, the slopes of two types of residual demand. When this ratio is higher,
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Figure 1.4: Comparisons between Informed Bid and Uncertain Bid

(a) When residual demands with b1 realized

(b) When residual demands with b2 realized

Notes: The figure illustrates the intuition when comparing market results under the certain and the uncertain

bid. The comparison should be focused on the parts where the uncertain bid is not overlapped with the

certain bid. Thus whether the aggregate impact of uncertain bid would increase or decrease market price

depends on the differences in market results under the residual demand realizations that pass through AB on

S1 and those that pass through CD on S2. Higher the relative size of AB/CD, more often the uncertain firm

will overbid the price under residual demands of b1 type than underbid the price under residual demands of

b2 type. Then the uncertain bid is more likely to result in higher market price.20



it means wind creates more uncertainty in the slopes of residual demands, and then the

uncertain bid from the uninformed firm will more likely increase market prices, following

the intuition above. In Appendix A, I analytically solve and compare the average market

price and average market quantity between the informed firm’s bids and the uninformed

firm’s bids. The results show that the uncertain bid will lead to lower market quantity, and

higher average price on average when the slope ratio of b1/b2 is sufficiently large. Hence, it

is an empirical question whether uncertainty about wind generation will increase or decrease

prices on average, and this motivates my empirical analysis, presented as follows.

1.4 Data and Market Clustering

1.4.1 Data

The main data set used in this paper is the bidding data of production firms in MISO, which

is publicly available on MISO’s website. It contains a set of price-quantity pairs each firm

submits for each of its units in hourly real-time auctions from 2013 to 2016. It also contains

auction results for each unit in each hour, including cleared quantity and locational marginal

price (LMP). This panel data has around five million observations each year, allowing me to

track each generation unit’s bidding behaviors over time.

This paper also benefits from detailed unit-level characteristics data and fuel cost data

from U.S. Energy Information Administration (EIA): EIA-860 form and EIA-923 form.11

These data can be linked to the bidding units in MISO data, which allows me to calculate

the daily marginal cost measures for each thermal unit. Specifically, coal price is collected

from the monthly transaction price of each plant in the EIA-923 “fuel receipts and cost”

section, natural gas price is from EIA daily Henry Hub natural gas spot price and oil price

is from EIA daily New York harbor No. 2 heating oil spot price. I combined fuel price data

11. I accessed this data through SNL Financial, an independent data company which verifies and cleans
up the original EIA data.
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with monthly operating heat rate data from EIA-923 to construct the cost data for each

firm’s coal, natural gas and oil fired generation units.

I focus on top 15 major producers in MISO central and north region during my study

period. In total, they represent about 70% of the market share in market thermal capacity;

7 of them own wind capacity, and in total, they represent 80% market wind capacity. They

have access to MISO’s wind forecasts through their own market-bidding portal, and this

study refers to them as “informed firms” or “wind firms”. The other 8 firms only owned

thermal power plants during my study period. They do not have access to MISO’s wind

generation forecasts before bidding in day-ahead and real-time market; thus referred as

“uninformed firms” or “non-wind firms” throughout the paper.

Table 1.1 reports summary statistics for the two types of firms. “Wind firms” and “non-

wind firms” are similar in a range of aspects listed in the table, including the states located,

number of thermal power plants, and generation capacity in different energy sources.

Additionally, I use real-time market price, load and wind generation data posted by

MISO in local market definition exercise, reduced-form analysis and structural simulation

section. Real-time market price data reports nodal price or LMP at each pricing node every

five minutes. Each node on the generation side represents the location of one generation

unit or multiple generation units from the same power plant in the transmission grid. Each

LMP contains three parts: the energy component, which is the same across the market,

the congestion component, and the transmission loss component, which vary by each node

depending on local transmission conditions. Real-time load and wind generation data are

reported hourly at the regional level (MISO central, north, and south).

1.4.2 Local Market Definition

MISO and most other electricity markets use the “nodal-pricing” system, which segments

market clearing and spot prices in different clusters of transmission nodes, according to

transmission line constraints. In MISO north and central region, there are over 1,000
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Table 1.1: Summary of Top 15 Major Generation Firms in MISO

Wind Firms Non-wind Firms

Number of firms 7 8
Plants locations IA, IL, MI, MN, ND, IA, IL, IN, MI, MO,

SD, WI OH, WI
Number of thermal plants 121 95
Thermal capacity (MW)

Largest 11,943 10,418
Smallest 3,805 2,946
Average 8,067 6,268
Avg. coal capacity 3,106 3,668
Avg. gas capacity 2,382 2,024

Wind capacity (MW)
Largest 3,565 -
Smallest 335 -
Average 2,041 -

Note: This table summarizes several characteristics of top 15 major firms in MISO
Central and North region, as of the end of 2015. They are defined into firms with
wind units (wind firms) and firms without wind units (non-wind firms). Each unit’s
operating capacity is collected from the maximum available capacity reported in unit-
level offer data in 2015. Thermal capacity includes steam-turbine, combustion-turbine
and combine-cycle units, fuelled by coal, natural gas, oil, or nuclear.
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different pricing nodes for generation units, and the LMP at each of the nodes determines

the generators’ payoff of their production. When there is no congestion, the prices across

nodes are very similar.12 However, there could also be significant price dispersion across the

nodes during the hours of severe transmission congestion.

When congestion problems are prominent, the whole market can be considered as splitting

into a set of local markets, in which the most competition a local producer faces comes from

the local region. Thus, it has opportunity to exercise more market power than it would

when competing in an uncongested market. Recent studies provide strong evidence that

firms’ strategic conducts in response to the transmission constraints have negative impacts

on market efficiency and welfare, e.g., Davis and Hausman [2016] on the California electricity

market, Ryan [2017] on the Indian electricity market and Woerman [2019] on the Texas

electricity market.

It is important to account for the actual local markets in each hour, broken-off by

congestion when modeling firms’ bidding strategy; however, such local market definition is

not readily available. Ideally, I would use the actual topology of the transmission grid in real

time to define local markets, but that data is highly confidential to the public. Even if I do

have the data, the computation for the whole market considering with binding transmission

constraints would be enormous.

I instead exploit a statistical approach to define the local markets in each hour, following

a similar method used in Zheng [2016] and Mercadal [2018]. Namely, this hierarchical

clustering technique uses the fact that congestion creates price dispersion across different

local markets, while the units in the same local market face similar transmission condition

and receive similar prices.

Hierarchical clustering is a widely-used machine learning technique for finding groups

in large datasets. In the context of local market divisions in the electricity market, each

12. In this case, prices can still vary because of transmission loss charge. This part is usually much smaller
than congestion charge.
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generation node initially represents one local market, or, in the jargon of the clustering

method, a cluster. At each step, the two most similar nodes are merged into one cluster,

based on a pre-defined similarity measure, which is measured by the price correlation between

nodes. When each cluster has more than one node, a representative price for the cluster is

calculated to minimize the within-cluster variance. Then the pair of clusters with minimum

between-cluster price difference is merged first. This procedure is iterated until all nodes are

in one cluster, or in my case, one market without congestion.

The richness of nodal pricing data in MISO facilitates this statistical approach. The

real-time market clears every 5 minutes. Therefore, for each hour, there are 12 set of prices

at each generation node, where each set of prices consist of energy price, congestion price,

and transmission loss charge. In nodal pricing design, energy price is always the same across

all units, reflecting the ideal results of market clearing without congestion. Congestion price

and transmission loss price differ across locations. If the two nodes belong to the same

local market in one hour, we would expect they coincide in their congestion components

and transmission loss components in 12 prices over the course of the hour. The clustering

method will assign them into the same cluster based on this.

The hierarchical clustering algorithm returns a set of potential market definitions. To

find the best market definition that approximates the actual market structure most closely,

I follow Mercadal [2018] and define a measure of fit for each market definition. Specifically, I

calculate the market clearing price for each defined cluster (local market) using the aggregate

supply bids and demand belonging to each cluster. Then, for each market definition, I

calculate the objective function as the average difference between actual nodal prices and

simulated nodal prices of generation units. The optimal market definition in each hour is

the one that minimizes the objective function.

To summarize, I define local markets in each hour of real-time market using the following

three steps:

1. Use similarities between nodal prices (12 congestion price + 12 transmission loss price
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every 5 minutes for each hour) to cluster generation nodes into a set of potential local

markets;

2. For a given definition, clear each local market using local demand and supply bids, and

predict clearing prices for each node;

3. Choose the best market definition in each hour under which the simulated results best

predict the actual results: min
τ

1
N

∑
i |
p̂i

τ−pobi
pobi

|.

Table 1.2 reports the summary statistics of clustering results for all 8,744 hours in 2015.13

The average prediction error, as measured by the difference between simulated and observed

price, is quite small. For about 85% of hours, this prediction error is less than 10%.

Considering the volatile nature of real-time market operation, the local market definition

from the clustering algorithm captures the actual market segments reasonably well.

Table 1.2 reveals variations in local market size and local competition across hours. The

market can be segmented into more than 74 local markets, with no more than 3 firms and 8

units in the smallest local market. Consequently, firms face very different competition over

time.

Table 1.2: Summary Statistics of Market Clustering in 2015

Statistic Mean St. Dev. Pct(1) Pct(25) Median Pct(75) Pct(99)

Across all hours
Prediction error 6.1% 9.0% 0.0% 0.5% 3.0% 8.1% 47.8%
Number of mkts 8 13 1 1 3 9 74

Across all local markets
Number of firms 60 45 3 18 42 118 127
Number of units 260 207 8 68 184 513 596
Capacity (MW) 32,754 26,246 987 8,595 23,848 62,097 81,071

Note: This table reports hourly local market definition results in 2015. 8744 hours are included in the table,
with 16 of 8760 hours in 2015 are dropped due to missing data errors from original MISO data. The upper
panel reports summary statistics at hour level, and the lower panel reports summary statistics at local market
level after pooling all local markets in each hour together.

13. I dropped 16 of 8760 hours in 2015 because of missing data errors from the original MISO data.
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Figure 1.5 provides the clustering results for two example hours in 2015. Each dot

represents one or multiple generation units in each pricing node, and different colors represent

different local markets. The figures show a good match between the clustering result and

geographic proximity, although the algorithm uses only price information, not geographic

closeness between units, to define local markets.

The fact that the clustering results manage to put together geographically close nodes is

an important feature related to my later analysis. To see this, Figure 1.6 graphs time series

of how generation capacity is split between largest local market and rest of the market in

each day across 2015, at the whole market level and the individual firm level. When we look

at the market-level capacity in the largest local market compared to total market capacity

(left panel, red line), this ratio varies dramatically from day to day, between 50% to 100%,

consistent with congestion segmenting markets into many clusters. However, since the plants

from one individual firm are usually located close to each other, the market division does not

split each firm’s capacity significantly. As shown in the mid (green) and right (blue) panel

in the Figure, the largest local market capacity for each wind firm or non-wind firm rarely

drops below 90% of their total capacity. This means a change in market structure mostly

results in local competition that the firm faces, rather than change in its own capacity. This

greatly simplifies the complexity in my structural simulation, where I can fix firms’ capacity

for each day and consider how the bidding strategy changes in response to possible changes

in local competition, as characterized by residual demands in different shapes.

1.5 Reduced-form Evidence of Wind Supply Impacts

on Market and Firms

In this section, I first use the market clustering results obtained from the previous section to

explore how wind supply affects transmission congestion and local market definition. Then,

I present reduced-form evidence, which shows that firms with different information about
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Figure 1.5: Example Hours of Market Divisions from Clustering Algorithm

(a) March 28, 2015, Hour 18

(b) July 03, 2015, Hour 18
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Figure 1.6: Time Series: Share of Largest Local Capacity Compared to Total Capacity

Notes: The figure shows share of generation capacity in the largest local market compared to total capacity,

for market total (left), individual non-wind firms (middle) and wind firms (right) in 2015. The market is

constantly split into multiple local markets. For each of major firms, however, its capacity is not split as

much, since power plants for the same firm are usually geographically close to each other.

wind generation bid differently in the data.

1.5.1 Impacts of Wind Supply on Local Market Structure

I use time-series regressions to study how market definition and market structure change

under different wind and load conditions in 2015. I include hourly market-level wind

generation, demand, and their interaction term in the regressions, along with monthly and

hourly fixed effects to control for the general trends in market conditions at different times of

the year/day. The results are reported in Table 1.3. The dependent variables are constructed

from market clustering results, including: the number of local markets (column 1); average

market size in local markets measured by the local production capacity available (column

2); market size in the largest local market in each hour (column 3); and number of firms

competing in the largest local market in each hour (column 4).

When ignoring the interaction term, the results of row 1 and 2 in Table 1.3 are consistent
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across all four measures. They show that higher wind generation and demand create more

transmission congestion and lead to a more divisive market. Specifically, in each measure, this

means more local markets, smaller available capacity in the largest/average local market, and

fewer firms competing in the local market. However, the coefficients of the interaction terms,

as reported in row 3, indicates that this is not the full picture. In fact, the opposite directions

of the interaction coefficients mean that the impacts of wind generation on market structure

depend on demand levels; the seemingly congestion effect in wind generation diminishes and

could even reverse as the demand increases.

Table 1.3: The Impact of Wind and Load on Market Structure

Dependent Variables in Each Column

(1) (2) (3) (4)

# of Local Mkt Avg. Mkt Size Max Local Mkt # of Firms in

(GW) Size (GW) Max Local Mkt

Real-time Wind (GWh) 8.53∗∗∗ -12.84∗∗∗ -9.06∗∗∗ -23.70∗∗∗

(0.48) (0.70) (0.40) (1.50)

Real-time Load (GWh) 0.76∗∗∗ -0.83∗∗∗ -0.12∗∗∗ -2.06∗∗∗

(0.05) (0.07) (0.04) (0.15)

1 GWh RT Wind × -0.14∗∗∗ 199.03∗∗∗ 157.81∗∗∗ 0.36∗∗∗

1 GWh RT Load (0.01) (12.20) (6.96) (0.03)

Month fixed effects Yes Yes Yes Yes
Hour fixed effects Yes Yes Yes Yes
Observations 8,744 8,744 8,744 8,744

Note: This table reports regression results using hourly data in real-time market in 2015. Dependent variables
are number of local markets, average local market generation capacity (GW), generation capacity (GW) in
maximum local market and number of firms in maximum local market. Real-time wind generation and real-time
demand are measured in GWh.
Robust standard errors are in parentheses with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

To further understand this relationship, I run the regressions of market structure measures

on real-time wind generation and demand by each of the 20 evenly-divided demand quantile

groups. As shown in Figure 1.7 and Figure 1.8, a 1-GWh14 increase in wind supply first

14. 1 GWh = 1000 MWh
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increases number of local markets (positive coefficient) by 3, and reduces local competing

capacity by 3 GW; however, these effects gradually diminish in magnitude, and eventually

reverse in direction as total demand increases. When market demand surpasses 80% of its

peak level, more wind supply will alleviate congestion, reducing the number of local markets

and increasing local supply competition.

Figure 1.7: Marginal Effect of Wind Supply (1 GWh) on Number of Local Markets by Load
Quantiles

Notes: The figure shows the regression results of number of local markets on real-time wind generation by

each of the 20 evenly-divided demand quantile groups, after controlling for real-time demand and monthly

fixed effect. A 1-GWh increase in wind supply first increases number of local market (positive coefficient)

by 3, but the effect gradually diminishes in magnitude, and eventually reverse in direction as total demand

increases.

This load-dependent impact of wind generation is consistent with the intuition. Consider

a region with a bunch of wind farms. When total demand is low, a surge in wind generation

from strong wind blow cannot be accommodated by local demand and will likely export

to other regions. This could quickly take up transmission capacity and make the region
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Figure 1.8: Marginal Effect of Wind Supply (1 GWh) on Local Market Size (GW) by Load
Quantiles

Notes: The figure shows the regression results of local generation capacity (the largest local market in

each hour) on real-time wind generation by each of the 20 evenly-divided demand quantile groups, after

controlling for real-time demand and monthly fixed effect. A 1-GWh increase in wind supply first reduces

average competing capacity in local markets by 3 GW, but the effect gradually diminishes in magnitude,

and eventually reverse in direction as total demand increases.
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“export-constrained”. This means that wind increase is likely to create congestion in the

low demand case. However, in the high demand case, local supply is in shortage, which

requires importing generation from outside. Then the local market could be congested by

“import-constrained”. In this case, more wind supply actually will help the situation, as it

increases the local supply and reduces the imported power flow that creates congestion.

1.5.2 Differential Responses to Wind Shocks for Wind and Non-

wind Firms

In the previous section, I have showed that wind generation has significant impacts on market

structure. When higher wind generation alleviates congestion under the high demand case,

this will increase local market competition. Firms that recognize this wind supply impact

would expect a more elastic residual demand, and bid a flatter slope (larger dS/dp) in

response. Similarly, we can consider the impact of demand on the bidding slope. When

demand increases congestion, less supply competes in the local market. Consequently, firms

should expect a less elastic residual demand, and bid a steeper slope (smaller dS/dp) instead.

In this section, I follow this logic and examine in panel regressions whether firms respond

to change in wind supply, and how that response depends on different information held by

wind firms and non-wind firms.

In this analysis, I exploit exogenous variations in hourly demand and wind generation in

the market. All firms submit real-time bids without knowing the realizations of demand and

wind generation; however, demand forecasts are available to all firms, while wind forecasts

are exclusive to wind firms before they bid. Because of the sequential market setting, the

real-time demand and wind is essentially separated into two parts: their day-ahead schedule

cleared in day-ahead auction, and their real-time deviation, which is the difference between

actual realization and day-ahead schedule. I separately control for these two parts, and test

if firms incorporate information of both parts in their real-time supply bids.15 The panel-

15. In real-time market, firms are required to bid a full supply function for all their capacity, regardless of

33



data regression with fixed effects is estimated for wind firms and non-wind firms separately

as follows:

bid slopeit = α + β1DA Windit + β2RT Wind Shockit + γ1DA Loadit + γ2RT Load Shockit

+ φMC slopeit + µi + δy + ηh + εit

I track hourly bids of the 15 major firms over a long panel from January 2012 to December

2016. In particular, since each firm’s bid in an hour is a step function, I approximate the

bidding slope by fitting a B-spline polynomial, and calculate the local slope (bid slopeit =

(dS/dp)it) around the market clearing price. Besides the demand and wind supply in day-

ahead and real-time, I further control for the change in the slope of firms’ own marginal cost

function (MC slopeit = (dq/dmc)it), which is also approximated using B-spline polynomials.

I also account for yearly (δy), hourly (ηh), and firm (µi) fixed effects.

The results are shown in Table 1.4. Column (1) and (2) show that, both “wind firms”

and “non-wind firms” submit a steeper bid function (i.e. dS/dp goes down) in response to an

increase in load (real-time load especially). They also bid steeper for a steeper marginal cost

function. However, only “wind firms” also respond to changes in day-ahead and real-time

wind supply: they submit a flatter bid function when wind supply is higher. All these results

are robust after controlling for the firm and time fixed effects.

To explore the load-dependent feature of wind supply impacts, I run the regressions at

each of the 20 demand quantile groups. As Figure 1.9 and Figure 1.10 show, I find how

wind firms adjust their bidding slope coincides with the way in which wind supply affects

market structure at different demand levels, as Figure 1.8 shows. When wind is likely to

decrease local competition at the low demand level, firms tend to bid less competitively

(reduce dS/dp), and when wind is likely to increase local competition at the high demand

whether any of them has been scheduled in the day-ahead market
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Table 1.4: Response in Bidding Slope to Demand and Wind Shocks

Dep Var: Firm’s Bid Slope (dS/dp)

(1) (2) (3) (4)

Wind Firms Nonwind Firms Wind Firms Nonwind Firms

Day-ahead Wind 0.004∗∗∗ 0.00004 0.0005 0.0005
(0.001) (0.001) (0.001) (0.0005)

Real-time Wind Shock 0.009∗∗∗ -0.002 0.007∗∗∗ -0.001
(0.001) (0.001) (0.001) (0.001)

Day-ahead Load -0.002∗∗∗ 0.002∗∗∗ -0.002∗∗∗ 0.002∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)

Real-time Load Shock -0.002∗∗∗ -0.007∗∗∗ -0.002∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.001) (0.001)

Slope of Own MC 0.001∗∗∗ 0.022∗∗∗ 0.0004∗∗∗ 0.002∗∗∗

(0.00004) (0.001) (0.00003) (0.0003)

Firm fixed effects No No Yes Yes
Year fixed effects Yes Yes Yes Yes
Hour fixed effects Yes Yes Yes Yes
Observations 267,638 300,695 267,638 300,695

Note: This table reports regression results using hourly data in real-time market from 2012 through 2016.
Dependent variable is each firm’s bid slope (dS/dp) around market clearing price in each hour, approximated
from B-spline regressions. For regressors, real-time wind generation (demand) is divided into day-ahead wind
(demand) schedule and real-time wind demand) shock, which is the deviation of actual wind generation
(demand) from day-ahead schedule. All demand and wind generation are measured in MWh. Slope of each
firm’s marginal cost curve is also approximated from B-spline regressions.
Robust standard errors are in parentheses with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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level, firms also tend to bid more competitively (increase dS/dp). Note that this consistent

pattern in wind firms’ bidding response does not rely on market structure measures in the

previous subsection since they are not used in the regressions here. This finding suggests

that with good wind information, wind firms are very aware of the complicated wind impacts

on market structure and act on it by adjusting their bid functions accordingly. By contrast,

the responses of non-wind firms are not different from 0 at all demand levels but one.

Figure 1.9: Bid Slope (dS/dp) Response to Wind at Different Load: Wind Firms

Notes: The figure shows the regression results of wind firms’ bid slope (dS/dp) on real-time wind shocks

at each of the 20 demand quantile groups, after controlling for day-ahead wind, day-ahead demand, slope

of marginal cost and firm fixed effects. It shows the way in which wind firms adjust their bidding slope

coincides with the way in which wind supply affects market structure at different demand levels: when wind

is likely to decrease local competition at low demand level, wind firms tend to bid less competitively (reduce

dS/dp), and when wind is likely to increase local competition at high demand level, wind firms also tend to

bid more competitively (increase dS/dp).
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Figure 1.10: Bid Slope (dS/dp) Response to Wind at Different Load: Non-wind Firms

Notes: The figure shows the regression results of non-wind firms’ bid slope (dS/dp) on real-time wind shocks

at each of the 20 demand quantile groups, after controlling for day-ahead wind, day-ahead demand, slope

of marginal cost and firm fixed effects. It shows non-wind firms’ responses are not different from 0 at all

demand levels but one.
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1.5.3 Direct and Indirect Impacts of Wind Generation on Firms’

Bidding Strategy

The analysis above presents empirical evidence of wind impacts on firms’ bidding through

changing market structure and local residual demands faced by firms. A more direct impact

of wind generation on firms’ generation capacity has not been considered. Theoretically, firms

will respond to this direct impact differently from the way they respond to market structure

change. When higher wind generation adds to wind firms’ total generation capacity, they

will have more incentives to push up market price as marginal profit of doing so increases

from the expansion of their infra-marginal capacity.

To differentiate this direct effect of wind generation from its indirect effect found in the

previous analysis, I rerun the regressions in section 1.5.2 with wind firms, while including

each firm’s hourly own wind generation as an additional control. By adding this control, I

can separate firms’ response to the changes in market structure and those in their own supply

curve. Table 1.5 shows the results. Across different specifications with different fixed effects,

I still find strong impacts of market wind supply and market demand on wind firms’ bidding

slope, which are of the same directions and magnitudes as those in regressions without own

wind generation control. In addition, the estimated impact of own wind generation on bid

slope is negative, which is consistent with the theoretical prediction: higher wind supply

increases the infra-marginal capacity that a firm owns; therefore, the firm will earn more

profit with the expanded capacity if pushing up the market price. As the result, the firm

will bid less competitively, that is, with smaller dS/dp in slope.

1.5.4 Robustness Checks

The analysis in section 1.5.1 shows non-linear impacts of wind generation on local market

structure, and the regressions in section 1.5.2 further show that firms with wind information

bid strategically in response to wind-induced market structure change, while firms without
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Table 1.5: Wind Information Effect on Wind Firms’ Bidding: Robustness to Own Wind
Generation

Dep Var: Firm’s Bid Slope (dS/dp)

(1) (2) (3)

Wind Firms Wind Firms Wind Firms

Day-ahead Wind 0.008∗∗∗ 0.008∗∗∗ 0.0002
(0.001) (0.001) (0.0006)

Real-time Wind Shock 0.014∗∗∗ 0.014∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001)

Day-ahead Load -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.0001) (0.0002) (0.0002)

Real-time Load Shock -0.001∗ -0.0014∗∗ -0.0013∗∗

(0.0005) (0.0006) (0.0006)

Slope of Own MC 0.001∗∗∗ 0.001∗∗∗ 0.0004∗∗∗

(0.00003) (0.00003) (0.00002)

Own Wind Generation -0.079∗∗∗ -0.079∗∗∗ -0.001
(0.002) (0.002) (0.003)

Year fixed effects Yes Yes Yes
Hour fixed effects No Yes Yes
Firm fixed effects No No Yes
Observations 265,020 265,020 265,020

Note: This table reports regression results using hourly data in real-time market
from 2012 through 2016. Dependent variable is each firm’s bid slope (dS/dp)
around market clearing price in each hour, approximated from B-spline regressions.
Regressors are day-ahead wind schedule, real-time wind deviation, day-ahead
demand schedule, real-time demand deviation, slope of marginal cost around market
price, and each firm’s own real-time wind generation in each hour.
Robust standard errors are in parentheses with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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such information do not. Section 1.5.3 separates the direct impact of wind generation on

wind firms’ total supply, and the indirect impact of wind generation on market structure,

as they play different roles in affecting firms’ bidding strategy. In this subsection, I address

some potential concerns that remain in these analyses.

First, one concern is that the non-linear impact of wind generation on market structure

might heavily rely on the local market definitions I measure from the hierarchical clustering

approach. To ensure that the result does not generate from any potential measure errors in

the market definition, I run a robustness check using another measure for market divisions

inferred from MISO marginal fuel data. MISO provides marginal units’ fuel information for

each 5 minute interval in the real-time market every hour. The number of marginal units vary

from one 5-minute interval to another because of the variation in local markets dynamically

defined by transmission congestion. Although generators’ identities are not available in the

marginal fuel data, and differences in the unit of time can lead to discrepancy in market

definition between this report and my approach, I can still use number of marginal units

reported by MISO as a proxy for how divided the market is. I then explore how wind

generation and demand affect this number of marginal units measure, and compare the

results to my findings in section 1.5.1. The regression results are reported in Table 1.6. I show

that the similar non-linear impact from wind generation is estimated using this alternative

measure for market division from MISO official reports. This indicates that the results of

wind impact on market structure are robust to different approaches in the measurement of

the market divisions.

Second, for the analysis in section 1.5.2, one concern is that if the plants of non-wind firms

are very far away from all wind units, they are unlikely to be affected by wind generation.

To show that this is not the case, I calculate the distance between each firm’s thermal plants

and each major wind project location. Those major wind project locations have wind units

with at least 300 MW of installed capacity during my study period.16 In Figure 1.11, I

16. For some locations, I combine different companies’ wind projects together as they reside at the same
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Table 1.6: Wind’s Impact on MISO-report Market Division Measure

Dependent Variables in Each Column

(1) (2)

# of Marginal # of Marginal

Units (hrly. avg.) Units (every 5-min)

Real-time Wind (GWh) 0.83∗∗∗ 0.83∗∗∗

(0.05) (0.02)

Real-time Load (GWh) 0.08∗∗∗ 0.08∗∗∗

(0.005) (0.002)

1 GWh RT Wind × -0.005∗∗∗ -0.005∗∗∗

1 GWh RT Load (0.001) (0.0003)

Hour fixed effects Yes Yes
Observations 8,744 104,928

Note: This table reports regression results using real-time 5-min marginal
fuel data in 2015. Dependent variables are average number of marginal
units in each hour, and number of marginal units in each 5 minutes. The
regressions include 8744 hours, same as reported in previous exercises of
market clustering. Real-time wind generation and real-time demand are
measured in GWh. Robust standard errors are in parentheses with ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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graph the distribution of these distances by wind firms and non-wind firms separately. One

observation by comparing the two distributions is that more thermal plants in wind firms

are located very close to wind projects than those in non-wind firms. This is as expected,

as all power plants from one firm (wind firm) usually operate close to each other. However,

we still see about 70% of plants from wind firms located farther than 200 miles, and they

overlap with most thermal plants from non-wind firms located within 600 miles of wind

projects. These are reasonable distances for the plants to be in the same local market with

wind projects. Moreover, transmission constraints can have extensive impacts on market

structure. Therefore, even when a plant is not in the same local market with wind projects,

it is unlikely to be totally immune to wind impacts on local market structure.

1.6 Structural Model of Bidding with Imperfect Wind

Information

1.6.1 Model of Firms’ Beliefs and Strategic Bidding

To better explain the bidding strategies from firms with different wind information, I construct

a model of best-response bidding where firms maximize expected payoffs given beliefs about

residual demands as determined by the information they possess. This type of model is

widely used in IO literature, especially under multi-unit auction settings, where solving for

firms’ full equilibrium supply curves and beliefs is intractable except for a few special cases.

Instead, the model assumes that firms approximate their rivals’ actions by using ex-post

results or the results in the past under similar market conditions. By construction, this

approximation makes firms’ beliefs consistent with what their rivals’ actually do and has

been proved very useful in characterizing firms’ profit maximizing behaviors in the previous

literature. See, for example, Gans and Wolak [2008], Hortaçsu and McAdams [2010], Reguant

longitude and latitude coordinate according to EIA data.
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Figure 1.11: Distance Between Firms’ Thermal Plants and Major Wind Project Locations

(a) Distance of Wind Firms’ Plants to Wind Project Locations

(b) Distance of Non-wind Firms’ Plants to Wind Project Locations

Notes: The figure shows the distribution of the distance between each of major wind project locations and

each thermal plant owned by wind firms (Panel A) or non-wind firms (Panel B). The observation used in the

figure is the distance in miles calculated for each thermal plant-wind location pair. 70% of thermal plants

from wind firms are overlapped with most thermal plants from non-wind firms within the distance range

between 200 and 800 miles.
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[2014], and Doraszelski, Lewis and Pakes [2019]).17

The key feature I add to this model in my specific setting is how much wind information

firms have will affect their beliefs about the residual demands to which they best respond.

That is, based on different wind information, some firms will form noisier distributions of

residual demands, while others will form more precise ones. So in the model, their beliefs

about their rivals might not be correct or consistent to what will actually happen, due to

the information friction. However, each firm still rationally best-responds given its beliefs.

So in the model, when firms need to predict market structure and rivals’ bids to construct

residual demands, they will learn from the bidding data in the past, of the auctions that they

believe were under the similar market conditions (demand, wind generation, hours) as what

they will face next. This is a valid behavioral assumption from my reduced-form analysis,

as I find when firms have good information about demand and wind generation, they indeed

predict the changes in market structure well and respond strategically to them.

Specifically, for a particular hour h in day t, firm i forms expectations of residual demands

from the similar hourly auctions in the most recent three months ([t− 90, t− 1]). For each

similar auction, all rivals’ bids, local market definitions and local demand in that auction

are used to construct a residual demand curve, which represents a potential situation firm i

expects to face for an actual hour the next day. Formally, the residual demand is constructed

as:

RDith(p|Θih′) =
∑

d∈Θih′

qdh′(p)−
∑

jh′,j∈Θih′

bjh′(p)

where h′ represents the similar auction (hour) in the past; Θih′ is the local market (defined

17. Gans and Wolak [2008] draws sample analogue for the distribution of residual demand uncertainty for
each firm each day from the auctions in the previous, current, and following month which have daily peak
demand closest to actual demand for that day; Hortaçsu and McAdams [2010] estimates the distribution of
the bidder’s residual supply by resampling from past auctions in Turkish treasury bond auctions; Reguant
[2014] estimates firms’ expectations of residual demands by bootstrapping the past similar days in the
Spanish electricity market; Doraszelski, Lewis and Pakes [2019] samples from the past bids to estimate
firms’ expectations of rivals’ bid price in a discriminatory auction in UK frequency response market.
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by transmission congestion) where firm i is located during hour h′; qdh′ are the local demand

bids; and bjh′ are the local supply bids except for firm i’s own bids in hour h′.

In the reduced-form analysis, I find there are differences among firms for wind information

they have, while not much for demand information. Motivated by this finding, wind information

becomes the key to formalizing firms’ beliefs about residual demands. For a firm that

is perfectly informed about wind generation, it can use both demand forecasts and wind

forecasts to construct the distribution of residual demands. Albeit having some uncertainty,

this distribution should be precise and close to what happens ex-post. On the other hand, for

a firm that has no information about wind generation, it can only rely on publicly available

demand forecasts to form its beliefs. The distribution of residual demands constructed by

that firm would then be more general and imprecise.

The informed distribution and the uninformed distribution of residual demands mentioned

above represent two extreme cases of firms’ wind information possession. A less extreme

firm would face a mixture distribution that combines the informed and the uninformed

distributions. How much wind information the firm possesses is reflected in the weights

between the two distributions in that mixture. A firm with more information about wind

generation would put more weights on the informed distribution relative to the uninformed

distribution. Using this structure, I can estimate firm’s wind information as a one-dimensional

information parameter, which is denoted as γ for the rest of the paper: it determines the

extent of wind information for each firm.

Specifically, the informed distribution consists of hourly auctions in the past that are

matched with same hour of day, ex-post market demand and ex-post wind generation in the

next-day actual hour. The uninformed distribution consists of the auctions matched only

with hour of day and ex-post market demand. Given the information parameter of each firm

as the weight between these two distributions, the mixture distribution of residual demands

are formalized. Then firms will optimize their supply bids that best respond to the expected

profit over this mixture distribution of residual demands. Formally, the firm solves a mixed
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integer programming problem (MIP):

max
b(qths)

EΠt(b(qths)) =

St∑
s=1

{[γτ + (1−γ)(1− τ)] · [DRτths(bths) · bths−Ct(qths)− bths ·QCt]}

(1.2)

s.t.

[Balance constraint] DRτths(bths) = qths,∀s, h, τ

[Capacity constraint] Q≤ qths ≤ Q, ∀t, h, s

[Monotonic supply function] bths ≤ bth′s′ ⇒ qths ≤ qth′s′∀t, h, h′, s, s′

For each day, the firm’s expected profit is maximized over all residual demand draws

(s) from the mixture distribution, where τ indicates whether the residual demand DRτ is

drawn from the informed distribution (τ = 1), or the uninformed distribution (τ = 0),

and γ indicates the weight put on the draws from the informed distribution. Ct represents

the firm’s marginal cost function, which is updated every day as fuel price, heat rate and

generation capacity can change from one day to another. The firm’s generation capacity

may vary especially when it owns wind units. In this way, I incorporate the impact of own

wind generation into the calculation of the firm’s optimal bidding. QCt represents forward

contract position, for which the firm gets payments at pre-determined forward contract

prices. My data does not contain the forward contract information. However, I can use each

firm’s bidding and marginal cost data to back out their forward contract positions on each

day, following Hortaçsu and Puller [2008]. An explanation of the approach can be found in

Appendix B.

The optimal bid function b(q) is solved subject to three market bidding constraints: (1)

balance constraint: quantity produced by each firm equals the residual demand it faces at its

bid price; (2) capacity constraint: each firm cannot produce beyond its operating capacity

limits; (3) monotonic supply function: each firm’s bid price needs to be increasing in its

production quantity. The firm’s optimal bid curve is obtained by connecting all the solved
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(b∗ths, q
∗
ths) pairs.

The information parameter γ is identified by fitting the optimal bid predicted by the

model to each firm’s actual bid and finding the one model with a particular γ that have the

best fit. Figure 1.12 provides an example of how to calculate optimal bids under each γ and

how to choose the optimal γ for a non-wind firm on a particular day. Part (a) shows the

optimal bids solved in γ = 1 model: all the residual demands are drawn from the informed

distribution; the optimal bid in green color is solved the MIP problem, which maximizes

the expected profits over these residual demands. Part (b) illustrates γ = 0 model: all

residual demands are sampled from the uninformed distribution, which are clearly much

more widespread than the residual demands sampled from the informed distribution; Based

on the residual demands, γ = 0 model will solve for the optimal bid curve. Part (c) shows

that if we compare the bids predicted by the two models to the firm’s actual bid, γ = 0

model is a better fit. In the formal estimation, I also search for γ between 0 and 1. In those

cases, both sets of residual demands from (a) and (b) are used in generating optimal bid

curve, while different γ determines the weight of each type of residual demands in the MIP’s

objective function. In general, we would expect the bids with γ ∈ (0, 1) to lie between γ = 1

and γ = 0 bids.

The structural model described above formulates the best-response bidding for a strategic

firm, given the beliefs estimated for the firm. This is different from an equilibrium model

where firms’ beliefs are mutually consistent with each other’s play. It has been established

in auction literature that the explicit analysis of such an imperfect-information, asymmetric

supply function equilibrium is generally infeasible. Previous literature has only provided a

few special cases in symmetric models (e.g. Hortaçsu and Puller [2008] and Vives [2011]).18

When considering the interaction between firms’ bidding and transmission congestion, this

18. Hortaçsu and Puller [2008] solves for a SFE in which firms hold private information about contract
position. The complexity of the Bayesian-Nash equilibrium is greatly simplified by assuming that other
firms’ private information does not change a given firm’s ex-post optimal bid. Vives [2011] solves for a SFE
where ex-ante symmetric firms have imperfect information about costs and offer linear supply functions.
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Figure 1.12: Example of Fitting A Non-wind Firm’s Bid with Model

(a) Residual demands and Prediction under γ = 1

(b) Residual demands and Prediction under γ = 0
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Figure 1.12: Example of Fitting A Non-wind Firm’s Bid with Model (Cont.)

(c) γ = 0 model is a better fit than γ = 1 model

Notes: Figure 1.12 shows a series of graphs as an example of how the structural model works to fit a firm’s

supply bid in each day and estimate the information parameter γ. First, given residual demands drawn from

informed distribution and uninformed distribution, the MIP solver calculates the firm’s optimal bid given

marginal cost and forward contract position for γ = 1 model (Panel A) and γ = 0 model (Panel B). The

actual estimation process also involves calculating optimal bids under the model with γ ∈ (0,1), when the

firm best responds to the mixture of two residual demand samples with γ as the weight. Finally, as shown

in Panel C, each solved optimal bid is compared to the firm’s actual bid on the same day, and the optimal

γ is estimated when the optimal bid best fits the actual bid.
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problem becomes even more challenging (Wilson [2008]).19 Given this reason, the behavioral

assumptions I make in my model seem to be more realistic for firms’ operation. As quoted

from Wilson [2008], “if the conditions for an equilibrium are so complicated as to impede

academic and policy studies, then perhaps it is implausible to suppose that firms’ bidding

strategies approximate an equilibrium.”

From a practical point, it is within major firms’ ability to use historical data and

information they possess to approximate real-time market conditions. It is also made possible

by MISO since it updates unit-level historical bid data for all market participants on their

bidding platform. Hortaçsu and Puller [2008] provides an example in the early years of Texas

electricity market that, if firms just best respond to the most recent rivals’ bids, their profits

will be very close to the ex-post optimal profits.

1.6.2 Estimation Procedures

To sum up, the estimation of information parameter γ in the model takes the following three

steps:

1. Construct firms’ expectations on residual demand by sampling in the mixture distributions.

Specifically, for a given firm i and each hour in auction day t:

(1) Pool similar hours in the past 90 days [t-90,t-1], by matching:

- Same time of the day (±2 hours);

- Same load ((± 2000 MW or ±5%);

to obtain the uninformed distribution for day t;

and add the following in the matching to get the informed distribution for day t:

- same wind condition (± 250 MW or ±5%);

(2) Randomly draw S similar hours from the informed distribution and S similar hours

19. Wilson [2008] characterizes a symmetric SFE when transmission constraints could bind in a nodal
pricing system, using the calculus of variations. Still, the computation of such equilibrium results is extremely
challenging.

50



from the uninformed distribution without replacement;

(3) For each sampled hour, use the local market structure, local demand bids, and

rivals’ bids to construct the residual demand curve.

2. With the random sample of residual demand curves, solve for the ex-ante optimal

supply curve that maximizes expected profits over all residual demands, with γ as the

weight in the objective function for residual demands from the informed distribution,

and 1-γ as the weight for residual demands from the uninformed distribution. The

solution follows the mixed integer programming approach specified in (1.2).

3. In the outer loop, search for the information parameter γ, from which the solved

optimal bid best fits the firm’s observed bid curve on day t. The measure of fit is

the mean square prediction errors (MSE) of bid price at each bid step (10 MWh), as

traditionally used in measuring model performance:

γ̂ =argmin
γ

(
∑
q

[bdatait (q)− bmodel(γ)
it (q)]2)

As the objective function is non-linear and not perfectly convex in γ, I use a grid search

to ensure the global optimum is found. Specifically, I first search with 0.05 interval,

and then around the local minimum, I switch to a finer interval of 0.01 and obtain the

final estimation of γ.

1.6.3 Estimation Results

I apply the estimation procedures to the data from April 2015 through September 2015. In

these six months, there are 172 daily auctions in total, after excluding 10 days in which the

empty set comes up when matching with both demand and wind in the past 90 days.

The information parameter γ captures the likelihood of firms believing that the residual

demands drawn from the informed distribution will realize ex-post. Higher γ means the firm
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puts more weight on the residual demands drawn from the informed distribution; therefore,

it will get firms’ expectations closer to what is actually realized ex-post.

I estimate the average information parameter γ for each type of firms (wind/non-wind).

In Figure 1.13, I show the grid search results at 0.05 accuracy for γ from [0,1]. Panel A

graphs the average MSE (objective value) over all wind firms at each search step of γ, and

Panel B is the average MSE by γ for non-wind firms. Because some firms are better predicted

than are others, the mean levels of MSE differ across firms. To ensure the average result is

not the artifact of one or two firms with large MSEs, I standardize each firm’s MSE at each

γ and each day, before averaging them to generate the figures at each γ for each type.

Once I obtain the estimate of γ for each type of firms at 0.05 accuracy, I further search at

0.01 accuracy around the local minimum in the 0.05 search. Figure 1.14 graphs the average

MSE of each type in the 0.01 search.

The estimated parameter for wind firms is 0.88, indicating they weigh highly on the

informed distribution that is close to what happens ex-post. On the contrary, the estimated

parameter for non-wind firms is 0.26, consistent with the fact that they do not possess much

forecasting information about wind generation.

1.6.4 Model Fit

In this section, I show that my model, with the estimated information parameter, better

predicts the actual clearing price for each firm than ex-post optimal price predicted using

standard oligopoly pricing model. The ex-post optimal price is produced using ex-post

optimal bid, with which each firm best responds to ex-post actual residual demands in each

hour.

In Table 1.7, I regress the actual price for each firm in each hour on the model predicted

price from the best-fit γ for each type, and the predicted price from the ex-post optimal

bid. The results show that, for both wind firms (column (1) and (3)) and non-wind firms

(column (4) and (6)), my model with the estimated γ explains the majority of variation in
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Figure 1.13: Grid Search Results for Wind Firms’ and Non-wind Firms’ γ, 0.05 Interval

(a) Wind Firms

(b) Non-wind Firms

Notes: The figure shows grid search results of information parameter γ from 0 to 1 with 0.05 interval, for

each type of firms (wind/non-wind). The prediction errors (MSE) for different γ between modeled bids and

actual bids are first calculated for each firm each day. To avoid firms’ heterogeneity to affect average result,

the MSEs are standardized within each type-γ-day, and then averaged over all days and firms in each type.
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Figure 1.14: Grid Search Results for Wind Firms’ and Non-wind Firms’ γ, 0.01 Interval

(a) Wind Firms

(b) Non-wind Firms

Notes: The figure shows grid search results with 0.01 interval for information parameter γ for each type of

firms (wind/non-wind), around the local minimums obtained from the grid search using 0.05 interval. The

prediction errors (MSE) for different γ between modeled bids and actual bids are first calculated for each

firm each day. To avoid firms’ heterogeneity to affect average result, the MSEs are standardized within each

type-γ-day, and then averaged over all days and firms in each type.
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actual price, and the price from ex-post optimal bid has little prediction power. In addition,

comparing column (2) with column (5) reveals that prices from the ex-post optimal bid are

more correlated with actual bids for wind firms. By contrast, for non-wind firms, even using

this price as a single predictor, it does a poor job in fitting the actual price. This shows

that wind firms that hold better wind information indeed bid much closer to the optimal bid

than do non-wind firms.

Table 1.7: Compare Best-fit γ to Ex-post Optimal Bid Model

Dependent variable:

Market Clearing Price from Actual Bids

(1) (2) (3) (4) (5) (6)

Wind Wind Wind Non-wind Non-wind Non-wind

Price from best-fit γ 0.91∗∗∗ 0.89∗∗∗ 0.81∗∗∗ 0.96∗∗∗

(0.04) (0.08) (0.08) (0.004)

Price from ex-post optimal 0.57∗∗∗ 0.04 0.08∗ 0.0001
(0.07) (0.04) (0.04) (0.001)

Constant 1.89∗∗ 9.10∗∗∗ 1.45∗ 4.13∗∗ 20.07∗∗∗ 0.91∗∗∗

(0.74) (1.46) (0.81) (1.64) (0.88) (0.10)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Hour fixed effects Yes Yes Yes Yes Yes Yes
Observations 26,797 26,404 26,404 30,241 29,249 29,249
R2 0.95 0.78 0.96 0.88 0.52 0.98

Note: The table shows the fit of the wind information model to market clearing price in real-time market from
April 2015 through September 2015. The dependent variable is market price each firm receives in each hour,
calculated from their actual bids and actual residual demand in the local market. The independent variables
are market price calculated using the information model with the best-fit γ for each type of firms, and market
price calculated using ex-post optimal bid in response to actual residual demand in the local market. Column
(1)-(3) are regression results on the sample of wind firms, and column (4)-(6) are regression results on the
sample of non-wind firms.
Standard errors clustered at the date-level are in parentheses with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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1.7 Counterfactual Analysis

In this section, I use the structural model to simulate and quantify the profit and welfare

impacts of wind information in two counterfactual simulations. First, I explore the change

to each firm’s private profits when each unilaterally changes its own bid from knowing no

wind information to knowing perfect wind information; Second, I simulate the changes to

consumer welfare and market efficiency when all firms are given perfect wind information,

compared to a baseline case in which only about half of the firms have perfect information

about wind generation.

The calculations of these two simulations are straightforward using my structural model

results: each firm’s γ = 1 bid is calculated as a best-response supply bid after drawing

expected residual demands from the informed distribution. Similarly, each firm’s γ = 0

bid is calculated using residual demand draws from the uninformed distribution. For both

simulations, I use ex-post local market definitions and local demand to calculate market

results. Therefore, the counterfactual results for each firm and each hour are calculated by

clearing each local market with actual demand and hypothetical supply bids predicted in the

model. Because of the best-response model setting, firms’ hypothetical supply bids respond

to changes in wind information they possess, but not respond to changes in other firms’

bidding behaviors. So this exercise should be considered as a simulation of firms’ short-term

adjustments to wind information variation, rather than equilibrium results they might finally

converge to after a longer-run learning process.20 I plan to work on this long-run aspect in

my future research.

20. In a complex setting such as electricity market auctions with rapidly changing market conditions, as
pointed out in Doraszelski, Lewis and Pakes [2019], “... convergence to equilibrium after a perturbation may
not be swift or indeed certain”. They actually find that it took about 6 years for firms to get close to a
complete information Nash equilibrium in frequency response auctions in the UK electricity system.
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1.7.1 Profit Gains when A Single Firm Unilaterally Changes Bid

I first examine the profit that each firm would get if it is given perfect information about wind

and unilaterally changes its supply bid according to what the γ = 1 model would predict;

and the profit for each firm if no wind information is available and they bid according to

γ = 0 model. These two profits are then compared to their actual profits. Conceptually, this

exercise can elucidate firms’ willingness to pay for a private wind forecasting service, when

it will give them an informational advantage while keeping every other firm’s information

unchanged.

Specifically, I use the ex-post local market definition, actual residual demand (demand

- rivals’ bids) and each firm’s counterfactual bids predicted in the model to simulate the

cleared price, cleared quantity and firms’ profits in each hour from April 2015 to September

2015. The profit measure requires knowledge of fixed contract price, which is not available

in my data. Therefore, I use the ex-post optimal results as a benchmark, which is calculated

using firms’ ex-post optimal bids given actual residual demands. Comparing the two profits

cancels out the contract revenue part. This difference is still informative, as it reveals how

different models deviate from the maximum profits a firm can ever obtain.

Table 1.8 reports the average results for wind firms in Panel A and non-wind firms in

Panel B separately. Column (1) shows the deviation from the ex-post optimal results if the

firm bids with perfect wind information, i.e. γ = 1. Column (2) shows the deviation when

the firm bids as γ = 0 model predicts. Column (3) shows the difference between market

results from firms’ actual bid in data and the ex-post optimal bid.

Comparing the average cleared quantity across the three columns reveals that for both

types of firms, perfect wind information will make firms bid closer to the ex-post optimal

result; no wind information, in contrast, will make firms withhold more quantity in their

bids. This is consistent with the predictions in my analytical model when wind uncertainty

leads to sufficiently large uncertainty in residual demands. In actual data in Column (3),

non-wind firms indeed clear less quantity, while wind firms do not. Therefore, non-wind
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firms’ actual bid is more consistent with the prediction of γ = 0 and wind firms’ actual

bid is more consistent with the prediction of γ = 1. This echoes the estimation results of

the structural model, confirming that actual bid patterns are predicted well by each firm’s

information type.

Consequently, γ = 0 bids will lead to higher prices and higher profit losses than γ = 1

bids, for both types of firms. This highlights the value of wind information for firms’ private

profit. However, if comparing the profit under γ = 1 case and the actual profit, perfect

information improves the actual results for non-wind firms, but not for wind firms. This

indicates heterogeneity across firms within each type, which is not fully explained by this

wind information model.

Finally, to approximate firms’ willingness to pay for perfect wind information, I compare

the profit loss measures between γ = 1 and γ = 0. The willingness to pay, or the value of

perfect wind information to firms’ profit, is $579/hr for wind firms, with 35% increase from

its γ = 0 profit. For non-wind firms, the willingness to pay is $303/hr on averages, equivalent

to 47% improvement from its γ = 0 profit. The results would be different when comparing

γ = 1 results to the actual result, but it seems not all the profit loss in the actual case comes

from wind information; therefore, that comparison would likely exaggerate the value of wind

information. In general, the annual profit loss avoided by having perfect wind information

ranges from $2.7M to $5.1M. Given that the estimate of wind forecasting expenses for MISO

in 2015 was around $16M, this private benefit is not very likely to pass the cost-benefit test

for any single firm to invest in the wind forecasting individually. This might explain why we

do not see those non-wind firms obtain wind information from other sources.
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Table 1.8: Hourly Deviation of Different Types of Bids to Ex-post Optimal Bid

Deviation from Ex-post Optimal Results

(1) (2) (3)
γ = 1 type γ = 0 type Actual

A. Wind firms

Average cleared quantity -3 -150 113
(MWh)

Average cleared price 0.05 0.24 -0.17
($/MWh)

Average profit loss ($/hr) -1090 -1669 -890

B. Non-wind firms

Average cleared quantity 37 -111 -201
(MWh)

Average cleared price -0.20 -0.05 -0.12
($/MWh)

Average profit loss ($/hr) -335 -638 -1273

Note: The table presents simulation results in real-time market from April 2015
through September 2015 when each firm unilaterally changes its bid to γ = 1 model
bid or γ = 0 model bid. Each result shown in the table is the deviation of the
simulated result compared to ex-post optimal result, calculated using ex-post optimal
bid in response to actual residual demand. Average results are calculated over all
hours for each type of firms. Column (1) reports the results from simulating γ = 1
model, column (2) reports the results from simulating γ = 0 model, and column (3)
reports the results from firms’ actual bids. Panel A shows results for wind firms, and
panel B shows results for non-wind firms. The results in each panel are simulated for
each firm first, then averaged over all firms in each type.
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1.7.2 Welfare Impact of Better Wind Information

In this section, I simulate a policy counterfactual in which all firms are given perfect

information about wind generation,21 and compare them to a baseline case in which wind

firms bid with perfect wind information and non-wind firms bid with no wind information.

I do not use actual results as the baseline, so I can isolate the wind information impact from

the firm-level heterogeneity discussed before that cannot be fully explained by the levels of

wind information.

As predicted by the analytical model, market efficiency and consumer welfare would

increase if reduction in uncertainty leads to less quantity withholding from non-wind firms

and brings lower-cost capacity into production. In addition, there are other potential

channels for this information effect to impact efficiency. If the provision of wind forecasts

to all firms in the market were public news, wind firms might predict that non-wind firms

are likely to bid more competitively with less uncertainty; they might then respond by

also submitting more elastic bids. This would further mitigate the market power exercise.

Besides, changes in bidding are likely to reshape the market structure, for example, relieve

some of the transmission constraints, or segment other local markets. These channels are not

the scope of this simulation, as accounting for them requires an equilibrium model in which

firms hold consistent beliefs about each other’s behavioral changes and a transmission model

that maps firms’ bidding to market structure. These are both very challenging problems and

I leave them to future research.

The simulation is conducted with the 15 major firms from April 2015 to September 2015.

The remaining unmodeled firms are treated as fringe players which bid their marginal cost

into the market, as they have limited ability to affect market price given the small capacity

they hold. Therefore, I essentially use their actual bid price in the data as their marginal

cost.

21. Note that this is not equivalent to giving firms perfect foresight on other firms’ strategy. Firms still
need to infer their rivals’ bids from past play, but based on perfect information about actual wind generation.
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In each hour, I take actual market structure, local demand, fringe firms’ actual bids, and

major firms’ hypothetical supply bids predicted in the model to simulate the results for each

local market. In the baseline case, all wind firms bid as γ = 1 and non-wind firms bid as

γ = 0; In the policy counterfactual, both types of firms bid as γ = 1.

Table 1.9 reports and compares the simulated market outcomes under the baseline and

the policy counterfactual. The simulation shows that, when all non-wind firms change their

bids from γ = 0 to γ = 1 type, this leads to a 3.4% decrease in the market clearing price.

Since real-time demand in the electricity market is inelastic, this reduction in price directly

passes through to a reduction in wholesale electricity procurement cost by $45,000 per hour.

This likely indicates an equivalent increase in consumer surplus, as most regulated utility

companies just pass through the wholesale procurement costs to consumers through flat-rate

retail pricing.

Market production cost also decreases by 2.8%. This is from production reshuffle between

lower-cost production from major firms and higher-cost production from small firms. Although

the average quantity being reshuffled is relatively small, the cost saving is significant, which

is mostly concentrated during peak demand hours. During those hours, a small withholding

from non-wind firms could induce highly costly fringe production to kick in. The magnitude

of this reduction is substantial in electricity market context. For a comparison, the transition

from command-and-control operations to the wholesale electricity market design in the U.S.

during 1999-2012 reduced total production cost by 5-8% (Cicala [2017]).

Again, the number derived here needs to be taken with caution, since (1) the simulation

assumes that wind production can be perfectly forecasted; (2) impacts of firms’ bidding

on market structure and heterogeneity within each type of firms are not fully considered.

Nevertheless, the results suggest a potentially important improvement in electricity market

efficiency from what would be a straightforward policy of making wind forecast information

available to all firms.

61



Table 1.9: Hourly Welfare Comparison Between Baseline Case and Perfect Wind Info Case

(1) (2) (3)

Baseline All γ = 1 Pct. Diff.

Mean Price ($/MWh) 24.6 23.8 -3.4%

(0.3) (0.2) (0.8%)

Consumer Cost 1356.7 1311.2 -3.5%

(000s $/hr) (24.3) (19.8) (0.8%)

Major Production 38.0 38.4 1.0%
(GWh) (0.4) (0.4) (0.04%)

Fringe Production 16.2 15.8 -2.5%
(GWh) (0.2) (0.2) (0.1%)

Major Production Cost 535.3 541.5 1.1%
(000s $/hr) (6.8) (6.9) (0.1%)

Fringe Production Cost 140.9 116.3 -21.2%
(000s $/hr) (12.9) (8.4) (5.7%)

Total Production Cost 676.3 657.9 -2.8%

(000s $/hr) (17.5) (13.8) (0.01%)

Note: The table presents simulation results in real-time market from April
2015 through September 2015. Average results are taken over all hours
in each scenario. Column (1) reports the results when all wind firms bid
with γ = 1 bid, and all nonw-wind firms bid with γ = 0 bid. Column
(2) presents the results when all firms bid with γ = 1 bid. Column (3)
calculates the percentage difference between (1) and (2): ((2)-(1)/(2)).
Bootstrapped standard errors in parentheses are calculated using 1000
samples.
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1.8 Conclusion

Renewable energy is the key to the ongoing transformation of the power market and energy

systems. Simultaneously, the uncertainty it creates fundamentally changes the paradigm of

market competition. The fluctuation in renewable capacity makes the market environment

more uncertain, and requires all market participants to have better information when making

optimal decisions in competition.

This paper contains a case study on the U.S. Midwest market where wind power sometimes

generates as high as 30% of demand. In this market, wind generation has great impact on

market competition and market structure through transmission congestion. I find that wind

forecast information not only affects the private profit of production firms, but also has

important implications on market efficiency.

Firms that do not own any wind units have limited wind information when bidding in

the market, while firms that own wind units have information advantages. Consequently, I

find that firms without wind units tend to respond less to wind supply changes and deviate

more from the ex-post optimal bidding strategy. I then develop a strategic bidding model

with a belief-formation process to explain firms’ bidding differences using wind information.

Based on the model, I run counterfactual simulations and show that firms that bid against

the current uncertainty created by wind are more likely to withhold more production in the

market. Hence, providing firms with better wind information could greatly improve consumer

welfare and market efficiency. This suggests that electricity market policy and technology

should work together in developing accurate renewable forecasting, and simultaneously, gain

awareness from market participants in the use of such information.
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Appendices
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A.1.1 Market Result Comparison in A Two-state Analytical Model

In this appendix, based on the analytical model presented in Section 1.3, I derive and compare

the market price and quantity results under informed firm’s bidding and uninformed firm’s

bidding. The idea is to take expected market outcomes over all demand realizations under

the two states for an informed firm and an uninformed firm, and see how the average market

clearing price and quantity change under different bidding strategies.

For each state (b1, b2, the set of demand realizations (η,δ) can be divided into one part

where the uncertain bid overlaps with one of the certain bids, and the other part where the

uncertain bid falls between the two certain bids.

Follow the uniform distribution assumption, we can calculate the expected prices in b1

state with uncertain bid (su(p) = b1+b2
2 p) or certain bid with b1 slope (s1(p) = b1p):

E1(p) =

∫ 2b1d0
b1+b2

d0

(
η

2b1
)f(η)dη +

∫ d1

2b1d0
b1+b2

(
η

2b1
)f(η)dη

Eu1 (p) =

∫ 2b1d0
b1+b2

d0

(
η

2b1
)f(η)dη +

∫ d1

2b1d0
b1+b2

(
2η

3b1 + b2
)f(η)dη

where η ∼ U [d0, d1].

So the average price difference is:

E1(p)− Eu1 (p) =
−(b1 − b2)∆

4b1(3b1 + b2)(d1 − d0)

where the term d2
1 −

4b21d
2
0

(b1+b2)2
is denoted by ∆.

Similarly, the expected prices in b2 state with uncertain bid or certain bid with b2 slope

(s2(p) = b2p) can be calculated as:

E2(p) =

∫ 2b2d1
b1+b2

d0

(
δ

2b2
)f(δ)dδ +

∫ d1

2b2d1
b1+b2

(
δ

2b2
)f(δ)dδ
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Eu2 (p) =

∫ 2b2d1
b1+b2

d0

(
2δ

b1 + 3b2
)f(δ)dδ +

∫ d1

2b2d1
b1+b2

(
δ

2b2
)f(δ)dδ

where δ ∼ U [d0, d1].

So the average price difference is:

E2(p)− Eu2 (p) =
(b1 − b2)Φ

4b2(b1 + 3b2)(d1 − d0)

where the term
4b22d

2
1

(b1+b2)2
− d2

0 is denoted by Φ.

I add these two parts together to compare the average prices (over all possible wind and

load) between uncertain bid and certain bids:

E1(p)− Eu1 (p) + E2(p)− Eu2 (p)

=
b1 − b2

4(d1 − d0)
[

Φ

b2(b1 + 3b2)
− ∆

b1(3b1 + b2)
]

From this, it can be shown that:

E1(p) + E2(p) < Eu1 (p) + Eu2 (p)

⇐⇒ ∆

Φ
>
b1(3b1 + b2)

b2(b1 + 3b2)

⇐⇒ (b1 + b2)d1 − 2b1d0

2b2d1 − (b1 + b2)d0︸ ︷︷ ︸
(1)

· (b1 + b2)d1 + 2b1d0

2b2d1 + (b1 + b2)d0︸ ︷︷ ︸
(2)

>
b1
b2

(3b1 + b2)

(b1 + 3b2)

where (2) >
(3b1+b2)
(b1+3b2)

as long as b1 > b2 and d1 > d0, which are just our setup assumptions.

Also, (1) > b1
b2

if and only if b1 > b2 and b1
b2
> d1

d0
.

So in our model setting, uncertain bid is likely to induce higher average price when

b1
b2
> d1

d0
, i.e. the ratio of two residual demand slopes is greater than the ratio of upper and

lower bound of demand.

66



This means, when the wind-induced uncertainty in residual demand is large enough, we

will likely have a higher market clearing price on average. The intuition of this result is

presented in Section 1.3.

Similarly we can compare the expected quantity under two wind scenarios and different

bids:

E1(q) =

∫ 2b1d0
b1+b2

d0

(
η

2
)f(η)dη +

∫ d1

2b1d0
b1+b2

(
η

2
)f(η)dη

Eu1 (q) =

∫ 2b1d0
b1+b2

d0

(
η

2
)f(η)dη +

∫ d1

2b1d0
b1+b2

(
(b1 + b2)η

3b1 + b2
)f(η)dη

E2(q) =

∫ 2b2d1
b1+b2

d0

(
δ

2
)f(δ)dδ +

∫ d1

2b2d1
b1+b2

(
δ

2
)f(δ)dδ

Eu2 (q) =

∫ 2b2d1
b1+b2

d0

(
(b1 + b2)δ

b1 + 3b2
)f(δ)dδ +

∫ d1

2b2d1
b1+b2

(
δ

2
)f(δ)dδ

Put them together to calculate the quantity difference under uncertain bid and certain

bids:

E1(q)− Eu1 (q) + E2(q)− Eu2 (q) =
b1 − b2

4(d1 − d0)
[

∆

3b1 + b2
− Φ

b1 + 3b2
]

and we have

E1(q) + E2(q) > Eu1 (q) + Eu2 (q)

⇐⇒ ∆

Φ
>

3b1 + b2
b1 + 3b2

From the proof in price comparison, we already know that part (2) of ∆
Φ is greater than

3b1+b2
b1+3b2

, and we can also show that part (1) of ∆
Φ is greater than 1, so this last inequality is

true. So we have E1(q) + E2(q) > Eu1 (q) + Eu2 (q).
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To sum up, when firms face uncertainty in wind supply, their uncertain bid in maximizing

the expected situations is likely to decrease market efficiency by lowering clearing quantity

and increasing market prices. A formal structural simulation in the paper shows a result

consistent with this prediction.

A.1.2 Estimation of Firms’ Forward Contract Positions

My data does not contain each firm’s forward contract information. However, as I observe

each firm’s marginal cost curves, I can back out their forward contract positions on each

day, following a proposition derived in Hortaçsu and Puller [2008]. Recall the optimality

condition in the analytical model: p − c′(s∗(p)) = s∗(p)Hs(p,s
∗(p))

Hp(p,s∗(p)) . When accounting for

the firm’s forward contract with QC reserved from its production at the contract price, the

condition becomes: p−c′(s∗(p)) = (s∗(p)−QC)
Hs(p,s

∗(p))
Hp(p,s∗(p)) . Then Hortaçsu and Puller [2008]

proposes that QC can be calculated by finding the quantity where the supply function of the

firm intersects its marginal cost function.

Intuitively, this approach is valid as long as the firm knows a basic bidding strategy that

they should bid above (below) marginal cost when it is a net seller (buyer) after accounting

for the forward contract. This is a reasonable assumption for major firms in my analysis.

Besides, for major firms, their supply is very often on the margin, which gives them ability to

greatly affect market price. Note that the approach only relies on firms’ private information

about their own contract positions, so no matter how much wind information firms have and

whether they could bid an optimal markup, I can estimate their contract positions using this

approach.

A.1.3 Additional Figures
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Figure A.15: U.S. Electricity Capacity Addition in 2019, by Energy Source

Notes: The figure shows the location and capacity of generators planned to add to U.S. electricity market

in 2019. It is created by the author using EIA-860 Form: proposed plants in 2019. Bubble size is scaled by

the installed capacity of each generator.

Figure A.16: Installed Wind Capacity Increases Transmission Constraint Frequency

Notes: The figure shows trends in wind capacity development and frequency of transmission constraint in

midwest states. Source: “Wind Farms are Blowing Up Congestion in Midwestern Electricity Markets”,

Genscape, 2019. https://www.genscape.com/blog/wind-farms-are-blowing-congestion-midwestern-electricity-

markets
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Chapter 2

Paying for Scarcity at the Right

Time: Evidence from PJM Capacity

Market Reform

2.1 Introduction

The core function of markets is to formalize prices to accurately reflect the scarcity value

of goods or services. The price signal is vitally important to facilitate market demand and

supply to meet, especially in the electricity market. Large fluctuations in electricity demand,

and supply constraints arising from the fixed generation capacity, result in significant hourly

and daily variations in the scarcity value of electricity. In wholesale electricity market, energy

auctions featuring competitive hourly bidding provide such price signals and incentives for

power plants to produce when needed. However, when capacity market is added to electricity

market design to provide additional incentives, such concept of time-varying pricing is

relegated to a vague notion.1

1. Regarding the terms commonly used in electricity market design, the market that distributes power
plants’ actual hourly production to meet real-time demand is defined as the “energy market”, or “energy
auction”, while the market that ensures resource adequacy in the medium- and long-term is defined as the
“capacity market”. The capacity market in many regions—such as ISO New England, MISO, and PJM—
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The capacity market operates in tandem with the energy market by generating additional

revenue to compensate power producers if their revenues from the energy market are not

sufficient to support both short-run operations and long-run investments. However, the

originally conceived fixed payment system “did little more than transfer a rather arbitrary

amount of money from load to generation” (Cramton, 2017, p. 45). The yearly installments

do not attach to their hourly production and do not reflect the real-time capacity shortage.

Therefore, the system adds little incentives for producers to make their power plants actually

available in the energy market. Instead, it only ensures that there is sufficient “steel in the

ground.”

Historically, price signals in the energy market sufficed to stimulate electricity supply

without additional incentives from the capacity market. Even for generators that do not

operate all the time, the prices during high demand hours can rise high enough to cover

both short-run production costs and long-run investment costs. However, in recent years,

the rapid expansion of subsidized renewable energy and the decrease in natural gas prices

have swiftly reduced energy market prices and producer revenue. Those generators who

are only called on to produce for limited hours per year find it more and more difficult to

get enough revenue. Consequently, there is an increasing reliance on the capacity market

payment to cover the shortfall between the energy market revenue and their total costs.

With this ongoing revenue shift from the energy market to the capacity market, there is

an increasing need to deploy a capacity payment mechanism to ensure that producers have

incentives to contribute when needed.

In this paper, I study the costs and benefits of integrating time-variant scarcity pricing

with capacity market payment. On one hand, the time-variant capacity payment may provide

a better signal of providing generation capacity under different market conditions, thereby

increasing energy market efficiency. On the other hand, it may lead to higher capacity market

costs, because producers may be inclined to offset the payment risks by raising base prices

operate only once a year.
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paid to them in capacity auctions.

I empirically assess the effects of a recent policy change in the U.S. northeast electricity

market, PJM.2 In June 2016, PJM implemented a reform in its capacity market design by

adjusting each generator’s capacity payment to conform with actual performance during

periods of peak demand. The performance of generators is assessed by their actual output

during those hours when the system demand or supply is under stress, as compared with the

output they had committed to in the capacity market. Any shortfall is subject to hourly

penalty charges calculated from the capital costs of building new power plants each year—

usually 10 to 20 times higher than the capacity price paid to current generators.

In a descriptive analysis, I find evidence that producers in the PJM market invested in

a greater number of firm fuel contracts as well as maintenance to improve the reliability of

their generators immediately before the capacity market reform took effect. I then study

producers’ bidding behaviors in wholesale auctions using detailed generator-level hourly data

from 2015 to 2017. I track the change in their bidding before and after the reform, and

compare it to the bidding from producers in the neighboring Midwest market, which operated

according to the old capacity market design at the time of PJM’s reform. The difference-

in-difference regression results show that the bid price of the PJM generators decreases

by 10% on average because of the reform, after controlling for fuel costs and general time

trends. This effect is predominant in marginally producing gas-fired plants, which have

strong incentives to withhold capacity and drive up market prices before. This indicates that

the reform improves energy market efficiency by reducing producers’ incentives to exercise

market power.

In a welfare analysis of the capacity market reform, I consider both the benefits of

reducing energy market costs and the potential cost implications in the capacity market.

The impact of the reform on reducing costs in energy market production is measured using

2. The full name is Pennsylvania-New Jersey-Maryland Interconnection, and it serves all or part of 13
states and DC in the U.S.. More details are discussed in Section 2.2.
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a predictive modeling approach, building upon the “generation regressions” of Davis and

Hausman (2016) and Cicala (2017). First, I fit each generator’s production schedule semi-

parametrically with the its operating characteristics and demand conditions, making use of

the historical data before the inception of the PJM reform. Then, I use the estimated model

to predict the counterfactual production for each generator in the first year of the reform had

the reform not been implemented. The impact of the reform on market production cost can

be quantified by comparing the actual production outcomes and predicted counterfactuals.

This approach is better suited in this context, because it would be difficult for a structural

modeling and simulation approach to fully capture the complicated relationship between

firms’ bidding and market production allocation.

The results of the welfare analysis show that the capacity market reform resulted in lower

production costs in the PJM, compared to what would be if not for the reform. The most

significant reduction in the market production cost for PJM occurred during peak hours,

during which the market is more susceptible to market power exercise. This is consistent

with the findings of the reduced-form model, in that the reform mitigated the strategic

bidding by marginal gas-fired producers. I quantify the reform’s overall welfare implications

by combining the energy production cost savings with the increased capacity payment in

the capacity market. As a result of the reform, capacity payments increased by 2.5 billion

dollars in the PJM 2016-2017 delivery year, while savings in the energy market production

are estimated at 3.8 billion dollars. Therefore, the capacity market reform resulted in a net

benefit of 1.5 billion dollars in the 2016-2017 delivery year.

This paper contributes to the previous studies on oligopoly competition and the exercising

of market power in the electricity market. Following the pioneering work of Borenstein,

Bushnell, and Wolak (2002), there have been studies on different mechanisms in electricity

market designs to mitigate the exercising of market power, such as fixed-price forward

contracts (Bushnell, Mansur, and Saravia, 2008), complementary bidding (Reguant, 2011),

and time-variant retail pricing (Alcott, 2013). Whereas most discussions focus on energy
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market applications, less attention has been paid to the capacity market, which is currently

the second largest source of power plants’ revenue in over 33 states in the United States. This

paper is one of the first studies to empirically evaluate market efficiency gains if combining

time-variant scarcity pricing into capacity payment.

This paper also has bearing on the contentious debate in both academia and industry,

over the optimal market design for achieving resource adequacy. The debate is mostly

focused on the comparison of two approaches, the capacity market and the energy-only

market encompassing scarcity pricing. In energy-only market design, there is no capacity

market to provide additional compensation for producers. Instead, the scarcity pricing

inflates the market price to a level far above the marginal production cost under scarcity

conditions, providing better incentives when capacity would be especially needed. Up to this

time, this design has only been implemented in the Texas electricity market (ERCOT). One

critique of this design is that due to the inelastic demands in the electricity market, real-time

scarcity pricing is susceptible to the exercising of market power, thereby making it difficult

to distinguish between market power abuse and legitimate scarcity rents. Furthermore,

extremely high peak-season retail prices from the scarcity pricing in consumers’ bills are

considered a political risk.

While these two designs have been discussed either theoretically (e.g., Bushnell (2005),

Cramton and Stoft (2005), Joskow (2006), Bushnell, Flagg, and Mansur (2017)) or through

simulation (e.g., Alcott (2013); Galetovic, Munoz, and Wolak (2015)), I use a real-world

policy change in the PJM capacity market and present important new evidence. The

combination of time-varying pricing with capacity payment in a capacity market design

can ensure resource adequacy, at the same time counteracting the financial insecurity caused

by the extreme price volatility in energy-only market design. This is of vital importance in

energy policy, as this reformed capacity market design is currently being considered as the

main policy revision in many electricity markets, including ISO New England, Southwest

Power Pool, and California ISO.
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The remainder of this paper is structured as follows: Section 2.2 provides an overview of

the U.S. electricity market with an introduction to the PJM capacity design reform; Section

2.3 presents a two-step analytical model of energy and capacity supply, which predicts,

in theory, the possible effects of the reform; Section 2.4 summarizes the data used in the

empirical analysis; Section 2.5 describes the econometric approach used for evaluating the

impacts of the reform. Section 2.6 presents the empirical findings regarding the impact on

the producers’ bidding behavior, production costs, and social welfare. Section 2.7 contains

the conclusions of this study.

2.2 Institutional Background

2.2.1 U.S. Electricity Market

Historically, electricity utilities were vertically integrated and responsible for all types of

services from generation, transmission, and distribution to end-use consumer retailing. Typically,

they operated as regional monopolies subject to state-level cost-of-service regulations. Even

though there was no competition, they were only allowed to keep the amount of profit that

was a fixed share of their total cost expenditure. There was no market, so monopoly utilities

used a command-and-control system to organize power plants’ production to meet regional

demand in the areas under their control.

During the late 1990s and early 2000s, the United States electricity market underwent

major deregulation. The deregulation separated the transmission system from power generation

and allowed independent power generators access to the grid. While utilities still own

transmission and distribution networks, they relinquished control of the networks to regional

transmission organizations (RTOs), or independent system operators (ISOs), which integrated

multiple regions into wholesale markets and act as independent, nonprofit grid operators over

each integrated market. In the RTO/ISO organized wholesale market, generation resources

compete with each other in uniform-price auctions by submitting price-sensitive supply bids
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on an hourly basis to sell their power. RTO/ISO calls generators to produce in increasing

price order until total market demand is met, and pays all accepted output at the highest

accepted price offer.

Currently, two-thirds of the electricity produced in the United States is sold through

wholesale markets. Major ISOs include California (CAISO), Midcontinent ISO (MISO),

Texas (ERCOT), Pennsylvania-New Jersey-Maryland Interconnection (PJM), New England

(ISO-NE) and New York (NYISO). Their market operations are regulated by Federal Energy

Regulatory Commission (FERC). Among them, MISO and PJM are the largest, each controlling

a large aggregated market over multiple states.

The capacity market was first created around 2007 in PJM, MISO, ISO-NE, and NYISO.

The purpose of setting up this additional market was to comply with the FERC’s resource

adequacy requirement. In the yearly capacity auction, the system operator needs to plan

and secure sufficient installed generation capacity for the next year’s operation, whereby

“sufficiency” is calculated by the predicted peak demand in the following year, plus the

“planning reserve margin.” The capacity auctions are in the format of yearly uniform-price

auctions and generators that successfully bid in the capacity market commit to uninterrupted

availability in the energy market for the following year. In return, they receive fixed capacity

payments per year, which is based on the capacity auction price and the amount of capacity

they commit to.

2.2.2 PJM Old and New Capacity Market Design

This paper focuses on two neighboring electricity markets, PJM and MISO, which had similar

capacity market designs before June 2016. In June 2016, PJM initiated reform in its capacity

market and began its transition to a “performance-based”capacity market design. Below, I

compare PJM’s old and new capacity market rules, focusing on the differences in generators’

capacity obligations in the energy market.

Under PJM’s old capacity market design, the chief obligations for generation resources
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include:3

1. Follow “Commitment Compliance”:

All generators with capacity market (“capacity resources”) commitment are required

to bid in day-ahead energy auctions every hour every day to the amount committed in

capacity auctions.

2. Pass “Peak Hour Period Availability Test”:

This test assesses the average availability of capacity resources across pre-defined peak

hours (June–August and January–February, with approximately 500 total hours). The

capacity resource will be charged a penalty if its average outage rate is higher than

its 5-year average in the past. The charge is the capacity payment received from the

capacity auction proportional to this shortfall.

Under these rules, there was minimal risk to the generators of incurring such penalties.

Thus, they had little incentives to ensure full production during all hours. This lack of

incentives resulted in extremely high energy prices as shown in recent events that posed

great threat to the reliability of the grid.

One such event was the Polar Vortex of January 2014, when much of the Midwest and

East Coast faced record cold temperatures. During this time, in PJM regions, 22% of

generation capacity (up to 30% for gas generators) was unavailable during the emergency,

and consumers’ January billings skyrocketed to as high as one-third of their entire year’s total

in 2013. Some of the generators’ under-performance was due to the lack of maintenance or

weatherization that exposed them to forced outages and startup failures. Another case

related to gas generators, where they did not secure fuel delivery through firm contracts, so

their gas supplies were cut off due to the high demand in other sectors. It has also been

reported that some generators made false claims of having experienced outages, while in

3. Section 8.4.1, PJM Manual 18: PJM Capacity Market, July 2017
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fact, they were uncertain as to their next-day operational profit given the high volatility in

the spot price natural gas market.4

The new PJM capacity market design uses “Non-performance Assessment” to replace

the “Peak Hour Period Availability Test”. It enforces capacity obligations according to clear

performance criteria, with penalties attached to the actual peak hours. The Non-performance

Assessment compares the actual production of capacity resources to their commitments on

an hourly basis under stressed market conditions. It is expressly stated that the assessment

does not exempt the generator from eventualities only because its bidding price is higher

than its cost.5 Any shortfall will be subject to extreme penalty charges, priced according to

“Net Cost of New Entry (Net CONE).” In 2016, this value was about $2000/MW-hour.

The new design highlights the value of ensuring generation capacity during hours of

scarcity by penalizing providers that fail to do so. The hours of scarcity are only announced

in real time, which could be any hour when demand is high. This is expected to disincentivize

producers from strategically withholding capacity to push up market prices in times of high

demand. At the same time, this new design is also expected to lead to changes in their

capacity market behaviors. In order to fulfill the performance requirements in the energy

market, some generators need additional investment to keep their plants in good condition.

As a result, they may raise their prices in capacity auctions to offset the additional investment

costs. They may also do so because they will face increasing financial risks from non-

performance under the new capacity payment mechanism.

PJM has taken a phased approach to implementing their capacity performance rules.

Since its inception in the 2016-17 delivery year6, the number of megawatts cleared under the

new performance-based design has increased each year until the delivery year 2020–21, when

4. PJM Staff Draft Problem Statement, ”Problem Statement on PJM Capacity Performance Definition”,
August, 2014.

5. Section 8.4A, PJM Manual 18: PJM Capacity Market, July 2017.

6. Many electricity markets use the concept of “delivery year” instead of calendar year for planning
purposes. Each delivery year refers to the 12 months beginning June 1 and extending through May 31 of
the following year.
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all PJM resources will be subject to the performance-based capacity requirements. PJM

has transitioned 60% of capacity resources in 2016-17 and 70% of resources in 2017-18 in its

commitment to the new design.

2.3 Model

This section details a two-stage model of a producer’s energy and capacity supply decisions

in PJM. The model serves as the theoretical basis to illustrate how the old and new capacity

market design could lead to different behaviors from producers.

The model is set up as follows. In the first stage, firms decide whether to increase or

decrease generation capacity when bidding in the yearly capacity market auction. Firms also

decide whether to make additional investment to improve generators’ performance, reflected

in reduced outage rate. In the second stage, firms decide the quantities to sell in the hourly

energy market and compete in a Cournot-Nash equilibrium. The model is presented following

backward induction.

2.3.1 The Second Stage of Wholesale Supply

Consider a firm, i, which owns several generators in its generation fleet. In hour t of energy

market, firm i needs to set the quantities to sell. Similar to Bushnell, Mansur and Saravia

(2008), firm i is assumed to maximize its profits (in expectation) in a Cournot game, :

max
sit

πit = pt(qit, q−it) · qit − cit · qit

s.t. qit = (1− αi − sit) · ki

where demand function is given and known to all producers, and the market price is

determined by both firm i’s quantity qit and its rivals’ quantities q−it. cit is firm i’s marginal
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production cost which is assumed to be constant. Firm i’s total capacity is capped at ki,

but its actual production qit is less than ki, due to two reasons. First, some of its generators

might experience forced outage, for which the rate in expectation equals αi. Second, firm

i can also strategically withhold some capacity in order to push up market price, which is

denoted sit in a percentage term.

For given αi and ki which are set in the first stage, firm i’s strategic withholding ratio

sit needs to satisfy the following first-order condition:

∂πit
∂sit

= pt + qit(sit)
∂pt
∂qit
− cit = 0

By under-supplying by sit, the firm essentially trades off between scheduling more quantities

into the market (each additional unit of quantity gets pt) and pushing up the market price

by strategic withholding (all inframarginal quantities get ∂pt
∂qit

). Note that the forced outage

rate αi, and the “strategic” outage rate sit are interchangeable here, which means firm i’s

strategic withholding can hide behind forced outages, since it is usually difficult for the

system operator to observe real reasons for the outages.

In addition to the profit maximization described above, firm i also faces incentives from

its capacity obligation. Under the old capacity market design, firms only take a penalty if

their outage rate across the 500 pre-defined peak hours in summer and winter is more than

the historical outage rate in the past 5 years. So firm i’s aggregate profit (in expectation)

over a year can be written as:

Πoldi =


∑
t πit − (αi +

∑
i∈dh sit
Ndh

− α0) ·N · pc · ki if αi +
∑

i∈dh sit
Ndh

> α0∑
t πit if αi +

∑
i∈dh sit
Ndh

≤ α0

where α0 is the baseline outage rate in the past 5 years, dh denotes the 500 pre-defined

hours in summer and winter, N is total hours in a year, and pc is the capacity auction price
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(in $/MWh unit), which is also the penalty rate in the old capacity market design. It is clear

to see that the old capacity obligation has little binding effect on reducing firm i’s strategic

withholding sit, since it is easy for firm i to control the average withholding rate during the

pre-defined hours to not trigger the penalty, i.e. keeping
∑

i∈dh sit
Ndh

below α0 − αi.

Under the new design, however, non-performance penalty NPit is calculated hour by hour

when the market has a stressed situation. Since such stressed hours are only announced in

real-time based on actual situations, this non-performance penalty is actually added into

every hour with a positive probability:

Πnewi =
∑
t

(max
sit

πit −NPit) =
∑
t

[πit − Pr(qit +
∑
−i

q−it < Qdt ) · r · (sit + αi − α0) · ki]

s.t. qit = (1− αi − sit) · ki

where Qdt is the target capacity need that ensures grid reliability, which is the predicted

peak demand for the next few hours plus a reserve margin, and the probability of hour t being

an emergency hour Pr(qit +
∑
−i q−it < Qdt ) is a decreasing function of qit +

∑
−i q−it −

Qdt , the surplus in available supply compared to the target capacity need. r is the non-

performance penalty rate, which is set at “net Cost of New Entry” (net CONE) updated by

the system operator every year.

As described above, firm i needs to consider the potential non-performance penalty in its

production decision every hour, so the new first-order condition becomes:

(pt + qit(sit)
∂pt
∂qit
− cit)−

∂δit
qit

r · (sit + αi − α0) · ki − δitr = 0

where for simplicity, denote Pr(qit+
∑
−i q−it < Qdt ) as δit. The last two items are from

the new capacity obligation, which are the additional costs firm i needs to consider when

deciding how much capacity to withhold.
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To sum up, comparing between the old and new capacity obligations, there are several

important differences in the incentives they create for producers:

1. The old design only adds incentives during 5% of known hours throughout the year.

Outsides these pre-defined hours, firms can optimally withhold capacity to exercise

market power in the oligopoly competition without the need to consider their capacity

obligations. Even within these pre-defined hours, they can strategically “distribute”

outages across the hours to avoid any penalty. Under the new design, however, there

is a positive probability of triggering non-performance assessment every hour. So

the capacity obligation has binding effects on firms’ production decision every hour.

Moreover, the probability increases as market situation gets more stressed. This means

the new design provides more incentives exactly when producers are more needed,

reflecting the time-varying value of generation capacity.

2. In the old design, firms’ capacity penalty exposure is capped at their capacity payment,

while in the new design, the penalty can exceed the capacity payment firms receive. The

penalty under the new design is based on net CONE, which is a much higher reference

point for the value of capacity, compared to capacity auction price used under the old

design. Hence, firms could lose significant revenue if they perform poorly under the

new design.

Therefore, firms will likely bid more competitively and withhold less capacity under the

new capacity market design, especially during the high-demand hours.

2.3.2 The First Stage of Capacity Supply

In capacity market auction, producers bid to commit to a reliability target equivalent to the

predicted peak demand for the next year plus a reserve margin, ranging from 10% to 25%

of the peak demand. Firm i makes decisions on how much capacity to commit (ki) and how

much to invest in improving generators’ performance, i.e. reducing outage rate (αi) in the
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model. If firm i’s bid ki is smaller than its current capacity k0
i , then it means the firm will

retire some units for the next year, since there is no point for the firm to hold on an asset it

deems not economic anymore. If ki is larger than firm’s current capacity, the difference xi is

the new capacity the firm wants to add to its generation fleet. Under this scenario, a fixed

investment cost will incur, denoted by FCi(xi).

Similar as above, denote the energy market profits (excluding capacity penalty) that

the firm earns in the second stage as Πi =
∑
tmax πit. Then in the first stage, the firm

solves capacity supply problem considering the expected profits from energy market Πi,

capacity market payoff and penalty, and other unaccounted costs, including operating costs

of keeping its generators available Ii · ki, investment costs of adding new capacity FCi(ki),

and investment costs in reducing forced outages FCi(αi). Under the old design, the profit-

maximization problem is:

max
αi,ki

Πi + (1− ai) ·N · pc · ki − Ii · ki − FCi(αi)− FCi(xi)

where

ai =


0 if αi +

∑
i∈dh sit
Ndh

≤ α0 (no penalty)

αi +
∑

i∈dh sit
Ndh

− α0 if αi +
∑

i∈dh sit
Ndh

> α0 (penalty triggered)

Unlike energy market, I assume capacity auction is perfectly competitive. This should

be a reasonable assumption because the capacity auction holds three years before the actual

operating year, so this should give potential entrant firms an opportunity to compete with

the incumbent firms in the capacity market.

Given the perfect competition, each firm should submit the capacity auction bids that

make it break even in expectation. By replacing pc with firm’s bid bc, and denoting Ii · ki +

FCi(αi) + FCi(xi)− Πi as net “going-forward” cost, or GFC0
i , we have:
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bold =
1

(1− ai)
GFC0

i

where GFC0
i is the net going-forward cost per MW per hour (divided by N · ki). So bc

is the per MW bid price, in $/MWh unit, same as pc.

By comparison, under the new design, firm i’s total profit is aggregated as:

max
αi,ki

Πi +N · pc · ki −
∑
t

[δt · r · (sit + αi − α0) · ki]− Ii · ki − FCi(αi)− FCi(xi)

where δt is the probability of triggering performance assessment hour, as discussed in the

second stage of the model. Then we have firm i’s capacity auction bid bc as:

bnew = GFC1
i +

1

N

∑
t

δt · (sit + αi − α0) · r

where GFC1
i is per MWh net going-forward cost under the new design.

An immediate observation is that, bnew under the new design is very likely to be higher

than bold. This is because: (1) firms withhold less in energy market and drives down the

energy price, causing net going-forward cost goes up, i.e. GFC1
i > GFC0

i ; (2) it is easy to

control the average outage rate to avoid penalty under the old design, so ai is likely 0 in bold;

However, in bnew, the penalty r is more extreme and much harder to avoid by manipulation.

So the firm is likely to incorporate a high risk premium in their capacity market bids (the

second term in bnew) that reflects the potential penalty cost in the energy market.

The model also predicts that the reform’s impacts on capacity investment choices differ for

different firms. If a firm owns many inefficient units, it will need a much higher compensation

from capacity market under the new design, since reduced energy price under the new design

affects its energy market profit more, and its high outage rate is also likely to result in higher

penalty, compared to more efficient firms. So it will be less favored in capacity market, and
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will be forced to retire some of its inefficient generators. For a firm that own more efficient

units, on the contrary, higher capacity compensation under the new design might even allow

an expansion in its generation capacity. In sum, this implies more efficient allocation of the

capacity payment and more efficient generation fleets for the market.

2.4 Data and Descriptive Evidence

2.4.1 Data

I use two sets of data in the two analyses detailed in Section 2.5.

The first set of data is PJM and MISO wholesale market bidding data, which provide

generator-level daily bid (price-quantity pairs) in day-ahead auctions and market outcomes,

such as market clearing prices and quantity. The data includes some generator-level characteristics

such as generation capacity and fuel type, but each generator’s identity is masked by PJM.

The second set of data is the hourly generation data for power plants in the PJM and

MISO from the Energy Information Administration (EIA) and Environmental Protection

Agency (EPA). Specifically, the EPA’s Continuous Emissions Monitoring System (CEMS)

provides hourly gross production data for fossil fuel generators larger than 25 MW in capacity.

EIA Form 923 allows me to match power plants’ production data with their operational

characteristics, such as operating heat rate and fuel type. Using this information, I construct

marginal cost measures for each generator.

Table 2.1 presents descriptive information on the power plants under study in the PJM

and MISO by their fuel types. For both markets, natural gas-fired plants have the largest

market share. Column 2 shows the aggregate capacity of generators in each type that are

matched with the EIA and CEMS information in the data, and column 3 shows the officially

reported generation capacity under the dispatch of the PJM and MISO. The comparison of

the two columns indicates that the generators studied in this paper are representative of the

producers in both markets.
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Table 2.1: Generation Capacity By Fuel Type in PJM and MISO

No. of Plants Implied Capacity Official Capacity

in Data in Data (MW)[1] in 2016 (MW)[2]

PJM
Coal-fired 61 50,916 54,369
Gas-fired 137 61,170 64,458
Oil-fired 28 8,719 9,028

MISO (Central & North)
Coal-fired 68 47,730 48,471
Gas-fired 99 29,931 32,367
Oil-fired 18 2,667 2,063

Notes: [1] Plant-level maximum hourly generation in CEMS from 2015 to 2017.

[2] PJM data is from 2016/2017 capacity auction (RPM Base Residual Auction). MISO data

is from 2016 State of Market Report of MISO.

2.4.2 Graphical Analysis

Before conducting the formal empirical analysis, I first use raw data to show some evidence

that the PJM’s reform has induced additional investment by power plants to reduce the

risk of forced outages. As previously discussed, most forced outages are due to a lack of

maintenance or fuel. I find in the data that the reform incentivized generators to invest in

operational and fuel reliability, which is also confirmed by the official PJM surveys.7

Specifically, Figure 2.1 shows a sudden increase in generators’ planned outages right

before the new performance-based design started in June 2016. The planned outages are

power plants’ pre-scheduled arrangements, during which generators are taken offline for

major repairs, maintenance, and upgrades. As I only found a cluster of planned maintenance

around the inception of the reform, as opposed to other periods before and after, it is

consistent with the explanation that, in expectation of the reform, generators took measures

to improve their operational reliability to reduce the non-performance risks.

Figure 2.2 plots the share of natural gas supply under “firm contracts” relative to

7. PJM, “Capacity Performance Driven Investments”, October 24, 2016.
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Figure 2.1: More Generators Off-line For Maintenance Before the Reform

Source: PJM Daily Day-ahead Generation Offer Data. The vertical red line marks June 2016.

“interruptible contracts” for gas-fired power plants in the PJM and non-PJM regions. For

a firm contract of natural gas, the plant needs to pay an extra monthly reservation fee.

However, in return, it will enjoy the prioritized fuel transportation service without any

interruptions, even in high demand situations. A 15% increase in firm contract utilization is

observed in the PJM region within one year after the reform started, compared to minimal

change in non-PJM regions. This indicates that the PJM reform likely encouraged more

investments to improve the fuel reliability and reduce outages due to a fuel shortage.

2.5 Empirical Strategies

In estimating the effect of the PJM capacity market reform, I use two empirical approaches

that serve different purposes and rely on different assumptions about the expected outcomes

if generators in the PJM were not subject to new capacity obligations. The first approach

is difference-in-difference estimation, which focuses on the impact on generators’ bidding

behavior. It compares the before-and-after trends of the generators’ bid price between the
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Figure 2.2: Share of PJM Generators’ Gas Supply under Firm Contracts

Source: EIA-923 Form. The vertical red lines mark transition year of 2016.

PJM and its neighboring market, MISO (Figure 2.3). The second approach is “generation

regressions”, which are used to construct predictions about the expected aggregate generation

results in the absence of the reform. This approach focuses on the effect of the reform on the

actual production results, thereby capturing the broader effect of the reform compared to the

first analysis on generators’ bidding, for example, the reform’s effect on reducing generators’

forced/strategic outages.

2.5.1 Difference-in-Difference Analysis

The richness of wholesale market data allows me to track each generator’s daily bids over

time to study how their bid prices change in response to the capacity market reform. The

staggered timing of the reform implementation in June 2016 and the similarity in operations

of old capacity market in the PJM and MISO motivated a difference-in-difference approach to

estimate the causal impact of the performance-based capacity market design on generators’

bidding behaviors.

In this context, the MISO region provides an ideal comparison with the PJM. As shown in
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Figure 2.3: PJM-MISO Market Map

Figure 2.3, MISO and PJM share a similar market size and are neighbors in four states with a

few power companies owning plants in both regions. Moreover, the original capacity market

designs in the two regions were very similar until the PJM implemented their reform in 2016.

This control region allowed me to isolate the effect of the reform from other time-varying

factors, such as changes in federal or state policies and company operations.

Specifically, generator bids in the MISO are used to estimate counterfactual outcomes

for the PJM after adjusting for common shocks and time-invariant differences:

yit = βDit + γfcit + λDit · PJMi + αf(loadit) + δi + µs + εit

where the dependent variable yit is the average bid price for generator i on day t. The

observations on PJM’s generator bids are at a daily level, as the PJM’s rules before 2018

require each generator to offer its production with a single bid curve that applies to all 24

hours of the same day. Since the MISO allows generators to bid different hourly prices across

each day, I average the hourly bid price for each unit per day in the MISO for the analysis.
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In the data, I found that less than 25% of units changed their hourly bids on the same day;

thus, this data treatment is not likely to affect the estimation results.

Dit is an indicator equal to one if the auction occurred after the PJM capacity reform

(June 2016). The primary variable of interest is λ, the coefficient for the interaction term of

the reform timing dummy Dit and PJMi dummy. It measures the change in the generator’s

bid price in the PJM after the reform, compared to the generators in the MISO market.

The regression controls for time-invariant difference between the two markets using a

dummy variable PJMi, which equals 1 if generator i belongs to the PJM region, and 0 if

generator i belongs to the MISO region. In the preferred specification, I also added a control

for the generation unit’s fixed effects to account for the time-invariant difference. Other

control variables for common shocks in the two markets include fcit the daily fuel cost,

month-of-year fixed effects µs, and daily PJM/MISO demand loadit in quadratic polynomials

f(loadit).

The validity of this approach relies on two findings: (1) there are no other major changes

in the PJM/MISO market design coinciding with PJM’s capacity market reform; (2) the

PJM’s reform did not prompt the generators strategically switching markets between the

two regions as a direct result. The first is confirmed from the FERC records because all

major market design proposals in the PJM and MISO must be submitted to the FERC to

obtain their approval. The second is assured by the fact that generators are constrained by

geographical location and interconnection costs in switching markets. In addition, the time

needed to exit one market and interconnecting to another usually takes more than a year of

evaluation and preparation, therefore I did not observe any major switch during the period

of my study from 2015 to 2017.

I also explore a matched difference-in-difference approach to improve over the standard

DiD estimate. Specifically, I used the nearest neighbor matching estimator to match the

units that: (1) have the same fuel type (coal, gas or oil); (2) have similar historical bidding

patterns, that is, a PJM unit is matched to a MISO unit if the absolute difference in their
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average bid prices in the pre-reform period is less than the threshold of $5/MWh (for a

robustness check, I also tried $10/MWh).

One caveat for this approach is that the estimated effect is an “intent to treat”(ITT)

estimator, as 2016 was still a phase of the reform when only 60%∼70% of generators operated

under the new capacity obligations (while the others operated under the old design). I

consider my estimate as the lower bound of the true effect of the reform when it is fully

implemented.

2.5.2 Generation Regression Approach

The difference-in-difference analysis in the previous section aims to show how the capacity

market reform changes generator bidding behaviors in the energy market. Thereafter, I

investigate to what extent the reform might improve the market efficiency and reduce the

cost of electricity production. When generators under the new capacity market design bid

more competitively in keeping with its marginal cost, market production is expected to

be scheduled more closely to the “merit-order” (i.e. lower-cost units get scheduled first),

thus production efficiency is improved. However, other reasons could also contribute to

an improvement in production efficiency. For example, when additional investments from

producers are induced by the capacity market reform, generators might be able to produce

at lower marginal costs, thus reducing the market production cost. In addition, if generators

become more reliable and report less outages (for either strategic or practical reasons), the

total production cost is also expected to decrease. Improvements such as mentioned cannot

be captured from the previous analysis on the auction bidding data.

Therefore, I use actual production data from the CEMS and “generation regressions”’

approach to study the overall effect on market production efficiency. The “generation

regressions”’ analysis closely tracks Davis and Hausman (2016) and Cicala (2017), with

the central idea of using historical patterns in the pre-reform period to predict how market

production would be allocated to each generator in the post period had there been no reform.
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I then compare the predicted production allocation with the generators’ actual production in

post periods to see how the capacity market reform contributes to changes in the production

pattern and production cost.

The first step of this approach is to estimate the relationship between market demand

and generation at the individual generator level. The estimating equation takes the following

form:

Generationit =
∑
b

(γbi · 1{demandt = b}) + β1P
coal
it + β2P

gas
it + β3P

oil
it + εit

The dependent variable is the actual power generation for generator i in hour t, measured

in MWh. The main independent variables are a set of indicators for different levels of total

demand for thermal generation (after subtracting nuclear and renewable generation, which

are always scheduled before thermal units because of their near-zero marginal costs). I

divided the total demand into bins with equal width, indexed by b. The bin width was 2000

MWh. The assigned production for each unit for a given system demand is mostly determined

by the rank of the unit’s bid price in the aggregate supply curve, as the PJM requires

generators to produce in an increasing price order until total demand is met. However,

actual production allocation could also differ from this supply in the cases where generators

are scheduled to produce but experience outages in real time.

I also add fuel prices for coal, natural gas, and oil in the equation to control for the

mechanical changes in the dispatch order among different fuel types due to the relative fuel

price changes, rather than bidding behavior changes. Over the period of my study, the prices

for coal, natural gas, and oil were relatively stable; thus, they are not likely to affect the

dispatch order much. I further control hour-of-day, day-of-week, and month-of-year fixed

effects in the regressions.

In the above equation, I estimated each generator’s hourly production using pre-reform

data from January 2015 to May 2016, and obtained a set of coefficients γ for each of 226
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generators in PJM and 185 generators in MISO. Sample graphs of the coefficients from these

pre-period generator-level regressions are shown in Figure 2.4. In particular, I show 6 example

plants: 2 for gas-fired combined cycle plants, 2 for gas-fired combustion turbine plants, and

2 for coal-fired steam plants. As shown in the figure, the gas combined cycle plants reach

capacity quickly, even at low levels of system demand. These plants are relatively new and

efficient, especially after fracking greatly lowered the price of natural gas fuel after 2007. In

contrast, gas combustion turbines and coal steam turbines are called on at higher levels of

demand as they are generally old and inefficient.

For the second step of this approach, I use post-period data from June 2016 to May

2017, which are the first 12 months after the capacity market reform took effect. For each

generator, I calculate the predicted production at each hour by maintaining the regression

coefficients from the pre-period, while updating the actual system demand and fuel prices in

the post-period. This is the counterfactual generation for each generator in the post-period

had there been no reform. The “residuals”’ between actual production in the post period

and this predicted production reflects the effect of the reform on the production.

In the final step, I combine generators’ marginal costs and the predicted/actual production

allocations to calculate total product costs in the counterfactual and the post period. In this

way, I quantify the effect of the reform on market production cost.

This approach utilizes a prediction model to estimate the ex-ante counterfactuals for

the expected production in 2016 had the reform not been implemented. It requires no

knowledge of an individual’s bidding strategy or incentives, and thus relies on minimum

structural assumptions. However, for the prediction of this approach to be useful for causal

inference, some important assumptions need to be made. Essentially, I have to assume that

the changes in the production allocation are to the result of changes in market fundamentals,

but rather because of the changes in generators’ behaviors. This means that, for example,

the PJM method of dispatching generators had to be unchanged and the transmission grid

had not undergone significant upgrades at the same time that the reform took effects. These
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Figure 2.4: Examples of Generation Regressions by Individual Plant
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Figure 2.4: Examples of Generation Regressions by Individual Plant (Cont.)

concerns are allayed as I focused on the first 12 months as the post period. The transmission

grid was unlikely to change significantly within such a short time. Moreover, I did not observe

any proposed changes in market dispatch methods submitted by PJM to FERC during the

period of my study.

2.6 Main Results

In this section, I report the results from the aforementioned two approaches and present

the treatment effect estimates of the PJM capacity market reform on generators’ bidding

behavior and market production.

2.6.1 Impact of Reform on Producers’ Bidding Behaviors

Difference-in-difference regressions estimate how PJM generators’ bid prices change in response

to the capacity market reform when compared to similar generators in MISO over time.

Table 2.2 shows the results for both the standard DiD and matched DiD estimates. In
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Table 2.2: DID Estimates of Capacity Reform Impact on Unit Bid Price

Standard DiD Matched DiD

Daily Average Bid Price (1) (2) (3) (4)
Levels Logs Levels Levels

Post×PJM -17.51∗∗∗ -0.11∗∗∗ -16.76∗∗∗ -15.65∗∗∗

(4.53) (0.02) (4.70) (4.71)

Month-of-Year FE X X X X
Unit FE X X X X
Nearest Neighbor Matching X X
Threshold ($/MWh) 5 10

Generation units 1,102 1,102 1,052 1,068
N 988,572 985,599 934,503 952,038

Notes: Post×PJM is the treatment indicator (PJM generators) interacted with the

post-reform time dummy. Matching criteria: (1) same fuel type (2) pre-period average

bid price ||pj − pi|| < threshold listed above. Standard errors clustered by generation

unit in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

columns (1) and (2), the standard DiD estimates show that PJM generators lowered their

bid price by $17.5/MWh or 11% after capacity market reform, compared to the bids from

MISO generators. Figure 2.2 plots the movement of generators’ bid prices in the PJM and

MISO by month, after adjusting for fuel price, time/unit fixed effects, and system demand.

This graph shows that the different trends in the two markets are mainly driven by PJM

generators lowering their bids while the MISO generators’ bids remained relatively stable.

Figure 2.6 further plots the DiD estimates by month before and after the PJM reform. It

shows a good parallel trend in bid prices for a 6-month period before the reform, and a

sudden decrease in the bid price of the PJM generators, especially for the first 4 months of

the capacity market reform implementation.

The nearest neighbor matching estimators in Table 2.2 columns (3) and (4) construct

DiD estimates using control units in the MISO that most closely resemble the treated units

in PJM with the same fuel type and similar bidding price before the reform. When n nearest

neighbors are selected for each treated unit, they were assigned a weight equal to 1/n. Some
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Figure 2.5: Monthly Trends in Generators Bid Prices in PJM and MISO

Figure 2.6: Monthly Trend of DiD Estimates
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Figure 2.7: Monthly Trend of DiD Estimates for Gas-fired Units

control units were dropped from the regressions as they are not matched to any treated unit.

The matched DiD results were very similar to the results of standard DiD, which confirmed

that the estimated effect is not driven by different compositions of generator capacity in the

PJM and MISO.

In addition, there is heterogeneity in the treatment effects on generators with different

fuel types. As shown in Figure 2.7, 2.8 and 2.9, the treatment effect in the overall sample is

mainly driven by gas-fired units, while oil units did not experience any change, and coal units’

bid even increased during the winter of 2017. This is consistent with the expectation that

the new performance-based reform reduced market power exercise, for which the marginal

units (mostly gas-fired) have the strongest incentives. The infra-marginal units (coal-fired)

and higher-cost units (oil-fired), on the other hand, are not significantly affected, because the

ability to push up market price and exercise market power for an infra-marginal generator

is much weaker.
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Figure 2.8: Monthly Trend of DiD Estimates for Coal-fired Units

Figure 2.9: Monthly Trend of DiD Estimates for Oil-fired Units
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2.6.2 Impact of Reform on Market Production Costs

I used the “generation regressions” approach and generator-level actual production data

from CEMS to estimate the effect of the capacity market reform on market efficiency.

Inefficiency arises in the electricity market when auction bidding does not result in least-cost

production.8 Herein, the market efficiency is measured by the total production cost, where

lower production cost represents higher market efficiency. To measure the total generation

cost at each hour, I first calculate the marginal cost for each generator using EIA data on

heat rates, fuel types, and fuel prices, that is, MCit = heatrateit · fuelpriceit. Thereafter,

the market production cost at hour t can be measured by combining generator-level marginal

cost and production, and then aggregating over all generators:
∑
i(MCit ×Generationit).

In Figure 2.10, I plot the distribution of hourly market production costs in the pre-

reform period (January 2015-May 2016) and the distribution of predicted production cost

from “generation regressions” in the PJM. We can see that the “generation regressions”

model accurately predicts the market production costs across different hours in the pre-

period, even though the model does not explicitly aim to match production cost, but rather

the production dispatch for each generator.

Thereafter, I use the estimated coefficients in the “generation regressions” model to

predict the market production outcomes had there been no reform in the 12-month post-

period (June 2016-May 2017). In Figure 2.11, the distribution of the predicted production

cost across each hour is plotted as a dashed red line, and the actual production cost

distribution is plotted as a blue line. Comparing the two distributions, we can see that

following the capacity market reform, production in the PJM market incurred lower costs

than predicted, in terms of both the average cost and the right-tail of high-cost occurrences.

This is consistent with the DiD results, but it might incorporate more than just the effect

on generators’ bidding behaviors, as discussed in the previous section.

8. Since most retail consumers do not directly respond to wholesale price variation, demand is inelastic
in electricity market. So all inefficiencies in the electricity market are on the production side.
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Figure 2.10: Predicted generation cost fits pre-period distribution reasonably well in PJM

Figure 2.11: Post-period Production Cost Distribution in PJM: Predicted vs.Actual
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Figure 2.12: Pre-period Model Fit in MISO

For comparison, I apply the same method to the MISO market to compare the change in

production cost before and after the PJM’s reform. As shown in Figure 2.12, the “generation

regressions” model accurately predicts the pre-period generation costs for the MISO market.

Moreover, when combining the model with post-period demand and fuel price to predict the

production cost after PJM’s reform (Figure 2.13), the predictions continued to match the

observed outcomes, with the actual production slightly higher than was predicted, which is

the opposite to the PJM result. This comparison confirms that there is no common trend

in the electricity market in 2016 that can explain the improvement in production efficiency

in the PJM. Conversely, its neighboring market, MISO, experienced a negative change in

its production efficiency. One possible reason for the higher than predicted actual cost in

the MISO is that it had encountered a rapid expansion of renewable energy, especially wind

power after 2015. Considering that transmission expansion lags behind such rapid growth of

wind energy, the MISO market experienced more congestion; thus, the thermal production

cannot be optimally dispatched, causing a higher total production cost.

I present the comparison between the predicted and actual production costs in the post-
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Figure 2.13: Post-period Production Cost Distribution in MISO: Predicted vs.Actual

period for the PJM and MISO markets in Table 2.3. The average hourly production cost is

shown for all hours (the upper panel), and for peak hours in the summer and winter months,

defined by 1 pm to 8 pm in June–August and November–January (the lower panel). The

results show large-scale savings in production costs in the PJM market that are attributed to

the capacity market reform. Specifically, the cost savings are 0.44 million dollars on average

for each hour, or equivalently, 25% when compared to the predicted costs. During summer

and winter peak hours, such savings are even more notable, reaching 0.53 million dollars per

hour. In contrast, the actual production cost is a little more than the predicted number in

the MISO market, where the cost increase is about 0.1 million dollars per hour.

Lastly, Figure 2.14 displays the seasonal patterns in cost savings during the PJM post-

reform period. This figure shows that production efficiency was predominantly improved

during summer and winter months (shaded area), which is consistent with the fact that higher

demand in summer is more attractive to market power exercise and severe whether/natural

gas shortage in winter make capacity commitment more problematic.
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Table 2.3: Post-period Hourly Production Cost Comparison, PJM and MISO

Hourly Production Cost, After Reform

(1) (2)
PJM MISO

All Hours
Actual($) 1,327,679 864,418
Predicted($) 1,770,734 760,770
Difference(%) -25% 12%

Peak Hours
Actual($) 1,718,633 1,278,825
Predicted($) 2,248,406 1,187,180
Difference(%) -24% 7%

Number of Plants 226 185
Total Capacity (MW) 120,805 80,328

Notes: Actual hourly production cost is the hourly average cost of generation

for the first 12 months of the reform. The predicted production cost is based on

production predicted by “generation regressions” for the same period using actual

demand and fuel prices. Generation costs are calculated based on marginal cost for

each unit, not including capital costs or other fixed costs.

Figure 2.14: Generation Efficiency Improvement by Month
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2.6.3 Welfare Implications of the PJM Capacity Market Reform

In evaluating the full cost-effectiveness of the PJM capacity market reform, it is necessary

to consider its impacts on both energy market and capacity market. The social welfare is

not necessarily improved if the cost reduction in providing electricity in the energy market

is offset by the cost increase in providing generation capacity in the capacity market.

As the cost reduction in the energy market has been estimated using “generation regressions”,

the cost increase in the capacity market requires a closer look at generators’ bids in the

capacity market auction. Unfortunately, such data is confidential proprietary information,

and therefore deriving an accurate measure of capacity market cost for the PJM’s reform is

beyond the scope of this paper. However, by calculating consumers’ capacity payments using

market clearing prices and quantities in capacity market auctions, it is possible to establish

the upper limits of these costs.

Specifically, for 2016-2017 delivery year, PJM already held its capacity auction before the

approval of its capacity market reform, thus subsequently after the approval held another

auction for the same delivery year to register generators for the new design. This provides

a rare opportunity to observe both old capacity auction prices and new auction prices for

the same delivery year of 2016-2017. Under the old design, the PJM cleared the capacity

auction at $59.37/MW-day in its RTO region and at $119.13/MW-day in the MAAC region.

Under the new design, the capacity market clearing price is $134/MW-day for all regions.

Thus, combining each region’s cleared capacity and its cleared price, the increase in capacity

payment for the 2016-2017 delivery year due to the reform was estimated at 2.24 billion

dollars.

According to my calculations, the estimated savings in energy production costs for the

2016-2017 delivery year is approximately 3.8 billion dollars. Thereby, the net benefit accrued

from the capacity market reform would be 1.56 billion dollars for 2016-2017 year. Since this

is an approximation based on the capacity payment cost, rather than the actual cost of

maintaining generation capacity, it is likely to underestimate the net benefit. Nonetheless,
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this result shows a net benefit as a result of the PJM’s reform in the capacity market design.

2.7 Conclusion

Performance-based capacity market reform is an innovative endeavor to integrate time-

varying scarcity pricing with capacity market payment. PJM already initiated its transition

to this new capacity market design in 2016, followed by New England ISO with a similar

reform in its own capacity market in June 2018. Compared to the scarcity-pricing energy-

only design implemented in the Texas ERCOT market, this new capacity market design

could achieve the same goal of reliability , but with less price volatility; thus, its political

feasibility has wider market appeal.

This paper is one of the first studies to empirically evaluate the effect of the reformed

capacity market design on generators’ bidding behaviors and market efficiency. The richness

of the PJM market auction data enabled me to track each generator’s bidding behaviors over

time, and study how their bids changed before and after the reform took effect, especially

when compared to similar generators in the neighboring MISO market that operated under

the similar old design. The matched DiD results show that the capacity market reform

contributed to a decrease in the average bid price of PJM generators by $17/MWh, or

approximately 10%. To capture the full impact of the reform on electricity market efficiency, I

further exploited the unit-level hourly production data from EPA in a “generation regressions”

approach to predict market production costs if there was no reform in 2016-2017 and

compared the predictions with the actual results. This analysis reveals large savings in

production costs as a result of capacity market reform. After accounting for both the savings

in the energy market and the cost increase in the capacity market, the net benefit accrued

from the reform was approximately 1.56 billion dollars for PJM in the 2016-2017 delivery

year. This considerable benefit achieved by the implementation of the PJM capacity market

reform is consistent with the theoretical expectation that by adjusting the capacity payment
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to reflect variations in the value of power plants’ capacity we can effectively incentivize them

to supply when they are most needed instead of withholding their capacity and exercising

their market power.

As a consequence of the data limitations, there are important questions that cannot be

answered in full in this paper. For example, how did producers perceive the uncertainties

introduced by non-performance penalty? Did they over-estimate the risks of failing the new

capacity obligations? Would they gradually learn the actual risks and adjust their behaviors

over time? What would constitute a long-term equilibrium under the new capacity market

design? A better understanding of these questions will be very informative for the discussion

about the optimal design of the capacity market.
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Chapter 3

Does Retail Deregulation Create

Strategic Wholesale Buyers?

Evidence from the U.S. Midwest

Electricity Market

3.1 Introduction

Economists have long studied the relationship between the wholesale and retail markets,

as they are very closely connected. For example, retail providers in the retail market are

usually also the wholesale buyers in the wholesale market. Additionally, some firms in

certain industries are vertically integrated, playing the roles of both upstream wholesalers and

downstream retailers. The interaction between the two markets raises interesting empirical

and theoretical questions in economics, including principal–agent problems, double marginalization,

and price pass-through (e.g., Rey and Stiglitz, 1995; Shepard, 1993; Borenstein and Shepard,

1996).

After its widespread deregulation starting in the 1990s, the electricity industry has
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exhibited some new features in this interaction. Unlike the case of many other products,

whose wholesale price is determined by contracts or delegation, deregulation in the electricity

industry has created integrated wholesale markets, where the price is determined by a

centralized auction. Regulated utility companies, along with deregulated competitive retailers,

make demand bids in the wholesale market, operating with different incentives and purchase

strategies.

In this study, I explore how retail market deregulation impacts the wholesale market by

changing the retailers’, that is, the wholesale buyers’ incentives in demand bidding. Since

the creation of wholesale markets, the issue of producer-side market power has become

prominent in many regions and has been widely studied in the energy economics literature

(e.g., Borenstein, Bushnell, and Wolak, 2002; McRae and Wolak, 2009). In the wholesale

market, electricity demand and supply need to be strictly balanced every second of every

hour while there is little response from the demand side as consumers do not directly respond

to wholesale price variations. This market setting gives producers ability to drive electricity

wholesale prices above their production costs, especially during high-demand hours. The

California electricity crisis in 2000, when drought and market manipulation caused an 800%

increase in wholesale prices1, provides salient proof of this.

It is well understood in economics that the more elastic the demand is, the less market

power (a lower price markup) can be exercised by producers. However, a demand-side

response has rarely been found in previous studies on the electricity market, despite the

severe market power exercised by the producers being observed. For example, most studies

are conducted in regions with regulated retail markets (e.g., Borenstein et al., 2002, in

California). Other places have deregulated markets but do not have sufficient retail competition

during the time of the studies (e.g., Hortaçsu and Puller, 2008, in Texas; and Birge et al.,

2014, in the Midwest).

In this study, I find that retail deregulation has important implications for introducing

1. https://en.wikipedia.org/wiki/California electricity crisis
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demand-side response. One goal for retail deregulation is to increase retail competition

by allowing deregulated retail companies to compete with traditional utility companies.

The incentives of traditional utilities and competitive retailers are very different: most

traditional utilities are under cost-of-service regulation and only keep fixed profits that

are a predetermined proportion of their total costs. In contrast, competitive retailers in

retail deregulated regions are profit-maximizing companies. In terms of wholesale market

operations, although the utilities receive zero profit from a low purchase price, competitive

retailers have incentives to be strategic in lowering their procurement costs.

In fact, the sequential market design in the wholesale market provides those buyers

with an opportunity to be strategic. Most of the wholesale market consists of two sequential

markets: a day-ahead (DA) market, which schedules production based on supply and demand

bids one day before the operating day, and a real-time (RT) market, which allows for any

adjustments in bids and schedules when operating hours are approaching. Previous studies

find that the DA price is consistently higher than the RT price (e.g., Ito and Reguant, 2016,

in the Spanish market; and Mercadal, 2018, in the U.S. Midwest market) and relate such

DA price premium to the producers’ exercising their market power in a sequential market

setting. When facing DA price premiums consistently, it would be optimal for a wholesale

buyer to divide its purchase between the day-ahead and real-time markets to minimize its

purchase cost.

I find empirical evidence supporting the use of such a strategy by competitive retailers

in the U.S. Midwest market (Midcontinent Independent System Operator or MISO). MISO

covers all or parts of 15 states in the U.S. Midwest. Among them, Illinois is a retail-

deregulated state with more than half of the electricity consumers served by competitive

retailers2. The richness of hourly bidding data in MISO wholesale auctions allows me to

compare demand bids in the day-ahead market with their final position in real-time and

calculate how these wholesale buyers divide their purchase between the day-ahead and real-

2. https://www.pluginillinois.org/Suppliers.aspx
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time markets.

Using an instrumental variables approach, I find that the competitive buyers in Illinois

underbid their demand in the day-ahead market when the day-ahead price is higher than

the spot price. In addition, they shift more demand to the spot market when the day-

ahead price premium is higher, which is consistent with the strategic behaviors a cost-

minimizing bidder should take in the sequential markets. Conversely, I do not find such

strategic behaviors among the buyers in other retail-regulated areas. This finding confirms

that retail deregulation changes buyers’ incentives in the wholesale market and improves

their bidding performance.

To further assess whether buyers’ behavioral changes under retail deregulation indeed

improve wholesale market efficiency, I employ a difference-in-differences (DiD) framework

to estimate the changes in day-ahead market prices from 2010 to 2014 in Illinois, a retail-

deregulated state, against Wisconsin, which is a neighboring regulated region that is comparable

in many aspects. I exploit a policy change in the Illinois retail market in 2011, which

facilitated a steep increase in the number of customers served by competitive retailers

between 2011 and 2013. Aligning this with the timing of the large expansion in competitive

retail consumption, I find that market prices in Illinois started to deviate from the similar

path of the control state, Wisconsin after 2012, and kept decreasing. By 2014, the price in

Illinois was already $6.1 lower compared to that in 2011 in Wisconsin, when the prices in the

two states were almost the same. This reveals the effect of retail deregulation on wholesale

market prices and efficiency.

This study contributes to the IO literature by studying the interaction between the

wholesale and retail markets. Auction design in wholesale purchases is a peculiar feature

in the deregulated electricity industry, and the analysis could provide insights into other

markets with similar settings. For example, treasury bonds are issued through centralized

auctions in many countries, and the buyers in the auctions are also the “retailers” in the

secondary markets. Entities with different “retail” purposes could face different incentives
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that directly affect their bidding strategies (e.g. Hortaçsu and McAdams, 2010). This study

is also related to the literature examining sequential market settings. The buyers’ strategic

underbid in the day-ahead market is similar to the “Coase conjecture” (Coase, 1972), where

a monopoly seller of durable goods exercises market power by creating price differences in

sequential markets but such market power could be mitigated if buyers are also strategic

and willing to wait.

The results of this study have important policy implications for electricity deregulation.

The empirical evidence shows that retail deregulation is one of the possible solutions to

reducing producer-side market power as it motivates demand-side response in the wholesale

market. Some other solutions have been discussed in previous literature, including vertical

contracts (Bushnell, Mansur, and Saravia, 2008), financial traders (Jha and Wolak, 2015;

Mercadal, 2016), and transmission expansion (Ryan, 2017). In addition, when competitive

buyers are able to reduce their procurement costs in the wholesale market, this would benefit

consumers in the retail market, which is directly related to the discussions in the electricity

sector about providing “customer choice,” or “retail choice” (Joskow, 2000; Borenstein and

Bushnell, 2015).

This study is most closely related to Borenstein et al. (2008) and Ito and Reguant

(2016). Borenstein et al. (2008) presented the first evidence of strategic behaviors from

electricity buyers in the California electricity market. A special occasion emerged for a short

period between 2000 and 2002, during which the three largest utilities were allowed to keep

any profits from selling electricity to the customers in their service areas.3 Therefore, they

faced the same incentives as the deregulated retailers in my analysis and acted similarly to

a strategic buyer in the wholesale market. Ito and Reguant (2016) studied the interaction

between market power and limited arbitrage and used them to explain the price difference

between the day-ahead and spot markets in the Spanish electricity market. They also found

3. This was done to compensate them for their capital loss due to the deregulation process, during which
the generation assets were separated from these three utilities, so after deregulation, they transitioned to
being only distributors and retailers.
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that demand-side bids responded to changes in the day-ahead price premium. In this study,

I show that the magnitude of the response is much larger in the context of the MISO market.

The remainder of this paper is organized as follows: Section 3.2 describes the institutional

background of the U.S. Midwestern wholesale electricity market and the main data used in

the analysis. In Section 3.3, I conduct empirical tests on how wholesale buyers/retailers from

different regions bid under different incentives. In Section 3.4, I further estimate the effect

of retail deregulation on wholesale market prices. Section 3.5 concludes.

3.2 Institutional Settings and Data

I begin by providing a background introduction about the U.S. electricity deregulation,

particularly the deregulated retail market in Illinois. I then explain the features of sequential

market design in the MISO wholesale market, which are the key to understanding buyers’

strategies in the market. Finally, I describe the data used in the empirical analysis and

present basic summary statistics.

3.2.1 Electricity Market Deregulation in the U.S. - Wholesale and

Retail

Traditionally, electricity utilities are vertically integrated and responsible for generation,

transmission, distribution, and retail services for the end-use consumers. Although they

enjoyed relative autonomy over the grid operations within their service areas, they were

under federal and state-level regulations. The cost-of-service regulation set the energy prices

for the utilities on a cost basis, guaranteeing the recovery of their variable costs as well as a

predetermined rate of return on their investment capital costs.

Major deregulations in the U.S. electricity industry started when the Federal Energy

Regulatory Commission (FERC) implemented a series of major changes in the aforementioned

structure in the 1990s. These changes required the separation of transmission system owners
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and power producers, open access for independent power generators to the electric grid,

and transmission to be provided at regulated rates. FERC created regional transmission

organizations (RTOs) and independent system operators (ISOs) to operate the transmission

system independently and foster electricity generation competition.4 ISOs/RTOs set up wh-

olesale markets which use centralized auctions to determine the market price and ensure the

economic dispatch of power production. Since then, many utilities across the country have

joined an RTO or ISO and as of today, two-thirds of the electricity produced in the United

States is sold via wholesale markets.

Although wholesale deregulations are subject to federal decisions, retail deregulations

are subject to state decisions. As different states make different decisions about whether

to deregulate their retail markets, this provides an opportunity for researchers to study a

mix of deregulated and regulated states within the same wholesale market. I examine the

midwest market, or MISO, in this study, where regulated utility companies and deregulated

competitive retailers in different states make demand bids together in the market, facing

different incentives and using different purchase strategies.

Regulated utility companies traditionally operate as monopolies or oligopolies in each

state, providing transmission and distribution services at regulated rates. They also sell

electricity to consumers as retailers. However, the cost-of-service regulation stipulates that

they cannot keep the profits they make from the market except for a fixed amount that is

proportional to their cost. This means that they do not have incentives to minimize their

service costs5, including their procurement costs in the wholesale market.

In retail-deregulated states, the utilities have become the “default” choice, with consumers

allowed to switch to a competitive retailer. Competitive retailers face completely different

4. https://www.ferc.gov/market-oversight/mkt-electric/overview.asp

5. In fact, the state regulators have the right to not approve the recovery of any costs that are deemed
“imprudent.” However, this does not give the utilities incentives to minimize their procurement costs in the
wholesale market. Bidding for all the demand in the day-ahead market is what buyers are expected to do
to secure power delivery for their consumers the following day, even though the procurement cost is almost
always not minimized.
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incentives than the utilities. They are profit-maximizing companies and they compete with

the utilities and other retailers for consumers. Most consumers are willing to sign long-

term contracts at fixed retail prices, so they can avoid dealing with the significant price

volatility in the wholesale market (Joskow, 2000). This indicates that for competitive

retailers, minimizing the electricity procurement cost in the wholesale market is a major

part of their profit maximization exercise.

Heretofore, only 17 U.S. states and the District of Columbia have fully or partially

deregulated their retail markets6, in contrast to the widespread wholesale market deregulation.

Even for these states, the retail deregulation might not be considered very successful. For

example, the consumers’ participation in the retail choice program in Michigan is capped at

10% of the incumbent utility’s previous-year sales; California and several other states only

provide retail choices for commercial and industrial consumers.

Illinois is a notable exception among these states. Although deregulation did not start off

well in 2002, a policy change in the retail market in 2011 completely changed the situation. In

2011, an amendment to the Illinois Power Agency Act about “Municipal Electric Aggregation

(MEA)” took effect, which allowed municipalities, counties, and townships to negotiate the

purchase of electricity with alternative retailers on behalf of their residents. Between 2011

and 2013, opt-out MEA programs became extremely popular among municipalities, as many

of them opted out of utilities contracts, and signed new bulk contracts with competitive

retailers. The speed of expansion in competitive retail consumption was shocking: as of

January 2014, more than 3 million customers were served by more than 50 competitive

retailers in Illinois, 500 times more than the 6,199 customers served by several competitive

retailers at the end of May 2011.

One additional note is that the MISO market I study does not include the entire Illinois

state. Instead, it only controls central and southern Illinois, where the utility company

6. http://competitiveenergy.org/consumer-tools/state-by-state-links/
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Figure 3.1: Map of MISO Control Regions

Source: 2015 Value Proposition, MISO Energy

Ameren delivers electricity.7 The MISO-controlled part (or Ameren zones) has also been

greatly affected by the MEA policy change, which I will exploit in Section 3.4. In June 2011,

only 224 consumers were served by competitive retailers in the Ameren zones. This number

was multiplied by 1,500 by the end of 2012 reaching 334,207. As of January 2014, 675,940

customers used electricity provided by more than 20 competitive retailers.

3.2.2 MISO Wholesale Electricity Market

Electricity market deregulation created ISOs as described above to manage the transmission

system and administer the wholesale markets. In the U.S. Midwest, this role is played by

MISO, which oversees all or parts of 15 U.S. states and the Canadian province of Manitoba

(Figure 3.1).

MISO, like many deregulated markets in the United States and around the world, operates

two sequential markets for wholesale trade: a DA forward market and an RT spot market.

Most power is supposed to be bought and sold one day in advance (DA market), and any

7. The rest of Illinois is served by another utility company ComEd, and is part of the PJM RTO.
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Figure 3.2: Timeline of the Sequential Markets: Day-ahead and Real-time

imbalance between day-ahead transactions and real-time demand is then cleared in the RT

market. Each market uses uniform-price, multi-unit auctions to determine the market-

clearing quantity and price.

Figure 3.2 summarizes how the two sequential markets work. One day before each

operating day, the DA market begins at 11:00 a.m. EST, when producers and buyers submit

their supply and demand bids for each hour of the following day. Qualified financial traders

are also allowed to bid as a third party but their virtual bids for selling (purchasing) energy

create an obligation to purchase (sell) an equal amount from the RT market. The DA

auction closes at 3:00 p.m. EST. The ISO clears the market with the price and quantity at

the intersection of the aggregate demand bidding curve and aggregate supply curve. Due

to the capacity limits of the transmission lines, separate prices for each location in the grid

are calculated by adjusting the energy price to the congestion and transmission loss. MISO

then makes a dispatch plan for the next day, based on these auction results to ensure that

the demand is met and the electricity is supplied at the lowest cost.

The RT market starts half an hour before midnight of the operating day, when producers

117



submit bids and can update their final bids until 30 minutes before each operating hour.

Buyers can also adjust their demand in the RT market. However, unlike the price-quantity

bids they submit in the DA market, in this final stage of RT market, they can only update

their demand quantity as price takers. For actual operations, each operating hour is divided

into five-minute intervals. During every such interval, the system operator sends dispatch

instructions to generators based on the auction results by balancing RT supply and demand

bids and adjusting for transmission congestion and loss.

This sequential market setting gives buyers the flexibility to bid strategically. Although

they have no control over the final quantities of end-use consumption, they do have discretion

over the market in which they purchase electricity. For example, if the RT market price is

lower and buyers shift some of their purchase from the DA market to the RT market, this

would lower their total purchase cost as long as this shift does not significantly affect the

price difference. In theory, we should be able to observe this kind of strategic behavior from

competitive retailers who have incentives to manage their procurement costs, especially when

the price difference between the two markets is large. In contrast, regulated utilities, which

do not care about the price, are expected to buy most of their demand in the DA market,

simply to secure the electricity delivery for the next day.

3.2.3 Data and Summary Statistics

Most of the data used in this study are from MISO’s market reports on its website. For

the analysis in Section 3.3, I use the following data reported hourly from 2014 to 2015: (1)

each market participant’s bidding data from the DA and RT market; (2) cleared quantity

and locational marginal prices (LMPs)8 data in the DA and RT markets at each node of

the grid; and, (3) the demand forecast and actual demand at the local resource zone (LRZ)

level. For the analysis in Section 3.4, I extend the study period from 2010 to 2014, for which

8. LMPs are the market-clearing prices at each generation or demand location, adjusted for congestion
and transmission loss.
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Figure 3.3: MISO Local Resource Zones (LRZ) Map

Source: 2014 Map of Local Resource Zone Boundaries, MISO Energy

I collect hourly LMP data reported at each node of the grid.

As shown in Figure 3.1, MISO divides its control area into three regions, for convenience

in sending out dispatch instructions: central, north, and south. I will focus on MISO’s central

and north regions in this study, as the south region was only recently consolidated into MISO

and is geographically independent, with very limited imports and exports from the rest of

the grid. A finer division of MISO introduces LRZs (Figure 3.3), defined mainly by state

boundaries and the electrical boundaries of the local grids. MISO creates LRZ divisions

to address transmission congestion situations, during which LRZs are fully responsible for

balancing supply and demand. Among the 7 zones in MISO’s central and north, Illinois (the

part under the Ameren’s distribution service, as explained in Section 3.2.2), or LRZ4, is a

retail-deregulated state.

For confidentiality reasons, MISO only makes LRZ-level demand data available to the

public, instead of more detailed firm-level demand data. Therefore, in my study of how

buyers divide their bids between the DA and RT markets, I focus on the state level, where

the buyers’ DA demand bids are aggregated and compared to the actual demands (RT bids)
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in each LRZ.

Table 3.1 provides summary statistics for 7 LRZs in MISO’s central and north regions

during 2014–2015. MISO’s reported hourly demand is combined for LRZ2 and LRZ7, as

well as for LRZ3 and LRZ5, again because of confidentiality concerns. There are 17,520

(365 × 2 × 24) hour-day observations for each zone, and Panel A shows the DA and RT

market prices at the trading hub of each zone. On average, the DA price is higher than the

RT price, so there is a DA price premium, varying from $0.6/MWh to $2.08/MWh across

the zones. The medians of the DA price premiums show similar results.

Previous literature has provided theoretical foundation and empirical evidence that the

DA price premium in sequential markets is a sign of market power exercised by the producers

(e.g., Saravia, 2003; Borenstein et al., 2008; Ito and Reguant, 2016). To mitigate such market

power, MISO introduced financial trades in 2005, intending to use their arbitrage to drive the

price premium to zero. However, at the same time, MISO imposes some deviation charges

on every trade made by virtual bidders and high qualifying standards for new virtual bidders

to enter the market. These restrictions limited arbitrage activities from virtual traders, so

the price differences and producers’ market power still existed during my study period, as

documented in recent studies on the same market (Birge et al., 2014; Mercadal, 2016).

Given the DA price premium and insufficient arbitrage to clear it away, how do buyers

in each region respond to this market power exercise from producers? Panel B in Table 3.1

shows the average demand bids submitted by the buyers in each zone in the DA market

auctions. Demand bids are allowed to be either fixed-quantity or price-sensitive so buyers

can either specify a quantity that they are willing to buy at any price, or bid up to 9

quantity–price pairs, as a staircase demand function.

One thing is most noticeable in this panel. Comparing the quantity demanded and

cleared in the DA market with the demand forecast (first two rows in Panel B), it seems

that the DA market systematically clears less demand than that forecast. Conversations

with MISO operation staff confirm that MISO does not have any regulations or offer advice
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Table 3.1: Summary Statistics of MISO Local Resource Zones

LRZ1 LRZ2 7 LRZ3 5 LRZ4 LRZ6

Panel A. Market Clear Prices
Day-ahead Market Price ($/MWh) 27.46 36.76 29.13 31.85 34.22

(16.23) (24.98) (14.04) (17.36) (20.44)

Real-time Market Price 26.70 34.68 28.53 30.23 32.99
(23.99) (30.53) (24.72) (27.21) (28.54)

Day-ahead Price Premium
Mean 0.76 2.08 0.60 1.62 1.24

(20.98) (29.09) (21.48) (25.92) (26.18)
Median 0.82 2.06 0.87 1.64 1.71

Panel B. Day-ahead Demand Bids
DA Cleared Demand (MWh) 10756 18120 10002 5381 10918

(1603.3) (2836.5) (1709.7) (887.1) (1708.5)

DA Demand Forecast 11204 19137 10301 5708 11463
(1645.5) (2732.5) (1771.5) (955.0) (1748.4)

Difference -448 -1018 -299 -327 -545
(218.9) (638.1) (244.2) (271.9) (220.3)

RT Actual Demand 11199 18819 10258 5683 11419
(1648.2) (2922.1) (1744.2) (962.8) (1762.6)

DA Fixed Demand 10682 17779 9843 5073 10788
(1586.4) (2794.9) (1686.9) (854.4) (1684.4)

DA Price-Sen Demand 82 450 184 312 135
(68.52) (192.7) (54.69) (77.83) (77.80)

DA Underbid 521 1358 457 635 675
(228.2) (623.9) (251.8) (267.4) (217.6)

Percent Underbid 0.047 0.072 0.044 0.110 0.059
(0.0191) (0.0353) (0.0221) (0.0401) (0.0178)

N 17520 17520 17520 17520 17520

Notes: Standard deviations in parentheses. Summarized from hourly data between 2014 and 2015.

Prices in Dollar/MWh. Bids in MWh. Prices in each zone are the average LMP from the

zone-level trading hub.
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on such bidding behaviors, so it reflects the market participants’ own strategies. Moreover,

if we compare the demand forecast to the actual demand reported in row 4, the forecast

is very accurate on average, with a deviation of less than 50 MWh in a given hour across

the zones. Therefore, this underbid cannot be explained by the possibility that buyers

consistently under-forecast their demand in the DA market. However, this underbid behavior

is consistent with a strategic buyer’s response to the DA price premium. For cost-minimizing

buyers, shifting some of the demand from the DA market to the spot market can lower their

procurement cost and also possibly decrease the DA price. In Section 3.3, I formally discuss

such a strategy for wholesale buyers.

In the following analysis, I define “underbid” as the difference between the demand

forecast and DA demand bids, reflecting how much the buyers in each zone underbid their

demand in the DA market compared to the demand forecast they have at the time of bidding.

A quick comparison across the zones (last two rows in Panel B) shows that LRZ4, or Illinois,

tends to underbid the most in terms of the percentage of its total demand.

3.3 Testing the Retail Deregulation Effect on Wholesale

Buyers’ Bidding

3.3.1 Model

I first develop a model to characterize how a cost-minimizing buyer strategically purchases

electricity on the wholesale market. Since my main focus is on buyer-side strategic behaviors

in sequential markets, I consider a simple framework where the buyer only needs to decide

how to divide its total demand between the two markets. In MISO, although buyers can

choose either fixed-quantity bids or price-sensitive bids, the two are essentially the same to

buyers if we assume that they have perfect knowledge of the aggregate supply functions S(p)

in the market. They can either decide on an optimal quantity to buy in the DA market
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or equivalently, decide on a price p and choose any decreasing curve that passes through

(p, S(p)). I further assume that there is no uncertainty and no risk aversion.

Let us denote each generator’s supply function in the DA market, that is, the quantity

generator i is willing to offer at price p in the DA market, as si(p). Then, the aggregate supply

function S(p) is S(p) =
∑
i si(p). Similarly, for the RT market, we have the RT aggregate

supply function T (p) =
∑
i ti(p). S(p) and T (p) can be very different, even if producers only

bid according to their marginal costs (without exercising market power). As discussed in

Section 3.2.2, the DA production schedule is posted one day in advance, giving generators

hours to prepare, but the RT schedule is only posted less than half an hour ahead, requiring

the generators to adjust their production within a much shorter period. Thus, depending on

the ramping ability of each generator, the marginal cost of providing the same MWh in the

two markets could be very different. In addition, the supply functions are not necessarily

the same as the generators’ cost functions when the generators strategically adjust the price

markups based on different demand elasticities in the two markets.

For convenience, let us denote the inverse supply functions as PDA(·) = S−1(·) and

PRT (·) = T−1(·). Then, a buyer who has total demand Q to purchase and needs to optimally

choose x, the quantity to buy in the DA market, solves the cost minimization problem as

follows:

min
x

xPDA(x) + (Q− x)PRT (Q− x)

The first-order condition (FOC) for optimal purchases in the two markets is that the

buyer equalizes the marginal purchase cost in the two markets:

PDA + P ′DA ·QDA︸ ︷︷ ︸
MC of buying inDA

= PRT + P ′RT ·QRT︸ ︷︷ ︸
MC of buying inRT

It is reasonable to assume that both P ′DA and P ′RT are positive for any given quantity.

When PDA > PRT , which is the most common case shown in Section 3.2.3, a buyer shifting

1 MWh from the DA market to the RT market would save the price difference (PDA−PRT )
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on that 1 MWh. At the same time, the buyer also saves on all the other MWhs it buys in

the DA market because the DA price is lowered by P ′DA. However, this shift will increase

the purchase cost of the amount it buys in the RT market (P ′RT ·QRT ).

Since QRT is simply what buyers underbid in the DA market, that is, QRT = Q−QDA,

the FOC can be rewritten, and we have:

underbid = QRT = [(PDA − PRT ) + P ′DA ·Q]
1

(P ′DA + P ′RT )

This simple equation shows that holding everything else constant, the amount a strategic

buyer underbids in the DA market increases when the DA price premium, (PDA − PRT ), is

higher. The underbid amount would also respond to P ′DA, which reflects the buyer’s ability

to decrease the DA price by underbidding. These two conclusions are tested in the following

analysis.

3.3.2 Empirical Strategies

In this subsection, I focus on testing if the buyers’ underbid is a response to the DA

price premium, as predicted in the theoretical framework. In my baseline specification,

the dependent variable is the hourly underbid amount (underbidit) in the DA market by all

buyers in hour t and zone i. underbidit, as mentioned before, is defined as the difference

between the demand forecast and the DA fixed-quantity demand, that is, underbidit =

demand forecastit − DAbidsit. The main independent variable is the hourly DA price

premium premiumit, defined as DApriceit −RT priceit. Thus, the main specification is as

follows:

underbidit = βipremiumit + αiQit + θim + λih + εit

This specification is run for each LRZ i separately, and βi captures how buyers in each

zone underbid in response to the change in the DA price premium. I further control for
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the demand forecast Qit. The specification also includes the month-of-sample (θim) and

hour-of-day fixed effects (λih) to control for potential time trends and fluctuations.

It is important to note that even after adding these controls, the DA price premium

is likely to be endogenous. As an equilibrium outcome, the DA premium is affected by

the buyers’ demand, which is the dependent variable in the regression. To address this

simultaneity bias, I use the price of natural gas as an instrument for the DA price premium.

The price of natural gas should be a valid instrument. First, natural gas price variations

only change the fuel cost for the natural gas-fired generators so it works as a supply-side

shifter and should not correlate with demand-side unobserved shocks εit in the buyers’

underbid function. Second, it exhibits strong predictive power for the DA price premium,

as shown in Figure 3.4. This is because, when the gas price is high, the differences between

generators’ marginal costs increase, which decreases competition at each level of demand

and increases the generators’ ability to exercise market power. As a consequence, the DA

price premium increases.9

One concern about using the price of natural gas as an instrument is that some buyers

could be vertically integrated utilities and could own coal-fired or gas-fired generators. Then,

the price of natural gas could directly change their bidding behaviors since they may care

more about their profits as producers, instead of their costs as buyers. There are three reasons

why this is not likely to be a great concern. First, such cases would only be a real concern if

such firms were net sellers in the market, which is not common for retail companies. Second,

even for a vertically integrated corporation, it is common that its generation subsidiary and

retail subsidiary operate separately as the creation of the wholesale market breaks the direct

upstream-downstream links between them. Therefore, it is not necessarily true that they

collude with each other in the wholesale market. Finally, Illinois, the retail-deregulated state

I focus on, has no retailers that own generation resources, including the incumbent utilities

9. As shown in Ito and Reguant (2016), the argument why market power creates the DA price premium
is similar to the dynamic monopoly price-discrimination model, leading to a declining price path.
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Figure 3.4: Average Day-ahead Price Premium in MISO and Henry Hub Natural Gas Price

ComEd and Ameren. Therefore, the retailers in Illinois are all buyers in wholesale markets.

Given the above, I also run a robustness check using nuclear capacity generation as

an instrument. Nuclear capacity experiences both planned and unplanned outages from

time to time, related to refueling, maintenance, and safety. As nuclear generation usually

constitutes a large share of the baseload in MISO, when an outage of nuclear capacity occurs,

the competition among the generators is significantly reduced. Therefore, lower levels of

nuclear generation can increase the generators’ market power in the market and the DA

price premium. This instrument would be better than the price of natural gas if vertically

integrated utilities were the concern since only very few large companies own nuclear facilities

(such as Exelon and Entergy) and most of them do not have retail subsidiaries. The drawback

of this instrument, however, is that nuclear outages do not happen hourly but only every

few weeks. Therefore, to gain enough statistical power, month fixed effect controls have to

be relaxed in regressions.

Finally, I add the measure of P ′DA to the regression model and see whether the buyers’
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underbid also responds to their ability to affect the DA price as predicted in the model. PDA

is the inverse function of the DA aggregate supply function so P ′DA can be measured by the

slope of the DA aggregate supply curve at the cleared quantity. Specifically, I sum the DA

bids for all the suppliers in each hour and each region to form the aggregate DA supply

curve. Then, I fit a linear curve to the local area around the cleared demand (±10% of the

cleared price) to measure P ′DA as the slope of the curve. Using P ′DA as an independent

variable creates the same endogeneity concern as that for the DA premium. Therefore, I use

both the price of natural gas and nuclear generation as instruments when P ′DA is included

in the model.

The price of natural gas and nuclear generation instruments should be able to provide

independent exogenous variation for the DA price premium and P ′DA, respectively. The

reason is that the price of natural gas and nuclear generation not only shift the prices

that suppliers bid in the market but also the production orders (generators’ orders in the

aggregate supply curve). Therefore, even when holding the DA premium fixed, the slope of

the supply curve at the cleared price P ′DA could still be different under different values of

the instruments.

3.3.3 Results

Table 3.2 reports the wholesale buyers’ underbid in response to the DA price premium. I run

the regression for each LRZ separately, where Illinois (LRZ4) has competitive retailers that

are also wholesale buyers whereas all the other states, including Minnesota, North Dakota,

Wisconsin, Iowa, Missouri, and Indiana, are retail-regulated regions. Although Michigan

also deregulated its retail section, the state’s law places a 10% cap on the share of consumers

served by competitive retailers. Therefore, I consider it as a regulated state since there is no

actual competitive retail market operating in Michigan.

Columns 1 and 4 in each table present the first-stage results of 2-stage least squares

(2SLS) regressions using the two instruments. Both instruments move the DA price premium
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Table 3.2: Tests for Strategic Underbid from Wholesale Buyers in Day-ahead Markets

LRZ1: Minnesota, North Dakota

First Underbid Underbid First Underbid Underbid Underbid
(1) (2) (3) (4) (5) (6) (7)

Gas price 0.286∗∗∗

(0.079)

DA premium -0.120 -0.206 -0.004 0.126 0.766
(0.093) (0.159) (0.068) (0.225) (4.492)

Nuclear Gen -0.138
(0.077)

P ′DA 0.913
(5.201)

Constant -2.077∗ 5.179∗∗∗ 4.305∗∗∗ -0.193 5.275∗∗∗ 5.016∗∗∗ -4.956
(1.035) (0.316) (0.535) (0.608) (0.204) (0.256) (57.325)

Hour FE X X X X X
Month FE X X
Year FE X X X
F statistic 13.00 3.21
p-value 0.00 0.07
N 11670 11670 11670 16750 16750 16750 11649

Notes: Sample from Jan 1, 2014 to Dec 31, 2015, with hourly observations. Henry Hub natural gas spot

price in $ per Million Btu. Nuclear generation in GWh. Day-head premium in $ per MWh.

Standard errors are clustered by date in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.2: Tests for Strategic Underbid from Wholesale Buyers in Day-ahead Markets (Cont.)

LRZ2&7: Wisconsin, Michigan

First Underbid Underbid First Underbid Underbid Underbid
(1) (2) (3) (4) (5) (6) (7)

Gas price 1.322∗∗∗

(0.079)

DA premium 0.035∗∗∗ 0.009 -0.035 0.010 0.031
(0.010) (0.009) (0.018) (0.016) (0.019)

Nuclear Gen -0.841∗∗∗

(0.076)

P ′DA -2.304
(4.207)

Constant -1.667 7.416∗∗∗ 5.905∗∗∗ 0.631 6.867∗∗∗ 6.337∗∗∗ 7.081∗∗∗

(0.978) (0.132) (0.174) (0.573) (0.102) (0.093) (1.274)

Hour FE X X X X X
Month FE X X
Year FE X X X
F statistic 279.25 121.69
p-value 0.00 0.00
N 11307 11307 11307 16347 16347 16347 11285

Notes: Sample from Jan 1, 2014 to Dec 31, 2015, with hourly observations. Henry Hub natural gas spot

price in $ per Million Btu. Nuclear generation in GWh. Day-head premium in $ per MWh.

Standard errors are clustered by date in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.2: Tests for Strategic Underbid from Wholesale Buyers in Day-ahead Markets (Cont.)

LRZ3&5: Iowa, Missouri

First Underbid Underbid First Underbid Underbid Underbid
(1) (2) (3) (4) (5) (6) (7)

Gas price 0.923∗∗∗

(0.070)

DA premium 0.075∗∗ 0.062∗ 0.069∗∗ 0.081∗∗ -0.200
(0.023) (0.025) (0.024) (0.028) (2.567)

Nuclear Gen -0.868∗∗∗

(0.071)

P ′DA -1.977
(18.921)

Constant -3.143∗∗∗ 5.140∗∗∗ 4.193∗∗∗ 0.137 4.882∗∗∗ 4.603∗∗∗ 18.566
(0.750) (0.149) (0.220) (0.546) (0.128) (0.175) (130.501)

Hour FE X X X X X
Month FE X X
Year FE X X X
F statistic 174.56 151.42
p-value 0.00 0.00
N 11599 11599 11599 16618 16618 16618 11577

Notes: Sample from Jan 1, 2014 to Dec 31, 2015, with hourly observations. Henry Hub natural gas spot

price in $ per Million Btu. Nuclear generation in GWh. Day-head premium in $ per MWh.

Standard errors are clustered by date in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.2: Tests for Strategic Underbid from Wholesale Buyers in Day-ahead Markets (Cont.)

LRZ4: Illinois (Ameren Service Area)

First Underbid Underbid First Underbid Underbid Underbid
(1) (2) (3) (4) (5) (6) (7)

Gas price 0.646∗∗∗

(0.080)

DA premium 0.135∗∗∗ 0.133∗∗ 0.093∗∗∗ 0.108∗∗∗ 0.080∗∗∗

(0.041) (0.049) (0.021) (0.026) (0.021)

Nuclear Gen -1.060∗∗∗

(0.078)

P ′DA 1.793
(4.378)

Constant -5.690∗∗∗ 5.778∗∗∗ 5.386∗∗∗ 1.747∗∗ 5.356∗∗∗ 5.161∗∗∗ 4.893∗∗∗

(0.858) (0.255) (0.347) (0.547) (0.146) (0.163) (0.964)

Hour FE X X X X X
Month FE X X
Year FE X X X
F statistic 64.51 183.80
p-value 0.00 0.00
N 11489 11489 11489 16647 16647 16647 11466

Notes: Sample from Jan 1, 2014 to Dec 31, 2015, with hourly observations. Henry Hub natural gas spot

price in $ per Million Btu. Nuclear generation in GWh. Day-head premium in $ per MWh.

Standard errors are clustered by date in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.2: Tests for Strategic Underbid from Wholesale Buyers in Day-ahead Markets (Cont.)

LRZ6: Indiana

First Underbid Underbid First Underbid Underbid Underbid
(1) (2) (3) (4) (5) (6) (7)

Gas price 0.751∗∗∗

(0.072)

DA premium -0.014 -0.006 0.042∗ 0.051∗ 0.020
(0.013) (0.016) (0.019) (0.023) (0.025)

Nuclear Gen -0.659∗∗∗

(0.069)

P ′DA 3.921
(5.542)

Constant -1.329 5.709∗∗∗ 5.641∗∗∗ -0.405 5.929∗∗∗ 5.873∗∗∗ 4.919∗∗∗

(0.837) (0.090) (0.125) (0.570) (0.119) (0.118) (1.425)

Hour FE X X X X X
Month FE X X
Year FE X X X
F statistic 107.85 92.28
p-value 0.00 0.00
N 11626 11626 11626 16818 16818 16818 11603

Notes: Sample from Jan 1, 2014 to Dec 31, 2015, with hourly observations. Henry Hub natural gas spot

price in $ per Million Btu. Nuclear generation in GWh. Day-head premium in $ per MWh.

Standard errors are clustered by date in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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in directions consistent with the discussions above. Specifically, a higher gas price induces a

higher DA price premium, and higher levels of nuclear generation reduce the premium. The

F statistics and p values show that both instruments have strong predictive power for the

DA price premium.10

Columns 2 and 3 present the main regression results using the price of natural gas as

an instrument. Because the levels of demand vary greatly by region, to compare percentage

changes across regions, I take the logarithm of the underbid amount. Among all five zones,

the retail-deregulated buyers in Illinois (LRZ4) show the largest response to the DA price

premium. As shown in Column 3 in the LRZ4 table, a 1 $/MWh increase in the DA price

premium makes Illinois buyers underbid 13.3 percentage points more in the DA market. This

is consistent with my model of the competitive retailers’ cost minimization. A similar result

is reported by Ito and Reguant (2016), who find that in the Spanish market, firms with

a small demand also tend to respond to a higher premium by withholding more demand

in the DA market. Their coefficients range from 0.7 to 2.6 percentage points, which are

much smaller than what I find in MISO. In contrast, as regards the regulated buyers in the

other regions, their underbid response to DA price premium either is small in magnitude,

statistically nonsignificant, or exhibits a sign opposite to what is expected. This provides

evidence that retail deregulation creates more strategic buyers in the wholesale market.

Columns 5–7 in each table present robustness checks for the main results. Columns 5

and 6 repeat the tests replacing natural gas price with nuclear generation as the instrument.

The main conclusions remain the same, as 1 dollar/MWh increase in DA price premium in

Illinois is associated with DA underbid of 10.8 percentage points. The responses in other

zones are still small and statistically nonsignificant.

Finally, I include the measure of buyers’ ability to move the DA price, P ′DA, in the

regression model and use both instruments for the DA price premium and P ′DA. The

results are shown in Column 7. Competitive retailers’ responses to the DA premium do not

10. The only exception is in LRZ1’s first stage when using nuclear generation as an instrument.
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substantially decrease because of the inclusion of P ′DA. Moreover, it seems that competitive

retailers also underbid by a greater amount when their ability to reduce DA prices is greater,

although the estimate is not statistically significant. This is consistent with the model.

When their ability to reduce the DA price is higher, competitive retailers are more likely to

do it by shifting more demand to the RT market. This strategy leads to a lower DA price

and a lower total purchase cost for them.

3.4 Estimating the Retail Deregulation Effect on Wh-

olesale Price

In Section 3.3, I found evidence that buyers from a retail-deregulated state (Illinois) bid more

strategically in the wholesale market than those from regulated regions. A natural question

for the next step is whether this strategic behavior leads to price and cost reductions in the

wholesale market for the buyers. In this section, I exploit a regulation change in Illinois in

2012, which greatly intensified the retail competition there, and test whether, as a result,

the increased retail competition decreases the local market price in Illinois.

3.4.1 Policy Changes in Illinois and Difference-in-Difference Fra-

mework

As discussed in Section 3.2.1, a prominent feature of the policy change in Illinois Power

Agency Act is that it allows municipalities and counties to opt out of the incumbent utility’s

program and negotiate the purchase of electricity on behalf of their residential/commercial

customers with competitive retailers. This has completely activated the electricity retail

market in Illinois. Although competitive retail consumers were almost nonexistent in the

middle of 2011, the number of customers served by retail electric suppliers (RES) increased

1,500-fold in 2012 (Figure 3.5). Moreover, there was another large jump in the number
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Figure 3.5: Number of Customers Served by Competitive Retails in Illinois Ameren Zones

Source: Plug In Illinois website, Illinois Commerce Commission

of RES customers in 2013, which increased the total customer number to 680,000. This

immense and nearly vertical jump was due to more than 500 communities taking advantage

of the opt-out opportunity and joining the competitive retailers’ services at approximately

the same time after the policy change. This dramatically increased the number of competitive

retailers in the market and the amount of demand they serve, which induced more strategic

demand-side bidding in the wholesale market.

As regards examining whether these incentives have reduced wholesale market prices, a

direct comparison between the market prices before and after the policy change might not

be that helpful. Electricity prices are well known for their high volatility as the demand and

supply change dramatically from hour to hour. They are susceptible to many factors, and

buyers’ strategic behaviors would only be one of the many factors that move the prices. To

overcome this identification difficulty, I employ a DiD estimator to compare the local market

prices in Illinois and those in a region that has not experienced a buyer-side policy change

but is similar to Illinois in all other aspects. Thus, I select Wisconsin (labeled as LRZ2 in
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MISO data) as the control group in this DiD estimation.

Wisconsin is an ideal control group for Illinois. First, as both states are geographically

neighbors and both follow dispatch commands from MISO in the central region, many

changes or impacts experienced by Illinois would also affect Wisconsin, including weather

variation, fuel cost fluctuation, and different operation rules implemented by MISO central.

This helps isolate the impact of retail competition in the DiD design. Second, the competitive

buyers’ strategies induced by the retail policy change in Illinois are not likely to affect

Wisconsin much, due to the nodal pricing and LRZ design in MISO. Under an ideal scenario,

the wholesale market is cleared by a uniform price across all locations. However, due to

transmission constraints and congestion, the electricity dispatch cannot be implemented

at a uniform price very often. The nodal pricing mechanism allows each location across

the grid to have different prices, based on the local transmission and demand situation.

During congestion hours, each LRZ has full responsibility for balancing the supply and

demand locally when a unified dispatch does not work. Thus, in many cases, Illinois and

Wisconsin clear their local market independently, with different prices reflecting the local

demand/supply. Thus, if buyers in Illinois become more strategic, we are likely to see such

strategies moving local market prices in Illinois more often than in Wisconsin, hence allowing

us to identify the impact of retail deregulation on local market prices.

Table 3.3 presents the summary statistics for some important variables in the two states

in 2014. It shows that the two states have very similar weather conditions, demand, and

generation capacity. The import limits imposed by MISO are also very similar. In the

following subsections, I fully exploit the richness of the electricity market data and study

how hourly DA prices change at 136 buyer locations in Illinois and 47 buyer locations in

Wisconsin from 2010 to 2014.
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Table 3.3: Summary Statistics in LRZ2 (Wisconsin) and LRZ4 (Illinois) in 2014

LRZ2 LRZ4 Difference
Mean Temperature (◦F ) 45 48 -3

Max Temperature (◦F ) 80 84 -4

Min Temperature (◦F ) -8 -9 1

Average Wind Speed (mph) 10 10 0

Annual Metered Load (GWh) 65,113 50,332 14,781

Summer Peak Demand (MW) 11,730 9,563 2,167

Winter Peak Demand (MW) 10,113 8,262 1,851

Installed Capacity (MW) 15,029 10,746 4,283

Capacity Import Limit (MW) 3,083 3,025 58

Source: 2015 MISO Independent Load Forecast, MISO 2015; and

Planning Year 2014 LOLE Study Report, MISO 2014. Temperature

and wind speed measures are compared between Milwaukee, WI and

Chicago, IL.
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3.4.2 Graphical Illustration

Figures 3.6 and 3.7 provide an illustration of the wholesale price trends in Illinois and

Wisconsin over time. In the graphs, the hourly DA market prices across different locations

are aggregated into monthly median prices for each state. As Figure 3.6 shows, the monthly

DA prices in the two states tracked each other closely before 2012, with no clear difference

between them. Then, coincidentally with Illinois’s MEA policy taking effect, which fostered

more competitive retailers, a price difference between the two states began to appear in 2012,

with Illinois’s prices deviating downward from those of Wisconsin. By the end of 2012, the

price difference became very clear. The difference became even wider in 2013, as the DA

prices in Illinois became consistently lower than those in Wisconsin, coinciding with another

large jump in the number of competitive consumers in Illinois.

Figure 3.7 takes the difference between Illinois’s and Wisconsin’s monthly prices, and

shows a similar pattern as described above. Before 2012, the price differences simply

fluctuated around 0, consistent with the volatile nature of electricity prices but there was no

clear upward or downward trend observed. After 2012, the price difference began to increase,

and this increase continued until 2014. The two graphs present a strong correlation between

the increasing retail competition in Illinois and the increasing wholesale price difference.

This lends preliminary support to the prediction that the intense retail competition induced

more strategic demand bids in Illinois, thus suppressing local wholesale prices.

3.4.3 Regression Specifications and Results

Here, I conduct formal tests under the DiD framework. The main specifications are as

follows:
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Figure 3.6: Day-ahead Price Trends in Wisconsin and Illinois

Figure 3.7: Day-ahead Price Difference in Wisconsin and Illinois
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LMPit = α0 + α1 · I(t ≥ 2011) + α2 · I(t ≥ 2012) + α3 · I(t ≥ 2013) + α4 · I(t ≥ 2014)

+ β1 · I(t ≥ 2011) · ILit + β2 · I(t ≥ 2012) · ILit + β3 · I(t ≥ 2013) · ILit

+ β4 · I(t ≥ 2014) · ILit + γ1ILit +Xit + θt + θt · ILit

I(t ≥ y) are time indexes taking the value 1 if year t is after year y, where y=2011,

2012, 2013, and 2014 (2010 is treated as the base year here). By incorporating these five

terms, I can account for the general time trends of each year. ILit equals 1 if the buyer’s

pricing location is in Illinois, which accounts for any time-invariant difference between the

two states. Xit include other controls added to the specification, including temperature,

wind speed, and the price of natural gas. θt are the month-of-year and hour-of-day fixed

effects. I also add θt ·ILit to allow the two states to have their own separate monthly/hourly

trends.

β1 through β4 are the DiD estimators of interest. β1 represents the difference between

Illinois and Wisconsin in terms of their price change in 2011 compared to the base year, or

equivalently, β1 = ∆LMP IL2011 −∆LMPWI
2011, where ∆LMP2011 = LMP2011 − LMP2010 in

each state, as 2010 is the base year. β2 through β4 are similarly defined, representing such

a difference in 2012, 2013, or 2014.

Table 3.4 reports the regression results. The estimates for β1 through β4 are presented in

rows “I(2011) × IL” through “I(2014) × IL,” respectively. Column (1) shows the baseline

result, with no fixed effects. In Column (2), I control for yearly, monthly, and hourly fixed

effects, and in column (3), I include more flexible forms of the time effects, allowing the two

states to have different trends. In Column (4), I further control for weather conditions, and

in column (5), I add the price of natural gas into the estimation to account for the changes

in electricity price induced by fuel cost fluctuations.

The results are consistent across all the specifications. The estimate of β1 is small and
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Table 3.4: Effects of Retail Deregulation on Day-ahead Price

LMP LMP LMP LMP LMP
(1) (2) (3) (4) (5)

I(2011) -0.329 -10.340*** -10.370*** -2.543 -5.774***
(0.479) (0.578) (0.576) (1.423) (1.634)

I(2012) -3.898*** -7.279*** -7.268*** -1.525 23.518***
(0.426) (0.554) (0.565) (1.166) (2.249)

I(2013) 4.762*** 3.587*** 3.607*** 3.350*** -2.740**
(0.428) (0.562) (0.571) (0.662) (0.959)

I(2014) 9.208*** 8.234*** 8.227*** -0.107 -4.045**
(1.102) (0.707) (0.694) (1.189) (1.418)

I(2011)×IL 0.157 0.215 0.250 0.191 0.169
(0.275) (0.275) (0.252) (0.440) (0.472)

I(2012)×IL -1.571*** -1.565*** -1.570*** -1.981*** -2.578***
(0.261) (0.260) (0.253) (0.361) (0.420)

I(2013)×IL -1.128*** -1.293*** -1.307*** -1.193** -0.884*
(0.256) (0.255) (0.248) (0.411) (0.436)

I(2014)×IL -2.882*** -2.832*** -2.829*** -2.043*** -2.844***
(0.385) (0.384) (0.362) (0.479) (0.545)

IL Dummy -0.908*** -0.925*** -3.811 3.510* 4.715*
(0.187) (0.186) (2.385) (1.652) (2.394)

Temperature -1.675*** -1.469***
(0.207) (0.241)

Temperature Squared 0.016*** 0.015***
(0.002) (0.002)

Avg wind speed -0.021 -0.018
(0.043) (0.047)

Gas Price 6.912***
(0.917)

Year FE X X X X
Month & Hour FE X
Month×IL & Hour×IL FE X X X
N 5350632 5350632 5350632 5231496 3611184

Note: Standard errors are clustered by date in parentheses. Temperature and wind speed data
from Milwaukee, WI and Springfield, IL are from National Oceanic and Atmospheric Administration.
Henry Hub natural gas spot prices are from Energy Information Administration. * p < 0.05, **
p < 0.01, *** p < 0.001.
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statistically nonsignificant, implying that Illinois and Wisconsin had a similar price trend

in 2011. This result supports the common trend assumption required for the DiD design.

Then, β2, β3, and β4 are negative and statistically significant, which indicates that starting

in 2012, the wholesale prices in Illinois became $1/MWh–$3/MWh lower than the prices in

Wisconsin. Adding β1 to β4, we obtain an average price difference of $6.1/MWh between

Wisconsin and Illinois by 2014. This indicates that the demand-side responses had a large

and significant effect on the wholesale market prices. Since a high day-ahead wholesale price

is correlated with producers’ exercising market power, this drop in price shows the benefit

of more strategic demand bids, which improve the efficiency of the wholesale market.

A potential concern about the DiD strategy and these results is whether some other

changes have affected Illinois and Wisconsin separately, which can explain the price path

difference. Although such unobserved factors might exist, for them to confound the estimates,

they would have to come into play during the timeline of Illinois’s retail policy change. Again,

since both Illinois and Wisconsin follow orders from the MISO central region, any changes

in market regulation or dispatch rules should have affected both states and could not have

created such different price paths. The Annual electric generator report data from the Energy

Information Administration Form 860 further prove that no large-scale generation capacity

was added in Illinois or Wisconsin between 2012 and 2014. Therefore, no significant change in

the producer side could explain the price difference after 2012. In summary, these arguments

allow me to interpret the DiD results as evidence of the impact of retail deregulation on

mitigating producers’ market power and lowering wholesale electricity prices.

3.5 Conclusion

Electricity wholesale buyers are traditionally thought to be non-strategic and inelastic, which

has prompted producers to exercise their market power and has made consumers pay higher

prices. In this study, I provide empirical evidence that deregulations in electricity retail
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market bring competitive retailers to compete with the utilities. When they act as buyers

in the wholesale market, they have strong incentives to be strategic and are more likely to

underbid in the DA market in response to the higher DA price premium. By doing so, they

minimize their purchase costs in the wholesale market and mitigate some of the producers’

market power that created the DA price premium in the first place. By contrast, I did not

find such strategic behaviors in the regions that only have regulated utility buyers.

I also find direct evidence from a policy change that greatly increased electricity demand

served by competitive retailers in Illinois that, increased demand-side responses from competitive

retailers indeed contribute to lower wholesale prices in the local region. The lower market

price reflects an improvement in wholesale market efficiency and also implies welfare gains

for consumers as competitive retailers pass the lowered wholesale prices through to retail

prices and benefit the electricity consumers.

These findings suggest that electricity retail deregulation has likely improved wholesale

market efficiency and consumer welfare by inducing more response from the demand side.

Hence, although there are still political concerns and consumer-side inertia that prevent the

retail deregulation to be widely implemented in many other states, the potential benefit

documented here needs to be seriously considered among different approaches for reforming

electricity markets.

143



Bibliography

[1] Acemoglu, Daron, Ali Kakhbod, and Asuman Ozdaglar. “Competition in Electricity
Markets with Renewable Energy Sources.” Energy Journal 38 (2017).

[2] Alcott, Hunt, “Real-Time Pricing and Electricity Market Design,” Working Paper, NYU
(2013).
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