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3.4.2 Upper bound of Ŵ −W . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4.3 Analysis of the non-informative words screening statistics ŝ . . . . . . . . 121
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Each cross represents a row of Ξ; these rows are obtained by rescaling the rows of ÃV ,
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ABSTRACT

Topic modeling is a useful tool in computational social science, digital humanities, biology, and

chemistry. A popular topic model is the probabilistic Latent Semantic Indexing (pLSI) model.

It assumes that the word-document matrix factorizes into the product of a low-rank word-topic

matrix A, and a low-rank topic-document matrix W . The goal is to estimate these matrices.

While many algorithms are available for topic modeling, there is relatively little statistical un-

derstanding. The first contribution of this thesis is providing rigorous statistical theory for both

problems, including the optimal rate of convergence for estimating A, the optimal rate of conver-

gence for estimating W, and an unconventional theory for including "sparsity" in topic modeling.

The second contribution of this thesis is proposing an assortment of new methods, including a

spectral approach to estimating A, a spectral approach to estimating W, and a word-screening

method. All these methods are computationally efficient and statistically optimal for a wide range

of settings.

The thesis is composed of three parts. In the first part we propose a new algorithm for estimat-

ing the word-topic matrix using the entry-wise ratios of the left singular vectors of the normalized

word-document matrix, which is shown to possess the minimax optimal row-wise error rate us-

ing an entry-wise bounds for singular vectors. The second part we study topic-document matrix

estimation problem, where we introduce a new notion of sparsity, the non-informativeness, and

propose to use a new non-informative words screening method, before conducting topic-document

matrix estimation based on the resulting right singular vectors of the normalized word-document

matrix. We show the algorithm enjoys minimax convergence rate under the existence of the non-

informative words. Both algorithms are simple, but surprisingly enjoy various deep algebraic

insights underneath the pLSI model. In the last part we study a different but topic-model-related

problem, information retrieval, where we propose a new model-based algorithm which explicitly

takes into account the heterogeneity between documents and queries generation. In each part we

also provide various simulations and real data applications to support the competitiveness of our

proposed models and algorithms.
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CHAPTER 1

INTRODUCTION

The amount of text-based information available is exploding in the modern information age. For

example in the academia, not only the organizations such as JSTOR digitalize archives of many

old journals spanning hundreds of years [1], but also more and more industrialized academia itself

generates scientific articles at an increasing speed [2]. At the same time, in everyday life the

modern internet technology stimulates the generation of news and opinions from both large social

media institutions and a huge number of independent media. This naturally leads to the question

of how we should manage and explore this gigantic digital library.

Topic modeling is a popular approach to deal with large corpus data, and it is also an active

research area in machine learning and natural language processing [3]. Recently, it also finds appli-

cations in computational biology and chemistry [4]. This thesis focuses on one of the most popular

topic models, the probabilistic Latent Semantic Indexing (pLSI) model, which was formally intro-

duced by [5] in 1999. Provided that many algorithms have been developed for estimating the pLSI

model, two questions remain open:

• Given the low-rank nature of the pLSI model, are there efficient spectral approaches for

estimation problems with theoretical guarantees?

• What are the optimal rates of convergence for these estimation problems?

In this thesis, I resolve these open problems with solid statistical analysis and various algebraic

insights.

1.1 Some history on text mining and topic modeling

The bag-of-words representation of the corpus is widely used in natural language processing and

information retrieval (IR). By choosing a vocabulary large enough so that it includes all the words

in the corpus, the bag-of-words representation encodes each document as a vector of size of
1



the vocabulary, with each entry corresponding to the count of the word in the document. The

matrix with columns being these vectors of words count in the documents is called the word-

document count matrix. This crude numerical representation of documents is called the vector

space model(VSM) [6, 7].

An issue of the VSM is that it puts equal weight to each word, regardless of the information

the word carries. Intuitively, we would like to down-weight or exclude those words that carry little

useful information to the NLP or IR task. For example words "the" and "that" have high frequency

in almost every documents, but they also make almost zero contribution to the content of any doc-

ument. In order to down-weight the importance of these meaningless words with high frequency,

[8] proposed the famous tf.idf normalization scheme. Here the tf stands for term frequency, and

it usually means the word-document count matrix or its column-wise normalized version, which

is called the word-document matrix. idf means inverse document frequency, it is usually defined

as a quantity associated with each word, with each entry being a non-increasing function of the

number of documents that contain the word in the corpus. Together the tf.idf matrix is obtained

by multiplying the tf matrix column-wise with the idf vector. Then the columns of the tf.idf ma-

trix representing the documents, can be used in the later tasks including information retrieval and

non-informative word screening [9, 10].

The tf.idf still has many issues. Firstly the vocabulary size is usually large, which can be tens of

thousands, the tf.idf matrix may be too large for computing resources as the number of documents

grow [11]. Another concern that is more intrinsic to the human language is the issue of synonymy

and polysemy. More specifically, synonymy means two words that are unrelated from their ap-

pearance, are related by their meanings, for example words "sedan" and "truck". Polysemy means

the opposite, that is the same word can have totally unrelated meanings, for example "Saturn" can

mean a planet in the solar system or a car brand [12]. A low-rank approximation of the tf.idf ma-

trix, where these low dimensions are called topics, can nicely solve these problems. Especially for

the problem of synonymy and polysemy, ideally we would like the words with same meaning to be

projected to the same topic dimensions, while a word with multiple meanings can be projected to

2
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Figure 1.1: Evolution of topic models.

different topic dimensions. The Latent Semantic Indexing(LSI) follows exactly this idea by using

SVD in the low-rank approximation step [13].

The LSI approach lacks solid probabilistic modeling. [5] introduces a generative probabilistic

model called probabilistic Latent Semantic Indexing(pLSI), is the milestone work that first brings

probabilistic interpretations to the low-rank structure presented in LSI. The pLSI model assumes

that each word in each document is independently generated from a document-associated multino-

mial distribution over the vocabulary, which is further a convex combination of a few distributions

over vocabulary that define the topics. The author has implemented the EM algorithm to fit the

model, and shown consistent improvements over LSI in a number of experiments.

Since the introduction of pLSI model, many variants of this model and fitting algorithms have

been developed in the literature. An influential work is the famous model Latent Dirichlet Allo-

cation(LDA) proposed by [3], which has been proved to be highly successful in many applica-

tions [4, 1]. It combines the Bayes model framework with the pLSI by assuming Dirichlet prior

distributions on both the topic-associated vocabulary distributions and the document-associated

convex combination weights over the topics. The authors propose a variational EM algorithm for

model inference, and show its success on various applications. One major advantage of LDA is ex-

tensibility. Successful extensions include a hierarchical generative probabilistic model that allows

the later words generation to be dependent on the previous words [14], a dynamic topic model that

incorporates the order of the documents and assumes the topics evolve over time [15], a Bayesian

nonparametric topic model has been extended to hierarchies of topics [16], a correlated topic model

that allows the correlation of topics [17].

A summary of the evolution of topic models in the literature is shown in Figure 1.1.
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1.2 The pLSI model

We introduce the pLSI model, and some model-associated notations shared among Chapter 2 and

Chapter 3. The remaining chapter-specific notations of these two chapters and Chapter 4 will be

introduced later individually in each chapter.

Given n documents written on a vocabulary of p words, let ĈD be the word-document count

matrix, that is the ith column (ĈD)i is the vector of counts of each dictionary word in the ith

document, with Ni being its length. Then pLSI assumes the following generation process of (ĈD)i:

(ĈD)i =
Ni

∑
t=1

Xit , Xit
ind∼ Multinomial

(
1,

K

∑
k=1

Wi(k)Ak

)
, for ∀i ∈ [n], t ∈ [Ni] (1.1)

A is the word-topic matrix, with Ak being the word distribution over the vocabulary for the kth

topic. W is the topic-document matrix, with Wi being the topic distribution over the K topics for the

ith document. Then the empirical word-document matrix D̂ is constructed through column-wise

normalization of ĈD to summation 1, that is D̂i = (ĈD)i/Ni for each i ∈ [n]. We use D and CD

to denote the populational counterparts of D̂ and ĈD. Then under these constructions we have the

following low-rank decomposition of D:

D = E(D̂) = AW (1.2)

Then the goal is to estimate both A and W observing D̂.

We also introduce some additional model-associated notations that will facilitate the later the-

oretical analysis of the model. Denote the noise

Zi = D̂i−Di =
1
Ni

Ni

∑
t=1

Yit , Yit = Xit −Di, for ∀i ∈ [n], t ∈ [Ni]

The row-wise averages of D and D̂ are denoted as m and m̂, and their diagonalized counterparts
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as M and M̂.

m =
1
n

n

∑
i=1

Di, M = diag(m), m̂ =
1
n

n

∑
i=1

D̂i, M̂ = diag(m̂)

Denote the row-wise averages of A as h, and its diagonalized counterpart as H.

h =
K

∑
k=1

1
K

Ak, H = diag(h)

Finally we assume all the documents are of the same length N to simplify the analysis. The

analysis of general cases of heterogeneous document lengths is similar.

1.3 Our contributions in topic model evolution

Next we will highlight the main contributions of this thesis to the topic model evolution described

in the last subsection. Notice there a significant discontinuity between the transmission from LSI to

pLSI: Despite their simplicity and impressively successful applications in many real problems [12],

it seems that people suddenly forget about the tf.idf normalization scheme and SVD dimension

reduction procedures, which are the key ideas behind LSI, after the proposition of pLSI. Our main

contribution is to smooth out this discontinuity. We propose to apply SVD on a novel normalization

scheme, which has a tf.idf form, and yield algorithms for estimation of all the main parameters in

the pLSI model, and shows that they all enjoys minimax optimality under various scenarios.

The later chapters are organized as following. In Chapter 2, we propose a new algorithm

for estimating the word-topic matrix in the pLSI model using the entry-wise ratios of the left

singular vectors of the proposed normalization scheme, which is shown to possess the minimax

optimal row-wise error rate using an entry-wise bounds for singular vectors, and we also show

its competitiveness through intensive simulations and real data applications. In Chapter 3, we in-

troduce the non-informativeness, a new notion of sparsity in topic modeling, and propose a new

algorithm for estimating the word-topic matrix in the pLSI model under the existence of the non-
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informative words, using the right singular vectors of the proposed normalization scheme after

a non-informative words screening step, and we shows it’s minimax convergence and successful

applications through both simulations and real data applications. In Chapter 4, we consider the

information retrieval problem, and propose a language model that explicitly distinguish the gener-

ating process of queries and documents, which enjoys various desirable theoretical properties, and

we also illustrate the competitiveness of our model and method on real data problems.

1.4 General notations

Without explicit mentioning, we would use lower case letters to denote vectors and upper case

letters to denote matrices. Then for vector v, we would use either vi or v(i) to denote the ith entry

of v. And for matrix M, we would use Mi to denote its ith column, while use the corresponding

lower case letter to denote the rows, that is m j to denote the jth row of M. And we would use M ji

or M( j, i) to denote the ( j, i)th entry of M. If the matrix M is diagonal, we would use the lower

case letter, which is m here, to denote the vector that is formed by the diagonal terms of M.

Throughout this thesis, R denotes the set of real numbers, Rp denotes the p-dimensional real

Euclidean space, and Rp,q denotes the set of p× q real matrices. For two positive sequences

{an}∞n=1 and {bn}∞n=1, we write an =O(bn), an = o(bn), an . bn and an� bn, if limn→∞(an/bn)<

∞, limn→∞(an/bn)= 0, limsupn→∞(an/bn)≤ 1 and c< liminfn→∞(an/bn)≤ limsupn→∞(an/bn)≤

C for some constants 0 < c <C < ∞, respectively. Given 0≤ q≤∞, for any vector v, ‖v‖p denotes

the lp-norm of v, and we ignore the subscript if p = 2, that is ‖v‖= ‖v‖2. For any matrix M, ‖M‖

denotes the spectral norm of M and ‖M‖F denotes the Frobenius norm of M. When M is symmet-

ric, λmax(M) and λmin(M) denote the maximum and minimum eigenvalues of M, respectively.
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CHAPTER 2

OPTIMAL ESTIMATION OF A

2.1 Backgroud

In text mining, the problem of topic estimation is of interest in many application areas such as

digital humanities, computational social science, e-commerce, and government science policy [4].

Consider a setting where we have n (text, say) documents. The documents share a common

vocabulary of p words, and each of them discusses one or more of the K topics. Typically, n and p

are large and K is relatively small. Table 2.1 presents two data sets of this kind, which we analyze

in this paper.

Table 2.1: Two data sets for topic estimation
Data sets Vocabulary Documents Topics
Associated Press (AP) 10473 words 2246 news articles “crime", “politics", “finance"

Statistical Literature
Abstracts (SLA) 2934 words 3193 abstracts

“multiple testing”, “variable selection”
“experimental design”, “bayes”
“spectral analysis”, “application”

We adopt the pLSI model which lies in the core position in this area as we have discussed in

the Chapter 1. Under the model and notations specified in Section 1.2 and Section 1.4, our main

interest is to use D̂ to estimate the word-topic matrix A in the pLSI model.

Definition 2.1.1. We call word j an anchor word1 if row j of A has exactly one nonzero entry, and

an anchor word for topic k if the nonzero entry locates at column k, 1≤ k ≤ K.

Latent Dirichlet Allocation (LDA) [3] is a well-known approach to topic modeling. It imposes

a Dirichlet prior on the columns of W , and estimates A by a variational EM algorithm. Despite its

popularity, LDA is relatively slow computationally, especially when (n, p) are large. The “tensor

decomposition" method [20] estimates the topic matrix by extracting a certain orthogonal decom-

position of a symmetric tensor derived from the moments. However, their work critically relies on

1. The term was introduced by [18], in connection to the separable conditions for Nonnegative Matrix Factorization
[19]. It is believed that for each of the K topics, there are a few anchor words. This is supported by empirical evidence;
see Section 4.4.
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the assumption that Wi’s are iid drawn from a Dirichlet distribution and their algorithm needs to

know the sum of the Dirichlet parameters, which can be restrictive. Other approaches include [21],

[22], and the “separable NMF" algorithm by [18].

However, despite all these encouraging advancements, two inter-connected questions remain

unanswered:

• what is the optimal rate of convergence for estimating topic matrix A?

• which methods (presumably fast and easy-to-use) are rate optimal?

2.2 Our proposal

We address these questions by proposing a new SVD approach. Our main contributions are:

• (Identify the proper column-wise scaling). The unknown `1-norm of different rows of A

imposes critical challenges to the estimation of A. We overcome the difficulty by introducing

a proper column-wise scaling.

• (Identify the proper Pre-SVD normalization). There are many different Pre-SVD normal-

izations, but only a carefully chosen one gives rise to the desired optimality for Post-SVD

inference.

• (A simplex structure and a new SVD approach). We construct a p× (K−1) matrix R̂ using

the first K left singular vectors of the (Pre-normalized) matrix D̂. The rows of R̂ generate a

point cloud with the silhouette of a simplex, where each “anchor row" falls close to one of

the vertices, and each “non-anchor row" falls close to an interior point. The simplex structure

gives rise to a new SVD approach.

• (Optimality and comparison of rates). We show that our method is optimal for the case

where either the documents are relatively long or the sample size is very large. For the other

cases, we show that our method still has better rates than existing methods. As far as we

know, our result on optimality is new.
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• (Sharp row-wise deviation bounds). Our analysis requires tight deviation bounds for the

rows of R̂ (see above), which are not available in literature, so we have to derive such bounds

with very delicate analysis.

2.2.1 Why constructing the right simplex is tricky

A key component of our method is the simplex aforementioned. At first glance, the construction of

the simplex may seem all too trivial. For example, [19] (see also [23]) pointed out that if we view

each row of the signal matrix D as a point in Rn, then we have a simplicial cone in Rn; and if we

further normalize each row of D by the `1-norm, then the simplicial cone gives rise to a simplex.

Along a different vein, [18] pointed out a simplex structure in Rp associated with the so-called

word-word co-occurrence matrix. See Table 2.2.

Table 2.2: Comparison of Ideal Simplex (i.e., simplex constructed using D). DS: Donoho and
Stodden (2003); AGM: Arora, Ge, and Moitra (2012). For the last row, see Section 2.2.2.

Authors Source Oracle counterpart Normalize by Dimension
DS text corpus D̂ D0(= AW ) row-wise `1-norm n

AGM word co-occurrence D̂D̂′ DD′ row-wise `1-norm p
Ours singular vectors Ξ̂ AV (= Ξ) first column of Ξ K−1

Unfortunately, these simplexes live in a high dimensional space, so when we try to use them

for inference, we face challenges in computation and in analysis; what we desire is a simplex in a

low dimensional space, say, RK .

An easy fix is to project these simplexes linearly to RK , or simply to use SVD. A seemingly

reasonable approach is then:

• (Pre-SVD normalization). Normalize each row of D̂ by the `1-norm.

• (SVD). Consider the p×K matrix formed by first K left singular vectors of the matrix above.

By [19], the rows of this p×K matrix approximately form a simplex in RK .

Unfortunately, our analysis shows that the Pre-SVD normalization step is not optimal in noise

reduction, and when this happens, the SVD loses part of the information which we can however
9



manage to capture.

When we have to use a better Pre-SVD step, it hurts the geometry: we end up with only a

simplicial cone in RK , so for the desired simplex, further normalization is necessary. Our proposal

is as follows:

• (Pre-SVD normalization). Normalize rows of D̂ optimally as desired.

• (SVD). Obtain the p×K matrix similarly as above.

• (Post-SVD normalization). Normalize the rows of this p×K matrix.

For the last step, we use a similar idea of SCORE [24, 25], a recent method for social network

analysis. Except for some high level ideas, our paper is different from [24, 25] in important ways.

To name a few: (a) The column-wise scaling and the Pre-SVD normalization aforementioned

(which are critical here) were never studied there, (b) the application areas, settings, and quantities

of interest are all different: the topic matrix is of major interest here, but it counterpart in social

networks was not studied, (c) one of the focus here is optimality, but optimality was never discussed

there.

2.2.2 The Ideal Simplex

We study the oracle case (where D is known) first, and in Section 2.2.3, we extend what we learn

here to the real case.

In the oracle case, the goal is to use D to recover A. For any given positive vector g ∈RK , note

that to recover A, it suffices to recover A ·diag(g): since each column of A is a PMF, we can simply

recover A by normalizing each column of A ·diag(g) by the `1-norm.

Write A ·diag(g) = (I) · (II), where (I) is Left Scaling Matrix (LSM), the diagonal matrix con-

sisting of the `1-norm of all rows of A · diag(g), and (II) is the Normalized Topic Matrix (NTM).

Our strategy is to find an appropriate g and a convenient approach to recovering both LSM and

NTM.
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Surprisingly, for many choices of g, LSM is hard to recover: these include the most natural

choice of g = 1K . When g = 1K , A ·diag(g) = A. The corresponding LSM is the diagonal matrix

consisting of the row-wise `1-norms of A, which is hard to recover. Our proposal:

• Take g =V1 where V1 is as in (2.1) below. By Lemma 2.2.1 below, the LSM associated with

A ·diag(V1) can be conveniently recovered.

• After the LSM is recovered, reconstruct the NTM associated with A · diag(V1) using the

simplex structure to be introduced.

In detail, let

M0 = diag(n−1D01n)

Our analysis later suggests that the optimal Pre-SVD normalization is to scale each row of D by

the square root of its `1-norm: D 7→M−1/2D. Let σ1 > σ2 > .. . > σK be the first K singular values

of M−1/2D, and let Ξ be the corresponding left singular vectors. Since M−1/2D = M−1/2AW , the

column spaces spanned by col(M−1/2A) and Ξ are the same, so there is a non-singular matrix

V ∈ RK,K such that

Ξ = M−1/2AV (2.1)

Using Perron-Frobenius theorem [26], all entries of Ξ1 are nonzero and have the same signs,

so without loss of generality, we assume all entries of Ξ1 are positive. The same applies to V1; see

Lemmas 2.8.1-2.8.2.

Lemma 2.2.1. The LSM associated with A ·diag(V1) is M1/2 ·diag(Ξ1).

Lemma 2.2.1 says that the LSM associated with A · diag(V1) can be conveniently recovered

using (M,Ξ1). The proof is Section 2.8.

We now consider the NTM for A ·diag(V1). Since this matrix is frequently used, we denote it
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by Π. By Lemma 2.2.1,

Π = [diag(Ξ1)]
−1M−1/2 · (A ·diag(V1)).

If we view each of its rows as a point in RK , then it forms a simplicial cone. For a convenient

approach to recovering Π, it is desirable to further normalize Ξ so as to give rise to a simplex,

using an idea similar to that of post-PCA normalization in [24].

In detail, define the matrices of entry-wise ratios R ∈ Rp,K−1 by

R( j,k) = Ξk+1( j)/Ξ1( j), 1≤ j ≤ p, 1≤ k ≤ K−1, (2.2)

and a matrix V ∗ ∈ RK,K−1 in a similar fashion by

V ∗(`,k) =Vk+1(`)/V1(`), 1≤ `≤ K, 1≤ k ≤ K−1.

Here R is obtained by taking the ratio between each of Ξ2, . . . ,ΞK and Ξ1 in an entry-wise fashion,

V ∗ is obtained from V1, . . . ,VK similarly. By (2.1) and basic algebra, we have

[1p,R] = [diag(Ξ1)]
−1M−1/2 · (A ·diag(V1)) · [1K ,V

∗]≡Π · [1K ,V
∗].

Note the ith row πi of Π is a PMF. Recalling that word i is an anchor word if and only if row

i of A has exactly one nonzero, πi is a degenerate PMF if and only if word i is an anchor word. It

follows

R = ΠV ∗, or equivalently, ri =
K

∑
k=1

πi(k)v
∗
k , 1≤ i≤ n. (2.3)

This gives rise to the following lemma, which is one of our key observations.

Lemma 2.2.2 (Ideal Simplex). The rows of R form a point cloud with the silhouette of a simplex

S ∗K with v∗1,v
∗
2, . . . ,v

∗
K being the vertices.

• If word j is an anchor word, then r j falls on one of the vertices of S ∗K .
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(0.29,0.51,0.2)

(0,0,0)

Figure 2.1: K = 3. Left panel: Ideal Simplex (solid triangle). Each circle represents a row of R
(red: anchor words, blue: non-anchor words). Every r j is a convex combination of the K vertices,
where the weight for one r j is displayed. Right panel: Why it is appropriate to use entry-wise
eigen-ratios. The solid triangle is the simplex formed by rows of ÃV . Each cross represents a row
of Ξ; these rows are obtained by rescaling the rows of ÃV , so they no longer have the silhouette of
a simplex.

• If word j is a non-anchor word, then r j falls into the interior of S ∗K (or the interior of an

edge/face), and equals to a convex combination of v∗1,v
∗
2, . . . ,v

∗
K with π j being the weight

vector.

We can now use (M,Ξ1,R) to recover the topic matrix A.

• (Recovering LSM). Set the LSM of A ·diag(V1) by M1/2diag(Ξ1).

• (Vertex Hunting). Use rows of R and the simplex structure to locate all vertices v∗1,v
∗
2, . . . ,v

∗
K .

• (Recovering Π). For 1 ≤ i ≤ p, as in (2.3), write ri as a convex linear combination of

v∗1,v
∗
2, . . . ,v

∗
K . The weight vector then equals to π ′i (the i-th row of Π).

• (Recovering A ·diag(V1)). Set A ·diag(V1) = (M1/2 ·diag(Ξ1) ·Π).

• (Recovering A). Normalize each column A · diag(V1) by its `1-norm and let the resultant

matrix be A.

See Figure 2.1 (left). Note that without the post-SVD normalization in (2.2), we would have a

simplicial cone instead of a simplex, and recovering Π is more difficult (especially in the real case,

where we have noise).
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As far as we know, our approach is new. The simplex structure is based on a carefully de-

signed Pre-SVD normalization and a Post-SVD normalization, and is very different from other

constructions of simplex in the literature; see Table 2.2. In particular, since the SVD step substan-

tially reduces the noise and dimension (which ensures that the simplex is low-dimensional), Vertex

Hunting for our simplex can be computationally faster and statistically more accurate than other

constructions of simplex in Table 2.2.

Remark. Despite some high level connections in post-SVD normalization, our work is very

different from [24] and [25]: the latter studies a different quantity in a different setting, where it is

not required to estimate the LSM, so we don’t have to carefully choose the vector g; also, they do

not use a Pre-SVD normalization step. In theory, our main focus is on optimality, and they do not

address optimality.

Remark. An alternative way to cancel out these diagonals is to normalize each row of Ξ to

have an unit `q-norm for some q > 0. But when we do this, the geometry associated with the

resultant matrix is more complicated, for each of its rows falls on the surface of the unit `q ball.

This makes the problem unnecessarily more complicated.

2.2.3 A novel SVD approach to topic estimation (real case)

In the real case, we only observe a “blurred" version of the matrix R and so a “blurred" version of

the Ideal Simplex. The main challenge is then how to find Vertex Hunting that is computationally

feasible and theoretically effective.

Introduce the stochastic counter part of M0 by

M̂ = diag(n−1D̂1n)

We now apply the Pre-SVD normalization D̂ 7→ M̂−1/2D̂, and let let σ̂1 > σ̂2 > .. . > σ̂K be the

first K singular values of M̂−1/2D̂ and Ξ̂ the corresponding left singular vectors. Denote by R̂ the
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empirical counterpart of R: 2

R̂( j,k) = Ξ̂k+1( j)/Ξ̂1( j), 1≤ k ≤ K−1, 1≤ j ≤ p. (2.4)

For any affinely independent vectors a1,a2, . . . ,aK ∈ RK−1, denote the simplex with vertices

a1,a2, . . . ,aK by S (a1,a2, . . . ,aK). For any b ∈ RK−1, let distance(b,S (a1,a2, . . . ,aK)) be the

Euclidean distance between b and S (a1,a2, . . . ,aK) (we set it to 0 if b falls inside the simplex).

The distance can be computed conveniently via a standard quadratic programming. A natural

Vertex Hunting algorithm is then to solve

min
1≤ j1<...< jK≤p

{
max

1≤ j≤p
distance

(
r̂ j,S (r̂ j1 , r̂ j2, . . . , r̂ jK )

)}
, (2.5)

which can be computed conveniently via searching among possible ( j1, . . . , jK). Let v̂∗k = r̂ ĵ∗k
,

1≤ k ≤ K, be the estimated vertices, where ĵ∗1 < ĵ∗2 < .. . < ĵ∗K is the solution of (2.5).

We propose the following topic estimation method, mimicking what have in the oracle case.

Input: D̂, K. Output: Â, an estimate of A.

1. (Estimating LSM). Estimate LSM of A ·diag(V1) by M̂1/2diag(Ξ̂1).

2. (Vertex Hunting). Apply the Vertex Hunting algorithm in (2.5) to R̂ and let v̂∗1, . . . , v̂
∗
K be the

estimated vertices.

3. (Estimating Π). For 1≤ j ≤ p, solve π̂∗j from

 1 . . . 1

v̂∗1 . . . v̂∗K

 π̂
∗
j =

 1

r̂ j

 .

Set all negative entries of π̂∗j to 0. Renormalize the resultant vector to have a unit `1-norm,

2. We may choose to winsorize Ξ̂k+1( j)/Ξ̂1( j) at ±t, where t > 0 is a threshold. We recommend t = 2log(n) for
numerical study (especially for simulated data). For our theory and real data analysis, winsorization does not have a
major effect and can be omitted.
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and denote it by π̂ j. Let Π̂ = [π̂1, · · · , π̂p]
′.

4. (Estimating A ·diag(V1)). Estimate A ·diag(V1) by M̂1/2diag(Ξ̂1) · Π̂.

5. (Estimating A). Normalize each column of the matrix in the last step to have a unit `1-norm.

The resultant matrix is our output matrix Â.

In Section 2.3, we show that with natural and reasonable regularity conditions, the procedure

achieves the optimality.

The Vertex Hunting is simple and attractive in theory, but may be vulnerable to outliers. We

now propose a class of Vertex Hunting algorithms (including the previous one as a special case)

which can be more robust and more stable in numerical studies.

Input: K, a tuning integer L > K, and r̂1, · · · , r̂p. Output: estimated vertices v̂∗1, · · · , v̂
∗
K (see

Figure 2.2). Recall R̂ = [r̂1, r̂2, . . . , r̂p]
′.

VH-1. Cluster by applying the classical k-means to r̂1, · · · , r̂p, assuming there are L clusters. Let

θ̂1, · · · , θ̂L be the Euclidean centers of the clusters.

VH-2. Let 1≤ ĵ1 < ĵ2 < · · ·< ĵK ≤ L be the indices such that θ̂ ĵ1
, · · · , θ̂ ĵK

are affinely independent

and minimize

max
1≤ j≤L

{
distance

(
θ̂ j, S (θ̂ j1 , · · · , θ̂ jK )

)}
.

Output v̂∗k = θ̂ ĵk
, 1≤ k≤ K. If no such ( ĵ1, · · · , ĵK) exist, output v̂∗1 = (0, . . . ,0)′ and v̂∗k+1 =

the k-th standard basis vector of RK−1.

For numerical study, we recommend L = 10K. How to set L in a data-driven fashion is a challeng-

ing problem, and we leave it for future study.

To differentiate, we call the two algorithms the Orthodox Vertex Hunting (OVH) and the Gen-

eralized Vertex Hunting (GVH), respectively. Note that if we take L = p in GVH, then the k-means

step is skipped and we have the OVH, so OVH can be viewed as a special case of GVH.

The computing cost of our method has two main parts: the cost of SVD and the cost of Vertex

Hunting. SVD, with a complexity of O(npmin{n, p}), is a rather manageable algorithm even
16



Figure 2.2: Vertex Hunting algorithm (K = 3). Left: Apply the classical k-means to r̂1, . . . , r̂p and
obtain the Euclidean centers of clusters (blue points). Middle: Remove r̂1, . . . , r̂p and only keep
the cluster centers. Right: Fit a simplex using these cluster centers.

for large matrices. For Vertex Hunting, if we apply OVH, the cost is proportional to p ·
(p

K
)
=

O(pK+1). For practical considerations, we recommend using GVH with a finite L. GVH has the

k-means step and exhaustive search step. The k-means 3 is usually executed in practice by the

Llyod algorithm, which is pretty fast. The exhaustive search could be relatively slow when both

(K,L) are large (and is reasonably fast otherwise), but since it aims to solve a simple problem, it

can be replaced by some much faster greedy algorithm. How to improve this part is not the main

focus of the paper, so we leave it to the future work.

Remark. Our procedure is very flexible and the main idea continues to work if we revise some

steps. For example, the method continues to work if we use a different normalization matrix M

noting that Lemmas 2.2.1-2.2.2 are true for any positive diagonal M0, or replace the k-means by

some other clustering algorithms (e.g., k-median or an (1+ ε)-approximate solution of k-means).

Also, if we know which are the anchor words (say, by prior knowledge or by some anchor-selection

algorithms), we can revise our algorithm accordingly to accommodate such a situation.

Remark. We may also consider optimization approaches for Vertex Hunting, such as searching

for a simplex with maximum/minimum volume [27, 28], but it is unclear how to solve such hard

optimizations and their theoretical properties are also unknown.

3. We may have the wrong impression that the k-mean is always NP-hard: the k-means is NP-hard if both the
dimension and the number of clusters are large, but this is not the case here for both of them (namely, (K−1) and L)
are reasonably small.
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2.3 Theoretical analysis

We adopt an asymptotic framework where we let n→∞ and (N, p) are allowed to vary with n, but

K is fixed. In many real data sets (see Table 2.1 for example), K is small, N can be more than a

few hundreds, and (n, p) can be more than a few thousands, so our asymptotic framework makes

sense.

Recall that

H = diag(h), where hi is the `1-norm of row i of A, 1≤ i≤ p.

Let hmax = max1≤ j≤p h j, hmin = min1≤ j≤p h j, and h̄ = 1
p ∑

p
j=1 h j. Since each column of A is a

PMF, h̄ = K/p. We assume

hmin ≥ c1h̄, for a constant c1 ∈ (0,1). (2.6)

The condition is only mild, for in practice, we often pre-process the data by removing the rare

words from the vocabulary. Our results are extendable to the case where hmin� h̄, but the presen-

tation of the results are considerably more complicated, so we omit it.

Definition 2.3.1. We call ΣW = n−1WW ′ the “topic-topic concurrence" matrix and call ΣA =

A′H−1A the “topic-topic overlapping" matrix.

The matrix ΣW is commonly used in the literature. The matrix ΣA measures the affinity between K

different topics, a larger value of ΣA(k, `) indicates more overlapping between topics k and `; note

that 0≤ Σk,` ≤ 1. For a constant c2 ∈ (0,1), we assume

λmin(ΣW )≥ c2, λmin(ΣA)≥ c2, min
1≤k,`≤K

ΣA(k, `)≥ c2. (2.7)

Since both ΣW and ΣA are non-negative and properly scaled, the above conditions are rather mild;

the last item basically requires that any two pair of topics share a constant fraction of words, which

18



is reasonable and holds in many applications. For example in the two real data sets we have

analyzed, the minimum value of entries of ΣA is 0.66 for the AP data set where K = 3 is assumed,

and 0.02 for the SLA data set where K = 6 is assumed.

Example. It is instructive to show an example where (2.6)-(2.7) hold. Fixing a positive vector

α , generate different columns of W iid from Dirichlet(α). Second, fix m ≥ K and let Γ ∈ RK,m

be a positive matrix such that ΓΓ′ is non-singular and that the linear equation Γx = 1K has a non-

negative solution x. Let A∗ have 1 anchor row p−1e′k for each topic 1≤ k≤K, and let its remaining

(p−K) rows be iid drawn from the mixture ∑
m
j=1

x j
‖x‖1

δ[(p−1‖x‖1)Γ j]
, where for any v ∈ RK , δv

denotes a point mass at v; re-normalize each column of A∗ by its `1-norm to get A. It is not hard

to see that, as (n, p)→ ∞, with overwhelming probabilities, ΣW → 1
‖α‖1(1+‖α‖1)

[diag(α)+αα ′]

and ΣA→ Γdiag( x1
‖Γ1‖1

, . . . , xm
‖Γm‖1

)Γ′. Hence, the conditions (2.6)-(2.7) hold with overwhelming

probabilities.

Our discussions focus on the following parameter space:

Φn,N,p(K,c1,c2) =

{
(A,W ) : (2.6)-(2.7) are satisfied, and A has

an anchor row for each topic

}
.

Also, since each column of A is a PMF, for any estimator Â, it is natural to measure the performance

using `1 estimation error. Let PK be the set of all K×K permutation matrices. The `1-error is

defined by

L (Â,A)≡ min
T∈PK

{ K

∑
k=1
‖(Â ·T )k−Ak‖1

}
.

2.3.1 Minimax lower bound

The following theorem is proved in Section 2.8.

Theorem 2.3.1 (Minimax lower bound). Consider the pLSI model where K is fixed. Suppose

that for sufficiently large n, log(n) ≤ min{p,N} and p log3(n) ≤ Nn, and that (A,W ) live in

Φn,N,p(K,c1,c2) for some constants 0 < c1,c2 < 1. As n→ ∞, there are constants C0 > 0 and

19



δ0 ∈ (0,1) such that

inf
Â

sup
(A,W )∈Φn,N,p(K,c1,c2)

P
(

L (Â,A)≥C0

√
p

Nn

)
≥ δ0.

To the best of our knowledge, this lower bound was not discovered before. In sections below,

we shall see that it is attained by our method either when N ≥ p4/3 or when p ≤ N < p4/3 but n

is sufficiently large, suggesting that the lower bound is sharp in these cases. When N < p, it is not

clear whether our method or any other existing method can match this rate, so whether the lower

bound is sharp is not yet clear in this case.

The lower bound suggests that several existing methods have sub-optimal rates of convergence;

see Table 2.3 and discussions therein.

At the heart of the proof of Theorem 2.3.1 is the least favorable configurations, which live in

a smaller parameter space: Fixing constants γ1,γ2 ∈ (0,1/K) and a weight vector η∗ ∈ RK that is

in the interior of the standard simplex, define

Φ
∗
n,N,p(K,c1,c2,γ1,γ2,η

∗)

=



(A,W ) : (2.6)-(2.7) are satisfied; A has ≥ γ1 p anchor rows for each topic;

W has ≥ γ2n pure columns for each topic; for any

non-anchor row of A, ‖ a j
‖a j‖1

−η∗‖ ≤C
√

p/(Nn)

(Wi is called a pure column of W for topic k if Wi(k) = 1)


.

Lemma 2.3.1 (Minimax lower bound for a smaller class). Suppose the conditions of Theorem 2.3.1

hold, except that (A,W ) lie in Φ∗n,N,p(K,c1,c2,γ1,γ2,η
∗) for some constants 0 < c1,c2 < 1 and

0 < γ1,γ2 < 1/K and a weight vector η∗ ∈ RK in the interior of the standard simplex. Then for

sufficiently large n, there are constants C0 > 0 and δ0 ∈ (0,1) such that

inf
Â

sup
(A,W )∈Φ∗n,N,p(K,c1,c2,γ1,γ2,η∗)

P
(

L (Â,A)≥C0

√
p

Nn

)
≥ δ0.
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2.3.2 Upper bound of OVH algorithm

In our method, we have proposed two Vertex Hunting algorithms: the original one and the variant.

We first consider our method with the Orthodox Vertex Hunting (OVH) algorithm. The following

theorem is proved in Section 2.6.

Theorem 2.3.2 (Minimax upper bound (with OVH)). Consider the pLSI model where K is fixed.

Suppose that for sufficiently large n, log(n)≤min{p,N} and p log3(n)≤ Nn, and that (A,W ) live

in Φn,N,p(K,c1,c2) for some constants 0 < c1,c2 < 1. Let Â be our estimate where we adopt the

orthodox VH algorithm for Vertex Hunting. As n→ ∞, with probability 1−o(n−3),

L (Â,A)≤

 C
√

p log(n)
Nn , if N ≥ p4/3 (Case 1),

C(p2 ·N−3/2) ·
√

p log(n)
Nn , if N < p4/3 (Case 2).

Combining Theorems 2.3.1-2.3.2, for Case 1, our method achieves the optimal rate. Case 1

concerns the scenario where either p (vocabulary size) is relatively small or N (document length)

is relatively large, or both. Note that we often preprocess the data by removing very rare words, so

the running p is relatively small; also, documents such as news, scientific papers and novels can

be really long. For Case 2, it is not clear whether our method is rate optimal, but the rate is faster

than those in the literature [18, 20, 22]. See Section 2.3.4 for a detailed rate comparison. From a

practical view point, both cases are of great interest.

In the above theorem, we put a very mild condition on n, which is almost necessary as suggested

by the lower bound. If n is larger, we can get a faster rate of convergence for Case 2:

Theorem 2.3.3 (Tighter upper bound for Case 2 when n is larger). Consider the pLSI model where

K is fixed. Suppose that for sufficiently large n, log(n)≤min{p,N}, p log3(n)≤Nn, and addition-

ally, n≥max{N p2, p3,N−2 p5}. Suppose that (A,W ) live in Φn,N,p(K,c1,c2) for some constants

0 < c1,c2 < 1. Let Â be our estimate where we adopt the orthodox VH algorithm for Vertex Hunt-
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ing. As n→ ∞, with probability 1−o(n−3),

L (Â,A)≤C
(

1+
p
N

)
·
√

p log(n)
Nn

, if N < p4/3 (Case 2).

Note that by Theorems 2.3.1 and 2.3.3, our method achieves the optimal rate when N = O(p).

At the heart of our proofs is a tight row-wise error bound for each row ξ̂ j of Ξ̂, which is proved

in Section 2.6.

Theorem 2.3.4 (Deviation bounds for singular vectors). Consider the pLSI model where K is fixed.

Suppose that for sufficiently large n, log(n) ≤ min{p,N} and p log3(n) ≤ Nn, and that (A,W )

satisfy (2.6)-(2.7) for constants 0 < c1,c2 < 1. Then as n→ ∞, with probability 1−o(n−3), there

exists a K×K matrix Ω = diag(ω,Ω∗), where ω ∈ {±1} and Ω∗ is a (K−1)×(K−1) orthogonal

matrix, such that, for all 1≤ j ≤ p,

‖Ωξ̂ j−ξ j‖ ≤
√

h j ·

 C
√

p log(n)
Nn , if N ≥ p4/3 (Case 1),

C(p2 ·N−3/2)

√
p log(n)

Nn , if N < p4/3 (Case 2).

Row-wise deviation bounds for singular vectors are not well-studied in the literature, so we

have to derive them by ourselves using very subtle Random Matrix Theory. The most relevant

reference we can find is [29], but their results give the same bound for all rows, while we need

different bounds for different rows. Also, our data matrix is a non-square matrix with weakly

dependent entries, while their data matrix is a square matrix with independent entries. So, our

bounds cannot be deduced from theirs.

Recall that a j and â j are the jth rows of A and Â. We can rewrite the per-topic `1-error

1
K L (Â,A) as (for a permutation matrix T ∈PK)

1
K

K

∑
K=1
‖(Â ·T )k−Ak‖1 =

1
K

p

∑
j=1
‖T â j−a j‖1 =

p

∑
j=1

(
‖a j‖1

K
)
‖T â j−a j‖1
‖a j‖

, (2.8)

where the right hand side is a weighted average of (‖T â j− a j‖1)/‖a j‖), with weights ‖a j‖/K,
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j = 1,2, . . . , p (note ∑
p
j=1(‖a j‖1/K) = 1

K ∑
K
k=1 ‖Ak‖1 = 1), where a rare word tends to receive a

small weight.

Theorem 2.3.2 says that we have a good control on the weighted average of (‖T â j−a j‖1)/‖a j‖,

but this does not say much about the individual terms. From time to time, it is desirable to have a

tight control for these terms individually, especially for relatively rare words. This is addressed in

the following theorem, which is proved in Section 2.6.

Theorem 2.3.5 (Row-wise upper bounds). Consider the same method and same settings as in

Theorem 2.3.2. As n→ ∞, with probability 1−o(n−3), there exists a permutation matrix T ∈PK

such that

max
1≤ j≤p

{‖T â j−a j‖1
‖a j‖1

}
≤

 C
√

p log(n)
Nn , if N ≥ p4/3 (Case 1),

C(p2 ·N−3/2) ·
√

p log(n)
Nn , if N < p4/3 (Case 2).

Note that by (2.8), Theorem 2.3.2 is a direct result of Theorem 2.3.5.

2.3.3 Upper bound of GVH algorithm)

We now analyze our procedure with the Generalized Vertex Hunting (GVH) algorithm. The GVH

algorithm is found to be sometimes more robust and stable in numerical study, but it is also slightly

harder to analyze, so we need some additional regularity conditions.

Let mp be a lower bound for the number of anchor words per topic, and let Cp be the index set

of all non-anchor words. For 1 ≤ j ≤ p, let ã j = a j/‖a j‖1, where we recall a j is the j-th row of

A. For any integer L ≥ 1, when we apply the k-means clustering algorithm (with ≤ L clusters) to

ã j corresponding to all non-anchor words, we end up with a minimum sum of square errors of

RSSn(L) = min
η∗1 ,...,η

∗
L∈RK ∑

j∈Cp

{
min

1≤`≤L
‖ã j−η

∗
` ‖

2}.
Let e1, . . . ,eK be the standard basis vectors of RK . We assume for a constant c3 > 0 and a finite
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integer L0,

min
j∈C

min
1≤k≤K

‖ã j− ek‖ ≥ c3, RSSn(L0)≤
mp

log(n)
. (2.9)

This assumption requires that the ã j’s of non-anchor words have mild “concentration." It is mainly

for the convenience of analyzing the GVH algorithm and can be largely relaxed.

Theorem 2.3.6. (Minimax upper bound (with GVH)). Consider the pLSI model where K is fixed.

Suppose that for sufficiently large n, log(n) ≤ min{p,N} and p log3(n) ≤ Nn, that (A,W ) live in

Φn,N,p(K,c1,c2) for some constants 0 < c1,c2 < 1, and that (2.9) holds. Let Â be our estimate

where we adopt the generalized VH algorithm, with a sufficiently large constant L ≥ L0 +K, for

Vertex Hunting. As n→∞, with probability 1−o(n−3), there exists a permutation matrix T ∈PK

such that

L (Â,A)≤

 C
√

p log(n)
Nn , if N ≥ p4/3 (Case 1),

C(p2 ·N−3/2) ·
√

p log(n)
Nn , if N < p4/3 (Case 2).

and

max
1≤ j≤p

{‖T â j−a j‖1
‖a j‖1

}
≤

 C
√

p log(n)
Nn , if N ≥ p4/3 (Case 1),

C(p2 ·N−3/2) ·
√

p log(n)
Nn , if N < p4/3 (Case 2).

Consider a subset of Φn,N,p(K,c1,c2), where we additionally require p/mp ≤C and that (2.9)

holds. Then, Lemma 2.3.1 and Theorem 2.3.6 imply that our method, with a generalized VH

algorithm, is minimax optimal in this smaller parameter space for Case 1.

2.3.4 Comparison of error rates

We compare our error rates with those of existing works. [18] characterize their rate by the so-

called “separability parameter" δp, where for each topic there is at least one anchor row of A

whose `1-norm is ≥ δp. They are among the first who provide explicit error rates for topic model

estimation, and their results are still used as a benchmark by many literatures. [22] characterize

their rate through δp and the fraction of “pure documents" (a document is pure if it only addresses

one topic, or equivalently the corresponding column in W has exactly one nonzero entry), denoted
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Table 2.3: Rate comparison (log(n)-factors omitted). δp: separability of anchor words, εn: fraction
of pure documents, λp: minimum singular value of A. †: rate is only known for fixed N.

Lower
bound

Ours
AWR TSVD Tensor

†
Case 1 Case 2 Case 2’√

p
Nn

√
p

Nn
p2√p
N2√n

√
p

Nn +
p
√

p
N
√

Nn
p

δ 3
p
√

Nn

√
p√

nεn
+ N√

nεnδp

√
p

λ 3
p
√

n

by εn. See Table 2.3 (columns 5-6). Since anchor words can be relatively infrequent words and

pure documents can be rare, we often have

δp� 1 and εn� 1

In fact, δp is a quantity comparable with h̄ and can be as small as p−1.

Now, in Case 1 (N ≥ p4/3), our method achieves the optimal rate, while the rates of AWR and

TSVD are sub-optimal.

In Case 2 (N < p4/3), our rate is still sharper than that of AWR as long as δp <
√

N/p (the

case δp ≥
√

N/p seems less likely), and still sharper than TSVD if εn ≤ (N/p)4 or εnδp ≤N6/p5.

Particularly, when N ≥ p, our rate is always sharper than those of AWR and TSVD.

In Case 2’ (N < p4/3, and n satisfies conditions of Theorem 2.3.3), when p ≤ N < p4/3,

our method achieves the optimal rate; when N < p, our rate is sharper than AWR when δp <

(N/
√

p)1/3 and sharper than TSVD if εn < N3/p2 or εnδp < N5/p3. We note that the additional

conditions on n are not as restrictive as one might think; for example, other methods also need simi-

lar conditions: TSVD explicitly requires n > N2/(δ 2
pεn) and AWR implicitly needs n > p2/(Nδ 6

p)

for the rate to be o(1).

Table 2.3 also includes the rate of the tensor approach by [20] for comparison. Note that the

theory of this paper only addresses the case where N is fixed, not growing with n; they also need

n to be sufficiently large (n ≥ p2). Their rate depends on λp, the minimum singular value of A,

where due to the self-normalization in A, the typical order of λp is

λp � p−1/2.
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Hence, their rate is p2/
√

n. Their setting fits our Case 2’, and our method has a faster rate as

p
√

p/n. Also, their procedure depends on the assumption of πi
iid∼ Dirichlet(α) and the knowledge

of ‖α‖1. In more broader settings where either N diverges to ∞ as n→ ∞ or the Dirichlet model

for πi does not hold, the rate is not studied and remains unknown.

2.4 Simulations

We study the numerical performance of our method, where Section 2.4.1 contains experiments on

simulated data and Section 2.4.2 contains experiments on semi-synthetic data from the AP and

NIPS corpora. We call our method Topic-SCORE (or T-SCORE).

In all experiments below, we assume the number of topics K is known. Our method has two

tuning parameters (t,L). We set t = ∞ and L = 10×K. We compare our method with three differ-

ent methods: LDA [3], AWR [30], and TSVD [22]. We implement LDA using the R package lda,

with the default Dirichlet priors (α = β = 0.1). We implement AWR using the Python code down-

loaded from http://people.csail.mit.edu/moitra/software.html. We imple-

ment TSVD using the matlab code downloaded from http://thetb.github.io/tsvd/.

2.4.1 Synthetic data

Given parameters {p,n,N,K,mp,δp,mn}, we generate the text corpus D as follows:

• Generate the topic matrix A: For 1 ≤ k ≤ K, let each of the [(k− 1)mp + 1]-th row to the

(kmp)-th row equal to δpe′k, where e1, . . . ,eK are the standard basis vectors of RK . For

the remaining (p−Kmp) rows, we first generate all entries iid from Uni f (0,1), and then

normalize each column of the (p−Kmp)×K sub-matrix to have a sum of (1−mpδp).

• Generate the document matrix W : For 1≤ k ≤ K, let each of the [(k−1)mn +1]-th column

to the (kmn)-th column equal to ek. For the remaining columns, we first generate all entries

iid from Uni f (0,1), and then normalize each column to have a sum of 1.
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Figure 2.3: Experiment 1. The y-axis is log(L (Â,A)), and (p,n,N,K) represent the vocabulary
size, number of documents, document length, and number of topics, respectively.

• Generate the text corpus D through the pLSI model.

With this data generating process, there are mp anchor words and mn pure documents for each

topic, and all the anchor words have a separability of δp. For each parameter setting, we indepen-

dently generate 200 data sets and report the average L (Â,A) for all four methods.

Experiment 1: Various settings of (p,n,N,K) We fix a basic setting where

(p,n,N,K,mp,δp,mn) = (1000,1000,2000,5, p/100,1/p,n/100)

In the four sub-experiments, we vary one model parameter and keep the other parameters the

same as in the basic setting. The results are shown in Figure 2.3. In all the settings, our method

yields the smallest estimation error among all four methods. Furthermore, we have the following

observations: (i) As n or N increases, our method is the only one whose estimation error exhibits
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Figure 2.4: Experiment 2. The y-axis is log(L (Â,A)), and (mp,δp,mn) represent the number of
anchor words, separability of anchor words, and number of pure documents, respectively.

a clear decreasing trend. It suggests that our method can take advantage of including more docu-

ments and having longer documents. (ii) As K increases, the estimation errors of all four methods

increase, suggesting that the problem becomes more challenging for larger K. (iii) As p increases,

the estimation errors of our method and AWR both increase, while the estimation errors of LDA

and TSVD remain relatively stable; however, even for large p (e.g., p = 4000), still, our method

significantly outperforms LDA and TSVD.

Experiment 2: Anchor words and pure documents We fix the same basic setting as in Exper-

iment 1 and vary one parameter of (mp,δp,mn) in each sub-experiment. The results are shown in

Figure 2.4.

First, we look at the effect of anchor words. From the left panel of Figure 2.4, as mp (number of

anchor words per topic) increases, the estimation error of our method has considerably decreased,

suggesting that our method can take advantage of having multiple anchor words. Even with mp = 2,

our method still outperforms the other methods. From the middle panel of Figure 2.4, as δp (sep-

arability of anchor words) increases, the estimation errors of AWR and our method both decrease,

and they both outperform LDA and TSVD; with the same separability, our method always outper-

forms AWR. Furthermore, as long as δp is larger than 2×10−4, our method is relatively insensitive

to δp; this is consistent with the theory in Section 2.3.

Second, we look at the effect of pure documents. From the right panel of Figure 2.4, as mn
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Figure 2.5: Experiment 3. The y-axis is log(L (Â,A)). Left panel: the setting of Zipf’s law. Right
panel: the setting of two scales. The word heterogeneity increases as either Ps decreases or hmax
increases.

(number of pure documents) increases, the performance of all methods except LDA improves. The

improvement on TSVD is especially significant; this is because TSVD relies on the existence of

nearly-pure documents (which they called “dominant admixtures"). When mn < 100, our method

has a significant advantage over TSVD; when mn = 100, the performance of our method is similar

to that of TSVD.

Experiment 3: Heterogenous words We study “heterogenous" settings where some words are

much more frequent than the others. Fix

(p,n,N,K,mp,δp,mn) = (1000,1000,2000,5, p/100,1/p,n/100)

We generate the first Kmp rows of A in the same way as before and generate the remaining

(p−Kmp) rows using two different settings below:

• Setting 1: Zipf’s law. Given Ps > 0, we first generate A( j,k) from the exponential distribution

with mean (Ps + j)−1.07, independently for all 1 ≤ k ≤ K, Kmp + 1 ≤ j ≤ p, and then

normalize each column of the (p−Kmp)×K matrix to have a sum of (1−mpδp). Under

this setting, the word frequencies of each topic roughly follow a Zipf’s law with Ps stop

words. A smaller Ps corresponds to larger heterogeneity.
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Figure 2.6: Experiment 4. The y-axis is log(L (Â,A)). As Pd increases, the almost-anchor words
are less anchor-like. Left panel: the homogeneous setting. Right panel: the heterogeneous setting.

• Setting 2: Two scales. Given hmax ∈ [1/p,1), first, we generate {A( j,k) : 1≤ k≤ K,Kmp <

j ≤ Kmp + nmax} iid from Uni f (0,hmax), where nmax = b(1−mpδp)/(2hmax)c. Next,

we define nmin = p−Kmp− nmax and hmin = (1−mpδp− hmaxnmax)/nmin and generate

{A( j,k) : 1≤ k≤ K,Kmp+nmax < j≤ p} iid from Uni f (0,hmin). Last, we normalize each

column of the (p−Kmp)×K matrix to have a sum of (1−mpδp). Under this setting, the

word frequencies of each topic are in two distinct scales, characterized by hmax and hmin,

respectively.

We then generate (W,D) in the same way as before. The results are shown in Figure 2.5. Our

method always yields the smallest estimation errors. Interestingly, in Setting 2, the performance of

AWR improves with increased heterogeneity; see the right panel of Figure 2.5.

Experiment 4: No exact anchor words Fix

(p,n,N,K,mp,δp,mn,Ps) = (1000,1000,2000,5, p/100,1/p,n/100, p/20)

We generate A using two different settings below:

• Setting 1: Homogeneous words. Given Pd ∈ [0,1], for 1 ≤ k ≤ K, let each of the [(k−

1)mp + 1]-th row to the (kmp)-th row equal to δpẽ′k, where ẽk( j) = 1{ j = k}+Pd1{ j 6=

k}, 1 ≤ j ≤ K. For the remaining (p−Kmp) rows, we first generate all entries iid from
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Table 2.4: Computation time on the semi-synthetic data (N = 2000,K = 5).

Method Software AP data (in second) NIPS data (in second)
Topic-SCORE R 1.04 0.29

LDA R 378.04 395.14
AWR Python 112.62 36.68
TSVD MATLAB 4.41 1.61

Uni f (0,1), and then normalize each column of the (p−Kmp)×K sub-matrix to have a sum

of [1−mpδp−mpδp(K−1)Pd ].

• Setting 2: Heterogenous words. Given Pd ∈ [0,1], first, we generate A( j,k) from the expo-

nential distribution with mean (Ps + j)−1.07, independently for all 1 ≤ k ≤ K, 1 ≤ j ≤ p;

second, for each 1 ≤ k ≤ K, we randomly select mp rows from all the rows whose largest

entry is the k-th entry, and for these selected rows, we keep the k-th entry and multiply the

other entries by Pd ; last, we renormalize each column of A to have a sum of 1.

We then generate (W,D) in the same way as before. In both settings, there are mp almost-anchor

words for each topic. Moreover, a smaller Pd means that the almost-anchor words are more similar

to anchor words; in the special case of Pd = 0, they become exact anchor words.

The results are shown in Figure 2.6. In both settings, our method yields the smallest estimation

errors in a wide range of Pd , suggesting that our method has reasonable performance even without

exact anchor words. In Setting 1, when Pd = 1, TSVD yields the best performance and the perfor-

mance of our method is slightly worse than that of TSVD. In Setting 2, when Pd > 0.1, our method

is better than LDA and TSVD but is worse than AWR. Interestingly, although AWR relies on the

existence of anchor-like words, its performance actually improves as Pd increases; the reason is

unclear to us.

2.4.2 Semi-synthetic data from the AP and NIPS corpora

Semi-synthetic experiments are commonly used in the literature of topic model estimation. Given a

real data set with n documents written on a vocabulary of p words, with pre-specified (K,N1, . . . ,Nn),
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Figure 2.7: Semi-synthetic experiments. The y-axis is log(L (Â,A)). Top panels: the AP corpus
(n = 2135, p = 5188). Bottom panels: the NIPS corpus (n = 1417, p = 2508).

we first run LDA by assuming K topics; next, using the posterior of (A,W ) obtained from LDA,

we generate n new documents such that document i has N words, 1≤ i≤ n. We took the AP data

set [31] and the NIPS data set [32] and preprocessed them by removing stop words and keeping the

50% most frequent words and 95% longest documents. For each data set, we conducted two ex-

periments: In the first experiment, (N1, . . . ,Nn) are the same as in the original data set and K varies

in {3,5,8,12}. In the second experiment, K = 5 with N varying in {100,200,500,1000,2000}.

The results are shown in Figure 2.7. Our method outperforms TSVD and AWR in almost all

settings and outperforms LDA in many settings (note that the data generating process favors LDA).

In Table 2.4, we compare the computing time of different methods. Our method is much faster than

LDA and AWR and is comparable with TSVD.
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2.5 Real data applications

We now analyze the two data sets in Table 2.1. In comparison, OVH is easier to analyze in theory

(and so requires less stringent regularity conditions for success) and GVH tends to have slightly

better numerical results. For this reason, we use GVH in this section.

Associated Press (AP) data The AP data set [31] consists of 2246 news articles with a vocabu-

lary of 10473 words. For preprocessing, we removed 191 stop words, kept the 8000 most frequent

words in the vocabulary, and also removed 5% of the documents that are among the shortest.

How to determine the number of topics K is a challenging problem. The scree plot suggested

K = 3, and we applied our method with K = 2,3, . . . ,6 and it seemed that K = 3 gave the most

reasonable results.

Table 2.5: Top 15 representative words for each estimated topic in the AP data (K = 3).

“Crime”
shootings, injury, mafia, detective, bangladesh, dog, hindus, gunfire, aftershocks,
bears, accidentally, handgun, unfortunate, dhaka, police

“Politics”
eventual, gorbachevs, openly, soviet, primaries, sununu, yeltsin, cambodia, torture,
soviets, herbert, gephardt, afghanistan, citizenship, popov

“Finance”
trading, stock, edged, dow, rose, traders, stocks, indicators, exchange, share,
guilders, bullion, lire, christies, unleaded

We now report some results for K = 3. First, Table 2.5 presents the top 15 representative words

for the each of the three topics in (a word is called “representative" of a topic if its corresponding

r̂i is close to the estimated vertex of that topic). The results suggest that the three estimated topics

can be interpreted as “crime”, “politics”, and “finance”, respectively.

Also, Figure 2.8 plots the rows of the matrix R̂ (see (2.4)). Since K = 3, each row or R̂ is a

point in R2. The data cloud illustrates the silhouette of a triangle, which fits very well with our

theory on the simplex structure.

In Figure 2.8, it is interesting to note that there is a “hole" near the edge connecting the two

vertices of “crime" and “finance." This makes perfect sense: words that are related to both “crime”

and “finance” tend to be also related to “politics". In contrast, there are many words that are related

to both “politics" and “crime" but are unrelated to “finance", for example “stalin”, “warships”,
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Figure 2.8: The data points in two plots are all based on R̂ (data: Associated Press; K = 3). A
triangle is visible in the data cloud, where the three vertices represent the three topics “crime",
“politics", and “finance". In the left plot we use red color to highlight the identified nearly-anchor
words, while in the right plot we use the red color to highlight several words that are almost only
about two topics.

“armenia”, “terrorist”, “nazis” as you can see from the right subplot in Figure 2.8; and there are

many words that are related to both “politics" and “crime" but are unrelated to “crime", for example

“protectionist”, “grammrudman”, “washingtonbased”, “fiscal”, “goldman” and “treasurys” as you

can see again from the right subplot in Figure 2.8.

Statistical Literature Abstracts (SLA) data This data set was collected by [33] (see also [34]).

It consists of the abstracts of 3193 papers published in Annals of Statistics, Biometrika, Journal of

the American Statistical Association, and Journal of the Royal Statistical Society: Series B, from

2003 to the first half of 2012. The full vocabulary contains 2934 words. For preprocessing, we

remove 209 stop words. We also remove 40% of the documents that are among the shortest.

We tried our method with K = 2,3, . . . ,6,7,8 and found that K = 6 yields the most meaningful

results, so we pick K = 6 for our study. Table 2.6 shows the top 15 representative words in each of

the six estimated topics. These topics can be interpreted as “Multiple Testing", “Bayes", “Variable

Selection", “Experimental Design", “Spectral Analysis", and “Application".
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Table 2.6: Top 15 representative words for each estimated topic in the SLA data (K = 6).
“Multiple stepup, stepdown, rejections, hochberg, fwer, singlestep, familywise, benjamini,
Testing” bonferroni, simes, intersection, false, rejection, positively, kfwer

“Bayes”
posterior, prior, slice, default, credible, conjugate, priors, improper, wishart,
admissible, sampler, tractable, probit, normalizing, mode

“Variable angle, penalties, zeros, sure, selector, selection, stability, enjoys, penalization,
Selection” regularization, lasso, tuning, irrelevant, selects, clipped
“Experimental aberration, hypercube, latin, nonregular, spacefilling, universally, twofactor,
Design” blocked, twolevel, designs, crossover, resolution, factorial, toxicity, balanced
“Spectral trajectories, amplitude, eigenfunctions, realizations, away, gradient, spectra,
Analysis” discrimination, functional, auction, nonstationarity, spacetime, slex, curves, jumps

“Application”
instrument, vaccine, instruments, severity, affects, compliance, infected,
depression, schools, assignment, participants, causal, warming, rubin, randomized

2.6 Proof of the upper bounds

We prove Theorems 2.3.2, 2.3.4, 2.3.5 and 2.3.6. The proof of Theorem 2.3.3 require more delicate

analysis of a random matrix with multinomial noise, and its proof is relegated to Section 2.10.

2.6.1 Non-stochastic error analysis (proofs of Theorems 2.3.2, 2.3.5 and 2.3.6)

Note that

D̂ = D+Z = “signal”+ “noise”

We introduce two quantities to capture the “noise" level. Recall that M̂ = diag(n−1D̂1n) and

M = diag(n−1D1n). Define

∆1(Z,D) = max
1≤ j≤p

{
h−1

j |M̂( j, j)−M( j, j)|
}
. (2.10)

For 1 ≤ j ≤ p, recall that h j is the `1-norm of the j-th row of A, and ξ̂ j and ξ j are the j-th

row vectors of Ξ̂ and Ξ respectively. Denote by OK the set of all matrices with the form Ω =

diag(ω,Ω∗) ∈ RK,K , where ω ∈ {±1} and Ω∗ is a (K−1)× (K−1) orthogonal matrix. Define

∆2(Z,D0) = min
Ω∈OK

max
1≤ j≤p

{
h−1/2

j ‖Ωξ̂ j−ξ j‖
}
. (2.11)
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We also introduce a quantity to describe the error of vertex hunting. Fixing any (K−1)× (K−1)

orthogonal matrix Ω∗, define

ErrV H(Ω∗)≡ min
κ: a permutation

on {1,...,K}

{
max

1≤k≤K
‖Ω∗v̂∗k− v∗

κ(k)‖
}
. (2.12)

The following theorem is proved in Section 2.8.

Theorem 2.6.1 (Non-stochastic error analysis). Consider the pLSI model where K is fixed. Sup-

pose the regularity condition (2.7) holds. Let Â be our estimate, and let ∆1(Z,D), ∆2(Z,D)

and ErrV H(Ω∗) be as in (2.10)-(2.12). Suppose that for a sufficiently small constant c > 0,

∆1(Z,D)≤ c, ∆2(Z,D)≤ c and that for the Ω= diag(ω,Ω∗) that attains the minimum in ∆2(Z,D),

ErrV H(Ω∗)≤ c. Then, there exists a permutation matrix T ∈PK such that for all 1≤ j ≤ p,

‖T â j−a j‖1
‖a j‖1

≤C
[
∆1(Z,D)+∆2(Z,D)+ErrV H(Ω∗)

]
. (2.13)

Remark. To see the proof insight of this theorem, let V̂ ∗ = [v̂∗1, . . . , v̂
∗
K ] and Q̂ = [1K ,(V̂ ∗)′]′,

and let Reg(·) be the operator on a vector which sets its negative entries to zero and renormalizes

it to have a unit `1-norm. Our estimate Â is a column-wise renormalization of the matrix Â∗ =

[â∗1, â
∗
2, . . . , â

∗
p]
′, where â∗j =

√
M̂( j, j) · Ξ̂1( j) ·Reg

(
Q̂−1r̂ j

)
, 1 ≤ j ≤ p. Hence, the estimation

errors come from (i) error of estimating M0 by M, (ii) error of estimating (R,Ξ1) by (R̂, Ξ̂1),

and (iii) noise in Q̂. We note that (i)-(iii) are captured by ∆1(Z,D), ∆2(Z,D) and ErrV H(Ω∗),

respectively.

The next lemma studies vertex hunting and is proved in Section 2.8.

Lemma 2.6.1 (Vertex hunting). Under the conditions of Theorem 2.6.1, let Ω = diag(ω,Ω∗) be

the matrix that attains the minimum in ∆2(Z,D). Consider two scenarios: (a) A has an anchor row

for each topic, and we apply the orthodox vertex hunting (OVH); (b) Rows of A satisfy (2.9), and
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we apply the general vertex hunting (GVH). In both scenarios,

ErrV H(Ω∗)≤C∆2(Z,D).

We now show the theorems. By (2.8), it is sufficient to show Theorem 2.3.5 and the second

statement of Theorem 2.3.6. According to Theorem 2.6.1 and Lemma 2.6.1, in the setting of either

Theorem 2.3.5 or Theorem 2.3.6, provided that ∆1(Z,D) and ∆2(Z,D) are sufficiently small, there

exists a permutation matrix T ∈PK such that

‖T â j−a j‖1
‖a j‖1

≤C
[
∆1(Z,D)+∆2(Z,D)

]
, for all 1≤ j ≤ p.

By Lemma 2.8.3 and Theorem 2.3.4, with probability 1−o(n−3),

∆1(Z,D)≤C

√
p log(n)

Nn
, ∆2(Z,D)≤


C
√

p log(n)
Nn , if N ≥ p4/3,

C p2

N3/2

√
p log(n)

Nn , if N < p4/3.

Combining the above inequalities gives the desired claims.

2.6.2 Row-wise bounds for singular vectors (proof of Theorem 2.3.4)

Recall that Ξ̂k is the k-th left singular vector of M̂−1/2D̂ and Ξk is the k-th left singular vector of

M−1/2D. Equivalently, Ξ̂k and Ξk are the respective k-th eigenvector of G and G0 defined below:

Ĝ≡ M̂−1/2D̂D̂′M̂−1/2− n
N

Ip

G≡ (1− 1
N
)M−1/2DD′M−1/2. (2.14)

The next lemma reduces the problem of getting row-wise bounds for eigenvectors to the problem

of studying the noise matrix (G−G0).

Lemma 2.6.2 (A row-wise perturbation bound for eigenvectors). Let G and Ĝ be p× p symmetric
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matrices with rank(G) = K. Write Z = Ĝ−G. For 1≤ k ≤ K, let δk and δ̂k be the respective k-th

largest eigenvalue G and Ĝ, and let U and Û be the eigenvectors of G and Ĝ, with Uk and Ûk being

the k-th eigenvectors. Fix 1≤ s≤ k ≤ K. Suppose for some c ∈ (0,1), 4

min
{

δs−1−δs, δk−δk+1, min
1≤`≤K

|δ`|
}
≥ c‖G‖, ‖Z‖ ≤ (c/3)‖G‖.

There exists an orthogonal matrix O such that

‖e′j(Ûs:kO−Us:k)‖ ≤
6

c‖G0‖
(
‖Z‖‖e′jUs:k‖+‖Z j‖

)
, for all 1≤ j ≤ p.

First, we conduct spectral analysis on the matrix G defined in (2.14). The next two lemmas

study the eigenvalues and eigenvectors, respectively.

Lemma 2.6.3. Suppose the conditions of Theorem 2.3.4 hold. Denote by λ1 ≥ λ2 ≥ . . .≥ λK > 0

the nonzero eigenvalues of G. There exists a constant C > 1 such that

C−1n≤ λk ≤Cn for all 1≤ k ≤ K, and λ1 ≥C−1n+ max
2≤k≤K

λk.

Lemma 2.6.4. Suppose the conditions of Theorem 2.3.4 hold. There exists a constant C > 0 such

that

‖Ξ j‖ ≤C
√

h j, for all 1≤ j ≤ p.

Next, we study the matrix (Ĝ−G). The next two lemmas provide bounds on the spectral norm

and the `2-norm of an individual column, respectively.

Lemma 2.6.5. Under the conditions of Theorem 2.3.4, with probability 1−o(n−3), for all 1≤ j≤

p,

‖e′j(Ĝ−G)‖√
h j

≤


C
√

np log(n)
N , if N ≥ p log(n),

C(p3/2 log(n) ·N−3/2) ·
√

np log(n)
N , if N < p log(n).

4. If s = 1, we set δs−1−δs = ∞.
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Lemma 2.6.6. Under the conditions of Theorem 2.3.4, with probability 1−o(n−3),

‖Ĝ−G‖ ≤

 C
√

np log(n)
N , if N ≥ p4/3 (Case 1),

C(p2 ·N−3/2) ·
√

np log(n)
N , if N < p4/3 (Case 2).

We now prove Theorem 2.3.4. Divide the nonzero eigenvalues of G into two groups: {λ1} and

{λ2,λ3, . . . ,λK}. Denote Ξ∗ = Ξ2:K and Ξ̂∗ = Ξ̂2:K , and let (ξ ∗j )
′ and (ξ̂ ∗j )

′ be the respective j-th

row. Then, for Ω = diag(ω,Ω∗),

‖Ωξ̂ j−ξ j‖ ≤ ‖ωΞ̂1( j)−Ξ1( j)‖+‖Ω∗ξ̂ ∗j −ξ
∗
j ‖, 1≤ j ≤ p.

By Lemma 2.6.3, ‖G‖ � n and the gap between two groups of eigenvalues is ≥C−1n. Addition-

ally, by Lemma 2.6.6, with probability 1− o(n−3), ‖Ĝ−G‖ = o(n). Hence, the assumptions of

Lemma 2.6.2 hold for either group, {λ1} or {λ2,λ3, . . . ,λK}. By this lemma, there exist ω ∈ {±1}

such that

‖ωΞ̂1( j)−Ξ1( j)‖ ≤Cn−1(‖Ĝ−G‖‖ξ j‖+‖e′j(Ĝ−G)‖
)
,

and there exists an (K−1)× (K−1) orthogonal matrix Ω∗ such that

‖Ω∗ξ̂ j−ξ j‖} ≤Cn−1(‖Ĝ−G‖‖ξ j‖+‖e′j(Ĝ−G)‖
)
.

We combine the above inequalities and plug in Lemmas 2.6.4-2.6.6. It gives the desired claim.

Remark. The proofs of Lemmas 2.6.5-2.6.6 require delicate analysis of random matrices with

weakly-dependent entries from multinomial distributions. The standard Random Matrix Theory

does not apply, and we have to start from the ground. See Section 2.8.2.

2.7 Proof of the lower bounds

Since the lower bound increases as the parameter space is enlarged, it suffices to prove Lemma 2.3.1.

We need a useful lemma:
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Lemma 2.7.1 (Kullback-Leibler divergence). Let D, D̃ be two p× n matrices such that each

column of them is a weight vector. Let P and P̃ be the probability measures of multinomial

distributions associated with D and D̃ respectively, with each sample size N, and let KL(P̃,P)

be the Kullback-Leibler divergence between them. Suppose D is a positive matrix. Let δ =

max1≤ j≤p,1≤i≤n
|D̃( j,i)−D( j,i)|

D( j,i) and assume δ < 1. There exists a universal constant C > 0 such

that

KL(P̃,P)≤ (1+Cδ )N
n

∑
i=1

p

∑
j=1

|D̃( j, i)−D( j, i)|2

D( j, i)
.

Below, we show Lemma 2.7.1. Write for short a ji = D0( j, i), ã ji = D̃0( j, i), and δ ji =

ã ji−a ji
a ji

. Then, δ = maxi, j |δ ji|. Note that the KL-divergence between Multinomial(N,η1) and

Multinomial(N,η2) is N ∑
p
j=1 η1 j log(η1 j/η2 j). It follows that

KL(P̃,P) = N
n

∑
i=1

p

∑
j=1

ã ji log(1+δ ji).

By Taylor expansion, log(1+ δ ji) ≤ δ ji− 1
2δ 2

ji +Cδ 3
ji for a constant C > 0. Moreover, since

each column of D and D̃ has a sum of 1, we have ∑i, j a ji =∑i, j ã ji, which implies that ∑i, j a jiδ ji =

0. As a result,

KL(P̃,P)≤ N ∑
i, j
(a ji +a jiδ ji)(δ ji−

1
2

δ
2
ji +Cδ

3
ji)

= N ∑
i, j

a jiδ ji +N ∑
i, j

a jiδ
2
ji−

N
2 ∑

i, j
a jiδ

2
ji +O

(
N ∑

i, j
ai jδ

3
ji

)
=

N
2 ∑

i, j
a jiδ

2
ji +O

(
δ ·N ∑

i, j
ai jδ

2
ji

)
.

Then, Lemma 2.7.1 follows.

We now show the claim. Our proof uses a standard argument in minimax analysis. By Theorem

2.5 of [35]: If there exist (A(0),W (0)), (A(1),W (1)), . . ., (A(J),W (J)) ∈Φn,N,p(K,c) such that:

(i) L (A( j),A(k))≥ 2C0

√
p

Nn for all 0≤ j 6= k ≤ J,
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(ii) KL(P j,P0)≤ β log(J) for all 1≤ j ≤ J,

where C0 > 0, β ∈ (0,1/8), and P j denotes the probability measure associated with (A( j),W ( j)),

then

inf
Â

sup
(A,W )∈Φn,N,p(K,c)

P
(
L (Â,A)≥C0

√
p

Nn

)
≥
√

J
1+
√

J

(
1−2β −

√
2β

log(J)

)
.

As long as J → ∞ as (n,N, p)→ ∞, the right hand side is lower bounded by a constant, and the

claim follows.

What remains is to construct (A(0),W (0)),(A(1),W (1)), . . . ,(A(J),W (J)) that satisfy (i) and (ii).

First, we construct (A(0),W (0)). Write A(0) = A and W (0) =W for short. In all steps below, for an

index j and real values a and b, the inequality a < j ≤ b means that we first round a and b to the

closest integers a∗ and b∗ and then let a∗ < j ≤ b∗. Recall that e1, . . . ,eK are the standard basis

vectors of RK . We construct W = [w1, . . . ,wn] by

wi = ek, for all 1≤ k ≤ K and (k−1)
n
K

< i≤ k
n
K
. (2.15)

To construct A, we note that, for each fixed K, there exists a constant α0 > 0 (it may depend on K)

and a positive vector η = (η1, . . . ,ηK)
′ such that

• η1,η2, . . . ,ηK ∈ [1/2,3/2], and they are distinct from each other;

• η̄ ≡ (1/K)∑
K
k=1 ηk = 1;

Given η , for two constants b1 > 0 and b2 ∈ (0,1) to be determined, we construct A= [A1, . . . ,AK ] =

[a1, . . . ,ap]
′ as follows. Introduce

θk =
1

Kb1b2
[1− (1−b1b2)ηk], 1≤ k ≤ K.

Note that ηk≤ 3/2 and η̄ = 1. Hence, when 3(1−b1b2)/2< 1, it holds that θ1, . . . ,θK are positive,

they are distinct from each other, and ∑
K
k=1 θk = 1. We construct the first b2 p rows of A as follows:
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For 1≤ k ≤ K,

a j =
b1K

p
ek, (θ1 + . . .+θk−1)b2 p < j ≤ (θ1 + . . .+θk)b2 p. (2.16)

We then construct the remaining (1−b2)p rows of A as follows:

a j =
1−b1b2
(1−b2)p

· (η1,η2, . . . ,ηK)
′, b2 p < j ≤ p. (2.17)

It can be easily verified that each column of A has a sum of 1. The following lemma is proved in

Section 2.10.

Lemma 2.7.2. Given c1,c2,γ1,γ2 ∈ (0,1) and η∗ ∈ RK in the interior of the standard simplex,

there exist b1 > 0 and b2 ∈ (0,1) such that (A,W ) constructed from (2.15)-(2.17) is contained in

Φ∗n,N,p(K,c1,c2,γ1,γ2,η
∗).

Next, we construct (A(1),W (1)), . . . ,(A(J),W (J)). Recall that (b1,b2) are the same as above.

Let p1 be the largest integer such that p1 ≤ (1− b2)p. Let m = p1/2 if p1 is even and m =

(p1−1)/2 if p1 is odd. The Varshamov-Gilbert bound for the packing numbers [35, Lemma 2.9]

guarantees that there exist J ≥ 2m/8 and ω(0),ω(1), . . . ,ω(J) ∈ {0,1}m such that ω(0) = (0, . . . ,0)

and
m

∑
j=1

1{ω(s)
j 6= ω

(`)
j } ≥

m
8
, for any 0≤ s 6= `≤ J.

Let αn = C1
K

1√
Nnp1

for a positive constant C1 to be determined. We construct A(1), . . . ,A(J) as

follows:

A(s)
k = A(0)

k +αn


(0p−p1 , ω(s), −ω(s))′, if p1 is even,

(0p−p1 , ω(s), −ω(s),0)′, if p1 is odd,
1≤ k ≤ K,1≤ s≤ J,

where 0p−p1 is a zero vector of length (p− p1). It is easy to see that A(s) is still a valid topic

matrix. We then let W (s) =W (0) for all 1≤ s≤ J. The following lemma is proved in Section 2.10.
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Lemma 2.7.3. Given c1,c2,γ1,γ2 ∈ (0,1) and η∗ ∈ RK in the interior of the standard simplex,

there exist b1 > 0 and b2 ∈ (0,1) such that (A(s),W (s)) is contained in Φ∗n,N,p(K,c1,c2,γ1,γ2,η
∗),

for all 0≤ s≤ J

Last, we check that (i)-(ii) are satisfied. For any 0 ≤ s 6= ` ≤ J, we have L (A(s),A(`)) =

∑
K
k=1 ‖A

(s)
k −A(`)

k ‖1, without minimizing over permutation of columns. This is because the first

b2 p rows are anchor rows and they are the same for both matrices. It follows that

L (A(s),A(`)) = αn ·2K‖ω(s)−ω
(`)‖1 ≥

1
4

Kαnm & C1
√

1−b2
8

√
p

Nn , (2.18)

where we have used that ‖ω(s)−ω(`)‖1 ≥ m/8 and m & p1/2 & (1− b2)p/2. So (i) is satisfied

for C0 = C1
16
√

1−b2.

We then verify (ii). Fix s and write W (0) = W∗ for short. By construction, W (s) = W∗. The

key of characterizing the KL distance is to study the matrix D(s)−D(0) = (A(s)−A(0))W∗. Let

F ⊂ {1,2, . . . ,m} be the support of ω(s). Denote by (a(s)j )′ and (a(0)j )′ the j-th row of A(0) and

A(s), respectively. It is seen that

a(s)j −a(0)j =


(αn,αn, . . . ,αn), j = p− p1 + i for some i ∈ F ,

−(αn,αn, . . . ,αn), j = p− p1 +m+ i, for some i ∈ F ,

(0,0, . . . ,0), otherwise.

Therefore, the j-th row of D(s)−D(0) is either a zero vector or ±αn times the sum of the rows in

W∗. By direct calculations,

n

∑
i=1

p

∑
j=1
|D(s)( j, i)−D(0)( j, i)|2 = nα

2
n ·2‖ω(s)−ω

(0)‖1 ≤ np1α
2
n .

Additionally, each entry of D(0) is lower bounded by C−1 p−1 from the construction above, and

maxi, j
|D(s)( j,i)−D(0)( j,i)|

D(0)( j,i)
=O(pαn)=O(

√
p

Nn)= o(1). We plug the above results into Lemma 2.7.1
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and obtain that

KL(P j,P0)≤ [1+o(1)]N p
n

∑
i=1

p

∑
j=1
|D(s)( j, i)−D(0)( j, i)|2 .

C2
1

K
p. (2.19)

At the same time, β log(J) ≥ β
m
8 log(2) & β (1−b2) log(2)

16 p. So (ii) is satisfied if we choose C1

appropriately small. The proof is now complete.

2.8 Additional proofs for Section 2.6

2.8.1 Preliminary I: The two matrices of entry-wise ratios

First, we consider the matrix V ∗ ∈ RK,K−1. It is obtained from taking the entry-wise ratios of the

matrix V , where V is defined by Ξ = AV (if it exists).

Lemma 2.8.1. Consider the pLSI model, and (2.7) is satisfied. The following statements are true:

• Fixing the choice of Ξ, there is a unique non-singular matrix V ∈ RK,K such that Ξ =

M−1/2AV ; moreover, (VV ′)−1 = A′M−1A.

• All the entries of V1 have the same sign; moreover, C−1
1 ≤ |V1(k)| ≤C1 for all 1≤ k ≤ K.

• S ∗K = S (v∗1, . . . ,v
∗
K) is a non-degenerate simplex; moreover, the volume of S ∗K is lower

bounded by C−1
2 and upper bounded by C2.

• max1≤k≤K ‖v∗k‖ ≤C3.

• C−1
4 ≤ ‖v∗k− v∗`‖ ≤C4 for all 1≤ k 6= `≤ K.

Here, C1-C4 are positive constants satisfying that C1,C2,C4 > 1.

Next, we consider the matrix R. It is obtained from taking the entry-wise ratios of the matrix Ξ.

For 1≤ j ≤ p, recall that a j denotes the j-th row vector of A, and ã j = h−1
j a j, where h j = ‖a j‖1.

Lemma 2.8.2. Consider the pLSI model, and (2.7) is satisfied. The following statements are true:
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• We can choose the sign of ξ1 such that all the entries are positive and that C−1
5
√

h j ≤

ξ1( j)≤C5
√

h j for all 1≤ j ≤ p.

• max1≤ j≤p ‖r j‖ ≤C6.

• C−1
7 ‖ãi− ã j‖ ≤ ‖ri− r j‖ ≤C7‖ãi− ã j‖, for all 1≤ i, j ≤ p.

Here, C5-C7 are positive constants satisfying that C5,C7 > 1.

Lemmas 2.8.1-2.8.2 are proved in Section 2.10.

2.8.2 Preliminary II: The noise matrix Z = D̂−D

Recall that hmax = max1≤ j≤p h j, hmin = max1≤ j≤p h j. The next lemma is about the diagonal

matrix M̂−M = n−1diag(Z1n).

Lemma 2.8.3. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n→ ∞, suppose Nnhmin/ log(n)→ ∞. With probability 1−o(n−3),

| ˆM( j, j)−M( j, j)| ≤C(Nn)−1/2
√

h j log(n), for all 1≤ j ≤ p.

The following lemma is about the p-dimensional vector M−1/2
0 Zwk, where recall that wk de-

notes the k-th row vector of W , for 1≤ k ≤ K.

Lemma 2.8.4. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n→ ∞, suppose Nnhmin/ log(n)→ ∞. With probability 1−o(n−3), for all 1≤ k ≤ K,

|z′jwk| ≤CN−1/2
√

nh j log(n), for all 1≤ j ≤ p,

‖M−1/2Zwk‖ ≤CN−1/2√np log(n).

The next two lemmas are about the p× p matrix ZZ′, where Lemma 2.8.5 considers individual

entries of it, and Lemma 2.8.6 studies its spectral norm.
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Lemma 2.8.5. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n→ ∞, suppose log(n) = O(min{N, p}). With probability 1−o(n−3), for all 1≤ j, `≤ p,

|z′jz`−E[z′jz`]| ≤C
(

1
N
+

log(n)
N2hmin

)√
nh jh` log(n).

Lemma 2.8.6. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n→ ∞, suppose log(n+N) = O(min{N, p}) and p = O(n). With probability 1−o(n−3),

‖M−1/2(ZZ′−E[ZZ′])M−1/2‖ ≤C
( 1

N
+

p
N2hmin

)√
np.

Lemmas 2.8.3-2.8.6 are proved in Section 2.10.

2.8.3 Proof of Lemmas 2.2.1-2.2.2

First, consider Lemma 2.2.2. Recall that V is the non-singular matrix such that Ξ = M−1/2AV ,

where the existence and uniqueness of V are justified in Lemma 2.8.1. Moreover, by Lem-

mas 2.8.1-2.8.2, both V ∗ and R are well-defined; by their definitions, V = diag(V1) · [1K ,V ∗] and

Ξ = diag(Ξ1) · [1p,R]. Combining the above, we have

diag(Ξ1) · [1p,R]︸ ︷︷ ︸
Ξ

= M−1/2A ·diag(V1) · [1K ,V
∗]︸ ︷︷ ︸

V

.

Equivalently,

[1p,R] = [diag(Ξ1)]
−1M−1/2A ·diag(V1)︸ ︷︷ ︸

Π

·[1K ,V
∗]. (2.20)

First, we show that each row of Π is indeed a weight vector. By Lemma 2.8.2, we can choose

the sign of Ξ1 such that all its entries are positive; additionally, since Ξ1 = AV1 and that each topic

has a few anchor words, we find that the K entries of V1 are also positive. Combining the above, Π

is a non-negative matrix. Furthermore, it follows from (2.20) that 1p = Π ·1K , i.e., the row sums

of Π are all equal to 1. Therefore, each row of Π is a weight vector. Second, using (2.20) again,
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R = Π ·V ∗, which implies that each row of R is a convex combination of the rows of V ∗ with the

weights being the corresponding row of Π. This gives the simplex structure.

Next, consider Lemma 2.2.1. By (2.20),

A ·diag(V1) = M1/2 ·diag(Ξ1) ·Π.

Note that Π is a matrix the `1-norm of each of which row equals to 1. Hence, the LSM of A ·

diag(V1) equals to the diagonal matrix M1/2 ·diag(Ξ1).

2.8.4 Proof of Theorem 2.6.1

For notation simplicity, in the proof below, we omit the permutation κ(·) in the definition of ErrV H .

From the definitions of ∆1(Z,D), ∆2(Z,D) and ErrV H , there exist ω ∈ {±1} and a (K−1)× (K−

1) orthogonal matrix Ω∗ such that, letting Ω = diag(ω,Ω∗), for all 1≤ j ≤ p,1≤ k ≤ K,


‖ ˆM( j, j)−M( j, j)‖ ≤ ∆1(Z,D) ·h j,

‖ΩΞ̂ j−Ξ j‖ ≤ ∆2(Z,D) ·
√

h j,

‖Ω∗v̂∗k− v∗k‖ ≡ ErrV H(Ω∗).

(2.21)

By Lemma 2.8.2, all entries of Ξ1 are positive, and Ξ1( j)≥C
√

h j, 1≤ j ≤ p. At the same time,

since |ωΞ̂1( j)−Ξ1( j)| ≤ ‖Ωξ̂ j− ξ j‖ ≤ ∆2(Z,D)
√

h j, as long as ∆2(Z,D) is sufficiently small,

all entries of ωΞ̂1 are also positive. Note that in our method we always choose the sign of Ξ̂1 such

that its sum is positive. Hence, ω = 1 here.

First, we consider the step of recovering Π. Note that each π̂ j is obtained by truncating and

renormalizing π̂∗j , where π̂∗j solves the linear equation

 1 . . . 1

v̂∗1 . . . v̂∗K

 π̂
∗
j =

 1

r̂ j

 ⇐⇒

 1 . . . 1

Ω∗v̂∗1 . . . Ω∗v̂∗K

 π̂
∗
j =

 1

Ω∗r̂ j

 .
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It follows that

π̂
∗
j = Q̂−1

 1

Ω∗r̂ j

 , where Q̂ =

 1 . . . 1

Ω∗v̂∗1 . . . Ω∗v̂∗K

 .

Moreover, by Lemma 2.2.2, π j is a PMF which satisfies that ∑
K
k=1 π j(k)v∗k = r j. Similarly, we

have

π j = Q−1

 1

r j

 , where Q =

 1 . . . 1

v∗1 . . . v∗K

 .

Consequently,

‖π̂∗j −π j‖ ≤ ‖Q̂−1‖‖Ω∗r̂ j− r j‖+‖Q̂−1−Q−1‖‖r j‖. (2.22)

Since Q′ = [diag(V1)]
−1V , we have ‖Q−1‖2 = ‖(Q′Q)−1‖2 ≤ (maxk |V1(k)|)2 · ‖(VV ′)−1‖. By

Lemma 2.8.1, (VV ′)−1 =A′M−1A; additionally, by (2.58), ‖A′M−1A‖≤ c−1
2 ‖A

′H−1A‖; recalling

that a′j is the j-th row of A, we find that

‖A′H−1A‖ ≤ ‖A′H−1A‖1

= max
k

K

∑
`=1

p

∑
j=1
‖a j‖−1

1 a j(k)a j(`)

≤ max
k

K

∑
`=1

p

∑
j=1

a j(`) = K

Furthermore, by Lemma 2.8.1 again, C−1 ≤ |V1(k)| ≤ C for all 1 ≤ k ≤ K. Combining the

above gives that

‖Q−1‖ ≤C.

Additionally, it is easy to see that ‖Q̂−Q‖ ≤ ‖Q̂−Q‖1 ≤
√

K maxk ‖Ω∗v̂∗k − v∗k‖; as a result,

‖Q̂−1 −Q−1‖ ≤ ‖Q̂−1‖‖Q−1‖‖Q̂−Q‖ ≤ C maxk ‖Ω∗v̂∗k − v∗k‖. Moreover, by Lemma 2.8.2,
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‖r j‖ ≤C. Combining the above, we find that

‖π̂∗j −π j‖ ≤C
(
‖Ω∗r̂ j− r j‖+ max

1≤k≤K
‖Ω∗v̂∗k− v∗k‖

)
≤C

[
‖Ω∗r̂ j− r j‖+ErrV H(Ω∗)

]
. (2.23)

Then, we use (2.23) to study π̂ j. By definition,

π̂ j = π̃
∗
j /‖π̃

∗
j ‖1, where π̃

∗
j (k) = max{π̂∗j (k),0}.

It is seen that

‖π̂ j−π j‖1 ≤ ‖π̂ j− π̃
∗
j ‖1 +‖π̃

∗
j −π j‖1

= ‖(1−‖π̃∗j ‖1)π̂ j‖1 +‖π̃∗j −π j‖1

= |1−‖π̃∗j ‖1|+‖π̃
∗
j −π j‖1.

Using the triangle inequality, we have |1−‖π̃∗j ‖1| ≤ ‖π̃
∗
j −π j‖1. Furthermore, since all entries of

π j are nonnegative, ‖π̃∗j −π j‖1 ≤ ‖π̂∗j −π j‖1 ≤
√

K‖π̂∗j −π j‖. As a result,

‖π̂ j−π j‖1 ≤ 2
√

K‖π̂∗j −π j‖. (2.24)

Combining (2.23)-(2.24) gives

‖π̂ j−π j‖1 ≤C
[
‖Ω∗r̂ j− r j‖+ErrV H(Ω∗)

]
. (2.25)

Next, consider the step of recovering A∗ ≡ A ·diag(V1) by

Â∗ = M̂1/2 ·diag(Ξ̂1) · Π̂,
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where M̂ = diag(n−1D̂1n) and Π̂ = [π̂1, . . . , π̂p]
′. By Lemma 2.2.1,

A∗ = M1/2 ·diag(Ξ1) ·Π.

Fix j and let â∗j and a∗j be the respective j-th row vectors of Â∗ and A∗. Then,

‖â∗j −a∗j‖1

=
∥∥[√M̂( j, j)ξ̂1( j)]π̂ j− [

√
M( j, j)ξ1( j)]π j

∥∥
1

≤
√

M̂( j, j) · |ξ̂1( j)| · ‖π̂ j−π j‖1 +
√

M̂( j, j)‖π j‖1 · |ξ̂1( j)−ξ1( j)|

+ |ξ1( j)|‖π j‖1 · |
√

M̂( j, j)−
√

M( j, j)|.

We plug in (2.21) and note ω = 1. First, |Ξ̂1( j)−Ξ1( j)| ≤ ‖Ωξ̂ j−ξ j‖ ≤
√

h j∆2(Z,D). Second,

by Lemma 2.8.2, |Ξ1( j)| ≤C
√

h j; furthermore, |Ξ̂1( j)| ≤ 2|Ξ1( j)| ≤C
√

h j. Third, by (2.21) and

(2.58), |
√

M̂( j, j)−
√

M( j, j)| ≤C
√

h j ·∆1(Z,D) and M̂( j, j)≤ 2M( j, j)≤Ch j. As a result,

‖â∗j −a∗j‖1 ≤Ch j · ‖π̂ j−π j‖1 +Ch j
[
∆1(Z,D)+∆2(Z,D)

]
. (2.26)

Third, consider the step of estimating A from renormalizing each column of Â∗= [â∗1, â
∗
2, . . . , â

∗
p]
′.

Recall that Â = [Â1, . . . , ÂK ] and Â∗ = [Â∗1, . . . , Â
∗
K ]. Then,

Âk = ‖Â∗k‖
−1
1 Â∗k , 1≤ k ≤ K.

By definition, A∗ = A ·diag(V1). It follows that

â j(k) = ‖Â∗k‖
−1
1 · â

∗
j(k), a j(k) = [V1(k)]

−1 ·a∗j(k).

So,

|â j(k)−a j(k)| ≤
1

‖Â∗k‖1
|â∗j(k)−a∗j(k)|+

|‖Â∗k‖1−V1(k)|
‖Â∗k‖1

|a j(k)|. (2.27)
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Since A∗ = A · diag(V1) and ‖Ak‖1 = 1, we immediately have ‖A∗k‖1 = V1(k). Then, |‖Â∗k‖1−

V1(k)| = |‖Â∗k‖1−‖A
∗
k‖1| ≤ ‖Â

∗
k − A∗k‖1 ≤ ∑

p
j=1 |â

∗
j(k)− a∗j(k)| ≤ ∑

p
j=1 ‖â

∗
j − a∗j‖1. We then

apply (2.26) and use the fact that ∑
p
j=1 h j = K. It yields

|‖Â∗k‖1−V1(k)| ≤C max
1≤i≤p

‖π̂i−πi‖+C
[
∆1(Z,D)+∆2(Z,D)

]
. (2.28)

In particular, since V1(k)≥C−1 by Lemma 2.8.1, we have ‖Â∗k‖1 ≥V1(k)/2≥C. Plugging these

results into (2.27) and taking the sum over k, we find that

‖â j−a j‖1 ≤C‖â∗j −a∗j‖1 +C|‖Â∗k‖1−V1(k)| · ‖a j‖1.

By (2.28) and that ‖a j‖1 = h j, it follows immediately that

‖â j−a j‖1 ≤C‖â∗j −a∗j‖1 +Ch j · max
1≤i≤p

‖π̂i−πi‖

+Ch j
[
∆1(Z,D)+∆2(Z,D)

]
. (2.29)

Now, we first plug (2.26) into (2.29), and then plug in (2.25). It yields that

‖â j−a j‖1 ≤Ch j · max
1≤i≤p

‖Ω∗r̂i− ri‖

+Ch j
[
∆1(Z,D)+∆2(Z,D)+ErrV H(Ω∗)

]
. (2.30)

What remains is to bound max1≤i≤p ‖Ω∗r̂i− ri‖. Recall that Ω = diag(ω,Ω∗), where we have

seen that ω = 1 here. Write 1

r j

= [Ξ1( j)]−1
ξ j,

 1

Ω∗r̂ j

= [Ξ̂1( j)]−1
Ωξ̂ j.
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Then,

‖Ω∗r̂ j− r j‖= ‖
1

Ξ̂1( j)
Ωξ̂ j−

1
Ξ1( j)

ξ j‖

=
∥∥ 1

Ξ̂1( j)
(Ωξ̂ j−ξ j)−

Ξ̂1( j)−Ξ1( j)
Ξ̂1( j)

r j
∥∥

≤ |Ξ̂1( j)|−1(‖Ωξ̂ j−ξ j‖+‖r j‖ · |Ξ̂1( j)−Ξ1( j)|
)
.

By (2.21), |Ξ̂1( j)−Ξ1( j)| ≤ ‖Ωξ̂ j− ξ j‖ ≤ ∆2(Z,D)
√

h j. At the same time, by Lemma 2.8.2,

Ξ1( j)≥C
√

h j; it follows that Ξ̂1( j)≥ Ξ1( j)/2≥C
√

h j. Also, by Lemma 2.8.2 again, ‖r j‖ ≤C.

Combining these results, we find that

‖Ω∗r̂ j− r j‖ ≤Ch−1/2
j ‖ΩΞ̂ j−Ξ j‖ ≤C∆2(Z,D).

The above is true for all 1≤ j ≤ p. Hence,

max
1≤i≤p

‖Ω∗r̂i− ri‖ ≤C∆2(Z,D). (2.31)

The claim follows from plugging (2.31) into (2.30).

2.8.5 Proof of Lemma 2.6.1

Since the linear mapping x 7→ Ω∗x preserves the Euclidean norm, without loss of generality, we

can assume that Ω∗ is the identity matrix. Write ∆2 = ∆2(Z,D) for short.

First, we study the OVH algorithm. In (2.31), we have shown that

‖r̂ j− r j‖ ≤C∆2, 1≤ j ≤ p.

This means each r̂ j is within a distance of C∆2 to r j. Since each topic k has an anchor word

jk, r̂ jk is within a distance C∆2 to the true v∗k . Consider the simplex S (r̂ j1 , r̂ j2, . . . , r̂ jK ). Then,
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the distance from any r j to this simplex is upper bounded by C∆2. It follows that the maximum

distance from any r̂ j to this simplex is upper bounded by C∆2 + ‖r̂ j− r j‖ ≤C∆2. From how the

algorithm selects the simplex S (v̂∗1, v̂
∗
2, . . . , v̂

∗
K), we know that

the maximum distance from any r̂ j to S (v̂∗1, v̂
∗
2, . . . , v̂

∗
K) is ≤C∆2. (2.32)

Now, let v̂∗` be the one in {v̂∗1, v̂
∗
2, . . . , v̂

∗
K} that has the smallest distance to v`, 1≤ `≤ K. In this

way, we get rid of the permutation on {1,2, . . . ,K}. Fix k and consider the sets

U = {x ∈S0 : x(k)≥ 1−C0∆2},

where S0 is the standard simplex in RK and C0 ∈ (0,1) is a constant to be decided. We aim to

show that, when C0 is chosen appropriately,

v̂∗k equals to some r̂ j such that ã j ∈U . (2.33)

Once (2.33) is true, then

‖v̂∗k− vk‖ ≤C∆2 +‖r j− vk‖=C∆2 +‖r j− r jk‖ ≤C∆2 +C‖ã j− ek‖,

where ek is the k-th standard basis of RK and the last inequality is due to the last bullet point

of Lemma 2.8.2. Note that ‖ã j− ek‖1 = 2[1− ã(k)]. Since ã j ∈ U , we immediately have that

‖ã j− ek‖ ≤ ‖ã j− ek‖∞‖ã j− ek‖1 ≤ ‖ã j− ek‖1 ≤ 2C0∆2. Therefore,

‖v̂∗k− v∗k‖ ≤C∆2.

It remains to prove (2.33). Let ĵ` be such that v̂∗` = r̂ ĵ`
, 1≤ `≤ K. Suppose (2.33) is not true.

Then, ã ĵk
/∈U . Additionally, ã ĵ`

/∈U for ` 6= k. Define a mapping R which maps a weight vector

ã in the standard simplex of RK to a vector r in the simplex S (v∗1,v
∗
2, . . . ,v

∗
K): (Here ◦ denotes the
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entry-wise product and V1 is the first column of V )

ã 7→ r ≡Rã = [v∗1, . . . ,v
∗
K ]π, where π =

V1 ◦ ã
‖V1 ◦ ã‖1

.

From the proof of Lemma 2.8.2, we find that

(i) Rã j = r j for all 1≤ j ≤ p,

(ii) for any two weight vectors ã and b̃, C−1‖ã− b̃‖ ≤ ‖Rã−Rb̃‖ ≤C‖ã− b̃‖.

(iii) R is a one-to-one mapping that has an inverse.

Now, let jk be an anchor word of topic k, and consider the distance from r̂ jk to the estimated

simplex S (r̂ ĵ1
, . . . , r̂ ĵK

). This distance is lower bounded by the distance from r jk to the simplex

S (r ĵ1
, . . . ,r ĵK

) minus C∆2. By (i)-(iii) above, the distance from r jk to the simplex S (r ĵ1
, . . . ,r ĵK

)

is lower bounded by C−1 times the distance from ã jk = ek to the simplex S (ã ĵ1
, . . . , ã ĵK

). Con-

sider any x ∈ S (ã ĵ1
, . . . , ã ĵK

). x is a convex combination of ã ĵ1
, . . . , ã ĵK

. Hence, x is still in

the standard simplex, and it holds that x(k) ≥ 1− 2C0∆2. As a result, ‖x− ek‖ ≥ (1/
√

K)‖x−

ek‖1 ≥ (2/
√

K)C0∆2. This means the distance from ek to S (ã ĵ1
, . . . , ã ĵK

) is lower bounded by

(2/
√

K)C0∆2. Combining the above, we conclude that

distance from r̂ jk to S (v̂∗1, v̂
∗
2, . . . , v̂

∗
K) is ≥ 2C−1

√
K

C0∆2−C∆2. (2.34)

Note that the other constants in (2.34) and (2.32) do not depend on C0. Hence, by choosing C0

appropriately large, the right hands of (2.34) and (2.32) contradict with each other. It implies that

(2.33) has to be true.

Next, consider the GVH algorithm. It runs k-means to get local centers θ̂∗1 , . . . , θ̂
∗
L , and then

applies the OVH algorithm to θ̂∗1 , . . . , θ̂
∗
L . We aim to show that

for each k, there is at least an ` such that ‖θ̂∗` − v∗k‖ ≤C∆2. (2.35)
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Once (2.35) is true, we introduce θ∗1 , . . . ,θ
∗
L as follows: for each k, pick one `k from (2.35) and let

θ∗`k
= v∗k ; for the other `, let θ∗` be the point in S (v∗1, . . . ,v

∗
K) that is nearest to θ̂∗` . Now,

• Each θ∗` is a point in S (v∗1, . . . ,v
∗
K).

• Since max1≤ j≤p ‖r̂ j − r j‖ ≤ C∆2, it must hold that all k-means local centers lie within a

distance C∆2 to S (v∗1, . . . ,v
∗
K). Consequently, ‖θ̂∗` −θ∗` ‖ ≤C∆2 for all `.

• For each 1 ≤ k ≤ K, there is one θ∗` such that θ∗` = v∗k (this is a counterpart of the “anchor

row" in R).

The above fit perfectly to the setting of OVH, and we can apply the previous proof to show that

‖v̂∗k− vk‖ ≤C∆2.

What remains is to show (2.35). Recall the mapping R defined above. The properties (i)-(iii)

imply that, if we apply k-means to r1,r2, . . . ,rp, the corresponding RSS will not exceed C times the

RSS obtained by applying k-means to ã1, ã2, . . . , ãp. Combining it with the assumption (2.9) and

the fact that r j’s are all equal for anchor words of a topic, the RSS obtained by applying k-means

to r1,r2, . . . ,rp, assuming L≥ L0 +K clusters, is bounded by

Cmp/ log(n).

Consequently, the RSS obtained by applying k-means to r̂1, r̂2, . . . , r̂p, assuming L≥ L0 +K clus-

ters, is bounded by

Cmp/ log(n)+Cp∆
2
2 ≤Cmp/ log(n), (2.36)

where we have used the assumption mp ≥ p2 log2(n)/(Nn). Now, for a properly small constant

c0 > 0 to be decided, suppose there is no local center within a distance c0 to v∗k . Then, for any

anchor word of topic k, r̂ j is of a distance at least c0−C∆2 to any local center. As a result, the RSS

associated with r̂1, r̂2, . . . , r̂p should be at least

c0mp[1−o(1)]. (2.37)
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Then, (2.36)-(2.37) together yield a contradiction. Hence, we have proved that

for each k, there is at least an ` such that ‖θ̂∗` − v∗k‖ ≤ c0. (2.38)

For any r j such that r j 6= v∗k , by the assumption (2.9), the distance from ã j to ek is at least c3;

furthermore, by the mapping R defined above and the property (ii), the distance from r j to v∗k is at

least C−1c3. We choose

c0 =C−1c3/3.

Then, the distance from any such r j 6= v∗k to v∗k is at least 3c0. Hence, the distance from r̂ j to any

θ̂∗` in (2.38) is at least 3c0− c0− 2C∆2 & 2c0. At the same time, given c0, by increasing L to a

large enough integer, the distance from any r̂ j to the nearest local center can be smaller than c0.

Hence, we conclude that, for any r j such that r j 6= v∗k , the associated r̂ j will not be assigned to a

local center in (2.38). This means, any local center in (2.38) is the average of only anchor rows r̂ j.

As a result,

for a local center θ̂∗` in (2.38), ‖θ̂∗` − v∗k‖ ≤C∆2.

This proves (2.35).

2.8.6 Proof of Lemma 2.6.2

Let ∆ = diag(δ1, . . . ,δK) and ∆̂ = diag(δ̂1, . . . , δ̂K). By eigen-decomposition, Û ∆̂ = ĜÛ . More-

over, Ĝ = G+Z =U∆U ′+Z. It follows that Û ∆̂ =U∆(U ′Û)+ZÛ . Rearranging the terms gives

Û ∆̂−ZÛ =U(∆U ′Û). (2.39)

In particular, for each 1 ≤ k ≤ K, (2.39) says that δ̂kÛk−ZÛk = U(∆U ′Ûk), which means Ûk =

(δ̂kIn−Z)−1U(∆U ′Ûk). We now have

Ûk = (In− δ̂
−1
k Z)−1Ũk, where Ũk = δ̂

−1
k U(∆U ′Ûk). (2.40)
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Write Ũ = [Ũ1,Ũ2, . . . ,ŨK ] and Q = (In− δ̂
−1
k Z)−1− In. Then, (2.40) becomes Û = (In +Q)Ũ .

Let q j be the j-th row vector of Q, 1≤ j ≤ p. It follows that

‖e′j(Û−Ũ)‖= ‖e′jQŨ‖ ≤ ‖q j‖‖Ũ‖ ≤ ‖q j‖(1+‖Q‖)‖Û‖.

Note that |δ̂k| ≥ c‖G‖−‖Z‖ ≥ (2c/3)‖G‖ ≥ 2‖Z‖. Hence, ‖δ̂−1
k Z‖ ≤ 1/2. As a result, ‖Q‖ ≤ 1.

Additionally, ‖Û‖= 1 since Uk’s are eigenvectors. We then have

‖e′j(Û−Ũ)‖ ≤ 2‖q j‖. (2.41)

By definition, (Q+ In)(In− δ̂
−1
k Z) = In. It follows that Q = δ̂

−1
k Z + δ̂

−1
k QZ, which implies q′j =

δ̂
−1
k z′j + δ̂

−1
k q′jZ. As a result,

‖q j‖ ≤ δ̂
−1
k ‖z j‖+ δ̂

−1
k ‖Z‖‖q j‖.

Re-arranging the terms gives

‖q j‖ ≤
δ̂
−1
k ‖z j‖

1− δ̂
−1
k ‖Z‖

≤ 2δ̂
−1
k ‖z j‖ ≤ 3c−1‖z j‖

‖G‖
,

where we have used that δ̂
−1
k ‖Z‖ ≤ 1/2 and |δ̂k| ≥ (2c/3)‖G0‖. Plugging it into (2.41) gives

‖e′j(Û−Ũ)‖ ≤ 6c−1‖z j‖
‖G‖

. (2.42)

By (2.42) and the triangle inequality (below, the minimums are over orthogonal matrices),

min
O
‖e′j(ÛO−U)‖ ≤min

O

{
‖e′j(ŨO−U)‖+‖e′j(Û−Ũ)O‖

}
= min

O

{
‖e′j(ŨO−U)‖+‖e′j(Û−Ũ)‖

}
≤min

O

{
‖e′j(ŨO−U)‖

}
+6c−1‖z j‖

‖G‖
. (2.43)

57



We now bound the first term in (2.43). Using the sin-theta theorem [36] (the eigen-gap here is

c‖G‖), we have ‖ÛÛ ′−UU ′‖ ≤ c−1‖G‖−1‖Z‖. By linear algebra (e.g., Lemma 1 of [37]), there

exists an orthogonal matrix O such that ‖ÛO−U‖ ≤
√

2‖ÛÛ ′−UU ′‖. Combining the above,

there is an orthogonal matrix O such that

‖ÛO−U‖ ≤
√

2c−1‖G‖−1‖Z‖. (2.44)

Recall the definition of Ũ = [Ũ1, . . . ,ŨK ] in (2.40). We can rewrite

Ũ =U(∆U ′Û)∆̂−1.

It follows that

‖e′j(ŨO−U)‖ ≤ ‖e′jU‖ · ‖∆U ′Û ∆̂
−1O− IK‖. (2.45)

In (2.39), multiplying both sides by U ′ and noticing that U ′U = IK , we have

U ′Û ∆̂−U ′ZÛ = ∆U ′Û

It follows that

‖∆U ′Û ∆̂
−1O− IK‖= ‖(U ′Û ∆̂−U ′ZÛ)∆̂−1O− IK‖

= ‖(U ′ÛO− IK)−U ′ZÛ ∆̂
−1O‖

≤ ‖U ′ÛO−U ′U‖+‖U ′ZÛ ∆̂
−1O‖

≤ ‖ÛO−U‖+‖Z‖‖∆̂−1‖

≤ (
√

2+3/2)c−1‖G‖−1‖Z‖,

where in the third line, we have used the triangle inequality and that U ′U = IK , and in the last line,

we have used (2.44) and the observation that mink |δ̂k| ≥ c‖G‖−‖Z‖ ≥ (2c/3)‖G‖. Plugging it
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into (2.45) gives

‖e′j(ŨO−U)‖ ≤ (
√

2+3/2)c−1‖Z‖‖e
′
jU‖

‖G‖
. (2.46)

Coming it with (2.43) gives the claim.

2.8.7 Proof of Lemmas 2.6.3-2.6.4

First, consider Lemma 2.6.3. By (2.58), c2h j ≤M( j, j)≤ h j, for all 1≤ j ≤ p. So,

1≤ λmin(M
−1H)≤ λmax(M−1H)≤ 1/c2. (2.47)

Let smin(·) denote the minimum singular value of a matrix. By basic linear algebra, for a matrix

A and a positive definite matrix B, smin(ABA′) ≥ λmin(B) · smin(AA′) = λmin(B) · smin(A′A). It

follows that

smin(G)& smin
(
M−1/2AWW ′A′M−1/2)

≥ smin
(
H−1/2AWW ′A′H−1/2) · smin(H

1/2M−1H1/2)

≥ smin
(
H−1/2AWW ′A′H−1/2)

≥ λmin(WW ′) · smin(A
′H−1A)

= nλmin(ΣW )λmin(ΣA)

≥ c2
2n,

where the third line is due to (2.47) and the last line is due to (2.7). Similarly, since ‖ΣW‖ ≤ 1 and

‖ΣA‖ ≤C, we can derive that

λmax(G)≤ (1/c2)nλmax(ΣW )λmax(ΣA)≤Cn.

The first claim follows.

Consider the second claim. By basic linear algebra, for any matrices A and B, the nonzero
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eigenvalues of AB are the same as the nonzero eigenvalues of BA. Then, the nonzero eigenvalues

of G = (1− 1
N )M−1/2AWW ′A′M−1/2 are the same as the nonzero eigenvalues of

(1− 1
N
)nΘ, where Θ≡ ΣW (A′M−1A).

It suffices to show that

gap between the first two eigenvalues of Θ is ≥C. (2.48)

In the proof of Lemma 2.8.1, we have studied this matrix Θ; in the paragraph below (2.64), we

have argued that, given (2.7),

all entries of Θ are lower bounded by a constant.

Now, suppose there is a sequence Θ=Θ(n) such that the gap between its first two eigenvalues→ 0.

Then, since ‖Θ‖ ≤ C, we can select a subsequence {nm}∞m=1 such that as m→ ∞, Θ(nm) → Θ0

for a fixed K×K matrix Θ0. Then, Θ0 must satisfy that (i) all entries of Θ0 are strictly positive,

and (ii) the first two eigenvalues of Θ0 are equal. However, such a Θ0 does not exist, due to the

Perron’s theorem. We then get a contradiction. This proves (2.48), and the second claim follows.

Next, consider Lemma 2.6.4. Recall that Ξ̂ j is the j-th row vector of Ξ̂, and the matrix V is

defined by Ξ̂ = M−1/2AV . As a result,

ξ̂ j = [M( j, j)]−1/2(Va j),

where a j is the j-th row vector of A. First, by (2.58), we have c2h j ≤M( j, j) ≤ h j. Second, by

Lemma 2.8.1, (VV ′)−1 = A′M−1A; so, ‖V‖2 = λ
−1
min(A

′M−1A) ≤ λ
−1
min(A

′H−1A) ≤ c−1
2 , where
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the last inequality is due to (2.7). Last, ‖a j‖ ≤ ‖a j‖1 = h j. Combing these results, we obtain:

‖ξ̂ j‖ ≤
‖V‖‖a j‖√

M( j, j)
≤

(1/
√

c2) ·h j√
c2h j

=

√
h j

c2
.

Then, it follows from the Cauchy-Schwarz inequality that ∑
K
`=1 |Ξ̂`( j)| = ‖ξ̂ j‖1 ≤

√
K‖ξ̂ j‖ ≤

C
√

h j.

2.8.8 Proof of Lemmas 2.6.5-2.6.6

Recall that Z = [Z1, . . . ,Zn] = [z1, . . . ,zp]
′. From basics of multinomial distributions, Cov(Zi) =

N−1diag(Di)−N−1DiD′i. As a result,

E[ZZ′] =
n

∑
i=1

Cov(Zi) =
n
N

M− 1
N

DD′.

Then, we can write Ĝ−G = E1 +E2 +E3 +E4, where

E1 =
n
N

M̂−1/2(M− M̂)M̂−1/2,

E2 = M̂−1/2(DZ′+ZD′)M̂−1/2,

E3 = M̂−1/2(ZZ′−E[ZZ′])M̂−1/2,

E4 = (1− 1
N
)
(
M̂−1/2DD′M̂−1/2−M−1/2DD′M−1/2).

Consider E1. By Lemma 2.8.3, with probability 1−o(n−3)

|M̂( j, j)−M( j, j)| ≤C(Nn)−1/2
√

h j log(n), for ∀ j ∈ [p]

Moreover, by (2.58), c2h j ≤M( j, j) ≤ h j. Since h j ≥ hmin� (Nn)−1 log(n), the above sug-

gests that |M̂( j, j)−M( j, j)| � M( j, j); in particular, M̂( j, j) ≥ M( j, j)/2. As a result, with
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probability 1−o(n−3), for all 1≤ j ≤ p,

‖e′jE1‖ ≤
n
N
|M̂( j, j)−M( j, j)|

M( j, j)/2
≤

C
√

n log(n)
N
√

Nh j
. (2.49)

Also, with probability 1−o(n−3),

‖E1‖ ≤
n
N

max
1≤ j≤p

{ |M̂( j, j)−M( j, j)|
M( j, j)/2

}
≤

C
√

n log(n)
N
√

Nhmin
. (2.50)

Consider E2. Recall that D = AW = ∑
K
k=1 Akw′k. It follows that

E2 =
K

∑
k=1

[
(M̂−1/2Ak)(M̂

−1/2Zwk)
′+(M̂−1/2Zwk)(M̂

−1/2Ak)
′].

As a result, with probability 1−o(n−3),

‖E2‖ ≤
K

∑
k=1

2‖M̂−1/2Ak‖ · ‖M̂−1/2Zwk‖ ≤C
K

∑
k=1
‖H−1/2Ak‖ · ‖M−1/2Zwk‖,

where the last inequality is because M( j, j) ≥ c2h j and M̂( j, j) ≥M( j, j)/2 with probability 1−

o(n−3). By Lemma 2.8.4, ‖M−1/2Zwk‖ ≤CN−1/2√np log(n). Moreover, ∑
K
k=1 ‖H

−1/2Ak‖2 =

∑
K
k=1 ∑

p
j=1 h−1

j A2
k( j)≤ ∑

K
k=1 ∑

p
j=1 Ak( j) = K. It then follows from the Cauchy-Schwarz inequal-

ity that ∑
K
k=1 ‖H

−1/2Ak‖ ≤ K. As a result, with probability 1−o(n−3),

‖E2‖ ≤CN−1/2√np log(n). (2.51)
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In addition, with probability 1−o(n−3),

‖e′jE2‖ ≤
K

∑
k=1

Ak( j)√
M̂( j, j)

‖M̂−1/2Zwk‖+
K

∑
k=1

|Z′jwk|√
M̂( j, j)

‖M̂−1/2Ak‖

≤C
√

h j max
1≤k≤K

‖M−1/2Zwk‖+
C√
h j

max
1≤k≤K

|Z′jwk|

≤CN−1/2
√

nph j log(n)+CN−1/2√n log(n)

≤C

√
n log(n)

N

(
1+
√

ph j
)
, (2.52)

where the second inequality is due to that M̂( j, j)≥M( j, j)/2≥ c2h j/2, ∑
K
k=1 Ak( j) = h j and

∑
K
k=1 ‖M̂

−1/2Ak‖ ≤
√

2/c2 ∑
K
k=1 ‖H

−1/2Ak‖ ≤ K
√

2/c2, and the third inequality follows from

Lemma 2.8.4.

Consider E3. We have seen that ‖M̂−1/2M1/2‖ ≤ 2 with probability 1−o(n−3). Combining it

with Lemma 2.8.6 gives: with probability 1−o(n−3),

‖E3‖ ≤ 2‖M−1/2(ZZ′−E[ZZ′])M−1/2‖ ≤C
( 1

N
+

p
N2hmin

)√
np. (2.53)

Furthermore, by Lemma 2.8.5, with probability 1−o(n−3), for all 1≤ j, `≤ p,

|E3( j, `)|=
|Z′jZ`−E[Z′jZ`]|√

M̂( j, j)M̂(`,`)
≤ C√

h jh`
·
( 1

N
+

log(n)
N2hmin

)√
nh jh` log(n)

≤C
( 1

N
+

log(n)
N2hmin

)√
n log(n).

It follows that with probability 1−o(n−3).

‖e′jE3‖ ≤C
( 1

N
+

log(n)
N2hmin

)√
np log(n). (2.54)
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Consider E4. Since D = ∑
K
k=1 Akw′k,

E4 = (1− 1
N
)

K

∑
k,`=1

(w′kw`)
(
M̂−1/2AkA′`M̂

−1/2−M−1/2AkA′`M
−1/2)

= (1− 1
N
)

K

∑
k,`=1

(w′kw`)
[
M̂−1/2AkA′`(M̂

−1/2−M−1/2)+(M̂−1/2−M−1/2)AkA′`M
−1/2].

In the proof of (2.51)-(2.52), we have seen that ∑
K
k=1 ‖M̂

−1/2Ak‖ ≤ 2∑
K
k=1 ‖M

−1/2Ak‖ ≤C.

It follows that

‖E4‖ ≤ n
K

∑
k,`=1

(
‖M̂−1/2Ak‖‖(M̂−1/2−M−1/2)A`‖+‖M−1/2A`‖‖(M̂−1/2−M−1/2)Ak‖

)
≤CnK · max

1≤k≤K
‖(M̂−1/2−M−1/2)Ak‖.

By Lemma 2.8.3 and that M̂( j, j)≥M( j, j)/2≥ c2h/2, with probability 1−o(n−3)

|[M̂( j, j)]−1/2− [M( j, j)]−1/2| ≤ h−1
j (Nn)−1/2√log(n)

So, with probability 1−o(n−3),

‖(M̂−1/2−M−1/2)Ak‖ ≤
√

log(n)√
Nn

√√√√ p

∑
j=1

h−2
j A2

k( j)≤
C
√

p log(n)√
Nn

.

Combining the above, with probability 1−o(n−3),

‖E4‖ ≤CN−1/2√np log(n). (2.55)
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Moreover,

‖e′jE4‖ ≤
n√

M̂( j, j)
·

K

∑
k,`=1

Ak( j)‖(M̂−1/2−M−1/2)A`‖

+n
∣∣ 1√

M̂( j, j)
− 1√

M( j, j)

∣∣ · K

∑
k,`=1

Ak( j)‖M−1/2A`‖

≤C
n√
h j
·h j ·

√
p log(n)√

Nn
+Cn ·

√
log(n)

h j
√

Nn
·h j

≤C

√
n log(n)

N

(
1+
√

ph j
)
. (2.56)

We now combine the results on E1-E4. By (2.49), (2.52), (2.54) and (2.56), with probability

1−o(n−3),

‖e′j(Ĝ−G)‖ ≤C

√
n log(n)

N

[
1+
√

ph j +
1

N
√

h j
+

√
p
√

N

(
1+

log(n)
Nhmin

)]
≤C

√
n log(n)

N

[√
ph j +

√
p
√

N

(
1+

p log(n)
N

)]
,

where in the last inequality we have used h j ≥ c1hmin ≥ c1h̄ = c1 p−1. Using h j ≥ c1 p−1

again, we find that

‖e′j(Ĝ−G)‖√
h j

≤C

√
np log(n)

N


1, if N ≥ p log(n),

p3/2 log(n)
N3/2 , if N < p log(n).

This proves Lemma 2.6.5. By (2.50), (2.51), (2.53) and (2.55), with probability 1−o(n−3),

‖Ĝ−G‖ ≤C
√

np
[√log(n)√

N
+

√
log(n)

N
√

N phmin
+
( 1

N
+

p
N2hmin

)]
≤C
√

np
(√log(n)√

N
+

p2

N2

)
,
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where the last inequality is because phmin ≥ c1 and N ≥C log(n). It follows that

‖Ĝ−G‖ ≤C

√
np log(n)

N


1, if N ≥ p4/3,

p2 ·N−3/2, if N < p4/3.

This proves Lemma 2.6.6.

2.9 Bernstein Inequalities

Lemma 2.9.1 (Bernstein inequality). Suppose X1, · · · ,Xn are independent random variables such

that EXi = 0, |Xi| ≤ b and Var(Xi)≤ σ2
i for all i. Let σ2 = n−1

∑
n
i=1 σ2

i . Then, for any t > 0,

P
(

n−1|
n

∑
i=1

Xi| ≥ t
)
≤ 2exp

(
− nt2/2

σ2 +bt/3

)
.

Lemma 2.9.2 (Bernstein’s inequality for sub-exponential variables). Suppose X1, · · · ,Xn are inde-

pendent random variables such that EXi = 0 and max1≤i≤n ‖X‖ψ1 ≤ κ . Then, for any t > 0,

P
(
|

n

∑
i=1

Xi|> nt
)
≤ 2exp

(
−cnmin

{
t2

κ2 ,
t
κ

})
,

where c > 0 is a universal constant.

Lemma 2.9.3 (Bernstein inequality for martingales). Let {ξn}∞n=1 be a martingale difference se-

quence with respect to the filtration {Fn}∞n=0, where |ξn| ≤ b for b > 0. Define the martingale

Mn = ∑
n
i=1 ξi, and let its variance process be defined as 〈M〉n = ∑

n
i=1 E[ξ 2

i |Fi−1]. Suppose τ is a

finite stopping time with respect to {Fn}∞n=0. Then, for any t > 0 and σ2 > 0,

P
(

max
n≤τ

Mn > t,〈M〉n > σ
2
)
≤ 2exp

(
− t2/2

σ2 +bt/3

)
.
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2.10 Supplementary proofs

Proof of Lemma 2.8.1. Consider the first claim. Note that M−1/2D has a full column rank K. Let

M−1/2D = ΞΛB′

be the Singular Value Decomposition of M−1/2D, where Λ = diag(λ1, . . . ,λK) contains the singu-

lar values and B ∈ Rn,K contains the right singular vectors; note that Ξ′Ξ = B′B = IK . It is seen

that

Ξ = (ΞΛB′)BΛ
−1 = M−1/2DBΛ

−1 = M−1/2A(WBΛ
−1).

By letting V =WBΛ−1, we have Ξ=AV ; i.e., such a V exists. Furthermore, for any V such that Ξ=

M−1/2AV , we have Ξ′M−1/2AV = Ξ′Ξ = IK . This implies that V is the inverse of (Ξ′M−1/2A),

so V is unique and non-singular. Last, we plug Ξ = M−1/2AV into Ξ′Ξ = IK ; it yields IK =

V ′A′M−1AV . Multiplying both sides of this equation by V from the left and by V ′ from the right,

we obtain:

VV ′ = (VV ′)A′M−1A(VV ′).

This proves that VV ′ = (A′M−1A)−1.

Consider the second claim. We first show that

|V1(k)| ≤C, for 1≤ k ≤ K. (2.57)

We aim to use the fact that VV ′ = (A′M−1A)−1, so the key is to study the diagonal matrix M.

Note that M j j =
1
n ∑

n
i=1[∑

K
k=1 Ak( j)Wi(k)] = ∑

K
k=1 Ak( j)[1n ∑

n
i=1Wi(k)]. Since Wi(k)≤ 1, we have

M j j ≤∑
K
k=1 Ak( j)= h j. At the same time, 1

n ∑
n
i=1Wi(k)≥ 1

n ∑
n
i=1W 2

i (k)=ΣW (k,k), and it follows

from the assumption (2.7) that ΣW (k,k) ≥ c2; consequently, M( j, j) ≥ c2 ∑
K
k=1 Ak( j) = c2h j. In

summary,

c2h j ≤M( j, j)≤ h j, for 1≤ j ≤ p. (2.58)
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Recall the matrix H = diag(h1, . . . ,hp). By (2.58), A′(M−1−H−1)A is positive semi-definite,

which implies λmin(A′M−1A)≥ λmin(A′H−1A); similarly, λmax(A′M−1A)≤ c−1
2 λmax(A′H−1A).

Note that A′H−1A = ΣA. By the assumption (2.7), λmin(ΣA) ≥ c2; also, using the fact that the

column sums of A are equal to 1, we have λmax(ΣA)≤ ‖ΣA‖1 = 1. Combining the above gives

c2 ≤ λmin(A
′M−1A)≤ λmax(A′M−1A)≤ c−1

2 . (2.59)

In the first claim, we have seen that VV ′ = (A′M−1A)−1. So, (2.59) yields:

c2 ≤ λmin(VV ′)≤ λmax(VV ′)≤ c−1
2 . (2.60)

Observing that ∑
K
`=1V 2

` (k) is the k-th diagonal of VV ′, we obtain (2.57).

Next, we show that for a constant c > 0, up to a multiple of ±1 on V1,

V1(k)≥ c, for 1≤ k ≤ K. (2.61)

Let η1 = sign(V1(1)) · ‖V1‖−1V1. Since ‖V1‖2 is the first diagonal of V ′V , we have ‖V1‖2 ≥

λmin(V ′V ) = λmin(VV ′)≥ c2, where the last inequality is due to (2.60). Therefore, to show (2.61),

it suffices to show that

liminf
n→∞

min
1≤k≤K

{η1(k)} ≥ c. (2.62)

Recall that λ1, . . . ,λK are the singular values of M−1/2D. Then, M−1/2DD′M−1/2Ξk = λ 2
k Ξk,

where D = AW and Ξk = M−1/2AVk. Combining these facts gives

(M−1/2AWW ′A′M−1/2)(M−1/2AVk) = λ
2
k (M

−1/2AVk)

Multiplying both sides by (A′M−1A)−1A′M−1/2 from the left, we have

(WW ′A′M−1A)Vk = λ
2
k Vk.
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This means Vk is an eigenvector of the matrix nΣW (A′M−1A) associated with the eigenvalue λ 2
k .

In particular,

η1 is the unit-norm leading eigenvector of Θ = ΣW (A′M−1A). (2.63)

Write η1 = η
(n)
1 to indicate its dependence on n; similar for other quantities. Suppose (2.62) is

not true. Then, there exists k and a subsequence {nm}∞m=1 such that limm→∞ η
(nm)
1 (k) = 0. Fur-

thermore, the spectral norm of ΣW is bounded (because each column of W is a weight vector), and

the spectral norm of A′M−1A is also bounded (by (2.59)). Therefore, there exists a subsequence

of {nm}∞m=1 such that Θ tends to a fixed matrix Θ0; without loss of generality, we assume this

subsequence is {nm}∞m=1 itself. The above implies

lim
m→∞

η
(nm)
1 (k) = 0, lim

m→∞
Θ
(nm) = Θ0.

In the proof of Lemma 2.6.3, we have seen that the eigengap of Θ is bounded below by a positive

constant. Using the sine-theta theorem [36], when Θ(nm)→Θ0, up to a multiple of ±1 on η
(nm)
1 ,

η
(nm)
1 → q0, q0 is the unit-norm leading eigenvector of Θ0.

Combining the above gives

q0(k) = 0. (2.64)

We then study the matrix Θ0. Write Θ=Θ1+Θ2, where Θ1 =ΣW (A′H−1A) and Θ2 =ΣW A′(M−1−

H−1)A. By (2.58), all entries of Θ2 are non-negative. Moreover, the assumption (2.7) yields that

all entries of A′H−1A are lower bounded by a constant c2 > 0; as a result, all entries of Θ1 are

lower bounded by a positive constant. Combining the above, all entries of Θ are lower bounded by

a positive constant, which implies:

Θ0 is a strictly positive matrix. (2.65)
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By Perron’s theorem [26], the leading unit-norm eigenvector (up to±1) of a positive matrix has all

positive entries. So (2.64) and (2.65) are contradicting with each other. This proves (2.62); then,

(2.61) follows.

Consider the last three claims. The key is to study the matrix

Q≡

 1 . . . 1

v∗1 . . . v∗K

 .

From how v∗1, . . . ,v
∗
K are define, Q′ = [diag(V1)]

−1 ·V . So

Q′Q = [diag(V1)]
−1VV ′[diag(V1)]

−1.

In the second claim, we have seen that the entries of V1 are either all positive or all negative; also,

C−1 ≤ |V1(k)| ≤C for all 1≤ k ≤ K. Combining this with (2.60) gives

C−1 ≤ λmin(Q
′Q)≤ λmax(Q′Q)≤C. (2.66)

We first study ‖v∗k‖ and ‖v∗k− v∗`‖. Note that

 1

v∗k

= Qek, ek: the k-th standard basis of RK .

Therefore, ‖v∗k‖ ≤ ‖Q‖ ≤C, ‖v∗k− v∗`‖ ≤ ‖Q‖ · ‖ek− e`‖ ≤
√

2‖Q‖ ≤C, and ‖v∗k− v∗`‖
2 ≥ ‖ek−

e`‖2 ·λmin(Q′Q)≥C−1.

We then study the simplex S ∗K . By (2.66), Q is non-singular. Hence, there cannot be a non-zero

vector b such Qb = 0; note that Qb = 0 is equivalent to that ∑
K
k=1 b(k) = 0 and ∑

K
k=1 b(k)v∗k = 0.

This means the vectors v∗1, . . . ,v
∗
K are affinely independent; so S ∗K is a non-degenerate simplex.
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The volume of S ∗K equals to

1
(K−1)!

det([v∗2− v∗1, . . . ,v
∗
K− v∗1]) =

1
(K−1)!

det(Q).

By (2.66), the right hand side is lower bounded by a constant.

Proof of Lemma 2.8.2. Consider the first claim. From Ξ=M−1/2AV , we have Ξ1( j)=M−1/2
j j a′jV1

for 1 ≤ j ≤ p. Note that a j is a non-negative vector with ‖a j‖1 6= 0 and that all entries of V1 are

either all positive or all negative; so the entries of a′jV1 all have the same sign. Consequently, the

entries of Ξ1 also have the same sign; this means we can choose the sign of Ξ1 so that all the entries

are positive.

Assuming all entries of Ξ1 and V1 are positive, we now give lower/upper bound of Ξ1( j), for

1≤ j ≤ p. Since Ξ1( j) = M−1/2
j j a′jV1,

Ξ1( j)≥M−1/2
j j ‖a j‖1 min

1≤k≤K
V1(k).

By definition, ‖a j‖1 = h j. By (2.58), M j j ≤ h j. By Lemma 2.8.1, V1(k)≥C−1 for all 1≤ k ≤ K.

Combining the above gives

Ξ1( j)≥C−1
√

h j.

Similarly, we can prove that Ξ1( j)≤C
√

h j.

Consider the second claim. Since each r j is in the simplex S ∗K , it follows that

‖r j‖ ≤ max
1≤k≤K

‖v∗k‖

and by Lemma 2.8.1, max1≤k≤K ‖v∗k‖ ≤C. The claim then follows.

Consider the third claim. By Lemma 2.2.2, each r j is a convex combination of v∗1, . . . ,v
∗
K ,
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where the weight vector π j is the j-th row of Π = [diag(Ξ1)]
−1 ·M−1/2A ·diag(V1). So

 0

ri− r j

= Q(πi−π j), where Q =

 1 . . . 1

v∗1 . . . v∗K

 .

In (2.66), we have seen that C−1 ≤ λmin(Q′Q)≤ λmax(Q′Q)≤C. So,

C−1‖πi−π j‖ ≤ ‖ri− r j‖ ≤C‖πi−π j‖.

To show the claim, it suffices to prove that

C−1‖ãi− ã j‖ ≤ ‖πi−π j‖ ≤C‖ãi− ã j‖. (2.67)

We now show (2.67). We assume the sign of Ξ1 is chosen such that all entries of Ξ1 and V1 are

positive. Since Π = [diag(Ξ1)]
−1 ·M−1/2A ·diag(V1),

π j = [Ξ1( j)]−1M j j ·diag(V1)a j

= [Ξ1( j)]−1M j jh j ·diag(V1)ã j

∝ (V1 ◦ ã j), (2.68)

where ◦ denotes the entry-wise product of two vectors. Noting that both π j and ã j are weight

vectors, we have π j = (V1 ◦ ã j)/‖V1 ◦ ã j‖1. Therefore,

πi−π j =
(V1 ◦ ãi)

‖V1 ◦ ãi‖1
−

(V1 ◦ ã j)

‖V1 ◦ ã j‖1
=

V1 ◦ (ãi− ã j)

‖V1 ◦ ãi‖1
+
‖V1 ◦ ã j‖1−‖V1 ◦ ãi‖1

‖V1 ◦ ãi‖1
π j.

By the triangle inequality, |‖V1 ◦ ã j‖1−‖V1 ◦ ãi‖1| ≤ ‖(V1 ◦ ã j)− (V1 ◦ ãi)‖1 = ‖V1 ◦ (ãi− ã j)‖1.

Moreover, ‖π j‖1 = 1. It follows that

‖πi−π j‖1 ≤ 2
‖V1 ◦ (ãi− ã j)‖1
‖V1 ◦ ãi‖1

.
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By Lemma 2.8.1, C−1 ≤V1(k)≤C for all k. So ‖V1 ◦ (ãi− ã j)‖1 ≤C‖ãi− ã j‖1, and ‖V1 ◦ ãi‖1 ≥

C−1. It follows that

‖πi−π j‖1 ≤C‖ãi− ã j‖1.

Using the Cauchy-Schwarz inequality, ‖ãi− ã j‖1≤
√

K‖ãi− ã j‖. Moreover, since ‖πi−π j‖∞≤ 1,

we have ‖πi−π j‖ ≤ ‖πi−π j‖1. It follows that

‖πi−π j‖ ≤C‖ãi− ã j‖. (2.69)

This gives the second inequality in (2.67).

To get the first inequality in (2.67), introduce a vector b∈RK with b(k) = 1/V1(k). Then (2.68)

implies ã j ∝ (b ◦ π j) for all 1 ≤ j ≤ p. Since both ã j and π j are weight vectors, we have ã j =

b◦π j
‖b◦π j‖1

. Note that C−1≤mink V1(k)≤maxk V1(k)≤C implies C−1≤mink b(k)≤maxk b(k)≤C.

By replacing V1 with b in the proof of (2.69), we immediately obtain

‖ãi− ã j‖ ≤C‖πi−π j‖.

This gives the second inequality in (2.67).

Proof of Lemma 2.8.3. Introduce a set of p-dimensional random vectors {Tim : 1≤ i≤ n,1≤m≤

N} such that they are independent of each other and that Tim ∼Multinomial(1,Di). From the pLSI

model and the definition of multinomial distributions,

Zi
(d)
=

1
N

N

∑
m=1

(Tim−E[Tim]), 1≤ i≤ n. (2.70)

It follows that

M̂ j j−M j j =
1
n

n

∑
i=1

Zi( j)
(d)
=

1
Nn

n

∑
i=1

N

∑
m=1
{Tim( j)−E[Tim( j)]}.
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Fix j and write Xim = Tim( j)−E[Tim( j)]. Then, {Xim : 1 ≤ i ≤ n,1 ≤ m ≤ N} are independent

of each other. Moreover, since Tim( j) ∼ Bernoulli(D ji), we have |Xim| ≤ 2 and Var(Xim) ≤ ji=

∑
K
k=1 Ak( j)Wi(k) ≤ ∑

K
k=1 Ak( j) = h j. We now apply the Bernstein inequality in Lemma 2.9.1,

then we obtain

P
(
|M̂ j j−M j j| ≥ t

)
≤ 2exp

(
− Nnt2/2

h j +2t/3

)
.

Let t = (Nn)−1/2
√

10h j log(n). Since h j ≥ hmin � (Nn)−1 log(n), we have t � h j; therefore,

in the denominator of the exponent, the term h j is dominating. It follows that, with probability

1−o(n−4),

|M̂ j j−M j j| ≤ (Nn)−1/2
√

10h j log(n).

According to the probability union bound, the above holds simultaneously for all 1 ≤ j ≤ p with

probability 1−o(pn−4) = 1−o(n−3).5

Proof of Lemma 2.8.4. Consider the first claim. Fix k. Let {Tim : 1 ≤ i ≤ n,1 ≤ m ≤ N} be as in

(2.70). It follows that

z′jwk =
n

∑
i=1

Zi( j)Wi(k)
(d)
=

1
Nn

n

∑
i=1

N

∑
m=1

nWi(k)
{

Tim( j)−E[Tim( j)]
}
.

Write Xim = nWi(k){Tim( j)−E[Tim( j)]}. Since Tim( j)∼ Bernoulli(D ji), we find that Var(Xim)≤

n2W 2
i (k)D ji ≤ n2h j and |Xim| ≤ 2nWi(k) ≤ 2n. We now apply Lemma 2.9.1 with σ2 = n2h j and

b = 2n. It yields that

P(|z′jwk|> t)≤ 2exp

(
Nnt2/2

n2h j +2nt/3

)
.

Set t = C
√

N−1nh j log(n) for a constant C > 0 to be decided. For such t, since h j ≥ hmin �

(Nn)−1 log(n), the term n2h j is the dominating term in the denominator of the exponent. There-

fore, when C is properly large, the right hand side is o(n−4). In other words, with probability

5. We have assumed n≥max{N, p} without loss of generality. If n < max{N, p}, the result continues to hold with
log(n) replaced by log(max{n,N, p}).
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1−o(n−4),

|z′jwk| ≤CN−1/2
√

nh j log(n). (2.71)

Combing this with the probability union bound gives the claim.

Consider the second claim. Write

‖M−1/2Zwk‖2 =
p

∑
j=1

1
M j j j

|z′jwk|2.

We have obtained the upper bound (2.71), which holds simultaneously for all 1 ≤ j ≤ p, with

probability 1− o(n−3). Moreover, from (2.58), M j j ≥ c1h j. As a result, with probability 1−

o(n−3),

‖M−1/2Zwk‖2 ≤
p

∑
j=1

1
c1h j

Cnh j log(n)
N

=
Cnp log(n)

c1N
.

This proves the claim.

Proof of Lemma 2.8.5. We aim to show that, for any given 1 ≤ j, ` ≤ p, with probability 1−

o(n−5),

1√
h jh`
|z′jz`−E[z′jz`]| ≤C

(
1
N
+

log(n)
N2hmin

)√
n log(n). (2.72)

Once (2.72) is true, the claim follows from the probability union bound.

Below, we show (2.72). Fix ( j, `). Using the equality xy = 1
4(x+ y)2− 1

4(x− y)2, we find that

z′jz`√
h jh`

=
n

∑
i=1

Zi( j)√
h j
· Zi(`)√

h`

=
n

∑
i=1

(
Zi( j)
2
√

h j
+

Zi(`)

2
√

h`

)2

−
n

∑
i=1

(
Zi( j)
2
√

h j
− Zi(`)√

2h`

)2

=
n

∑
i=1

(u′1H−1/2Zi)
2−

n

∑
i=1

(u′2H−1/2Zi)
2, u1 ≡

e j + e`
2

,u2 ≡
e j− e`

2
;

here e1, . . . ,ep denote the standard basis vectors of Rp. Taking the expectation on both sides, we
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find that E[z′jz`] has a similar decomposition. As a result,

z′jz`−E[z′jz`]√
h jh`

=
n

∑
i=1

{
(u′1H−1/2Zi)

2−E[(u′1H−1/2Zi)
2]
}

−
n

∑
i=1

{
(u′2H−1/2Zi)

2−E[(u′2H−1/2Zi)
2]
}

≡ I + II. (2.73)

Below, we focus on deriving an upper bound for I. In the end of the proof, we explain how to

bound II in a similar way.

We start from studying u′1H−1/2Zi. Let {Tim : 1≤ i≤ n,1≤ m≤ N} be the same as in (2.70).

It follows that

u′1H−1/2Zi
(d)
=

1
N

N

∑
m=1

u′1H−1/2(Tim−E[Tim]).

Write Yim = u′1H−1/2(Tim−E[Tim]). Since Tim∼Multinomial(1,Di), the covariance matrix of Tim

equals to diag(Di)−Di(Di)
′. It follows that Var(Yim) ≤ u′1H−1/2diag(Di)H−1/2u1 = 1

4(

√
D ji√
h j

+
√

D`i√
h`

)2 ≤ 1, where the last inequality is because D ji ≤ h j. Furthermore, |Yim| ≤ 1/
√

h j+1/
√

h` ≤

2/
√

hmin. We now apply the Bernstein inequality, Lemma 2.9.1, with σ2 = 1, b = 2/
√

hmin. It

gives

P
(
|u′1H−1/2Zi|> t

)
≤ 2exp

(
− Nt2/2

1+2t/(3
√

hmin)

)
, for all t > 0. (2.74)

As a result, with probability 1−o(n−5),

|u′1H−1/2Zi| ≤C max
{√

log(n)√
N

,
log(n)

N
√

hmin

}
.

It motivates us to consider two different cases: (a) Nhmin ≥ log(n), and (b) Nhmin < log(n).

Consider case (a). Let t0 = C̃N−1/2√log(n) for a properly large C̃ > 0 to be decided. For all

0 < t ≤ t0, the right hand side of (2.74) is bounded by 2e−CNt2/4. Define

Xi = (u′1H−1/2Zi) ·1
{
|u′1H−1/2Zi| ≤ t0

}
.
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For any fixed β > 0, when C̃ = C̃(β ) is chosen properly large, we have the following results:

(i) Xi = u′1H−1/2Zi with probability 1−o(n−6).

(ii) Xi is sub-Gaussian with the sub-Gaussian norm ‖Xi‖ψ2 = O(1/
√

N).

(iii) |E[(u′H−1/2Zi)
2]−E[X2

i ]|= o(n−β ).

Here (i) is because P(Xi 6= u′1H−1/2Zi) = P(|u′1H−1/2Zi| > t0) ≤ 2e−CNt2
0/4 = O(n−CC̃2/4); (ii)

is because: for 0 < t ≤ t0, P(|Xi|> t)≤ P(|u′1H−1/2Zi|> t)≤ 2e−CNt2/4, and for t > t0, P(|Xi|>

t) = 0; (iii) is because |E[(u′H−1/2Zi)
2]−E[X2

i ]| ≤ (2/
√

hmin)
2 ·P(|u′H−1/2Zi| > t0) = o(N) ·

O(n−CC̃2/4). We choose β large enough such that N−1√n log(n) ≥ n−β . Using (i)-(iii) above,

with probability 1−o(n−5),

I =
n

∑
i=1

(X2
i −E[(u′1H−1/2Zi)]

)
=

n

∑
i=1

(X2
i −E[X2

i ])+o
(√n log(n)

N

)
. (2.75)

Since each Xi is sub-Gaussian, X2
i −E[X2

i ] is a sub-exponential random variable with the sub-

exponential norm ‖X2
i −E[X2

i ]‖ψ1 ≤ 2‖Xi‖2ψ2
= O(1/N) [38, Lemma 5.14, Remark 5.18]. We

apply the Bernstein inequality for sub-exponential variables in Lemma 2.9.2([38, Corollary 5.17]),

with κ =C1/N and t =C2κ
√

n−1 log(n) for C1,C2 > 0 that are large enough. It follows that with

probability 1−o(n−5),

|
n

∑
i=1

(X2
i −E[X2

i ])| ≤CN−1√n log(n).

Combining it with (2.75) gives: with probability 1−o(n−5),

|I| ≤CN−1√n log(n). (2.76)

Consider case (b). In this case, let δn = C3 log(n)/(N
√

hmin) for a large enough constant C3
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to be decided. It follows from (2.74) that

P
(
|u′1H−1/2Zi|> t

)
≤


2exp

(
−Nt2/[2+4C3

log(n)
Nhmin

]
)
, 0 < t ≤ δn,

2exp
(
− 3

6C−1
3 +4

N√
hmin

t
)
, t > δn.

Define

X̃i = u′1H−1/2Zi ·1
{
|u′1H−1/2Zi| ≤ δn

}
.

Therefore, for each fixed β > 0, by choosing C3 =C3(β ) appropriately large, we conclude that

(i) X̃i = u′1H−1/2Zi with probability 1−o(n−6).

(ii) X̃i is sub-Gaussian with the sub-Gaussian norm ‖X̃i‖ψ2 = O
(√

log(n)/(N2hmin)
)
.

(iii) |E[(u′H−1/2Zi)
2]−E[X2

i ]|= o(n−β ).

We choose β large enough such that log(n)
N2hmin

√
n log(n) ≥ n−β . It follows that with probability

1−o(n−5),

I =
n

∑
i=1

(X2
i −E[(u′1H−1/2Zi)]

)
=

n

∑
i=1

(X2
i −E[X2

i ])+o
(

log(n)
N2hmin

√
n log(n)

)
.

Each X2
i − E[X2

i ] is a sub-exponential random variable with the sub-exponential norm ‖X2
i −

E[X2
i ]‖ψ1 = O(log(n)/(N2hmin)). We then apply Lemma 2.9.2 with κ =C4 log(n)/(N2hmin) and

t = C5κ
√

n−1 log(n), with C4,C5 being large enough constants. It follows that with probability

1−o(n−5),

|
n

∑
i=1

(X2
i −E[X2

i ])| ≤ nt ≤ C log(n)
N2hmin

√
n log(n).

It follows that

|I| ≤C
log(n)
N2hmin

√
n log(n). (2.77)
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Combining (2.76)-(2.77) gives that

|I| ≤C
(

1
N
+

log(n)
N2hmin

)√
n log(n). (2.78)

We then bound II. When j = `, II is exactly equal to 0. When j 6= `, we can similarly write

u′2H−1/2Zi = N−1
∑

N
m=1Yim, with Yim = u′2H−1/2(Tim−E[Tim]). Then

|Yim| ≤ max{1/
√

h j,1/
√

h`} ≤ 1/
√

hmin

Var(Yim) ≤ u′2H−1diag(Di)H
−1/2u2 ≤

1
4
(

√
D ji√
h j
−
√

D`i√
h`

)2 ≤ 1
4

We again apply Lemma 2.9.1 to bound the tail probability of u′2H−1/2Zi, and then apply

Lemma 2.9.2 to bound II. Similarly, we find that, with probability 1−o(n−5),

|II| ≤C
(

1
N
+

log(n)
N2hmin

)√
n log(n). (2.79)

Then, (2.72) follows from plugging (2.78)-(2.79) into (2.73).

Proof of Lemma 2.8.6. By (2.58), M j j ≥ c1h j for all 1 ≤ j ≤ p. It follows that ‖M−1/2
0 H1/2‖ ≤

c−1/2
1 . As a result,

‖M−1/2(ZZ′−E[ZZ′])M−1/2‖

=‖M−1/2H1/2‖ · ‖H−1/2(ZZ′−E[ZZ′])H−1/2‖ · ‖H1/2M−1/2‖

≤c−1
1 ‖H

−1/2(ZZ′−E[ZZ′])H−1/2‖.

Therefore, to show the claim, it suffices to show that

‖H−1/2(ZZ′−E[ZZ′])H−1/2‖ ≤C
( 1

N
+

p
N2hmin

)√
np. (2.80)
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To show (2.80), we need some existing results on α-nets. For any α > 0, a subset M of the

unit sphere S p−1 is called an α-net if supx∈S p−1 infy∈M ‖x− y‖ ≤ α . The following lemma

combines Lemmas 5.2-5.3 in [38].

Lemma 2.10.1 (α-net). Fix α ∈ (0,1/2). There exists an α-net Mα of S p−1 such that |Mα | ≤

(1+2/α)p. Moreover, for any symmetric p× p matrix B, ‖B‖ ≤ (1−2α)−1 supu∈Mα
{|u′Bu|}.

By Lemma 2.10.1, there exists a (1/4)-net M1/4, such that |M1/4| ≤ 9p and

‖H−1/2(ZZ′−E[ZZ′])H−1/2‖ ≤ 2 max
u∈M1/4

{|u′H−1/2(ZZ′−E[ZZ′])H−1/2u|}.

Therefore, to show (2.80), it is sufficient to show that, for any fixed u ∈S p−1, with probability

1−o(9−pn−3),

|u′H−1/2(ZZ′−E[ZZ′])H−1/2u| ≤C
( 1

N
+

p
N2hmin

)√
np. (2.81)

Below, we show (2.81). For any u ∈S p−1,

u′H−1/2(ZZ′−E[ZZ′])H−1/2u

=
n

∑
i=1
{(u′H−1/2Zi)

2−E[(u′H−1/2Zi)
2]}. (2.82)

Our plan is to first get a tail bound for u′H−1/2Zi, which is similar to (2.74). We then consider two

separate cases, Nhmin ≥ p and Nhmin < p: for each case, we use the tail bound of u′H−1/2Zi to

prove (2.81).

First, we study u′H−1/2Zi. Let {Tim : 1≤ i≤ n,1≤ m≤ N} be the set of random variables as

in (2.70). Write

u′H−1/2Zi
(d)
=

1
N

N

∑
m=1

Yim, with Yim = u′H−1/2(Tim−E[Tim]). (2.83)
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Since Tim follows a distribution of Multinomial(1,Di), it is easy to see that |Yim| ≤ 2/
√

hmin and

var(Yim)≤ u′H−1/2diag(Di)H−1/2u≤‖u‖2≤ 1 (note that D ji =∑
K
k=1 Ak( j)Wi(k)≤∑

K
k=1 Ak( j)=

h j). We apply the Bernstein’s inequality, Lemma 2.9.1, and obtain that, for any t > 0,

P(|u′H−1/2Zi|> t)≤ 2exp

(
− Nt2/2

1+2t/(3
√

hmin)

)
, for all t > 0. (2.84)

Next, we prove (2.81) for two cases separately: Nhmin ≥ p and Nhmin < p. In the first case,

for a constant C1 > 0 to be decided, let δn1 =C1
√

p/N. Since Nhmin ≥ p, we have

P(|u′H−1/2Zi|> t)≤ 2exp

(
− Nt2/2

1+2C1/3

)
, for all 0 < t ≤ δn1. (2.85)

We then define a truncated version of u′H−1/2Zi:

Xi ≡ u′H−1/2Zi ·1
{
|u′H−1/2Zi| ≤ δn1

}
, 1≤ i≤ n.

We claim that

(i) Xi = u′H−1/2Zi with probability 1−o(9−pn−4).

(ii) Xi is a sub-Gaussian random variable with the sub-Gaussian norm ‖Xi‖ψ2 = O(1/
√

N).

(iii) |E[(u′H−1/2Zi)
2]−E[X2

i ]| is negligible compared with the right hand side of (2.81).

Here (ii) is a direct result of (2.85). To see (i), note that by (2.85), P(|u′H−1/2Zi| > δn1) ≤

2exp(− C2
1/2

1+2C1/3 p); since p≥C log(n), with an appropriately large C1, this probability is o(9.1−p)=

o(9−pn−4). To see (iii), note that |u′H−1/2Zi| ≤ 2/
√

hmin ≤ 2
√

N/p; so, |E[(u′H−1/2Zi)
2]−

E[X2
i ]| ≤ (4N/p) ·P(|u′H−1/2Zi| > δn1) ≤ (8N/p) · exp(− C2

1/2
1+2C1/3 p). Since p ≥ C log(N + n),

when C1 is large enough, this quantity is o(N−1√np). Combining (i)-(iii) with (2.82), with prob-

ability 1−o(9−pn−3),

|u′H−1/2(ZZ′−E[ZZ′])H−1/2u| ≤ |
n

∑
i=1

(X2
i −E[X2

i ])|+o(N−1√np). (2.86)
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Since each Xi is sub-Gaussian, X2
i −E[X2

i ] is a sub-exponential random variable with the sub-

exponential norm ‖X2
i −E[X2

i ]‖ψ1 ≤ 2‖Xi‖2ψ2
= O(1/N) [38, Lemma 5.14, Remark 5.18]. We

then apply Lemma 2.9.2 with κ = O(1/N) and t = Cκ ·
√

p/n. When the constant C is large

enough, with probability 1−o(9−pn−3),

|
n

∑
i=1

(X2
i −E[X2

i ])| ≤ nt ≤CN−1√np. (2.87)

Combining (2.86)-(2.87) gives (2.81) in the first case.

In the second case, let δn2 = C2 p/(N
√

hmin) for a constant C2 > 0 to be determined. We

study the right hand of (2.84). Note that Nhmin < p. For t ≤ δn2, we have 1+ 2t/(3
√

hmin) ≤

p/(Nhmin)+2δn2/(3
√

hmin) = (1+2C2/3) · p/(Nhmin); for t > δn2, we have 1+2t/(3
√

hmin)≤

δn2/(C2
√

hmin)+2t/(3
√

hmin) = (C−1
2 +2/3) · t/

√
hmin. Plugging them into (2.84) gives

P(|u′H−1/2Zi|> t)≤ 2


exp
(
− 1/2

1+2C2/3 · p
−1N2hmin · t2

)
, for 0 < t ≤ δn2,

exp
(
− 1/2

C−1
2 +2/3

·N
√

hmin · t
)
, for t > δn2.

(2.88)

In particular, P(|u′H−1/2Zi|> δn2)≤ 2e
− 3C2

2
6+4C2

p
. In light of this, we introduce a truncated version

of u′H−1/2Zi:

X̃i ≡ u′H−1/2Zi ·1
{
|u′H−1/2Zi| ≤ δn2

}
, 1≤ i≤ n.

We have the following observations, whose proofs are similar to the (i)-(iii) in the first case and

are omitted.

(i) X̃i = u′H−1/2Zi with probability 1−o(9−pn−4).

(ii) X̃i is a sub-Gaussian random variable with the sub-Gaussian norm ‖X̃i‖ψ2 =O(
√

p/(N2hmin)).

(iii) |E[(u′H−1/2Zi)
2]−E[X̃2

i ]| is negligible compared with the right hand side of (2.81).

From (ii), X̃2
i −E[X̃2

i ] is a sub-exponential random variable with the sub-exponential norm ‖X̃2
i −

E[X̃2
i ]‖ψ1 =O(p/(N2hmin)). We apply Lemma 2.9.2 with κ =O(p/(N2hmin)) and t =O(κ

√
p/n).
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Combining the result with (i) and (iii), we find that, with probability 1−o(9−pn−3),

|u′H−1/2(ZZ′−E[ZZ′])H−1/2u| ≤ |
n

∑
i=1

(X̃2
i −E[X̃2

i ])|+o
( p
√

np
N2hmin

)
≤Cnκ

√
p/n+o

( p
√

np
N2hmin

)
≤

Cp
√

np
N2hmin

. (2.89)

This proves (2.81) in the second case.

Proof of Lemmas 2.7.2-2.7.3. First, we prove Lemma 2.7.2. Without loss of generality, we assume

n/K, b2 pθk, and (1−b2)p are all integers. If some of them are not integers, the expressions of ΣW

and ΣA only change by O(1/p) in individual entries, and the claims continue to hold.

We first calculate the matrices ΣW and ΣA. We claim that

ΣW = K−1IK , ΣA = IK− (1−b1b2) · [diag(η)−K−1
ηη
′]. (2.90)

The first equality follows directly from the way W is constructed.

To show the second equality, we note that

a j =
1
p


Kb1 · ek, (θ1 + . . .+θk−1)b2 p < j ≤ (θ1 + . . .+θk)b2 p,

1−b1b2
1−b2

(η1,η2, . . . ,ηK)
′, b2 p < j ≤ p.

Write G = H−1/2A, where H j j = ‖a j‖1. Denote by g′j the j-th row of G. By direct calculations

and the fact that η̄ = 1, we have

g j =
1
√

p


√

Kb1 · ek, (θ1 + . . .+θk−1)b2 p < j ≤ (θ1 + . . .+θk)b2 p,√
1−b1b2
(1−b2)K

· (η1, . . . ,ηK)
′, b2 p < j ≤ p.
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Since ΣA = A′H−1A = ∑
p
j=1 g jg′j, by direct calculations, we have

ΣA = Kb1b2 ·diag(θ1, . . . ,θK)+K−1(1−b1b2)ηη
′. (2.91)

By definition of θk, it holds that Kb1b2θk = 1− (1− b1b2)ηk. Plugging it into (2.91) gives the

third equality in (2.90).

We now show Lemma 2.7.2. We first check the assumptions

hmin ≥C−1/p, mp ≥ p2 log2(n)/(Nn)

It is easy to see that

hmin = p−1 min
{

Kb1,
1−b1b2
1−b2

ηmin
}
,

where ηmin ≥ 1/2. So the assumption on hmin is satisfied. Moreover, the number of anchor words

per topic, mp, is equal to b2 p/K� p · [p log2(n)]/(Nn). So the assumption on mp is also satisfied.

We then verify the regularity conditions (2.7) and (2.9). From (2.90), λmin(ΣW ) ≥ K−1. In

addition, by (2.91),

λmin(ΣA)≥ Kb1b2θmin, min
1≤k,`≤K

ΣA(k, `)≥ K−1(1−b1b2)η
2
min,

where ηmin≥ 1/2 and Kb1b2θmin = 1−(1−b1b2)ηmax≥ 1−3(1−b1b2)2 > 0. So the regularity

condition (2.7) holds. Taking mp = b2 p, to check condition (2.9), we note that all non-anchor rows

are equal to each other, which implies RSS(L0) = 0 for any integer L0 ≥ 1. Additionally, for a

non-anchor row, ã j = K−1(η1, . . . ,ηK)
′, where ηk’s are strictly positive. So ã j is a constant vector

that can not equal to any of the standard basis vector ek, i.e., ‖ã j − ek‖ is lower bounded by a

constant. So the regularity condition (2.9) is satisfied. The proof of Lemma 2.7.2 is now complete.

Next, we prove Lemma 2.7.3. Again, we need to check the following

hmin ≥C−1/p, mp ≥ p2 log2(n)/(Nn)

84



and verify the conditions (2.7) and (2.9). Each A(s) is obtained by perturbing some non-anchor

rows of A(0) with ±(αn,αn, . . . ,αn). Since none of the anchor rows are perturbed, mp remains the

same. So mp ≥ p2 log2(n)/(Nn) is still valid. Furthermore, since αn = O( 1√
Nnp)�

1
p , we still

have hmin ≥C−1 p−1.

To verify the regularity condition (2.7), we first notice that ΣW remains unchanged. As a result,

it suffices to prove that

‖Σ(s)
A −Σ

(0)
A ‖max = O

(√ p
Nn

)
. (2.92)

Once (2.92) is true, since K is finite and p/(Nn) = o(1), the quantities about ΣA in (2.7) change by

o(1) when we perturb A(0) to A(s). Hence, (2.7) continues to hold. Below, we show (2.92). Fix s.

By definition, for each j with ω
(s)
j 6= 0,

 a(s)p−p1+ j =
1−b1b2
p(1−b2)

· (η1 + εn,η2 + εn, . . . ,ηK + εn),

a(s)p−p1+ j+m = 1−b1b2
p(1−b2)

· (η1− εn,η2 + εn, . . . ,ηK− εn),
where εn ≡ p(1−b2)αn

1−b1b2
. (2.93)

Hence, the (p− p1+ j)-th row of the matrix H−1/2A is equal to
√

1−b1b2
p(1−b2)(K+Kεn)

·(η1+εn,η2+

εn, . . . ,ηK + εn). The contribution of this row to the change of the (k, `)-th entry of ΣA is

1−b1b2
pK(1−b2)

·
[(ηk + εn)(η`+ εn)

(1+ εn)
−ηkη`

]
= O(p−1

εn).

Similarly, the (p− p1 + j +m)-th row contributes a change of O(p−1εn) to each entry of ΣA.

Since at most (1−b2)p rows are perturbed when we construct A(s) from A(0), the total change on

ΣA(k, `) is O(εn) = O(pαn) = o(1). This proves (2.92).

To verify the condition (2.9), we note by (2.93), ã(s)j = 1
K(1±εn)

(η1± εn,η2± εn, . . . ,ηK± εn)

for those perturbed rows. It follows that ‖ã(s)j − ã(0)j ‖=O(εn), where εn =O([p/(Nn)]1/2)= o(1).

So the first inequality of (2.9) continues to hold. Furthermore, RSS(L0) ≤ (1− b2)p ·O(ε2
n ) =

O(p2/(Nn)), while mp = b2 p/K. So the second inequality of (2.9) holds.
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Proof of Theorem 2.3.3. To show this theorem, we note that Theorem 2.6.1 and Lemma 2.6.1

are still valid. Hence, it suffices to get correct bounds for ∆1(Z,D) and ∆2(Z,D) as defined in

(2.10)-(2.11). The bound for ∆1(Z,D) still applies. What we need to do is to sharpen the bound

for ∆2(Z,D), i.e., to improve the conclusion of Theorem 2.3.4, under additional assumptions of

(n,N, p).

In Section 2.6.2, Lemmas 2.6.2-2.6.4 are still valid. What we need to do is to sharpen the

bound for ‖(Ĝ−G)e j‖ and ‖Ĝ−G‖ in Lemmas 2.6.5-2.6.6. For these two lemmas, most part of

the proofs is the same as before, except that we need to sharpen the bound in Lemmas 2.8.5-2.8.6.

We first consider an alternative version of Lemma 2.8.6.

Lemma 2.10.2. Under the assumptions of Lemma 2.8.6, if additionally n≥ p
h2

min
(1+ p2

N2 +Nhmin),

then with probability 1−o(n−3),

‖M−1/2(ZZ′−E[ZZ′])M−1/2‖ ≤C
√

np
N

(
1+

1√
Nhmin

)
.

We now prove this lemma. Following the lines of proof of Lemma 2.8.6 until equation (2.82),

we find out that it suffices to prove: for any fixed unit-norm vector u, with probability 1−

o(9−pn−3),

n

∑
i=1
{(u′H−1/2Zi)

2−E[(u′H−1/2Zi)
2]} ≤C

√
np
N

(
1+

1√
Nhmin

)
. (2.94)

Write for short X = ∑
n
i=1{(u

′H−1/2Zi)
2−E[(u′H−1/2Zi)

2]}. Let Yim be the same as in (2.83).

Then,

u′iH
−1/2Zi =

1
N

N

∑
m=1

Yim, where |Yim| ≤
2√
hmin

, var(Yim)≤ 1. (2.95)

Then

X =
1

N2

n

∑
i=1

N

∑
m,s=1

(YimYis−E[YimYis]). (2.96)

Our tool for studying X is the Bernstein inequality for martingales in [39], which is stated in
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Lemma 2.9.3. We construct a martingale as follows:

θim =
1

N2

i

∑
j=1

m

∑
s,k=1

(Y jsY jk−E[Y jsY jk]), 1≤ i≤ n,1≤ m≤ N.

It is seen that X = θnN , and {θ11, . . . ,θ1N , . . . ,θn1, . . . ,θnN} is a martingale with respect to the

filtration Fim = σ
(
{Y js}1≤ j≤i−1,1≤s≤N ∪{Yis}m−1

s=1
)
. We study the variance process of this mar-

tingale. Let

Γim =


E[(θi1−θ(i−1)N)

2|F(i−1)N ], m = 1,

E[(θim−θi(m−1))
2|Fi(m−1)], m≥ 2.

The variance process is

〈θ〉im =
i

∑
j=1

m

∑
s=1

Γ js, 1≤ i≤ n,1≤ m≤ N.

For m = 1, θi1−θ(i−1)N = 1
N2Y 2

i1. Hence,

Γim ≤
1

N4 E(Y 4
i1)≤

4
N4hmin

E(Y 2
i1)≤

4
N4hmin

,

where we used (2.95). For m≥ 2, θim−θi(m−1) =
1

N2 [2(∑
m−1
s=1 Yis)Yim +Y 2

im−E(Y 2
im)]. It follows

that

Γim ≤
C
N4

[(m−1

∑
s=1

Yis

)2
var(Yim)+var(Y 2

im)

]

≤ C
N4

(m−1

∑
s=1

Yis

)2
+

C
N4hmin

.

Combining the above gives

〈θ〉nN ≤
C
N4

N

∑
m=1

n

∑
i=1

(m−1

∑
s=1

Yis

)2

︸ ︷︷ ︸
≡Sm−1

+
Cn

N3hmin
. (2.97)
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For the variable Sm−1, note that

E(Sm−1) =
n

∑
i=1

m−1

∑
s,k=1

E(YisYik) =
n

∑
i=1

m−1

∑
s=1

E(Y 2
is)≤ Nn.

To study Sm−1−E(Sm−1), note that SN =N2 ·u′H−1/2(ZZ′−E[ZZ′])H−1/2u. Hence, we already

gave a bound for N−2|SN−E(SN)| in (2.81), which translates to: with probability 1−o(9−pn−3),

|SN−E(SN)| ≤C
(

N +
p

hmin

)√
np.

Note that Sm =∑
n
i=1(∑

m
s=1Yis)

2 and SN =∑
n
i=1(∑

N
s=1Yis)

2 have similar forms: the former involves

nm independent multinomial variables (each has a trial number equal to 1), and the latter involves

nN such independent multinomial variables. Therefore, we get a similar bound for |Sm−E(Sm)|

by replacing N with m above. It yields that, with probability 1−o(9−pn−3N−1),

|Sm−1−E(Sm−1)| ≤C
(

m+
p

hmin

)√
np≤C

(
N +

p
hmin

)√
np.

If n ≥ (Nhmin)
−2 p3, the mean of Sm−1 dominates its variance. Hence, with probability 1−

o(9−pn−3), max1≤m≤N Sm ≤CNn. Plugging it into (2.97), we conclude that,

〈θ〉nN ≤
Cn
N2 +

Cn
N3hmin

≡ σ
2, with probability 1−o(9−pn−3). (2.98)

Moreover, for m = 1, |θi1−θ(i−1)N |= 1
N2Y 2

i1 ≤ 2/(N2hmin). For m≥ 2,

|θim−θi(m−1)| ≤
1

N2

(
2|Yim||

m−1

∑
s=1

Yis|+Y 2
im
)
≤ C

Nhmin
≡ b,

where we have used the bound for |Yis| in (2.95). We now apply Lemma 2.9.3 by taking t =Cσ
√

p,

where σ2 is as in (2.98). If σ2 > b2 p, then bt =Cσ(b
√

p)≤Cσ2 and the bound in Lemma 2.9.3

is determined by σ2. For σ2 > b2 p to happen, we need n > p/h2
min and n > (N p)/hmin. Under
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this condition, it follows from Lemma 2.9.3 that

P
(

θnN >Cσ
√

p, 〈θ〉nN ≤ σ
2
)
= o(9.1−p) = o(9−pn−3). (2.99)

Combining (2.98)-(2.99), with probability 1−o(9−pn−3),

θnN ≤Cσ
√

p≤C
√

np
N

(
1+

1√
Nhmin

)
.

This proves (2.94). The proof of Lemma 2.10.2 is now complete.

Now, in the proof of Lemma 2.6.6, we use (2.50), (2.51) and (2.55), but replace (2.53) with the

result in Lemma 2.10.2. It follows that with probability 1−o(n−3),

‖Ĝ−G‖ ≤C
√

np
[√log(n)√

N
+

√
log(n)

N
√

N phmin
+
( 1

N
+

1
N
√

Nhmin

)]
≤C
√

np
√

N

(√
log(n)+

1
N
√

hmin

)
≤C

(
1+
√

p
N

)√np log(n)
N

. (2.100)

This provides a counterpart for Lemma 2.6.6.

We then consider an alternative version of Lemma 2.8.5.

Lemma 2.10.3. Under the assumptions of Lemma 2.8.5, if additionally n≥ p
h2

min
(1+ p2

N2 +Nhmin),

then with probability 1−o(n−3), simultaneously for all 1≤ j, `≤ p,

|z′jz`−E[z′jz`]| ≤C
( 1

N
+

1
N
√

Nhmin

)√
nh jh` log(n).

We prove this lemma. Following the lines in the proof of Lemma 2.8.5 until (2.73), we know

that the key is to get upper bounds for X1 = ∑
n
i=1{(u

′
1H−1/2Zi)

2−E[(u′1H−1/2Zi)
2]} and X2 =

∑
n
i=1{(u

′
2H−1/2Zi)

2−E[(u′2H−1/2Zi)
2]}, where u1 and u2 are as in (2.73). We can bound X1 and

X2 similarly as in the proof of (2.94), except that we only need the bounds hold with probability

89



1−o(n−5) but in (2.94) we need the bound to hold with probability 1−o(9−pn−3). So, we simply

replace p in (2.94) by
√

log(n). This proves Lemma 2.10.3.

In the proof of Lemma 2.6.5, we still use (2.49), (2.52) and (2.56), but replace (2.54) with
√

p

times the bound for (h jh`)−1/2|z′jz`−E[z′jz`]| suggested by Lemma 2.10.3. It follows that with

probability 1−o(n−3),

‖e′j(Ĝ−G)‖ ≤C

√
n log(n)

N

[
1+
√

ph j +
1

N
√

h j
+

√
p
√

N

(
1+

1√
Nhmin

)]
≤C

√
n log(n)

N

[√
ph j +

√
p
√

N

(
1+

1√
Nhmin

)]
≤
√

h j ·C
√

np log(n)
N

(
1+

p
N

)
. (2.101)

This provides a counterpart for Lemma 2.6.5.

Using (2.100)-(2.101) and similar derivation in Section 2.6.2, we find that with probability

1−o(n−3),

∆2(Z,D)≤C

√
p log(n)

Nn

(
1+

p
N

)
.

Then, the bound for the estimation errors follow from similar derivations to those in Section 2.6.1.
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CHAPTER 3

OPTIMAL ESTIMATION OF W WITH THE EXISTENCE OF

NON-INFORMATIVE WORDS

3.1 Backgroud

The vector space models for documents [6, 7] are the starting point of many text mining tasks.

They all produce a certain vector representation of the documents, which can be used as inputs to

the later tasks such as information retrieval and document clustering. See [40] for a comprehensive

introduction for these topics.

One of the popular schemes for vector representation of documents is tf.idf, which is originally

proposed by [41]. Here the tf stands for term frequency, and the idf stands for inverse document

frequency. One typical specific form of the representation under this tf.idf scheme is to encode the

ith document in the corpus as a |V |-dimensional vector vi, with each entry defined as following

(vi) j = f j,i× log
n
n j

, for j ∈ [|V |] (3.1)

where V is the vocabulary set, f j,i is the frequency(number of appearance) of jth word in the ith

document, n is the corpus size and n j is the number of documents that contains at least one jth

word.

There are many attempts in justification of the usage of the heuristic original tf.idf. But very

few are originated from the vector representation purpose of tf.idf. Instead the most explanations

are given by coinciding the tf.idf with quantities from either some probabilistic derivations or some

text mining tasks, which origination has nothing to do with the vectorization of the documents. For

example [42] concludes that from an information-theoretic point of view, tf.idf can be interpreted

as the quantity required for the calculation of the expected mutual information. A line of work in
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probabilistic information retrieval also provides theoretical support for the using tf.idf in the infor-

mation retrieval task. To name a few, the original relevance weighting model introduced by [43]

justifies the idf term in the weighting through ranking the documents according to their conditional

probability given the query, assuming there is no relevance feedback information and ignoring the

frequency of each word in each document. Another well-known and widely-used weighting func-

tion called Okapi BM25, which is originally proposed by [44], extends the relevance weighting

model by taking into account the word frequency in each document, and produces a scoring sys-

tem of the documents given the query based on the the full tf.idf representation of the documents.

On the other hand most applications of tf.idf are based on its vectorization nature of the doc-

uments, such as document clustering, topic detection, and even some vector-matching-based in-

formation retrieval methods [40]. In all these applications, there are usually two additional steps

after the computation of the tf.idf scores: removing stop words and dimension reduction. The

"stop words" usually refer to the most common words in a language (say words the and that),

which carry little semantic meaning [45]. In reality stop words are usually removed before fur-

ther processing of the data, for the reason of reducing computational cost, and also heuristically,

reducing the noise level. One of the most famous dimension reduction idea is the Latent Semantic

Indexing(LSI), which is originally proposed by [13]. It performs singular value decomposition of

tf.idf matrix, which has ( j, i)th entry as (vi) j that is defined in Equation 3.1, and uses the rows of

the resulting top right singular vector(RSV) matrix as the vector representations of the documents.

The number of singular components kept is the number of underlying topics. The motivation of

introducing LSI stems from the synonymy and the polysemy in the natural language, as we have

detailed in Section 1.1.

Although heuristically appealing, LSI is not a probabilistic-model-based approach for dimen-

sion reduction, and therefore lacks of theoretical justifications. Hofmann proposed the probabilis-

tic Latent Semantic Analysis(pLSI) in [5], which introduces probabilistic models to the corpus
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and assumes each document is randomly generated based on a low-dimensional vector. The well-

known Latent Dirichlet Allocation(LDA) can be seen as a Bayesian version of pLSI, which assumes

Dirichlet prior on the low-dimensional document vectors [3]. The low-dimensional representations

in these probabilistic approaches all can be interpreted as weights on a set of topics. These topic

models are so appealing, that people seem to forget about interpreting tf.idf and stop words remov-

ing, which still remains very successful and hard to beat in many text mining problems. Looking

back at the evolution of topic models, we can at least ask the following questions.

• Can tf.idf still play a role under the pLSI model? How?

• Is removing stop words statistically beneficial under the pLSI model? How? And how to

even define the stop words quantitatively?

In this work we try to answer these questions. We consider the pLSI model setting, and pro-

pose a novel approach to estimate the low-dimensional topic weights vector for each document,

through singular value decomposition of a matrix with entries that have tf.idf interpretation. We

provide two reasons to support the usage of this specific form of normalized matrix: One is from a

enabling benefits from non-informative words(which is a super set of stop words) removal point of

view, and another is from the perspective of error upper bound minimization. In order for you to

better understand the first point, we compare the estimation process of W based on either the SVD

of the proposed normalization scheme M̂−1/2D̂ or the SVD of D̂ in Figure 3.1, where we have

incorporated the notation system specified in Section 1.2 and Section 1.4 and Section 3.2. We also

propose non-informative words screening technique that enjoys three kinds of interpretations based

on our estimation procedures. The rest of the chapter is organized as following. In Section 3.2 we

introduce some additional notations. In Section 3.3 we developed our proposed W estimation and

non-informative words screening procedures, along with the key insights behind our proposed al-

gorithms. In Section 3.4 we provide the theoretical analysis of the proposed procedures. In Section

3.5 we provide real data applications to support our proposed methods.
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M̂−1/2D̂ Ξ̂ Ŵ
Removing
non-
informative
words helps.

X

Removing non-
informative
words should
help.

X

D̂ Ξ(D̂) Ŵ
Removing non-
informative
words does not
help.

8

Removing non-
informative
words should
help.

X

Figure 3.1: Estimation process of W based on either the SVD of M̂−1/2D̂ or the SVD of D̂.

3.2 Additional notations

Define the (exact) non-informative word as in Definition 3.2.1. The reason why we use the name

"non-informative word", is that since the word has all same fractions in all topics, observing the

word in a document gives no information about the underlying topic compositions. The non-

informativeness is reminiscent of the sparsity in the other common settings, such as regression

problems.

Examples of non-informative words include the stop words, the words with no semantic mean-

ings which usually also have high frequencies in the language, for example "the", "a", "in" etc.

Non-informative words may also include a lot of corpus-dependent general words, for example

"study" and "property" would be reckoned as non-informative words in an academic paper corpus,

while words like "report" and "news" would become non-informative in a newspaper corpus.

Definition 3.2.1 (non-informative word). The jth word is a (exact) non-informative word if and
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only if A j· has identical entries.

Let V0 ⊂ [p] be the set of true underlying informative words, and V ⊂ [p] be the set of kept

words. Ideally we would like V =V0. Denote hV ,max =max j∈V h j and hV ,min =min j∈V h j, and

we also simplify these notations as hmax and hmin when V = [p]. We call a random vector v ∈ Rp

is truncated multinomial distributed with parameter (N,d,V ) if it is obtained through deleting the

entries of a Multinomial(N,d) distributed random vector that are outside of the index set V , which

we denotes as v ∼ TMultinomial(N,d,V ). Notice it is straightforward that like multinomial dis-

tribution, TMultinomial(N,d,V ) can be written as a summation of N i.i.d TMultinomial(1,d,V )

random vectors. With these notations, under our model we have

D̂V i =
1
N

N

∑
t=1

(Xit)V , (Xit)V
i.i.d∼ TMultinomial(1,Di,V ), for ∀i ∈ [n], t ∈ [N] (3.2)

Then it’s straightforward to get the first two moments of (Xit)V

E((Xit)V ) = DV i, Var((Xit)V ) = Diag(DV i)−DV iD
ᵀ
V i

For any vector v and matrix M, we use v and M to denote the mean of entries of v and the vector

of row-wise mean of M respectively. For any random variable X , we incorporate the notations of

sub-gaussian norm ‖X‖ψ2 and sub-exponential norm ‖X‖ψ1 in [46] as following

‖X‖ψ2 = sup
p≥1

p−1/2(E|X |p)1/p

‖X‖ψ1 = sup
p≥1

p−1(E|X |p)1/p

Finally we use Ξ(M) = [Ξ1(M), . . . ,ΞK(M)] = [ξ1(M), . . . ,ξn(M)]ᵀ and λk(M) to denote the 1-

to-Kth RSVs and the kth singular value of any general matrix M respectively. In most our analysis

we use the simplified notations for M−1/2D, M̂−1/2D̂, M−1/2
V V DV · and M̂−1/2

V V D̂V ·, in Table 3.1.
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Table 3.1: Notations for singular components
Matrix 1-to-Kth RSVs kth singular value
M−1/2D Ξ = [Ξ1, . . . ,ΞK ] = [ξ1, . . . ,ξn]

ᵀ λk
M̂−1/2D̂ Ξ̂ = [Ξ̂1, . . . , Ξ̂K ] = [ξ̂1, . . . , ξ̂n]

ᵀ λ̂k

M−1/2
V V DV · Ξ(V ) = [Ξ1(V ), . . . ,ΞK(V )] = [ξ1(V ), . . . ,ξn(V )]ᵀ λk(V )

M̂−1/2
V V D̂V · Ξ̂(V ) = [Ξ̂1(V ), . . . , Ξ̂K(V )] = [ξ̂1(V ), . . . , ξ̂n(V )]ᵀ λ̂k(V )

3.3 Our proposal

In this section, we propose our algorithm estimating W based on D̂ under the pLSI model, which

can also be seen as a set of low-dimensional representation of document in the topic space. The

proposed algorithm is described in 1. The main novelty as well as the keys for the success of

the algorithm, lie in the screening step, that is the usage of ŝ statistics for non-informative words

screening, and the normalization step, that is construction of the normalized matrix M̂−1/2
V̂0V̂0

D̂V̂0·
.

Firstly each entry of ŝ and M̂−1/2
V̂0V̂0

D̂V̂0·
has a tf.idf -like formation

(M̂−1/2D̂) ji = D̂ ji︸︷︷︸
t f

m̂−1/2
j︸ ︷︷ ︸
id f

ŝ2
j =

1
n

n

∑
i=1

( D̂ ji︸︷︷︸
t f

m̂−1
j︸︷︷︸

id f

)2

In the remaining 3 subsections we explain in more detail about the theoretical motivations for

these two key steps in the proposed algorithm. More specifically we provide explanations for the

following 3 questions, which answers are by no means clear at the first sight.

• Why do we do vertex hunting on the 2-to-Kth RSVs?

• Why do we rely on statistics s to do non-informative words screening?

• Why do we conduct SVD on this specific form of normalized matrix M̂−1/2
V V D̂V ·?
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We will deal with these questions in this specific order because the answers to the later ones

may rely on that of the former ones.

Algorithm 1 Proposed algorithm
Input: Word-document matrix D̂, number of underlying topics K, non-informative words propor-

tion δ .
1: for j ∈ 1 : p do
2: Compute

ŝ j =

∥∥∥∥∥ d̂ j

d̂ᵀj 1n

∥∥∥∥∥
2

3: end for
4: Compute the set of non-informative words

V̂0 = { j ∈ [p]|ŝ j ≥ Quantile(s,δ )}

5: Renormalize the columns of D̂V̂0·
to summation 1.

6: Compute the normalization M̂−1/2
V̂0V̂0

D̂V̂0·
, where M̂V̂0V̂0

= Diag(1
n ∑

n
i=1 D̂V̂0i).

7: Compute the top K RSVs Ξ̂ of M̂−1/2
V̂0V̂0

D̂V̂0·
.

8: Conduct vertices hunting on the rows of Ξ̂2:K , find the K vertices.

V̂ = [v̂1, v̂2, . . . , v̂K ]
ᵀ

9: Computing

Π̂ =

[
Ξ̂2:K ,

1√
n
1n

][
V̂ ,

1√
n
1K

]−1

10: for i ∈ 1 : n do
11: Compute

π̂
∗
i (k) = max(π̂i(k),0), for k ∈ [K]

12: Compute Ŵi = π̂∗i /‖π̂
∗
i ‖1

13: end for
Output: Estimates Ŵ .

3.3.1 Why do we do vertex hunting on the 2-to-Kth RSVs?

For simplicity we explain the reason of discarding the first RSV in the vertex hunting without

removing the non-informative words. In fact removing the non-informative words will not impact

on the logic here, and the reason will be clear in the next subsection. One key observation in the
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population level that motivates the vertex hunting step lies in the more general Theorem 3.3.1,

which proof is straightforward so we ignore it here.

Theorem 3.3.1 (Simplex structure in RSVs). For any matrices A ∈ Rp×K and W ∈ RK×n
+ , with

each column of W being a probability mass function, and AW having rank K, and also denote the

K RSVs of AW as Ξ, then there exists a matrix V ∈ RK×K , such that each row of Ξ is a convex

combination of rows of V , with the weights as the columns of W, that is

ξi =
K

∑
k=1

WkiVk·, for ∀i ∈ [n]

or in matrix form

Ξ =WᵀV

In our topic model setting M−1/2D = M−1/2AW matches the setting in the theorem, so we

have a simplex structure in Ξ as the theorem implied, that is Ξ = WᵀV . Ultimately we want to

solve the following optimization problems regarding to Ξ and its sample version Ξ̂, and hope the

solution would become W and a desirable estimate of it Ŵ .

min
V ∗∈RK×K ,W ∗i ∈∆K

‖Ξ−W∗ᵀV ∗‖2F (3.3)

min
V ∗∈RK×K ,W ∗i ∈∆K

‖Ξ̂−W∗ᵀV ∗‖2F (3.4)

Then another key observation is that by Theorem 3.3.2 the first RSVs of both M−1/2D and

M̂−1/2D̂ are exactly 1n/
√

n. This observation has far more implications than here, but for now

combining with Proposition 3.3.3, the optimal solutions of W∗ in both optimization problems 3.3

and 3.4 are exactly equal to that of the following two optimization problems

min
V ∗∈RK×(K−1),W ∗i ∈∆K

‖Ξ2:K−W∗ᵀV ∗‖2F (3.5)

min
V ∗∈RK×(K−1),W ∗i ∈∆K

‖Ξ̂2:K−W∗ᵀV ∗‖2F (3.6)
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This explains why we discard the first RSV of Ξ or Ξ̂ when trying to recover W or Ŵ . Then we

go to explain the steps from line 7 and 12 in Algorithm 1. Notice both problems are non-convex

in V ∗ and W∗ and have no explicit solutions. But we can take advantage of the pure document

assumption to solve these two problems in a reliable way.

For the population version problem 3.5, under the assumption of existence of pure documents

for each topic, the rows in Ξ that correspond to the pure documents of topic k would be ex-

actly equal to Vk·. This means as long as Ξ is known, with the pure document assumption for

each topic we can recover V through the vertices of the simplex formed by the rows of Ξ, which

can be exactly recovered through many existing algorithms for example the sequential projection

algorithm(SPA)[47]. And in fact this pure document assumption is almost necessary for the exact

recovery of W in the population level, but this is not our main focus in this paper, check more

detail about the identifiability issue in general NMF problem or its derivatives in [19, 48, 49, 50].

So once we have V , we can plug it into 3.5 and solve for the W∗, which is exactly W , through the

following

W = [Ξ2:K ,1n][V,1K ]
−1 (3.7)

For the sample version problem 3.5, again under the assumption of existence of pure documents

for each topic, with the similar arguments as before we can solve for V ∗ in 3.5 first approximately

through some vertex hunting algorithm. We can still use SPA as that has been argued in [48, 49, 50],

but another more robust way that can take advantage of multiple pure documents assumption for

each topic is the vertex hunting step that has been used in [51]. We use the later to solve for V̂ first,

and then plug it back into the objective in 3.6 and solve for the optimal W∗. Now the optimization

problem has become a quadratic programming, which can be easily solved with existing well

optimized quadratic programming solvers. But here we use a more straightforward way based on

the population counterpart 3.7, after which we truncate the negative entries and renormalize each

column to make it an eligible solution. And the resulting procedures are the 8th to 12th lines in

Algorithm 1. Notice here we multiply a 1/
√

n in front of 1n and 1K in the 8th line of the algorithm
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just to make sure the terms inside each matrix are of the same order, which will facilitate our

theoretical analysis.

Remark. Notice that by Theorem 3.3.2 the 8th line of Algorithm 1 can be simply written as

Π̂ = Ξ̂

[
1√
n
1K ,V̂

]−1

We purposely avoid this because we want to emphasize that we have explicitly incorporated the

probability-mass-function-column nature of W instead of ignoring it. In fact more generally if Ξ̂

does not have an equal-entry first RSV, we can just do a vertex hunting in the rows of full matrix

Ξ̂, obtain a K×K vertices matrix V̂ , and replace the matrix inverse in the 8th line of Algorithm

1 by a pseudo-inverse. But as we have notified before, the reason for us to compute this specific

form of tf.idf matrix M̂−1/2D̂ such that it has an equal-entry first RSV is much deeper than just to

discarding the first RSV in the vertex hunting step. This will be clear after the next two subsections.

Theorem 3.3.2 (First singular component of M−1/2D). For any matrix D ∈ Rp×n
+ with each col-

umn sum to one, and denote M̂ = Diag(1
n ∑

n
i=1 D̂i), then the first singular value of M−1/2D is

√
n,

and the first RSV of M−1/2D is 1n/
√

n.

Proof of Theorem 3.3.2. It is enough to analyze the first eigen component of the matrix DᵀM−1D.

• We first prove (n,1n/
√

n) is an eigen component of DᵀM−1D. This is straightforward by

the following calculation.

DᵀM−1D
1√
n
1n =

1√
n

Dᵀn1p = n
1√
n
1n

• We then prove (n,1n/
√

n) is the first eigen component of DᵀM−1D. In order to prove this it

is enough to show that for any x ∈ Rn with ‖x‖= 1, the following holds

xDᵀM−1Dx≤ n
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Then we proceed to show this is indeed true.

xDᵀM−1Dx =
p

∑
j=1

(xᵀd j)
2

1
n ∑

n
i=1 D ji

= n
p

∑
j=1

[
∑

n
i=1 xi

√
D ji
√

D ji

]2

∑
n
i=1 D ji

(By Cauchy-Schwarz inequality)

≤ n
p

∑
j=1

(
∑

n
i=1 x2

i D ji

)(
∑

n
i=1 D ji

)
∑

n
i=1 D ji

= n
p

∑
j=1

n

∑
i=1

x2
i D ji

= n
n

∑
i=1

x2
i

p

∑
j=1

D ji

= n
n

∑
i=1

x2
i = n

With that we have the desired conclusion.

Proposition 3.3.3. Suppose Ξ∈Rn×K with all identical items in its first column, then the following

two optimization problems have the same optimal W∗ solutions.

min
V ∗∈RK×K ,W ∗i ∈∆K

‖Ξ−W∗ᵀV ∗‖2F (3.8)

min
V ∗·2:K∈RK×(K−1),W ∗i ∈∆K

‖Ξ2:K−W∗ᵀV ∗·2:K‖
2
F (3.9)

Proof of Proposition 3.3.3. The proof is pretty straightforward. Notice the objective in the second

optimization is part of the objective in the first optimization.

‖Ξ−W∗ᵀV ∗‖2F = ‖Ξ2:K−W∗ᵀV ∗·2:K‖
2
F +‖Ξ1−W∗ᵀV ∗1 ‖

2
F (3.10)

On the other hand since Ξ1 has all identical items, suppose it’s a, as long as W∗ satisfies W∗i ∈ ∆K

for ∀i∈ [n], we can always choose V ∗1 = a1K , which is independent of V ∗·2:K , then ‖Ξ1−W∗ᵀV ∗1 ‖
2
F
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achieves its minimum value 0. By Equation 3.10 we know the two optimization problems have the

exactly the same optimal W∗ solutions.

3.3.2 Why do we use ŝ to do non-informative words screening?

In this subsection we explain the theoretical reason of non-informative words removal, and why

we advocate using ŝ to do non-informative words screening. Suppose V is the index set of the

words we kept. Then according to the non-stochastic lemma 3.6.4 about the error ‖Ŵ −W‖, it is

totally determined by the error in RSVs ‖Ξ̂2:K(V )−Ξ2:K(V )‖, which according to the Sin-Theta

theorem is upper bounded by the following quantity

‖D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·‖

λK(V )
(3.11)

By Theorem 3.6.6 the numerator in 3.11 depends on the kept words set V through hV , which

means when we keep removing the non-informative words the set V will shrink, so the numerator

will also decrease according to hV . On the other hand, notice

Dᵀ
V ·M

−1
V V DV · = ∑

j∈V

1
m j j

d jd
ᵀ
j

and if the jth word is a non-informative word, we will have d jd
ᵀ
j /m j j ∝ 1nn. Combining with

the fact that DᵀM−1D has 1n/
√

n as its first eigenvector according to Theorem 3.3.2, this means

as long as the words we have removed are non-informative words, it will only impact on the first

eigen component of DᵀM−1D, while leaving the rest eigen components unchanged, and therefore

more specifically, λK(V ) will not change and it’s always equal to λK . Combining these two obser-

vations and by the Sin-Theta upper bound in 3.11 we have justified that removing non-informative

words will improve our estimation accuracy in W .

Next we explain why using ŝ as the screening statistics for the non-informative words. Denote

the population version of ŝ as s, then by Cauchy-Schwarz inequality it’s easy to show that s j is
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minimized when the jth word is a non-informative word. This provides the first obvious reason for

using ŝ as the statistics for screening out the non-informative words. In fact this is the fundamental

observation we have incorporated when we provide the theoretical justification for the success of

the proposed screening procedure. But this observation does not provide the insight of why using

ŝ is good choice for non-informative words screening in the context of W estimation under the

topic model. Next we provide three intuitions for non-informative words screening based on the

the Sin-Theta upper bound in formula 3.11.

• The key reasoning we have used to argue that removing non-informative words does help in

estimation of W , is that when jth word is a non-informative word d jd
ᵀ
j /m j j only contributes

to the first eigen component of DᵀM−1D. So intuitively the more d jd
ᵀ
j /m j j being likely to

proportional to 1nn, the more likely the jth word is a non-informative word. One heuristic

way to quantify the likeliness of d jd
ᵀ
j /m j j being proportional to 1nn is through the following

quantity.
mint∈R+

∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j − t1nn

∥∥∥∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j

∥∥∥ (3.12)

• Similar to the previous argument we can also quantify this likeliness through the following

quantity, which uses Frobenius norm rather than the l2 norm.

mint∈R+

∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j − t1nn

∥∥∥
F∥∥∥ 1

m̂ j j
d̂ jd̂

ᵀ
j

∥∥∥
F

(3.13)

• Previous two heuristics focus on the denominator in the upper bound 3.11, now we look at

how removing one word from the full vocabulary would impact on this upper bound itself.

Denote the quantities in the numerator and denominator of 3.11 as a and b, and suppose

removing the jth word would reduce a and b by ∆a j and ∆b j respectively, then we would
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like to find words that are most likely to reduce the a/b. Notice

a−∆a j

b−∆b j
≤ a

b
⇔

∆a j

∆b j
≥ a

b

This means the larger the quantity ∆a j/∆b j the more likely removing the jth word would

improve the upper bound a/b. By the error rate in Theorem 3.4.2 and the fact that ∆b j

is at most the remaining of d jd
ᵀ
j /m j j after subtracting 1nn as much as possible, ranking

words according to ∆a j/∆b j is approximately equivalent to ranking them according to the

following quantity.
m̂ j

mint∈R+

∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j − t1nn

∥∥∥ (3.14)

Giving the above three heuristics for screening out the non-informative words, you should be

happy to know that they will lead to screening procedures that are based on the exactly the same

statistics ŝ, according to Proposition 3.3.4.

Proposition 3.3.4. The following ranking strategies lead to the exactly the same ranking of words.

• Ranking ascendingly in terms of 3.12.

• Ranking ascendingly in terms of 3.13.

• Ranking descendingly in terms of 3.14.

• Ranking ascendingly in terms of ŝ.

Proof of Proposition 3.3.4. We prove that the first 3 ranking strategies are exactly equivalent to the

last one.

104



• By Lemma 3.6.2, we have

mint∈R+

∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j − t1nn

∥∥∥∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j

∥∥∥ =

√
‖d̂ j‖2

(
‖d̂ j‖2−

(d̂ᵀj 1n)2

n

)
‖d̂ j‖2

=

√√√√1−
(d̂ᵀj 1n)2

n‖d̂ j‖2
=

√
1− 1

ns j

• By Lemma 3.6.1, we have

mint∈R+

∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j − t1nn

∥∥∥
F∥∥∥ 1

m̂ j j
d̂ jd̂

ᵀ
j

∥∥∥
F

=

√(
‖d̂ j‖4−

(d̂ᵀj 1n)4

n2

)
‖d̂ j‖2

=

√√√√1−
(d̂ᵀj 1n)4

n2‖d̂ j‖4
=

√
1− 1

n2s2
j

• Again by Lemma 3.6.2, we have

m̂ j

mint∈R+

∥∥∥ 1
m̂ j j

d̂ jd̂
ᵀ
j − t1nn

∥∥∥ =
d̂ᵀj 1n

n2

√
‖d̂ j‖2

(d̂ᵀj 1n)2

(
‖d̂ j‖2−

(d̂ᵀj 1n)2

n

)
=

1

n2
√

ŝ j

(
ŝ j− 1

n

)

Notice ŝ2
j takes value in [1/n,1], we have the desired conclusion.

3.3.3 Why do we conduct SVD on M̂−1/2D̂

In this section we provide two motivations for using this specific form of tf.idf matrix M̂−1/2D̂.

Again for simplicity purpose let’s ignore the non-informative words removal and focus on the ma-

trix M̂−1/2D̂. The first reason is based in the previous two subsections, that is by constructing
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M−1/2D, we can make the first RSV of the matrix to be 1n/
√

n which lies exact the same space as

the d j that correspond to the non-informative words, and therefore removing the non-informative

words can reduce the first singular value while leaving the rest unchanged, in other words reduce

the estimation error in W through only reducing the noise level (the numerator in 3.11) while keep-

ing the signal level unchanged (the denominator in 3.11). Other normalization schemes may not

have this property. For example in Figure 3.2 we compare the change of singular values of matrices

M−1/2D and D, before and after non-informative words removal, under a simple synthetic setting.

As you can see in the plot of M−1/2D only first singular value changes after non-informative words

removal, while in the plot of D all the singular values change a little bit.

(a) M−1/2D (b) D

Figure 3.2: Illustration plots of change of singular values after non-informative words removal for
matrices M−1/2D and D.

But on the other hand this alignment between first RSV and 1n/
√

n can also be achieved

approximately via other normalization schemes. At least as long as the matrix we are working

with has non-negative entries we can guarantee the first RSV to have entries with the same signs.

A more specific example is to assume i.i.d Dirichlet columns in W and A only contains anchor

words that are evenly distributed among the topics, then according to Proposition 3.3.5, which is

proved in the appendix, we do achieve this approximate alignment with high probability.
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Proposition 3.3.5. Assume Wi
iid∼ Dir(α1K), A only have anchor words and each topic has the

same number of anchor words, then with probability at least 1−4K2n−2 the following holds

∥∥∥∥ξ1(D)− 1√
n
1n

∥∥∥∥≤ 10
√

2K7/2

Kα +1
log(n)√

n

But it turns out that this approximate alignment is usually not enough to guarantee the benefit

from non-informative words removal. In Figure 3.3 and Figure 3.4, we conduct a brief simula-

tion comparing the 4 different normalization schemes, where we have defined the population and

sample versions of inverse document frequency vector id f through its commonly used definition.

id f j = log
(

n
∑

n
i=11(D ji > 0)

)
, for j ∈ [p]

îd f j = log

(
n

∑
n
i=11(D̂ ji > 0)

)
, for j ∈ [p]

For each plot the x-axis is the keep ratio of the words. Since we set the top 24.8% words to

be the anchor words and the rest to be the non-informative words, as we move from the left to

the right along the x-axis, before the point 0.248 we are gradually adding more and more anchor

words which are supposed to be informative, while afterwards we are adding the non-informative

words which are less informative. The detailed simulation settings can be found underneath the

figure. It can be seen that the non-informative words removal only helps when using M−1/2D and

Diag(id f )CD. Notice the commonly used tf.idf scheme Diag(id f )CD enjoys the similar beneficial

patterns as the non-informative words have been removed, but there is no clear theoretical expla-

nations for this phenomenon as we have under the proposed normalization scheme M−1/2D. On

the other hand the Diag(id f ) weighting defines the document frequency through the pure count

of documents containing certain word, while our proposed M−1/2 weighting define it through a

"soft" count of documents. This means our proposed weighting retains more information from

the documents, and is more robust in the dense regime where few entries in D0 are 0. The later
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argument can be verified through the simulation in Figure 3.4, where we retain all the settings from

Figure 3.3 while only assume 1 pure document instead of 10 for each topic, which renders much

denser D0. It can be seen that now our proposed normalization scheme M−1/2D outperforms the

commonly used tf.idf scheme Diag(id f )CD much more significantly, and in fact the commonly

used tf.idf scheme even loses the power of gaining benefit from non-informative words removal.

Another desirability of using our proposed normalization comes from the minimization of error

in upper bound. In order to make this argument precise, we analyze the error upper bound of

estimating the RSVs of G1/2D through that of G1/2D̂, where G is any diagonal matrix with positive

diagonal entries. Then we can upper bound this using a similar quantity through the Sin-Theta

Theorem as that in formula 3.11. Then under the conditions specified in Theorem 3.4.2, we can

approximate the order of the numerator as following.

‖D̂ᵀGD̂−DᵀGD‖ ∼ ‖DᵀGZ‖ ∼
√
‖DᵀGE(ZZᵀ)GD‖ ∼

√
‖DᵀG2MD‖

For the denominator, which is λK(DᵀGD), we replace it with ‖DᵀGD‖ assuming it varies similarly

with λK(DᵀGD), then we have the error rate becomes the following

√
‖DᵀG2MD‖
‖DᵀGD‖

which according to Lemma 3.3.6 is lower bounded by 1/‖DᵀM−1D‖. In order to achieve this

lower bound, one sufficient condition is G = M−1, which leads to our proposed normalization

scheme. This explains why our proposed normalization scheme gives better error rate than that of

the commonly used tf.idf scheme in Figure 3.3 and Figure 3.4.

Lemma 3.3.6. Suppose D ∈Rp×n
+ , M and G are diagonal matrices with positive diagonal entries.

Then the following inequality holds.

‖DᵀG2MD‖
‖DᵀGD‖2

≥ 1
‖DᵀM−1D‖
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Proof of Lemma 3.3.6. Denote the jth diagonal entries of M and G as m j j and g j j. Then by the

definition of l2 norm of a matrix we have

‖DᵀGD‖= sup
‖x‖=1

xᵀDᵀGDx = sup
‖x‖=1

p

∑
j=1

g j j(x
ᵀd j)

2

Suppose the supremum in the RHS of the above equation is achieved at x = x∗, then by the Cauchy-

Schwartz inequality we have

‖DᵀGD‖2 =

[
p

∑
j=1

g j j(x
∗ᵀd j)

2

]2

=

[
p

∑
j=1

(g j jm
1/2
j j x∗ᵀd j)(m

−1/2
j j x∗ᵀd j)

]2

≤

[
p

∑
j=1

g2
j jm j j(x

∗ᵀd j)
2

]2[ p

∑
j=1

m−1
j j (x

∗ᵀd j)
2

]2

≤ ‖DᵀG2MD‖‖DᵀM−1D‖

Then we have the desired result.

3.4 Theoretical analysis

We first list all the conditions that are needed in the following theoretical results. Similar to the

Definition 2.1 in [51], we define the "topic-topic concurrence" matrix ΣW , the "centralized topic-

topic concurrence" matrix Σ∗W and the "topic-topic overlapping" matrix ΣAV · as following

ΣW =
K
n

WWᵀ

Σ
∗
W =

K
n

n

∑
i=1

(Wi−W )(Wi−W )ᵀ = K
(

1
n

WWᵀ−WWᵀ
)

ΣAV · =
1
K

Aᵀ
V ·H

−1
V V AV ·
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(a) ‖Ξ(D)Ξ(D)ᵀ−Ξ(D̂)Ξ(D̂)ᵀ‖F (b) ‖ΞΞᵀ− Ξ̂Ξ̂ᵀ‖F

(c) ‖Ξ(CD)Ξ(CD)
ᵀ−Ξ(ĈD)Ξ(ĈD)

ᵀ‖F (d)
‖Ξ(Diag(id f )CD)Ξ(Diag(id f )CD)

ᵀ −
Ξ(Diag(îd f )ĈD)Ξ(Diag(îd f )ĈD)

ᵀ‖F

Figure 3.3: Plots of Error in top K RSVs of D, M−1/2D, CD and Diag(id f )CD, versus keep
percentage of the words. Here we set p = 2000,n = 200,N = 300,K = 3. And we generate A
and W through the folloiwng process. Generation of A: Stack 25 rows of (1,0,0), 5 rows of
(0,1,0) and 1 row of (0,0,1), row-wise combine 16 repititions of this 31× 3 matrix, then row-
wise combine this matrix with 1504 rows of (1/3,1/3,1/3), and finally normalize the resulting
matrix to have column sum 1. Generation of W : column-wise combine 10 identity matrices I3, and
then column-wise combine the resulting matrix with a 3×70 matrix of i.i.d Uni f (0,1) generated
random values, finally normalize the resulting matrix to have column sum 1.
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(a) ‖Ξ(D)Ξ(D)ᵀ−Ξ(D̂)Ξ(D̂)ᵀ‖F (b) ‖ΞΞᵀ− Ξ̂Ξ̂ᵀ‖F

(c) ‖Ξ(CD)Ξ(CD)
ᵀ−Ξ(ĈD)Ξ(ĈD)

ᵀ‖F (d)
‖Ξ(Diag(id f )CD)Ξ(Diag(id f )CD)

ᵀ −
Ξ(Diag(îd f )ĈD)Ξ(Diag(îd f )ĈD)

ᵀ‖F

Figure 3.4: Plots of Error in top K RSVs of D, M−1/2D, CD and Diag(id f )CD, versus keep
percentage of the words, with the same simulation settings as that in Figure 3.3, while only change
the 10 identity matrices I3 in the generation of W to only 1 I3, that is we only 1 pure document for
each topic is assumed.
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We also denote h̄ = hmin/hV . Then the technical conditions that are needed in error analysis

of D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV · in Theorem 3.6.6 are listed as following.

λmin(ΣW )≥ 1
c
, ‖W‖∞ ≤

cn
K
, ‖ΣAV ·‖ ≤ c‖hV ‖1 (3.15)

Nnhmin
K2 log(np)

→ ∞ (3.16)

N‖hV ‖1
log(nK)

→ ∞ (3.17)

n‖hV ‖1
K log(nK)

→ ∞ (3.18)

n
K‖hV ‖1 log(nK)3 → ∞ (3.19)

1
Khmin

→ ∞ (3.20)

min(n,N)

max(log(|V |),− log(hmin), log(n),K)k → ∞, for any fixed k ∈ R+ (3.21)

N‖hV ‖1 ≥max

(
|V |K log(nK)

nh̄
,
|V | log(nK)1/2

n1/2h̄

)
(3.22)

N‖hV ‖1 ≥max
(
|V |
nh̄

,
|V |

n1/2h̄

)
(3.23)

N‖hV ‖1 ≥max

(
(K
√

n|V |+K|V |+n)2

n2K2 ,
(|V |(

√
n|V |+ |V |))2/3

n2/3K2/3h̄2/3

)
(3.24)

N‖hV ‖1 ≥max

(
(K
√

n|V |+K|V |+n)|V |
nK2 log(nK)

,
(K
√

n|V |+K|V |+n)1/2|V |
n1/2Kh̄1/2 log(nK)1/2

,

(
√

n|V |+ |V |)1/2|V |
n1/2Kh̄1/2 log(nK)1/2

,
(
√

n|V |+ |V |)1/3|V |
n1/3K2/3h̄2/3 log(nK)1/3

)
(3.25)

We also need the following additional conditions in order to transfer the error bound in Theo-

rem 3.6.6 to those in Theorem 3.4.2.

λmin(ΣAV ·)≥ ρV0‖hV0‖1 (3.26)

N‖hV0‖
2
1

K2‖hV ‖1
→ ∞ (3.27)
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Finally we have an additional technical condition that is needed in the analysis of the non-

informative words screening statistics.

λmin(Σ
∗
W )≥ 1

c
(3.28)

Remark. When V0 ⊂ V , the condition ‖ΣAV ·‖ ≤ c‖hV ‖1 in condition 3.15 is not needed, since

now we have ‖ΣAV ·‖= ‖hV ‖1

Remark. Notice ‖W‖∞ ≤ cn/K would imply a constant upper bound of ‖ΣW‖ through the follow-

ing arguments based on the Hölder’s inequality

‖ΣW‖=
K
n
‖W‖22 ≤

K
n
‖W‖1‖W‖∞ ≤ c

Remark. Notice we can upper bound ‖Dᵀ
V ·H

−1
V V DV ·‖ through ‖ΣW‖ and ‖ΣAV ·‖ as following

‖Dᵀ
V ·H

−1
V V DV ·‖= ‖WᵀAᵀ

V ·H
−1
V V AV ·W‖ ≤ ‖H

−1/2
V V AV ·‖2‖W‖2 = n‖ΣAV ·‖‖ΣW‖

3.4.1 Minimax lower bound of Ŵ −W

For any T ∈PK , define

LT (Ŵ ,W ) =
n

∑
i=1
‖(T ·Ŵ )i−Wi‖1 (3.29)

LT (Ŵi,Wi) = ‖(T ·Ŵ )i−Wi‖1, for ∀i ∈ [n] (3.30)

where PK is the set of all permutations of [K]. Then we define the following l1 error of Ŵ against

W

L (Ŵ ,W ) = min
T∈PK

LT (Ŵ ,W ) (3.31)
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Denote the following parameter space

Φn,N,‖hV0‖1,K
(c,ρV0) =

 (A,W ) : Conditions 3.15and 3.26 are satisfied with V = [p],

and W has at least one pure document for each topic


Theorem 3.4.1. Assume ρV0 ≤ 1, c < 1/2, n ≥ 4K and N‖hV0‖1/K3/2→ ∞, then there are con-

stants C > 0 and δ0 ∈ (0,1) such that

inf
Ŵ

sup
(A,W )∈Φn,N,‖hV0

‖1,K(c,ρV0)
P

(
L (Ŵ ,W )≥Cn

√
K

N‖hV0‖1

)
≥ δ0

Proof of Theorem 3.4.1. The proof follows the similar routine as that of Theorem 2.1 of [51].

By Theorem 2.5 of [35], we only need to find a set of parameter settings {(A(s),W (s))}Js=0 ⊂

Φn,N,‖hV0‖1,K
(c,ρV0), such that the following holds

(i) L (W (s),W (t))≥ 2Cn
√

K
N‖hV0‖1

for all 0≤ s 6= t ≤ J

(ii) DKL(Ps,P0)≤ β log(J) for all 1≤ s≤ J

Where C > 0,β ∈ (0,1/8), and Ps is the probability measure associated with (A(s),W (s)), then

inf
Ŵ

sup
(A,W )∈Φn,N,‖hV0

‖1,K(c,ρV0)
P

(
L (Ŵ ,W )≥Cn

√
1

N‖hV0‖1

)
≥
√

J
1+
√

J

(
1−2β −

√
2β

log(J)

)

Our remaining task is to construct {(A(s),W (s))}Js=0} that satisfies the above two conditions. Then

we construct as following

• Construction of {A(s)}Js=0: We choose {A(s)}Js=0 all being the same , which is denoted as A.

And A has the following form

A =

[
K‖hV0‖1
|V0|

IK⊗11×(|V0|/K),
1−‖hV0‖1

p−|V0|
1K×(p−|V0|)

]ᵀ
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Notice the set of informative words is just the first |V0| words, that is V0 = [|V0|]. And since

|V0| is not involved in the λmin(ΣA) as you will see later, we can set it to be any value that is

a multiple of K. In fact

ΣA =
1
K

AᵀH−1A

=

(
K‖hV0‖1
|V0|

)2
|V0|
K

K‖hV0‖1
|V0|

IK +

(
1−‖hV0‖1

p−|V0|

)2
(p−|V0|)

1−‖hV0‖1
p−|V0|

K
1K×K

= ‖hV0‖1IK +
1−‖hV0‖1

K
1K×K

Then it’s easy to see that the last eigenvalue of matrix ΣA is ‖hV0‖1, which does not depend

on the number of informative words |V0|. Then it is easy to see that A satisfies condition

3.26 given ρV0 ≤ 1, which is required by Φn,N,‖hV0‖1,K
(c,ρV0).

• Construction of {W (s)}Js=0: We construct W =W (0) as following

W =

[
IK⊗11×dn/(2K)e,

1
K
1K×(n−Kdn/(2K)e)

]
=

[
IK⊗11×n−m

K
,

1
K
1K×m

]

where we have introduced introduce m = n−Kdn/(2K)e to simplify the notations, and the

following inequality is straightforward given n≥ 4K

n
2
≥ m≥ n−2K +1

2
>

n
4

Notice here we set the first half of documents to be the pure documents. Then we have

ΣW =
n−m

n
IK +

m
nK

1K×K

Then it’s easy to see that the last eigenvalue of ΣW is (n−m)/n. Then it is easy to see
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that W satisfies the first condition in 3.15 given c < 1/2 ≤ (n−m)/n, which required by

Φn,N,‖hV0‖1,K
(c,ρV0). Then we proceed to construct {W (s)}Js=1. By Varshaov-Gilbert

bound for packing numbers (Lemma 2.9 of [35]), there exists J ≥ 2mbK/2c/8 and {σ (s)}Js=0

such that σ (0) = 0mbK/2c, σ
(s)
i ∈ {0,1} for any s ∈ [J] and i ∈ [mbK/2c], and

mbK/2c
∑
i=1

1(σ
(s)
i 6= σ

(t)
i )≥ mbK/2c

8
, for any 0≤ s 6= t ≤ J

Then for any s ∈ [J], define Σ(s) ∈ RK×m as

Σ
(s) =



[σ
(s)
1:m,σ

(s)
m+1:2m, . . . ,σ

(s)
(K/2−1)m+1:Km/2,

−σ
(s)
1:m,−σ

(s)
m+1:2m, . . . ,−σ

(s)
(K/2−1)m+1:Km/2]

ᵀ , if K is even

[σ
(s)
1:m,σ

(s)
m+1:2m, . . . ,σ

(s)
(bK/2c−1)m+1:bK/2cm,

−σ
(s)
1:m,−σ

(s)
m+1:2m, . . . ,−σ

(s)
(bK/2c−1)m+1:bK/2cm,0m]

ᵀ , if K is odd

and let α =C1/
√

NK‖hV0‖1, where the positive constant C1 is to be determined. Then for

any s ∈ [J] we define W (s) through the following

W (s) =
[
W1:(n−m),W(n−m+1):n +αΣ

(s)
]

(3.32)

By Lemma 3.6.3 we know W (s) ∈Φn,N,‖hV0‖1,K
(c,ρV0).

Then we proceed to check (i) and (ii) respectively.

• Checking (i): We firstly show that the optimal T ∈PK in the definition of loss in 3.31 is

always IK , that is the following holds for any s, t ∈ [J] with s 6= t

IK = arg min
T∈PK

{
K

∑
k=1
‖(T ·W (s))k·−w(t)

k ‖1

}
(3.33)

Here we only briefly prove this is true for the cases with s, t 6= 0. When either s or t is 0

the proof is similar. Notice for any T ∈PK with T 6= IK , there exists k∗ ∈ [K] such that
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Tk∗· 6= ek∗ , where ek∗ is the k∗th column of IK . Then we have

K

∑
k=1
‖(T ·W (s))k·−w(t)

k ‖1 ≥ ‖(T ·W (s))k·−w(t)
k ‖1

≥ 2
n−m

K
≥ n

K

while on the other hand by the definition of W (s) we have

K

∑
k=1
‖(IK ·W (s))k·−w(t)

k ‖1 = α‖σ (s)−σ
(t)‖1

≤ mKα

≤ 1
2

nC1

√
K

N‖hV0‖1

Comparing the two bounds above, under the condition that N‖hV0‖1/K3/2 → ∞ we have

the desired result in 3.33. Then we proceed to lower bound L (W (s),W (t)). Again we only

consider the cases with s, t 6= 0, since the rest of the cases can be proved similarly. By the

definition of W (s) in equation 3.32 we have

L (W (s),W (t)) = α‖σ (s)−σ
(t)‖1

≥ αmbK/2c
8

≥ Knα

64

=
C1
128

n

√
K

N‖hV0‖1

So (i) is satisfied for C =C1/128.

• Checking (ii): We first investigate the entries of matrix D(s) = A(s)W (s) = AW (s).

D(s)
ji =


h j +αΣ

(s)
ji , for j ∈ V0, i > n−m

aᵀjWi , for j ∈ V0, i≤ n−m

h j , for j /∈ V0

(3.34)
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Then by Lemma A.7 in [51], or Lemma 2.7.1 in Chapter 2, we have

DKL(Ps,P0) ≤ (1+Cδ )N
n

∑
i=1

p

∑
j=1

|aᵀjW
(s)
i −aᵀjWi|2

aᵀjWi

= (1+Cδ )N
n

∑
i=n−m+1

∑
j∈V0

|aᵀjW
(s)
i −aᵀjWi|2

aᵀjWi

= (1+Cδ )N
m

∑
i=1

∑
j∈V0

α2‖a j‖21‖Σi‖2∞
h j

≤ (1+Cδ )NmK2
α

2‖hV0‖1

(When δ → ∞, which is verified later)

≤ 2N
n
2

K2C2
1
‖hV0‖1

NK‖hV0‖1
= C2

1nK

(Notice J ≥ 2mbK/2c/8 ≥ 2nK/128)

≤ 128C2
1 log(J)

Then we can just choose C1 small enough such that (ii) holds. Then the only remaining task

is to verify that δ → 0. By the definition of δ in Lemma 2.7.1 in Chapter 2 we have

δ = max
j∈[p],i∈[n]

|aᵀjW
(s)
i −aᵀjWi|
aᵀjWi

= max
j∈V0,i∈[m]

α‖a j‖1‖Σi‖∞
h j

≤C1

√
K

N‖hV0‖1

notice the RHS of the above inequality goes to 0 under the given conditions.

With all the above arguments the conclusion has been proved.
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3.4.2 Upper bound of Ŵ −W

Then in order to facilitate the analysis of error in Ŵ −W , we define the vector ∆Ξ(Ω) and scalar

∆v(Ω) for any Ω ∈ R(K−1)×(K−1).

[∆Ξ(Ω)]i = ‖Ξ̂i(2:K)Ω−Ξi(2:K)‖, for ∀i ∈ [n] (3.35)

∆v(Ω) = min
T∈PK

max
k∈[K]

‖Ωv̂T (k)− vk‖ (3.36)

where v̂k and vk are the kth row of matrices V̂ and V , the simplex vertices of the rows of Ξ2:K(exact)

and Ξ̂2:k(found through vertex hunting algorithms). Notice under this definition we have ‖∆Ξ(Ω)‖=

‖Ξ̂2:KΩ−Ξ2:K‖F . We also denote

Ω
∗
1 = argminΩ∈OK−1 ‖∆Ξ(Ω)‖2 (3.37)

Ω
∗
2 = argminΩ∈OK−1 ‖∆Ξ(Ω)‖∞ (3.38)

Theorem 3.4.2. Under conditions 3.15 through 3.21, 3.22, 3.24, 3.26 and 3.27, and also assume

the pure documents assumption required in Lemma 3.6.5 hold, then there exists a constant C that

does not depend of N,n or p such that with probability at least 1−o(n−3) the following holds

L (Ŵ ,W )≤ CnK3/2

ρV0‖hV0‖1

√
‖hV ‖1

N
(3.39)

If in addition we have conditions 3.23 and 3.25, there exists a constant C that does not depend of

N,n or p, and T ∈PK , such that with probability at least 1−o(n−3) the following holds for any

i ∈ [n]

LT (Ŵi,Wi)≤
CK2

ρV0‖hV0‖1

√
‖hV ‖1‖Wi‖∞ log(nK)

N
(3.40)

Proof of Theorem 3.4.2. Let T ∗ be the the optimal T ∈PK in the definition of ∆v(Ω) in 3.36.

Then we prove the two results in 3.39 and 3.40 separately as following

• L (Ŵ ,W ): By the Sine-Theta theorem(for example Theorem 2 of [52]) and Theorem 3.6.6,
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under the given conditions there exists an orthogonal matrix Ω1 ∈ R(K−1)×(K−1) such that

the following holds

‖∆Ξ(Ω1)‖ = ‖Ξ̂2:KΩ1−Ξ2:K‖F

≤
C
√

K‖D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·‖

λK(D
ᵀ
V ·M

−1
V V DV ·)

(By conditions 3.15 and 3.26)

≤
C
√

K‖D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·‖

nρV0‖hV0‖1
(By Thoerem 3.6.6)

≤ CK3/2

ρV0‖hV0‖1

√
‖hV ‖1

N

On the other hand under condition 3.27 and the assumption of the existence of pure docu-

ments, by Lemma 3.6.5 we have

√
n∆v(Ω

∗
1)≤

1√
K
‖∆Ξ(Ω

∗
1)‖ ≤

1√
K
‖∆Ξ(Ω1)‖ ≤

CK
ρV0‖hV0‖1

√
‖hV ‖1

N
→ 0

Then by applying Lemma 3.6.4 and Lemma 3.6.5 we have

L (Ŵ ,W ) ≤ LT ∗(Ŵ ,W )

≤ Cn‖∆Ξ(Ω
∗
1)‖ ≤Cn‖∆Ξ(Ω1)‖

≤ CnK3/2

ρV0‖hV0‖1

√
‖hV ‖1

N

• LT (Ŵi,Wi): By the row-wise bounds for singular vectors(for example Lemma 3.2 of [51])

and Theorem 3.6.6, under the given conditions there exists an orthogonal matrix Ω2 ∈

120



R(K−1)×(K−1) such that the following holds for any i ∈ [n]

[∆Ξ(Ω2)]i ≤
C
√

K

λ2(D
ᵀ
V ·M

−1
V V DV ·)

(‖D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·‖‖Ξi‖+

‖(D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·)ei‖)

(By conditions 3.15 and 3.26)

≤ C
√

K
nρV0‖hV0‖1

(‖D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·‖‖Ξi‖+

‖(D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·)ei‖)

≤ CK2

ρV0‖hV0‖1

√
‖hV ‖1‖Wi‖∞ log(nK)

Nn

Then by applying Lemma 3.6.4 and Lemma 3.6.5 we have

LT ∗(Ŵi,Wi) ≤ C
√

n[∆Ξ(Ω
∗
2)]i ≤C

√
n[∆Ξ(Ω2)]i

≤ CK2

ρV0‖hV0‖1

√
‖hV ‖1‖Wi‖∞ log(nK)

N

3.4.3 Analysis of the non-informative words screening statistics ŝ

We proposed to use statistics ŝ to screen out the set of non-informative words Vs from the remaining

set of informative words V . remember the jth entry of ŝ and it’s population counterpart s are

defined as following

ŝ j = n
‖d̂ j‖2

‖d̂ j‖21
−1, s j = n

‖d j‖2

‖d j‖21
−1

Then we define the set of selected words based on the thresholding ŝ at t as

V̂t = { j ∈ [p] : ŝ j > t}

We also introduce δ j = a j/‖a j‖1−1K/K for any j ∈ [p]. Then we have the following theorem.
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Theorem 3.4.3. Suppose conditions 3.15, 3.28, 3.16 and 3.21 holds. Denote the following subset

of I ∈ [p] for a constant c1 < 1

I = { j ∈ [p] : Nh j ≥ c1}

And suppose we have the following conditions

• There exists a constant c2 satisfying c2/(4c2)>C/c1, where constants c and C are the ones

appeared in conditions 3.15 and 3.28 and Lemma 3.6.13, such that the following holds

min
j∈I∩V0

‖δ j‖2 ≥ c2 (3.41)

•

min
j∈I \V0

Nh j→ ∞ (3.42)

For any constant δ ∈ (0,1), denote

tδ =

[
max

j∈I \V0

1
Nh j

(
K

√
Nh j log(np)

n
+1

)]1−δ

Then the following holds with probability at least 1−o(n−3)

V0 ⊂ V̂tδ ⊂ V0∪ (V0∪I )c

Proof of Theorem 3.4.3. It is enough to show that under the given conditions each of the following

is true with probability at least 1−o(n−3)

V0 \I ⊂ V̂tδ , V0∩I ⊂ V̂tδ , (I \V0)∩ V̂tδ = φ

Then we prove each of the above statements separately.
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• V0 \I ⊂ V̂tδ : Notice by plugging in a = 2/(1+ c1) into Corollary 3.6.17, since c1 < 1, we

have with probability at least 1−o(n−3) the following holds for any j ∈ V0 \I

ŝ j ≥
1

aNh j
−1≥ 1+ c1

2c1
−1 =

1− c1
2c1

Since the RHS of the above inequality is a positive constant while tδ → 0, we have V0 \I ⊂

V̂tδ .

• V0∩I ⊂ V̂tδ : Notice by Lemma 3.6.12, under conditions 3.15, 3.28 and 3.41, we have the

following holds for any j ∈ V0∩I ⊂ V̂tδ

s j =
K

(1+KWᵀ
δ j)2 δ

ᵀ
j Σ
∗
W δ j

≥ K
(1+KWᵀ

δ j)2 λmin(Σ
∗
W )‖δ j‖2

≥ K
(1+KWᵀ

δ j)2
c2
c

≥ K
2+2K2(Wᵀ

δ j)2
c2
c

≥ K
2+2K2‖δ j‖2‖W‖2

c2
c

≥ K
2+2K2‖W‖1‖W‖∞

c2
c

(Since ‖W‖∞ = ‖W‖∞/n)

≥ K
2+2K2‖W‖1‖W‖∞

c2
c

≥ K
2+2cK

c2
c

≥ c2
4c2

On the other hand by Lemma 3.6.13 and by the definition of I , the following holds with
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probability at least 1−o(n−3) for any j ∈ V0∩I ⊂ V̂tδ

|ŝ j− s j| ≤C
1

Nh j

(
K

√
Nh j log(np)

n
+1

)
≤ C

c1

Finally by the constraint on c2 that c2/(4c2) > C/c1, we have with probability at least 1−

o(n−3) the following holds for any j ∈ V0∩I ⊂ V̂tδ

ŝ j ≥ s j−|ŝ j− s j| ≥
c2

4c2 −
C
c1

Notice again the RHS of the above inequality is a positive constant while tδ → 0, we have

V0∩I ⊂ V̂tδ .

• (I \V0)∩ V̂tδ = φ : Notice for j /∈ V0 we have s j = 0. By Lemma 3.6.13 the following holds

with probability at least 1−o(n−3) for any j ∈I \V0

ŝ j = |ŝ j− s j| ≤C
1

Nh j

(
K

√
Nh j log(np)

n
+1

)

By condition 3.42 we have ŝ j/tδ → ∞, which indicates (I \V0)∩ V̂tδ = φ .

By putting all the above arguments together we have the desired conclusion.

3.5 Real data application

In this section, we conduct several experiments on the wine data set and the reuters data set from the

nltk.corpus package in Python. We also used the stopwords data set from the nltk.corpus

pakcage in Python as the default set of non-informative words. To pre-process the data, for the wine

data set we eliminate the words with frequency less than 4 and the documents with length less than

16 across the corpus, and for the reuters data set we eliminate the words with frequency less than

6 and the documents with length less than 6 across the corpus. Then the the resulting vocabulary

size and document size of the wine data set is (2963,4977), and those of the reuters data set are
124



(6940,10726).

3.5.1 Comparison of normalization schemes

In this section we compare the performance of different normalization schemes. We first remove

the default set of non-informative words from the two corpus data sets, then the vocabulary sizes

of wine data set and reuters data set reduce to 2853 and 6866 respectively. Then we considered 4

normalization schemes D, M−1/2D, CD and Diag(id f )CD. To make comparisons, we don’t have

a true underlying W for each real data set. But since the estimation of W is based on the RSVs

for each normalization scheme, to compare the resulting W estimators, it is equivalent to compare

the "quality" of RSVs in these schemes. On the other hand we have some known cluster labels for

both data sets, then a natural way to measure the "quality" of RSVs is to measure their ability to

separate the documents in each cluster under these cluster labels. We therefore argue that the more

significant the clustering phenomenon in the rows of RSVs under these cluster labels the better

estimate of W would likely to be yielded. We firstly visualize each pair of the top 6 RSVs of each

normalization scheme, for the wine data set with taster names or country origins as cluster labels,

and the reuters data set with topics as cluster labels. These plots are shown in Table 3.2, Table

3.3 and Table 3.4 respectively. We can see from these 3 sets of plots that the in the normalization

schemes D and CD, the clusters are mostly mixed with each other, while M−1/2D and Diag(id f )CD

yield much more isolated clusters. It is interesting to notice that in case of the reuters data set, the

plots of M−1/2D are very different from those of Diag(id f )CD. It seems the RSVs of M−1/2D

contains more information about the clusters of "earn"(black) and "grain"(blue), while those of

Diag(id f )CD contains more information about the clusters of "acq"(red) and "trade"(purple).

Then we make more quantitative comparisons of the clustering significance among these nor-

malization schemes. First we introduce some notations. For any corpus data set, suppose we

have a cluster label, under which a subset of the corpus data set can be partitioned into T clusters

C = {Ct}t∈[T ](Notice there can be overlaps among the these clusters), and we also have a set of
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vectors V with each row being an embedding of a document in the corpus. More specifically V can

be the RSVs or the final learned result Ŵ . Then we define the following Rayleigh quotient(RQ),

that is the between-over-within-cluster error ratio, for V under partition C as following

RQC (V ) =
∑s,t∈[T ],s 6=t

(
∑i1∈Cs,i2∈Ct ‖vi1− vi2‖

2
)
/(|Cs||Ct |)

∑t∈[T ]
(
∑i1,i2∈Ct ,i2>i1 ‖vi1− vi2‖2

)
/[|Ct |(|Ct |−1)]

(3.43)

Then the higher RQC (V ) is, the more compact the clusters in the rows of V , the more separated

between those clusters. And therefore this means the better the rows of V are aligning with the

cluster labels, the better quality of the learned embeddings in V .

Notice in this definition, there can be a miss match between the dimension of V and the number

of clusters in C . For example in the wine data set, suppose the pLSI model holds and there are 5

true underlying topics, then we would use the top 5 RSVs Ξ[5] as V . On the other hand if we use

the taster names as cluster labels, it is both possible that only the membership information about

the top 3 or top 7 largest clusters is reflected in the topics. So it is reasonable to consider RQC (V )

with different pairs of number of clusters in C and dimension of V , with the former either smaller

or larger than the later.

Then conduct experiments on both the wine data set with taster names as cluster labels and the

reuters data set with topics as cluster labels, and the results of RQC (V ) with differently defined C

and V are shown in Figure 3.5. More specifically the first row of plots are based on the wine data

set with taster names as cluster labels, and in the left plot we fix C being the top 7 largest taster

name clusters, and plot RQC (V ) against the number of top RSVs used to define V , and in the right

plot we fix V to be the top 7 RSVs, and RQC (V ) against the number of top largest taster name

clusters used to define C . In the second row of plots we do the same thing based on the reuters

data set with topics as cluster labels. Notice in the first column of plots, the lines that correspond to

M−1/2D start from K = 2 since the first RSV of it is all non-informative and we therefore ignored

them. It can be seen that our proposed scheme M−1/2D always performs the best based in terms

of a large range of differently defined RQs.
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Table 3.2: The plots of RSV-pairs of matrices D, M−1/2D, CD and Diag(id f )CD based on the
wine data set. The taster names are used as cluster labels, and the top 4 most frequent clusters are
colored differently. More specifically, black is "" which means missing, red is "Roger Voss", green
is "Michael Schachner" and blue is "Kerin O’Keefe".

Comparing dimensions D M−1/2D CD Diag(id f )CD

Ξ3 v.s. Ξ2

Ξ4 v.s. Ξ2

Ξ5 v.s. Ξ2

Ξ6 v.s. Ξ2

Ξ4 v.s. Ξ3

Ξ5 v.s. Ξ3

Ξ6 v.s. Ξ3

Ξ5 v.s. Ξ4

Ξ6 v.s. Ξ4

Ξ6 v.s. Ξ5
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Table 3.3: The plots of RSV-pairs of matrices D, M−1/2D, CD and Diag(id f )CD based on the wine
data set. The country origins are used as cluster labels, and the top 4 most frequent clusters are
colored differently. More specifically, black is "US", red is "Italy", green is "France" and blue is
"Spain".

Comparing dimensions D M−1/2D CD Diag(id f )CD

Ξ3 v.s. Ξ2

Ξ4 v.s. Ξ2

Ξ5 v.s. Ξ2

Ξ6 v.s. Ξ2

Ξ4 v.s. Ξ3

Ξ5 v.s. Ξ3

Ξ6 v.s. Ξ3

Ξ5 v.s. Ξ4

Ξ6 v.s. Ξ4

Ξ6 v.s. Ξ5
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Table 3.4: The plots of RSV-pairs of matrices D, M−1/2D, CD and Diag(id f )CD based on the
reuters data set. The document topics are used as cluster labels, and the top 7 most frequent clusters
are colored differently. More specifically, black is "earn", red is "acq", green is "money-fx", blue
is "grain", light blue is "crude", purple is "trade" and yellow is "interest".

Comparing dimensions D M−1/2D CD Diag(id f )CD

Ξ3 v.s. Ξ2

Ξ4 v.s. Ξ2

Ξ5 v.s. Ξ2

Ξ6 v.s. Ξ2

Ξ4 v.s. Ξ3

Ξ5 v.s. Ξ3

Ξ6 v.s. Ξ3

Ξ5 v.s. Ξ4

Ξ6 v.s. Ξ4

Ξ6 v.s. Ξ5
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(a) The wine data set, with C being the top 7
taster name clusters and changing the number
of top RSVs used as V .

(b) The wine data set, with V being the top 7
RSVs and changing the number of taster name
clusters used to define C .

(c) The reuters data set, with C being the top
7 largest topic clusters and changing the num-
ber of top RSVs used as V .

(d) The reuters data set, with V being the top 7
RSVs and changing the number of topic clus-
ters used to define C .

Figure 3.5: The plots of RQC (V ) with differently defined C and V , based on the wine data set and
the reuters data set. Black is D, red is M−1/2D, green is CD and blue is Diag(id f )CD.
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3.5.2 Non-informative words selection

In this section we compared the top non-informative words selected based on different statistics:

Our proposed screening statistics s, the t f .id f scores, the likelihood ratio statistics LR and the χ2

statistics. Then the top 20 words selected by each of the statistics based on the wine data set and the

reuters data set are shown in Table 3.5 and Table 3.6 respectively. The selected non-informative

words by s and t f .id f both contain not only many human-recognizable non-informative words,

for example "the", "and" etc, but also many corpus-dependent non-informative words, for example

"wine" and "flavors" for the wine data set, "compani" and "billion" for the reuters data set. On

the other hand the non-informative words selected by LR and χ2 statistics are mostly very low-

frequency words. The underlying reason for this phenomenon is that for each word, these two

statistics are basically testing whether all the documents share the same populational frequency. In

reality the documents in the corpus are often composed of low-frequency but meaningful words and

high-frequency non-informative words. Then the these testing statistics would often falsely select

the low-frequencies but meaningful words, since it is hard to reject all populational frequency

being 0 under this low frequency situation.

3.5.3 Non-informative words removal for different normalizations

In this section we combine the effects from non-informative words removal and normalization, by

comparing how the RQs change as we remove the non-informative words according to different

statistics under different normalization schemes. Three experiments are conducted on the wine data

set with Ξ1:14 as V and the top 2-to-4 taster name clusters as C , the wine data set with Ξ1:14 as V

and the top 2-to-4 country origin clusters as C , and the reuters data set with Ξ1:20 as V and the top

7 topic clusters as C . Then the results of the three experiments are shown in Figure 3.6, Figure 3.7

and Figure 3.8. In each of these plots, the top left is D, the top right is M−1/2D, the bottom left

is CD and the bottom right is Diag(id f )CD. And in each subplot of a specific normalization, the

green circles, the blue triangles, the light blue crosses and the pink crosses are representing the

resulting RQs when removing non-informative words sorted out through s, t f .id f , LR and χ2. The
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Table 3.5: Top 20 non-informative words selected by 4 different statistics, namely s, t f .id f , LR
and χ2, based on the wine data set.

Word
rank

s t f .id f LR χ2

1 and in mushroomy this
2 this it feral and
3 the is extraordinary undoubtedly
4 a to undoubtedly extraordinary
5 of wine excessive howell
6 with its excels released
7 is on didnt flavors
8 wine fruit noirs excels
9 flavors with performs excessive
10 in that ava truly
11 to from admirable didnt
12 it flavors tawny entire
13 aromas aromas australia begin
14 fruit of satin of
15 palate the ageability a
16 its palate lineup surely
17 finish but pit ageability
18 on acidity los admirable
19 acidity finish colors tawny
20 that black string australia
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Table 3.6: Top 20 non-informative words selected by 4 different statistics, namely s, t f .id f , LR
and χ2, based on the reuters data set.

Word
rank

s t f .id f LR χ2

1 the the leap leap
2 said mln fragil spotlight
3 and dlr verg player
4 for and cure fragil
5 dlr pct intransig nudg
6 mln said slacken verg
7 from billion pare throw
8 year loss backdrop steve
9 that that discredit sophist
10 net bank dollar-

denomin
era

11 compani net postur tremend
12 with for beat downsid
13 shr share flurri root
14 inc u.s. bode unwant
15 will year carol shrug
16 which from eve chri
17 but will forg inroad
18 share shr induc inde
19 note trade spiral undoubtedli
20 would oil contradict cure
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red line in each plot is the value of RQ when the default set of non-informative words are used.

We can see from these three plots that our proposed normalization scheme M−1/2D, the top

right subplot in each figure, performs the best overall. And this is the only normalization scheme

among the four that enjoys significant benefits from removing non-informative words according

our proposed statistics ŝ or t f .id f . These observations matches with our theoretical arguments

about the screening step and normalization step in Section 3.3. You may also observe from the top

right subplot in Figure 3.6 that removing non-informative words according to ŝ or t f .id f produces

similar results, while in the same subplots in Figure 3.7 and Figure 3.8, removing non-informative

words according to ŝ produces significantly better results than that according to t f .id f .

3.5.4 Comparisons of different W estimation procedures

In this section we compare different W estimation procedures based on the two data sets. We

conduct experiments based on the similar idea in Subsection 3.5.3. More specifically, for each

estimator Ŵ we compute the RQs RQV (Ŵᵀ) for both data sets. Again for the wine data set, we

assume K = 14 and C being the top 2-to-4 taster name clusters, and for the reuters data set,

we assume K = 20 and C being set to the top 7 topic clusters. Then we consider the following W

estimation procedures.

• LDA: Direct application of LDA(Latent dirichlet allocation).

• LDA with default non-informative words removal: Application of LDA after the default set

of non-informative words have been removed.

• tf.idf : Compute the top K RSVs of the t f .id f matrix Diag(id f )CD, and perform the em-

phvertex hunting algorithm in [51] on these RSVs to estimate W .

• tf.idf with default non-informative words removal: Compute the tf.idf W estimation after the

default set of non-informative words have been removed.

134



Figure 3.6: The plots of RQC (Ξ1:14)
versus removed proportions for the wine data set, with C

being set to the top 2-to-4 taster name clusters. The 4 normalization schemes are D(top left),
M−1/2D(top right), CD(bottom left) and Diag(id f )CD(bottom right), and in each subplot the green
circles, the blue triangles, the light blue crosses and the pink crosses represent the resulting RQs
when removing non-informative words sorted out through s, t f .id f , LR and χ2. The red line in
each plot is the value of RQ when the default set of non-informative words are used.
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Figure 3.7: The plots of RQC (Ξ1:14)
versus removed proportions for the wine data set, with C

being set to the top 2-to-4 country origin clusters. The 4 normalization schemes are D(top left),
M−1/2D(top right), CD(bottom left) and Diag(id f )CD(bottom right), and in each subplot the green
circles, the blue triangles, the light blue crosses and the pink crosses represent the resulting RQs
when removing non-informative words sorted out through s, t f .id f , LR and χ2. The red line in
each plot is the value of RQ when the default set of non-informative words are used.
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Figure 3.8: The plots of RQC (Ξ1:20)
versus removed proportions for the reuters data set, with C

being set to the top 7 topic clusters. The 4 normalization schemes are D(top left), M−1/2D(top
right), CD(bottom left) and Diag(id f )CD(bottom right), and in each subplot the green circles,
the blue triangles, the light blue crosses and the pink crosses represent the resulting RQs when
removing non-informative words sorted out through s, t f .id f , LR and χ2. The red line in each plot
is the value of RQ when the default set of non-informative words are used.
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• MD: Compute the top 2− to−K RSVs of the proposed matrix M−1/2D, and perform the

emphvertex hunting algorithm in [51] on these RSVs to estimate W .

• MD with default non-informative words removal: Compute the MD W estimation after the

default set of non-informative words have been removed.

• MD with s-based non-informative words removal: Compute the MD W estimation after the

non-informative words selected based on the proposed screening statistics s have been re-

moved.

Then the results are shown in Table 3.7. We can see that our proposed procedures MD with s-based

non-informative words removal yields the best performance in both cases.

Remark. In the application of MD with s-based non-informative words removal procedures, we

need to determine the thresholds for the screening statistics s adaptively. This alone can be a

problem for future investigations, and in fact similar problems has studied in many recent works,

see [53] for more detail. Here since this is not our primary concern, we implement a simple

heuristic kmeans-based approach. More specifically, we set a a grid of remove proportions around

0, and for each remove proportion value δ we remove the δ proportion of words based on the s

statistics, then we conduct kmeans on Ξ2:K assuming there are K underlying clusters, the top 2−

to−K RSVs of M−1/2D, and then we compute the RQC (Ξ2:K) with C being the K clusters learned

through kmeans. Finally we choose the remove proportion that yields the smallest RQC (Ξ2:K).

Notice here the kmeans objective is different from the rC (Ξ2:K) defined in 3.43, so the overfitting

would be less of a problem([53]).
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Table 3.7: The RQV (Ŵᵀ) for different W estimation procedures. For the wine data set, we assume
K = 14 and C being the top 2-to-4 taster name clusters, and for the reuters data set, we assume
K = 20 and C being set to the top 7 topic clusters.

W estimation procedure The wine data set The reuters data
set

LDA 1.21918 4.075994
LDA with default non-informative words
removal

1.325853 4.210356

tf.idf 1.121617 3.265342
tf.idf with default non-informative words
removal

1.290712 3.90164

MD 1.315061 3.580676
MD with default non-informative words
removal

1.480454 3.506802

MD with s-based non-informative words
removal

1.619614 4.696867

3.6 Proofs

3.6.1 Additional Lemmas for Section 3.3

Lemma 3.6.1. Suppose vector a ∈ Rn, we have the following

t∗ =
(aᵀ1n)

2

n2 = arg min
t∈R+

‖aaᵀ− t1n1
ᵀ
n‖F , ‖aaᵀ− t∗1n1

ᵀ
n‖F =

√
‖a‖4− (aᵀ1n)4

n2

Proof of Lemma 3.6.1. Define f (t) to be the square of the objective, that is

f (t) = ‖aaᵀ− t1n1
ᵀ
n‖2F

= Tr
[(

aaᵀ− t1n1
ᵀ
n
)2]

= ‖a‖4−2t(aᵀ1n)
2 + t2n2

By ∂ f (t)/∂ t = 0 we have

t∗ =
(aᵀ1n)

2

n2
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With this we can compute

f (t∗) =

∥∥∥∥∥aaᵀ− (aᵀ1n)
2

n2 1n1
ᵀ
n

∥∥∥∥∥
2

F

= ‖a‖4− (aᵀ1n)
4

n2

Lemma 3.6.2. Suppose vector a ∈ Rn, we have the following

t∗ =
‖a‖2

n
= arg min

t∈R+

‖aaᵀ− t1n1
ᵀ
n‖, ‖aaᵀ− t∗1n1

ᵀ
n‖= ‖a‖

√
‖a‖2− (aᵀ1n)2

n

Proof of Lemma 3.6.2. Notice when a and 1 are linearly dependent, the conclusion is trivial. Oth-

erwise we need to study the eigen-decomposition of aaᵀ−t1n1
ᵀ
n . For any eigen-pair of this matrix

as (λ ,v), since this is a rank-2 matrix, and v must be a linear combination of a and 1n. Therefore

we denote

v = xa+ y1n

Then by the definition of eigen-decomposition we have

(aaᵀ− t1n1
ᵀ
n)v = λv

⇐⇒ (aaᵀ− t1n1
ᵀ
n)(xa+ y1n) = λ (xa+ y1n)

⇐⇒ (x‖a‖2 + y(aᵀ1n)−λx)a− (xt(aᵀ1n)+ ytn+λy)1n = 0

Since a and 1 are linearly independent, which also indicates λ > 0(Otherwise matrix aaᵀ− t1n1
ᵀ
n

is zero matrix, which contradicts with the assumption that a and 1n are linearly independent). So
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the two coefficients in front of a and 1 on the L.H.S must be 0, that is

x‖a‖2 + y(aᵀ1n)−λx = 0 (3.44)

xt(aᵀ1n)+ ytn+λy = 0 (3.45)

Since λ 6= 0, we can cancel by the above two equations and get

(aᵀ1n)u2 +(‖a‖2 + tn)u+ t(aᵀ1n) = 0

where we have denote u = y/x. By solving the above equation for u we get two solutions

u∗1 =
−(‖a‖2 + tn)+

√
(‖a‖2 + tn)2−4t(aᵀ1n)2

2(aᵀ1n)

u∗2 =
−(‖a‖2 + tn)−

√
(‖a‖2 + tn)2−4t(aᵀ1n)2

2(aᵀ1n)

Plug this back into Equation 3.44 we have

λ
∗
1 (t) = ‖a‖2 +u∗1(a

ᵀ1n) =
1
2

(
‖a‖2− tn+

√
(‖a‖2 + tn)2−4t(aᵀ1n)2

)
(3.46)

λ
∗
2 (t) = ‖a‖2 +u∗2(a

ᵀ1n) =
1
2

(
‖a‖2− tn−

√
(‖a‖2 + tn)2−4t(aᵀ1n)2

)
(3.47)

Here we add (t) after λ∗1 and λ∗2 to highlight the fact that they vary with t. Now we claim that both

λ∗1 (t) and λ∗2 (t) decrease with t. In order to show this, notice

∂λ∗1 (t)
∂ t

=
1
2

(
−n+

n(‖a‖2 + tn)−2(aᵀ1n)
2√

(‖a‖2 + tn)2−4t(aᵀ1n)2

)
∂λ∗2 (t)

∂ t
=

1
2

(
−n− n(‖a‖2 + tn)−2(aᵀ1n)

2√
(‖a‖2 + tn)2−4t(aᵀ1n)2

)

In order to show that both derivatives are negative in the domain t ∈ R+, it is enough to show

the following, which can be shown to hold by the Cauchy-Schwarz inequality after a series of
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equivalent transformation.

n≥

∣∣∣∣∣ n(‖a‖2 + tn)−2(aᵀ1n)
2√

(‖a‖2 + tn)2−4t(aᵀ1n)2

∣∣∣∣∣
⇐⇒ n2((‖a‖2 + tn)2−4t(aᵀ1n)

2)≥ (n(‖a‖2 + tn)−2(aᵀ1n)
2)2

⇐⇒ n‖a‖2 ≥ (aᵀ1n)
2

(Which holds by the Cauchy-Schwarz inequality)

So we have both λ∗1 (t) and λ∗2 (t) decrease with t on t ∈ R+. On the other hand notice λ∗1 (0) =

‖a‖2, λ∗2 (0) = 0, we know that the l2 norm of the original matrix, max(|λ∗1 (t)|, |λ
∗
2 (t)|) attains its

minimum when λ∗1 (t) =−λ∗2 (t), by plugging in the formulas for λ∗1 (t) and λ∗2 (t) in Equation 3.46

and Equation 3.47 we have the equation for the optimal t∗

‖a‖2 = t∗n⇐⇒ t∗ =
‖a‖2

n

And the objective under t∗ becomes

‖aaᵀ− t∗1n1
ᵀ
n‖= |λ∗1 (t

∗)|= |λ∗2 (t
∗)|= ‖a‖

√
‖a‖2− (aᵀ1n)2

n

3.6.2 Additional Lemmas for Subsection 3.4.1

Lemma 3.6.3. Suppose W (s) is defined as in equation 3.32. Then as long as NK‖hV0‖1→ 0 and

c < 1/2 we would have W (s) ∈Φn,N,‖hV0‖1,K
(c,ρV0).
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Proof of Lemma 3.6.3. We only need to show that λmin

(
1
nW (s)(W (s))ᵀ

)
≥ c. Notice

λmin

(
1
n

W (s)(W (s))ᵀ
)

= λmin

(
1
n

[
W1:(n−m)W

ᵀ
1:(n−m)

+(W(n−m+1):n +αΣ
(s))(W(n−m+1):n +αΣ

(s))ᵀ
])

= λmin

(
1
n

[
WWᵀ+αW(n−m+1):nΣ

(s)ᵀ+αΣ
(s)Wᵀ

(n−m+1):n +α
2
Σ
(s)

Σ
(s)ᵀ
])

(By Weyl’s inequality)

≥ λmin

(
1
n

WWᵀ
)
− 2α

n
‖W(n−m+1):n‖‖Σ

(s)‖− α2

n
‖Σ(s)‖2

(It’s easy to show that ‖W(n−m+1):n‖ ≤
√

Km/K,‖Σ(s)‖ ≤
√

Km)

≥ dn/(2K)e/n− 2αm
n
− α2mK

n

Then as long as α → 0 and α2K→ 0, which is guaranteed by NK‖hV0‖1→ 0, we have

λmin

(
1
n

W (s)(W (s))ᵀ
)
≥ c

given c < 1/2.

3.6.3 Additional Lemmas for Subsection 3.4.2

Lemma 3.6.4 (Non-stochastic bound of Ŵ −W ). For any Ω ∈OK−1 that satisfies
√

n∆v(Ω)→ 0,

let T ∗ be the optimal T ∈PK in the definition of ∆v(Ω) in 3.36. Then under conditions 3.15, we

have the following

LT ∗(Ŵ ,W ) ≤ 2
√

2cn
[
‖∆Ξ(Ω)‖2 +

√
nK∆v(Ω)

]
LT ∗(Ŵi,Wi) ≤ 2

√
2cn
[
[∆Ξ(Ω)]i +

√
K∆v(Ω)

]
, for ∀i ∈ [n]

Proof of lemma 3.6.4. Without loss of generality we assume T ∗ is identity. Fix any Ω∈OK−1 that
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satisfies
√

n∆v(Ω)→ 0. Notice following the notations defined in the proposed algorithm, we have

Wᵀ =

[
Ξ2:K ,

1√
n1n

][
V,

1√
n
1K

]−1
≡
[

Ξ2:K ,
1√
n
1n

]
Q−1

Π̂ =

[
Ξ̂2:K ,

1√
n1n

][
V̂ ,

1√
n
1K

]−1

=

[
Ξ̂2:KΩ,

1√
n1n

][
V̂ Ω,

1√
n
1K

]−1
≡
[

Ξ̂2:KΩ,
1√
n
1n

]
[Q̂(Ω)]−1

Then we have the following results regarding to Q and Q̂(Ω) through simple algebra.

• Q: By the definition we have

QQᵀ = (WWᵀ)−1 =
K
n

Σ
−1
W

Under condition 3.15, this indicates

√
K
cn
≤ ‖Q−1‖−1 ≤ ‖Q‖ ≤

√
cK
n

• Q̂(Ω)−Q: By the definition of ∆v(Ω) the following is straightforward

‖Q̂(Ω)−Q‖ ≤ ‖Q̂(Ω)−Q‖1 ≤
√

K∆v(Ω) (3.48)

• Q̂(Ω): By Weyl’s inequality, above results in equations 3.6.3 and 3.48, we have

‖[Q̂(Ω)]−1‖−1 ≥ ‖Q−1‖−1−‖Q̂(Ω)−Q‖ ≥
√

K
cn
−
√

K∆v(Ω)

‖[Q̂(Ω)]‖ ≤ ‖Q‖+‖Q̂(Ω)−Q‖ ≥
√

cK
n

+
√

K∆v(Ω)

Then under the assumption that
√

n∆v(Ω)→ 0, we have the following

√
K

2cn
≤ ‖[Q̂(Ω)]−1‖−1 ≤ ‖Q̂(Ω)‖ ≤

√
2cK

n
(3.49)
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With these in hand, we are ready to analyze the quantities of interest, LT ∗(Ŵ ,W ) and LT ∗(Ŵi,Wi).

Firstly under the notations in the proposed algorithm we have

‖Ŵi−Wi‖1 ≤ ‖Ŵi− π̂
∗
i ‖1 +‖π̂

∗
i −Wi‖1

= ‖(1−‖π̂∗i ‖1)Ŵi‖1 +‖π̂∗i −Wi‖1

= |1−‖π̂∗i ‖1|+‖π̂
∗
i −Wi‖1

(By the triangle inequality)

≤ 2‖π̂∗i −Wi‖1

(Since all the entries of Wi are non-negative)

≤ 2‖π̂i−Wi‖1

Then we analyze LT ∗(Ŵ ,W ) and LT ∗(Ŵi,Wi) separately as following.

• LT ∗(Ŵi,Wi): By the definitions we have

LT ∗(Ŵi,Wi) = ‖Ŵi−Wi‖1

≤ 2‖π̂i−Wi‖1

= 2
∥∥∥[Ξ̂i(2:K)Ω,1/

√
n][Q̂(Ω)]−1− [Ξi(2:K),1/

√
n]Q−1

∥∥∥
1

≤ 2
{∥∥∥[Ξ̂i(2:K)Ω−Ξi(2:K),0][Q̂(Ω)]−1

∥∥∥
1
+∥∥∥[Ξi(2:K),1/

√
n]([Q̂(Ω)]−1−Q−1)

∥∥∥
1

}
≤ 2

{√
K‖Ξ̂i(2:K)Ω−Ξi(2:K)‖‖[Q̂(Ω)]−1‖+

‖[Ξi(2:K),1/
√

n]Q−1‖1
√

K‖[Q̂(Ω)]−1‖‖Q̂(Ω)−Q‖
}

(Notice by definition [Ξi(2:K),1/
√

n]Q−1 =Wi)

≤ 2
√

K‖[Q̂(Ω)]−1‖
{
[∆Ξ(Ω)]i +‖Q̂(Ω)−Q‖

}
(By the results in 3.48and 3.49)

≤ 2
√

2cn
{
[∆Ξ(Ω)]i +

√
K∆v(Ω)

}
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• LT ∗(Ŵ ,W ): The result about LT ∗(Ŵ ,W ) can be obtained similarly through the following.

LT ∗(Ŵ ,W ) =
n

∑
i=1
‖Ŵi−Wi‖1

≤ 2
n

∑
i=1

{√
K‖Ξ̂i(2:K)Ω−Ξi(2:K)‖‖[Q̂(Ω)]−1‖+

‖[Ξi(2:K),1/
√

n]Q−1‖1
√

K‖[Q̂(Ω)]−1‖‖Q̂(Ω)−Q‖
}

≤ 2
√

2cn
[√

n‖∆Ξ(Ω)‖+n
√

K∆v(Ω)
]

Lemma 3.6.5 (Vertex hunting lemma). Under the conditions of Theorem 3.4.2, as well as the

assumption of existence of pure documents per topic, there exists vertex hunting algorithms such

that the following holds

√
nK∆v(Ω

∗
1) ≤ C‖∆Ξ(Ω

∗
1)‖

√
K∆v(Ω

∗
2) ≤ C min

i∈[n]
[∆Ξ(Ω

∗
2)]i

Proof of Lemma 3.6.5. The algorithms such as OVH and GVH that are proposed in [51] satisfies

the claimed properties under certain assumptions of existence of pure documents per topic. See

the Lemma 3.1 in [51], or Lemma 2.6.1 in Chapter 2 for more detail.

3.6.4 Analysis of D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·

The main theorem regarding to the error D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV · is stated in Theorem 3.6.6.

Theorem 3.6.6. Under conditions 3.15 through 3.21, 3.22 and 3.24, there exists a constant C that

does not depend of N,n or p such that with probability at least 1−o(n−3) the following holds

‖D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·‖ ≤CnK

√
‖hV ‖1

N
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If in addition we have conditions 3.23 and 3.25, there exists a constant C that does not depend of

N,n or p such that with probability at least 1−o(n−3) the following holds for any i ∈ [n]

‖(D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·)ei‖ ≤C

√
nK3‖hV ‖1‖Wi‖∞ log(nK)

N

Proof of Theorem 3.6.6. Notice we have the following decomposition

D̂ᵀ
V ·M̂

−1
V V D̂V ·−Dᵀ

V ·M
−1
V V DV ·

= (Dᵀ
V ·M̂

−1
V V DV ·−Dᵀ

V ·M
−1
V V DV ·)+(Dᵀ

V ·M̂
−1
V V ZV ·+Zᵀ

V ·M̂
−1
V V DV ·)+(Zᵀ

V ·M̂
−1
V V ZV ·)

= E1 +E2 +E3

Then we bound the quantities based on these 3 terms separately.

• E1: Notice DV · = AV ·W = ∑
K
k=1 AV kwᵀ

k . Then we have

E1 = Dᵀ
V ·M̂

−1
V V DV ·−Dᵀ

V ·M
−1
V V DV ·

= ∑
k,l∈[K]

wkAᵀ
V k

(
M̂−1

V V −M−1
V V

)
AV lw

ᵀ
l

= ∑
k,l∈[K]

wkwᵀ
l Aᵀ

V k

(
M̂−1

V V −M−1
V V

)
AV l

By equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2, under conditions 3.15 and

3.16 we have with probability at least 1−o(n−3) the following holds for ∀ j ∈ V

|M̂−1
j j −M−1

j j |=

∣∣∣∣∣M̂ j j−M j j

M̂ j jM j j

∣∣∣∣∣≤C

√
log(n)
Nnh3

j
(3.50)

With this we have the following bound on ‖E1‖ and ‖E1ei‖ for any i ∈ [n] with probability
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at least 1−o(n−3)

‖E1‖ =

∥∥∥∥∥∥ ∑
k,l∈[K]

wkwᵀ
l Aᵀ

V k

(
M̂−1

V V −M−1
V V

)
AV l

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ ∑
k,l∈[K]

wkwᵀ
l

∥∥∥∥∥∥ max
k,l∈[K]

∣∣∣Aᵀ
V k

(
M̂−1

V V −M−1
V V

)
AV l

∣∣∣
= n max

k,l∈[K]

∣∣∣Aᵀ
V k

(
M̂−1

V V −M−1
V V

)
AV l

∣∣∣
≤ C

√
n log(n)

N

√√√√ max
k,l∈[K]

[
∑
j∈V

h−3
j A2

jkA2
jl

]

≤ C

√
n log(n)

N

√√√√K3 max
k∈[K]

[
∑
j∈V

A jk

]

≤ CK2
√

n‖hV ‖1 log(n)
N

(3.51)

‖E1ei‖ =

∥∥∥∥∥∥ ∑
k,l∈[K]

wkwᵀ
l eiA

ᵀ
V k

(
M̂−1

V V −M−1
V V

)
AV l

∥∥∥∥∥∥
≤
√

n max
k,l∈[K]

∣∣∣Aᵀ
V k

(
M̂−1

V V −M−1
V V

)
AV l

∣∣∣
≤ CK2

√
‖hV ‖1 log(n)

N
(3.52)

• E2: We first analyze ‖E2‖. Again by DV · = AV ·W = ∑
K
k=1 AV kwᵀ

k , we have

‖E2‖ ≤ 2
∥∥∥Dᵀ

V ·M̂
−1
V V ZV ·

∥∥∥= 2

∥∥∥∥∥ K

∑
k=1

wkAᵀ
V kM̂−1

V V ZV ·

∥∥∥∥∥
≤ 2K max

k∈[K]
‖wk‖‖A

ᵀ
V kM̂−1

V V ZV ·‖

(By condition 3.15)

≤ 2
√

cnK max
k∈[K]

‖(M̂−1
V V AV k)

ᵀZV ·‖

≤ 2
√

cnK

[
max
k∈[K]

‖(M−1
V V AV k)

ᵀZV ·‖+ max
k∈[K]

‖((M̂−1
V V −M−1

V V )AV k)
ᵀZV ·‖

]
≡ 2

√
cnK[E21 +E22]
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Notice by Lemma 3.6.7 and Lemma 3.6.10, under condition 3.22 the upper bound of E21 is

larger than that of E22, that is

√
nK‖hV ‖1

N
≥

√
|V |K‖hV ‖1 log(nK)

N2hmin
max

(
K,
|V |

Nhmin

)
(3.53)

This indicates with probability at least 1−o(n−3), we have

‖E2‖ ≤CnK

√
‖hV ‖1

N
(3.54)

Then we analyze E2ei for any i ∈ [n]. Notice

‖E2ei‖ ≤ ‖Dᵀ
V ·M̂

−1
V V ZV ·ei‖+‖Z

ᵀ
V ·M̂

−1
V V DV ·ei‖

=

∥∥∥∥∥ K

∑
k=1

wkAᵀ
V kM̂−1

V V ZV ·ei

∥∥∥∥∥+∥∥∥Wᵀ
i Aᵀ

V ·M̂
−1
V V ZV ·

∥∥∥
≤ K max

k∈[K]
‖wk‖|A

ᵀ
V kM̂−1

V V ZV i|+

∥∥∥∥∥ K

∑
k=1

WkiA
ᵀ
V kM̂−1

V V ZV ·

∥∥∥∥∥
(By condition 3.15)

≤
√

cnK max
k∈[K]

[
|Aᵀ

V kM−1
V V ZV i|+ |A

ᵀ
V k(M̂

−1
V V −M−1

V V )ZV i|
]
+

max
k∈[K]

‖(M̂−1
V V AV k)

ᵀZV ·‖

(By the analysis of ‖E2‖)

≤
√

cnK max
k∈[K]

|Aᵀ
V kM−1

V V ZV i|+ max
k∈[K]

|Aᵀ
V k(M̂

−1
V V −M−1

V V )ZV i|+E21 +E22

≡
√

cnK[E2i1 +E2i2]+E21 +E22

By Lemma 3.6.9 and Lemma 3.6.10, it’s easy to see that the upper bound of
√

nKE2i1 dom-

inates that of E21. And on the other hand E21 dominates E22 under condition 3.22 by our

previous argument. We only need to show E2i1 dominates E2i2 in order to show that the up-

per bound of ‖E2ei‖ is dominated by
√

nKE2i1. Notice this is in fact guaranteed by condition
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3.23, that is

K

√
‖hV ‖1‖Wi‖∞

N
log(nK)≥

√
|V |K‖hV ‖1 log(nK)

N2nhmin
max

(
K‖Wi‖∞,

|V |
Nhmin

)

This indicates with probability at least 1−o(n−3), we have

‖E2ei‖ ≤C

√
nK3‖hV ‖1‖Wi‖∞

N
log(nK) (3.55)

• E3: Notice by equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2 we have with

probability at least 1−o(n−3) the following holds

‖E3‖= ‖Z
ᵀ
V ·M̂

−1
V V ZV ·‖ ≤ ‖M

1/2
V V M̂−1

V V M1/2
V V ‖‖M

−1/2
V V ZV ·‖2 ≤

1
c
‖Zᵀ

V ·H
−1
V V ZV ·‖

Then with Condition 3.21, by applying Lemma 3.6.8 we have with probability at least 1−

o(n−3) the following holds

‖E3‖ ≤
1
c
‖Zᵀ

V ·H
−1
V V ZV ·‖ ≤C

(
K
√

n|V |+K|V |+n
N

+
|V |(

√
n|V |+ |V |)

N2hmin

)
(3.56)

Similarly for ‖E3ei‖ by equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2 we

have with probability at least 1−o(n−3) the following holds

‖E3ei‖ ≤ ‖Zᵀ
V ·M̂

−1
V V M1/2

V V ‖‖M
−1/2
V V ZV i‖ ≤ ‖MV V M̂−1

V V ‖‖Z
ᵀ
V ·M

−1/2
V V ‖‖M

−1/2
V V ZV i‖

≤ C‖Zᵀ
V ·H

−1
V V ZV ·‖1/2‖H−1/2

V V ZV i‖

Then by applying Lemma 3.6.8 and Lemma 3.6.11 we have with probability at least 1−
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o(n−3) the following holds

‖E3ei‖ ≤ C‖Zᵀ
V ·H

−1
V V ZV ·‖1/2‖H−1/2

V V ZV i‖

≤ C

√
K
√

n|V |+K|V |+n
N

+
|V |(

√
n|V |+ |V |)

N2hmin

×max

[√
|V |K‖Wi‖∞

N
,
|V |

N
√

hmin

]

Under conditions 3.24 and 3.25, we have the upper bound of E2 dominates that of E1 and E3, and

the upper bound of E2ei dominates that of E1ei and E3ei, so we have the desired result.

Lemma 3.6.7. Under conditions 3.15, 3.17, 3.18 and 3.19, with probability at least 1− o(n−3)

the following holds for all k ∈ [K]

‖(M−1
V V AV k)

ᵀZV ·‖ ≤ c

√
nK‖hV ‖1

N

Proof of Lemma 3.6.7. Fixed any k ∈ [K]. Define v = M−1
V V AV k, then

‖(M−1
V V AV k)

ᵀZV ·‖ =

√
n

∑
i=1

Zᵀ
i vp,V vᵀp,V Zi

≤

√√√√ n

∑
i=1

E(Zᵀ
i vp,V vᵀp,V Zi)+

∣∣∣∣∣ n

∑
i=1

Zᵀ
i vp,V vᵀp,V Zi−E(Zᵀ

i vp,V vᵀp,V Zi)

∣∣∣∣∣
=
√

I+ II

Firstly we have the following immediate conclusion from condition 3.15.

(h−1
V )ᵀA2

V k = K(ΣAV ·)kk ≤ K‖ΣAV ·‖ ≤ cK‖hV ‖1 (3.57)

Then we first compute I. By Corollary 3.6.23 and equation 2.58 in the Chapter 2, under condi-
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tion 3.15 and by equation 3.57 we have

I =
n

∑
i=1

E(Zᵀ
i vp,V vᵀp,V Zi) =

1
N2

n

∑
i=1

N

∑
t=1

E[Yᵀ
it vp,V vᵀp,V Yit ]

≤ 1
N

n

∑
i=1

(v2)ᵀDV i ≤
n
N
(m−1

V )ᵀA2
V k ≤

cn
N
(h−1

V )ᵀA2
V k

≤ c2nK‖hV ‖1
N

We then implement Lemma 3.6.19 to bound II. By Corollary 3.6.23, for any i ∈ [n] and t1, t2 ∈ [N]

with t1 6= t2, under condition 3.15 and by equation 3.57 we have

Var(Yᵀ
it1

vp,V vᵀp,V Yit1) ≤ (v4)ᵀDV i

Var(Yᵀ
it1

vp,V vᵀp,V Yit2) ≤ [(v2)ᵀDV i]
2

Then following the notations in Lemma 3.6.19, we define V = vp,V , v1 = (v4)ᵀDV ·, v12 =
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[(v2)ᵀDV ·]
2, x = 1n and δ = n−3K−1. Then we have

Tr(VᵀDiag(Di)V ) = (m−2
V ◦DV i)

ᵀA2
V k

≤ c2K(h−1
V )ᵀA2

V k ≤ c3K2‖hV ‖1, for ∀i ∈ [n]

‖V‖∞ = ‖m−1
V ◦Ak‖∞

≤ c‖h−1
V ◦Ak‖∞ ≤ cK

≤ c3K2‖hV ‖1

‖x4 ◦ v12‖1 = n(v4)ᵀmV

≤ nc(h−1
V )ᵀA2

V k‖m
−2
V ◦A2

V k‖∞

≤ nc2K‖hV ‖1c2K2 = nc4K3‖hV ‖1

‖x4 ◦ v1‖1 = ‖(v2)ᵀDV ·‖2

= c4‖(h−3/2
V ◦A2

V k)
ᵀH−1/2

V V AV ·W‖2

≤ c4‖h−3/2
V ◦A2

V k‖
2‖H−1/2

V V AV ·‖2‖W‖2

(By condition 3.15)

≤ c4‖h−3/2
V ◦A2

V k‖
2cK‖hV ‖1

cn
K

= c6n‖hV ‖1‖h−3
V ◦A4

V k‖1

≤ c6n‖hV ‖1‖h−1
V ◦A2

V k‖1‖h
−2
V ◦A2

V k‖∞

≤ c6n‖hV ‖1cK‖hV ‖1K2 = c7nK3‖hV ‖21

Then we have

T = C max
i∈[n]

x2
i

[
max

(
− 1

N
Tr(VᵀDiag(Di)V ) log

(
δ

Rn

)
,

1
N2

R

∑
r=1
‖Vr‖2∞

(
log
(

δ

Rn

))2
)]

≤ C max
(

1
N

c3K2‖hV ‖1 log(nK),
1

N2 cK log(nK)2
)

(Under condition 3.17)

≤ C
K2‖hV ‖1 log(nK)

N
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Then by Lemma 3.6.19 we have with probability at least 1−o(n−3K−1) the following holds

II =

∣∣∣∣∣ n

∑
i=1

Zᵀ
i vp,V vᵀp,V Zi−E(Zᵀ

i vp,V vᵀp,V Zi)

∣∣∣∣∣
≤ C max

(√
− 1

N3 ((N−1)‖x4 ◦ v12‖1 +‖x4 ◦ v1‖1) log(δ ),−T log(δ )

)

≤ C max

(√
1

N3 [(N−1)nc4K3‖hV ‖1 + c7nK3‖hV ‖21] log(nK),
K2‖hV ‖1 log(nK)2

N

)
(Under condition 3.17)

≤ C max

(√
nK3‖hV ‖1 log(nK)

N
,
K2‖hV ‖1 log(nK)2

N

)
(Under condition 3.19)

≤ C

√
nK3‖hV ‖1 log(nK)

N

By condition 3.18 the high probability upper bound of II is much smaller than the upper bound of

I. Finally by union bound over k ∈ [K] we have the desired conclusion.

Lemma 3.6.8. Under conditions 3.15 and 3.21, with probability with probability at least 1−

o(n−3) the following holds

‖Zᵀ
V ·H

−1
V V ZV ·‖ ≤ C

(
K
√

n|V |+K|V |+n
N

+
|V |(

√
n|V |+ |V |)

N2hmin

)

Proof of Lemma 3.6.8. Notice

‖Zᵀ
V ·H

−1
V V ZV ·‖= ‖H

−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V ‖
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Firstly it’s straightforward to compute the expectation of H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V as following

E
(

H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V

)
=

n

∑
i=1

E
(

H−1/2
V V ZV iZ

ᵀ
V iH

−1/2
V V

)
=

1
N

n

∑
i=1

E
(

H−1/2
V V ZV iZ

ᵀ
V iH

−1/2
V V

)
=

1
N

n

∑
i=1

E
[
H−1/2

V V (Diag(Di)−DiD
ᵀ
i )H

−1/2
V V

]
=

n
N

H−1/2
V V MV V H−1/2

V V − 1
N

H−1/2
V V DDᵀH−1/2

V V

Then our first step in bounding ‖H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V ‖ is as following

∥∥∥H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V

∥∥∥ ≤ ∥∥∥H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)∥∥∥+∥∥∥E(H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V

)∥∥∥
=

∥∥∥H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)∥∥∥
+

∥∥∥∥ n
N

H−1/2
V V MV V H−1/2

V V − 1
N

H−1/2
V V DDᵀH−1/2

V V

∥∥∥∥
≤

∥∥∥H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)∥∥∥+∥∥∥ n
N

H−1/2
V V MV V H−1/2

V V

∥∥∥
(Under condition 3.15, by equation 2.58 in the Chapter 2)

≤
∥∥∥H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)∥∥∥+ cn
N

Then we apply the random matrix theory in [46] to bound the first term on the RHS of the above

equation. By an ε−net argument(Lemma 5.4 of [46]) we have

∥∥∥H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)∥∥∥
= max

u∈S |V |−1
uᵀ
[
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)]
u

≤ 2 max
u∈M |V |−1

1/4

uᵀ
[
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)]
u
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Then in order to obtain a 1−o(n−3) high-probability bound for the quantity of interest, it’s enough

to obtain a 1−o(9−|V |n−3) high-probability bound for

uᵀ
[
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)]
u

for any fixed u ∈M
|V |−1
1/4 . Notice

uᵀ
[
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)]
u

= uᵀ
[
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)]
u

=
n

∑
i=1

uᵀ
[
H−1/2

V V ZV iZ
ᵀ
V iH

−1/2
V V −E

(
H−1/2

V V ZV iZ
ᵀ
V iH

−1/2
V V

)]
u

=
n

∑
i=1

Zᵀ
V iH

−1/2
V V uuᵀH−1/2

V V ZV i−E
(

Zᵀ
V iH

−1/2
V V uuᵀH−1/2

V V ZV i

)

We can implement Lemma 3.6.20 to bound this quantity. Set V = (H−1/2
V V u)p,|V |, x = 1|V |,

δ = 9−|V |n−3, and define

κi =
1
N

VᵀDiag(Di)V −
1

N2‖V‖
2
∞ log

(
δ

n

)
, for ∀i ∈ [n]

Then we under conditions 3.15 and 3.21 have

‖κ‖∞ = max
i∈[n]

1
N

uᵀH−1/2
V V Diag(DV i)H

−1/2
V V u+

1
N2‖H

−1/2
V V u‖2∞ log(9|V |n4)

≤ C
(

K
N
+
|V |

N2hmin

)

Then we can plug these quantities into Lemma 3.6.20, under condition 3.21 we have with proba-

bility at least 1−o9−|V |n−3 the following holds

∣∣∣uᵀ [H−1/2
V V ZV ·Z

ᵀ
V ·H

−1/2
V V −E

(
H−1/2

V V ZV ·Z
ᵀ
V ·H

−1/2
V V

)]
u
∣∣∣≤C

(
K
N
+
|V |

N2hmin

)
(
√

n|V |+ |V |)
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With this we have the desired result.

Lemma 3.6.9. Under conditions 3.15 and 3.17, with probability at least 1−o(n−3) the following

holds for all k ∈ [K] and i ∈ [n]

|(M−1
V V AV k)

ᵀZV i| ≤CK

√
‖hV ‖1‖Wi‖∞

N
log(nK)

Proof of Lemma 3.6.9. Notice

(M−1
V V AV k)

ᵀZV i =
N

∑
t=1

1
N
(M−1

V V AV k)
ᵀ(Yit)V

By simple calculations, by equation 2.58 in the Chapter 2 we have

∣∣∣∣ 1
N
(M−1

V V AV k)
ᵀ(Yit)V

∣∣∣∣ ≤ 1
N

(
‖M−1

V V AV k‖∞ +Aᵀ
V kM−1

V V DV i

)
≤ CK

N
N

∑
t=1

Var
(
(M−1

V V AV k)
ᵀ(Yit)V

)
=

1
N

Aᵀ
V kM−1

V V (Diag(DV i)−DV iD
ᵀ
V i)M

−1
V V AV k

≤ c2

N
‖Aᵀ

V kH−1/2
V V ‖

2‖H−1/2
V V Diag(DV i)H

−1/2
V V ‖

≤ c2

N
cK‖hV ‖1 max

j∈V

Aᵀ
j·Wi

h j

≤ c3K2‖hV ‖1‖Wi‖∞
N

By Bernstein inequality(Lemma 3.6.28) and applying a union bound we have with probability at

least 1−o(n−3) the following holds for all k ∈ [K] and i ∈ [n]

|(M−1
V V AV k)

ᵀZV i| ≤C max

√K2‖hV ‖1‖Wi‖∞
N

log(nK),
K
N

log(nK)


Then under condition 3.17 we have the desired result.

Lemma 3.6.10. Under conditions 3.15, 3.16, 3.20 and 3.21, with probability at least 1− o(n−3)
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the following holds for all k ∈ [K] and i ∈ [n]

|((M̂−1
V V −M−1

V V )AV k)
ᵀZV i| ≤C

√
|V |K‖hV ‖1 log(nK)

N2nhmin
max

(
K‖Wi‖∞,

|V |
Nhmin

)

Proof of Lemma 3.6.10. Notice

|((M̂−1
V V −M−1

V V )AV k)
ᵀZV i| ≤ ‖(M̂−1

V V −M−1
V V )M1/2

V V AV k‖‖M
−1/2
V V ZV i‖

Now we bound the two terms on the RHS of the above inequality separately as following

• For the first term, by equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2, for any

k ∈ [K] we have with probability at least 1−o(n−3K−1)

‖(M̂−1
V V −M−1

V V )M1/2
V V AV k‖ ≤ C

√√√√ ∑
j∈V

log(nK)

Nnh3
j

h jA2
jk

≤ C

√
log(nK)

Nnhmin

√
∑
j∈V

A jkh−1
j A jk

≤ C

√
K‖hV ‖1 log(nK)

Nnhmin

• To bound the second term, by Lemma 3.6.11 and equation 2.58 in the Chapter 2, for any

k ∈ [K] we have with probability at least 1−o(n−3K−1) for any i ∈ [n]

‖M−1/2
V V ZV i‖ ≤C

√
max

(
|V |K‖Wi‖∞

N
,
|V |2

N2hmin

)

Putting these results together we have the desired result.

Lemma 3.6.11. Under conditions 3.15, 3.20 and 3.21, with probability with probability at least
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1−o(n−3) the following holds for any i ∈ [n]

‖H−1/2
V V ZV i‖ ≤C max

[√
|V |K‖Wi‖∞

N
,
|V |

N
√

hmin

]

Proof of Lemma 3.6.11. Fix any i ∈ [n]. Notice

H−1/2
V V ZV i =

1
N

N

∑
t=1

H−1/2
V V (Yit)V

Then for any j ∈ V and t ∈ [N]

∣∣∣∣ 1
N

H−1/2
j j (Yit) j

∣∣∣∣ ≤ 1
N
√

h j
≡ b j∥∥∥∥ 1

N
H−1/2

V V (Yit)V

∥∥∥∥ ≤ 1
N

[
1√
hmin

+
√

Dᵀ
V ·H

−1
V V DV ·

]

≤ 1
N

[
1√
hmin

+‖H−1/2
V V AV ·‖‖Wi‖

]
(By condition 3.15)

≤ 1
N

[
1√
hmin

+
√

cK

]
(By condition 3.20)

≤ 2
N
√

hmin
≡ B

Cov
(

1
N

H−1/2
V V (Yit)V

)
=

1
N2 H−1/2

V V (Diag(DV i)−DV iD
ᵀ
V i)H

−1/2
V V ≡ Σi

Then we can plug b,B and {Σi}i∈[n] into Lemma 3.6.18 and get with probability at most n−4 the
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following holds

∥∥∥∥∥ N

∑
t=1

1
N

H−1/2
V V (Yit)V

∥∥∥∥∥ ≥ C min

{
max

[√
(log(|V |)+ log(n))

|V |K‖Wi‖∞
N

,

1
N

√
∑
j∈V

1
h j

(log(|V |)+ log(n))

 ,
max

[√
(|V |+ log(n))

K‖Wi‖∞
N

,
1

N
√

hmin
(|V |+ log(n))

]}

where we have incorporated the following calculations

N

∑
t=1

Tr(Σi) ≤
1
N

Dᵀ
V ih
−1
V =

1
N

Wᵀ
i Aᵀ

V ·h
−1
V

≤ 1
N
‖Wi‖∞‖A

ᵀ
V ·h
−1
V ‖1 ≤

|V |K‖Wi‖∞
N∥∥∥∥∥ N

∑
t=1

Σi

∥∥∥∥∥ ≤
∥∥∥∥ 1

N
Diag(h−1

V ◦DV i)

∥∥∥∥≤ K‖Wi‖∞
N

It’s easy to see that the terms in the first maximum are no smaller than those in the second max-

imum, except for the cases when there are extreme frequency heterogeneity among words. So

for simplicity we just use the second maximum in the bound. Finally under condition 3.21, by

applying union bound over i ∈ [n] we have the desired result.

3.6.5 Additional Lemmas for Subsection 3.4.3

Lemma 3.6.12. For any j ∈ [p], we have

s j =
K

(1+KWᵀ
δ j)2 δ

ᵀ
j Σ
∗
W δ j, ‖δ j‖2 ≤

K−1
K

Proof of Lemma 3.6.12. For any j ∈ [p], notice it is straightforward that 1ᵀKδ j = 0, then the second
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part of the result can be obtained through following.

‖δ j‖2 =
‖a j‖2

‖a j‖21
+

1
K
−

21ᵀKa j

K‖a j‖1

=
‖a j‖2

‖a j‖21
+

1
K
− 2

K

≤
‖a j‖∞‖a j‖1
‖a j‖21

− 1
K

=
‖a j‖∞
‖a j‖1

− 1
K
≤ K−1

K

Then we analyze the first part of the result. We first have the following straightforward transfor-

mation of s j.

s j = n
‖d j‖2

‖d j‖21
−1 =

n2d2
j −n2d j

2

n2d j
2 =

1
n ∑

n
i=1(d j−d j)

2

d j
2 =

1
n

n

∑
i=1

(
D ji

d j
−1

)2

By the definition of δ j we have

d j =Wᵀa j =
‖a j‖1

K
(1n +KWᵀ

δ j)

Then we continue to transform s j as following

s j =
1
n

n

∑
i=1

(
D ji

d j
−1

)2

=
1
n

n

∑
i=1

(
1+KWᵀ

i δ j

1+KWᵀ
δ j
−1

)2

=
K2

(1+KWᵀ
δ j)2

1
n

n

∑
i=1

[(Wi−W )ᵀδ j]
2

=
K2

(1+KWᵀ
δ j)2 δ

ᵀ
j

(
1
n

WWᵀ−WWᵀ
)

δ j

=
K

(1+KWᵀ
δ j)2 δ

ᵀ
j Σ
∗
W δ j
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Lemma 3.6.13. Under conditions 3.15, 3.16 and 3.21, for any j ∈ [p] the following holds with

probability at least 1−o(n−3 p−1)

∣∣∣∣∣‖d̂ j‖2

‖d̂ j‖21
−
‖d j‖2

‖d j‖21

∣∣∣∣∣≤C
1

Nnh j

(
K

√
Nh j log(np)

n
+1

)

Proof of Lemma 3.6.13. By Lemma 3.6.14 and Lemma 3.6.15, under conditions 3.16 and 3.21 we

have with probability at least 1−o(n−3) the following holds for any j ∈ [p]

|d̂ᵀj 1n−dᵀj 1n| ≤ C

√
nh j

N
log(np)≡ ∆1 j

|d̂ᵀj d̂ j−dᵀj d j| ≤ C
nh j

N

(
K

√
Nh j log(np)

n
+1

)
≡ ∆2 j

Notice by equation 2.58 in the Chapter 2 under conditions 3.15 and 3.16 we have

∆1 j

dᵀj 1n
≤ c

∆1 j

nh j
≤C

√
log(np)
Nnh j

→ 0

Putting these together we have under conditions 3.15, 3.16 and 3.21, for any j ∈ [p] the following
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holds with probability at least 1−o(n−3)

|ŝ j− s j| =

∣∣∣∣∣‖d̂ j‖2(d
ᵀ
j 1n)

2−‖d j‖2(d̂
ᵀ
j 1n)

2

(d̂ᵀj 1n)2(dᵀj 1n)2

∣∣∣∣∣
=

∣∣∣∣∣(‖d̂ j‖2−‖d j‖2)(d
ᵀ
j 1n)

2 +‖d j‖2((d
ᵀ
j 1n)

2− (d̂ᵀj 1n)
2)

(d̂ᵀj 1n)2(dᵀj 1n)2

∣∣∣∣∣
≤

∆2(d
ᵀ
j 1n)

2 +∆1‖d j‖2(2dᵀj 1n +∆1)

(dᵀj 1n)2(dᵀj 1n−∆1)
2

≤
∆2(d

ᵀ
j 1n)

2 +∆1‖d j‖∞dᵀj 1n(2dᵀj 1n +∆1)

(dᵀj 1n)2(dᵀj 1n−∆1)
2

(By equation 2.58 in the Chapter 2)

≤ C
∆2(nh j)

2 +∆1nKh2
j(2nh j +∆1)

(nh j)2(nh j−∆1)
2

≤ C
∆2 +Kh j∆1

n2h2
j

≤ C
1

n2h2
j

[
nh j

N

(
K

√
Nh j log(np)

n
+1

)
+h j

√
nh j

N
log(np)

]

= C
1

Nnh j

(
K

√
Nh j log(np)

n
+1

)

Lemma 3.6.14. Under the conditions 3.15, 3.16 and 3.21, for any j ∈ [p] the following holds with

probability at least 1−o(n−3 p−1)

|d̂ᵀj 1n−dᵀj 1n| ≤C

√
nh j

N
log(np)

Proof of Lemma 3.6.14. Notice

d̂ᵀj 1n−dᵀj 1n =
n

∑
i=1

N

∑
t=1

1
N
(Yit) j
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The following calculations are straightforward

∣∣∣∣ 1
N
(Yit) j

∣∣∣∣ ≤ 1
N

n

∑
i=1

N

∑
t=1

Var
(

1
N
(Yit) j

)
=

1
N

n

∑
i=1

D ji−D2
ji ≤

nm j

N

(By equation 2.58 in the Chapter 2)

≤
cnh j

N

Then by the Bernstein inequality 3.6.28, under the conditions 3.16 and 3.21 we have the desired

result.

Lemma 3.6.15. Under conditions 3.15, 3.16 and 3.21, for any j ∈ [p] the following holds with

probability at least 1−o(n−3 p−1)

|d̂ᵀj d̂ j−dᵀj d j| ≤C
nh j

N

(
K

√
Nh j log(np)

n
+1

)

Proof of Lemma 3.6.15. Notice

d̂ᵀj d̂ j =
n

∑
i=1

(Z ji +D ji)
2

=
n

∑
i=1

Z2
ji +2

n

∑
i=1

Z jiD ji +
n

∑
i=1

D2
ji

=
n

∑
i=1

E(Z2
ji)+2

n

∑
i=1

Z jiD ji +
n

∑
i=1

[
Z2

ji−E(Z2
ji)
]
+

n

∑
i=1

D2
ji

= I+2II+ III+dᵀj d j

Then the remaining task is to bound |I|, |II| and |III| respectively.
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• I: The bound for this term is straightforward

|I| =
n

∑
i=1

E(Z2
ji) =

1
N

n

∑
i=1

(D ji−D2
ji)≤

nm j

N

(By equation 2.58 in the Chapter 2)

≤
cnh j

N

• II: Notice

II =
n

∑
i=1

Z jiD ji =
n

∑
i=1

N

∑
t=1

1
N
(Yit) jD ji

The following calculations are straightforward

∣∣∣∣ 1
N
(Yit) jD ji

∣∣∣∣ ≤ Kh j

N
n

∑
i=1

N

∑
t=1

Var
(

1
N
(Yit) jD ji

)
=

1
N

n

∑
i=1

D2
ji(D ji−D2

ji)≤
1
N

n

∑
i=1

D3
ji

≤ 1
N

K2h2
j

n

∑
i=1

D ji

(By equation 2.58 in the Chapter 2)

≤
cnK2h3

j

N

By the Bernstein inequality 3.6.28 we have with probability at least 1− o(n−3 p−1) the

following holds

|II| ≤CK max


√

nh3
j

N
log(np),

h j

N
log(np)


• III: Notice

III =
n

∑
i=1

[
Z2

ji−E(Z2
ji)
]
=

n

∑
i=1

[
Zᵀ

i e je
ᵀ
j Zi−E(Zᵀ

i e je
ᵀ
j Zi)

]
which falls into the form that is analyzed in Lemma 3.6.19. Now we specify the terms that
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are needed to implement Lemma 3.6.19. Firstly by Corollary 3.6.23 we have

δ = n−3 p−1, Σ = e je
ᵀ
j , xi = 1 for ∀i ∈ [n]

Then

Var(Yᵀ
it1

ΣYit1) = D ji−D2
ji +4D3

ji−4D2
ji +4D3

ji−4D4
ji ≤ D ji

Var(Yᵀ
it1

ΣYit2) = (D ji−D2
ji)

2 ≤ 2D2
ji ≡ (v12)i

Then following the notations in Lemma 3.6.19, we define V = e j, v1 = D j·, v12 = 2D2
j·,

x = 1n and δ = n−3 p−1. Then we have

Tr(VᵀDiag(Di)V ) = D ji

‖V‖∞ = 1

‖x4 ◦ v12‖ = 2‖D2
j·‖1

‖x4 ◦ v1‖ = nm j

Then we have

T =C max
i∈[n]

max
(

D ji

N
log(np),

1
N2 (log(np))2

)
≤C max

(
Kh j log(np)

N
,
(log(np))2

N2

)
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By Lemma 3.6.19 we have with probability at least 1−o(n−3 p−1) the following holds

|III| =

∣∣∣∣∣ n

∑
i=1

[
Zᵀ

i e je
ᵀ
j Zi−E(Zᵀ

i e je
ᵀ
j Zi)

]∣∣∣∣∣
≤ C max

(√
− 1

N3 ((N−1)‖x4 ◦ v12‖1 +‖x4 ◦ v1‖1) log(δ ),−T log(δ )

)

≤ C max


√
‖D2

j·‖1
N2 +

nm j

N3 ,−T log(np)


≤ C max

[√(
Kh jnm j

N2 +
nm j

N3

)
log(np),max

(
Kh j log(np)

N
,
(log(np))2

N2

)
log(np)

]
(By equation 2.58 in the Chapter 2 and under conditions 3.16 3.21)

≤ C max

√nK log(np)h j

N
,

√
nh j log(np)

N3


By comparing the bounds of |I|, |II| and |III| obtained above, under condition 3.16 we have the

desired result.

Lemma 3.6.16. For any j ∈ [p], suppose Nh j < 1, and T satisfies Nnh j ≤ T , then we have

P

(
‖d̂ j‖2

‖d̂ j‖21
≥ 1

T

)
≥ 1− exp

[
−nDKL

(
T
n

∥∥∥∥Nh j

)]

Proof of Lemma 3.6.16. Fix any j ∈ [p]. Notice if the following holds

n

∑
i=1

1(D̂ ji > 0)≤ T

by Cauchy-Schwarz inequality we have

‖d̂ j‖2

‖d̂ j‖21
≥
∥∥∥∥1T

T

∥∥∥∥2
=

1
T

So we have

P

(
‖d̂ j‖2

‖d̂ j‖21
≥ 1

T

)
≥ P

(
n

∑
i=1

1(D̂ ji > 0)≤ T

)
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Then we only need to lower bound the probability on the RHS of the above inequality. Notice for

any i ∈ [n]

1(D̂ ji > 0)∼ Bernoulli
(

1− (1−D ji)
N
)

On the other hand by Taylor theorem we have 1− (1−D ji)
N ≤ ND ji ≤ Nh j. So we have

P

(
n

∑
i=1

1(D̂ ji > 0)≤ T

)
= P

(
n

∑
i=1

Bernoulli
(

1− (1−D ji)
N
)
≤ T

)
≥ P

(
Binomial

(
n,Nh j

)
≤ T

)
≥ 1− exp

[
−nDKL

(
T
n

∥∥∥∥Nh j

)]

The last inequality follows from the Chernoff bound of Binomial distribution([54]), which holds

when Nnh j ≤ T . This leads to the conclusion in the lemma.

Corollary 3.6.17. For any j ∈ [p], under the same conditions as those in Lemma 3.6.16, and

further assume Nh j ≤ 1/a with a > 1, then we have

P

(
‖d̂ j‖2

‖d̂ j‖21
≥ 1

aNnh j

)
≥ 1− exp[−a(log(a)−1)Nnh j]

If we further assume condition 3.16 holds, we have ‖d̂ j‖2/‖d̂ j‖21 ≥ 1/(aNnh j) with probability at

least 1−o(n−3 p−1).

Proof of Corollary 3.6.17. Under the further assumptions that a > 1 and Nh j ≤ 1/a, we have the
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following

DKL(aNh j‖Nh j) = aNh j log(a)+(1−aNh j) log
(

1−aNh j

1−Nh j

)
(Since log(1− x)≥−x)

≥ a log(a)Nh j +(1−aNh j)

(
−
(a−1)Nh j

1−Nh j

)
=

[
a log(a)−

1−aNh j

1−Nh j
(a−1)

]
Nh j

≥
[

a log(a)− a−1
1−Nh j

]
Nh j

(Since Nh j ≤ 1/a)

≥ a(log(a)−1)Nh j

By plugging T = aNnh j into the conclusion of Lemma 3.6.16, we get the first inequality. The final

statement is straightforward.

3.6.6 A lemma about l2 norm of summation of random vectors

In this section we provide a general concentration lemma about the l2 norm of summation of

random vectors. We first denote the following new set of notations. Assume {Xi}i∈[n] are indepen-

dently distributed, mean zero, p-dimensional random vectors, with

|(Xi) j| ≤ b j, for ∀i ∈ [n], j ∈ [p]

‖Xi‖ ≤ B, for ∀i ∈ [n]

Cov(Xi) = Σi, for ∀i ∈ [n]

Then we have the following lemma about the l2 norm of summation of {Xi}.

169



Lemma 3.6.18. With probability at most δ the following holds

∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥ ≥ C min

{
max

[√
(log(p)− log(δ ))

n

∑
i=1

Tr(Σi),‖b‖(log(p)− log(δ ))

]
,

max


√√√√(p− log(δ ))

∥∥∥∥∥ n

∑
i=1

Σi

∥∥∥∥∥,B(p− log(δ ))


Proof of Lemma 3.6.18. We can bound the quantity of interest through two ways, one is through

union bound, and another is through Rayleigh quotient definition of vector’s l2 norm.

• Union bound. Notice ∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥=
√√√√ p

∑
j=1

(
n

∑
i=1

(Xi) j

)2

For each j ∈ [p], by the Bernstein inequality 3.6.28, with probability at most δ/p the follow-

ing holds ∣∣∣∣∣ n

∑
i=1

(Xi) j

∣∣∣∣∣≥C max

[√
− log

(
δ

p

) n

∑
i=1

(Σi) j j,−b j log
(

δ

p

)]
Then by applying the union bound we have with probability at most δ the following holds

∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥≥C max

[√
(log(p)− log(δ ))

n

∑
i=1

Tr(Σi),‖b‖(log(p)− log(δ ))

]

• l2 norm. By the definition of l2 norm of a vector, and an ε − net argument(Lemma 5.4 of

[46]) we have ∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥= max
y∈S p−1

yᵀ
n

∑
i=1

Xi ≤ 2 max
y∈M p−1

1/4

n

∑
i=1

yᵀXi

For each y ∈M p−1
1/4 , by Cauchy-Schwarz we have |yᵀXi| ≤ ‖Xi‖ ≤ B, and Var(yᵀXi) =

yᵀΣiy. Then again by the Bernstein inequality 3.6.28, with probability at most δ/9p the

following holds

∣∣∣∣∣ n

∑
i=1

yᵀXi

∣∣∣∣∣≥C max

[√
− log

(
δ

9p

) n

∑
i=1

yᵀΣiy,−B log
(

δ

9p

)]
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Since |M p−1
1/4 | ≤ 9p, again by applying the union bound we have with probability at most δ

the following holds

∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥≥C max


√√√√(p− log(δ ))

∥∥∥∥∥ n

∑
i=1

Σi

∥∥∥∥∥,B(p− log(δ ))



3.6.7 Nested concentrations over n and N in topic model

Under the notations assumed in the topic model, fix any positive semi-definite matrix Σ ∈ Rp×p

and any x ∈ Rn, and suppose for ∀i ∈ [n] and ∀t1, t2 ∈ [N]

E(Yᵀ
it1

ΣYit1)≤ ei , E = max
i∈[n]

ei

|Yᵀ
it1

ΣYit1| ≤ (b1)i , B1 = max
i∈[n]

(b1)i

Var(Yᵀ
it1

ΣYit1)≤ (v1)i , V1 = max
i∈[n]

(v1)i

|Yᵀ
it1

ΣYit2| ≤ (b12)i , B12 = max
i∈[n]

(b12)i

Var(Yᵀ
it1

ΣYit2)≤ (v12)i , V12=max
i∈[n]

(v12)i

Also denote gmax = maxi∈[n] ‖Σ1/2Diag(Di)Σ
1/2‖2. Then we develop two lemmas about control-

ling the following quantity

X =
n

∑
i=1

x2
i
(
Zᵀ

i ΣZi−EZᵀ
i ΣZi

)
One way is based on Bernstein inequality for bounded variables(we call it the bounded Bernstein),

and another is based on the Bernstein inequality for sub-exponential variables(we call it the sub-

exponential Bernstein).

Lemma 3.6.19 (Bounded Bernstein). Suppose Σ=VVᵀ where V ∈Rp×R, With probability at most
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δ the following holds.

|X | ≥C max

(√
− 1

N3 ((N−1)‖x4 ◦ v12‖1 +‖x4 ◦ v1‖1) log(δ ),−T log(δ )

)

where

T = C max
i∈[n]

x2
i min

[
max

(
− 1

N
Tr(VᵀDiag(Di)V ) log

(
δ

Rn

)
,

1
N2

R

∑
r=1
‖Vr‖2∞

(
log
(

δ

Rn

))2
)

max

(
− 1

N
‖VᵀDiag(Di)V‖ log

(
δ

9Rn

)
,

1
N2‖V‖

2
2,∞

(
log
(

δ

9Rn

))2
)]

Proof of Lemma 3.6.19. The idea is to first use a concentration over N to prove a 1− δ/n high

probability upper bound for Zᵀ
i ΣZi for any i ∈ [n], then we use union bound to construct bounded

version of Zᵀ
i ΣZi, and finally we implement a concentration over n to obtain the final bound.

We start with analyzing Zᵀ
i ΣZi for each fixed i ∈ [n]. Notice

Zᵀ
i ΣZi = ‖VᵀZi‖2 =

R

∑
r=1

(
1
N

N

∑
t=1

Vᵀ
r Yit

)2

This implies two ways to bound the quantity Zᵀ
i ΣZi.

• Union bound way: We have the absolute value bound and the variance bound for the sum-

mation above as following

∣∣∣∣ 1
N

Vᵀ
r Yit

∣∣∣∣ ≤ 2‖Vr‖∞
N

N

∑
t=1

Var
(

1
N

Vᵀ
r Yit

)
=

1
N2

N

∑
t=1

Vᵀ
r (Diag(Di)−DiD

ᵀ
i )Vr ≤

1
N

Vᵀ
r Diag(Di)Vr

Then by the Bernstein inequality 3.6.28 and the union bound, we have with probability at
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most δ/n the following holds for any r ∈ [R]

∣∣∣∣∣ 1
N

N

∑
t=1

Vᵀ
r Yit

∣∣∣∣∣≥C max

(√
− 1

N
Vᵀ

r Diag(Di)Vr log
(

δ

Rn

)
,− 1

N
‖Vr‖∞ log

(
δ

Rn

))

This indicates with probability at most δ/n the following holds

Zᵀ
i ΣZi ≥C max

(
− 1

N
Tr(VᵀDiag(Di)V ) log

(
δ

Rn

)
,

1
N2

R

∑
r=1
‖Vr‖2∞

(
log
(

δ

Rn

))2
)

• l2 norm way: By the definition of l2 norm of a vector, and an ε-net argument(Lemma 5.4 of

[46]) we have

‖VᵀZi‖= max
y∈S R−1

yVᵀZi ≤ 2 max
y∈M R−1

1/4

yᵀVᵀZi

Since M R−1
1/4 ≤ 9R, in order to get a lower bound for ‖VᵀZi‖ with probability at most δ/n,

it’s enough to derive a lower bound for ∀y∈M R−1
1/4 with probability at most δ9−R/n. Notice

yᵀVᵀZi =
1
N

N

∑
t=1

yᵀVᵀYit

For each term inside the summation we have

∣∣∣∣ 1
N

yᵀVᵀYit

∣∣∣∣ ≤ 2
N
‖V‖2,∞

N

∑
t=1

Var
(

1
N

yᵀVᵀYit

)
=

1
N2

N

∑
t=1

yᵀVᵀ(Diag(Di)−DiD
ᵀ
i )V y≤ 1

N
yᵀVᵀDiag(Di)V y

≤ 1
N
‖VᵀDiag(Di)V‖

Then by the Bernstein inequality 3.6.28, we have with probability at most δ9−R/n the fol-

lowing holds

|yᵀVᵀZi| ≥C max

(√
− 1

N
‖VᵀDiag(Di)V‖ log

(
δ

9Rn

)
,− 1

N
‖V‖2,∞ log

(
δ

9Rn

))
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By union bound, we have with probability at most δ/n the following holds

Zᵀ
i ΣZi ≥C max

(
− 1

N
‖VᵀDiag(Di)V‖ log

(
δ

9Rn

)
,

1
N2‖V‖

2
2,∞

(
log
(

δ

9Rn

))2
)

Define

T = C max
i∈[n]

x2
i min

[
max

(
− 1

N
Tr(VᵀDiag(Di)V ) log

(
δ

Rn

)
,

1
N2

R

∑
r=1
‖Vr‖2∞

(
log
(

δ

Rn

))2
)

max

(
− 1

N
‖VᵀDiag(Di)V‖ log

(
δ

9Rn

)
,

1
N2‖V‖

2
2,∞

(
log
(

δ

9Rn

))2
)]

Define the following random variable by truncating
(

x2
i Zᵀ

i ΣZi

)
on [0,T ]

(
x2

i Zᵀ
i ΣZi

)
[0,T ]

= min(x2
i Zᵀ

i ΣZi,T )

Then we with probability at least 1−δ the following holds for any i ∈ [n]

x2
i Zᵀ

i ΣZi =
(

x2
i Zᵀ

i ΣZi

)
[0,T ]

Then we have the absolute value bound and the variance bound for the summation of (x2
i Zᵀ

i ΣZi)[0,T ]
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over i as following, where the first inequality in the variance bound is by applying Lemma 3.6.24

∣∣∣∣(x2
i Zᵀ

i ΣZi

)
[0,T ]

∣∣∣∣ ≤ T

n

∑
i=1

Var
[(

x2
i Zᵀ

i ΣZi

)
[0,T ]

]
≤

n

∑
i=1

Var
(

x2
i Zᵀ

i ΣZi

)
=

n

∑
i=1

x4
i E

[
1

N2

N

∑
t1=1

N

∑
t2=1

Yᵀ
it1

ΣYit2−E(Yᵀ
it1

ΣYit2)

]2

=
1

N4

n

∑
i=1

x4
i

[
N

∑
t1=1

N

∑
t2=1,t2 6=t1

Var(Yᵀ
it1

ΣYit2)−
N

∑
t=1

Var(Yᵀ
it ΣYit)

]

=
1

N3

n

∑
i=1

x4
i [(N−1)(v12)i +(v1)i]

=
1

N3 ((N−1)‖x4 ◦ v12‖1 +‖x4 ◦ v1‖1)

With that we have the final 1−2δ high probability bound

|X | ≤C max

(√
− 1

N3 ((N−1)‖x4 ◦ v12‖1 +‖x4 ◦ v1‖1) log(δ ),−T log(δ )

)

Lemma 3.6.20 (Sub-exponential Bernstein). Suppose Σ =VVᵀ where V ∈Rp×R, With probability

at most δ the following holds.

|X | ≥C

[√
−‖κ‖2∞‖x‖22 log(δ )−‖κ‖∞‖x‖∞ log(δ )+

δ‖x‖2

Rn

R

∑
r=1
‖Vr‖∞

]

where

κi =
R

∑
r=1

1
N

Vᵀ
r Diag(Di)Vr−

1
N2‖Vr‖2∞ log

(
δ

Rn

)
, for ∀i ∈ [n]

Proof of Lemma 3.6.20. The idea it to first use a concentration over N to prove a 1−δ/(Rn) high

probability bound for Vᵀ
r Zi for any r ∈ [R] and i ∈ [n], then we truncate Vᵀ

r Zi with this bound

to obtain a sub-gaussian random variable, which results in sub-exponentiality of the quantity of

quantity of interest.
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Fix any i ∈ [n], we first have

Zᵀ
i ΣZi =

R

∑
r=1

(Vᵀ
r Zi)

2

For any fixed r ∈ [R], denote

Tir =C max

(√
− 1

N
Vᵀ

r Diag(Di)Vr log
(

δ

Rn

)
,− 1

N
‖Vr‖∞ log

(
δ

Rn

))

Then following Union bound way of bounding quantity Zᵀ
i ΣZi in the proof of Lemma 3.6.19, we

have P(|Vᵀ
r Zi| ≥ Tir) ≤ δ/(2Rn). Truncate the random variable Vᵀ

r Zi on [−Tir,Tir], denote as

(Vᵀ
r Zi)[−Tir,Tir]

. Then for t ≤ Tir, by Bernstein inequality 3.6.28 we have

P
(∣∣∣(Vᵀ

r Zi)[−Tir,Tir]

∣∣∣≥ t
)

= P
(∣∣Vᵀ

r Zi
∣∣≥ t

)
≤ 2exp

(
− t2/2

1
NVᵀ

r Diag(Di)Vr +
1
N‖Vr‖∞t/3

)

≤ 2exp

(
− t2/2

1
NVᵀ

r Diag(Di)Vr +
1
N‖Vr‖∞2Tir/3

)

On the other hand for t > Tir we trivially have

P
(∣∣∣(Vᵀ

r Zi)[−Tir,Tir]

∣∣∣≥ t
)
= 0≤ 2exp

(
− t2/2

1
NVᵀ

r Diag(Di)Vr +
1
N‖Vr‖∞2Tir/3

)

This implies (Vᵀ
r Zi)[−Tir,Tir]

is sub-gaussian with sub-guassian norm satisfies the following

∥∥∥(Vᵀ
r Zi)[−Tir,Tir]

∥∥∥
ψ2
≤ C

√
1
N

Vᵀ
r Diag(Di)Vr +

1
N
‖Vr‖∞Tir

≤ C

[√
1
N

Vᵀ
r Diag(Di)Vr +

1
N
‖Vr‖∞

√
− log

(
δ

Rn

)]
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By Lemma 3.6.27 we have

∥∥∥∥∥ R

∑
r=1

(Vᵀ
r Zi)

2
[−Tir,Tir]

∥∥∥∥∥
ψ1

≤ C
R

∑
r=1

1
N

Vᵀ
r Diag(Di)Vr−

1
N2‖Vr‖2∞ log

(
δ

Rn

)
≡ Cκi

By the Bernstein inequality for sub-exponential random variables(Proposition 5.16 of [46]), we

have with probability at most δ/2 the following holds

∣∣∣∣∣ n

∑
i=1

x2
i

R

∑
r=1

[
(Vᵀ

r Zi)
2
[−Tir,Tir]

−E(Vᵀ
r Zi)

2
[−Tir,Tir]

]∣∣∣∣∣
≥C max

[√
−‖κ‖2∞‖x‖22 log(δ ),−‖κ‖∞‖x‖∞ log(δ )

] (3.58)

Notice on the other hand by the union bound with probability at least 1−δ/2 we have

(Vᵀ
r Zi)[−Tir,Tir]

=Vᵀ
r Zi, for ∀i ∈ [n],r ∈ [R] (3.59)

And we can also bound the maximum possible value of random variable Vᵀ
r Zi through

|Vᵀ
r Zi| ≤ |V

ᵀ
r D̂i|+ |V

ᵀ
r Di| ≤ 2‖Vr‖∞ (3.60)

Finally we combine all the above intermediate result, we have with probability at least 1− δ the
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following holds

|X | =

∣∣∣∣∣ n

∑
i=1

x2
i
(
Zᵀ

i ΣZi−EZᵀ
i ΣZi

)∣∣∣∣∣
=

∣∣∣∣∣ n

∑
i=1

x2
i

R

∑
r=1

[
(Vᵀ

r Zi)
2−E(Vᵀ

r Zi)
2
]∣∣∣∣∣

=

∣∣∣∣∣ n

∑
i=1

x2
i

R

∑
r=1

[
(Vᵀ

r Zi)
2− (Vᵀ

r Zi)
2
[−Tir,Tir]

+(Vᵀ
r Zi)[−Tir,Tir]

−E(Vᵀ
r Zi)

2
[−Tir,Tir]

+E(Vᵀ
r Zi)

2
[−Tir,Tir]

−E(Vᵀ
r Zi)

2
]∣∣∣

(By equation 3.59)

≤

∣∣∣∣∣ n

∑
i=1

x2
i

R

∑
r=1

[
(Vᵀ

r Zi)[−Tir,Tir]
−E(Vᵀ

r Zi)
2
[−Tir,Tir]

]∣∣∣∣∣
+

∣∣∣∣∣ n

∑
i=1

x2
i

R

∑
r=1

[
E(Vᵀ

r Zi)
2
[−Tir,Tir]

−E(Vᵀ
r Zi)

2
]∣∣∣∣∣

(By equation 3.58)

≤ C max
[√
−‖κ‖2∞‖x‖22 log(δ ),−‖κ‖∞‖x‖∞ log(δ )

]
+

n

∑
i=1

x2
i

R

∑
r=1
|Vᵀ

r Zi|P(|V
ᵀ
r Zi| ≥ Tir)

(By equation 3.60 and the definition of Tir)

≤ C max
[√
−‖κ‖2∞‖x‖22 log(δ ),−‖κ‖∞‖x‖∞ log(δ )

]
+

n

∑
i=1

x2
i

R

∑
r=1

2‖Vr‖∞
δ

2Rn

≤ C

[√
−‖κ‖2∞‖x‖22 log(δ )−‖κ‖∞‖x‖∞ log(δ )+

δ‖x‖2

Rn

R

∑
r=1
‖Vr‖∞

]

3.6.8 Lemmas about moments of quadratic form of multinomials

In this section we present some results about moments of quadratic form of multinomial distribu-

tions. Since these are general results outside the topic model framework, we incorporate the fol-

lowing new set of notations. Suppose X1 ∼Multinomial(1,d1), X2 ∼Multinomial(1,d2), where

d1,d2 ∈ Rp
+, ‖d1‖1 = ‖d2‖1 = 1. Then we have the following lemma about the moments of

quadratic form of multinomials.
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Lemma 3.6.21 (Exact form). Suppose any positive semi-definite matrix Σ ∈ Rp×p, we have

|(X1−d1)
ᵀ

Σ(X1−d1)| ≤ 2‖diag(Σ)‖∞ +2dᵀ1 Σd1

E((X1−d1)
ᵀ

Σ(X1−d1)) = diag(Σ)ᵀd1−dᵀ1 Σd1

Var((X1−d1)
ᵀ

Σ(X1−d1)) = [diag(Σ)2]ᵀd1− [diag(Σ)ᵀd1]
2 +4dᵀ1 ΣDiag(d1)Σd1

−4[diag(Σ)◦d1]
ᵀ

Σd1 +4diag(Σ)ᵀd1dᵀ1 Σd1−4(dᵀ1 Σd1)
2

|(X1−d1)
ᵀ

Σ(X2−d2)| ≤ ‖Σ‖max +‖Σd1‖∞ +‖Σd2‖∞ + |dᵀ1 Σd2|

E((X1−d1)
ᵀ

Σ(X2−d2)) = 0

Var((X1−d1)
ᵀ

Σ(X2−d2)) = diag[ΣDiag(d2)Σ]
ᵀd1−dᵀ2 ΣDiag(d1)Σd2

−dᵀ1 ΣDiag(d2)Σd1 +(dᵀ1 Σd2)
2

Proof of Lemma 3.6.21. We first consider the absolute value bounds.

|(X1−d1)
ᵀ

Σ(X1−d1)| ≤ 2|Xᵀ
1 ΣX1|+2dᵀ1 Σd1 ≤ 2‖diag(Σ)‖∞ +2dᵀ1 Σd1

|(X1−d1)
ᵀ

Σ(X2−d2)| ≤ |Xᵀ
1 ΣX2|+ |X

ᵀ
1 Σd2|+ |d

ᵀ
1 ΣX2|+ |d

ᵀ
1 Σd2|

≤ ‖Σ‖max +‖Σd1‖∞ +‖Σd2‖∞ + |dᵀ1 Σd2|

The results about expectation are straightforward.

E((X1−d1)
ᵀ

Σ(X1−d1)) = E(Xᵀ
1 ΣX1)−dᵀ1 Σd1 = diag(Σ)ᵀd1−dᵀ1 Σd1

E((X1−d1)
ᵀ

Σ(X2−d2)) = E(X1−d1)
ᵀ

ΣE(X2−d2) = 0
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The variances involve a bit more tedious calculations.

Var((X1−d1)
ᵀ

Σ(X1−d1))

= E((X1−d1)
ᵀ

Σ(X1−d1))
2− [E((X1−d1)

ᵀ
Σ(X1−d1))]

2

= E(Xᵀ
1 ΣX1−2Xᵀ

1 Σd1 +dᵀ1 Σd1)
2− [diag(Σ)ᵀd1−dᵀ1 Σd1]

2

= E(Xᵀ
1 ΣX1Xᵀ

1 ΣX1)+4E(dᵀ1 ΣX1Xᵀ
1 Σd1)+(dᵀ1 Σd1)

2

−4E(Xᵀ
1 ΣX1Xᵀ

1 Σd1)+2E(Xᵀ
1 ΣX1dᵀ1 Σd1)−4(Xᵀ

1 Σd1dᵀ1 Σd1)

−[diag(Σ)ᵀd1−dᵀ1 Σd1]
2

= [diag(Σ)2]ᵀd1 +4dᵀ1 ΣDiag(d1)Σd1 +(dᵀ1 Σd1)
2

−4[diag(Σ)◦d1]
ᵀ

Σd1 +2diag(Σ)ᵀd1dᵀ1 Σd1−4(dᵀ1 Σd1)
2

−[diag(Σ)ᵀd1]
2 +2diag(Σ)ᵀd1dᵀ1 Σd1− (dᵀ1 Σd1)

2

= [diag(Σ)2]ᵀd1− [diag(Σ)ᵀd1]
2 +4dᵀ1 ΣDiag(d1)Σd1−4[diag(Σ)◦d1]

ᵀ
Σd1

+4diag(Σ)ᵀd1dᵀ1 Σd1−4(dᵀ1 Σd1)
2
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Var((X1−d1)
ᵀ

Σ(X2−d2))

= E((X1−d1)
ᵀ

Σ(X2−d2))
2− [E((X1−d1)

ᵀ
Σ(X2−d2))]

2

= E(Xᵀ
1 ΣX2−Xᵀ

1 Σd2−dᵀ1 ΣX2 +dᵀ1 Σd2)
2

= E(Xᵀ
1 ΣX2Xᵀ

2 ΣX1)+E(dᵀ2 ΣX1Xᵀ
1 Σd2)+E(dᵀ1 ΣX2Xᵀ

2 Σd1)+(dᵀ1 Σd2)
2

−2E(Xᵀ
2 ΣX1Xᵀ

1 Σd2)−2E(Xᵀ
1 ΣX2Xᵀ

2 Σd1)+2E(Xᵀ
1 ΣX2dᵀ1 Σd2)

+2E(Xᵀ
1 Σd2dᵀ1 ΣX2)−2E(Xᵀ

1 Σd2dᵀ1 Σd2)−2E(dᵀ1 ΣX2dᵀ1 Σd2)

= diag[ΣDiag(d2)Σ]
ᵀd1 +dᵀ2 ΣDiag(d1)Σd2 +dᵀ1 ΣDiag(d2)Σd1 +(dᵀ1 Σd2)

2

−2dᵀ2 ΣDiag(d1)Σd2−2dᵀ1 ΣDiag(d2)Σd1 +2(dᵀ1 Σd2)
2

+2(dᵀ1 Σd2)
2−2(dᵀ1 Σd2)

2−2(dᵀ1 Σd2)
2

= diag[ΣDiag(d2)Σ]
ᵀd1−dᵀ2 ΣDiag(d1)Σd2−dᵀ1 ΣDiag(d2)Σd1 +(dᵀ1 Σd2)

2

We also give two corollaries based on the above lemma, where we choose either Σ = Ip,V

or Σ = vp,V vᵀp,V . Here we have used V to denote any subset of [p]. Σ = Ip,V denotes the p-

dimensional identity matrix, with diagonal terms that is not in V being set to zeros, and vp,V

denotes the p-dimensional vector with only non-zero entries in V which takes values from |V |-

dimensional vector v.
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Corollary 3.6.22 (Σ = Ip,V ). The following hold

|(X1−d1)
ᵀIp,V (X1−d1)| ≤ 1+‖(d1)V ‖2

E((X1−d1)
ᵀIp,V (X1−d1)) = ‖(d1)V ‖1−‖(d1)V ‖2

Var((X1−d1)
ᵀIp,V (X1−d1)) = (1−‖(d1)V ‖1)[‖(d1)V ‖1−4‖(d1)V ‖2]

+4‖(d1)V ‖33−4‖(d1)V ‖4

≤ (1−‖(d1)V ‖1)‖(d1)V ‖1 +4‖(d1)V ‖33

|(X1−d1)
ᵀIp,V (X2−d2)| ≤ 1+(d1)

ᵀ
V (d2)V

E((X1−d1)
ᵀIp,V (X2−d2)) = 0

Var((X1−d1)
ᵀIp,V (X2−d2)) = (d1)

ᵀ
V (d2)V − ((d2)

2
V )ᵀ(d1)V

−((d1)
2
V )ᵀ(d2)V +((d1)

ᵀ
V (d2)V )2

≤ (d1)
ᵀ
V (d2)V

Proof of Corollary 3.6.22. All the equalities are straightforward by plugging in Σ = Ip,V into

Lemma 3.6.21. The inequalities about absolute value has a tiny improvement over the simple

plugging in bound obtained by setting Σ = Ip,V in the corresponding part in Lemma 3.6.21, which

is due to the non-negativity of d1, d2, X1 and X2. More specifically notice they can be decomposed

into positive and negative part, with the former larger than the later in absolute values

(X1−d1)
ᵀIp,V (X1−d1) = (X1)

ᵀ
V (X1)V +(d1)

ᵀ
V (d1)V −2(X1)

ᵀ
V (d1)V

(X1−d1)
ᵀIp,V (X2−d2) = (X1)

ᵀ
V (X2)V +(d1)

ᵀ
V (d2)V − (X1)

ᵀ
V (d2)V − (X2)

ᵀ
V (d1)V

So we have

|(X1−d1)
ᵀIp,V (X1−d1)| ≤ |(X1)

ᵀ
V (X1)V |+(d1)

ᵀ
V (d1)V ≤ 1+‖(d1)V ‖2

|(X1−d1)
ᵀIp,V (X1−d1)| ≤ |(X1)

ᵀ
V (X2)V |+(d1)

ᵀ
V (d2)V ≤ 1+(d1)

ᵀ
V (d2)V
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The first inequality about variance is also straightforward, the second inequality is a result by

Cauchy-Schwarz inequality.

((d1)
2
V )ᵀ(d2)V =

p

∑
j=1

(d1)
2
j(d2) j ≥

p

∑
j=1

(d1)
2
j(d2) j

p

∑
j=1

(d2) j

=
p

∑
j=1

(
(d1) j

√
(d2) j

)2 p

∑
j=1

(√
(d2) j

)2

≥

(
p

∑
j=1

(d1) j(d2) j

)2

= ((d1)
ᵀ
V (d2)V )2

Corollary 3.6.23 (Σ = vp,V vᵀp,V ). The following holds

|(X1−d1)
ᵀvp,V vᵀp,V (X1−d1)| ≤ 2‖v‖2∞ +2‖v‖2∞‖(d1)V ‖21

E((X1−d1)
ᵀvp,V vᵀp,V (X1−d1)) = (v2)ᵀ(d1)V − (vᵀ(d1)V )2

Var((X1−d1)
ᵀvp,V vᵀp,V (X1−d1)) = (v4)ᵀ(d1)V − [(v2)ᵀ(d1)V ]2

+4(vᵀ(d1)V )2(v2)ᵀ(d1)V −4vᵀ(d1)V (v3)ᵀ(d1)V

+4(vᵀ(d1)V )2(v2)ᵀ(d1)V −4(vᵀ(d1)V )4

≤ (v4)ᵀ(d1)V − [(v2)ᵀ(d1)V ]2 ≤ (v4)ᵀ(d1)V

|(X1−d1)
ᵀvp,V vᵀp,V (X2−d2)| ≤ ‖v‖2∞ +‖v‖2∞(‖(d1)V ‖1 +‖(d2)V ‖1)

+‖v‖2∞‖(d1)V ‖1‖(d2)V ‖1

E((X1−d1)
ᵀvp,V vᵀp,V (X2−d2)) = 0

Var((X1−d1)
ᵀvp,V vᵀp,V (X2−d2)) = [(v2)ᵀ(d1)V − (vᵀ(d1)V )2][(v2)ᵀ(d2)V − (vᵀ(d2)V )2]

≤ (v2)ᵀ(d1)V (v2)ᵀ(d2)V

Proof of Corollary 3.6.23. All the first equalities or inequalities in each line are straightforward by

plugging in Σ = vp,V vᵀp,V into Lemma 3.6.21 and Cauchy-Schwarz inequality. In order to get the

second equalities or inequalities, again we need some tedious calculations.
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• E((X1−d1)
ᵀvp,V vᵀp,V (X1−d1)). The calculations are straightforward.

• Var((X1−d1)
ᵀvp,V vᵀp,V (X1−d1)). By straightforward calculations and Lemma 3.6.25 we

have

Var((X1−d1)
ᵀvp,V vᵀp,V (X1−d1))

= (v4)ᵀ(d1)V − [(v2)ᵀ(d1)V ]2 +4(vᵀ(d1)V )2(v2)ᵀ(d1)V

−4vᵀ(d1)V (v3)ᵀ(d1)V +4(vᵀ(d1)V )2(v2)ᵀ(d1)V −4(vᵀ(d1)V )4

(By Lemma 3.6.25)

≤ (v4)ᵀ(d1)V − [(v2)ᵀ(d1)V ]2 ≤ (v4)ᵀ(d1)V

• Var((X1−d1)
ᵀvp,V vᵀp,V (X2−d2)). By straightforward calculations we have

Var((X1−d1)
ᵀ

Σ(X2−d2)) = [(v2)ᵀ(d1)V − (vᵀ(d1)V )2][(v2)ᵀ(d2)V − (vᵀ(d2)V )2]

By Lemma 3.6.26 we know

(v2)ᵀ(d1)V − (vᵀ(d1)V )2 ≥ 0, (v2)ᵀ(d2)V − (vᵀ(d2)V )2 ≥ 0

So we can upper bound Var((X1−d1)
ᵀΣ(X2−d2)) through the following

Var((X1−d1)
ᵀ

Σ(X2−d2)) = [(v2)ᵀ(d1)V − (vᵀ(d1)V )2][(v2)ᵀ(d2)V − (vᵀ(d2)V )2]

≤ (v2)ᵀ(d1)V (v2)ᵀ(d2)V
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3.6.9 Additional lemmas

Lemma 3.6.24. Assuming a real random variable X has finite mean and variance, for any fixed

interval [a,b], we truncate X on [a,b] and denote the resulting random variable as X[a,b], that is

X[a,b] = min(max(X ,a),b), then we always have Var(X[a,b])≤ Var(X).

Proof of Lemma 3.6.24. We prove the result under 3 different scenarios, that is E(X)≤ a, E(X) ∈

(a,b) or E(X)≥ b.

• E(X) ∈ (a,b). Firstly by the following argument the squared deviance from E(X) is does

not decrease after truncation.

Var(X) =

(∫
x≤a

+
∫

a<x≤b
+
∫

x>b

)
(x−E(X))2dµX (x)

≥
∫

x≤a
(a−E(X))2dµX (x)+

∫
a<x≤b

(x−E(X))2dµX (x)

+
∫

x>b
(b−E(X))2dµX (x)

=
∫
(x−E(X))2dµX[a,b]

(x) = E(X[a,b]−E(X))2

On the other hand by the definition of variance, we have

Var(X[a,b]) = min
t

E(X[a,b]− t)2

Combine these we have Var(X[a,b])≤ Var(X).

• E(X)≤ a. By a similar argument as in the previous case, we have Var(X[E(X),b])≤Var(X).

Then we further have

Var(X[E(X),b]) =

(∫
E(X)<x≤a

+
∫

a<x≤b

)
(x−E(X))2dµX[E(X),b]

(x)

≥
∫
E(X)<x≤a

0dµX[E(X),b]
(x)+

∫
a<x≤b

(x−a)2dµX[E(X),b]
(x)

=
∫
(x−a)2dµX[a,b]

(x) = E(X[a,b]−a)2
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Again by the definition of variance we have Var(X[a,b]) ≤ Var(X[E(X),b]), which leads to

the desired conclusion combining with Var(X[E(X),b])≤ Var(X).

• E(X) ≥ b. This case can be easily proved following the similar argument as in that in the

previous case.

Combining the argument in these 3 different cases we have the desired the result.

Lemma 3.6.25. For any pairs of non-negative vectors v,d ∈ Rp
+, and denote S = { j ∈ [p] : v j 6=

0,d j 6= 0}. Then we have the following inequality

2vᵀd(v2)ᵀd− (v3)ᵀd− (vᵀd)3 ≤ 0 (3.61)

and the equality holds if and only if vS ∝ 1|S | and ‖d‖1 = 1.

Proof of Lemma 3.6.25. Notice the LHS of inequality 3.61 is unchanged if we truncate the entries

of v,d to the set S , that is

2vᵀS dS (v2
S )ᵀdS − (v3

S )ᵀdS − (vᵀS dS )3 = 2vᵀd(v2)ᵀd− (v3)ᵀd− (vᵀd)3

So without loss of generality, we assume all the entries of v,d are positive. Denote u = v◦d, then

we rewrite the LHS of inequality 3.61 in terms of u,v, and denote the resulting formula as f (u,v),

that is

f (u,v) = 2‖u‖1‖u◦ v‖1−‖u◦ v2‖1−‖u‖31

We have the following calculations

∂ f (u,v)
∂v

= 2(‖y‖11p− v)◦u

∂ 2 f (u,v)
∂v∂v

= −2Diag(u)

Then we know that for any fixed u, f (u,v) is maximized if and only if v = ‖u‖11p, and the

maximum value can be easily shown as 0. So we have proved f (u,v) ≥ 0. Finally the necessary
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and sufficient condition for f (u,v) = 0 to hold, that is v = ‖u‖11p, can be rewritten as following

in terms of our originally notations v,d

‖v◦d‖1 = v j, for ∀ j ∈ [p]

and it can be easily shown that the above holds if and only if v ∝ 1p and ‖d‖1 = 1.

Lemma 3.6.26. For any pairs of non-negative vectors v,d ∈ Rp
+ with ‖d‖1 ≤ 1, and denote S =

{ j ∈ [p] : v j 6= 0,d j 6= 0}. Then we have the following inequality

(v2)ᵀd− (vᵀd)2 ≥ 0 (3.62)

and the equality holds if and only if vS ∝ 1|S | and ‖d‖1 = 1.

Proof of Lemma 3.6.26. Similar to the proof of Lemma 3.6.25, without loss of generality we can

assume all the entries of v,d are positive. Then we discuss separately about the cases ‖d‖1 = 1 and

‖d‖1 < 1.

• ‖d‖1 = 1: In this case the LHS of inequality 3.62 can be rewritten as following

f (v,d) = (v2)ᵀd− (vᵀd)2

= (v2)ᵀd1ᵀpd− (vᵀd)2

=

[
p

∑
j=1

(v jd
1/2
j )2

][
p

∑
j=1

(d1/2
j )2

]
−

(
p

∑
j=1

v jd
1/2
j d1/2

j

)2

And it is obvious the final formula is ≥ 0 by Cauchy-Schwarz inequality, and equality holds

if and only if v ∝ 1p.

• ‖d‖1 < 1: In this case we first make the following padding to v,d

v∗ =

v

0

 , d∗ =

 d

1−‖d‖1


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Then it’s easy to show that f (v,d) = f (v∗,d∗), and f (v∗,d∗) falls into the previous case,

which is shown to be ≥ 0 by Cauchy-Schwarz inequality, and the equality holds if and only

if v∗ ∝ 1p. But on the other hand by the definition, the last entry of v∗ has to be 0, so in this

case the inequality would never be tight.

With all the above arguments we proved the desired result.

Lemma 3.6.27. For any sub-guassian random vector X = (X1, . . . ,Xn), we have the following

∥∥∥∥∑
n
i=1 Xi√

n

∥∥∥∥2

ψ2

≤

∥∥∥∥∥ n

∑
i=1

X2
i

∥∥∥∥∥
ψ1

≤ 2
n

∑
i=1
‖Xi‖2ψ2

Proof of Lemma 3.6.27. The first inequality can be proved through the following

∥∥∥∥∥ n

∑
i=1

X2
i

∥∥∥∥∥
ψ1

= sup
p≥1

p−1

[
E

(
n

∑
i=1

X2
i

)p]1/p

(By Cauchy-Schwarz inequality)

≥ sup
p≥1

p−1

[
E
(

∑
n
i=1 Xi√

n

)2p
]1/p

(By Cauchy-Schwarz inequality)

≥ sup
p≥1

p−1
[
E
∣∣∣∣∑n

i=1 Xi√
n

∣∣∣∣p]2/p

=

∥∥∥∥∑
n
i=1 Xi√

n

∥∥∥∥2

ψ2

188



On the other hand

∥∥∥∥∥ n

∑
i=1

X2
i

∥∥∥∥∥
ψ1

= sup
p≥1

p−1

[
E

(
n

∑
i=1

X2
i

)p]1/p

(By Minkowski inequality)

≤ sup
p≥1

p−1
n

∑
i=1

[
E
(

X2p
i

)]1/p

≤ 2
n

∑
i=1

sup
p≥1

(2p)−1
[
E
(

X2p
i

)]1/p

= 2
n

∑
i=1

{
sup

2p≥2
(2p)−1/2

[
E
(

X2p
i

)]1/(2p)
}2

= 2
n

∑
i=1

{
sup
p≥2

(p)−1/2 [E(X p
i
)]1/p

}2

≤ 2
n

∑
i=1

{
sup
p≥1

(p)−1/2 [E(X p
i
)]1/p

}2

= 2
n

∑
i=1
‖Xi‖2ψ2

Lemma 3.6.28 (A more user-friendly Bernstein Inequality). Let {ξn}∞n=1 be a sequence of inde-

pendent random variables that satisfies the following

En =
n

∑
i=1

E(ξn), Vn =
n

∑
i=1

Var(ξn), |ξn| ≤C

Then for a given vanishing probability δ , the following event happens with probability at most δ .

∣∣∣∣∣ n

∑
i=1

E(ξn)−En

∣∣∣∣∣≥max

(
2

√
−Vn log

(
δ

2

)
,−4

3
C log

(
δ

2

))
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3.6.10 Proof of Proposition 3.3.5

In this section we analyze the concentration phenomenon of the singular vectors of random ma-

trices with Dirichlet columns, and Proposition 3.3.5 is just one conclusion of the main theorem

in this subsection Theorem 3.6.29. Across this subsection we assume the following settings and

notations. Suppose W ∈ RK×n is a short-fat matrix, that is K is a fixed constant and n is assumed

to go ∞, and has columns i.i.d generated through a same Dirichlet distribution

Wi ∼ Dir (α1K) , ∀i ∈ [n]

Denote Ω = E(W ), and the ith singular components(singular value, left singular vector and right

singular vector) of W and Ω as {λ̂i, ûi, v̂i} and {λi,ui,vi}. Moreover it’s easy to see that

Ω =
1
K
1K,n, λ1 =

√
n
K
, u1 =

1√
K
1K , v1 =

1√
n
1n

Denote Σ̂W =WWᵀ/n and ΣW = E(Σ̂W ). Then by straightforward calculations we have

ΣW =
1

K(Kα +1)
[
α1K,K + IK

]
Then it’s easy to see that the first eigenvalue and eigenvector of Σ̂W are ||Σ̂W ||2 = λ̂ 2

1 /n and û1. And

by a straightforward application of Lemma 3.6.35 we know that the first eigenvalue and eigenvector

of ΣW are ||ΣW ||2 = λ 2
1 /n = 1/K and u1 = 1K/

√
K. Then we have the following main theorem.

Theorem 3.6.29. With the above assumptions and notations, for n large enough we have with

probability at least 1−4K2n−2 the following holds

||û1−u1||2 ≤ 2
√

2K2
√

log(n)
n

(3.63)

|λ̂1−λ1| ≤ 16K7/2 log(n)√
n

(3.64)

||v̂1− v1||2 ≤
10
√

2K7/2

Kα +1
log(n)√

n
(3.65)
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Remark. Equation 3.63 is a direct result of application of the Hoeffding concentration inequal-

ity(Lemma 3.6.31) and sinΘ theorem(Lemma 3.6.34). But the other two results are non-trivial, and

their superiority over the trivial application of any concentration inequalities or sinΘ theorems,

relies on the underlying Dirichlet-distributed columns assumption on W, especially the sum-to-one

nature and a uniform expectation assumption of the Dirichlet distribution.

Proof of Theorem 3.6.29. By setting t =
√

log(n)/n in Lemma 3.6.32 and t =
√

log(n)/n/K in

Lemma 3.6.33, we know that there exists an event E with P(E) ≥ 1− 4K2n−2, on which the

following holds

||Σ̂W −ΣW ||2F ≤ K2 log(n)
n

(3.66)

||WΩ
ᵀ/n−ΩΩ

ᵀ/n||2F ≤ log(n)
n

(3.67)

Under our assumptions and notations, it’s easy to see that {λ̂ 2
1 /n, û1} and {λ 2

1 /n,u1} are the first

eigen pairs of matrices Σ̂W and ΣW respectively. Now we are ready to prove the 3 inequalities in

the theorem.

• Proof of 3.63: By Lemma 3.6.34, inequality 3.66 and the fact that ||ΣW ||2 = 1/K, we have

the desired result.

• Proof of 3.64: From the definition of eigenvalues we have

λ̂ 2
1
n

= ||Σ̂W ||2 = ûᵀ1Σ̂W û1

= (û1−u1 +u1)
ᵀ (

Σ̂W −ΣW +ΣW
)
(û1−u1 +u1)

=
λ 2

n
+ I + II + III
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where we have used I, II and III to denote the "1st", "2nd" and "3rd" order terms respectively.

I = uᵀ1ΣW (û1−u1)+uᵀ1
(
Σ̂W −ΣW

)
u1 +(û1−u1)

ᵀ
ΣW u1

II = uᵀ1
(
Σ̂W −ΣW

)
(û1−u1)+(û1−u1)

ᵀ
ΣW (û1−u1)+(û1−u1)

ᵀ (
Σ̂W −ΣW

)
u1

III = (û1−u1)
ᵀ (

Σ̂W −ΣW
)
(û1−u1)

By Equation 3.66 the first conclusion 3.63, we have the following straightforward upper

bounds for |II| and |III| on the event E.

|II| ≤ ||u1||2||Σ̂W −ΣW ||2||û1−u1||2 + ||û1−u1||ᵀ||ΣW ||2||û1−u1||2

+||û1−u1||2||Σ̂W −ΣW ||2||u1||2

≤ K

√
log(n)

n
2
√

2K2
√

log(n)
n

+2
√

2K2 1
K

2
√

2K2
√

log(n)
n

+2
√

2K2
√

log(n)
n

K

√
log(n)

n

= (8+4
√

2)K3 log(n)
n

|III| ≤ ||û1−u1||2||Σ̂W −ΣW ||2||û1−u1||2

≤ 2
√

2K2
√

log(n)
n

2
√

2K2
√

log(n)
n

K

√
log(n)

n
= 8K5

(
log(n)

n

)3/2

Before we analyze the term I, we first notice the following two facts.

uᵀ1Σ̂W u1 = uᵀ1ΣW u1 =
1
K

(3.68)

ûᵀ1u1 ≥ 1−4K4 log(n)
n

, on event E (3.69)

Here Equation 3.68 follows from direct calculation based on the formulas of u1 and Σ̂W .

And Equation 3.69 can be easily deduced based on the first result 3.63 we have just proved.
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Then we are ready to study the term I.

|I| ≤
∣∣uᵀ1ΣW (û1−u1)

∣∣+ ∣∣uᵀ1 (Σ̂W −ΣW
)

u1
∣∣+ |(û1−u1)

ᵀ
ΣW u1|

(By Equation 3.68 and the fact that u1 is the first eigenvector of ΣW )

= ||ΣW ||2
∣∣ûᵀ1u1−1

∣∣+ ∣∣∣∣ 1
K
−||ΣW ||2

∣∣∣∣+ ∣∣uᵀ1 û1−1
∣∣ ||ΣW ||2

(By Equation 3.69 and the fact that ||ΣW ||2 = 1/K)

≤ 8K3 log(n)
n

Putting these results of I, II and III back into their original definitions, we have on event E,

∣∣∣∣∣ λ̂ 2
1
n
−

λ 2
1
n

∣∣∣∣∣≤ 24K3 log(n)
n

(Since λ
2
1 /n = 1/K)

⇒ n
K
−24K3 log(n)≤ λ̂

2
1 ≤

n
K
+24K3 log(n)

⇒
√

n
K

√
1−24K4 log(n)

n
≤ λ̂1 ≤

√
n
K

√
1+24K4 log(n)

n

(For n large enough)

⇒
√

n
K

(
1− 2

3
24K4 log(n)

n

)
≤ λ̂1 ≤

√
n
K

(
1+

1
2

24K4 log(n)
n

)
(Recall that λ1 =

√
n/K)

⇒ |λ̂1−λ1| ≤ 16K7/2 log(n)√
n

Which is our second conclusion.

• Proof of 3.65: By definition of {λ̂1, û1, v̂1} we have

Wᵀû1− λ̂1v̂1 = 0

⇒ Wᵀû1−Ω
ᵀû1 +Ω

ᵀû1−λ1v̂1 +λ1v̂1− λ̂1v̂1 = 0

⇒ (Wᵀ−Ω
ᵀ)û1︸ ︷︷ ︸

I

+(λ̂1−λ1)v̂1︸ ︷︷ ︸
II

+= λ1v̂1−Ω
ᵀû1︸ ︷︷ ︸

III
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Then we analyze the terms I, II and III separately.

– I: We first introduce one more fact that is similar to Equation 3.68.

Wᵀu1 = Ω
ᵀu1 =

1√
K
1n (3.70)

Then we have on the event E,

||I||2 = ||(Wᵀ−Ω
ᵀ)û1||2

(By Equation 3.70)

=
√

(û1−u1)
ᵀ(W −Ω)(Wᵀ−Ωᵀ)(û1−u1)

≤ ||û1−u1||2||(W −Ω)(Wᵀ−Ω
ᵀ)||2

(By the first proved result 3.63)

≤ 8K4 log(n)
n
||(W −Ω)(Wᵀ−Ω

ᵀ)||2

≤ 8K4 log(n)
[
||Σ̂W −ΣW ||2 +2||WΩ

ᵀ/n−ΩΩ
ᵀ/n||2 + ||ΣW −ΩΩ

ᵀ/n||2
]

(By inequalities 3.66 and 3.67)

≤ 8K4 log(n)

[
(K +2)

√
log(n)

n
+ ||ΣW −ΩΩ

ᵀ/n||2

]
(By a direct application of Lemma 3.6.35)

= 8K4 log(n)

[
(K +2)

√
log(n)

n
+

1
K(Kα +1)

]
(For n that is large enough)

≤ 9K3

Kα +1
log(n)

– II: By inequality 3.64 which we have already proved, we have

||II||2 = |λ̂1−λ1| ≤ 16K7/2 log(n)√
n

– III: Denote V = [v1,V2] be a set of orthonormal basis in Rn that is expended based on
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v1, then by the SVD of Ω = u1λ1vᵀ1 and the fact that In = v1vᵀ1 +V2Vᵀ
2 , we have the

straightforward calculations

III = λ1v̂1−Ω
ᵀû1 = v1vᵀ1 v̂1λ1 +V2Vᵀ

2 v̂1λ1− v1λ1uᵀ1 û1

Then by the fact that vᵀ1V2 = 0n−1 we have

||I||22 = ||λ1v̂1−Ω
ᵀû1||2 = ||v1vᵀ1 v̂1λ1 +V2Vᵀ

2 v̂1λ1− v1λ1uᵀ1 û1||22

= λ
2
1

[
||v1uᵀ1 û1− v1vᵀ1 v̂1||22 + ||V2Vᵀ

2 v̂1||22
]

≥ λ
2
1 ||V2Vᵀ

2 v̂1||22

= λ
2
1 v̂ᵀ1V2Vᵀ

2 V2Vᵀ
2 v̂1

= λ
2
1 v̂ᵀ1V2Vᵀ

2 v̂1

= λ
2
1 v̂ᵀ1(In− v1vᵀ1)v̂1

= λ
2
1 (1− (vᵀ1 v̂1)

2)

(Assuming vᵀ1 v̂1 > 0)

≥ λ
2
1 (1− vᵀ1 v̂1)

=
λ 2

1
2
||v̂1− v1||22

By putting back the results of I, II and III back into their original relation equation, for n

large enough we have

10K3

Kα +1
log(n)≥ ||I||2 + ||II||2 ≥ ||III||2 ≥

λ1√
2
||v̂1− v1||2

By plugging in the fact that λ1 =
√

n/K we have the final desired result.

Remark. We make the following remarks on the proof of Theorem 3.6.29.
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• We first works out the result on the first left singular vector of Σ̂W , because it is easiest to

make full use of the power of concentration inequalities through the assumption that K is

a fixed constant while n goes to ∞. Then we work out the other results in a "left-to-right",

"easy-to-difficult" manner.

• In the proof of second result 3.64, we introduced three terms I, II and III, and called them

the "1st", "2nd" and "3rd" order terms. The names are given based on how many (Σ̂W −ΣW )

or (û1−u1) are involved in each term. The resulting upper bounds for II and III depend on

n through the "2nd" and "3rd" order of
√

log(n)/n, which is natural given their dependence

of (Σ̂W −ΣW ) or (û1− u1) in their formulations. But on the other hand the upper bound

for the "1st" order term I depend on n through the "2nd" order instead of the "1st" order of√
log(n)/n, which results from the fact that the columns of W are iid Dirichlet-distributed

with a uniform mean. And this induces a sharper upper bound in the result 3.64 over trivial

applications of concentration inequalities.

• During the process of bounding I in the proof of 3.65, we can bound the term ||(W −

Ω)(Wᵀ−Ωᵀ)||2 in a more trivial way such as

||(W −Ω)(Wᵀ−Ω
ᵀ)||2 ≤ ||WWᵀ||2 +2||WΩ

ᵀ||2 + ||ΩΩ
ᵀ||2

if we only cares about the dependence on n in the error rate. But through a little more

complex argument as we did in the proof, we can obtain a result with better dependence on

K.

With Theorem 3.6.29 in hand we are able to prove the following theorem about the remaining

singular values of W .

Theorem 3.6.30. With probability at least 1−4K2n−2, the following holds

√
n
[

1−4K2(Kα +1)
√

log(n)
n

]
√

K(Kα +1)
≤ λ̂K ≤ ·· · ≤ λ̂1 ≤

√
n
[

1+4K2(Kα +1)
√

log(n)
n

]
√

K(Kα +1)
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Proof of Theorem 3.6.30. To study the singular values of W , it is equivalent to study the eigenval-

ues of Σ̂W . Notice by our definitions

Σ̂W −
λ̂ 2

1
n

û1ûᵀ1︸ ︷︷ ︸
A

= Σ̂W −
λ̂ 2

1
n

û1ûᵀ1−

(
ΣW −

λ 2
1
n

u1uᵀ1

)
+

(
ΣW −

λ 2
1
n

u1uᵀ1

)

=
(
Σ̂W −ΣW

)
−

(
λ̂ 2

1
n

û1ûᵀ1−
λ 2

1
n

u1uᵀ1

)
︸ ︷︷ ︸

B

+

(
ΣW −

λ 2
1
n

u1uᵀ1

)
︸ ︷︷ ︸

C

Then the 2∼ Kth eigenvalues of Σ̂W and ΣW are exactly the 1∼ (K−1)th eigenvalues of A and C.

By the Weyl’s inequality we have

λK−1(C)+λK(B)≤ λK−1(A)≤ ·· · ≤ λ1(A)≤ λ1(C)+λ1(B) (3.71)

Here we have overload the notations λk without inducing confusions. On the other hand by Lemma

3.6.35 we have

λK−1(C) = λ1(C) =
1

K(Kα +1)

and by simple algebra

−||B||2 ≤ λK(B)≤ λ1(B)≤ ||B||2

Plugging these results back into Equation 3.71 we have

1
K(Kα +1)

−||B||2 ≤ λK−1(A)≤ ·· · ≤ λ1(A)≤
1

K(Kα +1)
+ ||B||2

Then the final task is to upper bound ||B||2. Denote the event in Theorem 3.6.29 as E, which

holds with probability at least 1−4K2n−2. The remaining analysis is conditioned on E. Then by

Equation 3.63 in Theorem 3.6.29 we have

1≥ ûᵀ1u1 ≥ 1−4K4 log(n)
n

(3.72)
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Then we have

||B||2 ≤
∥∥Σ̂W −ΣW

∥∥
2 +

∥∥∥∥∥ λ̂ 2
1
n

û1ûᵀ1−
λ 2

1
n

u1uᵀ1

∥∥∥∥∥
2

=
∥∥Σ̂W −ΣW

∥∥
2 +

∥∥∥∥∥ λ̂ 2
1
n

û1ûᵀ1−
λ 2

1
n

û1ûᵀ1 +
λ 2

1
n

û1ûᵀ1−
λ 2

1
n

u1uᵀ1

∥∥∥∥∥
2

≤
∥∥Σ̂W −ΣW

∥∥
2 +

∣∣∣∣∣ λ̂ 2
1
n
−

λ 2
1
n

∣∣∣∣∣+ λ 2
1
n

∥∥û1ûᵀ1−u1uᵀ1
∥∥

2(
By
∥∥û1ûᵀ1−u1uᵀ1

∥∥
2 ≤

∥∥û1ûᵀ1−u1uᵀ1
∥∥

F =
√

2−2(ûᵀ1u1)
2
)

≤
∥∥Σ̂W −ΣW

∥∥
2 +

∣∣∣∣∣ λ̂ 2
1
n
−

λ 2
1
n

∣∣∣∣∣+ λ 2
1
n

√
2−2(ûᵀ1u1)

2

(By equations 3.64, 3.66 and 3.72, and the fact that λ1 =
√

n/K)

≤ 7K

√
log(n)

n

Plugging this back into Equation 3.6.10 we have

1
K(Kα +1)

−7K

√
log(n)

n
≤ λK−1(A)≤ ·· · ≤ λ1(A)≤

1
K(Kα +1)

+7K

√
log(n)

n

Finally by multiplying n and taking square root, we have the desired result.

Lemma 3.6.31 (Hoeffding Inequality). Suppose X1,X2, . . . ,Xn are independent random variables

such that 0≤ Xi ≤C for ∀i ∈ [n], and denote Sn = ∑
n
i=1 Xi, then we have

P(|Sn−E(Sn)| ≥ t)≤ 2exp

(
− 2t2

nC2

)

Then the second lemma is about the concentration of Σ̂W around Σ.

Lemma 3.6.32. For ∀t ≥ 0, we have

P
(
||Σ̂W −ΣW ||2F ≤ K2t2

)
≥ 1−2K2 exp(−2nt2)
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Proof of Lemma 3.6.32. For ∀k, l ∈ [K] we have

(Σ̂W )kl =
1
n

n

∑
i=1

WkiWli

Since 0≤WkiWli ≤ 1, by Hoeffding inequality 3.6.31 we have

P(|(Σ̂W )kl− (ΣW )kl | ≥ t)≤ 2exp(−2nt2)

Denote the event Et = {|(Σ̂W )kl− (ΣW )kl | ≤ t|∀k, l ∈ [K]}. Then by the union bound we have

P(Et)≥ 1−2K2 exp(−2nt2)

Then under event Et , we have

||Σ̂W −ΣW ||2F = ∑
k,l∈[K]

[
(Σ̂W )kl− (ΣW )kl

]2 ≤ K2t2

Then the result follows.

Lemma 3.6.33. For ∀t ≥ 0, we have

P
(
||WΩ

ᵀ/n−ΩΩ
ᵀ/n||2F ≤ K2t2

)
≥ 1−2K exp(−2K2nt2)

Proof of Lemma 3.6.33. Since Ω = 1K,n/K, for ∀k ∈ [K] we have

((WΩ
ᵀ/n)kl =

1
nK

n

∑
i=1

Wki

Since 0≤Wki ≤ 1, by Hoeffding inequality 3.6.31 we have

P(|(WΩ
ᵀ/n)kl− (ΩΩ

ᵀ/n)kl | ≥ t)≤ 2exp(−2K2nt2)
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Denote the event Et = {|(WΩᵀ/n)kl− (ΩΩᵀ/n)kl | ≤ t|∀k, l ∈ [K]}. Then by the union bound we

have

P(Et)≥ 1−2K exp(−2K2nt2)

Then under event Et , we have

||WΩ
ᵀ/n−ΩΩ

ᵀ/n||2F = ∑
k,l∈[K]

[(WΩ
ᵀ/n)kl− (ΩΩ

ᵀ/n)kl ]
2 ≤ K2t2

Then the result follows.

Lemma 3.6.34 (sinΘ theorem in [52]). Suppose {λ1,v1} and {λ̂1, v̂1} are the first eigen pairs of

symmetric matrices M and M̂ respectively. Then the following holds

||v̂1− v1||2 ≤
2
√

2||M̂−M||F
λ1

Lemma 3.6.35. Suppose symmetric matrix M ∈ RK×K has the following form

M =


a · · · b
... . . . ...

b · · · a


For the non-trivial case with b 6= 0, M has two eigenvalues, one is a+ b(K− 1) with the corre-

sponding eigenvector 1K/
√

K, and another eigenvalue is (a−b) with multiplicity (K−1).

Proof of Lemma 3.6.35. By straightforward calculation we have

M
1√
K
1K = [a+b(K−1)]

1√
K
1K

which proves first half of the conclusion. Then we subtract the first eigen-component of M from
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M, and get

M− [a+b(K−1)]
(
1K/
√

K
)(

1K/
√

K
)ᵀ

= (b−a)
(

IK−
1
K
1K×K

)

Notice for ∀v ∈ RK with ||v||2 = 1, we have

vᵀ
(

IK−
1
K
1K×K

)
v =

1
K

(
K

∑
k=1

v2
kK− vksv

)

=
K

∑
k=1

v2
k−

1
K

s2
v = 1− s2

v
K

≤ 1

where we have denoted sv = ∑
K
k=1 vk. The last inequality holds as long as v additionally satisfies

sv = 0, which indicates 1 is an eigenvalue of (IK −1K×K/K) with multiplicity K− 1. Also it’s

easy to check that (IK−1K×K/K) has rank at most K−1, so we know that 1 is the only non-zero

eigenvalue of this matrix.
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CHAPTER 4

A MODEL BASED APPROACH TO INFORMATION RETRIEVAL

4.1 Backgroud

Information Retrieval (IR) has many applications in text mining and artificial intelligence. Given

a collection of documents, a TR algorithm allows the user to make a query (e.g., a short sentence

or a few key words) and returns a rank of the “relevance" of all documents to the query. It is one

of the core tasks of web search engines. Take Google as an example. About 1.2 trillion queries

were performed on its search engine during the year of 2012.1 The vast applications in industry

motivated active research on TR over the past decades. Each year, many new methods and datasets

are published in the Text REtrieval Conference (TREC).2

A common IR approach is to rank documents by measuring the “similarity" between the vector

of word frequencies (VWF) for the query and VWF for each document. Various similarity mea-

sures were proposed in the literature [6, 9, 10], among which tf.idf [10] is the most popular one

and is often used as a benchmark in empirical experiments. However, these heuristic methods are

not based on any probabilistic models and lack of statistical guarantee.

Probabilistic IR approaches try to model the generating process of the document D, the query

Q, and a binary vector R indicating the true relevance between the query and the document. Then

the document ranking is based on the estimated posterior likelihood P(R|D,Q). Probabilistic ap-

proaches further divide into two sub-classes. The class of Probability Relevance Framework (PRF)

methods focus on modeling the generating of documents given the query, i.e., P(D|Q,R). Exam-

ples include the Robertson/Sprck Jones model [43], 2-Poisson model [55], and BM25 model [44].

However, in reality, queries are typically generated after the documents are generated, so it is more

natural to model the generating of the query given the underlying documents, i.e., P(Q|D,R). This

gives rise to the second class of methods, known as Language Models (LM). [56] introduced the

1. http:/www.internetlivestats.com/google-search-statistics/

2. https://trec.nist.gov/
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Table 4.1: Statistical Literature Abstracts (SLA) dataset.
documents dictionary query type I query type II

3193 abstracts 2934 words title key words

first language model, and later many variants and generalizations were proposed [57, 58, 59, 60].

Under the language model framework, smoothing on the posterior likelihood was also introduced

to improve the real performance [61, 62].

Despite a lot of recent progress, there are practical issues which cannot be easily resolved in

the existing IR framework.

• The aforementioned methods share the same philosophy —The word frequencies in a “rel-

evant" document should be “similar" to the word frequencies in the query. But this is not

exactly true in reality. Often, queries are composed of a few “key words", while documents

contain much longer text and use a lot of transitional words.

• In many scenarios, a relevance feedback dataset is available [63]. It contains a collection of

documents (which may be different from the collection of documents in the IR system) and

a number of query-document pairs that are known to be relevant. For example, if we are

interested in building a IR system for querying academic papers, we can treat a paper and its

key words as a truly relevant query(key words)-document(paper) pair. The relevance feed-

back data are a resource to learn what “relevance" means, but very few of existing methods

allow to incorporate them.

[63] is one of the few works that had explicitly taken advantages of the feedback information

in the IR task. They proposed to use the “center" of the feedback documents to smooth the query

model, where the “center" is obtained through minimizing the average KL-divergence over the

feedback documents. More specifically, they first fit a feedback query model through minimizing

the penalized KL-divergence over the feedback documents,

θ̂F = argmin
θ

1
|F |

n

∑
i=1

D(θ |θ̂di)−λD(θ |p(·|C )) (4.1)
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and then a new query model θ̂Q′ is obtained through smoothing the original query model θ̂Q

with θ̂F

θ̂Q′ = (1−α)θ̂Q +αθ̂F (4.2)

and finally a document d is scored by D(θ̂Q′|θ̂d). It can be seen that in their procedures,

the feedback query model θ̂F is trained only based on the feedback documents {di}ni=1 without

using any query information itself. The new query model θ̂Q′ is obtained through balancing the

noisy original query model θ̂Q and a more stable background feedback document model θ̂F , but

it is tuned only by a single parameter α , which is unreasonable since different words should be

associated with different amount of smoothing. For example, words martingale and the(See Table

4.4.3 and Table 4.4.3), which have large frequency heterogeneity between queries and documents,

should be modeled based more on the original query model θ̂Q than the feedback document model

θ̂F , while words condition and total have similar frequency among queries and documents, so

they should be better modeled based more on the feedback document model θ̂F , which is more

stable due to the abundance of feedback documents.

Take the Statistical Literature Abstracts (SLA) dataset [64] for example. It contains the ab-

stracts (documents) of papers in four representative statistical journals during a 10-year time pe-

riod. Each document is naturally associated with two “relevant" queries: paper title, and the col-

lection of key words. We computed the average correlation between word frequencies of a rele-

vant document-query pair.3 The correlation is only 0.331 when queries are paper titles and 0.280

when queries are key words. It clearly suggests that the word frequencies in documents and in

queries are not “similarly". The reason is that some words such as martingale,pseudo are more

frequently used in queries than in documents while the situation is opposite for some other words

such as propose, these. Is it possible to know which words have inflated (or deflated) frequencies

in queries? Interestingly, we can learn such information from the available query-document pairs.

3. For each query-document pair {qi,di}, we first compute the Pearson correlation between the two sequences qi
and di, then the average correlation is computed by averaging over all these Pearson correlations.
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4.2 Our proposal

The above observations motivate the core ideas behind our approach:

• We introduce a new model for the generation of queries given documents, by including

parameters to capture the “difference" between word frequencies in queries and that in doc-

uments.

• We propose using the relevance feedback data to estimate the “difference" parameters. The

philosophy is that, the difference between word frequencies in queries and word frequencies

in documents is an intrinsic feature of dictionary words and can be shared across corpora.

4.2.1 The FILM model

Consider a setting where we have n documents written on a vocabulary of p words and the user

makes a document query. Following the convention, let D ∈ Rp×n
+ and q ∈ Rp

+ be the word-

document matrix and a query word vector, where Di is the empirical distribution of words in the

ith document and q j is the counts of word j in the query, for 1≤ i≤ n,1≤ j≤ p. We assume there

is one document h ∈ {1,2, . . . ,n} that is truly relevant to the query. Introduce parameters r ∈ Rp
+,

where r( j) captures the frequency inflation of word j from the document to query. We model that,

conditioning on (D,h), the entries of q are independently generated and satisfy

q j|(D,h)∼ Poisson
(
r j ·D jh

)
, 1≤ j ≤ p. (4.3)

Additionally, we assume a relevance feedback dataset is available which contains m documents

written on the same dictionary, whose word-document matrix is denoted as D∗ ∈ Rp×m
+ , and

T relevant query-document pairs, denoted as (Q∗t ,h
∗
t ) for t ∈ [T ], where Q∗t ∈ Rp

+ is the vec-

tor of word counts in the t-th query and h∗t ∈ [m] is index of the relevant document. Write

Q∗ = [Q∗1,Q
∗
2, . . . ,Q

∗
T ] ∈ Rp×T

+ and h∗ = (h∗1,h
∗
2, . . . ,h

∗
T )
′. We impose a similar model on the
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feedback data: Conditioning on (D∗,h∗), the entries of Q∗ are independently generated such that

Q∗jt |(D
∗,h∗)∼ Poisson

(
r j ·D∗jh∗t

)
, 1≤ t ≤ T,1≤ j ≤ p. (4.4)

We call (4.3)-(4.4) the Feedback-associated frequency-Inflated Language Model (FILM). When all

entries of r are equal, model (4.3) alone is a Poisson version of the language model [56, 59]. Com-

pared with traditional language models, FILM is more realistic and can successfully incorporate

feedback data.

4.2.2 The TR algorithm

We propose a TR algorithm which consists a training phase and a ranking phase. In the training

phase, we estimate r from (4.4) using the feedback data. In the ranking phase, we rank documents

by posterior likelihood under model (4.3) with plugged-in r̂.

Training phase. We use (D∗,h∗) to estimate r. The log-likelihood of Model (4.4) is

`∗(r) =
T

∑
t=1

p

∑
j=1

[
Q∗jt log(r jD

∗
jh∗t

)− r jD
∗
jh∗t

]
. (4.5)

However, if we directly maximize (4.5), the solution will contain a lot of zeros. Since queries are

much shorter than documents, many words in a document never appear in the associated query.

For these words, r j is estimated to zero by MLE. Too many zero’s in the solution will make the

ranking phase unstable. To resolve this issue, we hope to add a penalty term such that it prevents the

solution from having a lot of zero’s and at the same time keeps the computation simple. Inspired

by the design of conjugate priors in Bayesian statistics (see the remark below), we propose the

following penalized log-likelihood:

`∗
λ ,µ(r) = `∗(r)−λ

p

∑
j=1

T

∑
t=1

D∗jht
[r j−µ log(r j)] (4.6)
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where {λ ,µ} are tuning parameters. The maximizer of `∗
λ
(r) has a closed-form solution

r̂∗j =
∑

T
t=1[Q

∗
jt +λ µD∗jht

]

(1+λ )∑
T
t=1 D∗jht

, 1≤ j ≤ p. (4.7)

Note that for those words j such that ∑
T
t=1 Q∗jt = 0 and ∑

T
t=1 D∗jht

6= 0, the corresponding r̂∗j =

λ

1+λ
µ . Hence, a nonzero λ guarantees that these entries of r̂∗ won’t be zero. The tuning parameters

{λ ,µ} can be selected by cross-validation.

Ranking phase. On top of Model (4.3), we assume h is drawn from a prior with P(h = i) = πi.

Given r and π , we propose ranking documents using the posterior probability P(h = i|D,q), which

by Bayes’ rule is equivalent to ranking documents using the posterior log-likelihood logP(q|D,h=

i). Under Model (4.3), it is further equivalent to ranking documents through the following score:

S(q,di;r,π) = log(πi)+
p

∑
j=1

[
q j log(r jD ji)− r jD ji

]
. (4.8)

We then plug in the estimator of r from (4.7) and rank documents in the descending order of

S(q,di;r,π), 1≤ i≤ n. The weights πi are supposed to come from prior knowledge. In all numer-

ical experiments of this paper, we simply set πi ≡ 1/n, and in this case we simplify the notation

in 4.8 as S(q,di;r).

4.2.3 Why does the proposed method outperform the LM?

Suppose we are in a case where our method outperform the (Poisson)language model. Let q be a

query word vector and d be the empirical word distribution of a document. Also without causing

confusion we also treat q and d as sets containing the words appeared in them. Since the language

model is the special case of our proposed method without the word-associated heterogeneity, we
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use the same notations to define the scores used for ranking of our method and the LM, that is

S(q,d;r) = ∑
j∈[p]

q j log(r jd j)− r jd j (4.9)

S(q,d;1p) = ∑
j∈[p]

q j log(d j)−d j (4.10)

We denote each term inside the R.H.S of the expression of S(q,d;r) as S j(q,d;r), which is further

decomposed into S1
j(q,d;r) and S2

j(q,d;r) or S2
j(q,d;r) alone, depending on whther j lies in q or

not, that is

S j(q,d;r) =

 q j log(r jd j)− r jd j ≡ S1
j(q,d;r)+S2

j(q,d;r) j ∈ q

−r jd j ≡ S2
j(q,d;r) j /∈ q

(4.11)

Then it can be observed that the parameters r have contributed to the outperformance of our method

over LM through two ways: The first is by leveraging up the penalty when the word does not ap-

pear in the query but does exist in the document; The second is by mitigating the penalty when the

word does not appear in the document but does exist in the query. We will illustrate this argument

through the real data application in Section 4.4.

4.3 Theoretical guarantees

In this section we present some theoretical guarantees of our proposed method, that is the TR

algorithm under the FILM model. Before we go into the detail, it should be noticed that many

popular error measures for the IR methods are generic, such as the ROC curves, Precision-recall

curves and the Mean average precision(see [65], [56], [66]). But none of them are theoretically

tractable under existing probabilistic models. But FILM is probabilistic model, in which the query

is generated with a true underlying document. Then the following two natural and tractable er-

ror measures can be studied: One is the probability of the "most relevant" document is selected,
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another is the "distance" between the selected document and the true underlying document. We

will make precise the two error measures through the following two oracle theorems, which are

basically "Bayes errors", that is R are assumed to be known. To simplify the notations, we define

the following matrix of Poisson rate

Λ = r ◦D (4.12)

Also we use l(λ ;q) to denote the log-likelihood when the query is assumed to be generated

from independent Poisson distributions with rate parameters λ , that is

l(λ ;q) =
p

∑
j=1

(
q j log(λ j)− log(q j!)−λ j

)
We first introduce the entry-wise upper and lower bounds assumptions for Λ.

Assumption 4.3.1. There exists λ+ > 0 such that Λ ji ≤ λ+ for ∀ j ∈ [p], i ∈ [n].

Assumption 4.3.2. There exists λ− > 0 such that Λ ji ≥ λ− for ∀ j ∈ [p], i ∈ [n] with Λ ji > 0.

Then we have the first oracle theorem about the probability of the "most relevant" document is

selected.

Theorem 4.3.3. Under Assumptions 4.3.1 and 4.3.2, and assume q is generated by a series of

independent Poisson distributions with rates λ , that is

q j ∼ Poisson(λ j), for ∀ j ∈ [p]

For ∀k ∈ [n], denote Sk = { j ∈ [p] : λ j > 0,Λ jk = 0}, then we have

P(l(Λk;q)> l(Λi;q), for ∀i ∈ [n] with i 6= k) (4.13)

≥ 1−
(

1− e−||λSk
||1
)
(n−1) (4.14)

−exp

[
−||λSk

||1 +

(√
λ+

λ−
−1

)
||λ −Λk||1

]
n

∑
i=1,i6=k

exp
(
− 1

8λ+
||Λk−Λi||22

)
(4.15)
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Remark 1 Suppose λ =ΛK , and denote the hypercube Cλ+
= {λ+1S : S ⊂ [p]}, then suppose

the columns of Λ are composed of a subset of V , which is a packing of Cλ+
, with |V | ≥ exp(p/8),

and for ∀v,v′ ∈ V with v 6= v′, we have ||v−v′||2 ≥ ||v−v′||1/
√

p≥ λ+
√

p/2. Then the R.H.S of

4.15 can be further lower bounded through the following

1−
n

∑
i=1,i 6=k

exp
(
− 1

8λ+
||Λk−Λi||22

)
≥ 1− (n−1)exp

(
−λ+

32
p
)

So as long as n = o(exp(λ+p/32)), the R.H.S of 4.15 goes to 1 as p→∞. Notice here we can pick

n to be exponential in p, since there are more than exp(p/8) potential columns in the packing to

choose from.

Remark 2 If λ 6= ΛK , then the probability bound will roughly the same if we have ||λSk
||1 &

exp(−p). But if this is not the case, then the second term in 4.15 will dominate the third term, and

the resulting bound will roughly be 1−n||λSk
||1.

The second oracle theorem is about the high probability bound on the "distance" between

selected document and the true underlying document. In order to quantify this "distance", we make

the following low dimensional assumption on matrix Λ, which is similar to the low dimensional

assumption on the corpus in topic modeling([5], [3])

Assumption 4.3.4. Λ has a low-dimensional structure Λ = AΛW, where AΛ ∈Rp×K
+ , W ∈RK×n

+ .

This assumption holds naturally under the pLSI topic model([5]), in which it is assumed D̄ ≈

AW . Then through our definition of Λ, under pLSI topic model on the documents we have Λ ≈

(r ◦A)W , and r ◦A is exactly AΛ in Assumption 4.3.4.

We also need a stronger entry-wise lower bound for Λ than that in the previous theorem.

Assumption 4.3.5. There exists λ− > 0 such that Λ ji ≥ λ− for ∀ j ∈ [p], i ∈ [n].

This may seem too restrictive at the first sight, but as in our real data application, we usually

smooth each column of D∗ and D in 4.6 and 4.8 by the empirical distribution of words across the

whole corpus, and smooth r̂ through penalization as that in 4.7, which result in nonzero estimates of

210



Λ through 4.12. So it is reasonable to assume that the true Λ is also entry-wise bounded away from

0. With these two additional assumptions, we are ready to formalize our second oracle theorem.

Theorem 4.3.6. Under Assumptions 4.3.1, 4.3.4 and 4.3.5, and also denote ε = ||λ −Λk||1 where

k is defined as

k = arg min
i∈[n]
||λ −Λi||1

Then for ∀δ > 0 we have

P
(
||Wĥq

−Wk||22 ≤ p−β
)
≥ 1− (n−1)exp [−m(log(m)− log(||Λk||1)−1)−||Λk||1]

where we have denoted

m =
λmin(AΛ)

2pβ λ+(log(λ+)− log(λ−))
+

λmin(AΛ)

2pβ λ+
+

2λ+ε

λmin(AΛ)
−||Λk||1

4.4 Real data application

4.4.1 Performance on the SLA dataset

In this section we compare the performances of our proposed method, the TR algorithm under

the FILM model, with the popular existing methods on the Statistical Literature Abstract(SLA)

data set. The existing methods we are considering here are tf.idf ([10]), BM25([44], [67]) and

LM([56], [68]). The SLA data set has abstracts, titles and keywords of articles collected from the

4 main statistical journals, namely Annals of statistics, JASA, JRSS series B and Biometrika. The

abstracts part of the data set is exactly the one that had been analyzed in the real data application

part of [51], in which the low-frequency words, the stopping words and short documents had been

eliminated in a pre-screening step. Please check the Section 1.3 of [51] for more detail. As a

result under our notation system, there are n = 3193 articles, and the vocabulary size is p = 2934.

For each document, we use either the keywords as well as title of each article as the query, for

which the corresponding document is the true most relevant document. So for cases with either
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keywords or titles as the query, we have T = 3193 numbers of document-query pairs, that is each

document contribute one pair. Then we do a 5-fold cross-validation on both our methods and

existing methods, and compare their performance on the average 0-1 loss of whether the true most

relevant document is recovered on the validation set. And for each method, we use a greedy grid

search to find the best tuning parameters. The result is shown in Table 4.2. We can see that for

both cases our proposed method outperforms the other competitors.

Method Our method tf.idf BM25 LM(Multinomial) LM(Poisson)
keys 0.542 0.190 0.513 0.512 0.511
titles 0.619 0.277 0.607 0.604 0.604

Table 4.2: New comparison results, in which tuning parameters in methods BM25,
LM(Multinomial) and LM(Poisson) are all tuned optimally.

4.4.2 Why does the proposed method outperform the LM?(Explained)

Next we illustrate the arguments made in subsection 4.2.3. Again suppose q is the query, dt is

the true underlying document selected by our method while d f is the false document selected

by the language model. Here we abuse the notations a little bit without causing confusions, by

using q,dt and d f to stand for the query and document themselves, their index numbers in the

corpus or their vector representations. Then we first give an overall description of all kinds of

plots that we are going to present for each case in Table 4.3. Notice for each of the barplots, we

use the corresponding word(and the heterogeneity parameter r j in the bracket) to denote each bar

if applicable. Generally speaking, the diff_0 plots display the terms in the score 4.11 inside

each document for each model; diff_1 plots display the terms in the score difference between

dt and d f under each kind of score, in other words these plots about the contribution of each word

in determining either dt is beaten by d f or the other way around for both our method and LM;

diff_2 plots are the further difference between the terms in the two plots in diff_1, which

describe the contribution of each word in how our method outperforms the language model in

terms of correctly selecting dt rather than d f when query q is observed. We provide two examples,

with each illustrating one argument we have made in subsection 4.2.3: In the first example the

212



S j(q,d;r) terms with j /∈ [q] play the key role in determining the outperformance of our method

over the language model, while in the second example the S j(q,d;r) terms with j ∈ [q] play the

key role.

Plot type name Description
diff_0_sum This plot has 4 subplots, displaying the same set of quantities inside S j(q,dt ;r), S j(q,d f ;r), S j(q,dt ;1p) and S j(q,d f ;1p). Take the subplot of S j(q,dt ;r) for

example, for j ∈ [q], we use a blue bar to denote the S1
j (q,dt ;r), a green bar to denote S2

j (q,dt ;r); And we also use an additional red bar to denote the overall
contribution of all the words outside the query, that is

∑
j/∈[q]

S2
j (q,dt ;r) (4.16)

diff_0_top This plot is the same as diff_0_sum, except that the red bar to denoting the overall contribution of all the words outside the query, is replaced by S2
j (q,dt ;r)

of the words with top 5 largest absolute values, which are also displayed by green bars.
diff_1_sum This plot has 2 subplots, displaying the same set of quantities inside S j(q,dt ;r)−S j(q,d f ;r) and S j(q,dt ;1p)−S j(q,d f ;1p). Take the subplot of S j(q,dt ;r)−

S j(q,d f ;r) for example, for j ∈ [q], we use a blue bar to denote the S1
j (q,dt ;r)−S1

j (q,d f ;r), a green bar to denote S2
j (q,dt ;r)−S2

j (q,d f ;r); And we use an
additional red bar to denote the overall contribution of all the words outside the query, that is

∑
j/∈[q]

S2
j (q,dt ;r)−S2

j (q,d f ;r) (4.17)

diff_1_top This plot is the same as diff_1_sum, except that the red bar denoting the overall contribution of all the words outside the query, is replaced by S2
j (q,dt ;r)−

S2
j (q,d f ;r) of the words with top 5 largest absolute values, which are also displayed by green bars.

diff_2_sum This plot has 1 subplot, displaying the same set of quantities inside S j(q,dt ;r)−S j(q,d f ;r)−S j(q,dt ;1p)+S j(q,d f ;1p). Since S1
j (q,dt ;r)−S1

j (q,d f ;r)−
S1

j (q,dt ;1p)+S1
j (q,d f ;1p) = 0, the only terms left are S2

j (q,dt ;r)−S2
j (q,d f ;r)−S2

j (q,dt ;1p)+S2
j (q,d f ;1p). We use a horizontal line to separate the words

inside or outside of q. For the words in q, we incorporate the following rule in the coloring of the bars:

• "green": The word is in both dt and d f ;

• "blue": The word is in dt but not in d f ;

• "red": The word is not in dt but in d f ;

• "yellow": The word is neither in dt nor d f .

For the words outside q, we use a yellow bar to denote their overall contribution, that is

∑
j/∈[q]

S2
j (q,dt ;r)−S2

j (q,d f ;r)−S2
j (q,dt ;1p)+S2

j (q,d f ;1p) (4.18)

diff_2_top This plot is the same as diff_2_sum, except that the red bar denoting the overall contribution of all the words outside the query, is replaced by S2
j (q,dt ;r)−

S2
j (q,d f ;r)−S2

j (q,dt ;1p)+S2
j (q,d f ;1p) of the words with top 5 largest absolute values, which are displayed using the same rule as that of the words inside q.

Table 4.3: Table of all kinds of plots that we are going to present for each case.

Terms with j /∈ [q] play the key role

This category composed the majority of cases where our method outperforms the language model,

which means the terms with j /∈ q are most important in resulting superior performance of our

method over the language model. Here we give a specific example under this situation: A query

q with underlying true document dt = 3123, and the wrong document selected by the language

model is d f = 1796. Here again we abused the use of notations by using dt and d f to denote the

indices of the true and false document. Then the corresponding diff_0_sum, diff_1_sum
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and diff_2_sum plots are shown in figures 4.1, 4.2 and 4.3. We summarize the patterns inside

each of the plots as following.

• diff_0_sum(Figure 4.1): The S1
j(q,d;r) for each j ∈ q(the blue bars) and the summation

of S2
j(q,d;r) over j /∈ q(the red bars) are dominant in both methods in determining the overall

scores, while S2
j(q,d;r) for j ∈ q are relatively small.

• diff_1_sum(Figure 4.2): For our method, the summation of S2
j(q,dt ;r)−S2

j(q,d f ;r) over

j /∈ q(the red bars) dominates in document selection for our method, while for the language

model, the S1
j(q,d;r) for each j ∈ q(the blue bars) dominate.

• diff_2_sum(Figure 4.3): The huge yellow bar indicates that it is exactly the difference

in the summation of S2
j(q,dt ;r)−S2

j(q,d f ;r) over j /∈ q between our method and language

model, that causes the outperformance of former over later.

We can also investigate the detailed contribution associated with the words outside the query by

replacing the summation of S2
j(q,d;r) over j /∈ q, with the top 5 words with the largest magnitude

in each summation. And the resulting plots are diff_0_top, diff_1_top and diff_2_top

in figures 4.4, 4.5 and 4.6. We summarize the additional observations as following.

• diff_0_top(Figure 4.4): In our method, the words that contribute the most in the sum-

mation of S2
j(q,d;r) over j /∈ q have large r j’s, while in language model, these words are

associated with small r j’s. This is natural since our method has to achieve a balance between

r j and d j when maximizing |S2
j(q,d;r)| = r jd j over j /∈ q, while the language model only

considers d j. Also notice S2
j(q,d;r) = −r jd j is decreasing over r j or d j for j /∈ q, which

makes perfect sense since if the document d is the right one, large r j or d j should indicate

more chance of appearance of word j in the query, and its contraposition is that if the word j

that appeared in the query is associated with large r j or d j in a document, then this document

is less likely to be the true underlying document of the query.

• diff_1_top(Figure 4.5): Again in our method, the words that contribute the most in the

summation of S2
j(q,dt ;r)−S2

j(q,d f ;r) over j /∈ q have large r j’s, while in language model,
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these words are associated with small r j’s. And it also makes more sense that words with

larger r j should play a more important role than the words with small r j.

• diff_2_top(Figure 4.6): Finally, the words that contribute the most in the difference in

the summation of S2
j(q,dt ;r)− S2

j(q,d f ;r) over j /∈ q between our method and language

model, which is is main source of the outperformance of former over later, are associated

with large r j. And more specifically these are often the words that contribute the most

in S2
j(q,d;r) and S2

j(q,dt ;r)− S2
j(q,d f ;r)(for example words "clipped", "smoothing" and

"lasso"), as shown in the previous two figures. To further interpret this result, notice that the

quantities displayed in the plot can be rewritten as following

S2
j(q,dt ;r)−S2

j(q,d f ;r)−S2
j(q,dt ;1p)+S2

j(q,d f ;1p) =−(r j−1)((dt) j− (d f ) j) (4.19)

The larger this quantity is the larger the contribution of word j in the outperformance of our

method over language model. So in order to make this quantity positive, we need either r j >

1 and (dt) j < (d f ) j, or r j < 1 and (dt) j > (d f ) j. It turns out the former case is dominant. The

bars above the lines are to the right, indicating these quantities have positive contributions

in the outperformance of our method. And these bars are painted red, which means these

words only appear in the false document d f but not in the true underlying document dt , and

therefore (dt) j < (d f ) j. On the other hand these words are also associated with high r j

values that are larger than 1. This dominance makes sense, since on the first hand r j has to

be positive, so r j can be farther away to the right than to the left of 1. On the other hand

words with small r j also tends to have similar frequency among the documents, for example

words "the" or "is", which means the the gap between (dt) j and (d f ) j tends to be small too,

while this gap is expected to be larger for more query-preferred words that is associated with

large r j.
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Figure 4.1: diff_0_sum plot for dt = 3123, d f = 1796.
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Figure 4.2: diff_1_sum plot for dt = 3123, d f = 1796.

Figure 4.3: diff_2_sum plot for dt = 3123, d f = 1796.
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Figure 4.4: diff_0_top plot for dt = 3123, d f = 1796.
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Figure 4.5: diff_1_top plot for dt = 3123, d f = 1796.

Figure 4.6: diff_2_top plot for dt = 3123, d f = 1796.
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Terms with j ∈ [q] play the key role

This case is much rarer than the previous case. Here we provide an example with dt = 1181 and

d f = 1244, and we only highlight the difference between this case and the previous one. It can

be seen in figures 4.7 and 4.7 that the terms with j ∈ [q](the blue bars and the green bars) plays a

significantly more important rule than the terms with j /∈ q. And we can further observe in figures

4.9 and 4.12 that it is the S2
j(q,d;r) for word "lasso" results in the outperformance of our method.

What’s counter-intuitive is that this large contribution is mainly due to the high r j value of "lasso",

and (d f ) j is much larger than dt , and in fact "lasso" does not even appear in the true underlying

document. While "lasso" is a word in the query. My interpretation of this is that the language model

goes too far punishing dt over d f for not having "lasso", while our method mitigates the degree

of punishment through using S2
j(q,d;r) rather than S2

j(q,d;1p). So it seems like the parameters

r have contributed to the ourperformance of our method over language model through two ways:

The first is by leveraging up the penalty when the word does not appear in the query but does exist

in the document; The second is by mitigating the penalty when the word does not appear in the

document but does exist in the query.

4.4.3 r values learned from the data

We also display the top 10 words with the highest or lowest r values, among all the words that

have overall frequency above 100, in Table 4.4.3 and Table 4.4.3. It is obvious that the words

with the highest r values are much more meaningful than the words with the lowest r values.

Another observation is that although the two lists of words with the lowest r values are largely

the same, while that of words with the highest r values are very different. And it seems like the

"keyword" queries tend to use words with more detailed meaning, for example dirichlet, smoothing

and censoring, while the "title" queries tend to use words with broader meaning, but more popular

and eye-catching at the same time, for example high, semiparametric and adapting. So if we

pool together both keywords and titles as queries, then it is more natural to assume R has two

dimension, one for keyword queries and one for title queries, instead of one dimension as we did
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Figure 4.7: diff_0_sum plot for dt = 1181, d f = 1244.
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Figure 4.8: diff_1_sum plot for dt = 1181, d f = 1244.

Figure 4.9: diff_2_sum plot for dt = 1181, d f = 1244.
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Figure 4.10: diff_0_top plot for dt = 1181, d f = 1244.
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Figure 4.11: diff_1_top plot for dt = 1181, d f = 1244.

Figure 4.12: diff_2_top plot for dt = 1181, d f = 1244.
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in the TR algorithm. This actually motivates us to incorporate more information modeling the

low-dimensional structure in R. This is left for future studies.

vocab freq r vocab freq r
chain 223 59.96976 through 446 0.09090909
equation 104 57.50313 true 268 0.09090909
markov 340 49.80383 typically 127 0.09090909
kernel 217 47.44171 used 1085 0.09090909
dirichlet 119 45.72057 uses 142 0.09090909
bayes 196 45.07972 using 1245 0.09090909
smoothing 275 44.32893 usual 109 0.09090909
carlo 368 42.50509 wide 106 0.09090909
monte 364 42.14836 also 1178 0.09090909
censoring 111 42.06373 prove 178 0.09090909

Table 4.4: The keywords-as-queries case: Top 10 words with highest or lowest r values, among all
the words that have overall frequency above 100

vocab freq r vocab freq r
high 227 37.18596 subjects 121 0.09090909
longitudinal 194 27.99851 suggest 156 0.09090909
estimation 1374 24.72962 then 450 0.09090909
partially 100 24.01670 these 1217 0.09090909
semiparametric 414 23.70267 they 324 0.09090909
rank 112 23.58130 typically 127 0.09090909
dependent 141 23.48525 uses 142 0.09090909
mixed 161 22.61812 usual 109 0.09090909
bayesian 648 22.11923 also 1178 0.09090909
adaptive 263 22.06118 prove 178 0.09090909

Table 4.5: The titles-as-queries case: Top 10 words with highest or lowest r values, among all the
words that have overall frequency above 100

4.5 Proofs

4.5.1 Proof of Theorem 4.3.3

Proof of Theorem 1. We first discuss the case when Sk = φ . Under the notations we have made

l(Λk;q)− l(Λi;q) =
p

∑
j=1

q j[log(Λ jk)− log(Λ ji)]− (Λ jk−Λ ji)
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And we further denote

s j = log(Λ jk)− log(Λ ji), t j = Λ jk−Λ ji

Then by Chernoff bound we have for ∀µ ∈ R+

P(l(Λk;q)> l(Λi;q))

= P

(
−

p

∑
j=1

q js j <−
p

∑
j=1

t j

)

≥ 1− eµ ∑
p
j=1 t jE

(
e−µ ∑

p
j=1 q js j

)
= 1− eµ ∑

p
j=1 t je∑

p
j=1[λ j(e

−µs j−1)]

= 1− eµ ∑
p
j=1 t je

∑
p
j=1 λ j

[(
Λ ji
Λ jk

)µ

−1)
]

= 1− exp

[
p

∑
j=1

µ(Λ jk−Λ ji)−λ j +λ j

(
Λ ji

Λ jk

)µ]

= 1− exp

[
p

∑
j=1

µ(Λ jk−Λ ji)−Λ jk +Λ jk

(
Λ ji

Λ jk

)µ]
exp

[
p

∑
j=1

(λ j−Λ jk)

(
−1+

(
Λ ji

Λ jk

)µ)]
= 1− I× II

Then our strategy is to first bound I through choosing an optimal µ , and then bound II under this

optimal µ . By denoting

fµ,λ (x) = µ(λ − x)−λ +λ

( x
λ

)µ

(4.20)

I can then be rewritten as

I = exp

[
p

∑
j=1

fµ,Λ jk(Λ ji)

]
(4.21)
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Then our job is to get a upper bound for fµ,λ (x), which will induce an upper bound for I through

4.21. We can easily derive the first and second order derivatives of fµ,λ (x) as following

∂x fµ,λ (x) ≡
∂ fµ,λ (x)

∂x
=−µ +λ

1−µ
µxµ−1

∂
2
x fµ,λ (x) ≡

∂ 2 fµ,λ (x)

∂x2 = λ
1−µ

µ(µ−1)xµ−2

Notice ∂x fµ,λ (x) = 0 at x = λ , we hope to upper bound fµ,λ (x) uniformly by a negative quadratic

form around x = λ in interval [0,λ+]. Then from the expression of ∂ 2
x fµ,λ (x), it’s easy to see that

this is possible only when µ ∈ (0,1). So we assume this is true and fix µ for now, our goal is to

find the largest possible positive constant a such that the quadratic function ga,λ (x) =−a(x−λ )2

satisfies fµ,λ (x) ≤ ga,λ (x) uniformly for ∀x ∈ [0,λ+] and ∀λ ∈ [0,λ+]. By Lemma 4.5.1 it’s

equivalent to guarantee that fµ,λ (λ+)≤ ga,λ (λ+) for ∀λ ∈ [0,λ+]. This equivalence can be more

straightforwardly illustrated by Figure 4.13.

Figure 4.13: Illustrating plots of fµ,λ and ga,λ
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So we want to find the largest possible positive constant a such that the following holds

fµ,λ (λ+)≤ ga,λ (λ+), ∀λ ∈ [0,λ+]

If we define hµ,λ+ as following

hµ,λ+(λ ) =
fµ,λ (λ+)

−(λ+−λ )2 =
µ(λ+−λ )+λ −λ

(
λ+
λ

)µ

(λ+−λ )2 (4.22)

then our goal is to find optimal a(given µ) through the following

aµ = min
λ∈[0,λ+]

hµ,λ+(λ )

By Lemma 4.5.2 we have hµ,λ+(λ ) is strictly decreasing on [0,λ+], then by L′Hôpital′srule we

have

aµ = min
λ∈[0,λ+]

µ(λ+−λ )+λ −λ

(
λ+
λ

)µ

(λ+−λ )2

= lim
λ→λ+

µ(λ+−λ )+λ −λ

(
λ+
λ

)µ

(λ+−λ )2

= lim
λ→λ+

µ(1−µ)λ−µ−1λ
µ

+

2

=
µ(1−µ)

2λ+

Now we choose optimally µ = 1/2 and get the final optimal a∗

a∗ = max
µ∈[0,1]

aµ = a1
2
=

1
8λ+

then we plug a∗ back into ga,λ (λ+), which is an upper bound of fµ,λ (λ+), and get f1/2,λ (λ+)≤

ga∗,λ (λ+). Then by Lemma 4.5.1 we have f1/2,λ (x) ≤ ga∗,λ (x) uniformly for ∀x ∈ [0,λ+] and
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∀λ ∈ [0,λ+]. So we get the the upper bound for I through 4.21

I = exp

[
p

∑
j=1

fµ,Λ jk(Λ ji)

]
≥ exp

[
p

∑
j=1

ga∗,Λ jk(Λ ji)

]
= exp

[
− 1

8λ+
||Λk−Λi||22

]
(4.23)

Then we plug in µ = 1/2 into the definition of II, and together with the entry-wise lower bound

assumption on Λ and the assumption that Sk = φ , we have

II = exp

[
p

∑
j=1

(λ j−Λ jk)

(
−1+

(
Λ ji

Λ jk

)µ)]
≤ exp

[(√
λ+

λ−
−1

)
||λ −Λk||1

]
(4.24)

Plugging the bounds of I and II in 4.23 and 4.24 back into the lower bound of P(l(Λk;q)> l(Λi;q))

we have

P(l(Λk;q)> l(Λi;q))≥ 1− exp

[
− 1

8λ+
||Λk−Λi||22 +

(√
λ+

λ−
−1

)
||λ −Λk||1

]
(4.25)

Finally we generalize the above result to case without Sk = φ . Now we have

P(l(Λk;q)> l(Λi;q)) = P(l((Λk)Sk
;qSk

)> l((Λi)Sk
;qSk

))

×P(l((Λk)S c
k

;qS c
k
)> l((Λi)S c

k
;qS c

k
))

The second term in the R.H.S of above equation can be easily lower bounded by 4.25. Since for

j ∈Sk we have Λ jk = 0≤ Λ ji, then the first term can be lower bounded through the following

P(l((Λk)Sk
;qSk

)≥ l((Λi)Sk
;qSk

))

= P

(
∑

j∈Sk

q j[log(Λ jk)− log(Λ ji)]− (Λ jk−Λ ji)≥ 0

)
≥ P

(
q j = 0;∀ j ∈Sk

)
= e−||λSk

||1
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Putting all these together we have

P(l(Λk;q)> l(Λi;q))≥ e−||λSk
||1
{

1− exp

[
− 1

8λ+
||Λk−Λi||22 +

(√
λ+

λ−
−1

)
||λ −Λk||1

]}
(4.26)

Finally by the union bound we have the desired result

P(l(Λk;q)> l(Λi;q), for ∀i ∈ [n] with i 6= k)

≥ 1−
n

∑
i=1,i6=k

[1−P(l(Λk;q)> l(Λi;q))]

=
n

∑
i=1,i 6=k

e−||λSk
||1
{

1− exp

[
− 1

8λ+
||Λk−Λi||22 +

(√
λ+

λ−
−1

)
||λ −Λk||1

]}
− (n−2)

= 1−
(

1− e−||λSk
||1
)
(n−1)− exp

[
−||λSk

||1 +

(√
λ+

λ−
−1

)
||λ −Λk||1

]
×

n

∑
i=1,i 6=k

exp
(
− 1

8λ+
||Λk−Λi||22

)

4.5.2 Proof of Theorem 4.3.6

Proof of Theorem 4.3.6. Under the notations made in the previous section

l(Λi;q) =
p

∑
j=1

q j log(Λ ji)−Λ ji− log(q j!)

rank
=

p

∑
j=1

q j log(Λ ji)−Λ ji

And we further denote

ĥq = argmax
i∈[n]

l(Λi;q)
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Then by this definition we have

l(Λĥq
;q)≥ l(Λi;q), ∀i ∈ [n]

and more specifically we have

l(Λĥq
;q)≥ l(Λk;q)

⇒
p

∑
j=1

q j log(Λ jĥq
)−Λ jĥq

≥
p

∑
j=1

q j log(Λ jk)−Λ jk

⇒
p

∑
j=1

q j log(Λ jĥq
)−Λ jĥq

≥
p

∑
j=1

q j log(Λ jk)−Λ jk

⇒
p

∑
j=1

Λ jk−Λ jĥq
≥

p

∑
j=1

q j

{
log(Λ jk)− log(Λ jĥq

)
}

⇒
p

∑
j=1

{[
Λ jk log(Λ jĥq

)−Λ jĥq

]
−
[
Λ jk log(Λ jk)−Λ jk

]}
≥

p

∑
j=1

(q j−Λ jk)
[
log(Λ jk)− log(Λ jĥq

)
]

Denote function

fλ (x) = λ log(x)− x (4.27)

By Lemma 4.5.3, we know the following holds

− 1
2λ+

(x−λ )2 ≥ fλ (x)− fλ (λ ), for ∀x,λ ∈ [0,λ+]

Then continuing the steps deduced from l(Λĥq
;q)≥ l(Λk;q), and by the following fact from simple

algebra

||Λĥq
−Λk||2 = ||AΛ(Wĥq

−Wk)||2 ≥ λmin(AΛ)||Wĥq
−Wk||2

we have

||Wĥq
−Wk||22 ≤

2λ+

λmin(AΛ)

p

∑
j=1

(q j−Λ jk)
[
log(Λ jĥq

)− log(Λ jk)
]

(4.28)
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With this we have

P
(
||Wĥq

−Wk||22 ≤ δ

)
≥ P

(
2λ+

λmin(AΛ)

p

∑
j=1

(q j−Λ jk)
[
log(Λ jĥq

)− log(Λ jk)
]
≤ δ

)

≥ P

(
2λ+

λmin(AΛ)
max
i∈[n]

{
p

∑
j=1

(q j−Λ jk)
[
log(Λ ji)− log(Λ jk)

]}
≤ δ

)
(By the Union Bound)

≥ 1−
n

∑
i=1,i 6=h

P

(
2λ+

λmin(AΛ)

p

∑
j=1

(q j−Λ jk)
[
log(Λ ji)− log(Λ jk)

]
≥ δ

)

We set δ = p−β , then by Lemma 4.5.5, with ca and b setting to be the following

ca = log(λ+)− log(λ−)

b =
δλmin(AΛ)

2λ+
+

2λ+||λ −Λ jk||1
λmin(AΛ)

(log(λ+)− log(λ−))

=
λmin(AΛ)

2pβ λ+
+

2λ+||λ −Λ jk||1
λmin(AΛ)

(log(λ+)− log(λ−))

sλ = ||Λk||1

we have the desired result

P
(
||Wĥq

−Wk||22 ≤ p−β
)
≥ 1− (n−1)exp [−m(log(m)− log(||Λk||1)−1)−||Λk||1]

where we have denoted

m =
λmin(AΛ)

2pβ λ+(log(λ+)− log(λ−))
+

λmin(AΛ)

2pβ λ+
+

2λ+||λ −Λ jk||1
λmin(AΛ)

−||Λk||1
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4.5.3 Additional lemmas

Lemma 4.5.1. Suppose function f (x) defined on interval [0,∞] satisfies f (b)= 0 and limx→∞ f ′(x)=

1, f ′(a) = 0 for some a ∈ [0,∞), and f ′′(x) is continuous and strictly increasing on interval [0,∞).

Pick b > a, then a quadratic function gc(x) = −c(x− f (a))2 with c > 0, is uniformly no smaller

than f (x) on interval [0,b] if and only if f (b)≤ gc(b).

Proof of Lemma 4.5.1. If gc(x) = −c(x− f (a))2 is uniformly larger than f (x), then it’s immedi-

ately gc(b)≤ f (b). On the other hand, if gc(b)≤ f (b), the following claims must hold.

• f ′′(a) < g′′c (a). Otherwise by the fundamental theorem of calculus and the assumption that

f ′′(x) is strictly increasing, we have f (b)> gc(b), which is a contradiction.

• f (x) < gc(x) for x ∈ [0,a), that’s by the previous claim and again the fundamental theorem

of calculus.

• f (x) ≤ gc(x) for x ∈ [a,b], notice f ′′(x)− g′′c (x) is strictly increasing, f (a)′− g′c(a) = 0,

f ′′(a)− g′′c (a) < 0, and limx→∞ f ′(x) = 1 by assumption, by the fundamental theorem of

calculus we have f ′(x)− g′c(x) firstly negative and then become positive on interval [a,∞),

which means f (x)− gc(x) is firstly negative and then become positive on interval (a,∞).

This means if we have f (b)−gc(b)≤ 0, we must have f (x)−gc(x)≥ 0 for ∀x ∈ [a,b]

By the above arguments we have the desired conclusion.

Lemma 4.5.2. Suppose function hµ,λ+ is defined as that in 4.22, then it’s strictly decreasing on

interval [0,λ+].

Proof of Lemma 4.5.2. After some basic calculation we get the first order derivative of hµ,λ+ as

following

h′
µ,λ+

(λ ) =
λ +λ++µ(λ+−λ )− (µ +1)λ 1−µλ

µ

+− (1−µ)λ−µλ
µ+1
+

(λ+−λ )3
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Now it’s enough to prove the nominator of the above equation is negative on interval (0,λ+). In

order to show that, we first denote this nominator to be gµ,λ+(λ ). Since we have gµ,λ+(λ+) = 0,

and by some additional direct calculations we have g′
µ,λ+

(λ+) = 0 and g′′
µ,λ+

(λ+) = 0. This

means in order to prove gµ,λ+(λ )< 0 for ∀λ ∈ (0,λ+), it’s enough to show that g′′
µ,λ+

(λ )< 0 for

∀λ ∈ (0,λ+), which is true because g′′
µ,λ+

(λ+) has the following form

g′′
µ,λ+

(λ+) = (µ +1)(1−µ)µλ
−µ−1

λ
µ

+

(
1− λ+

λ

)

With that we have proved the desired result.

Lemma 4.5.3. Define the function fλ (x) as that in 4.27, then we have

− 1
2λ+

(x−λ )2 ≥ fλ (x)− fλ (λ ), for ∀x,λ ∈ [0,λ+]

Proof of Lemma 4.5.3. Define gλ ,a(x) = −a(x− λ )2, then by lemma 4.5.1 in order to find the

largest a such that

gλ ,a(x)≥ fλ (x)− fλ (λ ), for ∀x,λ ∈ [0,λ+]

which is equivalent to find the largest a such that

gλ ,a(λ+)≥ fλ (λ+)− fλ (λ ), for ∀λ ∈ [0,λ+]

Notice

gλ ,a(λ+)≥ fλ (λ+)− fλ (λ )

⇐ a≤ hλ+
(λ )

where we have defined

hλ+
(λ ) =

−λ log(λ+)+λ++λ log(λ )−λ

(λ+−λ )2 (4.29)

234



Then our problem becomes

a∗ = min
λ∈[0,λ+]

hλ+
(λ )

By lemma 4.5.4 and L′Hôpital′srule, we have

a∗ = min
λ∈[0,λ+]

hλ+
(λ )

= lim
λ→λ+

−λ log(λ+)+λ++λ log(λ )−λ

(λ+−λ )2

= lim
λ→λ+

− log(λ+)+ log(λ )
−2(λ+−λ )

= lim
λ→λ+

1/λ

2
=

1
2λ+

With this we finished the proof.

Lemma 4.5.4. Suppose function hλ+
(λ ) is defined as that in 4.29, then it’s strictly decreasing on

interval [0,λ+].

Proof of Lemma 4.5.4. After some basic calculation we get the first order derivative of hλ+
(λ ) as

following

h′
λ+

(λ ) =
−λ+ log(λ+)+λ+ log(λ )−λ log(λ+)+λ log(λ )+2λ+−2λ

(λ+−λ )3

Now it’s enough to prove the nominator of the above equation is negative on interval (0,λ+).

In order to show that, we first denote this nominator to be gλ+
(λ ).

• By some calculations we have g′
λ+

(λ+) = 0 and g′′
λ+

(λ ) < 0 for ∀λ < λ+, so we have

g′
λ+

(λ+)≥ 0 for ∀λ ≤ λ+

• Since additionally gλ+
(λ+) = 0, we have gλ+

(λ+)≤ 0 for ∀λ ≤ λ+.

Now we can conclude that hλ+
(λ ) is strictly decreasing on interval [0,λ+].
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Lemma 4.5.5. Suppose p independent Poisson random variables X j ∼ Pois(λ j), denote sλ =

∑
p
j=1 λ j, and suppose {a j}nj=1 are real numbers with max j∈[n] |a j| ≤ ca for some ca > 0, and

b > 0 with b > casλ , then the following holds

P

(
p

∑
j=1

(X j−λ j)a j ≥ b

)
≤ exp

[
−b− casλ

ca

(
log

b− casλ

casλ

−1
)
− sλ

]

Proof of Lemma 4.5.5. By the given conditions and the Chernoff Inequality, we have for ∀t > 0

P

(
p

∑
j=1

(X j−λ j)a j ≥ b

)

≤ e−bt
p

∏
j=1

E
(

e(X j−λ j)a jt
)

= e−bt
p

∏
j=1

e−λ ja jteλ j(e
a jt−1)

= exp

[
−(b+

p

∑
j=1

λ ja j)t +
p

∑
j=1

λ je
a jt −

p

∑
j=1

λ j

]
≤ exp

[
−(b− casλ )t + sλ (e

cat −1)
]

Define function f (t) as

f (t) = exp
[
−(b− casλ )t + sλ (e

cat −1)
]

then we can find the optimal(minimum) value of f (t) through f ′(t) = 0, which yield the optimal t

as

t∗ =
1
ca

log
(

b− casλ

casλ

)
By plugging this optimal t into the inequality we have so far derived, we have the desired result

P

(
p

∑
j=1

(X j−λ j)a j ≥ b

)
≤ exp

[
−(b− casλ )t

∗+ sλ (e
cat∗−1)

]
= exp

[
−b− casλ

ca

(
log

b− casλ

casλ

−1
)
− sλ

]
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CHAPTER 5

DISCUSSION

In Chapter 2 and Chapter 3, which is the main part of this thesis, we have provided a thorough

and insightful analysis, along with simple and efficient algorithms to address the main estimation

problems in the classic topic model pLSI. We believe our work may be a good start for serious

statistical analysis of the topic models. There are many interesting questions left to be answered

regarding to this topic, and we list some of them for future study.

Firstly, there are many heuristic way of determining the number of topics K in topic models,

for example[69]. But the approaches that are both practical and theoretically guaranteed are yet to

be discovered.

The GVH algorithm, which is the practical version of vertex hunting algorithm proposed in

Chapter 2 would be computationally infeasible when the number of topics K is large. So to find

other more practical variants is a natural question. The pLSI topic model is related to a more gen-

eral problem, nonnegative matrix factorization(NMF) [70, 71]. And there has been multiple vertex

hunting algorithms that are proposed for NMF problems, for example [72, 73]. So it is interesting

to check how these algorithm can fit into our approaches for pLSI topic model estimations.

In Chapter 3, although our proposed non-informative words screening statistics is effective in

ranking the words according to their likeness of being non-informative words, it is still an open

question that how to choose the cutting threshold for the statistics adaptively.

In Chapter 2 and Chapter 3, There we have assumed the same document length across the

corpus. But in reality documents are typically of different lengths. Then the optimal normalization

schemes for estimating A or W under this more general and realistic situation are unclear. This

naturally leads to another question. If we are only interested in estimating W of a certain subset

of documents in the corpus, how much weights shall we put on the documents of interest, and the

remaining documents. The reason why we should also consider the remaining documents is that

these documents still contain information about A, which may in turn contribute to the estimation

of W of the documents of interest.
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In many real application scenarios, each document may have multiple "views". For example a

research paper may not only have the main body, but also an abstract. Assuming each view has a

pLSI topic model structure. Then it’s reasonable to assume the underlying document embeddings

for each document in the W are the same or very similar across different views, while the word-

topic matrices are different. Then the problem is can we take advantage of this multi-view nature

of the data and estimate the word-topic matrices and the topic-document matrices from different

views simultaneously?

Finally, as we have studied information retrieval in Chapter 4, it is also interesting to study

how the topic models can play a role in our proposed IR framework. More specifically we have

already proposed to use a set of word-associated heterogeneity parameters r to differentiate the

generations of documents and queries. It we assume there are K different topics in the documents

and the queries, it is natural to assume that different topic would enjoy different heterogeneity

parameters, therefore the heterogeneity parameters would become a p×K matrix R. Then how to

estimate the topic models as well as R is an interesting open problem.
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