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ABSTRACT

Topic modeling is a useful tool in computational social science, digital humanities, biology, and
chemistry. A popular topic model is the probabilistic Latent Semantic Indexing (pLSI) model.
It assumes that the word-document matrix factorizes into the product of a low-rank word-topic
matrix A, and a low-rank topic-document matrix W. The goal is to estimate these matrices.

While many algorithms are available for topic modeling, there is relatively little statistical un-
derstanding. The first contribution of this thesis is providing rigorous statistical theory for both
problems, including the optimal rate of convergence for estimating A, the optimal rate of conver-
gence for estimating W, and an unconventional theory for including "sparsity" in topic modeling.
The second contribution of this thesis is proposing an assortment of new methods, including a
spectral approach to estimating A, a spectral approach to estimating W, and a word-screening
method. All these methods are computationally efficient and statistically optimal for a wide range
of settings.

The thesis is composed of three parts. In the first part we propose a new algorithm for estimat-
ing the word-topic matrix using the entry-wise ratios of the left singular vectors of the normalized
word-document matrix, which is shown to possess the minimax optimal row-wise error rate us-
ing an entry-wise bounds for singular vectors. The second part we study topic-document matrix
estimation problem, where we introduce a new notion of sparsity, the non-informativeness, and
propose to use a new non-informative words screening method, before conducting topic-document
matrix estimation based on the resulting right singular vectors of the normalized word-document
matrix. We show the algorithm enjoys minimax convergence rate under the existence of the non-
informative words. Both algorithms are simple, but surprisingly enjoy various deep algebraic
insights underneath the pLSI model. In the last part we study a different but topic-model-related
problem, information retrieval, where we propose a new model-based algorithm which explicitly
takes into account the heterogeneity between documents and queries generation. In each part we
also provide various simulations and real data applications to support the competitiveness of our

proposed models and algorithms.



CHAPTER 1
INTRODUCTION

The amount of text-based information available is exploding in the modern information age. For
example in the academia, not only the organizations such as JSTOR digitalize archives of many
old journals spanning hundreds of years [1], but also more and more industrialized academia itself
generates scientific articles at an increasing speed [2]. At the same time, in everyday life the
modern internet technology stimulates the generation of news and opinions from both large social
media institutions and a huge number of independent media. This naturally leads to the question
of how we should manage and explore this gigantic digital library.

Topic modeling is a popular approach to deal with large corpus data, and it is also an active
research area in machine learning and natural language processing [3]. Recently, it also finds appli-
cations in computational biology and chemistry [4]. This thesis focuses on one of the most popular
topic models, the probabilistic Latent Semantic Indexing (pLSI) model, which was formally intro-
duced by [5] in 1999. Provided that many algorithms have been developed for estimating the pLSI

model, two questions remain open:

e Given the low-rank nature of the pLSI model, are there efficient spectral approaches for

estimation problems with theoretical guarantees?

e What are the optimal rates of convergence for these estimation problems?

In this thesis, I resolve these open problems with solid statistical analysis and various algebraic

insights.

1.1 Some history on text mining and topic modeling

The bag-of-words representation of the corpus is widely used in natural language processing and
information retrieval (IR). By choosing a vocabulary large enough so that it includes all the words

in the corpus, the bag-of-words representation encodes each document as a vector of size of
1



the vocabulary, with each entry corresponding to the count of the word in the document. The
matrix with columns being these vectors of words count in the documents is called the word-
document count matrix. This crude numerical representation of documents is called the vector
space model(VSM) [6, T].

An issue of the VSM is that it puts equal weight to each word, regardless of the information
the word carries. Intuitively, we would like to down-weight or exclude those words that carry little
useful information to the NLP or IR task. For example words "the" and "that" have high frequency
in almost every documents, but they also make almost zero contribution to the content of any doc-
ument. In order to down-weight the importance of these meaningless words with high frequency,
[8] proposed the famous #f.idf normalization scheme. Here the #f stands for term frequency, and
it usually means the word-document count matrix or its column-wise normalized version, which
is called the word-document matrix. idf means inverse document frequency, it is usually defined
as a quantity associated with each word, with each entry being a non-increasing function of the
number of documents that contain the word in the corpus. Together the #f.idf matrix is obtained
by multiplying the #f matrix column-wise with the idf vector. Then the columns of the #f.idf ma-
trix representing the documents, can be used in the later tasks including information retrieval and
non-informative word screening [9, 10].

The tf.idf still has many issues. Firstly the vocabulary size is usually large, which can be tens of
thousands, the #f.idf matrix may be too large for computing resources as the number of documents
grow [11]. Another concern that is more intrinsic to the human language is the issue of synonymy
and polysemy. More specifically, synonymy means two words that are unrelated from their ap-
pearance, are related by their meanings, for example words "sedan" and "truck". Polysemy means
the opposite, that is the same word can have totally unrelated meanings, for example "Saturn" can
mean a planet in the solar system or a car brand [12]. A low-rank approximation of the #f.idf ma-
trix, where these low dimensions are called topics, can nicely solve these problems. Especially for
the problem of synonymy and polysemy, ideally we would like the words with same meaning to be

projected to the same topic dimensions, while a word with multiple meanings can be projected to
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Figure 1.1: Evolution of topic models.

different topic dimensions. The Latent Semantic Indexing(LSI) follows exactly this idea by using
SVD in the low-rank approximation step [13].

The LSI approach lacks solid probabilistic modeling. [5] introduces a generative probabilistic
model called probabilistic Latent Semantic Indexing(pLSI), is the milestone work that first brings
probabilistic interpretations to the low-rank structure presented in LSI. The pLSI model assumes
that each word in each document is independently generated from a document-associated multino-
mial distribution over the vocabulary, which is further a convex combination of a few distributions
over vocabulary that define the topics. The author has implemented the EM algorithm to fit the
model, and shown consistent improvements over LSI in a number of experiments.

Since the introduction of pLSI model, many variants of this model and fitting algorithms have
been developed in the literature. An influential work is the famous model Latent Dirichlet Allo-
cation(LDA) proposed by [3], which has been proved to be highly successful in many applica-
tions [4, 1]. It combines the Bayes model framework with the pLSI by assuming Dirichlet prior
distributions on both the topic-associated vocabulary distributions and the document-associated
convex combination weights over the topics. The authors propose a variational EM algorithm for
model inference, and show its success on various applications. One major advantage of LDA is ex-
tensibility. Successful extensions include a hierarchical generative probabilistic model that allows
the later words generation to be dependent on the previous words [14], a dynamic topic model that
incorporates the order of the documents and assumes the topics evolve over time [15], a Bayesian
nonparametric topic model has been extended to hierarchies of topics [16], a correlated topic model
that allows the correlation of topics [17].

A summary of the evolution of topic models in the literature is shown in Figure 1.1.



1.2 The pLSI model

We introduce the pLSI model, and some model-associated notations shared among Chapter 2 and
Chapter 3. The remaining chapter-specific notations of these two chapters and Chapter 4 will be
introduced later individually in each chapter.

Given n documents written on a vocabulary of p words, let Cp be the word-document count
matrix, that is the ith column (Cp); is the vector of counts of each dictionary word in the ith

document, with N; being its length. Then pLSI assumes the following generation process of (C“D),-:

N; . K
Cp)i=Y Xi, X "d Multinomial (1, ) Wi(k)Ak> , forVic [n],t € [Nj] (1.1)
t=1 k=1

A 1s the word-topic matrix, with A; being the word distribution over the vocabulary for the kth
topic. W is the topic-document matrix, with W; being the topic distribution over the K topics for the
ith document. Then the empirical word-document matrix D is constructed through column-wise
normalization of Cp to summation 1, that is D; = (Cp);/N; for each i € [n]. We use D and Cp
to denote the populational counterparts of D and Cp. Then under these constructions we have the

following low-rank decomposition of D:

D =E(D) =AW (1.2)

Then the goal is to estimate both A and W observing D.
We also introduce some additional model-associated notations that will facilitate the later the-

oretical analysis of the model. Denote the noise
N;

A 1
Zi=Di=Di=-3) Yu, Yiy=Xq—Dj, forVi€ [n],r€[N]
Li=1

The row-wise averages of D and D are denoted as m and 71, and their diagonalized counterparts



as M and M.

1~

m=—Y D;, M=diag(m), m=-Y D; M =diag(in)
n: n:

l:l l:1

Denote the row-wise averages of A as A, and its diagonalized counterpart as H.

K
1

h=Y —A,, H=diagh

k;Kk g(h)

Finally we assume all the documents are of the same length N to simplify the analysis. The

analysis of general cases of heterogeneous document lengths is similar.

1.3 Our contributions in topic model evolution

Next we will highlight the main contributions of this thesis to the topic model evolution described
in the last subsection. Notice there a significant discontinuity between the transmission from LSI to
pLSI: Despite their simplicity and impressively successful applications in many real problems [12],
it seems that people suddenly forget about the tf.idf normalization scheme and SVD dimension
reduction procedures, which are the key ideas behind LSI, after the proposition of pLSI. Our main
contribution is to smooth out this discontinuity. We propose to apply SVD on a novel normalization
scheme, which has a #f.idf form, and yield algorithms for estimation of all the main parameters in
the pLSI model, and shows that they all enjoys minimax optimality under various scenarios.

The later chapters are organized as following. In Chapter 2, we propose a new algorithm
for estimating the word-topic matrix in the pLSI model using the entry-wise ratios of the left
singular vectors of the proposed normalization scheme, which is shown to possess the minimax
optimal row-wise error rate using an entry-wise bounds for singular vectors, and we also show
its competitiveness through intensive simulations and real data applications. In Chapter 3, we in-
troduce the non-informativeness, a new notion of sparsity in topic modeling, and propose a new

algorithm for estimating the word-topic matrix in the pLSI model under the existence of the non-



informative words, using the right singular vectors of the proposed normalization scheme after
a non-informative words screening step, and we shows it’s minimax convergence and successful
applications through both simulations and real data applications. In Chapter 4, we consider the
information retrieval problem, and propose a language model that explicitly distinguish the gener-
ating process of queries and documents, which enjoys various desirable theoretical properties, and

we also illustrate the competitiveness of our model and method on real data problems.

1.4 General notations

Without explicit mentioning, we would use lower case letters to denote vectors and upper case
letters to denote matrices. Then for vector v, we would use either v; or v(i) to denote the ith entry
of v. And for matrix M, we would use M; to denote its ith column, while use the corresponding
lower case letter to denote the rows, that is m jto denote the jth row of M. And we would use M ji
or M(j,i) to denote the (j,i)th entry of M. If the matrix M is diagonal, we would use the lower
case letter, which is m here, to denote the vector that is formed by the diagonal terms of M.
Throughout this thesis, R denotes the set of real numbers, R? denotes the p-dimensional real
Euclidean space, and R”9 denotes the set of p X g real matrices. For two positive sequences
{an};_ and {by}7 |, we write ay = O(bp), an = 0(by), an S by and ap < by, if limy—ye0(an /by) <
o0, limy—s00(@p /by) = 0, limsup,,_,..(an/by) < 1 and ¢ < liminf,,—seo(ay/by) <limsup,,_se.(an/by) <
C for some constants 0 < ¢ < C < oo, respectively. Given 0 < g < oo, for any vector v, ||v||, denotes
the /”-norm of v, and we ignore the subscript if p = 2, that is ||v|| = ||v||,. For any matrix M, ||M||
denotes the spectral norm of M and ||M||r denotes the Frobenius norm of M. When M is symmet-

ric, Amax (M) and A, (M) denote the maximum and minimum eigenvalues of M, respectively.



CHAPTER 2
OPTIMAL ESTIMATION OF A

2.1 Backgroud

In text mining, the problem of topic estimation is of interest in many application areas such as
digital humanities, computational social science, e-commerce, and government science policy [4].

Consider a setting where we have n (text, say) documents. The documents share a common
vocabulary of p words, and each of them discusses one or more of the K topics. Typically, n and p
are large and K is relatively small. Table 2.1 presents two data sets of this kind, which we analyze

in this paper.

Table 2.1: Two data sets for topic estimation

Data sets Vocabulary Documents Topics
Associated Press (AP) 10473 words 2246 news articles “crime", “politics", “finance"

. . “multiple testing”, “variable selection”
Statistical Literature 2034 4 3193 ab « - | desion”. “b I
Abstracts (SLA) words abstracts experimenta esign”, “bayes

“spectral analysis”, “application”

We adopt the pLSI model which lies in the core position in this area as we have discussed in
the Chapter 1. Under the model and notations specified in Section 1.2 and Section 1.4, our main

interest is to use D to estimate the word-topic matrix A in the pLSI model.

Definition 2.1.1. We call word j an anchor word" if row j of A has exactly one nonzero entry, and

an anchor word for topic k if the nonzero entry locates at column k, 1 < k < K.

Latent Dirichlet Allocation (LDA) [3] is a well-known approach to topic modeling. It imposes
a Dirichlet prior on the columns of W, and estimates A by a variational EM algorithm. Despite its
popularity, LDA is relatively slow computationally, especially when (n, p) are large. The “tensor
decomposition" method [20] estimates the topic matrix by extracting a certain orthogonal decom-

position of a symmetric tensor derived from the moments. However, their work critically relies on

1. The term was introduced by [18], in connection to the separable conditions for Nonnegative Matrix Factorization
[19]. It is believed that for each of the K topics, there are a few anchor words. This is supported by empirical evidence;
see Section 4.4.
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the assumption that W;’s are iid drawn from a Dirichlet distribution and their algorithm needs to
know the sum of the Dirichlet parameters, which can be restrictive. Other approaches include [21],
[22], and the “separable NMF" algorithm by [18].

However, despite all these encouraging advancements, two inter-connected questions remain

unanswered:
e what is the optimal rate of convergence for estimating topic matrix A?

e which methods (presumably fast and easy-to-use) are rate optimal?

2.2 Our proposal

We address these questions by proposing a new SVD approach. Our main contributions are:

o (Identify the proper column-wise scaling). The unknown ¢! -norm of different rows of A
imposes critical challenges to the estimation of A. We overcome the difficulty by introducing

a proper column-wise scaling.

o (Identify the proper Pre-SVD normalization). There are many different Pre-SVD normal-
izations, but only a carefully chosen one gives rise to the desired optimality for Post-SVD

inference.

o (A simplex structure and a new SVD approach). We construct a p x (K — 1) matrix R using
the first K left singular vectors of the (Pre-normalized) matrix D. The rows of R generate a
point cloud with the silhouette of a simplex, where each “anchor row" falls close to one of
the vertices, and each “non-anchor row" falls close to an interior point. The simplex structure

gives rise to a new SVD approach.

o (Optimality and comparison of rates). We show that our method is optimal for the case
where either the documents are relatively long or the sample size is very large. For the other
cases, we show that our method still has better rates than existing methods. As far as we

know, our result on optimality is new.



o (Sharp row-wise deviation bounds). Our analysis requires tight deviation bounds for the
rows of R (see above), which are not available in literature, so we have to derive such bounds

with very delicate analysis.

2.2.1 Why constructing the right simplex is tricky

A key component of our method is the simplex aforementioned. At first glance, the construction of
the simplex may seem all too trivial. For example, [19] (see also [23]) pointed out that if we view
each row of the signal matrix D as a point in R", then we have a simplicial cone in R”; and if we
further normalize each row of D by the /¢ !_norm, then the simplicial cone gives rise to a simplex.
Along a different vein, [18] pointed out a simplex structure in R” associated with the so-called

word-word co-occurrence matrix. See Table 2.2.

Table 2.2: Comparison of Ideal Simplex (i.e., simplex constructed using D). DS: Donoho and
Stodden (2003); AGM: Arora, Ge, and Moitra (2012). For the last row, see Section 2.2.2.

Authors Source Oracle counterpart Normalize by Dimension
DS text corpus D Dy(=AW) row-wise £!-norm n
AGM | word co-occurrence DD’ DD’ row-wise ¢! -norm p
Ours singular vectors & AV(=E) first column of = K—1

Unfortunately, these simplexes live in a high dimensional space, so when we try to use them

for inference, we face challenges in computation and in analysis; what we desire is a simplex in a

low dimensional space, say, RX.

An easy fix is to project these simplexes linearly to RX, or simply to use SVD. A seemingly

reasonable approach is then:

e (Pre-SVD normalization). Normalize each row of D by the ¢ L_norm.

e (SVD). Consider the p x K matrix formed by first K left singular vectors of the matrix above.

By [19], the rows of this p x K matrix approximately form a simplex in RX.

Unfortunately, our analysis shows that the Pre-SVD normalization step is not optimal in noise

reduction, and when this happens, the SVD loses part of the information which we can however
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manage to capture.
When we have to use a better Pre-SVD step, it hurts the geometry: we end up with only a
simplicial cone in RX, so for the desired simplex, further normalization is necessary. Our proposal

is as follows:

e (Pre-SVD normalization). Normalize rows of D optimally as desired.
e (SVD). Obtain the p x K matrix similarly as above.

e (Post-SVD normalization). Normalize the rows of this p X K matrix.

For the last step, we use a similar idea of SCORE [24, 25], a recent method for social network
analysis. Except for some high level ideas, our paper is different from [24, 25] in important ways.
To name a few: (a) The column-wise scaling and the Pre-SVD normalization aforementioned
(which are critical here) were never studied there, (b) the application areas, settings, and quantities
of interest are all different: the topic matrix is of major interest here, but it counterpart in social
networks was not studied, (c) one of the focus here is optimality, but optimality was never discussed

there.

2.2.2  The Ideal Simplex

We study the oracle case (where D is known) first, and in Section 2.2.3, we extend what we learn
here to the real case.

In the oracle case, the goal is to use D to recover A. For any given positive vector g € RX, note
that to recover A, it suffices to recover A - diag(g): since each column of A is a PMF, we can simply
recover A by normalizing each column of A - diag(g) by the ¢ Lnorm.

Write A - diag(g) = (1) - (II), where (1) is Left Scaling Matrix (LSM), the diagonal matrix con-
sisting of the ¢!-norm of all rows of A - diag(g), and (II) is the Normalized Topic Matrix (NTM).
Our strategy is to find an appropriate g and a convenient approach to recovering both LSM and

NTM.
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Surprisingly, for many choices of g, LSM is hard to recover: these include the most natural
choice of g = 1g. When g = 1k, A - diag(g) = A. The corresponding LSM is the diagonal matrix

consisting of the row-wise ¢ I_norms of A, which is hard to recover. Our proposal:

e Take g = V| where V| is as in (2.1) below. By Lemma 2.2.1 below, the LSM associated with

A -diag(V}) can be conveniently recovered.

e After the LSM is recovered, reconstruct the NTM associated with A - diag(V;) using the

simplex structure to be introduced.

In detail, let

My = diag(n~'Dg1,)

Our analysis later suggests that the optimal Pre-SVD normalization is to scale each row of D by
the square root of its ¢ Lnorm: D+— M~1/2D. Let O] > 0p > ... > Ok be the first K singular values
of M~1/2D, and let E be the corresponding left singular vectors. Since M —12p = M~1/2AW, the
column spaces spanned by col (M -1/ 2A) and E are the same, so there is a non-singular matrix

V € RKK guch that

E=M 124y 2.1)

Using Perron-Frobenius theorem [26], all entries of Z; are nonzero and have the same signs,
so without loss of generality, we assume all entries of £ are positive. The same applies to V;; see

Lemmas 2.8.1-2.8.2.
Lemma 2.2.1. The LSM associated with A - diag(Vy) is M'/2 - diag(Z,).

Lemma 2.2.1 says that the LSM associated with A - diag(V;) can be conveniently recovered
using (M, Z;). The proof is Section 2.8.

We now consider the NTM for A - diag(V}). Since this matrix is frequently used, we denote it
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by I1. By Lemma 2.2.1,
I1 = [diag(E,)] ‘M2 (A diag(V})).

If we view each of its rows as a point in RX, then it forms a simplicial cone. For a convenient
approach to recovering I, it is desirable to further normalize = so as to give rise to a simplex,
using an idea similar to that of post-PCA normalization in [24].

In detail, define the matrices of entry-wise ratios R € RP-K -1 by

R(j, k) = Er1(J)/21()), 1<j<p 1<k<K-1, (2.2)

and a matrix V* € RE-K=1 in a similar fashion by
V*(lk) = Vi1 (0)/Vi(0), 1</<K, 1<k<K-1.

Here R is obtained by taking the ratio between each of X5, ..., Eg and £ in an entry-wise fashion,

V* is obtained from Vj,..., Vg similarly. By (2.1) and basic algebra, we have
[1p,R] = [diag(Z,)] "' M~/2 - (A-diag(V1)) - [1x,V*] = - [15, V"],

Note the ith row 7; of IT is a PMF. Recalling that word i is an anchor word if and only if row
i of A has exactly one nonzero, 7; is a degenerate PMF if and only if word i is an anchor word. It
follows

K
R=TIV*, or equivalently, rp= Z mi(k)vy, 1<i<n. (2.3)
k=1
This gives rise to the following lemma, which is one of our key observations.

Lemma 2.2.2 (Ideal Simplex). The rows of R form a point cloud with the silhouette of a simplex

Sg withvi,Vv5,... Vi being the vertices.

e Ifword jis an anchor word, then rj falls on one of the vertices of /.
12
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Figure 2.1: K = 3. Left panel: Ideal Simplex (solid triangle). Each circle represents a row of R
(red: anchor words, blue: non-anchor words). Every r; is a convex combination of the K vertices,
where the weight for one r; is displayed. Right panel: Why it is appropriate to use entry-wise
eigen-ratios. The solid triangle is the simplex formed by rows of AV. Each cross represents a row
of Z; these rows are obtained by rescaling the rows of AV, so they no longer have the silhouette of
a simplex.

e Ifword j is a non-anchor word, then r; falls into the interior of S (or the interior of an

edge/face), and equals to a convex combination of vT,vE, ..., Vg With Ttj being the weight

vector.
We can now use (M, E{,R) to recover the topic matrix A.

o (Recovering LSM). Set the LSM of A - diag(V;) by Ml/zdiag(El ).

o (Vertex Hunting). Use rows of R and the simplex structure to locate all vertices VT , vE, . ,v}k{.

® (Recovering II). For 1 <i < p, as in (2.3), write r; as a convex linear combination of

Vi,V3,...,Vk. The weight vector then equals to 7rl' (the i-th row of IT).
e (Recovering A-diag(V})). Set A -diag(V;) = (M'/2 - diag(Z) - T0).

e (Recovering A). Normalize each column A - diag(V}) by its ¢ L_norm and let the resultant

matrix be A.

See Figure 2.1 (left). Note that without the post-SVD normalization in (2.2), we would have a
simplicial cone instead of a simplex, and recovering I1 is more difficult (especially in the real case,

where we have noise).
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As far as we know, our approach is new. The simplex structure is based on a carefully de-
signed Pre-SVD normalization and a Post-SVD normalization, and is very different from other
constructions of simplex in the literature; see Table 2.2. In particular, since the SVD step substan-
tially reduces the noise and dimension (which ensures that the simplex is low-dimensional), Vertex
Hunting for our simplex can be computationally faster and statistically more accurate than other
constructions of simplex in Table 2.2.

Remark. Despite some high level connections in post-SVD normalization, our work is very
different from [24] and [25]: the latter studies a different quantity in a different setting, where it is
not required to estimate the LSM, so we don’t have to carefully choose the vector g; also, they do
not use a Pre-SVD normalization step. In theory, our main focus is on optimality, and they do not
address optimality.

Remark. An alternative way to cancel out these diagonals is to normalize each row of = to
have an unit /9-norm for some g > 0. But when we do this, the geometry associated with the
resultant matrix is more complicated, for each of its rows falls on the surface of the unit ¢4 ball.

This makes the problem unnecessarily more complicated.

2.2.3 A novel SVD approach to topic estimation (real case)

In the real case, we only observe a “blurred" version of the matrix R and so a “blurred" version of
the Ideal Simplex. The main challenge is then how to find Vertex Hunting that is computationally
feasible and theoretically effective.

Introduce the stochastic counter part of M by

M = diag(n~'D1,,)

We now apply the Pre-SVD normalization D — M~1/2D, and let let 6; > 6, > ... > 6k be the

first K singular values of M 12D and & the corresponding left singular vectors. Denote by R the
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empirical counterpart of R: 2
R =81 ())/E1(),  1<k<K-1,1<j<p. (2.4)

For any affinely independent vectors ay,as,...,ax € RKX=1 denote the simplex with vertices
ay,ay,...,ag by #(ay,ay,...,ag). For any b € RK=1 let distance(b,.7 (ay,as,...,ak)) be the
Euclidean distance between b and . (aj,ay,...,ag) (we set it to 0 if b falls inside the simplex).
The distance can be computed conveniently via a standard quadratic programming. A natural

Vertex Hunting algorithm is then to solve

i dist Fi, (Fi  Finyeo T 2.5
o, min _{ max distance (7, (7. Py, Fii)) (2.5)

which can be computed conveniently via searching among possible (ji,..., jg). Let ¥y =7 s
k
1 <k < K, be the estimated vertices, where ]AT < f; <. < ]AI*( is the solution of (2.5).

We propose the following topic estimation method, mimicking what have in the oracle case.

Input: D, K. Output: A, an estimate of A.
1. (Estimating LSM). Estimate LSM of A - diag(V;) by M'/2diag(%,).

2. (Vertex Hunting). Apply the Vertex Hunting algorithm in (2.5) to R and let ¥],...,Vk be the

estimated vertices.

3. (Estimating IT). For 1 < j < p, solve fr}k from

I ... 1 1

~. %

Ak Ak
vl LRI vK

»

Set all negative entries of fr}k to 0. Renormalize the resultant vector to have a unit ¢!-norm,

2. We may choose to winsorize Z;,1(j)/Z(j) at &, where ¢ > 0 is a threshold. We recommend ¢ = 21log(n) for
numerical study (especially for simulated data). For our theory and real data analysis, winsorization does not have a
major effect and can be omitted.
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and denote it by #;. Let IT= [#, -+, ).
4. (Estimating A - diag(V})). Estimate A - diag(V}) by M'/2diag(Z) - TL.

5. (Estimating A). Normalize each column of the matrix in the last step to have a unit ¢ Lnorm.

The resultant matrix is our output matrix A.

In Section 2.3, we show that with natural and reasonable regularity conditions, the procedure
achieves the optimality.

The Vertex Hunting is simple and attractive in theory, but may be vulnerable to outliers. We
now propose a class of Vertex Hunting algorithms (including the previous one as a special case)
which can be more robust and more stable in numerical studies.

Input: K, a tuning integer L > K, and 7y,---,7,. Output: estimated vertices ¥7,---, 0% (see

Figure 2.2). Recall R = [, 7y,...,7p]".

VH-1. Cluster by applying the classical k-means to 7y,---,7p, assuming there are L clusters. Let
él AR éL be the Euclidean centers of the clusters.
VH-2. Let1 < j| < jo <--- < jx <L be the indices such that 6 FERE 6 . are affinely independent

and minimize

]rgnjaéL{distance(éj7 45”(9]‘1,"' 7éj[())}'

Output ¥} = éfk, 1 <k <K.Ifnosuch (jy,, k) exist, output ¥} = (0,...,0)" and ¥;_ | =

the k-th standard basis vector of RK—1,

For numerical study, we recommend L = 10K. How to set L in a data-driven fashion is a challeng-
ing problem, and we leave it for future study.

To differentiate, we call the two algorithms the Orthodox Vertex Hunting (OVH) and the Gen-
eralized Vertex Hunting (GVH), respectively. Note that if we take L = p in GVH, then the k-means
step 1s skipped and we have the OVH, so OVH can be viewed as a special case of GVH.

The computing cost of our method has two main parts: the cost of SVD and the cost of Vertex

Hunting. SVD, with a complexity of O(npmin{n,p}), is a rather manageable algorithm even
16
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Figure 2.2: Vertex Hunting algorithm (K = 3). Left: Apply the classical k-means to 7y, ...,7, and
obtain the Euclidean centers of clusters (blue points). Middle: Remove 71,...,7, and only keep
the cluster centers. Right: Fit a simplex using these cluster centers.

for large matrices. For Vertex Hunting, if we apply OVH, the cost is proportional to p - (11;) =
O( pKH). For practical considerations, we recommend using GVH with a finite L. GVH has the

k-means step and exhaustive search step. The k-means 3

is usually executed in practice by the
Llyod algorithm, which is pretty fast. The exhaustive search could be relatively slow when both
(K,L) are large (and is reasonably fast otherwise), but since it aims to solve a simple problem, it
can be replaced by some much faster greedy algorithm. How to improve this part is not the main
focus of the paper, so we leave it to the future work.

Remark. Our procedure is very flexible and the main idea continues to work if we revise some
steps. For example, the method continues to work if we use a different normalization matrix M
noting that Lemmas 2.2.1-2.2.2 are true for any positive diagonal M), or replace the k-means by
some other clustering algorithms (e.g., k-median or an (1 + €)-approximate solution of k-means).
Also, if we know which are the anchor words (say, by prior knowledge or by some anchor-selection
algorithms), we can revise our algorithm accordingly to accommodate such a situation.

Remark. We may also consider optimization approaches for Vertex Hunting, such as searching

for a simplex with maximum/minimum volume [27, 28], but it is unclear how to solve such hard

optimizations and their theoretical properties are also unknown.

3. We may have the wrong impression that the k-mean is always NP-hard: the k-means is NP-hard if both the
dimension and the number of clusters are large, but this is not the case here for both of them (namely, (K — 1) and L)
are reasonably small.
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2.3 Theoretical analysis

We adopt an asymptotic framework where we let n — o0 and (N, p) are allowed to vary with n, but
K is fixed. In many real data sets (see Table 2.1 for example), K is small, N can be more than a
few hundreds, and (n, p) can be more than a few thousands, so our asymptotic framework makes
sense.

Recall that

H = diag(h), where h; is the ¢ norm of row i of A, 1 <i < p.

Let hmax = max|<j<phj, hypin = minj<;j<,h;, and h = I%Zi'):l hj. Since each column of A is a
PMF, h = K/p. We assume
hinin > C1h, for a constant ¢q € (0,1). (2.6)

The condition is only mild, for in practice, we often pre-process the data by removing the rare
words from the vocabulary. Our results are extendable to the case where /,,;, < h, but the presen-

tation of the results are considerably more complicated, so we omit it.

Definition 2.3.1. We call Sy = n~'WW/' the “topic-topic concurrence" matrix and call L, =

A'H™ A the “topic-topic overlapping" matrix.

The matrix Xy is commonly used in the literature. The matrix X4 measures the affinity between K
different topics, a larger value of X4 (k, /) indicates more overlapping between topics k and ¢; note

that 0 <X o < 1. For a constant ¢ € (0, 1), we assume

Amin(Zw) > ¢2, Amin(Z4) > 2, 1§I2i£11§KZA (k,£) > ca. (2.7)

Since both Xy and X4 are non-negative and properly scaled, the above conditions are rather mild;
the last item basically requires that any two pair of topics share a constant fraction of words, which
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is reasonable and holds in many applications. For example in the two real data sets we have
analyzed, the minimum value of entries of X4 is 0.66 for the AP data set where K = 3 is assumed,
and 0.02 for the SLA data set where K = 6 is assumed.

Example. It is instructive to show an example where (2.6)-(2.7) hold. Fixing a positive vector
o, generate different columns of W iid from Dirichlet(). Second, fix m > K and let I" € RK.m
be a positive matrix such that I'T” is non-singular and that the linear equation I'x = 1 has a non-

negative solution x. Let A* have 1 anchor row p —le . for each topic 1 <k <K, and let its remaining

(p — K) rows be iid drawn from the mixture Z] | Hle [( 1 x| where for any v € RX, §,
denotes a point mass at v; re-normalize each column of A* by its ¢-norm to get A. It is not hard

to see that, as (n, p) — oo, with overwhelming probabilities, Xy — diag(a) + o o]

+[
el (1+exl[1)

and X4 — l“diag(‘ ||F || )I'. Hence, the conditions (2.6)-(2.7) hold with overwhelming

X1
ST
probabilities.

Our discussions focus on the following parameter space:

(A,W): (2.6)-(2.7) are satisfied, and A has
q)n7N,p(K7C17C2):{ }

an anchor row for each topic

Also, since each column of A is a PMF, for any estimator A, it is natural to measure the performance
using ¢! estimation error. Let Pk be the set of all K x K permutation matrices. The ¢!-error is

defined by

K
Z(4,A) —Trgg,}K{Z Ak“l}

2.3.1 Minimax lower bound

The following theorem is proved in Section 2.8.

Theorem 2.3.1 (Minimax lower bound). Consider the pLSI model where K is fixed. Suppose
that for sufficiently large n, log(n) < min{p,N} and plog3(n) < Nn, and that (A,W) live in

D, N p(K,c1,c2) for some constants 0 < c1,cy < 1. As n — oo, there are constants Cy > 0 and
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O € (0, 1) such that

inf sup IP(Z(A,A) > Coy/ i) > 0.
A (A7W)€q)n7N,p(K7claC2) Nn

To the best of our knowledge, this lower bound was not discovered before. In sections below,
we shall see that it is attained by our method either when N > p4/ 3 or when p<N< p4/ 3 butn
is sufficiently large, suggesting that the lower bound is sharp in these cases. When N < p, it is not
clear whether our method or any other existing method can match this rate, so whether the lower
bound is sharp is not yet clear in this case.

The lower bound suggests that several existing methods have sub-optimal rates of convergence;
see Table 2.3 and discussions therein.

At the heart of the proof of Theorem 2.3.1 is the least favorable configurations, which live in
a smaller parameter space: Fixing constants y;,7 € (0,1/K) and a weight vector n* € RX that is

in the interior of the standard simplex, define

D, N p(Ksc1,02,71,72,M7)

( )
(A,W): (2.6)-(2.7) are satisfied; A has > ¥, p anchor rows for each topic;
W has > y»n pure columns for each topic; for any

non-anchor row of A, || ﬁ —n*|| <Cy/p/(Nn)
J
(W; is called a pure column of W for topic & if W;(k) = 1)

/

Lemma 2.3.1 (Minimax lower bound for a smaller class). Suppose the conditions of Theorem 2.3.1
hold, except that (A,W) lie in (DZNP(K,Cl,CZ,Yl,'}/Z,n*) for some constants 0 < c{,cy < 1 and
0 <7, < 1/K and a weight vector N* € RX in the interior of the standard simplex. Then for

sufficiently large n, there are constants Cy > 0 and & € (0,1) such that

inf sup IP’(.,%(A,A) > Coy/ N£> > &p-
A (AaW)GCD:;N’p(KaCl7C2a717y27n*)
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2.3.2  Upper bound of OVH algorithm

In our method, we have proposed two Vertex Hunting algorithms: the original one and the variant.
We first consider our method with the Orthodox Vertex Hunting (OVH) algorithm. The following

theorem is proved in Section 2.6.

Theorem 2.3.2 (Minimax upper bound (with OVH)). Consider the pLSI model where K is fixed.
Suppose that for sufficiently large n, log(n) < min{p,N} and plog3(n) < Nn, and that (A,W) live
in P, N p (K,c1,cp) for some constants 0 < cj,cp < 1. Let A be our estimate where we adopt the

orthodox VH algorithm for Vertex Hunting. As n — oo, with probability 1 — 0(n‘3),

saa<! € piogln), if N = p*/3 (Case 1),

C(p?-N=3/2) .\ JEI8W e < p4/3 (Case 2).

n

Combining Theorems 2.3.1-2.3.2, for Case 1, our method achieves the optimal rate. Case 1
concerns the scenario where either p (vocabulary size) is relatively small or N (document length)
is relatively large, or both. Note that we often preprocess the data by removing very rare words, so
the running p is relatively small; also, documents such as news, scientific papers and novels can
be really long. For Case 2, it is not clear whether our method is rate optimal, but the rate is faster
than those in the literature [18, 20, 22]. See Section 2.3.4 for a detailed rate comparison. From a
practical view point, both cases are of great interest.

In the above theorem, we put a very mild condition on n, which is almost necessary as suggested

by the lower bound. If n is larger, we can get a faster rate of convergence for Case 2:

Theorem 2.3.3 (Tighter upper bound for Case 2 when n is larger). Consider the pLSI model where
K is fixed. Suppose that for sufficiently large n, log(n) < min{p,N}, plog3(n) < Nn, and addition-
ally, n > max{sz,p3,N_2p5}. Suppose that (A,W) live in @, y ,(K,c1,c2) for some constants

0 < cy,c3 < 1. Let A be our estimate where we adopt the orthodox VH algorithm for Vertex Hunt-
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ing. As n — oo, with probability 1 —o(n3),

plog(n)

. ifN < p*3 (Case 2).
Nn

Z(A,A) gc(1+§)-

Note that by Theorems 2.3.1 and 2.3.3, our method achieves the optimal rate when N = O(p).
At the heart of our proofs is a tight row-wise error bound for each row é jof %, which is proved

in Section 2.6.

Theorem 2.3.4 (Deviation bounds for singular vectors). Consider the pLSI model where K is fixed.
Suppose that for sufficiently large n, log(n) < min{p,N} and plog>(n) < Nn, and that (A,W)
satisfy (2.6)-(2.7) for constants 0 < c1,co < 1. Then as n — oo, with probability 1 — o(n_3), there
exists a K x K matrix Q = diag(w,Q*), where w € {+1} and Q* isa (K—1) x (K — 1) orthogonal

matrix, such that, forall 1 < j < p,

1QE — & < [ . if N > p*/3 (Case 1),
o pz N7 pl?v;gn(n)v if N < p*/3 (Case 2).

Row-wise deviation bounds for singular vectors are not well-studied in the literature, so we
have to derive them by ourselves using very subtle Random Matrix Theory. The most relevant
reference we can find is [29], but their results give the same bound for all rows, while we need
different bounds for different rows. Also, our data matrix is a non-square matrix with weakly
dependent entries, while their data matrix is a square matrix with independent entries. So, our
bounds cannot be deduced from theirs.

Recall that a; and d; are the jth rows of A and A. We can rewrite the per-topic ¢!-error

%f (A,A) as (for a permutation matrix T € P)

|Ta;—ajlly

lla;

RS |, 2 llajl
% Y IA-T)—Agll =% Y ITaj—ajlli =) ( e ) , (2.8)

K=1 j=1 j=1

where the right hand side is a weighted average of (|[Td; —ajl|1)/||a;||), with weights ||a;||/K,
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j=1,2,...,p (note 2521(Haj||1/K) = %Zle |All1 = 1), where a rare word tends to receive a
small weight.

Theorem 2.3.2 says that we have a good control on the weighted average of (||T'd;—a;||1)/]a;],
but this does not say much about the individual terms. From time to time, it is desirable to have a
tight control for these terms individually, especially for relatively rare words. This is addressed in

the following theorem, which is proved in Section 2.6.

Theorem 2.3.5 (Row-wise upper bounds). Consider the same method and same settings as in
Theorem 2.3.2. As n — oo, with probability 1 — o(n_3), there exists a permutation matrix T € Pk

such that

max

ITa;—ajl Cy/ 2logn) if N > p%/3 (Case 1),
1<j<p

la;ll1 C(p>-N-3/2).\/P1oel) ey < p4/3 (Case 2).

Note that by (2.8), Theorem 2.3.2 is a direct result of Theorem 2.3.5.

2.3.3 Upper bound of GVH algorithm)

We now analyze our procedure with the Generalized Vertex Hunting (GVH) algorithm. The GVH
algorithm is found to be sometimes more robust and stable in numerical study, but it is also slightly
harder to analyze, so we need some additional regularity conditions.

Let m), be a lower bound for the number of anchor words per topic, and let %), be the index set
of all non-anchor words. For 1 < j < p,letd; =aj/|aj||;, where we recall a; is the j-th row of
A. For any integer L > 1, when we apply the k-means clustering algorithm (with < L clusters) to

a; corresponding to all non-anchor words, we end up with a minimum sum of square errors of

RSS;(L)= min Y { min [la;—n;|?}.
nf,...,nZGRKJ-E%p 1<(<L

Let eq,...,ex be the standard basis vectors of RK. We assume for a constant c3 > 0 and a finite
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integer Ly,

min min_[|d; —eg] > ¢ RSSu(Lo) < —P
jew i<k 1T THI= )

This assumption requires that the d;’s of non-anchor words have mild “concentration.” It is mainly

. 2.9)

for the convenience of analyzing the GVH algorithm and can be largely relaxed.

Theorem 2.3.6. (Minimax upper bound (with GVH)). Consider the pLSI model where K is fixed.
Suppose that for sufficiently large n, log(n) < min{p,N} and plog3(n) < Nn, that (A,W) live in
CDn7N7p(K,cl ,¢2) for some constants 0 < cy,cp < 1, and that (2.9) holds. Let A be our estimate
where we adopt the generalized VH algorithm, with a sufficiently large constant L > Ly + K, for

Vertex Hunting. As n — oo, with probability 1 —o(n™>), there exists a permutation matrix T € Py

such that
A C Plog(")’ if N > p*/3 (Case 1),
Z(4,4) < N” 1 =
C(p?-N=3/2) .\ JEIEW e < p4/3 (Case 2).
and
17— aln _ ) OV PR ifN 2 p*3 (Case 1),
LT
1<j<p L llaglh C(p?-N=3/2).\/21oel) ey < p4/3 (Case 2).

Consider a subset of &, i ,(K,c1,c;), where we additionally require p/mp < C and that (2.9)
holds. Then, Lemma 2.3.1 and Theorem 2.3.6 imply that our method, with a generalized VH

algorithm, is minimax optimal in this smaller parameter space for Case 1.

2.3.4 Comparison of error rates

We compare our error rates with those of existing works. [18] characterize their rate by the so-
called “separability parameter" &,, where for each topic there is at least one anchor row of A
whose ¢! -norm is > Op. They are among the first who provide explicit error rates for topic model
estimation, and their results are still used as a benchmark by many literatures. [22] characterize
their rate through J,, and the fraction of “pure documents" (a document is pure if it only addresses

one topic, or equivalently the corresponding column in W has exactly one nonzero entry), denoted

24



Table 2.3: Rate comparison (log(n)-factors omitted). 6,: separability of anchor words, &;,: fraction
of pure documents, A,: minimum singular value of A. ¥: rate is only known for fixed N.

Lower Ours
bound | Case 1 Case 2 Case 2’

AWR TSVD TensorT

r | /p 4 bvp p \/f’ VP
Nn Nn sz Nn NVNn | 83\/Nn  /né \/ne,, Apv/n

by &,. See Table 2.3 (columns 5-6). Since anchor words can be relatively infrequent words and

pure documents can be rare, we often have

op <1 and g1
In fact, §, is a quantity comparable with h and can be as small as p_l.

Now, in Case 1 (N > p4/ 3), our method achieves the optimal rate, while the rates of AWR and
TSVD are sub-optimal.

In Case 2 (N < p4/ 3), our rate is still sharper than that of AWR as long as §, < \/]W (the
case 8, > /N /p seems less likely), and still sharper than TSVD if &, < (N/ p)*or €10p < NO/po.
Particularly, when N > p, our rate is always sharper than those of AWR and TSVD.

In Case 2° (N < p4/ 3, and n satisfies conditions of Theorem 2.3.3), when p < N < p4/ 3,
our method achieves the optimal rate; when N < p, our rate is sharper than AWR when J, <
(N/\/P) 1/3 and sharper than TSVD if &, < N3 /p? or €,0p < N /p3. We note that the additional
conditions on n are not as restrictive as one might think; for example, other methods also need simi-
lar conditions: TSVD explicitly requires n > N2/ (6138,1) and AWR implicitly needs n > p?/(N 51?)
for the rate to be o(1).

Table 2.3 also includes the rate of the tensor approach by [20] for comparison. Note that the
theory of this paper only addresses the case where N is fixed, not growing with n; they also need
n to be sufficiently large (n > p?). Their rate depends on A,, the minimum singular value of A,

where due to the self-normalization in A, the typical order of A, is

}Lp - —1/2
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Hence, their rate is p? /+/n. Their setting fits our Case 2’, and our method has a faster rate as
p+/p/n. Also, their procedure depends on the assumption of 7; “ Dirichi et(or) and the knowledge
of ||al||;. In more broader settings where either N diverges to e as n — oo or the Dirichlet model

for m; does not hold, the rate is not studied and remains unknown.

2.4 Simulations

We study the numerical performance of our method, where Section 2.4.1 contains experiments on
simulated data and Section 2.4.2 contains experiments on semi-synthetic data from the AP and
NIPS corpora. We call our method Topic-SCORE (or T-SCORE).

In all experiments below, we assume the number of topics K is known. Our method has two
tuning parameters (¢,L). We set t = oo and L = 10 x K. We compare our method with three differ-
ent methods: LDA [3], AWR [30], and TSVD [22]. We implement LDA using the R package lda,
with the default Dirichlet priors (o« = 8 = 0.1). We implement AWR using the Python code down-
loaded from http://people.csail.mit.edu/moitra/software.html. We imple-

ment TSVD using the matlab code downloaded from http://thetb.github.io/tsvd/.

2.4.1 Synthetic data

Given parameters {p,n,N,K,m »:Op, mp}, we generate the text corpus D as follows:

e Generate the topic matrix A: For 1 < k < K, let each of the [(k — 1)m) 4 1]-th row to the
(kmyp)-th row equal to 5pe;€, where ey, ...,ex are the standard basis vectors of RX. For
the remaining (p — Kmj,) rows, we first generate all entries iid from Unif(0,1), and then

normalize each column of the (p — Kmj) x K sub-matrix to have a sum of (1 —m,dp).

e Generate the document matrix W: For 1 < k < K, let each of the [(k — 1)mj, + 1]-th column
to the (kmy,)-th column equal to ej. For the remaining columns, we first generate all entries

iid from Unif (0, 1), and then normalize each column to have a sum of 1.
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Figure 2.3: Experiment 1. The y-axis is log(.-Z(A,A)), and (p,n,N,K) represent the vocabulary
size, number of documents, document length, and number of topics, respectively.

e Generate the text corpus D through the pLSI model.

With this data generating process, there are mj, anchor words and mj, pure documents for each
topic, and all the anchor words have a separability of 6,. For each parameter setting, we indepen-

dently generate 200 data sets and report the average .Z(A,A) for all four methods.

Experiment 1: Various settings of (p,n,N,K) We fix a basic setting where

(p,n,N,K,mp, 8,my) = (1000, 1000,2000,5, p/100,1/p,n/100)

In the four sub-experiments, we vary one model parameter and keep the other parameters the
same as in the basic setting. The results are shown in Figure 2.3. In all the settings, our method
yields the smallest estimation error among all four methods. Furthermore, we have the following
observations: (i) As n or N increases, our method is the only one whose estimation error exhibits
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Figure 2.4: Experiment 2. The y-axis is log(-Z(A,A)), and (mp, 8p,my) represent the number of
anchor words, separability of anchor words, and number of pure documents, respectively.

a clear decreasing trend. It suggests that our method can take advantage of including more docu-
ments and having longer documents. (ii) As K increases, the estimation errors of all four methods
increase, suggesting that the problem becomes more challenging for larger K. (iii) As p increases,
the estimation errors of our method and AWR both increase, while the estimation errors of LDA
and TSVD remain relatively stable; however, even for large p (e.g., p = 4000), still, our method

significantly outperforms LDA and TSVD.

Experiment 2: Anchor words and pure documents We fix the same basic setting as in Exper-
iment 1 and vary one parameter of (m,8,,my) in each sub-experiment. The results are shown in
Figure 2.4.

First, we look at the effect of anchor words. From the left panel of Figure 2.4, as m;, (number of
anchor words per topic) increases, the estimation error of our method has considerably decreased,
suggesting that our method can take advantage of having multiple anchor words. Even with m), =2,
our method still outperforms the other methods. From the middle panel of Figure 2.4, as d, (sep-
arability of anchor words) increases, the estimation errors of AWR and our method both decrease,
and they both outperform LDA and TSVD; with the same separability, our method always outper-
forms AWR. Furthermore, as long as 0, is larger than 2 x 10~%, our method is relatively insensitive
to Op; this is consistent with the theory in Section 2.3.

Second, we look at the effect of pure documents. From the right panel of Figure 2.4, as my,
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Figure 2.5: Experiment 3. The y-axis is log(.Z(A,A)). Left panel: the setting of Zipf’s law. Right
panel: the setting of two scales. The word heterogeneity increases as either Ps decreases or Amax
increases.

(number of pure documents) increases, the performance of all methods except LDA improves. The
improvement on TSVD is especially significant; this is because TSVD relies on the existence of
nearly-pure documents (which they called “dominant admixtures"). When m,, < 100, our method
has a significant advantage over TSVD; when m;,, = 100, the performance of our method is similar

to that of TSVD.

Experiment 3: Heterogenous words We study “heterogenous" settings where some words are

much more frequent than the others. Fix
(p,n,N,K,mp,8,,my) = (1000,1000,2000,5, p/100,1/p,n/100)

We generate the first Km), rows of A in the same way as before and generate the remaining

(p — Kmyp) rows using two different settings below:

o Setting 1: Zipf’s law. Given Py > 0, we first generate A( j, k) from the exponential distribution
with mean (Ps + j)*1'07, independently for all 1 <k <K, Kmp+1 < j < p, and then
normalize each column of the (p — Kmj) x K matrix to have a sum of (1 —m;8,). Under
this setting, the word frequencies of each topic roughly follow a Zipf’s law with Py stop

words. A smaller P corresponds to larger heterogeneity.
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Figure 2.6: Experiment 4. The y-axis is log(.Z(A,A)). As P, increases, the almost-anchor words
are less anchor-like. Left panel: the homogeneous setting. Right panel: the heterogeneous setting.
o Setting 2: Two scales. Given hmax € [1/p, 1), first, we generate {A(j,k): 1 <k <K,Kmp <

j < Kmp + nmax} iid from Unif(0,hmax), Where nmax = (1 —mp8p)/(2hmax)|. Next,

we define nyin = p — Kmp — nmax and hpin = (1 —mp&p — hmaxfimax ) /Nmin and generate
{A(j,k) : 1 <k <K,Kmp+nmax < j < p} iid from Unif (0, hyp). Last, we normalize each
column of the (p — Kmp) x K matrix to have a sum of (1 —m,68,). Under this setting, the

word frequencies of each topic are in two distinct scales, characterized by hmax and Ay,

respectively.

We then generate (W, D) in the same way as before. The results are shown in Figure 2.5. Our
method always yields the smallest estimation errors. Interestingly, in Setting 2, the performance of

AWR improves with increased heterogeneity; see the right panel of Figure 2.5.

Experiment 4: No exact anchor words Fix

(p,n,N,K,mp, 8,,my, Py) = (1000,1000,2000,5, p/100,1/p,n/100, p/20)
We generate A using two different settings below:

o Setting 1: Homogeneous words. Given P; € [0,1], for 1 < k < K, let each of the [(k —
1)mp + 1]-th row to the (kmp)-th row equal to 8¢}, where &(j) = 1{j = k} + Py1{j #

k}, 1 < j < K. For the remaining (p — Kmp) rows, we first generate all entries iid from
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Table 2.4: Computation time on the semi-synthetic data (N = 2000,K =5).
Method Software AP data (in second) NIPS data (in second)

Topic-SCORE R 1.04 0.29
LDA R 378.04 395.14
AWR Python 112.62 36.68

TSVD MATLAB 4.41 1.61

Unif(0,1), and then normalize each column of the (p — Km) x K sub-matrix to have a sum

of [1 —mpSp —mpdy(K —1)Py].

e Setting 2: Heterogenous words. Given P; € [0, 1], first, we generate A(j, k) from the expo-
nential distribution with mean (Ps + j)_1‘07, independently for all 1 <k <K, 1< j < p;
second, for each 1 < k < K, we randomly select m, rows from all the rows whose largest
entry is the k-th entry, and for these selected rows, we keep the k-th entry and multiply the

other entries by P;; last, we renormalize each column of A to have a sum of 1.

We then generate (W,D) in the same way as before. In both settings, there are m;, almost-anchor
words for each topic. Moreover, a smaller P; means that the almost-anchor words are more similar
to anchor words; in the special case of P; = 0, they become exact anchor words.

The results are shown in Figure 2.6. In both settings, our method yields the smallest estimation
errors in a wide range of P;, suggesting that our method has reasonable performance even without
exact anchor words. In Setting 1, when P; = 1, TSVD yields the best performance and the perfor-
mance of our method is slightly worse than that of TSVD. In Setting 2, when P; > 0.1, our method
is better than LDA and TSVD but is worse than AWR. Interestingly, although AWR relies on the
existence of anchor-like words, its performance actually improves as P; increases; the reason is

unclear to us.

2.4.2  Semi-synthetic data from the AP and NIPS corpora

Semi-synthetic experiments are commonly used in the literature of topic model estimation. Given a

real data set with n documents written on a vocabulary of p words, with pre-specified (K, Ny,...,N,),
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Figure 2.7: Semi-synthetic experiments. The y-axis is log(.Z(A,A)). Top panels: the AP corpus
(n = 2135, p = 5188). Bottom panels: the NIPS corpus (n = 1417, p = 2508).
we first run LDA by assuming K topics; next, using the posterior of (A,W) obtained from LDA,
we generate n new documents such that document i has N words, 1 <i < n. We took the AP data
set [31] and the NIPS data set [32] and preprocessed them by removing stop words and keeping the
50% most frequent words and 95% longest documents. For each data set, we conducted two ex-
periments: In the first experiment, (Ny,...,N,) are the same as in the original data set and K varies
in {3,5,8,12}. In the second experiment, K = 5 with N varying in {100,200,500, 1000,2000}.
The results are shown in Figure 2.7. Our method outperforms TSVD and AWR in almost all
settings and outperforms LDA in many settings (note that the data generating process favors LDA).
In Table 2.4, we compare the computing time of different methods. Our method is much faster than

LDA and AWR and is comparable with TSVD.
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2.5 Real data applications

We now analyze the two data sets in Table 2.1. In comparison, OVH is easier to analyze in theory
(and so requires less stringent regularity conditions for success) and GVH tends to have slightly

better numerical results. For this reason, we use GVH in this section.

Associated Press (AP) data The AP data set [31] consists of 2246 news articles with a vocabu-
lary of 10473 words. For preprocessing, we removed 191 stop words, kept the 8000 most frequent
words in the vocabulary, and also removed 5% of the documents that are among the shortest.
How to determine the number of topics K is a challenging problem. The scree plot suggested
K = 3, and we applied our method with K =2,3,...,6 and it seemed that K = 3 gave the most

reasonable results.

Table 2.5: Top 15 representative words for each estimated topic in the AP data (K = 3).
shootings, injury, mafia, detective, bangladesh, dog, hindus, gunfire, aftershocks,

Crime bears, accidentally, handgun, unfortunate, dhaka, police
“Politics” eventual, gorbachevs, openly, soviet, primaries, sununu, yeltsin, cambodia, torture,
soviets, herbert, gephardt, afghanistan, citizenship, popov
“Finance” trading, stock, edged, dow, rose, traders, stocks, indicators, exchange, share,

guilders, bullion, lire, christies, unleaded

We now report some results for K = 3. First, Table 2.5 presents the top 15 representative words
for the each of the three topics in (a word is called “representative” of a topic if its corresponding
7; is close to the estimated vertex of that topic). The results suggest that the three estimated topics
can be interpreted as “crime”, “politics”, and “finance”, respectively.

Also, Figure 2.8 plots the rows of the matrix R (see (2.4)). Since K = 3, each row or R is a
point in R2. The data cloud illustrates the silhouette of a triangle, which fits very well with our
theory on the simplex structure.

In Figure 2.8, it is interesting to note that there is a “hole" near the edge connecting the two
vertices of “crime" and “finance." This makes perfect sense: words that are related to both “crime”
and “finance” tend to be also related to “politics". In contrast, there are many words that are related

2 (13

to both “politics" and “crime" but are unrelated to “finance”, for example “stalin”, “warships”,
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Figure 2.8: The data points in two plots are all based on R (data: Associated Press; K = 3). A
triangle is visible in the data cloud, where the three vertices represent the three topics “crime",
“politics”, and “finance". In the left plot we use red color to highlight the identified nearly-anchor
words, while in the right plot we use the red color to highlight several words that are almost only
about two topics.
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“armenia”, “terrorist”, “nazis” as you can see from the right subplot in Figure 2.8; and there are
many words that are related to both “politics" and “crime" but are unrelated to “crime", for example

“protectionist”, “grammrudman”, “washingtonbased”, “fiscal”, “goldman” and “treasurys” as you

can see again from the right subplot in Figure 2.8.

Statistical Literature Abstracts (SLA) data This data set was collected by [33] (see also [34]).
It consists of the abstracts of 3193 papers published in Annals of Statistics, Biometrika, Journal of
the American Statistical Association, and Journal of the Royal Statistical Society: Series B, from
2003 to the first half of 2012. The full vocabulary contains 2934 words. For preprocessing, we
remove 209 stop words. We also remove 40% of the documents that are among the shortest.

We tried our method with K =2,3,...,6,7,8 and found that K = 6 yields the most meaningful
results, so we pick K = 6 for our study. Table 2.6 shows the top 15 representative words in each of

the six estimated topics. These topics can be interpreted as “Multiple Testing", “Bayes", “Variable

Selection", “Experimental Design", “Spectral Analysis", and “Application".
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Table 2.6: Top 15 representative words for each estimated topic in the SLA data (K = 6).
“Multiple stepup, stepdown, rejections, hochberg, fwer, singlestep, familywise, benjamini,
Testing” bonferroni, simes, intersection, false, rejection, positively, kfwer
posterior, prior, slice, default, credible, conjugate, priors, improper, wishart,

Bayes admissible, sampler, tractable, probit, normalizing, mode
“Variable angle, penalties, zeros, sure, selector, selection, stability, enjoys, penalization,
Selection” regularization, lasso, tuning, irrelevant, selects, clipped
“Experimental aberration, hypercube, latin, nonregular, spacefilling, universally, twofactor,
Design” blocked, twolevel, designs, crossover, resolution, factorial, toxicity, balanced
“Spectral trajectories, amplitude, eigenfunctions, realizations, away, gradient, spectra,
Analysis” discrimination, functional, auction, nonstationarity, spacetime, slex, curves, jumps
“Application” instrument, vaccine, instruments, severity, affects, compliance, infected,

depression, schools, assignment, participants, causal, warming, rubin, randomized

2.6 Proof of the upper bounds

We prove Theorems 2.3.2, 2.3.4,2.3.5 and 2.3.6. The proof of Theorem 2.3.3 require more delicate

analysis of a random matrix with multinomial noise, and its proof is relegated to Section 2.10.

2.6.1 Non-stochastic error analysis (proofs of Theorems 2.3.2, 2.3.5 and 2.3.6)

Note that

D = D+Z = “signal” + “noise”
We introduce two quantities to capture the “noise" level. Recall that M = diag(n_lf)ln) and

M = diag(n~'D1,). Define

_ e ..
A1(Z,D)—lr§n]‘<lép{hj M (j, j) —M(j, )l }- (2.10)

For 1 < j < p, recall that h; is the ¢!-norm of the j-th row of A, and é ; and é ;j are the j-th
row vectors of = and Z respectively. Denote by O the set of all matrices with the form Q =

diag(,Q*) € RKK where o € {41} and Q* isa (K — 1) x (K — 1) orthogonal matrix. Define

. —1/2\/~ £
Ao(Z,Dy) :sz“é%,(fé‘f‘ép{hf 198; — &l }- (2.11)
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We also introduce a quantity to describe the error of vertex hunting. Fixing any (K —1) x (K —1)

orthogonal matrix Q*, define

E Q) = min { max ||Q*vr —v* } 2.12
I”VVH( ) K: a permutation \ 1 <k<K H Yk VK(k) H ( )
on{l,...K}

The following theorem is proved in Section 2.8.

Theorem 2.6.1 (Non-stochastic error analysis). Consider the pLSI model where K is fixed. Sup-
pose the regularity condition (2.7) holds. Let A be our estimate, and let A{(Z,D), Ay(Z,D)
and Erryg(Q*) be as in (2.10)-(2.12). Suppose that for a sufficiently small constant ¢ > 0,
A(Z,D) <c¢, Ay(Z,D) < c and that for the Q = diag(®, Q*) that attains the minimum in Ay(Z, D),

Erryg(Q*) < c. Then, there exists a permutation matrix T € Pk such that for all 1 < j < p,

|Ta;—ajll

lailh < C[A(Z,D) +Ay(Z,D) + Erry (Q%)]. (2.13)
J

Remark. To see the proof insight of this theorem, let V* = [#},...,9%] and 0 =g, (V)',
and let Reg(-) be the operator on a vector which sets its negative entries to zero and renormalizes
it to have a unit ¢!-norm. Our estimate A is a column-wise renormalization of the matrix A* =
[a},a3,...,ay]", where as = M(j,j) E1(j) - Reg(0~1#;), 1 < j < p. Hence, the estimation
errors come from (i) error of estimating M by M, (ii) error of estimating (R,Z;) by (R,Z;),
and (iii) noise in Q. We note that (i)-(iii) are captured by A(Z,D), Ay(Z,D) and Erryg(QF),

respectively.

The next lemma studies vertex hunting and is proved in Section 2.8.

Lemma 2.6.1 (Vertex hunting). Under the conditions of Theorem 2.6.1, let Q = diag(®,Q*) be
the matrix that attains the minimum in Ay(Z,D). Consider two scenarios: (a) A has an anchor row

for each topic, and we apply the orthodox vertex hunting (OVH); (b) Rows of A satisfy (2.9), and
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we apply the general vertex hunting (GVH). In both scenarios,
Erryp(Q") <CAy(Z,D).

We now show the theorems. By (2.8), it is sufficient to show Theorem 2.3.5 and the second
statement of Theorem 2.3.6. According to Theorem 2.6.1 and Lemma 2.6.1, in the setting of either
Theorem 2.3.5 or Theorem 2.3.6, provided that A|(Z, D) and A, (Z, D) are sufficiently small, there

exists a permutation matrix 7' € g such that

|Ta;—ajlly

a] <C[A1(Z,D)+Ay(Z,D)], foralll<;<p.
aj 1

By Lemma 2.8.3 and Theorem 2.3.4, with probability 1 —o(n3),

plog(n) : 4/3

1 C\ —Na— it N > p*/-,
A((Z,D) < Cy| P8V (z)vg(n)’ A (Z,D) < ] Nn
n 1 .

C# p?\,g}fn), 1fN<p4/3.

Combining the above inequalities gives the desired claims.

2.6.2 Row-wise bounds for singular vectors (proof of Theorem 2.3.4)

Recall that % is the k-th left singular vector of M ~1/2p and & 1s the k-th left singular vector of

M~1/2p. Equivalently, @k and =, are the respective k-th eigenvector of G and G defined below:

A _ o288 —1/2_ 1
G=m"'2DD'm /—Nlp

G=(1- ]lV)M—l/ZDD’M—l/Z. (2.14)

The next lemma reduces the problem of getting row-wise bounds for eigenvectors to the problem
of studying the noise matrix (G — Gy).

Lemma 2.6.2 (A row-wise perturbation bound for eigenvectors). Let G and G be p x p symmetric
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matrices with rank(G) = K. Write Z =G — G. For 1 <k <K, let & and &, be the respective k-th
largest eigenvalue G and G, and let U and U be the eigenvectors of G and G, with Uy, and Uy, being

the k-th eigenvectors. Fix 1 < s <k < K. Suppose for some c € (0,1), 4
in{ 8_1 — O, O, — O in |6} > c||Gll, [|Z]| < (c¢/3)]|G]|.
min{8,1 8. &~ et min |5} > <Gl [1Z] < (e/3)[Gl

There exists an orthogonal matrix O such that

N 6 .
1€ (U5:0 = Usi) | < m(!IZ!HIe}Us:kH +1Zjll), forall 1 <j<p.

First, we conduct spectral analysis on the matrix G defined in (2.14). The next two lemmas

study the eigenvalues and eigenvectors, respectively.

Lemma 2.6.3. Suppose the conditions of Theorem 2.3.4 hold. Denote by Ay > Ay > ... > Ag >0

the nonzero eigenvalues of G. There exists a constant C > 1 such that

Cln<A<Cnforalll <k<K, and A >C 'n+ max A
2<k<K

Lemma 2.6.4. Suppose the conditions of Theorem 2.3.4 hold. There exists a constant C > 0 such

that

IZjll <C\/hj,  forall1 <j<p.

Next, we study the matrix (G — G). The next two lemmas provide bounds on the spectral norm

and the />-norm of an individual column, respectively.

Lemma 2.6.5. Under the conditions of Theorem 2.3.4, with probability 1 — 0(n73), foralll1 < j<

P
[e{G-0)l _ | ey R, if N > plog(n),

VI | e t0gn) -N-32) - 2RE i < piogin).

4.If s =1, we set §;_1 — &5 = oo,
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Lemma 2.6.6. Under the conditions of Theorem 2.3.4, with probability 1 — o(n™3),

mplgint ifN > p*/ (Case 1),

||G_G|| = nplog(n)
C(pz-N_3/2)~ %, if N < p4/3 (Case 2).

We now prove Theorem 2.3.4. Divide the nonzero eigenvalues of G into two groups: {4} and
{22,23,...,Ak}. Denote Z* = .k and £* = E5.x, and let (6]*)’ and (éj*)’ be the respective j-th

row. Then, for Q = diag(w,Q*),
198; — &l < lw&1 () —E1 (DI + Q7] —&Fll, 1<j<p.

By Lemma 2.6.3, ||G|| < n and the gap between two groups of eigenvalues is > C~!n. Addition-

ally, by Lemma 2.6.6, with probability 1 —o(n~3), ||G — G|| = o(n). Hence, the assumptions of

Lemma 2.6.2 hold for either group, {A4; } or {1, A3,...,Ag}. By this lemma, there exist ® € {£1}
such that

A N o g 1/ A A
|oZ1(j) =E1(DII < Cn (16 =GlIj] +1€(G = G)]I),

and there exists an (K — 1) x (K — 1) orthogonal matrix Q* such that
. 1A .
1278 = &;ll} < Cn (IG = GIlIIg;lI + €5 (G = G)I).

We combine the above inequalities and plug in Lemmas 2.6.4-2.6.6. It gives the desired claim.
Remark. The proofs of Lemmas 2.6.5-2.6.6 require delicate analysis of random matrices with
weakly-dependent entries from multinomial distributions. The standard Random Matrix Theory

does not apply, and we have to start from the ground. See Section 2.8.2.

2.7 Proof of the lower bounds

Since the lower bound increases as the parameter space is enlarged, it suffices to prove Lemma 2.3.1.

We need a useful lemma:
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Lemma 2.7.1 (Kullback-Leibler divergence). Let D,D be two p x n matrices such that each
column of them is a weight vector. Let P and P be the probability measures of multinomial
distributions associated with D and D respectively, with each sample size N, and let KL(E”,IP’)
be the Kullback-Leibler divergence between them. Suppose D is a positive matrix. Let 6 =
max| < ;<p 1<i<n W and assume 8 < 1. There exists a universal constant C > 0 such

that

KL(P,P) < (1 +C5)Ni f D(,) _.D.(j’i)|2.

Below, we show Lemma 2.7.1. Write for short aj; = Do(j,i), @j; = Do(j,i), and 8;; =

aﬁ—aj,-

@ Then, 6 = max; ;|5;;|. Note that the KL-divergence between Multinomial(N,7;) and

Multinomial(N, 1) is NZ‘;.’:l 11 jlog(ny/mM2;)- It follows that

=Nii ilog(1+9;;).

By Taylor expansion, log(1+8;;) < §;; — %SJZZ +C 6]31- for a constant C > 0. Moreover, since
each column of D and D has a sum of 1, we have Yijaji=Y; jdj;, whichimplies that }; ;a;;6;; =
0. As aresult,

KL(P,P) <N} (aji+a;id;i)(8ji — 25,2, +C83)
LJ

—NZ“JI JI+NZaﬂ ji Z ﬂ52+0<NZ“U‘Sﬁ>
ij

i,j

2 2
= 52aji6ji+0<6 NZal]6]l>
L,J L,Jj

Then, Lemma 2.7.1 follows.
We now show the claim. Our proof uses a standard argument in minimax analysis. By Theorem

2.5 of [35]: If there exist (A0, (@), (A w)y .. (AV) w)) € @, v ,(K,c) such that:
(i) 2(AD),AK)) > 2Cy /£ forall 0 < j#k <,
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(i) KL(Zj, ) < Blog(J) forall 1 < j <,

where Cp > 0, B € (0,1/8), and &} denotes the probability measure associated with AU, W)y,

inf sup P(.,?(A,A)ECO\/%> 2%(1—2[3—”%).

A (AW)ed, n (K c)

then

As long as J — o as (n,N,p) — oo, the right hand side is lower bounded by a constant, and the
claim follows.

What remains is to construct (A©), w(©)) (AW w1y (AU) wU)) that satisfy (i) and (ii).
First, we construct (A(O> , W(O)). Write A©) = A and W(©) = W for short. In all steps below, for an

index j and real values a and b, the inequality a < j < b means that we first round a and b to the

closest integers ¢* and b* and then let a* < j < b*. Recall that eq,..., ek are the standard basis
vectors of RK. We construct W = [wy,...,w,] by
n . _.n
w; = ey, forall 1 <k <K and <k_l)E<l§kE' (2.15)

To construct A, we note that, for each fixed K, there exists a constant ¢y > 0 (it may depend on K)

and a positive vector n = (11,...,Nk)’ such that
e N,M,...,Nk € [1/2,3/2], and they are distinct from each other;
e N=(1/K)XK =1;
n k=1Tk =1

Given 1, for two constants b| > 0 and b, € (0, 1) to be determined, we constructA =[Aq,...,Ag] =

lay,...,ap) as follows. Introduce

1

0, —
k Kb1by

[1—(1—=b1by)Ml, 1<k<K.

Note that 1, <3/2 and ) = 1. Hence, when 3(1 —b1b,)/2 < 1, itholds that 0,. .., Ok are positive,

they are distinct from each other, and Zszl 6, = 1. We construct the first b, p rows of A as follows:
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For1 <k <K,
aj=——ey, (B1+...4+6_1)brp<j<(01+...4+6,)byp. (2.16)

We then construct the remaining (1 — b;)p rows of A as follows:

1 —byby

m-(m,nm.--,nm’, bop<j<p. (2.17)

aj=

It can be easily verified that each column of A has a sum of 1. The following lemma is proved in

Section 2.10.

Lemma 2.7.2. Given cy,c2,%,% € (0,1) and n* € RX in the interior of the standard simplex,

there exist by > 0 and by € (0,1) such that (A,W) constructed from (2.15)-(2.17) is contained in

q)Z,N,p(K’ChCZlea'}/Zvn*>‘

Next, we construct (A(l),W(l)), ...,(AY) W), Recall that (by,b,) are the same as above.
Let p; be the largest integer such that p; < (1 —by)p. Let m = p;/2 if py is even and m =
(p1—1)/2if py is odd. The Varshamov-Gilbert bound for the packing numbers [35, Lemma 2.9]

guarantees that there exist J > 2m/8 and a)(o),w(l), - o) e {0, 1} such that 00 = (0,...,0)

and

v 170 2 o0 s ™

Zl{a)j ;éa)j }zg, forany 0 <s # /¢ <J.

j=1
Let o, = % \/NlTp] for a positive constant C; to be determined. We construct A(l),...,A(J ) as
follows:

0p—p,, o), —w®)) if py is even,
AI(CS):AI(<O)+O‘” ! 1<k<K,1<s</J,

0p—p,, ®), —@) 0), if py is odd,

where 0,,_p, is a zero vector of length (p — py). It is easy to see that AW) is still a valid topic

matrix. We then let W) =W () forall 1 < s <J. The following lemma is proved in Section 2.10.
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Lemma 2.7.3. Given c1,c2,71,% € (0,1) and n* € RX in the interior of the standard simplex,
there exist by > 0 and by € (0,1) such that (A®), W)Y is contained in D N p(K,cl,cz, 11,7%,1%),

forall0<s<J

Last, we check that (i)-(ii) are satisfied. For any 0 < s # ¢ < J, we have .¥ (A(S),A(g)) =

B 1A 4

1, without minimizing over permutation of columns. This is because the first

by p rows are anchor rows and they are the same for both matrices. It follows that
1 -
2(A0AY) = ay 2K |00 — 0| = JKawm 2 V=22 [, (2.18)

where we have used that |@®) — @O||; > m/8 and m > p; /2 = (1 —by)p/2. So (i) is satisfied
for Cp = %M

We then verify (i1). Fix s and write w0 — W, for short. By construction, ws) — Ws. The
key of characterizing the KL distance is to study the matrix D®) — D(0) = (A(S) —A(O))W*. Let
F C {1,2,...,m} be the support of ®). Denote by (ags))/ and (ag.o))’ the j-th row of A(®) and

A(s), respectively. It is seen that

(Qp, Op,y...,0), j=p—pj+iforsomeic€F,

a;’ —a;’ = — (0, Oy ..., 0y), j=p—p1+m+i, forsomei€F,

(0,0,...,0), otherwise.

Therefore, the j-th row of D) — DY) i either a zero vector or +a, times the sum of the rows in

W,. By direct calculations,

D) (j,i) = DO (j, )2 = na2 -2 @) — 0| <npjo?.
i=1j=1

Additionally, each entry of DY) is lower bounded by C~!p~! from the construction above, and

DY (i) =D (i)
T D01 ()

=0(poy) = O(1/ 1) =o(1). We plug the above results into Lemma 2.7.1
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and obtain that

p. (2.19)

n p 2
KL(23,20) < [+ o(INp Y. Y 100 (1.0~ DO (P < L

At the same time, Blog(J) > Bglog(2) 2 [Bﬂ#gk)g(z)p' So (ii) is satisfied if we choose Cj

~J

appropriately small. The proof is now complete. [

2.8 Additional proofs for Section 2.6

2.8.1 Preliminary I: The two matrices of entry-wise ratios

First, we consider the matrix V* € RK:X=1 1t is obtained from taking the entry-wise ratios of the

matrix V, where V is defined by = = AV (if it exists).
Lemma 2.8.1. Consider the pLSI model, and (2.7) is satisfied. The following statements are true:

o Fixing the choice of &, there is a unique non-singular matrix V € REK such that & =

M~124AV: moreover, (VV/)_l =AM 1A
o All the entries of V| have the same sign; moreover, Cl_1 <|Vi(k)| < Cjforalll <k <K.

o S =S(v],...,vk) is a non-degenerate simplex; moreover, the volume of .7¢ is lower

bounded by Cy Uand upper bounded by Cj.
o max; <<k [vill < Cs.
o C4_1 <=yl <Cyforall1 <k#{<K.
Here, C1-Cy are positive constants satisfying that C1,Cy,Cq > 1.

Next, we consider the matrix R. It is obtained from taking the entry-wise ratios of the matrix =.

For 1 < j < p, recall that a; denotes the j-th row vector of A, and d; = h;laj, where hj = HajHl.

Lemma 2.8.2. Consider the pLSI model, and (2.7) is satisfied. The following statements are true:
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e We can choose the sign of & such that all the entries are positive and that Cs ! Vhi <

E1(j) < Csy/hj forall 1 < j < p.

® max|<;<p ||I”]H < Ce.

o &M ai—ajl < llri—rjll < Clla;—ajl for all 1 <i,j < p.
Here, C5-Cy are positive constants satisfying that C5,C7 > 1.

Lemmas 2.8.1-2.8.2 are proved in Section 2.10.

2.8.2  Preliminary II: The noise matrix Z =D —D

Recall that Amax = maxj<j<phj, Amin = Maxj<j<phj. The next lemma is about the diagonal

matrix M — M = n~'diag(Z1,).
Lemma 2.8.3. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n — oo, suppose Nnhyiy /10g(n) — oo. With probability 1 — o(n™3),

M, j) —M(j, j)| < C(Nm)~"'/2\ [hjlog(n),  forall 1< j<p.

The following lemma is about the p-dimensional vector M()_ 1/ 2Zwk, where recall that wy, de-

notes the k-th row vector of W, for 1 < k < K.

Lemma 2.8.4. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As 1 — oo, suppose Nnhyin /log(n) — co. With probability 1 —o(n~3), forall 1 < k <K,

|iwi| <CNTV2, [nhjlog(n),  forall1 < j<p,

1M 22w, || < CNTY2\/nplog(n).

The next two lemmas are about the p x p matrix ZZ’, where Lemma 2.8.5 considers individual

entries of it, and Lemma 2.8.6 studies its spectral norm.
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Lemma 2.8.5. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n — oo, suppose log(n) = O(min{N, p}). With probability 1 —o(n3), forall 1 < j,{ < p,

1 log(n)

17zp—E[Z 2] < C (— + —) nh;hylog(n).
J J N Nzhmin J

Lemma 2.8.6. Consider the pLSI model where K is fixed, and the regularity condition (2.7) holds.

As n — oo, suppose log(n+N) = O(min{N, p}) and p = O(n). With probability 1 — o(n=3),

_ _ 1
\M~V2(zZ' —E[zZ))\M 1/2H§C<—+ 2p )\/_np.
N ' N2hpi,

Lemmas 2.8.3-2.8.6 are proved in Section 2.10.

2.8.3 Proof of Lemmas 2.2.1-2.2.2

First, consider Lemma 2.2.2. Recall that V is the non-singular matrix such that & = M —1/24y,
where the existence and uniqueness of V' are justified in Lemma 2.8.1. Moreover, by Lem-
mas 2.8.1-2.8.2, both V* and R are well-defined; by their definitions, V = diag(V}) - [1g,V*] and

& =diag(&) - [1p,R]. Combining the above, we have

diag(E) - [1,,R] = M~ /2 - diag(Vy) - [1x,V*].
17

(=14

Equivalently,
[1p,R] = [diag(1)]'M~!/2A - diag(V1) -[1x,V"*]. (2.20)

~\~

IT

First, we show that each row of Il is indeed a weight vector. By Lemma 2.8.2, we can choose
the sign of E; such that all its entries are positive; additionally, since Z; = AV} and that each topic
has a few anchor words, we find that the K entries of V| are also positive. Combining the above, I1
is a non-negative matrix. Furthermore, it follows from (2.20) that 1, = II-1g, i.e., the row sums

of I1 are all equal to 1. Therefore, each row of II is a weight vector. Second, using (2.20) again,
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R =TI-V*, which implies that each row of R is a convex combination of the rows of V* with the
weights being the corresponding row of I1. This gives the simplex structure.

Next, consider Lemma 2.2.1. By (2.20),
T 12 giao(=:) -
A-diag(Vy) =M"/*-diag(€;) - TL.

Note that IT is a matrix the £!-norm of each of which row equals to 1. Hence, the LSM of A -

diag(V}) equals to the diagonal matrix M1/2 - diag(Z ). O

2.8.4 Proof of Theorem 2.6.1

For notation simplicity, in the proof below, we omit the permutation k(+) in the definition of Erryg.
From the definitions of A;(Z,D), Ay(Z,D) and Erryy, there exist @ € {1} anda (K —1) x (K—

1) orthogonal matrix Q* such that, letting Q = diag(®,Q*), forall 1 < j < p,1 <k <K,

(

1M (G, j)—M(j,j)|| <A(Z,D)-hj,

IQE; —&/|| < Ay(Z,D) - \/hj (2.21)

\ |Q*0F — vl = Erryp (QF).

By Lemma 2.8.2, all entries of Z; are positive, and Z;(j) > C\/F, 1 < j < p. At the same time,
since |0Z=(j) —Z(j)] < HQEJ' —&jll < A2(Z,D)\/hj, as long as Ay(Z,D) is sufficiently small,
all entries of %] are also positive. Note that in our method we always choose the sign of & such
that its sum is positive. Hence, @ = 1 here.

First, we consider the step of recovering I1. Note that each 7; is obtained by truncating and

renormalizing ﬁ'}k, where ﬁ:}k solves the linear equation

~. %

A A% ~ * A% * A% XA
AT % Fj Qvl .QVK er



It follows that

1 R | |
=0 , where Q0 =
Q*F; Q7 ... Qg

Moreover, by Lemma 2.2.2, 7; is a PMF which satisfies that ZkK:1 mj(k)vy = rj. Similarly, we

have
1 1 1
=0 , Where Q = . .
I"] Vl ce VK
Consequently,
A—1 . A—1 —1
177 —mjll <[ 17 —ril + 17" — O [llIr;ll- (2.22)

Since Q' = [diag(V1)] 'V, we have |07 || = [[(Q'Q) 1|1 < (maxi[Vi(k)])*- [|(VV") || By
Lemma2.8.1, (VV')~! =A’M~!A; additionally, by (2.58), |[A’M~1A|| < c5 V|A’"H 1 A]|; recalling

that a} is the j-th row of A, we find that

|AHA|l < |!AH*1AH1
= maXZ ZHaf”l aj(k)a;(f)

< maXZ Zaj(ﬁ):
k=1 =1

Furthermore, by Lemma 2.8.1 again, C~! < |V} (k)| < C for all 1 < k < K. Combining the

above gives that

o~ <c.

Additionally, it is easy to see that |[Q — Q| < |0 — Q|1 < \/EmakaQ*vk —vill; as a result,

HQ‘ — Q_IH < \]Q‘l\]\]Q_1|]]]Q— |l < CmakaQ*\?}: —v;’;H. Moreover, by Lemma 2.8.2,
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|7j|| < C. Combining the above, we find that
1 — 75l < (1R~ rjll+ max l@%5 — i)
C[|Q* % —rjll +Errya (QY)]. (2.23)

Then, we use (2.23) to study 7;. By definition,

Ay =7} /lI&l,  where #} (k) =max{#}(k),0}.

It is seen that
17— il < 1% — &7 |l + |77 — 75l

= 1 =1l77 )&+ 177 = 7l

= 1= lIZ7 1 [+ 1177 — 7l

Using the triangle inequality, we have |1 — Hfr* 1] < Hfr’-‘ — 7j||1. Furthermore, since all entries of

7; are nonnegative, Hﬂ: —71:]]|1<H7r —7rJH1<\/_H7r —7j||. As aresult,

17— milly < 2VK| 2] — )] (2.24)
Combining (2.23)-(2.24) gives
|17 —mill1 < CLIIQ* 7 —rjll +Erryua(Q7)]. (2.25)

Next, consider the step of recovering A* = A - diag(V; ) by

A

A =M"? . diag(&)) 11,

49



where M = diag(n~!D1,) and 11 = [#y,...,%,])". By Lemma 2.2.1,
A =M12. diag(&;) - T1.
Fix j and let d; and a’]“- be the respective j-th row vectors of A* and A*. Then,

1y

=||[\/ M, )E ()7 — VM. ) E (]|

< M(j,j>-|él<j>r-Hﬁ,-—n,-|h+\/AMHn,-leél(ﬁ—él(ﬁr
FlE D135~ /MG ).

We plug in (2.21) and note @ = 1. First, [£(j) — &1 (j)| < |Q€; — &;|| < /hjAx(Z, D). Second,
by Lemma 2.8.2, |Z; (j)| < Cy/hj; furthermore, |} (j)| < 2|21 (j)| < CVh;. Third, by (2.21) and

(2.58), [\/M(j,)) — /M (j,j)| <C\/hj-A{(Z,D) and M(j, j) < 2M(j, j) < Ch;. As aresul,

1@} —ajlly < Chj- || —mjlly +Ch;[A1(Z,D) +Ay(Z, D)) (2.26)

il

Third, consider the step of estimating A from renormalizing each column of A* = [ay,a3, .. ,d;“,]’ .
Recall that A = [A;,... Ag] and A* = [AT, .. ,A}‘(]. Then,
Ac=1AWT Ay, 1<k<K
By definition, A* = A - diag(V;). It follows that
aj(k) = llAglIT a5, aj(k) = Vi)~ - a(k).
So, N
)0 = a0~ P e e



Since A* = A -diag(Vy) and ||Ag|l; = 1, we immediately have [|A7||; = Vi (k). Then, |||A Il —
Vi(k)l = 1A% = llAgIh] < 1A% —

Afll < XF_ |aj (k) — a3 (k)] < X

1 Ha —a*Hl We then
apply (2.26) and use the fact that Y7 j =K. Ityields

[AglI —Vi(k)| < Clrg?gpﬂﬁi—ﬂiH +C[A(Z,D)+ M (Z,D)]

(2.28)

In particular, since V; (k) > C~! by Lemma 2.8.1, we have HA |1 > Vi(k)/2 > C. Plugging these
results into (2.27) and taking the sum over k, we find that

laj—ajlly < Clla; —ajlli +ClIAf I = Vi) - llajl
By (2.28) and that ||a;]|{

it follows immediately that

laj—ajlly < Clla} —ajlly +Ch;j- max ||7; — |

+Chj[A(Z,D)+ M (Z,D)]

(2.29)
Now, we first plug (2.26) into (2.29), and then plug in (2.25). It yields that

d:i—a;|l{ <Ch;- max ||Q*F —r;
Ja; sl < Oy max (197

+Chj [Al(Z,D) +A2(Z,D) +EI’FVH(.Q )}

(2.30)
What remains is to bound maxj<;<, [|Q*#; — r;|. Recall that Q = diag(®, Q*), where we have
seen that @ = 1 here. Write

A

=
9]

—

=
Q*f;

1)) 71QE;.
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Then,

o Voo b e
|Q7F; rjll—llilmﬂéj El(j)éjn
ot & 1) —&10)
= §1(J)( é: é:]) 310) JH

<[E1() (19— &1l + Il 121 () — E1())])-

By (2.21), |£1(j) — E1(j)] < |Q€; — &|| < Ax(Z,D)/h;. At the same time, by Lemma 2.8.2,
Z1(j) > C\/h; it follows that £ () > 1 (j )/2>C\/hj. Also, by Lemma 2.8.2 again, ||r;|| <C.

Combining these results, we find that

~1/2

|Q*7 —r]H<Ch |QE; —&;|| < CAy(Z,D).

The above is true for all 1 < j < p. Hence,

1rgax |Q*7; — ri|| < CAL(Z,D). (2.31)
The claim follows from plugging (2.31) into (2.30). 0

2.8.5 Proof of Lemma 2.6.1

Since the linear mapping x — Q*x preserves the Euclidean norm, without loss of generality, we
can assume that Q* is the identity matrix. Write Ay = A(Z, D) for short.

First, we study the OVH algorithm. In (2.31), we have shown that

|Pj—rjl| <CAy, 1< j<p.

This means each 7; is within a distance of CA, to r;. Since each topic k has an anchor word

Jik» 7j, is within a distance CA; to the true v;. Consider the simplex (7}, ,#},,...,7j). Then,
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the distance from any r; to this simplex is upper bounded by CA,. It follows that the maximum
distance from any #; to this simplex is upper bounded by CA; + ||#; —r;|| < CA,. From how the

algorithm selects the simplex . (¥7,75, ..., V%), we know that
the maximum distance from any #; to .7 (V],793,...,0k) is < CA,. (2.32)

Now, let V; be the one in {V],73,..., 7} } that has the smallest distance to vy, 1 </ < K. In this

way, we get rid of the permutation on {1,2,...,K}. Fix k and consider the sets
U ={xe Sy:x(k) >1—-CyAr},

where .7} is the standard simplex in RX and Cj € (0,1) is a constant to be decided. We aim to

show that, when () is chosen appropriately,
\3}; equals to some 7; such that a; € v . (2.33)
Once (2.33) is true, then
195 = viell S CAy +[|rj —will = CAy +||rj — 7, || < CA+Clla; — e,

where ¢, is the k-th standard basis of RK and the last inequality is due to the last bullet point
of Lemma 2.8.2. Note that ||@; — ex|| = 2[1 —d(k)]. Since a; € %, we immediately have that

|@;—exl| < |@; —exlllld@; —exllt <|d@;—exll1 <2CpAz. Therefore,
19 — vl < CAg.

It remains to prove (2.33). Let fg be such that \92‘ = fjg’ 1 < /¢ < K. Suppose (2.33) is not true.
Then, a i ¢ 7/ . Additionally, a B ¢ % for ¢ # k. Define a mapping % which maps a weight vector

a in the standard simplex of RX to a vector r in the simplex . (V],v3,...,Vk): (Here o denotes the
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entry-wise product and Vj is the first column of V)

Vlod
a = r=%a=NV},...,vi|lt, where T=-—" .
ViR Vioal;

From the proof of Lemma 2.8.2, we find that
(i) ,%’dj =rjforall 1 <j<p,
(i) for any two weight vectors @ and b, C~!||a — b|| < || %#a— 2b|| < C||@— b|.
(ili) Z is a one-to-one mapping that has an inverse.

Now, let j; be an anchor word of topic k, and consider the distance from 7; to the estimated
simplex .7 (ffl ,---,7> ). This distance is lower bounded by the distance from r;, to the simplex

JK
( r» ) minus CA;. By (i)-(iii) above, the distance from r;, to the simplex .’ (rf1 yeees ij)

i T

is lower bounded by C~! times the distance from a jr = ek to the simplex % (dﬁ b ,de). Con-

sider any x € .(@: ,...,d» ). x is a convex combination of @: ,...,d» . Hence, x is still in
J1 JK J1 JKk

the standard simplex, and it holds that x(k) > 1 —2CpA,. As a result, ||x — ;|| > (1/VK)|x —

exll1 > (2/vK)CyA,. This means the distance from e, to . (dfl yeen ,dfk) is lower bounded by

(2/v/K)CpA,. Combining the above, we conclude that

—1
Ak ok

2C
distance from 7, to .7 (¥7],93,...,0k) is > —=CpAy — CA,. (2.34)

VK

Note that the other constants in (2.34) and (2.32) do not depend on Cy. Hence, by choosing
appropriately large, the right hands of (2.34) and (2.32) contradict with each other. It implies that
(2.33) has to be true.

Next, consider the GVH algorithm. It runs k-means to get local centers él* yeens éz‘, and then

applies the OVH algorithm to él*, e éj’j. We aim to show that

for each k, there is at least an ¢ such that || éé" —vi|l < CAy. (2.35)
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Once (2.35) is true, we introduce 67, ..., 92‘ as follows: for each k, pick one ¢; from (2.35) and let

%

= v]t; for the other /, let 92‘ be the point in #(v],...,vk) that is nearest to ég‘. Now,

*

e Each 6; is a point in .7 (v{,...,vg).

e Since maxj< <, ||#; —rj|| < CA,, it must hold that all k-means local centers lie within a

distance CAy to 7 (v],...,Vk). Consequently, || ég‘ — 0/ || < CA; forall £.

e For each 1 <k < K, there is one 6, such that 8; = v (this is a counterpart of the “anchor

row" in R).

The above fit perfectly to the setting of OVH, and we can apply the previous proof to show that
9 —vill < Caa.

What remains is to show (2.35). Recall the mapping % defined above. The properties (i)-(iii)
imply that, if we apply k-means to rq,r;,...,rp, the corresponding RSS will not exceed C times the
RSS obtained by applying k-means to dj,dy,. . .,dp. Combining it with the assumption (2.9) and
the fact that r;’s are all equal for anchor words of a topic, the RSS obtained by applying k-means

to ry,r,...,rp, assuming L > Ly + K clusters, is bounded by

Cmyp/log(n).

Consequently, the RSS obtained by applying k-means to 71, 7,...,7p, assuming L > Ly + K clus-
ters, is bounded by

Cm,/log(n) + CpA3 < Cmy,/log(n), (2.36)

where we have used the assumption mj, > p?log?(n)/(Nn). Now, for a properly small constant
co > 0 to be decided, suppose there is no local center within a distance c( to v;. Then, for any
anchor word of topic k, 7; is of a distance at least c) — CA, to any local center. As a result, the RSS

associated with 7y,7,,...,7p should be at least

comp[l —o(1)]. (2.37)
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Then, (2.36)-(2.37) together yield a contradiction. Hence, we have proved that
for each k, there is at least an ¢ such that || ég‘ —vil < co. (2.38)

For any r; such that r; # v}, by the assumption (2.9), the distance from d; to ¢ is at least c3;
furthermore, by the mapping % defined above and the property (ii), the distance from r; to v,t is at
least C_1C3. We choose

co = C_IC3/3.

Then, the distance from any such r; # v} to v; is at least 3¢(. Hence, the distance from 7; to any
étj" in (2.38) is at least 3¢y — cy —2CAy = 2¢p. At the same time, given c(, by increasing L to a
large enough integer, the distance from any 7; to the nearest local center can be smaller than c(.
Hence, we conclude that, for any r; such that r; # v, the associated #; will not be assigned to a
local center in (2.38). This means, any local center in (2.38) is the average of only anchor rows 7 -
As aresult,

for a local center 8 in (2.38), |6 — vi|| < CA,.

This proves (2.35). [

2.8.6 Proof of Lemma 2.6.2
Let A = diag(§;,...,0k) and A = diag(Sl b SK) By eigen-decomposition, UA = GU. More-
over, G = G+Z =UAU’ +Z. It follows that UA = UA(U'U) + ZU. Rearranging the terms gives

UA—z0 =U(AU'D). (2.39)

In particular, for each 1 < k < K, (2.39) says that Skljk — 70, = U(AU'Uk), which means U, =

(8ln — Z) U (AU'Uy). We now have

A a_

Op=(n—0,'2)7'0;,  where Tp=5_'UAU'Dy). (2.40)
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Write U = [U},0,,...,Ux] and Q = (I,, — 3,:12)_1 — I,. Then, (2.40) becomes U = (I, + Q)U

Let g; be the j-th row vector of O, 1 < j < p. It follows that

€0 =0l = 150Ul < lla; T < llq;lI (1 + QDT

Note that |3| > c||G|| — [|Z]| > (2¢/3)||G]|| > 2||Z||. Hence, ||§, 'Z|| < 1/2. As aresult, [|Q] < 1.

Additionally, ||U|| = 1 since Uy’s are eigenvectors. We then have

le5(0 = 0l < 2llq;]]- (241

By definition, (Q +In) (I, — 8, 'Z) = I. It follows that 0 = §, ' Z+ §, ' 0Z, which implies q;=

Sk_lz;-—l—Sk q]Z As a result,
S—1 S—1
lg;ll < & llzjll + 6, " 1Z[[llq;]l-

Re-arranging the terms gives

5
|| zjll

1 llzl
<26 lzjll < 3¢
—1 =
e 121

llg;ll < ,
! 1G]l

where we have used that Sk_l |1Z|| < 1/2 and || > (2¢/3)||Gp||. Plugging it into (2.41) gives

- 1zl
Ie}(0 = 0)|| < 6c L (2.42)
/ 1G]l

By (2.42) and the triangle inequality (below, the minimums are over orthogonal matrices),

m1n||e (U0 — U)|<m1n{||e (U0 — U)||—|—||e U)o|}

_mln{He (U0 - U)H+He 0)|}

Izl

. 2.43
Gl (2:49)

< mOin{He;-(UO— U)||}+6c
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We now bound the first term in (2.43). Using the sin-theta theorem [36] (the eigen-gap here is
¢||G|), we have |00’ —UU’|| < ¢~ 1||G||~1||Z]||. By linear algebra (e.g., Lemma 1 of [37]), there
exists an orthogonal matrix O such that |[U0 — U|| < V2|00’ — UU’||. Combining the above,

there is an orthogonal matrix O such that
[00-ul < V2G| z]. (2.44)

Recall the definition of U = [Uy,...,Uk] in (2.40). We can rewrite

It follows that

~ AA—1
;GO -U)|| <|[lfU]|- |AU'UA™ 0 — Ik]|. (2.45)
In (2.39), multiplying both sides by U’ and noticing that U'U = Ig, we have
U'UA-U'Z0 =AU'D
It follows that

IAU'OA" 0 - Ix|| = ||(U'OA - U'Z0)A~ 0 - Ik ||
= |(U'00-1Ix)-U'ZOA 0|
<||lU'"00-U'U| +|U'z0A 0|
<|0o-U|+|z|IIA~"

< (V2+3/2)c7 |6l i),

where in the third line, we have used the triangle inequality and that U’U = Ik, and in the last line,

we have used (2.44) and the observation that min |8 > ¢||G|| — ||Z|| > (2¢/3)||G||. Plugging it
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into (2.45) gives

i IZlllle;ull
le(To-U)| < (V2+ 3/2)c*1||—(;ﬁ (2.46)
Coming it with (2.43) gives the claim. 0
2.8.7 Proof of Lemmas 2.6.3-2.6.4
First, consider Lemma 2.6.3. By (2.58), cohj < M(j,j) < hj,forall 1 < j<p. So,
1 < Amin(M ™ H) < Amax(M1H) < 1/c5. (2.47)

Let spyin(+) denote the minimum singular value of a matrix. By basic linear algebra, for a matrix
A and a positive definite matrix B, syin(ABA") > Amin(B) * Smin(AA") = Amin(B) - Smin(A’A). Tt
follows that

—12awwA'm—1/2)

Smin (
(

> smin (H 1 2AWW/A'HV/2) s (HY 2~ /2

| \/

smin (H™'/2AWW/A'"H~1/2)
>A’m1n(WW/) Smm( /H_lA)
= NAmin(Ew ) Amin (Z4)

> c3n,

where the third line is due to (2.47) and the last line is due to (2.7). Similarly, since ||Zy/|| < 1 and

|IZ4]] < C, we can derive that

Amax (G) < (1/¢p)nAmax (Zw ) Amax (X4) < Cn.

The first claim follows.

Consider the second claim. By basic linear algebra, for any matrices A and B, the nonzero
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eigenvalues of AB are the same as the nonzero eigenvalues of BA. Then, the nonzero eigenvalues

of G=(1— )M~ /2AWW'A’M~1/2 are the same as the nonzero eigenvalues of

1
(1-)n®,  where ® =Xy A'M~1A).

It suffices to show that
gap between the first two eigenvalues of ® is > C. (2.48)

In the proof of Lemma 2.8.1, we have studied this matrix ®; in the paragraph below (2.64), we

have argued that, given (2.7),
all entries of ® are lower bounded by a constant.

Now, suppose there is a sequence ® = ©(") such that the gap between its first two eigenvalues — 0.
Then, since [|®]| < C, we can select a subsequence {n},,_, such that as m — o, elm) — @,
for a fixed K x K matrix ®y. Then, ®q must satisfy that (i) all entries of ® are strictly positive,
and (ii) the first two eigenvalues of ®( are equal. However, such a ®q does not exist, due to the
Perron’s theorem. We then get a contradiction. This proves (2.48), and the second claim follows.
Next, consider Lemma 2.6.4. Recall that & j is the j-th row vector of =, and the matrix V is

defined by E=M"124v. Asa result,

A

& =M(j, )" V*(Va)),

where a; is the j-th row vector of A. First, by (2.58), we have cyhj < M(j, j) < hj. Second, by

Lemma 2.8.1, (VV)" L = A'M~1A; so, V|2 = AL AM~1A) < AL (A/H1A) < cz_l, where

min min
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the last inequality is due to (2.7). Last, ||a;|| < ||a;|; = h;. Combing these results, we obtain:

) < Wllail _ (0/ven) by _ /B
JI = \/m— \/% s .

Then, it follows from the Cauchy-Schwarz inequality that Zé(:l 2,(j)] = ||€ il < VK It3 ill <

C\/h}. m

2.8.8 Proof of Lemmas 2.6.5-2.6.6

Recall that Z = [Zy,...,Z,] = [z1,...,2p)’. From basics of multinomial distributions, Cov(Z;) =

N~ ldiag(D;) — N_]D,-Dg. As a result,

L n 1
E[zZ1=Y Cov(Z)=—-M— —DD'.
22 = 3. Cov(@) = M~

Then, we can write G — G = E| + E5 + Ez + E,, where

E| = ]%M*I/z(M—M)M”/Z,
E, =M '?(DZ' +zD" YW~ '/?,
Es=M"Y2%zz —E[zz))\W~ /2,

Ey=(1— ]%)(M_I/ZDD’M_l/z —M~'2pp'M=1/?).
Consider E;. By Lemma 2.8.3, with probability 1 —o(n3)
[M(j. )~ M(j. j) < C(Nm) =2 [hjlog(n), for¥je [p]
Moreover, by (2.58), cohj < M(j,j) < hj. Since hj > hpyip > (Nn)~'log(n), the above sug-

gests that |M(j, j) —M(j,j)| < M(j,j); in particular, M(j,j) > M(j,j)/2. As a result, with
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probability 1 —o(n3), forall 1 < j < p,

M(j,j)—M(j,j)| _ Cy/nl
N - M(j,j)/2 Nh
Also, with probability 1 — o(n_3),
Y —M(j,j Cy/nl
N1< J<p M(_],_])/Z N thm

Consider E,. Recall that D = AW = Zle AkW;C- It follows that

M 12A) (2 2) + (22 (124,

||M>:

As a result, with probability 1 —o(n3),

K K
y— ~—1/2 —1/2 —1/2
B2l < Y 2124 - 18712z <€ Y | HV2A|- (1M~ 22wy |,
k=1 k=1

where the last inequality is because M(j, j) > coh; and M(j, j) > M(j, j)/2 with probability 1 —
o(n™3). By Lemma 2.8.4, ||M~1/2Zw|| < CN~Y/2,/nplog(n). Moreover, 21[5:1 I1H1/24,)% =
Zk ) Z}D by 1A2( ) < Zszl Z§:1Ak( J) = K. Tt then follows from the Cauchy-Schwarz inequal-

ity that Zk:l IH1/24,|| < K. As a result, with probability 1 —o(n~3),

|IE2|| < CN~Y2\/nplog(n). 2.51)
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In addition, with probability 1 —o(n3),

K Wil
—~1/2 —1/2
||e’,-Ez||<Z B! 2 zw A+ Y HHM P24y
k=1 M(J J) k=1/M(j,J)
C
<Cy/h; max ||M~ 127, + —— max |Z'w
1<k<1<H 4 Vi 1<k<K| 4
< CN~'2, [nphlog(n) + CN~1/2\/nlog(n)
nlog(n
<c f]( ) (14 /i),

where the second inequality is due to that M(j, j) > M(j, j)/2 > cah;/2, ZszlAk(j) =

(2.52)

hj and

Y M2 < /2/e XK |[HTV2AL || < K\/2/c), and the third inequality follows from

Lemma 2.8.4.

Consider E5. We have seen that ||M~1/2M1/2|| < 2 with probability 1 —o(n~3). Combining it

with Lemma 2.8.6 gives: with probability 1 —o(n3),

1
|IE3|| < 2||M~V/2(zZ — E[zZ'))\M~1/?| §C<—+ 2P >\/@‘
N N hmin

Furthermore, by Lemma 2.8.5, with probability 1 — o(n_3), forall 1 < j,¢<p,

)| = ’Z/ZK_E[Z/ZA’ C (l+ log(n)
\/M” M(0,0) \/hhg N N2hyi,

1 |
< C(— + LU) nlog(n).
N N2hyi,

|E3(j,¢ ) nhjhglog(n)

It follows that with probability 1 —o(n™3).

1 log(n)
/
E <c<— ) log(n).
leE3| < N+N2hmin nplog(n)
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Consider Ey. Since D =YK _, Apw,

1. K . .
Ey=(1-3) ¥ (wWhwe) (M 12A AL~V — =1 24041 /2)
kf=1
1. K . . .
=(1-) Y Wowe) [M Y 2a ALYV - Yy e (Y2 - 2 A A .
ki—=1

In the proof of (2.51)-(2.52), we have seen that Y& | [|M~1/24;| <2¥K  |M~1/24,| < C.

It follows that

K
~—1/2 ~—1/2 —1/2 —1/2 ~—1/2 —1/2
IEs| <n Y (I 2Ap I 2 == VA ||+ |12, | (12 = M)A
k=1
<CnK- max |(M~ V2 —m~ 124,
1<k<K

By Lemma 2.8.3 and that M(j, j) > M(j,j)/2 > cph/2, with probability 1 —o(n™3)
W2, )2 = ()2 < s () T2 log(n)

So, with probability 1 —o(n™3),

G2 y=1/2y4, | < V108()
(M M)A < -

Combining the above, with probability 1 —o(n™3),

|IE4]| < CN~Y2\/nplog(n). (2.55)
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Moreover,

—1/2 —1/2
le/iEa| < ——— ZAk W12 =124

<C "lo—g(”)(H phj). (2.56)

||e;<é—G>||sc\/”l°§<”> [I+M+Nlh. %< )]

—1 1

where in the last inequality we have used h; > cihyiy > cth=cyp~'. Using h jzcp”

again, we find that

! (A .
Hej(G—G)H < nplog(n) | 1 if N > plog(n),

i - N 3/2 )
/ l%(;%(”), if N < plog(n).

This proves Lemma 2.6.5. By (2.50), (2.51), (2.53) and (2.55), with probability 1 — o(n_3),

H@—GHSC\/’T[W N\/\/li\fi—(Tn)l + (5 i)
<C\/_< k)\/%(n +1}\)]—22>7
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where the last inequality is because phy;, > ¢ and N > Clog(n). It follows that

, 4/3
16— < ¢y Ploe) b =P

p2-N73/2 if N < p*/s.

This proves Lemma 2.6.6. ]

2.9 Bernstein Inequalities

Lemma 2.9.1 (Bernstein inequality). Suppose X1,---, X, are independent random variables such

that EX; = 0, |X;| < b and Var(X;) < Gl-zfor all i. Let 6% =n~! P/ Giz. Then, for anyt > 0,

L nt /2
P< -1 X~>t)<2 —— |-
L Xl 2 ) < eXp( G2+bt/3>

i=1

Lemma 2.9.2 (Bernstein’s inequality for sub-exponential variables). Suppose X1,--- ,X,, are inde-

pendent random variables such that EX; = 0 and maxj<;<p, ||X||y, < k. Then, for anyt >0,

n 1
P<|ZXi|>nt>§2exp —cnmin ()

i—=1
where ¢ > 0 is a universal constant.

Lemma 2.9.3 (Bernstein inequality for martingales). Let {&,}_| be a martingale difference se-
quence with respect to the filtration {Fy}_, where |Ey| < b for b > 0. Define the martingale
My =Y7" | &, and let its variance process be defined as (M), = Y. E[(Sl-zlfi,l]. Suppose T is a
finite stopping time with respect to {Fy}_. Then, for any t >0 and 62 >0,

/)2 )

P(maxM >t (M >62><Zex (——
n> b {Mn =P\ o2 /3

n<t
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2.10 Supplementary proofs

Proof of Lemma 2.8.1. Consider the first claim. Note that M ~1/2D has a full column rank K. Let
M~/2D = AR

be the Singular Value Decomposition of M~ 1/2D, where A = diag(Aq,...,Ak) contains the singu-
lar values and B € R™K contains the right singular vectors; note that Z'Z = B'B = Ix. It is seen
that

E=(EAB)BA~ =M '2DBA"! = M~ 2A(WBATY).

By letting V = WBA_I, we have £ =AV; i.e., such a V exists. Furthermore, for any V such that £ =
M~124v, we have &M~ 1/2Av = Z'Z = I. This implies that V is the inverse of (/M 1/2A),
so V is unique and non-singular. Last, we plug £ = M~124V into T'E = Ig; it yields Igx =
V/A’M~1AV. Multiplying both sides of this equation by V from the left and by V'’ from the right,
we obtain:

vv = wvHA'Mlawv).

This proves that VV/ = (A’M~14)71,

Consider the second claim. We first show that
Vi(k)|<C,  forl<k<K. (2.57)

We aim to use the fact that VV' = (A'M _IA)_I, so the key is to study the diagonal matrix M.
Note that M ; = %Z?:l [ZleAk(j)Wi(k)] = ZszlAk(j)[% I W(k)]. Since W;(k) < 1, we have
M <YK  Au(j)=h;. Atthe same time, LY"  Wi(k) > 1y W2 (k) = Iy (k,k), and it follows
from the assumption (2.7) that Xy (k,k) > cp; consequently, M(j,j) > ¢p ZszlAk( j) =cohj. In
summary,

cahj <M(j,j)<hj,  forl1<j<p. (2.58)
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Recall the matrix H = diag(hy,...,hp). By (2.58), A'(M~!' —H~1)A is positive semi-definite,
which implies Ayin (A’M™1A) > A (A’HA); similarly, Amax (A’M1A) < ¢5 ' Amax (A’HT1A).
Note that A/H~1A = ¥4. By the assumption (2.7), Amin(£4) > ¢; also, using the fact that the

column sums of A are equal to 1, we have Anax(X4) < ||Z4]|1 = 1. Combining the above gives
2 < Amin(A'M™A) < Amax(A'M714) <5 . (2.59)
In the first claim, we have seen that VV/ = (A’M~14)~1. So, (2.59) yields:
2 < Amin(VV') < dmax (VV') < 5 1. (2.60)

Observing that Zf:] Vez(k) is the k-th diagonal of VV’, we obtain (2.57).

Next, we show that for a constant ¢ > 0, up to a multiple of +1 on V|,
Vi(k) > c, forl <k<K. (2.61)

Let n; = sign(V; (1)) - |[Vy]|~'V;. Since ||V;||? is the first diagonal of V'V, we have ||V;|? >
Ain(V'V) = Amin(VV') > 5, where the last inequality is due to (2.60). Therefore, to show (2.61),

it suffices to show that

liminf mi K} > c. 2.62
imin lgng{nl( )} =c (2.62)

Recall that A;,..., Ak are the singular values of M~1/2p. Then, M_l/zDD’M_l/zEk = lszk,

where D =AW and £, = M -1/ 2AVk. Combining these facts gives
(M 2awwW A M2 (M1 24 = A2 (M1 2Avy)
Multiplying both sides by (A’M~1A)~14’Mm ~1/2 from the left, we have

WWAM1A)V, = A2V,
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This means V, is an eigenvector of the matrix nXy (A’M _lA) associated with the eigenvalue ?Lkz.

In particular,

1y is the unit-norm leading eigenvector of ® = Ly, (A’M~1A). (2.63)

(n)

Write 1y = 1, to indicate its dependence on n; similar for other quantities. Suppose (2.62) is
not true. Then, there exists k and a subsequence {ny, };, _; such that lim;; e nl(n’”) (k) = 0. Fur-
thermore, the spectral norm of Xy is bounded (because each column of W is a weight vector), and
the spectral norm of A’M —14 is also bounded (by (2.59)). Therefore, there exists a subsequence
of {nm}, _, such that ® tends to a fixed matrix ®p; without loss of generality, we assume this
subsequence is {ny };_ itself. The above implies

im n™ (k) =0,  1im @) =@y

m—soo ' 1 m—oeo

In the proof of Lemma 2.6.3, we have seen that the eigengap of ® is bounded below by a positive

constant. Using the sine-theta theorem [36], when @(mm) ®g, up to a multiple of +1 on nl(”’"),

nl(n’") — qo, qo 1s the unit-norm leading eigenvector of ®.
Combining the above gives

go(k) = 0. (2.64)

We then study the matrix @(. Write ® = @] +0,, where O = Xy (A’/H1A) and ©, = A/ (M~ —
H *1)A. By (2.58), all entries of ®, are non-negative. Moreover, the assumption (2.7) yields that
all entries of A’H~!A are lower bounded by a constant ¢y > 0; as a result, all entries of ®; are
lower bounded by a positive constant. Combining the above, all entries of ® are lower bounded by

a positive constant, which implies:

® is a strictly positive matrix. (2.65)
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By Perron’s theorem [26], the leading unit-norm eigenvector (up to +1) of a positive matrix has all
positive entries. So (2.64) and (2.65) are contradicting with each other. This proves (2.62); then,
(2.61) follows.

Consider the last three claims. The key is to study the matrix

1 ... 1
0=
v"l‘ 5%

From how v},...,vk are define, Q' = [diag(V})] ™' - V. So
Q'0 = [diag(V1)]~'VV'[diag(vVy)] .

In the second claim, we have seen that the entries of V; are either all positive or all negative; also,

cl< Vi (k)| < C forall 1 <k < K. Combining this with (2.60) gives

cl< 2'min(QlQ) < lrnax(Q/Q) <C. (2.66)
We first study ||v;|| and |[v; —v}||. Note that

1
= Qey, ey: the k-th standard basis of RX.

*

Vi

Therefore, [[vi|l < [Q]l < C. [lv; —vill < [1Qll- llex —eell < V2[|Q]| < C. and |lv; —vi|* > [leg —
erl* - Amin(Q'Q) > €.

We then study the simplex .¥. By (2.66), Q is non-singular. Hence, there cannot be a non-zero
vector b such Qb = 0; note that Qb = 0 is equivalent to that ZkK:1 b(k) =0 and ZkK:1 b(k)v; = 0.

This means the vectors v},...,V are affinely independent; so .#¢ is a non-degenerate simplex.
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The volume of . equals to

1
(K—1)!

1
det([VE—VT,...7V}k(—VT]> = mdet(Q)

By (2.66), the right hand side is lower bounded by a constant.
]

Proof of Lemma 2.8.2. Consider the first claim. From & = M~ 1/2AV, we have E; (j)= Mj_jl/ 2a;.vl
for 1 < j < p. Note that a; is a non-negative vector with ||a;||; # 0 and that all entries of V; are
either all positive or all negative; so the entries of a}Vl all have the same sign. Consequently, the
entries of E; also have the same sign; this means we can choose the sign of E; so that all the entries
are positive.

Assuming all entries of E; and V| are positive, we now give lower/upper bound of Z (), for
1< j<p. Since E;(j) =M *dv;.

- -1/2 .
= >M.. ; min Vi (k).

By definition, HajH1 =hj. By (2.58), M;; < h;. By Lemma 2.8.1, V| (k) > Clforalll1 <k<K.

E1(j) >C 1 /.

Similarly, we can prove that £{(j) < C\/h;.

Combining the above gives

Consider the second claim. Since each r I is in the simplex Yﬁ, it follows that

ril < max ||vi
Il < mas ]

and by Lemma 2.8.1, max|<x< ||v;|| < C. The claim then follows.

Consider the third claim. By Lemma 2.2.2, each r; is a convex combination of vJ,...,Vk,
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where the weight vector 7; is the j-th row of IT= [diag(Z,)]~!-M~1/2A - diag(V}). So

0 1 ... 1
= Q(m; —mj), where Q =
ri—Tj v’i‘ v}

In (2.66), we have seen that C™1 < 1 (Q'Q) < Amax (Q'Q) < C. So,
M m— il < i =il < Clla— .
To show the claim, it suffices to prove that
CMai—aj|| < |lm—=;|l < Clla—aj]- (2.67)

We now show (2.67). We assume the sign of = is chosen such that all entries of £ and V| are

positive. Since IT = [diag(Z;)]~! - M~1/2A - diag(V}),

(x]

7j = [E1())] M- diag(V1)a,
= [21()]" Mjjh; - diag(V1)a;

o (Vj0d)), (2.68)

where o denotes the entry-wise product of two vectors. Noting that both 7; and a; are weight
vectors, we have 7; = (V} 0d;)/[|V} odj||;. Therefore,

(Vioa)  (Viedj)  Vio(di—dj) |[Viodlli —[[Viodl

-7 = —— — = o o j-
T Vieaill ([Vieaglh V1 0dill; V1 odil|; /

By the triangle inequality, |||Vi odjl[1 —[[V1 0d;ll1] < [[(Viodj) — (Viod)l1 = |[Vio(di—aj)l-

Moreover, ||7j||; = 1. It follows that

|Vio(a —aj)lh

| — 7]l <2 .
b Vioa;l
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By Lemma 2.8.1, C~! <V, (k) < Cforall k. So ||V} o (@i—dj)|l1 <Cll@—dj|1,and ||V] 0|} >
C~!. It follows that

|7 — mjl[1 < Clla; —ajl|;.

Using the Cauchy-Schwarz inequality, [|a@; —d ||, < v/K||@;—d||. Moreover, since || 7; — ]| < 1,

we have ||7; — ;|| < ||7; — 7|1 It follows that
17 — mjll < Clla; —ajl. (2.69)

This gives the second inequality in (2.67).
To get the first inequality in (2.67), introduce a vector b € RK with b(k) = 1/V; (k). Then (2.68)

implies @; o< (bom;) for all 1 < j < p. Since both d; and 7; are weight vectors, we have a; =

bOﬂ?j

Toom ;" Note that C~! < min V; (k) < max V; (k) < C implies C~! < miny b(k) < max; b(k) <C.
J

By replacing V| with b in the proof of (2.69), we immediately obtain
@i —ajl| < Cllm — ;.

This gives the second inequality in (2.67).
]

Proof of Lemma 2.8.3. Introduce a set of p-dimensional random vectors {7}, : 1 <i<n,1 <m <
N} such that they are independent of each other and that T, ~ Multinomial(1, D;). From the pLSI

model and the definition of multinomial distributions,
N
Y (Tw—ETw), 1<i<n (2.70)

It follows that



Fix j and write X;,,, = T;u(j) — E[Tin(j)]. Then, {X;, : 1 <i<n,1 <m < N} are independent
of each other. Moreover, since T, (j) ~ Bernoulli(Dj;), we have |X;,,| <2 and Var(X;,) <=
ZkK: 1 A(J)Wi(k) < Zf: 1Ak (j) = hj. We now apply the Bernstein inequality in Lemma 2.9.1,

then we obtain

. Nnt?/2
P(|Mj;—Mj;| > 1) <2exp <_hJ+T/3> :

Let 1 = (Nn)~1/2 10k log(n). Since hj > hypin >> (Nn)~og(n), we have r < hj; therefore,
in the denominator of the exponent, the term £; is dominating. It follows that, with probability
1—o(n™),

M, —Mjj| < (Nn)~'/2,/10hlog(n).

According to the probability union bound, the above holds simultaneously for all 1 < j < p with
probability 1 —o(pn~*) =1—0(n"3).
]

Proof of Lemma 2.8.4. Consider the first claim. Fix k. Let {7}, : 1 <i<n,1 <m <N} be as in

(2.70). It follows that

()

Zywi = __flzio)Wi(k) -

n N

1
Nn = 2=

Write X;, = nW;(k){ T (j) — E[Tim(j)]}. Since Tip,(j) ~ Bernoulli(D j;), we find that Var(X;,,) <
nZWiz(k)Dj,- < nzhj and | X;,,| < 2nW;(k) < 2n. We now apply Lemma 2.9.1 with 62 = nzhj and

b = 2n. It yields that
Nnt? /2 )

P(|; >t)<2exp| 5=————=

Set t = C,4 /N_lnhj log(n) for a constant C > 0 to be decided. For such ¢, since hj > hpip >

(Nn)~1log(n), the term n?h j is the dominating term in the denominator of the exponent. There-

fore, when C 1is properly large, the right hand side is o(n_4). In other words, with probability

5. We have assumed n > max{N, p} without loss of generality. If n < max{N, p}, the result continues to hold with
log(n) replaced by log(max{n,N, p}).
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1—o(n™),
|iwi| < CNTV/2, [ jlog(n). (2.71)

Combing this with the probability union bound gives the claim.

Consider the second claim. Write

Lo
—1/2 2 2
I Pz P = Y Il
j=1"11J

We have obtained the upper bound (2.71), which holds simultaneously for all 1 < j < p, with
probability 1 — o(n_3). Moreover, from (2.58), M;; > cihj. As a result, with probability 1 —

-3

o(n),

Cnhjlog(n)  Cnplog(n)
N N

S|

—-1/2 2
M= Pz P < Y —
j=1 €17

This proves the claim.

O

Proof of Lemma 2.8.5. We aim to show that, for any given 1 < j,/ < p, with probability 1 —

o(n_s),

1 p p 1 log(n) )
— |y —Eldz)| <C( = V/nlog(n). 2.72
hjhelzjze [zjzel| < (N+ N nlog(n) (2.72)

Once (2.72) is true, the claim follows from the probability union bound.

Below, we show (2.72). Fix (j, /). Using the equality xy = %(x—ky)z - %(x — )2, we find that

G Z": Zi(j) Zi(0)
hihe 5 Vhj e
) 2
_ i Zi(Jj) + Zi(0) . Z Z(j)  Zi(0)
=1\ 2hj 24/l =1 \ 2/ 2hy
1l L eite ej—e
= Z(”/H_l/zzl)z_ Z(”,H_l/zzl)za up = ! Eybtz: / EQ
i=1 i=1 2 2
here ey,...,ep denote the standard basis vectors of R”. Taking the expectation on both sides, we
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find that E [Z/]-Zg] has a similar decomposition. As a result,

=I1+1I. (2.73)

Below, we focus on deriving an upper bound for /. In the end of the proof, we explain how to
bound /7 in a similar way.

We start from studying u’lel/ZZi. Let {T;;, : 1 <i<n,1 <m <N} be the same as in (2.70).
It follows that

127 @ L xS g2 pir
Wy H 1%z NZ E[Tim])-

Write Y;;,, = HY 2(Tyn — E[Ti]). Since T}y, ~ Multinomial (1, D;), the covariance matrix of T},

\/Di
equals to diag(Dl-) — D;(D;)". It follows that Var(Y;,,) < u}H~'/diag(D;)H~"/?uy = 1 \/h_ﬂ +
J

—V\/D»hﬁ")z < 1, where the last inequality is because D j; < k. Furthermore, [Yim| <1/ Vh i+l / \/Eg <
2/+/hmin- We now apply the Bernstein inequality, Lemma 2.9.1, with 62=1,b=2 /A Pmin- It

gives
Nt /2
1+2t/(3

P(\u’lH_l/zZ,-| > t) < 2exp (— )) , for all ¢ > 0. (2.74)
min

As a result, with probability 1 — o(n_s),

1 I
|MI1H_1/2Z1'| SCmaX{ og(n)7 og(n) }
VN ' Ny/hpin

It motivates us to consider two different cases: (a) Nhy;, > log(n), and (b) Nhy;, < log(n).
Consider case (a). Let tg = CN -1/2, /log(n) for a properly large C > 0 to be decided. For all

0 <t <1y, the right hand side of (2.74) is bounded by 2¢~CN 22/ 4. Define

Xi = (uyH ' 22) 1 { i H 27| <10}
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For any fixed 8 > 0, when C = C(f) is chosen properly large, we have the following results:
(i) X; = uyH~'/2Z; with probability 1 —o(n~°).
(ii) X; is sub-Gaussian with the sub-Gaussian norm || X;||y, = O(1/V/N).
(iii) [E[(/H™/22)%) —E[X?]| = o(n"P).

Here (i) is because P(X; # uyH~'/2Z;) = P(ll{H~'/2Z;| > 19) < 2e~CNiG/4 = O(n=CC*/4y; (i)
is because: for 0 <7 <tgy, P(|X;| >1) < P(|u’1H*1/ZZ,-| >1) < Ze*CNf2/4’ and for t > 1, P(|X;| >
1) = 0; (iii) is because |E[(W'H~1/2Z))?] — EX?)| < (2/\/hmin)? - P(/'H~12Z;| > 19) = o(N) -
O(n—CCZ/4)_ We choose 8 large enough such that N _IW > n~B. Using (i)-(iii) above,
with probability 1 —o(n™?),
I= ié (X2 — E[(H 2] = ; (X? —E[x?)) +o<%g(")). (2.75)

Since each X; is sub-Gaussian, Xi2 — E[Xl-z] is a sub-exponential random variable with the sub-
exponential norm ||Xi2 —E[Xl-2]||1,,1 < 2||X,-||%I,2 = O(1/N) [38, Lemma 5.14, Remark 5.18]. We
apply the Bernstein inequality for sub-exponential variables in Lemma 2.9.2([38, Corollary 5.17]),
with k =C;/Nandt =C, Km for C1,C, > 0 that are large enough. It follows that with
probability 1 —o(n ™),

| zn: (X7 —E[X?])| < CN~1/nlog(n).

i=1

Combining it with (2.75) gives: with probability 1 —o(n ™),

11| < CN~1\/nlog(n). (2.76)

Consider case (b). In this case, let 6, = C3log(n)/(N+/hmin) for a large enough constant C3
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to be decided. It follows from (2.74) that

log(n)
26Xp<—Nt2/[2+4C3h—]), O<t§6n,
P(lyH 27| > 1) < NMemin
3 N t)

t> 0y
6C3_1+4 Vmin "

2exp(—

Define

% =uiH 2z, 1|y H™ %7, < 8,).
Therefore, for each fixed § > 0, by choosing C3 = C3(f3) appropriately large, we conclude that

(i) X; = uH~'/2Z; with probability 1 —o(n~°).

(ii) X; is sub-Gaussian with the sub-Gaussian norm || X; ||y, = O(\/ log(n)/(N?hpip))-
(iii) |E[(W'H'/2Z)% — E[X?]| = o(n~P).

log(n)

We choose B large enough such that N nlog(n) > n~B. It follows that with probability

1—o(n?),

1= i(Xiz—E[(”llH_l/ZZi)]) = i(xl? — E[X?]) +0<M1 /nlog(n_)),

i=1 Nzhmin

Each X? — E[X?] is a sub-exponential random variable with the sub-exponential norm [ X? —
E[Xiz] ly; = O(log(n)/(N*hy;n)). We then apply Lemma 2.9.2 with k = C4log(n)/(N?hpyi,) and
t = Csky/n—llog(n), with C4,Cs being large enough constants. It follows that with probability

1—o(n™),

3 (x2 EE) < < S faiog(a)

i=1 min

It follows that

1) < C}i{%i(”) nlog(n). 2.77)

min
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Combining (2.76)-(2.77) gives that

1| < CGV 4 Jogln) > Vnlog(n). (2.78)

N 2hmin

We then bound /1. When j = ¢, I] is exactly equal to 0. When j # ¢, we can similarly write

wbH 1272, = N“VYN_ Yy, with Yy, = uyH /2 (Tiyy — E[T;n)). Then

Yim| < max{1/4/hj,1/7/hg} <1/3/hiin
—12, L vDji _ Diis 1
BRERVTRRV IR

Var(Yy,) < wubhH 'diag(D;)H

We again apply Lemma 2.9.1 to bound the tail probability of u’zH -1/ 27;, and then apply

Lemma 2.9.2 to bound /1. Similarly, we find that, with probability 1 — o(n_s),

1 log(n)
I <Cl|—=+ lo . 2.79
1< ¢( 3+ yol ) togto 1)
Then, (2.72) follows from plugging (2.78)-(2.79) into (2.73).
O
Proof of Lemma 2.8.6. By (2.58), Mj; > cihj for all 1 < j < p. It follows that HMO_I/zHl/zH <
cl_]/z. As a result,
M~V (22— E[zz))m
—1/2441/2 —-1/2 —-1/2 1/23,—1/2
=|pa2E V2|V (22— B2z ) H 2| [H M
<cTV|H™V2(zZ' —E[zZ))H~V/?||.
Therefore, to show the claim, it suffices to show that
\HY?(zZz' —E[zZ)H/?|| < C<l+ P ),/_np. (2.80)
~ \N  N2hg,
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To show (2.80), we need some existing results on o-nets. For any « > 0, a subset .# of the
unit sphere .77~ ! is called an a-net if sup,c p-1infyc z [|x —y[| < . The following lemma

combines Lemmas 5.2-5.3 in [38].

Lemma 2.10.1 (a-net). Fix o € (0,1/2). There exists an o-net Mo of P~V such that |.#y| <

(1+2/a)P. Moreover, for any symmetric p x p matrix B, |B|| < (1—20)~! SUPye.z, 111/ Bul}.

By Lemma 2.10.1, there exists a (1/4)-net .# 4, such that |.#; ;4| < 97 and

|H Y2z —E[zZ)H V| <2 max (WH V%27 —E[zZ)H Y]}
uc. 1/4

Therefore, to show (2.80), it is sufficient to show that, for any fixed u € .#P _1, with probability

1—0(97Pn=3),

P, P mg-1/2, < (L p
WH-V2(zZ' — E[zZ')H uy_c(NJrN—zhmin)./—np. 2.81)

Below, we show (2.81). For any u € P ,

WHY2(z7 —E[zZ)H VU

{WH22)? —E[(/H 2272} (2.82)

M=

Our plan is to first get a tail bound for ' H -1/ 27;, which is similar to (2.74). We then consider two
separate cases, Nhyi, > p and Nh,,;, < p: for each case, we use the tail bound of u'H -1/ 27 to
prove (2.81).

First, we study WH-Y 2Zl-. Let {Tj;, : 1 <i<n,1 <m < N} be the set of random variables as

in (2.70). Write

a1y
S D LY Vi with Vi = BTy~ [T, (2.83)

m=1
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Since Tj,, follows a distribution of Multinomial(1,D;), it is easy to see that |Y;,,| < 2/1/hmin and
var (Vi) < u'H~ 2 diag(Di)H~"2u < ||ul[® < 1 (note that Dj; = X | Ac()Wi(k) < X Ae(j) =

hj). We apply the Bernstein’s inequality, Lemma 2.9.1, and obtain that, for any 7 > 0,

Nt /2
1+2t/(3v/hmin)

P(WH 27| > 1) < 2exp (- > . forallz>0. (2.84)

Next, we prove (2.81) for two cases separately: Nhy,i, > p and Nhpyi, < p. In the first case,

for a constant C| > 0 to be decided, let §,,; = C|+/p/N. Since Nhyy;, > p, we have

Nt /2

P(lW'H V27| > 1) <2 AL

) ) forall 0 <7 < 9. (2.85)

We then define a truncated version of u/H 1/ 2Zi:
XiEu/H_l/ZZ,--1{|u/H_1/ZZ,'|§5n1}, 1<i<n.

We claim that
(i) X; = u’H1/2Z; with probability 1 — o(9~Pn4).
(ii) X; is a sub-Gaussian random variable with the sub-Gaussian norm || X;||y, = O(1/v/N).
(iii) |E[(w’H'/2Z;)%) — E[X?]| is negligible compared with the right hand side of (2.81).
Here (ii) is a direct result of (2.85). To see (i), note that by (2.85), P(|u’H*1/zZi| > 0,1) <
— % p); since p > Clog(n), with an appropriately large Cy, this probability is 0(9.17P) =
0(97Pn~%). To see (iii), note that |u'H1/27;| < 2/\/hmin < 2+/N/p; so, \E[(/’H™Y/27;)?] -

c3/2
126, /3P

2exp(

E[X?]| < (4N/p) - P(W/H1/2Z| > &,1) < (8N/p) -exp(— ). Since p > Clog(N +n),
when Cj is large enough, this quantity is o(N !, /ap). Combining (i)-(iii) with (2.82), with prob-

ability 1 —o(9~Pn—3),

WH V227 — E[zZ'))H "/ ?u| < | f(x,? —E[X?]))|+o(N~!\/np). (2.86)
i=1

81



Since each X; is sub-Gaussian, Xi2 — E[Xiz] is a sub-exponential random variable with the sub-
exponential norm [|X? — E[X?]|ly, < 2|[Xill3,, = O(1/N) [38, Lemma 5.14, Remark 5.18]. We
then apply Lemma 2.9.2 with k = O(1/N) and t = Cx - y/p/n. When the constant C is large

enough, with probability 1 —o(9~Pn~3),
\Z (X? —E[X?])| <nt <CN~'\/np. (2.87)

Combining (2.86)-(2.87) gives (2.81) in the first case.

In the second case, let 8,5 = Cop/(N+/hmin) for a constant C, > 0 to be determined. We
study the right hand of (2.84). Note that Nhy,, < p. For t < 8,3, we have 1+2¢/(3\/hyin) <
p/(Nhmin) +2842/(3+/hmin) = (1+2C2/3) - p/ (Nhin ); for t > 8, we have 1421 /(31/hpin) <
812/ (Ca/hunin) +2t/(31/hmin) = (C5 ' +2/3) - /\/hmin. Plugging them into (2.84) gives

1/2 _
exp (15073 P NPhmin 1), for0<1 <8,

1/2
xp (_ C2_1{|—2/3 "Ny hmin’l)a fort > J,p.

P(WH %7 >1) <2 (2.88)

303
In particular, P(|u’H~1/2Z;| > §,5) <2¢ ©F 40217 In light of this, we introduce a truncated version

of u’H_l/ZZ,-:
%=dH 2z A {|WHV?2Z)) <8}, 1<i<n
We have the following observations, whose proofs are similar to the (i)-(iii) in the first case and
are omitted.
(i) X; = u’H1/2Z; with probability 1 — o(9 Pn~4).
(ii) X;is a sub-Gaussian random variable with the sub-Gaussian norm ||X;||y, = O(\/p/(N?hyyin))-
(iii) |E[(w'H~'/2Z;)%) — E[X?]| is negligible compared with the right hand side of (2.81).

From (ii), X? — E[X?] is a sub-exponential random variable with the sub-exponential norm || X? —

E[Xlz] lyy = O(p/(N?hyiy)). We apply Lemma 2.9.2 with k = O(p/(N?hypiy)) andt = O(k+/p/n).
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Combining the result with (i) and (iii), we find that, with probability 1 —o(977 n_3),

WHY2(zZ — E[zZ)) i 2u| < | i(X?—E[Xf])HO( PV )
i=1

Nzhmin
NG Cp./n
< Cnky/p/n+o( p2 p)§ Z P
N<hpin N=hpin

This proves (2.81) in the second case.

(2.89)

]

Proof of Lemmas 2.7.2-2.7.3. First, we prove Lemma 2.7.2. Without loss of generality, we assume

n/K, bypby, and (1 —by)p are all integers. If some of them are not integers, the expressions of Ly

and X4 only change by O(1/p) in individual entries, and the claims continue to hold.

We first calculate the matrices Xy and X 4. We claim that

Sw=K'Ix,  Ta=Ix—(1-biby)-[diag(n)—K 'nn.

The first equality follows directly from the way W is constructed.

To show the second equality, we note that

Kby - ey, (B1 4.+ 6 _1)bap < j < (01 +...+ 6)bop,

1

aj:—

P | 1-bb .
1—[1922(171;7727"'777[()/7 byp < j<p.

(2.90)

Write G = H—1/2A, where H ij = llaj|l1. Denote by g} the j-th row of G. By direct calculations

and the fact that 7 = 1, we have

1 ) VKb e, (O1+...+6_1)bap < j< (01 +...4 6)bap,
8j=—#=
= .
VP ok (Moo mk)'s bap <j<p.
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Since Ly =A’H 1A = Z?:] g jg;-, by direct calculations, we have
Y4 = Kbyby -diag(6y,...,0k)+ K~ (1 —b1by)n7’. (2.91)

By definition of 6y, it holds that Kbby60, = 1 — (1 — b1by)n;. Plugging it into (2.91) gives the
third equality in (2.90).

We now show Lemma 2.7.2. We first check the assumptions
Bin > C 1/ > p?log?
min = p, mp=>p-log=(n)/(Nn)

It is easy to see that

—1__: 1—b1b
hmin = P mm{Kblal_—ll,zznmin}a

where Nin > 1/2. So the assumption on Ay, is satisfied. Moreover, the number of anchor words
per topic, my, is equal to byp/K > p- [plog?(n)]/(Nn). So the assumption on m,, is also satisfied.

We then verify the regularity conditions (2.7) and (2.9). From (2.90), Apnin(Zw) > K 1 1
addition, by (2.91),

. 1 2
Amin(Za) > Kb1b3 0y, 1311?,IEHSKZA(k’ £) > K~ (1 =b1b2)Nmins

where Nyin > 1/2 and Kb 0min =1 — (1 —b1b2)Nmax > 1 —3(1 —b1by)2 > 0. So the regularity
condition (2.7) holds. Taking mp, = b p, to check condition (2.9), we note that all non-anchor rows
are equal to each other, which implies RSS(Ly) = O for any integer Ly > 1. Additionally, for a
non-anchor row, d; = K -1 (N1,...,Mk)’, where 1;.’s are strictly positive. So @ j 1s a constant vector

that can not equal to any of the standard basis vector e, i.e.,

dj— eg|| is lower bounded by a
constant. So the regularity condition (2.9) is satisfied. The proof of Lemma 2.7.2 is now complete.

Next, we prove Lemma 2.7.3. Again, we need to check the following

hmin > C ™Y /p,  mp > p*log?(n)/(Nn)
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and verify the conditions (2.7) and (2.9). Each A®) is obtained by perturbing some non-anchor

rows of A(®) with +(0ty, O, - .., 0y). Since none of the anchor rows are perturbed, 7, remains the

same. So m, > p?log?(n)/(Nn) is still valid. Furthermore, since oy, = O( \/]\]/Tp) < }—), we still

have hp,ip > clp~1
To verify the regularity condition (2.7), we first notice that Xy, remains unchanged. As a result,

it suffices to prove that

125 - 20 lmax = 01/ £-). (2.92)

Once (2.92) is true, since K is finite and p/(Nn) = o(1), the quantities about X4 in (2.7) change by
o(1) when we perturb A0) 15 A(), Hence, (2.7) continues to hold. Below, we show (2.92). Fix s.
By definition, for each j with ") #0,

() 1-b1by

a,’ = (M + &, M2 +&ny -, MK+ €n), _
p—pi+j — p(i—by) _ pl=by)ay
(s) 1—biby where &, = T=bib, - (2.93)

U prtjtm = pli=by) (M~ Em T2+ &y K —En),

. . _ . 1—b1b
Hence, the (p — p1 + j)-th row of the matrix H 1/24 is equal to \/p(l—bg)(]KerKe,,) (M +&,M+

€n,...,NK + €). The contribution of this row to the change of the (k,¢)-th entry of £, is

1—b1by ' [(nk+£")(”f+‘°’”) —nkrlz} = O(Pilg )
) h

pK(1—by (14&)
Similarly, the (p — py + j + m)-th row contributes a change of O(p~lg,) to each entry of L.
Since at most (1 — by)p rows are perturbed when we construct AG) from A9, the total change on
La(k,0)is O(gn) = O(poy,) = o(1). This proves (2.92).

To verify the condition (2.9), we note by (2.93), d&s) = K(llisn) (M te,mten,....,nxLten)

for those perturbed rows. It follows that ||d§.s) —675-0) | = O(g,), where &, = O([p/(Nn)]'/?) = o(1).
So the first inequality of (2.9) continues to hold. Furthermore, RSS(Lg) < (1 —by)p - O(g2) =

O(p?/(Nn)), while m,, = byp/K. So the second inequality of (2.9) holds.

[
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Proof of Theorem 2.3.3. To show this theorem, we note that Theorem 2.6.1 and Lemma 2.6.1
are still valid. Hence, it suffices to get correct bounds for Aj(Z,D) and Ay(Z,D) as defined in
(2.10)-(2.11). The bound for A (Z, D) still applies. What we need to do is to sharpen the bound
for Ayp(Z,D), i.e., to improve the conclusion of Theorem 2.3.4, under additional assumptions of
(n,N,p).

In Section 2.6.2, Lemmas 2.6.2-2.6.4 are still valid. What we need to do is to sharpen the
bound for ||(G — G)ej|| and |G — G| in Lemmas 2.6.5-2.6.6. For these two lemmas, most part of
the proofs is the same as before, except that we need to sharpen the bound in Lemmas 2.8.5-2.8.6.

We first consider an alternative version of Lemma 2.8.6.

Lemma 2.10.2. Under the assumptions of Lemma 2.8.6, if additionally n >

h2 (1+ +th1n)

min

then with probability 1 —o(n™3),

12t ag—1/2 Vi 1
Im12(z2' ~ Elzz))m™ 2 < o ¥ <1+ thin).

We now prove this lemma. Following the lines of proof of Lemma 2.8.6 until equation (2.82),

we find out that it suffices to prove: for any fixed unit-norm vector u, with probability 1 —

0(97Pn=3),

S —1/2,02 g p—1/2,02 Vnp 1
i;{(uH z)? —E[WH 7)) < c ¥ (1+ thm). (2.94)

Write for short X = Z‘,;.Ll«[(bt’H_l/ZZi)2 —E[(WH™'2Z)?]}. Let Y, be the same as in (2.83).

Then,
1r—1/2 o 2
u;H /°7Z; = , where Y| < ———, var(¥;,) < 1. (2.95
i =N L Yim | Yim| S (Yim) )
Then
1 n N
“ie X L Ointie~ Bltinki)) (296)

Our tool for studying X is the Bernstein inequality for martingales in [39], which is stated in
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Lemma 2.9.3. We construct a martingale as follows:

1 i m .
Oim = 2 Y ) (VY —ElYjYyl), 1<i<nl<m<N.
j=1sk=1
It is seen that X = 6y, and {0;1,...,01n,---,06,1,-..,0,n} is a martingale with respect to the

filtration ., = 0 ({Yjs}1< j<i—1,1<s<n U{Yis m~1). We study the variance process of this mar-

tingale. Let

The variance process is

Form =1, 6; _9(1 DN = N2Y Hence,

4 ) 4
< 4 E(Yzl)g 4 )
N hmin N hmin

where we used (2.95). For m > 2, 6;, — 6;(,,,_1) = Lz[ (Xos, Ly, )y, lm—f—Y%n —E(Yl%)] It follows

that
C — 2
Lim < N4 ( Z ls) var(¥iy,) +Var(Y2 )]
m—1 2
< (T h) +
N*\ = N%hpmin
Combining the above gives
C N n m—1 2 CI’L
(O)y <~ ( Y-) + . (2.97)
! N* mZI izl s=1 ° N3hmin
~—_——
=om—1



For the variable S,,,_1, note that

n m—1 n
=Y Y EMYp) =Y Y E(¥3) <Nn
i=1sk=1 i=1s=1
To study S 1 — E(S,,_1), note that Sy = N2-w/H~1/2(z2Z' — E[2Z'))H~'/?u. Hence, we already

gave a bound for N™2|Sy — E(Sy)] in (2.81), which translates to: with probability 1 —o(9~Pn~3),

SN —E(SN)] §C<N+ £ )\/@-

hmin

Note that S, =Y | (XL Y;s)% and Sy = YL (Z Y;s)> have similar forms: the former involves
nm independent multinomial variables (each has a trial number equal to 1), and the latter involves
nN such independent multinomial variables. Therefore, we get a similar bound for |S,, — E(Sy,)|

by replacing N with m above. It yields that, with probability 1 —o(9 Pn3N~1),

Sp1 = E(Sp-1)| < C(m+-E

min

)<y,

min

Ifn> (thin)’2p3, the mean of §,,_; dominates its variance. Hence, with probability 1 —

0(97Pn=3), maxj <, <y Sm < CNn. Plugging it into (2.97), we conclude that,

cn C
(), < ]7'21 n N3T” =02, with probability 1 — 0(9~Pn3). (2.98)
min

Moreover, form =1, |6;1 — 6;_1)y | = mYﬁ < 2/(N?hyy). Form > 2,

1
|Oim — 6(m 1)| N2 2|Y1m|| ZYIS|+ ) =D,

s=1

thll’l

where we have used the bound for |Yj,| in (2.95). We now apply Lemma 2.9.3 by taking t = Co,/p,
where 6 is as in (2.98). If 62 > b?p, then bt = Co(b,/p) < Co? and the bound in Lemma 2.9.3

is determined by 6. For 62 > b2p to happen, we need n > p/h%. and n > (Np)/hyi,. Under

min
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this condition, it follows from Lemma 2.9.3 that
P(GnN > Co\/p, (0)ny < 62> = 0(9.17P) = 0(9Pn3). (2.99)

Combining (2.98)-(2.99), with probability 1 —o(9~Pn3),

o
0,v < Co/p<C (1 + )
nN \/ﬁ N thin

This proves (2.94). The proof of Lemma 2.10.2 is now complete.
Now, in the proof of Lemma 2.6.6, we use (2.50), (2.51) and (2.55), but replace (2.53) with the

result in Lemma 2.10.2. It follows that with probability 1 —o(n™>),

[\/I\jlgVWJFN\/i\mer(l i 1 >]

IG~ Gl < Cy/np

N hmin
I
gc(1+§) %g(”). (2.100)

This provides a counterpart for Lemma 2.6.6.

‘We then consider an alternative version of Lemma 2.8.5.

2
Lemma 2.10.3. Under the assumptions of Lemma 2.8.5, if additionally n > hf (1+ ]% + Nhin)s

min

then with probability 1 — o(n_3), simultaneously for all 1 < j, £ < p,

1 1

/ /

20— Eljar]| < C( 5 + === \/nhjhilog(n).
‘]5 []EH NN\/]Tmm J@g()

We prove this lemma. Following the lines in the proof of Lemma 2.8.5 until (2.73), we know
that the key is to get upper bounds for X; = Z;’:l{(u’lH*l/zZi)2 — E[(u’lel/ZZ,-)z]} and X, =
Xy {(u’zH_l/zZi)2 - E[(u’zH_l/zzi)z]}, where u; and u, are as in (2.73). We can bound X and

X, similarly as in the proof of (2.94), except that we only need the bounds hold with probability
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1—o(n™?) but in (2.94) we need the bound to hold with probability 1 —o(9~7n~3). So, we simply
replace p in (2.94) by +/log(n). This proves Lemma 2.10.3.

In the proof of Lemma 2.6.5, we still use (2.49), (2.52) and (2.56), but replace (2.54) with ,/p
times the bound for (h jhg)_l/ 2|Z/]-Zg —E [Z}Zg” suggested by Lemma 2.10.3. It follows that with

probability 1 —o(n™3),

to-on ey B i o)
N I TN
< hj-C\/"’ﬂ%(H]%). (2.101)

This provides a counterpart for Lemma 2.6.5.

Using (2.100)-(2.101) and similar derivation in Section 2.6.2, we find that with probability
1—o(n3),

plog(n)< p)
M (Z,D)<C\| ———=(14+=).

Then, the bound for the estimation errors follow from similar derivations to those in Section 2.6.1.

]
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CHAPTER 3
OPTIMAL ESTIMATION OF W WITH THE EXISTENCE OF

NON-INFORMATIVE WORDS

3.1 Backgroud

The vector space models for documents [6, 7] are the starting point of many text mining tasks.
They all produce a certain vector representation of the documents, which can be used as inputs to
the later tasks such as information retrieval and document clustering. See [40] for a comprehensive

introduction for these topics.

One of the popular schemes for vector representation of documents is #f.idf, which is originally
proposed by [41]. Here the #f stands for term frequency, and the idf stands for inverse document
frequency. One typical specific form of the representation under this #f.idf scheme is to encode the

ith document in the corpus as a |#'|-dimensional vector v;, with each entry defined as following

n .
(Vi)jij,iXk)g;, for j € [|7]] (3.1)
J

where ¥ is the vocabulary set, f; ; is the frequency(number of appearance) of jth word in the ith
document, n is the corpus size and n; is the number of documents that contains at least one jth

word.

There are many attempts in justification of the usage of the heuristic original #f.idf. But very
few are originated from the vector representation purpose of #f.idf. Instead the most explanations
are given by coinciding the #f.idf with quantities from either some probabilistic derivations or some
text mining tasks, which origination has nothing to do with the vectorization of the documents. For
example [42] concludes that from an information-theoretic point of view, #f.idf can be interpreted

as the quantity required for the calculation of the expected mutual information. A line of work in
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probabilistic information retrieval also provides theoretical support for the using #f.idf in the infor-
mation retrieval task. To name a few, the original relevance weighting model introduced by [43]
justifies the idf term in the weighting through ranking the documents according to their conditional
probability given the query, assuming there is no relevance feedback information and ignoring the
frequency of each word in each document. Another well-known and widely-used weighting func-
tion called Okapi BM25, which is originally proposed by [44], extends the relevance weighting
model by taking into account the word frequency in each document, and produces a scoring sys-

tem of the documents given the query based on the the full #f.idf representation of the documents.

On the other hand most applications of #f.idf are based on its vectorization nature of the doc-
uments, such as document clustering, topic detection, and even some vector-matching-based in-
formation retrieval methods [40]. In all these applications, there are usually two additional steps
after the computation of the #f.idf scores: removing stop words and dimension reduction. The
"stop words" usually refer to the most common words in a language (say words the and that),
which carry little semantic meaning [45]. In reality stop words are usually removed before fur-
ther processing of the data, for the reason of reducing computational cost, and also heuristically,
reducing the noise level. One of the most famous dimension reduction idea is the Latent Semantic
Indexing(LSI), which is originally proposed by [13]. It performs singular value decomposition of
tf.idf matrix, which has (j,7)th entry as (v;); that is defined in Equation 3.1, and uses the rows of
the resulting top right singular vector(RSV) matrix as the vector representations of the documents.
The number of singular components kept is the number of underlying topics. The motivation of
introducing LSI stems from the synonymy and the polysemy in the natural language, as we have

detailed in Section 1.1.

Although heuristically appealing, LS/ is not a probabilistic-model-based approach for dimen-
sion reduction, and therefore lacks of theoretical justifications. Hofmann proposed the probabilis-

tic Latent Semantic Analysis(pLSI) in [5], which introduces probabilistic models to the corpus
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and assumes each document is randomly generated based on a low-dimensional vector. The well-
known Latent Dirichlet Allocation(LDA) can be seen as a Bayesian version of pLSI, which assumes
Dirichlet prior on the low-dimensional document vectors [3]. The low-dimensional representations
in these probabilistic approaches all can be interpreted as weights on a set of topics. These topic
models are so appealing, that people seem to forget about interpreting #f.idf and stop words remov-
ing, which still remains very successful and hard to beat in many text mining problems. Looking

back at the evolution of topic models, we can at least ask the following questions.

e Can tf.idf still play a role under the pLSI model? How?

e s removing stop words statistically beneficial under the pLSI model? How? And how to

even define the stop words quantitatively?

In this work we try to answer these questions. We consider the pLSI model setting, and pro-
pose a novel approach to estimate the low-dimensional topic weights vector for each document,
through singular value decomposition of a matrix with entries that have #f.idf interpretation. We
provide two reasons to support the usage of this specific form of normalized matrix: One is from a
enabling benefits from non-informative words(which is a super set of stop words) removal point of
view, and another is from the perspective of error upper bound minimization. In order for you to
better understand the first point, we compare the estimation process of W based on either the SVD
of the proposed normalization scheme M ~1/2p or the SVD of D in Figure 3.1, where we have
incorporated the notation system specified in Section 1.2 and Section 1.4 and Section 3.2. We also
propose non-informative words screening technique that enjoys three kinds of interpretations based
on our estimation procedures. The rest of the chapter is organized as following. In Section 3.2 we
introduce some additional notations. In Section 3.3 we developed our proposed W estimation and
non-informative words screening procedures, along with the key insights behind our proposed al-
gorithms. In Section 3.4 we provide the theoretical analysis of the proposed procedures. In Section

3.5 we provide real data applications to support our proposed methods.
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Figure 3.1: Estimation process of W based on either the SVD of M ~1/2P or the SVD of D.

3.2 Additional notations

Define the (exact) non-informative word as in Definition 3.2.1. The reason why we use the name
"non-informative word", is that since the word has all same fractions in all topics, observing the
word in a document gives no information about the underlying topic compositions. The non-
informativeness is reminiscent of the sparsity in the other common settings, such as regression
problems.

Examples of non-informative words include the stop words, the words with no semantic mean-
ings which usually also have high frequencies in the language, for example "the", "a", "in" etc.
Non-informative words may also include a lot of corpus-dependent general words, for example
"study" and "property" would be reckoned as non-informative words in an academic paper corpus,

while words like "report" and "news" would become non-informative in a newspaper corpus.

Definition 3.2.1 (non-informative word). The jth word is a (exact) non-informative word if and
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only if A ;. has identical entries.

Let 7 C [p] be the set of true underlying informative words, and 7" C [p] be the set of kept
words. Ideally we would like ¥ = %. Denote hy m,x =maxjcy hjand hy i, =minjcy hj, and
we also simplify these notations as imax and iy, when #° = [p|. We call a random vector v € R?
is truncated multinomial distributed with parameter (N,d, ?") if it is obtained through deleting the
entries of a Multinomial(N, d) distributed random vector that are outside of the index set #', which
we denotes as v ~ TMultinomial(N,d,?"). Notice it is straightforward that like multinomial dis-
tribution, TMultinomial(N,d, ") can be written as a summation of N i.i.d TMultinomial(1,d,”?")

random vectors. With these notations, under our model we have

5 1Y i
s Z (Xir)» "~ TMultinomial(1,D;, %), forVie [n,re[N]  (3.2)
Then it’s straightforward to get the first two moments of (Xj; )
E((Xi)y) =Dy, Var((Xi)y)=Diag(Dy;) — Dy D},

For any vector v and matrix M, we use v and M to denote the mean of entries of v and the vector
of row-wise mean of M respectively. For any random variable X, we incorporate the notations of

sub-gaussian norm || X ||y, and sub-exponential norm ||X ||y, in [46] as following

Xy, = supp '/2(E|x|P)/P
p>1

Xy, = supp  '(E[x|P)!/P
p>1

Finally we use E(M) = [E{ (M), ..., Ex(M)] = [E1 (M), ..., &,(M)]T and A4 (M) to denote the 1-
to-Kth RSVs and the kth singular value of any general matrix M respectively. In most our analysis

we use the simplified notations for M~1/2D, M—1/2D, M, 1/2 4 Dy . and M 1/ 2D7/,, in Table 3.1.
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Table 3.1: Notations for singular components

Matrix 1-to-Kth RSVs kth singular value
M~'2p E=[E.., Bk =[5, Ga]T Ak

M=12D E=[8,.... 5 =1&,... &I A

M,PDy. E(V) = E1(F),e o Bk = 6P ) eaT AP
M, Dy. B = E1(D), Bk = D) T R(P)

3.3 Our proposal

In this section, we propose our algorithm estimating W based on D under the pLSI model, which
can also be seen as a set of low-dimensional representation of document in the topic space. The
proposed algorithm is described in 1. The main novelty as well as the keys for the success of
the algorithm, lie in the screening step, that is the usage of § statistics for non-informative words
screening, and the normalization step, that is construction of the normalized matrix A%ly/%zﬁ% .

Firstly each entry of § and M _AI/AZIA) » has a tf.idf -like formation
N o

In the remaining 3 subsections we explain in more detail about the theoretical motivations for
these two key steps in the proposed algorithm. More specifically we provide explanations for the

following 3 questions, which answers are by no means clear at the first sight.

e Why do we do vertex hunting on the 2-to-Kth RSVs?
e Why do we rely on statistics s to do non-informative words screening?

e Why do we conduct SVD on this specific form of normalized matrix M;/}///ZDA,/,?
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We will deal with these questions in this specific order because the answers to the later ones

may rely on that of the former ones.

Algorithm 1 Proposed algorithm

Input: Word-document matrix D, number of underlying topics K, non-informative words propor-

tion 0.
1. forjel:pdo
2: Compute
A 2
. dj
Sj = T
dj 1,
3: end for

4. Compute the set of non-informative words
Yo={je¢ [p]|$; > Quantile(s, §) }

5: Renormalize the columns of D% _to summation 1.

. .. ~—1/2 A ~ e Ilvyn A
6: Compute the normalization M S Dy where My, = Diag(,, 1Dy, )
2 ~—1/2 A
: h KR EofM Dy .
7: Compute the top SVs Z o 7,4 Dy

8: Conduct vertices hunting on the rows of 2., find the K vertices.

A

V =1[01,0p,...,0]T

9: Computing

=

1]1 1% 1]1 -
2:K7\/ﬁi’l 7\/21(

|

10: foriec1:ndo

11: Compute

#i} (k) = max(#;(k),0), fork € [K]
12: Compute W; = & /|||
13: end for

Output: Estimates W.

3.3.1 Why do we do vertex hunting on the 2-to-Kth RSVs?

For simplicity we explain the reason of discarding the first RSV in the vertex hunting without
removing the non-informative words. In fact removing the non-informative words will not impact

on the logic here, and the reason will be clear in the next subsection. One key observation in the
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population level that motivates the vertex hunting step lies in the more general Theorem 3.3.1,

which proof is straightforward so we ignore it here.

Theorem 3.3.1 (Simplex structure in RSVs). For any matrices A € RP*K and W ]fo”, with
each column of W being a probability mass function, and AW having rank K, and also denote the
K RSVs of AW as E, then there exists a matrix V € RK XK, such that each row of E is a convex

combination of rows of V, with the weights as the columns of W, that is

K
& =Y WiV, forvien
k=1

or in matrix form

=WwTv

(=]

In our topic model setting M ~1/2p = M~1/2AW matches the setting in the theorem, so we
have a simplex structure in E as the theorem implied, that is £E = WTV. Ultimately we want to
solve the following optimization problems regarding to & and its sample version =, and hope the

solution would become W and a desirable estimate of it W.

min E oWV (3.3)
V*ERKXK,VVi*EAK H HF
min & —W*TV*||% (3.4)

V* ERKXK,VVI»* cAK

Then another key observation is that by Theorem 3.3.2 the first RSVs of both M~12D and
M~'2D are exactly 1,/+/n. This observation has far more implications than here, but for now
combining with Proposition 3.3.3, the optimal solutions of W* in both optimization problems 3.3

and 3.4 are exactly equal to that of the following two optimization problems

min By — WXV (3.5)
V*eRKX(K—U,Wl.*eAK“ 2K 17
min 1255 — W TV (3.6)

V*ERKX(K—I),VVi*EAK
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A
=
%]

This explains why we discard the first RSV of Z or & when trying to recover W or W. Then we
go to explain the steps from line 7 and 12 in Algorithm 1. Notice both problems are non-convex
in V* and W* and have no explicit solutions. But we can take advantage of the pure document

assumption to solve these two problems in a reliable way.

For the population version problem 3.5, under the assumption of existence of pure documents
for each topic, the rows in E that correspond to the pure documents of topic k would be ex-
actly equal to Vi.. This means as long as E is known, with the pure document assumption for
each topic we can recover V through the vertices of the simplex formed by the rows of =, which
can be exactly recovered through many existing algorithms for example the sequential projection
algorithm(SPA)[47]. And in fact this pure document assumption is almost necessary for the exact
recovery of W in the population level, but this is not our main focus in this paper, check more
detail about the identifiability issue in general NMF problem or its derivatives in [19, 48, 49, 50].
So once we have V, we can plug it into 3.5 and solve for the W*, which is exactly W, through the
following

W = [Er.x, La [V, 1] ! (3.7)

For the sample version problem 3.5, again under the assumption of existence of pure documents
for each topic, with the similar arguments as before we can solve for V* in 3.5 first approximately
through some vertex hunting algorithm. We can still use SPA as that has been argued in [48, 49, 50],
but another more robust way that can take advantage of multiple pure documents assumption for
each topic is the vertex hunting step that has been used in [51]. We use the later to solve for V first,
and then plug it back into the objective in 3.6 and solve for the optimal W*. Now the optimization
problem has become a quadratic programming, which can be easily solved with existing well
optimized quadratic programming solvers. But here we use a more straightforward way based on
the population counterpart 3.7, after which we truncate the negative entries and renormalize each
column to make it an eligible solution. And the resulting procedures are the 8th to 12th lines in

Algorithm 1. Notice here we multiply a 1/4/n in front of 1, and 1k in the 8th line of the algorithm
99



just to make sure the terms inside each matrix are of the same order, which will facilitate our

theoretical analysis.

Remark. Notice that by Theorem 3.3.2 the 8th line of Algorithm I can be simply written as

1 —1
== [—]l K> V}
Vn

We purposely avoid this because we want to emphasize that we have explicitly incorporated the
probability-mass-function-column nature of W instead of ignoring it. In fact more generally if =
does not have an equal-entry first RSV, we can just do a vertex hunting in the rows of full matrix
%, obtain a K x K vertices matrix V, and replace the matrix inverse in the 8th line of Algorithm
1 by a pseudo-inverse. But as we have notified before, the reason for us to compute this specific

form of tf.idf matrix M ~172D such that it has an equal-entry first RSV is much deeper than just to

discarding the first RSV in the vertex hunting step. This will be clear after the next two subsections.

Theorem 3.3.2 (First singular component of M -1/ D). For any matrix D € Rﬁxn with each col-
umn sum to one, and denote M = Diag(% . D,), then the first singular value ofM_l/zD is \/n,

and the first RSV of M—'/2D is 1,,//n.
Proof of Theorem 3.3.2. It is enough to analyze the first eigen component of the matrix DTM ™ ID.
e We first prove (n,1,/+/n) is an eigen component of DTM~1D. This is straightforward by

the following calculation.

1 1 1
DM 'D—1,=—DTnl, =n—1,
n

V' n Vi

e We then prove (n,1,,/+/n) is the first eigen component of DTM~!D. In order to prove this it

is enough to show that for any x € R” with ||x|| = 1, the following holds

xDTM'Dx <n
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Then we proceed to show this is indeed true.

P (xTd;)?
DM 'Dx = )
Jj=1

Y1 Dji

S|

¥ T iy

n ..
ile]l

=1
(By Cauchy-Schwarz inequality)

$ (e, 20j) (X, D)
Yic1Dji

IA

n
j=1

= n Z ZX’ZDji

With that we have the desired conclusion. O]

Proposition 3.3.3. Suppose & € R"*K with all identical items in its first column, then the following

two optimization problems have the same optimal W* solutions.

min |2 —W*TV*|2 (3.8)
V* ERKXK,VVZ'* GAK

min 1205 — W TV (|| % (3.9)
V;:KERKX(K_1)7W*EAK
Proof of Proposition 3.3.3. The proof is pretty straightforward. Notice the objective in the second

optimization is part of the objective in the first optimization.
_WATy* 2 = _WXTyE 2 = WHTy* 2 3.10
e 17 =82k 2:klE+11Z il (3.10)
On the other hand since Z; has all identical items, suppose it’s a, as long as W* satisfies W,* € AK

for Vi € [n], we can always choose V| = al g, which is independent of V3. ., then ||& — W*TV[ H%
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achieves its minimum value 0. By Equation 3.10 we know the two optimization problems have the

exactly the same optimal W* solutions. O

3.3.2 Why do we use § to do non-informative words screening?

In this subsection we explain the theoretical reason of non-informative words removal, and why
we advocate using § to do non-informative words screening. Suppose 7 is the index set of the
words we kept. Then according to the non-stochastic lemma 3.6.4 about the error ||[W — W/, it is
totally determined by the error in RSVs ||£5.x (%) — Z9.x(¥)||, which according to the Sin-Theta

theorem is upper bounded by the following quantity

AT r—1 A -1
||D;/.M7/7/D‘//- _D;/.Mﬂj/y/D‘//- ||
Ak (V)

(3.11)

By Theorem 3.6.6 the numerator in 3.11 depends on the kept words set ¥ through 4+, which
means when we keep removing the non-informative words the set #* will shrink, so the numerator

will also decrease according to 4. On the other hand, notice

DI, M, ,Dy. = Y mi id]
jev
and if the jth word is a non-informative word, we will have d jd]T. /m jj < Lnn. Combining with
the fact that DTM~!D has 1,,/,/n as its first eigenvector according to Theorem 3.3.2, this means
as long as the words we have removed are non-informative words, it will only impact on the first
eigen component of DTM ~1p, while leaving the rest eigen components unchanged, and therefore
more specifically, A (7#") will not change and it’s always equal to Ax. Combining these two obser-

vations and by the Sin-Theta upper bound in 3.11 we have justified that removing non-informative

words will improve our estimation accuracy in W.

Next we explain why using § as the screening statistics for the non-informative words. Denote

the population version of § as s, then by Cauchy-Schwarz inequality it’s easy to show that s; is
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minimized when the jth word is a non-informative word. This provides the first obvious reason for
using § as the statistics for screening out the non-informative words. In fact this is the fundamental
observation we have incorporated when we provide the theoretical justification for the success of
the proposed screening procedure. But this observation does not provide the insight of why using
§ is good choice for non-informative words screening in the context of W estimation under the
topic model. Next we provide three intuitions for non-informative words screening based on the

the Sin-Theta upper bound in formula 3.11.

e The key reasoning we have used to argue that removing non-informative words does help in
estimation of W, is that when jth word is a non-informative word d deT /m ; only contributes
to the first eigen component of DTM ~ID. So intuitively the more d jd]T. /m; being likely to
proportional to 1,,, the more likely the jth word is a non-informative word. One heuristic
way to quantify the likeliness of d jd]T- /m j j being proportional to 1, is through the following

quantity.
d d —t1,,

1 dd”TH

(3.12)

e Similar to the previous argument we can also quantify this likeliness through the following

quantity, which uses Frobenius norm rather than the /, norm.

ALdA JT. ‘ '
mjj I I F

e Previous two heuristics focus on the denominator in the upper bound 3.11, now we look at
how removing one word from the full vocabulary would impact on this upper bound itself.
Denote the quantities in the numerator and denominator of 3.11 as a and b, and suppose

removing the jth word would reduce a and b by Aa; and Ab; respectively, then we would
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like to find words that are most likely to reduce the a/b. Notice

a—Aaj a Aaj a
—s — >
b—Abj_b bj_b

This means the larger the quantity Aa;/Ab; the more likely removing the jth word would
improve the upper bound a/b. By the error rate in Theorem 3.4.2 and the fact that Ab j
is at most the remaining of d deT- /m;j; after subtracting 1,, as much as possible, ranking
words according to Aa;/Ab; is approximately equivalent to ranking them according to the

following quantity.

A

mj

;djdj. — 11

mjj

(3.14)

Giving the above three heuristics for screening out the non-informative words, you should be

happy to know that they will lead to screening procedures that are based on the exactly the same

statistics §, according to Proposition 3.3.4.

Proposition 3.3.4. The following ranking strategies lead to the exactly the same ranking of words.

Ranking ascendingly in terms of 3.12.

Ranking ascendingly in terms of 3.13.

Ranking descendingly in terms of 3.14.

Ranking ascendingly in terms of S.

Proof of Proposition 3.3.4. We prove that the first 3 ranking strategies are exactly equivalent to the

last one.
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e By Lemma 3.6.2, we have

1 7 ||dAH2 (Ha?H2 (Ci}-]ln)z)
mingeR, Ajjdjdj t]lnn’ J J n

L g di?

Ajjdjde | ]H

e By Lemma 3.6.1, we have

e Again by Lemma 3.6.2, we have

1 djﬂn
. 1 55T - N
(d}rﬂn)z J n
B 1
2. /(5. -1
n=y /8 <sj n)
Notice sA% takes value in [1/n, 1], we have the desired conclusion. O

3.3.3 Why do we conduct SVD on M12p

In this section we provide two motivations for using this specific form of #fidf matrix M -1/2p,

Again for simplicity purpose let’s ignore the non-informative words removal and focus on the ma-

trix M~ 1/2D. The first reason is based in the previous two subsections, that is by constructing
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M~1Y/2D, we can make the first RSV of the matrix to be 1,, /+/n which lies exact the same space as
the d j that correspond to the non-informative words, and therefore removing the non-informative
words can reduce the first singular value while leaving the rest unchanged, in other words reduce
the estimation error in W through only reducing the noise level (the numerator in 3.11) while keep-
ing the signal level unchanged (the denominator in 3.11). Other normalization schemes may not
have this property. For example in Figure 3.2 we compare the change of singular values of matrices
M~1/2D and D, before and after non-informative words removal, under a simple synthetic setting.
As you can see in the plot of M ™ 1/2p only first singular value changes after non-informative words

removal, while in the plot of D all the singular values change a little bit.

2 -0
-~ —6— Before 9 —e— Before
—%— After p —¢  After
e}
®
First singular value reduces @ Q
Q [
2 @ =]
g © g
5 5 o g
3 3 s
[ D ©
£ S £ o
(7] X [ X
] 2] ] ] ] ] [e]
N S X Q
e R
Signal strength is unchanged
o o
o IS
T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Index of singular value Index of singular value
(@) M~'/?D (b) D

Figure 3.2: Illustration plots of change of singular values after non-informative words removal for
matrices M~ /2D and D.

But on the other hand this alignment between first RSV and 1,/+/n can also be achieved
approximately via other normalization schemes. At least as long as the matrix we are working
with has non-negative entries we can guarantee the first RSV to have entries with the same signs.
A more specific example is to assume i.i.d Dirichlet columns in W and A only contains anchor
words that are evenly distributed among the topics, then according to Proposition 3.3.5, which is

proved in the appendix, we do achieve this approximate alignment with high probability.
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Proposition 3.3.5. Assume W; iid Dir(alg), A only have anchor words and each topic has the

same number of anchor words, then with probability at least 1 — 4K 2072 the following holds

1

But it turns out that this approximate alignment is usually not enough to guarantee the benefit

&1(D) - %nn

_ 10v/2K7/2 1og(n)
-~ Ka+1 /n

from non-informative words removal. In Figure 3.3 and Figure 3.4, we conduct a brief simula-
tion comparing the 4 different normalization schemes, where we have defined the population and

sample versions of inverse document frequency vector id f through its commonly used definition.

n
df; = log< ), for j € [p]
J ?:1]1(Dji>0)
— n
idf; = log A , for jep]
J ( ?_I]I(Dji>0))

For each plot the x-axis is the keep ratio of the words. Since we set the top 24.8% words to
be the anchor words and the rest to be the non-informative words, as we move from the left to
the right along the x-axis, before the point 0.248 we are gradually adding more and more anchor
words which are supposed to be informative, while afterwards we are adding the non-informative
words which are less informative. The detailed simulation settings can be found underneath the
figure. It can be seen that the non-informative words removal only helps when using M ~1/2p and
Diag(id f)Cp. Notice the commonly used #f.idf scheme Diag(id f)Cp enjoys the similar beneficial
patterns as the non-informative words have been removed, but there is no clear theoretical expla-
nations for this phenomenon as we have under the proposed normalization scheme M —1/2p. On
the other hand the Diag(id f) weighting defines the document frequency through the pure count

of documents containing certain word, while our proposed M -1/2

weighting define it through a
"soft" count of documents. This means our proposed weighting retains more information from

the documents, and is more robust in the dense regime where few entries in D are 0. The later
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argument can be verified through the simulation in Figure 3.4, where we retain all the settings from
Figure 3.3 while only assume 1 pure document instead of 10 for each topic, which renders much
denser Dy. It can be seen that now our proposed normalization scheme M -1/2p outperforms the
commonly used #f.idf scheme Diag(id f)Cp much more significantly, and in fact the commonly

used #f.idf scheme even loses the power of gaining benefit from non-informative words removal.

Another desirability of using our proposed normalization comes from the minimization of error
in upper bound. In order to make this argument precise, we analyze the error upper bound of
estimating the RSVs of G'/2D through that of G'/2D, where G is any diagonal matrix with positive
diagonal entries. Then we can upper bound this using a similar quantity through the Sin-Theta
Theorem as that in formula 3.11. Then under the conditions specified in Theorem 3.4.2, we can

approximate the order of the numerator as following.

|DTGD —DTGD|| ~ |DTGZ|| ~ \/||DTGE(ZZT)GD|| ~ 1/ ||DTG2MD||

For the denominator, which is Ax (DTGD), we replace it with || DTGD|| assuming it varies similarly

with Ag (DTGD), then we have the error rate becomes the following

|DTG2MD||
|DTGD|

which according to Lemma 3.3.6 is lower bounded by 1/|[DTM~!D||. In order to achieve this
lower bound, one sufficient condition is G = M _1, which leads to our proposed normalization
scheme. This explains why our proposed normalization scheme gives better error rate than that of

the commonly used #f.idf scheme in Figure 3.3 and Figure 3.4.

Lemma 3.3.6. Suppose D € Rixn, M and G are diagonal matrices with positive diagonal entries.
Then the following inequality holds.
|IDTG?>MD|| 1
>

IDTGD||> ~ [|DTM~ID|
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Proof of Lemma 3.3.6. Denote the jth diagonal entries of M and G as m;; and g;;. Then by the

definition of /, norm of a matrix we have

p
2
IDTGD|| = sup xTDTGDx= sup Y g;;(x"d;)

Ixfl=1 Ixl=1j=1

Suppose the supremum in the RH S of the above equation is achieved at x = x*, then by the Cauchy-

Schwartz inequality we have

IDTGD|? =

IN

Then we have the desired result.

— p 2
Y gjj(x*de)zl
Lj=1
i (g 'ml./.zx*Td ')(mf.l/zx*.rd )] 2
= JI7 g J JjJ J
f g2m; ~(x*Td')2 2 [i m} (x*Td )2] 2
& Ji J = Jj J

IDTG*MD|||DTM ' D)

3.4 Theoretical analysis

We first list all the conditions that are needed in the following theoretical results. Similar to the

Definition 2.1 in [51], we define the "topic-topic concurrence" matrix Xy, the "centralized topic-

topic concurrence" matrix Xy, and the "topic-topic overlapping" matrix Xy, as following

Tw = —WWT
n
K & T
¥ = =Y W=WYW,—=W)T =K -WWT —-WW
w ”,21< 1 )( 1 ) (n )
) _ Mt gla
Ay. = gOvHyy
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Figure 3.3: Plots of Error in top K RSVs of D, M~1/2p, Cp and Diag(idf)Cp, versus keep
percentage of the words. Here we set p = 2000,n = 200,N = 300,K = 3. And we generate A
and W through the folloiwng process. Generation of A: Stack 25 rows of (1,0,0), 5 rows of
(0,1,0) and 1 row of (0,0, 1), row-wise combine 16 repititions of this 31 x 3 matrix, then row-
wise combine this matrix with 1504 rows of (1/3,1/3,1/3), and finally normalize the resulting
matrix to have column sum 1. Generation of W: column-wise combine 10 identity matrices /3, and
then column-wise combine the resulting matrix with a 3 x 70 matrix of i.i.d Unif(0,1) generated
random values, finally normalize the resulting matrix to have column sum 1.
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Figure 3.4: Plots of Error in top K RSVs of D, M —1/ 2p, Cp and Diag(idf)Cp, versus keep
percentage of the words, with the same simulation settings as that in Figure 3.3, while only change
the 10 identity matrices /3 in the generation of W to only 1 I3, that is we only 1 pure document for
each topic is assumed.
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We also denote 7 = hyy;, /4. Then the technical conditions that are needed in error analysis

of IA)I//_M;/}//D«,/. — D;/_M;},/Da//. in Theorem 3.6.6 are listed as following.

1 cn
Amin(Ew) 2 =, (Wleo < 2, (124, || < clliy [l (3.15)
Nnhmin
————— oo 3.16
Kzlog(np)—> (5.16)
N[y ly
— 17
log(nkK) .17)
nl|hy |1
Klog(nkK) - (3.18)
n
(3.19)
K||hy |1 log(nk)?
1
s oo (3.20)
Khin
min(n,N)
— oo, for any fixed k € Ry (3.21)
max(log(|7/|)a_log(hmin>alog(”)aK)k
|V |Klog(nkK) |¥|log(nk)'/2
N||h”f/||12max< PRy (3.22)
v |V
N[y |y = max (u,_’l/z‘r) (3.23)
(K\/n[7|+K|V V([P +17)))*3
Wi > max [ EVAPTEKIF L en? (7171 + 7)) .
n2K2 n2/3K2/342/3
(K\/n[V[+ K|V |+0)[ V| (K\/n[V|+K|V | +n)' /2|7
N|hy 1 = max ; ;
nkK?log(nkK) nl/2Kn'/21og(nk)1/2
VAl T+ 1D 2 a1+ 7)Y (3.25)
nl/thl/zlog(nK)l/z’n1/3K2/3h2/310g(nK)1/3 .

We also need the following additional conditions in order to transfer the error bound in Theo-

rem 3.6.6 to those in Theorem 3.4.2.

Amin(Za,) = Py iyl (3.26)
WA
—2” %l (3.27)
K=|[hy|q
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Finally we have an additional technical condition that is needed in the analysis of the non-

informative words screening statistics.

1
Pnin(Zyy) 2 (3.28)
Remark. When ¥ C V', the condition ||y, || < c||hy ||| in condition 3.15 is not needed, since
now we have HZA%H = |lhy |1

Remark. Notice ||W|| < cn/K would imply a constant upper bound of || Zy || through the follow-

ing arguments based on the Holder’s inequality
K » K
Ewll = —lIWIZ < W[ [Wlle < ¢

Remark. Notice we can upper bound ||D] H, Dy through ||Xw || and ||X4., || as following
vy 2V v

-1 -1 1/2 2 2
IDY, Hy YDy || = (WTAY By L Ay W < [Hy Y 2Ay PIWI2 = nlZa, [ Zw

3.4.1 Minimax lower bound of W — W

For any T € Yk, define

LrW,w) = Y IT-W); =W, (3.29)
=1
(T -W); =W;||;, for Vi€ [n] (3.30)

where P is the set of all permutations of [K]. Then we define the following ; error of W against
W

LW,W) = TrggK,%T (W, W) (3.31)
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Denote the following parameter space

(A,W): Conditions 3.15and 3.26 are satisfied with ¥" = [p],

PNy, 11K (€ P %) = .
and W has at least one pure document for each topic

Theorem 3.4.1. Assume py; <1, ¢ < 1/2, n > 4K and N||hy, Iy /K3/% = oo, then there are con-

stants C > 0 and &y € (0, 1) such that

A K
inf sup P (f(W,W) >Cn W) >
W AW €®y x4 (P7p) 177511

Proof of Theorem 3.4.1. The proof follows the similar routine as that of Theorem 2.1 of [51].
By Theorem 2.5 of [35], we only need to find a set of parameter settings { (A(S),W(s)) {:O C

D@, N, |1y, |11,k (€5 P, such that the following holds
Y ) 0 b

(i) 2W6) w) >2cn forall0 < st <J

Nllh ol

(i) D (Ps, Py) < Blog(J) forall 1 <s<J

Where C > 0,8 € (0,1/8), and 2 is the probability measure associated with (A), W), then

N 1 J 2
inf sup P(.2(W,W)>Cn s V(4 |- 2B
w (A7W)€‘Dn,1v,|\h%\|1,K(C,P7/0) Nl|hy, 1 1+/J log(J)

Our remaining task is to construct {(A®), W(s))}fzo} that satisfies the above two conditions. Then

we construct as following

e Construction of {A®) }{:0: We choose {A) }{:0 all being the same , which is denoted as A.

And A has the following form

Kllhy Il 1=l Il T

= |——Ig®1 —]l
o K& (IR, gl KX (=1%l)
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Notice the set of informative words is just the first |#{| words, that is ¥ = [|¥(|]. And since
| 0| is not involved in the A;,;,(X4) as you will see later, we can set it to be any value that is

a multiple of K. In fact

1
Y. = —ATH A
K

2 2
Kl[hylli \ ™ %] 1—||Ayg Il
(—Wm x  \ ) D

= 1 1
AT Ty T KxK
170l p—1%l
1— ||y 1
= |lhyll I + —x C—Tkxk

Then it’s easy to see that the last eigenvalue of matrix X is ||y ||, which does not depend
on the number of informative words |#(|. Then it is easy to see that A satisfies condition

3.26 given py, < 1, which is required by @, AR K(c,p«//o).
) b 0 b

e Construction of {W(s) 1203 We construct W = W(0) as following

1
W = {IK 1y n/2K)) gﬂKx(nK[n/(ZKﬂ)}

1

= [IK OLynom, f]lem}

where we have introduced introduce m = n— K[n/(2K)] to simplify the notations, and the

following inequality is straightforward given n > 4K

n—2K+1 n

>m> -
>m> 5 >4

NS

Notice here we set the first half of documents to be the pure documents. Then we have

n—m m
1 —1
. K+nK KxK

Ty =

Then it’s easy to see that the last eigenvalue of Yy is (n —m)/n. Then it is easy to see
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that W satisfies the first condition in 3.15 given ¢ < 1/2 < (n—m)/n, which required by
q)n,Nth/y/O I,k (¢:Py)- Then we proceed to construct {W(s)}le. By Varshaov-Gilbert
bound for packing numbers (Lemma 2.9 of [35]), there exists J > 2 [K/2]/8 and {G(S) }{:0
such that () = Ok /2] Gi(s) €{0,1} forany s € [J] and i € [m|K/2]], and

m|K/2]

16 2 g0y = MLE/2)
iZl (0,7 #0;7) =

8 Y

forany 0 <s#t<J

Then for any s € [J], define £(8) € REKX a5

r [01(?;31»(’5;11:2111’""G((Is()/zfl)mﬂ;l{m/z’
5(5) _ —01(21,—G,gfll;zmw--,—G((,“?/z,l)mH:Km/z]T Af K is even
[61(21’6155—)1—1:2m""’G((f}(/zJ_l)m_._l:LK/sza
[ =00 = O tam > =0 2|yt 1o K 2 e O] i K s 0ld

and let @ = C1//NK]||hy; | 1, where the positive constant C| is to be determined. Then for

any s € [J] we define W) through the following
W(s) = [le(n—m)vw(n—m—kl):n + az(s)] (3.32)

By Lemma 3.6.3 we know W) € q)n,N,IIh/yxolll,K(cvp"f/o)'
Then we proceed to check (i) and (i) respectively.

e Checking (i): We firstly show that the optimal 7 € Pk in the definition of loss in 3.31 is

always I, that is the following holds for any s,¢ € [J] with s # ¢

K
- i w6y, )
Ix argTrélg}K{kng(T W) —wy Hl} (3.33)

Here we only briefly prove this is true for the cases with s, # 0. When either s or ¢ is 0

the proof is similar. Notice for any T € Pk with T # Ik, there exists k* € [K] such that
116



Tj+. # e+, where e+ is the k*th column of Ig. Then we have

- () (0 G0
Y T W —wil i > (T W) —w |l
k=1

AV
()

while on the other hand by the definition of W) we have

K
Y k- W) =i = afol® - o),
k=1

IN
3
=
8]

Comparing the two bounds above, under the condition that N|[Ay; |1/ K3/2 = o0 we have
the desired result in 3.33. Then we proceed to lower bound .’ (W(S) , w) ). Again we only

consider the cases with s,z # 0, since the rest of the cases can be proved similarly. By the

definition of W) in equation 3.32 we have

2w wy = g|c® -],
om|K/2] - Kno
8 64
Cln K
128 N||h7/0||1

So (i) is satisfied for C = C}/128.

e Checking (ii): We first investigate the entries of matrix D) = ABWE) = AW (),

hi+osl) | forjedp,i>n—m
Dﬁf): ajW; , forje¥,i<n—m (3.34)
hj , for j¢ %
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Then by Lemma A.7 in [51], or Lemma 2.7.1 in Chapter 2, we have

aTw) —aTwi?

nop
Dk (Z5,Py) < (1+CSNY Yy L
i=1 j=1 a;Wi
n |aTW(S) — aT‘/Vl-|2
= (1+c5N Y Y L
i=n—m+1 je¥ ajWi
& 0|1 TI%i]|3
= (+csvy Yy 2
i=1je¥ hj

IN

(1+C8)NmK*oi? ||y, ||y

(When 6 — oo, which is verified later)

n_o»n Hh“//oHI
2N-K°C{——F"F——
2" TINK]|hyl;

= C%nK

IN

(Notice J > 2LK/2]/8 > onK/128)

IA

128C2 log(J)

Then we can just choose C| small enough such that (ii) holds. Then the only remaining task

is to verify that & — 0. By the definition of 6 in Lemma 2.7.1 in Chapter 2 we have

Tw) _ Tw.
ja; Wi —a;Wil ollajll 1 1Zill K
0= max T = max —————— <Ciy|=7
jelplicl) — a;W; jEYp.i€lm] hj N[y lly

notice the RHS of the above inequality goes to 0 under the given conditions.

With all the above arguments the conclusion has been proved. [
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3.4.2 Upper bound of W —W

Then in order to facilitate the analysis of error in W — W, we define the vector Az () and scalar

—

Ay(Q) for any Q € RK-Dx(K=1),

Az(Q)i = ik~ Eiix)ll, forVie [n] (3.35)
A(Q) = Trglgl; ]?El?x 19207 (k) — vill (3.36)

where ¥, and vy, are the kth row of matrices V and V, the simplex vertices of the rows of Z,.x(exact)
and Z,.;(found through vertex hunting algorithms). Notice under this definition we have || Az (Q)|| =

|253.4Q — Z.x|| . We also denote

Q] =argmingcg, , [|Az(Q)]2 (3.37)

Q5 =argmingeg, | [|Az(Q) ]| (3.38)

Theorem 3.4.2. Under conditions 3.15 through 3.21, 3.22, 3.24, 3.26 and 3.27, and also assume

the pure documents assumption required in Lemma 3.6.5 hold, then there exists a constant C that

does not depend of N,n or p such that with probability at least 1 — o(n_3 ) the following holds

. Cnk3/? h
AR N

(3.39)

If in addition we have conditions 3.23 and 3.25, there exists a constant C that does not depend of
N,norp, and T € Pk, such that with probability at least 1 — o(n_3) the following holds for any

i € [n]

1Ay (11 [[Willo log(nK)

D%T(W',W')<
v P%)Ilh%lh N

(3.40)

Proof of Theorem 3.4.2. Let T* be the the optimal T € Pk in the definition of A,(Q) in 3.36.

Then we prove the two results in 3.39 and 3.40 separately as following

o Z(W,W): By the Sine-Theta theorem(for example Theorem 2 of [52]) and Theorem 3.6.6,
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under the given conditions there exists an orthogonal matrix Q; € RE=D>(K=1) guch that

the following holds
Az (@)l = [122:xQ1 —ExklIF
AT x—1 A —1
< C\/E”D;/.Mﬂ;/n//D”//-_DﬂTj/.My/ﬂj/D”//-H
- —1
Ak (D}, M, Dy.)
(By conditions 3.15 and 3.26)
AT rr—1 7 —1
< C\/I_(|’D;/.M7/WD“I/~_DaT//.My/n//D"IﬂH
N Pyl 11
(By Thoerem 3.6.6)
CK3?  [lhy |y

Prpllhpllt Vo N

On the other hand under condition 3.27 and the assumption of the existence of pure docu-

ments, by Lemma 3.6.5 we have

CK hyllq
@) < [y |

1
—=lAz -0
VK Prollhylli Vo N

VnAy(Q) < @l <

1
—||Az
Tl

Then by applying Lemma 3.6.4 and Lemma 3.6.5 we have

< CnflAg(Q)]| < Cnf|Az(Q)]|
_ o2 [l

Prllhyli Vo N

° .,?T(VAV,-, W;): By the row-wise bounds for singular vectors(for example Lemma 3.2 of [51])

and Theorem 3.6.6, under the given conditions there exists an orthogonal matrix Q, €
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RE=1)>(K=1) guch that the following holds for any i € [n]

CvVK AT o~ ] oA —1 -
[Az(Q)]; < ) (DT LD )(||DT7/.]VL//~//D“I/-_D;/.]\/Lj/ﬂyD”I/-H||~'*—4i||‘F
D\ oy Moy By
AT -1 7 —1
I(DY, M5 Dy. — D)y My Dy ei)
(By conditions 3.15 and 3.26)
CVK AT =1 A 1
< ————(|D}, My, Dy — D}, My, Dy ||||E;] +
TS St L
AT =1 A ~1
||(DT7/.M7/7/D“I/~ _D;/.My/ﬂyD”I/-)ei”)
_ _CK? [y [[1[[Wil|eo log (nK)
= pyllhylh Nn

Then by applying Lemma 3.6.4 and Lemma 3.6.5 we have

ZT* (‘;Vlawll)

IN

Cv/n[Az(Q3)]; < Cv/n[Az(Q)];
CK? \/Hh“l/Hluwi”oolOg(nK)
Py l1h N

N

3.4.3 Analysis of the non-informative words screening statistics §

We proposed to use statistics § to screen out the set of non-informative words 75 from the remaining
set of informative words 7#'. remember the jth entry of § and it’s population counterpart s are

defined as following
N il
sj—n ~m b sj—n 7
14117 115

Then we define the set of selected words based on the thresholding § at ¢ as

We also introduce 8; = a/||aj||; — 1 /K for any j € [p]. Then we have the following theorem.
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Theorem 3.4.3. Suppose conditions 3.15, 3.28, 3.16 and 3.21 holds. Denote the following subset

of I € [p| for a constant ¢| < 1

S ={jelpl:Nhj=ci}

And suppose we have the following conditions

o There exists a constant ¢y satisfying ¢ /(4c?) > C/cy, where constants ¢ and C are the ones

appeared in conditions 3.15 and 3.28 and Lemma 3.6.13, such that the following holds

min  [|&:]]2 > ¢ 3.41
i8] > 3 G41)
[ )
min Nhj—>oo (3.42)
JEI\ N

For any constant 8 € (0,1), denote

1-6
1 Nh:log(n
ts = | max K J & p)+1
jeA\¥ Nhj n

Then the following holds with probability at least 1 —o(n™>)

Y C Vs C YU (HHUL)

Proof of Theorem 3.4.3. It is enough to show that under the given conditions each of the following

is true with probability at least 1 —o(n3)
W\I g ToNI CHisy (F\I0)N Y5 =9

Then we prove each of the above statements separately.
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e Y\ C ”/%5: Notice by plugging in a =2/(1+ ¢y ) into Corollary 3.6.17, since ¢ < 1, we

have with probability at least 1 —o(n ) the following holds for any j € %\ .#

1 1>1—|—cl_1:1—cl

& > _
Sj= aNhj - 2c 2cq

Since the RH'S of the above inequality is a positive constant while 75 — 0, we have 7\ ¥ C

Tis-

e IyNI C ”/;5: Notice by Lemma 3.6.12, under conditions 3.15, 3.28 and 3.41, we have the

following holds for any j € %yN .7 C ”/7;5

K
/ (1+KWT§;)2 W

(R 515
K o
(1+KWT5))2 ¢
K lo)
24+2K2(WT8))2 ¢
K ()
2+2K2(|8;|2[W]2
K 1)
2+ 2K2[W 1 [W]e ¢
(Since [W(leo = [|W/|eo/n)
K c)
2+ 2K2 W1 [W]e ¢
K o

242¢K ¢
%)
4¢2

v

v

v

Vv

Vv

v

Vv

Y]

On the other hand by Lemma 3.6.13 and by the definition of ., the following holds with
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probability at least 1 —o(n~3) forany j € ¥yN.7 C ”/%5

1 Nhlog(n C
1§ —s;| <C—— (K M—{—l) < =

Nhj n e

Finally by the constraint on c; that ¢;/(4c?) > C/cy, we have with probability at least 1 —

o(n3) the following holds for any j € %N .# C ”/;,6

5. > § > ¢
Sj_Sj-lSj—Sj‘_E—a

Notice again the RHS of the above inequality is a positive constant while z5 — 0, we have

WNI C V.

o (A\ )N 7@5 = ¢: Notice for j ¢ 7 we have s; = 0. By Lemma 3.6.13 the following holds

with probability at least 1 —o(n3) forany j € %\ %

1 Nh;log(n
§i=18—sj| <C—— (K MH)

By condition 3.42 we have §/t5 — oo, which indicates (. \ %) N ”/7;5 =¢.

By putting all the above arguments together we have the desired conclusion. [

3.5 Real data application

In this section, we conduct several experiments on the wine data set and the reuters data set from the

nltk.corpus package in Python. We also used the stopwords data set fromthe n1tk.corpus

pakcage in Python as the default set of non-informative words. To pre-process the data, for the wine

data set we eliminate the words with frequency less than 4 and the documents with length less than

16 across the corpus, and for the reuters data set we eliminate the words with frequency less than

6 and the documents with length less than 6 across the corpus. Then the the resulting vocabulary

size and document size of the wine data set is (2963,4977), and those of the reuters data set are
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(6940, 10726).

3.5.1 Comparison of normalization schemes

In this section we compare the performance of different normalization schemes. We first remove
the default set of non-informative words from the two corpus data sets, then the vocabulary sizes
of wine data set and reuters data set reduce to 2853 and 6866 respectively. Then we considered 4
normalization schemes D, M~ /2D, Cp and Diag(id f)Cp. To make comparisons, we don’t have
a true underlying W for each real data set. But since the estimation of W is based on the RSVs
for each normalization scheme, to compare the resulting W estimators, it is equivalent to compare
the "quality" of RSVs in these schemes. On the other hand we have some known cluster labels for
both data sets, then a natural way to measure the "quality" of RSVs is to measure their ability to
separate the documents in each cluster under these cluster labels. We therefore argue that the more
significant the clustering phenomenon in the rows of RSVs under these cluster labels the better
estimate of W would likely to be yielded. We firstly visualize each pair of the top 6 RSVs of each
normalization scheme, for the wine data set with taster names or country origins as cluster labels,
and the reuters data set with topics as cluster labels. These plots are shown in Table 3.2, Table
3.3 and Table 3.4 respectively. We can see from these 3 sets of plots that the in the normalization
schemes D and Cp, the clusters are mostly mixed with each other, while M ~1/2p and Diag(id f)Cp
yield much more isolated clusters. It is interesting to notice that in case of the reuters data set, the
plots of M~1/2D are very different from those of Diag(idf)Cp. It seems the RSVs of M -1/2p
contains more information about the clusters of "earn"(black) and "grain"(blue), while those of

Diag(id f)Cp contains more information about the clusters of "acq"(red) and "trade"(purple).

Then we make more quantitative comparisons of the clustering significance among these nor-
malization schemes. First we introduce some notations. For any corpus data set, suppose we
have a cluster label, under which a subset of the corpus data set can be partitioned into 7" clusters
C = {Cgt}te[T] (Notice there can be overlaps among the these clusters), and we also have a set of
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vectors V with each row being an embedding of a document in the corpus. More specifically V can
be the RSVs or the final learned result W. Then we define the following Rayleigh quotient(RQ),

that is the between-over-within-cluster error ratio, for V under partition % as following

YsreT] st | Livedines Vi, —viI* ) /(16| %
RO — rett st (Tietines vy 22||)/<1 1)) .
YR [ BV TATZAR)

Then the higher RQ« (V) is, the more compact the clusters in the rows of V, the more separated

between those clusters. And therefore this means the better the rows of V are aligning with the
cluster labels, the better quality of the learned embeddings in V.

Notice in this definition, there can be a miss match between the dimension of V and the number
of clusters in . For example in the wine data set, suppose the pL.SI model holds and there are 5
true underlying topics, then we would use the top 5 RSVs 3[5] as V. On the other hand if we use
the taster names as cluster labels, it is both possible that only the membership information about
the top 3 or top 7 largest clusters is reflected in the topics. So it is reasonable to consider RQ (V)
with different pairs of number of clusters in 4" and dimension of V, with the former either smaller
or larger than the later.

Then conduct experiments on both the wine data set with taster names as cluster labels and the
reuters data set with topics as cluster labels, and the results of RQ« (V') with differently defined ¢
and V are shown in Figure 3.5. More specifically the first row of plots are based on the wine data
set with taster names as cluster labels, and in the left plot we fix & being the top 7 largest taster
name clusters, and plot RQ (V') against the number of top RSVs used to define V, and in the right
plot we fix V to be the top 7 RSVs, and RQ« (V) against the number of top largest taster name
clusters used to define €. In the second row of plots we do the same thing based on the reuters
data set with topics as cluster labels. Notice in the first column of plots, the lines that correspond to
M~1/2D start from K = 2 since the first RSV of it is all non-informative and we therefore ignored
them. It can be seen that our proposed scheme M -1/2p always performs the best based in terms

of a large range of differently defined RQs.
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Table 3.2: The plots of RSV-pairs of matrices D, M -1/ 2p, Cp and Diag(id f)Cp based on the
wine data set. The taster names are used as cluster labels, and the top 4 most frequent clusters are
colored differently. More specifically, black is "" which means missing, red is "Roger Voss", green
is "Michael Schachner" and blue is "Kerin O’Keefe".

Comparing dimensions D M~1/2p Cp Diag(id f)Cp

E3v.s. Ep

34 V.S. 52

E5 V.. By

Eg V.. Ep

34 V.S. 53

35 V.S. 33

E6 V.S. 33

35 V.S. 34

36 V.S. 34

36 V.S.

[x]
)
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Table 3.3: The plots of RSV-pairs of matrices D, M ~1/2p, Cp and Diag(id f)Cp based on the wine
data set. The country origins are used as cluster labels, and the top 4 most frequent clusters are
colored differently. More specifically, black is "US", red is "Italy", green is "France" and blue is
"Spain".

Comparing dimensions D M~1/2p Cp Diag(id f)Cp

33 V.S. 52

54 V.S. 32

E5v.s. By

36 V.S. 32

54 V.S. 33

35 V.S. 33

36 V.S. 33

35 V.S. 34

36 V.S. 34

56 V.S. 55
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Table 3.4: The plots of RSV-pairs of matrices D, M ~1/2p, Cp and Diag(id f)Cp based on the
reuters data set. The document topics are used as cluster labels, and the top 7 most frequent clusters
are colored differently. More specifically, black is "earn", red is "acq", green is "money-fx", blue
is "grain", light blue is "crude", purple is "trade" and yellow is "interest".

Comparing dimensions D M~1/2p Cp Diag(idf)Cp

33 V.S. 52

54 V.S. 52

E5v.s. By

E6 V.S. 32

54 V.S. 33

35 V.S. 33

36 V.S. 33

35 V.S. 34

36 V.S. 34

56 V.S. 35
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(a) The wine data set, with € being the top 7 (b) The wine data set, with V being the top 7
taster name clusters and changing the number RSVs and changing the number of taster name
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(c) The reuters data set, with € being the top (d) The reuters data set, with V being the top 7
7 largest topic clusters and changing the num- RSVs and changing the number of topic clus-
ber of top RSVsused as V. ters used to define €.

Figure 3.5: The plots of RO, (V) with differently defined 4" and V, based on the wine data set and
the reuters data set. Black is D, red is M~ 1/2D, green is Cp and blue is Diag(id f)Cp.
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3.5.2 Non-informative words selection

In this section we compared the top non-informative words selected based on different statistics:
Our proposed screening statistics s, the z f.id f scores, the likelihood ratio statistics LR and the 22
statistics. Then the top 20 words selected by each of the statistics based on the wine data set and the
reuters data set are shown in Table 3.5 and Table 3.6 respectively. The selected non-informative
words by s and ¢ f.id f both contain not only many human-recognizable non-informative words,
for example "the", "and" etc, but also many corpus-dependent non-informative words, for example
"wine" and "flavors" for the wine data set, "compani" and "billion" for the reuters data set. On
the other hand the non-informative words selected by LR and xz statistics are mostly very low-
frequency words. The underlying reason for this phenomenon is that for each word, these two
statistics are basically testing whether all the documents share the same populational frequency. In
reality the documents in the corpus are often composed of low-frequency but meaningful words and
high-frequency non-informative words. Then the these testing statistics would often falsely select
the low-frequencies but meaningful words, since it is hard to reject all populational frequency

being 0 under this low frequency situation.

3.5.3 Non-informative words removal for different normalizations

In this section we combine the effects from non-informative words removal and normalization, by
comparing how the RQs change as we remove the non-informative words according to different
statistics under different normalization schemes. Three experiments are conducted on the wine data
set with ;.14 as V and the top 2-to-4 taster name clusters as %', the wine data set with E;.14 as V
and the top 2-to-4 country origin clusters as ¢, and the reuters data set with Z.5¢ as V and the top
7 topic clusters as €. Then the results of the three experiments are shown in Figure 3.6, Figure 3.7
and Figure 3.8. In each of these plots, the top left is D, the top right is M —1/ 2D, the bottom left
is Cp and the bottom right is Diag(id f)Cp. And in each subplot of a specific normalization, the
green circles, the blue triangles, the light blue crosses and the pink crosses are representing the

resulting RQs when removing non-informative words sorted out through s, 7 f.id f, LR and xz. The
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Table 3.5: Top 20 non-informative words selected by 4 different statistics, namely s, ¢f.id f, LR
and xz, based on the wine data set.

Word | s tf.idf LR 22

rank

1 and in mushroomy this

2 this it feral and

3 the is extraordinary undoubtedly
4 a to undoubtedly extraordinary
5 of wine excessive howell

6 with its excels released

7 is on didnt flavors

8 wine fruit noirs excels

9 flavors with performs excessive
10 in that ava truly

11 to from admirable didnt

12 it flavors tawny entire

13 aromas aromas australia begin

14 fruit of satin of

15 palate the ageability a

16 its palate lineup surely

17 finish but pit ageability
18 on acidity los admirable
19 acidity finish colors tawny

20 that black string australia
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Table 3.6: Top 20 non-informative words selected by 4 different statistics, namely s, tf.idf, LR
and xz, based on the reuters data set.

Word | s tf.idf LR 22

rank

1 the the leap leap

2 said mln fragil spotlight

3 and dir verg player

4 for and cure fragil

5 dlr pct intransig nudg

6 min said slacken verg

7 from billion pare throw

8 year loss backdrop steve

9 that that discredit sophist

10 net bank dollar- era
denomin

11 compani net postur tremend

12 with for beat downsid

13 shr share flurri root

14 inc u.s. bode unwant

15 will year carol shrug

16 which from eve chri

17 but will forg inroad

18 share shr induc inde

19 note trade spiral undoubtedli

20 would oil contradict cure
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red line in each plot is the value of RQ when the default set of non-informative words are used.
We can see from these three plots that our proposed normalization scheme M ~1/2p, the top
right subplot in each figure, performs the best overall. And this is the only normalization scheme
among the four that enjoys significant benefits from removing non-informative words according
our proposed statistics § or 7f.id f. These observations matches with our theoretical arguments
about the screening step and normalization step in Section 3.3. You may also observe from the top
right subplot in Figure 3.6 that removing non-informative words according to § or ¢ f.id f produces
similar results, while in the same subplots in Figure 3.7 and Figure 3.8, removing non-informative

words according to § produces significantly better results than that according to ¢ f.id f.

3.5.4 Comparisons of different W estimation procedures

In this section we compare different W estimation procedures based on the two data sets. We
conduct experiments based on the similar idea in Subsection 3.5.3. More specifically, for each
estimator W we compute the RQs RQ (WT) for both data sets. Again for the wine data set, we
assume K = 14 and % being the top 2-to-4 taster name clusters, and for the reuters data set,
we assume K = 20 and % being set to the top 7 topic clusters. Then we consider the following W

estimation procedures.

e LDA: Direct application of LDA(Latent dirichlet allocation).

LDA with default non-informative words removal: Application of LDA after the default set

of non-informative words have been removed.

tf.idf: Compute the top K RSVs of the 7f.id f matrix Diag(idf)Cp, and perform the em-

phvertex hunting algorithm in [51] on these RSVs to estimate W.

tf.idf with default non-informative words removal: Compute the #f.idf W estimation after the

default set of non-informative words have been removed.
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Figure 3.6: The plots of RQ%(E 1.14) Versus removed proportions for the wine data set, with &
being set to the top 2-to-4 taster name clusters. The 4 normalization schemes are D(top left),
M= 2D(top right), Cp(bottom left) and Diag(id f)Cp(bottom right), and in each subplot the green
circles, the blue triangles, the light blue crosses and the pink crosses represent the resulting RQs
when removing non-informative words sorted out through s, ¢ f.idf, LR and xz. The red line in

each plot is the value of RQ when the default set of non-informative words are used.

A
(%2} —&— s 2] L
o o
= —A—  ffidf = JA“\‘
@ o &
—_ |r —_
— Tp] . — Tp] @
o - —*— chi2 o - / Ban,
= _ e o o A
- - o 1 8 o Af
() N [ | . / \
£ = LN 98,0 AR
£ o | £ o | ° sy |
E - a8% E = A::A"-‘ f\.eah
& — ap & \ & — Qsﬂ
© ag®8.% g ©
i) a8, o a [4}] B X0 5 X MR K 5k 3 s 3 3¢ 300K 3 K M K KK
E - | ﬁ;’%xxxxXXXXXxxxxﬁgagaggngx)(xxxx)(xxx)(xxxxx E - _|
g - 2808308, @ -
annﬂoéagg m
I I I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Remove proportions Remove proportions
w w
o] o]
-— -—
o o
= 0 o0
g - S
< a < a
£ £
£ o | £ o |
z - z -
c c
© - © -
i} i}
-— e ko B A -— R B R AR B BB E R R KRR AR A AR XK KRR X
% - SRR, % - 7 SARESana0
m m
I I I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Remove proportions Remove proportions

135



Figure 3.7: The plots of RQ%(E 1.14) Versus removed proportions for the wine data set, with &
being set to the top 2-to-4 country origin clusters. The 4 normalization schemes are D(top left),
M= 2D(top right), Cp(bottom left) and Diag(id f)Cp(bottom right), and in each subplot the green
circles, the blue triangles, the light blue crosses and the pink crosses represent the resulting RQs
when removing non-informative words sorted out through s, ¢ f.idf, LR and xz. The red line in

each plot is the value of RQ when the default set of non-informative words are used.
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e MD: Compute the top 2 —ro — K RSVs of the proposed matrix M —1/2p, and perform the

emphvertex hunting algorithm in [51] on these RSVs to estimate W.

o MD with default non-informative words removal: Compute the MD W estimation after the

default set of non-informative words have been removed.

e MD with s-based non-informative words removal: Compute the MD W estimation after the
non-informative words selected based on the proposed screening statistics s have been re-

moved.

Then the results are shown in Table 3.7. We can see that our proposed procedures MD with s-based

non-informative words removal yields the best performance in both cases.

Remark. In the application of MD with s-based non-informative words removal procedures, we
need to determine the thresholds for the screening statistics s adaptively. This alone can be a
problem for future investigations, and in fact similar problems has studied in many recent works,
see [53] for more detail. Here since this is not our primary concern, we implement a simple
heuristic kmeans-based approach. More specifically, we set a a grid of remove proportions around
0, and for each remove proportion value 8 we remove the & proportion of words based on the s
statistics, then we conduct kmeans on Zy.x assuming there are K underlying clusters, the top 2 —
to—KRSVsof M~ 12D, and then we compute the RQ (Ey.x ) with € being the K clusters learned
through kmeans. Finally we choose the remove proportion that yields the smallest RQ(Er.k ).
Notice here the kmeans objective is different from the ry(E9.x) defined in 3.43, so the overfitting

would be less of a problem([53]).
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Table 3.7: The RQy (WT) for different W estimation procedures. For the wine data set, we assume
K = 14 and ¥ being the top 2-to-4 taster name clusters, and for the reuters data set, we assume
K =20 and ¥ being set to the top 7 topic clusters.

W estimation procedure The wine data set The reuters data
set

LDA 1.21918 4.075994
LDA with default non-informative words 1.325853 4.210356
removal
tfidf 1.121617 3.265342
tf.idf with default non-informative words 1.290712 3.90164
removal
MD 1.315061 3.580676
MD with default non-informative words 1.480454 3.506802
removal
MD with s-based non-informative words 1.619614 4.696867
removal

3.6 Proofs

3.6.1 Additional Lemmas for Section 3.3

Lemma 3.6.1. Suppose vector a € R", we have the following

aTly,)? .
o= nzn) = arg min [laaT —rL,Li |, flaaT = LalylF = \/HaH4 -
+

(aTl,)*
n2
Proof of Lemma 3.6.1. Define f(t) to be the square of the objective, that is

f@) = |laa® —11,1}||%
= Tr[(aaT—tlln]l,I)ﬂ

= la|* —2t(aT1,)? +2n?

By df(t)/dt =0 we have
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With this we can compute

T1,)2
) = |laaT (@ 2n> 1,1}
n
F
= a2
n2
[
Lemma 3.6.2. Suppose vector a € R", we have the following
2 T1,,)2
= 1 vy min flaaT — 11,13, flaaT — 1,13 = |IaH\/ a2 — {&TEn)
n IERJF

Proof of Lemma 3.6.2. Notice when a and 1 are linearly dependent, the conclusion is trivial. Oth-
erwise we need to study the eigen-decomposition of aaT —t1,,1}. For any eigen-pair of this matrix

as (A,v), since this is a rank-2 matrix, and v must be a linear combination of a and 1,. Therefore

we denote

v=xa+yl,

Then by the definition of eigen-decomposition we have

(aaT —t1,17)v = Av
— (aaT —t1,1})(xa+yl,) = A(xa+yl,)

—  (xlla|]* +y(aT1,) — Ax)a— (xt(aT1,) + ytn+ Ay) 1, = 0

Since a and 1 are linearly independent, which also indicates A > 0(Otherwise matrix aaT — 1,1,

is zero matrix, which contradicts with the assumption that a and 1, are linearly independent). So
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the two coefficients in front of @ and 1 on the L.H.S must be 0, that is

xllal?+y(@ 1) —Ax = 0 (3.44)

xt(al,)+ytn+Ay = 0 (3.45)
Since A # 0, we can cancel by the above two equations and get
(@ 1)u® + (|a)|? + m)u+1(aT1,) =0

where we have denote u = y/x. By solving the above equation for u we get two solutions

S —(|a]|?> +tn) +/([|al|> +1n)% — 4t(aT1,)?
: 2(aT1,)
o Ul ) — /(e P AT
2 2(aTly,)

Plug this back into Equation 3.44 we have

M) = Ha\l2+uT(aT11n)=%(Hallz—m\/<\|a||2+m>2—4t(mn)2) (3.46)

2 = ]\a\\2+u§(aT]1n):%(Ha”z—tn—\/(\|aH2+tn)2—4t(aT]ln)2) (3.47)

Here we add () after A;" and AJ to highlight the fact that they vary with z. Now we claim that both

A{ (¢) and A5 (t) decrease with ¢. In order to show this, notice

oAre) _ 1, nllal®+m) —2(aT1,)?
2 V(llal]® +n)? = 4r(aT1,)°

A0 _ 1 n(la]®+m) —2(aTLy)?
V(llall® +n)? = 4r(aT1,)°

ot 2

In order to show that both derivatives are negative in the domain ¢ € R, it is enough to show

the following, which can be shown to hold by the Cauchy-Schwarz inequality after a series of
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equivalent transformation.

n(||al|> +1n) —2(aT1,)?
~ |V (lal?+n)% —4t(aT1,)?
n*(([lal|* +tn)? —4t(aT1,)?) > (n(|lal|* +tn) — 2(aT1,)?)?

<
— nlla|® > (aT1,)?

(Which holds by the Cauchy-Schwarz inequality)

So we have both A, (¢) and A, (¢) decrease with z on ¢t € R4. On the other hand notice A, (0) =
al?, A5 (0) = 0, we know that the /5 norm of the original matrix, max(|A; (¢)[,|A5 (¢)|) attains its
minimum when A4 (1) = —AJ(t), by plugging in the formulas for A;"(r) and A, () in Equation 3.46

and Equation 3.47 we have the equation for the optimal ¢*

«_ llal?

la||? = t*n < 1* =

n

And the objective under t* becomes

* %% %k atly)?
JaaT ~ 11 = A7 ()] = A5 = Hall\/ a2 — TR0

3.6.2 Additional Lemmas for Subsection 3.4.1

Lemma 3.6.3. Suppose W) is defined as in equation 3.32. Then as long as NK |y, ll1 — 0 and

¢ < 1/2 we would have W) € q>n7N,||h%||1,K(C7P”//0)-
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Proof of Lemma 3.6.3. We only need to show that A, <%W(S) (W(S))T> > c. Notice

1 N N
= Amin (Z [le(n—m)Wlt(n_m) + (W(n—m—i-l):n + oz ))(W(n—m—l—l):n + oz ))T}>

= Amin (% [WWT + O‘W(n—m—f—l):nZ(S)T + aZ(S)W(.Ir-l—m—i—l):n + OCZZ(S)Z(S)T} )

(By Weyl’s inequality)

1 20 o?
| ZwwT ) =22 ) - 2 xb)2
> i (W) = 220l - 2]
(It’s easy to show that [|W(,,_,,, | 1).,[| < VKm/K, ||Z(s)|| < VKm)
2
> [n/(2K)] /n— 2am _oTmK

n n
Then as long as & — 0 and at2K — 0, which is guaranteed by NK||hylly — 0, we have

A <1W<s>(w<s>>T) >e

n

given ¢ < 1/2. O

3.6.3 Additional Lemmas for Subsection 3.4.2

Lemma 3.6.4 (Non-stochastic bound of W —W). For any Q € Ok_ that satisfies \/nA,(Q) — 0,
let T* be the optimal T € Pk in the definition of A,(Q) in 3.36. Then under conditions 3.15, we

have the following

L (W, W) < 2v2en [[Az(Q)] + ViKA(Q)]

LW W) < 2v2en |[As(Q)i+VEA(Q)|, forvi€ [

Proof of lemma 3.6.4. Without loss of generality we assume 7 is identity. Fix any Q € Ok _ that
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satisfies \/nA,(Q) — 0. Notice following the notations defined in the proposed algorithm, we have

Then we have the following results regarding to Q and Q(Q) through simple algebra.

e (: By the definition we have

1 K__
00" = (WwT)~! ==/

n

Under condition 3.15, this indicates

K 1 K
VE <ot <ior < /K

e O(Q) — Q: By the definition of A, () the following is straightforward

10(Q) - 2]l <110(2) - Qll1 < VKA(Q)

° Q(Q): By Weyl’s inequality, above results in equations 3.6.3 and 3.48, we have

0@t > lo Y - 10@) - 0l > /X — VEAL©Q)

cn

0@l < i+ 10@ -0l = /K 4 va@

Then under the assumption that 1/nA, (Q) — 0, we have the following

K A 1 A 2cK
Vaer <IQ@II" <lio@l < /==
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With these in hand, we are ready to analyze the quantities of interest, %+ (W, W) and .Zp+ (W;, W;).

Firstly under the notations in the proposed algorithm we have

Wi =Willi < W =&l + 1A = Wil
= N =17 1OWill + 177 = Willy
= [=l& L+ 1% =Wl

(By the triangle inequality)

IN

2|12 — Wil

(Since all the entries of W; are non-negative)

IN

2|7 — Wil

Then we analyze %+ (W, W) and %5+ (W;, W;) separately as following.

o Zr+(W;,W;): By the definitions we have

LW, W) = [Wi=Wily

< 2|7 - Wil

= 2B @ 1V ! — Bk 1/ VaIRT! |
2{ [ i(2:K)Q_Ei(Z:K)7O][QA(Q)]71Hl+
Eiaxy L/VAIQ@] - 07N }
i2:x) 2~ Zix @)1+
H[Ei(z;m,l/ﬁ]Q*IHl\/I?IHQA(Q)]*I!\!IQ(Q)—QH}
(Notice by definition [Z;5.x), 1/vn]Q~" = W)
2VK([0Q)] [ {[Az(@)i +110(@) - 2]}
(By the results in 3.48and 3.49)

2v/2cn {[AE(Q)]H— \/EAV(Q)}

(=

IN

I ‘-’

IN

23 VK|

IN

IN
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o Zr«(W,W): The result about .Z7+(W,W) can be obtained similarly through the following.

S

LW, W) = Wi = Willy
=1

< 2Y {VKI&inx Q- B 0@ I+

i=1
i, 1/ vl VRO~ 110(9) - 0l }
< 2V2en | VilAs(Q)] +nVKA(Q)|

I
3

]

Lemma 3.6.5 (Vertex hunting lemma). Under the conditions of Theorem 3.4.2, as well as the
assumption of existence of pure documents per topic, there exists vertex hunting algorithms such

that the following holds

VnKA/(Q)) < CllAag(Q)]]

VEA(Q3) < C.mfn][Az(QE)]i
icin

Proof of Lemma 3.6.5. The algorithms such as OVH and GVH that are proposed in [51] satisfies
the claimed properties under certain assumptions of existence of pure documents per topic. See

the Lemma 3.1 in [51], or Lemma 2.6.1 in Chapter 2 for more detail. OJ

A

AT -1 D T a1
3.6.4  Analysisof D,y M,y Dy.— D,y M, Dy .
The main theorem regarding to the error ﬁI//_M;/;/lA)y/. — D;/.M;E//D«//. is stated in Theorem 3.6.6.

Theorem 3.6.6. Under conditions 3.15 through 3.21, 3.22 and 3.24, there exists a constant C that

does not depend of N,n or p such that with probability at least 1 —o(n3) the following holds

AT r—1 A 1 LA
|} My Dy = DYy My Dy || < CnK [ ==
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If in addition we have conditions 3.23 and 3.25, there exists a constant C that does not depend of

N,n or p such that with probability at least 1 —o(n=3) the following holds for any i € [n]

3
AT =1 1 nK>{|hy ||1[|Wil|- log(nK)
(DY, M, Dy.— D}, M, Dy el < C\/ Nz

Proof of Theorem 3.6.6. Notice we have the following decomposition

A A_l A _1
D}, M, Dy.—D}, M, Dy.

= o, m,\\py -0, M)} D))+ D), M)}z +77, M) Dy )+ (20 M2y )

y My y 2V T By My P y gy &V T Ly Moy 2 vy eV

= E|+Ey+Ej3

Then we bound the quantities based on these 3 terms separately.

e Ey: Notice Dy. =Ay W = ZkKZI An,/kw};. Then we have

_ T a1 T a1

_ T (-1 _ -1 T
= ) widly (M”f/“//_M“//“i/)A"f/lwl
kl€[K]

N —
=), wewAl, <M7/7/_M7/7/)A7/1
kl€[K]

By equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2, under conditions 3.15 and
3.16 we have with probability at least 1 —o(n3) the following holds for Vj € ¥

A

Mjj—Mjj

M;iM;;

log(n)

<C
Nnh?

~—1 -1, _
Wi — M = (3.50)

With this we have the following bound on ||E|| and ||Ee;|| for any i € [n] with probability
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at least 1 —o(n3)

r—1 —1
1BV = || Y wew]AY, (M”I/”//_M“I/“I/>A7/l
kle[K]

IN

T T (-1 1
Y Wi, max ‘A”Vk (M”V”// _MW/) Ay l’
kI€[K] L€ [K]

— 1 max |AT (M‘l — M )A ‘
k’lem) vk \Pyy Py ) OV

—3 42 42
i A

IN

C nlog(n) max [Zh

N \k,le[K] i

1
o fmogm) |5
N ke[K]

IN

) Aj

JEV

1
ey TrTog i)

IN

r—1 —1
|Eveil = || X wenJeidl, (W5}, Myl ) Ay
kl€[K]

T (-1l
\/ﬁkrfea[’é] ‘A”//k (Mv/% _M~//7/> A“f/l’

xe [P Tiloetr) .

e E5: We first analyze ||E»||. Againby Dy = Ay W = ZszlA"f/kW/Ia we have

VAN

IN

—1
1Bl < 2|p) a5z | =2

K
T o1
kZI Wiy My yZy .

2K max ||w.||||AT MLz .
ma [l 4715, 2 |

IA

(By condition 3.15)

IN

2venk max | (04102 |
S

2venK

IN

—1 —1 —1
max ||(M., ., Ay )" Zy ||+ max ||((M ., — M. Ay )T Zy.
ke[K]H( %4 ”//k) 4 H ke[K]H(( Yy 7/7/) ”I/k) v H

2+ CI’IK[EZI + Ezz]
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Notice by Lemma 3.6.7 and Lemma 3.6.10, under condition 3.22 the upper bound of E»1 is

larger than that of E»y, that is

nK|lhy |y I”f/lKHhvllllog(nK)max(K |7/|> (3.53)
N N2hmin ' Nhin

This indicates with probability at least 1 — o(n_3), we have

|E2|| < CnK

h

Then we analyze Eje; for any i € [n]. Notice

1 f1
|Eseill < D}, M. Zy.eil|+ 2}, M, Dy e

K
T oyl . TAT -1
Xl bty 2y i + |wray w2y |

K
-
Y Wiy My Zy.
=1

IN

K max ||wi|||AT M),z |+
ke[K]H k|H Sy KMy Vz‘

(By condition 3.15)

IN

. 1 1
\/cnKlgel??] |A4T//kM7/4,/ZA//,'| + \A;/k(My/a// —My/y/)z”i/i‘] +

1
max |[(M ~ Ay )T Zy .
ke[K]H( V4 4 ”Vk) 4 ||

(By the analysis of ||E||)
-1 ~—1 —1
< VenK max |AY, M., Zy |+ max |AY, (M, =M., ) Zy;| + Ey + Ep
ke K] ke (K]
VenK[Eyj + Expl +Exp +Enp

By Lemma 3.6.9 and Lemma 3.6.10, it’s easy to see that the upper bound of v/nKE>;; dom-
inates that of E7;. And on the other hand E>; dominates E», under condition 3.22 by our
previous argument. We only need to show E»;; dominates E;; in order to show that the up-

per bound of ||Eye;|| is dominated by v/nKE»;;. Notice this is in fact guaranteed by condition
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3.23, that is

PR AT YV |K||hy |1 log(nk v
K\/H Wil log(nk) > |V |K]lhy |1 log(nK) K||Wioo, 7]
N N2 nhmin Nhpin

This indicates with probability at least 1 —o(n~3), we have

HEzeiHsc\/” | ”ﬂl” il 1og k) (3.55)

e [E3: Notice by equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2 we have with

probability at least 1 —o(n~3) the following holds
201 Y2 s /2 2 o .
B3 = 120 015 2y )| < M5 g/ s 2 P < 2t 2y

Then with Condition 3.21, by applying Lemma 3.6.8 we have with probability at least 1 —
o(n3) the following holds

1 K VI+ K|V ”// ”// 7/
1Bl < Liz1 Lz, ) < o [ KL K e PPGVAZIE D) (556
oy Aoy &y
¢ N thln

Similarly for ||Eze;|| by equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2 we

have with probability at least 1 —o(n3) the following holds

1/2

1/2 —12 —1/2
|Eseill < (123 M0, My 2N IM 22| < My bt 11120 0, 2 1M, Y,

Z”//t H

yol/2

1 1/2
< ClZ HyyZy | P Hy o 2y

Then by applying Lemma 3.6.8 and Lemma 3.6.11 we have with probability at least 1 —
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o(n=3) the following holds

1/2 —1/2
|Eseil| < ClZ} Hy L2y |V2H, 22y

§ C\/K\/n|“// FKY | n /T )
- N

N? hmm
o R 1]
N ,N hmin

Under conditions 3.24 and 3.25, we have the upper bound of E, dominates that of £; and E3, and

the upper bound of E5e; dominates that of Eje; and E3e;, so we have the desired result. 0

Lemma 3.6.7. Under conditions 3.15, 3.17, 3.18 and 3.19, with probability at least 1 —o(n™>)
the following holds for all k € [K]

1 nK||hy |1
(M Ayi)TZy || < cyf —N

Proof of Lemma 3.6.7. Fixed any k € [K]|. Define v = M;;/Ay/k, then

n
1
1My Ayi) 2y || = \/Z Z{vpy vy yZi
i=1
n
< Y E(z 1P7/Vp7/ p”//" Zi—E(z] VP”’/VP“//Z)

i=1
= I+11

Firstly we have the following immediate conclusion from condition 3.15.
-1 2
(hy )TAY =K(Ea, e < K24, || < Kby | (3.57)

Then we first compute I. By Corollary 3.6.23 and equation 2.58 in the Chapter 2, under condi-
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tion 3.15 and by equation 3.57 we have

1 n N
o T T T ,
I = ZEE(Zl Vp, ¥V, vZi) N2 Zi Z,]E[Yit"p,”f/"p,y/th]
1= 1=lr=
1 & o I\TA2 N —1\T 42
<5 ;(V )TDyi < 55 (mey ) TS < = (hoy ) TAY
=
c*nK|hy ||
- N

We then implement Lemma 3.6.19 to bound II. By Corollary 3.6.23, for any i € [n] and t{,1; € [N]

with 7| # tp, under condition 3.15 and by equation 3.57 we have

4
Var(Yy vp v} oY) (vV)TDy;

IN

Var(Y] vpyv oy Yiy) < [0)TDy]?

Then following the notations in Lemma 3.6.19, we define V. =v, 4, v| = (WVYTDy , vip =
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[(Vz)TD“/-]Z, x=1,and § =n 3K !, Then we have

Then we have

Tr(V T Diag(D;)V)

Ve

Ix*ovially

et ovi s

I IN A I IN A

IN

IN

IN

IN

(my* oDy ;)TAY,

K (h))TAY < EK?|hy ||y, for Vi € [n]
lm" o Ay lloo

cllhy! o Aglleo < cK

K[yl

n(v4)Tm7/

ne(y ) TAY lmy? 0 A%l

nc*K|lhy ||1c*K* = nc* K2 |[hy ||y

1) "Dy |2

4 —-3/2 2 —-1/2 2
M, ol )TH, Ay W

41,.-3/2 2 124 1/2 2 2
M o A% PIHy Ay 2w
(By condition 3.15)

4.-3/2 2 12 cn
Ay 0 4% Pkl | 2

6 -3 4

Snllhy ||y 172 0 AL

6 142 2 2
cnllhy |17y 0 A% ll111hy" 0 Ayl

6 2T 3 12
cnlhyllicK|[hy |1 K= = c'nK>[|hy |1

T = Cmaxx; |m —lTr(vTDi (Dj)V)1 Ll Lf"||\/||21 LAY
= ie?n)}(xi ax | —% ag(D; g\ & ,NerI rlle | log { =

IN

(Under condition 3.17)
K?|lhy ||y log(nK)

IN

C

N

1 1
Cmax (NC3K2Hh7/|| 1log(nk), mcKlog(nK)z)
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Then by Lemma 3.6.19 we have with probability at least 1 — o(n_3K _1) the following holds

n

; ZiTvp’a//v;;//Z,- — ]E(Z,-TVp,“I/VIT,;//Zi)
1=

Cmax <\/—$((N— Dl ovially +[lx* o vy [l1) log(8), —Tlog(5)>

II =

IN

IN

1 K?|[hy |1 log(nk)?
Cmax WWKN—1>nc41<3||hy||1+c7n1<3||hw||%]log<nz<>, Iyl og (k) )

N
(Under condition 3.17)

3 2 2
. <¢n1< [Fey[[1log(nK) K?||Ay |1 log(nk) )

IN

N ’ N
(Under condition 3.19)

/K3y [ Tog(nK)
N

IN

By condition 3.18 the high probability upper bound of II is much smaller than the upper bound of

I. Finally by union bound over k € [K| we have the desired conclusion. O

Lemma 3.6.8. Under conditions 3.15 and 3.21, with probability with probability at least 1 —

o(n=3) the following holds

K71+ KIY |+ [P\l + |”f/|>>

ZLVHVZ, | < C
|| oy Moy oy 7/” = ( N Nzhmin
Proof of Lemma 3.6.8. Notice

1 -1/2 -1/2
12}ty zy || = |1, 2y 20, 1,
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Firstly it’s straightforward to compute the expectation of H 1/ 227/ Zy/ H7/ 12 as following

-

—

E(H V2,73 H, 1/2) - E(H I/ZZy,Z%H;/},//Z)

=
1 ¢ 1/2 ~1/2
- NZE<H7/ 1*2,:73,H,") )
=1
1 & / Ty —1/2
- N;E[ (Diag(D;) — D;DT)H,, "/ }
1=
1
_ 1% Py H P — N DDTH, Y

Then our first step in bounding ||H.,, .,/ L 2ZA,/ ZT 7/4// || is as following

H,\*2,.7, H;}/Z—E<H V22,7 H 1/2)H+

(0770, 27|

— ||m 1/2zasz HV}///Z—E<H V22,77, H;}/Z)H

IN

st 2

-1/2 —-1/2 1

H 1/2DD-|-H 1/2
N

—H
N

1/2 1/2 1/2 1/2
O AN (HAI/ Zy 2L H,\) ) +
71/2H

+

S MyyH, )

IN

71/2
—H M
N VY

(Under condition 3.15, by equation 2.58 in the Chapter 2)

IN

~1 /2 T —1/2 < ~1/2 T -1 /z) ‘ cn
H, ) ZyZ), H ~E(Hy,, ZyZ), H, —
V. o V. +N

Then we apply the random matrix theory in [46] to bound the first term on the RHS of the above

equation. By an € — net argument(Lemma 5.4 of [46]) we have

1/2 1/2 1/2 1/2
HHy/ 2y 72}, H,\/ —E(qu 2y 2, H,\/ )
1/2 1/2 1/2 1/2

_ T _
= max u [Hy/ Zy 2L H,) E(Hy Zy 2L Hy,) )} u

ue.7”1-1

1/2 1/2 1/2 1/2
T T _ T

< 2 max u [Hy/ Zy 7L Hy,) E(qu/ Zy 7L Hy,) ﬂu

|71
uc A,
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Then in order to obtaina 1 — o(n_s) high-probability bound for the quantity of interest, it’s enough

to obtaina 1 — 0(9_|7/|n_3) high-probability bound for
1/2 T —1/2 1/2 T —1/2
8,2 2,.2 B, ]E(Hy/ Zy 2L Hy,) )}
for any fixedu € .# 7= . Notice

1/4

uT[ 22,7 H V;ZZ—E(H V22,73, H_1/2>]u

V4
— [ AN E(H V22,73, H;},/ﬁ)]u
_ [ 22,77, H;}/Z—E<H V22,73, H;}/Z)] u

1/2 12,

uTH, 7y~ E(ZT HouTH 1/22%)

We can implement Lemma 3.6.20 to bound this quantity. Set V = (H;/;//Zu)p,‘m, x=1y,
0= 9‘W|n_3, and define

1 1)
K= NVTDiag( )V — —HVH2 log ( ) , forVie [n]
Then we under conditions 3.15 and 3.21 have

[Kllo = mz[l)i—uTHnj/ /2D1ag(D«,/l)H7/1/2
e

K |7
< Cl| =+
N Nzhmin

Then we can plug these quantities into Lemma 3.6.20, under condition 3.21 we have with proba-

QHH«//Z 12 10g(9” 1)

bility at least 1 — 09" 1n=3 the following holds

K
N Nthm

}uT [H//Qzay ZL H,\)*—E <H7/1/ZZ«// Z7 Hy/l/z)] u’ <C (

) (VAT 1)
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With this we have the desired result. ]

Lemma 3.6.9. Under conditions 3.15 and 3.17, with probability at least 1 — o(n_3) the following
holds for all k € [K] and i € |n]

(017 )21 < oy LA

Proof of Lemma 3.6.9. Notice

N

1

1 1

Moy Ayi) Zyi =Y, v vy Ayi) T (Y )y
=1

By simple calculations, by equation 2.58 in the Chapter 2 we have

11 1 1 -1
'_( ﬂj/y/A”f/k)T(Yit)“//‘ < N(HMﬂj/ﬂ;/A”i/k“oo‘*'AﬂT//anyﬂ//D”I/i)

N
CK
<
- N
N
1
~1 —1 —1
Y Var (M AT i)y ) = AL My, (Diag(Dyi) =Dy} )My Yy Ay
t=1
2
c —1/2,2 11 r—1/2 1~ ~1/2
< SIAY 1P Diag(Dy )y
2 ATW;
< ekl max
N j€v h;j
K2y [ Wil
<

N

By Bernstein inequality(Lemma 3.6.28) and applying a union bound we have with probability at

least 1 —o(n3) the following holds for all k € [K] and i € [n]

K2 ||y || ][ Willeo
N

K
MY A )TZ, | <C log(nkK), — log(nk
[(My Ay i) Zy | < Cmax \/ og(n ),N og(nkK)

Then under condition 3.17 we have the desired result. L]

Lemma 3.6.10. Under conditions 3.15, 3.16, 3.20 and 3.21, with probability at least 1 —o(n™3)
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the following holds for all k € [K] and i € [n]

1 1 [V |K||hy |1 log(nK) 7]
’((M«//«//_My/y/)AVk)TZ"//i‘ <C 5 max ( KI|Wjl|e, '
N4nhpyi, Nhin

Proof of Lemma 3.6.10. Notice

1 —1 ~—1 —1 1/2 —-1/2
(V) =M ) Ay ) TZyi| < |01, — M) M2 Ay lIM,) 24

Now we bound the two terms on the RH S of the above inequality separately as following

e For the first term, by equation 2.58 in the Chapter 2 and Lemma 2.8.3 in Chapter 2, for any
k € [K] we have with probability at least 1 —o(n 3K~ 1)

o1 1 a2 log(nkK)
||(M7/7/_M7/~y)M7//7/A”//k” < C Z hjA%

VAN
a
Q
=
=
b
<}
0]
S
=

e To bound the second term, by Lemma 3.6.11 and equation 2.58 in the Chapter 2, for any

k € [K] we have with probability at least 1 —o(n K1) for any i € [n]

~1/2 VK Wil 7P
”M”j/ﬂj/ Zﬁ//lH S C\/IIIE[X( N ,Nzhmin

Putting these results together we have the desired result. [

Lemma 3.6.11. Under conditions 3.15, 3.20 and 3.21, with probability with probability at least
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1 — o(n™3) the following holds for any i € [n]

—1/2
I, Y*Z,4]| < Cmax

hmm

[V IK[Wille 7]
N 'N :

Proof of Lemma 3.6.11. Fix any i € [n]. Notice

~1/2

Hy 2y = Z H, Y2,

Then for any j € ¥ andr € [N]

h- bj

\/_ +1/DY, H,\,Dy.
min

H,\ Ay, ||||W||]

(Yit)j

IN
2

1 172
'ﬁHjj

Zlm~
A
Ay
P
==

X
[\

ZI —

IN
ZIH

+[1H

LV hmm

By condition 3.15)

+VcK
V IIllIl

(By condition 3.20)

~

IN
Zlh‘

IN

\/_

1/2 |- _ /2
Cov(~Hy Wiy ) = <5t Y2 (Diag(Dyy) — DyiDY )Hy Y2 =,
N N2

Then we can plug b, B and {Zi}ie[n] into Lemma 3.6.18 and get with probability at most n~% the
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following holds

1 lel%|%|+mg>>
N jeVv h] ’

max [\/(|“I/|—|—log(n)) Nl 7N\/h_-(|7/|+10g(n))]}

where we have incorporated the following calculations

1 1
T 31
NPvity =y

1=
=
Ly
IN

TAT -1
WiAy hy

IN

V|K||W;l|oo
1
K||”i||°°

1 _
S IWilllaT, iy

N

< H;]Dlag(h oDy;)|| <

t=1

It’s easy to see that the terms in the first maximum are no smaller than those in the second max-
imum, except for the cases when there are extreme frequency heterogeneity among words. So
for simplicity we just use the second maximum in the bound. Finally under condition 3.21, by

applying union bound over i € [n] we have the desired result. 0

3.6.5 Additional Lemmas for Subsection 3.4.3

Lemma 3.6.12. For any j € [p|, we have

K K—1
gi=—— §Tyrs. |62 < —t
(kW2 Y 19" = —¢

Proof of Lemma 3.6.12. For any j € [p], notice it is straightforward that ]1}<5 ;= 0, then the second
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part of the result can be obtained through following.

la;II> 1 21%a;

2
||5]|| - Ha]H% E_KHajHl
o lel> 12
~eli KK
< llajllellajlly — 1

lajli K
lajli K~ K
Then we analyze the first part of the result. We first have the following straightforward transfor-

mation of s j-

20 272 - 2
ld;? n'di—nd;” oy (di—dp)* 13 (D
Si=n —1= ——Z
ITMge T 2 -2 Cn:

14,17 i

By the definition of §; we have

llajll1
d; :WTaj =

Then we continue to transform s as following

K?
_ T(iwwT —ww?T
 (1+KWT§)2 (n )51
K
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O]

Lemma 3.6.13. Under conditions 3.15, 3.16 and 3.21, for any j € |p| the following holds with

probability at least 1 —o(n3p~1)

Id;l1> Il
IdjlIF  lld;13

1 Nh;lo
<cC gy Nhilognp)
Nnhj n

Proof of Lemma 3.6.13. By Lemma 3.6.14 and Lemma 3.6.15, under conditions 3.16 and 3.21 we

have with probability at least 1 —o(n ) the following holds for any j € [p]

nh;
|dT 1y —d] 1| C leog(np) =Ayj

A nh; Nh;log(n
didj—dld;| < CW] (K %(p)H)zAzj

IN

Notice by equation 2.58 in the Chapter 2 under conditions 3.15 and 3.16 we have

Ayj <CAlj<C log(np)

dTl, =~ nh; Nnh;

Putting these together we have under conditions 3.15, 3.16 and 3.21, for any j € [p] the following
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holds with probability at least 1 —o(n3)

11 2(dT10)2 = ||d;[|*(d]1,)2
(dT1,)2(aT1,)?
(1117 = 1d12) (@ 10)? + (1|2 (@] 1) = (dT 1))
(dT1,)2(dT1,)?2
Ap(dT1,)? + Ay |djl|2(2dT 1, + Ay)

|§j—sjl =

<
N (d]1n)*(d] 10— Ap)?
_ A (d] 1) + A1 ||djlood] 1 (2d] 1y + Ay )
N (d]1n)*(d]1n— Ar)?
(By equation 2.58 in the Chapter 2)
g Ag(nhj)? +AinKhs (2nhj + Ay)
o (nhj)z(nhj —AI)Z
_ Aot KR
N nzhz-
<

h; Nhjl
[n J (K\/ og(np) ) ] log(np)]
N
INh;1
Nnhj n

]

Lemma 3.6.14. Under the conditions 3.15, 3.16 and 3.21, for any j € |p] the following holds with

probability at least 1 —o(n3p~1)

nh;
[d] n —d] 1| < Cy [ —Flog(np)
Proof of Lemma 3.6.14. Notice

n N
dily—di1, = thzl
1= =

2I~
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The following calculations are straightforward

1 1
N(Yit)] < N
\Y Y, = — <
(By quatlon 2.58 in the Chapter 2)
cnh;
< __J
- N

Then by the Bernstein inequality 3.6.28, under the conditions 3.16 and 3.21 we have the desired

result. L]

Lemma 3.6.15. Under conditions 3.15, 3.16 and 3.21, for any j € |p| the following holds with

probability at least 1 — o(n_3p_l)

nh; Nh;log(n
d1d, —de|<€7(1< MH)

n

Proof of Lemma 3.6.15. Notice

(Z —I—Djl')z
< 2
+22 Dji+ ) Dj;
=1
- (2 2 = 2
) +2 Z Dji+ Y. |Zi-EZ)|+ Y. D}
=1 i=1

+2II+III+d]de

M=

T 7. —

M: HM: Il

I

S~
I
—_

Then the remaining task is to bound |I|, |TI| and |III| respectively.
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e [: The bound for this term is straightforward

= YR =5 Y- <
i=1 l—l N
(By equation 2.58 in the Chapter 2)
< cnhj
- N

e II: Notice
1

n n
=2 ZiiDji= 3, ), ~¥u);D
i=1

i=1t=1

The following calculations are straightforward

Kh;

IN

2\

n N 1 n
ZZVCW(N(Y”)]D],) = ]_\7; D2 <—ZD
VR LD

(By equatlon 2.58 in the Chapter 2)
213

cnK*“h ;
N

IN

IN

By the Bernstein inequality 3.6.28 we have with probability at least 1 —o(n 3p~1) the

following holds
h hj
III| < CK max Wlog(np), Nlog(np)

e III: Notice

Inzzn"[z]% 7| = i[ Tejel 7~ E(Z]eje]Z;)

i=1

which falls into the form that is analyzed in Lemma 3.6.19. Now we specify the terms that
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are needed to implement Lemma 3.6.19. Firstly by Corollary 3.6.23 we have
s=n3p7 1, x= eje}, x; =1 forViée n]|
Then

Var(Y] %¥;) = Dji—D3+4D3},—4D5+4D% —4D% <D,

Var(Y] %¥,) = (Dji—D})* <2D% = (vip);

Then following the notations in Lemma 3.6.19, we define V = ¢ jpvi=Dj,vip= ZD%,

x=1,and 8 =n3p~!. Then we have

Tr(VTDiag(Di)V) = Dji

Ve =1

4 2
[x*ovial| = 2|[Djll
Ix*ovi|| = nm;

Then we have

N N2

Khjlog(np) (log(np))2>
i€[n]

T = Cmax max Iﬁlo (np) i(lo (np))? ) < Cmax
& log(np), 5 (log(np))” | <
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By Lemma 3.6.19 we have with probability at least 1 — o(n_3 p_l) the following holds

| = Zi Z]ejel 2~ E(Z]ejelZ,)]

) ‘

1
(V- Dllx* oviallt + [lx* o vy [|1) log(8), —Tlog(5)>

VAN

a

3

o

>
/N
|§

|

D20
< Cmax N2 —I—F,—Tlog(np)
[ Khinm; nm; Khilog(n 1 2
< Cmax \/< ]<72 ! 4 N3j>log(np>,max< / Ng( p)’(og](vnzp)) >10g(np)]

(By equation 2.58 in the Chapter 2 and under conditions 3.16 3.21)

V/nKlog(np)h; |nhjlog(np)

Cmax ,
N N3

IN

By comparing the bounds of |I|,|II| and |III| obtained above, under condition 3.16 we have the

desired result. O]

Lemma 3.6.16. For any j € [p], suppose Nhj <1, and T satisfies Nnhj < T, then we have

1 T
> —) > 1—exp {—I’LDKL (—HNiU)}
T n

Proof of Lemma 3.6.16. Fix any j € [p]. Notice if the following holds

1

n
1(D;;>0)<T
=1

by Cauchy-Schwarz inequality we have

17> 1

T

-
141 S
T

Id;|12 =

So we have




Then we only need to lower bound the probability on the RHS of the above inequality. Notice for
any i € [n]

1(ﬁji > 0) ~ Bernoulli <1 —(1 —Dj,-)N>
On the other hand by Taylor theorem we have 1 — (1 — D j,-)N <NDj; < Nhj. So we have

n n
P( ]1(Djl->0)§T> = P(ZBernoulli(l—(l—Dﬁ)N) §T>
i=1 i=1

P (Binomial (n,Nhj) < T)

oo e (2|

The last inequality follows from the Chernoff bound of Binomial distribution([54]), which holds

v

v

when Nnh j<T. This leads to the conclusion in the lemma. O]

Corollary 3.6.17. For any j € [p], under the same conditions as those in Lemma 3.6.16, and

further assume Nhj < 1/a with a > 1, then we have

P (HdAsz > ! ) > 1 —exp[—a(log(a) — 1)Nnh;]

IdjlIf — aNnh;

If we further assume condition 3.16 holds, we have HdAjHZ/HdAjH% > 1/(aNnh ) with probability at

least 1 —o(n3p~1).

Proof of Corollary 3.6.17. Under the further assumptions that a > 1 and Ni; < 1/a, we have the
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following

1 —aNh;
DKL(aNh]HNh]) = aNhjlog(a)+(1—aNhj)log EREEYT

(Since log(1 —x) > —x)

(Cl— I)Nhj
> alog(a)Nhj+ (1 —aNh;) (— vy
1—aNh;
_ J
a—1
> 1 — Nh;
(Since Nhj < 1/a)
> a(log(a) — 1)Nh;

By plugging T = aNnh; into the conclusion of Lemma 3.6.16, we get the first inequality. The final

statement is straightforward. 0

3.6.6 A lemma about ly norm of summation of random vectors

In this section we provide a general concentration lemma about the /> norm of summation of
random vectors. We first denote the following new set of notations. Assume {X;} ic[n) are indepen-

dently distributed, mean zero, p-dimensional random vectors, with

>
=
A

bj, for Vi€ [n],j € [p]

1X;|| < B, forVie [n]

Cov(X;) = X, forVié€ [n]

Then we have the following lemma about the /; norm of summation of {X;}.
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Lemma 3.6.18. With probability at most d the following holds

n
Y Xi
i=1

> Cmin {max [\/(bg(l?) —log(9)) i Tr(Zi), [|b]|(log(p) —log(8))

i=1

n

pIpY

i=1

max |, | (p —log(8)) ,B(p—log(9))

Proof of Lemma 3.6.18. We can bound the quantity of interest through two ways, one is through

union bound, and another is through Rayleigh quotient definition of vector’s /; norm.

)4 n 2
=\ X (Z <Xi>j>
j=1 \i=1

For each j € [p], by the Bernstein inequality 3.6.28, with probability at most 6 /p the follow-

é(x,) \/— log (g) é(&)na ~bjlog (g)]

Then by applying the union bound we have with probability at most & the following holds

o Union bound. Notice

ing holds

j 2Cmax

> Cmax

\/ (log(p) — log(8)) Y Tr(:). ]| log(p) —1og<6>>]

i=1

n
) Xi
i=1

e /> norm. By the definition of /; norm of a vector, and an € — net argument(Lemma 5.4 of

[46]) we have

n

2 Xi

i=1

= max yTZX <2 max ZyTX
et i35 ye?,

/4’

For each y € P!

14 by Cauchy-Schwarz we have |yTX;| < ||X;|| < B, and Var(yTX;) =

yTX;y. Then again by the Bernstein inequality 3.6.28, with probability at most J/9” the

following holds

n
Z yTX;| > Cmax

i=1

[ oe() B 2)
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Since |.Z lp /;1\ < 9P, again by applying the union bound we have with probability at most §

the following holds

n

> x

i=1

n

>

i=1

> Cmax |, | (p—log(d)) ,B(p —1log(5))

3.6.7 Nested concentrations over n and N in topic model

Under the notations assumed in the topic model, fix any positive semi-definite matrix ¥ € RP*P

and any x € R", and suppose for Vi € [n] and Vt;,1, € [N]

E(YJIZYZ-,]) <e; , E=maxe;

i€[n]
Y] XY, | <(b1); , By =max(by);
i ic[n]
Var(Y-T XY ) < (vl)i , V= max(vl)i
i i€[n]
YT XY | < (b12)i , Bip =max(byp);
! i€[n]
Var(Y{ TVi,) < (vi2)i » Via= ?Elaﬁ(Vn)i

Also denote gmax = max;ey] |I£!/2Diag(D;)X!/2||,. Then we develop two lemmas about control-
ling the following quantity
n
X =Y x? (2157, - EZ]17;)
i=1
One way is based on Bernstein inequality for bounded variables(we call it the bounded Bernstein),

and another is based on the Bernstein inequality for sub-exponential variables(we call it the sub-

exponential Bernstein).

Lemma 3.6.19 (Bounded Bernstein). Suppose X =VVT where V € RP*R With probability at most
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0 the following holds.

1
[X| > Cmax (\/—]W((N— Dl ovially +[lx* o v [l1) log(8), —Tlog(5)>

where

R 2
 cmas? o Diag(D, Ly 2 (1o (2
T = Cmaxx; min [max( NTr(V Dzag(D,)V)log( ) N2 ; V]l (log (Rn)) )

i€n]
1 _ o) 1 2 6 ?
max <_N||vmmg<Di>V||log (555 ) 2 V1B- (o2 (5 ) ) )]

Proof of Lemma 3.6.19. The idea is to first use a concentration over N to prove a 1 — J/n high
probability upper bound for ZZT YZ; for any i € [n], then we use union bound to construct bounded

version of ZIXZ;, and finally we implement a concentration over 7 to obtain the final bound.

We start with analyzing Zl.T Y.Z; for each fixed i € [n]. Notice

R N 2
2 1 T
2152 = |V1z|* =Y, (ﬁ 2V Y)
=1

r=1

This implies two ways to bound the quantity ZiT ¥7;.

e Union bound way: We have the absolute value bound and the variance bound for the sum-

mation above as following

1
NVrT Yit

1 i 1 )
) Var( v; Y,t) = o YV (Diag(Dy) - D]V, < VT Diag(D)V,

Then by the Bernstein inequality 3.6.28 and the union bound, we have with probability at
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most & /n the following holds for any r € [R]

1 0 1 0
> _—vTID; . — ) = - _
> Cmax <\/ NVr Diag(D;)V,log <Rn> , NHVrH log (Rn))

This indicates with probability at most 0 /n the following holds

1 N
5 L VY

t=1

2
2157, > Crmax (—%TrWTDiag(Di)V)log (If ) N Z IVl <l°g (15 ) ) )

e |5 norm way: By the definition of /, norm of a vector, and an €-net argument(Lemma 5.4 of

[46]) we have
= max y max y
VT1Z; V1Z; <2 TV1Z;
yeske ///1/11

Since .///6 41 < 9R in order to get a lower bound for ||V TZ;|| with probability at most & /n,

it’s enough to derive a lower bound for Vy € .# 5 41 with probability at most 89~ /n. Notice

1 N
YIVTZi=—Y yTVTy,
Nt=1

For each term inside the summation we have

2

1
—_yIVTY: VI o
PV < 21V

A 1
Z Var( —yTyT Ylt) = ¥ Y yTVT(Diag(D;) —D;D] )Vy < NyTVTDiag(D,-)Vy
=1

IA

1 .
S IVTDiag(D)V |

Then by the Bernstein inequality 3.6.28, we have with probability at most 59K /n the fol-

lowing holds

1 0 1 0
TyT7. - i . ) = -
YTVTZ]| = Cmax (\/ 1V TDiag(DV [1og (G- ). NHV|!z,oo10g(9Rn>>
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By union bound, we have with probability at most 6 /n the following holds

1 , S\ 1. 5 \\?
Z[¥7; > Cmax (—NHVTDlag(Di)VHlog (m) amHVHz,w (log (9”7)) >

Define

_ 2 Lyt 1 3 2 9 ’
T = Cfrele[u](x min [max( NTr(V Diag(D; )V)log( ) N2 ; Vil (log <Rn

max —l||VTDia (D;)V||1o o LHV2 lo o ’
N SVRUVINOS\ 9Ry, ) vz 1 2.0 | 192 Ry,

Define the following random variable by truncating (xl-ZZiT Z‘,Zi> on [0,7]

2 s 2
(#2727, o7 = MIN(GZ[2Z,.T)

Then we with probability at least 1 — d the following holds for any i € [n]
$2]32; = (32127,

[0,7]

Then we have the absolute value bound and the variance bound for the summation of (xl-zZl-T YZ;) [0,7]
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over i as following, where the first inequality in the variance bound is by applying Lemma 3.6.24

2
(222 0,7]

IA
~N

™
<
)
~
=
=0
N
N
N
~—
=
=
AN
1=
<
)
~
~—~
S
)
N
¥
N
~—

N 2
T ,
Z Ylt1 ZYZ E(Yitl ZYUZ)]
h=

1 n N N

= — fo [Z Z Var(YJlZY ZVar (Y] 2Y;) ]
N i=1 Hh=1rn=1n+#t

= N3 ZX D(vi2)i+ (v1)i]
1 4

= m((N—l)Hx ovilli+[Ix"ovifly)

With that we have the final 1 — 20 high probability bound

1
[X| < Cmax (\/—m((N— Dl ovialli + [lx*ovi[l1)log(8), —T108(5)>

]

Lemma 3.6.20 (Sub-exponential Bernstein). Suppose £ =VVT where V € RP*R With probability

at most 0 the following holds.

H |
X|=C \/—HKllgoH?CH%lOg@ — 1]l oo|x[| 0 log (& Z Veleo
where
Ro1 .. 1 ) 5 .
K = r:Z’I NV, Diag(D;)Vy — mHVerlog 7 ) for Vi € [n]

Proof of Lemma 3.6.20. The idea it to first use a concentration over N to prove a 1 — 6 /(Rn) high
probability bound for V,"Z; for any r € [R] and i € [n], then we truncate V,'Z; with this bound
to obtain a sub-gaussian random variable, which results in sub-exponentiality of the quantity of

quantity of interest.
175



Fix any i € [n], we first have
R

Z1xz; =Y (V1 z;)?
r=1

For any fixed r € [R], denote

1 ' 0 1 6
Ti, = Cmax (\/—NVFTDlag(Di)Vrlog (E) 5 —NHVerlOg (E))

Then following Union bound way of bounding quantity ZZ.TZZZ- in the proof of Lemma 3.6.19, we

have P(|V,)Z;| > T;,) < 8/(2Rn). Truncate the random variable V,Z; on [T}, T;,], denote as

V1z) [~T;,,T,]- Then for < T;,, by Bernstein inequality 3.6.28 we have

(|2 g0 21) = P2 >0)

< 5 2/2
= SO T T D e (DA, + LVl /3
NYr iag(D;) V+N|| rlloot /

< 2exp| — t2/2
- ¥V Diag(Di)Vy + 3 | Vrl|2Ti/3

On the other hand for ¢ > T;, we trivially have

2
t7/2
P (|02 g, 2 1) =0 < 2exp | -
(Vr z)[ Tir Ty p ILVVrTDiag(Di)Vr‘f']l\f“VrHooZTir/:%

This implies (VVTZi)[fTir,Y},} 1s sub-gaussian with sub-guassian norm satisfies the following

[ 1
< C er Dlag(Di>Vr+N’|Vr‘|w7}r

1 . 1 o
\/NVrTDlag(Di)Vr + ]T[HV,»HOO —log (E)]

VIZ) 1 1
|72 5,.m),

< C
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By Lemma 3.6.27 we have

R
1 . 1 )
< Y IDias(D)V, - V2 g (z)
Vi =
= Ck;

R
; VIZ)E g, 7,

By the Bernstein inequality for sub-exponential random variables(Proposition 5.16 of [46]), we

have with probability at most § /2 the following holds

R
; (W20 g, 1,1~ BT 2] g, 1,

(3.58)
>Cmax —HK||2HXIIZIOg(5),—||K||ooIIXI|oo10g(5)]
Notice on the other hand by the union bound with probability at least 1 — § /2 we have
VI Z) 1, 1,) =V Z, forVié [n],re(R] (3.59)
And we can also bound the maximum possible value of random variable V,' Z; through
VT Zi| < VDl + [V/T Di <2[[Vi oo (3.60)

Finally we combine all the above intermediate result, we have with probability at least 1 —  the
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following holds

n
x| = Y%7 (z]xz;-EZ]37,)

=N
1=

= |y

~
—
Tl

—_

I
[;1:
R

—_

(VT2 ~ (20, g, + VI Z0) 11, ~ BT 20, 7,
2
[

+
=
I
N

(By equation 3.59)

n R
2
< ; Z (FZ)(_3,7,)~BOTZ)E 7, 1]
il —
n R )
+Y Z[ EVIZ)? 1, 7, ~ B Z)]
i=1 =1
(By equation 3.58)
r 7 n ) R
< Cmax |/~ (k2 [13108(8), ~ |kl log(8)| + ¥ 2 ¥ [VIZIP(VIZ| > T;)
L 4 i=1 r=1
(By equation 3.60 and the definition of 7;,)
r 5 7 n 5 R S
< Cmax \/—HK“gonHleg(S),_||K||oo||x||oolog<6) -I-le- ZZHVAMF
I | R n
< C [\l x]310g(8) - 1 HXHZRV
< ([ llx[|3 1og(8) — [|%]|eo] | x[|o Tog (& Z Vrlleo

3.6.8 Lemmas about moments of quadratic form of multinomials

In this section we present some results about moments of quadratic form of multinomial distribu-
tions. Since these are general results outside the topic model framework, we incorporate the fol-
lowing new set of notations. Suppose X| ~ Multinomial(1,d), X, ~ Multinomial(1,d;), where
di,dy € RE, ||ldy|l; = ||da]l; = 1. Then we have the following lemma about the moments of

quadratic form of multinomials.
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Lemma 3.6.21 (Exact form). Suppose any positive semi-definite matrix ¥ € RP*P, we have

|(X) —d)TE(X; —dy)| < 2||diag(T)]|e +2d] 2d,
E((X; —d)TZ(X; —d1)) = diag(Z)Tdy —d[Zd,
Var((X) —dy)TZ(X| —dy)) = |diag(X)*|Td; — [diag(Z)Td)]* +4d] LDiag(dy ) Ld,
—4[diag (L) od1]TEd) +4diag(X)Td d] Zdy — 4(d] =d;)*
(X1 —d1)TE2(Xo —dp)| < ||Z]Imax + [|Zd ||eo + [|Ed2 |0 + |d] Zdbs
E((Xy—d)"2(Xp—da)) = O
Var((X; —dy)TE(Xp —dp)) = diag[EDiag(dy)X]Td) — d] LDiag(dy)%d,

—dZDiag(dy)Xd; + (d] £dy)*
Proof of Lemma 3.6.21. We first consider the absolute value bounds.

(X1 —d)TE(X; —dy)| < 2|X]ZX)|+2d]2d) <2|diag(E)]|es +2d] Ed;

(X1 —d)TZ(Xp —dp)| < [X[EX|+ X[ Zdy| +|d[ZX,| + |d[ Zds)|

IN

=l max + [1Zd1 lloo + | Zda|oo + [ 2|
The results about expectation are straightforward.

E((X; —dy)TE(X; —d))) = E(X[XX|)—d]Xd, = diag(X)Td| —d[Xd,

E(X -d1)T2(Xa —dp)) = E(X1—di)TEE(Xp —d3) =0
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The variances involve a bit more tedious calculations.

Var((X; —d)TE(X) —dy))
= E((X; —d)TEX) —dy))* — [E((X; —dy)TZ(X; —dy))]?
= E(X]IX| - 2X]Zd; +d]2d))? — [diag(Z)Td| —d]xd;)?
= E(X]IX|X[EX]) +4E(d] X X[ 2d;) + (d] 2d})?
—AR(X[EX\ X[ Xd)) + 2E(X[ XX d] Xd, ) — 4(X[ £d d] Xd))
—[diag(Z)Td) — d]Zd;)?
= [diag(Z)?]Td) +4d] EDiag(d;)Ed; + (d] Zd; )?
—4[diag(Z) ody]TEd) + 2diag(Z)Td d] Zdy — 4(d]Zd;)?
—[diag(Z)Td]* + 2diag(Z)Td d] £dy — (d]Zd;)?
= [diag(Z)?]Td; — [diag(Z)Td})* +4d] EDiag(d) ) d| — 4[diag(Z) o d{]TZd,

+4diag(Z)Tdd] =d; —4(d] Zd )
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Var((Xy —dy)TE(X; — d2))

= B((X; —d)TZ(Xy — dp))* — [E((X) — d))TE(X, — dy))]?

= E(X[IX; —X[Zd) —d] X, +d]Ld;)?

= E(X[IXpX]EX)) +E(dJ X1 X[ 2dy) + E(d] £X,X) 2d)) + (d] 2y )?
—2E(X]2X X[ Zdp) — 2E(X[ EX,X] 2d)) 4 2E (X[ 2X,d[ £d,)
+2E(X[Xdpd[ £Xp) — 2E(X] Xdod[ £dy) — 2B (d{ £Xod [ Edy)

= diag[EDiag(ds)X]d, +d} IDiag(d;)Zd; +d] IDiag(dy)Xd; + (d] £dy)*
—2d]~Diag(d)Zd, — 2d] IDiag(dy)Xd; + 2(d] £dy)*
+2(d]2dy)? —2(d]Zdy)? —2(d] Zdy)?

= diag[XDiag(dy)X]Td; — d;ZDiag(dl)Zdz - leZDiag(dz)Zdl + (dIZdz)z

]

We also give two corollaries based on the above lemma, where we choose either ¥ = Ip;//

— T —
or X = Vp Yy Here we have used 7" to denote any subset of [p]. £ =1,y denotes the p-
dimensional identity matrix, with diagonal terms that is not in ¥ being set to zeros, and v,, 5
denotes the p-dimensional vector with only non-zero entries in ¥* which takes values from |7|-

dimensional vector v.
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Corollary 3.6.22 (X =1, ). The following hold

|(X1 —d1)T L, 5 (Xq —dy)]
E((X1 —d)Tl,» (X1 —dy))

Var((X; — dl)TIp,”//(Xl —dy))

(X —d1) 9 (Xp —dy)]
E((X1 —d1), v (X2 —d3))

Var((X; —dy)™, v (Xp — d3))

Proof of Corollary 3.6.22. All the equalities are straightforward by plugging in ¥ =1, 5 into
Lemma 3.6.21. The inequalities about absolute value has a tiny improvement over the simple
plugging in bound obtained by setting X =, 4 in the corresponding part in Lemma 3.6.21, which

is due to the non-negativity of d;, d», X1 and X,. More specifically notice they can be decomposed

VAN

IN

IN

IN

1+ dp)y 2
1)yl = 11 (dr) |12

(1= 1)y 1)1 v 1l =4l dr) o112
+4[(d1)y I3 -4l dn) v |1*

(1= 11Dy )Nyl +4l ) ¢ 13
1+ (d1)Y, (da)y

0

(1)} (d2)y = ((d2)3)T(d))y
—((d1)3)T(d2)y + ((d1)} (d2) 4 )

(d1)3, (da)y

into positive and negative part, with the former larger than the later in absolute values

(X1 —d)T, v (X1 —dy) =

(X1 —d)TL, y(Xp—dy) =
So we have

(X1 —d))TL, 4 (X) —dy)| <

(X1 —d)TL, ¢ (X) —dy)| <

(X))}, (X1) |+ (dr)
(X))}, (X2)y |+ (d)

(d)y <1+[[(d1)yl2

(d2)y <1+(d1)}, (da)y

A

182



The first inequality about variance is also straightforward, the second inequality is a result by

Cauchy-Schwarz inequality.

’ 14 14 ) )4
((d)y)(d)y = Zl Z d2)jZ(d2
J= j=1 j=1
p p 2
= ]zl< W £ )
p
> (Z(dl) (d2) ) T (d)y)*
=1
O
Corollary 3.6.23 (X =v p,«;/v;’y/). The following holds
(X1 =d)Tvppv) (X1 —d)] < 212+ 20vlIZ ] (d1) o 1T
E((X1—d)Tvpyv) (X1 —dy)) = (V)T(dr)y — (VT (d1) )
Var((Xy —d1)Tvp yv) (X1 —d1)) = V() y — [ T(d1) 4]
+HAOT(dy) 5 )2 (V)T (dr) y — 4T (dy) (V)T (dy)
+HA(T(dy) )2 (V) T(dr)y —4(vT(dy) y)*
< M)y —[0A)Td)y]* < (6T (dr)y
(X —d))Tvp v (Xo—da)| < IVIZ + IVIE ) 9+ 1 (d2) y 1)
HVIZI @) 7l (d2) ¢ ]l
E((X1—d))Tvpyv] (X2 —dp)) = 0
Var((X) —d1)Tvp yv) (X —da)) = ()T (dy)y — (T (d)y)?)[(*) T (d2) y — (VT (do) )]
< (A)(d)y ()T (do)y

Proof of Corollary 3.6.23. All the first equalities or inequalities in each line are straightforward by

pluggingin ¥ =v p’a,/v;j/ into Lemma 3.6.21 and Cauchy-Schwarz inequality. In order to get the

second equalities or inequalities, again we need some tedious calculations.
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o E((X)— dl)Tvp77/v;77/(X1 —dj)). The calculations are straightforward.

o Var((X; — dl)Tvp’a,/v]T)j/(Xl —dj)). By straightforward calculations and Lemma 3.6.25 we

have

Var((X) —d\)Tvp yv) (X1 —d1))

= ()T(d1)y = [(A)T(d) 7> +40T(d) ) ()T (d)
—4vT(d1)y (V)T (d1)y +40T(d1)y) > ()T (d1)y —4(T(d) )
(By Lemma 3.6.25)

Oy = [T (d)y ] < 01Ty

IN

o Var((X; —d; )Tvp;;/v;ﬂ/(Xz —dy)). By straightforward calculations we have
Var((X —d)TZ(X — ) = [()T(d1)y = (T (d1) 7)) ()T (d2) y = (VT (d2) y)?]
By Lemma 3.6.26 we know
)T(d)y = (T (d1)y)> 20, (P)T(da)y — (vT(da)y)* >0
So we can upper bound Var((X| —d;)TE(X, —dp)) through the following

Var(Xy —d))TEZ(Xa —d2)) = [()T(d1)y = (T (d) ) ][0P)T(do) y = (T (d2) y)?]

< (A)T(d)y ()T (d)y
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3.6.9 Additional lemmas

Lemma 3.6.24. Assuming a real random variable X has finite mean and variance, for any fixed
interval [a,b], we truncate X on [a,b] and denote the resulting random variable as X, y, that is

X(q,p) = min(max(X,a),b), then we always have Var(X|, ) < Var(X).

Proof of Lemma 3.6.24. We prove the result under 3 different scenarios, that is E(X) < a, E(X) €

(a,b) or E(X) > b.

e E(X) € (a,b). Firstly by the following argument the squared deviance from E(X) is does

not decrease after truncation.

— — 2 X
Var(x) = ( [+ = x>b) (¢~ E(X))dpix (2)
> [ @B+ [ (B0 dux ()

+ [ (0=B00)) (v

2 2
= [ E00))dnx,, () = B(X, )~ E(X))
On the other hand by the definition of variance, we have
. 2
Var(X[a’b]) = rntlnE(X[a,b] — l‘)

Combine these we have Var(X[, ) < Var(X).

e E(X) <a. By asimilar argument as in the previous case, we have Var (X x) ) < Var(X).

)

Then we further have

Var(Xg(x) ) = ( [ mb) (= BX) Pty ()

2
= /E X)<x<a Od‘uX ):b) () + a<x<b (x—a) d'uXUE(X)»b] (%)
= [ @Pdny (9 = E(Xq) —a)?
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Again by the definition of variance we have Var(X, »)) < Var(X[g(x)p)). which leads to

the desired conclusion combining with Var(X[E(X), b]) <Var(X).
e E(X) > b. This case can be easily proved following the similar argument as in that in the
previous case.
Combining the argument in these 3 different cases we have the desired the result. [

Lemma 3.6.25. For any pairs of non-negative vectors v,d € RE , and denote ¥ = {j € [p] : v i 7

0,dj # 0}. Then we have the following inequality
2Td(v?)Td — (v)Td — (vId)? <0 (3.61)

and the equality holds if and only if v,y o< 1| o and ||d||; = 1.

Proof of Lemma 3.6.25. Notice the LHS of inequality 3.61 is unchanged if we truncate the entries

of v,d to the set ., that is
2 2
2 ,dy(ve)Tdy — (V) Tdy — (v;dyf =20Td(V)Td— (V)Td — (vTd)?

So without loss of generality, we assume all the entries of v,d are positive. Denote u = vod, then
we rewrite the LH S of inequality 3.61 in terms of u, v, and denote the resulting formula as f(u,v),
that is

2 3
Sfu,v) = 2fful|yluov[y = fluov=ily — [lully

We have the following calculations

d

WD) 5 (ylitp—v)ou
92 f(u, ,

% = —2Diag(u)

Then we know that for any fixed u, f(u,v) is maximized if and only if v = |ju||;1,, and the

maximum value can be easily shown as 0. So we have proved f(u,v) > 0. Finally the necessary
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and sufficient condition for f(u,v) = 0 to hold, that is v = ||u[|{ 1, can be rewritten as following

in terms of our originally notations v, d
[vod|ly =vj, forVje [p]

and it can be easily shown that the above holds if and only if v o< 1, and ||d||; = 1. O

Lemma 3.6.26. For any pairs of non-negative vectors v,d € Ri with ||d||; <1, and denote . =

{j€lp]:vj#0,d;# 0}. Then we have the following inequality
(v)Td — (vTd)?> >0 (3.62)

and the equality holds if and only if v,y o< 1| o and ||d||; = 1.

Proof of Lemma 3.6.26. Similar to the proof of Lemma 3.6.25, without loss of generality we can

assume all the entries of v,d are positive. Then we discuss separately about the cases ||d||; = 1 and

]l < 1.

e ||d||; = 1: In this case the LHS of inequality 3.62 can be rewritten as following

fnd) = (A)Td-(Tad)?

= (W)Td1}d—(vTd)?

2
)4 )4
(g [ (g

Jj=1 J=1

And it is obvious the final formula is > 0 by Cauchy-Schwarz inequality, and equality holds

if and only if v o< 1.

e ||d||; < 1: In this case we first make the following padding to v,d



Then it’s easy to show that f(v,d) = f(v*,d*), and f(v*,d") falls into the previous case,
which is shown to be > 0 by Cauchy-Schwarz inequality, and the equality holds if and only
if v* o< 1,,. But on the other hand by the definition, the last entry of v* has to be 0, so in this

case the inequality would never be tight.
With all the above arguments we proved the desired result. 0

Lemma 3.6.27. For any sub-guassian random vector X = (X1, ...,Xy), we have the following

N2

I X
Vn

n

x?
1

n
2
i=1

<
V[Z l: Wl

Proof of Lemma 3.6.27. The first inequality can be proved through the following

1/p

_ . »
= sup p_l E (Z Xi2>
L \i=1

p>1

n
)RS
i=1 Vi

(By Cauchy-Schwarz inequality)

r no oy 2p /P
sup p*1 E (—izlxl)
p>1 Vn

(By Cauc-hy—Schwarz inequality)

v

oIy x. |P12/p
p>1 i vn
2
i1 Xi
\/ﬁ %)
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On the other hand

n
Y x?
i=1

Y1

IN

IN

IN

1/p
sup p_l
p>1

E (é Xﬁ) ’

(By Minkowski inequality)

1/
e BB
2B seion ()]

n 2
3 {2?32 22 e (x27)] 1/<zp>}

i=1 (P22

2

2y, {sup<p>—1/2 E (X,-”)}””}

i=1 | p=1

- (\)
M
B
-S_w

]

Lemma 3.6.28 (A more user-friendly Bernstein Inequality). Let {&,}7 | be a sequence of inde-

pendent random variables that satisfies the following

- iE(gn)’ Vn= ivm’(gn)a‘én’ <C

i=1

i=1

Then for a given vanishing probability 0, the following event happens with probability at most §.

Y E(&)— En

—1

> max (2 —Vulog (g) , —gClog (g))
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3.6.10 Proof of Proposition 3.3.5

In this section we analyze the concentration phenomenon of the singular vectors of random ma-
trices with Dirichlet columns, and Proposition 3.3.5 is just one conclusion of the main theorem
in this subsection Theorem 3.6.29. Across this subsection we assume the following settings and
notations. Suppose W € RX*" is a short-fat matrix, that is K is a fixed constant and 7 is assumed

to go oo, and has columns i.i.d generated through a same Dirichlet distribution
W; ~ Dir(alg), Vi€ n]

Denote Q = E(W), and the ith singular components(singular value, left singular vector and right

singular vector) of W and Q as {/L-, i;,9;} and {A;,u;,v;}. Moreover it’s easy to see that

1 n 1 1
Q=L M=y w= ik ov=-=1
K K.n» 1 K’ ui \/E K, V1 \/ﬁ n

Denote Sy = WWT /n and Ly = E(Zy ). Then by straightforward calculations we have

1

Then it’s easy to see that the first eigenvalue and eigenvector of Sy are ||Zy||o = 112 /nand ;. And
by a straightforward application of Lemma 3.6.35 we know that the first eigenvalue and eigenvector

of Ly are ||Zw ||, = llz/n = 1/K and u; = 1g/v/K. Then we have the following main theorem.

Theorem 3.6.29. With the above assumptions and notations, for n large enough we have with

probability at least 1 — 4K*n=2 the following holds

I
i —wll, < 2v2K2y/ 28 (3.63)
n
A 1
2 —A| < 16K7/2%(nn) (3.64)
10v/2K7/2 10g(n)

bl — < 3.65
91 =vill2 < Kol n (3.65)
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Remark. Equation 3.63 is a direct result of application of the Hoeffding concentration inequal-
ity(Lemma 3.6.31) and sin O theorem(Lemma 3.6.34). But the other two results are non-trivial, and
their superiority over the trivial application of any concentration inequalities or sin® theorems,
relies on the underlying Dirichlet-distributed columns assumption on W, especially the sum-to-one

nature and a uniform expectation assumption of the Dirichlet distribution.

Proof of Theorem 3.6.29. By setting t = y/log(n)/n in Lemma 3.6.32 and ¢ = \/log(n)/n/K in

Lemma 3.6.33, we know that there exists an event E with P(E) > 1 —4K?n~2, on which the

following holds

- K2log(n
Sy -zwlf < e (.66

log(n

~—"

IWQT /n—QQT /n||3

IN

(3.67)
n

Under our assumptions and notations, it’s easy to see that {112 /n, i} and {112 /n,uy} are the first
eigen pairs of matrices Xy and Xy respectively. Now we are ready to prove the 3 inequalities in

the theorem.

e Proof of 3.63: By Lemma 3.6.34, inequality 3.66 and the fact that ||Zy ||, = 1/K, we have

the desired result.

e Proof of 3.64: From the definition of eigenvalues we have

T
—=|Zwl, = @
n

= (@ —u+u)" Ew —Zw+Zw) (@ —uy +up)

12
= —+I+I11+111
n
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where we have used /, /] and /1] to denote the "1st", "2nd" and "3rd" order terms respectively.

I = ulSy (it —wy)+u] (Ew —Zw)ur + (@1 —u)) T Zwuy
I = ul (Ew—Zw) (@1 —up)+ (@ —up) " Zw (@ —up) + (4 —u) T (Ew —Zw) ug

ar = (@ —u)" (Ew —Zw) (4 —uy)

By Equation 3.66 the first conclusion 3.63, we have the following straightforward upper

bounds for |II| and |I1]| on the event E.

11| < |ur]l2|Ew — Zwll2llity —uy||2 + [Jdy — wy || T Zw 2] |81 —uz|]2

+||d1 —up |2 Ew — Zwl|2]u1] |2

I I 1 1
< K Og(n)Z\/iKz Og(n)+2\/§K2—2\/§K2 og(n)
n n K n
1 1
VAR \/ og(n) \/ og(n)
n n
1
— (s+avard )
n
111 < iy — uy|)o|[Sw — Zw 2] ld; — ur ]2
32

< 2/3K2 /log(n)zﬁKz\/log(n)K\/log(n):SKs (log(n))

n n n n

Before we analyze the term /, we first notice the following two facts.

1

ul Ewuyp = uIZWm:E (3.68)
I
Ty > 1 agloel) L vent B (3.69)
n

Here Equation 3.68 follows from direct calculation based on the formulas of u#; and Sw.

And Equation 3.69 can be easily deduced based on the first result 3.63 we have just proved.
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Then we are ready to study the term /.

1| < |ulZw (4 —up)|+ |u] (Ew —Zw)ur| + (@1 —u))T Sy

(By Equation 3.68 and the fact that ] is the first eigenvector of Xy )

. 1 .
= |[Zwll2|a]u; — 1]+ E_||ZW||2 + [uld; —1||1Zw|]2
(By Equation 3.69 and the fact that || Xy ||, = 1/K)

n

Putting these results of 7,11 and /11 back into their original definitions, we have on event E,

22 2
oAz
n I’l

(Since llz/n =1/K)

< 2453108
n

A

= % —24K31og(n) < A2 < = 4+ 24K log(n)

1 \ 1
= /2 \/1—24K4 og(n) < < E\/l 24x4108(")
n

(For n large enough)

[n (2o 4p4l0em) _a  [n (1, 4log(n)
- K(1 JUK ) << o (1 g2kt
(Recall that A} = v/n/K)
A log(n)
= A=A <16K722200
A=A < NG

x| =

S

n

Which is our second conclusion.

e Proof of 3.65: By definition of {;11 ,i1,V1} we have

WTa; — A9 =0
= WTi —QTa +QTa; — 4191 + A1) —11\71 =0

= (WT—=QN)a;+ (A — AP+ = A9 — Qi

1 1l 11
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Then we analyze the terms 1, 1] and /11 separately.

— I: We first introduce one more fact that is similar to Equation 3.68.
WTul = QTul = Lﬂn (3.70)
VK
Then we have on the event E,

2 = [IWT=QD)i ||

(By Equation 3.70)

= V() —u)TW=Q)WT —QT)(; —u;)

IN

iy —up|[2[[(W —=Q)(WT = QT)||,
(By the first proved result 3.63)

1
sk 220y oy wT —am),
n

8K*1og(n) [|[Ew — Zw|l2 +2||WQT /n— QQT /n||3 +||Zw — QQT /n|3]

IN

IA

(By inequalities 3.66 and 3.67)

IN

8K*log(n) | (K +2) 1°g,,f”)+||zw—szm/n||2]

(By a direct_application of Lemma 3.6.35)
I log(n) n 1
n K(Ka+1)
(For n that is large enough)
9K
Koa+1

= 8K*log(n) | (K +2)

IN

log(n)

— II: By inequality 3.64 which we have already proved, we have

2 log(n
1|2 = A — 2| < 16[(7/2%

— III: Denote V = [v1, V5] be a set of orthonormal basis in R” that is expended based on
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v1, then by the SVD of Q = ulllv]T and the fact that /, = VIVI + V2V2T, we have the

straightforward calculations
I = A9 — QT = Vlv.{ﬁlll + V2V2T\91/11 — Vlllu.lrﬁl
Then by the fact that vIVz =0,,_1 we have

1[5 = A9 —QTay [l = |vv] 914y + VoV 914y —vi Al |13

= A [Ivaay —viv]on |3+ 1vavT o113

> AT|VaVioil

= APV VW)

= A1V1V2V2V1

= )“1"1( —viv] )9

= Af(1=(]m)?)

(Assuming vIﬁ 1>0)
> AP(1—v]9y)

12
= —Hvl—V1H2

By putting back the results of 7,1/ and /1] back into their original relation equation, for n

large enough we have

10K3
Ko—+1

log(n) = [[I|l2+[|]|> = |||z =

\/—HVI_VIHZ

By plugging in the fact that A; = \/n/K we have the final desired result.

Remark. We make the following remarks on the proof of Theorem 3.6.29.
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o We first works out the result on the first left singular vector of Sy, because it is easiest to
make full use of the power of concentration inequalities through the assumption that K is
a fixed constant while n goes to . Then we work out the other results in a "left-to-right",

"easy-to-difficult” manner.

o [n the proof of second result 3.64, we introduced three terms 1,11 and 111, and called them
the "Ist", "2nd" and "3rd" order terms. The names are given based on how many (ﬁW —Xw)
or (fiy —uy) are involved in each term. The resulting upper bounds for II and I1I depend on
n through the "2nd" and "3rd" order of \/W, which is natural given their dependence
of (Ew —Zw) or (i, —uy) in their formulations. But on the other hand the upper bound
for the "1st" order term I depend on n through the "2nd" order instead of the "Ist" order of

log(n)/n, which results from the fact that the columns of W are iid Dirichlet-distributed
with a uniform mean. And this induces a sharper upper bound in the result 3.64 over trivial

applications of concentration inequalities.

e During the process of bounding I in the proof of 3.65, we can bound the term ||(W —

Q)(WT —QT)||, in a more trivial way such as

[(W=Q)(WT —QT)]l; <[[WWT];+2[[WQT||2 +]|QQT]|

if we only cares about the dependence on n in the error rate. But through a little more
complex argument as we did in the proof, we can obtain a result with better dependence on

K.

With Theorem 3.6.29 in hand we are able to prove the following theorem about the remaining

singular values of W.

Theorem 3.6.30. With probability at least 1 — 4K?*n~2, the following holds

n n

A

<Ag < <Ay <
K(Ka+1) K(Koe+1)
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Proof of Theorem 3.6.30. To study the singular values of W, it is equivalent to study the eigenval-

ues of £yy. Notice by our definitions

. A? . AP A2 A2
Sw—"Laa] = Sw—"Laa] - [ Zw— Zugu] |+ | 2w — Luqu]
n n n n
~—_———
A
A2 A2 A2
3 1 ~ ~ 1 1
= (ZW—ZW) — (—uluI — —uluI + ZW——uluI
n n n
B C

Then the 2 ~ Kth eigenvalues of £y and Xy are exactly the 1 ~ (K — 1)th eigenvalues of A and C.

By the Weyl’s inequality we have
Ak —1(C)+ Ak (B) < Ag—1(A) < - < A4(A) < A41(C) + A4 (B) (3.71)

Here we have overload the notations A;, without inducing confusions. On the other hand by Lemma

3.6.35 we have
1
Ak 1(C)=4(C)= ———
and by simple algebra

—|1Bll2 < Ak (B) < 41(B) < [[B]l2

Plugging these results back into Equation 3.71 we have

1
—||Bll2 < Ag—1(A) <--- <4 (A) <

- - ——) ;1
K(Ka+1) _K(K(x+1)+H 2

Then the final task is to upper bound ||B||». Denote the event in Theorem 3.6.29 as E, which
holds with probability at least 1 —4K2n~2. The remaining analysis is conditioned on E. Then by

Equation 3.63 in Theorem 3.6.29 we have

I
1> aluy > 1 g4xlogn) (3.72)
n
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Then we have

. 12 A2
Bl < |Ew—Zw],+ %ﬁlbﬂ_?l”l”}
2
. A2 A2 A2 A2
= 8w —Zw |y +||= @Al — —Laa] + —taa] — —Lugu] 2
. A2 22| A2
< Bw—Zwly+ | =+ - [wa] -],

(By o] o] < nd] ~ ] = /2200 ?

. AE AZ| AP
< |IEw-x LT T2 2(aTuy)?
< Ew=Ewly+ |-+ (@]u1)
(By equations 3.64, 3.66 and 3.72, and the fact that | = \/n/K)
< 7Ky 08
n
Plugging this back into Equation 3.6.10 we have
1 log(n) 1 log(n)
——— —TK\ | —= <A 1(A) < <AA) <K ——+7K
K(Ko+1) o ShkA) s shl )_K(Ka+1)+ n
Finally by multiplying n and taking square root, we have the desired result. ]

Lemma 3.6.31 (Hoeffding Inequality). Suppose X|,X»,...,X, are independent random variables

such that 0 < X; < C for Vi € [n], and denote S, =Y.' | X;, then we have

212

n

Then the second lemma is about the concentration of £y around X.

Lemma 3.6.32. For Vt > 0, we have
P (| Sw—Zwll? < K2t2> > 1 — 2K exp(—2n?)
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Proof of Lemma 3.6.32. For Vk,l € [K] we have
A 1 &
Ew)k = . Y WiWy;
i=1

Since 0 < W;;W;; < 1, by Hoeffding inequality 3.6.31 we have
P(|(Ew )i — (Ew )il > 1) < 2exp(—2nr°)
Denote the event E; = {|(Ew )7 — (Zw )| < t|Vk, I € [K]}. Then by the union bound we have
P(E;) > 1 —2K?exp(—2nt?)

Then under event E;, we have

A 2 & 2 2.2
Zw—Zwlle= Y, [Cwu—Cwlul” <Kt
k,le[K]

Then the result follows.

Lemma 3.6.33. For Vt > 0, we have
P (| WQT /n—QQT /n||% < K2t2> > 1 — 2K exp(—2K2nt?)
Proof of Lemma 3.6.33. Since Q = 1 , /K, for Vk € [K]| we have
1 n
wQTt = — W
(( /M) ”Ki; ki
Since 0 < W; < 1, by Hoeffding inequality 3.6.31 we have

P(|(WQT /n)y — (QQT /n)y| > 1) < 2exp(—2K*nt?)
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Denote the event E; = {|(WQT /n)i; — (QQT /n)y| <t|Vk,l € [K]}. Then by the union bound we
have

P(E;) > 1 — 2K exp(—2K>nt?)

Then under event E;, we have

[WQT/n—QQT /|l = Y [(WQT/n)y—(QQT/n)y]* < K1
k,l€[K]

Then the result follows. ]

Lemma 3.6.34 (sin® theorem in [52]). Suppose {A{,v|} and {il,ﬁ 1} are the first eigen pairs of

symmetric matrices M and M respectively. Then the following holds

2V2||M — M||F
M

91 —vill2 <

Lemma 3.6.35. Suppose symmetric matrix M € RKXK nas the following form

For the non-trivial case with b # 0, M has two eigenvalues, one is a+ b(K — 1) with the corre-

sponding eigenvector 1k /\/K, and another eigenvalue is (a — b) with multiplicity (K — 1).

Proof of Lemma 3.6.35. By straightforward calculation we have
1 1
M—I[K = [a+b(K— 1)] —K]lK

VK

which proves first half of the conclusion. Then we subtract the first eigen-component of M from
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M, and get

M—la+bK—1)] (ILK/\/f> (11K/\/E>T — (b—a) (IK— %ILKxK)

Notice for Vv € RK with ||v||, = 1, we have

T 1 1 (&,
1% IK_gﬂKXK Vv = Z

K k=1
K 2
= YRl
ko gov K

IN

where we have denoted s, = Zszl vi. The last inequality holds as long as v additionally satisfies
sy = 0, which indicates 1 is an eigenvalue of (Ix — 1g«g/K) with multiplicity K — 1. Also it’s
easy to check that (Ix — 1g«x/K) has rank at most K — 1, so we know that 1 is the only non-zero

eigenvalue of this matrix. 0
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CHAPTER 4
A MODEL BASED APPROACH TO INFORMATION RETRIEVAL

4.1 Backgroud

Information Retrieval (IR) has many applications in text mining and artificial intelligence. Given
a collection of documents, a TR algorithm allows the user to make a query (e.g., a short sentence
or a few key words) and returns a rank of the “relevance" of all documents to the query. It is one
of the core tasks of web search engines. Take Google as an example. About 1.2 trillion queries
were performed on its search engine during the year of 2012.1 The vast applications in industry
motivated active research on TR over the past decades. Each year, many new methods and datasets
are published in the Text REtrieval Conference (TREC).2

A common IR approach is to rank documents by measuring the “similarity" between the vector
of word frequencies (VWF) for the query and VWF for each document. Various similarity mea-
sures were proposed in the literature [6, 9, 10], among which #idf [10] is the most popular one
and is often used as a benchmark in empirical experiments. However, these heuristic methods are
not based on any probabilistic models and lack of statistical guarantee.

Probabilistic IR approaches try to model the generating process of the document D, the query
0, and a binary vector R indicating the true relevance between the query and the document. Then
the document ranking is based on the estimated posterior likelihood P(R|D, Q). Probabilistic ap-
proaches further divide into two sub-classes. The class of Probability Relevance Framework (PRF)
methods focus on modeling the generating of documents given the query, i.e., P(D|Q,R). Exam-
ples include the Robertson/Sprck Jones model [43], 2-Poisson model [55], and BM25 model [44].
However, in reality, queries are typically generated after the documents are generated, so it is more
natural to model the generating of the query given the underlying documents, i.e., P(Q|D,R). This

gives rise to the second class of methods, known as Language Models (LM). [56] introduced the

lI.http:/www.internetlivestats.com/google-search—-statistics/

2. https://trec.nist.gov/
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Table 4.1: Statistical Literature Abstracts (SLA) dataset.
documents dictionary | query type I | query type II
3193 abstracts | 2934 words title key words

first language model, and later many variants and generalizations were proposed [57, 58, 59, 60].
Under the language model framework, smoothing on the posterior likelihood was also introduced
to improve the real performance [61, 62].

Despite a lot of recent progress, there are practical issues which cannot be easily resolved in

the existing IR framework.

e The aforementioned methods share the same philosophy —The word frequencies in a “rel-
evant" document should be “similar" to the word frequencies in the query. But this is not
exactly true in reality. Often, queries are composed of a few “key words", while documents

contain much longer text and use a lot of transitional words.

e In many scenarios, a relevance feedback dataset is available [63]. It contains a collection of
documents (which may be different from the collection of documents in the IR system) and
a number of query-document pairs that are known to be relevant. For example, if we are
interested in building a IR system for querying academic papers, we can treat a paper and its
key words as a truly relevant query(key words)-document(paper) pair. The relevance feed-
back data are a resource to learn what “relevance" means, but very few of existing methods

allow to incorporate them.

[63] is one of the few works that had explicitly taken advantages of the feedback information
in the IR task. They proposed to use the “center" of the feedback documents to smooth the query
model, where the “center" is obtained through minimizing the average KL-divergence over the
feedback documents. More specifically, they first fit a feedback query model through minimizing

the penalized KL-divergence over the feedback documents,

éy:argmel gx (6164,) — AD(6|p(-7)) 4.1)
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and then a new query model éQ/ is obtained through smoothing the original query model éQ

with éy

by =(1—a)bp+aby (4.2)

and finally a document d is scored by D(éQ/|éd). It can be seen that in their procedures,
the feedback query model @ & is trained only based on the feedback documents {d;}!" | without
using any query information itself. The new query model éQ/ is obtained through balancing the
noisy original query model éQ and a more stable background feedback document model 0, but
it is tuned only by a single parameter ¢, which is unreasonable since different words should be
associated with different amount of smoothing. For example, words martingale and the(See Table
4.4.3 and Table 4.4.3), which have large frequency heterogeneity between queries and documents,
should be modeled based more on the original query model éQ than the feedback document model
0 7z, while words condition and total have similar frequency among queries and documents, so
they should be better modeled based more on the feedback document model 6 'z, which is more
stable due to the abundance of feedback documents.

Take the Statistical Literature Abstracts (SLA) dataset [64] for example. It contains the ab-
stracts (documents) of papers in four representative statistical journals during a 10-year time pe-
riod. Each document is naturally associated with two “relevant" queries: paper title, and the col-
lection of key words. We computed the average correlation between word frequencies of a rele-
vant document-query pair.3 The correlation is only 0.331 when queries are paper titles and 0.280
when queries are key words. It clearly suggests that the word frequencies in documents and in
queries are not “similarly". The reason is that some words such as martingale, pseudo are more
frequently used in queries than in documents while the situation is opposite for some other words
such as propose, these. Is it possible to know which words have inflated (or deflated) frequencies

in queries? Interestingly, we can learn such information from the available query-document pairs.

3. For each query-document pair {g;,d;}, we first compute the Pearson correlation between the two sequences ¢;
and d;, then the average correlation is computed by averaging over all these Pearson correlations.
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4.2 Our proposal

The above observations motivate the core ideas behind our approach:

e We introduce a new model for the generation of queries given documents, by including
parameters to capture the “difference" between word frequencies in queries and that in doc-

uments.

e We propose using the relevance feedback data to estimate the “difference" parameters. The
philosophy is that, the difference between word frequencies in queries and word frequencies

in documents is an intrinsic feature of dictionary words and can be shared across corpora.

4.2.1 The FILM model

Consider a setting where we have n documents written on a vocabulary of p words and the user
makes a document query. Following the convention, let D € Rixn and g € Rﬁ_ be the word-
document matrix and a query word vector, where D; is the empirical distribution of words in the
ith document and ¢ is the counts of word j in the query, for 1 <i<n,1 < j < p. We assume there
is one document 2 € {1,2,...,n} that is truly relevant to the query. Introduce parameters r € R” |
where r(j) captures the frequency inflation of word j from the document to query. We model that,

conditioning on (D, &), the entries of ¢ are independently generated and satisfy
q;|(D,h) ~ Poisson(rj 'Djh)» 1<j<p. (4.3)

Additionally, we assume a relevance feedback dataset is available which contains m documents
written on the same dictionary, whose word-document matrix is denoted as D* € Rﬁxm, and
T relevant query-document pairs, denoted as (Qf,h;) for ¢ € [T], where Qf € R is the vec-
tor of word counts in the 7-th query and A/ € [m] is index of the relevant document. Write

Q" =[07,05,...,07] € RiXT and h* = (h{,h3,...,h5) . We impose a similar model on the
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feedback data: Conditioning on (D*, h*), the entries of Q* are independently generated such that
Qji|(D*,h*) ~Poisson(rj - D), 1<t<T,1<j<p. (4.4)

We call (4.3)-(4.4) the Feedback-associated frequency-Inflated Language Model (FILM). When all
entries of r are equal, model (4.3) alone is a Poisson version of the language model [56, 59]. Com-

pared with traditional language models, FILM is more realistic and can successfully incorporate

feedback data.

4.2.2 The TR algorithm

We propose a TR algorithm which consists a training phase and a ranking phase. In the training
phase, we estimate r from (4.4) using the feedback data. In the ranking phase, we rank documents

by posterior likelihood under model (4.3) with plugged-in 7.

Training phase. We use (D*,h*) to estimate r. The log-likelihood of Model (4.4) is

Tr p
= Z Z Qi log(rjDfe) = 1D ) (4.5)
=1 j=1

However, if we directly maximize (4.5), the solution will contain a lot of zeros. Since queries are
much shorter than documents, many words in a document never appear in the associated query.
For these words, r; is estimated to zero by MLE. Too many zero’s in the solution will make the
ranking phase unstable. To resolve this issue, we hope to add a penalty term such that it prevents the
solution from having a lot of zero’s and at the same time keeps the computation simple. Inspired
by the design of conjugate priors in Bayesian statistics (see the remark below), we propose the

following penalized log-likelihood:
p T
Ou=L0 Z X Dyl = wlog(ry)] (4.6)
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where {A, 1} are tuning parameters. The maximizer of E; (r) has a closed-form solution

f#f _ Zthl [th +)““Djht]
/ (1+1)XL D%

; 1<j<p. 4.7

Note that for those words j such that Z;T:1 Q}k-t =0 and ZIT:1 Dj‘h, # 0, the corresponding ?}‘- =
HLA u. Hence, anonzero A guarantees that these entries of 7* won’t be zero. The tuning parameters

{A, 1} can be selected by cross-validation.

Ranking phase. On top of Model (4.3), we assume 4 is drawn from a prior with P(h = i) = m;.
Given r and 7, we propose ranking documents using the posterior probability P(h = i|D,q), which
by Bayes’ rule is equivalent to ranking documents using the posterior log-likelihood log P(¢|D, h =

i). Under Model (4.3), it is further equivalent to ranking documents through the following score:

14
S(q,d;;r,m) = log(m;) + Z qjlog(rjDji) —riDji]. (4.8)
]:

We then plug in the estimator of r from (4.7) and rank documents in the descending order of
S(q,d;;r,m), 1 <i<n. The weights 7; are supposed to come from prior knowledge. In all numer-
ical experiments of this paper, we simply set 71; = 1/n, and in this case we simplify the notation

in 4.8 as S(q,d;;r).

4.2.3 Why does the proposed method outperform the LM?

Suppose we are in a case where our method outperform the (Poisson)language model. Let g be a
query word vector and d be the empirical word distribution of a document. Also without causing
confusion we also treat g and d as sets containing the words appeared in them. Since the language

model is the special case of our proposed method without the word-associated heterogeneity, we
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use the same notations to define the scores used for ranking of our method and the LM, that is

S(g.dir) = ) qjlog(rjd;)—rjd; (4.9)
Jelp]

S(q,d;1p) = Y, qjlog(d)) —d, (4.10)
Jelpl

We denote each term inside the R.H.S of the expression of S(q,d;r) as Sj(q,d;r), which is further
decomposed into S } (¢,d;r) and S?(q,d ;) or S? (q,d;r) alone, depending on whther j lies in ¢ or

not, that is

gjlog(ridj)—rid; = S}(qﬂ;r)—i—S%(q,d;r) JEq

—rjdj = S3(q.d;r) jta

Si(q,d;r) = 4.11)
Then it can be observed that the parameters r have contributed to the outperformance of our method
over LM through two ways: The first is by leveraging up the penalty when the word does not ap-
pear in the query but does exist in the document; The second is by mitigating the penalty when the
word does not appear in the document but does exist in the query. We will illustrate this argument

through the real data application in Section 4.4.

4.3 Theoretical guarantees

In this section we present some theoretical guarantees of our proposed method, that is the TR
algorithm under the FILM model. Before we go into the detail, it should be noticed that many
popular error measures for the /R methods are generic, such as the ROC curves, Precision-recall
curves and the Mean average precision(see [65], [56], [66]). But none of them are theoretically
tractable under existing probabilistic models. But FILM is probabilistic model, in which the query
is generated with a true underlying document. Then the following two natural and tractable er-

ror measures can be studied: One is the probability of the "most relevant" document is selected,
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another is the "distance" between the selected document and the true underlying document. We
will make precise the two error measures through the following two oracle theorems, which are
basically "Bayes errors", that is R are assumed to be known. To simplify the notations, we define
the following matrix of Poisson rate

A=roD 4.12)

Also we use [(A;q) to denote the log-likelihood when the query is assumed to be generated

from independent Poisson distributions with rate parameters A, that is

14
Z qjlog(A;) —log(g;!) — 2j)
j=1

We first introduce the entry-wise upper and lower bounds assumptions for A.
Assumption 4.3.1. There exists A4 > 0 such that Aj; < Ay forVj € [p],i € [n].
Assumption 4.3.2. There exists A— > 0 such that A j; > A— for Vj € [pl,i € [n] with Aj; > 0.

Then we have the first oracle theorem about the probability of the "most relevant" document is

selected.

Theorem 4.3.3. Under Assumptions 4.3.1 and 4.3.2, and assume q is generated by a series of

independent Poisson distributions with rates A, that is
qj ~ Poisson(A;), forVje [p]
For Yk € [n], denote /) = {j € [p] : 1; > 0,A j; = 0}, then we have

P(I(Ax;q) > 1(Aj;q), for Vi € [n] with i # k) (4.13)

v

1-(1—[”’“’1«”1)(;1—1) (4.14)

_exP[—||7Lyk||1+< ,L—j—1>||z—Ak||1 Y exp (g Il AR )19

i=1,i#k
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Remark 1 Suppose A = Ak, and denote the hypercube €3, ={A41 o :.% C [p]}, then suppose
the columns of A are composed of a subset of ¥, which is a packing of %), , , with [/'| > exp(p/8),
and for Vv,V € ¥ with v #V/, we have ||[v—V'||, > |[v—V'||;//P > A4 /P/2. Then the R.H.S of

4.15 can be further lower bounded through the following

! A
1_' Z cXp (_mHAk_AiH%) 21—(n—1)exp(—3—;p>

i=1,i#k

So as long as n = o(exp(A4+p/32)), the R.H.S of 4.15 goes to 1 as p — . Notice here we can pick
n to be exponential in p, since there are more than exp(p/8) potential columns in the packing to
choose from.

Remark 2 If A # A, then the probability bound will roughly the same if we have [[1 |1 2
exp(—p). But if this is not the case, then the second term in 4.15 will dominate the third term, and
the resulting bound will roughly be 1 —n||4 4 |[1.

The second oracle theorem is about the high probability bound on the "distance" between
selected document and the true underlying document. In order to quantify this "distance", we make
the following low dimensional assumption on matrix A, which is similar to the low dimensional

assumption on the corpus in topic modeling([5], [3])
Assumption 4.3.4. A has a low-dimensional structure A = A\W, where Ap € Rﬁx K, W e fon.

This assumption holds naturally under the pLSI topic model([5]), in which it is assumed D ~
AW. Then through our definition of A, under pLSI topic model on the documents we have A ~
(roA)W, and roA is exactly A5 in Assumption 4.3.4.

We also need a stronger entry-wise lower bound for A than that in the previous theorem.
Assumption 4.3.5. There exists A— > 0 such that A j; > A— for Vj € [p],i € [n].

This may seem too restrictive at the first sight, but as in our real data application, we usually
smooth each column of D* and D in 4.6 and 4.8 by the empirical distribution of words across the

whole corpus, and smooth 7 through penalization as that in 4.7, which result in nonzero estimates of
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A through 4.12. So it is reasonable to assume that the true A is also entry-wise bounded away from

0. With these two additional assumptions, we are ready to formalize our second oracle theorem.

Theorem 4.3.6. Under Assumptions 4.3.1, 4.3.4 and 4.3.5, and also denote € = ||A — Ai||| where
k is defined as

k =argmin||A — A;||;
i€[n]

Then for V6 > 0 we have

P (1W;, —Well3 < pP) > 1= (n— 1)exp[-m (log(m) —log(| | Agll1) — 1) — |A]]

where we have denoted

in(A in(A 21
m= )L'[mn( A) _|_Am1n( A)_|_ +£ _HAkHl

C2pBA (log(AL) —log(A))  2pPA. Amin(Ap)

4.4 Real data application

4.4.1 Performance on the SLA dataset

In this section we compare the performances of our proposed method, the TR algorithm under
the FILM model, with the popular existing methods on the Statistical Literature Abstract(SLA)
data set. The existing methods we are considering here are #f.idf([10]), BM25([44], [67]) and
LM([56], [68]). The SLA data set has abstracts, titles and keywords of articles collected from the
4 main statistical journals, namely Annals of statistics, JASA, JRSS series B and Biometrika. The
abstracts part of the data set is exactly the one that had been analyzed in the real data application
part of [51], in which the low-frequency words, the stopping words and short documents had been
eliminated in a pre-screening step. Please check the Section 1.3 of [51] for more detail. As a
result under our notation system, there are n = 3193 articles, and the vocabulary size is p = 2934.
For each document, we use either the keywords as well as title of each article as the query, for

which the corresponding document is the true most relevant document. So for cases with either
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keywords or titles as the query, we have T = 3193 numbers of document-query pairs, that is each
document contribute one pair. Then we do a 5-fold cross-validation on both our methods and
existing methods, and compare their performance on the average 0-1 loss of whether the true most
relevant document is recovered on the validation set. And for each method, we use a greedy grid
search to find the best tuning parameters. The result is shown in Table 4.2. We can see that for

both cases our proposed method outperforms the other competitors.

Method | Our method tf.idf BM?25 LM(Multinomial) | LM(Poisson)
keys 0.542 0.190 0.513 0.512 0.511
titles 0.619 0.277 0.607 0.604 0.604
Table 4.2: New comparison results, in which tuning parameters in methods BM25,

LM(Multinomial) and LM(Poisson) are all tuned optimally.

4.4.2  Why does the proposed method outperform the LM ?(Explained)

Next we illustrate the arguments made in subsection 4.2.3. Again suppose q is the query, d; is
the true underlying document selected by our method while dy is the false document selected
by the language model. Here we abuse the notations a little bit without causing confusions, by
using ¢,d; and dy to stand for the query and document themselves, their index numbers in the
corpus or their vector representations. Then we first give an overall description of all kinds of
plots that we are going to present for each case in Table 4.3. Notice for each of the barplots, we
use the corresponding word(and the heterogeneity parameter r; in the bracket) to denote each bar
if applicable. Generally speaking, the diff_ 0 plots display the terms in the score 4.11 inside
each document for each model; diff_1 plots display the terms in the score difference between
dy and d f under each kind of score, in other words these plots about the contribution of each word
in determining either d; is beaten by dy or the other way around for both our method and LM;
diff_2 plots are the further difference between the terms in the two plots in diff_1, which
describe the contribution of each word in how our method outperforms the language model in
terms of correctly selecting d; rather than d ¢ when query ¢ is observed. We provide two examples,

with each illustrating one argument we have made in subsection 4.2.3: In the first example the
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Si(q,d;r) terms with j ¢ [g] play the key role in determining the outperformance of our method

over the language model, while in the second example the S;(g,d;r) terms with j € [g] play the

key role.

Plot type name Description
diff_0_sum This plot has 4 subplots, displaying the same set of quantities inside S;(q,dy;r), Sj(q,dr;r), Sj(q,ds;1p) and S;(g,ds;1p). Take the subplot of S;(q,dy;r) for
example, for j € [g], we use a blue bar to denote the S} (g,ds;r), a green bar to denote S? (g,dy;r); And we also use an additional red bar to denote the overall
contribution of all the words outside the query, that is
Y SHq.disr) (4.16)
J¢la)
diff_0_top This plot is the same as diff_0_sum, except that the red bar to denoting the overall contribution of all the words outside the query, is replaced by S% (g.ds3r)
of the words with top 5 largest absolute values, which are also displayed by green bars.
diff_1_sum This plot has 2 subplots, displaying the same set of quantities inside S; (g, d;;r) —S;(g,dg;r) and S;(g,ds;1p) —S;(g,dy;1)p). Take the subplot of S; (g, dr;r) —
S;j(g.dy;r) for example, for j € [g], we use a blue bar to denote the S}(q,d,;r) —Sj]- (g,dy;r), a green bar to denote S?(q,d,;r) - S? (g,dy;r); And we use an
additional red bar to denote the overall contribution of all the words outside the query, that is
Y S3(g.diir) — SHq.dpir) @17
Jj¢lal
diff_1_top This plot is the same as diff_1_sum, except that the red bar denoting the overall contribution of all the words outside the query, is replaced by S% (g,dr;r) —
S? (q,dy;r) of the words with top 5 largest absolute values, which are also displayed by green bars.
diff_2_sum This plot has 1 subplot, displaying the same set of quantities inside S;(q,d;;r) —S;(q,dy;r) —S;(q,di;1p) +S;(q,ds;1p). Since Sl]»(q.d,;r) —S}-(q,df;r) —
Sj'» (g.dr;1p)+ S} (q,ds31p) =0, the only terms left are S? (gq.dsyr)— S? (q,dgir) — S; (g,dr:1p) +S§ (g,df;1p). We use a horizontal line to separate the words
inside or outside of g. For the words in g, we incorporate the following rule in the coloring of the bars:
e "green": The word is in both d; and df;
e "blue": The word is in d; but not in df;
e '"red": The word is not in d; but in df;
e ‘"yellow": The word is neither in d; nor d,4
For the words outside ¢, we use a yellow bar to denote their overall contribution, that is
2
Y. SHa.diir) = S3(a,dpsr) = SHa,drs 1) + S5 (a.dy3 1) 4.18)
Ji¢ldl
diff_2_top This plot is the same as diff_2_sum, except that the red bar denoting the overall contribution of all the words outside the query, is replaced by S% (g,dr;r) —

S? (q,dfr)— S? (g.dr;1p) + S} (q,dy31p) of the words with top 5 largest absolute values, which are displayed using the same rule as that of the words inside g.

Table 4.3: Table of all kinds of plots that we are going to present for each case.

Terms with j ¢ [¢] play the key role

This category composed the majority of cases where our method outperforms the language model,

which means the terms with j ¢ ¢ are most important in resulting superior performance of our

method over the language model. Here we give a specific example under this situation: A query

g with underlying true document d; = 3123, and the wrong document selected by the language

model is dy = 1796. Here again we abused the use of notations by using d; and dy to denote the

indices of the true and false document. Then the corresponding diff_0_sum, diff_1_sum
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and diff_2_sum plots are shown in figures 4.1, 4.2 and 4.3. We summarize the patterns inside

each of the plots as following.

e diff_ 0_sum(Figure 4.1): The S}- (g,d;r) for each j € g(the blue bars) and the summation
of S? (g,d;r) over j ¢ g(the red bars) are dominant in both methods in determining the overall

scores, while S%(q,d ;r) for j € g are relatively small.

e diff_1_sum(Figure4.2): For our method, the summation of S%(q, di;r) — S? (q,dg;r) over
J ¢ q(the red bars) dominates in document selection for our method, while for the language

model, the S}- (q,d;r) for each j € g(the blue bars) dominate.

e diff 2 sum(Figure 4.3): The huge yellow bar indicates that it is exactly the difference
in the summation of S? (g, ds;r) — S? (g,dy;r) over j ¢ q between our method and language

model, that causes the outperformance of former over later.

We can also investigate the detailed contribution associated with the words outside the query by
replacing the summation of S?(q, d;r) over j ¢ g, with the top 5 words with the largest magnitude
in each summation. And the resulting plots are diff_0_top,diff 1 _topanddiff 2 top

in figures 4.4, 4.5 and 4.6. We summarize the additional observations as following.

e diff_ 0_top(Figure 4.4): In our method, the words that contribute the most in the sum-
mation of S%(q,a’;r) over j ¢ g have large r;’s, while in language model, these words are
associated with small r;’s. This is natural since our method has to achieve a balance between
rj and d; when maximizing |S§ (g,d;r)| = rjdj over j ¢ g, while the language model only
considers d;. Also notice S%(q,d;r) = —rjd; is decreasing over r; or d; for j ¢ g, which
makes perfect sense since if the document d is the right one, large r; or d; should indicate
more chance of appearance of word j in the query, and its contraposition is that if the word j
that appeared in the query is associated with large r; or d; in a document, then this document

is less likely to be the true underlying document of the query.

e diff_ 1_top(Figure 4.5): Again in our method, the words that contribute the most in the

summation of S%(q,dt; r)— S%(q,d ;) over j ¢ g have large r;’s, while in language model,
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these words are associated with small r j’s. And it also makes more sense that words with

larger r; should play a more important role than the words with small r;.

diff_2_top(Figure 4.6): Finally, the words that contribute the most in the difference in
the summation of S;(q,dt;r) — S;(q,d ;) over j ¢ g between our method and language
model, which is is main source of the outperformance of former over later, are associated
with large r;. And more specifically these are often the words that contribute the most
in S?(q,d;r) and S?(q,dt;r) — S%(q,d r;7)(for example words "clipped”, "smoothing" and
"lasso"), as shown in the previous two figures. To further interpret this result, notice that the

quantities displayed in the plot can be rewritten as following

S3(q.diir) = S3(q,dyir) — S3(q,drs 1) + 53 (gq,dpi1p) = —(rj— 1)((dr) j— (df)j) (4.19)

The larger this quantity is the larger the contribution of word j in the outperformance of our
method over language model. So in order to make this quantity positive, we need either r; >
land (dr)j<(df)j,orrj<1and(d);> (dy),. It turns out the former case is dominant. The
bars above the lines are to the right, indicating these quantities have positive contributions
in the outperformance of our method. And these bars are painted red, which means these
words only appear in the false document d but not in the true underlying document d;, and
therefore (dr); < (dy);. On the other hand these words are also associated with high r;
values that are larger than 1. This dominance makes sense, since on the first hand r I has to
be positive, so r; can be farther away to the right than to the left of 1. On the other hand
words with small r; also tends to have similar frequency among the documents, for example
words "the" or "is", which means the the gap between (d;) ; and (dy) ; tends to be small too,

while this gap is expected to be larger for more query-preferred words that is associated with

large ;.
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Figure 4.1: diff_0_sum plot for d; = 3123, df = 1796.
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Figure 4.2: diff_1_sum plot for d; = 3123, df = 1796.
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Figure 4.3: diff_2_sum plot for d; = 3123, df = 1796.
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Figure 4.4: diff_0_top plot for d; = 3123, df = 1796.
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Figure 4.5: diff_1_top plot for d; = 3123, df = 1796.
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Figure 4.6: diff_2_top plot for d; = 3123, a’f = 1796.
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Terms with j € [¢] play the key role

This case is much rarer than the previous case. Here we provide an example with d; = 1181 and
d¢ = 1244, and we only highlight the difference between this case and the previous one. It can
be seen in figures 4.7 and 4.7 that the terms with j € [¢](the blue bars and the green bars) plays a
significantly more important rule than the terms with j ¢ g. And we can further observe in figures
4.9 and 4.12 that it is the S%(q, d;r) for word "lasso" results in the outperformance of our method.
What’s counter-intuitive is that this large contribution is mainly due to the high r; value of "lasso",
and (d f) j 1s much larger than d, and in fact "lasso" does not even appear in the true underlying
document. While "lasso" is a word in the query. My interpretation of this is that the language model
goes too far punishing d; over dy for not having "lasso", while our method mitigates the degree
of punishment through using S? (q,d;r) rather than S? (g,d;1p). So it seems like the parameters
r have contributed to the ourperformance of our method over language model through two ways:
The first is by leveraging up the penalty when the word does not appear in the query but does exist
in the document; The second is by mitigating the penalty when the word does not appear in the

document but does exist in the query.

4.4.3 rvalues learned from the data

We also display the top 10 words with the highest or lowest r values, among all the words that
have overall frequency above 100, in Table 4.4.3 and Table 4.4.3. It is obvious that the words
with the highest r values are much more meaningful than the words with the lowest r values.
Another observation is that although the two lists of words with the lowest r values are largely
the same, while that of words with the highest r values are very different. And it seems like the
"keyword" queries tend to use words with more detailed meaning, for example dirichlet, smoothing
and censoring, while the "title" queries tend to use words with broader meaning, but more popular
and eye-catching at the same time, for example high, semiparametric and adapting. So if we
pool together both keywords and titles as queries, then it is more natural to assume R has two

dimension, one for keyword queries and one for title queries, instead of one dimension as we did
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Figure 4.7: diff_0_sum plot for d; = 1181, df = 1244.
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Figure 4.8: diff_1_sum plot for d; = 1181, df = 1244.
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Figure 4.9: diff_2_ sum plot ford; = 1181, dy = 1244.
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Figure 4.10: diff_0_top plot for d; = 1181, df = 1244.
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Figure 4.11: diff_1_top plot for d; = 1181, df = 1244.
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Figure 4.12: diff_2_ top plotford; = 1181, dy = 1244.
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in the TR algorithm. This actually motivates us to incorporate more information modeling the

low-dimensional structure in R. This is left for future studies.

vocab freq r vocab freq r

chain 223 59.96976 | through 446 0.09090909
equation 104 57.50313 | true 268  0.09090909
markov 340 49.80383 | typically 127 0.09090909
kernel 217 47.44171 | used 1085 0.09090909
dirichlet 119 4572057 | uses 142 0.09090909
bayes 196  45.07972 | using 1245 0.09090909
smoothing 275 44.32893 | usual 109  0.09090909
carlo 368 42.50509 | wide 106 0.09090909
monte 364 42.14836 | also 1178 0.09090909
censoring 111  42.06373 | prove 178  0.09090909

Table 4.4: The keywords-as-queries case: Top 10 words with highest or lowest r values, among all
the words that have overall frequency above 100

vocab freq r vocab freq r

high 227 37.18596 | subjects 121 0.09090909
longitudinal 194 27.99851 | suggest 156 0.09090909
estimation 1374 24.72962 | then 450  0.09090909
partially 100 24.01670 | these 1217 0.09090909
semiparametric 414  23.70267 | they 324 0.09090909
rank 112 23.58130 | typically 127 0.09090909
dependent 141 23.48525 | uses 142 0.09090909
mixed 161 22.61812 | usual 109 0.09090909
bayesian 648 22.11923 | also 1178 0.09090909
adaptive 263 22.06118 | prove 178  0.09090909

Table 4.5: The titles-as-queries case: Top 10 words with highest or lowest r values, among all the
words that have overall frequency above 100

4.5 Proofs

4.5.1 Proof of Theorem 4.3.3

Proof of Theorem 1. We first discuss the case when .7}, = ¢. Under the notations we have made

p
I(Ag:q) —1(Ainq) = '21 qjllog(Aji) —log(Aji)] — (Ajx — Aji)
]:
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And we further denote

sj = log(Ajx) —log(Aji),

Then by Chernoff bound we have for Vu € R

P(I(Ag:q) > 1(Aizq))
p p
= Pl =Y apsi<— L1
j=1 j=1
EPONSURYSIZEE)
p A \*
= l—euzﬁ—ltjezj_llj{</\jk> _1)}
A

[P A\ M
= l—exp ZH(Ajk—Aji)—Aj"‘)Lj(A_].l)
Lj=1 Jk

o Y
= l—exp | ) p(Aj—Aji) —Aj+Aj Ao
Lj=1 Jk
= 1—IxII

tj:Ajk_Aji

p Aji K
oo foem (e (3))

Then our strategy is to first bound / through choosing an optimal u, and then bound /7 under this

optimal u. By denoting

fua®=p0 -0 -2+2(7)"

I can then be rewritten as

)4
I =exp [Z Funp (i)
s
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(4.21)



Then our job is to get a upper bound for flb 4 (x), which will induce an upper bound for I through

4.21. We can easily derive the first and second order derivatives of f, ; (x) as following

dfu(x) _ _
fyale) = —55 = =—pal Hput
0%y 2 (x)
%fupv) = — 35— =A1Hu(u— 12

Notice dxf, ; (x) =0 atx= A, we hope to upper bound f}; 3 (x) uniformly by a negative quadratic
form around x = A in interval [0, A, ]. Then from the expression of 97 Ju2 (%), it’s easy to see that
this is possible only when u € (0,1). So we assume this is true and fix y for now, our goal is to
find the largest possible positive constant a such that the quadratic function g, ; (x) = —a(x — A)?
satisfies fy, 3 (x) < g, 2 (x) uniformly for Vx € [0,44] and VA € [0,44]. By Lemma 4.5.1 it’s
equivalent to guarantee that f,, 3 (A4) < g, ; (A+) for VA € [0,A.]. This equivalence can be more

straightforwardly illustrated by Figure 4.13.

Figure 4.13: Illustrating plots of fﬁh 2 and g,
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So we want to find the largest possible positive constant a such that the following holds

Tuar(Aq) <842 (A4), VA €[0,A4]
If we define & u. as following

Jua(Ay) H(7L+—l)+/1_,1(%)“

hy g, (A) = I Ay (4.22)

then our goal is to find optimal a(given ) through the following

ay= min h A
B ey uA ()

By Lemma 4.5.2 we have /i, ;. (1) is strictly decreasing on [0,A], then by L'Hépital'srule we

have

u(u—z)m—x(%)“

ay = min

A€[0.A] (A —21)?
. (e -4y +2-2 (%)
T o, (As —2)2

1— —u—1 H
_ g RO-wATRTAL

Af—>l+ 2
_ p(—u)

22+

Now we choose optimally yt = 1/2 and get the final optimal a*

ES
a — max ay —=ad1 = ——
wefod] © T 844

then we plug a* back into g, ; (A+), which is an upper bound of £, ; (A+), and get fi ;5 5 (A+) <

8a*,A(A1). Then by Lemma 4.5.1 we have f 5 3 (x) < g4+ 3 (x) uniformly for vVx € [0,A] and
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VA € [0,4+]. So we get the the upper bound for 7 through 4.21

)4 14 1
Jun (Aji) ga* A, (Nji) | =exp [__HAk_AiH%] (4.23)
= Jk =~ Jk 8.

J

I:exp[
J

Zexp[

Then we plug in u = 1/2 into the definition of /I, and together with the entry-wise lower bound
assumption on A and the assumption that .7}, = ¢, we have

p A\ H
8, o+ (22)) e ({5 ) ir-
=

Plugging the bounds of I and /1 in 4.23 and 4.24 back into the lower bound of P(I(Ay;q) > 1(Ai3q))

I = exp (4.24)

we have

1 A
P(I(Ag:q) > 1(Aizq)) > 1 —exp [_m||/\k_/\i”%+ (\/ /I—J_r - 1) 1A —Agllh

Finally we generalize the above result to case without .7}, = ¢. Now we have

(4.25)

P(l(A:q) > 1(Aizq) = PU((A).739.7) > (M) .75q.9,)

XP(U((Ax).7e:9.7¢) > L{(Ai) 7¢39.7¢))

The second term in the R.H.S of above equation can be easily lower bounded by 4.25. Since for

J € ) we have A j; =0 < Aj;, then the first term can be lower bounded through the following

PI((A).39.9,) = 1((M).#59.9,)
= P( Y. qjllog(A ) —log(Aji)] — (Aj — Aji) ZO)
J€ESk
> P(qj =0;Vje 5’;{) :e_”;Lyk”1
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Putting all these together we have

—l1A 1 A
P(l(Akig) > H(Aiq) = e Al {1 —exp [—mwm—mu% (\/f— 1) rM—Akm] }

Finally by the union bound we have the desired result

P(I(Ag;q) > 1(A;q), for Vi € [n] with i # k)
n

1= Y [1-PU(Asq) > (Asq))]
i=1,i#k

. 1 A

= ) ! fk”l{l—exp[—mm—mu%(N/l—*q)WL—AkHl
i=1,ik + -
A. A

= 1= (1= Pl ) 1) —exp [—r|zyk||1+(,/f—1)\M—Akul

n 1 >
exp | ——[[Ar— Al
IZ ( 84+ 2

i=1,i#k

v

}—(H—Z)

X

4.5.2 Proof of Theorem 4.3.6

Proof of Theorem 4.3.6. Under the notations made in the previous section

p
I(Aig) = ) qjlog(Aj)—Aji—log(q;!)
=1

rank

qjlog(Aji) — Aji

o

1

J
And we further denote

fzq = argmax/(A;;q)

i€[n]
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Then by this definition we have

[(Ag,3q) 2 L(Aig), Vi [n]

and more specifically we have

Denote function

A
I( S

p
Z .log(AJ’A’q) _Ajilq

S
~—
Vv
~
—~
>

Pl

Q
N——

v
1=
~.

=}

ELR

>

>
~

»

p p

Z‘I’IOg(Ajf, )_Ajiz > Zq log(A ji) Aj
~ q q &=

j=1 j=1

p p

Y A=A, > Y j{10g(Aj1) ~log(A )}

.
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=
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£2.(x) = Alog(x) -

By Lemma 4.5.3, we know the following holds

Then continuing the steps deduced from /(A

algebra

271L+( ) > fa(x) = fL(A), forVx,A €[0,A4]

1A, = Aell2 = [[AA (W, = Wa)ll2 = Amin (AA) W, = Will2

we have

W7,

2
—Will5 <

p
)ﬁmn AA ng [log(/\ )—log(Ajk)]
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B q) > l(Ag; q), and by the following fact from simple

(4.28)



With this we have

P
P(Iw;, ~WlB<38) > P(”—+ Y (4~ Aj) [1og<A,.;lq>—1og<A,-k>]ga>

Amin(AA) 1=
> P (u—+max{ i (gi—Nir) [IOg(A..)_log(A, )}} < 5)
a Amin(AA) i€[n] = J Jk Ji Jjk <
(By the Union Bound)
S P<M—+i<q'_’\"<) [log(A i) —log(A )] >5>
it \Amin(Ap) =7 ji ] >

We set 6 = p*B, then by Lemma 4.5.5, with ¢, and b setting to be the following

ca = log(Ay)—log(A-)
8min(Ap) | 224114 — Ajlly

b = 7 + A () (log(A+) —1log(A-))
_ min(An) | 2A4[IA — Ayl B
= S + 2 (Ar) (log(A+) —log(A-))
s = Il

we have the desired result

P(1IW;, Wil < pP) = 1= (1= 1) exp[-m(log(m) ~Tog(llAxll) — 1)~ Il

where we have denoted

m— Amin(Ap) _i_z'min(AA) +22’+|M_Ajk||1 — 1Al
2pP Ay (log(Ay) —log(A_))  2pBA, Amin(AA)
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4.5.3 Additional lemmas

Lemma 4.5.1. Suppose function f(x) defined on interval [0, ] satisfies f(b) =0 and limy_se f(x) =
1, f/(a) = 0 for some a € [0,), and f"(x) is continuous and strictly increasing on interval [0,eo).
Pick b > a, then a quadratic function g¢(x) = —c(x — f(a))? with ¢ > 0, is uniformly no smaller

than f(x) on interval [0,b] if and only if f(b) < g¢(b).

Proof of Lemma 4.5.1. Tf g¢(x) = —c(x — f(a))? is uniformly larger than f(x), then it’s immedi-
ately g¢(b) < f(b). On the other hand, if g.(b) < f(b), the following claims must hold.

e f"(a) < g!'(a). Otherwise by the fundamental theorem of calculus and the assumption that

f"(x) is strictly increasing, we have f(b) > g.(b), which is a contradiction.

o f(x) < ge(x) for x € [0,a), that’s by the previous claim and again the fundamental theorem

of calculus.

o f(x) < ge(x) for x € [a,b], notice f”(x) — g/ (x) is strictly increasing, f(a) — gl.(a) =0,
f"(a) — gl(a) <0, and limy_se f'(x) = 1 by assumption, by the fundamental theorem of
calculus we have f/(x) — g\.(x) firstly negative and then become positive on interval [a,),
which means f(x) — g¢(x) is firstly negative and then become positive on interval (a,o).

This means if we have f(b) — g-(b) < 0, we must have f(x) — g.(x) > 0 for Vx € [a,b]
By the above arguments we have the desired conclusion. 0

Lemma 4.5.2. Suppose function h% Ay S defined as that in 4.22, then it’s strictly decreasing on

interval [0,A4].

Proof of Lemma 4.5.2. After some basic calculation we get the first order derivative of hlh Ay @S

following

A A (A= A) — (A DAY (1 At
B (A4 —A)3
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Now it’s enough to prove the nominator of the above equation is negative on interval (0,A4). In
order to show that, we first denote this nominator to be g, ; (4). Since we have g, ;  (A+) =0,
and by some additional direct calculations we have gil A (A+) =0 and g’L’l M(LL) = 0. This
means in order to prove g, ;. (1) <0 for VA € (0,A4), it’s enough to show that gﬁ A (A) <0 for

VA € (0,A+), which is true because gﬁ, 2, (A+) has the following form

—— A
=02t (122

With that we have proved the desired result. [

Lemma 4.5.3. Define the function f; (x) as that in 4.27, then we have

1

— (= A)2 > fR(x) = fr(A), forVx,A €[0,A4]
2%

Proof of Lemma 4.5.3. Define g ,(x) = —a(x — A)?, then by lemma 4.5.1 in order to find the

largest a such that

82.a(X) = f,(x) = f(A), forVx,A €[0,A]

which is equivalent to find the largest a such that

82.aA+) = f,(A4) = f(A), for VA €[0,A4]

Notice

82.a(A+) = fa(A4) — [ ()

< a< hl+(l)

where we have defined

—Alog(A4)+ AL +Alog(A)—A
b (1) - TRl e Alog) w9)
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Then our problem becomes

* = in hy (A
C = e

By lemma 4.5.4 and L’Hépital’srule, we have

a* = min hy (1)

Ar€l0,A4] T

— lim —Alog(A4+)+ A+ +Alog(A)—A

A=A (Ay — )2

iy —log(he) +log()
A=dy —2(Ap—A)

o AL

A=A 20 244

With this we finished the proof. 0

Lemma 4.5.4. Suppose function h) (A) is defined as that in 4.29, then it’s strictly decreasing on

interval [0,A4].

Proof of Lemma 4.5.4. After some basic calculation we get the first order derivative of & N (1) as

following

W (a) = —log(Ae) +Arlog(A) — Alog(Rs) + Alog(A) +244 —24
e (= 1)

Now it’s enough to prove the nominator of the above equation is negative on interval (0,44).

In order to show that, we first denote this nominator to be g, (4).

e By some calculations we have g’M(AJr) =0 and g’L(/'L) < 0 for VA < Ay, so we have

g,l+ (l_;_) Z 0 for V)L S A_|_
e Since additionally g, (A+) =0, we have g; (A1) <0 for VA < A..

Now we can conclude that hy (4) is strictly decreasing on interval [0, A]. O
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Lemma 4.5.5. Suppose p independent Poisson random variables X; ~ Pois(A;), denote s) =

A =1
b > 0 with b > cgs), then the following holds

1 b—cys b—cys
P(Z(Xj—lj)ajzb> < exp [— =k (log = —1> —Sa]

j=1 a Cas),

Aj, and suppose {a;}" 1=y are real numbers with max ;e ]a il < ca for some cq >0, and

Proof of Lemma 4.5.5. By the given conditions and the Chernoff Inequality, we have for V¢t > 0

14
]P(Z(Xj—lj)aj Zb)

j=1
)4
e*bt I_I E <e(Xj*Aj)ajt)
=1

— ol IEI e—ljajtelj(eajt—l)
j=1
14 )4 )4
—(b+ Z ljaj)t—l— Z ljeajt — Z A]]
J=1 Jj=1 J=1
exp [—(b—casy )t + 57 (€“' —1)]

IA

= exp

IN

Define function f(z) as

f(t) =exp [—(b —casy )t + 55 (e — 1)]

then we can find the optimal(minimum) value of f(¢) through f’(¢) = 0, which yield the optimal ¢

as

By plugging this optimal ¢ into the inequality we have so far derived, we have the desired result

P(f(x—x-) | )

j=1

IN

b—casy)t"+s;(e c"t*—l)}

= exp{ —casx( gb_cas}”—l)—sx]

Casl

236



237



CHAPTER 5
DISCUSSION

In Chapter 2 and Chapter 3, which is the main part of this thesis, we have provided a thorough
and insightful analysis, along with simple and efficient algorithms to address the main estimation
problems in the classic topic model pLSI. We believe our work may be a good start for serious
statistical analysis of the topic models. There are many interesting questions left to be answered
regarding to this topic, and we list some of them for future study.

Firstly, there are many heuristic way of determining the number of topics K in topic models,
for example[69]. But the approaches that are both practical and theoretically guaranteed are yet to
be discovered.

The GVH algorithm, which is the practical version of vertex hunting algorithm proposed in
Chapter 2 would be computationally infeasible when the number of topics K is large. So to find
other more practical variants is a natural question. The pLSI topic model is related to a more gen-
eral problem, nonnegative matrix factorization(NMF) [70, 71]. And there has been multiple vertex
hunting algorithms that are proposed for NMF problems, for example [72, 73]. So it is interesting
to check how these algorithm can fit into our approaches for pLSI topic model estimations.

In Chapter 3, although our proposed non-informative words screening statistics is effective in
ranking the words according to their likeness of being non-informative words, it is still an open
question that how to choose the cutting threshold for the statistics adaptively.

In Chapter 2 and Chapter 3, There we have assumed the same document length across the
corpus. But in reality documents are typically of different lengths. Then the optimal normalization
schemes for estimating A or W under this more general and realistic situation are unclear. This
naturally leads to another question. If we are only interested in estimating W of a certain subset
of documents in the corpus, how much weights shall we put on the documents of interest, and the
remaining documents. The reason why we should also consider the remaining documents is that
these documents still contain information about A, which may in turn contribute to the estimation

of W of the documents of interest.
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In many real application scenarios, each document may have multiple "views". For example a
research paper may not only have the main body, but also an abstract. Assuming each view has a
pLSI topic model structure. Then it’s reasonable to assume the underlying document embeddings
for each document in the W are the same or very similar across different views, while the word-
topic matrices are different. Then the problem is can we take advantage of this multi-view nature
of the data and estimate the word-topic matrices and the topic-document matrices from different
views simultaneously?

Finally, as we have studied information retrieval in Chapter 4, it is also interesting to study
how the topic models can play a role in our proposed IR framework. More specifically we have
already proposed to use a set of word-associated heterogeneity parameters r to differentiate the
generations of documents and queries. It we assume there are K different topics in the documents
and the queries, it is natural to assume that different topic would enjoy different heterogeneity
parameters, therefore the heterogeneity parameters would become a p X K matrix R. Then how to

estimate the topic models as well as R is an interesting open problem.
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