
THE UNIVERSITY OF CHICAGO

SPIN QUBITS IN SILICON CARBIDE ELECTRONIC DEVICES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

BY

CHRISTOPHER PAUL ANDERSON

CHICAGO, ILLINOIS

JUNE 2020



Copyright c© 2020 by Christopher Paul Anderson

All Rights Reserved



For Lisa



Table of Contents

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 INTRODUCTION AND PERSPECTIVES ON CLASSICAL AND QUANTUM TECH-
NOLOGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 What is ‘Quantum’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Wonders of Classical Information Technologies . . . . . . . . . . 2
1.1.2 Transistors and Semiconductors . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Qubits and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 The Rotating Wave Approximation . . . . . . . . . . . . . . . . . . . 16
1.2.2 The Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.3 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.5 Quantum Circuits and Algorithms . . . . . . . . . . . . . . . . . . . . 32
1.2.6 The Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 DECOHERENCE, LIFETIMES AND LINEWIDTHS . . . . . . . . . . . . . . . . 34
2.1 T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 T ∗2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Dynamical Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Clock and ZEFOZ Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 A Comment on Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 Limits of Coherences and Linewidths . . . . . . . . . . . . . . . . . . . . . . 42
2.8 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 REALIZATIONS OF QUANTUM TECHNOLOGIES . . . . . . . . . . . . . . . . 47
3.1 Quantum Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Quantum Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Quantum Communications and Networks . . . . . . . . . . . . . . . . . . . . 49
3.4 Candidate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iv



3.4.1 Superconducting Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Neutral Atoms and Ions . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.3 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Impurity Electron Spins . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.5 Other Quantum Objects . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 SPIN DEFECTS FOR QUANTUM SCIENCE . . . . . . . . . . . . . . . . . . . . 59
4.1 Other Spin Defect Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Deep Defects in Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Defect Formation and Kinetics . . . . . . . . . . . . . . . . . . . . . . 66

5 SPINS IN SILICON CARBIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1 Silicon Carbide as an Ideal Host . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 The Neutral Divacancy (V V 0) in SiC . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Singlets and ODMR . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Spin Flips, Resonant Initialization and Strain . . . . . . . . . . . . . 91
5.2.3 Degradation of the Spin-Photon Interface . . . . . . . . . . . . . . . . 94

5.3 The Spin Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Spin T1 and T2 in the Solid-state . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Creating V V 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Measuring Single Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 THE SPIN-PHOTON INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1 PLE and Stark Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Spectral Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Photodynamics of Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Photodynamics of the NV − in diamond: an example . . . . . . . . . 123

7 NEW DEFECT DISCOVERY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 Chromium in SiC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Vanadium in SiC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 LONG DISTANCE ENTANGLEMENT AND QUANTUM NETWORKS . . . . . 129
8.1 Cryptography and QKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Distributed Entanglement and Computing . . . . . . . . . . . . . . . . . . . 130
8.3 Quantum Repeaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4 Hong-Ou Mandel Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5 The Barrett-Kok Entanglement Scheme . . . . . . . . . . . . . . . . . . . . . 140
8.6 Other Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.7 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.7.1 Telecommunications, Fiber Optic Networks and QFC . . . . . . . . . 147
8.7.2 Photon Collection Efficiency . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.7.4 Photonics and Purcell Enhancement . . . . . . . . . . . . . . . . . . 149
8.7.5 Spectral Diffusion and Charge Instability . . . . . . . . . . . . . . . . 150

v



8.7.6 Single-Shot Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.7.7 Quantum Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9 SPINS IN PHOTONIC DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10 SPINS IN PHONONIC DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11 SPINS IN ELECTRICAL DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.1 Optical Charge Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

11.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.2 Charge Based Electrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.3 Other Electrical Manipulations . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.4 Electrical and Optical Control of Single Spins in Scalable Semiconductor Devices169

11.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.4.2 Isolated Single Defects in a Semiconductor Device . . . . . . . . . . . 171
11.4.3 Large Stark Shifts in a p-i-n Diode . . . . . . . . . . . . . . . . . . . 173
11.4.4 Reducing Spectral Diffusion Using Charge Depletion . . . . . . . . . 175
11.4.5 Charge Gating and Photodynamics of Single Defects . . . . . . . . . 178
11.4.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.4.7 Charge Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.5 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.6 Extensions of Stark Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.7 Electrical Device Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . 186

12 STRAIN INHOMOGENEITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
12.1 BCDI with Diamond Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . 189
12.2 Imaging Strain Relaxation in SiC . . . . . . . . . . . . . . . . . . . . . . . . 189

13 ENTANGLEMENT AND CONTROL OF SINGLE QUANTUM MEMORIES IN
ISOTOPICALLY ENGINEERED SILICON CARBIDE . . . . . . . . . . . . . . . 191
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
13.2 Strongly Coupled Nuclear Registers . . . . . . . . . . . . . . . . . . . . . . . 193
13.3 Weakly Coupled Nuclear Memories . . . . . . . . . . . . . . . . . . . . . . . 195
13.4 High-fidelity Qubit Control and Extended Coherences . . . . . . . . . . . . . 200
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.6 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

14 BOULEVARD OF BROKEN DREAMS . . . . . . . . . . . . . . . . . . . . . . . 207
14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.2 Masers & Lasers & Graphene, oh my! . . . . . . . . . . . . . . . . . . . . . . 207

vi



15 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.1 Roadmap for Quantum Technologies with Spins . . . . . . . . . . . . . . . . 213

A ELECTRICAL AND OPTICAL CONTROL OF SPINS IN SCALABLE SEMICON-
DUCTOR DEVICES: DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
A.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A.1.1 Defect Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
A.1.2 Device Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
A.1.3 Device Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.1.4 Confocal Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.1.5 Instrument Error and Linewidth . . . . . . . . . . . . . . . . . . . . . 218
A.1.6 Pulse Sequences and Hahn-echo . . . . . . . . . . . . . . . . . . . . . 219
A.1.7 Photoluminescence Excitation (PLE) Scans . . . . . . . . . . . . . . 219
A.1.8 Interleaved Charge Control Sequences . . . . . . . . . . . . . . . . . . 219

A.2 Supplementary Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.2.1 Depth Control Using Doping . . . . . . . . . . . . . . . . . . . . . . . 220
A.2.2 Limits of Stark Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.2.3 Threshold Voltages and Stark Shift Dipoles . . . . . . . . . . . . . . 221
A.2.4 Electric Field in the Diode . . . . . . . . . . . . . . . . . . . . . . . . 222
A.2.5 Comparison of Stark Shifts and Linewidths with Other Quantum Emit-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.2.6 Estimate of the Sensitivity of the Optical Fine Structure to Electric

Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.2.7 Stark Shifts from Single Charges . . . . . . . . . . . . . . . . . . . . 225
A.2.8 Optical Linewidths in Other Commercial SiC Material, Generalizability227
A.2.9 Temperature Dependence of the Linewidth . . . . . . . . . . . . . . . 227
A.2.10 Threshold Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.2.11 Single Defect Charge Dynamics (Blinking) . . . . . . . . . . . . . . . 229
A.2.12 Theory of Two-Photon Ionization . . . . . . . . . . . . . . . . . . . . 232
A.2.13 Possible Resonances for the Charge Reset . . . . . . . . . . . . . . . 234
A.2.14 Spectral Diffusion and Ionization Under Various Illumination Wave-

lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2.15 Charge Ionization and Repumping Cross Sections . . . . . . . . . . . 238
A.2.16 Deterministic Charge Control . . . . . . . . . . . . . . . . . . . . . . 238
A.2.17 Distinction Between Different Types of Inhomogeneous Broadening . 240
A.2.18 Effect of Charge Depletion on Spin Coherence . . . . . . . . . . . . . 242
A.2.19 Charge Feedback Protocol and Rates . . . . . . . . . . . . . . . . . . 242
A.2.20 Supplementary Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B ENTANGLEMENT AND CONTROL OF SINGLE QUANTUM MEMORIES IN
ISOTOPICALLY ENGINEERED SILICON CARBIDE: DETAILS . . . . . . . . 245
B.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

B.1.1 Single Defect Observation and Control . . . . . . . . . . . . . . . . . 245
B.1.2 Materials Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
B.1.3 Calculations of Coherence Functions . . . . . . . . . . . . . . . . . . 247

vii



B.1.4 Calculations of Nuclear Memory Availability . . . . . . . . . . . . . . 248
B.1.5 Hyperfine Cutoff Value . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.2 Supplementary Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.2.1 Probability to Have Strongly Coupled 29Si Spins . . . . . . . . . . . 249
B.2.2 Initialization Fidelity of Strongly Couple Nuclear Spins . . . . . . . . 250
B.2.3 Independent Control of Nuclear Spins in the 3-qubit System . . . . . 251
B.2.4 Quantum State Tomography . . . . . . . . . . . . . . . . . . . . . . . 251
B.2.5 Entangled State Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . 252
B.2.6 Positive Partial Transpose (PPT) Test . . . . . . . . . . . . . . . . . 254
B.2.7 XY8 Pulse Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.2.8 Weakly Coupled 2-qubit Gates . . . . . . . . . . . . . . . . . . . . . . 254
B.2.9 Control Fidelity of Weakly Coupled Nuclear Spin as a Function of τ

Order (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
B.2.10 Measurement of the Nuclear Spin Gyromagnetic Ratio . . . . . . . . 256
B.2.11 Calculating the Hyperfine Values for Weakly Coupled Nuclear Spin . 258
B.2.12 Locating Weakly Coupled Nuclear Spins . . . . . . . . . . . . . . . . 259
B.2.13 Electron Driven Nuclear Memory Decoherence . . . . . . . . . . . . . 260
B.2.14 Coherence extension for the V V 0 . . . . . . . . . . . . . . . . . . . . 262
B.2.15 T1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B.2.16 Randomized Benchmarking . . . . . . . . . . . . . . . . . . . . . . . 263
B.2.17 Rabi Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

B.3 First-principles Calculations of the Coherence Function . . . . . . . . . . . . 266
B.3.1 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
B.3.2 Hyperfine Tensor Calculations . . . . . . . . . . . . . . . . . . . . . . 267
B.3.3 Coherence Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
B.3.4 Cluster-Correlation Expansion . . . . . . . . . . . . . . . . . . . . . . 268
B.3.5 Calculation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 269
B.3.6 Impact of the Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 271

B.4 Nuclear Memory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 271
B.4.1 Conditional Magnetization . . . . . . . . . . . . . . . . . . . . . . . . 271
B.4.2 The Gate Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
B.4.3 Limitations of the Approach . . . . . . . . . . . . . . . . . . . . . . . 274
B.4.4 Convergence of the Results . . . . . . . . . . . . . . . . . . . . . . . . 275
B.4.5 Number of Memory Units as a Function of Gate Time . . . . . . . . 276
B.4.6 Hyperfine Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 277

viii



List of Figures

1.1 Semiconductor physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 pn diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Semiconductor devices that use depletion . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Creating Ohmic contacts and understanding Fermi levels. . . . . . . . . . . . . . 9
1.5 Bloch spheres, quantum objects and dynamics . . . . . . . . . . . . . . . . . . . 21

2.1 Decoherence, tuning and coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Formation energies and charge transition levels in SiC . . . . . . . . . . . . . . . 63

5.1 Polytypes, defects and growth in SiC . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Levels in the gap for the divacancy in SiC . . . . . . . . . . . . . . . . . . . . . 78
5.3 Orbital and spin character of the possible V V 0 states. . . . . . . . . . . . . . . 79
5.4 The optical fine structure of V V 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Vibronic structure and single defect measurement . . . . . . . . . . . . . . . . . 84
5.6 Singlet dynamics and ODMR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Table of important V V 0 parameters . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 V V 0 initialization, control and readout . . . . . . . . . . . . . . . . . . . . . . . 93
5.9 The spin ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Optical fine structure and Stark shift parameters. . . . . . . . . . . . . . . . . . 111
6.2 Spectral diffusion Monte-Carlo results . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Spectral diffusion in V V 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Spectral diffusion in V V 0 (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Photodynamics of defects and surroundings. . . . . . . . . . . . . . . . . . . . . 121

7.1 Structure, creation and spectroscopy of chromium defects in 4H-SiC. . . . . . . 126
7.2 Single V 4+ α site emitters implanted in 4H-SiC. . . . . . . . . . . . . . . . . . . 128

8.1 Quantum repeaters with defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Hong-Ou-Mandel interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Hong-Ou-Mandel interference (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.1 Nanobeam photonic cavities in 4H silicon carbide. . . . . . . . . . . . . . . . . . 158

10.1 Strain focusing with a Gaussian SAW resonator. . . . . . . . . . . . . . . . . . . 161

11.1 Photo-dynamics and modeling in neutral divacancies in 4H-SiC. . . . . . . . . . 165

ix



11.2 Isolation of single V V 0 in a commercially grown semiconductor device. . . . . . 172
11.3 Stark shifts in p-i-n diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.4 Optical linewidth narrowing by tuning the electrical environment of a solid state

emitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
11.5 Electrical and optical charge control of a single V V 0. . . . . . . . . . . . . . . . 178
11.6 Ionization and charge reset rates for V V 0. . . . . . . . . . . . . . . . . . . . . . 179
11.7 Charge photodynamics in SiC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12.1 Strain relaxation in SiC nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . 190

13.1 Initializing, controlling and entangling strongly coupled nuclear spins. . . . . . . 193
13.2 Spectroscopy and control of weakly coupled nuclear spins. . . . . . . . . . . . . 196
13.3 Isotopic optimization of nuclear memories. . . . . . . . . . . . . . . . . . . . . . 199
13.4 Divacancy dephasing and decoherence times in isotopically purified material. . . 201
13.5 Average single qubit gate fidelity as measured by randomized benchmarking. . . 203
13.6 Nuclear memories for optically active spins . . . . . . . . . . . . . . . . . . . . . 205

14.1 NV − Maser schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.2 NV − Laser schematic and preliminary results . . . . . . . . . . . . . . . . . . . 209
14.3 STM of graphene on 4H-SiC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.1 Charge stability region of V V 0 in a p-i-n diode. . . . . . . . . . . . . . . . . . . 221
A.2 Comparisons of ∆, the tuning-to-linewidth ratio. . . . . . . . . . . . . . . . . . 224
A.3 Stark shifts from single trapped charges. . . . . . . . . . . . . . . . . . . . . . . 226
A.4 PLE spectra of defects in bulk intrinsic material. . . . . . . . . . . . . . . . . . 228
A.5 PL charge transition hysteresis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.6 Blinking dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.7 Markov chain of charge dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.8 Optimizing the charge reset laser color. . . . . . . . . . . . . . . . . . . . . . . . 236
A.9 Color dependence of blinking and spectral diffusion. . . . . . . . . . . . . . . . . 237
A.10 Ionization and reset cross sections. . . . . . . . . . . . . . . . . . . . . . . . . . 238
A.11 Deterministic charge control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.12 Histograms of PLE center frequencies. . . . . . . . . . . . . . . . . . . . . . . . 241
A.13 Pulse sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
A.14 Semi-log plot of the absolute value of current from the IV curve for the device at

5K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.1 99% Rabi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.2 Two register control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
B.3 QST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
B.4 Entangled state oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B.5 Entangled state fidelity as a function of assumed z-rotation. . . . . . . . . . . . 253
B.6 Nuclear spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.7 Nuclear oscillations obtained from different peak orders. . . . . . . . . . . . . . 257
B.8 Electron-nuclear gate fidelity as function of order number. . . . . . . . . . . . . 257
B.9 Gyromagnetic ratio check. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

x



B.10 CPMG-N on a kk divacancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.11 CPMG-N on a kh divacancy near B=0. . . . . . . . . . . . . . . . . . . . . . . . 263
B.12 T1 of a single kk defect in an isotopically purified sample. . . . . . . . . . . . . . 264
B.13 Continuous electron Rabi oscillation on shows Rabi Q = 997± 30. . . . . . . . . 265
B.14 The convergence of the electron induced decoherence. . . . . . . . . . . . . . . . 269
B.15 Coherence times as a function of magnetic field. . . . . . . . . . . . . . . . . . . 271
B.16 Difference in coherence function predicted by CCE2 and CCE1 calculations. . . 274
B.17 Convergence tests for the calculation of usable memory units. . . . . . . . . . . 275
B.18 Number of usable memory units as a function of the gate time. . . . . . . . . . . 276
B.19 Distribution of the most plausible hyperfine values for memory units. . . . . . . 277
B.20 Most plausible hyperfine values for memory units at different fidelities. . . . . . 278

xi



This thesis represents the motivations, results, and conclusions from the following works :

[1] Entanglement and control of single quantum memories in silicon carbide.

A. Bourassa∗, C. P. Anderson∗, K. C. Miao, M. Onizhuk, H. Ma, A. Crook, H. Abe,

J. Ul-Hassan, T. Ohshima, N. T. Son, G. Galli, D. D. Awschalom, arXiv 2005.07602

(2020)

[2] Developing silicon carbide for quantum spintronics. (Perspectives Article)

N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, C. Babin, M. Widmann, M.

Niethammer, J. Ul-Hassan, N. Morioka, I. G. Ivanov, F. Kaiser, J. Wrachtrup, D. D.

Awschalom, Applied Physics Letters 116, 190501 (2020)

[3] Purcell enhancement of a single silicon carbide color center with coherent spin control.

A. L. Crook, C. P. Anderson, K. C. Miao, A. Bourassa, H. Lee, S. L. Bayliss, D. O.

Bracher, X. Zhang, H. Abe, T. Ohshima, E. L. Hu, D. D. Awschalom, Nano Letters

(2020)

[4] Vanadium spin qubits as telecom quantum emitters in silicon carbide.

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, D. D.

Awschalom, Science Advances 6, 18 eaaz1192 (2020)

[5] Coherent control and high-fidelity readout of chromium ions in commercial silicon

carbide.

B. Diler, S. J. Whiteley, C. P. Anderson, G. Wolfowicz, M. E. Wesson, E. S. Bielejec,

F. J. Heremans, D. D. Awschalom, npj Quantum Information 6, 1 (2020)

[6] Electrical and optical control of single spins integrated in scalable semiconductor de-

vices.

C. P. Anderson∗, A. Bourassa∗, K. C. Miao, G. Wolfowicz, P. J. Mintun, A. L.

Crook, H. Abe, J. Ul-Hassan, N. T. Son, T. Ohshima, D. D. Awschalom, Science 336,

6470, 1225-1230 (2019)

xii



[7] Electrically driven optical interferometry with spins in silicon carbide.

K. C. Miao, A. Bourassa, C. P Anderson, S. J. Whiteley, A. L. Crook, S. L. Bayliss,

G. Wolfowicz, G. Thiering, P. Udvarhelyi, V. Ivády, H. Abe, T. Ohshima, A. Gali, D.
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Abstract

This thesis investigates the development of quantum technologies with spins in silicon carbide

(SiC). In particular, SiC can host optically active defect spins which are key to developing

solid-state quantum sensors, communications networks, and distributed quantum computa-

tion over long distances. The neutral divacancy (V V 0) is such a spin defect, which displays

long coherence times and possesses a spin-photon interface for long-distance entanglement.

Throughout this thesis, we leverage the distinct advantages that SiC has as a host material

for quantum bits. Broadly, we describe how quantum states can be controlled, tuned, and

enhanced through their integration into SiC mechanical, photonic and electrical devices.

Specifically, this thesis focuses on understanding and controlling the electrical environ-

ment of single qubits. Electrical and optical control of the charge state of defects is achieved

in ensembles and is extended to single V V 0 that are isolated and manipulated in wafer

scale commercial semiconductor p-i-n diodes. We find that through this integration an ideal,

widely tunable, and spectrally narrow spin-photon entanglement interface is created. This

pathway for eliminating spectral diffusion in doped semiconductor devices unlocks the possi-

bility of efficient long distance quantum entanglement in the solid-state. This thesis further

develops V V 0 for quantum technologies by extending the coherence times of this system and

by demonstrating control and entanglement between electron and nuclear spins in SiC.

Combining the mature semiconductor industry for SiC semiconductor devices with co-

herent single spins with high-fidelity spin-photon interfaces provides an exciting avenue for

scalable quantum technologies in the solid-state.
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Chapter 1

Introduction and Perspectives on

Classical and Quantum Technologies

One of the goals of this thesis is to provide reference and resource for both experts and

non-experts in the field. As such, we will start with very broad strokes and build up to the

context and applications for quantum science and technology that this thesis advances.

We start in Chapters 1-3 with the basics of classical and quantum information tech-

nologies. Chapters 4-7 cover spin defects in the solid-state, focusing on the V V 0 center in

SiC studied in this thesis, alongside recent advances in transition metal centers. Chapter

8 describes in detail the applications of these qubits to long distance entanglement, while

Chapters 9-10 briefly discusses the integration of V V 0 qubits into photonic and phononic

devices. The major thrust of this thesis starts in Chapter 11, describing the linking of SiC

electronics with quantum science, resulting in ideal spin-photon interfaces. Chapter 12

illustrates the advances in understanding and imaging SiC and diamond nanoparticles. The

final thrust of this thesis is represented in Chapter 13, which describes entanglement and

control of the nuclear environment in SiC, creating viable quantum memories. This thesis

culminates with Chapter 14, which summarizes the other (failed) research avenues during

my graduate career.
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1.1 What is ‘Quantum’?

“Take a huge step back”

1.1.1 The Wonders of Classical Information Technologies

You are probably reading this thesis on a computer. If not, you are reading it on a piece

of paper that was printed by one. Perhaps you are even reading this on a smartphone.

You probably downloaded this thesis off the internet. Let’s take a moment and appreciate

what a feat this is. The flow of electrons being controlled through billions and billions of

transistors, which are only nanometers in size. Gigabytes to terabytes (more bits than the

number of stars in the Milky Way Galaxy) of data being stored in your device’s memory, and

information is reaching your eyes by encoding the information on this page onto millions and

millions of individually controlled pixels. Imagine having to build all of that from scratch.

Think broader: Supercomputers can simulate the stellar dynamics of entire galaxies, and a

smartphone that you can buy for less than $100 can stream live video to someone on the

other side of the world and can give you directions to your local supermarket using satellites

in space. The internet is another wonder: a globally interconnected, distributed network

of networks that drives the majority of communications and commerce worldwide. From

virtual realities, artificial intelligence, to anything as simple as a microwave oven, it doesn’t

stop there. Take a moment to appreciate all the technology around you. Someone had

to discover the physics, do the engineering, come up with the design, and physically build

every device and piece of technology you use. There were thousands of people who made

incremental improvements and had fun ideas that miraculously worked, people who lived

and died. This is the course of human advancement. The goal of this thesis is along these

lines- to work towards in my own small way to develop the equivalent ‘quantum’ technologies

to these classical feats of human ingenuity.

The transistor, which forms the basis for most of our modern technology, was invented
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in 1947 at Bell labs and was about the size of the palm of your hand. Before the transistor

(a solid-state semiconductor device), rudimentary computers were built out of vacuum tube

diodes (invented in 1904) which were the size of large light bulbs. Solid state transistors

allowed for the rapid miniaturization and technological advancement that brought us to

where we are today. Coined in 1965, Moore’s law postulates that the number of transistors

in a microprocessor doubles every two years. This exponential explosion has resulted in

commercially available transistors only 7 nm large, where relevant features start to approach

the size of single atoms. This presents an interesting problem: when will this explosion stop?

are we at the limit? when do we need to think about quantum effects at these small scales?

The transistor is the most widely manufactured device is history, with over 13 sextillion

units (1021) sold[14]. The inventors of the transistor would have had no chance at guessing

how far their invention has gone, and thought the transistor’s application might be in hearing

aids (the first commercial product using transistors in 1952). I imagine if you had asked

the first scientists working on transistors, they would have been skeptical that it would be

useful for anything at all, and would have told you how hard the problem was. Despite

this, 1954 and 1955 had the first transistor-based radio and calculator. 1961 had IBM’s

first transistorized supercomputer, the IBM 7030 which operated at around 1 MFLOPS

(Floating Operations Per Second) and took up a whole room[15]. Current smartphones can

reach hundreds of GFLOPS and can fit in your pocket.

This is where we are today with quantum technologies: since the early 1990’s we have built

a kind of quantum equivalent of the transistor, and have basic quantum communications.

But now we are developing these basic building blocks into real world technologies. We’re

in the “1950’s” of quantum- we have rudimentary quantum technologies, and support from

industry and large companies is growing. Even though we roughly know where the field

is going, there’s no way we could possibly fathom a whole new generation of information

technologies (just look at 1950’s science-fiction!). The most exciting part is that we don’t

know where this will all go.
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Figure 1.1: Semiconductor physics. (A) Band gap and full (valence) and empty (con-
duction) bands of a semiconductor. (B) At nonzero temperatures, electrons can be excited
to the conduction band and leave behind a hole. (C) Available processes for electrons and
holes. Deep levels have very low rates of thermal excitation, but can capture carriers ef-
fectively. (D) In a p-type semiconductor there are an excess of holes. (E) In a n-type
semiconductor there are an excess of electrons. Adapted from [16].

1.1.2 Transistors and Semiconductors

Why are transistors the key success that led to modern technologies? The transistor is just

a device that forms an electronic switch. An electrical voltage on one terminal controls the

voltages and currents on another terminal. This can be used to form basic logical operations

by wiring transistors together, where ‘On’ and ‘Off’ or ‘1’ and ‘0’ refer to the voltages or

currents in the transistor. Classical information is ‘binary’ in that the constituent systems

can only take one of two states (On/Off 1/0). Each one of these pieces of information, or

‘bits’, represents the ‘On’ or ‘Off’ states of a transistor. This ‘digital’ technology is easy

to fabricate using transistors, diodes (one way switches for electrons) and other electronic

components put together in billion dollar fabrication plants.

It’s important to this thesis and to later sections to briefly go into how transistors work,
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and why they are made of semiconductors. A semiconductor is a material that conducts

electricity not quite like an electrical insulator nor like an electrical conductor. Importantly,

by doping the material with different impurities, the electrical characteristics can be altered.

An insulator has a large band gap, which is the energy difference between the electrons in

a material that are bound tightly to the atomic cores and do not participate in electrical

conduction (the valence band: VB), to electronic states that can move around the material

and conduct electricity (the conduction band: CB) Fig. 1.1A. This large band gap prevents

electrons from being thermally excited to the conduction band, resulting in high resistance

and low conductivity (Fig. 1.1B). Metals, on the other hand, have small or nonexistent

band gaps (and high conductivity), while semiconductors have small/moderate band gaps.

In this thesis, we will focus on crystalline materials with regularly ordered atoms that can

be described with band theory. Crystalline silicon, with a band gap of around 1.15 eV, is

the quintessential semiconductor that makes modern technology work.

When doping a semiconductor, electronic states can be formed ‘in’ the band gap of the

material by replacing atoms in the crystal lattice with an impurity species. Depending on

the dopant, these impurities either contribute extra electrons (‘donors’) to the system or are

deficient of electrons and suck them up from the crystal (‘acceptors’) creating a quasiparticle

called a ‘hole’ which carries positive charge. A semiconductor region doped with acceptors

has many holes and is called ‘p’ type, while a region doped with donors has more free

electrons and called ‘n’ type (Fig. 1.1D). An undoped region is usually called ‘intrinsic’

or ‘i’ type (insulating). These states are usually close enough in energy to the valence or

conduction band in energy to be thermally populated and depopulated (Fig. 1.1C). Upon

applying electric fields and voltages to a semiconductor, free charges can drift and move.

Dopants in a semiconductor can therefore have their associated charges moved spatially to

different regions of a device. Similarly, carrier diffusion occurs where electrons and holes

move towards areas of lower concentration. With drift and diffusion, depletion regions or

‘space-charge’ regions can form. These are spatial regions of a doped semiconductor where all
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Figure 1.2: pn diodes. (A) no applied bias, drift and diffusion balance to create a space
charge region and a built in potential. (B) Under forward bias, the potential height lowers
and charges can flow while the space charge region shrinks. (C) Under reverse bias, the
potential height increases and charges cannot flow while the space charge region grows. (D)
Schematic of the donors and acceptors with their bound electrons and holes in a pn device.
The depletion/space-charge region is devoid of carriers and has ionized donors and acceptors.
The charge Q, the electric field ε and the voltage in this device is shown. (E) Schematic I-V
characteristic of a pn diode showing the current rectification. Adapted from [16].

the donors (acceptors) are stripped of their electrons (holes) by redistributing the electrical

charge in the system.

In the simplest semiconductor device, a p-n diode, a p-type region is placed in contact

with a n-type region (Fig. 1.2). Diffusion of electrons and holes across the p-n interface

creates ionized acceptors and donors of opposite charge, which then builds up an electric

field across the interface. The directions of carrier drift and diffusion are opposing, such

that an equilibrium is reached and a region completely devoid of free carriers is formed (a

depletion region Fig. 1.2D). As covered in 4.2, defect or impurity states in the band gap are
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isolated from the states of the crystal host resulting in a so called semiconductor vacuum.

Depletion offers an extension of this, creating a true semiconductor and charge vacuum. This

idea forms the basis of the results in 11.4[6]. Applying forward and reverse bias as shown in

Fig. 1.2B and 1.2B show that electric fields can shrink and grow this depletion region.

Furthermore, under forward bias the applied field opposes the built-in field, reducing the

energy barrier for conduction and driving current. Under reverse bias, the applied potential

adds to the built-in field and blocks current from flowing. Reverse biased diodes therefore

add to the electric field in the depletion zone, but do not drive any current. The current

only flows one way and is rectifying, shown Fig. 1.2E. In a sense, charges are blocked from

entering the depletion zone and any charges generated in the region get swept away to the

zone barriers. Eventually, with high enough reverse bias dielectric breakdown occurs, which

actually creates an avalanche photodiode. These results are easily extendable to p-i-n diodes

which have similar physics for depletion and are described in 11.4 (Fig. 1.3C)

We can use these effects to make a solid state transistor by extending the results in the

p-n diode. In particular, we will describe the MOSFET (Metal-Oxide-Semiconductor Field-

Effect Transistor) which makes up 99.9% of all transistors. Furthermore, MOSFETs made of

the semiconductor silicon carbide (SiC) form one of the major motivational technologies for

the work in this thesis. The basic idea is that an electrical gate (where voltages are applied)

can create a depleted area that has no charge carriers to conduct current (sometimes called

the ‘field-effect’), and by turning on/off the voltage conductivity is restored. Conversely,

by applying sufficient gate voltage, an accumulation layer can form a conductive channel

between source and drain. Shown in Fig. 1.3, the basic schematic of the MOSFET is a

source and drain of either n or p-type, with an opposing p or n channel between them.

Fig. 1.3 shows the basic principles of these effects in a MOS capacitor and one particular

MOSFET geometry.

It is briefly worth describing the concept of the Fermi level that will be become important

later. The Fermi level is a thermodynamic (read: equilibrium) concept that in the solid-state
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Figure 1.3: Semiconductor devices that use depletion.(A) A Metal-Oxide-
Semiconductor (MOS) capacitor in accumulation, inversion and depletion. The depleted
region is shown in green. (B) A MOSFET device (p-channel enhancement mode). Under
zero gate voltage, no current can flow. With sufficient positive gate voltage a n-type con-
ducting channel accumulated at the interface and current can flow from the n-type contacts
(yellow arrow). (C) p-i-n diode schematic. The intrinsic region (grey) has very few donors
and acceptor which are ionized. Forward and reverse bias shrink and grow the depletion
region at the p-i and i-n interfaces. (D) Shottky and Ohmic contacts on a p-type semi-
conductor. At the Shottky contact, charges build up creating a space-charge region and
rectifying barrier for conduction. At the Ohmic contact no charges built up but the Fermi
level can be pinned by surface states. Diffusing the metal into the semiconductor eliminates
surface-defect state Fermi level pinning.

context means: “if I were to put a level at this energy, it would have a 50/50 chance of being

occupied in equilibrium” (Fig. 1.4C). The full probabilistic/thermodynamic distribution of

occupation probabilities follows the Fermi distribution. Where this distribution is at 50/50

probability is the Fermi level. At high temperatures, the Fermi distribution is spread out

such that states above the Fermi level have a nonzero probability of being occupied. At

zero (low) temperatures, no states are filled above the Fermi level, and the Fermi level is

the highest possible occupied state in equilibrium. In general, there can be separate Fermi

levels for electrons and holes. Given that the Fermi level can tell us what states are filled

and not filled, in a semiconductor with donors and acceptors, the Fermi level is a valuable

construct for thinking about what charges are doing in the device (in equilibrium). That
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being said, in many cases in this thesis and in device physics, the system is not in equilibrium.

Laser excitation and ultralow temperatures cause deviations from equilibrium, along with

electrically biasing a device. In these cases, a quasi Fermi level describes the new 50/50

point of level occupation in this non-equilibrium system, and can be different for electrons

and holes.
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To actually make good electrical contact to doped semiconductor layers to create devices,

Ohmic contacts are needed. When put into physical contact, the Fermi level of a metal and

the semiconductor must match (a flat line in energy). This is another way of saying that

whatever space-charge regions and electric fields are formed at the semiconductor-metal in-

terface, they must result in the equilibrium energies of electrons matching up. Unfortunately,

these built up potentials can prevent currents form flowing. To understand the potentials at

the interface, we consider the work function of electrons in a metal (φm) and in a semicon-

ductor (φs) (defined in reference to the Fermi level, shown in Fig. 1.4). The work function is

just the energy needed to remove an electron to infinity, whereby a global energy reference

is defined. For an n-type semiconductor, if φm < φs, then the CB and VB of the semicon-

ductor must bend down at the interface to maintain energy consistency at the vacuum level

for a n-type semiconductor (Fig. 1.4A). The bands don’t physically bend, the bending just

represents an energy offset from the effect of the space-charge regions at the interface. In

the case of φm < φs, this means that electrons can flow freely into the semiconductor. On

the other hand, if φm > φs, then the bands bend up for a n-type semiconductor, creating

an energy barrier that the electrons need to pass through of height φs − φm shown in Fig.

1.4B. This is called a Shottky contact, and due to the space-charge region, this contact is

rectifying much like a p-n diode (Fig. 1.2D) and only allows current to flow in one direction.

SiC Shottky diodes are another electrical device that drives the motivations of the work in

this thesis. On the other hand, Ohmic contacts are purely resistive and non-rectifying. For

a p-type semiconductor, the conditions are flipped and φm > φs gives Ohmic contact.

However, the actual interfacial chemistry of metals and semiconductors is complicated

by surface states. By annealing the metal and the semiconductor together, the interface

becomes blended with metal-semiconductor alloys. With the proper choice of annealing and

metals, the blending eliminates the contact barrier and allows for Ohmic contact (Fig. 1.2D).

Bringing it all together, by fabricating dopants and gates on semiconductors we can

create a device that flows current if a gate voltage is ‘On’ and flows no current when the gate
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voltage is ‘Off’. This is exactly the transistor described earlier. The patterning/fabrication

of these devices uses a process called lithography and happens in a clean room (where

I spent a good amount of time in graduate school), with lithography being just a fancy

type of plastic stenciling. This stenciling at the nanoscale however, drives all of modern

technology and is perhaps the most important way of making things unknown by the general

public. In this thesis, we will mainly focus on simple p-i-n diodes, but MOSFETs and other

more complicated devices and circuits present an exciting avenue towards scaling quantum

technologies.

1.1.3 Bits and Qubits

We’ve described the technology behind the digital technology revolution. Gates on tran-

sistors being turned on and off, zeroes and ones. These ‘bits’ of information can be more

than just electrical currents, though. For communication technologies, bits are encoded in

photons (light). In some computer memories, bits are magnetic domains on a ferromagnet.

Once you have some bits, you want to be able to do operations on them. Transistors and

other devices, as described in 1.1.2, can perform logical operations. Representing informa-

tion in binary, combined with simple Boolean logical operations like ANDs and ORs, can

form adders, counters or other complicated computational functions.

What happens when we make things quantum? Quantum mechanics is just the set of

rules that describes the universe at the smallest scales, from single atoms and electrons to

particles of light. Everything obeys quantum mechanics, it’s just that the spooky properties

(see 1.2.3, and 1.2.4) of quantum only become apparent at the smallest scales, or at the

single particle level (‘quantized’). Taking transistors down to the single electron level turns

into considering the presence or absence or single charges (‘single electron transistors’, SETs

or charge qubits, see 3.4.3). Communications are taken down to single photons of light (see

3.4.5), and magnetic hard drives are shrunk from being giant domains of electron spins lined

up in a ferromagnet and transition to working with single electron spins.
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It turns out that single electron spins are a good place to start talking about quantum

mechanics. Spin is an intrinsic property of particles that gives them angular momentum,

much like a spinning top. However, spin does not describe actual spinning of the particle- it

is a property just like charge or mass. Spin describes angular momentum and the magnetic

moment of a system, such that the angular momentum is influenced by magnetic fields.

Think of a bar magnet (which is weird, since a bar magnet is made of tiny spins all lined

up): if you apply a magnetic field, the bar magnet wants to line up with the field (its low

energy state). If it is anti-aligned, it has higher energy (unstable, it wants to flip around

on you). This is how a single electron spin (or any other spin) behaves in a magnetic field.

Furthermore, the bar magnet produces a magnetic field itself, much like a single spin will.

There are two states, aligned and anti-aligned, with different energy. You could think about

using these two possible states of an electron spin, sometimes called ‘Up’(↑) or ‘Down’(↓) (1

and 0), as your binary system for computation. However, life isn’t that simple. Quantum

mechanics, which describes the behavior of single particles, gives us new insight and ways to

think about the states of systems. Not only can we make information technologies smaller by

moving to single particles, we get exciting new functionalities as well! (see 1.2.3 and 1.2.4)

The basic equation describing quantum mechanics is the (time-independent) Schrödinger

equation:

HΨ = EΨ (1.1)

Where H is the Hamiltonian of the system, E is the energy and Ψ is the wavefunction.

This equation is actually a linear algebra problem (or equivalently, a differential equation

problem). H is a matrix (or an operator), E is a scalar and Ψ is a vector. The wavefunction

represents the state of our quantum system, while H is a quantum analog to the Hamiltonian

(related to the Lagrangian) in classical mechanics that describes the energies in a system.

When solving this equation, as we know from linear algebra, we get eigenvalue and eigen-

vector solutions. In the Schrödinger equation, the eigenvalues are the energies of the ‘states’

that are the eigenvectors. Really, quantum mechanics is just a linear algebra problem with
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our states as vectors and dynamics as matrices multiplying those vectors.

In the case of a single electron spin, the Hamiltonian is very simple:

H = gµbB · S = γeB · S (1.2)

Where µb is the Bohr magneton, the magnetic moment of an electron spin. And g is the

electron g factor (described in section 5.3). γe is the gyromagnetic ratio of the electron spin.

This looks very much like the dipole energy E of a classical electron spin E = −µB · S

(with µ = −gµb), except that now S is a matrix, not a vector. S describes the spin of the

electron, which for a spin = 1
2 particle is described by a vector of Pauli matrices (up to a

normalization factor):

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (1.3)

With S = [axσx, ayσy, azσz]. In a magnetic field oriented along the z-axis (completely

arbitrary, though this choice of basis makes things nicer) the Hamiltonian with the proper

normalization then looks like:

H = gµbBzσz/2 = γeBzσz/2 (1.4)

Which result in the eigenvectors:

ψup = |↑〉 =

1

0

 and ψdown = |↓〉 =

0

1

 (1.5)

Where we have introduced the beginnings of Dirac notation for the state ‘Kets’, |↑〉 and

|↓〉. We can also get the eigenvalues for these eigenvectors:

E↑ = gµbBz/2 and E↓ = −gµbBz/2 (1.6)

13



If we remember our understanding of bar magnets, we recognize that the dipole (µ)

aligned with the ‘upwards’ Bz magnetic field is lower in energy than the dipole aligned

against the field. This corresponds to the spin ‘down’ state with µ = −gµb (for electrons).

This is how we assigned ‘up’ and ‘down’ to these states. We then have recovered the classical

energies for an electron spin pointing up (high energy) and down (low energy). The two

energy levels of this system make an electron in a magnetic field a quintessential example

of a quantum two level system (TLS). The eigenstates of this TLS are a little harder to

understand.

If we go back to classical systems, the state of a bit can be either 0 or 1. However, we can

also describe the state of a probabilistic classical system. We construct a vector containing

the probabilities to have 0 (p0) or 1 (p1):

p0

p1

 (1.7)

This can be used to describe the following scenario: “after I flip this coin and cover it,

it is either heads up or tails up with equal probability.” Another way of representing this

system is with a state vector
∣∣Psystem〉:

∣∣Psystem〉 = pheads |heads〉+ ptails |tails〉 =
1

2
|heads〉+

1

2
|tails〉 =

0.5

0.5

 (1.8)

Where here we have used |heads〉 ≡

1

0

, |tails〉 ≡

1

0

 to represent the outcomes of

the coin flip. The probabilities for heads and tails must add to one (be normalized) and be

positive (in general). For classical bits like a coin that can be in one of two states, Eq. 1.8

just represents our incomplete knowledge of the system before measurement (looking at the

coin). However, the true ‘state’ of our system is really just |heads〉 or |tails〉. In formalizing
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the state as a vector, we can see that certain computational operations can be generalized

as matrices that act on this vector. This gives us the probabilities after an operation, even

if we don’t know what the input state is exactly. For example, the NOT gate:

NOT =

0 1

1 0

 (1.9)

Additionally, multi (classical) bit states can be treated with a bigger vectors and multi-

bit gates can have their “truth-tables” mapped just like the NOT gate above to a matrix

form. Overall, treating our classical system as a vector allows us to make statements about

probabilities, and how operations (which are matrices) act on those probabilities [17].

In quantum mechanics, the situation is very similar, but has important differences. Our

choice to use ‘kets’ (|ket〉) in Eq. 1.8 was suggestive. Any arbitrary vector, or any arbitrary

quantum state, can be described by a similar normalized vector. Since our eigenvectors in

Eq. 1.4 form an orthonormal basis set, any arbitrary quantum state can be described in a

similar manner to Eq. 1.8. Bringing our example to an electron spin with two eigenstates:

Ψspin = |spin〉 = a↑ |↑〉+ a↓ |↓〉 (1.10)

However, there is a very important difference. a↑ and a↓ no longer represent probabilities,

but represent ‘state amplitudes’. Our state vector needs to be normalized, which from linear

algebra means that |a↑|2 + |a↓|2 = 1. Importantly, the state amplitudes can be negative

or complex, and are not restricted to positive numbers ≤ 1. The only requirement is that

the norm-square sum of amplitudes needs to add to one. This state (Eq. 1.10) represents

the actual quantum state of our system, not just incomplete information as in the classical

example. The link to the classical example gives us another insight: the norm-squared

state amplitudes represent the probabilities of a certain outcome, if we were to make a

measurement. The measurement process itself is a little tricky, but this is all we need to
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know to understand how things are working.

Quantum systems that can be in one of two quantum states are the classical analog of

systems that can make a bit. These quantum bits or ‘qubits’ are not always in a definite

state of being up or down, for example, but can be in an arbitrary state. This state doesn’t

represent our incomplete knowledge about the state of the system or its probabilities; it

represents the wavefunction- the real quantum state of our particle. The wavefunction being

an object that describes reality is part of the weirdness of quantum.

1.2 Qubits and Control

1.2.1 The Rotating Wave Approximation

The wavefunction can evolve in time, according to the (time-dependent) Schrödinger equa-

tion (Eq. 1.11), which is the equation of motion for the system.

HΨ = i~
d

dt
Ψ (1.11)

Where ~ is the reduced Planck’s constant. This equation can be easily solved if H is

time-independent:

Ψ(t) = e−iHt/~Ψ(t = 0) (1.12)

For an electron spin with a field along the z-axis, as described above, we can manipulate

the state by driving magnetic fields perpendicular to the spin’s axis. To show this, we will

assume the driving magnetic field is along the x direction. We can use the same Hamiltonian

to understand our situation (Eq. 1.2). Expanded out, assuming our driving field is time

dependent:

H(t) = H0 +Hdrive(t) = γeBzσz/2 + γeBx(t)σx/2 (1.13)
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Where H0 is our undriven/unperturbed Hamiltonian. Assuming our manipulation tone

is an oscillating wave with angular frequency ω, we can define:

Bx(t) =|Bx|(I cosωt+Q sinωt) (1.14)

Which describes an arbitrary wave with variable phase. This decomposition of the drive,

and the modulation of the parameters I and Q in time are called IQ decomposition and

IQ modulation, respectively. We will see the importance of this in chapter 2. The IQ

decomposition is normalized such that |I|2+|Q|2= 1.

There is some subtlety about time evolution. There are three possible ‘pictures’ for

quantum mechanics, depending on if the state kets evolve in time, if the operators and

observables evolve in time, or if both do. These are called the Heisenberg, Schrödinger and

‘interaction’ pictures, respectively. These are mathematically equivalent ways of treating

quantum mechanics, but have different definitions.

To start, let’s look at time evolution Eq. 1.11 and use H0, which is the bare Hamiltonian

for an electron in a magnetic field without the oscillating components. The time evolution

can be expanded in a Taylor series of the exponential (remember, H is a matrix). This looks

like:

e−iHt/~ = I +−it/~H +
(−it/~H)2

2
+

(−it/~H)3

6
+ ... (1.15)

Since

σnz =


I, if n is even

σz, if n is odd

(1.16)

Or equivalently, by realizing that any power of a diagonal matrix is just the power of the
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matrix elements, the time evolution operator is:

1 +−it/~E↑ +
(−it/~E↑)2

2 + ... 0

0 −(1 +−it/~E↑) +
(−it/~E↑)2

2 + ...)

 (1.17)

=

e−it/~E↑ 0

0 eit/~E↑

 =

e−it/~E↑ 0

0 e−it/~E↓

 (1.18)

Using the definitions for the energies in Eq. 1.6. For an initial state |Ψ〉 = a |↑〉 + b |↓〉,

the time evolution operator Eq. 1.17 gives the state at a later time:

|Ψ(t)〉 = ae−i
E↑
~ t |↑〉+ be−i

E↓
~ t |↓〉 (1.19)

This is the Schrödinger picture where the kets evolve in time. In general, eigenstates

accumulate phase according to their energies, where the frequency of oscillation is E/~. This

is related to the energy-frequency relation of quantum mechanics E = ~ω, such that:

H0 =

E↑ 0

0 E↓

 = ~

ω0/2 0

0 −ω0/2

 = ~ω0σz/2 (1.20)

|Ψ(t)〉 = aeiω0t/2 |↑〉+ be−iω0t/2 |↓〉 (1.21)

This same time evolution has a classical analog to spin precession in a magnetic field

(Larmor precession). For quantum information however, we commonly want to make a

transformation where the states we are talking about are stationary in time. An ideal bit

shouldn’t do anything when left alone.

In particular, we will operate in the interaction picture with the unperturbed qubit

Hamiltonian H0 and a perturbation Hdrive. In the interaction picture, the state kets and
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the Hamiltonian (HI) are defined using a transformation U(t) (moving to a different basis):

H(t) = H0 +Hdrive(t) (1.22)

U(t) = eiH0t/~ (1.23)

HI = U†Hdrive(t)U (1.24)

And importantly the new states in the interaction picture:

|ΨI(t)〉 = U |Ψ(t)〉 = a |↑〉+ b |↓〉 (1.25)

Where by comparing to Eq. 1.19, we can see that the explicit time dependence has been

removed. The time evolution happens on these states defined according to the perturbing

Hamiltonian HI . Just as in Eq. 1.12:

ΨI(t) = e−iHI t/~ΨI(t = 0) (1.26)

Note that the Eq. 1.25 has the time dependence in the kets included in the definition

of the new kets in the interaction picture. We’ve just applied a transformation that exactly

undoes the evolution from the bare qubit Hamiltonian. Eq. 1.24 is a general way to find

the new Hamiltonian after using a transformation U (from linear algebra). Another way of

viewing this is that we are moving to a frame that rotates with the phase accumulation at

the qubit frequency ω0. This is the beginning of the rotating wave approximation (though

here technically we are just moving into the interaction frame).
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We already know what the matrix exponential of H0 is, giving:

U(t) = eiH0t/~ =

eiω0t/2 0

0 e−iω0t/2

 (1.27)

Going through the matrix multiplication of Eq. 1.24 using Eq. 1.13 for our example of

a spin, we end up with:

HI = A

 0 e−iω0t

eiω0t 0

 (1.28)

Where:

A =
γe
2
|Bx|(I cos(ωt) +Q sin(ωt)) = A0[I

(eiωt + e−iωt)
2

+Q
(eiωt − e−iωt)

2i
] (1.29)

With A0 = γe
2 |Bx|. Multiplying the exponentials in Eq. 1.28 with the definitions in 1.29,

we find (complex exponential) terms that rotate at ω + ω0 and other terms which evolve at

ω − ω0. In the limit that the detuning ∆ = ω − ω0 ≈ 0, we have fast rotating terms at

∼ 2ω and relatively slow ones. The major assumption of the rotating wave approximation is

that the rapidly oscillating terms average out to zero and do not contribute to the dynamics.

This is generally an extremely good assumption, as long as ∆ << ω and A0 << ω. As

shown later, this second condition corresponds to the Rabi frequency needing to be smaller

than the qubit frequency. Deviations from the validity of this approximation results in the

so-called Bloch-Siegert shift.

Once we ignore the terms that rapidly rotate, and keep the other terms, we get:

HRWA,I = A0

 0 1
2(Iei∆t − iQei∆t)

1
2(Ie−i∆t + iQe−i∆t) 0

 (1.30)

20



ħω

1

0

ΔE

Φ

θ

z

y

x

0

1

ψ

(A) (B)

T

Po
pu

la
tio

n

(C)

1

0

ΩT=π

Figure 1.5: Bloch spheres, quantum objects and dynamics. (A) The Bloch sphere.
(B) TLS are qubits with well-defined energy splitting ∆E which can be driven and ma-
nipulated. Harmonic systems have equally spaced levels that cannot be individually ad-
dressed.(C) Rabi oscillations of a qubit prepared in |0〉.

In the limit that we can assume we are on resonance, ∆ = 0, and:

HRWA,I = A0

 0
(I−iQ)

2

(I+iQ)
2 0

 (1.31)

Noting the definitions in Eq. 1.3, we can rewrite:

HRWA,I = A0Iσx/2 + A0Qσy/2 (1.32)

For which we define the Rabi frequency Ω = γe|Bx|/(2~) = A0/~, such that:

HRWA,I

~
= ΩIσx/2 + ΩQσy/2 (1.33)

This is a great result. In the same way that σz gives phase accumulation which is a

‘z-rotation’ (precession), σx and σy give x and y rotations of our qubit state. By controlling

I and Q (the phase of our driving magnetic field) we can perform arbitrary x and y rotations

of varying angles. The time dependence/oscillating nature of our drive is also gone, and our

rotating wave Hamiltonian is constant in time. The axes x and y here in the rotating frame
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are arbitrary, and are picked out by either being ‘in-phase’ (I) or ‘out-of-phase’ (Q) with the

frame rotating with the spin (or qubit). How can we think about these angles? Why are we

referring to the Pauli terms as rotations? What do these rotations do? This is covered in

the next section, 1.2.2.

Technically, the rotating frame and the interaction frame are different, with one rotating

with the qubit and one rotating with the drive. On resonance, there are no differences.

However, with a small detuning in the rotating frame there is an additional Hamiltonian

term ∆
2 σz that corresponds to unwanted extra phase accumulations of our states. The

exact treatment for nonzero detunings is not explored here. However, it’s easy to think

about decomposing a ω0
2 σz term in the original Hamiltonian to be ω

2σz + ∆
2 σz such that

the extra ∆
2 σz term becomes part of the perturbing Hamiltonian (Hdrive). Applying the

transformation U to this term to this term results in no change, such that in HI there is an

additional ∆
2 σz term in the frame that rotates with ω.

Furthermore, we can note that in the interaction picture, the only terms in the Hamilto-

nian are Pauli matrices multiplied by the Rabi rate. This means that if we diagonalize, the

energy splittings between our new eigenstates will be the Rabi frequency. If we diagonalize

Eq. 1.22 fully, we will see extra moving of the states according to the Rabi rate. This

is related to the AC Stark and Autler-Townes splitting of qubit and multi-level quantum

systems, but we don’t need many details of this for the purposes of this thesis.

1.2.2 The Bloch Sphere

To understand, let’s think about an arbitrary quantum state of a two level system. We

know that our state is a vector that can have complex values, and that the norm-squared

amplitudes need to add to one (normalized vector). We can write any state with these

constraints as:

|Ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 (1.34)
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Where |↓〉 = |0〉 and |↑〉 = |1〉, relates the general treatment of a qubit with two states

in analogy to classical binary logic to the spin example. If we define |Z〉 = |0〉, |−Z〉 =

|1〉, |X〉 =
|0〉+|1〉√

2
, |−X〉 =

|0〉−|1〉√
2

, |Y 〉 =
|0〉+i|1〉√

2
, |−Y 〉 =

|0〉−i|1〉√
2

, we see that this

representation relates to spherical coordinates of a unit sphere that looks like Fig. 1.2.2A.

The coordinate system here is a little odd, since |0〉 and |1〉 are along the same axis, but are

orthogonal states (in the Hilbert space, the mathematical space where the state vectors live).

The relation to spherical coordinates can be done by relating the coordinates in regular polar

coordinates cos(θ)ẑ + eiφ sin(θ)x̂ to this weird basis where |0〉 and |1〉 should be orthogonal

(π/2, not π), and the polar angle will be half (θ/2 instead of θ).

Here’s the connection: the Hamiltonian terms that look like σx and σy are rotations

of the qubit state about the x and y axis on the Bloch sphere. For example, let’s say we

initialize our qubit into |0〉 and apply our manipulation tone on our spin in phase (I=1).

HRWA

~
= ω0σz/2 + Ωσx/2 (1.35)

HRWA,I

~
= Ωσx/2 (1.36)

|ΨI(t)〉 = e−iHDrive,I t |0〉 = e−iΩσxt/2 |0〉 (1.37)

Using:

σnx =


I, if n is even

σx, if n is odd

(1.38)
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We can expand our time evolution operator acting on |0〉 which simplifies:

|Ψ(t)〉 = e−iΩσx/2t |0〉 =1 +
(−itΩ/2)2

2 +
(−itΩ/2)4

4! + ... (−itΩ/2) +
(−itΩ/2)3

3! + ...

(−itΩ/2) +
(−itΩ/2)3

3! + ... 1 +
(−itΩ/2)2

2 +
(−itΩ/2)4

4! + ...)

 |0〉

=

1 +
−(tΩ/2)2

2 +
(tΩ/2)4

4! + ... −i(tΩ/2) +
i(tΩ/2)3

3! + ...

−i(tΩ/2) +
i(tΩ/2)3

3! + ... 1 +
−(tΩ/2)2

2 +
(tΩ/2)4

4! + ...)

 |0〉
(1.39)

We note that the expansions of sin(x) = x− x3/3! + x5/5! + ... and cos(x) = 1− x2/2! +

x4/4! + ..., such that our time evolution operator is just:

|Ψ(t)〉 =

 cos(Ω/2t) −i sin(Ω/2t)

−i sin(Ω/2t) cos(Ω/2t)

 |0〉 =

 cos(Ω/2t) −i sin(Ω/2t)

−i sin(Ω/2t) cos(Ω/2t)


1

0

 (1.40)

This matrix is just the rotation matrix about the x-axis. Thus:

|Ψ(t)〉 = cos(Ω/2t) |0〉 − i sin(Ω/2t) |1〉 (1.41)

Rx(θ) =

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

 (1.42)

Note that a rotation of θ has θ/2’s in the sines and cosines. In general, for any rotation

on the Bloch sphere about axis n̂ (a vector on the Bloch sphere) and of angle θ, the rotation

evolution is just e−iθn̂·σ, where σ is the vector of Pauli matrices. Using an analogy to Euler’s

formula eiθ = cos(θ) + i sin(θ), it can be shown that any rotation will just be cos(θ) + in̂ ·

σ sin(θ). In other words, with both I and Q control on our drive, we have two independent

axes of rotation (x and y) and can access any part of the Bloch sphere through qubit rotations.

We then have universal control of our single quantum bit using oscillating field driven dipole
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transitions.

For our example, if we look at Eq. 1.41, at time t = π
Ω our state is |Ψ〉 = |1〉 and the term

inside the cosine and sines are π/2, but the rotation matrix Eq. 1.42 is for an ‘angle’ of π.

If we turn off our drive at this point, we will have flipped the spin from |0〉 to |1〉 and done

a ‘π’ pulse which corresponds to a NOT gate. Turning our drive on for only half that time

takes us to the state |Ψ〉 =
|0〉−i|1〉√

2
, which is on the ‘equator’ of the Bloch sphere (Fig. 1.2.2)

and is a (right-handed) rotation about the x-axis of ‘π/2’ onto the ‘-y’-axis and corresponds

to the commonly-used Hadamard gate. Leaving the drive on continuously, we will rotate

around the Bloch sphere and oscillate between |0〉 and |1〉. This is called a Rabi Oscillation,

shown in Fig. 1.2.2C. In general, a Rabi oscillation experiment involves polarizing the qubit,

then applying a drive pulse of varying length (t), and reading out the population in one of

the eigenstates in which we will see oscillations of the qubit. The treatment of this section

is universal to two level systems and shows how to drive single qubit gates, which we can

achieve by pulsing drive tones with different phases on resonance with our TLS.

1.2.3 Superposition

Backing things up a bit, what does the state |Ψ〉 =
|0〉+|1〉√

2
mean, for example? This state

is in a superposition. As discussed in 1.1.3, it represents a definite state of our qubit, but

upon measurement we can only make probabilistic statements about the outcome. In the

context of the example of a single spin, such a state represents the spin both pointing up and

pointing down at the same time. Superposition states describe the indefinite quantum state

of being in two discrete possibilities at the same time. The often cited example of this effect

is Schrödinger’s cat, which emphasizes how bizarre these states can truly be. This is one of

the major properties of quantum mechanics that quantum technologies try to leverage.

In particular, let’s move onto multi-qubit states. In the same way that many bits of

information can be represented as a series of ones and zeros, the states of many qubits can

be described. If we remember, the state of one qubit is just a vector with dimension of
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the number of possible states. For one qubit, this is either 0 or 1. For two qubits, we

have the possibilities 0A0B , 0A1B , 1A0B , and 1A1B or 4 possible states of the measurement

outcomes (with the first qubit labelled A, and the second qubit labelled B). The quantum

state of this two particle system is then a 4 element vector. For three qubits there are 23

possible qubit state combinations that describe our full quantum state. We can easily see

that with large qubit number (N), this number grows like 2N such that the state vector is

huge. We established in section 1.2.2 that single qubit operations like flipping spins and

creating superpositions are possible. These operations are the direct analogs of single bit

operations like NOTs. However, the power in classical computing is in logical operations

that take multiple bits as the input and gives multi-bit outputs corresponding to Boolean

operations like ANDs and ORs, for example. These are the operations that the transistors in

section 1.1.2 provide. The quantum equivalent to these operations are two-qubit (or multi-

qubit) operations. These operations are possible in many qubit candidates, but in general

are much harder than single qubit operations.

A simple (if slightly inaccurate) comparison to classical computing is that of a circuit

that does a computation on a given input (0A0B , for example), and gives an output. To

see what the result of the computation is for another input (such as 1A0B) instead, we have

to run through the whole calculation again. For large numbers of bits, we can see that to

test all the possibilities we need to run 2N times. However, in quantum information we

can prepare a large superposition state that has amplitudes in all the different possibilities.

Running through the quantum circuit, this state has equivalently ‘run the computation’ on

all the possibilities at the same time (parallelization). It’s easy to see how with clever choices

of the types of superpositions, combined with one and two qubit gates and measurements

that we can read out state amplitudes that correspond to useful quantities. This description

gives a flavor for the power of superposition, but many subtleties are swept under the rug.
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1.2.4 Entanglement

The other major property that quantum technologies leverage is entanglement. Let’s look

at the state:

|Ψ〉 =
|0A0B〉+ |1A1B〉√

2
(1.43)

This is one of the 2 qubit superposition states we discussed in 1.2.3. What this state

means is that when measuring, either both qubits are 0’s, or both are 1’s, and there is no

amplitude of them being in any other configuration. We can create such a state with one

and two-qubit operations, and look at results from single qubit measurements. For example,

the classic entangling/two-qubit gate (operator) is a CNOT. Just as in classical logic, a

CANOTB is a gate that is a NOT (|0〉 −→ |1〉,|1〉 −→ |0〉, or just a π pulse) that only happens

when qubit A is in state |1〉, and nothing happens when A is in state |0〉. In matrix form:

UCNOT =

0A0B 0A1B 1A0B 1A1B

0A0B

0A1B

1A0B

1A1B



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(1.44)

Applying this gate to an initial state |Ψ〉 that is just a combination of states we can easily

make with single qubit rotations/initialization:

|Ψ〉 =
|0A〉+ |1A〉√

2
⊗ |0B〉 =

|0A0B〉+ |1A0B〉√
2

(1.45)

UCNOT |Ψ〉 =
|0A0B〉+ |1A1B〉√

2
(1.46)

Which is the state in Eq. 1.43. One way for creating this gate is to have two qubits that

are strongly coupled (see chapter 2). For example, if I have an electron spin A dipole-dipole
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coupled to a nuclear spin B, then my Hamiltonian is:

H = γeBz · Sz,A + γnBz · Sz,B + g Sz,A · Sz,B (1.47)

Where we have assumed that the coupling strength ‘g’ is the dipole-dipole energy (more

generally the hyperfine coupling, see chapter 13), and that the magnetic field is along z and

that the axis between the spin is perpendicular to z. This energy is analogous to two bar

magnets wanting to line up opposite to each other. Since this is a two-qubit system, our

state vector has 4 amplitudes and the Hamiltonian can be written explicitly with both qubits

in mind:

H = γeBz · Sz,A ⊗ IB + γnBz · Sz,B ⊗ IA + g · Sz,A ⊗ IB · Sz,B ⊗ IA (1.48)

Where ‘I’ is the identity and ‘⊗’ is the outer product. For reference, an easy way to find

the new 4x4 matrices for this system is to take the ‘Kronecker product’ of the single qubit

matrices (using Mathematica, for example). You can also use it to find a multiqubit state

vector from the single qubit states as in Eq. 1.45. Multiplying out all the matrices and

defining γBz · Sz = ωσz/2:

1

2



ωA + ωB + 2g 0 0 0

0 −ωA + ωB − 2g 0 0

0 0 ωA − ωB − 2g 0

0 0 0 −ωA − ωB + 2g


(1.49)

Since the Larmor/qubit frequency of the electron is much greater than that of the nuclear

spin (since the magnetic moment of a nuclear spin is small), we can simplify:
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1

2



ωA + 2g 0 0 0

0 −ωA − 2g 0 0

0 0 ωA − 2g 0

0 0 0 −ωA + 2g


(1.50)

The assumption that ωA >> ωB is not necessary, but does simplify the analysis here. Since

all the elements are already diagonal, these elements are just the energies of our eigenstates.

Drawing this out we see the energy structure in Fig. 2.1B.

Essentially, the coupling term ‘g’ splits our electron spin’s energy levels into two (the

hyperfine splitting). If g is larger than the linewidth of our electron and nuclear spin tran-

sitions, then a drive tone can be tuned into resonance with two of these lines. Specifically,

we can see that driving |0A0B〉 ↔ |1A0B〉 and |1A1B〉 ↔ |0A1B〉 have distinct energies

depending on qubit B’s state. This drive is then conditional on the nuclear spin (qubit). On

the other hand, |0A0B〉 ↔ |1A1B〉 and |0A1B〉 ↔ |1A0B〉 have the same energy. This drive

is unconditional in that it is on resonance no matter if qubit B is in 0 or 1. In the two qubit

system, our drive couples the same way as in 1.2.2 and we can perform π pulses on these

transitions (a fun exercise to prove to yourself).

In particular, if we perform a π pulse on |1A0B〉 ↔ |0A0B〉 we map:

|0A0B〉 → |1A0B〉

|0A1B〉 → |0A1B〉

|1A1B〉 → |1A1B〉

|1A0B〉 → |0A0B〉

(1.51)
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this is the operator: 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


= UCNOT (1.52)

Which is exactly the CNOT from Eq. 1.44. Additionally, we can perform a π pulse on

|0A0B〉 ↔ |1A1B〉 and |0A1B〉 ↔ |1A0B〉 (which are degenerate). This is just an uncondi-

tional rotation of both qubits:

1

2



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


= σx,A ⊗ σx,B (1.53)

The fact that we can decompose this operator (separable) also demonstrates why it is

an unconditional gate (only two single qubit gates). The CNOT in Eq. 1.52 cannot be

decomposed in this way. The point of this exercise is to illustrate how coupling systems

together allows for an energy splitting which can be used to drive conditional gates which

form the basis of two-qubit gates such as the CNOT. In particular, the energy splitting

needs to be large enough to have the lines resolved. Details and further considerations are

mentioned in chapter 2.

We have to remember that this (Eq. 1.46) is the state of two qubits, physically separate

and distinct objects. If we generate this state, and put both qubits in separate black boxes,

if we open one box and see “qubit A is in state |0〉”- then, without even opening the box

with qubit B inside we already know its state to be |0〉. The results of measuring will

always be random (50%: 0, 50%: 1), but will be perfectly correlated. Importantly, we can

physically separate black box A and black box B such that the result that we measure for

qubit A would have to be communicated faster than the speed of light in order to change the

30



outcome for qubit B (if we measure it immediately after qubit A). Another way of saying

this is that quantum mechanics and entanglement say that the universe is inherently non-

local, meaning that quantum correlations fly in the face of Einstein’s relativity. Sometimes

this is referred to as ‘spooky action at a distance’ and is illustrated in the seminal EPR

(Einstein-Podolsky-Rosen) paper[18]. Proofs of this involve violating Bell’s inequalities or

‘Bell tests’ which eliminates ‘hidden’ classical correlations (at a distance). These inequalities

eliminate the possibility that classically correlated pairs of particles are generated (such as

equal production of either |00〉 or |11〉, but not Eq. 1.46) by measuring the qubits in different

ways and looking at the statistics. For example, if I rotate both qubit A and B by π/2 then

for the entangled state is transformed:

|0A0B〉+|1A1B〉√
2

=⇒ (|0A〉+ |1A〉)(|0B〉+ |1B〉) + (|0A〉 − |1A〉)(|0B〉 − |1B〉)

=
|0A〉|0B〉+|1A〉|1B〉√

2

(1.54)

Such that upon measurement, we still see that the correlations are preserved. But if we

had classically correlated states and applied the same pulse:

|0A0B〉 , 50%, |1A1B〉 , 50% =⇒

|0A0B〉+ |0A1B〉+ |1A0B〉+ |1A1B〉 , 50%

|0A0B〉 − |0A1B〉 − |1A0B〉+ |1A1B〉 , 50%

(1.55)

Then there’s a chance we measure |0A1B〉 or |1A0B〉. The conclusion is that the measure-

ment outcomes are different between classical and quantum correlations. This is ironclad

unless our qubit knows what we’re doing, and sends a classical signal to the other qubit to

flip it appropriately. Separating the two qubits such that they would have to communicate

faster than the speed of light while maintaining these correlations shows the non-locality of

nature. Thus, by measuring the entangled qubits in different basis directions and compar-

ing the correlations, one can then compare to the Bell or CHSH inequalities to prove that

31



quantum mechanics is incompatible with these ‘local hidden variable’ theories. This is one

of most exciting aspects of quantum mechanics that quantum technologies try to leverage.

Furthermore, using entanglement we can ‘teleport’ the quantum state of a particle from one

location to another or use superdense coding and perform other quantum oddities.

Entanglement describes the quantum correlations of qubit states that can occur after

two-qubit operations. With many qubits, we can create large entangled states that have

exotic properties. In a full quantum analog of a computer, superpositions and entanglement

arising from these gates give rise to new abilities for quantum information.

1.2.5 Quantum Circuits and Algorithms

Using two qubit (such as CNOTs) and single qubit operations, many quantum algorithms

have been developed that could be run on a quantum computer, a device with full initial-

ization, control and readout of many fully-connected qubits. These algorithms and other

quantum processes for many qubits are commonly framed in quantum circuit diagrams

which are inspired by classical circuit diagrams. Importantly, many of these algorithms

outperform their classical counterparts on specific problems with important examples being

Grover’s [19] and Shor’s [20] algorithms, which can search unstructured databases and factor

large numbers in ‘polynomial’ time. As the number of bits (or qubits) gets larger, classical al-

gorithms get exponentially harder- so the ability to solve many problems in polynomial time

constitutes an exponential speedup of quantum computers compared to classical computers.

Importantly, RSA encryption which forms the basis of most technology today relies on the

exponential ‘hardness’ of factoring large numbers such that a large enough ‘key’ would take

a supercomputer many years to crack (see chapter 8). Computer and quantum scientists are

constantly coming up with new algorithms that can outperform classical computing.
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1.2.6 The Density Matrix

Arguably, a more natural way to think about quantum mechanics is to think about an

object called the density matrix that has an even closer analogy to the classical probabilities

example in 1.1.3.

ρ =
∑
j

pj
∣∣ψj〉 〈ψj∣∣ (1.56)

Where 〈ψ| is called a ‘Bra’ and is the row vector equivalent of the column state vectors

as in Eq. 1.5 and pj is the classical probability to be in state j (such that the sum of the

pj ’s add to one, and pj is real and non-negative). Multiplying the row and column vectors

means that this object is a square matrix. Eigenstates correspond to ‘on-diagonal’ elements

of this matrix, while ‘coherences’ (or superpositions) make the off diagonal elements nonzero.

The density matrix formalism is a completely general treatment of quantum mechanics but

also can treat so-called ‘mixed’ states that describe probabilistic mixtures of of the quantum

states (starting in classical 50:50 mixtures such as Eq. 1.55 or in thermal equilibrium, for

example). In reality, to measure superpositions and entangled states we can only really mea-

sure statistics on measurement results, and the density matrix treats the statistics/ensembles

of measurements easily. The density matrix can evolve in time, and linear algebra manipu-

lations of it can represent the measurement process or give the results of measurements in

a particular basis. For mixed states/ensembles of measurements, the density matrix can be

used to find the Bloch vector of our qubit which is a vector on the Bloch sphere, but does

not need to be of unit length. Due to decoherence and depolarization, the Bloch vector can

shrink to zero length. In general, the density matrix is a powerful tool for treating quantum

systems (especially with losses, decoherence and measurement). Particularly, testing that

multi-qubit states are actually entangled sometimes involves tests of the density matrix of

the two qubit system (such as the PPT test, see chapter 13). That being said, all the details

and applications of the density matrix are not as relevant to the bulk of the work in this

thesis and we will mostly use the state ket notation of quantum.
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Chapter 2

Decoherence, Lifetimes and

Linewidths

The problem with dealing with any quantum system is that the things that make it look

quantum (superposition and entanglement), are quite fragile. Just as with classical waves,

coherence refers to consistent phases over time and space. Coherent light from a laser, for

example, can display interference fringes because the light can have a definite phase and

constructively and destructively interfere. Decoherence is the unwanted scrambling of the

amplitudes and phases of our quantum system, usually by the qubit’s ‘environment’. For

most quantum systems, holding onto the ‘quantum-ness’ for long periods of time is referred

to having a long ‘coherence time’. There are a few basic relevant metrics we will go through

here. Many of these processes are understandable through a density matrix picture, but I

will keep things simple. In particular, we can describe how these measurements are done in

terms of the control described in 1.1.3.

2.1 T1

T1 is an energy relaxation time, and is not directly related to coherences. It is the state

lifetime of your qubit (Fig. 2.1A). This could be the radiative lifetime of an optical transition,
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Figure 2.1: Decoherence, tuning and coupling.(A) (left to right) Different terms/dipoles
of the qubit allow for either driving and manipulation, and for the shifting and decoherence
of the states. However, the term that decoheres is also a term that can be used for tuning the
energies of quantum states. In general, a ‘bit’ flip like error can occur when the qubit flips or
transfers population erroneously, the timescale where this happens is called T1. Under many
experimental instances, the qubit frequency can be in one of many locations (grey lines).
The result of this is a decay in the lifetime of superposition states T ∗2 . Under a refocusing
pulse, T2 decay is only limited by dynamic noise (red arrow) during the experiment. TLS can
have T1 decay happen radiatively, emitting a photon at E = ~ω. However, the linewith and
coherence of the TLS causes a spectral uncertainty and broadening in the emitted photon.
(B) Schematic of an electron spin (thick arrow) coupling to nuclear spin (thin arrow). The
resulting Hamiltonian has 4 levels with three possible transitions. (C) Anticrossing from
coupling qubit 1 at frequency 1 (blue) with qubit 2 (red) by varying the frequency detuning.
The splitting 2g corresponds to the coupling strength. (D) Illustrative T ∗2 decay (red, with a
set detuning) from averaging many experimental instances with slightly detuned frequencies
(blue).

or the lifetime of a spin ground state. For example, if I prepared a spin in |↑〉 (its high energy

state) T1 would be the time it takes to decay into an equal mixture of |↓〉 and |↑〉. Starting

in |0〉, the probability of being in |0〉 when measuring after a variable time delay t is P0(t)

and decays according to:

P0(t) =
(e−t/T1 + 1)

2
P0(t = 0) (2.1)
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That’s to say, if I ran the experiment many many times I would see a random loss of my

state (such as a spin flip) with characteristic time T1 manifested as an average decay of

population according to Eq. 2.1 (remember, all I measure are 0’s and 1’s). Depending on

the system, T1 isn’t the time to go into an equilibrium mixture but into the qubit’s ground

state (such as at low temperatures, or in optical emission). Thermally induced relaxation,

population loss (your qubit flies away) and noise resonant with the qubit transition frequency

can all drive T1 processes. Importantly, we can’t control this decay: it happens randomly

and destroys any superpositions and entanglement you may have prepared. Another way of

thinking about T1 is the environment driving a random Rabi oscillation/spin flip that you

didn’t want.

In a T1 experiment, we usually polarize into |0〉. We then wait time t and (at least

for the systems investigated in this thesis) measure the population in |0〉. To measure the

population in |1〉, on the other hand, we can perform a π pulse right before measuring such

that we map the amplitude of |1〉 onto |0〉. Given that drifts and other issues can happen as

this time is swept, and to gain full contrast in the signal, we use a differential measurement.

In the differential measurement of T1, we compare the decay with and without the final π

pulse over many experiments. The two measurements reach equal probability at long times,

which means that the state decays to a 50:50 mixture of |0〉 and |1〉 (a thermal mixture at

our temperatures).

2.2 T ∗2

T1 is the lifetime of our system prepared into one of its eigenstates. T ∗2 is the lifetime of a

superposition of our qubit (on the equator of a Bloch sphere), and thus is a direct measure of

coherence and is sometimes referred to as the ‘dephasing’ time. Any effect on the phases in

the superposition and any unwanted rotations on the Bloch sphere will mean that when we

come to measure, the state will be in a different place than we expect. If I run an experiment
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many, many times with each iteration having slightly different extra rotations and phases,

and compare to the state I expect (measure the superposition), then the ‘projection’ of my

true state to my expected state will decay as I let the system be kicked around:

Psuperposition(t) = e−t/T
∗
2 Psuperposition(t = 0) (2.2)

In practice, we start by preparing in |0〉. From 1.1.3 we prepare a superposition on the

equator of the Bloch sphere using a π
2 pulse. For this pulse we can pick I=1 (π2 x) or Q=1 (π2 y)

which once again is arbitrary (and just needs to be consistent with later choices of pulses).

We let this superposition evolve for time t, and then perform a differential measurement by

either performing a −π2 (either I=-1 or Q=-1) which maps the original coherence back onto

|0〉, or by doing another +π
2 pulse which maps onto |1〉. Once again, this is to maximize

measurement contrast.

If we remember our discussion of the interaction picture/rotating frame, it was mentioned

that in the case of small detuning ∆ from the frame we want to rotate in, there results a

∆σz/2 term in the Hamiltonian. In the Schrödinger picture, we already know that states

accumulate phases according to their energies/frequencies (from a σz term). It’s not surpris-

ing then that small deviations in what we expect for qubit energies gives this extra rotation

term, as mentioned in section 1.2.1.

What this means is that with small unwanted shifts in the qubit energy (and thus de-

tuning), there is a different amount of z phase accumulation. The upshot is that if our

frequency is slightly off, a state on the equator of the Bloch sphere such as
|0〉+|1〉√

2
will rotate

about the z axis on the equator differently than we expect (at the ‘speed’ of the detuning).

Interestingly, if my environment induced detuning is fairly static, if I wait time t = 2π/∆

then the state will be fully recovered (and actually just oscillates in time). The problem is

not the detuning, but that the detuning is random and uncontrolled. Imagine that each time

I run an experiment, I get an oscillation at the frequency of the detuning which is random.
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Averaging a bunch of waves with different frequencies will result in a decay in time (see Fig.

2.1D), which is the cause of Eq. 2.2. The detuning for each experiment can also change in

time (non-static) within each experiment, and further shortens coherences. Usually, for a

T ∗2 measurement, a small amount of known detuning will be added which adds oscillations

to the envelope decay of the coherence and makes fitting easy.

T ∗2 represents our phase coherence of a superposition in time. Since T ∗2 makes a statement

on the sum of all possible detunings of our qubit, it is inherently linked to the resonance

linewidth Γ (in frequency) of our qubit. Generally, T ∗2 = 1/(πΓ) depending on the lineshape

and the noise timescale. Measuring T ∗2 is called performing a Ramsey [21] measurement where

the oscillations above are called Ramsey oscillations or fringes and can be used in sensing. A

narrow qubit spectrum means oscillations with little damping. If a specified detuning is set,

one can set a delay time to measure small shifts in the resulting oscillation. By setting the

time delay to a position of maximum slope in the fringes/oscillations, boosted sensitivity can

be achieved to an external degree of freedom[22]. A longer T ∗2 means smaller and smaller DC

shifts can be measured. Furthermore, the linewidth of a qubit (related to T ∗2 ) determines how

well it is resolved from other objects spectrally. This has implications later in performing

conditional gates and in achieving ‘strong coupling’. In general, T ∗2 takes into account

inhomogeneous broadening which can happen if a single qubit is wiggling around in energy

experiment to experiment, or if there are many qubits with differing resonance frequencies

(an ensemble of qubits) resulting in a broadened distribution that are all measured at the

same time.

2.3 T2

The great thing about quantum science is that issues of two level systems and coherence

were worked out by the electron spin resonance and NMR community a long time ago.

We’re just catching up. It turns out a clever trick for extending coherence is to perform a
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spin-echo. In the limit that the noise is quasi-static (the induced detuning in each experiment

is constant), after preparing a superposition as described above, we can correct for unwanted

phase accumulation of this coherence. If we let the qubit in state:

|Ψ(0)〉 =
|0〉+ |1〉√

2
(2.3)

accumulate spurious phase as ∆σz/2 for time t/2, we get:

|Ψ(t/2)〉 =
e−i∆t/4 |0〉+ ei∆t/4 |1〉√

2
(2.4)

If we then perform a π pulse that flips the qubit to the other side of the Bloch sphere we

get:

|Ψ(t/2)〉 =
ei∆t/4 |0〉+ e−i∆t/4 |1〉√

2
(2.5)

Which just swapped the phase factors on |0〉 and |1〉. Evolving under the same detuning for

time t/2 again:

|Ψ(t/2)〉 =
ei∆t/4e−i∆t/4 |0〉+ e−i∆t/4ei∆t/4 |1〉√

2
=
|0〉+ |1〉√

2
= |Ψ(0)〉 (2.6)

Which is just the state we started with! This technique is called a Hahn echo[23]. Impor-

tantly, the idea is that if we wait the same time between the ‘refocusing’ π pulse and the

measurement as we do between the start of coherence evolution and the π pulse, the coher-

ence ‘echoes’ back and gets recovered. We can also see that we don’t need to know what

∆ is for each experimental instance. As long as it is quasi-static, the π pulse in the very

middle of the evolution time completely rephases our state. The measurement proceeds in

the exact same way as in Ramsey, but there is no detuning and a π pulse is put in the middle

of the evolution time. A Hahn echo eliminates static noise, but cannot correct for detuning

that changes faster than the order of t. When T2 is measured, a decay will be observed

that corresponds to higher frequency components of the noise. A single pulse Hahn echo T2
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time is a fairly universal benchmark for how coherent a quantum system is (the “coherence

time”).

2.4 Dynamical Decoupling

Luckily, the problem of non-static noise was also addressed by the spin resonance community.

If we apply multiple π pulses, as long as the noise is roughly constant between the pulses we

can effectively rephase the coherence. So instead of breaking up our coherence evolution into

two segments with t/2, we can break it up into many small segments with t/(N + 1) using N

π pulses. This is called ‘Dynamical Decoupling’ and in particular is called a CPMG sequence

(named after Meiboom and Gill [24] improved on the original sequence of Carr and Purcell

[25]). In this scheme, we are only sensitive to noise faster than the t/(N + 1) timescale. We

can see then that with large pulse number we can rapidly echo the qubit and are sensitive to

only faster and faster noise. Most noise sources are stronger with lower frequency, so having

larger pulse number can dramatically enhance the coherence time. The extension of this

is something called continuous dynamical decoupling which constantly drives the qubit and

dresses the states while rephasing rapidly (rapidly moving between two different sides of the

Bloch sphere).

There are many types of dynamical decoupling that use different pulses and phases with

different spacings, that are designed to efficiently rephase coherence for different kinds of

pulse errors and noise sources. In particular, later in this thesis we will use the XY-8 sequence

which alternates between X(I) and Y(Q) quadrature π pulses in the CPMG sequence and

corrects for imperfect pulse calibration.

Importantly, with a choice of the pulses and their separation, the measurement of coher-

ence becomes sensitive to different frequency components of noise. In general, each pulse

sequence can be Fourier-transformed into frequency space and constitutes a filter function

that determines what part of a noise spectral density S(ω) the qubit is sensitive to. Ramsey,
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Hahn and higher pulse number sequences each have their own filter functions that sample

a global noise spectral density. As the pulse timing is swept, this filter function moves and

can cause non-exponential decays depending on the shape of S(ω). Interestingly, at high

pulse number the filter function approaches a delta function and can be used to transform

the decay of coherence in time directly to a measured S(ω) using the spectral decomposition

technique [26].

If the noise is oscillating with a certain frequency and I want it to couple to my qubit,

I can choose the pulse spacing to constructively add the phases, and if I want to become

insensitive to it, I can pick timing that exactly cancels the phase accumulation between

consecutive pulses. The ability to drastically enhance coherence while maintain sensing

capabilities is a major advantage. In particular, dynamical decoupling allows for drastic

improvements for AC sensing. Similarly, certain arbitrary single and two-qubit controls can

still be performed even while maintaining dynamical decoupling, though there are certainly

added complexities ([27], for example). Further details of this will be described later in

chapter 13.

2.5 Clock and ZEFOZ Transitions

Another way to increase coherence is to design the energy spectrum of the qubit. If I have

an environmental degree of freedom (magnetic fields, electric fields, strain, etc.) whose

strength is characterized by δ, a qubit energy spectrum that is designed to be ‘flat’ with

respect to this perturbation will have increased coherence. The idea is to make a system

such that perturbations do not wiggle the energies/frequencies around, which was the cause

of decoherence in the first place. Sometimes these are are called ZEFOZ (Zero First Order

Zeeman) points in the spin literature or ‘clock-like’ transitions which arises from the atomic

clock community (these are the transitions which are extremely stable). In general, the

energy spectrum isn’t perfectly flat, so the goal is to engineer the dispersion such that the
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first order derivative of the energy with respect to δ is zero (hence: ZEFOZ). These sorts of

systems are investigated in chapter 13 and have resulted in some of the longest coherence

times ever measured[28].

2.6 A Comment on Dipoles

A more general way to think about the effects in this section is that there are two type of

dipoles: longitudinal and transverse. Dipoles are just terms in the Hamiltonian that look

like δidiσi with some perturbing field δ and ‘dipole moment’ d that relates the perturbation

to terms in the qubit’s Hamiltonian. If our qubit is in the σz basis, we need to use σx and σy

terms to drive qubit rotations (see 1.1.3) which are transverse to the qubit’s quantization axis.

However, from the discussion in this chapter, we know that there are also terms that change

the frequency/energy of our qubit such that we get extra uncontrolled σz (longitudinal)

terms that cause decoherence. In the example of a spin, we have the Hamiltonian in Eq. 1.2,

and note that the same dipole moment gµB = γe is multiplying the σx, σy and σz terms.

This means that although we can drive rotations of our qubit with transverse magnetic

fields, it is still just as sensitive to longitudinal/on-axis magnetic field noise that causes

decoherence (see Fig. 2.1A). A more ideal scenario is one where the transverse dipole is

large and the longitudinal dipole is small. However, this also means that tuning the qubit’s

energy is suppressed (“nature never lets you win”). Some qubit systems can be designed and

engineered along these lines to have the right sorts of dipoles to make them controllable, but

stable systems. This theme will be covered in other chapters as well.

2.7 Limits of Coherences and Linewidths

T1 can actually limit the T2 time. Our discussion above about coherence doesn’t take into

account population loss or T1 relaxation. If T1 is really short, it’s fairly straightforward to

understand that any superposition would also decay as well. It turns out that a superpo-
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sition state only has to decay ‘half as far’ compared to a polarized state to become fully

mixed/decayed, such that:

T2 < 2T1 (2.7)

This means that the ultimate limit for coherence time is T1 decay. In general, even if we

employ dynamical decoupling as described above, the ultimate limiting factor will always we

T1, our qubit’s lifetime.

We also must consider the Heisenberg uncertainty limit such that a state with a lifetime

T1 = τ (such as an excited state/radiative lifetime) will result in a natural linewidth. Using

the time-energy uncertainty principle from quantum mechanics:

∆E∆t ≤ ~/2 (2.8)

We can say that if the state has a lifetime τ , then τ sets the uncertainty in time. Additionally,

we can relate the Lorentzian linewidth Γ (the Full Width Half Maximum: FWHM) to the

energy uncertainty:

∆E ≈ hΓ/2 (2.9)

The factor of two here roughly comes from the fact the Γ describes the decay of population

(Ψ2) while the ∆E comes from the Fourier transform of the decay of the wavefunction/phases

(Ψ) to get the lineshape, which means we have to take a square root of the exponential

lifetime, reducing the effective power of the exponent of the decay by a factor of two (rigorous

derivations can be found in [29]). Combining the two and seeing what the limit of Eq. 2.8

is, we find:

h
Γ

2
τ =

h

2π

1

2
(2.10)

Γ =
1

2πτ
(2.11)

Alternatively, looking at the limit of Eq. 2.7, if we use the relation in section 2.2 re-
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lating linewdith (assumed there to be Lorenztian) to T ∗2 , but assume that T ∗2 has no static

inhomogenous broadening and is at the T2 limit:

T2 = 1/(πΓ) (2.12)

T2 = 2T1 (2.13)

Γ =
1

2πT1
(2.14)

Which is the same result as Eq. 2.11. A qubit with a Lorentzian linewidth that is completely

determined by these considerations (no inhomogenous broadening) is called lifetime limited

and is critical for understanding section 11.4. A good qubit will usually have very long T1

and will have T2 limited by other noise sources first. On the other hand, coherence from

short-lived optical excited states is ‘as good as it can be’ when it’s at the T1/lifetime limit.

2.8 Other Considerations

In general, when coupling to other qubits or degrees of freedom, narrow lines allow mea-

surement and control of small interaction strengths (coupling). If two quantum objects are

coupled with strength g (single particle coupling strength) which is like a Rabi frequency for

a two-qubit interaction (or a qubit-harmonic system interaction), then in order to resolve

that coupling in spectroscopy, we need the coupling induced splitting (an example for nuclear

spins is given in section 1.2.4) to be larger than the linewidths of our individual systems (κ

and γ) :

g > κ, γ (2.15)

Which is called being in strong coupling. Being in strong coupling means that an interaction

strength of two systems is larger than the damping rate of each individual system. Unfor-

tunately the term is often overused; a set of coupled classical pendulums can have ‘strong
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coupling’. When two pendulums have the same resonance frequency but are coupled, they

don’t swing separately, but gain shared oscillation modes that have different energies. As

two (classical or quantum) systems are brought into near-resonance, the shared spectrum of

the system hybridizes and displays an anticrossing (see Fig. 2.1C). This can be described by

the Jaynes-Cummings Hamiltonian[30] which generally treats a qubit coupled to a harmonic

mode of a cavity. Additionally, there is also an anticrossing as a function of detuning in the

interaction frame with the ‘coupling strength’ being the Rabi frequency. When the system

is driven harder, the eigenstates in this frame split more. Rabi oscillations occur when the

drive-induced splitting is larger than the linewidth.

Strong coupling is useful when dealing with qubits and single particles, and determines

if two-qubit operations can happen without losing the coherences first. A related metric is

high-cooperativity (C > 1) where:

C =
4g2

κγ
(2.16)

Which is a more general condition for being able to see nice ‘quantum’ effects between two

systems (cooling, swapping states, entangling, etc.) and forms a single number metric for

strong coupling. In general we can see, however, that having narrow lines and small κ and

γ are very important.

It may be pedantic, but conditional two-qubit (entangling) gates can be created in two

rough possible ways in the context of section 1.2. Given that the system is strongly coupled:

1. Define the ‘H0’ to include the qubit-qubit coupling. Use the energy splitting from

the coupling between the qubits to resolve levels. These levels can be driven with an

external perturbation selectively to perform two-qubit gates. The rotation terms are

turned on and off by turning on and off the drive.

2. Use the interaction frame which does not include the coupling ‘g’ (bare qubits). Then,

find a way to modulate g in time to turn the interaction on and off to perform gates.

In terms of the physics, these two methods are very similar but have different strategies
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in experiment. Both of them require strong-coupling/strong-driving. Similarly, depending

on the form of the interaction, one may have to perform single-qubit gates (such as a π/2

pulse) that create superpositions (moving into a different basis) in order to create the desired

interaction. In a sense, single-qubit operations can turn the right sorts of interaction terms on

and off (in the correct basis). This idea is used in chapter 13 to form gates despite an ‘always-

on’ interaction. Finally, one can beat the linewidth limit for a two-qubit interaction by

performing dynamical decoupling and extending the effective limit from T ∗2 to T1, as alluded

to earlier. An example of this is in performing two-qubit gates with ’weakly coupled’ nuclear

spins in chapter 13. Strong coupling of two electron spins generally requires placement and

individual control of the electrons at the nanometer scale, which is a challenge. Importantly,

entanglement can also be created for systems where direct coupling/two-qubit gates (with

high-fidelity) like these are infeasible. This is covered in detail in chapter 8.
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Chapter 3

Realizations of Quantum Technologies

Now that we have gone over what qubits are and the interesting properties they can display,

what can they be used for real-life applications? There are three major branches of quantum

technologies that have been proposed and developed, each leveraging different advantages

and giving new opportunities. In particular, as will be discussed in 3.4, the systems that this

thesis focuses on (spin defects in the solid-state) have had proof of principle demonstrations

in all three branches. However, quantum sensing and quantum communications are where

spins in SiC show the most promise.

3.1 Quantum Computers

Quantum computers are perhaps the most well known quantum technology. A large part

of the motivation and context behind quantum computers is given in the previous sections.

More examples of applications for quantum computers beyond those in 1.2.5 are machine

learning, quantum AI, quantum simulation, and quantum annealing. In particular, Feyn-

man’s quote: “Nature isn’t classical, dammit, and if you want to make a simulation of nature,

you’d better make it quantum”, illustrates the motivation for quantum simulation. Simula-

tions of complex molecules and materials, for example, use approximations because classical

computers can’t handle the entire quantum state of these systems. Quantum annealers (such
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as D-Wave), on the other hand, make use of quantum superposition and tunneling to search

through energy landscapes faster than classical techniques. However, quantum computers

will not make your smartphone or desktop faster! They only perform certain problems better

than their classical counterparts.

There are many major companies in the race for quantum computers including Google,

IBM, Intel, Honeywell, Amazon and others including smaller companies and start-ups,

and the competition is certainly growing. The major issues are in scaling to large qubit

numbers while keeping errors in check (and correcting for them), connectivity, coherence

times, control, and calibration, among others. A metric often thrown around is ‘quantum

supremacy’[31], which is the point where a quantum machine performs a task that is not

possible to perform on any classical machine. Claims of quantum supremacy have been made

and disputed, along with arguments about the proper metrics to aim for in performance.

That being said, quantum computers (based on superconducting technology, see 3.4) are

at the forefront and are being developed commercially. These systems have real prototype

computers doing calculations right now. The solid-state spin systems focused on in this

thesis have shown very basic error correction and compiled quantum algorithms, and have

local many-qubit nodes. However, they lack the ability to scale and connect to the qubit

numbers needed for useful computations (though there are some ideas for distributed and

photon-based quantum computing).

3.2 Quantum Sensors

Quantum things are (usually) small. As such, exquisite control and readout of these states

provides a window into the (nanoscale) environment of the qubit. Furthermore, as we saw

in chapter 2, quantum states like superposition have phases that are extremely sensitive to

perturbations. Accumulating these phases and translating them into variations in the ampli-

tudes for qubit readout allows for very good sensing capabilities. In particular, qubits usually
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have narrow transitions and are highly coherent which allow small changes to be detected.

Sometimes it is said “a bad qubit is a good sensor”, which is in part true- and illustrates the

need for a qubit to couple well enough to the sensed degree of freedom, while dealing with

reduced coherence. The applications of quantum sensing are wide-ranging, from nanoscale

NMR of single molecules, biosensing, probing condensed matter phenomena, dark matter

detection, to tests of quantum gravity. In a sense, an MRI scan is a rudimentary quantum

sensing technology that performs electron spin manipulation and measures relaxation and

coherences of the hydrogen spins in your body (which are sensitive to their environment).

The definition of what actually is a quantum sensor is quite broad.

Quantum sensors don’t (always) require thousands of qubits, error correction or fancy

algorithms. As such, there are many near-term technologies and companies invested (with

many start-ups). Some important examples are superconducting SQUID detectors/mag-

netometers, scanning single spin tips, Josephson Parametric Amplifiers, and Quantum LI-

DAR/RADAR among many others. Atomic clocks, which forms the precise reference for

time used across the world and are the basis for modern GPS, are also a quantum technol-

ogy which could be put in this category. Related to this thesis, single spins in the solid state

are excellent quantum sensors and have been used as gyroscopes and as nanoscale sensors

of temperature, strain, electrical and magnetic fields- even in living organisms. That being

said, spins are predominantly magnetic moments and really excel at magnetometry.

3.3 Quantum Communications and Networks

Quantum communications, a quantum internet, and quantum networks are the major appli-

cations that drives the work in this thesis. As alluded to in 1.1.3, taking classical communi-

cations to ‘the quantum level’ gives some interesting properties. In classical communications,

an eavesdropper can tap off a tiny fraction of your communications signal and listen in. How-

ever, in quantum communications we can use the fact that observing quantum states changes
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them. Because the signals can be encoded in single photons, and that there is a ‘no cloning’

theorem in quantum mechanics that prevents making copies of quantum states, that means

that if an eavesdropper listens in, it will destroy the quantum state and we can even detect

the act of eavesdropping. The result is that quantum communications can be used to create

a provably-secure ‘key’ (see further discussion in chapter 8) for encryption that is secured by

the fundamental laws of physics. Interestingly, quantum provides a ‘double-edged sword’ for

security. Quantum computers as discussed above can break the encryption we all use today,

but on the other hand, quantum communications provides us a way to ensure information

security (‘unhackable’ communication). Such quantum key distribution schemes are widely

used today and have had some traction with commercial systems like secure banking, a quan-

tum video-chat, etc. Some major companies are also getting into developing quantum key

distribution systems. These quantum communication channels are commonly achieved using

telecommunications fibers which offer low signal loss around 1550 nm of light (the telecom

C-band). This is the same technology that transports 90% of international data and spans

across the globe (just think how big the ‘telecom’ industry is). Quantum communications

can also be achieved with free space optics. Entangled particles have even been sent from

a ‘quantum satellite’ hundreds of kilometers above the earth to two telescope based ground

stations[32].

However, demonstrations to date are based on either bright single photon sources or at-

tenuated lasers, and importantly on spontaneous parametric downconversion (SPDC). SPDC

uses a crystal with a large χ(2) nonlinearity to take one photon to produce two photons at

different output angles/wavelengths with entangled polarization states (whether the light is

vertically or horizontally polarized, etc). Interestingly, your qubit can even be whether your

photon arrives ‘early’ or ‘late’ to some detector. These are called time-bin qubits.

These methods have allowed for major advances, but lack one key component: a quantum

memory. Entangled particles can be distributed to different stations, where the entanglement

can be verified by measurement. However, the distributed entanglement cannot be stored
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without a memory. As will be described in 8.3, holding onto entanglement is necessary to

send quantum states over long distances and to generate entanglement over many nodes. If

you want a ‘quantum internet’ or the ability to have distributed quantum computing, you

need memories. For example, if I needed to send a photon from Chicago to New York, then

my memory at each station needs to hold onto its quantum state for over ∼ 5 ms. For many

qubit candidates this is extremely long. Systems that have interfaces to photons but have a

long-lived quantum memories are then ideal candidates. The system developed in this thesis

is one such candidate.

3.4 Candidate Systems

A full list of all candidate quantum systems would be infeasible, but the following are the

major thrusts for the community and help put into context the relative disadvantages and

advantages of the systems developed in this thesis. There are two main sorts of quantum

objects: two level systems, and harmonic oscillators (Fig. 1.2.2B). Two level systems (TLS)

constitute the discussions in the previous sections. A harmonic systems is any degree of

freedom that looks like a classical harmonic oscillator, and can be anything from a mass on

a spring to an optical cavity or a LC resonator from electronics. Harmonic systems do not

have two isolated energy levels, but have an infinite number (sometimes called a ladder) of

equally spaced states. If I prepare both a TLS and a harmonic system in their ground state,

and apply a drive (such as in section 1.2.1), for the TLS we will get Rabi oscillations, but for

the harmonic system the energy to go from |0〉 to |1〉 is the same as the energy to go from

|1〉 to |2〉. Instead of qubit control and Rabi, we instead continuously excite the system to

some high excited state and have no precise control where we are. The candidates covered

here sometime have more than two levels, but as long as two levels can be isolated in energy

and the system is not harmonic, things are fine. Most candidate systems have very good

single qubit control, but the major differences in maturity is in two-qubit gates and scaling,
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with other differences being operation temperature and initialization and readout schemes.

In general, systems for quantum computation and communication need to meet Diven-

cenzo’s criteria[33]. For computing we need:

• A scalable physical system with a well-characterized qubit

• The ability to initialize the state of the qubits

• Long decoherence times

• A universal set of quantum gates

• A qubit-specific measurement capability

For quantum communications we need:

• The ability to interconvert stationary and flying qubits

• The ability to faithfully transmit flying qubits between locations

Where flying qubits are commonly photons and the stationary qubits are the TLS/quantum

memories.

3.4.1 Superconducting Circuits

As discussed above, a LC resonator can be a quantum object but cannot be a qubit. How-

ever, if we can add enough anharmonicity to the circuit, then the levels are no longer equally

spaced and by tuning our manipulation tone we can selectively drive only two of the lev-

els at a time. It turns out that in superconducting physics, a Josephson Junction, which

is just a small insulating region between two superconductors, does just this. Combined

with the extremely low losses in superconductors, these systems are exciting candidates for

quantum computing. Unfortunately, superconductivity usually only appears at cryogenic

temperatures. Additionally, to prepare the qubit state we have to cool the system down

52



such that only the ground state is thermally populated. In the GHz regime where super-

conducting qubits operate, this means we need to operate in dilution refrigerators which

are special instruments that can reach 10’s of mK. This makes the inside of such a cryo-

stat ‘the coldest place’ in the known universe. Superconducting circuits utilize the field of

quantum electrodynamics (cQED) to readout (dispersive shifts on a readout resonator) and

store single microwave photons. The GHz operation with electronics and microwaves makes

this system very appealing, along with the ability to fabricate any superconducting device

you may want using traditional lithography techniques. This means that superconducting

circuits are a ‘bottom up’ approach: you build a quantum object nature didn’t give you.

This also means that two-qubit gates and connectivity can be wired from the ground up. In

particular, one can construct ‘tunable couplers’ that can modulate qubit-qubit coupling and

make two qubit gates (see 2.8).

Superconducting systems have been used as single photon detectors, can search for dark

matter, and form the basis for SQUID loops that are exceptional magnetometers. For com-

puting, superconducting system have been scaled up to over 50 qubits with very good gate

fidelities and proof-of concept error correction. Superconducting systems are perhaps the

most popular qubit candidate for computing, but have drawbacks in terms of cryogenic lim-

itations and in terms of wiring up computers together. Since everything is in the microwave

domain and cold, there is no way to get anything quantum out of your dilution refrigerator

(room temperature is full of thermal microwave photons that destroy your information).

3.4.2 Neutral Atoms and Ions

Atoms are nature’s best qubit. Every atom is exactly the same as every other atom. The

AMO subfield of physics (Atomic, Molecular and Optical) is perhaps the first to really

think about using and observing the weirdness of quantum mechanics. Atoms have narrow,

selective transitions with long coherences and control realized by lasers. As mentioned in 3.2,

because of this, atoms can be great sensors and used as universal time reference. Laser cooling
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and optical pumping can cool the atoms and initialize them into a particular quantum state.

In order to annoy everyone in the field, I have combined the discussion on neutral atoms and

ions. Ions are just ionized atoms that have a net charge, this means that with appropriate

electrostatic gates one can confine the atoms in space. Gates between atoms are realized by

using the Coulomb interaction of these ions as they occupy different motional states of the

trap with a gate called the Molmer-Sörenson gate[34] that can realize arbitrary two qubit

operations[35]. Neutral atoms are neutral and are confined with laser trapping techniques,

while gates can be realized through long range Rydberg excitations of the atoms. Atoms don’t

require cryostats (though some are starting to adopt them for better vacuum performance),

but require extremely stable laser systems and ultra high vacuum (UHV). Atoms and ions

can have ground state spin and hyperfine states that can have long coherence times, as well.

Small-scale (11+ qubits) but high fidelity quantum processors are available for trapped

ions that can do basic quantum simulation and computing. Scaling ions up to many tens

to hundreds of qubits is a huge technical challenge. Scaling beyond that as necessary for

a full-scale quantum computer would require many small scale computers wired up using

atom-photon interfaces[36], or on-chip reconfigurable traps[37]. Along these lines, the first

quantum repeater protocols (see [38]) were actually proposed using atomic clouds using

the high-fidelity atom-photon interface and techniques from QED. Recent advances and

demonstrations are still being made [39]. Single ion remote entanglement is still an active

area of research today [40, 41], but suffers from UV wavelengths incompatible with long-

distance transmission.

3.4.3 Quantum Dots

As mentioned in previous sections, an electron spin is a quintessential qubit. But how

does one get a single electron to play with? By taking electronics to the single electron

level, we can either grow materials that form a quantum well that traps electrons and forms

particle-in-a-box type states (hence ‘dot’), or we can confine electrons using gates and band
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engineering borrowed from classical electronics (‘gate defined’). There are many types and

materials that make quantum dots, but there are two major categories. One type operates

in a dilution fridge, and is based on the spin states of single or multiple trapped charges.

Qubit preparation and readout occur through spin dependent tunneling using ‘single electron

transistors’ (which are extremely good sensors of charge), relating back to 1.1.2. Manipula-

tion occurs through magnetic driving or through sloshing the electrons back and forth next

to a micromagnet (electrically driving a time-varying magnetic field). Such devices made of

isotopically purified silicon and silicon/germanium devices leverage the expertise from silicon

nano-fabrication and display exceptional coherences and control. Scaling these systems to

many qubits, however, remains a huge technical challenge. Additionally, these qubits are

not optically active and cannot link to flying qubits.

The second kind of quantum dots are optically active. They have higher excited state

orbitals in the dot. A related technology is quantum dot TV’s that are actually on the market

right now! These dots (usually ‘self-assembled’) are grown in crystals/semiconductors of

materials containing Ga, As, In, for example and essentially form ‘particle-in-a-box’ states

for electrons (confined to the dot). These emitters are extremely good single photon sources

(which can even be engineered to be close to the telecom band) and can be manipulated with

lasers or microwaves. Quantum dots can even be used as the gain medium in creating solid-

state lasers. Readout and polarization can be achieved by borrowing techniques from AMO

physics. Electrically-driven single photon emission, single-shot readout and nanophotonic

integration with strong coupling have all been achieved. The major downside is that the

interface to flying qubits is degraded through fluctuating electrical noise, since the qubit is

not in a vacuum but in a real solid-state material. There have been recent advances on

this front, and the work in this thesis is broadly applicable to alleviating this issue (chapter

11). QD’s have recently been used to distribute entanglement over long distances [42, 43].

However, the materials that have good optically active quantum dots have extremely poor

spin coherence properties due to the abundance of magnetic noise from nuclear spins, which
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limits their applicability for quantum communications (discussion in the introduction of [44]).

By the time the single photon (flying qubit) from the dot gets anywhere, the associated spin

(stationary qubit) is long decohered. Despite this, commercial quantum dot quantum devices

are being sold today (mostly as single photon sources for QKD: see section 3.3).

3.4.4 Impurity Electron Spins

Once of the original proposals for a physical realization of a quantum computer is the Kane

quantum computer from 1998[45]. The proposal relies on electrons bound to impurities in a

semiconductor (silicon) such as the donor phosphorus (see 1.1.2). Importantly, an impurity

in a semiconductor lattice can trap electron or hole spins and localize them without the need

for gates or growth. At low temperatures where the impurity states are isolated from the

bands and the qubits are thermally polarized, these states are stable and can be manipulated

with microwaves. Furthermore, the phosphorus atom contains a nuclear spin. Nuclear spins

serve as exceptional quantum memories because their gyromangetic ratio is around one

thousand time smaller than the electron, and because the nuclear spin is confined to the

core of the atom. This makes nuclear spins extremely insensitive and a very long-lived

qubit[46] (but slow to control,”nature never lets you win”). Related to this, controlling and

understanding nuclear spins for SiC qubits is the topic of chapter 13. The electronic wave

function can be electrically tuned[47] and driven[48], shifting the qubit frequencies such that

gates can be implemented with a global microwave drive and nanoscale gating of individual

qubits. Borrowing from the semiconductor field effect physics 1.1.2, another gate can draw

the electron wavefunctions of two adjacent qubits to overlap under a gate and implement

a two qubit operation. Qubit readout is similar to quantum dots using a spin-dependent

tunneling (sometimes called spin-to-charge conversion). With isotopic purification of silicon

to reduce stray nuclear noise, and with recent advances in placing individual phosphorus

atoms on an atom-by-atom basis, the Kane proposal is still alive today (with most work

done in Australia). The time difference between the original proposal to today shows how
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hard of a physics and engineering challenge building quantum technologies is. There are

other impurity systems being investigated such as bismuth in silicon, for example. Arguably,

systems like the divacancy in silicon carbide, the NV − center in diamond, and rare earths

in oxides are ‘impurity electron spins’, but they will be described separately in chapter 4 as

they have an added feature of an optical interface.

3.4.5 Other Quantum Objects

As mentioned at the beginning of this section, there are two major kinds of objects: two

level systems and harmonic oscillators. The qubit candidates outlined above are all two-level

systems (or contain one). However, many useful quantum systems are harmonic oscillators.

For example, while photon polarization can be a qubit with only two states, photons are a

harmonic system in terms of their occupation (photons make up a field and in a particular

mode, the occupation can be thought of as harmonic with the photon energy). There is even

a large community implementing quantum computations using photons only (linear optics

quantum computing). To display quantum properties, harmonic systems usually need to

be in or near their ground state. Luckily for optical photons, the energy is high enough

that there are no thermal photons to occupy modes such that a single photon can be easily

realized. If you go too far into the infrared (IR) however, thermal photons become an issue.

For lower frequency systems, polarizing to the ground state involves active cooling or putting

the system in a cryostat.

Some examples of other quantum objects that are harmonic are magnons (spin-waves),

mechanical oscillators, optical and microwave cavities. The coupling of these physically

different harmonic and two level systems together constitutes a hybrid quantum system, and

includes fields such as optomechanics[49]. Exploring these hybrid systems is motivational for

the work described in chapters 9 and 10. In general, hybrid systems allow for transferring and

controlling quantum states through different modalities. One word of warning: sometimes an

ensemble of N two level systems such as atoms or spins is said to have a
√
N enhancement
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of the coupling (g, see 2.8), which is also used in the DLCZ protocol[38]. This is true,

but describes a collective excitation of the whole ensemble (Dicke states) that looks like a

harmonic oscillator even though it is comprised of many two level systems. Additionally,

a much more bizarre type of qubit and quantum computing uses topological physics and

braided ‘anyons’ to perform gates. This is an active area of research but is not covered here.

Finally, a major goal of the community is to create a microwave-to-optical converter that

transforms the microwave frequencies in systems like spins and superconducting circuits that

fulfill the Divencenzo criteria for quantum computing into flying qubits/photons that fufill

the second set of Divencenzo criteria for quantum communications. Opto-mechanics, electro-

optics and hybrid systems using either atoms or spins have all been proposed as possible

pathways towards this goal.
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Chapter 4

Spin Defects for Quantum Science

“Forget everything you know”

This chapter begins the discussion of the systems which are investigated in this thesis. In

general, no crystal is exactly perfect and is riddled with defects. These can range from

purely crystallographic issues such as domain walls, stacking faults, and screw dislocations

all the way to individual single missing atoms or substitutional impurities (the wrong type

of atom is on a site) in the crystal structure. Defects in materials are a huge area of study

that affects the mechanical, thermal, optical, and electrical properties of semiconductors

and other materials. Single vacancy, impurity along with vacancy-impurity or vacancy-

vacancy complexes are atomic in size and drive the majority of issues and opportunities

in solid-state devices. We had discussed the effect of adding impurities that can donate

and accept electrons in 1.1.2 which change electrical properties. If a defect is ‘deeper’ in

the band gap (away from the bands) it can capture charges, but the energy to free the

charge again is prohibitively large to be done thermally. It is worth knowing as well that

the addition of even a small impurity concentration drastically shifts the Fermi level and

affects conductivity. Controlling impurities can reduce conduction by reducing the carrier

concentration. However, no system is perfect and compensating a crystal that contains

residual donors and acceptors through adding many deep defects will suppress conductivity
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by capturing carriers but then not releasing them (Fig. 1.4). In this way, defects can be

added to create extremely high resistivity materials with the Fermi level ‘pinned’ at ‘midgap’

(the Fermi level gets pinned to the deep defect position deep in the bandgap). On the other

hand, if I want a region to be conductive and to have carriers in the conduction band to

have high mobility, then deep defects can be a problem. Unwanted capturing of carriers due

to ‘lifetime killing’ defects can degrade device performance.

Furthermore, certain defects can be ‘optically active’ and are called color centers. A

normal semiconductor or insulator will not absorb light below its band gap, while above the

band gap the light is absorbed by exciting electron-hole pairs across the bandgap. Color

center defects cause absorption and emission in the semiconductor that differ from what

is expected from the bandgap alone, giving the crystal color. For example, a sapphire

is just Al2O3 with trace iron and titanium, while a ruby is still Al2O3 but with trace

chromium. Many of the original lasers were made of the optically-active Cr defects in ruby.

For gemstones (such as diamond) and ‘fake’ gemstones (like SiC), impurities and defects can

either cause wanted or unwanted coloration. Color center defects (at least the ones we care

about) cause coloration by absorbing light, exciting charges in the atomic-size defect into a

higher excited state orbital. The ground state and the excited state of the defect both lie in

the bandgap of the material making certain defects look like trapped molecules or atoms in

a solid-state host (Fig. 5.2).

Finally, defects that trap charge can have unpaired electrons or holes. These carriers

have spin, and can effect the magnetic properties of materials. These electron spins were

also the basis of the original MASER in the 1950’s, which was made of Cr defects in ruby.

More importantly though, this means that one can understand the defects in a material by

looking at electron-spin resonance.

For this thesis, our interest is in defects that are optically active and host an electron

spin. Using the optical signatures to study the magnetic properties of defects is called ODMR

(Optically Detected Magnetic Resonance), and has been a widely used tool to understand
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materials since 1959 [50, 51] (once again, in ruby). The sad reality is that the quantum tech-

nology community is just rebranding and rediscovering defects, measurement techniques and

effects from the solid state community that was just trying to understand pesky defects in

their materials. Other common ways to understand defects in materials are DLTS (deep level

transient spectroscopy), optical absorption/transmission, PL (photoluminescence), measur-

ing the bound exciton lines (excitons binding to defects have specific ‘fingerprints’ of emission

near the bandgap), EDMR (electrically detected magnetic resonance), ODMR, MCD (mag-

netic circular dichroism- a form of ODMR), and many others.

Perhaps the most well known example of an ‘optically active spin defect’ is the NV −

center in diamond. That being said, another candidate system that has been developed in

recent years is the neutral divacancy defect V V 0 in SiC, which is the subject of this thesis.

With the current advanced state of spin defects in SiC, we will only describe the V V 0 system

and make comparisons instead to other candidate systems along the way. There are plenty

of other theses describing the NV −center. In general, spin defects display long coherence

and T1 times and contain a natural interface to flying qubits for quantum networks. With

some systems displaying nanoscale and room temperature operation they are good quantum

sensors, but are harder to scale into quantum computers.

4.1 Other Spin Defect Systems

While this thesis focuses on the V V 0 center, there are other defects developed in SiC such as

the NV −, V −Si, and CAV vacancy complexes along with various transition metal impurities

(TM) covered in chapter 7[52]. Investigating qubit candidates which have various advantages

is an exciting pathway for developing quantum technologies in the solid state. The NV −

in SiC is promising (closer to telecom) and may act quite like the V V 0, but at this point

is not well developed, and has some confusing optical and spin properties. V −Si has been

focused on heavily, and has room temperature ODMR (but has reduced contrast compared
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to cryogenic temperatures[53]) but suffers from low quantum efficiency (QE) and a far-from

ideal spin-photon interface that only allows 6 photons to be emitted before a spin-flip [54]

(compared to 100-1000’s from V V 0[55]). This will be explained further in sections 5.2 and

8.7. TM’s are recently developing and promising, but single defects with a well characterized

spin-photon interface are lacking (for now). Stacking faults in the SiC crystal create local

environments for defects that look different from the bare crystal. In particular, V V 0 exist

near these stacking faults that have stable photophysics and room temperature operation

[56].

‘Good’ defects can be found in the 6H polytype of SiC, but single defect isolation and

control has mostly been limited to the 4H polytype which is the most well developed. The

3C polytype can be grown on silicon, and many dreams have been formed about it because of

this. That being said, although single V V 0 have been isolated in 3C SiC[55], this layer was

grown on 4H-SiC. 3C-SiC on silicon is actually a fairly horrible material for V V 0 with low

creation efficiency, weird photophysics and huge strains from the lattice mismatch. Single

defects have not been isolated in this material for these reasons. With the development of

fabrication and undercut capabilities in 4H-SiC[3, 57], the uniqueness of 3C is reduced.

Outside of SiC, diamond based spins have evolved as well. the ‘group IV’ SiV, GeV, SnV,

PbV are ‘split-vacancy’ systems that have high symmetry (D3d) and are quite promising

for quantum technologies. In particular, their insensitivity to electric field noise makes them

easily integratable into nanostructures where surface noise is an issue. That being said, they

suffer from short T1 due to a nearby orbital that mixes with the ground sate, along with low

quantum efficiency[58], though solving these issues is an active area of research.

Additionally, there’s a large effort in using rare earth based (Er, Yb, Ce, etc) systems in

oxides such as YVO, YSO for quantum technologies. These systems can have long coherence,

but importantly the Erbium based impurities emit exactly at the telcom wavelength of ∼1550

nm and can be used for quantum memories for single photons. Nanophotonic integration

may also provide a solution to the extremely low photon emission rate of the these defects
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Figure 4.1: Formation energies and charge transition levels in SiC. (A) Formation
energy diagram of V V , VC and VSi [61]. DFT values must be scaled to experiment from
the bandgap underestimate. The regions for stability of the +1,0,-1,-2 charge states of V V
are shaded in red. Dotted lines show the formation energies of the different charge states,
while the solid black line only shows the lowest energy charge state. The charge transition
levels are marked for V V where the lines intersect. The blue star corresponds to the charge
neutrality point of VC where the Fermi level is pinned if VC is the dominant defect.(B)
Charge transition levels of relevant deep and shallow defects in 4H-SiC [62, 63].

[59, 60]. Finally, impurities can bind excitons or provide Rydberg like levels that can but

used for quantum information, but need to be investigated further.

4.2 Deep Defects in Semiconductors

When a defect is ‘deep’ its energy levels are far away from the bands of the host crystal. This

means that thermal excitation of the trapped charges is not sufficient to ionize the defect.

It’s also the case that the bands of a crystal correspond to delocalized states of carriers.

Shallow defects tend to have their wavefunction/spatial extent be relatively larger and more

delocalized since they are much closer to the bands. Deep defect states tend to correspond to

extremely localized states of charges, essentially confined to a single atomic site. These highly

localized states are more robust to effects from the lattice such as the spin-orbit interaction,

valley splittings and other more exotic solid-state physics effects. Highly confined defects

are (mostly) isolated from the host crystal and are tightly confined. The common analogy is
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that the crystal host is a ‘semiconductor vacuum’ that can host isolated, atomic-like qubit

states. Importantly, these qubits are stationary, stable, and trapped in place without the

need for any external gates, controls or lasers. This makes them particularly attractive for

quantum technologies.

How can we know where a defect or impurity ‘is’ in the band gap? A convenient way to

calculate or understand is by thinking about thermodynamic charge transition levels. These

are calculations that tell us how much energy it takes to add another electron to the system.

Specifically, one can use density functional theory (DFT) to calculate the energy of the

system of a defect in a crystal. In particular, we can calculate the thermodynamic energy

that it would take to ‘form’ a certain defect in the lattice as a function of the Fermi level.

For a defect D in charge state q (Dq), we can calculate the energy difference between the

pure crystal Etot[bulk] and the crystal with that defect Etot[D
q]. We can also see that if

a certain defect is negatively charged, for example, that as the Fermi level is increased the

defect is easier to form (lower formation energy) because the crystal is becoming more and

more n-type and is more electron rich. This means that the formation energy goes down as

we increase the Fermi level. Generally [64]:

Eformation[Dq] = Etot[D
q]− Etot[bulk] + µD̄ + q(εFermi + εV BM + ∆V ) (4.1)

Where ∆V matches the reference energy for the calculation to the semiconductor valence

band maximum (VBM), and D̄ is the energy of the constituent parts needed to create the

defect. For example, a NV − has µD̄ = −µN + µC for the nitrogen and the vacancy (lack

of a carbon atom). We can see in 4.1 that the slope of the formation energy with changing

Fermi level tells us the charge state of the defect. With the formation energy, in equilibrium

we can know the defect concentration given a number of possible sites Ns:

C = Nse
−Ef/(kBT ) (4.2)
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However, most defect formation occurs through non-equilibrium processes or equilibrium is

never reached. That being said, the relative magnitudes of the formation energy are still

informative. As we change the Fermi level and perform these calculations there are different

lines corresponding to differences in the charge state of the defect in the formation energy

diagram. The slope of each section (see Fig. 4.1) corresponds to the charge state of the defect

with Eq. 4.1. The places where the lines intersect show where the most favorable charge state

to form changes. During defect formation, which usually involves high temperature growth

or annealing, the Boltzmann factor depending on the relative formation energies will give

the ratio of final defect populations (Eq. 4.2). Sometimes, only the lowest energy line will be

shown in the formation energy diagram. The points where the defect formation energy slope

changes are called the ‘charge transition levels’. For example, the point where a positively

charged defects becomes less energetically favorable compared to a neutral defect is called the

‘(+/0)’ level. These levels correspond to the energies of the whole defect (sometime a defect

complex) including all of the contributing orbitals of the crystal, impurity or vacancy and the

charges around. As such, they take into account the whole energy of the defect system in its

ground state. If we remember what a Fermi level is, we will notice that the (+/0) level then

corresponds to where the energy of the defect in its neutral state is. If our Fermi level is at

this point, then the state becomes filled and gains a charge from +→ 0. Similarly, a (0/−)

level in the formation energy diagram corresponds to the energy level of the negative charge

state of the defect. Abstracting further, the Fermi level position of (+/0) in these diagrams,

for example, tells us how much energy an electron needs to gain to pop into the defect and

turn +→ 0. This becomes important in for photodynamics of charge in 6.3. An important

point to make is that these levels and the Fermi level correspond to the behavior (‘point of

view’) of electrons only, and treating holes needs to be done with some care. For a given

defect, we don’t know how many different possible charge states are possible in the band gap

from first principles. DFT calculations will tell us then what charge states are possible and

where they lie in the gap. Similarly, these levels can be measured from experiment using a
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variety of electrical and optical techniques (photoconductivity, photo-epr, DLTS, BE lines,

etc). In equilibrium, these energies and the knowing the Fermi level of your material will

tell you which charge state your defect is in. That being said, this idea is usually taken too

literally. As discussed in 1.1.2, for most systems the concept of equilibrium is not always

applicable where photodynamics may dominate (see 6.3).

4.2.1 Defect Formation and Kinetics

Formation energies and charge transition levels help us understand the thermodynamics and

energetics of formation and of the multi-particle defect states. However, the kinetics of how

the defects actually form is equally important. Defect formation isn’t driven by thermody-

namics only. The exact details of all the different ways defects can form is beyond the scope

of what will be covered here. In general, the defects in this thesis correspond to vacancy

complexes and impurities. Damaging a crystal by physically displacing atoms through irra-

diating with relativistic electrons or high-energy ions creates interstitials, substitutions and

vacancies. Interstitials are just atoms that sit ‘off-site’ in the lattice, between the normal

crystal sites (Fig. 5.1D). After creating defects, the crystal can be healed by annealing at

high temperatures. Atoms can pop back into place and importantly, vacancies can move

around. Vacancies can find a missing atom, or a surface and annihilate, or can find a substi-

tutional atom or another vacancy, forming a vacancy complex. These complexes are usually

very energetically stable and do not move. There are usually significant energy barriers for

defects in crystals to move around, but these barriers are much higher for substitutional

impurities and complexes (usually isolated vacancies are the only things moving). The exact

energetics of vacancy complex formation requires a treatment of the Coloumb repulsion, dif-

fusion, crystal structure, energy barriers and can be quite complicated. Some vacancies are

naturally occurring in as grown crystals. In SiC, tuning the Si and C gas ratio during growth

can make the crystal have more or less Si or C vacancies. This is how high-resisitivity SiC

is grown, as these vacancies pin the Fermi level midgap (sometimes referred to high-purity-
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semi-insulating, or HPSI SiC). As a rule of thumb, ion implantation is quite destructive and

leaves a trail of damage as the ion barrels through the crystal until it finally stops and leaves

a spray of displacements. However, ion implantation doping and healing (with annealing)

the crystal to get the ion impurities on site is a common technique for making classical tran-

sistors. Ions can be masked with lithography and thus damage and doping can be controlled

spatially. Ions only usually penetrate the surface of your material < 1 µm.

Relativistic electron irradiation on the other hand, has a very low probability to interact

with the sample and uniformly damages the whole crystal (randomly!). When an electron

does interact, it usually displaces only single atoms at a time. This makes electrons the

preferred choice to form sparse defects and defect complexes without causing irreparable

harm and the formation of unwanted nearby defect complexes. In general, the chance of

formation for a particular defect complex is quite low (1-10%) while activating impurities

at substitutional sites can approach 100%. Further details of the formation of V V 0 can be

found in section 5.3.2.

The spin defects created in chapter 7 utilize implantation at elevated temperatures, which

allows for healing of the crystal damage during incorporation, and helps impurity activation

and total damage reduction. They also used very high energy ion implantation to create

enough defects, but at a lower density and with less damage due to the greater spread in

depth. This was achieved in part with assistance from Sandia National Labs.
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Chapter 5

Spins in Silicon Carbide

This chapter begins the discussion of the divacancy in SiC, which is an optically active

deep defect in a semiconductor host. First, I will cover why SiC is an excellent material for

quantum technologies, followed by a description of the specifics of the divacancy system.

5.1 Silicon Carbide as an Ideal Host

Silicon carbide is a widely developed material for classical technologies. As early as 1958,

William Shockley proposed that SiC would be the prominent semiconductor to follow silicon

[65]. It exists as both a ceramic and in multiple crystal polytypes that were alluded to

previously. These polytypes contain the same alternating Si and C atoms bonded together

but have different geometries in 3D space. The important polytypes are 3C-SiC, 4H-SiC

and 6H-SiC as they are all readily accessible and developed by industry. SiC was actually

the material that birthed the concept of polytypism[66]. 3C-SiC has a cubic (C) structure

much like diamond, while 4H and 6H-SiC are hexagonal (H). Looking at a cross section of

the crystal, we can view the spatial stacking of the Si and C atoms in a plane. Importantly,

we can see a repeating structure that is either 3, 4 or 6 atoms long which correspond to

the numbers in the labelling of the polytype (see Fig. 5.1). These polytypes have different

bandgaps and other properties, but in general are quite similar.
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For silicon carbide, high quality (low defect) epitaxy can be achieved with controlled

doping. Aluminum is a p-type dopant for SiC (acceptor) with an ionization/activation energy

of ∼ 200 meV , while nitrogen is a n-type dopant with an ionization energy ∼ 50 meV (h

site) and ∼ 90 meV (k site)[67]. These can be introduced as gas precursors during growth.

In comparison, diamond is lacking in an available n-type dopant. Silicon carbide has a

distinct directionality, as opposed to diamond. The crystal axis along this direction, called

the c-axis, picks this axis/direction in the crystal as defined in Fig. 5.1. Specifically, in

stacking the unit cells we can see that opposite faces of the crystal will be terminated with

either Si or C atoms. These are called the Si-face and the C-face of a wafer, respectively,

and have different physical properties. For growth, a 4◦ miscut (optimized by the industry)

of the crystal allows for step flow growth the proceed along the c-axis, and is usually done

on the Si-face. Additionally, due to the presence of Si, SiO2 thermal oxides can be grown on

SiC. With the sublimation of silicon at elevated temperatures, in oxygen free environments,

extremely high quality epitaxial graphene can be formed on SiC from the remaining single

layer of carbon atoms, providing exciting research and device opportunities ([68, 69] as some

examples, see chapter 14).

Natural SiC was initially discovered in 1893 by Henri Moissan in a meteor crater. He

originally thought what he found to be diamond, and only realized in 1904 it was in fact

silicon carbide. Interestingly, by that point SiC had already been synthesized in the lab for

over two years[70]. The mineral was named Moissanite. SiC is hard, clear, chemically inert,

and thermally conductive (Henri thought it was diamond!). This stems from the similarly

strong covalent Si-C bond as the C-C bond in diamond. In fact, SiC/Moissanite makes up a

large fraction of ‘fake’, or alternatives to diamond (besides cubic zirconia). Its thermal and

mechanical properties make it widely used in abrasives, high temperature applications, and

much more. Because of its low thermal expansion, SiC is even used in mirrors for precision

astronomy.

SiC (sometimes also called carborundum) has a moderate bandgap (∼ 3 eV ), high thermal
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conductivity (2× silicon), and large breakdown voltage (10× silicon). Combined with the

ability to dope the crystal easily with p- and n-type dopants, this has made SiC widely used

in the high-temperature, high-power, high-voltage electronics industry. Surprisingly, SiC

even formed the basis of the first LED (light emitting diode) in 1907[71], and early diode-

based wireless telegraph systems in 1906[72]. Growth of crystalline SiC began with the Lely

method[73], followed by physical vapor transport (PVT) which led to the first commercially

available SiC wafers in 1990’s (& the formation of CREE )[74], alongside high temperature

CVD (HTCVD) substrates. Recent epitaxial growth is achieved through ‘hot-wall’ chemical

vapor deposition (CVD) on these substrates which yields very high quality SiC layers[75].

Today, SiC is used not only in the high power electronics industry, but is also used for

epitaxial growth of nitrides (that are used in modern commercial LED light bulbs) and is

used in everything from electric vehicles to the upcoming 5G wireless revolution. Today the

SiC market is over $1 billion. SiC can be grown with very few defects at the wafer scale

and is compatible with standard nanofabrication and CMOS (complementary-metal-oxide-

semiconductor, describing a type of MOSFET design, see 1.1.2) technologies developed by

the electronics industry. SiC can grow a thermal oxide, allowing for high-quality insulating

layers for devices. The SiC MOSFET, for example, is a particularly good (see 1.1.2) high

power device that outperforms silicon based electronics. Essentially, silicon carbide is a blend

between the excellent properties of diamond with the development, electronics capabilities

and cost-effectiveness of silicon. Importantly, the material is available in high quality 4”+

wafers for much cheaper than diamond and has mature fabrication techniques developed by

industry to leverage.

Besides being an excellent semiconductor for electronics, SiC is an ideal material for

quantum technologies. In particular, we will first go over why it is a good host for optically

active solid-state spins. Then I will describe other desirable quantum properties of SiC. In

general, the WKV criteria[64] outlines (much like the Divencenzo criteria) the properties an

ideal material would have to host spin qubits. They are that a host should have:
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• A wide band-gap, so that it can accommodate a deep center.

• A small spin-orbit coupling, in order to avoid unwanted spin flips in the defect bound

states.

• Availability of high-quality bulk or thin-film single crystal, in order to avoid imperfec-

tions or paramagnetic impurities that could affect the deep center’s spin state (see

chapter 13).

• Constituent elements with naturally occurring isotopes of zero nuclear spin, so that

spin bath effects may be eliminated from the host via isotopic engineering (see chapter

13).

In the original paper that proposed these criteria[64], SiC was identified as an exciting

host for spins. Silicon carbide has a fairly large band gap, in the middle ground between

diamond (5.5 eV) and silicon (1.1 eV). Additionally, because silicon and carbon atoms are

light, spin-orbit coupling in the crystal is low. Because of the development from industry

in high-quality growth, commercially available wafers that are pure enough for quantum

applications are viable. Finally, both silicon and carbon have stable isotopes that contain

zero nuclear spin. Not only that, but in naturally occurring isotopic species, the fraction

of silicon (4.7%) and carbon (1.1%) that carry non-zero nuclear spins is quite low. Nuclear

spins in the host lattice are a resource as quantum memories, but they are also a source of

decoherence. Understanding this is the subject of chapter 13. In general, the ability to control

the isotopic fraction of these nuclear spins through growth and materials is paramount.

Besides these criteria, SiC is an excellent material for mechanical devices. It has a

high speed of sound and ultralow acoustic loss, which has made SiC find use in the MEMS

(Micro Electro-Mechanical Systems) industry which makes gyroscopes, accelerometers, mi-

crophones, microswitches and oscillators. Additionally, SiC is weakly piezoelectric. Hybrid

quantum systems with spins in SiC and MEMs devices forms the basis of the work described

in chapter 10.
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Similarly, the work described in chapter 9 leverages the fact the SiC is an excellent

photonic material. SiC has intrinsically low optical losses, and interestingly has a high χ2

nonlinearity that can be used for frequency conversion and quantum transduction. The fact

that 3C-SiC can be grown on Si which can be easily undercut, and that opto-electronic

and photonic nitride-based devices can be grown epitaxially on SiC provides a plethora of

opportunities. The oxide growth available also allows for wafer-bonding and thinning, and

use of the oxide-SiC index contrast for photonic devices. As covered in chapter 9, SiC can

also be undercut using a dopant-selective, photo-electro-chemical (PEC) etch which does

not involve the damage from focused ion beam (FIB) or complexity of anisotropic or angled

etches.

Finally, SiC is biocompatible and can be functionalized easily which offers pathways for

quantum sensing of biological systems. SiC can be made into nanoparticles as well, which is

the subject of 12.2. Furthermore, SiC is a low loss tangent microwave material that could

be used as a substrate for superconducting quantum systems and resonators. In general,

the surfaces of SiC are heavily studied (for making good power electronics), making control

and optimization of surfaces for quantum technologies feasible. Since surfaces are a common

issue among all candidate quantum systems, leveraging this expertise is a valuable asset for

SiC.

5.2 The Neutral Divacancy (V V 0) in SiC

The divacancy in SiC is a missing carbon atom next to a missing silicon atom in the lattice.

It is a widely studied defect in SiC, corresponding to the UD-2 series in photoluminescence

spectra and to the P6/P7 defects in EPR. Photo-EPR showed spin polarization as early as

2006 [79] with light > 1.1 eV (and in 2003 for V −Si in SiC [81]), preceding the pioneering

work in [82] establishing the divacancy for quantum science by five years.

The vacancies in this defect result in dangling bonds that occupy the space where the
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Figure 5.1: Polytypes, defects and growth in SiC. (A) Crystal axes (Miller indices) and
hexagonal structure of SiC. A,B,C sublattices can be stacked in different orders to produce
the different polytypes. (B) Crystal structure of 4H, 6H and 3C SiC. The c-axis orientation,
basal planes and stacking sequences are shown. The C and Si faces are shown that arise due
to the directionality of the silicon-carbon bonds. In the 4H-SiC lattice, the 4 possible V V 0

configurations are shown alongside the major defects Vc,VSi. The hexagonal (h) and cubic
(k) sites are shown, which can be seen by the stacking having or not having a ‘twist‘ (red
and blue). (C) Symmetries and local structure of the 4 possible V V 0. The C3v symmetry
is broken in the basal V V 0 cases due to an elongated distance to the upper and lower (out
of plane) carbon and silicon atoms, resulting in only 1 mirror plane (dotted lines). (D)
(red dotted line) Frenkel defect pairs that are produced by damaging the lattice. (purple
dotted line) Carbon antisite defect which can be formed with a VSi swapping with a nearby
carbon site (black arrow). The other black arrow shows a VSi → VSi diffusion of the vacancy
under annealing. The VC stays stationary and the VSi diffuses [76–79] to form a V V defect
complex. (E) Step flow epitaxial growth of SiC showing the miscut angle. Lattice adapted
from [80].

atoms were. There are 6 dangling bonds resulting from the two vacancies, contributing 6

electrons to the system. Since there are 6 electrons from the dangling bonds and no electrons

are lost or gained from the lattice, the defect we create from these electrons will be a net

neutral for the lattice and is thus called V V 0 (there are other charge states, which we will
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discuss in chapter 11). It turns out (as will be described later) that 4 of these electrons

pair up their spin and fill two orbitals, but that two electrons are left over. Each of these

electrons carries their own electronic spin. For spin, we need to remember that while a single

spin has states ms = ±1
2 (a doublet), the state of two spins can be either in a singlet or a

triplet. Two spins have the four possible states: ↑↑, ↑↓, ↓↑, ↓↓. Combining the two electrons,

there are two options for the total spin angular momentum. First, there are states with total

S=1, these are:

• |↑↑〉 ,ms = +1

• |↓↓〉 ,ms = −1

• |↑↓〉+|↓↑〉√
2

,ms = 0

There are three possibilities, making this a triplet state. Then there are states that have

total S=0, for which the only option is:
|↑↓〉−|↓↑〉√

2
. To fully understand the formation of

singlets vs triplets, a more detailed treatment of addition of angular momentum in quantum

is needed (or Clebsch-Gordon decomposition). Roughly, we can see how the ‘+’ sign in the

triplet ms = 0 adds angular momentum to result in S = 1, while the ‘-’ sign in the singlet

results in a total S = 0. These are the symmetric and anti-symmetric superpositions of the

spins.

Triplet spin systems are described by the 3 × 3 S = 1 spin matrices (Sx, Sy, Sz) which

are the analogs to the 2× 2 Pauli matrices in Eq. 1.3. Thankfully, we can map the subspace

of two of the possible ms = 0,±1 states onto the Pauli matrices as long as we are only

considering those two levels. These two levels become our qubit states. However, only

transitions that change ∆ms = ±1 can be driven by magnetic fields, such that |0〉 ↔ |1〉 or

|0〉 ↔ |−1〉 are our usual qubit states (with notable exceptions covered later in this thesis).

This can be seen by looking at which matrix elements are available in the B · S matrices for

S = 1.
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If we have one orbital, then electrons will pair up in opposite directions to fulfill Pauli’s

exclusion principle. Essentially this is just the statement that for electrons to be in the same

orbital state, they must have different spin quantum numbers. Furthermore, if there are

two available orbitals of the same energy (degenerate), then the electrons would rather have

their own orbitals instead of having to interact. This is called Hund’s rule (if you remember

your chemistry class). How many orbitals are available, how many electrons there are, and

what the spin-pairing energy is in the system determines the total spin of the system (single

electron doublets, paired up singlets, or unpaired triplets).

The divacancy defect can be found in the silicon carbide lattice in multiple inequivalent

sites. For the 3C polytype there is only one possibility for the location of the divacancy. On

the other hand, for 4H there are 4 possibilities and for 6H there are 6. This can be seen in Fig.

5.1. For vacancies in the lattice in the hexagonal crystal polytypes, they can either be on a

quasi-cubic (k) or hexagonal (h) site that describes the local symmetry of individual atomic

positions. Whether a site looks quasi-cubic or hexagonal can be understood by looking at

the twisting angles of tetrahedrally coordinated sites with respect to its neighbors. A cubic

crystal will have the bonds from adjacent sites twisted 180 degrees, while a hexagonal crystal

will show direct vertical stacking.

Because 4H-SiC is the most available and technologically mature polytype of SiC, we

focus on it for the remainer of this thesis. Using the VCVSi convention for the divacancy, we

can label the possible divacancies in the 4H-SiC crystal: (hh), (hk), (kh), (kk). In particular,

we can see that the hh and kk divacancy defects are oriented along the c-axis and that the kh

and hk divacancies are oriented at an angle and are along what is called a basal plane of the

crystal. Depending on the exact site in the crystal, V V 0 can have varying optical and spin

properties. Specifically, the photoluminescence lines label these divacancy configurations as

ordered by increasing energy PL1 : (hh), PL2 : (kk), PL3 : (hk), PL4 : (kh) (Fig. 5.7).

Going back to the physical orbitals of the 6 dangling bonds with their 6 electrons: The

orbital states that these electrons can take are described in various theoretic treatments
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and can also be described by DFT. In general, the orbitals that confine the electrons follow

nomenclature from the molecular/atomic community that describe both the spin and orbital

multiplicity. What determines the spin and orbital characteristics of these defects in largely

their local symmetry. In examining the symmetry of the defect complex, the c-axis divacan-

cies display C3v symmetry while the basal divacancies show C1h symmetry. These labels

correspond to the point groups (from group theory) that the structure of the bonds around

the defect display. The C3v label means that the symmetry of the defect has a threefold

axis of rotational symmetry that also has 3 vertical reflection planes. On the other hand,

C1h has lower symmetry corresponding to a distortion along a perpendicular axis to the

C3v symmetry. Making these bonds unequal means that the only symmetry is a reflection

across the horizontal plane. These points are illustrated in Fig 5.1C. We will start with the

discussion of the c-axis divacancies with high symmetry and discuss important differences

with the basal defects along the way.

The orbitals where the single electrons can live have certain shapes and symmetries

(following group theory). The label ‘a’ refers to a symmetrical rotation about an axis, while

‘e’ refers to an orbital that is asymmetrical under transformation. The transformations also

dictate that there is only one ‘a’ orbital, while an ‘e’ orbital will be doubly-degenerate and

correspond to two orbitals (furthermore, ‘b’ is singly degenerate but anti-symmetric under

rotation, and ‘t’ is triply degenerate). These are called the Mulliken symbols. To further

label these (molecular) orbitals we can use the subscripts g (symmetric under inversion),

u (anti-symmetric under inversion), 1 (symmetric with a perpendicular mirror plane), 2

(anti-symmetric with a mirror plane).

For the C3v point group, we can look at the character table and find the irreducible

representations A1, A2 and the doubly-degenerate E that relate the Mullikan symbols for

the possible orbitals (in terms of nomenclature). These correspond to orbitals and discrete

symmetries (rotations, reflections) that make up the overall C3v symmetry. For reference

on group theory and symmetry, see [83]. We will refer to the multiplicity/degeneracy of the
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orbitals as being either ‘orbital singlets’ or ‘orbital doublets’, which does not describe spin.

In labelling the overall symmetry of the defect’s wavefunction (not just the single particle

orbitals) the system will follow one of A1, A2 or E, and will have a superscript that describes

the total spin of the system. For example, 3E is a spin-triplet, orbital-doublet and 1A1 is a

spin-singlet, orbital-singlet. Once again, occupation of the single particle orbitals which are

described by the Mullikan symbols (single particle e, a), builds up an overall symmetry label

for the multi-particle orbitals of the defect (capital letters with spin multiplicity superscripts).

For V V 0, the dangling bonds end up forming two a1 and two e (doubly degenerate) single

particle orbitals (adding up to the 6 contributed orbitals). Essentially they are combinations

of the sp3 hybridized atomic orbitals of the Si and C atoms that are tetrahedrally coordinated.

The energies of these orbitals can be calculated through DFT with respect to the valence

and conduction bands for electrons. For V V 0, there is first a low energy a1 state which

gets filled with two of the available electrons that pair up. This level is essentially in the

valence band and is (probably) always filled. The next highest energy level is the other a1

level which is similarly filled but lies above the valence band, leaving two electrons left. The

last two electrons fill up the two available degenerate e states that mostly sit on the silicon

vacancy site, close to the carbon atoms that are more electronegative (want electrons more)

than the Si atoms surrounding the C vacancy. These electrons are not forced to pair up in

one orbital and thus form a triplet state S = 1 occupying these two orbitals for the ground

state (e2). Finally, the last two e orbitals are near the C vacancy and are much higher in

energy. In general, the degenerate e orbitals are labelled ex and ey as they have definite but

orthogonal wavefunctions in the crystal (see Fig. 5.2).

In looking at the full state of the global wavefunction of all 6 particles including spin, this

ground state is 3A2 =
∣∣exey − eyex〉⊗|S = 1〉 which is an allowed irreducible representation

of the C3v point group with a spin triplet. This just means our ground state mostly follows

the C3v symmetry of the defect but is anti-symmetric with respect to the mirror planes (‘2’

as a subscript). The details of how all this works ‘under the hood’ can be found in [86]. The

77



(+/0)

(0/-)
(-/2-)

3.28

GS

ES 3E

3A2

a1

a1

ex
1 ey

1

ex
2 ey

2
S=1 S=0

1E

1A1

charge transition 
levels

optical levels
single particle 

orbitals spin+orbital structure
(A)

Triplets Singlets

ms = 0,±1

ms = 0,±1

(B)

Figure 5.2: Levels in the gap for the divacancy in SiC. (A) The multiple pictures of
states in the gap for V V 0. The dotted black lines show optical excitation. Both the triplet
ground state and excited state singlets are shown. On the far right, the orbital degeneracy is
displayed with the red lines and the spin with the black lines.(B) The ground state orbital
‘spin isosurfaces’ for the V V 0, adapted from [84].(bottom) representative wavefunctions for
the single particle orbitals (here for the NV − adapted from [85]).

actual shape of the wavefunction can be seen in Fig. 5.2. These fancy labels just represent

rough shapes of these orbitals which are just blobs of the spatial wavefunction in the crystal.

Importantly, the single particle picture in Fig. 5.2, does not represent the true energetics

of the full multi-particle system, which can be computed directly and needs to include the

relaxation of the structure, inter-particle interactions and Jahn-Teller distortions. Generally,

a better metric for calculating the total energy of the multi-particle system is to look at the

formation energy diagrams. In this context, the position of the divacancy’s charge transition

levels can be found in reference to the SiC bands through DFT. It is worth noting that as

a rule of thumb, accuracy in DFT is usually limited to ±0.1 eV . We can see in Fig. 5.2

that the divacancy in its neutral charge state sits nicely in the band. Interestingly, V V 0

was originally used as a deep compensating defect in SiC to grow high resistivity material

by pinning the Fermi level at the (0/-) level (‘older’ HPSI material has lots of V V 0).

We then have a ground state spin triplet, which we can use as a qubit. However, the whole

point of these systems for quantum technologies is in coupling to flying qubits/photons. In

looking at Fig. 5.2, we can roughly visualize what (generalized) excitations of this system

would be. In particular, we can imagine taking an electron from the second a1 state and

promoting it to one of the degenerate ex, ey states. When we do this, we would still have
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Config. Spin State Symmmetry Note

e2 S=1
∣∣exey − eyex〉⊗


|↑↑〉
|↑↓〉+ |↓↑〉
|↓↓〉

3A2 GS ms = 0,±1

e2 S=0
∣∣exex − eyey〉⊗ |↑↓ − ↓↑〉 1E1 Lower singlet

e2 S=0
∣∣exey + eyex

〉
⊗ |↑↓ − ↓↑〉 1E2 Lower singlet

e2 S=0
∣∣exex + eyey

〉
⊗ |↑↓ − ↓↑〉 1A1 Upper singlet

ea S=1 |E−〉 ⊗ |↓↓〉 − |E+〉 ⊗ |↑↑〉 A1 ES, UB ms = ±1

ea S=1 |E−〉 ⊗ |↓↓〉+ |E+〉 ⊗ |↑↑〉 A2 ES, UB ms = ±1

ea S=1 |E−〉 ⊗ |↑↑〉 − |E+〉 ⊗ |↓↓〉 E1 ES, LB ms = ±1

ea S=1 |E−〉 ⊗ |↑↑〉+ |E+〉 ⊗ |↓↓〉 E2 ES, LB ms = ±1

ea S=1
∣∣Ey〉⊗ |↓↑ + ↑↓〉 Ey ES, LB ms = 0

ea S=1 |Ex〉 ⊗ |↓↑ + ↑↓〉 Ex ES, UB ms = 0

ea S=0 |a1ex + exa1〉 ⊗ |↓↑ − ↑↓〉 1Ex
ea S=0

∣∣a1ey + eya1
〉
⊗ |↓↑ − ↑↓〉 1Ey

a2 S=0 |a1a1〉 ⊗ |↓↑ − ↑↓〉 1A1

Figure 5.3: Orbital and spin character of the possible V V 0 states. ES= excited
states, GS = ground states, UB = upper branch, LB = lower branch. E± = |a1e± − e±a1〉
with e± = ∓(ex ± iey). |Ex〉 = (|E−〉 − |E+〉)/2 and

∣∣Ey〉 = (|E−〉 + |E+〉)i/2. Adapted
from [86]. These states only exist in C3v symmetry. The equivalent assignments for the
ground and excited state triplets can be found in [7].

two unpaired electrons in separate orbitals, and the spin that is excited would have to have

the opposite spin of the two spins that were in the e orbitals to start with. This state is

still a triplet, but is higher in energy with one spin in an a state and one in an e state

(ea). There are different symmetric and antisymmetric combinations of these orbitals that

result in a multitude of excited states (see Fig. 5.3). In general, this is an 3E excited

state, which through spin-orbit and spin-spin effects (D in the ground and excited state, see

section 5.3) is split into 6 discrete states that correspond to the orbital+spin state. These

are A1, A2, E1, E2, Ex, Ey, which are distinct in energy and referred to as the orbital fine

structure. Under small crystal strains that obey the defect’s symmetry, these lines shift as

a set (longitudinal strain), but under transverse strain these lines split further, breaking the

C3v symmetry of the system. These lines under strain move as two distinct groups called
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the upper branch (A1, A2, Ex) and the lower branch (E1, E2, Ey) which are higher and lower

in energy, respectively. In our commercial samples, this transverse splitting (δ⊥) is around

2 − 50 GHz. A useful schematic is found in Fig. 5.4. A low but nonzero δ⊥ is desired

to keep the lines separated and cyclicity high. The ground state wavefunction is relatively

confined, resulting in long T1’s, but the excited state wavefunction is more extended whereby

spin-orbit effects become important (“feels the lattice” more)- just enough to allow for the

orbital splitting we need.

Furthermore, the addition of an electric field can shift the wavefunction around and

change these energies slightly. This becomes very important for later sections. Just like

atoms, the defect in its excited state naturally radiates light (dipole-emission) into free space

giving it a natural optical lifetime and creating single photons. Since photons carry no spin,

optical transitions to and from this excited state are allowed (3A2 ↔3 E). These excited

states are outlined in Fig. 5.3 in terms of which particular spin projections they couple to.

The magic here is that there are orbital excited states that directly correspond to different

spin states. Because these orbitals are split in energy, by looking at the energy of light that

is absorbed or emitted by these defect orbitals we can exactly tell which spin state we are in.

These states describe the spin-photon interface in that they correspond to entangled states

of the orbitals with the spin of the defect (Fig. 5.4). In a sense, this structure gives us strong

coupling between spin and light for free. In the fine structure, we desire a large spin-orbit

term λz that splits that ms = 0 lines from the ms = ±1 lines such that they are resolved

(which gives the ‘strong coupling’). However, we also want a small spin mixing term ∆2

that slightly hybridizes the spin sublevel’s associated orbitals, which causes unwanted spin

flips/branching in the excited state. Here we have such a system, with large splittings and

a small spin mixing (smaller than the NV − in diamond [55]). The various spin-orbit and

mixing parameters for the V V 0 species can be found in Fig. 6.1.

It’s worth driving this into the ground a little. Because there is a spin in the ground

state, confined to the defect’s potential and far away from the bands, there is an atom-sized,
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showing the effects of strain, spin-orbit, and D (spin-spin) on the 3E excited state. The upper
branch and lower branch orbitals are defined.(B) The spin-photon interface showing which
orbitals coupled to what levels of the ground state spin. Spin-selective absorption produces
flying qubits (photons) correlated with the spin state. (C) Photoluminescence excitation
(PLE) scans of an example defect with a non-zero transverse strain δ⊥ showing the resolved
spin lines of the upper and lower branches of a V V 0 in 3C (f0 ≈ 265 THz). Adapted from
[55]. (D) The optical structure of a basal kh V V 0, corresponding to a highly transverse-
strained defect as in (A). The ground state spin and excited state have new eigenstates and
symmetry labels. The same spin photon interface as in (B) exists. Adapted from [7]. (E)
Stark shifting the optical structure of a c-axis V V 0 differences in the energy shifts of the
ground and excited state corresponds to transition frequency shifts under applied bias. Under
electric fields along the defect’s symmetry, the orbitals move together. Under transverse field,
the upper and lower branches move closer and further in energy to each-other.

stable, trapped state of two electrons forming a spin in an orbital. This spin is barely coupled

to its crystal host and displays ultralong T1 such that we can barely measure them at our

standard measurement temperatures of 4K. Molecule/atom-like optical excitations of the

ground state orbital can be done that change the orbital state but do not disturb the spin.

In particular, the excitation will only happen if the energy matches a certain transition that
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depends on the spin-qubit’s state. If such an excitation occurs, the defect will be promoted

to its excited state, maintain its spin, and then emit a single photon. Because the spin is not

destroyed, the transition is said to be cycling. In this sense, the transition can be probed

again and again without destroying the spin when measuring in one of the spin eigenstates.

Non-projective repetitive readout can also be performed on superposition states with some

extra considerations. Of course, no system is perfect and a small amount of mixing is present.

This mixing is described further in section 5.2.3. Generally, the amount of mixing will set

the spin-photon entanglement fidelity as it sets the chance that your emitted photon still

correlates to the state you started with. For V V 0, the Ex and Ey orbitals are highly cycling.

Both the upper and lower branches of the orbital structure contain cycling and noncycling

transitions. For the basal divacancies, we can think about the orbital fine structure as a

perturbation on the C3v structure of the c-axis V V 0 that looks like a large transverse strain.

This results in the upper and lower branches being split by a large energy difference. In

experiment, we can observe the lower branch whose structure is described in [7] that still

contains cycling lines and performs similarly to the c-axis V V 0, but the upper branch is not

observed and most likely rapidly relaxes to the lower excited state orbital (see Fig. 5.4).

This orbital structure is very nice (atom-like), but unfortunately the system still couples

to phonons in the lattice. As the temperature is raised, the phonons can cause broadening

and mixing between these orbitals that degrade the spin-photon interface [87]. In thinking

about the excited state orbitals, the relaxed potential energy diagram of the system has a

slightly different configuration of the atoms in the system compared to the ground state. In

a generalized configuration coordinate energy diagram in Fig. 5.5A, we can see that although

optical excitations are vertical, the energy minimum of the excited state is offset in position

along a ‘normal mode’ of the lattice (a generalized diagram will have many dimensions).

The excited and ground state will also couple to the localized phonon modes giving the

harmonic spectrum shown in Fig. 5.5. This vertical nature of the optical excitation is called

the Franck-Condon principle and is a statement that electronic transitions do not involve
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instantaneous displacements of the atoms.

In terms of the possible vertical electronic absorptions and emissions, we can see that

there is actually a spread in what can be absorbed and emitted based on this vibronic

spectrum. After transitioning between the ground and excited state, the state will rapidly

fall down the local potential releasing phonons (∼ ps). However, there does exist a transition

from the bottom of the 3E excited state to the bottom of the 3A2 state that doesn’t involve

phonons at all. Spectrally, this line is called the zero-phonon line (ZPL). We can see that

based on the overlap integral (Fermi’s Golden Rule) between the vibronic states in the

ground and excited states, this transition’s probability will be more or less likely. Upon

excitation, the fraction of emitted light that occurs in the ZPL is called the Debye-Waller

factor (DWF). The DWF is related to another spectroscopic paramter called the Huang-Rhys

factor. The ZPL itself contains all the structure (A1, A2, E1, E2, Ex, Ey) described above.

The emission spectrum will in general consist of this ZPL, along with a very broad phonon

sideband. At low temperatures, the sideband may display structure and peaks related to

the vibration frequencies (‘replicas’) at the defect. The shift in energy from the ZPL is

sometime called the Franck-Condon shift. Overall, each of the vibronic levels in Fig. 5.5

also have orbital structure associated, but the structure is distorted with respect to our

previous understanding such that for each vibronic state things are different. Not only that,

but as we rapidly fall down the vibrational spectrum, the orbitals lines get ‘blurred out’ as

we rapidly change the position of the atoms. Because the phonons are fast, the minimum

of the excited state is reached before any emission can happen (the spin doesn’t care about

this vibronic relaxation and is conserved). Thus, off-resonant excitation (not on the ZPL)

can still efficiently optically excite the defect, which rapidly relaxes to the bottom of 3E,

but does not have the spin-selective excitations described above. When the defect emits, the

light in the ZPL will still depend on the spin-selective transitions from before. However, the

light emitted in the phonon sideband is just a broad mess that describes the radiative decay

to the ‘blurred’ out transitions in the ground state (not spin-selective from the spin-photon
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Figure 5.5: Vibronic structure and single defect measurement. (A) (left) Franck-
condon principle of vertical transitions. The black lines represent the energy structure of
the ground and excited states with displacements of the defect’s structure along a particular
vibrational mode. Emission from the bottom of the harmonic potential (with the ground
state wavefunction in orange) of the excited state can occur due to varying overlap (Fermi’s
golden rule) with the ground state structure. In red, the phonon sideband of lower energy
photons emitted. In yellow, the ZPL from the bottom of the ES to the bottom of the
GS, involving no phonons. Phonons (purple) relax the structure very quickly on the ps
timescale. In the inset boxes, the fine structure at various configurations showing the non
spin selective and blurred out emission energies. (right) Absorption from the ground state,
which includes the ZPL and higher energies (constituting the absorption side-band), with
fast relaxation from phonons. Similarly, the fine structure is shown at various configurations,
demonstrating that the well-known optical fine structure only exists at the ZPL and gets
blurred out upon interactions with phonons and distortions.(B) Schematic of the ‘mirrored’
absorption and emission spectrum across the ZPL. Schematic phonon replicas (orange) are
blurred together to form the phonon sideband. (C) Emission spectrum of a single kh V V 0

showing a Debye-Waller Factor (DWF) which is the fraction of the emission in the ZPL
(yellow) of ∼ 10%. (D) Spatial photoluminescence scan pumping on the absorption side
band and collecting the emission side band. The isolated dots corresponds to single defects.
These spins are manipulated using fabricated striplines and gates (red, blue). Adapted from
[7]. (E) Schematic cross section of a SiC showing the microwave drive line and field direction
(red) for a c-axis SiC spin. The yellow lines correspond to the emitted light from the defect
which is mostly totally-internally reflected off the SiC-vacuum interface.
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interface). Looking at Fig. 5.5C, we can see that the absorption spectrum and the emission

spectrum will be roughly mirrored across the ZPL. For quantum applications, we usually

want a system with a large DWF meaning that a larger fraction of the light contains the

narrow spin-photon interface we want to use. Lowering the temperature narrows the ZPL

(phonons disturb the structure and blur the lines) and increases the fraction of the light it

contains due to decreased thermal occupation of phonons and reduced line broadening (see

appendix A). However, the ultimate limit of the DWF is the details of the configuration

coordinate energy diagram, even at low temperature. Luckily, as the defect is excited from

the ground state to excited state, and as we relax with phonons, the spin state retains its

coherence[88].

5.2.1 Singlets and ODMR

What about the possibilities for spin singlet states using these same orbitals? We described

how the ground state of the system is a triplet based on filling up the single particle orbitals,

but other excited states can exist. In particular for V V 0, the two singlets that matter exist

by pairing up the two spins in the ‘same’ e orbital (e2) with different combinations of the

single particle orbitals. These are 1E (
∣∣exex − eyey〉) and 1A1 (

∣∣exex + eyey
〉
) which are

different superpositions of the two spins in the same orbital (where they pair up, forming

a singlet). These singlet states are shown in Fig. 5.2. For V V 0, the 1E state is below the

1A1 state in energy where both states lie between the triplet ground and excited states (Fig.

5.6).

Jahn-Teller distortions refer to a symmetry breaking that lowers the total energy of the

system. Both Jahn-Teller and spin-orbit mixing allow for a small overlap between the triplet

excited 3E state and the higher singlet 1A1. This forms an intersystem crossing (ISC) where

the spin-triplet manifold couples to the spin-singlet manifold, which is optically ‘forbidden’.

The other piece of magic in this system is that the transition rate from 3E →1 A1 is different

depending on which spin state (ms = 0,±1) you are in. The orbitals in Fig. 5.3 that contain
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Figure 5.6: Singlet dynamics and ODMR. (A) Radiative absorption and emission (green
and red) processes conserve spin (krad), while the intersystem crossing rates from ms = ±1
(k1) and from ms = 0 (k0) transition to the S = 0 manifold. From these singlets, the
state crosses back over to S = 1 through a second ISC (ks). In V V 0 this is proposed
to happen predominantly to the ms = 0 state. Because of this, continuous excitation
polarizes in ms = 0. Microwave mixing (blue) can drive between the spin states and cause
a different balance of radiative and nonradiative rates, resulting in ODMR. (B) Schematic
configurations coordinate diagram [89] for spin 1 systems like the NV − in diamond or the
V V 0. The ISC transitions are shown with grey arrows, while thermal excitations can cause
a non-spin selective crossing into the S = 0 states. This is the mechanism for reduced
contrast and QE at high temperatures. (C) Example excited state lifetime modification in
a 3C-SiC V V 0 in either ms = 0 (blue dots) or ms = ±1 (gold dots), showing that in this
defect k1 > k0. (D) Example time trace of fluorescence of a single defect with off-resonant
excitation at different optical powers prepared in either ms = 0 or ms = ±1. Contrast
(total photons difference under the curve) changes with differing readout windows. When
the ms = 0 and ms = ±1 lines overlap the spin has polarized/been completely read out.
The rates in (A) can be fit through the power dependent time-traces. (E) CW ODMR
of different V V 0 species achieved through microwave mixing the spin states, changing the
balance of radiative/nonradiative rates, causing increases or decreases in fluorescence. The
signs and magnitudes correspond to differences in k0,k1,ks. Figures adapted from [55, 90].

ms = ±1 character, for example, can have a greater (or less) overlap with the higher singlet

orbitals. Through Fermi’s golden rule the wavefunction overlap determines the transition
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rate.

Once the system has crossed over to the singlet manifold into 1A1, the state can decay ei-

ther radiatively or nonradiatively down to 1E or potentially to the 3A2 ground state directly.

For V V 0, emission or direct measurement of the singlet energies has not been achieved and

this understanding mostly stems from DFT calculations. However, measurements of the

spin-dependent crossing rates and the shelving times (the time the state is stuck in the

singlet) have been measured for the divacancy in the 3C polytype[55]. Once in the lower

1E state, the system can go through another ISC to cross to the true ground state 3A2.

Similarly, the rate into the ground state ms = 0,±1 from 1E can be different.

The thing to realize here is that even if we cannot perform the spin-selective excitation

in the ZPL, the ms = 0,±1 will couple differently into or out of the ISC. When the defect

decays through the ISC, instead of being purely radiative (into the emission spectrum in Fig.

5.5), there are different amounts of nonradiative components. This means that how radiative

(how much light comes out of our defect) the defect is depends on the spin state. Therefore,

by looking for differences in the number of photons coming out of our system, we can measure

the associated spin state without the need for a high-fidelity spin-photon interface. Not only

that, but by continuously pumping ‘off-resonantly’, depending on the ratio of the ISC rates,

the spin can be efficiently polarized (initializing the qubit). In particular, the rates in both

V V 0 and NV − in diamond have the spin-flip transition of ms = ±1 → ms = 0 through

the ISC happen readily, meaning that if we start in ms = ±1, after cycling through the

excited state enough times we can be sure that no matter the starting state, our system is

initialized into ms = 0. Here, the initialization time and fidelity depends on the delicate

balance of rates. Similarly, under continuous off-resonant excitation we can extract many

photons correlated with the spin state before going through the ISC and flipping (Fig. 5.6),

allowing for high signal (there is an interesting trade-off here between polarization fidelity

and detection contrast). This is nature’s gift to us. It just so happens that we found a

system with the right sorts of levels, corresponding to the right sorts of spin-selective rates,
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V V 0 type orientation ZPL D (GHz) E (MHz) Contrast (±) TC
PL1 (hh) c-axis 1.095 eV, ∼1132 nm 1.336 0 ∼ 9% (−) ∼ 225 K
PL2 (kk) c-axis 1.096 eV, ∼1131 nm 1.305 0 ∼ 14% (+) ∼ 175 K
PL3 (hk) basal 1.119 eV, ∼1108 nm 1.222 82.0 ? (−) ∼ 75 K*
PL4 (kh) basal 1.150 eV, ∼1078 nm 1.353 18.7 ∼ 16% (±) ∼ 50 K

PL5 (kh− ssf) basal: stacking fault 1.189 eV, ∼1043 nm 1.373 16.5 ? (−) ∼ 500 K

PL6 (kk − ssf) c-axis: stacking fault 1.150 eV, ∼1078 nm 1.365 0 ? (−) 300K†

Figure 5.7: Table of important V V 0 parameters. From references [13, 56, 90, 91]. “?”
are unknown parametesr. “*” there may be a revival of contrast at high temperatures. “†”
the upper limit has not been measured. TC is the temperature where the contrast drops by
a factor of two. ‘ssf’ refers to divacancies near stacking fault inclusions [56].

such that we can polarize and readout our spin this way. The real kicker here is that this

means that readout of a single defect’s spin can be done using only off-resonant excitation

and collecting the broad thermally blurred out phonon sideband fluorescence, even at room

temperature! By applying a microwave pulse or tone resonant to a spin transition that

changes the relative balance of ms = 0,±1, the amount of light emitted by the spin changes

(‘contrast’). This measurement is then optically-detected magnetic resonance (ODMR) of

the quantum state of a single spin. For context, other methods for measuring spins such as

ESR only work for ensembles, such that this is one of the few systems where one can play

with single spins.

These facts are why the spin defect community exploded in terms of interest, and have

broad applications for room-temperature quantum sensors and for easy demonstrations of

quantum physics on the benchtop. Each particular defect that displays ODMR has different

signs and magnitudes of this ODMR, shown in Fig. 5.7. As each of the V V 0 sit in different

physical parts of the lattice, their spin and orbitals will be slightly different, the exact details

of how this all works changes as well. In general, V V 0 have moderate ODMR contrast of

5-10% and high fidelity initialization (90+%) based on the rates of the ISC. Unfortunately,

while the NV − center in diamond works at room temperature, most of the V V 0 show

reduced contrast (with notable exceptions[56]) at elevated temperature.

Variations in operation temperature can be understood (and is widely confused in general)
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by looking again at the configuration coordinate diagrams, including the singlet states (Fig.

5.6). The spin selective rates to go to the top of the ISC are mixing/tunneling to cross

to the other spin manifold. However, there is also a direct crossing available with enough

distortion that lowers the overall energy. This crossing has a corresponding energy barrier

for the spin to turn from a triplet to a singlet. Depending on the exact details of the system,

this barrier can be higher or lower. If there is enough thermal energy, instead of radiating

light, phonons can bump the state over to the singlet which is a non-spin-selective, non-

radiative process. This means that at elevated temperature, the contrast decreases, and also

the Quantum Efficiency (QE) decreases. QE just refers to the fraction of the time a trip

to the excited state results in a photon (versus a non-radiative pathway to get back to the

ground state). QE is an important metric that determines the quality of a single photon

emitter. The QE (sometimes called a quantum yield) for the NV − center in diamond is

between 70-100% depending on the reference source and is effected by the ISC or any other

nonradiative rates (for example, directly dropping to the ground state by emitting phonons).

The contrast and the QE for the diamond (NV −) survive up to around 600 K[89], which is

a statement of the barrier height between the singlet and triplet manifolds. For V V 0, each

defect has different behavior that is outlined in Fig. 5.7. In general, cryogenics are needed

to reach the temperatures for full QE and contrast. Certain other systems in SiC, such

as the isolated V −Si defect, have contrast that survive to room temperature[92], but this is

greatly reduced due to the elevated temperature[53] much like many of the V V 0 species (but

is not associated in a reduction of counts/QE). Interestingly, V V 0 near stacking faults in

SiC have unique spin and orbital properties that allow for room temperature operation and

above[56, 91]. The different species of V V 0 have different ZPL energies, DWF and details

of the optical structure which is summarized in Fig. 5.7. In general, the QE for V V 0 will

need to be measured carefully using a controlled altering of the photonic density of state and

some fitting [93], alongside fitting the intersystem crossing rates (see [55]) and measuring

the true cyclicity of the different types of V V 0.
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We can then see that V V 0 in SiC fulfills the second set of WKV criteria[64] that describes

an ideal optically-active spin in the solid-state:

1. A bound state that is suitable for use as a qubit. This state must be paramagnetic and

long-lived, and an energy splitting must exist between at least two of the state’s spin

sublevels. If the qubit state is to be manipulated via electron spin resonance, the size

of this energy splitting must fall within an appropriate range of the radio frequency

spectrum. (For V V 0, this is 1-2 GHz)

2. An optical pumping cycle that polarizes the qubit state. This cycle will most likely

consist of an optical transition from the ground state to an excited state, followed by

a spin-selective decay path that includes one or more nonradiative transitions between

states of differing spin multiplicity.

3. Luminescence to or from the qubit state that varies by qubit sublevel in some differ-

entiable way, whether by intensity, wavelength, or other property. If fluorescence from

an excited state is used to probe the qubit, the fluorescent transition should be spin-

conserving. In addition, the strength of this fluorescent transition, which depends on

the lifetime of the excited state, should be large enough to enable efficient, high fi-

delity measurement of individual defect qubit states. (For V V 0, the optical lifetime is

∼ 15 ns and this is fulfilled)

4. Optical transitions that do not introduce interference from the electronic states of the

host. All optical transitions used to prepare and measure the qubit state must be lower

in energy than the energy required to transfer an electron into (out of) the center from

(to) the electronic states of the host. (For V V 0, this extremely important and related

to the work of this thesis in chapter 11)

5. Bound states that are separated from each other by energies large enough to avoid

thermal excitation between them. If the energy difference between two bound states is

too small, thermal excitations may couple states and destroy spin information
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In these original WKV criteria, the idea was to find a system that displayed the same ISC

physics as the NV − center in diamond to see off-resonant, room temperature ODMR. That

being said, for the applications of quantum communication which use low temperatures and

utilize the spin-photon interface in the ZPL, these singlets are actually a problem. For V V 0,

from both DFT and experiment it looks like even if the spin is in ms = 0 (where we want

things to be radiatively cycling), the defect has a chance of crossing to the ISC. This extra

rate reduces the optical lifetime, and means that the QE is reduced. Luckily, since the ISC

returns us to the ms = 0 ground state, the overall transitions are still largely ‘cycling’ but

have a significant non-radiative component. In experiment, the V V 0 in 3C-SiC have a QE of

around 80%, though the defects in 4H are less well characterized. Comparing to theory, some

results predict a 60 ns radiative lifetime [94], which implies a roughly 30% QE (using the

experimental optical lifetime of around 15 ns), while more recent results compute lifetimes of

around 20 ns for the c-axis V V 0 corresponding to roughly 80% QE [95]. Although the ISC

is nice for the ease of spin initialization, in an ideal system for quantum communications, we

would avoid it altogether as it can cause unwanted spin flips and nonradiative rates (maybe

our spin goes through the ISC when we don’t want it to). In fact, some systems in the field

operate with only S = 1
2 such that there is no intersystem crossing (such as the SiV − in

diamond).

5.2.2 Spin Flips, Resonant Initialization and Strain

Borrowing optical pumping techniques from atomic physics and relying on the small mixing in

the excited state means that we can avoid relying on the ISC and use resonant initialization.

Each of the lines in the orbital fine structure couple differently to the ISC, and have different

amounts of mixing to each other. Just considering the mixing in the excited state, we

can estimate the predicted cyclicity or number of photons that can be extracted from this

transitions before the spin ‘flips’ into the wrong state (a branching ratio). This is shown in

Fig. 5.8 as a function of a ‘transverse strain’. As transverse strain is added (and the C3v
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symmetry is broken), the mixing between states changes and the cyclicity can drastically

change. Strain here refers to a physical disturbance in the lattice, or could also be an electric

field. Transverse strain can better be thought as a generalized energy shift that breaks the

Hamiltonian’s symmetry. The actual shifting dipole per unit strain have had preliminary

measurements [13], but require further investigation. Luckily, the predicted quality of the

spin-photon interface in V V 0 is quite high (better than the diamond NV −[55]). However,

these numbers do not take into account ISC induced mixing or QE reduction. The actual

quality of the spin-photon interface is still an open question, though things look promising.

This mixing in the excited state means that some fraction of the time we pump an ms = 0

transition, we end up in ms = ±1. However, once we are in ms = ±1, our laser is no longer

resonant and the system gets trapped in a ms = ±1 ‘dark state’ (does not emit light).

Continuously pumping on ms = 0 means eventually we will spin flip, and after enough time

we are almost sure to be in ms = ±1. This is called optical pumping. Conversely, pumping on

ms = ±1 with a second laser can pump us into ms = ±0 and also benefits from the ISC. This

is ‘resonant initialization’. For spin qubit readout, we similarly cannot probe the readout

cycling transition for too long, otherwise we will just be averaging nothing because the spin

has already flipped and no photons are coming out (except noise). The readout time must

be optimized along with the optical power to maximize the signal-to-noise. Interestingly,

in this scenario: ‘a slowly initializing qubit is a good readout qubit and vice-versa’. These

considerations can be seen in Fig. 5.8.
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event given the known excited state mixing as in Fig. 5.4 and comparisons to the NV − in
diamond. The mixing reduces the ms = 0 character of the excited state, causing a branching
and spin flips. The purple star is the measured value from (G). The model in these plots do
not take into account the ISC. Adapted from [55].
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5.2.3 Degradation of the Spin-Photon Interface

For V V 0, the excited state lifetime is roughly 13-18 ns depending on the defect and the

spin state (Fig. 6.1). This sets the lifetime limited linewidth of the photons absorbed

and emitted from the spin-photon interface at ∼ 10 MHz (see Eq. 2.11). Fortunately,

the splitting between the orbitals in the fine structure is on the order of GHz such that

overlap/unwanted driving of nearby lines can be avoided (this is not necessarily a given).

The two lines that have the highest cyclicity are the Ex and Ey lines. With nonzero strain,

they split significantly and are usually a few GHz to 100’s of GHz apart in our materials.

These orbitals are orthogonal and couple to (orthogonal) linearly polarized light. In the

very high strain limit, mixing with the other orbitals gives the polarization a slight circular

character. Phonon induced processes can directly cause transitions between the Ex ↔ Ey

which causes changes in the energy and polarization of the emitted light [87]. Other processes

are available and are discussed in appendix A. In general, even moderate temperatures near

10 K are high enough to cause unwanted broadening in the optical lines through phonon-

assisted processes[6]. Phonon-assisted broadening was recently theoretically treated for the

VSi in SiC [96]. Luckily, commercial closed-cycle 4 K cryostats with optical access are

available and used for all the work in this thesis.

A common metric is not only to measure the linewidth of your optical line, but to perform

optical Rabi oscillations between the ground and excited state, whose decay is indicative of

the coherence of the excited state orbitals. The coherence and spectral/temporal shape

of the emitted light from the spin are extremely important for performing the two-photon

interference necessary for long-distance quantum communications covered in chapter 8. Laser

drift, measurement inaccuracy and exact sample temperature are also important things to

consider. Finally, spectral diffusion randomly shifts the defect’s lines around (dephasing it)

due to surrounding environmental noise and is covered in section 6.2. The two levels (the

ground and excited state) are just like the qubits we covered in chapter 2 and have the same

descriptions of coherence and line broadening as for spin ground states (T1, T
∗
2 , T2).
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In general, the c-axis V V 0 are extremely similar to the NV − in diamond in terms of the

behavior of its excited state and singlets which allows for easy connections to techniques,

terminology and existing literature in diamond. We just got lucky that there’s an NV −

analog in SiC.

5.3 The Spin Ground State

We now have the basic understanding of the orbital structure of V V 0 and how it relates to

spin. Going back to the S = 1 ground state, we can write the Hamiltonian of our spin:

H = S ·D · S + γeB · S +
∑
j

S · Aj · Ij (5.1)

γe is the electron gyromagnetic ratio which actually contains a full g tensor (multiplied by

other factors) that describes the magnetic moment for arbitrary directions of the field. In

general, spins in solids can display highly asymmetric g factors. For isolated electron spins

this term is purely isotropic. Interestingly, the g factor of the electron is one of the most well-

understood physical quantities ever measured and theoretically treated by humans (≈ 2).

Luckily, the divacancy also has a nearly isotropic g factor ≈ 2. Importantly, this g factor is

the same in both the excited state and the ground state. This means that the optical lines

(more specifically, the energy differences between the ground and excited states) discussed in

section 5.2 do not move with magnetic fields. In this Hamiltonian, D is the zero field splitting

tensor, and A is the hyperfine tensor that describes the central spin coupling to many nuclear

spins indexed by j with spin operators I. The hyperfine coupling tensor includes the dipole-

dipole coupling of the spins along with the ‘contact’ term of the wavefunction overlap between

the electron and nuclear spin (which becomes important for nuclear spins within the first few

lattice sites). For reference, measurement of the hyperfine tensor is a great way to identify

your defect, as it will need to obey certain symmetries and can be well matched to DFT

predictions (as done for the V V 0[79]). The zero field splitting describes the energy differences
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between ms = 0,±1 due to the orbital shape and symmetry that the spin lives in. Think

of it as an electron repulsion interaction energy of the two electrons in the defect enforced

by the lattice that depends on the spin state [97]. Because of the symmetry of the defect,

the D tensor can be simplified. For control of the spin with phonons, variations from this

simplification can give rise to terms that drive spin transitions (chapter 10). Assuming the

quantization axis and applied field are along z, we use this simplification and write (using

the secular approximation):

H = DS2
z +Ex(S2

x−S2
y) +Ey(SxSy +SySx) +γeBzSz +

∑
j

(A||,jIj,z +A⊥,jIj,x) ·Sz (5.2)

A|| = Azz and A⊥ =
√
A2
xz + A2

yz describe the hyperfine component along and perpen-

dicular to the defect (z) axis. Ex and Ey relate to zero field splitting terms. In particular,

they correspond to particular deviations from C3v symmetry. For V V 0, the c-axis defects

have Ex = Ey ≈ 0 while the lower-symmetry basal defects have significant E terms[7]. A

summary of the various spin Hamiltonian parameters for the different V V 0 can be found

in Fig. 5.7. Ignoring the nuclear spins surrounding the defect, we can see the energy spec-

trum of the spin of V V 0 in Fig. 5.9. D is around one gigahertz, putting V V 0 in the

microwave regime where exquisite microwave control and electronics are available commer-

cially. The spin sublevels can be shifted and transitions between them can be easily driven

by applied magnetic fields. There are a significant number of terms missing in this Hamil-

tonian, including the nuclear Zeeman term γnBzIz, the nuclear-nuclear dipole interaction

terms
∑
i 6=j Iz,i · Iz,j , the interaction of surrounding electron spins (Sk) in the material with

our central spin
∑
k Sz,k · Sz (some strength prefactors missing here), and electron-electron

interactions
∑
n 6=m Sz,n · Sz,m among those spins. Additional perturbations due to electric

fields are small but couple like the Ex and Ey terms and can shift or drive transitions [98, 99].

Similarly, external strain couples into the full D tensor which add extra terms that can shift

and drive transitions[9]. At some point we have to stop, though! One final note is that
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Figure 5.9: The spin ground state. (A) Energy of the spin sublevels as a function of
magnetic field. The c-axis V V 0 (left) show a linear Zeeman splitting and a zero field splitting
D, while the basal V V 0 (right) show a ZEFOZ and hyrbidization at B = 0 due to the E
term in the Hamiltonian.(B) Schematic showing strongly and weakly coupled nuclear spins
to a c-axis V V 0. The weakly coupled bath results in a broadening, but strongly coupled
nuclear spins can split the lines by more than a linewidth.

the spin Hamiltonian changes dynamically as we go to the excited state orbitals; this can

cause issues when spin control of electrons and nuclei is combined with interleaved optical

excitation.

5.3.1 Spin T1 and T2 in the Solid-state

If we consider our electron spin qubit, uncontrolled hyperfine and electron-electron interac-

tions, electric fields, magnetic fields and strains can cause our spin to decohere (reduction of

T2 and T ∗2 ). Furthermore, we need to think about what mechanisms will cause T1 decay for

this system. For T1, direct radiative decay of our spin from the higher energy ms = ±1 to

the lower ms = 0 is possible, but direct decay this way would take longer than the lifetime of

the universe [100]. This is why spins are exciting long-lived qubits. Unfortunately, spins in

the solid state have weak but non-negligible coupling to the host lattice. Luckily, due to the

confined potential of the defect’s spin combined with the high Debye temperature of SiC (and

diamond), spin lifetimes can remain robust up to room temperature. A high Debye temper-

ature means that the phonons are high energy and further away from the energy scales of

the spin states. In general, for spin-lattice induced T1 decay, there are direct processes where
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the spin emits or absorbs a phonon at the resonance frequency and Raman processes where

a lattice phonon scatters off the defect and gains or loses energy corresponding to the spin’s

energy (creating a higher or lower energy photon). Finally, there are Orbach processes that

correspond to phonons that excite/mix the spin to a different orbital state with a particular

energy. For ground states with nearby electronic orbitals only 10’s to 100’s of GHz away,

this effect is dominant a dramatically reduces coherence (such as in the SiV − in diamond).

Fortunately, lattice-induced T1 decay can be drastically reduced by going to lower tempera-

tures. Each type of phonon-induced T1 process has a particular temperature scaling which

can be informative for identification. Direct and Orbach-induced decay may be frozen out

using phononic band-gaps [101], though this has not been demonstrated. Additionally, a low

spin-orbit interaction (which gives a low spin-strain coupling) also reduces these effects. For

V V 0, T1 at room temperature is 100’s of µs, while at 4K it is already well over a second

and is difficult to measure (and by this point, it’s long enough). In particular, residual laser

leakage (and therefore optical excitation) from the acousto-optic modulator (AOM) which

turns the lasers on and off in our experiments is the dominant ‘T1’ decay source if you are

not careful. One of the major benefits of spin defects are these ultralong T1 times. Because

the defects are deep, interactions with charge carriers (the spin of traps is a different story)

and ionization are basically negligible as well (without illumination) and this spin state can

live for a very long time. Finally, in terms of hybrid systems coupling spins to phonons, it’s

worth noting that a good coupler to strain couples to phonons easily and will have low T1.

On the other hand, more extended states like excited state spins states or orbital levels can

couple drastically to strain.

Coherences for solid-state spins determine the performance of any quantum device. Usu-

ally, electron spins are mainly limited by the surrounding nuclear spin bath. This is a whole

field in itself, but is easily understood. Nuclear spins associated with atoms in the lattice are

quite abundant and each corresponds to a tiny magnetic dipole moment. If this environment

fluctuates in time, then the electron spin will see a uncontrolled time-dependent magnetic
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field that causes decoherence. While the T1 time of nuclear spins are quite long, a given pair

of nuclear spins can perform a flip-flop interaction. If the two nuclear spins have the same

energy splitting, one nuclear spin can give up its excitation to flip a nearby spin of opposite

direction |↑1↓2〉 ↔ |↓1↑2〉. Because the before and after states have the same energy, this

interaction happens readily among all the resonant spin pairs in the lattice. This means that

even if the temperature is zero, the nuclear environment is going crazy. If these two nuclear

spins couple differently to the central electron spin, then these flip-flops cause magnetic noise

at the defect (a fluctuating hyperfine coupling). An important tool to understand these ef-

fects is Cluster-Correlation Expansion (CCE) which treats the nuclear bath interactions by

breaking the problem into clusters of pairs of spins (CCE2), three nuclear spins (CCE3), etc,

instead of treating the entire system of the huge number of nuclear spins which would be

incalculable. These calculations are used in chapter 13.

In general, the Larmor frequency of the nuclear spins are usually in the kHz range at

moderate fields. The slow fluctuating nuclear bath in silicon carbide roughly sets the spin

resonance linewidth to∼ 1 MHz and the T ∗2 ≈ µs in natural isotopic abundance. For nuclear

spins with strong hyperfine coupling, the spin resonance lines split and Ramsey will show

a beating corresponding to the hyperfine value. For a Hahn-echo, the oscillating magnetic

fields from a nuclear spin can have differing amounts of phase accumulation in the first and

second half of the echo. This means that as the time is swept, oscillations will be seen

corresponding to the Larmor frequency. With multiple species, multiple frequencies can be

observed, and depending on the exact bath of nuclei and the magnetic field these modulation

will have different depths. This is called electron spin-echo modulation (ESEEM). The overall

result of the nuclear bath however, is an overall decay, with T2 ≈ 1 ms. Interestingly, this

coherence time is greater than that of NV − center in diamond for a multitude of reasons

[102], making the V V 0 quite attractive. For the basal defects in SiC, a significant E term

in the spin Hamiltonian causes a mixing near zero field which creates a ZEFOZ transition,

which results in long coherences [7].
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For dynamical decoupling, the overall coherence can be extended up to T1, and coherence

dips can be found that correspond to matching the precession frequency of different nuclei

in the lattice [103]. Essentially, the electron spin can flip at the right integer multiple of the

Larmor period of the nuclei to exactly add up the phases. This forms the basis of the results

in chapter 13. Obviously, removing the nuclear spins from the lattice can boost coherence.

Unfortunately, even after isotopically purifying the material, other decoherence mechanisms

can come into play.

To begin, thermal/strain drift changes the D parameter in the Hamiltonian which may be

an issue. Furthermore, drift of the permanent magnet used to apply the external magnetic

field can be a problem, alongside with unwanted electrical noise. That being said, the most

important decoherence mechanism other than nuclei is other electronic spins. With their

large magnetic moments and appreciable densities (1e13 − 1e15 cm−3 even in ‘pure’ SiC

materials), their effect on coherence limits isotopically purified samples and is covered in

chapter 13. For defects near surfaces, the dangling bonds containing electron spins are one

of the main mechanisms for decoherence. Decoherence due to surfaces is a major problem

for nearly all quantum technologies.

5.3.2 Creating V V 0

Through the course of my graduate work, constant work on creating V V 0 in a consistent and

controllable way has been necessary. I will give a quick account of best practices to create

single defects here. High-quality (low defect) materials can be obtained from collaborators

or from high quality epitaxy from commercial companies (Norstel AB, now ST Microelec-

tronics). The V V 0 are stable in intrinsic ‘i’ type material. These layers are grown on 4◦

off-axis 4H-SiC that is usually n-type (though epitaxy on HPSI is possible and used in [7] and

other work). A small n-type buffer layer is grown first before the desired epitaxy is begun.

In as-grown materials, the dominant defects will be residual shallow nitrogen (1e13 − 1e15

cm−3) and deep carbon vacancies (1e14 − 1e15 cm−3). Usually, in intrinsic materials the

100



vacancies pin the Fermi level midgap and the resistivity is high (see Fig. 4.1). There are no

V V 0 in the material to begin with. Relativistic electron irradiation at 2 MeV in SiC has a

rough penetration depth on the order of 1 mm, corresponding to a rough absorption coeffi-

cient of 10 cm−1[104]. Relativistic calculations put the rate of ‘primary-knock-on’ events at

∼ 3 cm−1 which corresponds to the rate of making Frenkel pair (vacancy+interstitial) de-

fects which is confirmed by experiment[105]. Multiplying by an electron dose of units cm−2

gives the resulting density. Each primary scattering event has a chance of making secondary

damage, which is low for electron irradiation[105]. By looking at the rate of deep defect

creation which compensates carriers, a ‘carrier-removal rate’ of ∼ 0.5 − 1 cm−1 has been

measured with 2 MeV electrons for surface epilayers of SiC[105, 106]. Experimental conver-

sions between dose and deep defects as measured by DLTS is around 0.1−0.9 defects cm−1

for multiple possible species[106]. Other results show doses at 1e14 cm−2 produce roughly

3e14 cm−3 total defects of multiple types through DLTS[107]. As such, we can safely put

the conversion efficiency between dose and vacancy creation to be 0.5 − 3 defects cm−1.

For relativistic electrons at 2 MeV, the transmitted energy to the lattice is very close to the

displacement energy for single Si and C nuclei (creating VSi and VC) such that displacement

cascades don’t occur. As such, only sparse point defects are created[105]. Interestingly, car-

bon related defects can be created at about 100 keV electron energy whereas silicon-related

defects occur above 200 keV (such that the kind of damage can be tuned with energy)[104].

When displaced, the atoms go into nearby interstitial sites (Fig. 13.6). Importantly, as dose

is varied the concentration of deep defects and thus the Fermi level is changed which can

drastically change defect formation kinetics and stability and complicate things.

Once VSi and VC are created, annealing mobilizes the vacancies. Some of the displace-

ments reincorporate the displaced atoms, but some vacancies become mobile and diffuse

through a complicated (and Fermi-level-dependent[108]) process potentially involving anti-

sites or interstitials[109]. However, the current understanding is that Vc does not diffuse

once formed (it is a stable defect during the high-temperature growth), and that VSi diffu-
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sion drives the formation process. At around 300-500 ◦C in SiC, some lattice healing will

occur and at 600-700 ◦C these vacancies will become fully mobilized. Annealing past 750

◦C is very efficient at forming V V 0, which happens when a VSi finds a stationary VC . Best

practices put the annealing for V V 0 at 800-850 ◦C[79]. Annealing should take place in an

inert environment, such as Ar gas, but no differences were found in air-annealed materials.

Importantly, annealing in Ar/H2 forming gas is detrimental to V V 0 formation and SiC

stability!. The current understanding is that hydrogen can easily diffuse into SiC and form

defect complexes and affect charge dynamics. Hydrogen defects have been a long studied

issue in SiC [110] that we had to rediscover the hard way (leading to what we called the ‘Dark

Ages’, which had no single defects produced). Furthermore, at high temperatures hydrogen

causes a premature degradation of the SiC surface at around 1200 ◦C. The V V 0 complex

itself is very stable up to over 1400-1600 ◦C[79], but at those temperatures any other vacan-

cies can find the V V 0 can form larger multi-vacancy clusters[111]. On the other hand, VSi

signal diminishes after about 600◦C[112]. High-temperature annealing forms the basis for

dopant activation for devices and for creating larger substitutional defects in SiC such as Cr

and V covered in chapter 7. These transition metals are incorporated with high efficiency at

1300-1600 ◦C, but residual damage and strain can be further reduced along with increased

incorporation upon annealing even up to 1800 ◦C. Importantly, in these cases the SiC sur-

face must be carbon-capped to avoid surface degradation/sublimation, combined with fast

annealing ramp rates. High temperatures are also needed for CMOS processing and creating

Ohmic contacts.

Commonly, no V V 0 single defects are ‘seen’ after annealing until a threshold dose is

reached (whereby the Fermi level is pinned midgap), after which a linear density for a given

dose is observed. A dose of 1e13− 1e14 cm−3 is consistent in creating resolvable single V V 0

(though this has changed over time with changing materials, charge, and dose calibration).

The doses needed for single defect creation tend to be on the low side of the resolution of the

irradiation facilities, while ensemble studies can have doses as high as 1e19 cm−3 which take
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weeks of beamtime (as used to create high density samples in chapter 14). Even if off-resonant

excitation cannot resolve an ensemble of V V 0, using resonant lasers we can address a specific

defect in the optical spot based on defect-to-defect variations in strain which shifts around

the orbital fine structure (though this can be hard to disentangle). Overall, the annealing

behavior is highly dependent on the starting material composition before irradiation.

For example, a dose of 3e13 cm−2 corresponds to roughly 1e13 cm−3 vacancies. We

observe that at these doses we see about 10 defects in a 10 × 10 µm spatial scan, with a

confocal depth of order 10 µm, corresponding to a defect density of 1e10 cm−3. We can see

then that the vacancy-to-V V 0 conversion is around 0.1%. In comparison, the ion-to-V V 0

conversion is around a few %[13], but each ion creates thousands of vacancies, making it even

less efficient. Potentially, the residual VC from growth can be as high as 1e15 cm−3, such

that VC is supplied naturally and VSi is rate-limiting. It is still unclear how far the a given

vacancy must diffuse before forming V V 0, though initial results place it well below 1 µm.

This has important implications in localizing defects into devices. An outstanding mystery in

V V 0 formation is the fact that the single PL3 hk V V 0 have not been created or observed in

experiment, while PL1 (kk), PL2 (hh) and PL4 (kh) all form in equal concentrations. This

defect exists in ensemble experiments, but may have complicated or unfavorable formation

processes. One possibility is that this defect’s absorption dipole is small when pumped with

E ⊥ c− axis, which is our normal experimental scenario [95].

Finally, much of the ‘vodoo’ around defect formation can be avoided by carefully thinking

about charge state dynamics. With the wrong choice of laser color, a material can seem to

be far from ideal, but may actually be a much cleaner material. The complications from

these photo-dynamics are covered in section 6.3. In particular, because V V 0 → V V − occurs

readily as discussed in the following sections, then a slightly p-type material will have its

quasi-equilibrium be very hole rich, such that continuous illumination results in consistent

PL (a ‘good’ sample). A compensated sample will also have its quasi-equilibrium such that

the divacancy is stable in its midgap charge neutral state. Much of the difficulty in dialing in
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the V V 0 parameters were because of these effects. Furthermore, care should be taken when

the charge state balance of your material is delicate. E-beam fabrication procedures should

use an anti-charging metallic layer, for example. Luckily, many of these considerations can

be alleviated using the proper excitation color (see chapter 11).

5.4 Measuring Single Defects

The experiments in this thesis are performed in a home-built confocal scanning microscope

that operates in the infrared. The lasers and the emission from V V 0 are invisible to the

human eye. Illumination and photon collection from the defect is focused through a NIR

objective with NA=0.85. The NA is a number that describes the angle of focused light. In

reality, light follows Gaussian optics (not just rays) and has a mode waist/size at the focus

described by the paraxial equation. For a given focal length optic, a larger input beam will

give a tighter and tighter spot. The corresponding light will have a steep angle and a high

NA. Our high NA objective collects a large cone of light from the defect and focuses the

incident lasers tightly. The full NA of the objective is only used when the full back-aperture

of the objective is filled by light. For reference, the objective field number (OFN) refers to

the image size in a standard optical column of a microscope (which we don’t use!) which

includes an eyepiece and some extra magnification. Similarly, the quoted magnification of

an objective only has meaning with respect to this optical column. Depending on how

the number is quoted, the OFN divided by the eyepiece magnification corresponds to the

size of the image right after objective. Usually this is a factor of 10. Given a 1” eyepiece

diameter for traditional microscopes, the OFN tends to be around 20-25 mm (corresponding

to a 2-2.5 mm beam diameter). Alternately, the estimated focal length (EFL) and the so-

called f/ relates to the image/beam diameter (D) after the objective with f/ = EFL/D.

The incident laser and the collected photoluminescence are filtered from each other using a

dichroic beamsplitter. The emitted light is then passed through several filters and focused
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into a single mode fiber. This fiber optic cable confines light in a single spatial mode, and

the mode has a particular mode waist (mode-field diameter) and therefore a corresponding

NA. The photons from the defect must be mode matched to this fiber, corresponding to an

overlap integral of the collected light to the acceptance of the fiber. Spherical, spatial and

chromatic aberrations of the light as it goes through the optical path can drastically reduce

this coupling efficiency. Maximizing this throughput is paramount for increased SNR and

for single-shot readout and entanglement (chapter 8). For detectors with non-single mode

input, the mode-matching requirements are greatly reduced and higher count rates are easier

to obtain (such as for the NV − in diamond).

This single-mode fiber runs to a superconducting nanowire single photon detector (SNSPD)

which has a high quantum efficiency (in this context, it is the fraction of incident photons

that result in a ‘click’ or count) and can detect single photons with low ‘dark counts’ (back-

ground noise). SNSPD’s can detect IR photons, which can not be detected easily at high QE

with traditional single photon detectors like Geiger-mode APDs (Avalanche Photodiodes).

SNSPD’s are excellent detectors with low timing jitter and are being adapted across almost

all areas of quantum science. Essentially, the superconducting nanowires have a current run

through them the nearly breaks the superconductivity. When a single photon hits the metal,

it is absorbed and creates a hotspot in the wire. This hotspot breaks the superconducting

behavior of the wire resulting in a huge resistance spike that is easily measured. The hotspot

rapidly thermalizes and the system is ready for another photon. SNSPDs are luckily just

commercial turn-key systems the size of a kitchen microwave (with a big helium compressor

attached).

Unfortunately, due to the high index of refraction of materials like SiC, most of the

emitted light from the defect (which follows a classical dipole emission pattern) is totally

internally reflected (TIR) at the vacuum/SiC interface (Fig. 5.5E). This issue, combined

with the entire collection, optics, fiber coupling and detection efficiency chain reduces the

fraction of collected light to below 1%. Boosting this efficiency is the subject of major work
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in the field. If we assume a 15 ns lifetime for V V 0, when the defect is saturated we expect

∼ 60 Million counts per second (∼ 1
15 ns) if the QE is 100%. Saturation corresponds to the

point where the defect is absorbing as fast as it can emit, limiting the rate at which photons

come out under continuous illumination. With an estimated 4% for pure collection (from

TIR, the NA, and losing half the photons since they were emitted away from the collection

optic), a worst case QE of the defect 0.3, a detector QE of 0.8, and losing half of the photons

through the collection optics (a guess), we expect roughly 288, 000 Cts/s. In experiment, we

normally measure 40− 50 kCts/s, meaning that even with these assumptions we are losing

around 6 times the photons we expect. Gaining these factors back with optical design and

by using solid immersion lenses (SIL) is critical for future experiments. In our experiments,

our best guess of the total collection efficiency is around or below 0.5%. In the NV − center

in diamond, with SILs [113] > 1000 kCts/s are measured for similar optical lifetimes (this

count rate should hopefully be achievable for V V 0).

In the confocal microscope, scanning can be achieved either by moving the objective on

a periscope that translates the input and output light as the optic is moved, or by a 4f pair.

Due to the wonders of optical design, with lenses with focal length f and the configuration:

objective − f − lens − 2f − lens − mirror, angular displacements at the mirror will map

directly the angular displacements at the back of the objective without translations (related

to telecentric imaging systems). This system makes use of the fact that small angular

displacements on a lens correspond to spatially scanning the beam around on the focal plane.

With a fast scanning mirror (FSM), quick raster scans over the sample can be achieved. We

can perform these scans and see isolated bright dots that correspond to single V V 0 (see

Fig. 5.5D). If I have a single color center it will be a single photon emitter. The single

photon emitter nature of these bright spots is confirmed using a second order correlation g(2)

(autocorrelation) measurement using a Hanbury Brown-Twiss interferometer. Essentially,

the idea is to send light into a 50:50 beamsplitter that goes to two separate detectors. For

a single photon, it can only go one of the two paths and give a click at one detector. For
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a single photon source, there is no chance that both detectors get a click at the same time,

because that would mean two photons were present at the same time. By comparing the

arrival times of photons at the two detectors, a dip near ∆τ = 0 will appear. If this dip

g(2)(0) < 0.5 then single photon emission is confirmed. The exact shape of g(2) can further

be used to understand the radiative and nonradiative rates in the system (such as in [3], for

example).

Our SiC samples are measured inside a closed-cycle helium cryostat. This is a commercial

system that recycles liquid helium by recompressing it after it has been used to cool the

sample. With internal heaters this system can reach anywhere from 3 K to 350 K in vacuum.

Optical access to the sample is provided by a window. Corrections for distortion through

this glass in certain cases can be achieved by coverslip correction or a variable correction

collar on the objective. SiC is mounted to a cold copper piece of the cryostat using rubber

cement, or with conductive adhesives/epoxies for access to electrical back gates. (note copper

pieces should be coated with gold to reduce oxidation, but some electroplating techniques

use magnetic layers which cause issues in experiment). The sample holder is attached to a

3-axis set of piezo-actuators that move the sample inside the cryostat. Microwave driving

of the spin states are provided either by coplanar waveguides on the PCB mount, or by on-

chip fabricated striplines (usually 1-10 µm wide, ∼ 200 nm thick) which are wirebonded to

the PCB microwave ports. Wirebonds themselves are thin (∼ 25 µm) enough that the field

intensity close to the wire can be quite high and drive spins effectively. Proximity of the spins

to these drive wires provides high Rabi rates for low powers and low added heating. Care

must be taken to ensure that the microwave drive field is oriented correctly (perpendicular)

to the defect axis. Microwaves are sourced with a signal generator and pulsed using an

arbitrary waveform generator (AWG) which also pulses the lasers and the readout. The

microwaves are amplified and sent into the crysostat, through the sample, then out to a

50 Ω load. Microwaves can also be shorted, creating a standing wave (be wary of nodes!)

with E = 0 at the short and thus maximum B for driving. For microwaves, consideration
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of the skin depth or attenuation through conductive materials and layers means the top-

side striplines are preferred for conductive SiC devices. Finally, I will note that microwave

pulses have a finite bandwidth based on length and shape from the Fourier-transform that

determines the frequency selectivity and sensitivity of experiments.

Off-resonant initialization of the spin is achieved with a 905 or 975 nm laser. Choice

of this laser color dramatically effects charge dynamics as discussed later in chapter 11.

Resonant readout and initialization is performed using a tunable, narrow line laser whose

wavelength is read out with a wavemeter. For a given experiment, spin initialization is done

optically using either off-resonant or resonant light, followed by microwave manipulation of

the spin. Readout is done by either off-resonant or resonant light (Fig. 5.8). The spin

selective measurement contrast is usually ∼ 5% for off resonant readout, but can approach

∼ 100% for resonant. The polarization and read-out of the spin usually takes order µs, and

a microwave π pulse is usually ∼ 100 ns.
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Chapter 6

The Spin-Photon Interface

6.1 PLE and Stark Tuning

Resonant measurement of the excited state is called photoluminescence excitation spec-

troscopy (PLE). This is the absorption spectrum of light that produces photoluminescence.

We scan a narrow line laser over the excited state spectrum, and measure the resulting PL

emitted in the phonon sideband (the laser excitation is filtered out). Given the spin polar-

ization that happens naturally under continuous resonant excitation (pumping to a ‘dark’

state), we can perform ‘CW PLE’ using a microwave mixing tone that continuously mixes

ms = 0 and ms = ±1 such that all lines in the orbital fine structure are visible and we

don’t get trapped in a dark state. Alternatively, we can polarize the spin into ms = 0 or

ms = ±1 using optical and microwave tones and then sweep the readout resonant laser

frequency for a set pulse time and confirm which optical lines are associated with which spin.

The absorption spectrum in PLE is representative of where the resonances of the optical fine

structure are, and reflects the spectrum of the emitted light as well. For measurement of

the indistinguishable photons emitted in the ZPL, we can cross-polarize the excitation and

the collection. Both will have a non-zero projection onto the optical dipole of the emitter,

but in this way laser light can be filtered from the emission. In general, each of the lines
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in the orbital excited state will have their own polarization dependence (some may even be

circularly polarized).

The optical fine structure, as mentioned in section 5.2, can be tuned by either strain or

electric fields (Fig. 5.4). Given that both the ground and excited state energies can shift,

tuning corresponds to differences in the dipole between the ground and the excited states.

In a sense, the Stark effect is just an electrostatic distortion of the wavefunction of the defect

which causes energy shifts of the orbitals. In centers with inversion symmetry, this Stark

dipole is, to first order, exactly zero such that the defects are electric field insensitive. With

large electric fields, a second-order Stark effect will still take place, however. In centers with

inversion, strain instead can be used to tune the levels[114].

For C3v centers, such as the NV − in diamond and V V 0, V −Si in SiC, this dipole is nonzero.

This can be understood by remembering that the overall symmetry of the ground (A2) and

excited states (E) are different and respond differently to electric fields. On the other

hand, for V −Si in SiC the ground and excited states have the same (4A2) symmetry making

the first-order Stark shift small (though recent reports contradict this [115]). In practice,

for electric fields along the C3v axis, the entire orbital structure is shifted symmetrically.

Different V V 0 throughout the sample will have different local strain that shifts the ZPL.

Stark tuning can be used to make two emitters emit photons that are the same frequency

and are indistinguishable. On the other hand, transverse electric fields can cause or correct

for inherent asymmetry in the excited state. This can be used to tune up the defect to sit

in an optimal position on Fig. 5.8.

For V V 0, we can write the Stark dipoles and the frequencies for the Ex and Ey lines of

the c-axis divacancies:

fEx = fEx,0 + d‖E‖ + d⊥E⊥

fEy = fEy,0 + d‖E‖ − d⊥E⊥
(6.1)

For the basal V V 0, the Stark parameters are slightly different (discussed in [7]) but have

similar dipole moments. We summarize the known Stark parameters in Fig. 6.1. Following
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V V 0 type Range of PLE DES , EES(GHz) λz(GHz) ∆1(GHz) ∆2(GHz) d‖, d⊥( GHz
MV/m

) Lifetime (ns) DWF

PL1 (hh) 265.1-265.3 THz 0.855, 0 3.54 0.577 0.031 11 (19*),∼2.5 (1.6*) ∼15 ∼5%
PL2 (hh) 264.9-265.1 THz 0.852, 0 6.09 0.584 0.044 4.5,? 15.0 >5% ?

PL4 (hh) 277.8-278.1 THz 1.203, 0.237† 0 ? ? 4.0(19*), 35(0.23*)†† 11.6 ∼10%

Figure 6.1: Optical fine structure parameters and Stark shift parameters. From
references [6, 7, 55, 90, 99, 116]. PLE ranges are sample dependent. “*” are theoretical pre-
dictions from [7]. “†” are in the rotated basis from [7].“††” the correction for the titled basal
axis has not been made in the experiment, which may account for some of the discrepancy.
Optical lifetimes are reported in the ms = 0 spin state. For comparison, the DWF of the
VSi in SiC is around 6− 9%[53]

the discussion in 2.6, both the Stark effect and the radiative optical dipole emission are

related to the electric dipole of the orbitals. However, the emission is due to the ‘vacuum’

driving a transition/emission (like a ‘transverse’ dipole). In contrast, the Stark effect is both

a tuning knob and a source of orbital decoherence (like a ‘longitudinal’ dipole). A short

lifetime is desired for a bright defect, but needs to be balanced with spectral broadening.

The decoherence and broadening are analogous to the issues covered in chapter 2. For the

two-photon interference covered in chapter 8, the emitted photons have to have the same

phase and frequency to interfere such that orbital (and thus photon) coherence is extremely

important.

6.2 Spectral Diffusion

Spectral diffusion of single-photon emission is a near-universal problem for quantum tech-

nologies. Trapped atoms near surfaces, and quantum dots or defects in the solid state, are

all effected by the fluctuating (charge) environment in their surroundings. In the solid state,

defects are both our qubits and our source for decoherence in the orbital and spin states.

Specifically, external defects and impurities to our optically addressed V V 0 have their own

associated trapped charges. These trapped charges at external defects to our spin are either
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neutral or have charge that produces an electric field following:

~E =
q

4πεr2
r̂ (6.2)

As mentioned in section 5.3.2, no semiconductor is perfect and SiC in particular will have

residual nitrogen donors and vacancies after growth (usually Vc). Under optical excitation,

the charge state of these traps changes (see section 6.3). Spectral diffusion occurs not from

electric fields, but changes in those fields. We start by assuming that each defect in the lattice

can take one of two charge states with a difference in the charge states e. The difference in

electric field between these two states is then:

|∆ ~E| = e

4πεr2
r̂ (6.3)

The random switching of a state between two levels is called telegraph noise. In general,

for symmetric (mean = 0) telegraph noise we will shift the frequency up by strength ‘a’

with probability p+a and down ‘−a’ with probability p−a. The variance of such a two-state

system is then:

σ2
a =

(+a)2

p+a
+

(−a)2

p−a
(6.4)

In our case, we will make the assumption that 1) fluctuations are slow compared to the

optical lifetime and that 2) the probability to find a charge in one state or another is 50/50

under continuous illumination. Things get more complicated if these are not fulfilled. For

one noise source:

σ2
a = a2 (6.5)

The variance of a telegraph noise source is just the strength squared! If we add another

telegraph noise source with a different strength b, then we can see that we have a 1/4 chance

112



to be in either (+a+ b), (+a− b), (−a+ b),or (−a− b) and thus the variance is:

σ2
a+b =

(+a+ b)2

4
+

(+a− b)2

4
+

(−a+ b)2

4
+

(−a− b)2

4
(6.6)

Working this out, a lot of things cancel, and we nicely get:

σ2
a+b = a2 + b2 = σ2

a + σ2
a (6.7)

Similarly, we can see that for three telegraphic noise sources we add a third source with

strength c, this yields eight different configurations:

σ2
a+b+c =

∑
configs

(±a± b± c)2/8 = σ2
a + σ2

a + σ2
c (6.8)

For telegraphic noise sources of this type, the variance of the frequency is then the sum

of the variances from the individual sources (even though they can be drastically different

strengths and timescales). This is a great result. Variances of uncorrelated noise add together

(as expected).

Now we consider the spherical coordinates around our emitter along the z axis. We place

a trapped charge/fluctuator at distance r with azimuthal angle θ and polar angle φ. Luckily,

d⊥ is calculated to be small compared to d‖, such that we can approximate the shifts and

use Eq. 6.3 (especially since we are squaring them):

∆f = d‖∆E‖

r̂ = cos θ sinφx̂+ sin θ sinφŷ + cosφẑ

∆f = e
4πεr2 cosφd‖

(6.9)

For a single charge, telegraphic noise for the Stark shift then has the variance:

〈f2〉 − 〈f〉2 = σ2
f = (

d‖e

4πε
)2 cosφ2

r4
(6.10)
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It is unclear in V V 0, but experimental results ([116]) suggest instead that d⊥ ≈ d‖ = d,

which would give instead:

σ2
f = (

de

4πε
)2(cosφ+ sinφ(cos θ + sin θ))2/r4 (6.11)

The total variance from N charges is:

N∑
i

σ2
i (6.12)

We can then see that in the very simple scenario where all fluctuating charges have the

same strength, the optical frequency will have a standard deviation:

σi =
√
Nσ (6.13)

In reality, the strengths vary due to the position with respect to the defect. However, even

if the strengths vary, the sums of variances correspond to the width of a distribution that

looks Gaussian with large N . In a sense, we are making a Markov chain through frequency

space and the process can be related to a Orenstein-Uhlenbeck noise process, a random walk

problem or Brownian motion. For example, we can simulate N telegraph noise sources M

times and look at the resulting distribution. We can confirm that the treatment of the sum

of variances produces the correct Gaussian distribution of values (Fig. 6.3).

For the defect surrounded by a uniform density of telegraphing charges ρ, the big issue is

that there is a non-zero probability of the fluctuating charge being near r = 0. This means

that the resulting distribution will have values at or near infinity. In a sense, we are sampling

from a 1/r2 distribution from (0,∞). Such a distribution is pathological in that it has no

well-defined mean or variance (try for yourself). This means the central limit theorem does

not hold.

There are two ways to approach this problem. First, we can simulate N telegraphing
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(kk) V V 0 mode median

ρ (cm−3) σ(MHz) Γ(MHz) σ(MHz) Γ(MHz)
1e13 4.25 10.0 5.5 13.0
1e14 20.0 47.1 28.5 67.1
1e15 95.0 3 223.7 119.8 282.1
1e16 420.0 989.1 554.6 1306.1
1e17 1850.0 4356.8 2500.8 5887.5

Figure 6.2: Spectral diffusion Monte-Carlo results. Simulations are for an anisotropic
Stark dipole d‖ >> d⊥ of a (kk) V V 0. Assuming d‖ = 4.5 GHz ·m/MV

charges with uniform spatial density ρ and add up their squared strengths according to Eq.

6.10, giving the total variance of the resulting system. We then create M such distributions,

and histogram the resulting distributions of
√∑

N σ2 as shown in Fig. 6.3E. As we change

the density, the shape of this distribution remains the same. We can see that the distribution

(of variances) is non-Gaussian and has a long tail that extends out to infinity. Once again,

if we tried to calculate the mean of this distribution (to get the average variance/spectral

width), it becomes skewed towards infinity and blows up (non-physical). However, what we

want to calculate is not ‘what is the average linewidth for a given fluctuator density?’ but

‘what is the most likely linewidth for a given fluctuator density?’. This corresponds to the

mode of the distribution. In this problem, the mean is ill-defined but the median and mode

are finite and calculable.

Using this Monte-Carlo simulation, we can find the median and modes of σ for different

densities using the dipole moment of the (kk) V V 0 = 4.5 GHz ·m/MV and d‖ >> d⊥. We

also compute the FWHM (Γ ≈ 2.355σ), with the results summarized in Fig. 6.2.

We can run the same simulation but with d‖ = d⊥ according to Eq. 6.11, and obtain the

heuristic that the mode and median are bigger by ∼ 1.7x, but unless otherwise noted we as-

sume d⊥ is small. Since we don’t know d⊥ exactly but know d⊥ ≤ d‖, we can bound ourselves

appropriately. We also can see that the mode and median are close to each-other. In V V 0,

the lifetime limited line is Γ ≈ 10 MHz such that to not be broadened by spectral diffusion,

we need to have around 1e13 cm−3 or lower fluctuating charge impurities. In materials, this
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is an extremely low limit that pushes growth capabilities. To compare, only one diamond has

really shown consistent lifetime-limited lines (for the NV ) ‘the magic russian diamond’ from

the Ural mountains[117]. which probably has exceptionally low impurity content. Remem-

bering our discussion of damage, irradiation at too high of a dose (above 1e13-1e14 cm−3)

will likely cause extra charge fluctuators and degrade the spin-photon interface.

Now we can back out the scaling by fitting the mode and median as a function of density.

It turns out both follow the power law σ ∝ ρ
2
3 (Fig. 6.3). In experiment, the defects we see

are (by definition) most likely to have a width at the mode of this distribution, for which we

extract:

Γ(ρ) ≈ 1

50
[ρ(cm−3)]

2
3 Hz (6.14)

We can also compute (numerically) just the pesky geometry factors without the physical

parameters of the defect:

mode[
√∑ cosφ2

r4 ](ρ) ≈ 2.6ρ
1
3

mode[
√∑ 1

r4 ](ρ) ≈ 4.75ρ
1
3

(6.15)

The second method for tackling this problem is to add up the variances by performing

an integral over all space, but with a twist. Because the chance to find a charge in the

volume element in spherical coordinates is ρr2drdφdθ, we can integrate the variances over

the probability distribution just like if we were computing the mean of variances 〈σ2〉:

(
d‖e

4πε
)2
∫ 2π

0

∫ π

0

∫
r

cosφ2

r4
sinφρr2drdφdθ (6.16)

The angular components integrate easily:

(
d‖e

4πε
)2ρ

4π

3

∫
r

1

r4
r2dr (6.17)
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Figure 6.3: Spectral diffusion in V V 0.(A) Many homogeneous lines (blue) make up the
inhomogeneous line (red) as the homogeneous line jitters around due to spectral diffusion.
(B) Telegraphing noise adds up to produce Gaussian lineshapes. (C) From section 11.4,
schematic of laser-induced scrambling of the charge environment of an emitter, causing
fluctuating electric fields and Stark shifts.
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Figure 6.3: (D)(left) Monte-Carlo simulation of an emitter with randomly populated nearby
traps of uniform density and (d‖ = d⊥). Spectral diffusion is shown from the individual real-
izations of the fluctuating bath by the many small homogeneous lines. The resulting average
(red) is a Gaussian shape. (center) Schematic spectral diffusion with slow fluctuations show-
ing discrete jumps. (right) Schematic spectral diffusion showing the same linewidth but with
faster fluctuations. With slow fluctuations, discrete jumps in PL may be seen when sitting
with a narrow line laser at ∆f = 0 (top), while these dynamics may be hard to observe
with fast spectral diffusion. (E) Monte-Carlo simulated distributions of defect linewidths
(FWHM) for a kk V V 0 with isotropic Stark shift d = 4.5 GHz/(MV/m) at varying fluc-
tuator densities (d‖ >> dperp). The asymmetric, long-tailed distribution is present for all

densities. The median and mode of the distributions are shown. (F) Mode and median

FWHM linewidths as a function of defect density. The relation is well fit to a ρ2/3 scaling.
The lifetime-limited linewidth is shown in yellow, with various rough material cleanliness
regions shown in green, orange and red.

Normally, we would then integrate r on [0,∞], but that’s the source of the whole diver-

gence issue. The easiest way to approach this is to think about the average distance between

the defect and the first charge, which is:

〈r〉 ≈ ρ−
1
3 (6.18)

More specifically, in spherical coordinates we can use the Wigner-Seitz radius a =

( 3
4πρ)1/3 and the fact that the distribution of nearest neighbors peaks at:

rpeak = (
2

3
)1/3a = (

1

2πρ
)1/3 (6.19)

On average, we won’t have our first charge until this distance. Configurations that do

have r < 〈r〉 or rpeak are part of the pathological tail. Therefore we integrate first using 〈r〉

:

(
d‖e

4πε
)2ρ

4π

3

∫ ∞
〈r〉

1

r2
dr = (

d‖e

4πε
)2ρ

4π

3
(

1

〈r〉
) = (

d‖e

4πε
)2ρ

4π

3
ρ

1
3 = σ2 (6.20)
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leading to:

σ = (
d‖e

4πε
)
√

4π/3ρ2/3 = (
d‖e

4πε
)(∼ 2.04)ρ2/3 (6.21)

Using rpeak instead of 〈r〉 the numerical factor is ∼ 2.78. Amazing! We reproduced the

scaling with density and the numerical factor (∼ 2.6) from the simulation in Eq. 6.15 almost

exactly. Using Eq. 6.11 instead where d‖ = d⊥, the angular integral gives 4π instead of 4π
3 ,

scaling the results of the linewidth by
√

3 ∼ 1.73×, just as we found in the Monte-Carlo!

Perhaps a more accurate description can be achieved with a better statistical toolbox or

by borrowing from nearest-neighbor distance distributions from statistical mechanics, or by

knowing d⊥ accurately. That being said, now we know how to treat spectral diffusion for

the orbital structure of our defect as a function of the fluctuating charge density surrounding

it. Other scenarios may have surfaces of fluctuating charges such as in nanostructures which

should be calculable more easily. If the fluctuations are fast, motional narrowing and a

splitting of the peaks into two may occur, but are not treated here. Certain configurations

have a ‘strongly coupled’ charge trap (also seen in experiment) where the lines split into

two, offering interesting possibilities for readout and control with single charges. Once again

this treatment is probably a overestimate, since most charge traps will not contribute to

fluctuations and some correlations and charge conservation will reduce the magnitude of the

noise.

Practically, as mentioned in section 5.3.2, residual nitrogen and deep Vc can have densities

as high as 1e15 cm−3 in commercial, epitaxially grown SiC. This means that the spectral

diffusion should give around ∼ 200 MHz lines. As discussed in sections 11.4 and in ap-

pendix A, this is exactly the magnitude of our observed PLE linewidths in these materials.

Furthermore, in materials with high doping levels, even when the source gas is turned off,

residual doping may occur as the growth chamber becomes slowly purifies. This means that

nominally intrinsic layers may have a significant amount of doping if they are thin and grown

immediately after doped layers, causing broad spectral lines (as in chapter 9). Commonly,

for SiC characterization, carrier density is characterized with a C-V measurement, or by
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measuring a calibrated loss when the sample is introduced into a high Q-factor microwave

resonator. However, spectral diffusion occurs not through free carriers (which could be few

due to many deep traps) but through fluctuations of defect charge states. Nitrogen impurity

density can be measured by looking at the bound-exciton lines [118] (when below the detec-

tion limit of SIMS), while Vc densities can be determined with DLTS (the Z1/Z2 level[119]).

How these common defects and impurities in SiC fluctuate under optical excitation is covered

in the next section, which drives spectral diffusion. In specially-grown ultrapure samples,

nitrogen, boron (another dopant that may be present) and Vc can all be in the 1e13 cm−3

range [2]. For the NV − center in diamond, ion-implanted defects cause large amounts of

spectral broadening [120] due to the large number of created nearby vacancies, despite ini-

tial reports [121]. For the landmark experiments using the spin-photon interface, the NV −

displays linewidths that are ∼ 100 − 200 MHz[117, 122, 123]. ‘Electronic grade’ diamond

< 5 ppb of nitrogen impurities still corresponds to a defect density of ∼ 1e15 cm−3[124],

which given the similar Stark dipole[125], would explain this level of broadening. With an

atomic density of ∼ 5e22atoms/cm3, sub ppb levels of all impurities would be necessary to

observe lifetime limited lines (Fortunately, not all hope is lost, as discussed in section 11.4).

6.3 Photodynamics of Defects

The last section dealt with how fluctuating charges can degrade the spin-photon interface.

We also mentioned how trapped charges (paramagnetic impurities) can contribute to mag-

netic noise for the spin. The ionization and recapture of carriers by these defects is dominated

by the non-equilibrium photodynamics from the laser excitation at low temperature. Further-

more, V V 0 itself can undergo ionization and recharging depending on the photodynamics.

This is the subject of chapter 11, but we will introduce key concepts here.

Going back to the discussion of charge transition levels for electrons and defects, the

distance between the VB and a (0/-) level of E(0/−) for example, means that with laser

120



(A)
c

02.2 3.43.02.6
Energy (eV)

70 meV

PL
 g

ai
n

1

100

10

Time Δt (s) 
100 101 102 103 104 105

405 976Δt
12 hrs

+
-

VV0

-

+

+
+-

-
+

-
VV0

-

+

+
+-

-
+

-
VV0-

+

+

+ -

-

frozen spatial distribution
 of charges

new distribution
 of chargeslaser induced scrambling

(B)

Figure 6.4: Photodynamics of defects and surroundings. (A) Charge state lifetimes
of V V 0. At UV pulse of light creates and out of equilibrium excess of V V 0. At T=4 K, this
population cane be read out with the photoluminescence from a 976 nm laser pulse, where
the population is frozen for more than 12 hours. Adapted from [11]. (B) Schematic of laser
driven charge dynamics in the bath. When the light is off, charges are frozen in different
configurations.

excitation ~ω > E(0/−) we can bring an electron from the VB and charge the level from the

0 → − charge state. There are multiple considerations to make here. One is the density of

states in the VB, which determines the rate of this process. The density of states in the VB

and CB can have structure, and may have an energy difference from the band edge to the

rate maximum (see Fig. 11.7). The VB and CB just say where the bands start, not where

there are lots of states. Second, the charge transitions levels are ground state relaxed levels

such that Franck-Condon shifts for optical excitations are not taken into account. Finally,

orbital excited states (such as the one for V V 0) are not included in the charge transition level

picture, but may effect photodynamics (especially with two-photon processes). However, the

exact transitions to and from bound charges states of defects can be treated theoretically

[94]. For holes, the same levels are involved, with the relation that the energy needed to

add a hole (or equivalently, to remove an electron) and go from − → 0, for example is

E(−/0) = Egap−E(0/−). Because of this fact, if the optical excitation energy is greater than

both the energy to add and remove an electron for this example E(−/0) < ~ω > E(0/−) then

illumination will continuously cycle − ↔ 0. This is a horrible situation to be in for spectral

diffusion. In general, if a charge transition level is exactly midgap (worst case) this sets the

relevant choice of illumination energy to avoid this effect ~ω < Eg/2. In this sense, the goal

is to have charge dynamics that do not continuously cycle.
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Under illumination, the defect and the surrounding traps in the lattice undergo a balance

of ionization and recapture that drives the photophysics and charge stability of defects.

Depending on the other traps around, your defect may be more or less photostable; but

this is a statement about the photophysics, not the Fermi level!. Recapture of carriers can

happen quite fast, and diffusion or drift depending on the laser spot or bias can change the

balance of rates of carrier generation and recombination. This is how the discussion here

is related to the semiconductor physics discussed in 1.1.2. For devices (as in section 11.4)

at the low temperatures near 4 K in this thesis, the aluminum acceptor and the nitrogen

donors are frozen out [67, 126] and are out of equilibrium with the bands. The shallow donors

and acceptors, along with the much deeper defects (such as Vc), all trap charges and do not

give them up thermally. Under optical excitation, however, these trapped charges can be

photoionized. Free carriers are created and can drift, diffuse and become trapped at the

same defect or at different defects. A sort of quasi-equilibrium is reached, such that the

effective carrier temperature can be quite ‘high’.

In chapter 11, we will look at the DFT computed levels in SiC and investigate relevant

photodynamics at play in V V 0, as shown in Fig. 11.7. The charge transition levels in 4H-

SiC with the relevant impurities and defects are shown in Fig. 4.1. Besides blinking of the

emitter, charge dynamics of the other defects in the solid state are the major driving force

that degrades the spin-photon interface.

Carriers can recombine with deep defects following a Schockley-Read-Hall (SRH) pro-

cess or an Auger process. In general, each deep defect has a capture cross section for both

electrons and holes where conducting charges become recaptured by the defect. SRH recom-

bination is the dominant process in most semiconductor devices. This is especially true in

indirect band-gap semiconductors like SiC. In this model:

• An electron in the conduction band can be trapped in a trap state.

• An electron can be emitted into the conduction band from a trap level.
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• A hole in the valence band can be captured by a trap. This is analogous to a filled

trap releasing an electron into the valence band.

• A captured hole can be released into the valence band. Analogous to the capture of

an electron from the valence band.

Given the photo-assisted emission of carriers from traps to the CB and VB, and the re-

capture rates based on the capture cross sections, different steady-state balances of charges

can be obtained and SRH-type recombination occurs. In section 11.4 we describe how a

semiconductor depletion effect simplifies this picture and allows for careful studies of pho-

todynamics. Because the different charge states of defects absorb and emit light differently,

the process of charge conversion with light that causes differences in the optical behavior is

called “photochromism.”

6.3.1 Photodynamics of the NV − in diamond: an example

Photodynamics of the NV − in diamond and its surroundings are the cause of many issues

for quantum technologies with these systems. For the NV − itself, continuous illumination

with 532 nm light can both two-photon ionize (NV − → NV 0) the defect and reset it

(NV 0 → NV −)[127]. The steady state balance of these rates means that the NV − emits

fewer photons under 532 nm light than expected. This lowers the QE and ODMR contrast

in experiments to around 70% [128]; the NV − is only in the right charge state 70% of the

time. Under resonant illumination, this may be even lower. Choosing different excitation

colors can change the balance of rates [129]. For the protocols in chapter 8, photodynamics

of nearby charge traps to the NV − cause spectral diffusion (Fig. 6.4). Combined with

unwanted ionization, steps that involve resonant excitation may produce less photons than

expected. Although resonant excitation only needs low power, it is still enough to cause

ionization of the surroundings. The 532 nm laser used for polarization/charge repumping

can cause even more drastic spectral diffusion. This reduces both the possibility of single-
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shot readout and for entanglement generation as discussed in chapter 8. In particular, every

experiment needs to check both that the optical line is on resonance, and that the charge of

the defect is in the correct state[130], drastically reducing the success rate.

124



Chapter 7

New Defect Discovery

This chapter and figures are adapted from the publications [4, 5]

Before delving into the work focusing on V V 0, I want to briefly mention work in dis-

covering new defects in SiC that may offer different advantageous properties. Given that

the first NV − center in diamond paper was in 1985, it took the field a while to discover

its full potential. Similarly, many defects in SiC (even the V V 0) have been well studied

since the 1980’s, even with ODMR[131]! By revisiting known defects with a ‘quantum’ lens,

and by thinking deeply about what properties we want, we can develop exciting new qubit

candidates. Nature nicely gave us the NV − and the V V 0, but there’s no telling if something

better might be just around the corner. The explosion of work in the group IV’s in diamond

illustrates this point nicely. In particular, I’ll briefly mention two transition metal defects in

SiC that I helped develop. We also investigated Erbium centers in SiC with mixed success,

and investigations are ongoing and encouraged by recent reports in the literature[132].

7.1 Chromium in SiC

Transition metal ions provide a rich set of optically active defect spins in wide bandgap

semiconductors. Chromium (Cr4+) in silicon-carbide (SiC) produces a spin-1 ground state
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Figure 7.1: Structure, creation and spectroscopy of chromium defects in 4H-SiC.
a An illustration of substitutional Cr4+ ions in silicon sites of a 4H-SiC lattice. b The
electronic level structure of Cr4+ in SiC. The ms = 0 and ms = ±1 sublevels are split by
the crystal field (D), and under a magnetic field, the ms = ±1 sublevels are Zeeman split.
c Cr4+ activation as a function of annealing temperature is measured by integrating the
zero-phonon lines (ZPLs) intensity of the photoluminescence under off-resonant (730 nm)
excitation at T=30 K. d A photoluminescence spectrum of the sample used for spin and
optical control at T=30 K. CrA and CrC , two different sites of Cr4+ in 4H-SiC, ZPL’s
and their sidebands can be observed. e CrA photoluminescence excitation (PLE) at T=30
K is measured by sweeping the resonant laser and recording the transient sideband signal in
counts per second (cps). The PLE is fit to two Gaussian peaks with a known D=1063 MHz
splitting. The full width at half maxima are 6.87(27) GHz for ms = 0 and 3.34(39) GHz
for ms = ±1. The one sigma errors of the data are smaller than the point size and are not
displayed.

with a narrow, spectrally isolated, spin-selective, near-telecom optical interface. However,

previous studies [133] were hindered by material quality resulting in limited coherent control.

In [5], we were able to implant Cr into commercial 4H-SiC and show optimal defect activation

after annealing above 1600 ◦C. We measure an ensemble optical hole linewidth of 31 MHz,

an order of magnitude improvement compared to as-grown samples. An in-depth exploration
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of optical and spin dynamics reveals efficient spin polarization, coherent control, and readout

with high fidelity (79%). We report T1 times greater than 1 s at cryogenic temperatures (15

K) with a T ∗2 = 317 ns and a T2 = 81 µs, where spin dephasing times are currently limited

by spin-spin interactions within the defect ensemble. Our results demonstrate the potential

of Cr4+ in SiC as an extrinsic, optically active spin qubit.

7.2 Vanadium in SiC

Solid state quantum emitters with spin registers are promising platforms for quantum com-

munication, yet few emit in the narrow telecom band necessary for low-loss fiber networks.

Here [4], we create and isolate near-surface single vanadium dopants in silicon carbide (SiC)

with stable and narrow emission in the O-band (1278-1388 nm), with brightness allowing

cavity-free detection in a wafer-scale CMOS-compatible material. In vanadium ensembles,

we characterize the complex d1 orbital physics in all five available sites in 4H-SiC and 6H-SiC.

The optical transitions are sensitive to mass shifts from local silicon and carbon isotopes,

enabling optically resolved nuclear spin registers. Optically detected magnetic resonance

in the ground and excited orbital states reveals a variety of hyperfine interactions with the

vanadium nuclear spin and clock transitions for quantum memories. Finally, we demonstrate

coherent quantum control of the spin state. These results provide a path for telecom emitters

in the solid-state for quantum applications.
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prevent drifting. (B) g(2) autocorrelation measurement obtained with a single detector with
20 ns deadtime and 10 ns resolution. The autocorrelation signal is normalized using its value
at long delay time and the dark count contribution is calculated and subtracted (∼ 3% of

total). The red line is the fit (g(2)(0) = 0.1(1)) and the red shadowed area the 95 % confidence
interval. In the inset, the autocorrelation intensity is shown for longer times. (C) Resonant
spectrum taken over 100 acquisitions for a total duration of 15 hours, with averaged intensity
shown in bottom. The spectrum shows two maxima from the slightly resolved electron spin
states. (D) Resonant spectrum taken for a variety of likely single emitters (not confirmed

with g(2)). Their fitted linewidths (right) remain consistent at about 750 MHz full width
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Chapter 8

Long Distance Entanglement and

Quantum Networks

The real advantage spin defects have is in the spin-photon interface, which can be applied

to long distance quantum communications. Here, we will go through the motivations and

implementations of such a system.

8.1 Cryptography and QKD

Quantum key distribution (QKD) is one of the most well-developed quantum technologies

with an understandable near-term goal. Forget ‘quantum’: It turns out that any classical

communications channel can be made provably, perfectly secure by utilizing a ‘one time pad’.

If I want to send a message to you, I just have to make sure that you and I have a copy of a

(random) ‘cipher’ or key that is just a string of ones and zeros. If I take my message, represent

it in binary and CNOT it with the key, I get a resulting encrypted string. I can send this

message to you (broadcasting openly), and even if someone intercepts the message, as long as

they don’t have the key, they can’t decode it (cryptanalysis is impossible). You, on the other

hand, simply use the same key and CNOT it with the received string: U2
CNOT = I. This

recovers the original message. Applying a CNOT with a random key is enough to completely
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scramble, but doing a CNOT again with the key completely unscrambles the message. The

only caveat is that I can only use the cipher/key once before someone could start to figure

out what’s going on.

Provably secure quantum communications then boils down to distributing the key be-

tween parties. Instead of sending a messenger or a classical communication where the key

could be stolen or copied, we use quantum mechanics to distribute the key. If anyone tried

to steal the key: 1) the key is destroyed and 2) we can measure that someone is interfer-

ing. Even if someone interferes, we can perform privacy amplification [134] to minimize the

knowledge an attacker might gain of our key.

These facts led to landmark QKD schemes including BB84 [135] which just uses single

photons and E91 [136] which uses entangled particles. As such, spins that send single photons

or that can distribute entanglement are valuable for applications in QKD. Using QKD, we

can have a perfectly secure quantum communications channel. Given the scope of encrypted

data transfer and implications for security, such a technology would have massive societal

impacts.

8.2 Distributed Entanglement and Computing

Quantum communication is useful for more than distributing quantum keys. In particular,

one can think about creating a quantum internet [137, 138] which links up quantum com-

puters over a distance. In this scenario, entanglement and two-qubit gates would need to

be mediated at distance to let quantum computers talk to each other. This could lead to

distributed quantum computing which may be the key to scaling quantum computers. Dis-

tributing entanglement at macroscopic distances and across many nodes can drive interesting

physics and advances in quantum communications and QKD. It is not enough to send entan-

gled particles to different nodes: we need to be able to hold onto the entanglement at each

site in order to do anything besides QKD. This is where is concept of quantum memories
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comes into play that can store the entanglement. Once again, we don’t really know what

all the applications of quantum communications might be, but distributing entanglement at

scale (as a resource) will be key.

8.3 Quantum Repeaters

While photons are great flying qubits to mediate long distance entanglement, there are

always losses. Photons in free space diffract and scatter over long distances, while guided

photons in fibers attenuate due to absorption in the fiber.

For example, ‘telecommuncations’ wavelengths near 1550 nm are optimized to have low

loss in optical fiber, but still have an attenuation of∼ 0.2 dB/km (exponential with distance).

Interestingly, the dB was defined originally to quantify loss in telegraph wires. From Chicago

to New York, this means that we would have ∼ 250 dB of loss, meaning that 1 out of every

1025 photons would make it. This is insane. The way we can still communicate on a global

scale is because of the existence of many classical repeaters which continually boost the signal

along the way. Another strategy is to use satellite or free space based communications to

send quantum states, which may have lower loss[139].

The problem with quantum is the existence of the ‘no cloning theorem’[140], which is also

the thing that prevents an eavesdropper from copying my quantum key. The act of looking at

a quantum state disturbs it- such that I can’t measure, copy and send it along without inher-

ently changing things. This means I can’t boost my signal to deal with losses. The solution

is to make a device called a quantum repeater. Instead of trying to distribute entanglement

over the whole distance, we can break the problem into small segments. Instead of dealing

with exponential loss for a total inter-node distance L which has a photon-transmission suc-

cess probability of e−αL, we divide the distance into N many small segments with higher

transmission success e−αL/N . We then rely on the fact that we can hold onto each ‘success’

while we wait for the other segments to complete their links.
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Figure 8.1: Quantum repeaters with defects.(A) Schematic quantum repeater scheme.
Entanglement is generated by photon interference at a beamsplitter and heralding at the
detectors. The repeater node has a local quantum memory/ancilla qubit (small box). En-
tanglement is generated between two distant qubits. The repeater node then swaps its
entangled state to a memory, then attempts to generate entanglement with the other node.
After success, at the repeater node a Bell measurement is performed on the memory and
the entangled qubit. The result projects the state into one of two entangled states at the
distant nodes. (B) Schematic repeater nodes with optically active spins (purple) linked to
many local nuclear spins memories. (C) The Barret-Kok scheme where two entanglement
attempts are performed where only one click is desired. The ‘which-way’ path information
of where the photon came from is destroyed by the beamsplitter. A second attempt must
also result in a single click, where the relative location of the click projects to one of the two
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For example, one possible scheme for quantum repeaters (there are a few, depending on

if you are using entangled photon sources from SPDC or not) is shown in Fig. 8.1. To
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illustrate, we assume a simple 3 node example, called ‘Alice’, ‘Bob’ and ‘Charlie’. Bob, in

particular needs a quantum memory ‘B2’. We then proceed as follows:

• Assume we have a method of distributing entanglement (we will cover one such scheme

in the next section). Generate entanglement between A and B (assume entanglement

creates the bell state
∣∣Φ+

〉
=
|00〉+|11〉√

2
). Forgetting about the normalizations:

|0A0B〉+ |1A1B〉 (8.1)

Adding in B2 and C which we haven’t done anything with yet:

|0A0B?B2?C〉+ |1A1B?B2?C〉 (8.2)

• Swap the entangled state at Bob’s node into his memory B2:

|0A?B0B2?C〉+ |1A?B1B2?C〉 = (|0A0B2〉+ |1A1B2〉)⊗ |?B?C〉 (8.3)

• Generate entanglement between B and C:

(|0A0B2〉+ |1A1B2〉)⊗ (|0B0C〉+ |1B1C〉)

= |0A0B0B20C〉+ |0A1B0B21C〉+ |1A0B1B20C〉+ |1A1B1B21C〉
(8.4)

• Perform a CB2NOTB on B and B2 (just a local two-qubit gate at Bob’s node):

|0A0B0B20C〉+ |0A1B0B21C〉+ |1A1B1B20C〉+ |1A0B1B21C〉 (8.5)
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• Rotate B2 by π/2, this is equivalent to performing a Hadamard gate:

|0A0B0C〉 ⊗ (|0B2〉+ |1B2〉)

+ |0A1B1C〉 ⊗ (|0B2〉+ |1B2〉)

+ |1A1B0C〉 ⊗ (|0B2〉 − |1B2〉)

+ |1A0B1C〉 ⊗ (|0B2〉 − |1B2〉)

(8.6)

• Measure Bob’s qubit B (a CNOT, Hadamard then measurement constitutes a Bell

State measurement. The opposite: a Hadamard then a CNOT creates an entanglement

instead). Depending on the result we then know the state of A and C:

|0B〉 → (|0A0C〉+ |1A1C〉)⊗ |0B2〉 =
∣∣∣Φ+
A,C

〉
|1B〉 → (|0A1C〉+ |1A0C〉)⊗ |0B2〉 =

∣∣∣Ψ+
A,C

〉 (8.7)

The result is that we create two of the possible Bell states (entangled states) of A and

C. Since we know the result of the measurement of B, we know what entangled state we are

in, and are able to perform single qubit rotations of the states based on this result to deter-

ministically go to any other arbitrary entangled state (for example by applying a Hadamard

to qubits A and C). The upshot here is that we have generated entanglement at a distance

by generating two shorter-distance links combined with entanglement swapping. Because

the quantum memory can store the information and the exponential loss of transmission is

broken up into smaller segments, the scaling is polynomial in distance instead of exponential.

Roughly, the time to distribute entanglement (Te) without repeaters is ∝ eαL = (eαL/N )N ,

while the time to success with repeaters is ∝ NeαL/N . We use the fact that most entan-

glement is probabilistic at a distance, such that a memory is required to ‘hold onto’ the

entanglement as it waits for the other nodes to generate their entanglement. Otherwise, we

would need all nodes to succeed at once, which brings us back to the original scaling issue.

Using such quantum repeater schemes, we can drastically boost entanglement generation
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at a distance. For reference, most quantum communications schemes aim for approximately

1-100 km repeater spacings (at 10 km we already lose half the photons in the telecom).

Furthermore if each node has multiple memories, we can expand the connectivity of each

node to make a network.

One of the first ‘feasible’ quantum repeater protocols is the DLCZ protocol ([38], named

after the authors) based on atomic ensembles which show a
√
N enhancement of the coupling

to light and where entangled photons can be stored (memories) and retrieved. This proposal

is still researched today with exciting developments[39]. That being said, the wavelength

ranges, doing the entanglement swapping, memory times, scaling, and the interferometric

stability of the links (further discussed in the following sections) are all issues that need to

be resolved. In the next section, we will describe the scheme for generating entanglement

between nodes that could be implemented using the V V 0 in SiC. There are many advan-

tages to this system, including nanophotonic integration, scalability, and telecom-compatible

emission with exceptional quantum memories which are discussed in chapter 13.

Once entanglement is generated at a distance, its fidelity can be boosted using entangle-

ment purification[44] and the entanglement can be used to ‘teleport’ quantum information[141]

from point A to the qubit at C. This can be done at great distance, and consists of just ‘Al-

ice’ having a memory qubit she wants to teleport (A2) and measuring this qubit in the Bell

basis with her entangled state shared with ‘Charlie’ (qubit A). Based on the result, Charlie

can perform a deterministic single-qubit gate to recover the state Alice wanted to send in

A2. Note here that the particles did not physically move, but their states did (at some

level of fundamental particles, this is the same thing). This effect of Alice’s measurement

on Charlie’s qubit is instantaneous, but Charlie can only recover the information after he

received the classical result (by sending over a message). Thus, we cannot send quantum

information faster than the speed of light, as much as we may want it. The teleportation

schemes have been developed for solid-state defect spins [113], and have even been used to

teleport a photon’s states over 140 km of free space [142].
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8.4 Hong-Ou Mandel Interference

The DCLZ protocol and the protocol for entangling optically active spins at a distance

both rely on Hong-Ou-Mandel interference (HOM). HOM is a way to get photons from two

sources to interact by impinging them on a beamsplitter. With a 50:50 beamsplitter, two

photons that are perfectly identical and arrive at the same time will always pair up as they

exit the beamsplitter. We can see this explained in Fig. 8.2. One way of representing this

mathematically is that this corresponds to the transformation of the photons from the input

ports A, B to the output ports C,D:

â†
b̂†

 =
1√
2

1 1

1 −1


ĉ†
d̂†

 (8.8)

Where â, â† are the annihilation and creation operators, respectively, that subtract or

add a photon from a mode. Two photons at the inputs |1A1B〉 result in either two photons

out port C, or two photons out port D:

|1A1B〉 = â†b̂† |0A0B〉

=⇒ (ĉ† + d̂†)(ĉ† − d̂†) |0C0D〉

= (ĉ†2 − d̂†2) |0C0D〉 =
|2C0D〉−|0C2D〉√

2

(8.9)

Here the kets are for Fock states of occupation (number of photons) of a mode (not a

qubit with just 0 and 1). The indistinguishability of the two photons allows for the proper

interference for the states to add up this way. This type of interaction is the basic entangling

mechanism in linear optics quantum computing. Usually, we then place single photon de-

tectors at ports C and D. These detectors (usually) can only measure single photons, where

two photons at a time still looks like a click. A click at C, then projects our state into

|2C0D〉, for example. Commonly, by looking at the coincidence counts much like a g(2) of

the two detectors, by sweeping the frequency or timing of the two photons we can see a

‘HOM dip’ corresponding to no correlations at the detectors: g(2) = 1 when no interference

136



occurs, to this ‘bunching’ behavior corresponding to g(2) = 0 (Fig. 8.2B). The width (the

coherence time of the photons, tc) and depth of this dip determines the projection fidelity

into one of the states in Eq. 8.9. One way of stating this effect is that the beamsplitter

erases the ‘which way’ information of the photons. We can’t tell which of the two resulting

photons in either C or D came from A or B (they are totally indistinguishable). Broadening

in the photon coherence (such as from spectral diffusion) makes the HOM dip narrower (a

shorter tc) and lowers visibility. In general, we can write the g(2)(∆t) function for timed

photons from identical emitters with lifetime τ , dephasing rate γ (lifetime limited and other

contributions), inhomogeneous linewidth Γ, and frequency detuning δf that arrive at the

same time (on average)[143–145]:

g
(2)
i (∆t) = e−|∆t|/τ − e−γ|∆t|−(2πΓ∆t)2

cos(2πδf∆t) (8.10)

A detuning adds oscillations, and we can see that while a continuous stream of untimed events

gives a uniform distribution as shown in Fig. 8.2B, the function for timed wavepackets shows

the exponential envelope from the emitter’s lifetime. In a perfectly distinguishable case (for

example by making the polarizations perpendicular), then g
(2)
d (∆t) = e−|∆t|/τ . We see that

in the case of indistinguishable photons, we get a dip to zero coincidences at zero time delay,

but that as spectral diffusion and inhomogeneous broadening is added, the width of this

dip is smaller and smaller. The depth of the dip is usually called the visibility, V, which

here always goes to 1 at ∆t = 0. This does not take into account dark counts, scattered

photons or timing jitter, however. In experiment, we need to pick a ‘window’ of ∆t that

we collect events over. Too narrow, and although the dip is low and interference happens,

we miss out on events. Too high, and we get extra coincident clicks on the two detectors

g(2) 6= 0. However, for distinguishable photons this is also what we get. Therefore our ability

to distinguish between the two cases relates to the average fidelity of the interference and is
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the average visibility 〈V 〉 over the window. With the visibility[122]:

V (∆t) =
g

(2)
d (∆t)− g(2)

i (∆t)

g
(2)
d (∆t)

(8.11)

We weight the average by the frequency of total events, which is just g
(2)
d (∆t) (the

probability density function).

〈V 〉 =

∫ g
(2)
d (∆t)−g(2)

i (∆t)

g
(2)
d (∆t)

· g(2)
d (∆t) d(∆t)∫

g
(2)
d (∆t) d(∆t)

(8.12)

With window width tw centered at ∆t = 0.

〈V 〉(tw) =

∫ tw
2

− tw2
g

(2)
d (∆t)− g(2)

i (∆t) d(∆t)∫ tw
2

− tw2
g

(2)
d (∆t) d(∆t)

(8.13)

This ends up being a function of Erf’s and exponentials that looks like Fig. 8.2C, where

we see that the average visibility changing as we change the integration window. As spectral

diffusion and inhomogeneous broadening gets worse and worse, the acceptable window is

shorter and shorter. We also see that the fraction of events (success probability) that are

contained in this window grows as the window is increased.

ηw = 1− e−tw/(2τ) (8.14)
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Figure 8.2: Hong-Ou-Mandel interference (A) The four possible outcomes for two pho-
tons coming into the beamsplitter. (inset) The two possible conventions/understandings of
the relative phases from reflections on a beamsplitter, see [146, 147] are color coded. Adding
the four possibilities we see a relative π phase cancelling the amplitudes in cases (3) and (4).
(B) Schematic of the detection of HOM interference. Looking at the coincidences at the
two detectors, a HOM dip appears when the photons are indistinguishable and arrive at the
same time. The dip with a continuous stream of photons with coherence time tc is shown.
(C) HOM interference coincidences, g2 as a function of the spectral width for a V V 0 (15 ns
lifetime). Γ0 is the homogeneous linewidth. (inset) g2 with and without detuning ∆.
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Figure 8.2: (D) Average visibility 〈V 〉 over an integration time window tw for various values
of the spectral width. As the spectral diffusion and line width is broadened, the acceptable
range of time delays is reduced (dots) for a given desired 〈V 〉. The horizontal black dotted
line is 80% visibility. The purple line is the fraction of photon arrival events contained in the
window. (E) The relative success rate (fraction of events η) for a desired 〈V 〉 for different
values of the inhomogeneous linewidth. (F) Fraction of events that are collected at a given
average visibility normalized to the fraction of events with a perfect emitter Γ0, as a function
of linewidth.

Even for a perfect emitter with Γ = 0, this means there exists a tradeoff between the

desired average visibility (fidelity) and the fraction of events that are detected as shown in

Fig. 8.2D and Fig. 8.2E. This effect is illustrated in entanglement experiments with the

NV − center [122]. As mentioned before, this means that for a given fidelity/visibility, the

fraction of successful events we collect decrease with spectral diffusion. This is shown in Fig.

8.2F, and shows that the success rate scales roughly inversely with the total linewidth (ΓT ):

ηTPQI ≈ η0/ΓT , with η0 being the success probability of a lifetime-limited line according to

Fig. 8.2E.

The upshot is that the success probability for a given two-photon quantum interference

(TPQI) visibility/fidelity will scale roughly inversely with the emitter’s linewidth broadening

(Γ/Γ0). Recent HOM interference with the VSi in SiC have been achieved [148], while the

early interference experiments with NV − in diamond were in 2012[149], which allowed for

the entanglement covered in the next section one year later[122].

8.5 The Barrett-Kok Entanglement Scheme

The Barrett-Kok entanglement scheme[150] is one of the many possible ways to generate

entanglement at a distance. Here, we will phrase how the procedure would proceed in a solid

state defect such as V V 0 in SiC or the NV − in diamond[122]. The basic idea is to create

spin-spin entanglement by utilizing the HOM effect of emitted photons from our defect,

which are entangled with the spin state. A certain set of clicks on detectors will ‘Herald’ or
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project us into a particular entangled state. The procedure is as follows:

• Initialize both spin A and spin B into ms = 0 using either off-resonant or resonant

initialization

• Rotate both A and B by π/2 into
|↑〉+|↓〉√

2
, where |↑〉 is either ms = ±1 and |↓〉 is ms = 0

• Perform a resonant excitation on one of the cycling transitions Ex, Ey that corresponds

to a fast optical π pulse. This pulse transfers the ground to excited state in time δt

(usually < 10 ns), whereby the excited state releases a photon into the ZPL with

a fraction determined by the DWF, a timing uncertainty determined by the optical

lifetime and a frequency uncertainty set by the natural linewidth and any spectral

broadening. Importantly, the phase of the emitted photon is determined by the phase

of the excitation light.

• Because the spin was initialized into
|↑〉+|↓〉√

2
, and the laser is only resonant with Ex

when ms = 0, a trip to the excited state is entangled with the spin being ms = 0 for

both spin A and B:

|Ψ〉 =
|↓, ES〉+ |↑, GS〉√

2
(8.15)

• With the spontaneous emission from the excited state, this results in the entanglement

of the state for each spin with the presence or absence of a single photon (at a particular

frequency ω and spatial mode):

|Ψ〉 =
|↓, 1〉+ |↑, 0〉√

2
(8.16)

• This photon is collected from spin A and spin B (usually with low probability), and

propagates over distances dA, dB to a central station. Upon propagation, the electron

spin state is stationary, but the quantum state of the photon acquires a phase according
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to the frequency and time of propagation, φ = kd− ωt (if it exists):

|Ψ〉 =
|↑, 0〉+ |↓, 1〉 e−iφ√

2
(8.17)

The electron spins here are assumed to have the same qubit frequency such that no

relative phase is built up over the propagation [151]. Schemes may exist where this

requirement is not necessary, which would take into account the frequency-difference

phase accumulation and correct for it.

• The photons (or no photons) from A and B are spatially overlapped onto a 50:50

beamsplitter with input ports ‘A’ and ‘B’ and output ports ‘C’ and ‘D’. The input

state is then:

1

2
(|↑A, 0A〉+ |↓A, 1A〉 e−iφA)⊗ (|↑B , 0B〉+ |↓B , 1B〉 e−iφB ) (8.18)

Following Eq. 8.9 for the individual terms results in:

|↑A↑B 0A0B〉 =⇒ |↑A↑B 0C0D〉

|↑A↓B 0A1B〉 e−iφB =⇒ |↑A↓B〉 ⊗ (
|0C1D〉−|1C0D〉√

2
)e−iφB

|↓A↑B 1A0B〉 e−iφA =⇒ (|↓A↑B〉)⊗ (
−|0C1D〉+|1C0D〉√

2
)e−iφA

|↓A↓B 1A1B〉 e−i(φA+φB) =⇒ (|↓A↓B〉)⊗ (
|2C0D〉−|0C2D〉√

2
)e−i(φA+φB)

(8.19)

We can gather the terms which are the result of getting only one click on either ‘C’ or

‘D’, which happens half the time:

(|↑A↓B〉 e−iφB − |↓A↑B〉 e−iφA)⊗ |0C1D〉

(− |↑A↓B〉 e−iφB + |↓A↑B〉 e−iφA)⊗ |1C0D〉
(8.20)

A single click thus puts us into a state that looks like the entangled state
|↑↓〉−|↓↑〉√

2
but

has some pesky phases. These phases are highly sensitive to frequency and path length
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fluctuations of the entanglement channel. Given that this is uncontrolled and may be

unknown, the resulting fidelity can be low. Furthermore, there is a 1/4 probability

of getting a click that corresponds to 2 photons at a given detector. Looking at Eq.

8.19, this result is not an entangled state. A photon number resolving detector (which

exists) would be able to reject these events. Alternatively, a superposition with smaller

amplitude in the photon-producing state reduces the chance of this event (Fidelity at

the cost of success rate). Finally, there are ‘dark’ counts or other events which may

give a single click but do not correspond to an entanglement event.

• To fix all of these issues, we start by flipping spins A and B using a microwave π pulse.

• The optical π pulse is repeated again for both spins, producing a second photon (or

no photon) at the beamsplitter with a time delay τ .

• Just like Eq. 8.19, after skipping some math, we get:

∣∣↑A↑B 0CE0DE
〉

=⇒
∣∣↓A↓B 0CE0DE

〉
⊗ (
∣∣2CL0DL

〉
−
∣∣0CL2DL

〉
)e
−i(φAL+φBL)

1√
2
|↑A↓B〉 ⊗ (

∣∣0CE1DE
〉
−
∣∣1CE0DE

〉
)e
−iφBE =⇒

1√
2
|↓A↑B〉 ⊗ (

∣∣0CE1DE
〉
−
∣∣1CE0DE

〉
)e
−iφBE ⊗ (−

∣∣0CL1DL
〉

+
∣∣1CL0DL

〉
)e
−iφAL

1√
2
(|↓A↑B〉)⊗ (−

∣∣0CE1DE
〉

+
∣∣1CE0DE

〉
)e
−iφAE =⇒

1√
2
(|↑A↓B〉)⊗ (−

∣∣0CE1DE
〉

+
∣∣1CE0DE

〉
)e
−iφAE ⊗ (

∣∣0CL1DL
〉
−
∣∣1CL0DL

〉
)e
−iφBL

1√
2
(|↓A↓B〉)⊗ (

∣∣2CE0DE
〉
−
∣∣0CE2DE

〉
)e
−i(φAE+φBE )

=⇒
1√
2
(|↑A↑B〉)⊗ (

∣∣2CE0DE −
∣∣0CE2DE

〉〉
)e
−i(φAE+φBE ) ⊗

∣∣0CL0DL
〉

(8.21)

Where the first and second photons arriving to ‘C’ and ‘D’ (from the two rounds)

are referred to ‘CE ’,‘CL’ and ‘DE ’,‘DL’, respectively (early and late photons) and the
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phase accumulation of the photons is defined similarly. This is a mess.

• We eliminate all cases except where we got a single photon in both the early and the

late bin (in either C or D). This eliminates half of the possibilities. Regrouping in

terms of the results on the detectors:

∣∣1CE1CL0DE0DL
〉
⊗ (− |↓A↑B〉 e

−i(φBE+φAL) − |↑A↓B〉 e
−i(φAE+φBL)

)∣∣1CE0CL0DE1DL
〉
⊗ (|↓A↑B〉 e

−i(φBE+φAL) − |↑A↓B〉 e
−i(φAE+φBL)

)∣∣0CE1CL1DE0DL
〉
⊗ (− |↓A↑B〉 e

−i(φBE+φAL)
+ |↑A↓B〉 e

−i(φAE+φBL)
)∣∣0CE0CL1DE1DL

〉
⊗ (− |↓A↑B〉 e

−i(φBE+φAL) − |↑A↓B〉 e
−i(φAE+φBL)

)

(8.22)

• Taking out a global phase of e
−i(φAE+φBE )

and defining the differences of phases over

the two attempts ∆φ, we can see that based on the results we project into the states:

C,C =⇒ |↓A↑B〉 e−i∆φA + |↑A↓B〉 e−i∆φB

C,D =⇒ |↓A↑B〉 e−i∆φA − |↑A↓B〉 e−i∆φB

D,C =⇒ |↓A↑B〉 e−i∆φA − |↑A↓B〉 e−i∆φB

D,D =⇒ |↓A↑B〉 e−i∆φA + |↑A↓B〉 e−i∆φB

(8.23)

Therefore, based on the click results, we can be sure that we are in an entangled

state. We’ve eliminated the chances that we actually had two photons or spurious

dark counts. In the limit where the two attempts can be performed faster than the in-

terferometric stability of the two channels and possibly the spin T ∗2 (with τ ∼ 100’s ns,

this is fulfilled), then both ∆φ are small, and the results group nicely into whether two

attempts results in clicks at the same detector |+〉 or opposite |−〉:

|+〉 =⇒ |↓A↑B〉+ |↑A↓B〉 =
∣∣Ψ+

〉
|−〉 =⇒ |↓A↑B〉 − |↑A↓B〉 =

∣∣Ψ−〉 (8.24)

Which are two of the possible Bell states.
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The result here is that one click on both excitation attempts heralds (announces) the suc-

cessful creation of the entangled state. We only were able to use half of the possibilities in

Eq. 8.21, which combined with the probability η of a HOM-like event gives a total success

probability 1
2η

2. η depends on the losses in the system (fiber), photon collection efficiency,

the QE, DWF, emitter linewidth and therefore the integration bin for the HOM interference,

among other considerations. This entire scheme is therefore attempted many, many, times

until a successful set of clicks (most of the time we see nothing), at which point we stop and

know exactly what entangled state we are now in.

Importantly, the average visibility (fidelity) from the choice of the integration window

for the HOM-like interference affects the total success rate, and the fidelity of the resulting

entangled state as mentioned in the previous section, such that[113, 122]:

FΨ± =
1

2
+

1

2
〈V 〉 (8.25)

This scheme has been used for landmark experiments on loophole-free Bell tests[151],

entanglement distillation[44] and quantum teleportation[113] at a distance[152]. Specifically,

spins in the solid-state allow for long coherences of the spin as the photon travels over long

distances. Once the photons make their clicks, the states that are entangled are still alive.

Local quantum memories consisting of weakly coupled nuclear spins serve as ideal memories

in these applications and are discussed in chapter 13.

8.6 Other Schemes

Other entanglement schemes are possible as well. These include ‘one way entanglement’[153],

the use of ‘graph states’[154] that are robust to error, or schemes using SPDC sources and

photonic quantum memories[155]. In particular, multiple possibilities exist for the SiC de-

fects [156]. Recently, spin quantum memory assisted quantum communication was achieved

[157]. Furthermore, entanglement distillation or deterministic entanglement delivery[130]
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can boost rates and alleviate fidelity or timing requirements. With strong coupling to pho-

tonic modes, spin-selective cavity coupling allows for the reflection, transmission or absorp-

tion of photons to be entangled with the spin state[158, 159]. Furthermore, absorption-based

schemes[160] or dynamically stabilizing the quantum communications channel (used in [130])

may allow for drastic speed ups of the entanglement rate. Importantly there are two major

types of heralded entanglement schemes:

• Heralding through two photon quantum interference scales as the success probability

per channel squared. Largely insensitive to phase/distance fluctuations in the channel

(as seen in section 8.5), at the cost of slow entanglement.

Entangled state: Ψ±TPI = 1√
2
(|01〉 ± |10〉)

• Heralding through single photon quantum interference scales linearly as the success

probability per channel. The entangled state is very sensitive to phase/distance fluc-

tuations in the channel (∆φ), with the benefit of fast rates[39, 130].

Entangled state: Ψ±SPI = 1√
2
(|01〉 ± ei∆φ |10〉)

Despite the exact scheme, the hardware requirements for our quantum system is basically

the same. Some of the original schemes are for atomic systems, which sometimes use the

polarization of photons, which are similarly heralded through interference on a beamsplitter

[39, 41, 161, 162].

8.7 Requirements

The requirements for quantum entanglement channels driven by solid-state quantum emitters

all wrap up in the factor η, but also in the ability to control and tune up emitters, developing

quantum memories, along with the ability to perform single-shot readout. As a baseline, the

entanglement rate depends on the rate that the process can be attempted. This is the

combined time for qubit initialization, an optical π, a microwave π, and another optical

146



π. Practically, the initialization step is ∼ 1 − 10 µs and is the limiting factor, putting the

attempt rate at 0.1 − 1 MHz. Recent proposals suggest that reinitialization may not be

necessary [163]. However, in initial experiments with NV − centers, the success probability

per attempt is less than 10−7 at 3 meters [122] and 10−9 at 1.3 km [151](due to fiber

losses), putting the entanglement rate at ∼ 0.1 − 1 mHz. Demonstrations that use phase

stabilization and only one entanglement attempt have had rates as high as 39 Hz [130] for

the NV − center in diamond. For trapped ion-based entanglement, short distance rates of

182 Hz have been demonstrated [40].

Both the success probability and the attempt rate are important parameters for creating

entanglement at useful speeds. Practically, entanglement generation needs to wait for clas-

sical confirmation on failure or success from the measurement node, which scales with the

entanglement distance, placing a rough limit of 1 km before the entanglement rate is limited

by photon propagation speeds instead of the attempt rate. In realistic scenarios at long

distances, this means that relatively slow entanglement attempt rates can be a non-limiting

factor.

Practically, the laser sources at the nodes in a network need to retain a definite phase

relation (and frequency) so that the corresponding emitted photons display high visibility in-

terference at the beamsplitter. This technical challenge has been solved for proof-of-principle

experiments with atoms and defects [39, 151].

8.7.1 Telecommunications, Fiber Optic Networks and QFC

In any quantum communications channel, issues of losses during transmission are paramount.

This was mentioned in section 8.3. This is a big advantage for the V V 0 (∼0.8 dB/km) versus

the NV − in diamond (∼8 db/km) in transmitting through current optical fiber, which may

drastically increase quantum links using solid state-spins. It may be the case that one day,

fiber that is optimized for a different wavelength is developed (such as ZBLAN) but it looks

like wavelengths around 1500-2500 µm are low frequency enough to avoid losses, but high
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enough to avoid thermal occupation of modes to room temperature.

A strategy to avoid high fiber loss in the visible is to use quantum frequency conversion

(QFC) that converts single photons from the visible to the low loss telecom bands. This

is achieved using difference frequency generation (DFG) or down conversion by mixing the

single photons in a nonlinear crystal with a strong pump tone such that the difference

in photon energies corresponds to a telecom photon. This conversion process has been

demonstrated for the NV − center, but suffers from added noise photons at the frequency

of interest[164]. Because the NV −’s ZPL (637 nm) is less than half the telecom wavelength

of 1550 nm, the pump laser required is lower in wavelength (higher in energy) than 1550

nm. Practically, pumping the non-linear crystal with a strong tone to do the high fidelity

conversion produces Raman, and other scattered noise photons at lower energies than the

pump which includes the telecom wavelength of 1550 nm[165]. Because the process is trying

to preserve single photons, barely any noise is allowable. On the other hand, for defects with

wavelengths above half the wavelength of 1550 nm such as V V 0, the corresponding pump

laser is above 1550 nm in wavelength and mostly produces noise photons > 1550 nm, which

do not contribute unwanted photons for the conversion. QFC for the DLCZ protocol was

recently demonstrated [39].

8.7.2 Photon Collection Efficiency

Because of total internal reflection, as mentioned in section 5.4, most of the photons do not

make it to our collection objective. This issue is usually alleviated using solid immersion

lenses (SILS), in which a hemisphere of the host material can be ion milled into the surface

around a defect. The light emitted from the defect will then be always normal to the

surface and not be internally reflected. This has been used to boost the collection efficiency

by about a factor of 5-10× from a few percent to around 10% in diamond[129]. Cavity-

based schemes such as nanophotonics, waveguides, tapered and lensed fibers, fiber cavities

or metalenses can also help guide the light out of the material more effectively and is a huge
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area of research[166–169]. These techniques can boost the collection efficiency to around

100% (though everything comes at a cost[170]). Collecting every photon determines η, but

also importantly determines if single-shot readout is possible, as will be discussed in section

8.7.6.

8.7.3 Tuning

Every spin defect in a given sample has different axial and transverse strain. This means

that the quality of the spin-photon interface and its spectral location are different for every

defect. As mentioned in section 6.1, Stark tuning can both correct the inherent asymmetry

and tune two remote defects to be in resonance with each other. Other systems have been

investigating strain tuning in nanostructures as a way to tune emissions into resonance[114].

In general, it’s important to retain a tuning knob for the orbital fine structure that does not

degrade the spin or spin-photon interface. This sort of knob is developed for V V 0 in section

11.4 where the drastic tuning maintains the defect’s symmetry and does not add unwanted

mixing in the excited state. Dynamic tuning of the excited state on the timescale of the

emission lifetime can be used to temporally and spectrally shape emitted photons[171, 172],

while slower tuning can correct for spectral wandering, or in tuning to photonic devices, for

example. Tuning may even be achieved during the QFC processes with tunable pump lasers.

8.7.4 Photonics and Purcell Enhancement

For defects, the low DWF (and therefore rate of indistinguishable photons) results in a

low η. Purcell enhancement, which modifies the photonic density of states an emitter can

couple to, results in a reduction in the emitter lifetime and a focusing of the emission into

a particular spectral band. This can be used to increase the effective DWF by tuning

the defect into a cavity resonance with high quality factors and low mode volume[3]. The

focusing of the emission into a particular cavity mode also results in more spatially coherent

emission, which can be more easily collected. Furthermore, for defects with poor cyclicity,
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an increase of the radiative rates versus the nonradiative ones results in increased QE and

an improved spin-photon interface. This has been used to unlock single-shot readout for

rare earth ions in oxides, for example[59, 60], and may allow quantum communications in

these systems [173]. Strong coupling of the emitter to a nanophotonic cavity, meanwhile,

allows for deterministic schemes for photon mediated entanglement. In general, the ability

to create high-quality photonic devices without destroying the quality of the spin-photon

interface is a huge advantage that can boost entanglement rates by orders of magnitude.

Proof-of-principle photonic enhancement of V V 0 is provided in chapter 9. One small note is

that there is a limit to photonic enhancement: if the Purcell factor gets too high, the lifetime

gets short and the homogeneous linewidth gets larger. If the lines are too close spectrally,

they may start to overlap, reducing selectivity.

8.7.5 Spectral Diffusion and Charge Instability

For solid-state defects, blinking (charge instability under optical excitation) and spectral

diffusion (section 6.2) are major problems. Any time a defect is in the incorrect charge state,

it does not emit photons as desired and its spin state is unusable. Spectral diffusion not only

drastically reduces η, but similarly reduces the fidelity of single-shot readout. For demon-

strations of single-shot readout[174] and long-distance entanglement[130] with NV − centers

in diamond, a charge-resonance check is performed for initialization and single-shot readout

of the spin. With this check, events are only counted that correspond to the existence of a

defect in the correct charge state, at the right frequency. In general, an overarching problem

in the field is integrating quantum emitters into nanostructures, like photonic devices, while

keeping spectral diffusion in check. Electric field insensitive group IV defects in diamond

have a distinct advantage in this regard. The NV − center in diamond usually shows spectral

widths many times the lifetime limit.
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8.7.6 Single-Shot Readout

Single-shot readout is absolutely necessary to confirm entanglement, and to perform quantum

tasks such as teleportation, and in implementing quantum repeaters. An entangled state

describes correlations between sets of measurements of qubits, not changes in average results

on measurements. Entanglement can be mapped onto measurement bases through quantum

state tomography (QST), but this requires two qubit gates between the entangled pair. At

long distances, we only have probabilistic entanglement generation and no two-qubit gates.

Therefore, quantum correlations and classically conditioned gates (”if I measure |0〉, do X.

If I measure |1〉, do Y”) require high-fidelity projective measurement that can distinguish

between |0〉 and |1〉 in every experimental instance.

“You only get one shot, do not miss your chance to (know)

This opportunity comes once in a (spin) lifetime”

Single-shot readout in a sense gives maximum signal-to-noise for a quantum measurement

as all the information is extracted. Furthermore, projective readout allows for initialization

by measurement which has been demonstrated in both electron and nuclear spins in the

solid state [174, 175]. Achieving single-shot readout was the experiment that opened the

floodgates of long-distance communications with spin defects. Unfortunately single-shot

readout for V V 0 has not been achieved to date, but the outlook looks promising.

To demonstrate single-shot readout for defects, we utilize the spin-selective orbital states

that are highly cycling from ms = 0 and (usually) measure the photons in the phonon

sideband. As such, we can continuously excite this transition and extract photons entangled

with the spin state until a spin-flip occurs. A ‘spin-flip curve’ consists of measuring the

average number of photons in a time bin under continuous excitation. This will decay

exponentially depending on the optical power (rate of trips to the excited state) and the

branching ratio (see Fig. 5.8). As we measure longer and longer, we can extract more

photons on average, but we can be less sure that we are still in ms = 0 (this is an issue for
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some schemes, but not if we’re just verifying entanglement). Our goal is to measure enough

photons to make a call on whether we were in ms = 0 (getting some photons) or ms = ±1

(no photons). As such, we need a high collection efficiency along the lines of what was

discussed in section 8.7.2 combined with high cyclicity to measure (hopefully) a few photons.

Photon counting follows Poisson statistics, so the fidelity of determining the quantum state

is determined by the overlap integral between a Poissonian peaked near zero (with possible

contributions of dark counts, laser scatter, etc.) and one peaked near the average photons

extracted. In practice, high-fidelity readout can be achieved with around 5 photons in the

‘bright’ state. The NV − center in diamond, when properly tuned up, emits ∼ 100 − 1000

photons, which combined with a 10% collection efficiency and other losses results in a few

photons per shot. The V V 0 is expected to have less mixing in the excited state purely

from the excited state Hamiltonian, which could result in over 104 photons emitted[55]. In

experiment, using the NV − and V V 0 center’s lifetime and the spin flip rate at saturation

([55, 174]) we can estimate that both defects emits roughly 200 photons before a spin flip.

〈Nph〉 ≈
1
τ

Rsatsf

(8.26)

Where τ is the emitter lifetime and Rsatsf is the spin flip rate in Hz at saturation. This is

probably an underestimate due to photonionization issues at high power. However, with

a 2-3% collection efficiency in diamond this corresponds to the measured few photons per

shot[174]. In practice, for V V 0 we still are in need of more photons and could be limited by

a variety of effects like charge, QE or collection efficiency. In particular, our detectors are

single-mode fiber which makes mode matching a big issue.

The dirty secret is that this discrimination relies on assuming that if no photons are

extracted, we were in ms = ±1. The problem is that there are a few other things that can

produce no photons, like the defect being off resonance with the laser (spectral diffusion)

or being in the wrong charge state (blinking). In practice, a charge-resonance check occurs
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after the readout, which confirms that the defect was on resonance and in the right charge

state, and only these attempts are counted. The check is achieved by pumping on both an

optical line with ms = 0 character and also an optical line with ms = ±1 character. If

both are on resonance, the state cannot be trapped in any of ms = 0,±1 and continuously

produces photons. Integration can occur without concern for the spin flip rate, and a highly

deterministic determination with many photons can be made on if the defect was ‘behaving’.

In initial demonstrations, only 2-5% of tries passed this check! (for the NV − in diamond).

In a naive experiment, this means that the defect is 20-50× ‘dimmer’ than expected (and

skews the photon statistics). This reduces the rate of entanglement heralding drastically,

and means that classically controlled gates can only be attempted a fraction of the time.

Therefore, reduction of spectral diffusion and blinking is of huge importance for not only

two-photon indistinguishability and QE, but also for the prospects of achieving single-shot

readout. The major work of this thesis in section 11.4 attempts to alleviate these issues.

While the NV − in diamond has shown single-shot readout, achieving it in other systems

is a challenge. In particular, the other well developed qubit in SiC V −Si only emits 6 photons

on average before a spin flip, making single-shot readout difficult[54]. There are alternate

strategies towards single-shot readout. One possibility is swapping the state to a nuclear

memory and then performing repeated QND measurement on the nuclear spin with the

electron[175, 176]. This boosts the number of extracted photons and has been used to boost

SNR in quantum sensing. The other possibility is spin-to-charge conversion[177]. If the spin

state of a defect can be mapped onto the defect either ionizing or not ionizing, the freed

electron or hole can be measured electrically. The other option is that after the conversion,

a high fidelity readout of the defect’s charge state can be achieved (usually at low optical

power to avoid further charge dynamics) and photons can be collected continuously without

worry of ‘flipping the spin’. In this way, quantum sensing has similarly been improved[178]

and single-shot readout may be possible. Spin-selective ionization can be achieved multiple

ways, either by using the spin-selective intersystem crossing to control photodynamics, or by
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using spin selective excitation. The photodynamics and understanding in chapter 11 drives

the possibility of spin-to-charge conversion for V V 0.

8.7.7 Quantum Memories

When photons are propagating in quantum networks, or after entanglement has been her-

alded, we can utilize the spin’s long coherence or even use dynamical decoupling to extend

to T1 which could be as long as seconds to hours at low temperature. However, besides the

need to read out our states and entangle them efficiently, we need quantum memories to

hold onto our coherence at each node and perform entanglement swapping. In general, the

metric ηlink establishes this consideration as the ratio of the memory lifetime over the time

to create entanglement[39, 130]. ηlink > 1 has been demonstrated in the NV − center in

diamond[130], and in ion traps [41]. This metric is very small (ηlink < 10−4) in quantum

dot systems due to their short coherence, limiting applicability[42, 43]. Our communication

qubit (the spin) needs to be continuously reset to attempt entanglement and thus can’t re-

tain quantum information as links need to be established. We need something else to be

our memory qubit. In this case, weakly coupled nuclear spins (not strongly coupled) with

hyperfine coupling much less than spin T ∗2 are promising candidates[179, 180]. Furthermore,

we can use these memories to store many low-fidelity copies of the entanglement and use

entanglement distillation to create one high fidelity entangled state[44].

Nuclear spins surround the central electron spin which can be optically addressed and pro-

vide many possible qubits to use. These spins can be controlled with direct RF driving[181,

182] or by using dynamical-decoupling-based control which can create conditional and uncon-

ditional rotations of the nuclear spins, constituting single and two-qubit gates with a single

electron spin[183]. While gates are slow, the coherence times can exceed seconds at least

(the Hahn-echo T2). This corresponds to a quantum network that could span the diameter

of the earth 25 times! In particular, for solid-state spins, nuclei with very low hyperfine in

the few to 10’s of kHz range (corresponding to nm away from the defect) the nuclear memory
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is very resilient multiple entangling attempts[179].

In a quantum repeater, many failed attempts must occur at each pair of nodes before en-

tanglement is generated, all while retaining the quantum state stored in each node’s quantum

memory. For defect spins, each attempt constitutes an electron spin repolarization/initializa-

tion, followed by microwave manipulations of the electron and then the resonant excitation

pulse. For nuclear spins, a higher coupling to the electron means that it is more sensitive

to errors and fluctuations on the electron. During initialization, the electron spin spends

a stochastic amount of time in the intersystem crossing and in the optical excited states,

and takes a set amount of time to go from ms = ±1 → ms = 0. In the ISC and in the

excited state, or even between the possible ground states ms = 0,±1, the hyperfine coupling

is also different. Therefore there is a change in coupling/qubit frequency for an unknown

amount of time. This causes dephasing of our nuclear spin quantum memory. Furthermore,

control errors on the electron cause unwanted changes in the coupling strength that drive

decoherence [180]. With very weak hyperfine, the memories can withstand the 1000’s of

entanglement attempts needed due to the low success probability at each node[179]. Opti-

mizing and controlling these quantum memories in SiC is the focus of the work in chapter

13.

8.7.8 Summary

We summarize the salient feature defect spin systems need in creating quantum communi-

cation channels:

• the defect needs a near lifetime limited linewidth.

• defect needs to have controllable or small slow spectral wandering.

• the defect’s optical structure must be tunable, without degrading the spin-photon

interface.

• a high DWF, or enhanced without degrading other properties.
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• the defect should not blink or undergo unwanted charge dynamics.

• the defect needs to have spin-selective optical transitions.

• the defect needs to have a cycling transition.

• the defect needs to have a long T1 at the desired temperature.

• the defect needs to operate in one of the telecommunications bands. Alternatively,

the defect needs to be able to be frequency converted to these bands without adding

significant noise.

• the defect needs to have many nuclear spin registers that can be controlled with high

fidelity. These memories cannot be significantly affected by entanglement attempts.

• single-shot readout of the spin must be possible.
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Chapter 9

Spins in Photonic Devices

This chapter and figures are adapted from the publication [3]

Silicon carbide has recently been developed as a platform for optically addressable spin

defects. In particular, the neutral divacancy in the 4H polytype displays an optically address-

able spin-1 ground state and near-infrared optical emission. Here, we present the Purcell

enhancement of a single neutral divacancy coupled to a photonic crystal cavity. We utilize

a combination of nanolithographic techniques and a dopant-selective photoelectrochemical

etch to produce suspended cavities with quality factors exceeding 5,000. Subsequent cou-

pling to a single divacancy leads to a Purcell factor of ∼ 50, which manifests as increased

photoluminescence into the zero-phonon line and a shortened excited-state lifetime. Addi-

tionally, we measure coherent control of the divacancy ground state spin inside the cavity

nanostructure and demonstrate extended coherence through dynamical decoupling. This

spin-cavity system represents an advance towards scalable long-distance entanglement pro-

tocols using silicon carbide that require the interference of indistinguishable photons from

spatially separated single qubits.
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Figure 9.1: Nanobeam photonic cavities in 4H silicon carbide.(a) Simulation of
nanobeam cavity mode performed with Lumerical FDTD, with a simulated quality factor
of Q ∼ 3 × 105. (b) Outline of fabrication procedure. (1) A NINPN doped SiC chip is
used as the starting material. (2) electron beam lithography defines a 25 nm thick nickel
mask. (3) An SF6 based inductively coupled plasma (ICP) etch transfers the mask pattern
to the SiC substrate. (4) A photoelectrochemical etch (PEC) selectively etches p-type SiC
and creates an undercut structure. (c) Scanning electron microscope image of fabricated
photonic crystal nanobeam cavities. Inset is a lattice representation of the (hh) V V 0. (d)
Photoluminescence spectrum of a nanobeam cavity taken at room temperature, showing a
quality factor of ∼ 5, 100 extracted from the full-width half-max of a Lorentzian fit.

9.1 Context

With the nanophotonic integration, a subsequent increase in the Debye-Waller factor from

∼5% to ∼70-75% is observed. The use of a doped nanostructure allows for the potential for

electric field and charge control, in-situ Stark tuning, and improved collection efficiencies for

optimized geometries, all of which would provide further improvements to the V V 0 optical

properties. As a whole, this system advances the robustness of spin-to-photon transduction

for the V V 0 in a technologically mature material. Looking beyond to many-qubit architec-
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tures, photonic nanocavities will be a necessary component to maintain scalability across

long-distance entanglement networks.

The spin coherences are short and the optical linewidths are broad in this initial demon-

stration, but a combination of surface treatment and depletion as in section 11.4 may dras-

tically narrow these lines. Importantly, this work is the first single-defect photonics mea-

surement and fabrication with V V 0 in 4H-SiC. The ability to use PEC etching is a valuable

tool for SiC that leverages the ability to obtain doped epilayers of high quality. The ability

to undercut structures is the determining feature for an easy-to fabricate photonic material.

Other recent schemes such as SiCOI[57] may be promising, but direct comparisons have not

been made to date. This technique creates a ‘SOI’ like wafer from bonding and thinning

SiC utilizing the native oxide. Other techniques, such as a ‘smart-cut’ processes for creating

membranes, results in weak or no divacancy signal because the procedure completely de-

stroys the crystal (we have tried, avoid at all costs). Similarly, although 3C can be grown on

silicon which can be easily undercut, there are unresolved materials issues (see section 4.1).

This experiment also displayed large strain in the nanostructures, likely due to rapid

changes in the dopant concentration which is known to cause strain. The highly doped

layers near the spin could be reduced from this experiment to produce narrower lines and

lower strain. Larger photonic devices that have surfaces further away but a more moderate

Purcell effect may balance the need for narrow lines while still retaining benefits from pho-

tonic enhancement. Finally, as SiC is an excellent photonic material, the potential for SiC

nanophotonics is great. Other groups have demonstrated Q factors in excess of 630,000 with

small mode volumes [184].
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Chapter 10

Spins in Phononic Devices

This chapter and figures are adapted from the publication [9]

As mentioned in section 5.1, SiC is an excellent mechanical material with opportunities

for linking spin and mechanics. That being said, the T1 is quite long and the spin-strain

coupling is weak. However, interesting physics and quantum control can be developed using

sound, instead of magnetic fields.

Hybrid spin–mechanical systems provide a platform for integrating quantum registers

and transducers. Efficient creation and control of such systems require a comprehensive

understanding of the individual spin and mechanical components as well as their mutual

interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin

registers in a wafer-scale material with low acoustic losses, making them natural candidates

for integration with high-quality-factor mechanical resonators. Here, we show Gaussian fo-

cusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction

imaging technique, which delivers direct, strain amplitude information at nanoscale spatial

resolution. Using ab initio calculations, we provide a more complete picture of spin–strain

coupling for various defects in SiC with C3v symmetry. This reveals the importance of shear

strain for future device engineering and enhanced spin–mechanical coupling. We demon-

strate all-optical detection of acoustic paramagnetic resonance without microwave magnetic
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Figure 10.1: Strain focusing with a Gaussian SAW resonator.a, A schematic of the
SAW device geometry fabricated on sputtered AlN on a 4H-SiC substrate. Microwaves
drive spin transitions mechanically through the SAW resonator (cyan) and magnetically
from the backside coplanar waveguide (orange). b, An optical micrograph of the Gaussian
SAW resonator’s acoustic focus (λ = 12µm, w0 = 2λ) with red lines illustrating the wave’s
out-of-plane displacement (uz). c, Magnitude (blue) and phase (red) measurements of the
one-port reflection of the Gaussian SAW resonator used in spin experiments. d,e, The
mechanical mode from a similar Gaussian SAW (λ = 19µm, w0 = 1.25λ), directly measured
with s-SXDM using the 4H-SiC [0004] Bragg peak. This quantifies the SAW peak-to-peak
longitudinal (d) and transverse (e) lattice slopes at the acoustic beam waist. The image is
skewed vertically due to sample drift during measurements.
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fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes

splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full

strain control of three-level spin systems.

10.1 Context

Since a complete model of spin–strain coupling with C3v symmetry requires six independent

coupling parameters, strain cannot necessarily be treated as an equivalent electric field vector.

Even so, the zero-field splitting tensor is also affected by electric fields with three independent

coupling parameters and can be used for both ∆ms = ±1 and ∆ms = ±2 spin transitions.

To further enhance defect–phonon interaction strengths for hybrid quantum systems, defect

excited-state electronic orbitals [185, 186] and spins[187] could be utilized as opposed to

ground-state spins[188], and strain effects on defect hyperfine couplings have not been well

explored. In addition, new defects[152] with greater spin–spin or spin–orbit coupling, with

minimal cost to their spin coherence, may greatly improve spin–phonon coupling strengths

and be advantageous for quantum control of phonons with optically addressable spins. Our

combined theoretical understanding and demonstrations of spin–strain coupling with SiC

divacancies provides a basis for quantum sensing with MEMS[189] as well as engineering

strong interactions with single phonons for quantum transduction[49], spin squeezing[190]

and phonon cooling[191] applications. The coupling of strain to the V V 0 excited state is not

known, but DFT calculations on the VSi in SiC may guide future work [96].
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Chapter 11

Spins in Electrical Devices

We finally begin the bulk of the experimental work for this thesis. We start by describing the

first experiments on understanding charge states in ensembles of V V 0, then transition into

how charge control allows for new forms of sensitive electrometry. Then, we describe how we

can integrate single V V 0 into classical electronic devices (such as those described in section

1.1.2). This integration give interesting new control knobs, but importantly drastically

improves the quality of the spin-photon interface in V V 0. This electrical control is extended

to AC modulation of the optical structure which produces microwave-induced sidebands

which will be described briefly. The integration of quantum states into electrical devices also

opens opportunities for new quantum devices which will be motivated.

11.1 Optical Charge Switching

This section and figures are adapted from the publication [11]

Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active

spin-based quantum technologies. Spin qubits exist in specific charge states of these defects,

where the ability to control these states can provide enhanced spin-dependent readout and

long-term charge stability. We investigate this charge state control for two major spin qubits
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in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conver-

sion between the bright and dark states of these defects. We measure increased photolumi-

nescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet

excitation, depending on the substrate, and without degrading the electron spin coherence

time. This charge conversion remains stable for hours at cryogenic temperatures, allowing

spatial and persistent patterning of the charge state populations. We develop a comprehen-

sive model of the defects and optical processes involved, offering a strong basis to improve

material design and to develop quantum applications in SiC.

Overall, taking into account multiple impurities was necessary to obtain a complete pic-

ture of charge effects in the SiC samples; such considerations are crucial for tuning wafer

growth techniques, samples with implanted layers, surface impurities or for devices with

complex electric potentials. Finally, we confirmed that these optical charge conversions dras-

tically improve the PL intensity and do not measurably impact the spin properties (ODMR,

coherence). Combined with recent studies[55, 112] characterizing the spin and optical prop-

erties of V V or VSi in 4H and 3C-SiC, this work on charge conversion/stabilization helps to

complete the suite of techniques and technologies realized in NV − centers in diamond for

use in SiC, while allowing for novel applications such as optically controlling the charge of

spins in electronic devices realized in SiC. This study will also be relevant to spin-to-charge

conversion in SiC, though further work is necessary.

11.1.1 Context

This first work on the charge dynamics of defects in SiC showed that without the proper

illumination color, ensembles of V V 0 completely convert to V V −, which is optically ‘dark’

and does not contain the desirable spin properties. The charge state population can be

read out by looking at the photoluminescence intensity from a short pulse (to avoid charge

conversion and photodynamics from the laser). Importantly, by turning off the lasers and

waiting, we found that the optically driven charge state populations were stable for over

164



Figure 11.1: Photo-dynamics and modeling in neutral divacancies in 4H-SiC. The
charge dynamics are probed using two and three color experiments, following a reset-pump-
measure scheme. a, Typical decay curves obtained under various reset/pump wavelength
and temperatures. The fit (line) is obtained from the model given in d. b, Top figure:
ratio between pump and 365 nm steady-state PL intensities. Bottom figure: decay rates
(normalized to 100 µW at every pump wavelength) obtained by fitting the decays in a with
a stretched exponential function (error bars are 95% confidence intervals from the fit). In
blue, the sequence starts after 365 nm pumping, while in red, after 976 nm. The lines are
given by the model in d, with the area corresponding to 95% confidence intervals. For 1310
nm, no significant decay was observed over 100 s, hence the steady-state values are given
without error bars. c, Formation energies of the divacancy in 4H SiC, taken from [61]. d,
Model used for simulating all transients in a, b, e, including the V V 0 and V V levels of the
divacancy, as well as an unknown trap with two charge states. Processes included in the
model are given in the legend. Hole photo-emission converting V V 0 to V V − involves a two-
photon process, exciting V V 0 from its ground state to its excited state, followed by excitation
and capture of an electron from the valence band. e, Temperature dependence of the steady
state after 976 nm pumping (365 nm reset). Error bars are 95% confidence intervals from
the decays’ stretched exponential fit. Lines are given by the model in d, corresponding to
thermal generation of electron-hole (e-h) pairs. The origin of the intermediate region between
30 and 100 K is unknown. Above 210 K, PL5 and PL6 signals become dominant, making
the measurement unreliable as they are UV insensitive.

12 hours. This is expected given the low temperatures (4 K) and emphasizes that thermal

dynamics are not at play. Interestingly, this work started largely as an accident of trying to
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perform sensing on photoexcited carriers in a material on SiC which required UV excitation.

Luckily, upon further investigation from other groups [62] and extensions to single defects

[6](section 11.4), the major hypotheses in this work have been correct:

• 975 nm excitation photobleaches V V 0 into a ‘dark’ charge state of V V .

• V V − is the dark charge state of V V 0. (which has a predicted but unobserved ZPL

[192]).

• V V 0 → V V − occurs through a two-photon process.

• Recovery of V V 0 can be achieved with <∼ 930 nm excitation, including UV (which

re-establishes a quasi-equilibrium).

• Charge traps and other defects in the material play a dominant role in charge dynamics.

At the time (2017), there was an important discrepancy: ensembles of V V 0 photobleached

drastically under 975 nm excitation, while single defect work had been using 975 nm excita-

tion without issue. Furthermore, older samples of SiC had seemed to have less issues with

photobleaching in ensembles. This turns out to be due to the last bullet point above, in that

defect and charge trap densities in a particular sample play a large role in determining the

exact balance of charges at play. Additionally, along the lines of the discussions in section

1.1.2, electric fields can alter this balance, which we will see in the following sections.

11.2 Charge Based Electrometry

This section and figures are adapted from the publication [4]

Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequen-

cies can be challenging to realize. Recently, point defects in silicon carbide have shown their

ability to measure local electric fields by optical conversion of their charge state[193]. Here,
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we report the combination of heterodyne detection with charge-based electric field sensing,

solving many of the previous limitations of this technique. Owing to the nonlinear response

of the charge conversion to electric fields, the application of a separate “pump” electric field

results in a detection sensitivity as low as 1.1 (V/cm)/Hz, with a near-diffraction limited spa-

tial resolution and tunable control of the sensor dynamic range. In addition, we show both

incoherent and coherent heterodyne detection, allowing measurements of either unknown

random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-

plane vector measurements of the electric field by combining orthogonal pump electric fields.

Overall, this work establishes charge-based measurements as highly relevant for solid-state

defect sensing.

11.2.1 Context

The balance of charge states for V V under laser light that both ionizes and recharges the

V V 0 is quite delicate. In initial demonstrations in SiC[193] this steady-state balance was

shown to change with applied AC electric fields, where the magnitude of this effect is shown

to be quadratic with electric field. In this work, we make use of this scaling and the fact

that the electric field is a vector quantity. Therefore, a vector ‘pump’ electric field can be

used to boost sensitivity along a particular direction (Epump ·Esensed >> E2
sensed), for small

sensed fields. In particular, the resulting sensitivities are competitive with use of the spin for

electric field sensing. We estimate from the experimental acquisition time, signal, and noise

intensity that our best sensitivity here is 1.1 (V/cm)/
√
Hz for Epump = 750 V/cm and a

near diffraction-limited laser spot size (corresponding to an ensemble size of approximately

103–104 defects). This sensitivity can be compared with the spin-based measurement, where

a sensitivity of 200 (V/cm)/
√
Hz for a single defect was reached[194] or 0.1 (V/cm)/

√
Hz

for a very large ensemble (∼ 1011 defects, > 50 µm resolution)[195]. Since sensitivity is

proportional to the square root of the number of defects (shot-noise limit), our charge-based

technique is slightly more sensitive per defect than for single spins and more than two orders
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of magnitude better for the ensemble. Surprisingly, because SiC is slightly piezoelectric, this

effect can be used to sense AC strain fields as well[193].

The electric field dependence on the steady state balance of the V V 0 population under

illumination can be understood in the context of the results in section 11.4. Roughly, because

of space charge regions that can form under electric fields and charge redistribution, for DC

fields under a certain strength no electric field is applied to the defect. The (photo-excited)

charges redistribute to cancel out the applied field. This is sometimes called ‘screening’ the

electric field. This is simply a statement that the effective dielectric constant is frequency

dependent. The characteristic time to form a space-charge region that screens the electric

field is the Maxwell relaxation time τM = 1
fM

= ε0εrρ/2 [196]. ρ is the resistivity, such that

with a large photoexcited population of carriers, the region becomes conductive and τM can

be short. This is also sometimes called Debye relaxation, relating to the Debye-Hückel model

of the electric field screening. The quadratic dependence is a little harder to understand and

is still an open question, but likely relates to the balance of rates, capture cross section radii

and the size of the space charge region or the optical spot size. The devices in this work

utilize basic electrodes on the surface of insulating SiC, where electric fields can modulate

the charge states of defects under illumination.

11.3 Other Electrical Manipulations

Besides modulating the charge state balance of defects, electrical fields in SiC devices can

Stark tune the optical fine structure, which has been achieved with similar devices on bulk

insulating SiC [116]. Additionally, as discussed in section 5.3, electric fields can be used to

drive spin manipulations with ∆ms = 2 transitions [98]. However, these demonstrations did

not leverage the mature doping capability that SiC offers to make electrical devices. The

next section describes this next step.
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11.4 Electrical and Optical Control of Single Spins in

Scalable Semiconductor Devices

This section and figures are adapted from the publication[6]

Spin defects in silicon carbide have the advantage of exceptional electron spin coherence

combined with a near-infrared spin-photon interface, all in a material amenable to modern

semiconductor fabrication. Leveraging these advantages, we integrate highly coherent single

neutral divacancy spins in commercially available p-i-n structures and fabricate diodes to

modulate the local electrical environment of the defects. These devices enable determin-

istic charge state control and broad Stark shift tuning exceeding 850 GHz. Surprisingly,

we show that charge depletion results in a narrowing of the optical linewidths by over 50

fold, approaching the lifetime limit. These results demonstrate a method for mitigating the

ubiquitous problem of spectral diffusion in solid-state emitters by engineering the electrical

environment while utilizing classical semiconductor devices to control scalable spin-based

quantum systems.

11.4.1 Introduction

Solid-state defects have enabled many proof-of-principle quantum technologies in quantum

sensing [197], computation[198] and communications[152]. These defects exhibit atom-like

transitions that have been used to generate spin-photon entanglement and high-fidelity

single-shot readout[174], enabling demonstrations of long-distance quantum teleportation,

entanglement distillation and loophole-free tests of Bell’s inequalities[152].

However, fluctuating electric fields and uncontrolled charge dynamics have limited many

of these technologies [122, 174, 197, 199, 200]. For example, lack of charge stability and of

photon indistinguishability are major problems that reduce entanglement rates and fidelities

in quantum communication experiments[122, 174, 199]. In particular, indistinguishable and
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spectrally narrow photon emission is required in order to achieve high-contrast Hong-Ou-

Mandel interference [143]. This indistinguishability has been achieved with some quantum

emitters through dc Stark tuning the optical lines into mutual resonance[116, 201]. Mean-

while, a variety of strategies [113, 121–123, 197] have been proposed to reduce spectral

diffusion[202] and blinking[203], but consistently achieving narrow and photostable spectral

lines remains an outstanding challenge[120]. In addition, studies of charge dynamics[11, 204]

have enabled quantum sensing improvements[197, 205], and spin-to-charge conversion[177]

allowing electrical readout of single spin defects[206]. However, these experiments have

largely been realized in materials such as diamond where scalable nanofabrication and dop-

ing techniques are difficult to achieve.

In contrast, the neutral divacancy (V V 0) defect in silicon carbide (SiC) presents itself as a

candidate spin qubit in a technologically mature host, allowing for flexible fabrication, doping

control, and availability on the wafer scale. These defects display many attractive properties

including all-optical spin initialization and readout[82], long coherence times[90], nuclear

spin control[181], as well as a near-infrared high-fidelity spin-photon interface[55]. However,

V V 0 have suffered from relatively broad optical lines[55], charge instability[11] and relatively

small Stark shifts[116]. Furthermore, the promise of integration into classical semiconducting

devices remains largely unexplored. Here, we utilize the mature semiconductor technology

that SiC provides to create a p-i-n structure that allows tuning of the electric field and charge

environment of the defect. First, we isolate and perform high fidelity control on highly

coherent single spins in the device. We then show that these devices enable wide dc Stark

tuning while maintaining defect symmetry. Interestingly, we also demonstrate that charge

depletion in the device mitigates spectral diffusion thus greatly narrowing the linewidths in

the optical fine structure. Finally, we use this device as a testbed to study the photoionization

dynamics of single V V 0, resulting in a method for deterministic optical control of the defect

charge state. The effects presented here suggest that doped SiC structures are flexible and

scalable quantum platforms hosting long-lived single spin qubits with an electrically-tunable
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high-quality optical interface. The demonstrated reduction in electric field noise can lead

to increased spin coherence[207], electrical tuning of ‘dark’ spins in quantum sensing[208],

whereas charge control could extend the memory time of nuclear spins[209]. Additionally,

this platform opens unique avenues for spin-to-charge conversion, electrically-driven single

photon emission[210], electrical control[98] and readout[206, 211, 212] of single spins in SiC

CMOS compatible and optoelectronic semiconductor devices.

11.4.2 Isolated Single Defects in a Semiconductor Device

We first isolate and control single V V 0 in a 4H-SiC p-i-n diode created through commercial

growth of doped SiC epilayers. After growth, we electron irradiate and anneal our samples

to create single, isolated V V 0 defects. We fabricate microwave striplines and Ohmic con-

tact pads allowing for spin manipulation and electrical gating (Fig. 11.2A) (appendix A).

In contrast to other defects in SiC such as the isolated silicon vacancy[92], the divacancy

is stable above 1600 ◦C [79] making it compatible with device processing and high tem-

perature annealing to form Ohmic contacts. Spatial photoluminescence (PL) scans of the

device show isolated emitters corresponding to single V V 0 (Fig. 11.2B), as confirmed by

second-order correlation (g(2)) measurements (Fig. 11.2B, inset)(appendix A). The location

in depth of the observed defects is consistent with isolation to the i-type layer. This is to be

expected because formation energy calculations[192] indicate that the neutral charge state

is energetically favorable when the Fermi level is between ∼1.1 eV to 2 eV and this condi-

tion must be satisfied somewhere in the i-layer [213](appendix A). This depth localization

provides an alternative to delta-doping[214], which is not possible with intrinsic defects, fa-

cilitating positioning and control in fabricated devices (Fig. SA.1). Additionally, owing to

the diode’s highly rectifying behavior at low temperature, large reverse biases are possible

with low current (Fig. 11.2C)(appendix A). Sweeping the frequency of a narrow-line laser,

we obtain photoluminescence excitation (PLE) spectra of the optical fine structure of these

single defects (Fig. 11.2D). Using the observed transitions for resonant readout and prepa-
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Figure 11.2: Isolation of single V V 0 in a commercially grown semiconductor de-
vice. (A) Schematic of the device geometry. (B) Spatial photoluminescence (PL) scan of
an example device, showing isolated emitters (example circled in red) confirmed by autocor-
relation (inset) showing g2(0) < 0.5 (red line). Extracted emitter lifetime is 14.7 ± 0.4 ns
(green arrows). Gate and microwave stripline features are drawn and color coded as in (A).
(C) Top: I-V curves of the device at various temperatures; bottom: low temperature reverse
bias behavior. (D) Photoluminescence excitation (PLE) spectrum of a single (kk) divacancy
at 270 V of reverse bias.(E) Optically detected Rabi oscillations of a single (kk) V V 0 with
>98% contrast (fit in blue) using resonant initialization and readout. (F) Hahn-echo decay
of a single (kk) V V 0 in the diode. Rabi, Hahn and g2 data are taken at 270 V of reverse
bias and at approximately 240 Gauss at T=5 K.

ration, we perform high-contrast Rabi oscillations of isolated V V 0 in the p-i-n structure

(Fig. 11.2E)(appendix A). The contrast exceeds 98%, improving on previous demonstra-
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tions through the use of resonant spin polarization[55]. Additionally, a single spin Hahn-echo

decay time of 1.0± 0.1 ms is measured for spins in the device (Fig. 11.2F), consistent with

previous ensemble measurements[90]. The long Hahn-echo times and high-fidelity control

demonstrate that integration into semiconductor structures does not degrade the spin prop-

erties of V V 0. This isolation and control of highly coherent spin qubits achieved in these

functioning semiconductor devices unlocks the potential for integration with a wide range of

classical electronic technologies.

11.4.3 Large Stark Shifts in a p-i-n Diode

Because the (hh) and (kk) divacancies(appendix A) in SiC are nominally symmetric along

the c-axis (growth axis), the geometry of the diode allows for large electric fields which mostly

conserve the symmetry of the defect. Therefore, wide tuning of the V V 0 optical structure is

possible, while reducing unwanted mixing from transverse or symmetry-breaking components

of the excited state Hamiltonian[55, 86, 201]. Because the i-type region can be relatively

thin (10 µm here), the applied voltage is dropped over a much smaller region than if a bulk

sample were used[116], leading to significantly larger Stark shifts for a given applied voltage.

In principle, this region can be reduced to a thickness that exceeds limitations from optical

access with metal planar gates (limited by the optical spot size of ∼ 1µm). Furthermore, it

is possible to use doped layers as in situ transparent native contacts to Stark tune and control

localized defects in suspended photonic or phononic structures[9] enabling complex hybrid

electrical, photonic and phononic devices. In our p-i-n junction device, we apply up to 420 V

in reverse bias. Our results show Stark tuning of several hundreds of GHz on different defects

of the same type and on inequivalent lattice sites where the Stark shift is between 0.4-3.5

GHz/V after a threshold is passed (Fig. 11.3A). For example, we observe a (hh) divacancy

shifted by more than 850 GHz (2.5 meV) at a reverse bias of 420 V and a (kh) divacancy

shifted by more than 760 GHz at a reverse bias of 210 V (Fig. 11.3B). These shifts are among

the largest reported for any single spin defect to date and were only limited by the voltage
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Figure 11.3: Stark shifts in p-i-n diode. (A) Low field Stark tuning of a single (kk) defect
at T=5 K, showing a turn-on behavior for the Stark shifts and narrowing with voltage. This
threshold is the same as in 11.5A. These scans contain the lower branch (E1, E2, Ey) where
the linewidth of Ey is approximately 1 GHz and E1 and E2 are unresolved. The PLE
lines show no shifting down to zero bias. (B) High field Stark shifts of multiple example
defects (located at various depths and positions in the junction), showing >100 GHz shifts.
(C) Schematic electric field distribution and depletion region width (Wd) in the diode for
increasing reverse bias. Location in the junction can determine the local field experienced
by the defects in (B). The error bars in (B) are smaller than the point size. All data was
obtained at T=5 K.

output of our source. We expect that owing to the high dielectric breakdown field of SiC,

even higher shifts of a few THz are possible (appendix A). The high-field limit of these shifts

correspond to estimated dipole moments (d‖) of 11 GHz m/MV and 4.5 GHz m/MV for (hh)

and (kk) divacancies respectively, consistent with previous reports[7, 116]. For the (kh) basal
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divacancy observed, the estimated transverse dipole moment is around d⊥= 35 GHz m/MV.

Furthermore, because the Stark shift represents a measure of the local electric field, we

conclude that negligible field is applied to the V V 0 before a certain threshold voltage where

the depletion region reaches the defect[215]. This results from non-uniform electric fields in

the diode caused by residual n-type dopants in the intrinsic region (Fig. 11.3C, (appendix

A)). Overall, our system could be used as a widely frequency-tunable, spectrally narrow

source of single photons. In particular, our system enables one of the highest Stark shift

to linewidth ratios (> 40, 000) obtained in any solid-state single photon source (Table A.2).

These characteristics make this system ideally suited for tuning remote defects into mutual

resonance and for frequency multiplexing of entanglement channels[216]. Interestingly, the

tunability range is so wide that it could even enable the tuning of a (hh) divacancy into

resonance with a (kk) divacancy, allowing for interference and entanglement between different

species of defects. This wide tunability stems from the rectification behavior of the diode

which allows large electric fields without driving appreciable currents, which can degrade

spin and optical properties. Furthermore, the observed sensitivity of the optical structure

of single V V 0 defects could serve as a nanoscale electric field sensor enabling field mapping

in these working devices with sensitivities of approximately 100 (V/m)/
√
Hz or better,

which is competitive with state of the art spin and charge based electrometry techniques

[194, 217, 218](appendix A).

11.4.4 Reducing Spectral Diffusion Using Charge Depletion

Uncontrolled fluctuating electrical environments are a common problem in spin systems

where they can cause dephasing[207], as well as in quantum emitters where they result in

spectral diffusion of the optical structure and lead to large inhomogeneous broadening. For

example, adding and removing just a single electron charge 100 nm away causes shifts on

the order of 100 MHz for the optical fine structure of V V 0 (Fig. A.3). Previous work[55]

has shown that by doing an exhaustive search through many defects in a specially grown
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Figure 11.4: Optical linewidth narrowing by tuning the electrical environment of
a solid state emitter. (A) Multiple PLE sweeps taken over 3.5 hours of the Ex line,
showing small residual spectral diffusion (fitted inhomogeneous linewidth of 31± 0.4 MHz).
The red arrow corresponds to the single scan shown with a fitted linewidth of ≈ 20 MHz.
(B) Comparison of the average linewidth (blue) and defect transverse asymmetry (red)
with respect to applied reverse bias. The yellow line is the lifetime limit. (C) Temperature
dependence of the linewidth. A free power law fit gives an exponent of 3.2±0.3. Constraining
the fit to a T 3 relation, we extract a zero temperature linewidth of 11±5 MHz (yellow line).
Errors on the plot represent a 95% confidence interval. (D) Model for the effect of charge
depletion on spectral diffusion in the illuminated volume (yellow). To the left of each diagram
is a schematic band diagram with the relevant transitions. Errors for the fits values in (A)
and (C) represent one standard deviation. All data is from a single (kk) V V 0. In (B), the
laser power is slightly higher than in (A), causing some broadening. For (A) and (C) the Ex
line is shown at 270 V of reverse bias. Data in (A) and (B) were obtained at T=5 K.

material, one can find defects with lines as narrow as 80 MHz (typically 100-200 MHz or

larger), however, this is still much larger than the Fourier lifetime-limit of ∼11 MHz[55]. In
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bulk intrinsic commercial material, the narrowest linewidths are significantly broadened to

around or above 130-200 MHz[55] (Fig. A.4). Overall, spectral diffusion has been a notori-

ously difficult outstanding challenge for nearly all quantum emitters in the solid-state. Here,

we introduce a technique for mitigating spectral diffusion. We demonstrate that by applying

electric fields in our device we deplete the charge environment of our defect and obtain single

scan linewidths of 20± 1 MHz (Fig. 11.4A) without the need for an exhaustive search. This

reduction in PLE linewidth has a different voltage dependence than the transverse asymme-

try in the defect, thus eliminating reduced mixing as a possible mechanism for narrowing (Fig.

11.4B). The temperature dependence of the linewidth is roughly consistent with a T 3 scaling

at these low temperatures[219](fitted exponent 3.2±0.3 and a zero-temperature linewidth of

11±5 MHz, appendix A). Although the dominant temperature scaling may change at lower

temperature, this trend hints at a possible explanation for the remaining broadening and is

consistent with a temperature limited linewidth. Furthermore, the observed line is extremely

stable, with a fitted inhomogeneous broadening of 31 ± 0.4 MHz averaged for over 3 hours

(Fig 11.4A). This stability over time, narrowness, tunability, and photostability demonstrate

the effectiveness of engineering the charge environment with doped semiconductor structures

for creating ideal and indistinguishable quantum emitters. At zero bias the linewidth in our

samples is much higher than in bulk material (around 1 GHz, Fig. 11.3A). We attribute this

to a greater presence of traps and free carriers (under illumination). Thus, in these samples,

the observed narrowing corresponds to an improvement in the linewidth by a factor of more

than 50. We speculate that a combination of this charge depletion technique with lower

sample temperatures, a lower impurity material, and further annealing could enable mea-

surement of consistent transform-limited linewidths[10, 121]. This use of charge depletion

for creating spectrally narrow optical interfaces (Fig. 11.4D) could be widely applicable to

other experiments in SiC, or to other solid-state emitters such as quantum dots[220, 221].

Indeed, by applying the same techniques developed here to intrinsic SiC materials, lines as

narrow as ∼ 21 MHz are observed[7]. Crucially, these results demonstrate that depleting
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Figure 11.5: Electrical and optical charge control of a single V V 0. (A) Voltage
and power dependence of the photoluminescence of a single (kk) V V 0 with 975 nm excita-
tion (top), and with additional 188 µW of 675 nm illumination (bottom), showing a sharp
threshold under reverse bias. With high 975 nm power, the two-photon ionization process
dominates and the PL signal is low. (B) By controlling the voltage in time (blue) the emis-
sion from the single (kk) defect is switched on and off (red). (C) Model of rapid ionization
and recapture at zero electric field (top). Two photon ionization and formation of a depletion
region under reverse bias (middle). Charge reset under applied electric field using red light
(bottom). All data was obtained at T=5 K.

local charge environments can transform a very noisy electric environment into a clean one,

turning materials containing unwanted impurities into ideal hosts for quantum emitters.

11.4.5 Charge Gating and Photodynamics of Single Defects

Our observation of large Stark shifts and linewidth narrowing relies on understanding and

controlling charge dynamics under electric fields. To achieve this, we study the stability of

the observed single defects under electrical bias. This allows a careful investigation of the
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Figure 11.6: Ionization and charge reset rates for V V 0. (A) Dependence of the
ionization rate on resonant laser power. Low and high power regime fits (black dotted lines)
and their power laws (m = 2.05 ± 0.2 and m = 0.99 ± 0.07, respectively). The solid black
line shows a full model fit. (B) Repump power dependence of the 688 nm laser, showing
a linear exponent of m = 0.98 ± 0.2. Fluctuations in the polarization or power of the laser
limits the true error. (A) and (B) were taken at 90 V of reverse bias. (C) Repumping
rate as a function of illumination wavelength at 270 V of reverse bias with a Lorentzian fit
centered around 710 nm. With wavelengths longer than 905 nm (and at these powers) no
PL is observed and the defect is ‘dark’. All error bars represent 95% confidence intervals
from the fit of the raw data from a single (kk) V V 0. All data was obtained at T=5 K.

charge dynamics of single V V 0 under illumination, from which we develop an efficient charge

reset protocol. In our experiments, we observe that with 975 nm off-resonant light, the pho-

toluminescence (PL) drops dramatically once the reverse bias is increased past a threshold

voltage (Fig. 11.5A). This threshold varies between defects, which is expected given dif-
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ferences in the local electric field experienced stemming from variations in position, depth,

and local charge trap density. We attribute the PL reduction to photoionization to an opti-

cally ‘dark’ charge state[11]. We use this effect to create an electrically gated single photon

source[222–224], where emission is modulated in time with a gate voltage (Fig. 11.5B)[116].

The threshold voltage has a slight hysteresis (Fig. A.5) and laser power dependence (Fig.

11.5A) suggesting that trapped charges may play a role[201, 225]. We note that the electric

field dependence of the photoionization could also be used to extend sensitive electrometry

techniques[193] to the single defect regime, while controlled ionization of the spin can extend

the coherence of nuclear registers[209]. The threshold for Stark shifts (Fig. 11.3A) cor-

responds approximately to the same voltage where significant photobleaching occurs when

using off-resonant excitation. This links the sharp photoionization threshold in Fig. 11.5A

to the presence of moderate electric fields and the onset of carrier depletion. A possible ex-

planation for this voltage-dependent PL is that at zero electric field, illumination constantly

photoionizes the V V 0 and other nearby traps. However, the divacancy rapidly captures

available free carriers returning it to the neutral charge state. Under applied field, carrier

drift depletes the illuminated region of charges. Thus, when a V V 0 photoionization event

occurs in this depleted environment, no charges are available for fast recapture, resulting in a

long-lived dark state (Fig. 11.5C). Past works have shown that PL is enhanced in ensembles

by repumping the charge with higher energy laser colors[11, 62, 226]. We extend this work to

the single defect regime by applying various illumination energies and studying single defect

photodynamics at 90 V of reverse bias (past the threshold voltage of approximately 75 V of

reverse bias for this defect). We observe under resonant illumination the PL quickly drops to

zero and does not recover, indicating that 1131 nm (1.09 eV) light (resonant with the ZPL of

a (kk) V V 0 ) ionizes the defect, but does not reset the charge state. However, after applying

higher energy light (688 nm, for example) the charge is returned to a bright state even with

< 1 nW of applied power. This ‘repump’ of the defect charge state is vital for restoring PL

for ionized or charge unstable V V 0 in SiC (Fig. 11.5A) and is essential to observe the effects
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discussed in the previous sections (Fig. 11.5C). When both NIR resonant (1131 nm) and red

(688 nm, 1.8 eV) light is applied to the defect, hopping between the bright (V V 0) and dark

(V V + or V V −) charge states results in a blinking behavior. From this blinking (Fig. A.6),

we can extract photoionization and repumping rates of the defect[127]. We first examine

the ionization rate of a single V V 0 (Fig. 11.6A) and observe that the power dependence

is quadratic below defect saturation (exponent m = 2.05 ± 0.2) and linear at higher pow-

ers (m = 0.99 ± 0.07). We note that our observed data provide evidence for a two-photon

process to V V − (appendix A) suggested in previous ensemble studies[11, 62], and are less

consistent with a recently proposed three-photon model converting to V V + [192, 226]. Thus,

we conclude that the dark state caused by NIR resonant excitation is V V −. Further study

of the spin dependence of this ionization may lead to the demonstration of spin-to-charge

conversion in V V 0. Similarly, we study the charge reset kinetics by varying the power of the

repumping laser. We find a near-linear power law with m = 0.98 ± 0.05 (Fig. 11.6B). This

linear dependence of the repumping rate can be described by two potential models. One

possibility is that the dark charge state is directly one-photon ionized by repump laser. The

other possible explanation is that nearby traps are photoionized by this color and the freed

charges are captured by the divacancy to convert back to the bright state. By varying the

color of this reset laser, we find repumping to be most efficient around 710 nm (1.75 eV),

suggesting a particular trap state energy or a possible defect absorption resonance[94, 206]

(Fig. 11.6C). Overall, we observe negligible ionization from the optimal red repump laser

and no observable reset rate from the resonant laser. This results in fully deterministic op-

tical control of the defect charge state (discussion in appendix A), allowing for high-fidelity

charge state initialization for quantum sensing and communications protocols.

11.4.6 Conclusions and Outlook

The electrical tuning of the environment demonstrated here constitutes a general method

that could be applicable to various quantum emitters in semiconductors where spectral
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diffusion or charge stability is an issue[227], or where electric field fluctuations limit spin

coherence[207](appendix A). Furthermore, using our p-i-n diode as a testbed to study

charge dynamics, we develop a technique to perform deterministic optical control of the

charge state of single divacancies under electric fields[228]. The techniques presented will

be vital to achieving single-shot readout and entanglement in V V 0 by enabling charge con-

trol and enhancing photon indistinguishability, suggesting doped semiconductor structures

as ideal quantum platforms for defects. This work also enables high-sensitivity measure-

ment of nanoscale electric fields and charge distributions in working devices[217] and facil-

itates spin-to-charge conversion[177] for enhanced quantum sensing and electrical readout

protocols[206]. Finally, the introduction of V V 0 into classical SiC semiconductor devices

such as diodes, MOSFETs and APDs may enable the next generation of quantum devices.

11.4.7 Charge Dynamics

Here, we will summarize briefly the charge dynamics at play in SiC and the corresponding

energies. These are displayed mostly in Fig. 11.7.

• (1.1 eV < E < 1.3 eV ). V V 0 can be excited on its phonon sideband. In the exited

state, V V 0 → V V − occurs constituting a two-photon ionization process. The rate of

this second step may have a resonance in the band as in Fig. 11.7B. The common

excitation in this range is 975 nm.

• (1.3 eV < E <∼ 1.6 eV ). V V 0 is excited, though more weakly on the tail of the

sideband. Two-photon ionization still occurs, V V 0 → V V −. However, V V − → V V 0

proceeds as a one photon process and recharges the defect. The common excitation in

this range is 905 nm which produces ODMR and PL while maintaining some charge

stability over time.

• (E ∼ 1.75 eV ). Too far to the visible to excite V V 0 directly. However, a possible

resonance in the band (Fig. 11.7B) makes V V − → V V 0 very effective. Too low
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energy for V V 0 → V V − by a one photon process. The ideal charge reset color (710

nm, for example).

• (E ∼ 1.1 eV ). Resonant light (for the c-axis V V 0). Two-photon ionization occurs,
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though due to the lower needed power, it is slower than with off resonant.

• (E < 1.1 eV ). At low temperatures, no light is absorbed by V V 0. However, once in

the excited state, V V 0 → V V − may proceed at these wavelengths, though not much

below 1 eV .

• (E > 2 eV ). V V 0 → V V − occurs readily through a one-photon process. V V − → V V 0

as well.

However, at all of these wavelengths, the very shallow nitrogen dopants can be excited,

and at high enough powers most of the deep ones as well. This causes spectral diffusion of

the optical interface. Without depletion, a balance of ionization and recapture of V V 0 and

the surrounding defects may make obscure the V V 0 dynamics given above.

In the original WKV criteria, a consideration for the charge state stability of the defect is

made (# 4, section 5.2). This criteria is probably insufficient. Here, we describe new criteria

that optimize charge stability and spectral diffusion:

• the defect’s ZPL energy should be lower than the energy needed to change the charge

state of the defect (at least at the one photon level).

• the defect’s correct charge state should be recoverable without detrimental dynamics.

• for a given ZPL, the dominant traps should not be photoexcited.

• the defect’s ZPL energy should be ideally less than half the bandgap.

11.5 Context

The p-i-n diode is one of the most basic electronic devices. However, by simply integrating

our spin qubit into this device, we drastically improve the quality of single-photon emission

from our defect spin. The idea of using devices to ‘clean up’ the environment of an emitter

using classical semiconductor depletion is a new one, and has broad implications for other
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qubit candidates with spin-photon interfaces like quantum dots, where similar ideas have

been evolving[229]. We also gain the ability to drastically tune our spin photon interface

while maintaining its narrowness, and conserving the symmetry of the defect’s orbital fine

structure which therefore maintains its quality. As such, we maintain a high degree of tunabil-

ity without unwanted sensitivity or degradation. Defects integrated in devices such as these

may therefore provide ideal nodes in quantum communications channels. The extension of

this work into improving the notorious problem of spectral diffusion in nanophotonics would

drastically improve the outlook for quantum networking devices with SiC. Importantly, the

devices in this section still ‘work’ at 4 K, even though the p- and n-type dopants are nom-

inally frozen out. Low temperature p- and n-doping can behave well if the semiconductor

is degenerately doped, where the doping level is so high that the charges can hop site to site

and the dopants form an ‘impurity band’ where charges can flow without thermal activation.

This has been achieved in SiC (but not in this work) and is an interesting avenue for devices

in the future. However, even without this degenerate doping, the electrical potentials are

still spread over the p and n-type layers, and the depletion can proceed even at these low

temperatures (with the help of photoionization/laser light causing a high ‘electron temper-

ature’). An understanding of how the depletion region moves the intrinsic region (which is

slightly n-type) is crucial to understand both the photostability, Stark shifting and narrow-

ing. Roughly, the electric field at a defect can start by not shifting at all with increased

voltage, transitioning into a E ∝
√
V regime where the intrinsic region is not fully depleted,

then finally reaching a linear regime where E ∝ V . This is the schematic shown in Fig.

11.3C.

11.6 Extensions of Stark Control

This section is adapted from the publication[7]

Interfacing solid-state defect electron spins to other quantum systems is an ongoing chal-
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lenge. The ground-state spin’s weak coupling to its environment not only bestows excellent

coherence properties but also limits desired drive fields. The excited-state orbitals of these

electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we

demonstrate electrically driven coherent quantum interference in the optical transition of sin-

gle, basally oriented divacancies in commercially available 4H silicon carbide. By applying

microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals

and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption

spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by

the basal divacancy’s symmetry. These properties establish divacancies as strong candidates

for quantum communication and hybrid system applications, where simultaneous control

over optical and spin degrees of freedom is paramount.

11.6.1 Context

In the previous section, we utilized DC Stark tuning of the optical fine structure. If instead

we apply AC electric fields, we can perform a time-dependent modulation of the absorption

and emission of single V V 0. This could allow for fast spectral reshaping of the absorption

and emission of photon wave packets for increased coupling (The wave packet of absorption

is actually opposite of emission!) between emitters[171, 172]. Similar schemes have been

recently proposed in the VSi in SiC [115]. Furthermore, if the modulation is periodic in

time, interesting new physics arises as mentioned above. In this work, significant differ-

ences between the c-axis (C3v) and basal (C1h) divacancies are explored, including increased

coherence from a ZEFOZ transition in these basal V V 0, as discussed in section 2.

11.7 Electrical Device Opportunities

In general, the possibilities of using SiC electronic devices remain largely unexplored for

quantum science. Here, I will mention a few exciting pathways enabled by the SiC host and
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the work in this section.

• Electrically driven single photon emission. Bright single photon emission from de-

fects in SiC devices has been shown[210, 230–232], but linking this with electron spins

remains a challenge.

• Electrically detected magnetic resonance of V V . This has been nominally demon-

strated with ensembles [233], but has not been linked with optical activity or single

defects. Relies on changes in conductivity depending on trap spin states.

• Electrical readout of defect spins. Similar to [206], but utilizing mature SiC devices.

Relies on spin-to-charge conversion.

• Electrical spin polarization of defect spins. Possibly through a spin blockade effect, a

spin polarized current, or though electrical excitation to the ISC.

• Fermi level optimization of V V 0 formation. Recent results in theNV − center [234, 235]

show that changing the Fermi level during defect formation can drastically enhance

spin properties by reducing nearby impurities, and can also greatly increase formation

efficiencies [236].

• Electrically controlling spin coherence. As described in chapter 13, paramagnetic im-

purities may limit spin coherence, while large enough electric noise can similarly limit

certain defects. Depleting these sources using techniques in this chapter may be pos-

sible.

• More complicated devices such as SETs, MOSFETs, APDs and others may provide

additional functionalities. These are completely unexplored.

• Photonic devices/nanostructures. Integrated in situ tuning and linewidth narrowing

in nanostructures would provide ideal platforms for quantum communications
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Chapter 12

Strain Inhomogeneities

This chapter and figures are adapted from the publications[10, 12]

The previous chapter describes in part our ability to reduce electrical noise for our quan-

tum system. On the other hand, the next chapter (13) talks about using isotopic purifi-

cation to reduce the fluctuating magnetic bath in the qubit’s environment. Another type

of noise/inhomogeneity, however, is strain. As mentioned in sections 5.3 and 5.2, strain

not only makes defects have drastically different optical frequencies, but symmetry break-

ing strain can reduce the QE and ODMR contrast for defects. Furthermore, for ensemble

based sensing, strain can cause shifts in the zero field splitting, causing a broadening which

reduces sensitivity. Understanding dynamic strain allowed for the advances in chapter 10,

while crystal damage and surfaces have been known to be issues for spin defects. Specifically,

the temperature dependence of certain reconfiguring processes of the host lattice drive defect

formation and healing of the crystal after defect formation.

With this context in mind, we investigate the ‘healing’ of commercial SiC and diamond

nanoparticles. These systems are exciting for applications in quantum sensing where small

sensor size is paramount. Furthermore, the general understanding of material dynamics

under annealing guides materials and processes for both diamond and SiC. Specifically these

results utilize a X-ray imaging technique which can pick out one single nanoparticle and
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image its 3D strain and morphology!

12.1 BCDI with Diamond Nanoparticles

We observed changes in morphology and internal strain state of commercial diamond nanocrys-

tals during high-temperature annealing. Three nanodiamonds were measured with Bragg co-

herent X-ray diffraction imaging (BCDI), yielding three-dimensional strain-sensitive images

as a function of time/temperature. Up to temperatures of 800◦C, crystals with Gaussian

strain distributions with a full-width-at-half-maximum of less than 8 × 104 were largely

unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with

maximum lattice distortions above this threshold. X-ray measurements found changes in

nanodiamond morphology at temperatures above 600◦C that are consistent with graphiti-

zation of the surface, a result verified with ensemble Raman measurements.

Nanoscale quantum sensing with defects has developed into a promising field with a wide

range of applications both in physical and biological systems. This work paves the way for

developing efficient methods by which we optimize the structure of commercial nanodiamonds

such that their internal strain is reduced to suitable levels for NV −sensing applications.

12.2 Imaging Strain Relaxation in SiC

We extend the previous results from diamond to SiC. As mentioned before, the crystalline

strain properties of nanoparticles have broad implications in a number of emerging fields,

including quantum and biological sensing in which heterogeneous internal strain fields are

detrimental to performance. Here, we used synchrotron-based Bragg coherent X-ray diffrac-

tion imaging (BCDI) to measure three-dimensional lattice strain fields within individual

3C-SiC nanoparticles, a candidate host material for quantum sensing, as a function of tem-

perature during and after annealing up to 900◦C. We observed pronounced homogenization

of the initial strain field at temperatures above 500◦C, and we find that the surface layers
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Figure 12.1: Strain relaxation in SiC nanoparticles. A schematic of the experiment is
shown (a) in which a coherent Bragg peak from a single 3C SiC nanoparticle in an ensemble
deposited on a Si substrate is measured. The heater below the substrate enables temperature-
dependent measurements in an atmosphere of flowing Ar gas. Using BCDI, the Bragg peak
measurements are inverted to real-space 3D images that reveal the shape of the particle
[gray isosurface in (b)]. Additionally, BCDI gives the internal strain within the particle.
The strain fields of this particle along the green cut plane in (b) are shown in (c) at two
different temperatures along with histograms (d) of the pixel-wise strain values of the images
that show evidence of strain homogenization at high temperature.

and central volumes of the nanoparticles reduce strain at similar rates, suggesting a uniform

healing mechanism. Thus, we attribute the observed strain homogenization to activation

of mobile point defects that annihilate and improve the overall quality of the crystal lat-

tice. This work also establishes the feasibility of performing BCDI at high temperatures (up

to 900◦C) to map structural hystereses relevant to the processing of quantum nanomateri-

als. In particular, recent demonstrations of chemically synthesized nanoscale SiC with high

contrast, room temperature ODMR are particularly exciting [237].

190



Chapter 13

Entanglement and Control of Single

Quantum Memories in Isotopically

Engineered Silicon Carbide

This chapter is an early draft of a submitted manuscript[1]

Nuclear spins in the solid state are both a cause of decoherence and a valuable resource

for spin qubits. In this work, we demonstrate control of isolated 29Si nuclear spins in silicon

carbide (SiC) to create an entangled state between an optically active divacancy spin and

a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks

control of single weakly coupled nuclear spins and present an ab initio method to predict

the optimal isotopic fraction which maximizes the number of usable nuclear memories. We

bolster these results by reporting high-fidelity electron spin control (F=99.984(1)%), along-

side extended coherence times (T2 = 2.3 ms, TDD2 > 14.5 ms), and a >40 fold increase in

dephasing time (T ∗2 ) from isotopic purification. Overall, this work underlines the importance

of controlling the nuclear environment in solid-state systems and provides milestone demon-

strations that link single photon emitters with nuclear memories in an industrially scalable

material.
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13.1 Introduction

Nuclear spins are one of the most robust quantum systems, displaying relaxation times

that can exceed hours or days[238–240]. This makes them exciting candidates for quan-

tum technologies requiring long memory times. In particular, nuclear spins are attrac-

tive quantum registers for optically active spin defects in the solid-state[182]. For exam-

ple, nuclear registers can be used for repetitive quantum non-demolition (QND) optical

readout[175], to enhance the signal-to-noise in quantum sensing[241], to implement quan-

tum error correction schemes[183], or as vital components of quantum repeater[179] and

quantum communications[44] nodes. Additionally, electron-nuclear hybrid systems provide

a platform for studying measurement back-action[242] and the emergence of classicality in

quantum mechanics[243].

Recently, commercial SiC has been shown to provide a technologically mature semicon-

ductor host for multiple defect spin qubits[4, 5, 82, 90, 92]. In particular, this material allows

the integration of isolated color centers into classical electronic devices which can be used

to engineer and tune the spin-photon interface[6]. Combining such a tunable near-infrared

emitter[3, 55] with a long-lived quantum memory is a promising basis for quantum network

nodes fabricated at wafer scale by the semiconductor industry. To realize these quantum

memories, SiC provides both carbon and silicon isotopes with non-zero nuclear spin. These

isotopes have been shown to couple to various electronic spin defects[54, 181]; however,

the isolation and control of single nuclear spins[103] in SiC has remained an outstanding

challenge.

In this work, we report coherent control and entanglement of nuclear spin quantum regis-

ters strongly coupled to a single neutral divacancy spin (V V 0) in naturally abundant SiC. We

then extend this control to weakly coupled nuclear spins, where isotopic purification enables

the isolation of robust quantum memories. Using isotopic engineering, we also report both

record coherence times and record single qubit gate fidelities[244] for spins in SiC. Through-

out this work, we present both experiment and ab initio theory that explores the inherent
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Figure 13.1: Initializing, controlling and entangling strongly coupled nuclear
spins.a, Schematic of a single divacancy with surrounding nuclear spins. b, Optically de-
tected magnetic resonance of a single (kk) V V 0 after initialization of both the electron and
either 1 (top) or 2 (bottom) strongly coupled nuclear spins. Top: initialization in either the
|↑〉 (red) or |↓〉 (blue) nuclear spin states. Detuning is from 1.139 GHz. Bottom: dashed line
(black) represents the expected results from an uninitialized state, blue line is the experimen-
tal initialized state. Detuning is from 2.153 GHz. c, Nuclear Rabi oscillations (between |1 ↓〉
and |−1 ↑〉) obtained by driving an RF tone implementing a CeROTn. d, level structure
schematic of a divacancy spin coupled to a single nuclear register. The |+1〉 electron spin
state is not shown. (left) CnROTe manipulation drives colored as in b. (right) CeROTn RF
drive corresponding to the oscillations in c. e, (top) Quantum circuit used to generate a
bipartite entangled state between an electron and nuclear spins. Gates are driven using the
manipulations shown in d. (bottom) Resulting density matrix (|ρ|). The third initialized
qubit is omitted. All data are taken at T= 5 K.

tradeoffs between spin coherence and nuclear memory availability which are involved when

isotopically engineering materials. These results develop a full suite of nuclear spin controls

in SiC and provide a guide for future materials design of spin-based quantum technologies.

13.2 Strongly Coupled Nuclear Registers

In natural SiC, 1.1% of the carbon atoms and 4.7% of silicon atoms possess an I=1/2

nuclear spin. Thus, about a third of all single c-axis oriented (hh and kk, appendix B)

divacancies will have a 29Si register on one of the nearest-neighbor lattice sites (denoted
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SiI , SiIIa or SiIIb)[79]. When the hyperfine coupling exceeds the linewidth (order 1/T ∗2 )

of the electronic state (Fig. 13.1a), oscillations due to these nuclear spins are observable

in Ramsey experiments. We refer to such nuclear spins as strongly coupled. This strong

coupling splits the ms = ±1 electronic ground state levels, which results in pairs of resolved

transitions that enables direct selective control of this two-qubit state using external radio

frequency (RF) magnetic fields.

Here, we demonstrate such a strongly coupled system by isolating a single c-axis (kk)

V V 0 with a nearby 29Si at the SiIIa site (parallel hyperfine A‖ = 2π ·13.2 MHz) in natural

4H-SiC. In this case, because the electron spin linewidth (∼1 MHz) is much lower than the

hyperfine splitting A‖, we observe two individually addressable transitions corresponding to

the two nuclear spin states (Fig. 13.1b). To polarize this nuclear register, we make use of

two iterations of algorithmic cooling in which we optically polarize the electron spin and

then swap this polarized state to the nuclear spin[198]. Using this method, we can achieve

a high initialization fidelity (∼93%) as measured by the peak asymmetry in the optically

detected magnetic resonance spectrum shown in Fig. 13.1b (appendix B).

After nuclear initialization, we prepare the electron spin in the ms = −1 state and use

a 13.2 MHz RF magnetic field to drive nuclear Rabi oscillations (Fig. 13.1c), which we

read out by projecting onto the electron spin. Since these oscillations are only driven in

the ms = ±1 states, this allows us to demonstrate a C±1NOTn gate[181] which can be

performed in 12.7 µs. Throughout these measurements, we also make use of fast (limited

only by the hyperfine splitting of the lines) CnNOTe gates by applying a microwave pulses

at one of the two frequencies shown in Fig. 13.1b (see Fig. 13.1d).

Having demonstrated control over a single nuclear spin, we then increase the number of

registers by finding a (kk) divacancy which is strongly coupled to two 29Si spins (with 6%

probability for naturally abundant SiC). For this defect, we show that using both algorithmic

cooling and dynamical nuclear polarization[84, 181] (DNP), we can polarize the full three-

qubit system (Fig. 13.1b). We then demonstrate individual control of these registers and
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calibrate gates operating on either register (appendix B).

In this three-qubit spin system, we apply the quantum circuit in Fig. 13.1e on the electron

and one of the two coupled nuclear spins to create an electron-nuclear entangled state, and

measure its full density matrix using quantum state tomography[181] (QST). We evaluate

this density matrix using the positive partial transpose test, confirming unambiguously the

entanglement in this system with an estimated entangled state fidelity of ∼ 81% (appendix

B).

These results demonstrate that single, strongly coupled nuclear spins can be used as

quantum registers in SiC with relatively fast gate times. This type of register is useful

for QND measurement of the nuclear spin and more generally for any applications that

require fast operations[245] on ancilla qubits[246, 247]. However, the number of available

nearby nuclear sites which can be controlled in this way is limited. Additionally, the high

coupling strength makes these nuclear registers more sensitive to stochastic noise from the

electron spin and limit applications where repeated electron initialization and control is

necessary[179, 180], such as in long-distance quantum communications[151] or entanglement

distillation[44].

13.3 Weakly Coupled Nuclear Memories

To complement these strongly coupled registers, we therefore investigate nuclear spins which

are weakly coupled to divacancy electron spins. In order to access these memories and

go beyond the 1/T ∗2 limit, we use a XY8-based dynamical decoupling sequence to perform

nanoscale NMR[103, 248–250] of the nuclear environment of a (kk) divacancy (Fig. 13.2a).

This sequence (Fig. 13.2b) not only protects the electron spin from decoherence, but also

allows for selective control of nuclear spins even when their hyperfine coupling is lower than

the electron spin linewidth. In this measurement, each nuclear spin produces a series of

dips in the coherence function at a pulse spacings[103] τk ≈
(2k+1)π
2ωL+A1

at integer order k and
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Figure 13.2: Spectroscopy and control of weakly coupled nuclear spins. a, CPMG
based NMR spectroscopy of the nuclear environment of an example kk divacancy in a natural
(top) and isotopically purified (bottom) sample. The data is shown as a black solid line.
The background gradient represents the calculated average coherence function obtained over
many nuclear configurations 〈M〉, which represents the expected density of coherence dips.
b, Schematic of the XY8 pulse sequence. c, Coherence dips (8th order (k = 8), τ0 = 6.125 µs)
using either the |−1〉 (red) or |+1〉 (blue) electron spin state, providing a measure of A∂ ≈
2π · 650 Hz. d, A CeROTx,n(±θ) oscillation demonstrated on the 6th order (k = 6) of the
isolated nuclear spin and achieved by varying the number of XY8 subsequence repetitions.
After seven XY8 repetitions (total pulse number N = 56), a conditional ±π/2 rotation is
achieved with a fidelity of F=97(1)%. All data are taken at T= 5 K and B = 538 G.

Larmor frequency ωL, corresponding to its specific nuclear precession frequency. With this

spectroscopy, we observe that natural SiC has a crowded nuclear resonance spectrum due

to the relatively abundant 29Si, making it difficult to isolate single spins with low hyperfine

coupling[180] (defined here to be < 2π ·60 kHz). This spectrum, along with ab initio cluster-

correlation-expansion[102] (CCE) simulations of various possible nuclear spin configurations

(Fig. 13.2a), demonstrates that natural SiC is not well suited for isolating single weakly

coupled nuclear spins with low hyperfine values.

To address this issue, we use isotopically purified gases to grow 4H-SiC with 99.85% 28Si

and 99.98% 12C (appendix B). In this sample, we once again measure nuclear environment

of a few (kk) divacancies and find one with a single isolated dip in the coherence function

(Fig. 13.2a). We find that the dip positions very closely match the different orders (k) of
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the Larmor frequency of a 29Si (differing only through the hyperfine value[103]). We further

confirm the gyromagnetic ratio for this nuclear spin species by repeating the experiment at

a different magnetic field (appendix B).

Having confirmed that the dips correspond to a 29Si nuclear spin, we perform spec-

troscopy in both the [ms = 0,ms = +1] and the [ms = 0,ms = −1] basis (Fig. 13.2c),

and measure a small A‖ ≈ 2π · 650 Hz[103], which would not be resolvable in a Ramsey

experiment. Low A‖ nuclear spins are especially useful as robust quantum memories because

the dephasing of the nuclear spin caused by stochastic noise from the electron is particularly

sensitive to the parallel component of the hyperfine tensor, A‖[179].

Fixing the pulse spacing (2τ) to a specific coherence dip (k = 6), we then vary the

number of pulses (N) to coherently control this weakly coupled single nuclear spin[103, 183].

The corresponding CeROTx,n(±θ) oscillations observed (Fig. 13.2d) allows us to measure

the perpendicular hyperfine component A⊥ ≈ 2πcdot11.45 kHz (where θ ≈ A⊥·N
ωL

) and

confirms the successful application of a maximally entangling two-qubit gate[183](appendix

B). If no other nuclear spins were present, one could choose any resonance order (k) to

perform the two-qubit gate. In practice however, as k increases, the resonance of the isolated

nuclear spin separates from the rest of the bath which drastically increases the two-qubit gate

fidelity. Here, even in the isotopically purified sample where the nuclear spectrum is sparse,

the electron-nuclear gate fidelity increases greatly at higher orders (k) as the resonance

separates from the bath (up to 97(1)% at k = 6, appendix B). These results demonstrate

the importance of reducing the nuclear spin bath for high fidelity control of isolated quantum

memories with weak hyperfine interactions.

With these results in mind, we now turn our attention to estimating the optimal isotopic

fraction required to maximize the number of isolated and controllable nuclear memories.

Here, we need to strike a balance between too much purification which removes most usable

nuclear spins and too little which results in a crowded and unresolvable spectrum. Limiting

the gate time to a regime where nuclear-nuclear interactions are negligible (appendix B),
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we developed a method to predict the average number of resolvable nuclear memories as a

function of isotopic concentration. This is achieved by considering both the intrinsic gate

fidelity from the electron-nuclear interaction and the average effect of unwanted rotations

from all other nuclear species (appendix B). Our analysis demonstrates several important

aspects of nuclear availability in SiC.

First, there exists an optimal nuclear spin concentration (Fig. 13.3a) that maximizes the

average number of available nuclear memories which can be controlled within a maximum

gate time and at a given minimum gate fidelity. Here, we find that naturally abundant

SiC has a prohibitively high concentration of 29Si, which prevents the isolation of nuclear

memories with low hyperfine coupling (< 2π · 60 kHz). This reinforces the importance

of isotopic engineering for nuclear memories in SiC and explains the spectrum observed in

Fig. 13.2a. Second, the hyperfine values of the resulting controllable memories vary with

isotopic concentration (Fig. 13.3b). At high concentration, nuclei with moderate hyperfine

(> 2π · 60 kHz) contribute to most of the available memories, while low hyperfine nuclear

spins are unresolvable. On the other hand, a lower isotopic concentration results in a less

crowded spectrum and allows for the isolation of nuclei with lower hyperfine. The choice

of nuclear concentration thus not only determines the total number of available quantum

memories, but also the distribution of hyperfine values for these controllable nuclei.

Furthermore, we note that there is a tradeoff between the maximum allowable gate

time and the number of available nuclear memories. While longer gate times allow for

the resolution of more distant nuclei, this increase is shown to be only sublinear (appendix

B). Additionally, when both nuclear species are utilized, the SiC binary lattice may provide

roughly double the number of resolvable nuclear registers compared to a monoatomic crystal.

While the range of desired hyperfine values may differ depending on the particular ap-

plication, a careful selection of the isotopic fraction is critical to maximizing the number

of nuclear spins available in this range. This careful selection also determines the result-

ing average gate speeds and fidelities, allowing further optimization for the application at
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Figure 13.3: Isotopic optimization of nuclear memories. a, Calculated average number
of memory units as a function of isotopic concentration where [13C] = [29Si]. A memory unit
is defined as a nuclear spin that can be isolated and controlled above a given gate fidelity
(Fmin) within the maximum gate time. Solid lines correspond to all memory units whereas
the dotted lines with shaded areas correspond to only memories with A‖ < 2π · 60 kHz.

Three different maximum allowable gate times are represented (lightest to darkest: 1 ms,
1.5 ms and 2 ms). b, Distribution of the hyperfine values for usable memory units as a
function of isotopic concentration. Darker color corresponds to a higher probability (P) that
memory units, if present and usable, will have the corresponding hyperfine value (maximum
gate time = 1.5 ms, Fmin = 0.9). Blue circles show the median of the distribution at the
given concentration. The green dotted line corresponds to A‖ = 2π · 60 kHz. The values are
computed at the magnetic field of 500 G.

hand. These results therefore constitute not only a proof-of-principle demonstration of sin-

gle weakly coupled nuclear spin control in SiC, but also provide guidance for future isotopic

growth of materials for a variety of spin-based quantum technologies.
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13.4 High-fidelity Qubit Control and Extended Coher-

ences

Broadly, these experiments are all predicated on the divacancy electronic spin being a con-

trollable and long-lived qubit. In this section, we discuss in detail the main factors that

limit the coherence of divacancies in SiC and quantify our ability to perform single-qubit

manipulation.

We begin by measuring both T ∗2 (Ramsey spin dephasing time) and T2 (Hahn-echo co-

herence time) of both c-axis (kk) and basally (kh) oriented defects in isotopically purified

material. We measure the c-axis defects at B=48.8 G and the basal defects at B=0 G (to

benefit from the magnetic insensitivity arising from a clock-like transition[7, 251]).

We report (Fig. 13.4a and 13.4b) T ∗2 times of 48.4(7) µs and 375(12) µs for the c-axis

(kk) and basal (kh) defects, compared to 1.1 µs[90] and 70-160 µs[7] in naturally abundant

material. These numbers correspond to record dephasing times for spins qubits in SiC[54].

Additionally, despite only moderate isotopic purity, these results are very competitive with

NV centers in diamond with much lower nuclear spin concentration[197, 252, 253]. This

favorable scaling most likely arises from the SiC binary lattice and longer bond length,

which results in reduced nuclear flip-flops[102]. These improvements in T ∗2 are vital for DC

quantum sensing schemes and for achieving strong coupling in hybrid systems[9, 254].

The significant increase in dephasing times arising from the isotopic purification for the

c-axis defects shows that magnetic field noise from the nuclear environment is by far the main

limiting factor to T ∗2 for these defects. We provide further evidence of this by investigating

the dephasing in isotopically purified SiC with ab initio cluster-correlation-expansion (CCE)

simulations. Taking into account the remaining nuclear spin bath, these calculations predict

average T ∗2 values which are consistent with our experimental observations (Fig. 13.4a).

On the other hand, while basal divacancies benefit from first-order insensitivity to mag-

netic field noise at B=0 G, this magnetic noise protection comes at the cost of increased
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Figure 13.4: Divacancy dephasing and decoherence times in isotopically purified
material. a, Dephasing of a c-axis (kk) defect in the isotopic sample at B=48.8 G. The
shaded region represents the predicted average results from CCE (B = 50 G and param-
agnetic density of 1 × 1015 cm−3). b, Dephasing of a basal (kh) defect at B = 0 G. c,
Coherence function under a Hahn echo sequence for kk (blue) and kh (red) single defects.
d, CCE calculations (including the effects of paramagnetic traps) for a kk defect showing
that the expected Hahn echo T2 varies greatly based on paramagnetic spin density for both
natural (dark blue) and isotopic (light blue) material (at B = 500 G). e, Coherence time
for a (kk) defect in the isotopic sample under a varying number of CPMG pulses (N) shows
that T2 increases roughly linearly with pulse number (B = 48.8 G). f, Table summarizing
representative numbers for T ∗2 and T2 (Hahn echo) in kk and kh defects in both natural and
isotopic samples. Natural SiC coherences are taken from literature[7, 90, 251]. Numbers
in parentheses are the theoretical numbers obtained by CCE (at B = 50 G) with both the
nuclear spin bath and a paramagnetic spin bath of 1× 1015 cm−3. All data are taken at T=
5 K.

sensitivity to electrical fields[255]. Since charge fluctuations can cause significant electric

field noise[6], this may explain why the increase in T ∗2 obtained from isotopic purification

(Fig. 13.4b) is less pronounced than that of the c-axis divacancies. Furthermore, this mag-

netic protection also makes nuclear control difficult in the basal (kh) divacancies. This

underlines the tradeoffs involved when choosing a defect species to work with.

Next, we perform Hahn-echo experiments to measure T2 in isotopically purified SiC (Fig.

13.4c). Although we find a factor of ∼2 improvement in the coherence time for (kk) de-

fects in this material (2.32(3) ms versus 1.1 ms[90]), we remark that this is a more modest
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improvement than that of T ∗2 . Nevertheless, this T2 is comparable to the longest observed

Hahn-echo coherence time in isotopically purified diamond samples with much greater iso-

topic purity[234, 256]. Interestingly, but the measured T2 deviates from the predictions

from nuclear spin induced decoherence obtained with CCE calculations, which yield an av-

erage coherence time of ∼37 ms. To understand these results, we carried out second order

CCE simulations to study the effect of non-interacting electron spin pairs on the coherence

time[257]. At the estimated paramagnetic density (impurities and radiation induced defects

in the 3 × 1014 − 3 × 1015cm−3 range, appendix B) we find good agreement with the ex-

periment (Fig. 13.4d), thus confirming both the accuracy of our theoretical model and the

important role of paramagnetic defects in limiting coherence. Our results are consistent

with magnetic noise from a weak, but quickly fluctuating paramagnetic spin bath combined

with noise from a strong, but slowly fluctuating, nuclear spin bath[26]. As a consequence,

T ∗2 is limited by nuclear spins, while T2 is limited by paramagnetic impurities for the c-axis

defects. On the other hand, differences in the basal divacancy’s coherence compared to other

reports[7, 251] likely stems not only from the isotopic purification, but also from sample-

to-sample variations in electric field noise, which could be mitigated using charge depletion

techniques[6].

The demonstrated coherence can be further extended by additional refocusing pulses.

We provide a proof-of-principle demonstration by varying the number of pulses (N) in a

dynamical decoupling sequence. At N = 32, the coherence is increased to 14.5 ms (for a

kk defect, Fig. 13.4e). With more pulses, the coherence should continue to increase linearly

until the T1 limit is reached, which we measure to be on the order of one second under these

experimental conditions (appendix B).

Finally, we characterize our single qubit gate fidelities through randomized benchmarking

experiments and obtain an average gate fidelity of 99.984(1)% (Fig. 13.5). These bare

fidelities are amongst the highest for single spins in the solid state[244, 258, 259] and exceed

the threshold for error correction codes[260–262]. Furthermore, high fidelity control of the

202



Figure 13.5: Average single qubit gate fidelity as measured by randomized bench-
marking. Results obtained by applying N Clifford gates (as represented by the quantum
circuit) on a kh defect in the isotopically purified material at T= 5 K, B= 0 G. From this
decay we extract an average gate fidelity of 99.984(1)%

electron spin is crucial to prevent reduced coherence in nuclear spin memories[180]. The

long coherence (TDD2 > 14.5 ms) and high fidelity control (99.984(1)%), combined with a

> 99% resonant initialization and readout fidelity (appendix B) demonstrated in this work

establishes the divacancy in SiC as a promising system for future solid-state quantum devices.

13.5 Conclusion

Defect spins in SiC are exciting candidates for wafer-scale quantum technologies requiring

stationary qubits and a photonic quantum communication channel. In this work, we provide

milestone demonstrations of nuclear memory control of both strongly and weakly coupled

nuclear memories in a technologically mature semiconductor material. This work also ex-

amines, both experimentally and theoretically, the tradeoffs that are inherent to isotopic

purification and offers a pathway towards optimizing nuclear spin concentration to maxi-
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mize the number of usable nuclear memories.

Our results underline the importance of isotopic engineering in designing materials for

solid-state quantum applications. Such engineering can provide a two-fold benefit for quan-

tum memories: it enables control of more nuclear spins by unlocking access to memories

with low hyperfine coupling, while also drastically increasing the coherence of these nuclear

spins[263]. Moreover, isotopic engineering enables the selection of a hyperfine distribution

that can optimally trade off the effect of the “frozen core”[264] against the electron spin

induced noise inherent in realistic quantum communications protocols[180]. Further opti-

mization may also be achieved by considering differing nuclear control methods[182, 265].

Additionally, the demonstrated proof-of-principle nanoscale NMR detection of a single nu-

clear spin (at a distance of ∼1.2 nm) in SiC provides a route for a functionalizable, bio-

compatible platform for quantum sensing with polarization and readout in the biological

near-infrared window[266]. Overall, these results cement defects in SiC as attractive sys-

tems for the development of quantum communication nodes and underline the importance

of isotopic control in material design for future quantum technologies.

13.6 Context

We possessed the isotopically purified sample for a long time before putting it to good scien-

tific use. This was because the charge dynamics in the sample were drastically different than

what we were used to, such that only after learning about charge control (chiefly, using 905

nm excitation) were single defects found and measured. In this work, our newfound ability

to control weakly coupled nuclear spins is critical for the development of quantum network

nodes with SiC. Nuclear spins are exception quantum memories due to the low coupling

of nuclei to their environment, including a ∼ 1000× smaller gyromagnetic ratio compared

to the electron. These quantum memories are ideal for the highly probabilistic entangling

protocols that defects use[179, 180], and in their coherence. In particular, as the memories
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Figure 13.6: Nuclear memories for optically active spins. (A) Schematic lattice show-
ing a central V V 0 and sparse nuclei in the surrounding lattice. (B) A quantum node with a
nuclear memory. The same hyperfine coupling for control also causes errors on the electron
spin to decohere the nuclear memory [180]. (C) Schematic tradeoff of isotopic purification,
too much and there are no nuclear spin memories. Too many and they become low coherence
(along with the electron) [263]. (D) Schematic tradeoff of the choice of the hyperfine value
(A‖) of the memory. Nuclear spins more strongly coupled have higher coherence [264], but

are decohered easily (low ‘nuclear resiliency’) by manipulations of the electron [179, 180].
(E) Schematic noise spectral density (NSD) of the environment of a solid state spin. Nuclear
spin noise is mostly slow but relatively large, while electronic spin noise can be faster and
limit T2.

become more weakly coupled they become exponentially more resilient to noise from the

electron (see appendix B) in that they can endure many entangling attempts as needed for

repeater and entanglement distillation protocols. Furthermore, full error correction with 5

nuclear registers may be possible [198]. We are able to control these nuclei using dynamical

decoupling sequences, preserving the electron coherence and beating the T ∗2 limit for sensing

to couple to a nuclear spin at > 1 nm. The resulting spectral resolution of this sequence (and
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others that used dynamical decoupling) follows the Fourier-transform of the pulse train and

is a Sinc2 that narrows with longer sequences. This proof-of-principle is the first detection

of a single nuclear spin other than in diamond. We also answer the question: “If you could

have any nuclear spin concentration, what would you pick?”. We explore the discuss how a

balance that needs to be struck between too many nuclear spins which cause decoherence

and low gate fidelity, and too few which limits the number of quantum memories (illustrated

in Fig. 13.6). Additionally, as the nuclei become more weakly coupled, they have reduced

coherence and do not benefit from the so called ‘frozen core’ (see Fig. 13.6D). With this

theory, we develop a new framework that which guides and help and optimizes future quan-

tum materials growth and design. The realization of the first entanglement, control, and

spectroscopy of single nuclei in the SiC host, with the reported record-breaking coherences

and gate fidelities establishes V V 0 as a leading qubit candidate.
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Chapter 14

Boulevard of Broken Dreams

“nature never lets you win”

14.1 Overview

No good science is done that is not built on a pile of failed ideas, wasted efforts and lofty, but

broken scientific goals. In hindsight, my early days as a graduate student were filled with

learning and growth, but also with ambitious (or sometimes just ill-thought out) projects

that essentially all didn’t work. The reality is that this is part of the graduate education

process, and some of the best learning comes through failure. Here, I’ll briefly describe some

of these early efforts.

14.2 Masers & Lasers & Graphene, oh my!

A large fraction of my graduate experience was concentrating on creating a room-temperature

solid-state maser out of a very large ensemble of NV − centers in diamond. This diamond was

placed in a high-Q microwave resonator and pumped with a large 18 W 532 nm laser. Apply-

ing a large magnetic field Zeeman shifts ms = −1 below the optically polarized ms = 0 state

creating a population inversion. This spin population inversion through optical pumping in
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Figure 14.1: NV − Maser schematic. (A) Ensemble NV − creation ‘purple haze’ from 1b
high nitrogen content diamonds and high-dose irradiation.(B) Experimental geometry.(C)
Uniform magnetic field tuning with magnet cart stages.(D) Population inversion by optical
pumping.(E) Photograph of experimental setup, dielectric microwave resonator is held in
a low loss teflon holder in a 3D metal box cavity.(F) Microwave mode confinement in the
dielectric with diamond (pink) shown.

a microwave cavity produces spontaneous and stimulated emission (Fig. 14.1). If the gain is

higher than the loss, then the maser serves as an ultralow source and amplifier of microwave

signals, with potential applications in radio astronomy or quantum sensing. This result was

achieved in 2012[267] with molecules and in 2018 with the diamond NV −[268](while I was

working on it), and has been proposed for defects in SiC as well[269]. A brief schematic of

some of the early work is shown in Fig. 14.1.

Related schemes of ensembles of defect spins coupled to microwave cavities have been

proposed for quantum-limited refrigerators or quantum memories for superconducting qubits.

The major issues for this experiment was getting high NV − density with good quality in

a large diamond, along with making a very high quality factor microwave resonator. Non-

uniform optical absorption, heating and laser-induced charge conversion were also problems.

An extension of microwave cavity-NV − ensemble coupling was to move to spheres of YIG

(Yittrium-Iron-Garnet) that have an effective extremely high spin density with narrow spin-

resonance. YIG-cavity strong coupling was measured in the maser experimental setup and
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Figure 14.2: NV − Laser schematic and preliminary results. (A) Experimental ge-
ometry using a folded “Z” optical cavity to correct for aberrations. The central diamond
(grey) is Brewster cut such that the polarized laser cavity mode has no reflections. A 18 W
532 nm pump laser excites through a custom dichroic curved mirror. partially transmissive
end mirrors complete the laser cavity. A red probe laser can be transmitted through the
pumped diamond to measure gain and loss. (B) The laser is an effective 4-level system with
the vibrational states, where stimulated emission can occur on the phonon sideband. (C)
Measurement of the absorption and scattering loss through a 1b diamond (un-irradiated)
corresponding to and absorption coefficient of σ ≈ 0.16 mm−1 (orange fit). This loss was
significantly higher than what would have allowed laser action. (C) Measurement of the
laser power dependent ‘gain’ of the high-NV density diamonds at two different thicknesses
(in the path of the pump/probe). A few % gain is measured, but adding length to the crystal
does not help gain, while it does contribute to loss. The gain saturates and probably arises
from nonuniform absorption in the crystal. The ‘gain’ is mostly likely a loss reduction from
a charge conversion effect (‘photochromism’). (E) ‘gains’ and losses from multiple different
samples of different lengths. Nearly universally, the gains and the losses were comparable
and likely related due to the above consideration. No sample with confirmed stimulated
emission gain greater than loss was ever found.

morphed into related work [270].

A related idea is to use a similarly high density diamond sample as a laser gain medium in

a macroscopic optical cavity. The vibronic structure of the NV − looks just like dye molecules

used in lasers and constitutes an effective 4-level laser system. Due to the ISC, the gain would
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be spin-selective. Because lasers are highly nonlinear (there exists a discrete lasing threshold)

and stimulated emission into one spatial mode can boost collection efficiency, such a system

has been proposed as a record-breaking solid-state magnetometer [271]. This goal has not

been achieved to date, and a few groups are pursuing it. I spent a large amount of time

focusing on this as well, where preliminary measurements of optical gain and loss in the

NV − PSB are shown in Fig. 14.2. Once again, NV − density, quality and size are issues. In

particular, optical loss through the 1b diamonds in the region of interest were prohibitive.

Measurements were performed on various Brewster cut diamonds in a custom-built optical

cavity, and ‘gain’ was measured by looking for stimulated emission from a weak probe laser

on the PSB. Unfortunately, it seems that charge conversion from the powerful pump laser

causes modulations in the loss coefficient and look like ‘gain’. The issues of unwanted losses,

and weak stimulated emission, charge conversion and defect ionization, are hurdles for the

goal for NV − lasing that may be solvable with better materials. Recent work illustrates

these issues and efforts in the field [272–274].

Before the work in chapter 10 using SAW devices, we attempted to use HBAR (High-

overtone Bulk Acoustic Resonators) devices to drive spins (In collaboration with the Bhave

group, Purdue). Due to the larger mode volume, and some other issues, this experiment

was dropped in favor of the focused SAW devices. Furthermore, we originally were creating

superconducting SAW devices out of various materials (GaAs, LiNbO3, Quartz, SiC, etc)

and cooled these resonators in a dilution refrigerator and measured ultra-high Q’s. The goal

was to look towards superconducting qubit-SAW strong coupling. This was achieved in 2018

by a different, but related scientific team [275].

A parallel idea was to explore spin-phonon strong coupling, or cQAD (cavity quantum

acousto-dynamics) with spins. Spins in diamond and SiC have very small coupling strengths

to strain which makes this very difficult. Because of this, we made initial investigations

into defects with larger coupling strengths (along with other more broad defect discovery

efforts). Even then, most likely only ensemble enhanced coupling seems possible. Along
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Figure 14.3: STM of graphene on 4H-SiC. The Moiré pattern and individual atoms are
observable on this epitaxial graphene layer.

these lines, one can think about engineering the phononic density of states to reduce spin-

lattice relaxation for certain defects, which is something we briefly pursued where we created

phononic crystal cavities in SiC. This extension of T1 would constitute a Anechoic chamber

for spins. Finding a defect that has reasonable T1’s that are limited by the direct occupation

of phonons (not Raman) is difficult, however.

Other efforts included being involved in SiC nanoparticle biosensing projects, exploring

defect-mediated ferromagnetism in SiC[276], and in building a preliminary room-temperature

V −Si in SiC setup for possible mechanical coupling or lasing. Finally, I was involved in multiple

projects involving graphene. FRET (Förster Resonance Energy Transfer) can be achieved

using graphene on near-surface NV − centers for electrical readout (which we tried) along

with using the NV − center to sense defects and condensed matter physics in graphene. This

also involved STM imaging of graphene on diamond in which we made samples and made

initial measurements (Jeff Guest, Argonne). Luckily, SiC can grow high-quality epitaxial

graphene which can be used for electrical gating of charge, along with detection of and

coupling to spins in SiC (including spectroscopy of the states using STS). Towards these

goals, we grew graphene on 4H-SiC and took STM images, revealing the expected Moiré

pattern shown in Fig. 14.3 (Sibener Group, UChicago). Our collaborators were even able to
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create defects in graphene by sputtering ions at the material. Unfortunately these projects

still need much more investigation.
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Chapter 15

Conclusions

In this thesis, we’ve gone through the context and background for quantum technologies.

Specifically, the outlook for V V 0 in SiC for quantum communications networks is described.

The work of this thesis broadly develops new engineering and physics for optically active

defects in the solid state.

In particular, the ability to drastically tune the spin-photon interface and eliminate the

issues of spectral diffusion and blinking for a quantum emitter in the near-telecom band,

combined with long coherences and the understanding and development of nuclear quantum

memories, solidifies V V 0 as an exciting candidate for quantum technologies. Leveraging

these wafer scalable systems, and using classical electronic devices, new opportunities for

spin qubits are unlocked.

15.1 Roadmap for Quantum Technologies with Spins

However, there are still outstanding challenges to be met. Here, I will provide a roadmap

for the V V 0 system:

• Achieve single-shot readout. This is the most important outstanding challenge. This is

largely a matter of getting enough correlated photons measured before the information
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is destroyed. There are a few avenues to pursue:

– Boosting collection efficiency by setup design, SILs or photonic integration. Waveg-

uides and tapered/lensed fibers are also very promising. Developing custom high

NA NIR objectives could improve on the largely lacking options in the IR. Adap-

tive optics could help mode match the collected light into single mode fiber. Mul-

timode or sideband-optimized SNSPDs could also drastically increase the number

of photons collected. This has resulted in a factor of 2 for the NV − center[151].

This also boosts η for entanglement efficiency.

– Spin-to-charge conversion. This allows for single-shot despite low collection effi-

ciency, but η will still be low. A good strategy for defects with low cyclicity. This

can be achieved by utilizing spin-dependent ionization with the ISC or some other

mechanism. There is also the possibility for single-shot electrical/APD readout

in SiC devices.

– Swapping to a nuclear memory and performing repetitive QND on the nuclear

spin[176]. This is a slow process, and does not boost η. The depolarization of the

nuclear spins in SiC with repeated electronic readout and initialization has not

been explored.

– Understanding post selection/charge dynamics/spectral diffusion/phonon-induced

mixing/QE that cause less photons to be emitted per experiment. Pick a defect

in SiC that has favorable properties.

• Demonstrate two-photon interference with one defect (with a delay line), or with two

spatially separated defects.

• Show proof-of-principle entanglement between two distant V V 0

• Investigate nuclear memory robustness to the entangling protocol. This is known for

the NV −, but may be drastically different for V V 0. Develop protocols with these
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memories [44, 130], including error correction.

• Develop QFC with V V 0 to the true telecom and extend the links.

• Move to a three-node system, utilizing quantum memories, and show proof-of-principle

entanglement swapping.

• Choose a photonically enhancing structure to boost the DWF, but that does not dras-

tically broaden the PLE lines. Lifetime reduction is less important, and moderate

DWF increases go a long way. This is an important problem that needs to be tackled

early. Degradation from device integration is a near-universal problem, mostly due to

problems at surfaces.

• Integrate electrical tuning and nanophotonics with properly chosen isotopic concentra-

tion (chapter 13) to create optimized devices for the quantum nodes.

• Investigate spectral multiplexing and non-linear networks.

• Develop on-chip detectors, converters, electro-optical components.

• Scale and package into ‘black-box’ closed cycle cryostat systems.

Broadly, this roadmap sets a course for the field in leveraging the advances from this

thesis for a real-world quantum technologies. This will require a combination of materials,

engineering and new physics. That being said, it’s quite likely that things will not proceed

as expected, new avenues will be discovered, or other candidate systems may take the lead.

However, the broad results of this thesis should be applicable to many quantum solid-state

systems and applications.
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Appendix A

Electrical and Optical Control of

Spins in Scalable Semiconductor

Devices: Details

“do it right, don’t do it wrong”

A.1 Materials and Methods

A.1.1 Defect Formation

Single defects can be isolated in commercially available and laboratory-grown wafers of SiC.

In particular, custom grown wafers containing intrinsic, non-intentionally doped epilayers

have sufficiently low enough defect density to isolate sparse single defects through confocal

microscopy. After growth, we use 2 MeV electron irradiation at a dose of 3e13 cm−2 to

introduce vacancies in the lattice, that upon annealing (850 ◦C, 30 minutes, Ar ambient),

form V V 0 and other defect complexes and traps. These defects form in the neutral charge

state if the Fermi level is near mid-gap. In these samples, PL1 (hh), PL2 (kk) and PL4 (kh)

divacancies are observed, consistent with previous reports as confirmed by photolumines-
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cence (PL) spectra, ODMR signatures and photoluminescence excitation (PLE) resonances.

Interestingly, as in other work, we do not observe single (hk) divacancies. In this work, we

use the (VCVSi) convention for the divacancy where k and h refer to the quasi-cubic and

hexagonal sites, respectively.

A.1.2 Device Fabrication

In this work, we use a commercially grown (by Norstel AB, now ST Microelectronics) wafer

of 4H-SiC. The wafer has a n-type substrate ([N ] = 1e18−1e19cm−3, 12−30 mΩ · cm) with

10µm i-type ([N ] < 1e15 cm−3, [V c] ∼ 1e15 cm−3) and 400 nm p-type ([Al] = 7e18 cm−3)

epilayers grown on top, creating a vertical p-i-n junction. After forming isolated V V 0 in these

wafers, Ohmic contact is made uniformly on the back n-type surface using ∼ 300 nm of NiCr

(80/20). This n-type contact is made Ohmic using a 5 minute RTA anneal in Ar ambient at

950 ◦C. Subsequently, lithographically patterned Ohmic contact is made to the top p-type

layer (30 nm Ti, 100 nm Al, 30 nm Au). The top contact is made Ohmic with an anneal

in a quartz tube furnace in Ar at 850 ◦C for 10 minutes. These patterned structures allow

for optical access of the defects under bias. Ohmic contact is confirmed through linearity of

the I-V response between two pads on the same layer for both the top and bottom contact.

After top and bottom contact formation, nearby microwave striplines are fabricated (10 nm

Ti, 150 nm Au), allowing microwave coherent control of the spins.

Additionally, the slight 4 degree off-axis cut of our sample (used for high-quality epitaxy)

means we also apply a slight transverse field to our defect with Stark tuning. In some defects,

this accentuates the inherent strain asymmetry, but in other defects it works against the local

transverse strain and improves the symmetry of the defect. This is a convenient way to both

tune the optical lines and restore symmetry with a single gate demonstrated in Fig. 11.4B.
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A.1.3 Device Characterization

Although the exact interpretation of the I-V characteristics of the device is beyond the scope

of this work, the behavior in Fig. 11.2C is consistent with the temperature dependence of the

built-in voltage and possible non-Ohmic behavior of the top p-contact as the relatively deep

(∼ 0.2 eV ) aluminum acceptors become frozen out at low temperature. Voltages of up to

-420 V without exceeding a leakage current of 1 µA (∼ 100 A/m2) are possible. Reduction

of the leakage current is important to reduce charge dynamics and heating, while allowing

for large electric fields.

A.1.4 Confocal Microscope

Our measurements are performed in a home-built confocal microscope using a 100x near

infrared (NIR) objective with a numerical aperture (NA) of 0.85. The sample is at 5 K (unless

otherwise specified) inside a Montana Cryostation s100 closed-cycle cryostat. The emission

is collected through a 1060XP fiber and detected on a Quantum Opus Superconducting

Nanowire Single Photon Detector (SNSPD). All quoted powers are measured at the sample,

accounting for losses in the setup.

A.1.5 Instrument Error and Linewidth

Photoluminescence excitation (PLE) scans of the optical fine structure convolve the resolu-

tion of our wavemeter and the laser stability (Gaussian) on the true linewidth (Lorentzian).

This results in a Voigt profile. We estimate an upper bound on this total instrumentation

error of 8 MHz from scans on a control cavity. Thus, using the Voigt equation our true

linewidth (from 20 MHz in Fig. 11.4A) may be as narrow as 16 MHz.
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A.1.6 Pulse Sequences and Hahn-echo

For Fig. 11.2B (inset), 11.2D, 11.2E, 11.2F only resonant lasers are used to reduce ionization.

In the inset of Fig. 11.2B lasers tuned to the A1 and Ex line are used simultaneously to

produce constant PL. With the low powers used, the exponential g(2) fit corresponds to

the optical lifetime, from which we can extract an expected lifetime limited linewidth of

approximately 11 MHz. In Fig. 11.2E, 11.2F, 11.2 A laser pulse on the A1 optical line

polarizes the spin state to ms = 0 with high fidelity. Subsequent pulsed microwave control

drives the spin. For readout, counts are collected during a pulse on the cycling Ex transition.

In the Rabi data in Fig. 11.2E, the contrast is not dark count subtracted. In principle

the contrast could exceed 99% with this correction. For Fig. 11.2F, the measurement is

differential by projecting the coherence to either ms = 0 or ms = ±1 and taking the

difference. The Hahn-echo is fit with an envelope e−(τfree/T2)2
.

A.1.7 Photoluminescence Excitation (PLE) Scans

For PLE, a tunable resonant laser (Toptica DLC PRO) is scanned over to optical fine struc-

ture. For all scans presented here, a constant microwave drive is applied to prevent ini-

tialization into a dark spin state. This drive is fast enough to not interfere with the slow

ionization dynamics. PLE scans are performed at zero magnetic field unless otherwise noted.

For the illumination color dependence in Fig. 11.6, these experiments are run with a rapidly

interleaved pulse sequence where the resonant and repumping laser are never on at the same

time to avoid multi-photon interplay between the two lasers.

A.1.8 Interleaved Charge Control Sequences

All measurements unless otherwise noted are at zero magnetic field. This regime allows us

to use a single microwave tone to mix both ms = +1 and ms = −1 with the ms = 0 state.

This prevents a “dark” spin state where population could get trapped and thus enables
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continuous PLE experiments without the need for an off-resonant reset. For Fig. 11.6, the

power dependence of the ionization and repump was taken with a total sequence duration

of 1.25 ms, red pulse time 100 µs, resonant on for 1.1 ms. The repump and resonant are

not on at the same time. The 688 nm diode laser is directly modulated. For Fig. 11.6C an

optical chopper was used synced to pulse the repump when the resonant was off. The total

sequence duration was 2 ms, repump pulse time of 1 ms (50:50 duty cycle chopper) and the

resonant laser was on for 800 µs.

A.2 Supplementary Details

A.2.1 Depth Control Using Doping

For defects complexes that lack a dopant (intrinsic defects), localization cannot be achieved

by the traditional method of local implantation[277] or delta-doping through growth[214]. In

SiC for example, this limits precise depth localization for both V V and VSi defects and can

be problematic for applications such as near surface sensing or photonic crystal integration.

Using doped structures to tune the local Fermi level, we can control the defects stable charge

state[203] and thus provides an alternative method for depth localization. In general, the

V V is only stable in its neutral charge state (in equilibrium) when the Fermi level lies within

the charge stability region of V V 0. This charge stability region can be understood through

DFT calculations, which place this region EV + 1.1 eV < Ef < Ec − 1.1 eV [11, 62]. With

the total bandgap being ∼ 3.2 eV , this roughly localizes the V V 0 to only form and be stable

in the middle 1/3 of the i region (Fig. A.1) in a p-i-n diode. Specifically, i-type layers can

be grown near surface and be very thin < 100 nm for sensing, and localized i-type layers in

the center of photonic cavities could increase coupling efficiencies while also offering in situ

charge control and linewidth tuning techniques.
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Figure A.1: Charge stability region of V V 0 in a p-i-n diode.

A.2.2 Limits of Stark Tuning

We estimate that the limit for Stark tuning will be the shift that occurs right before dielectric

breakdown. From[278], the breakdown field at 300 K is around 300-500 MV/m (at cryogenic

temperatures we expect this to be higher, but the 300 K value is used here). Therefore,

we conservatively estimate a maximum possible Stark shift using the (hh) divacancy dipole

of around 11 GHz/(MV/m) to be above 3 THz, and expect to exceed this in an optimally

engineered cryogenic sample. This corresponds to 30 V in a 100 nm layer (easily achieved

with growth) or 300 V on a 1 µm intrinsic layer.

A.2.3 Threshold Voltages and Stark Shift Dipoles

In general, the displayed Stark tuning in Fig. 11.3B represent just one example defect of

each species in the diode. Within each defect configuration (hh), (kk), (kh) the threshold

voltage where shifts start to occur changes. However, within each species the high field

Stark shift slope remains roughly consistent. At high voltages, the 10 µm i-layer can become

completely depleted and drop the voltage uniformly over the layer thickness (Fig. 11.3C).

For example, we find four (hh) divacancies that have different reverse bias thresholds (5, 15,

40, 70 V), but have similar shift per volt at high fields (1.15, 1.10, 1.20, 1.10 GHz/V). Since

we expect that at high voltage the field will be uniform in the i-region, we can estimate the

field as a function of V to be E=V/10 µm. With this field estimate we obtain similar values

for the (hh) electric dipole moment (11.5, 11.0, 12.0, 11.0 GHz/(MV/m)). Similarly, for
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(kk) divacancies, we measured two defects that had reverse bias thresholds of 80 V and 100

V, with dipoles of 4.8 and 4.1 GHz/(MV/m) respectively. By averaging these Stark dipole

moments, we therefore estimate the Stark electric dipole for (hh) to be 11 GHz/(MV/m)

and for (kk) to be 4.5 GHz/(MV/m). We only report one (kh) defect Stark shift (equivalent

to a dipole of 35 GHz/(MV/m)), but similar data can be found in [7]. In our estimate we do

not take into account the exact angle of the (kh) V V 0 with respect to the c-axis. The small

dipole of the (kk) divacancy makes it more resilient to electrical noise and spectral diffusion.

As described in the main text, we attribute the differences in threshold voltages to the effect

of a finite charge depletion region (at low voltage) slowly reaching different depths in the

sample as we increase the applied voltage (Fig. 11.3C). In a sense, the depletion voltage

needed represents the exact depth of the defect and could be presumably be used to precisely

locate the defect in depth.

A.2.4 Electric Field in the Diode

In general, as described in the previous section, the electric field is non-uniform in the diode.

As mentioned in 11.4, this results from a small residual n-type (“unintentional” doping)

of the nominally “intrinsic” i-type layer. The fact that the i-type layer is not perfectly i-

type means that the field can be dropped over small areas near the p-i or the i-n interfaces

(depending on the residual dopant), instead of being uniformly dropped over the full i-type

region. In particular, for our unintentionally n-doped (n−) layer, a “trapezoidal” depletion in

the p-i-n diode occurs starting near the p−n− interface (Fig. 11.3C)[279]. The exact shape

of this trapezoidal field and charge distribution as a function of voltage can be calculated

from semiconductor transport equations. When this trapezoidal depletion reaches through

the entire intrinsic layer, it is commonly referred to as “punch-through”, above which the

field can be uniformly dropped over the intrinsic region. The width of the depletion and

punch through voltage can be estimated with equation Wd =
√

2εεo|V |
eNd

[116, 278]. Using

Nd = [N ] ∼ 1e15 cm−3, we can estimate a “punch-through” voltage of around 100 V (for a 10
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µm i-layer). This is roughly consistent with the largest threshold voltages for Stark shifts and

depletion observed. The electric field distribution also reflects the regions that are depleted.

This is also sometimes referred to as a “space charge” region. The carrier concentration in

diodes is known to follow an exponential relation in voltage/electric field[279].

A.2.5 Comparison of Stark Shifts and Linewidths with Other Quan-

tum Emitters

Here, we define ∆ as the ratio of the maximum frequency tuning to the observed linewidth.

This metric balances the needs for emitters of tunability and narrowness. In the past, large

tunability has been achieved at the cost of inhomogeneous broadening, and conversely, some

narrow lines have been demonstrated at the cost of tunability. This makes sense since the

shift (S ∼ d · E) and linewidth (Γ ∼ Γ0 + d · δE) are both related to the dipole moment

(d) and thus present an inherent tradeoff (note that Γ0 is proportional to the“transition

dipole moment” but is different from the Stark shift dipole d). Therefore, to account for this

tradeoff, ∆ is an interesting metric. Moreover, this metric also has practical relevance since

it represents the number of resolvable spectral channels that could be used in a spectral-

multiplexed quantum network. A summary of the demonstrated linewidths and tuning

ranges for different solid-state single photon emitters is shown in Table A.2. Recent work

has demonstrated that strain tuning can be a valuable substitute for the Stark effect in

systems with weak dipole moments (d). This tuning capability was used to achieve large

∆ (Table A.2) and to demonstrate dynamically stabilized single photon emission [114]. We

would also like to mention recent work in non-solid state systems (single molecules) [280],

quoting this metric (∆) and achieving ∆ ∼ 40, 000.
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Figure A.2: Comparisons of ∆, the tuning-to-linewidth ratio. Comparison of the
tuning range to linewidth ratio for solid-state single photon emitters (∆). Numbers with “*”
have not been realized experimentally and are a simple combination of the best linewidths
with the largest tuning reported. Numbers without “*” have been experimentally realized.
The references in this table are not adapted to this thesis and the corresponding references
can be compared in [6]

A.2.6 Estimate of the Sensitivity of the Optical Fine Structure to

Electric Fields.

Using the following Lorentzian model for our count rate as a function of excitation frequency

c(f):

c(f) =
A

πγ

[
1 +

(
f−f0
γ

)2
] (A.1)

where f0 is the resonant frequency, γ is the half-width at half-maximum (i.e. half of the

linewidth), A = cmax · γπ , where ccmax is the maximum counts per second on resonance.

First we must compute:

dc

df
=
−2A

γ2π

(x−x0
γ )

(1 + (x−x0
γ )2))2

(A.2)
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Then we note that our signal for an electric field of magnitude E is:

E
dc

dE
· t = E

dc

df

df

dE
· t (A.3)

And if we assume a shot noise limited signal we see that our noise is
√
c · t . Therefore, we

are trying to maximize:

max
fpai

E dc
df

df
dE · t√
c · t

(A.4)

We find that the extrema of that expression are at f = f0 ± γ√
2

and at that point, the

signal-to-noise per second is:

S

N · t
= ∓ df

dE

4E

(3γ)3/2

√
At

π
· 1

t
= ∓1

η
· E 1√

t
(A.5)

Where eta is the sensitivity which we defined as electric field necessary for the signal-to-noise

(per
√
Hz) to be 1. Therefore:

η =
3γ

4 · dfdE

√
3γπ

A
=

3γ

4 · dfdE

√
3

cmax
(A.6)

Using γ = 40 MHz, and an isotropic (this approximation will suffice for this estimation)

df
dE = 10GHz ·

(
MV
m

)−1
we get a single spin sensitivity of about 116 V

m/
√

Hz (a conservative

estimate). State-of-the art in spin based electrometry has sensitivities of 20, 000 V
m/
√

Hz [194]

for single spins and 10 V
m/
√

Hz for extremely large ensembles [195].

A.2.7 Stark Shifts from Single Charges

One way to understand the spectral diffusion in this work is to assume some nearby traps

are capturing or releasing charges. So it is relevant to calculate the effect of a single point

225



(kk)

(hh)

Lifetime limit
Measured linewidth

Figure A.3: Stark shifts from single trapped charges. Stark shift caused by a single
trap at a given distance. The green line is the minimum measured linewidth and the yellow
dashed line is the expected lifetime limit.

charge “appearing” in a trap near the defect. For this we simply use the Coulomb law:

~E =
1

4πε

e

r2
(A.7)

Then if we assume a dipole strength of about 4−11 GHz·(MV/m)−1 we get the rough re-

lation shown in Fig. A.3. This suggests a very high sensitivity to free carriers and fluctuating

trapped charges and helps us understand why charge depletion is useful.

We expect that the linewidth Γ ∝
√
N from N uniform-strength fluctuators. With our

measured reduction of the linewidth by a factor of 50, this corresponds to over three orders

of magnitude reduction in fluctuating electrical charge traps. (A more accurate description

is found in section 6.2, where Γ ∝ ρ2/3 and this is a 300× reduction in fluctuating trap

density) Note that the only relevant traps in these estimates are the fluctuating traps. For

shallow traps like Nitrogen, most dopants will be fluctuating between charge states under

illumination with almost any color.

226



A.2.8 Optical Linewidths in Other Commercial SiC Material, Gen-

eralizability

The narrowest linewidths achieved in commercial i-type material from the same company

that provided the p-i-n diode material is around 120 MHz at best. For example, in the

data in [7] the undepleted linewidth of a (kh) V V 0 is over 200 MHz for all observed defects

for material from the same company (Fig. A.4A). A relatively good (hh) divacancy with

linewidth of 135 MHz is shown in Fig. A.4B. For specially grown material, one defect was

found with a 80 MHz linewidth, but most defects from that sample were above 120 MHz in

linewidth[55]. These linewidths are sample dependent and depend on the impurity density

that causes spectral diffusion.

We note that in Ref. [7], a similar narrowing effect with comparable magnitude is demon-

strated as an extension of this work. Furthermore, all observed defects here displayed qual-

itatively similar linewidth reduction. In general, the techniques shown in this work offer a

possibility to mitigate noise from residual impurities in a wide range of solid-state materials

(not limited to SiC) with charge depletion.

A.2.9 Temperature Dependence of the Linewidth

The temperature dependence of the linewidth gives a physical understanding of the dephasing

mechanism. At higher temperatures than those studied here (> 15 K) [55] the linewidth for

single V V 0 follows a T 5 power law. This power law is consistent with a Raman two-phonon

dephasing that exists for the NV − center[281]. However, these previous studies were limited

by broad lines that did not allow a study of the temperature dependence below 15 K (limited

by impurities). At these low temperatures, the power law deviates from T 5 and is fitted to

be closer to a T 3 power law for single (kk) V V 0. Power laws of the PLE linewidth in single

emitters have been described ranging from linear to T 7, but a T 3 power law has been found

to arise from two possibilities:
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254(5)  MHz
(kh)

135(5)  MHz
(hh)

A

B

Figure A.4: PLE spectra of defects in bulk intrinsic material. (A) Example PLE
scan of a single (kh) and a (B) single (hh) V V 0 in intrinsic commercial material (not the
p-i-n diode measured here).

1. A two-phonon process in the limit where the strain is small compared to the spin-orbit

interaction in the excited state [282], where at high strain it transitions to a T 5 power

law.

2. A one-phonon process in a piezoelectric material [219].

Following [282], we believe case 1 is less likely due to the negligible effect of transverse

asymmetry (strain) on the linewidth observed (Fig. 11.4B). Case 2 is plausible since SiC is

a slightly piezoelectric material, in contrast to diamond. However, further investigation will

be required to completely understand the origin of the observed power law. Furthermore,
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Figure A.5: PL charge transition hysteresis.

different temperature dependences and behaviors can be expected for the PL4 (hk) divacancy,

due to the differences in orbital structure.

A.2.10 Threshold Hysteresis

The observed charge switching behavior under variable voltage has a hysteresis behavior,

potentially related to trapping charges[201, 283]. An example curve is shown Fig. SA.5. Such

trapping of charge under cyclic voltage waveforms forms the basis of performing EDMR[284]

measurements in SiC.

A.2.11 Single Defect Charge Dynamics (Blinking)

In the main text, we mention a blinking behavior with continuous repump and ionization

tones. An example of such behavior is shown in Fig. A.6. The binning of this “telegraph”

behavior results in periods of high and low PL (near zero). In Fig. 11.6, we use the average

time spent in the high state as a measure of the ionization rate and the average time spent

in the low state as a measure of the repump rate. In this section, we demonstrate more

formally why using these average times as a proxy for the rate is a valid approach.

First we assume that when we are in V V 0 state, there is a constant probability of ionizing

(see the Markov chain in Fig. A.7). Therefore, the process is memoryless and the only

memoryless continuous function is the exponential function. Thus, the probability of a
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Figure A.6: Blinking dynamics. Example of blinking dynamics of PL (red) under contin-
uous 688 nm and resonant excitation, with binning for analysis (purple).

Figure A.7: Markov chain of charge dynamics. Markov chain diagram representing the
transition rates involved in the ionization and repump processes.

”high event” having a duration t is:

P (t) =
1

τ
e−t/τ (A.8)

where 1
τ is the ionization rate. In our analysis we take the duration of several “high

events” and consider them as sampling [X0, . . . , XN ] of a random variable X sampled from
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the probability distribution above. Since we know that:

E[X] =

∫ ∞
x=0

x · 1

τ
e−

x
τ dx = τ

∫ ∞
α=0

αe−αdα = τ (A.9)

We estimate the ionization rate τ−1 using the maximum likelihood estimator which

corresponds to the sample mean τ̂ = E[X] ≈ x̄ . Additionally, we can calculate the error

bar we should use for the sample mean by estimating the confidence interval. This is done

first by transforming our random variable to X̃ = 2·X
τ (where τ is the actual distribution

mean (as opposed to the estimator) and therefore X̃ now has a mean of 2). Then, by noting

that the distribution of the sum of N exponential random variables X̃0 . . . X̃N (with mean

2) is equal to the Gamma distribution:

∑
i

X̃i = ΓN,2(x̃) =
1

Γ(N)2N
x̃N−1e−x̃/2 (A.10)

This is simply the pdf of the chi-square distribution with 2N degrees of freedom χ2
2N (x̃).

Therefore,

2

τ

∑
i

Xi =
∑
i

X̃i = χ2
2N (x̃) (A.11)

If we define the quantile functionQ as the inverse of the χ2
2N CDF (i.e. Q2N (CDF2N (x̃)) = x̃))

we see that Q2N (p) = x̃ : p = P (X̃ ≤ x̃) (For a continuous and strictly monotonic CDF).

Therefore, for a confidence interval of (1− α)% we want:

Q2N (1− α/2) <
2

τ

∑
i

Xi < Q2N (α/2) (A.12)

Therefore, we have:

2
∑
iXi

Q2N (1− α/2)
< τ <

2
∑
iXi

Q2N (α/2)
(A.13)

which reduces to

2Nτ̂

Q2N (1− α/2)
< τ <

2Nτ̂

Q2N (α/2)
(A.14)
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Where τ̂ = x̄ is our sample mean. In our analysis we use the Python scipy.stats.chi2.ppf

function to compute Q2N (p). For our error bars we used a 2-sigma equivalent interval of

95.6% (α = 4.4%). Reference for this analysis is described in [285].

A.2.12 Theory of Two-Photon Ionization

Two explanations have been suggested for the ionization of the divacancy in SiC. One pro-

poses a two-photon ionization into the negative charge state V V − [11, 62], the other suggest

a four step process into V V + [192, 226] involving a total of three photons in the process.

Our results (Fig. 11.6A) show a quadratic behavior (consistent with two-photon) below sat-

uration and a linear relation after saturation is reached. The only way two reconcile these

results with the proposed V V + scenario is to assume the second photon excitation (∆Ea
2

in Fig. 3 of[192] is much more efficient at ∼ 265 THz then the initial excitation (∆Ea
1 in

the same figure). We find this unlikely since the first excitation is specifically made to be

resonant and the second excitation would most likely be off-resonant. Therefore, for the

purpose of this section we will assume a simple two-photon ionization process consisting in:

• One excitation from the ground-state (|GS〉) to the excited state (|ES〉)

• One excitation from the excited-state (|ES〉) to the ionized state (
∣∣V V −〉)

Two-photon ionization events are usually assumed to be quadratic in power. However, this

is only a valid assumption in the limit of a very short (or even virtual) intermediate state

lifetimes. For an intermediate state lifetime similar to excitation times or above (saturation),

the behavior becomes linear. To see the analytical form of the power dependence, let’s use

the following states (shown in Fig. A.7)

~φ =


φ0

φ1

φ2

 =


GS

ES

V V −

 (A.15)
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And setup the following rate equations:

∂~φ

∂t
=


−AP AP + ΓES r1

AP −AP −BP − ΓES r2

0 BP −r1 − r2

 · ~φ (A.16)

We can get the steady state solution by getting the eigenvector corresponding to an

eigenvalue of 0. In this case the non-normalized solution is:

φ0 =
(r1+r2)(AP+ΓES)

ABP 2 + r1
AP

φ1 = r1+r2
BP

φ2 = 1

(A.17)

From these we can calculate various quantities of interest.

Ionization Rate

For the ionization rate we are looking for the probability of transition to V V − given that

we are in V V 0. First we compute:

Prob
(

ES|V V 0
)

=
Prob(ES)

Prob(ES) + Prob(GS)
=

φ1

φ0 + φ1
=

AP

2AP +BP r1
r1+r2

+ ΓES
(A.18)

Then the ionization rate is given by:

Prob
(

ES|V V 0
)
·BP =

ABP 2

2AP +BP r1
r1+r2

+ ΓES
(A.19)

This is used in the fit of Fig. 11.6A.

PL From Off-Resonant with a Red Repump

Here we assume the main source of repump is from the red (not the off-resonant NIR laser).

If we hold the red power constant, the effective repump rates can still be empirically describe
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by r1 and r2. Here we are interested in:

Prob(ES) =
AP

BP (AP+r1)
r1+r2

+ 2AP + ΓES

(A.20)

In the high power regime,

Prob(ES) ≈ r1 + r2
BP

(A.21)

Since PL = ΓES · Prob(ES) this demonstrates why at high power the PL disappears for

both singles and ensembles.

PL From Off-Resonant with an Off-Resonant Repump

In the case of 905 nm illumination for example, the repump power is proportional to the

pump power therefore if we substitute ri for P · ri,P we find:

Prob(ES) =
AP

BP (A+r1,P )
r1,P+r2,P

+ 2AP + ΓES

(A.22)

Therefore, at high power we have a finite constant equilibrium population:

Prob(ES) ≈ A

B(A+r1,P )
r1,P+r2,P

+ 2A
(A.23)

A.2.13 Possible Resonances for the Charge Reset

The observed charge repumping and reset can have multiple origins (as described in the main

text). Here we suggest two possibilities for this resonance. Charge Trap Photoionization

The energy of 710 nm is approximately 1.75 eV, corresponding to a charge trap having

a photoionization resonance [286] at this energy. Upon ionization, this trap can provide

a carrier for the V V to capture. Looking for possible candidates for this resonance by

matching with formation energies calculations [62] we identify Vc, which is the most common

compensating defect in our SiC samples. Therefore, we find Vc to be the most plausible trap
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candidate. Vc transitions from 0→ + can occur at energies above Eg−1.8 eV ∼ 1.5 eV and

its transition from +→ 0 can occur above ∼ 1.8 eV . Therefore, once that photon energy is

reached, Vc can freely cycle between 0↔ + resulting a source of free carriers (both electrons

and holes) which can recombine with the divacancy.

Direct Ionization

The other possibility is a direct ionization of V V −. Direct ionization to the conduction

band (CB) is predicted to occur at a pump energy Ep > 1.3 eV from experiment and theory

[11, 62]. However, V V is known to have a second set of ex, ey single particle orbitals that lay

in or near the CB. These orbitals could result in a resonance in the band (near 1.75 eV) that

very efficiently converts V V − to V V 0. Such a resonance for ionization has been proposed

for both the NV − center in diamond [206] and for the V V [226]. Initial DFT results point

to several possible resonances in the charge dynamics from the singlet and triplet states[94]

that could be related to this or changes in the DOS in the CB.

A.2.14 Spectral Diffusion and Ionization Under Various Illumina-

tion Wavelengths

In optimizing the repump, we show that the reset rate is most efficient around 710 nm (Fig.

11.6C). Here, we show that this wavelength is also ideal in that there this little added spectral

diffusion or ionization added (Fig. A.8). Sweeping over the PLE resonance many times (Fig.

A.9) and integrating the total intensity over many sweep gives the time-averaged intensity

of the line. This time averaged PL is high when there is no added ionization and low when

significant photoionization is present. The inhomogeneous linewidth quoted represents the

time-averaged PLE width over many scans and many minutes. This metric captures added

spectral hopping from the choice of repump wavelength.

We observe that around 710 nm negligible ionization and broadening is added to the PLE

lines, while higher energy illumination such as 520 nm (2.38 eV) is found to greatly increase
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~710 nm

da
rk

VV- VV0

Figure A.8: Optimizing the charge reset laser color. (top) shows the data from 11.6C.
(bottom) shows the total PLE integrated intensity (green) over many sweeps (such as in
11.4D), this metric includes blinking and any other photo-instability which manifests as
reduced signal. PLE inhomogeneous linewidth (blue) over many scans with no compensation
for jumps or drifts as a function of wavelength. Each wavelength has the same power at
sample (≈ 180 nW). The shaded areas are guides to the eye representing the onset of two-
photon ionization (yellow) due to the absorption sideband of V V 0 and the energy by which
V V 0 is directly one-photon ionized (red). All error bars represent 95% confidence intervals
from the fit of the raw data and are from a single (kk) V V 0.

the added ionization and spectral diffusion, consistent with a direct ionization process pre-

dicted through defect formation energies[192]. In ensembles, off-resonant light around 905

nm (1.37 eV) was found to be near optimal in producing PL, as that wavelength both excites

the defect and repumps the charge state [11, 62, 226]. Here, we confirm those dynamics in

a single defect, where 905 nm adds a small amount of repumping, while a 975 nm (1.27 eV)

236



520 nm 905 nm705 nm

Figure A.9: Color dependence of blinking and spectral diffusion. PLE sweeps over
many scans at different wavelengths. These scans were used to generate the data in A.8.
Plots share same x-axis but different total times. Increased spectral diffusion is apparent
with the 520 nm and additional blinking is observed with the 905 nm. These scans are at
the same optical power. The 705 nm plot corresponds to Fig. 11.4A.

laser bleaches the defect without recovery with these powers (Fig. A.8). However, 905 nm

excitation also increases the ionization rate and is much less efficient than red laser colors

around 700 nm in resetting the charge (Fig. A.9). In addition, due to the higher powers

necessary to stabilize the charge, 905 nm similarly adds to spectral diffusion of the PLE lines

resulting in a broadening [202]. In general, because the absorption of resonant light is very

efficient, it is preferable to use off-resonant light whose greater power causes much higher

two-photon ionization rates. However, some off-resonant illumination energies (such as 905

nm) can additionally repump the divacancy into the correct charge state, while resonant

light does not reset the charge charge of V V 0. Therefore, to reduce all unwanted ionization

and to have independent and efficient control of the charge state, the ideal scenario is to use

resonant light and a designated charge reset laser to stabilize the defect (red, ∼710 nm).
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Figure A.10: Ionization and reset cross sections. Cross sections for absorption (σa),
ionizing (σi) and repumping (σr) with various illumination wavelengths. For reference, the
saturation power at sample is 14 mW for 905 nm and 9 mW for 975 nm.

A.2.15 Charge Ionization and Repumping Cross Sections

With the power dependences of Fig. 11.5A, and Fig. 11.6A, along with the equations in

section A.2.12, we can extract the relevant ionization and repumping cross sections as shown

in Table S2A.10. This uses the relation:

Rate =
Pσ

A~ω
(A.24)

Where P is the optical power over area A (the spot size), and ~ω is the energy of a single

photon of a given wavelength. We also use the fact that the saturation of the emitter occurs:

PL(P ) = A
1+P/Psat

, where 1
τ = Psatσa

A~ω and is the emitter lifetime of ∼ 15 ns.

A.2.16 Deterministic Charge Control

In the main text, deterministic charge control is claimed to be possible. Here, we will discuss

that claim. In general, the charge control is deterministic if there is an independent control

of both V V 0 → V V − and V V − → V V 0, such that upon applying that control, the desired

charge state can be set with high fidelity. The selectivity of these rates determines the

maximum fidelity possible of the desired charge state, and the rates themselves determine

the time the control needs to be on for a given fidelity. First, at these temperatures the
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Figure A.11: Deterministic charge control. (A) Ionization rate with changing repump
power. (B) Reset rate with changing resonant power. The independence of the charge
reset rate on ionization power and the charge ionization rate on reset power demonstrated
independent and therefore deterministic control.

charge states are extremely stable [11], so no thermal process can interfere with the control.

Second, we demonstrate that upon changing the repump power, the ionization rate does not

change (Fig. A.11A) and that upon changing the resonant power, the repump rate does not

change (Fig. A.11B).

Thus, the red repump and the resonant two-photon ionizing laser are independent controls

of the defect charge state. By pumping with red for an extended period of time, very high

fidelity charge state initialization into V V 0 is possible. However, from Fig. S7 we note

that the red repump may add a small amount of ionization. A conservative estimate from

the errors on Fig. A.11 puts the ratio of the added change to about 1/10 to 1/20 of the
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total ionization and reset rate, giving a lower limit of 90-95% deterministic charge state

preparation fidelity. This fidelity is also for 688 nm repump wavelength, not the much more

efficient reset around 710 nm. This already competes with the best charge state manipulation

of the NV − in diamond, and we expect the true fidelity to be higher [177]. In principle,

the well-resolved periods of low and high PL demonstrated means that single-shot charge

readout is attainable, allowing for measurement and correction towards a particular charge

state. We note that this deterministic charge state control is optimal under electric fields,

where ionization events cause the charge to drift and be lost, instead of being able to be

recaptured by the defect. For example, at zero electric field most single defects are stable

under resonant excitation, as they live in a bath of photoionized charges (undepleted).

A.2.17 Distinction Between Different Types of Inhomogeneous

Broadening

In the main text we show how one can use electric fields to reduce spectral diffusion of

the optical lines which contributes to the overall “inhomogeneous linewidth”. However, the

term “inhomogeneous linewidth” is used in various contexts to refer to several different

effects which can broaden the line from the fundamental “homogeneous linewidth”. As such,

we would like to make a distinction here between a few different types of “inhomogeneous

broadening” and discuss the relevance of these effects and how they relate to our system.

First, for a single defect, spectral diffusion over time can cause inhomogeneous broadening

of the optical line. We’ll call this “temporal inhomogeneous broadening”. This “temporal

broadening” as compared with the homogeneous linewidth is indeed of critical importance

and is one of the main issues addressed in this work. As we have shown in Fig. 11.4, the

“temporal inhomogeneous broadening” seems to be mainly due to electric field noise and

can be mitigated to a great extent by charge depletion. In Fig. 11.4A, we observe this

temporal inhomogeneous linewidth to be around 31 MHz over 3 hours. As mentioned in Fig.

11.4C and in section A.1 section, we believe this could be further improved by slightly lower
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Figure A.12: Histograms of PLE center frequencies. Spatial inhomogeneous (defects at
different spatial locations) optical frequency distribution for (kk) defects in a semi-insulating
sample for both the Ex (left) and Ey (right) transitions.

sample temperature and less instrumentation errors on the wavelength readout. Second, for

a set of defects spatially distributed in a sample, we can observe some shifts in the exact

position of the optical lines most likely due to local strain variations. We’ll call this “spatial

inhomogeneous broadening”. This is an important criterion, since it sets a lower bond for

the Stark shift necessary to enable two random defects to be tuned into resonance with one

another. Here, we have provided an estimate based on statistics taken on a semi-insulating

sample (see Fig. A.12). This data suggests that the “spatial inhomogeneous broadening” is

roughly around 5 GHz, well below the demonstrated tuning range.

Third, one could also wonder about the variation between significantly different samples

(different wafers having different strain, epilayer composition, growth conditions, for exam-

ple We’ll call this “sample-to-sample variation”. A precise measure of “sample-to-sample

variation” is tricky since we only have a distinct number of wafers and we generally try to

have these wafers as similar as possible. However, our experience with several types of wafers

(both commercially and custom grown, and with different epilayers) suggest variations to be

on the order of ∼100-200 GHz. Of course, the more extreme the changes to the host material

is, the higher these variations are expected to be. However, in a practical implementation
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of a quantum node the samples at play would most likely be chosen to be nominally iden-

tical, thus greatly reducing this number. In short, our demonstrated tuning range of ∼850

GHz easily covers both the “temporal” and “spatial” inhomogeneous linewidth (by orders

of magnitude) and would undoubtedly cover the “sample-to-sample” variations present in

nominally similar chips.

A.2.18 Effect of Charge Depletion on Spin Coherence

In this work, we demonstrate the effect of charge depletion on the optical linewidth. However,

one could also wonder what effects depletion might have on the spin coherences. Although

this is beyond the scope for this paper (and we did not directly observe any obvious effects),

we do believe this is an exciting research avenue. There are two possible ways in which charge

depletion could contribute to longer coherences. First, the direct reduction in E-field noise

could help to mitigate dephasing due to the E-field coupling terms in the spin Hamiltonian.

Second, by changing the charge state of nearby traps, the depletion region could modify the

total spin of these traps, potentially changing the effective induced B-field noise.

A.2.19 Charge Feedback Protocol and Rates

Charge dynamics are a major problem that many solid-state systems need to contend with.

In the NV −center in diamond for example, this issue has been addressed using feedback

protocols [174]. In particular, these protocols require readout and control of the charge

state of the defect. This manuscript demonstrates two aspects of our system which will

make it amenable to these types of feedback protocols. First, the divacancy simply goes

dark once ionized (without a red repump) and does not return to the neutral state even

when a resonant readout laser is applied. This facilitates reading out the charge state, as a

weak resonant tone (such that two-photon ionization is negligible) can confirm the presence

or absence of the divacancy in the correct charge state, without causing unwanted charge

flipping. Second, we show that we can use red light to deterministically repump into the
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Figure A.13: Pulse sequences. Pulse sequences for (A) Rabi oscillations, (B) Hahn echo,
and (C) charge hopping experiments. These correspond to the descriptions in A.1.

neutral charge state, giving us an ideal control for the feedback loop. Since this repump could

be fast (by increasing the red power to a few mW) it would have minimal effect on the duty

cycle. In general, the charge conversion rates demonstrated here are slow. However, this was

mostly done for ease of experiment and to avoid timescales associated with the intersystem

crossing. Despite this, there is no obvious limit for the ionization and reset rates, where

we expect timescales of µs are readily accessible by increasing the powers from nW to mW

[116].

A.2.20 Supplementary Plots
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Figure A.14: Semi-log plot of the absolute value of current from the IV curve for
the device at 5K.
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Appendix B

Entanglement and Control of Single

Quantum Memories in Isotopically

Engineered Silicon Carbide: Details

This appendix contains preliminary supplemental details for [1].

B.1 Methods

B.1.1 Single Defect Observation and Control

Single defects are observed in a home-built confocal microscope operating at T= 5 K with a

Montana Cryostation s100 closed-cycle cryostat. We utilize a high NA (0.85) NIR objective

and single-mode fiber coupled (1060XP) IR-optimized SNSPD (Quantum Opus) and observe

single defects with 40-50 kcts at saturation. 905 nm excitation is used along with a weak 705

nm tone for charge stabilization[6]. Microwave striplines are fabricated alongside an electrical

control planar capacitor (10 nm Ti, 150 nm Au) using electron beam lithography. In 4H-SiC,

single PL1 (hh), PL2 (kk) and PL4 (kh) defects are observed and are labelled following the

VcVSi convention and where h represents the hexagonal lattice site and k the quasi-cubic
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lattice site. The c-axis refers to the crystallographic axis in SiC which corresponds to the

stacking direction of the hexagonal layers of SiC ([0001]). Basal defects are oriented along

one of the basal planes. Resonant readout and initialization[6, 55] (realized using a tunable

Toptica DLC PRO laser) can result in Rabi contrast exceeding 99% in optically detected

magnetic resonance (ODMR) (Fig. B.1). This corresponds to the highest Rabi contrast

reported in SiC and provides an achievable lower bound for initialization and readout errors

combined. Reported coherences are for representative single defects.

For the strongly coupled nuclear spin experiments, Gaussian pulse shaping is used to

perform spectrally narrow manipulation of the quantum registers. 13C registers are also

available[79], but occur with lower probability in both the natural and isotopic samples. For

nuclear spin spectroscopy and control, randomized benchmarking and coherence measure-

ments, square pulses were used with π pulse times ranging from 50 ns to 1 µs. Magnetic

fields are applied with a large permanent magnet on a goniometer. Alignment at high field is

achieved by reducing the mixing from off-axis magnetic fields, visible through the PLE mag-

nitude after initializing the spin (a measure of cyclicity). In order to zero the magnetic field

for kh divacancies, we utilize a three-axis electromagnet. Using a nearby c-axis kk defect as

a magnetometer, the field is zeroed by reducing the splitting between the very narrow CW

ODMR lines in the isotopically purified sample (<20 kHz).

B.1.2 Materials Growth

Natural 4H-SiC was obtained from Norstel AB (now ST Microelectronics) in the form of

a 20 µm intrinsic epitaxial layer grown on 4 off-axis HPSI 4H-SiC. This layer contains

< 1× 1015 cm−3 Vc. For the isotopically purified (“isotopic”) sample, epitaxial 4H-SiC was

CVD grown on a 4 degree off-axis n-type 4H-SiC substrate at a thickness of ∼90 µm using

isotopically purified Si and C precursor gasses. The purity is estimated to be 99.85% 28Si

and 99.98% 12C, which was confirmed by secondary ion mass spectroscopy (SIMS). C-V

measurements show a slightly n-type behavior of this layer with a free carrier concentration
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of 6 × 1013cm3. This roughly matches the measured concentration (3.5 × 1013cm−3) of

nitrogen through comparisons of the bound exciton lines. DLTS places the Vc concentration

at the mid 1012cm−3 range before irradiation.

In the naturally abundant material, single defects are created using a 11013cm−2 dose of

2 MeV relativistic electrons. Subsequent annealing at 810 C in an Ar environment produces

spatially isolated single V V 0. For the isotopically purified material, an electron dose of

1× 1013cm− 2 (Fig. 13.5) and 5× 1014cm−2 (Fig. 13.1,13.2,13.3) are used. Despite the low

impurity and defect content of the starting material, this means that the number of induced

displacements[105] in the lattice after irradiation can be as high as 0.5− 3 cm−1× (dose) =

(0.25−1.5)×1015 cm−3. These defects can be paramagnetic and most likely consists of VC ,

VSi and associated vacancy complexes. This is also a relatively common range even before

irradiation in commercially available material. Upon annealing, divacancies are created

along with other paramagnetic defects. Higher spin species or laser-induced scrambling of

the charge states of these paramagnetic impurities may also increase the effect of impurities

with respect to CCE.

Furthermore, the observed optical linewidth is significantly broadened by spectral diffu-

sion. In this material, lines are in the 150-350 MHz range. We can use this broadening to

estimate18 the trap density to be 3× 1014− 3× 1015cm−3 for the kk defect, which would be

consistent with the observed Hahn echo times if these trap are assumed to be paramagnetic.

B.1.3 Calculations of Coherence Functions

Cluster-correlation expansion (CCE) calculations of the coherence function for the nuclear

spins were carried out according to the method outlined by Yang and Liu[287] with the choice

of parameters described by Seo et al.[102]. We apply the CCE up to second order under the

assumption that the flip rate of each pair of electron spins is not impacted significantly by

interactions with the spins outside a given pair. The total coherence function (L) can be

factorized into contributions from electron and nuclear spins, respectively: L(t) = Lelectron ·
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LLnuclear.

B.1.4 Calculations of Nuclear Memory Availability

In order to decide whether the nuclear spin at the lattice site i can be used as a memory, we

evaluated the state fidelity of the electron spin state after a nuclear induced rotation. The

fidelity can be inferred from the electron magnetization along the x-axis. Assuming that

nuclei-nuclei interactions are neglegible, the expectation value of the electron magnetization

along the x-axis at a given N and τ in the presence of a nucleus i can be expressed as

M̃i = E (M |Mi ∈M) = Mi

∏
j 6=i

E
(
Mj
)

(B.1)

where Mi(Mj) is the conditional magnetization when only one nucleus (at lattice site i(j))

interacts with the electron, j runs over all other possible nuclear positions, and E(Mj) is the

expectation value of the conditional magnetization. A nucleus at lattice site j is considered to

be useable as a memory unit if there exist at least one set of N and τ with N2τ smaller than

a maximum gate time, such that the fidelity of the electron spin after rotation M̃i(N, τ) is

higher than a certain threshold Fmin. The average number of nuclei i present at this lattice

site is equal to the concentration of the spin-1
2 isotope ci. The resulting total number of

usable memory units is computed as the sum of ci for all i that meet the fidelity criterion

for at least one set of N, τ :

Nmem =

F
(
M̃i

)
≥Fmin∑
i

ci (B.2)

B.1.5 Hyperfine Cutoff Value

A cutoff of A‖ = 2π · 60 kHz is used in this work as a rough guideline for when hyperfine

are low enough to act as optimal quantum memories. This corresponds to hyperfine values

that were found to be ideal for communication protocols with the NV − in diamond[179,
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Figure B.1: 99% Rabi. Rabi with > 99% contrast indicating that we can initialize, control
and readout our electron spin qubit with less than 1% combined error.

180]. Coincidentally, this cutoff is also roughly the same order of magnitude as the ODMR

linewidth we measure in isotopic samples (20 kHz) and provides an approximate limit for

the lowest hyperfine spin which could be considered strongly coupled.

B.2 Supplementary Details

B.2.1 Probability to Have Strongly Coupled 29Si Spins

When considering c-axis divacancy defects and only the 3 nearest sites[79], there are 12

possible 29Si locations that result in a strongly coupled electron-nuclear system. The isotopic

concentration of 29Si is 4.685%. Thus, the probability of finding 0 or 1 strongly coupled

29Si spins is:
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P0 = (1− 0.04685)12

P1 = 12 · (1− 0.04685)11 · 0.04685
(B.3)

In order to evaluate the probability to find 2 strongly coupled 29Si spins we need to

ensure we do not count cases where the two 29Si are at degenerate sites. Since there are two

3-fold degenerate cases and one 6-fold degenerate case, we have:

P2 = (1− 0.04685)10 · 0.046852 · (6 · 3 · 3) (B.4)

Finally, for all three non-degenerate sites having exactly 1 29Si we have:

P3 = (1− 0.04685)9 · 0.046853 · (6 · 3 · 3) (B.5)

Number of 29Si Probability

0 56.23%

1 33.16%

2 6.11%

3 0.36%

(B.6)

B.2.2 Initialization Fidelity of Strongly Couple Nuclear Spins

To determine the initialization fidelity, we use the fitted peak amplitudes in Fig. 13.1b,

which correspond to the electron spin transitions at two different frequencies which depends

on the nuclear spin state. We then simply use these peak amplitudes as the diagonal elements

(populations) of a density matrix (with off-diagonal terms = 0). We then renormalize the

elements such that the trace is 1 and then compare to the ideal target density matrix using

the qutip.fidelity function which implements the following metric:
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Figure B.2: Two register control. Independent control of the two nuclear registers in
the strongly coupled 3-qubit system described in the main text. These correspond to a
C±1NOTn rotation performed using a direct RF drive.

F (ρ, σ) =
√

Tr[
√
ρσ
√
ρ] (B.7)

B.2.3 Independent Control of Nuclear Spins in the 3-qubit System

After finding a defect with 2 distinguishable strongly coupled nuclear spins, we demonstrate

that we can control them independently by performing a nuclear Rabi oscillation on each of

them. The results are shown in Fig. B.2.

B.2.4 Quantum State Tomography

To obtain the complete density matrix from our experiment we first need to perform the

same experiment several time while swapping the readout sequence to probe the different

terms of the density matrix[181]. Since we know that the density matrix is self-adjoint

(ρ
ij=ρ

∗
ji

) we do not need to measure ρij if we already know ρji. Additionally, we know

that the diagonal terms must be real and positive. Therefore, for a 4×4 density matrix we

are left with 6 complex numbers (12 measurements) and 4 real numbers (4 measurements)
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Figure B.3: QST. — Quantum state tomography showing the absolute value of the density
matrix at every stage of the entanglement process shown in Fig. 13.1.

to be determined, which will require a total of 16 measurements. In addition, we record

1 value for a “zero” measurement (to subtract any systematic background) and 2 values

that we can use to determine K (the brightness difference between the two electronic states

in optical readout) by simply initializing the electron spin with a certain known fidelity

(here we have used a conservative estimate of 90%). The off-diagonal terms are then simply

obtained by normalizing the appropriate measurements by 2K. The diagonal terms can be

found by solving the linear system composed by the 4 measurements. Note, that by using all

4 measurements we do not explicitly enforce that the trace should be one. Instead we simply

we need to find the closest match of non-negative diagonal values such as to minimizes the

square error and ensure a trace of 1. Thus we are essentially trying to fit an overdetermined

set of linear equations.

B.2.5 Entangled State Fidelity

To create an entangled state, we use the quantum circuit shown in Fig. 13.1d and expanded

in Fig. B.3. In this circuit, the last gate (Z-gate) is not explicit, but rather simply results

from the fact that the state rotates under magnetic field in the standard rotating wave basis.

We can show this rotation by varying the time delay between state preparation and readout

(Fig. B.4). Therefore, to extract the true state fidelity, we can simply find the maximum

fidelity with respect to a Z rotation angle (Fig. B.5). Doing so, we find a rotation angle of
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Figure B.4: Entangled state oscillations. Rotation that occurs as we increase the wait
time before the state tomography.

Figure B.5: Entangled state fidelity as a function of assumed z-rotation
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32.1 degrees for the particular measurement delay in experiment, corresponding entangled

state fidelity of 80.76% (as computed using the qutip.fidelity function[288]).

B.2.6 Positive Partial Transpose (PPT) Test

To confirm that we have an entangled state, we wish to check that the state corresponding

to the density matrix is not separable. The Peres–Horodecki criterion (also known as the

positive partial transpose (PPT) test) states that if ρ(TA) has negative eigenvalues, then it

cannot be separable. Applying this test to our density matrix we get one of the eigenvalue

at -0.171 thus confirming a non-separable state

B.2.7 XY8 Pulse Sequence

For CPMG based control of the nuclear spins, we utilize a XY8-based sequence by alternating

between X(I) and Y(Q) quadrature π pulses in the scheme:

π
2−(τ−πx−2τ−πy−2τ−πx−2τ−πy−2τ−πy−2τ−πx−2τ−πy−2τ−πx−τ)

N/8−τ−±π2 (B.8)

With the spacing between the π pulses defined as 2τ , and the XY8 subsequence repeated

N/8 times for total pulse number N. The ±π/2 maps the coherence onto the ms = 0 and

ms = ±1 basis for a differential measurement. The alternating control phases effectively

corrects for pulse imperfections[289]. Our detection of weakly coupled nuclear spins involves

varying the interpulse spacing and total pulse number.

B.2.8 Weakly Coupled 2-qubit Gates

Control of the weakly coupled nuclear spin is achieved using a sequence of successive π pulses

spaced by 2τk with[103].
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τk =
π(2k − 1)

ωL + ω
(B.9)

where ω =

√(
A‖ + ωL

)2
+ A2

⊥, ωL is the Larmor frequency, A‖ and A⊥ are the hyper-

fine components and k is the dip order. At high magnetic field, this dynamical decoupling

period rotates the nuclear spin around the ±x axis depending on the electronic spin state

implementing an effective CeROTx,n(±θ). More specifically, for N/8 repetitions of the XY8

sequence, the nuclear spin rotates by[103].

θ ≈ N · A⊥
ωL

+O

((
A

ωL

)2
)

(B.10)

We note that this constitute a fully entangling gate for θ = (2m − 1)π/2. Using single

electron rotations we can transform a U = CeROTx,n(±π/2) into a CnNOTe like gate in

the electron x-basis. This can be achieved for example using a sequence of

πe,x
2
− U −

πe,y
2

(B.11)

Additionally, when the resonance condition is not met, the dynamical decoupling se-

quence results in an unconditional z rotation of the nuclear spin. Combining conditional and

unconditional rotations, full initialization and control of nuclear registers is possible

B.2.9 Control Fidelity of Weakly Coupled Nuclear Spin as a Func-

tion of τ Order (k)

In our nuclear spectroscopy (Fig. B.6), each nuclear spin results in a series of periodic dips

in coherence at specific τ (with the space between π pulses of τ):

τk ≈
π(2k − 1)

ωL + ω
(B.12)
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Figure B.6: Nuclear spectroscopy. Multiple order of the nuclear dips, with the red dotted
line corresponding to the expected Larmor without a hyperfine (with the B field measured
by the separation of the +1 and -1 electronic resonances)

Since every nuclear spin has its own frequency ω (due to the hyperfine), the dips caused by

one nuclear spin becomes more isolated compared to dips caused by different nuclear spins.

This allows for higher fidelity control of the nuclear spin at higher k, albeit by sacrificing

gate speed. This is shown in Fig. B.7 and B.8 for the isolated nuclear spin in the main text.

B.2.10 Measurement of the Nuclear Spin Gyromagnetic Ratio

We perform CPMG NMR spectroscopy on the weakly coupled nuclear spin in the main text

at two different magnetic fields. From the positions of the coherence dips we can extract the

gyromagnetic ratio by calculating the frequency difference corresponding to the nuclear dip

at two different values of B. We measure |γn| ∼ 8.50 MHz/T (Figure B.9), identifying this

nuclear spin to be a single 29Si ( |γn| = 8.47 MHz/T). This is expected since 29Si is the

most probable nuclear species available given the isotopic balance in the sample.
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Figure B.7: Nuclear oscillations obtained from different peak orders (k).

Figure B.8: Fidelity of a conditional π/2 nuclear rotation as a function of order
number.
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Figure B.9: Gyromagnetic ratio check. Checking |γn| using the 8th order resonance at
two different magnetic fields (58 mT in red and 72 mT in blue). Solid lines correspond to
the fit.

B.2.11 Calculating the Hyperfine Values for Weakly Coupled Nu-

clear Spin

To calculate the hyperfine value (A‖ and A⊥) we use the following equations[290]:

A‖ =
ω2

+ − ω2
−

4ωL
(B.13)

Where ω± =
π·(2k−1)

2·τ± . τ± are the coherence dip locations and k is the dip resonance order

number. Additionally ωL = B · γ29Si is the Larmor frequency computed directly from the

splitting of the ms = +1 and ms = −1 electron spin resonance lines. The perpendicular

hyperfine is calculated from [103].

258



A⊥ =

√√√√√√
(
A‖ + ωL

)2

(
Nπ
π

)2
− 1

(B.14)

Where Nπ is the number of pulses necessary to get a full π in the nuclear oscillations. In

the limit of ωL � A‖ and N � π this simplifies to

A⊥ ≈
ωLπ

Nπ
(B.15)

Note that these give the result in angular frequency (rad/sec) and we simply need to

divide by 2π to get Hz. In our case, we calculate A‖ ≈ 2π ·650 Hz and A⊥ ≈ 2π ·11.45kHz.

B.2.12 Locating Weakly Coupled Nuclear Spins

We assume that the hyperfine for distant nuclear spins is dominated by the dipole magnetic

field of the electron which is oriented along z, with polar and azimuthal angles θ, φ:

B =
µ0

4πr3
|m|(3r̂(ẑ · r̂)− ẑ) (B.16)

The magnetic field at the nuclear spin is multiplied by the nuclear magnetic moment, and

using the dipole moment of the electron m = γe~ results in the hyperfine vector strength A

(the elements of the hyperfine tensor along z):

A0
~ = µ0γnγe~

4πr3

−→
A = A0(3r̂(ẑ · r̂)− ẑ)

(B.17)

We can rewrite the radial unit vector and expand, using (ẑ · r̂) = cos(θ)

−→
A = A0(3 cos(θ)(cos(φ) sin(θ)x̂+ sin(φ) sin(θ)ŷ + cos(θ)ẑ)− ẑ) (B.18)

In particular we can break up the hyperfine in terms of those along z (A‖) , and those
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perpendicular (A⊥)[291]

A⊥ = 3A0 cos(θ)
√

(cos(φ) sin(θ))2 + (sin(φ) sin(θ))2

A⊥ = 3A0 cos(θ) sin(θ)
(B.19)

And:

A‖ = A0

(
3 cos(θ)2 − 1

)
(B.20)

We can see that with these two equations, and by knowing the parallel and perpendicular

hyperfine values we can locate our nuclear spin on a cone determined by θ at a distance r.

φ is eliminated due to the symmetric nature of the dipole field. In our experiment, |A⊥| =

2π · 11.45 kHz, A‖ = 2π · 0.65 kHz . We then solve for A0 and θ, with 0 < θ < π (spherical

coordinates) and A0 < 0 because the silicon gyromagnetic ratio is negative. Similarly, we

know that our nuclear precession frequency increases (a measure of A‖) with the use of

ms = −1 compared to ms = +1. We know then that A‖ > 0[291]. With this, we get

solutions at:

A0 = 2π · −8.273 kHz

θ = 56 & 124 degrees
(B.21)

Solving for r using A0, and using the gyromagnetic ratio for the silicon nuclei, r=1.24

nm. Measuring the sign of A⊥ determines between the two possible polar angles, and the

measuring the azimuthal angle is possible with similar techniques[291].

B.2.13 Electron Driven Nuclear Memory Decoherence

Besides obtaining a higher number of registers, weakly coupled nuclear spins are also de-

sired because of their robustness to electronic spin manipulation. In particular, important

protocols in quantum communication[44] requires one to store a state in the nuclear spin

while manipulating the electron spin. While microwave manipulations are unitary and have
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a deterministic time (which could presumably be accounted for[180]), the electron spin reini-

tialization or readout is inherently stochastic. Thus, this process (with a characteristic time

related to the spin-flip rate and the ISC) can impart a random phase on the nuclear spin,

thus causing the state to be dephase. This is due to the difference in nuclear precession

frequency when the electron is in ms = 0 or ms = ±1 arising from the hyperfine interaction.

For the NV − center in diamond, one of every ∼ 103 attempts produce entangled photons,

with the Barret Kok scheme requiring > 106 attempts[246]. The nuclear memory therefore

needs to withstand many thousands of entangling attempts, which involve reinitializing the

electron spin. Using a model[246, 290] of the dephasing of weakly coupled nuclei caused by

this process, we can get the fidelity of the nuclear state given N initializations of the electron.

F =
1

2
+

1

2N+1

(
1 + e−

(∆ωτ)2

2

)N
(B.22)

Where ∆ω = ω0 − ω±1
∼= 2π × A‖, and τ is the average reinitialization time. We can

see then that controlling nuclear spins with very small A‖ is crucial to developing robust

memories. The reinitialization time (τ) for the V V 0 system is expected to be faster because

of a short ISC shelving times. Additionally, lower spin mixing[55] may make these memories

particularly robust to manipulations of the electron[180]. Additionally, control errors on

the electron plays a role in decoherence[180] of the nuclear spins, emphasizing the results

in Fig. 13.5. Infidelity in the initialization of the electron similarly may limit the numbers

of entanglement attempts. For the V V 0, we know that the initialization can be at least

> 99% (Fig. B.1). However, both of these mechanisms decrease as A‖ is reduced[180]. For

these weakly coupled nuclei, T2 decay is not the limiting factor for the number of entangling

attempts. In experiment for the NV − center, the memories are around 20 KHz [44, 180].

However, this is because more robust spins with less than 20 KHz are difficult to resolve in

natural isotopic abundance in diamond. However, these memories are sufficient to survive

∼1000 entangling attempts as needed for the demonstration of entanglement purification

[179, 180]. Moving to more weakly coupled registers through isotopic engineering may provide
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Figure B.10: CPMG-N on a kk divacancy. The time constant obtain from these traces
are plotted in the main text (Fig. 13.4)

exponentially improved nuclear memories.

B.2.14 Coherence extension for the V V 0

In the main text, we demonstrate CPMG coherence extension on the kk divacancy (shown in

Fig. B.10). This allow us to extend TDD2 to 14.5 ms at N=32 with longer time being possible

with more pulses. For completeness, we also performed CPMG coherence extension on a

basal (kh) divacancy and obtained the results shown in Fig. B.11, extending the coherence

to a maximum of TDD2 ∼3.5 ms with N=32. Further improvement on field alignment could

potentially improve these coherences times. Additionally, charge depletion[6] could also help

reduce paramagnetic traps from creating magnetic noise while charge switching.
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Figure B.11: CPMG-N on a kh divacancy near B=0. Only moderate coherence en-
hancement is observed.

B.2.15 T1 Lower Bound

At low temperature, T1 is predicted to be well in excess of a seconds in comparison to the

NV center in diamond[292]. However, T1 times for the divacancy in SiC at low temperature

(5 K) have not been reported to date. Unfortunately, in practice, laser leakage through

the AOM and other experimental imperfections can artificially lower T1 which may affect

coherences. To ensure we were not limited by such mechanisms we measured T1 up to 500

ms. We see very little decay within this time scale, confirming that experiments were not

limited by T1 and that the relaxation times for divacancy defects in SiC at low temperatures

can be extremely long.

B.2.16 Randomized Benchmarking

To put a lower bound on the gate fidelities we first select a set of Clifford gates to test. For

our measurements, we selected the following set: [I, x, y, x/2, y/2,−x/2,−y/2] Note that we

263



Figure B.12: T1 of a single kk defect in an isotopically purified sample.

omitted the z, z/2 and –z/2 gates since these be have a simple instantaneous and error-free

virtual implementation (i.e. change the frame of reference). Thus, including these would

inflate the average gate fidelity. Additionally, we note that this set is complete in the sense

that for every combination of N-1 randomly chosen gates in the set, we can find a single gate

that will reverse the effect of that sequence. In practice we ensure that every gate has exactly

the same length in time (200 ns). A x gate, for example would consist in [50 ns buffer]–[100

ns pulse]–[ 50 ns buffer] and a x/2 gate would be [75 ns buffer]-[50 ns pulse]-[75 ns buffer].

Once we have this universal set of gates, we can simply pick N-1 random gates, compute

the matrix product of all of these and then we simply add a final gate which projects to

ms = +1 (seq1) or ms = 0 (seq2). By taking the difference of seq1 and seq2 we get the

randomized benchmarking signal for N gates. To avoid using only a single sequence, we

repeat the process with 5 different randomized sequences for each N and average the results

together. We then fit our results to f(N) = A · αNN and extract the “Error per Clifford
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Figure B.13: Continuous electron Rabi oscillation on shows Rabi Q = 997± 30.

Gate”[259] as:

r = 1/2(1− α) (B.23)

This gives an error of 0.000156, or conversely a gate fidelity of 99.984%

B.2.17 Rabi Q

In the main text, we measure the single qubit gate fidelity using randomized benchmarking.

Here we will use Rabi Q, a different (but related) metric, to confirm that gate fidelity number.

In Fig. B.13, we see some slices of a continuous Rabi. We set the power such that the π

time is ∼200 ns. We then globally fit the data to the following function:

y(t) = A · e−
t
γ · cos

(
2π

(
t

2Tπ

)
+ φi

)
(B.24)

Where φi is different for each slices and allows us to account slight phase drift which are

possibly due to heating at long times. From this fit we get γ = 199 ± 6 µs and Tπ =

199.63± 0.02 ns. This gives a Rabi oscillation quality factor Q = γ/Tπ = 997± 30
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B.3 First-principles Calculations of the Coherence Func-

tion

B.3.1 System Hamiltonian

For a system consisting of central electron spin-1 and impurity spins-1
2 in an external mag-

netic field; the Hamiltonian is given by:

Ĥ = D

(
Ŝ2
z −

1

3
S(S + 1)

)
− γeBzŜz −

∑
i

γnBz Îiz +
∑
i

SAIi +
∑
i6=j

IiPIj (B.25)

where S is the central spin, S is the total spin quantum number of the central spin, and

Ii are the bath (nuclear or electron) spins. The A tensor denotes the hyperfine interaction

(spin dipole-dipole interaction) between the central spin and the bath nuclear (or electronic)

spins. The P tensor denotes the spin dipole-dipole interaction between the spins belonging

to the bath. We assume that the diagonal elements of the density matrix of the central

electron do not change in time; hence the terms in the Hamiltonian containing Ŝx and Ŝy

are negligible (secular approximation). Under this approximation, we can rewrite Eq. B.25

for the spin bath driven[287] by the ms = 0 (|0〉 qubit state) or ms = −1 (|1〉 qubit state)

levels of the central electron spin as:

Ĥ0 = −γnBz Îz +
∑
i,j

~IiP ~Ij

Ĥ1 = −
∑
i

γnBz Îiz −
∑
i

[
AzzŜz Îz + AzxŜz Îx + AzyŜz Îy

]
+
∑
i,j

~IiP ~Ij

(B.26)

266



B.3.2 Hyperfine Tensor Calculations

Hyperfine tensors for nuclear spins were computed using Density Functional Theory (DFT)[293].

DFT calculations were performed with Quantum Espresso code[294] using PBE functional.

A kinetic energy cutoff of 40 Ry was adopted. GIPAW pseudopotentials were used to model

electron-ion interactions. We used a supercell with 1438 atoms with Gamma-point sam-

pling of the Brillouin zone. GIPAW code is used to evaluate hyperfine tensors for all atoms

within the supercell. For atoms outside the supercell, hyperfine tensors were estimated using

dipolar-dipolar approximation. For the electron impurities the coupling tensors were com-

puted using only dipolar-dipolar interactions, as exchange interactions between electrons are

negligible at such distances.

B.3.3 Coherence Function

For the given delay between pulses (τ) and number of pulses (N), which determines the total

time of the experiment t = N · 2τ , the coherence function of the qubit is given by:

L(t) =
Tr
[
ρ̂(t)Ŝ+

]
Tr
[
ρ̂(0)Ŝ+

] (B.27)

Where ρ̂ is the density matrix of the qubit. If the qubit is prepared in |+ x〉 = 1√
2
(|0〉+

|1〉)) state, the coherence function at time t is given by:

L(t) = Tr
[
Û0Û

†
1

]
(B.28)

With conditional propagators Û0 and Û1, which are defined differently for different ex-

periments. For free induction decay (FID, n=0, t=τ):

Û0 = exp
[
−iĤ0τ

]
U1 = exp

[
−iĤ1τ

] (B.29)
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For Hahn-Echo experiment (N=1):

Û0 = exp
[
−iĤ0τ

]
exp

[
−iĤ1τ

]
Û1 = exp

[
−iĤ1τ

]
exp

[
−iĤ0τ

] (B.30)

For the experiments with number of pulses ≥ 2, the propagators are given by Û0 = V̂
N/2
0

and Û1 = V̂
N/2
0 , where:

V̂0 = exp
[
−iĤ0τ

]
exp

[
−iĤ12τ

]
exp

[
−iĤ0τ

]
V̂1 = exp

[
−iĤ1τ

]
exp

[
−iĤ02τ

]
exp

[
−iĤ1τ

] (B.31)

The coherence time is obtained by fitting the coherence function to the form L(t) =

exp[(t/T )n], where T is the coherence time. We denote as T ∗2 the coherence time T obtained

for FID, and as T2 the coherence time T obtained in Hahn-Echo experiments.

B.3.4 Cluster-Correlation Expansion

The coherence function L(t) from (Eq. B.28) can be approximated as a product of cluster

contributions using the cluster-correlation expansion (CCE) method:

L(t) ≈
∏

C⊆{1,2,...NC}
L̃C(t) (B.32)

Where L̃C is irreducible contribution of the cluster C, and Nc is the total number of

clusters included in the expansion, which determines the order of approximation. For exam-

ple, the notation CCE1 corresponds to accounting only for the contributions from isolated

nuclear spins (Nc = 1), CCE2 corresponds to Nc = 2, and CCE3 corresponds to Nc = 3.

The irreducible contributions are recursively computed as:

L̃C(t) =
LC(t)∏

C ′⊆C L̃C ′(t)
(B.33)

Where LC(t) is the coherence function computed for bath, consisting only of cluster LC
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Figure B.14: The convergence of the electron induced decoherence. On the left the
T2 as a function of bath size, on the right – as a function of cutoff distance between electron
spins to be considered a pair.

using (Eq. B.28).

B.3.5 Calculation Parameters

CCE calculations for nuclear spins were carried out according to [287] and convergence with

respect to the order of the CCE was carefully checked in each case. The clusters were

chosen according to the procedure described in [102]. In the case of electron spins, the

strength of interactions between spins belonging to the bath is comparable to the coupling

of the bath spins to the central spin, and the perturbative approach on which the cluster

expansion is based upon is not justified. The break-down of the perturbative approach

leads to CCE calculations of order 3 or higher to diverge[257]. We can however use an

approximate description by assuming that CCE2 is sufficient to correctly estimate electron-

electron interactions. This approximation likely yields underestimated coherence times at a

given concentration of impurity electron spins, as in real systems the flip rate of electron pairs

is reduced due to non-pair-wise interactions with other electrons. But at small electron spin

concentration, high order effects are expected to be insignificant to determine the qualitative

impact of electron spins on coherence times.

To compute the impact of the electron spins, we randomly placed the electron spins at
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the distances between 0 - 2 µm from the qubit. Following a procedure to choose the clusters

similar to the one used for nuclear spins, in the calculation of coherence functions we only

included the pairs of electron spins with distance smaller than a given cutoff distance, and

we only considered clusters of spins in a finite bath. Both the pair distance cutoff and the

bath size were chosen to be large enough to obtain converge of the coherence function as

shown in Fig. B.14.

Due to different space scale of the nuclear-electron and electron-electron interactions, the

two baths (electron and nuclear) can be considered decoupled. Therefore, the total coherence

function can be factorized into contributions from electron and nuclear spins, respectively:

Lt = LelectronLnuclear (B.34)

The coherence function was obtained by averaging over the results of 200 (1000) calcu-

lations for different configurations of electron or nuclear spins, in the presence of a magnetic

field of 50 G (500 G). In the experimental measurement, the pulse bandwidth used to control

the qubit state allows to simultaneously excite only a small subpopulation of the divacancies

in the SiC sample. In this subpopulation, the energy splitting of the qubit levels does not

deviate significantly from that of isolated divacancies. Hence, when computing the average

coherence time to be compared with experiments, we need to exclude from the calculation

the nuclear configurations whose hyperfine coupling would lead to significant deviation in

energy splitting from that of an isolated divacancy. Therefore, only nuclear configurations

with maximum parallel Hyperfine coupling <1 MHz were considered. However, we note that

when including all the configurations, irrespective of their hyperfine coupling, we obtained

very similar T2 values and T ∗2 values within 5-10%, for natural concentration.
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Figure B.15: Coherence times as a function of magnetic field. The coherence time T2
of the natural material is shown on the left-hand side, and that of the isotopically purified
material is on the right-hand side. The definitions of T2 and T ∗2 are given in the text.

B.3.6 Impact of the Magnetic Field

The computed values of T2 and T ∗2 for both isotopically purified and natural materials (with

free electron concentration of 1015cm−3) as a function of magnetic field is shown in Figure

B.15. In both cases, the T ∗2 is not significantly impacted by changes in the magnetic field,

while T2 is impacted: in particular in the natural material we observed a considerable increase

in nuclei-limited coherence time. Instead, in the case of electron-limited decoherence, the

effect of magnetic field in the range studied here (see Fig. B.15) is negligible.

B.4 Nuclear Memory Optimization

B.4.1 Conditional Magnetization

Using the secular approximations for a system of one electron and one nuclear spin, we can

rewrite the Hamiltonian (Eq. B.25) as follows:
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Ĥ = D

(
Ŝ2
z −

1

3
S(S + 1)

)
− γeBzŜz − γnBz Îz + AzzŜz Îz + AzxŜz Îx + AzyŜz Îy (B.35)

Using the notation for coupling parameters from [103] we can rewrite secular Hamiltonian

(Eq. B.35) as:

Ĥ = D

(
Ŝ2
z −

1

3
S(S + 1)

)
− γeBzŜz − γnBz Îz + A‖Ŝz Îz + A⊥Ŝz Îx (B.36)

With A = Azz, being parallel hyperfine coupling, and B =
√
A2
zx + A2

zy the perpendicular

hyperfine coupling. The magnetization of the central electron spin along x-axis can be

computed as the real part of the coherence function L:

M = ReL(t) = Re Tr
[
Û0Û

†
1

]
(B.37)

B.4.2 The Gate Fidelity

In order to understand how many nuclei on average can be used as memory units at a given

nuclear spin concentration, we proceed as follows. A given nuclear spin i can be used as a

memory unit if the state of the electron spin can be preserved, following a rotation induced

by the nuclear spin. For an electron qubit initially prepared in the |+x〉 state, the fidelity

function F measures how well its state is preserved:

F (| − x〉, ρ) = 〈−x|ρ| − x〉 (B.38)

where ρ is the density matrix of the qubit. If the fidelity of the qubit rotation induced

by nucleus i is higher than a chosen threshold value, then the nucleus is considered a usable

memory unit. The threshold value is chosen depending on the purpose of the memory unit,

and typical values are in the range 0.9 - 0.99. The fidelity of the electron spin is related to
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the electron magnetization M at given N, τ :

FNτ (| − x〉, ρ) =

√
1

2
− M

2
(B.39)

At short time scales (compared to the decay of the coherence function), the interaction

between different nuclei can be neglected. Then the electron spin magnetization can be

written as a product of conditional magnetizations[103] given by the magnetization of the

electron interacting with a single isolated nuclear spin. In other words, CCE1 is used to

evaluate the electron magnetization. As a function of delay between pulses (2τ) and number

of pulses (N) the magnetization is given by:

M(N, τ) =
∏
i

Mi(N, τ) (B.40)

To determine if a given nucleus i in the lattice is available as a memory unit, we consider

the magnetization of the electron when the given nucleus is present. The expectation value

of the magnetization when the nucleus i is present is:

M̃i = E (M |Mi ∈M) = Mi

∏
j 6=i

E
(
Mj
)

(B.41)

Where j runs over all other possible nuclear positions. Then Mj is given as:

Mj =

 Mj , if j is present

1, if j is not present
(B.42)

At a given nuclear spin concentration cj , the expectation value E
(
Mj
)

is:

E
(
Mj
)

= 1 ·
(
1− cj

)
+Mj · cj (B.43)

A given nucleus is considered usable as a memory register if the fidelity of electron spin

after rotation at M̃i is higher than a certain threshold Fmin. The average number of nuclei
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Figure B.16: Difference in coherence function predicted by CCE2 and CCE1 cal-
culations. Blue dots show the difference between the coherence functions obtained from
CCE1 and CCE2 calculations, and the orange line shows the total gate time of 1.5 ms for
six different nuclear configurations at a natural concentration of nuclear spins.

i present at this lattice site, is equal to the concentration of the isotope ci. Therefore, the

total number of usable registers can be computed as the sum of ci for all i that meets the

fidelity criteria at least one set of N,τ :

Nmem =

F
(
M̃i

)
≥Fmin∑
i

ci (B.44)

B.4.3 Limitations of the Approach

The method adopted here assumes that the nuclei-nuclei interactions are negligible in deter-

mining the electron magnetization. The assumption can be verified by comparing coherence

functions obtained at different orders of CCE for random nuclear configurations. A signif-

icant difference between the spectra obtained with the CCE1 and CCE2 approximations

would indicate nonnegligible nuclei-nuclei interactions. Figure B.16 shows the difference

between the results of CCE2 and CCE1 for 6 different nuclear spin configurations at nat-

ural concentration (c(29Si) = 4.7%, c(13C) = 1.1%). We can see that at long delay times
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Figure B.17: Convergence tests for the calculation of usable memory units. Left
to right, top to bottom: computed number of usable memory units as function of nuclear
concentrations at a maximum gate time of 2 ms for varied bath size, maximum τ , number
of pulses, and timestep. When parameters are not varied, default values of bath size = 30
Å, maximum τ = 25 , number of pulses = 512, and timestep = 1 ns are used.

there are significant differences between coherence functions obtained with CCE2 and CCE1.

The delay at which the deviations occur is inversely proportional to the number of pulses.

Therefore, the maximum available gate time (equal to N2τ) can be found from the value

of the delay for a given number of pulses at which significant deviations occur. From the

analysis of the CCE spectra for natural isotopic concentrations, the maximum gate time was

established to be between 1-2 ms before significant deviations occur. This theoretical limit

determines the maximum gate time, after which the fidelity of the rotation becomes limited

by nuclear-nuclear interactions.

B.4.4 Convergence of the Results

Having established the theoretical maximum gate time, we checked the convergence of the

number of memory units with respect to the size of the bath, timestep resolution, number of

pulses, and the range of the delays between pulses. The convergence is shown in Figure B.17.
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Figure B.18: Number of usable memory units as a function of the gate time. The
different color of the lines corresponds to different isotopic concentration, indicated in the
inset. Dotted lines shows number of memory units with parallel hyperfine terms below 2π ·60
kHz. Minimum fidelity is equal to 0.95.

It was found that the number of memory units at the magnetic field of 500 G is converged

at bath size 30 Angstrom, maximum τ of 25 µs, timestep of 0.5 ns, number of pulses of 512,

which were used in Fig. 13.4.

B.4.5 Number of Memory Units as a Function of Gate Time

The Figure B.18 shows shows the increase of an average number of memory units as a

function of the maximum gate time. We can see that the total number is proportional to the

square root of the gate time. Furthermore, the purification of Si leads to two-fold increase

in the number of available memory units at long gate times, while the isotopic purification

of carbon does not lead to any significant improvement.

It is interesting to note that the initial part of the curve corresponds to the nuclei with

strong hyperfine coupling, and further increase in the number of usable nuclei include those

with weak hyperfine coupling. The number of available memory units with weak hyperfine

varies linearly with the maximum gate time within the chosen timescale.
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Figure B.19: Distribution of the most plausible hyperfine values for memory units.
Color maps show the probability of memory units in the sample with given nuclear concen-
tration and gate time to have corresponding hyperfine coupling. On the left, the distribution
is shown as a function of the nuclear concentration at maximum gate time N2τ 1.5 ms, with
minimum fidelity of 0.95. On the right, the distribution is shown as a function of maximum
gate time with concentration of c(29Si) = c(13C) = 0.63%, which was found to be optimal
at minimum fidelity of 0.95. Blue circles show the median of hyperfine values at the given
concentration or gate time.

B.4.6 Hyperfine Distribution

Figure B.19 shows the distribution of hyperfine couplings for memory units, available at

different isotopic concentration/gate time. The gate time dependence further proves a point

outlined above: usage of most of the nuclei with strong hyperfine coupling occurs at small

timescales, and extended gate time allows one to access weakly coupled nuclei. Figure

B.20 shows the distribution for different minimum fidelities. Interestingly, the shape of the

distribution is the same, albeit shifted towards higher concentrations at lower Fmin.
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Figure B.20: Most plausible hyperfine values for memory units at different fideli-
ties. Color corresponds to the probability that memory units in the sample with given
nuclear concentration will have the corresponding hyperfine term. The maximum gate time
N2τ 1.5 ms, On the left the minimum fidelity of 0.95 is shown, on the right Fmin=0.90.
Blue circles show the median of hyperfine values at the given concentration.
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[96] Péter Udvarhelyi, Gergő Thiering, Naoya Morioka, Charles Babin, Florian Kaiser,

Daniil Lukin, Takeshi Ohshima, Jawad Ul-Hassan, Nguyen Tien Son, Jelena Vučković,
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Electromechanically Stabilized Emitters in Nanophotonic Devices. Physical Review X,

9(3):031022, aug 2019.

[115] Daniil M. Lukin, Alexander D. White, Melissa A. Guidry, Rahul Trivedi, Naoya

Morioka, Charles Babin, Jawad Ul Hassan, Nguyen Tien Son, Takeshi Ohshima, Pra-

ful K. Vasireddy, Mamdouh H. Nasr, Shuo Sun, Jean-Phillipe W. MacLean, Constantin

Dory, Emilio A. Nanni, Jörg Wrachtrup, Florian Kaiser, and Jelena Vučković. Spec-
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[151] B. Hensen, H. Bernien, A. E. Dreaú, A. Reiserer, N. Kalb, M. S. Blok, J. Ruiten-

berg, R. F.L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W.

Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and

R. Hanson. Loophole-free Bell inequality violation using electron spins separated by

1.3 kilometres. Nature, 526(7575):682–686, oct 2015.

[152] David D. Awschalom, Ronald Hanson, Jörg Wrachtrup, and Brian B. Zhou. Quantum

technologies with optically interfaced solid-state spins. Nature Photonics, 12(9):516–

527, 2018.

[153] Austin G. Fowler, David S. Wang, Charles D. Hill, Thaddeus D. Ladd, Rodney Van

Meter, and Lloyd C.L. Hollenberg. Surface code quantum communication. Physical

Review Letters, 104(18):180503, may 2010.

299



[154] Donovan Buterakos, Edwin Barnes, and Sophia E Economou. Deterministic generation

of all-photonic quantum repeaters from solid-state emitters. Physical Review X, 7(4),

2017.

[155] Cody Jones, Danny Kim, Matthew T Rakher, Paul G Kwiat, and Thaddeus D Ladd.

Design and analysis of communication protocols for quantum repeater networks. New

Journal of Physics, 18(8):083015, aug 2016.

[156] Sophia E Economou and Pratibha Dev. Spin-photon entanglement interfaces in silicon

carbide defect centers. Nanotechnology, 27(50), 2016.

[157] M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall,
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Hideo Kosaka, and Jörg Wrachtrup. High-fidelity transfer and storage of photon states

in a single nuclear spin. Nature Photonics, 10(8):507–511, aug 2016.

[161] S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer. Long distance, uncondi-

300



tional teleportation of atomic states via complete bell state measurements. Physical

Review Letters, 87(16):167903, sep 2001.

[162] Christoph Simon and William T.M. Irvine. Robust long-distance entanglement and a

loophole-free bell test with ions and photons. Physical Review Letters, 91(11):110405,

sep 2003.

[163] Kevin C. Chen, Eric Bersin, and Dirk Englund. A Polarization Encoded Photon-to-

Spin Interface. apr 2020.
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[189] Péter Udvarhelyi and Adam Gali. Ab Initio Spin-Strain Coupling Parameters of Di-

vacancy Qubits in Silicon Carbide. Physical Review Applied, 10(5):054010, nov 2018.

[190] S. D Bennett, N. Y Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D Lukin. Phonon-

304



Induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin

Squeezing. Physical Review Letters, 110(15):156402, apr 2013.

[191] K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin, and P. Rabl. Phonon cooling

and lasing with nitrogen-vacancy centers in diamond. Physical Review B - Condensed

Matter and Materials Physics, 88:1–12, 2013.

[192] Ariana Beste, Decarlos E. Taylor, D. Andrew Golter, and Chih W. Lai. Charge state

switching of the divacancy defect in 4H -SiC. Physical Review B, 98(21), 2018.

[193] G. Wolfowicz, S. J. Whiteley, and D. D. Awschalom. Electrometry by optical charge

conversion of deep defects in 4H-SiC. Proceedings of the National Academy of Sciences

of the United States of America, 115(31):7879–7883, 2018.

[194] F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian,
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Peter Lodahl. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions

in a Nanophotonic Waveguide. Nano Lett, 18(3):49, mar 2018.
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[235] Felipe Fávaro De Oliveira, Denis Antonov, Ya Wang, Philipp Neumann, Seyed Ali
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J. F. Roch, S. Pezzagna, J. Meijer, T. Teraji, Y. Kubo, P. Bertet, J. R. Maze, and

V. Jacques. Competition between electric field and magnetic field noise in the deco-

herence of a single spin in diamond. Physical Review B, 93(2):024305, jan 2016.

[256] Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew

Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Jo-

hannes Beck, Julia Tissler, Vincent Jacques, Philip R Hemmer, Fedor Jelezko, and

Jörg Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond.

Nature materials, 8(5):383–7, may 2009.

[257] Wayne M. Witzel, Malcolm S. Carroll, Aukasz Cywiński, and S. Das Sarma. Quantum
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