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Everything to which we concede existence is a posit from the standpoint of a description

of the theory-building process, and simultaneously real from the standpoint of the theory

that is being built. Nor let us look down on the standpoint of the theory as make-believe;

for we can never do better than occupy the standpoint of some theory or other, the best

we can muster at the time. (Quine, Word and Object)
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ABSTRACT

Oscillatory dynamics is ubiquitous in biology, yet the complexity of the underlying

signaling pathways often makes quantitative understanding of such systems difficult. An

ideal model system for understanding biochemical oscillators is the Kai system, a post-

translational circadian oscillator found in the cyanobacterium Synechococcus elongatus.

The Kai oscillator consists of three soluble proteins named KaiA, KaiB, and KaiC, and

their periodic interactions, which are driven by ATP hydrolysis in KaiC, generate a near-

24-h period oscillation of KaiC phosphorylation states. The Kai oscillator interacts with

cellular metabolic conditions, in the form of ATP/ADP concentrations, that can act as

external timing cues, such that the period remains robust while the amplitude and phase

of the clock adjust. How the clock achieves such robust yet tunable dynamics is not fully

understood.

Understanding the interaction between KaiA and KaiC is key to understanding

how the clock senses metabolic conditions. KaiA is a nucleotide-exchange factor that

regulates the nucleotide-bound state of KaiC and thus the direction of its reversible

phosphotransferase activity. In this work, I dissect the KaiA–KaiC interaction at two

levels. First, I fit a detailed kinetic model of KaiA–KaiC interactions to experimental

kinetic data using Bayesian Markov chain Monte Carlo. This model revealed ultra-

sensitivity in KaiC phosphorylation as a result of nucleotide-dependent KaiA binding

affinity, which I argue is important for period stability. Second, I use molecular dynamics

simulations to probe the molecular mechanism of ADP release from KaiC, which reveals

coupling between the nucleotide-binding pockets and the A-loop, an unstructured region

in KaiC that binds to KaiA. This provides a hypothesis for how KaiA acts as a nucleotide-

exchange factor.
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CHAPTER 1

INTRODUCTION

1.1 Overview of the Kai Oscillator

Oscillatory and pulsatile dynamics are ubiquitous in biology, such as cell division control,

circadian rhythms in gene expression, and the propagation of action potentials. Although

the biological elements underpinning these phenomena are different, it has long been

recognized that a few organizing motifs, such as positive and negative feedback loops,

are sufficient to characterize the qualitative behavior of such systems [1]. However,

the complexity of these signaling networks often makes it challenging to precisely map

the organizing motifs onto the underlying biochemical elements. Morever, quantitative

differences in spatiotemporal scales and robustness that cannot be easily explained by the

network topology suggest that a detailed analysis of their dynamics is necessary to better

understand and manipulate such systems.

The Kai system, a simple post-translational oscillator consisting of three soluble

proteins named KaiA, KaiB, and KaiC [2], is an ideal model for quantitative analysis of

biochemical oscillators. The periodic interactions among the three proteins, driven by ATP

hydrolysis, generate a robust, near-24-h period oscillation of the phosphorylation states

of KaiC. In vivo, the Kai system is embedded in a transcription-translation feedback loop

that controls the circadian rhythms of Synechococcus Elongatus PCC 7942 [3–5], a strain

of autotrophic freshwater cyanobacteria, where the global, daily promoter activities [6] are

controlled by the Kai system via a two-component signaling pathway [7, 8] consisting of

two histidine kinases SasA and CikA, which relay the phosphorylation state of KaiC to a

response regulator, RpaA.

The fact that species of cyanobacteria exhibit circadian rhythms in such activities

as nitrogen fixation, amino acid update, and cell division was known in the 1980s [9–11],

but it was not until 1998 when the kai genes were identified in S. elongatus. In 2005, two
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Figure 1.1: Overview of the Kai oscillator. The periodic interactions among KaiA, KaiB,
and KaiC, driven by the free energy of ATP hydrolysis, generates a robust, near-24-h
period oscillation of the KaiC phosphorylation states. Specifically, the binding of KaiA
to KaiC during the day leads to KaiC autophosphorylation via its action as a nucleotide-
exchange factor, while the binding of foldswitched KaiB during the night sequesters KaiA,
which leads to KaiC autodephosphorylation. Here, U stands for the unphosphorylated
state, T stands for the phosphothreonine-432 state, S stands for the phosphoserine-431
state, and D stands for the doubly phosphorylated state.

landmark papers demonstrated that the rhythmic in vivo cycling of KaiC phosphorylation

states can act independently of transcriptional feedback [12], and, even more surprisingly,

that the KaiC phosphorylation cycle can be reconstituted in vitro using the three

purified Kai proteins [13]. These studies prompted significant interest in the fundamental

structural, biochemical, and biophysical basis of the Kai oscillator, as well as theoretical

considerations into the source of its robust and tunable dynamics, which we briefly outline

below. Currently, S. elongatus is the prevailing model system in cyanobacterial circaidna

biology due to the relative ease of genetic manipulation. Proteins homologous to the clock

components in S. elongatus has been identified in other cyanobacterial species [14], but

whether such orthologous systems can generate self-sustained oscillation in vitro remains

unclear.

Details of the clock biochemistry will be discussed in the following chapters when
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appropriate. However, it is instructive to take the conceptual viewpoint here and consider

the basic requirements for biochemical oscillation and how such requirements are mapped

onto the elementary processes of the clock. As summarized by Novák and Tyson [1],

biochemical oscillators require a) delayed negative feedback, b) nonlinearity, and c)

balance of timescale. In the Kai system, time is encoded in the phosphorylation states of

KaiC [12, 15], a hexameric protein [16] where each subunit has two phosphorylation sites

at S431 and T432 [17, 18]. At day, the autophosphorylation of KaiC is promoted by KaiA

[15], a nucleotide-exchange factor for KaiC [19]. This is then followed at the dusk with

the binding of KaiB to KaiC, which sequesters KaiA from its site of action and leads to

autodephosphorylation [17, 20]. The opposing effects of KaiA and KaiB on KaiC phos-

phorylation are the basis of the negative feedback loop in the system (Fig. 1.1).

The (de)phosphorylation of KaiC proceeds in an ordered manner, in that T432 is

preferentially (de)phosphorylated before S431 [17, 18]. This “kinetic ordering” has two

important consequences. First, it breaks the symmetry between the day and the night

phases of the clock; e.g., T432 is preferentially phosphorylated at midday, while S431 is

preferentially phosphorylated at midnight, even though the percentage KaiC phosphoryla-

tion level is the same at the two time points. Second, the ordered phosphorylation of KaiC

provides a mechanism to delay the onset of the the negative feedback. Specifically, the

phosphorylation of T432 and S431 appears to have different effects on KaiC conformation,

such that only the phosphorylation of the second site, S431, favors KaiB binding [21].

Kinetic ordering, however, is not the only source of delay in the system. KaiB is a

metamorphic protein, which means that it can stably fold into two conformations [22].

The conversion from the “ground state” (gs) to the “foldswitched state” (fs) appears to

be both kinetically and thermodynamically unfavorable, thus adding an additional layer

of delay to the onset of KaiA sequestration. The fsKaiB conformation, however, appears

to be stabilized by KaiC binding, such that fsKaiB monomers bind to KaiC subunits in a

1:1 stoichiometry in an all-or-none (i.e., cooperative) manner [23]. The cooperative KaiB–
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KaiC interaction is believed to be an important source of nonlinearity in the system [21].

Thirdly, biochemical oscillation also requires a balance of timescales. This is a major

unresolved issue concerning the kinetics of the Kai oscillator. Here, balance of timescale

does not necessarily imply that all elementary processes in the system must have similar

rate constants. Indeed, the Kai oscillator appears to operate with a separation of timescale

at physiological conditions, where KaiA (un)binds to KaiC on the timescale of seconds

[24, 25], but on the other hand KaiC catalytic activities [26] and KaiB foldswitch/binding

operate on the timescale of hours [22]. However, a complete description of the kinetics of

each step of the circadian cycle is currently unavailable. It is unclear how these identified

slow steps in the system contribute to the 24-h period (e.g., can one write down an

analytical expression for the period in terms of elementary rate constants?), nor is it clear

what the ranges of kinetic parameters that still give rise to robust oscillations are.

The analysis by Novák and Tyson is primarily rooted in a dynamical systems

perspective. From a thermodynamic perspective, however, one should also consider the

issue of phase coherence. Under thermal equilibrium, there is no net unidirectional flux

in the cycle of KaiC phosphorylation states, and the various phosphorylation states,

nucleotide-bound states (of KaiC), and protein complexes eventually reach a steady state

where the state populations are dictated by their equilibrium free energy differences. As a

result, although on a microscopic level, individual protein complexes can spontaneously

pass through the circadian cycle, on a bulk level there is no coherent oscillation. To

overcome this problem, the reactions described so far are coupled to the ATPase activity

of KaiC, which provides the nonequilibrium free energy to drive the system irreversibly

forward in time [27]. The exact relation between free energy dissipation and robustness

of the oscillation is an area of active research. A complementary argument is that the

slowness of the KaiB foldswitch process also plays a role in this regard by synchronizing

the KaiC population in the hyperphosphorylated state before switching to the dephosphor-

ylation phase.
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Figure 1.2: The Kai oscillator is robust yet tunable. A) the period of the Kai oscillator
is insensitive to changes in a wide range of % ATP conditions. B) both the peak and
trough of the KaiC phosphorylation cycle scale with %ATP, such that the size of the cycle
becomes larger at higher %ATP. C) the phase response of the Kai oscillator to an ADP
pulse; the shaded region represents the addition of 5 mM ADP to the reaction mixture
with 5 mM ATP. Panels A) and B) are adapted from [28], and panel C) is adapted from
[29].

Lastly, the above account of the Kai oscillator focuses on clock function as it is

decoupled from the environment; as such, it is also instructive to consider the clock in

the context of environmental conditions. First, as implied in the preceding discussion,

the free-running clock under constant conditions has a self-sustained, near-24-h period

period [13], which can persist for weeks in vitro [30]. Moreover, the period of the clock

appears to be insensitive to environmental inputs such as temperature [31] and metabolic

conditions [28] (Fig. 1.2A). For in vitro studies, the cellular metabolic conditions are

usually measured and represented in terms of %ATP (i.e., [ATP] as a percentage of total

[ATP] and [ADP].) However, this insensitivity does not imply that the clock is decoupled

from the environment. Rather, the amplitude and phase of the phosphorylation cycle do

respond to such changes (Fig. 1.2B and C), and the clock can be entrained by regular

cycling of these signals [32, 33]. Taken together, the robustness of the period allows for

accurate timekeeping, while the responsiveness of the amplitude and phase allows the clock

to adapt to external timing cues (i.e., the zeitgebers). How to reconcile this remarkable

blend of robustness and tunability is another active area of research (see, for example,

[28, 31, 34–36]), and a primary driving force behind this thesis.
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1.2 Overview of the Thesis

What the above analysis has made clear is that the simplicity of the Kai oscillator allows

one to articulate the basic biochemical events in the system and how they contribute to

the oscillatory dynamics. However, what is less obvious is a “second-order” description

of the clock that accounts for how elementary processes in the clock interact with

environmental perturbations to generate robust yet tunable circadian rhythms. Broadly

put, therefore, the fundamental goal of this thesis is to investigate how the circadian clock

in S. elongatus responds to changes in cellular metabolic conditions. Analysis of this

question may in turn reveal new insights into the basic biochemistry of the system and

the principles of biochemical oscillation.

How the Kai oscillator responds to metabolism is a property of the circuit, and

therefore a natural first step is to investigate the kinetics of the reaction network (Chapter

2). Specifically, the observations that the function of KaiB is to sequester KaiA at

nighttime and that KaiA promotes phosphorylation via its function as a nucleotide-

exchange factor suggest that a detailed understanding of the KaiA–KaiC subsytem is

necessary to understand how the direction of phosphotransfer is regulated over the day-

night cycle and by changes in metabolic conditions. To this end, we measured the kinetics

of KaiC phosphorylation over a wide range of [KaiA] and %ATP conditions, and the

data was fitted with a detailed kinetic model using Bayesian parameter estimation. The

resulting model revealed unexpected ultrasensitivity in KaiC phosphorylation, which we

argued has important implications for the stability of the oscillator period against changes

in %ATP condition.

The analysis of the kinetic model is consistent with an emerging understanding

that nucleotide exchange in KaiC is a critical process that allows the system to sense

the metabolic condition, and how this process is regulated determines the direction of

KaiC phosphotransfer reactions. This observation motivated us to examine the molecular

mechanism of nucleotide exchange and how it may be accelerated by KaiA (Chapter 3).
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We thus performed molecular dynamics simulations to characterize the energetic and

structural details of the ADP release pathway in KaiC. These simulations suggest that

ADP release requires concerted global motions that destabilize the KaiC subunit interface,

and such motions are coupled to conformational changes at the known KaiA binding site,

thus providing a molecular hypothesis for how KaiA functions as a nucleotide-exchange

factor.

Lastly, we turn our attention to KaiB and the dephosphorylation phase of the clock.

It has been argued that the timescale of KaiB binding and the resulting negative feedback

is controlled by the timescale of ATP hydrolysis and nucleotide exchange in KaiC, even

though KaiB foldswitch itself is comparably slow. To assess how KaiB contributes to the

slowness of the clock, it is necessary to determine the kinetics of KaiB foldswitch and how

it may be regulated by binding to KaiC. We are currently pursuing molecular dynamics

simulations of the KaiB foldswitch pathways and applying recent advance in the theory of

chemical kinetics to address these questions (Chaptuer 4). This is an ongoing study, and

further details will be made available in future publications.
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CHAPTER 2

BAYESIAN MODELING REVEALS

METABOLITE-DEPENDENT ULTRASENSITIVITY IN THE

CYANOBACTERIAL CIRCADIAN CLOCK

This chapter was published as an article in Molecular Systems Biology

(doi:10.15252/msb.20199355) and appears below with minor formatting modifications.

Lu Honga, Danylo O. Lavrentovichb, Archana Chavanc, Eugene Leypunskiya, Eileen Lid,

Charles Matthewsd, Andy LiWangc,e,f,g,h,i, Michael J. Rustj,k,l & Aaron R. Dinnerb,k,m

aGraduate Program in Biophysical Sciences, University of Chicago

bDepartment of Chemistry, University of Chicago

cSchool of Natural Sciences, University of California, Merced

dDepartment of Statistics, University of Chicago

eQuantitative and Systems Biology, University of California, Merced

fCenter for Circadian Biology, University of California, San Diego

gChemistry and Chemical Biology, University of California, Merced

hHealth Sciences Research Institute, University of California, Merced

iCenter for Cellular and Biomolecular Machines, University of California, Merced

jDepartment of Molecular Genetics and Cell Biology, University of Chicago, Chicago

kInstitute for Biophysical Dynamics, University of Chicago, Chicago

lInstitute for Genomics and Systems Biology, University of Chicago

mJames Franck Institute, University of Chicago

2.1 Abstract

Mathematical models can enable a predictive understanding of mechanism in cell biology

by quantitatively describing complex networks of interactions, but such models are
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often poorly constrained by available data. Owing to its relative biochemical simplicity,

the core circadian oscillator in Synechococcus elongatus has become a prototypical

system for studying how collective dynamics emerge from molecular interactions. The

oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of

KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly-

detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly

to experimental data within a Bayesian parameter estimation framework. Analysis of

the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a

function of KaiA concentration, which we confirm experimentally. This ultrasensitivity

primarily results from the differential affinity of KaiA for competing nucleotide-bound

states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an

important role in metabolic compensation by suppressing premature phosphorylation at

nighttime.

2.2 Introduction

Achieving a predictive understanding of biological systems and chemical reaction networks

is challenging because complex behavior can emerge from even a small number of

interacting components. Classic examples include the propagation of action potentials

in neurobiology and chemical oscillators such as the Belousov–Zhabotinsky reaction.

The collective dynamics in such systems cannot be easily intuited through qualitative

reasoning alone, and thus mathematical modeling plays an important role in summarizing

and interpreting existing observations and formulating testable, quantitative hypotheses.

However, it can be difficult to rationalize how collective dynamics emerge from specific

molecular features. One approach to addressing this issue is to compare mathematical

representations of competing molecular mechanisms based on their abilities to fit

experimental data.

The circadian clock from the cyanobacterium Synechococcus elongatus [37] represents
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a unique opportunity to use model fitting to learn biochemical mechanisms. This is

because the core oscillator can be reconstituted in a test tube from a small number of

components. The simplicity of the system makes it possible to both cleanly model the

basic biochemical events in the circadian cycle and to collect quantitative data under well-

controlled conditions. The core oscillator of S. elongatus consists of three proteins, KaiA,

KaiB, and KaiC, which self-organize to generate a near-24-h rhythm in KaiC phosphory-

lation. The basic biochemical events are well-established [2]. KaiC is an ATPase [26] that

phosphorylates and dephosphorylates itself by transfer of phosphoryl groups from and to

bound nucleotides [38, 39]; KaiA-dependent nucleotide exchange reactions drive the phos-

phorylation phase of the cycle [19], and KaiB-mediated sequestration of KaiA leads to de-

phosphorylation. The reconstituted oscillator retains many of the hallmarks of circadian

rhythms in living organisms [13, 29, 32, 33].

Yet, questions remain about how the clock couples to environmental conditions

while maintaining a robust ∼24 h rhythm [28, 31–33]. The Kai oscillator senses changes

in the relative concentrations of ATP to ADP in solution, which allows entrainment

to metabolic rhythms [28, 29, 33]. KaiA modulates these dynamics via its function as

a nucleotide-exchange factor, but how the system adapts and responds to changes in

metabolic conditions is not clear. Models that account for the possible protein complexes,

including the interplay of nucleotide-bound and phosphorylation states, can be dauntingly

complex [e.g., 21, 40]. How to fit them to data and interpret the results is an area of

active research.

Here we use a data-driven Bayesian approach to estimate the parameters of a

molecularly-detailed kinetic model of the KaiA-KaiC subsystem, with the goal of learning

the features required to capture the behavior of the system during the phosphorylation

phase of the clock cycle quantitatively (Fig. 2.1A). The model describes the coupling

between KaiA, nucleotides (ATP and ADP) in solution, KaiC phosphorylation, and KaiC

nucleotide-bound states. To provide training data for the model, we collected kinetic time
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series measuring KaiC phosphorylation kinetics over a wide range of KaiA concentrations

([KaiA]) and %ATP (defined as 100%[ATP]/([ATP] + [ADP])). Although such data do

not give us direct access to all relevant states of the KaiA-KaiC subsystem, they place

constraints on the underlying molecular interactions. Bayesian statistics [41, 42] have

found diverse applications in systems biology [43–50], including circadian biology [51–

53]. Here, they provide a unified framework for estimating parameter values, quantifying

the importance of specific model elements, and making mechanistic predictions from the

model.

By Markov chain Monte Carlo (MCMC) sampling, we obtain an ensemble of

parameter sets that fit the data. Even with extensive training data, many microscopic

parameters in the model are not tightly constrained. Despite this, we show that this

ensemble of fits robustly makes predictions that are borne out in experimental tests [54,

55]. In particular, the model reveals a previously unappreciated ultrasensitive dependence

of phosphorylation on the concentration of KaiA, with strong nonlinearity at low [KaiA],

conditions that likely apply near the nighttime to daytime transition point, when a large

fraction of KaiA molecules are inhibited. Importantly, we find that the threshold KaiA

concentration varies with the %ATP in solution. This ultrasensitive response primarily

arises from a differential affinity of KaiA for different nucleotide-bound states of KaiC.

This mechanism is analogous to substrate competition [56], where kinetic competition of

multiple enzyme substrates leads to ultrasensitivity.

Lastly, we consider the implications of these results for the full oscillator, in which

KaiC rhythmically switches between phosphorylation and dephosphorylation. A well-

known mechanism for the inhibition of KaiA is its sequestration into KaiBC complexes

[20] that form when KaiC is sufficiently phosphorylated [17]; this mechanism serves as

a delayed negative feedback loop in the oscillator. The KaiB-independent thresholding

phenomenon we describe here is strongest when KaiC phosphorylation is low and when

KaiC is ADP-bound. This suggests there are at least two mechanisms that work together
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during the cycle to prevent KaiA from acting at inappropriate times, and that the relative

strength of the two mechanisms varies with the nucleotide pool.

Figure 2.1: Phosphorylation data are fit by a mechanistically naive kinetic model. A. An
outline of the data-driven Bayesian model fitting approach employed in this work. B. To
constrain the model, measurements of KaiC phosphorylation kinetics were collected at six
[KaiA] and three %ATP conditions. The curves represent the best fit model prediction.
C. A schematic of the mass-action kinetics model. The model elaborates on the auto-
phosphorylation reactions of KaiC by explicitly keeping track of the time evolution of the
KaiC phosphoforms and nucleotide-bound states; conversions among these states are
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(Figure 2.1, continued) mediated by phosphotransfer, nucleotide exchange, ATP
hydrolysis, and KaiA (un)binding. Note that the KaiA binding reactions are second-
order, but KaiA concentration ([A]) is written as part of the effective first-order rate
constant. See the main text for a discussion of the state and rate constant nomenclature
and Fig. S2.5A for a schematic of the full model. D. The posterior distributions for log
KaiA dissociation constants (base 10). The horizontal axis represents the affinity for ADP-
bound KaiC, and the vertical axis represents the affinity for ATP-bound KaiC; X ∈ {U,
T, S, D} and corresponds to the four colors of the KaiC phosphoforms, as in panel C. The
asterisks represent the best fit, and the contour lines represent the 95% and 68% highest

posterior density regions (HDR). The dashed line represents the K
X,TP
d = K

X,DP
d line,

so that densities above the line indicate higher affinity for the ADP-bound states and
densities below the line indicate higher affinity for the ATP-bound states.

Incorporation of the ultrasensitive response to KaiA into a mathematical model of

the full oscillator suggests that this effect both stabilizes the period against changes in the

nucleotide pool and allows oscillations to persist even when KaiB binds KaiA relatively

weakly. Consistent with this prediction, we find that a substantial amount of KaiA is not

bound by KaiB even when the clock is dephosphorylating. These results shed new light on

metabolic compensation, a property that allows robust 24-h oscillation in spite of changes

in %ATP conditions [57]. Taken together, our results show how the Bayesian framework

combined with extensive training data can be used to discover unanticipated mechanisms

and direct experimental investigations.

2.3 Results

2.3.1 A molecular model of KaiA-KaiC dynamics

To probe the response of KaiC phosphorylation to a wide range of metabolic conditions,

we made kinetic measurements of KaiC phosphorylation at three %ATP conditions and

six [KaiA] conditions while holding the KaiC concentration constant (Fig. 2.1B). KaiC is

a homohexamer and each subunit has two duplicated ATPase domains, termed CI and CII

[16, 26, 58]. The CII domain can autophosphorylate via a bidirectional phosphotransferase

mechanism [38, 39] with two phosphorylation sites. Each KaiC subunit thus has four
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phosphoforms: the unphosphorylated (U), phosphoserine-431 (S), phosphothreonine-432

(T), and doubly phosphorylated (D) states, each of which peaks at a distinct time in the

oscillation.[17, 18, 59].

Our strategy is to fit these data with a model of the KaiC catalytic cycle in CII with

a minimum of simplifying assumptions. To this end, we formulate a model based on mass-

action kinetics. We explicitly keep track of three properties of the CII domain of each

KaiC subunit: its phosphorylation status (right superscripts in Fig. 2.1C), nucleotide-

bound state (right subscript), and whether or not KaiA is bound (left superscript). We

do not consider CI or the hexameric nature of KaiC explicitly (see Appendix for further

discussion). There are thus 16 possible KaiC states, 8 of which are shown in Fig. 2.1C,

along with the phosphotransfer, nucleotide exchange, KaiA (un)binding, and hydrolysis

reactions that connect the states (see Fig. S2.5A for the full model structure). We also

considered the possibility that nucleotides might interact directly with KaiA, which could

allow KaiA’s activity to directly depend on nucleotides in solution. However, we did not

detect any direct interaction between KaiA and ATP or ADP using NMR spectroscopy

(Fig. S2.6), so we do not allow for this scenario in the model.

In the rest of this section, we further elaborate our model by stepping through the

four classes of reactions that we include; additional details can be found in Materials

and Methods. In the next section, we describe in qualitative terms the fitting procedure

and analyze the extent to which the model was constrained by the training dataset. For

readers who are primarily interested in the biochemical conclusions of the model, these

results can be skipped without loss of continuity.

Phosphotransfer The KaiC CII domain has reversible phosphotransferase activity [38,

39]; it can transfer a γ-phosphate group from a bound ATP to a phosphorylation site, but

14



unlike a typical phosphatase, it regenerates ATP from ADP during dephosphorylation, i.e.,

CX
TP

kp−⇀↽−
kd

CY
DP (2.1)

where (X, Y) ∈ {(U, T), (U, S), (T,D), (S, D)}. This mechanism implies that the

nucleotide-bound state of KaiC has a significant impact on the net direction of its

phosphotransferase activity: an ATP-bound KaiC presumably cannot dephosphorylate,

and an ADP-bound KaiC cannot phosphorylate.

Nucleotide exchange KaiA binding to the CII domain [60, 61] stimulates KaiC auto-

phosphorylation [15, 24, 62]. Recent work has shown that KaiA can bind to KaiC and

act as a nucleotide-exchange factor [19] by facilitating conformational changes at the

subunit interface that promote solvent exposure of the nucleotide-binding pocket [63]. It is

currently unclear whether this nucleotide exchange activity is responsible for all of KaiA’s

effect on KaiC or whether it alters the KaiC catalytic cycle in other ways (see Appendix

for further analysis of this issue). The reversible binding of KaiA

C
ka[A]−−−⇀↽−−−
kb

AC (2.2)

contributes two classes of rate constants, ka and kb.

Because the CII domain of KaiC releases its bound nucleotide very slowly in the

absence of KaiA [19], we ignore the possibility of KaiA-independent nucleotide exchange

in the model. Under the assumptions that i) the apo state is in a quasi-steady state, ii)

the ADP and ATP on-rates are identical, and iii) ATP release is slow, nucleotide exchange

can be modeled as a one-step reaction:

ATP + ACDP
kA

TP−−−→ ACTP + ADP (2.3)
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where

kA
TP = kDP

r
[ATP]

[ATP] + [ADP]
(2.4)

and kDP
r is the ADP dissociation rate constant. Nucleotide exchange thus contributes one

class of rate constant, kDP
r . See Materials and Methods for the derivation of (2.4).

ATP hydrolysis Finally, we allow for irreversible ATP hydrolysis in the CII domain

CTP
kh−→ CDP + Pi (2.5)

which contributes one class of rate constants, kh. This assumption is important because

this pathway is required in the model for sustained dephosphorylation by allowing ADP-

bound KaiC to accumulate in the absence of KaiA. Because each KaiC molecule consumes

relatively little ATP on the timescale of the simulations [26], we assume the solution ATP

and ADP concentrations are constant.

State-dependent rates Given the six classes of rate constants, kp, kd, ka, kb, kDP
r , and

kh, we make the model maximally general, or mechanistically naive, by allowing each rate

constant to potentially depend on the specific molecular state involved in the reaction.

For example, the KaiA dissociation rate constant is allowed to vary depending on the

nucleotide-bound state and phosphoform background of KaiC, and thus the dissociation

rate constants for the ADP-bound U (k
U,DP
b ) and ATP-bound T phosphoforms (k

T,TP
b )

are two independent model parameters. In this way, the parameter fitting and model

comparison procedures automatically test specific biochemical hypotheses about the

functions of KaiA and KaiC. For example, allowing the KaiA off-rates to depend on the

nucleotide-bound states is equivalent to the hypothesis that KaiA has different dwell

times for ATP- versus ADP-bound states of KaiC. In fact, because each reaction has an

independent rate constant, except for thermodynamic constraints of detailed balance,

the fitting procedure effectively allows for simultaneous testing of all possible two-way
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interactions of the three categories of KaiC properties, without a priori preference for any

particular mechanism.

2.3.2 The data constrain the parameters to widely varying degrees

We estimate the model parameters through a Bayesian framework. In this framework,

we maximize the posterior probability, which is proportional to the product of the prior

distribution and the likelihood function. Here, we interpret the prior as representing

subjective beliefs on the model parameters before experimental inputs, while the likelihood

function quantifies the goodness of fit. Bayesian parameter estimation reduces to least-

squares fitting under the assumption of normally distributed residuals and uniform priors.

In practice, we find that direct numerical optimization of the posterior usually results in

fits that are trapped in low probability local maxima (Fig. S2.7B). Thus we instead draw

parameters from the prior distribution and then use a heuristic combination of Markov

chain Monte Carlo (MCMC) sampling and optimization (Powell’s algorithm) to explore

the parameter space. The MCMC method that we use [64, 65] efficiently searches the

parameter space by simulating an ensemble of parameter sets in parallel; the spread of

the ensemble reflects the geometry of the posterior distribution and is used to guide the

directions of Monte Carlo moves. See Materials and Methods for a more mathematical

treatment of the fitting procedure and comparison of different numerical optimization and

sampling methods.

We use this approach to fit the phosphorylation data (Fig. 2.1B) together with

previously published data on dephosphorylation [29], ATP hydrolysis rate [26], and

the KaiA dwell time for each KaiC phosphoform [24, 25] (see Materials and Methods).

Overall, the model achieves excellent agreement with the training data (Fig. 2.1B and

Fig. S2.8A–C). In the following analyses, we refer to model predictions using the best

fit parameter values, and quantify the uncertainties using the posterior distribution (see

Appendix for further discussion of the convergence of the simulations).
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We find that certain parameters, such as the hydrolysis rates in the U and T

phosphoforms and the KaiA off-rates from the U phosphoform, are tightly constrained,

while many others, mainly involving S and D phosphoforms, are less constrained, in

the sense that their posterior distributions span multiple orders of magnitude, exhibit

multimodality, or cannot be reproduced over multiple independent runs (Fig. S2.5B).

Some parameters are highly correlated and certain combinations of the parameters are

much better constrained than the individual parameters. For example, the posterior

distributions for the KaiA binding affinities (Fig. 2.1D) appear better constrained than

the on/off rates (Fig. S2.9B).

Taken together, these results are consistent with the notion that collective fits of

multiparameter models are generally “sloppy,” meaning that the sensitivities of different

combinations of parameters can range over orders of magnitude with no obvious gaps in

the spectrum [54, 55]. As we will see, we can nonetheless make useful predictions using the

ensemble of model parameters, because the model behavior is constrained along the stiffest

directions of the posterior distribution. By contrast, direct parameter measurements need

to be both complete and precise to achieve similar predictive validity [55]. We further

characterize the structure of the parameter space in Appendix and Fig. S2.9.

2.3.3 KaiC (de)phosphorylation goes through transient kinetic

intermediates

In the model, we can breakdown the kinetics of KaiC phosphorylation reactions and

interpret the underlying molecular events. Here we consider the phosphorylation kinetics

at the standard reaction condition (3.5 µM KaiC, 1.5 µM KaiA, 100% ATP; Fig. 2.2A

and B, solid curves); we examine the effect of varying [KaiA] and %ATP in the following

sections.

At the beginning of the phosphorylation reaction, KaiC molecules are predominantly

in the ADP-bound U state (CU
DP), the end product of the dephosphorylation pathway
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Figure 2.2: The model captures the kinetics of KaiC phosphorylation. A. The time
evolution of all 16 KaiC states in a phosphorylation reaction with 100% ATP and either
1.5 µM (solid curves) or 0.2 µM (dashed curves) KaiA. The gray regions represent the
95% posterior interval. Refer to Fig. S2.5A for the KaiC state nomenclature. B. The
corresponding KaiA kinetics, broken down according to the phosphoform of the bound
KaiC. C. KaiA concentration can tune the sensitivity of the KaiC phosphorylation level
to %ATP. The points represent the measured total percentage phosphorylation levels
at t = 12.25 h (see Fig. 2.1B for the full kinetics), and the curves represent the model
prediction at the same time point. D. KaiA concentration can tune the sensitivity of
the clock period to %ATP. The period of the full KaiABC oscillator is calculated from
fluorescence polarization measurements (see Fig. S2.10 A and B for further analysis).

in the absence of KaiA (Fig. 2.2A). With the addition of abundant KaiA, the CU
DP

state becomes rapidly depleted within the first 10 minutes of the reaction and enters the

CU
TP state. Consistent with the kinetic ordering observed in the full oscillator, the CU

TP

population is primarily converted into the T phosphoform over the S phosphoform. The

mechanism underlying the preference for the T phosphoform is not well constrained by

the data, but it appears to be the result of more than just a difference in the relative

U→T and U→S phosphorylation rates; a sensitivity analysis shows that the ordering

of phosphorylation is also dependent on KaiA (un)binding kinetics (see Appendix and

Fig. S2.11). The ADP- and KaiA-bound T phosphoform states are unstable kinetic
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intermediates, and the population accumulates at the CT
TP bottleneck for the first 4

hours. As phosphorylation reaches completion, the T phosphoform is converted first into

ACD
TP through the unstable ADP-bound intermediates, and then to the CD

TP state; the

populations of the ACD
TP and CD

TP states are comparable at steady state. We note here,

however, that previous measurements indicate that approximately 30% of CII nucleotide-

binding pockets should be ADP-bound in the presence of KaiA at steady state [19], which

suggests that the stability of the ADP-bound form is systematically underestimated by the

model fit.

During the phosphorylation reaction, the amount of free KaiA is initially transiently

depleted due to association with the ADP-bound U phosphoform (Fig. 2.2B). Afterwards,

KaiA primarily associates with the ATP-bound S and D phosphoforms as they appear,

but does not bind to the T phosphoform strongly. Therefore, even in the absence of KaiB,

not all KaiA is free during the phosphorylation phase, and the amount of free KaiA is

predicted to depend on both the affinities of the nucleotide-bound states and the mixture

of KaiC phosphorylation states (Fig. 2.1D).

We were surprised to see that the model fit predicts that the KaiA binding affinity for

the ATP-bound T phosphoform is lower than those for the S and D phosphoforms. This is

apparently in contradiction with experimental results that show that S-phosphomimetic

mutants reduce A-loop exposure and weaken KaiA binding, while T-phosphomimetic

mutants have opposite effects [66, 67]. Our model predicts that the nucleotide bound

to CII has large impact on the affinity of KaiA for KaiC. One possibility is that

phosphomimetic mutations may change the average nucleotide-bound state by altering the

catalytic cycle, and that these nucleotide changes have a large effect on the experimental

measurements. Future tests of this hypothesis through experiments that directly control

for the bound nucleotide and models that represent both nucleotide- and phosphoform-

dependent KaiA binding affinity will likely be able to separate the direct effect of phos-

phorylation from nucleotide effects.
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The dephosphorylation pathway is simpler because KaiA is not involved. In the

model, KaiC by itself has no nucleotide exchange activity in CII, and thus phosphorylated

KaiC molecules enter a cycle of dephosphorylation by the transfer of phosphoryl groups

from the phosphorylation sites back to bound ADP molecules, followed by ATP hydrolysis

and removal of inorganic phosphate, until the protein reaches the CU
DP state (Fig. S2.8D).

The ADP-bound forms of the T, S, and D phosphoforms are only transiently populated,

suggesting that the dephosphorylation bottleneck is ATP hydrolysis, which makes bound

ADP available as a cofactor for dephosphorylation, rather than the phosphotransfer

itself. The kinetic preference for the D→S dephosphorylation pathway is the direct

result of faster dephosphorylation via the D→S reaction compared to the D→T reaction

(Fig. S2.5B; compare the posterior distribution of kDS
d with that of kDT

d ). During this

process, KaiC can occasionally autophosphorylate, but it is driven irreversibly towards the

dephosphorylated state by ATP hydrolysis. We note here that the independence of the de-

phosphorylation reaction from solution ADP [29] is a built-in feature of the model, since

solution %ATP only affects the nucleotide exchange rate, which is assumed in the model

to be zero in the absence of KaiA.

2.3.4 KaiA concentration tunes clock sensitivity to %ATP

Our data and the model allow us to ask in detail how [KaiA] modulates the effect of

%ATP on KaiC phosphorylation (Fig. 2.2C). Consistent with previous measurements

[28, 29], these results indicate that the near-steady-state (t = 12.25 h) total phosphory-

lation level of KaiC (%CP = %CT + %CS + %CD) is lower in the presence of ADP. Since

we simultaneously vary %ATP and [KaiA], the data reveal that this inhibitory effect can

be tuned by [KaiA]. In particular, the system is most insensitive to %ATP at either very

low or very high [KaiA], while the %ATP sensitivity is the highest around [KaiA] = 0.75

µM.

Some %ATP sensitivity remains even at saturating KaiA concentrations (Fig. 2.2C).
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This effect can be interpreted qualitatively in terms of the structure of the model. When

there is more KaiA in solution, more KaiC goes through intermediate states that are in

complex with KaiA, by Le Châtelier’s principle. This shifts a larger fraction of the KaiC

population to states that allow for exchange of bound ADP for ATP, which promotes

phosphorylation. On the other hand, as the %ATP decreases, the ATP to ADP exchange

rate decreases according to (2.4). When nucleotide exchange becomes less efficient, more

KaiC stays in ADP-bound states, which are prone to dephosphorylation. In summary,

[KaiA] and %ATP both act on the phosphorylation kinetics via the nucleotide exchange

step. Solution %ATP directly regulates the exchange rate constant and sets its upper

bound, while [KaiA] controls the population of exchange-competent KaiC and thus the

effective exchange rate. Therefore, the effects of KaiA and increasing solution %ATP are

not equivalent; because the effective exchange rate cannot exceed the limit set by %ATP,

even a saturating amount of KaiA cannot fully compensate for low %ATP. In this sense,

KaiA acts as an input regulator—high [KaiA] blunts the intrinsic sensitivity of KaiC to

ADP in solution.

Given that the metabolic sensitivity of the KaiA-KaiC subsystem can be tuned by

KaiA concentration, we asked whether metabolic sensitivity of the full oscillator period

may also be tuned by KaiA. Such a scenario might allow the [KaiA]/[KaiC] ratio to be

an important parameter in vivo for adjusting the sensitivity of the clock to the daily

metabolic rhythm of the cell. To address this question, we characterized the dependence

of the period of the in vitro KaiABC oscillator on [KaiA] and %ATP using a fluorescence

polarization assay [30, 33] (Fig. 2.2D and Fig. S2.10A and B). Consistent with the

hypothesis, we found that low KaiA concentration enhances the period sensitivity to

%ATP compared to the standard condition (1.5 µM KaiA). These results suggest that the

KaiA activity, and how it is controlled, plays a critical role in determining how responsive

the oscillator is to metabolic changes.
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2.3.5 KaiC phosphorylation exhibits ultrasensitive dependence on KaiA

levels

In addition to inferring kinetics of states not easily accessible to experiments, the model

allows us to interpolate between the training data points and study the relation between

KaiC phosphorylation, [KaiA], and %ATP at a much finer resolution. This analysis shows

an ultrasensitive dependence of the steady-state %CP on KaiA concentration (Fig. 2.3A

and D left). Specifically, we see a threshold-hyperbolic stimulus-response relation [68, 69],

where KaiC phosphorylation is highly suppressed near the sub-micromolar [KaiA] regime,

but then follows a right-shifted hyperbolic stimulus-response function once [KaiA] exceeds

a threshold. Importantly, the threshold depends on %ATP. The model makes similar

predictions for the steady-state T, S, and D phoshoforms as well (Fig. S2.12A). However,

because of the T→D and S→D phosphotransfer reactions, the stimulus-response relations

of T and S are not monotonic functions of [KaiA] because high [KaiA] and high %ATP

conditions stabilize the D phosphoform at the expense of the T and S phosphoforms.

Previous studies of KaiA-KaiC interactions examined the response of KaiC at

relatively high KaiA concentrations (≥ 1.2 µM), comparable to the total amount of

KaiA used in an oscillating reaction. [70] investigated the steady-state stimulus-response

relation, but did not consider the effect of %ATP or fully characterize the low [KaiA]

regime. Previous reports of initial phosphorylation rates suggest that they exhibit a

hyperbolic dependence on [KaiA] [17, 21], similar to simple Michaelis-Menten enzyme-

substrate systems. However, this does not imply that the steady-state stimulus-response

relation is hyperbolic as well.

To assess the robustness of the model prediction of ultrasensitivity across the

ensemble, we use two metrics proposed by [71] to quantify the shape of the predicted

stimulus-response curves for %CP at any fixed %ATP: we use EC10 to measure the

extent to which the curve acts as a threshold and EC90 – EC10 to measure the extent

to which the curve acts as a switch. Here, ECx is the KaiA concentration required to
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reach x% of the steady-state phosphorylation level at saturation. Fig. 2.3E shows the

distribution of these quantities in the ensemble at 25% ATP. Overall these statistics are

tightly constrained by the training data set, and are clearly distinct from those from

hyperbolic stimulus-response relations (Fig. 2.3E, dashed gray line).

Figure 2.3: Substrate competition explains KaiC phosphorylation ultrasensitivity. A.
The predicted stimulus-response relation of the total steady-state KaiC phosphorylation
level as a function of %ATP and [KaiA]. B. Experimentally-determined stimulus-response
function of KaiC at three %ATP conditions; the curves are based on refitting the best fit
of the full model to the steady-state measurements. C. Similar to B. but for KaiC S431A,
which has only one phosphorylation site; the curves are based on independent fits to a
simple phenomenological substrate competition model.
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(Figure 2.3, continued) D. Cross sections of the stimulus-response relation at
three %ATP, computed using the full model (left) and model –n (right). E. Posterior
distributions for the shape measures of the stimulus-response functions at 25% ATP
predicted by the full model and model –n. The contours represent the 68% and 95%
HDRs, and the gray stars represent the model best fits. The shapes of the stimulus-
response functions are quantified using two metrics: EC10, which quantifies threshold-like
behavior, and EC90 – EC10, which quantifies switch-like behavior. The shape measures
of the experimentally-determined stimulus-response function at 25% ATP is shown as the
yellow star. The dashed line represents (EC10,EC90 − EC10) = (K/9, 80K/9), which
characterizes the shape of a hyperbolic stimulus-response function [A]/(K + [A]) that has
no switching or thresholding. F. The stimulus-response functions of KaiC S431A at 100%
ATP in the presence of KaiC S431A/T432A (AA; left) and S431E/T432E (EE; right)
phosphomimetic mutants to probe the effect of kinetic competition on KaiC phosphoryla-
tion. G. The relations between EC50 (the midpoint of a stimulus-response function) and
KaiC AA/EE concentrations, quantified using the curves shown in F.

We then sought to experimentally determine the shape of the stimulus-response

function. We measured KaiC phosphorylation at t = 24 h at various concentrations of

[KaiA] at three %ATP conditions (Fig. 2.3B and Fig. S2.12B). Consistent with model

prediction, the experimentally-derived stimulus-response relations are ultrasensitive with

a %ATP-dependent phosphorylation threshold, and the stimulus-response relation of the

S phosphoform at 100% ATP is non-monotonic. We then quantified the shape of the

stimulus-response curve for %CP at 25% ATP using the same two metrics defined above

(Fig. 2.3E, yellow star). At 25% ATP, the shape of the experimentally-derived stimulus-

response curve is close to that of the model prediction, but the model fit is systematically

less threshold-like (i.e., smaller EC10) and less switch-like (i.e., larger EC90 – EC10). This

inconsistency is likely due to a combination of training data under-determining the shape

of the curve at the sub-micromolar range (compare Fig. 2.2C with Fig. 2.3B) and the

fitting method under-estimating uncertainties (see Appendix).

Lastly, the saturating phosphorylation levels in the steady-state measurements appear

systematically lower than those implied by the training data set (compare Fig. 2.3B

with D left). This may be a result of batch-to-batch variations in protein and nucleotide

quantification. This difference can be corrected by refitting the full model to the steady-
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state measurement (Fig. 2.3B and Fig. S2.12C). The refit results suggest that errors

in protein and nucleotide concentrations primarily affect the kinetic properties of the S

phosphoform in the model (Fig. S2.12D), but the refitting does not change the qualitative

conclusions.

2.3.6 A substrate competition mechanism underlies ultrasensitivity in

KaiC phosphorylation

What is the mechanism of ultrasensitivity in KaiC phosphorylation? Given that each

KaiC subunit has two phosphorylation sites, a plausible explanation is multisite phos-

phorylation, whereby the concentration of the maximally phosphorylated state exhibits

an ultrasensitive dependence on the kinase concentration [71] (or in this case, the

nucleotide-exchange factor concentration), even if each consecutive phosphorylation step

follows mass-action kinetics. To examine this possibility, we measured the stimulus-

response relation of the KaiC S431A mutant, which has only one phosphorylation

site, and the results show ultrasensitivity comparable to that of the WT protein (Fig.

2.3C). Furthermore, because KaiC is its own phosphatase, it violates the assumption of

distributivity (i.e., at most one modification takes place before the dissociation of the

enzyme and substrate) [71]. Multisite phosphorylation thus cannot explain the observed

ultrasensitivity.

In the ensemble of parameter sets, the KaiA dissociation constant of the ADP-bound

(but not ATP-bound) U phosphoform (CU
DP) is in or below the nanomolar range, much

smaller than that of any other state of KaiC (Fig. 2.1D). This is consistent with recent

single molecule observations suggesting that the unphosphorylated form of KaiC can

bind very tightly to KaiA [25] and native mass spectrometry measurements suggesting

that KaiA binding to KaiC is enhanced by ATP hydrolysis, which would be needed to

produce ADP-bound KaiC [72]. Here, we argue that the key to understanding the origin

of ultrasensitivity in the model lies in the differential binding affinity of KaiA to the ADP-
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and ATP-bound states of KaiC. We note here that since the model does not consider the

hexameric structure of KaiC, we cannot rule out possible hexameric cooperative effects

that may contribute to ultrasensitivity.

In the model, differential KaiA binding affinity leads to the following dynamics:

KaiA promotes phosphorylation by catalyzing the exchange of the bound ADP for ATP,

but this process is in a kinetic competition with ATP hydrolysis, which returns KaiC to

the ADP-bound state. At the beginning of the phosphorylation reaction, almost all the

KaiA is bound to CU
DP (Fig. 2.2A and B) due to its high abundance and high affinity for

KaiA (Fig. 2.1D). When [KaiA] is low, the competition between nucleotide exchange and

hydrolysis in the U phosphoform reaches a steady-state where [CU
DP] stays above [KaiA]

(Fig. 2.2A, dashed curves). Therefore, KaiA stays trapped by CU
DP and the phosphory-

lation products (mostly T) cannot undergo nucleotide exchange. In the absence of KaiA,

the autophosphatase activity of KaiC dominates, and the phosphorylation products revert

back to the U phosphoform.

When [KaiA] is high, however, the competition between nucleotide exchange and

hydrolysis in the U phosphoform pushes CU
DP below [KaiA] (Fig. 2.2A, solid curves),

which frees KaiA to catalyze the nucleotide exchange reactions of the phosphorylation

products. Once the flux of phosphorylation, KaiA binding, and nucleotide exchange

outweighs that of hydrolysis, dephosphorylation, and KaiA unbinding, the phosphor-

ylation products stay phosphorylated at steady state. Furthermore, the formation of

phosphorylated products positively feeds back to deplete CU
DP, further removing a KaiC

state that traps KaiA and leading to rapid saturation of phosphorylation past the [KaiA]

threshold. The [KaiA] threshold for phosphorylation depends on %ATP (Fig. 2.3A),

because when %ATP is low, more KaiA is needed to counteract the reduced ADP-to-ATP

exchange rate.

This mechanism is a form of substrate competition [56, 73], a previously identified

general scheme where the kinetic competition of multiple substrates for enzyme binding
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leads to ultrasensitivity. Here, KaiA plays the role of the enzyme, while the ADP-bound

U phosphoform and the T phosphoform (as well as the S and D phosphoforms to a lesser

extent due to phosphorylation ordering) are the substrates that compete for KaiA binding.

However, the fact that the phosphorylated and unphosphorylated forms of KaiC can

interconvert through phosphotransfer reactions distinguishes the Kai system from a typical

substrate competition scheme, where the substrates cannot interconvert.

The model suggests that the U phosphoform plays a special role in generating ultra-

sensitivity due to the significant difference in the affinity of KaiA for its ATP- vs. ADP-

bound states (Fig. 2.1D). This observation leads to two testable predictions. First, the

amount of KaiA required to activate phosphorylation should be higher when more U

phosphoform is present. We tested this prediction experimentally by measuring the

stimulus-response relation of KaiC S431A in the presence of KaiC S431A/T432A (AA),

which mimics the U phosphoform, or KaiC S431E/T432E (EE), which mimics the D

phosphoform. The KaiC AA and EE mutants act as competitors for the KaiA-KaiC

interaction (Fig. 2.3F). Consistent with the hypothesis, the EC50 (i.e., the midpoint of

the ultrasensitive switch) is positively correlated with the concentration of KaiC AA,

while varying the concentration of KaiC EE has little effect (Fig. 2.3G). Interestingly, the

presence of KaiC-AA in an oscillatory reaction also appears to reduce the amplitude of the

oscillation, but the effect is most pronounced at low %ATP (Fig. S2.10C).

Second, the substrate competition mechanism suggests that the model should exhibit

weaker nonlinearity if KaiA has the same affinity to ATP- vs. ADP-bound states of

a given KaiC phosphoform. To computationally test this prediction, we constructed

simplified models where KaiA on/off rates are set to be independent of the nucleotide-

bound state (model –n) or phosphorylation state (model –p) and fit the new models to the

experimental data ab initio. Consistent with the prediction, decoupling KaiA on/off rates

from the nucleotide-bound states results in a significant loss of ultrasensitivity (Fig. 2.3D

right and Fig. S2.13A). Model –p by contrast behaves similarly to the full model (Fig.
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Table 2.1: Effects of differential KaiA (un)binding kinetics

Model
Log likelihood

Bayes factora

Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 –0.8 1

–nb 249.2 275.4 –0.3 10.4

–pc 392.4 303.2 –2.4 2.2
–n,–p 204.4 266.4 –2.6 19.7

a We define the Bayes factor as the ratio of the marginal likelihood function of
the full model over that of the simplified models. We adopt the convention
that a Bayes factor larger than 3.2 is substantial evidence against the model
[74].

b –n: on/off rates decoupled from nucleotide-bound state.
c –p: on/off rates decoupled from phosphorylation state.

S2.13C); consistent with the substrate competition mechanism, the ADP-bound states of

KaiC in model –p have higher affinity to KaiA than the ATP-bound states, regardless of

the phosphorylation state (Fig. S2.13B). We quantify the effects of such model reductions

by computing the Bayes factor, which is a metric for systematic model comparison that

favors goodness of fit but penalizes model complexity and parameter fine tuning [42]; it is

similar to the Bayesian information criterion [75], but makes no asymptotic assumptions.

The analysis shows that the loss of ultrasensitivity in model –n degrades the fit quality

significantly, while model –p is only marginally worse than the full model (Table 2.1).

Interestingly, a model where the KaiA on/off rates are completely independent of the state

of KaiC (model –n,–p; Fig. S2.13D and E) is much worse than either model –n or model

–p (Table 2.1). We conclude that the nucleotide-bound state of KaiC plays a key role in

regulating its interaction with KaiA and thus in determining phosphorylation kinetics.

2.3.7 Substrate competition may underlie metabolic compensation

Finally, we consider the implications of the ultrasensitivity for the full oscillator. For the

sake of clarity, we make a distinction in this section among three subpopulations of KaiA:

the sequestered KaiA, which refers to inactive KaiA in a KaiABC complex; the active
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KaiA, which refers to (free or bound) KaiA not sequestered by KaiB; and the free KaiA,

which is not associated with either KaiB or KaiC.

Figure 2.4: Ultrasensitivity contributes to metabolic compensation. A. The time series
of the total input KaiC phosphorylation level (purple, left scale) and residual KaiA
concentration not precipitated with KaiB-FLAG (gray, right scale). B. A schematic
of the oscillator model by [28]. Here, BCS and BCD represent the KaiB-bound S and
D phosphoforms, respectively, which can sequester KaiA. The dashed line represents
the effect of introducing ultrasensitivity to the model. C. A cartoon representation of
introducing a KaiA sequestration affinity, KD, into the Phong model. The original
model has an effectively infinite sequestration affinity (dashed curve). D. A cartoon
representation of introducing a KaiA threshold to the Michaelis-Menten-type phosphor-
ylation rate constant in the Phong model.
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(Figure 2.4, continued) E. The period of the oscillator model as a function of %ATP
and KD, a measure of KaiA sequestration affinity, without (top) or with (bottom) a
phosphorylation threshold. All model simulations were done with 3.5 µM of KaiC and
1.5 µM of KaiA. White regions indicate unstable or no oscillation. F. The extent to
which KaiA can be sequestered by KaiB depends on the maximal S and D phosphoform
concentration, [CS+D

max ], achieved over the phosphorylation cycle. The scaling of the EC50
of the phosphorylation stimulus-response function, which is a measure of the capacity of
the U phosphoform to suppress KaiA activity, compensates for the scaling of [CS+D

max ] with
%ATP.

We first consider the current understanding of how KaiA activity is regulated over

the circadian cycle. It is well-established that the regulation of KaiA during nighttime by

KaiB plays an essential role in producing the negative feedback loop. At dusk, the buildup

of KaiC D and S phosphoforms triggers the binding of KaiB to CI [17, 20, 21, 28, 76–79]

and subsequently the sequestration of KaiA by CI-bound KaiB [20, 24, 80]. In the absence

of active KaiA, the CII domain autodephosphorylates, and the KaiABC ternary complex

disassembles [78] at dawn as KaiC reaches its unphosphorylated state [12], freeing KaiA

and readying the clock for the next cycle.

This understanding of the negative feedback loop implies that the sequestration of

KaiA by KaiB is a source of nonlinearity in the system that is critical for generating

oscillation. Indeed, in many models of the Kai oscillator, the complete sequestration of

KaiA during dephosphorylation is either a built-in or required feature for stable oscillation

[e.g., 28, 40, 81, 82]. However, our observation that phosphorylation is suppressed

nonlinearly at low [KaiA] suggests that complete sequestration of KaiA by KaiB is

not necessary to prevent phosphorylation at night. Indeed, there is mounting evidence

that KaiB sequestration by itself is insufficient to completely inactivate KaiA during

dephosphorylation. Specifically, measurements using native mass spectrometry, co-

immunoprecipitation (co-IP), and native PAGE suggest that there is a significant amount

of KaiA2C6 complex [24, 83] and free KaiA [80] throughout the entire phosphorylation

cycle.
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To confirm that KaiA is not fully sequestered by KaiBC complexes, we used immuno-

precipitation of FLAG-tagged KaiB to monitor the amount of uncomplexed KaiA in

supernatant, which we interpret to be a measure of active KaiA concentration (Fig. 2.4A

and Fig. S2.10D). The experiment shows that there is indeed a substantial amount of

active KaiA in solution in the first half of the dephosphorylation stage of the oscillation.

Taken together, these results suggest that either the binding of KaiA to KaiBC has lower

affinity than previously assumed, or that the sequestration kinetics are slow compared to

the length of the dephosphorylation stage. In either case, some KaiA appears to remain

free of KaiABC complexes at all times during the oscillation.

Given these results, we consider the role ultrasensitivity may play in regulating

KaiA’s ability to stimulate KaiC phosphorylation at nighttime. In particular, the fact

that the phosphorylation threshold scales with %ATP suggests that ultrasensitivity may

also lead to insensitivity of the period of the Kai oscillator to %ATP [28], a phenomenon

termed “metabolic compensation” [57]. As a proof of principle, we examine this possibility

using a simple model of the Kai oscillator proposed by [28], which we refer to as the

Phong model. The Phong model explicitly keeps track of the monomer phosphorylation

cycle and uses KaiB binding to the S phosphoform to generate negative feedback (Fig.

2.4B). In the Phong model, the KaiA sequestration affinity is effectively infinite. In light

of the co-IP experiment, we modify the model by assuming that the KaiA sequestration

reaction is in a quasi-equilibrium with a dissociation constant for KaiA binding to the

KaiBC complex, KD (Fig. 2.4C; see Appendix for mathematical details). When KD is

small (i.e., < 10−3 µM), the modified model exhibits the same robust oscillations as the

original model over a large range of %ATP, but the range of %ATP that allows for stable

oscillation shrinks as KD increases (Fig. 2.4E top), and the model is unstable when KD is

in the micromolar range regardless of %ATP.

In the original Phong model, the dependence of KaiC phosphorylation on KaiA is

described by a Michaelis-Menten-like function with no ultrasensitivity. In this scenario, a
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small increase in active KaiA leads to a proportional increase in phosphorylation, making

the dephosphorylation phase of the clock strongly dependent on the strength of KaiB-

mediated KaiA sequestration. To test if ultrasensitivity can increase the robustness

of oscillations in the model, we introduce a phenomenological patch to the model in

the form of an ultrasensitive KaiA threshold to the phosphorylation rate function,

which varies as a function of %ATP and U phosphoform concentration (Fig. 2.4D; see

Appendix for mathematical details). Given that the ultrasensitivity is a result of substrate

competition, this modification effectively introduces an inhibitory interaction between

the U phosphoform and KaiA (Fig. 2.4B, dashed arrow). This modification amounts to

the assumption that the EC50 measured at steady state (Fig. 2.3A) in the absence of

KaiB corresponds to the active KaiA concentration required to re-enter the phosphory-

lation phase at the trough of the circadian oscillation. Remarkably, the resulting model

can generate stable oscillations over a larger range of both %ATP and KD conditions, and

the period of oscillation is made much less dependent on %ATP. (Fig. 2.4E bottom). This

observation suggests that ultrasensitivity in KaiC phosphorylation plays a role in clock

stability that complements the function of KaiB-dependent KaiA sequestration.

Why does ultrasensitivity in KaiC phosphorylation allow for metabolic compensation?

The binding of KaiB to KaiC, and thus the sequestration and inactivation of KaiA,

depends on S431 phosphorylation of KaiC (i.e., the S and D phosphoforms). At low

%ATP, the maximal S and D concentrations, [CS+D
max ], are lower (Fig. 2.4F). Thus

the maximal amount of KaiA sequestered by the KaiBC complex is smaller. This is

problematic for the stability of the clock at low %ATP, since the active KaiA can promote

premature KaiC U→T phosphorylation of some molecules, which can lead to phase

decoherence that manifests as decay of the oscillation (Fig. S2.10F). The ultrasensitive

stimulus-response that we report here implies that a finite amount of KaiA must be

liberated from KaiB before there is a noticeable impact on KaiC phosphorylation. In

other words, the inhibitory effect of ultrasensitivity is a synchronization mechanism at
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night. Importantly, the EC50 of the stimulus-response function scales with %ATP, such

that the capacity of phosphorylation suppression by CU is enhanced at low %ATP, which

compensates for weaker KaiB-mediated KaiA sequestration (Fig. 2.4F). The compensatory

relation between these two mechanisms as %ATP varies is likely key to period stability.

This relation likely also contributes to the scaling of the phosphorylation limit cycle size

with %ATP. At higher %ATP, the EC50 is smaller and thus more KaiA needs to be

sequestered to trigger dephosphorylation, which implies that higher concentrations of the

S and D phosphoforms need to accumulate to enable KaiB binding. Since KaiC phosphor-

ylation is ordered, this means that the T phosphoform concentration scales with %ATP as

well.

2.4 Discussion

In this work we undertook a data-driven kinetic modeling approach to understand the

mechanism and metabolic sensitivity of the KaiA-KaiC subsystem, part of the S. elongatus

circadian oscillator. We constructed a detailed yet mechanistically naive kinetic model,

which was fit to extensive experimental measurements of KaiC phosphorylation kinetics

within a Bayesian parameter estimation framework. Approaches that are similar in spirit

have been pursued in eukaryotic systems [e.g., 84–88]. However, owing to the greater

complexity of eukaryotic clocks, these studies combined direct experimental measurements,

cost function optimization, and hand tuning of selected parameters to account for

unknown or unconstrained biochemical processes. Because the Kai system can be studied

as a well-defined mixture of purified components, the participating molecular species are

known, and all the parameters in the model can be treated in a consistent manner to

enable objective comparison of mechanisms underlying collective oscillations.

This data-driven approach is to be contrasted with the more common hypothesis-

driven approach, whereby a model is built to examine how features of the oscillator

arise from proposed mechanisms. This hypothesis-driven approach has been employed
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extensively in the study of the cyanobacterial clock. These studies have revealed

insights into specific aspects of the oscillator function, such as entrainment [33, 83],

synchronization [81, 82, 89], irreversibility [90], and robustness against variations in

temperature [31, 34, 35, 91], ATP/ADP concentration [28, 36], protein copy numbers

[21, 83, 92], and environmental noise in general [93–95]. This hypothesis-driven approach

is pedagogically powerful but relies on the ingenuity of the modeler to identify a priori

which mechanisms should be included. These approaches give little indication of the range

of the parameter space consistent with a proposed mechanism, which makes it difficult to

quantify the uncertainties of model predictions and validate them experimentally.

Not all parameters in our model were fully constrained by the data, as expected given

the complexity of the model [55]. Nevertheless, the ensemble of parameter sets still led

to consistent predictions. In particular, the model revealed unexpected ultrasensitivity

in KaiC phosphorylation as a function of KaiA, which we confirmed experimentally.

The source of ultrasensitivity in the model is a substrate competition mechanism that

arises from the differential affinity of ADP- and ATP-bound KaiC for KaiA. Previous

studies have considered the importance of the differential affinity of KaiA for KaiC states

but have focused on phosphorylation [25, 40]. We note here that the ultrasensitivity in

KaiC phosphorylation that we discovered and the ultrasensitivity in KaiB-dependent

KaiA sequestration that arises from opposing S and T phosphorylations within hexamers

[21] perform fundamentally different roles. Specifically, the cooperative binding of KaiB

to KaiC during the dephosphorylation stage provides the nonlinear, delayed negative

feedback loop essential for oscillation [1], whereas the mutual inhibition between KaiA

and ADP-bound KaiC, which effectively provides positive feedback on KaiA’s activity,

generates a KaiC phosphorylation threshold that contributes to period stability as %ATP

changes. The presence of nonlinearities and delayed feedback at multiple steps in a

molecular oscillator allows the system to achieve greater robustness [88, 96–98].

We hypothesized that ultrasensitivity in KaiC phosphorylation plays a role in
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stabilizing the oscillator at low %ATP conditions by suppressing premature phosphory-

lation during the dephosphorylation stage and thus promoting phase coherence. Currently,

the Kai oscillator model most robust against yet tunable by metabolic conditions appears

to be that of [36, 40]. In the Paijmans model, metabolic compensation is achieved both

at the hexamer and ensemble level. At the hexamer level, the onset of dephosphoryla-

tion is primarily controlled by the antagonistic effects of the T and S phosphoforms. Since

fewer subunits in the T phosphoform accumulate at low %ATP, fewer subunits in the S

phosphoform are needed to trigger dephosphorylation; therefore, the reduced amplitude

of oscillation counteracts the slower phosphorylation rate at low %ATP. At the ensemble

level, low %ATP limits the fraction of hexamers that are able to trigger dephosphoryla-

tion before the onset of KaiB-mediated delayed inhibition; this makes the dephosphoryla-

tion phase shorter, which compensates for the longer phosphorylation phase. It is worth

noting that, unlike the data, the Paijmans model is not oscillatory when %ATP reaches

below 50%, partly due to phase decoherence during dephosphorylation, an issue that can

potentially be addressed with ultrasensitivity in KaiC phosphorylation. In our model the

coupling between KaiA binding affinity and KaiC nucleotide-bound states is critical in

generating ultrasensitivity, a feature that is missing in the Paijmans model. It remains an

open question whether a hexameric model with no such coupling can nevertheless produce

ultrasensitivity in KaiC phosphorylation (see Appendix for further comparison between

this work and the Paijmans model). The ultimate goal of this line of research is to obtain

a molecularly detailed model of the complete Kai oscillator that is constrained by direct

fitting to empirical measurements.

In S. elongatus, the Kai oscillator is embedded in a transcription-translation feedback

loop [3–5]. However, with the exception of peroxiredoxin oxidation cycles [99, 100], cell-

autonomous circadian rhythms in eukaryotes are thought to be generated by interlocked

transcription-translation feedback loops [1]; the cooperative autoregulation of transcription

is a key source of nonlinearity and robustness in the circuit [e.g., 85, 101–104]. Our results
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raise the possibility that post-translational modifications and protein-protein interactions

may also contribute to robustness generally in circadian clocks by introducing ultra-

sensitivity, even if these processes do not generate self-sustaining rhythms that can be

decoupled from transcription. Overall, it is clear that post-translational steps such as

(de)phosphorylation [105–108], protein degradation [105, 109], and complex formation [88]

play an important role in eukaryotic circadian oscillators, but to our knowledge there is

currently no complete experimental characterization of the stimulus-response relations of

these processes.

2.5 Materials and Methods

2.5.1 Computational methods

Treatment of nucleotide exchange Here we derive (2.4) in Results. The nucleotide

exchange process can be modeled as a two-step reaction that includes an apo intermediate

state of KaiC, i.e.,

ACTP
kTP

r−−−⇀↽−−−
kTP

on

AC
kDP

on−−−⇀↽−−−
kDP

r

ACDP (2.6)

where we have omitted the free ATP and ADP from the chemical equation. Here, kTP
r and

kDP
r are the dissociation rate constants and kTP

on and kDP
on are the binding rate constants

for ATP and ADP, respectively. Since KaiC requires nucleotides for hexamerization

[16, 76, 110], the apo state of KaiC is presumably both thermodynamically and kinetically

unstable in the presence of saturating amount of nucleotide (5 mM in our experiments).

Therefore, under the assumption that the KaiC apo state is in a quasi-steady state

throughout the reactions, we can eliminate the apo state and model nucleotide exchange

as a one-step reaction

ACTP

kA
DP−−−⇀↽−−−
kA

TP

ACDP (2.7)
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where

kA
TP = kDP

r
[ATP]

[ATP] +Kon[ADP]
(2.8)

kA
DP = kTP

r

(
1− [ATP]

[ATP] +Kon[ADP]

)
(2.9)

and Kon = kDP
on /kTP

on is a ratio of the two nucleotide binding rate constants.

We make two further simplifying assumptions. First, we assume the on rates are

completely diffusion controlled and are thus the same for ATP and ADP, which allows

us to set Kon = 1. Second, based on fit results (Fig. S2.8F) showing that the posterior

for kTP
r has a long tail to negative infinity in log space, we follow the approach proposed

by [111] and set kTP
r = 0; i.e., the dwell time of ATP-bound states are sufficiently long

that a bound ATP cannot be released without first giving up its γ-phosphate group. This

assumption implies that the only ways for KaiC to enter an ADP-bound state are through

hydrolysis and phosphorylation, and solution ADP has no effect on the system except to

slow down the ADP to ATP exchange process. With these two assumptions, we eliminate

(2.9), and (2.8) reduces to (2.4).

Model parameterization In Results, we introduced a model parameterization scheme

in which rate constants for phosphotransfer, nucleotide exchange, KaiA (un)binding, and

ATP hydrolysis reactions depend on the participating molecular species. Although we use

this independent-rate scheme to interpret the model, including computing the sensitivity

ODEs, during the fitting itself we represent state-dependent effects by modifying each of

the six basic rate constants (kp, kd, ka, kb, kDP
r , and kh) by multiplicative ∆k factors. For

example, the KaiA dissociation rate k
T,TP
b = kb∆k

T,TP
b is represented by the product

between a base rate kb and a modifier ∆k
T,TP
b (compare Fig. S2.5 and Fig. S2.14). The

multiplicative-factor scheme introduces 38 ∆k parameters. Because of the requirement for

detailed balance (see below), only 34 of these parameters are free; these free parameters
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Table 2.2: Full model parameters and their priors

Category
State-dependent
effect

Parameters Prior Unit

Basic N/A kh, kp, kd, ka, kb, k
DP
r 10N (µ,3) b s−1 d

Nucleotide
exchange

KaiA & phos.a ∆k
A,T
TP ,∆k

A,S
TP ,∆k

A,D
TP

10Laplace(µ,1) b N/A

Hydrolysis
phos. ∆kT

h ,∆k
S
h,∆k

D
h

KaiA & phos.
∆k

A,U
h ,∆k

A,T
h ,

∆k
A,S
h ,∆k

A,D
h

KaiA on nuc.a & phos. ∆k
U,DP
a ,∆k

D,DP
a ,∆k

D,TP
a

KaiA off nuc. & phos.

∆k
U,DP
b ,∆k

T,DP
b ,∆k

S,DP
b ,

∆k
D,DP
b ,∆k

T,TP
b ,∆k

S,TP
b ,

∆k
D,TP
b

(De)phos-
phorylation

phos.

∆kUS
p ,∆kSU

d ,

∆kTD
p ,∆kDT

d ,

∆kSD
p ,∆kDS

d

KaiA & phos.

∆k
A,UT
p ,∆k

A,TU
d ,∆k

A,TD
p ,

∆k
A,DT
d ,∆k

A,SD
p ,∆k

A,DS
d ,

∆k
A,US
p ,∆k

A,SU
d

Global error N/A σ2 Inv-Gamma
(1, 0.01)

µM2

Initial
conditions

N/A

[CU
TP]0, [C

U
DP]0, [C

T
TP]0,

[CT
DP]0, [C

S
TP]0, [C

S
DP]0,

[CD
TP]0, [C

D
DP]0

Dirichlet(a)c µM

a phos., phosphoform; nuc., nucleotide-bound state
b The mean of the priors, µ, is zero unless specified by Table 2.5.
c a = (20, 100, 1, 1, 1, 1, 1, 1); points drawn from the distribution are scaled by the

total KaiC concentration. The support of the Dirichlet distribution implies that
only seven of the eight initial conditions are free fitting parameters.

d or s−1·µM−1 for the second-order rate constant ka.
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Table 2.3: Detailed balance conditions

Cycle Detailed balance condition

{CS
TP, CD

DP, ACD
DP, ACS

TP} δk
S,TP
a = ∆k

S,TP
b

∆k
A,DS
d

∆k
A,SD
p

∆k
D,DP
a

∆k
D,DP
b

{CT
TP, CD

DP, ACD
DP, ACT

TP} δk
T,TP
a = ∆k

T,TP
b

∆k
A,DT
d

∆k
A,TD
p

∆k
D,DP
a

∆k
D,DP
b

{CU
TP, CT

DP, ACT
DP, ACU

TP} δk
T,DP
a = ∆k

T,DP
b

∆k
A,UT
p

∆k
A,TU
d

{CU
TP, CS

DP, ACS
DP, ACU

TP} δk
S,DP
a = ∆k

S,DP
b

∆k
A,US
p

∆k
A,SU
d

are listed on Table 2.2. The advantage of the multiplicative parameterization scheme is

that it facilitates `1 regularization, discussed below.

Detailed balance All elementary reactions, except ATP hydrolysis and nucleotide

exchange, are assumed to occur in equilibrium, and thus the free energy change over each

reversible cycle must be equal to zero. In practice, this means that the product of all rate

constants in the forward direction of each cycle listed on Table 2.3 must be equal to that

in the reverse direction (see also Fig. S2.14A). This introduces an additional algebraic

constraint for each such cycle, which is used to eliminate one free ∆k parameter. In total,

one can eliminate four parameters.

Fitting data set To constrain the model parameters, we collected experimental

measurements that characterized different aspects of the KaiA-KaiC subsystem, which are

summarized in Table 2.4.

The dephosphorylation reaction data taken from [17] constrains the dephosphory-

lation rates and the ATP hydrolysis rates of KaiC in the absence of KaiA, because the

model structure dictates that dephosphorylation requires alternating phosphotransfer

and hydrolysis reactions. There is currently no direct measurement of CII hydrolysis rate
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Table 2.4: Fitting data set

Measurement
(source)

T
(◦C)

[KaiA]a (µM) ATP
Time
points

Phosphoform

Phosphorylation
(this work)

30
0.375, 0.75, 1.50,
3.00, 4.50, 6.00

10, 25, 100%b 8 U, T, Dc

Dephosphorylation [29] 30 1.4 5 mM 21

ADP production [26] 30 1.2 1 mM 1 N/A

KaiA on/off rates [24] 25 Variable 1 mM N/A Likely U

KaiA dwell time [25] 25–28 1.0 N/A N/A T, S, Dd

a We report here on the KaiA monomer concentration. However, since KaiA functions as
a dimer, all KaiA concentration is divided by two in the models.

b %ATP, defined as 100%[ATP]/([ATP] + [ADP]); total [ATP] + [ADP] is held constant
at 5 mM.

c The conservation of mass constraint implies that one of the four phosphoforms is not
a free state variable. We have chosen the S phophoform to be the constrained state
variable.

d Phosphomimetic mutants

in the presence of KaiA. However, the maximum ADP production rate of KaiC in the

presence of 1.2 µM of KaiA was reported to be 29.8 ± 5.1 KaiC-1·day-1 [26], which we

take as an upper bound on the average CII hydrolysis rate in phosphorylation reactions

with [KaiA] = 0.375, 0.75, and 1.50 µM.

Because the phosphorylation reactions were measured in the presence of varying

%ATP and higher [ADP] inhibits phosphorylation by slowing down nucleotide exchange

(see equation 2.4), such measurements provide indirect constraints on the nucleotide

exchange rate. Similarly, because the reactions were measured in the presence of varying

[KaiA] conditions, they directly constrain the phosphorylation rates of KaiC with and

without KaiA, as well as the KaiA binding affinity, i.e., the ratio of KaiA on/off rates.

Although there are direct experimental measurements of KaiA binding and dissociation

[24, 25], these results cannot be directly mapped onto model rate constants. This

is primarily because the KaiC nucleotide-bound fractions are not measured in these

experiments, or, in the case of phosphomimetic mutants, it is unclear if the mutations
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affect nucleotide binding affinities. As a consequence, the experimental constraints on

KaiA on/off rates enter through the priors rather than the likelihood function, in contrast

to the other data (see below).

Initial conditions For each phosphorylation reaction in Table 2.4, we solve the ODE

model with the corresponding [KaiA] and %ATP condition. The predicted phosphoform

composition, as well as the ATP hydrolysis rate when appropriate, is compared to the

experimental measurements in the Bayesian parameter estimation formalism described

below. However, since the experimental data do not resolve the initial conditions for all

16 KaiC states in the model, we have chosen to directly estimate the initial concentrations

by treating them as free parameters in the fitting procedure. We take t = 0 to be the time

point at which KaiA is mixed with KaiC, and thus all eight KaiA-bound KaiC states have

zero concentration at the onset of the experiment. Because total KaiC concentration is

conserved, this introduces seven additional parameters (see Table 2.2).

For the dephosphorylation reaction, we do not estimate the initial conditions. To

mimic the way the experiment was done, the dephosphorylation reaction is simulated

in two stages. In the first stage, we assume that 3.4 µM of dephosphorylated KaiC

is phosphorylated in the presence of 1.3 µM KaiA and 100% ATP for 20 h. Since

the protein is initially dephosphorylated, we assume that [CU
TP]0 = 3.4 µM while

the concentrations of all other KaiC states are set to zero. In the second stage, we

simulate the autodephosphorylation reaction after KaiA pull-down, which corresponds

to eliminating all free KaiA as well as KaiA-bound KaiC states from the simulation.

The amount of KaiC lost in the pull-down experiment was not reported in the original

experiment [29]. We therefore make the assumption that the amount of KaiC lost in the

pull-down experiment in the simulation is exactly equal to that in the experiment for the

purpose of computing the likelihood function.

42



Table 2.5: Priors incorporating KaiA on/off constraints

Parameter Prior mean (µ) Experimental measurements Source

ka log ka,exp ka,exp = 0.0279 s−1 · µM−1

[24]
kb log kb,exp kb,exp = 0.0663 s−1

∆k
T,DP
b , ∆k

T,TP
b − log τTb,expkb,exp τT

b,exp = 1.0 s

[25]∆k
S,DP
b , ∆k

S,TP
b − log τSb,expkb,exp τS

b,exp = 0.43 s

∆k
D,DP
b , ∆k

D,TP
b − log τDb,expkb,exp τD

b,exp = 0.26 s

Bayesian parameter estimation We directly fit numerically integrated ODEs to

experimental data in the Bayesian parameter estimation framework [41]. The best fit

model parameters, θ̂, are obtained from the maximum a posteriori estimator:

θ̂ = arg max
θ

p(θ|D), (2.10)

where p(θ|D) is the posterior distribution of the parameters θ, conditioned on the training

data set D. Using Bayes’ theorem, the posterior distribution can be written as

p(θ|D) =
L(D|θ)p(θ)

p(D)
. (2.11)

Here, p(θ) is the prior distribution, which represents subjective belief in the model

parameters θ prior to experimental input; L(D|θ) is the likelihood function, which

represents a probabilistic model of the experimental data set D given a particular model

M (implicit in the formulas) that depends on the parameters θ; p(D) is the evidence,

which is analogous to the partition function in statistical mechanics. Note that the

evidence p(D) does not depend on the parameter choice, and is thus an irrelevant constant

for the purpose of parameter estimation. The specific choices for the functional forms of

the likelihood function and priors are discussed further below.
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Model priors The priors for all model parameters used in Bayesian parameter

estimation are given in Table 2.2. Here, the choice of the prior distributions is primarily

motivated by the need for regularization (see below). In addition, as discussed above,

the experimental measurements on KaiA binding kinetics are incorporated into the priors

rather than the likelihood function (Table 2.5). Note that all the rate constants and their

multiplicative factors are estimated in the log space (base 10). This ensures that all rate

constants are positive.

`1 regularization As model complexity grows, the parameters become less constrained

by the data. To address this problem, we impose sparsity on the state-dependent effects

(i.e., the ∆k factors) through `1 regularization [112]. This is accomplished in the Bayesian

parameter estimation framework by using a Laplace prior centered at zero in the log

parameter space (or one in the real space). Intuitively, the Laplace prior imposes sparsity

by forcing the (marginalized) posterior distribution for each log ∆k to peak at zero unless

there is experimental evidence in the fitting data set to suggest otherwise. Since the ∆ks

are multiplicative factors modifying the six basic rate constants, log ∆k = 0 implies that

the state-dependent rate is identical to that of the base rate. This method is directly

analogous to the use of the lasso estimator in the context of linear least squares models

[112]. To see this, consider the Laplace distribution

p(θ; b) =
1

2b
e−‖θ‖1/b (2.12)

where ‖θ‖1 is the `1-norm of θ. Then from (2.11) the negative log-posterior distribution

becomes

− ln p(θ|D) = − lnL(D|θ) + λ‖θ‖1 + const. (2.13)

where λ = 1/b. In a linear model Y = Xβ + ε where Y is the response vector, X is

the design matrix, β is the parameter vector, and ε is the error vector, the negative log-
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likelihood function reduces to the sum of squares ‖Y −Xβ‖22/N , where N is the number of

dependent variables. Thus, maximizing the posterior is equivalent to minimizing the sum

of squares with an `1 penalty, which is the lasso estimator.

Likelihood function To determine the functional form of the likelihood function, we

consider a kinetic experiment where measurements on some observables y are made at a

set of time points {ti} with uncertainties {σi}. If we assume that the experimental errors

σi are independent and normally distributed, then the likelihood function is given by

L(D|θ) =
∏
i

1√
2πσi

e−[yexp(ti)−ymodel(ti;θ)]
2/2σ2

i . (2.14)

In other words, the likelihood function gives the probability for observing a given data

set provided that the model prediction is true. In practice, all posterior evaluations are

done in the log space (base e) for numerical stability. Thus, taken together, (2.11) can be

rewritten as,

ln p(θ|D) = −
∑
i

[
yexp(ti)− ymodel(ti; θ)

]2
2σ2
i

+ ln p(θ) + constant. (2.15)

For the sake of simplicity, we assume that there is a single global error, σ, for all

(de)phosphorylation measurements, which is then estimated during fitting as a

hyperparameter (see Table 2.2).

The choice of the Gaussian likelihood function applies to all (de)phosphorylation data

sets, but not the hydrolysis constraint, which only provides an upper bound on the average

hydrolysis rate per day [26]. Therefore, for the hydrolysis data a “half harmonic” is used
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as the log-likelihood function:

lnL(D|θ) =


−

(
[ADP]model(θ)− [ADP]exp

)2

2σ2
h

, [ADP]exp ≤ [ADP]model

0, 0 ≤ [ADP]model < [ADP]exp

(2.16)

The total amount of ADP produced by the model during a phosphorylation reaction over

12 h, [ADP]model, is given by the sum of all Pi production over time plus all ADP-bound

KaiC states at t = 12 h.

The log-likelihood values from the appropriate phosphorylation, dephosphorylation,

and hydrolysis reactions are added together to determine the log-likelihood of the data set

for each given model parameter choice. Since the phosphorylation data set is much larger

than the dephosphorylation data set, the fitting procedure tends to favor fitting the phos-

phorylation data set at the expense of fitting the dephosphorylation data set. To overcome

this problem, the log-likelihood function for the dephosphorylation reaction is multiplied

by a factor of 4 to increase the weight of the dephosphorylation data points.

Model fitting procedure To determine the posterior mode and the uncertainties

associated with the estimate, we employ a heuristic combination of ensemble MCMC

sampling and numerical optimization methods (Fig. S2.7A). This fitting procedure can

be divided into four steps that are analogous to those in a genetic algorithm:

1. Initialization. An ensemble MCMC method evolves a set of random walkers (i.e.,

parameter sets) simultaneously; we thus begin by drawing 224 walkers from the

prior distribution p(θ) and use these walkers for simulated annealing [113, 114]. In

annealing, instead of sampling p(θ|D) ∝ L(D|θ)p(θ) (in the log space), a flattened

distribution L(D|θ)βp(θ) is sampled with an annealing schedule of β = 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0. Note that instead of letting β → ∞, the simulation ends with

the target distribution at β = 1.0. Each temperature is sampled over 20,000 steps.
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2. Selection. The fitnesses of the walkers are determined by their log-posterior values

(equation 2.15). 10 walkers from the best 300 parameter sets sampled in the previous

step are chosen and subjected to numerical optimization to find the nearby local

maximums, which are then used to seed a sampling run in the next step. In the

spirit of elitist selection, the best walker is always included for the next generation.

3. Recombination and mutation. The initial walkers for the sampling run are generated

by adding a Gaussian noise N (0, σI) to the 10 optimized walkers (here, I is the

identity matrix and σ = 0.001), and the number of initial walkers centered around

each optimized walker θj is given by

224
p(θj |D)β∑
k p(θk|D)β

. (2.17)

That is, the proportion of the initial walkers generated from each optimized walker is

weighted by its posterior value with a temperature factor of β = 0.6; the temperature

factor is chosen to allocate more walkers to optimized walkers with lower posterior

values. The sampling run consists of 50,000 steps. Note that the purpose of the

Gaussian noise is to ensure that the proposal distribution is valid for any pair of

walkers for the ensemble MCMC method (see below), rather than to control the

mutation strength, as is done in evolution strategy [115].

4. Termination. The best walkers from the sampling run are compared to the optimized

walkers. If the best walkers do not escape to new local maximums with higher

posterior values, then the procedure is terminated after an additional 50,000

sampling steps. If, however, new local maximums are discovered during sampling,

the algorithm loops back to the selection step. This process is repeated until no

better local maximum is discovered at the end of sampling. Unless otherwise

specified, only the last 30,000 sampling steps (downsampled every 100 steps) are

used for post-analysis.
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In general, the number of walkers in ensemble MCMC needs to be larger than the

number of free parameters; here the number 224 is chosen to optimize parallel performance

on a local computer cluster (8 nodes × 28 CPU cores/node).

We found that this procedure outperformed either ensemble MCMC or numerical

optimization by itself (compare Fig. S2.7A and B). For the full model we ran this

procedure three times to assess the reproducibility of the fit (see Appendix for further

discussion).

Markov chain Monte Carlo One major challenge in efficient MCMC sampling in

systems biology is that the target distributions are often poorly scaled. In the context

of ODE kinetic modeling, this means that different reaction rates and their associated

uncertainties can be separated by several orders of magnitude. This is almost certainly

true for the KaiA-KaiC subsystem because, among other things, the experimentally

measured rates of KaiA binding and dissociation are much faster than the ATP hydrolysis

rate of KaiC. Without a priori knowledge of the natural time scales, conventional

MCMC schemes are inefficient in such sampling problems, because only very small

displacements are accepted at appreciable rates. In this work we employ an ensemble

MCMC method developed by [64]. The advantage of the Goodman-Weare algorithm is

that it is affine invariant, which means that it performs equally well for isotropic and

poorly scaled measures, providing that the two can be related by a linear transformation

of the coordinate system. This appears to be the case for the present problem since the

Goodman-Weare algorithm vastly outperforms a standard Metropolis-Hastings scheme

with a (preconditioned) Gaussian proposal distribution (Fig. S2.7B).

In brief, the Goodman-Weare algorithm evolves an ensemble of walkers, rather than a

single one. At each step, individual walker positions are updated sequentially. For a given

walker θk at step τ , a walker θj is drawn randomly from the rest of the ensemble and a
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new position, η, on the line connecting θk and θj is proposed by a “stretch move”

η = θj + z
[
θk(τ)− θj

]
(2.18)

where z is a random number drawn from the distribution

Z ∼ g(z;α) =


1/
√
z, z ∈ [1/α, α]

0, otherwise

(2.19)

The “stretch factor” α is a tunable parameter that controls the step size. In an N -

dimensional parameter space, the new walker η is accepted with the probability

q = min

(
1, zN−1 p(η|D)

p(θk(τ)|D)

)
(2.20)

which guarantees that the scheme obeys detailed balance and thus converges to the target

distribution p(θ|D) as τ → ∞. Note that no derivative of the posterior distribution is

required to draw from the proposal distribution. In this work we use α = 1.1, which gives

an average acceptance rate of 47% in steps 3 and 4 of the fitting procedure.

Numerical optimization The numerical optimization method used in this work

is a modified version of Powell’s method [116, 117]. Briefly, given an initial guess and

direction set, which is usually the Cartesian coordinate set, Powell’s method performs a

line search to minimize the objective function, here − ln p(θ|D), sequentially along each

vector in the direction set. The direction set is then updated by replacing the direction of

largest decrease in the objective function in the current iteration with the displacement

vector from the estimated minimum at the beginning to that at the end of the line

minimizations, provided that certain technical conditions are met to avoid the build-up

of linear dependence in the direction set. This process is repeated until a convergence

threshold is met. Note that unlike the original method, the modified Powell’s method does
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not guarantee that the vectors in the direction set are mutually conjugate.

Similar to the Goodman-Weare algorithm, Powell’s method is derivative-free. For

the current system Powell’s method converges faster than the Nelder-Mead method

[118], another commonly used derivative-free method, although the Nelder-Mead method

appears less prone to becoming trapped in local metastable states (Fig. S2.7C).

Software implementation The fitting procedure is implemented in an in-house Python

script that interfaces with several existing Python modules: numerical integration of the

model ODEs is done using the odespy package [119] with the BDF method; the Goodman-

Weare algorithm is implemented in emcee (version 2.2.1) [65]; Powell’s method and the

Nelder-Mead method are implemented in scipy (version 1.2.1) [120]. The derivative

evaluation step in ODE integration is accelerated using numba [121], and the script is

parallelized using mpi4py 2.0.0 [122–124].

The most computationally expensive step in the fitting procedure is the MCMC

sampling, because each move requires multiple ODE evaluations to compute the posterior

function. With 224 walkers and 8 nodes (each with 28 Intel E5-2680v4 2.4GHz cores), the

speed of MCMC sampling is 46,000 steps/hour.

Model comparison In the preceding sections all definitions of probability distributions

implicitly assume that there is a model M with a well-defined functional form, whose

parameters θ need to be determined. For the sake of model comparison, we make this

assumption explicit and rewrite (2.11) as

p(θ|D,M) =
L(D|θ,M)p(θ|M)

p(D|M)
. (2.21)
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To compare two models Mi and Mj , we need to compare the posterior probabilities for

each model, usually in the form of their ratios

p(Mi|D)

p(Mj |D)
=
p(D|Mi)

p(D|Mj)

p(Mi)

p(Mj)
. (2.22)

Assuming that we have no prior preference for any model, the ratio becomes the Bayes

factor

Bij =
p(D|Mi)

p(D|Mj)
, (2.23)

which we adopt as the metric for model comparison.

The primary difficulty in computing the Bayes factor is thus estimating the evidence,

or the marginal likelihood function, for each Mi. There are several methods for computing

the evidence [74]. Here we derive a formula compatible with the ensemble MCMC scheme

that is directly analogous to free energy perturbation [125]. For the sake of simplicity, we

drop the model index i from this point on. First, note that for a given model M,

p(D|M) =

∫
L(D|θ,M)p(θ|M) dθ = 〈L(D|θ,M)〉p(θ|M) (2.24)

where the first equality follows from the law of total probability and the second equality

assumes that the prior p(θ|M) is normalized (as a probability density function of θ).

Equation (2.24) suggests that the marginal likelihood function can be computed by

estimating the average of the likelihood function L(D|θ,M) against the prior. Using

MCMC to estimate this integral is inefficient since there is very little overlap between the

likelihood function and the prior for the models of interest. Instead, we define

qλ(θ) = L(D|θ,M)λp(θ|M) and Zλ =

∫
qλ(θ) dθ
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for 0 ≤ λ ≤ 1 and then note that (2.24) can be recast as

p(D|M) =
Z1

Z0
=

(
Zλ0

Zλ1

Zλ1

Zλ2

· · ·
ZλN−1

ZλN

)−1

(2.25)

for 0 = λ0 < λ1 < · · · < λN = 1, and the λs are chosen to allow for sufficient overlap

between successive qλ(θ)s. Each fraction in (2.25) is given by

Zλn−1

Zλn
=

∫
L(D|θ,M)λn−1−λnqλn(θ) dθ∫

qλn(θ) dθ
=
〈
L(D|θ,M)λn−1−λn

〉
qλn

(2.26)

Therefore,

p(D|M) =
N∏
n=1

〈
L(D|θ,M)λn−1−λn

〉−1

qλn
=

N∏
n=1

〈
e
ln qλn−1

(θ)−ln qλn(θ)
〉−1

qλn
(2.27)

where the averages 〈·〉qλn can be approximated with MCMC. Equation (2.27) is a version

of the free energy perturbation formula. Note that (2.27) requires that the likelihood

function L(D|θ,M) be properly normalized (as a probability density function of D), but

does not require the prior p(θ|M) to be normalized, as any missing normalization constant

cancels out in each term of the product.

For each simplified model in Table 2.1 and Table S2.6, the ensemble of walkers from

the last time step of the model fitting procedure is used to initialize an MCMC sampling

run with λ = 1.00. The lambda value is reduced by 0.01 at each subsequent stage until

λ reaches 0.01. Each stage is sampled for 2,000 time steps using the Goodman-Weare

ensemble sampler [64]. Only the last 1,000 time steps from each stage is used to compute

the ensemble average in (2.27). The Bayes factors are then computed as the ratios of the

evidence for the full model to each simplified model.

Refitting The steady-state KaiC phosphorylation measurements (Fig. 2.3B and Fig.

S2.12B) are fit to the full model using Powell’s method, starting from the best fit based on
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the training data set. The priors on the kinetic parameters (Table 2.2) are centered on the

best fit values, so that the refit model can be interpreted as the “minimal” perturbation to

the best fit that enables agreement with the steady-state measurement.

Curve fitting The experimentally determined stimulus-response relations for KaiC

S431A (Fig. 2.3C and F) are fit to the simple inhibitor ultrasensitivity scheme described

in Box 5 of [56]. Using their notation, the amount of phosphorylated protein substrate

(%XP ) as a function of kinase concentration ([K]) is given by

%XP ([K]) =

Pmax
K1[I] +K1K2 −K1[K] + 2K2[K]−K1

√
[I]2 + 2(K2 − [K])[I] + (K2 + [K])2

2K1[I]− 2(K1 −K2)(K1 + [K])

+ b (2.28)

Here, Pmax, [I], K1, K2, and b are free model parameters. Unlike the Hill function, EC50

is not an explicit parameter of (2.28) and thus needs to be determined numerically. Note

that (2.28) can be reduced to a right-shifted hyperbolic function as K2 → 0:

%XP ([K]) = Pmax
[I]− [K]− |[I]− [K]|

2[I]− 2(K1 + [K])
+ b, (2.29)

which is equivalent to a threshold-hyperbolic stimulus-response function,

%XP ([K]) =
Pmax([K]− [I])

K1 + ([K]− [I])
H([K]− [I]) + b, (2.30)

where H is the unit step function.

Stimulus-response relations are fit using the NonlinearModelFit function in

Mathematica 12.0. We stress here that the curve fits are purely phenomenological and are

thus not intended to be interpreted in terms of the biochemical assumptions underlying

the model.
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Numerical method for the Phong model All numerical simulations of the modified

Phong model (Fig. 2.4E and Fig. S2.10E and F) were carried out in Mathematica

12.0 using the NDSolve function. To determine the period of the model for a given

parameter set, the model was simulated for 200 h and the first 100 h was discarded

to eliminate transient responses. The NDSolve function returns ODE solutions as

InterpolatingFunction objects, which were converted to time series sampled at every 0.1 h

for subsequent analyses. The troughs in the time series of the total KaiC phosphorylation

level (i.e. [CP] = [CT] + [CS] + [CD] + [BCS] + [BCD]) were determined using the FindPeaks

function, and the average of the trough-to-trough time was taken to be the period of the

model. The model was considered non-oscillatory if one of the following conditions was

met:

1. The standard deviation of the [CP] time series is less than 0.1 µM (weak oscillation).

2. The standard deviation of the trough amplitude is larger than 0.001 µM (unstable

limit cycle).

3. The number of troughs is less than 3 (abnormally long period).

2.5.2 Experimental methods

Protein expression and purification KaiA, KaiB, KaiB-FLAG, and KaiC were

expressed and purified as previously described [28] with two modifications to the protocol:

anion exchange chromatography was performed using HiTrap Q columns (GE Healthcare),

and KaiC was purified using Ni-NTA affinity chromatography followed by size-exclusion

chromotography, omitting the anion exchange step. The expression, purification, and 6-

iodoacetofluorescein (6-IAF) labeling of KaiB K25C mutant as a fluorescence reporter in

the plate reader assay is described in [33]. All mutants of KaiC were constructed using

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent). For the KaiC-AA and -EE

mutants, the His-tags were not cleaved during purification; this ensures that these mutant

54



proteins have shifted mobility in SDS-PAGE, allowing their bands to separate from those

of KaiC S431A.

The U-[15N] labeled N-terminal (residues 1–135) and C-terminal (residues 181–284)

domains of KaiA were expressed in BL21(DE3) E. coli (Novagen) in minimal (M9) media

supplemented with 15N-enriched NH4Cl. For the expression of the C-terminal domain,

M9 media enriched with 15N-NH4Cl was prepared using 98% deuterated water (D2O).

The proteins were purified by Ni-NTA affinity chromatography followed by size-exclusion

chromatography using Superdex 75 1660 prep grade column, as described previously

[20, 66, 67]. N-terminal KaiA eluted as ∼15 kDa monomer [126], while C-terminal KaiA

eluted as a ∼23 kDa homodimer [127].

GFP was expressed as a N-terminal 6xHis-tag fusion from the pET28a plasmid in

the BL21 (DE3) strain of E. coli. Harvested cells were sonicated for lysis and clarified

lysate was loaded onto a HisTrap FF column (GE Healthcare). The His tag was cleaved

by overnight incubation at 4 ◦C with SUMO protease (Invitrogen), after which the sample

was loaded again onto a HisTrap FF column to recover the cleaved products. The cleaved

proteins were further purified on a 5 mL HiTrap Q HP column (GE Healthcare) and then

a Superdex 200 10/300 GL size-exclusion column. The eluted fractions were concentrated

in a sample buffer (20 mM HEPES [pH 7.4], 150 mM KCl, 2.5 mM MgCl2, 2 mM DTT),

aliquoted, and snap frozen in liquid nitrogen for storage in –80 ◦C.

In vitro clock reactions All in vitro clock reactions were done in the standard reaction

buffer (20 mM Tris-HCl [pH 8], 150 mM NaCl, 5 mM MgCl2, 0.5 mM EDTA , 10%

glycerol, 50 µg/mL Kanamycin). KaiC concentration was 3.5 µM in all experiments

unless otherwise specified; KaiB concentration was 3.5 µM for all oscillatory reactions,

and 6-IAF-labeled KaiB K25C concentration was 0.2 µM for plate reader assays. KaiA

concentration and %ATP were determined by each individual experiment, while the total

nucleotide concentration (i.e., [ATP] + [ADP]) was held constant at 5 mM. Phosphoryla-
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tion kinetics was resolved using SDS-PAGE on 10% acrylamide gels (37.5:1 acrylamide:bis-

acrylamide) run for 4.5 h at 30 mA constant current at 12 ◦C; the gels were stained in

SimplyBlue SafeStain (Invitrogen) and then imaged using Bio-Rad ChemiDoc Imager.

The oscillatory reactions (Fig. 2.2D and Fig. S2.10C) were also monitored using the plate

reader assay described in [33].

NMR spectroscopy A Bruker 600 MHz AVANCE III spectrometer equipped with

a TCI cryoprobe was used for all of the NMR experiments of the N- and C-terminal

domains of KaiA (Fig. S2.6). Chemical shifts were referenced to internal 2,2-dimethyl-2-

silapentane-5-sulfonate (10 µM). Data were processed using NMRPipe and visualized using

NMRDraw [128]. NMR samples were prepared with 100 µM monomer concentration of

protein in 20 mM Tris-HCl [pH 8], 150 mM NaCl, 5 mM MgCl2, and 5% D2O buffer. All

experiments were performed at 30 ◦C. Samples were incubated with 1mM ATP or ADP,

when needed, for 30 minutes before spectral measurement.

Immunoprecipitation Immunoprecipitation of KaiB-FLAG and associated protein

complexes in a clock reaction (Fig. 2.4A) was done as previously described [28] using

monoclonal anti-FLAG M2 antibody (Sigma-Aldrich, product number F1804), and elution

with 3xFLAG peptide. The supernatant was analyzed by SDS-PAGE on 4–20% Criterion

TGX Stain-Free Precast Gels (BioRad) and stained with SYPRO Ruby (BioRad). 1.5 µM

GFP was added to the reaction mixture at the beginning of the time course and served as

an internal standard to correct for changes in protein concentration due to handling. The

relative supernatant KaiA concentration was determined as a ratio of KaiA band intensity

in each lane to the GFP band intensity and is normalized as percentage of the largest ratio

in the time course (Fig. S2.10D).
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2.6 Appendix

2.6.1 Additional biochemistry of the KaiC (de)phosphorylation reactions

In this work we construct a general model of the KaiA-KaiC subsystem based on a set

of assumptions of basic clock biochemistry; that is, KaiC is an ATPase and a reversible

phosphotransferase with two phosphorylation sites at S431 and T432, while KaiA

is a nucleotide-exchange factor that promotes the exchange of bound ADP for ATP

in CII nucleotide-binding pockets, and may directly stimulate hydrolysis. Through

model fitting, we demonstrate that this set of assumptions is sufficient to explain

the (de)phosphorylation kinetics of KaiC and its dependence on %ATP and [KaiA].

Our results, however, do not imply that the model includes all possible biochemical

mechanisms; in this section and the next we briefly discuss aspects of KaiC that we do not

consider in the model.

First, the current model does not account for the CI domain. The CI domain of KaiC

is required for the hexamerization of S. elongatus KaiC [110, 129] and its ATPase activity

is necessary to allow the binding of KaiB needed to transition into the dephosphorylation

phase of the oscillation [28, 77]. However, the ATPase activity of the CI domain has no

significant effect on the kinetics of the CII (de)phosphorylation reactions [28], and in the

current study we are not concerned with KaiB-dependent processes. Therefore the current

model does not keep track of the CI hydrolysis state or any allosteric coupling between the

CI and CII domains.

Second, the model does not explicitly consider the function of Mg2+. The presence

of Mg2+ is required for the assembly of the KaiC hexamer [76, 110], and computational

analyses indicate that release of Mg2+ independent of the bound nucleotide is highly

energetically unfavorable [63]. Given these results, we assume that Mg2+ and nucleotide

cannot act independently of each other, and the model implicitly assumes that each bound

nucleotide is always in complex with a Mg2+ ion. A recent study, however, shows that
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depletion of Mg2+ promotes KaiC autophosphorylation, especially in buffers that lack

EDTA, [130]. Moreover, some structures of KaiC have two Mg2+ ions modeled in the

nucleotide-binding pocket, which has been interpreted to mean that KaiC kinase activity

relies on a two-metal-ion phosphotransfer mechanism [131]. Currently, the functions of

Mg2+ have not been characterized kinetically or mechanistically at a level necessary to

constrain its role in a molecularly detailed model.

2.6.2 The hexameric structure of KaiC

The current model does not consider any hexameric effects. There is evidence to suggest

that intersubunit interaction regulates KaiC autokinase activity [132] as well as the

ultrasensitive dependence of KaiBC complex formation on the KaiC hexamer phosphoform

composition [21]. However, explicitly accounting for the hexameric nature of KaiC, as

in [133] or [21], would lead to a significant increase in the number of model parameters,

which likely cannot be constrained by available data and makes interpretation of the

model difficult. Therefore, we only keep track of the states of KaiC subunits considered

independently, and the rate constants should be considered averages over hexameric

background configurations, weighted by their nonequilibrium state populations.

This leads to two simplifications concerning the KaiA-KaiC interactions. The first

issue relates to the stoichiometry of KaiAC complexes. During phosphorylation, KaiA

dimers bind to KaiC hexamers likely with either a 1:1 or 2:1 stoichiometry [72, 134].

Because the model does not consider the hexameric structure of KaiC, this stoichiometry

is not enforced explicitly, and each KaiC monomer can bind independently to KaiA.

The second issue relates to the effect of the phosphorylation state of the entire

hexamer on KaiA (un)binding kinetics. KaiA can inhibit KaiB binding to KaiC [21], even

though the KaiA and KaiB binding sites are on opposing sides of KaiC. This has been

interpreted as a result of cooperative allosteric transition between a kinase mode of KaiC,

stabilized by KaiA binding and the T phosphoform, and a phosphatase mode of KaiC,
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stabilized by KaiB binding and the S phosphoform [21]. A possible implication of this

proposed mechanism is that KaiC hexamers in the phosphatase mode may have uniformly

diminished affinity for KaiA at the CII interface, regardless of the phosphorylation state of

the subunits. Given that the current model is trained using primarily the phosphorylation

data set, the predicted KaiA dwell time (Fig. S2.8B) and dissociation constant (Fig. 2.1D)

likely reflect the property of KaiC subunits in the kinase mode, whereas experiments with

phosphomimetic mutants mimicking the S and D phosphorylation states presumably probe

the system kinetics in the phosphatase mode. Indeed, in the KaiC-EE titration experiment

(Fig. 2.3F right), the presence of KaiC-EE has virtually no effect on the KaiC S431A

stimulus-response curve, which may be partly due to the fact that the KaiC-EE hexamers

are in the phosphatase mode and may therefore have additionally reduced affinity for

KaiA, a condition not considered in our model.

2.6.3 Correlation structure in the posterior distribution

As discussed in the literature [55], often ratios of parameters are better constrained than

the parameters themselves. The parameter pairs that have a correlation coefficient larger

than 0.9 in log space are shown in Fig. S2.9A–C. Such correlations typically reflect that

thermodynamic, rather than kinetic, properties of the system are constrained. These

include the free energy of phosphotransfer between the S and D phosphoforms (Fig.

S2.9A) and the free energy for KaiA binding to the ATP-bound states of KaiC (Fig.

S2.9B; compare with Fig. 2.1D). Interestingly, there is a linear relation among k
A,T
TP ,

k
A,TU
d , and k

T, DP
b (Fig. S2.9C); this implies that the data constrain the flux out of the

ACT
DP state, but the exact pathway is underdetermined.

More generally, we characterize the extent to which the model parameters, or linear

combinations thereof, are constrained by the data using the principal components of the

posterior distribution; that is, the eigenvectors of the covariance matrix from MCMC

sampling. The eigenvalues of the covariance matrix span multiple orders of magnitude
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with no obvious gap (Fig. S2.9D left), except for the stiffest direction (Fig. S2.9G),

which is almost entirely aligned with σ2, the global error hyperparameter. In addition,

the directions of the principal components are in general not aligned with the directions

of the bare coordinates (Fig. S2.9D right), and there is no obvious interpretation for

the directions of most of the principal components (Fig. S2.9G). These features of the

ensemble indicate that the model is “sloppy” [55], and many model parameters are poorly

constrained by the data. Nevertheless, as we demonstrate in Results, the model can

still be used to make consistent predictions because the variabilities in the ensemble of

parameter sets obtained from MCMC sampling align with the softest degrees of freedom

of the posterior distribution.

2.6.4 Convergence of the model fit

We assessed the quality of the fit in three ways. First, we repeated the full procedure

three times to assess reproducibility of the fitting procedure (Fig. S2.5B). The three

independent runs yielded marginalized posterior distributions that are remarkably

consistent and tightly constrained for some parameters but diverge over several orders of

magnitude for others. The best fits from the three runs have log posterior values of 720,

714, and 705, respectively. Unless otherwise specified, in this work we base our analyses

on the run that produced the best fit with the highest posterior value. The ruggedness

of the posterior distribution demonstrates that given the model and training data set,

the parameter estimation problem is far from the asymptotic (i.e., large sample) regime.

Moreover, in our fitting procedure the vast majority of the walkers from the annealing step

are discarded for the sake of improving the MCMC sampling efficiency (the acceptance

rate is ≤ 7% without pruning). Given the presence of multiple local maxima, this choice

likely resulted in an underestimation of the uncertainties in parameter values.

Second, we compared the model predictions with a test data set that probed the

phosphorylation reaction at two non-standard KaiC concentrations (Fig. S2.8E). The fit
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quality on the test data set is somewhat worse compared to the training set (compare

with Fig. 2.1B). In particular, the model overestimates the D phosphoform concentration

at 1.75 µM KaiC and underestimates the T and D phosphoform concentrations at 7 µM

KaiC. This result suggests some degree of overfitting. This, however, is not a significant

issue because we base our conclusions on the ensemble of walkers rather than the behavior

of the best fit.

Lastly, we assessed the convergence of the MCMC simulations using the integrated

autocorrelation times for the 48 principal components of the posterior distribution (Fig.

S2.9E). The autocorrelation times for the largest and smallest principal components are

8,500 and 3,300 steps, respectively, which gives rough estimates of the times between

independent samples for the slowest and fastest degrees of freedom. These estimates are

far shorter than the length of the final MCMC runs in the fitting procedure (100,000

steps). We also checked the autocorrelation time for the KaiA binding affinities (Fig.

S2.9F), which is within the bound given by the principal components.

2.6.5 KaiA function cannot be solely explained in terms of nucleotide

exchange

Because of the generality of the model, the function of KaiA is not restricted to that of a

nucleotide-exchange factor. In particular, the phosphotransfer and ATP hydrolysis rates

are allowed to depend on KaiA binding. There is some experimental evidence to support

such effects—KaiA binding inhibits dephosphorylation [135] and the addition of KaiA

increases the ATPase activity of KaiC [26, 136]. However, the biochemical mechanisms

underlying these effects are not clear from the experiments; for example, does KaiA

increase KaiC ATPase activity by reconfiguring the KaiC active site, or does KaiA binding

indirectly promote ATP hydrolysis by shifting the KaiC population towards phosphoforms

that have high ATPase activity?

To test whether KaiA binding has a direct effect on KaiC catalytic activities, we
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construct simplified models where hydrolysis and/or phosphotransfer are/is independent

of KaiA binding and compare the resulting models to the full model using the Bayes factor

(Table S2.6). We find that decoupling either phosphotransfer (model –P) or hydrolysis

(model –H) from KaiA binding decreases the evidence for the simplified models, but the

effects are weak, especially in comparison to a model where both classes of reactions are

decoupled from KaiA binding (model –P,–H). These results indicate that the function

of KaiA cannot be solely explained by nucleotide exchange, but we cannot conclusively

distinguish between models –P and –H.

2.6.6 The experimental data admit two S phosphorylation pathways

We analyzed a random selection of 500 walkers to understand the implications of their

variations for the mechanisms of ordered phosphorylation. To simplify the analysis, we

converted each walker to two single-site models in which either S431 or T432 was available

for phosphorylation but not both. We asked how important each reaction rate constant

is to the overall T and S phosphoform concentrations in the single-site models using the

relative first-order sensitivities computed at the standard reaction condition (i.e., 100%

ATP with 1.5 µM KaiA). We focus on the initial phosphorylation rates because the

steady-state rates are determined by balances of many contributing processes, making

them harder to interpret. The parameter sensitivities at t = 1 h are used as proxies for

the sensitivities of the initial phosphorylation rates.

Because each single-site model has 18 parameters, there are 36 sensitivities for the two

phosphoforms. To characterize this high-dimensional space, we used spectral clustering

(Fig. S2.11A). Overall, the parameter sensitivities are much more constrained by the data

for the T phosphoform than the S phosphoform, which is unsurprising given the relatively

low concentrations of the S phosphoform under all experimental conditions in the training

data. The clustering furthermore indicates that there are at least two plausible kinetic

ordering mechanisms, which differ primarily in terms of the phosphorylation pathways
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taken by the S phosphoform (Fig. S2.11A and B). In both clusters, the U → T transition

is most sensitive to kUT
p (i.e., the phosphorylation rate in the absence of KaiA).

In the first cluster (319 parameter sets), the U → S transition is most sensitive to

k
A,US
p in the presence of KaiA. This is primarily because kUS

p is very small in this cluster

relative to k
A,US
p (Fig. S2.11C); however, since, in this cluster, the U → S transition

is dominated by the KaiA-bound states, the S phosphoform has negative sensitivity to

the KaiA dissociation rate constant k
U,TP
b . This suggests that in the first cluster, KaiA

(un)binding to the U phosphoform is important in determining the initial phosphorylation

rate of S. The best fit belongs to this first cluster.

The phosphorylation pathway suggested by the second cluster (181 parameter sets)

is more complex. In this cluster, the U→S transition is mostly independent of KaiA,

similar to the U→T reaction. However, the S phosphoform is limited by the dephosphor-

ylation reaction kSU
d , which is much faster than the corresponding phosphorylation rate

(Fig. S2.11C). In addition, the S phosphoform is sensitive to the rate constant for KaiA

binding, k
S,DP
a , which is important for facilitating nucleotide exchange for the ADP-bound

S phosphoform, but tends to be slower in the second cluster (Fig. S2.11C). Therefore,

faster dephosphorylation and slower KaiA binding is important for determining the initial

S phosphorylation rate in the second cluster.

A comparison of Fig. S2.11C with Fig. S2.5B (blue distributions) shows that the

two clusters correspond to the bimodal posterior distributions for the rate constants kUS
p ,

k
A,US
p , kSU

d , and k
S,DP
a . The two clusters, however, do not cleanly separate along the two

modes of k
S,TP
a and k

S,TP
b ; the kinetic significance of this bimodal distribution is unclear.

As discussed above, the posterior distribution is fairly rugged and thus the fitting

procedure is not fully reproducible over independent runs. As a result, there are likely

multiple potential kinetic ordering mechanisms that remain unexplored through this

analysis. Regardless, the analysis suggests that kinetic ordering is likely a result of an

interplay between (de)phosphorylation and KaiA (un)binding kinetics, rather than purely
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the product of equilibrium free energies of phosphotransfer.

2.6.7 Comparison to the Paijmans model

Among all the computational work on the Kai oscillator, the model most similar to the

current work in terms of the treatment of the KaiA-KaiC subsystem is that by [40],

although the latter is a full oscillator model including KaiB, the CI domain, and the

allosteric transition between the active (i.e., phopshorylation phase) and inactive (dephos-

phorylation phase) KaiC conformations. The Paijmans model and the full model in this

work are both molecularly detailed, and describe how phosphotransfer, ATP hydrolysis,

KaiA (un)binding, and nucleotide exchange reactions control the phosphoform and

nucleotide-bound states of KaiC. However, there are some significant differences between

these two models, which we examine below.

The Paijmans model is more general than this work in two ways. First, the Paijmans

model explicitly considers the hexameric nature of KaiC. There is no intersubunit

coordination of phosphotransfer in the Paijmans model, but it explicitly considers the

binding of one KaiA dimer to a KaiC hexamer, which is assumed to uniformly accelerate

nucleotide exchange in all six subunits. In this work, however, we do not consider the

hexameric states of KaiC, and each KaiC monomer is allowed to bind to a KaiA dimer

independently. In this way the affinities and kinetics of KaiA binding in this work may

not be directly comparable to those in the Paijmans model. Second, the Paijmans

model allows for the exchange of bound ATP for ADP, such that KaiA accelerates the

exchange rates of both ATP and ADP while leaving the binding affinity unchanged.

In our model, however, we assume that there is no exchange of bound ATP for ADP,

effectively assuming that the affinity of KaiC for ATP is infinite (i.e., KCII
ATP/ADP

= 0 in

the Paijmans model terminology). The treatments of nucleotide exchange in both models

are otherwise similar, in that both assume that the ATP/ADP on-rates are identical, that

the apo state is in a quasi-steady state, and that there is no KaiA-independent nucleotide
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exchange.

The current work goes beyond the Paijmans model in the following ways. First, we

determine the rate constants under the framework of Bayesian parameter estimation,

which enables more rigorous uncertainty quantification, while the parameters in the

Paijmans model were hand-tuned to reproduce selected experimental observations. Second,

for simplicity the Paijmans model does not consider any possible coupling between ATP

hydrolysis and KaiC phosphorylation states, between nucleotide exchange and KaiC

phosphorylation states, between ATP hydrolysis and KaiA binding, or between KaiC

nucleotide-bound states and KaiA binding. Although many of the state-dependent effects

are not fully constrained by data in this work, as we describe in Results, the ultra-

sensitivity in KaiC phosphorylation depends critically on the coupling between KaiC

nucleotide-bound states and KaiA binding. It is an open question whether a model that

lacks such effects but explicitly accounts for the hexameric nature of KaiC can generate

ultrasensitivity.

The difference in the treatment of KaiA binding affinity implies that some detailed

balance conditions are incompatible between the two models. In the Paijmans model, the

binding affinity of KaiA to KaiC hexamers during the phosphorylation phase depends

on the phosphoform composition of the subunits, and each subunit i in the phosphoform

Xi other than U contributes an additive factor of δgCII·KaiA
bind (Xi) to the changes in KaiA

binding free energy, ∆GCII·KaiA
bind . Due to detailed balance, the fact that KaiA binds

to different KaiC phosphoforms with differential affinities implies that KaiA binding

changes the free energy of phosphotransfer [see eq. 8 in [40]]. This condition is also present

in our model, but is complicated by the nucleotide-bound states of KaiC. Using the

multiplicative-factor parametrization scheme (see Materials and Methods), the detailed
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balance conditions in this work can be related to those in the Paijmans model by

δgCII·KaiA
bind (T)− δgCII·KaiA

bind (U) = −kT ln
δk

T,DP
a

∆k
T,DP
b

(2.31)

δgCII·KaiA
bind (S)− δgCII·KaiA

bind (U) = −kT ln
δk

S,DP
a

∆k
S,DP
b

(2.32)

δgCII·KaiA
bind (D)− δgCII·KaiA

bind (T) = −kT ln
∆k

D,DP
a

∆k
D,DP
b

∆k
T,TP
b

δk
T,TP
a

(2.33)

δgCII·KaiA
bind (D)− δgCII·KaiA

bind (S) = −kT ln
∆k

D,DP
a

∆k
D,DP
b

∆k
S,TP
b

δk
S,TP
a

(2.34)

In general, this set of equations are inconsistent. That is, one cannot express the

δgCII·KaiA
bind (X)s in the Paijmans model in terms of the ∆ks in our model. The only

condition under which these equations can be made consistent is when

δk
T,DP
a

∆k
T,DP
b

=
δk

T,TP
a

∆k
T,TP
b

and
δk

S,DP
a

∆k
S,DP
b

=
δk

S,TP
a

∆k
S,TP
b

that is, when the nucleotide-bound states have no effect on KaiA binding affinities to the

T and S phosphoforms.

2.6.8 Phenomenological modifications to the Phong model

In the model of [28], KaiA sequestration is determined by the equation

[A]active = max(0, [A]total −m[BCS]− n[BCD]). (2.35)

Here, [A]total is the total KaiA concentration; [BCS] and [BCD] are the concentrations

of the S and D phosphoforms in complex with KaiB, respectively; m and n are model

parameters describing the binding stoichiometries between KaiA and the KaiBC complex.

In this way, the KaiA binding affinity to the inhibitory complex is effectively infinite,

with no KaiA dissociation until [BCS] and [BCD] drop below a threshold. To make the
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representation of KaiA sequestration more realistic, we introduce a KaiA dissociation

constant KD (Fig. 2.4C). Similar to the treatment in [88], we assume that the KaiA

sequestration reaction is in a quasi-equilibrium and replace (2.35) with

[A]active =
1

2

(
[A]total − SD−KD +

√
4[A]totalKD + ([A]total − SD−KD)2

)
(2.36)

where we have defined SD = m[BCS] + n[BCD].

To introduce ultrasensitivity to the Phong model, we first note that the four phos-

phorylation rate constants for the U→T, U→S, T→D, and S→D transitions are given by

Michaelis-Menten kinetics with ADP serving as a competitive inhibitor,

kphos =
kA

phos[A]active

K1/2 + [A]active

1

1 +KI [ADP]/[ATP]
(2.37)

where kA
phos varies with the specific phosphorylation reaction. To introduce ultra-

sensitivity, we add a threshold term T (Fig. 2.4D),

kphos =
kA

phos([A]active − T )

K1/2 + ([A]active − T )

1

1 +KI [ADP]/[ATP]
H([A]active − T ) (2.38)

where

T = (0.3 + 1.5e−5%ATP/100%)(1 + 0.08[CU]/µM) (2.39)

and H is the Heaviside function. The first part of the expression for the phosphorylation

threshold, 0.3 + 1.5e−5%ATP/100%, describes how the threshold changes as a function of

%ATP; the constants are determined by approximating the [KaiA] threshold in Fig. 2.3A

as an exponential function. The second part of the expression, 1 + 0.08[CU]/µM, describes

how the threshold changes as a function of CU concentration. This formula is defined by

a/µM + b([CU]/µM− 3.5)

a/µM + b(−3.5)
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where parameters a and b are determined by taking a linear fit, a + b[AA], of the data

from Fig. 2.3G (yellow line); that is, 1 + 0.08[CU]/µM gives the fractional changes to

the phosphorylation threshold as a result of any U phosphoform (in the form of AA

phosphomimetic mutant) additional to the 3.5 µM KaiC S431A in the experiment.

We use the original Phong model parameters in all analyses of the model with one

exception. In the final modified model with both a KD and a phosphorylation threshold

(Fig. 2.4E bottom), the period is systematically longer than 24 h due to a slow down

in phosphorylation. To fix this problem, we change kAds and k0
ds, the two rate constants

controlling the D→S transition, to 0.94 kAds and 1.1 k0
ds.

To assess whether the ultrasensitivity we introduced into the model with (2.38)

is consistent with our measurements, we simulated the KaiC-AA titration experiment

using the modified Phong model (Fig. S2.10E) and compared the predicted EC50 with

the experimental results (Fig. 2.3G). To perform this simulation, we set all phosphor-

ylation rates to the S and D states to zero, and represent KaiC-AA concentration as a

constant offset to the [CU] term in (2.39). A comparison of the model prediction with

the experimental result shows that EC50 scales with [AA] in the model similarly to the

experiment, but the EC50 in the model is consistently larger than the experiment by

about 0.15 µM. This result suggests that the ultrasensitivity we introduced into the model

by hand is reasonable, but to achieve precise agreement with experiment would require

fine tuning the Phong model parameters, which is outside the scope of the current work.

2.7 Supplementary Figures
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Figure S2.5: Overview of the model. A. A schematic of the full mass-action kinetic
model. Here, each arrow represents a reaction, and the associated rate constant is
represented using the notation introduced in the main text. The thickness of the arrows is
proportional to the best fit rate on a log scale (base 10) at 100% ATP and 1.5 µM KaiA.
B. The posterior distributions for all rate constants, initial conditions, and the global error
hyperparameter. The three distributions represent the results from three independent
runs; the log posterior values for the best fits from the three runs are listed. The red lines
represent the best fit from the best run (i.e., the blue distributions). See Materials and
Methods and Fig. S2.14 for further details on the model parameterization method.
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Figure S2.6: No evidence of direct nucleotide-KaiA interaction. 1H-15N HSQC spectra
of the N-terminal fragment (residues 1–135) of KaiA in the presence and absence of ATP
(A) or ADP (B) show no significant differences in chemical shifts, while spectra of the C-
terminal fragment (residues 181–284) show subtle line broadening in the presence of ATP
(C) and ADP (D), suggesting weak, if any, interaction between the nucleotide and the
C-terminal fragment. Given these results, we do not include any direct KaiA-nucleotide
interaction in the model.
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Figure S2.7: Performance of the fitting procedure. A) The time evolution of the log
posterior values over the four steps of the fitting procedure (see Materials and Methods).
For step 1 and 3, the individual Markov chains that do not produce walkers used in the
next step are shown in beige. B) A comparison of the performance of Powell’s method, a
derivative-free numerical optimization method, Goodman-Weare (GW) ensemble MCMC
method, and conventional Metropolis-Hastings (MH) algorithm with a Gaussian trial
distribution. For the Metropolis-Hastings algorithm the covariance matrix of the trial
distribution is given by the global covariance of the fit (i.e., the last step in panel A),
scaled by a factor of 0.005 to give an average acceptance rate of 19.8%. A set of 224
walkers drawn from the prior distribution are used to initialize the simulations for all
three methods; the 224 walkers are evolved independently for the Powell’s and Metropolis-
Hastings methods, and in an ensemble for the Goodman-Weare method. Chains that do
not reach log posterior above 450 are shown in beige. C) A comparison of the performance
of Powell’s method with the Nelder-Mead simplex-based numerical optimization method.
The simulations are initialized using the same walkers as in step 2 of A).
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Figure S2.8: Behavior of the model. A. Model fit to the dephosphorylation dataset
[17]. B. The best fit KaiA dwell time as a function of KaiC phosphoform and nucleotide-
bound state. The error bars represent the 95% posterior interval, and the dashed lines
represent the experimental measurements [24, 25], which did not resolve the nucleotide-
bound states. C. Inorganic phosphate production per KaiC monomer over the course of
a phosphorylation reaction. The gray region represents the experimental bounds on the
KaiC hydrolysis rate with 1.2 µM KaiA and no KaiA [26]. D. The kinetics of the dephos-
phorylation reaction in the absence of KaiA, broken down into the eight individual KaiC
states. The gray region represents the 95% posterior interval. Refer to Fig. S2.5A for the
KaiC state names. E. The predicted phosphorylation kinetics at 7 and 1.75 µM KaiC,
both at 100% ATP and 1.5 µM KaiA, compared to experimental measurements. Note that
these two time series are not part of the training set. F. The posterior distributions for
kTP

r and kDP
r , the dissociation rates for ATP and ADP, respectively, in an early iteration

of the model. The horizontal axis is on a base 10 log scale. The long tail to the left of the
posterior distribution for kTP

r suggests that the model can be simplified by setting the rate
to zero.
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Figure S2.9: Correlation structure in the MCMC ensemble. A), B), and C) show
parameters with correlation coefficients larger than 0.9. In B), “X” represents the KaiC
phosphoforms. In C), the projections of the 3D scatter plot onto pairwise correlations are
shown in gray. D) The principal component/eigenvalue spectrum of the covariance matrix
(left), and the alignment of the principal components with the coordinates (right). Here,
I denotes the intersection of the principal component ellipoid with the coordinates and P
denotes the projection of the principal components onto the corresponding coordinates
[55]. E) The integrated autocorrelation time for the 48 principal components (PC);
the principal components are indexed from the largest to the smallest. The integrated
autocorrelation time is calculated using an automated windowing procedure [137] from the
autocorrelation function averaged over the ensemble. F) The integrated autocorrelation
time for the KaiA dissociation constants as a function of KaiC phosphoform and
nucleotide-bound states. G) The ten largest vector components, ordered by absolute value,
for the first and last three principal components.
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Figure S2.10: The metabolic compensation property of the Kai oscillator. A.
Fluorescence polarization measurements of oscillatory reactions at various [KaiA] and
%ATP are fit to curves of the form FP(t) = A cos(2πT−1t + φ) + bt + c to extract
the normalized amplitude (100A/c; dimensionless) of the oscillator; see Fig. 2.2D for the
periods (T ) of the same reactions. Reactions with an amplitude A < 0.5 are considered
to be non-oscillatory. B. Representative traces demonstrating the effect of %ATP at 1.25
µM KaiA; The polarization data are shifted vertically to avoid overlaps and horizontally to
align the first peaks. C. Fluorescence polarization measurements of oscillatory reactions at
three %ATP conditions in the presence of 0.0, 2.5, and 4.5 µM KaiC S431A/T431A (AA).
The period (left) and amplitude (right) of the reactions are extracted using the same
curve fit method as for panel A.; non-oscillatory reactions are not shown. D. SDS-PAGE
gel image of the supernatant from the KaiB-FLAG immunoprecipitation experiment. E.
Simulated KaiC AA titration experiment using the modified Phong model. The points
are model predictions and the solid line is a linear fit. The dotted line is the linear fit
to the experimental results (see Fig. 2.3G). The simulations are carried out at 100%
ATP, 1.5 µM KaiA, and KD = 10−3 µM condition. F. A Comparison of the metabolic
compensation property of the Phong model without (left) or with (right) a phosphoryla-
tion threshold at KD = 10−3 µM. The model exhibits phase decoherence at low %ATP
without a phosphorylation threshold.
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Figure S2.11: The mechanism of kinetic ordering is not well-constrained. A) Spectral
clustering on the relative sensitivity of the T and S phosphoform concentrations at t = 1
h to rate constants in the T- and S-site models, respectively. Only the parameters with
significant (> 0.2) relative sensitivities in either cluster are shown in the plot. “X” stands
for either the T (horizontal axis) or S (vertical axis) phosphoform. The sensitivities are
calculated using 500 sampled parameter sets chosen randomly from the ensemble. The
clustering analysis was done using the FindClusters function in Mathematica 12.0. B)
Model diagrams that highlight the reactions that have the highest relative sensitivities in
the first (left) and second (right) clusters; the D phosphoform is not shown for clarity. C)
Selected model parameter values in the two clusters. A comparison with blue distributions
in Fig. S2.5B indicates that the clustering based on sensitivity can be mapped onto the
modes of the posterior distribution.
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Figure S2.12: KaiC stimulus-response relations. A. The steady-state stimulus-response
relations for T, S, and D phosphoforms predicted by the model. B. The experimentally
determined stimulus-response functions of the T, S, and D phosphoforms at three %ATP
conditions; the curves are based on refitting the best fit to the steady-state measurements.
C. The model-predicted stimulus-response relation of the total steady-state KaiC phos-
phorylation level as a function of %ATP and [KaiA] after refitting to the steady-state
measurements. D. The differences in the log parameter values (base 10) of the best
fit before and after refit. The differences are ordered by magnitude and only the 10
parameters (in the multiplicative-factor scheme) with the largest changes are shown.
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Figure S2.13: KaiA binding affinities of simplified models. A. The posterior distributions
for the KaiA dissociation constants as a function of KaiC phosphoform in model –n, where
the KaiA on/off rates are decoupled from the nucleotide-bound states of KaiC. The dashed
lines represent the best fit. B. Similar to A., but for model –p, where the KaiA on/off
rates are decoupled from the KaiC phosphoform; the dashed lines represent the best fit.
C. Cross sections of the stimulus-response relation at three %ATP, computed using model
–p. The inset represents posterior distribution for the shape measures of the stimulus-
response function at 25% ATP. The contours represent the 68% and 95% HDRs, and the
gray star represents the model best fit. The shape of the stimulus-response function is
quantified using two metrics: EC10, which quantifies threshold-like behavior, and EC90 –
EC10, which quantifies switch-like behavior. The shape measures of the experimentally-
determined stimulus-response function at 25% ATP is shown as the yellow star. The
dashed line represents (EC10,EC90 − EC10) = (K/9, 80K/9), which characterizes the
shape of a hyperbolic stimulus-response function [A]/(K + [A]) that has no switching or
thresholding. D. Similar to A., but for model –n,–p, where there is a single KaiA on/off
rate in the model. E. Similar to C., but for model –n,–p.
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Figure S2.14: Overview
of the model with the
multiplicative-factor
parameterization scheme.
Panels A) and B) are
analogous to those
in Fig. S2.5, but the
rate constants are
represented as products
of the factors that are
actually optimized in the
MCMC simulations. In
B), the δk parameters
are fixed parameters
determined by detailed
balance conditions. The
parentheses denote state-
dependent effects; A:
KaiA-bound state,
P: phosphoform, N:
nucleotide-bound state.
The horizontal axis has
a log scale (base 10).
The rate constants have
the unit s-1 (or s-1·µM-1

for the KaiA on rate
constant ka) and the
multiplicative factors
are dimensionless. See
Materials and Methods
for further description
of the detailed balance
conditions and the model
parameterization method.
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2.8 Supplementary Tables

Table S2.6: Effects of KaiA on KaiC function

Model
Log likelihood

Bayes factor
Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 –0.8 1

–P∗ 390.0 338.6 –0.8 1.4

–H† 355.5 308.8 –0.9 2.5
–P,–H 278.2 283.6 –0.2 7.7

∗ –P: KaiA binding decoupled from (de)phosphorylation rates.
† –H: KaiA binding decoupled from KaiC hydrolysis rates.

2.9 Data and Software Availability

The code used to perform and analyze the MCMC simulations, as well as data from the

inference run, are available on github at https://github.com/luhong88/KaiAC MCMC.
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2.11 Future Directions

An objective of the line of research demonstrated in this work is to eventually extend

such model fitting procedure to account for the full Kai oscillator. A direct extension

of the ODE model put forward in this work is computationally intractable due to the

combinatorial complexity of the system as one considers additional degrees of freedom

associated with the states of CI and KaiB. As such, it is better to build upon existing

models of the full oscillator, such as the Paijmans model [40], and then fit the extended

model to experimental data. In this section, I outline four aspects of the Paijmans model

that can be further elaborated upon in future works. The equation numbers in this section

refer to those in [40].

KaiA affinity and KaiC nucleotide-bound state In the Paijmans model, the KaiA

binding affinity to each KaiC hexamer is determined by ∆GCII.KaiA
bind , where each monomer

i contributes an additive term δgCII.KaiA
bind (Xi) depending on its phosphorylation state X

(see Eq. 4). Given our KaiAC modeling result, the coupling between nucleotide-bound

state and affinity is critical for generating ultrasensitivity in KaiC phosphorylation that is

missing in the Paijmans model. To introduce this effect, we replace all the δgCII.KaiA
bind (Xi)

terms with δgCII.KaiA
bind (Xi,Ni), where Ni ∈ {DP,TP} denotes the nucleotide-bound state of

the monomer i in the CII domain. This effectively introduces four more parameters to the

model. In the original model, δgCII.KaiA
bind (U) is by definition set to zero, here we define the

reference state to be δgCII.KaiA
bind (U, TP) = 0. Correspondingly, we redefine kCII.KaiA

on, 0 and

kCII.KaiA
off, 0 to be the KaiA (un)binding rates when all monomers of an active hexamer are

in the U, TP states.

Due to detailed balance, the differential KaiA binding affinity results in changes in

the relative stabilities of KaiC phosphoforms in the presence or absence of KaiA. In the
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original Paijmans model, this relation is given by Eq. 8:

δg0
XY − δg

KaiA
XY = δgCII.KaiA

bind (Y)− δgCII.KaiA
bind (X)

To account for the coupling between KaiA affinity and KaiC nucleotide-bound state, we

replace Eq. 8 with the following set of relations:

δg0
UT − δg

KaiA
UT = δgCII.KaiA

bind (T, DP)− δgCII.KaiA
bind (U, TP)

δg0
US − δg

KaiA
US = δgCII.KaiA

bind (S, DP)− δgCII.KaiA
bind (U, TP)

δg0
TD − δg

KaiA
TD = δgCII.KaiA

bind (D, DP)− δgCII.KaiA
bind (T, TP)

δg0
SD − δg

KaiA
SD = δgCII.KaiA

bind (D, DP)− δgCII.KaiA
bind (S, TP)

Eq. 9 is updated accordingly.

In the event that the resulting model is too hard to fit/constrain, one possible

simplification scheme is to couple KaiA binding affinity to the nucleotide-bound state of

KaiC only, similar to model –p. Another possibility is to introduce a single δgCII.KaiA
bind (DP)

to account for the effect of ADP relative to the ATP bound states of KaiC subunits.

Representation of KaiB fold switch The Paijmans model does not have an explicit

representation of KaiB, and the KaiB binding kinetics is represented by effective first-order

rate constants (see Table 3). This is a fine assumption, as the period and amplitude of the

oscillator is not strongly dependent on KaiB concentration [139] and its oligomerization

reactions serve to stabilize the monomeric KaiB concentration, which is the species that

participates in the clock reaction. However, there are still several aspects of KaiB function

that remains unclear, and it would be useful to introduce an explicit representation of

KaiB into the model to allow specific hypothesis testing. For example, is the free energy

of ATP hydrolysis in the CI domain directly coupled to KaiB fold switch? Is the timescale
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of KaiB fold switch determined by the ATPase activity of KaiC? When KaiB is in the

monomeric state, is the ground state vs. fold-switched state more stable?

To introduce explicit representation of KaiB is fairly straightforward:

KaiB
gs
4

k14−−⇀↽−−
k41

4KaiBgs kfs−−⇀↽−−
kgs

4KaiBfs

Note that we do not model the KaiB dimer state explicitly. Experimental analysis

shows that the KaiB dimeric state is sparsely populated over a wide range of total KaiB

concentrations [23]; we therefore apply the quasi-steady state approximation and eliminate

the explicit representation of the dimer. Here, KaiBfs is the only species capable of

binding to KaiC. We further assume that KaiB dissociate from CI while remaining in the

fold-switched conformation and then revert back to the ground state with a rate of kgs.

Cooperative KaiB binding In the original Paijmans model, there is no cooperative

KaiB binding. Instead, to set the timescale of the transition from phosphorylation to de-

phosphorylation, the model assumes slow and independent KaiB binding to KaiC, and

that no KaiA can be sequestered before a full ring of six KaiB monomers are bound.

These assumptions can be relaxed with an improved representation of KaiB

cooperative binding. Native MS analysis [23, 78] shows that the only detectable KaiB

binding stoichiometry with KaiC is KaiB1C6 and KaiB6C6. Based on this observation,

one can introduce a simple scheme for cooperativity as

CI6 + 6KaiBfs kCI.KaiB
on−−−−−⇀↽−−−−−
kCI.KaiB

off

CI6 ·KaiBfs + 5KaiBfs kCI.5KaiB
on−−−−−−⇀↽−−−−−−
kCI.5KaiB

off

CI6 ·KaiBfs
6

The KaiB on/off rates need to depend on the active vs. inactive state of CI. It is likely

that in the active state, the CI6 ·KaiBfs
6 state is highly unfavorable, such that the KaiB1C6

stoichiometry is observed during the early dephosphorylation stage when KaiC is only

starting to switching to the inactive state, while the KaiB6C6 stoichiometry dominates
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afterwards. This description is consistent with the fact that native MS analysis using

teKaiC-DD does not observe the KaiB1C6 stoichiometry [140].

A more rigorous description considering all possible intermediate states is possible

should the current scheme be inadequate.

KaiA inactivation kinetics The Paijmans model does not consider the inactive

conformation of KaiA [77]. Here we introduce a simple description of KaiA inactivation

KaiAact
2

kinact−−−−⇀↽−−−−
kact

KaiAinact
2

where the active state can bind to the CII domain, while the inactive state can bind to the

CI domain (in the presence of bound KaiB). Furthermore, we allow for dissociation of a

KaiA2B1 complex during the late phosphorylation stage as a single unit [78]; e.g.,

CI6 ·KaiBfs ·KaiAinact
2

kCI.KaiAB
off−−−−−−⇀↽−−−−−−
kCI.KaiAB

on

CI6 + KaiBfs ·KaiAinact
2

kKaiAB
off−−−−−⇀↽−−−−−
kKaiAB

on

CI6 + KaiBfs + KaiAinact
2

Again, the KaiAB on/off rates (e.g., kCI.KaiAB
on , kCI.5KaiAB

on ) from CI need to depend on

the active vs. inactive state of CI.

This description of KaiA inactivation can be made more detailed to allow for

alternative (in)activation and (un)binding pathways (e.g., monomeric KaiA has been

detected during the late dephosphorylation stage [78]). However, given the level of

experimental characterization available for the inactivation process the current scheme

should be sufficient.
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CHAPTER 3

MOLECULAR DYNAMICS SIMULATIONS OF NUCLEOTIDE

RELEASE FROM THE CIRCADIAN CLOCK PROTEIN KAIC

REVEAL ATOMIC-RESOLUTION FUNCTIONAL INSIGHTS

This chapter was published as an article in PNAS (doi:10.1073/pnas.1812555115) and

appears below with minor formatting modifications.

Lu Honga, Bodhi P. Vanib, Erik H. Thiedeb, Michael J. Rustc,d,e, and

Aaron R. Dinnerb,d,f

aGraduate Program in Biophysical Sciences, University of Chicago

bDepartment of Chemistry, University of Chicago

cDepartment of Molecular Genetics and Cell Biology, University of Chicago

dInstitute for Biophysical Dynamics, University of Chicago

eInstitute for Genomics and Systems Biology, University of Chicago

fJames Franck Institute, University of Chicago

3.1 Abstract

The cyanobacterial clock proteins KaiA, KaiB, and KaiC form a powerful system to

study the biophysical basis of circadian rhythms, because an in vitro mixture of the

three proteins is sufficient to generate a robust ∼24-h rhythm in the phosphorylation of

KaiC. The nucleotide-bound states of KaiC critically affect both KaiB binding to the

N-terminal domain (CI) and the phosphotransfer reactions that (de)phosphorylate the

KaiC C-terminal domain (CII). However, the nucleotide exchange pathways associated

with transitions among these states are poorly understood. In this study, we integrate

recent advances in molecular dynamics methods to elucidate the structure and energetics

of the pathway for Mg·ADP release from the CII domain. We find that nucleotide release
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is coupled to large-scale conformational changes in the KaiC hexamer. Solvating the

nucleotide requires widening the subunit interface leading to the active site, which is

linked to extension of the A-loop, a structure implicated in KaiA binding. These results

provide a molecular hypothesis for how KaiA acts as a nucleotide exchange factor. In turn,

structural parallels between the CI and CII domains suggest a mechanism for allosteric

coupling between the domains. We relate our results to structures observed for other

hexameric ATPases, which perform diverse functions.

3.2 Introduction

Circadian clocks are biochemical oscillators found in organisms in all kingdoms of

life. In general, a circadian oscillator is characterized by its ability to generate self-

sustaining oscillations with a near-24-hour period in the absence of external environmental

cues. Furthermore, the period of the oscillation is largely insensitive to temperature

and metabolic perturbations over the physiological range [37]. Circadian rhythms are

important for maintaining regular cellular and physiological activities, and defects in the

circadian clock can result in reduced fitness [141] and various health issues [142–146].

The core clock of the cyanobacterium Synechococcus elongatus PCC 7942 presents a

unique opportunity for elucidating the biophysical basis of circadian rhythms [141, 147],

because its molecular oscillations can be reconstituted in vitro from purified proteins [12],

and they show all of the hallmark properties of circadian rhythms described above. The

clock is based on periodic interactions among three soluble proteins: KaiA, KaiB, and

KaiC. These interactions give rise to near-24-hour oscillations in the phosphorylation

pattern of KaiC, and these oscillations are coupled to the external environment in part

through the relative concentrations of ATP and ADP [28, 29, 148].

KaiC is a homohexamer [16] (Fig. 3.1A) within the RecA/DnaB superfamily

[58, 149], which includes a large variety of ATPases in archaea, bacteria, and eukaryotes

[149]. Each subunit of S. elongatus KaiC has 519 residues that are organized into two
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Figure 3.1: The CII nucleotide release pathway involves both local and global con-
formational changes. (A) KaiC is a homohexamer with active sites located at the
subunit interfaces. The hexamer forms a double-ring architecture; the N-terminal
ring is termed the CI domain, and the C-terminal ring is termed the CII domain. The
secondary structures of subunits D and E are shown as yellow and green ribbon diagrams,
respectively, while the other four subunits are represented by a white van der Waals
surface. The CI–CII linker (residues 248 to 261) and the A-loop (residues 486 to 498)
of subunits D and E are colored blue. (B) A β-hairpin (βnt; residues 468 to 483) and an
α-loop-α motif (αlα; residues 321 to 342) show the biggest displacements in the locally
enhanced sampling simulations. The color represents the per-residue root-mean-square
deviation (RMSD) between initial and final protein backbone conformations, mapped onto
the initial structure. (C) The string calculation reveals concerted motion of the six CII
intersubunit angles during ADP dissociation at the subunit D–E active site. The inset
shows a schematic of the CII domain, illustrating the intersubunit angle variables and the
ADP–subunit distance variables employed in the simulation. (D) The nucleotide moves
radially outward in the string pathway; the arrows indicate the movement of N6 and Pβ
atoms in ADP. In (A), (B), and (D), the Mg·ADP atoms are colored by element (C, cyan;
N, blue; O, red; P, gold; H, white; Mg, pink).
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domains formed by a tandem repeat of a common ATPase fold [150]; the N-terminal and

C-terminal domains are known as CI and CII, respectively. Thus the hexameric assembly

has a two-tiered ring structure. Both the CI and CII domains hydrolyze ATP, and the

CII domain can also reversibly transfer phosphoryl groups between amino acids S431 and

T432 and bound nucleotides (i.e., from ATP and to ADP) [38, 39, 59]. KaiC is a relative

of the AAA+ superfamily [149], and each KaiC globular domain shares close structural

similarity to F1-ATPase, part of the FOF1-ATP synthase [39]. Many of the proteins that

are evolutionarily related to KaiC use mechanochemical coupling to do work, and it is an

open question how the mechanisms of action of these ATPases relate to those of the KaiC

family, which uses ATP hydrolysis for signal transduction and timing.

Stimulation by KaiA promotes KaiC phosphorylation during the day [12, 15, 17, 24,

60, 61, 80], and sequestration of KaiA by KaiB leads to dephosphorylation during the

night [22, 28, 77, 83]. However, the molecular mechanism of KaiA’s action is unclear. The

activity of KaiA was initially defined by its ability to stimulate KaiC autokinase activity

[15]. Kinetic studies indicate that this activity also inhibits the rate of dephosphoryla-

tion [17]. Recent work shows that KaiA can act as a nucleotide exchange factor for CII,

which otherwise very slowly releases ADP with an estimated rate less than 0.1 h-1 [19].

These observations, together with the fact that CII is a reversible phosphotransferase,

suggest that KaiA promotes phosphorylation by enabling exchange of ADP for ATP. Since

ATP cannot be used as a phosphotransfer acceptor in the dephosphorylation reaction,

the ability of KaiA to regulate the nucleotide bound state in CII provides a unifying

hypothesis that could explain both stimulation of phoshorylation and inhibition of dephos-

phorylation.

Thus, the mechanism of nucleotide exchange in CII is key to understanding the

regulation of KaiC phosphorylation. Indeed, control of nucleotide exchange is likely used

throughout the clock cycle. The binding of KaiB to the homologous CI domain requires

the ability of CI to go through a catalytic cycle [28, 76], and structural studies of the
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KaiB·KaiC complex show that ADP is retained in the CI active site when KaiB is bound

[77, 78]. However, accessing this binding-competent state in CI requires S431 phosphory-

lation in the distal CII domain [17, 21, 79]. Taken together, these results suggest that the

CII ring influences nucleotide exchange in the CI ring, just as KaiA influences nucleotide

exchange in CII.

To the best of our knowledge, a nucleotide exchange pathway has not been previously

characterized for any homohexameric ATPase in the RecA/DnaB or AAA+ superfamilies.

However, structures of these proteins in certain nucleotide-bound states show that they

can take on conformations that lack C6 symmetry. Examples include the staggered

conformation of ClpX resulting from a rigid-body rotation of the small α and large

αβ domains [151], the split washer conformation at the apo interface of NSF [152], or

the staircase-like DNA-binding hairpin structures of the E1 helicase [153, 154]. These

structures have been interpreted to mean that hydrolysis proceeds sequentially or

stochastically, rather than concertedly, around the rings of these proteins [155]. Although

there are subtly asymmetric structures of the CI domain of KaiC with both ATP- and

ADP-bound active sites [156], it is not clear whether the full molecule functions in a

symmetric (i.e., concerted) or asymmetric fashion and, if the latter, how its structures

relate to those of other homohexameric ATPases.

What is the molecular mechanism of nucleotide exchange, and how is it influenced by

KaiA? How does the phosphorylated S431 (pS431) form of CII allow ADP accumulation

in CI? In principle, molecular dynamics (MD) simulations can provide atomic-resolution

answers to these questions. However, the size of the system and the timescale of nucleotide

exchange prohibit direct treatment by conventional methods. To overcome this challenge,

we implemented a pipeline of methods for enhancing the sampling of molecularly

rare events. The results of our simulations provide a detailed characterization of the

structure and energetics of the ADP release pathway in CII and give new insight into

how KaiC conformational changes during nucleotide release are coupled to KaiA binding.
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Implications for other homohexameric ATPases are discussed.

3.3 Results

3.3.1 Nucleotide release in CII involves both local and intersubunit

conformational changes

Our goal was to simulate nucleotide release and to understand how it is coupled

to changes in KaiC structure. In KaiC, the central channel is sufficiently large to

accommodate a free nucleotide, so it is not immediately obvious from the crystal

structure whether the nucleotide exits radially inward or outward. We thus performed

the simulation in stages that progressed from exploratory and qualitative to physically

well-controlled and quantitative, as follows. We first determined the general direction of

release using a method known as locally enhanced sampling [157–159], which floods the

protein with non-interacting copies of Mg·ADP that weakly interact with the protein

and activate local conformational dynamics to accelerate the release. Given the general

direction of release, we then sought to identify a manageable number of collective variables

(CVs) that could be used to characterize and control sampling along the pathway. We

used these CVs to generate an initial guess for the release pathway with steered molecular

dynamics (SMD) [160], which introduces an artificial force to drive the release. We then

used the string method [161, 162] to refine this guess to a minimum free energy path

without artificial driving forces. Finally, the free energy of the release pathway was

characterized using umbrella sampling [163]. While our conclusions are based only on

these final simulations, to explain the CVs that we use to analyze the dynamics, we briefly

review the findings of the full series of calculations (further detailed in Methods) in the

remainder of this section and the following one.

In both CI and CII, the active sites are located at the subunit interfaces, for a total of

12 sites per hexamer. Our calculations are based on a WT KaiC crystal structure [Protein

89



Data Bank (PDB) ID: 3DVL] [164], which we modified to be in the phosphorylated T432-

only (pT432) form in all six subunits and with all bound ATPs replaced by ADPs in the

CII domain. Because the structure has almost perfect C6 symmetry, we arbitrarily chose

the active site at the interface of subunits D and E for the release simulations. The locally

enhanced sampling simulations show that Mg·ADP is released radially outward (Fig. 3.1

and Fig. S3.6); this is consistent with further analyses of the alternative possibility of

inward release, which appears highly unfavorable (see Supplementary Results and Fig.

S3.7). For steric reasons the outward release requires an increase in the distance between

the β-hairpin at residues 468 to 483 (which we denote βnt) and an α-loop-α motif (αlα) at

residues 321 to 342, both of which are located near the exit point of the release pathway

(Fig. 3.1B and Fig. S3.8). It is worth noting that βnt is directly connected to the A-loop

(residues 486 to 498), which is implicated in KaiA binding. For these reasons, we included

the distance between the βnt and αlα centers of mass as a CV.

To enable global structural changes, we also selected as CVs the six angles formed

by each pair of adjacent subunits in the CII ring (Fig. 3.1C Inset). This choice of CVs

is motivated by two observations. First, SAXS experiments indicate that the radius of

gyration of KaiC changes depending on the phosphorylation state of the protein, and

the variations in this parameter are attributed to contraction and expansion of the CII

ring [165]. Second, other multimeric nucleotide-binding proteins have been shown to

exhibit changes in solvent accessibility upon nucleotide binding at subunit interfaces

[151, 152, 166–173]. Two final CVs that we used to parameterize the release pathway

were the distances between the center of mass of the ADP and the centers of mass of the

active-site residues of the D and E subunits, respectively. We note that the two adjacent

subunits do not contribute equally to the active site; specifically, the nucleotide makes

more extensive contact with subunit D (Fig. 3.1D and Fig. S3.9). A summary of the CVs

is given in Table S3.1.

Among the nine CVs that we identified, we found that the subunit D–E angle
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and ADP–subunit D distance provided the best control in SMD, and we used them to

construct an initial guess for the release pathway. Specifically, we opened the intersubunit

angle, moved the Mg·ADP to increase the distance, and then closed the angle in a

stepwise manner. This pathway was then refined using the string method in the full nine-

dimensional CV space (Fig. S3.10). In the refined pathway, the intersubunit angle opens

and the Mg·ADP dissociates in a concerted fashion (Fig. 3.1C). With the exception of the

subunit A–B angle, which is diametrically opposed to the vacated active site, the angles

between the rest of the subunits are compressed, especially the subunit E–F angle. This

implies that ADP release in CII does not occur concurrently around the ring. No clear

trends are observed for the CI intersubunit angles (Fig. S3.11).

In summary, our simulations show that Mg·ADP dissociation from CII is coupled

to global conformational changes in that domain, which involves an asymmetric opening

of the subunit angles. Below, we further analyze the pathway from the string method to

understand the energetics of nucleotide release.

3.3.2 The energetics of Mg·ADP release are dominated by salt bridge

interactions

We used umbrella sampling to characterize the free energy in the (extended) neighborhood

of the string pathway. In this method, copies of the system are restrained to different

values of the CVs to enforce sampling, and the contributions from different copies are

then reweighted to obtain the correct equilibrium statistics (see Methods). Because the

computational cost of umbrella sampling grows exponentially with the number of CVs, we

again focused on the two-dimensional space defined by the ADP–subunit D distance and

the subunit D–E angle. Care was taken to ensure convergence, as discussed in Methods.

The free energy as a function of these CVs is shown in Fig. 3.2A. As the ADP–

subunit D distance increases from 10 to 13 Å, there is a steep rise in the free energy to

a plateau that is about 10 kcal/mol above the bound state, consistent with the fact that
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Figure 3.2: Electrostatic interactions dominate the energetics of nucleotide release. (A)
The free energy profile of the release process, calculated using umbrella sampling. (B)
and (C) show the interaction between Mg·ADP and key active site residues. The solid
lines show the coordination of the Mg2+ ion, and the dotted lines represent hydrogen-
bond interactions. Colors are the same as in Fig. 1D. (B) A representative nucleotide-
bound structure, from (8.5 Å, 60.2◦) in (A). (C) A representative structure from the
region of rapid increase in free energy, specifically (10.4 Å, 64.0◦) in (A). (D) Alternative
projection of the umbrella sampling data in (A). The CVs are the subunit D–E angle and
the electrostatic interaction energy between solvent and active-site residues K294, T295,
E319, and D378.

nucleotide binding is required for the hexamerization of KaiC [16]. This rise coincides with

the disruption of electrostatic interactions in the active site: the sidechains of T295, E319,

and D378 directly and indirectly determine the coordination of the Mg2+ ion, and the

sidechain of K294 makes a salt bridge to the terminal phosphate group of the ADP (Fig.

3.2B). Among these residues, K294 and T295 are Walker A residues, D378 is a Walker B

residue, and E319 is a catalytic glutamate [39]; the importance of such conserved residues

for nucleotide binding and catalysis is well-established for many AAA+ and RecA-like

ATPases [155]. The free energy plateau for ADP–subunit D distances greater than 10
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Å is centered on subunit D–E angle values of about 64◦, compared to 60◦ observed in

the crystal structure. Although this opening permits additional water molecules into the

active site, maximum solvation is not achieved until after loss of the protein-nucleotide

interactions (Fig. S3.12).

In addition to the interactions listed above, two arginine residues on the periphery of

the active site also exhibit strong electrostatic interactions with Mg·ADP for ADP–subunit

D distances up to 16 Å (Fig. 3.2C). R451 forms salt bridges to each phosphate group

in turn as the ADP makes its way out of the protein. The interaction of Mg·ADP with

R459 from subunit E contrasts with those discussed so far in that it is net repulsive. Both

R451A and R459A abolish oscillation in vivo [174], confirming the importance of these two

residues. In particular, R459 is an arginine finger, a common motif required for sensing the

presence of γ-phosphate groups during ATP hydrolysis [155, 174].

In all the nucleotide release simulations that we performed, the Mg2+ ion and

ADP dissociated from the active site together, even though no restraint was applied to

enforce either the Mg–ADP or Mg–active site distance. However, it has been suggested

for F1-ATPase that the Mg2+ ion leaves prior to ADP dissociation [175], so we also

considered such a two-step release mechanism. To test this possibility, we ran a free energy

calculation to determine the standard binding free energy of the Mg2+ ion to a CII active

site with bound ADP using the double annihilation method [176] (see Methods and Figs.

S3.13 and S3.14). The result of the calculation suggests that the standard binding free

energy of Mg2+ is at least –34 kcal/mol, which is very strong. We thus disfavor the two-

step release mechanism.

Mg·ADP release is regulated by tryptophan residues. Two tryptophan residues close

to the protein surface also make extensive contact with the adenine base throughout

the release process (Figs. 3.2B and 3.2C). The sidechain of W331 forms hydrogen bond

interactions first with the adenine base, and then with the phosphate groups as ADP

moves out of the active site. The geometry in proximity of W462 is suggestive of π-
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stacking, although the force field does not explicitly include such effects. Previous

experiments point to the importance of these residues; the mutations W331F and W462F

lead to abnormal oscillations in vitro [79], and W331A traps KaiC in a constitutively

phosphorylated state [60].

Evolutionarily, W331 and W462 are highly conserved among KaiC proteins found

in KaiABC clusters in the cyanobacterial phylum, a clade known as KaiC1 (Table S3.1)

[14]. W331 is also conserved among KaiC3 homologs, which are functionally poorly

characterized [177]. Because of the proposed role of KaiA as a nucleotide exchange factor

[19] and the observation that KaiA-mediated phosphorylation has only been found among

KaiC1 homologs [14], the simulation results are consistent with the notion that the

tryptophan residues, in particular W462, may play a role in KaiA-regulated nucleotide

exchange in the CII domain.

3.3.3 Subunit angle motion is coupled to quaternary conformational

changes

In the crystal structure of the KaiC protein employed in the present study, all six CII

intersubunit angles assume equilibrium values around 60◦ (the difference between the

largest and smallest angle is no more than 0.3◦). The umbrella sampling calculation,

however, reveals an additional asymmetric metastable state where the subunit interface

from which the nucleotide is released opens to approximately 64◦, while the nucleotide

remains bound (Fig. 3.2A). This metastable state is separated from the (essentially

symmetric) global minimum by a free energy barrier that is less than 2 kcal/mol,

indicating that interconversion between the states is thermally accessible. To understand

the significance of the large-angle asymmetric state, we projected the umbrella sampling

data onto a new CV space consisting of the subunit D–E angle and the electrostatic

interaction energy of water with the active site residues discussed above (K294, T295,

E319, and D378) (Fig. 3.2D). This free energy surface indicates that the subunits
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with a larger angle allow stronger interactions between active site residues and solvent,

facilitating nucleotide release. The existence of asymmetric quaternary states that are

thermodynamically stable in CII is consistent with the observation of a mixture of loose

and tight subunit interfaces in a high-resolution CI crystal structure (PDB ID: 4TLA)

[156], although the largest angle observed therein is only 61.7◦.

Given the existence of multiple metastable states distinguished by the intersubunit

angles, we sought to determine if there are additional large-scale quaternary conforma-

tional changes that are associated with the release process but are not described by the

angles. To detect such motions, we applied principal component analysis (PCA) to the

Cα atoms in the structures obtained from umbrella sampling, without reweighting, after

aligning all structures with respect to the CII domain of subunit D. The first two principal

components, PC1 and PC2, account for most of the variance (43% and 28%, respectively)

(Fig. S3.15A). Structures representative of the extremes of these two PCs are shown in

Fig. 3.3A and B. PC1 represents the formation of a split washer structure with a helical

pitch up to about 11 Å (Fig. 3.3C) in the CII domain, and a concomitant rigid-body

tilt in the CI domain. The split in the CII ring is located at the subunit D–E interface,

the site of Mg·ADP dissociation in the simulation. PC2 represents a concerted, circular

compression motion in both domains in response to the angle-widening motion at the

subunit D–E interface.

Given that the PCs are correlated with the subunit D–E angle, which possesses at

least two metastable states in the nucleotide bound state (Fig. 3.2A), we hypothesized

that motions in the direction of the PCs are accessible without nucleotide release. To test

this hypothesis, we measured motion along the aforementioned PCs in a 100 ns SMD

simulation of the bound state, with the artificial force in the direction of subunit D–E

angle widening (Fig. S3.15B). Although the PCs explore a smaller range of values, the

intersubunit angle variations in the nucleotide bound state clearly result in changes to the

first two PCs, which remain the most dominant modes.
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Figure 3.3: Principal component analysis (PCA) reveals large-scale conforma-
tional changes during nucleotide release. (A) Principal component (PC) 1 represents
the formation of a split washer structure in CII, and (B) PC2 represents a circular
compression in both domains. In (A) and (B), arrows show the Cα difference vectors
between a pair of structures representing the extremes of motion along the PC, aligned
to minimize the difference in the CII domain of subunit D. Structures in (A) are chosen
to have similar PC2 values, and structures in (B) are chosen to have similar PC1 values,
such that the differences shown approximate motions in only the PC of interest. (C)
Conformations of the CII domain in the low PC1 (left) and high PC1 (right) structure,
respectively. The side-by-side comparison indicates that the PC1 eigenvector points in the
direction of increased helical pitch in the CII domain.

A-loop conformation is coupled to the intersubunit angle. We now use our simulation

results to elucidate possible mechanisms of KaiC regulation. As discussed in the

Introduction, an outstanding question is how KaiA promotes phosphorylation. Previous
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work suggests that KaiA binding stabilizes structures known as the A-loops (residues 486

to 498, preceding the C-terminal tails of KaiC) in an extended conformation [60, 178].

Thus, we explored whether the umbrella sampling simulations resulted in structures with

extended A-loops, with a view toward understanding the impact of KaiA binding on the

KaiC structure.

Figure 3.4: The A-loop (residues 486 to 498) is coupled to nucleotide release. (A) The A-
loop (blue) of subunit D (yellow) samples an extended conformation. (B) The structure of
the subunit D A-loop in buried and extended states can be quantified using the angle
formed by the Cα atoms at residues 486, 490 and 496, which are represented as gray
spheres. The values of this A-loop angle are 33.6◦ and 75.8◦ in the buried and extended
states shown in (B). The subunit D–E angle values in the buried and extended structures
are 62.9◦ and 65.7◦, respectively. (C) Projection of the umbrella sampling data onto the
CV space consisting of the A-loop angle and the subunit D–E angle shows that a more
extended subunit D A-loop conformation is correlated with a larger subunit D–E angle.

We observed that the A-loop in subunit D sampled an extended conformation during

nucleotide release (Fig. 3.4A), albeit to a lesser extent than that in an NMR structure of

a KaiA fragment in complex with the KaiC C-terminus [60]. We only observe this state

in subunit D (Fig. 3.4A and Fig. S3.16), which suggests that it is a specific response to

Mg·ADP dissociation. To quantify this behavior, we calculated the angle formed by three

atoms at the beginning, middle, and end of the A-loop (Fig. 3.4B) and projected the free
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energy onto this A-loop angle and the subunit D–E angle. The resulting surface shows

that the A-loop is more likely to sample the extended state as the subunit D–E angle

widens (Fig. 3.4C). Because we expect allostery to be bidirectional (reflecting the fact

that free energies are state functions) [179], this finding is equivalent to A-loop extension

favoring a larger intersubunit angle, or, taking this logic one step further, KaiA binding

favoring a larger intersubunit angle. Given the importance of the intersubunit angle for

the energetics of nucleotide release, detailed in previous sections, the coupling of KaiA

binding to intersubunit angle opening may mechanistically explain its ability to act as a

nucleotide exchange factor.

The simulation hints at two other potential mechanisms that could couple the A-

loop to the active site. First, the A-loop may be both sterically and electrostatically

coupled to the active site via a β-hairpin (residues 436 to 459, which we denote βAL)

(Fig. S3.17A). βAL is located directly between the active site and the A-loop and harbors

R451, which can interact electrostatically with the ADP, as well as E444, which forms a

salt bridge with R496 in the A-loop. More specifically, βAL is involved in contraction of

subunit D (Fig. S3.17B and C) as the ADP–subunit D distance reaches around 10–11

Å, a point at which the free energy increases sharply (Fig. 3.2A). This contracted state

is characterized by 1) a subtle movement of αlα, βAL, and the A-loop, 2) a decrease in

the distance between the R451 sidechain on βAL and the α-phosphate group on ADP

from approximately 8.6 Å to 4.5 Å, and 3) a remodeling of the release channel due to

the nucleotide movement. Among these conformational changes, the movement of ADP

towards R451 has the most obvious consequences for the energetics of the release pathway.

βAL thus connects the binding affinity of ADP (through the R451–ADP interaction) with

the A-loop conformation.

Second, the simulation suggests that A-loop conformation is coupled to the active

site phosphorylation state through the 422-loop [180] (Fig. S3.18), so called because the

A422V mutation alters the amplitude and phase-resetting behavior of the oscillator in
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vivo [181]. Our results suggest that the 422-loop couples to the active site via a water-

mediated hydrogen-bond network between pT432 and D417, a residue on the 422-loop.

This interaction, however, can be disrupted as the 422-loop moves away from the active

site and forms hydrophobic contacts with the A-loop. In the release simulation, these

two states appear to exist in a dynamic equilibrium, which presumably can be shifted by

the phosphorylation state of KaiC and the binding of KaiA, thus making the 422-loop a

potential feedback mechanism that communicates the KaiC phosphorylation state back to

the A-loop to modulate KaiA binding. This idea is consistent with the observations that,

even in the absence of KaiB, KaiC phosphorylation is less sensitive to KaiA in the pS431

state [21] and the binding affinity of KaiA to KaiC is reduced in the pS431 and doubly

phosphorylated (pT432/pS431) states [66].

3.3.4 CI/CII interaction is mediated by a CI β-hairpin

As discussed in the Introduction, KaiB binding to CI is an important feedback process

that allows oscillations to occur. The formation of the KaiB·KaiC complex appears to

be determined by the retention of ADP in CI after hydrolysis [77, 78] and is critically

dependent on the S431 phosphorylation of the distal CII domain [17, 21, 79]. How the

phosphorylation state in CII is communicated to CI to allow KaiB binding is a major

unresolved question. Based on gel filtration experiments that monitor the binding of

separated CI and CII domains with phosphomimetic mutations, it has been suggested

that, when CII is in the pS431 state, it “stacks” more tightly with CI, even in the

absence of the linker that tethers the two domains together [67]. Because ADP does not

accumulate in the isolated CI domain, but ATP hydrolysis still occurs [19], a plausible

hypothesis is that phosphorylation-dependent interactions between CII and CI inhibit

nucleotide release from CI. We thus examined the CI/CII interactions in our umbrella

sampling simulation data to determine if there were structures that could provide hints

about how information is communicated between CI and CII.
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We observed changes in linker-independent CI/CII contact, as measured by their van

der Waals interaction energy (Fig. S3.19A). We specifically did not include the linker in

the energy calculation to mimic the CI/CII domain stacking experiment [67]. Because the

PCA results, detailed in a previous section, revealed motions between the two domains,

especially along PC1, we hypothesized that the CI/CII contact energy should change

with the values of the PCs. However, we found that its variance could not be explained

by projection onto the ten largest PCs. Instead, changes in CI/CII contact energy are

largely mediated by interactions between the CII domain and six β-hairpin structures

(residues 203 to 226, which we denote βI/II), one in each KaiC subunit (Fig. S3.19B).

βI/II is part of the β-sheet structure at the hydrophobic core of each CI globular domain,

and its secondary structure can become frayed near the turn region. When the two

domains separate, the turn region of βI/II moves away from the CII domain while leaving

the rest of the CI/CII interface largely unchanged (Fig. S3.19C and D). Salt bridges

connect neighboring βI/II hairpins: R216–E221 is stable throughout our simulations,

and E214–R217 is favored by reduced CI/CII contact. The simulations thus suggest new

targets for further study of CI/CII interactions.

3.4 Discussion

Our simulations can be synthesized into a new interpretation of the molecular events in

the oscillator cycle. Near dawn, KaiC is largely unphosphorylated [12]; while phosphor-

ylation can occur, it is not sustained because the ADP retained in the CII active site

allows rapid dephosphorylation [38, 39]. As KaiA is released from inhibitory complexes,

it binds the A-loop and stabilizes an extended conformation [60], favoring the opening of

subunit interfaces and exchange of ADP for ATP in solution. This shifts the equilibrium

towards phosphorylation which occurs first on T432 and then on S431 [17]. During this

part of the cycle, CI slowly hydrolyzes ATP [156], but the product ADP molecules can

be rapidly exchanged with ATP in solution [19], possibly because the CI/CII linker is in
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a favorable conformation similar to the extended A-loop (see discussion below). Phos-

phorylation on T432 favors A-loop extension, encouraging further phosphorylation [67].

However, subsequent phosphorylation of S431 eventually results in conformational changes

in the CI/CII linker and the βI/II hairpin, among others, that restrict the ability of CI to

release ADP. Inhibition of ADP release in CI when S431 is phosphorylated may explain

why phosphomimetic mutants show decreased ATP hydrolysis at steady state [26]. As CI

ATPase activity causes ADP to accumulate, the B-loop adopts an extended conformation

that allows KaiB to bind [77]. KaiB cooperatively assembles in a ring-like structure on

the CI domain [78], which may further restrict nucleotide release from CI. KaiB bound

to KaiC adopts an alternative fold which can then bind to and inhibit KaiA [22, 77, 78].

Sequestration of KaiA limits nucleotide exchange in CII, and CII tends to dephosphorylate

[12], first T432 and then S431 [17], returning KaiC to the beginning of the cycle.

This model raises the question of how Kai systems that lack KaiA, such as those

from the marine Prochlorococcus cyanobacterial species [182], are able to build up their

KaiC phosphorylation levels [183]. A plausible answer comes from the fact that such

KaiC sequences are truncated near the A-loop, compared with S. elongatus KaiC [183].

Previous experiments on S. elongatus KaiC demonstrated that truncating the A-loop

can result in KaiA-independent, constitutive hyperphosphorylation [60], which suggests

that an analogous mechanism may allow Prochlorococcus KaiC to autophosphorylate

without KaiA. Our simulations thus make the prediction that Kai oscillators that lack

KaiA should have KaiCs with active sites that are more accessible to molecules in

solution, obviating the need for KaiA-like nucleotide exchange factors. Relative solvent

accessibilities of different KaiCs should be measurable with hydrogen-deuterium exchange

mass spectroscopy [23].

A striking feature of the simulation structures is their broken C6 symmetry, especially

the split washer and ring compression motion observed in the PCA. This is consistent

with a recent crystal structure of the CI domain with a mixture of bound ATP and ADP,
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which resulted in heterogeneous subunit structures that correlate with the hydrolysis

states of the active sites [156]. In addition to nucleotide binding, KaiA binding is another

potential source of KaiC asymmetry. Biochemical studies suggest that one dimer of KaiA

is sufficient to stimulate the phosphorylation of a KaiC hexamer [134]. Given that one

KaiA dimer can bind to at most two KaiC subunits [60, 61], it likely activates only part of

the ring at a time. This model is consistent with the asymmetric conformations observed

for other ring-shaped oligomeric ATPases, especially those in the AAA+ and RecA/DnaB

superfamilies [155, 184, 185].

The split washer structure of KaiC is also found in AAA+ ATPases such as the

bacterial replicative helicase DnaB [186], the Simian virus 40 replicative helicase Ltag

[187], as well as NSF, an eukaryotic protein involved in SNARE complex disassembly

during membrane trafficking [152]. In DnaB, NSF and KaiC, the split in the hexameric

ring is located at an apo subunit interface, suggesting that the split interface is implicated

in nucleotide exchange. The parallel between KaiC and NSF is especially striking, because

similar to KaiC, the D1 and D2 domains of NSF also assemble into double-tiered ring

structures with distinct functions. These split washer structures are reminiscent of the

helical structures of the RecA filament, where the helical pitch is dependent on the

states of the nucleotides bound to the subunits [166, 168]. However, the helical pitches

observed in the non-filamentous proteins are much smaller. Taken together, it is likely

that the hexameric ATPases can access similar quaternary conformational spaces despite

their significant sequence and functional divergences. This idea raises the possibility

that KaiC may be able to access other symmetry-broken states that are not explored in

our simulations but are observed in other hexameric ATPases, such as a conformation

with C2 symmetry (i.e., a dimer of trimers), observed in the unfoldase ClpX [151], or

a conformation with C3 symmetry (i.e., a trimer of dimers), observed in the replicative

helicase DnaC of Geobacillus kaustophilus HTA426 [188]. Analysis of cryo-EM data

without symmetry averaging may reveal such states. Alternatively, a bis-His motif [189] or
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disulfide bond can be engineered at the subunit interface to limit the angle motion, which

should lead to a decrease in the nucleotide release rate.

An outstanding question for KaiC is whether its asymmetric features propagate

around the ring in an ordered fashion, as is believed for F1-ATPase, or in a stochastic

fashion, as is believed for ClpX [190]. An indirect way of distinguishing these possibilities

would be a mutant doping [132] or covalent linking [190] experiment where WT and CII-

catalytically-dead subunits are mixed in a single KaiC hexamer. Because a stochastic

mechanism implies independent catalytic cycles at individual active sites, the hybrid

protein should still be able to function in the full oscillator. On the other hand, a

sequential/rotary mechanism would predict abolition of oscillation, because the dead

subunits would prevent propagation of activity around the ring. Indeed, it is already

known that catalytically dead CII subunits can be efficiently phosphorylated when mixed

with WT CII [110].

Figure 3.5: CI and CII share similar conformations. In (A) and (B), Secondary
structural elements identified by the simulations as important for nucleotide release from
CII (A) and their homologs in CI (B) are colored in blue. In each case, the structure
shown is the domain from the D subunit of the crystal structure (PDB ID: 3DVL).
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We also speculate here on how our analysis of the nucleotide release pathway in CII

may shed light on the regulation of nucleotide release in CI. Given that the CI/CII double

ring structure likely arose as a result of gene duplication [150], it is unsurprising that the

CI and CII structures share many similarities (Fig. 3.5). In particular, the CI structural

element homologous to the A-loop is the linker between the CI and CII domains, which

adopts a conformation in the crystal structure that is reminiscent of an NMR A-loop

structure in complex with KaiA [60, 61]. Given the importance of the A-loop in regulating

nucleotide release in CII, this apparent analogy raises the possibility that CII may act

on CI through the linker in a way that is similar to how KaiA acts on CII through the

A-loop. If KaiA is a nucleotide exchange factor for CII, then it follows that CII may

act as a nucleotide exchange factor for CI and regulate its intersubunit angle opening.

This proposal makes the prediction that when CII is in a pS431 state that favors KaiB

binding, the CI/CII linker may adopt an alternative conformation that is more similar

to the buried A-loop in CII. Furthermore, the βAL and βI/II hairpins, two structural

features that our simulations suggested deserve further study, are also homologous in the

two domains (Fig. 3.5). For example, it would be interesting to disrupt contacts at the

CI/CII interface by mutating residues in the R216–E221 and E214–R217 salt bridges, in

the hope of decoupling the two rings from each other, which should result in dysregulation

of KaiB binding and/or KaiA sequestration. Because βAL likely couples the A-loop to the

active site, this parallel suggests that there may be unexplored similarities between the

mechanism of CI/CII interaction and KaiA·KaiC interaction.

3.5 Conclusions

In this paper, we implemented a pipeline of enhanced sampling methods for molecular

dynamics to elucidate and quantitatively characterize the pathway for ADP release

from KaiC, a homohexameric ATPase that serves as the central component of the

cyanobacterial circadian clock. Nucleotides bind at the interface of KaiC subunits, and
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the energetics of its release are dominated by the interplay of active site solvation with

electrostatic interactions among charged active site residues, the Mg2+ ion, and the

ADP phosphate groups. The calculations suggest that the C6 symmetry of the hexamer

is broken during operation, with the interface opening in a split washer fashion. We

identify specific interactions that couple this opening to extension of the A-loop, providing

a molecular mechanism for the role of KaiA as a nucleotide exchange factor for KaiC.

Parallels between structural elements in the two homologous domains of the protein

suggest the intriguing possibility that CII may serve as a nucleotide exchange factor for

CI. Overall, the information that the simulations provide about structures accessible to

KaiC reveal fruitful connections to other ATPases.

3.6 Methods

3.6.1 System setup

The initial coordinates of S. elongatus KaiC with bound ATP and Mg2+ were obtained

from the Protein Data Bank (PBD ID: 3DVL) [164]. The structural water was retained,

and the C-terminal tail (residues 499 to 519) in each subunit was deleted to reduce the

size of the system. In the 3DVL structure, which has a resolution of 2.8 Å, no Mg2+

was present in the CI ATP binding sites. We introduced Mg2+ into all six CI nucleotide

binding sites using the Mg2+ coordinates from a 1.94 Å resolution KaiC CI structure

(PDB ID: 4TL7) [156] after aligning the ATP molecules modeled in each chain in the

two structures. In 4TL7, the CI Mg2+ is coordinated by T53Oγ1, Oγ3 and Oβ2 of ATP,

and three water molecules, which are absent in 3DVL. To complete the octahedral Mg2+

coordination geometry, we added three water molecules to each CI active site based on

the 4TL7 crystal water positions and changed the coordinates of the three phosphate

groups in ATP to those in 4TL7. We used a similar procedure to model Mg·ADP in the

CII nucleotide binding sites, using the Mg·ADP coordinates in a 1.8 Åresolution, ADP-
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containing CI structure as a reference (PDB ID: 4TLA) [156].

The subunits in the 3DVL crystal structure are in the doubly phosphorylated

(pT432/pS431) state. In all subunits, we deleted the phosphate group on S431 and

retained the phosphate group on T432 to mimic the pT432 phosphorylation state.

Together, the nucleotides and phosphorylation states mimic a KaiC with CI in the pre-

hydrolysis state and CII in a kinase product state during the initial phosphorylation phase

of the oscillator.

The model system was solvated in a cubic box of TIP3P water molecules, and the

final dimensions of the box were 132 Å × 132 Å × 132 Å. The system was neutralized,

and then brought to a final concentration of 150 mM KCl, which represents 194 K+ ions

and 122 Cl– ions. The total number of atoms in the system was 216,892. The system was

setup using CHARMM-GUI [191–193]. All molecular visualizations were made in VMD

1.9.2 [194]. Further details on the system setup are provided in Supplementary Methods.

3.6.2 Minimization and equilibration

Unless otherwise specified, all MD simulations were performed using GROMACS

5.1.4 [195], with the CHARMM36 force field parameters for the protein (with CMAP

correction) [196–198], TIP3P water [199], ions [200], and the nucleotides [201]. The energy

of the system was minimized with the steepest descent method, until the largest force

in the system was smaller than 1000.0 kJ/mol·nm. The system was equilibrated in the

NVT ensemble for 25 ps with a 1 fs integration timestep, followed by the NPT ensemble

for 10 ns with a 2 fs integration timestep. The positions of all non-hydrogen atoms in

the protein and its ligands were constrained during energy minimization and the NVT

equilibration runs to stabilize the protein structure and enforce the octahedral Mg2+

coordination geometry. The temperature of the simulations was set at 303.15 K using the

modified Berendsen thermostat with a time constant of 1.0 ps. For the NPT simulations,

the pressure was set at 1 bar using Parrinello-Rahman coupling with a time constant of

106



5.0 ps. Periodic boundary conditions were employed, and the particle-mesh Ewald method

[202] was used to calculate electrostatic forces with a real space cut-off distance of 1.2

nm. The Lennard-Jones forces were smoothly switched off from 0 to 1.2 nm. All bonds to

hydrogen atoms were constrained using the LINCS algorithm [203] in the NVT and NPT

simulations.

3.6.3 Locally enhanced sampling

Locally enhanced sampling [157–159] was used initially to explore the structural changes

at the active sites during nucleotide release (Fig. 3.1B and Fig. S3.6). All locally enhanced

sampling simulations were performed using the implementation available in NAMD

2.9 [204] with CHARMM36 force field parameters. The structure and topology files

required for the simulations were generated using the psfgen plugin for VMD 1.9.2 [194].

Specifically, each of the six Mg·ADP bound to CII active sites were duplicated 200 times.

The Mg·ADP copies at each active site do not interact with each other, while their intra-

and inter-molecular interactions were scaled down by a factor of 200. To preserve the

structural integrity of the ADP molecules, the force constants for all bond, angle, dihedral

angle and improper dihedral angle terms for ADP were manually multiplied by 200; in

addition, an artificial bond with a force constant of 60,000.0 kcal/mol·Å2 and equilibrium

bond length of 2.91 Å was added between the P and P3 atoms to prevent the α- and β-

phosphate groups from collapsing onto each other. To preserve the interaction between

each Mg2+ and its associated ADP, another artificial bond with a force constant of

40,000.0 kcal/mol·Å2 and equilibrium bond length of 2.50 Å was added between the P3

and MG atoms. Further details on the simulation setup are provided in Supplementary

Methods.
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3.6.4 Steered MD (SMD)

Constant-velocity SMD simulations [160] were done using the moving restraint

functionality in PLUMED 2.3 [205], which applies a time-dependent bias of the form

U(x) = 1
2κ(x − x0(t))2 to a given CV x; here κ is the force constant, and x0(t) is the

center of the biasing potential. The collective variables used in the SMD and subsequent

string and umbrella sampling calculations are defined in Table S3.1.

As described in Results, we used SMD to construct an initial pathway for the string

calculations; this pathway was generated in three steps. First, to open the intersubunit

angle, a harmonic bias with a force constant of 100,000 kJ/mol·rad2 was applied to the

subunit D–E angle, and the center of the potential was moved linearly, over the course of

1 ns, from 1.04 rad to 1.23 rad. Second, to pull out the ADP, a harmonic bias with a force

constant of 1,000 kJ/mol·nm2 was applied to the ADP–subunit D distance, and the center

of the potential was moved linearly from 0.8 nm to 3.0 nm over the course of 1 ns. During

the ADP pulling simulation, the subunit D–E angle was restrained at 1.23 rad. Finally,

the subunit D–E angle was closed from 1.23 rad to 1.13 rad using the same protocol as

that in the first step, while the ADP–subunit D distance was restrained at 3.0 nm.

We note that splitting the active site residues by their subunit membership and

steering on ADP–subunit D distance and/or ADP–subunit E distance independently

provided better control of nucleotide position in SMD simulations (and subsequent string

and umbrella sampling simulations) than a single CV measuring distance to the center of

mass of all active site residues. This is because the value of the intersubunit angle variable

affects the overall center of mass of the active site residues; tracking the distances to the

residues in the two subunits separately largely decouples the intersubunit angle from the

progress of the Mg·ADP out of the protein.
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3.6.5 String method

To initialize the images of the string, we selected 24 structures that are roughly equally

spaced along the SMD pathway in the CV space of subunit D–E angle and ADP–subunit

D distance and then equilibrated them for 5 ns with restraints in the same CV space.

The pathway was then refined by the string method with fixed end points, as described in

[161], implemented as an in-house Python wrapper for GROMACS and PLUMED. Briefly,

at each iteration of the calculation, each structure was equilibrated with a harmonic

restraint centered on the images for 20 ps. The string path was then updated via

xni (τ + ∆τ) = xni (τ)−∆τ
8∑
j=0

Pij(x
n(τ))

∂F (xn(τ))

∂xnj

Here, the ith CV evaluated at the nth image is denoted as xni (τ), and τ tracks the

progress of the gradient descent in the CV space. The local gradient ∇F was computed

as the average displacement from each image during a 50 ps production run, scaled by the

force constants. The matrix P removes the component of ∇F parallel to the string at each

image. The string was propagated with a constant multiplier ∆τ = 0.0001. The updated

string is linearly interpolated and smoothed before the next iteration. We did not apply

any correction for non-linear dependences between the CVs.

The string calculation employed nine collective variables, described in Table S3.1.

The force constants used in the production runs were 10,000 kJ/mol·rad2 for the angle

variables and 2,000 kJ/mol·nm2 for the distance variables. The force constants used in

equilibration were twice as large. We found that 30 iterations of the string simulations

were sufficient for generating a qualitatively reasonable pathway, which we used to

initialize the umbrella sampling (see Supplementary Methods, Figs. S3.20 and S3.21).
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3.6.6 Umbrella sampling and analysis

We performed umbrella sampling calculations [163] using the harmonic restraint

functionality in PLUMED 2.3. Images from the string simulations were used as starting

structures, and additional windows were added iteratively using structures generated

from existing windows until overlapping coverage was achieved for the free energy basin

surrounding the minimum free energy pathway in the two-dimensional subspace of the

ADP–subunit D distance and subunit D–E angle. The force constant on the ADP–subunit

D distance ranged from 2,000 to 60,000 kJ/mol·nm2, and the force constant on the

subunit D–E angle ranged from 10,000 to 600,000 kJ/ mol·rad2, depending on the local

free energy gradient. Each window was simulated for either 5 ns or 3 ns, depending on

the area of the CV space covered, and the first 1 ns was discarded for subsequent analysis.

Overall, a total of 3.18 µs of simulation time distributed over 849 windows was used to

construct the free energy surface.

EMUS [206] was used to construct the free energy surface (Fig. S3.22A) and estimate

the error associated with the free energy (Fig. S3.22C). WHAM [207, 208] yielded

comparable results (Fig. S3.22B). The method for calculating averages conditioned on

the CV coordinates (Figs. S3.12, S3.19A, and S3.21) is detailed in the Supplementary

Methods. To find the free energy projection onto additional CVs not used in the umbrella

sampling (Figs. 3.2D and 3.4C), we reran the EMUS calculation with a fictitious restraint

on the additional CVs with zero force constant, and then averaged over the original CVs

that were not of interest.

3.6.7 Mg2+ standard binding free energy calculation

The standard binding free energy of Mg2+ to a CII active site populated with ADP is

estimated indirectly via a thermodynamic cycle using the double annihilation method;

the method is outlined in [176], and the discussion below uses the notation therein.

The starting structure was obtained from an equilibrated system with CII-bound
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Mg·ADP. The Mg2+ to be removed is restrained at its equilibrium position using a

set of harmonic biasing potentials (∆Gsite
t ) to eliminate the wandering ligand problem

[209] before decoupling from the ligand-binding pocket (−∆Gsite
int ) using alchemical free

energy perturbation (AFEP) [210]. The harmonic positional restraints are then removed

(−RT lnFtC
◦; discussed further in the Supplementary Methods). A separate cubic TIP3P

water box (60 Å each side) with one Mg2+ and 150 mM KCl was used to calculate the

coupling free energy in water (∆Gbulk
int ). Taken together, the standard binding free energy

is

∆G◦bind = −∆Gsite
t + ∆Gsite

int +RT lnFtC
◦ −∆Gbulk

int

The values for each individual term contributing to the standard binding free energy are

listed in Fig. S3.13, along with a thermodynamic cycle illustrating their relations. With

the exception of ∆Gsite
int , the free energy calculations appeared well converged (Fig. S3.14).

The value of ∆G◦bind reported in the Results section is based on the value of ∆Gsite
int in

the forward AFEP transformation, which most favors the alternative mechanism. Further

details of the simulation protocol are provided in Supplementary Methods.

3.6.8 Interaction energy calculations

Energy calculations for the analyses in Fig. 3.2 and Figs. S3.12, S3.19A and B were done

with the NAMDEnergy 1.4 plugin for VMD using the same force field as that in the

simulation. The energy calculation used a switch function with a distance of 10 Å and a

cutoff distance of 12 Å for nonbonded interactions and did not employ periodic boundary

conditions.

3.6.9 Principal component analysis (PCA)

The PCA of KaiC structures (Fig. 3.3 and Figs. S3.15 and S3.21) was done using the

NMWiz 1.0 plugin for VMD [211]. KaiC structures obtained from umbrella sampling
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were downsampled to every 1 ns and aligned by their CII subunit D structures. Only

the Cα positions for residues 20 to 497 in all six subunits were used for the analysis.

No reweighting was performed for the PCA. The projection of each structure onto a

principal component was calculated by finding the dot product of the normalized principal

component eigenvector with the displacement vector of each structure from the average

umbrella sampling structure (without reweighting).

3.6.10 Structural and sequence alignment

All structural alignment (Fig. 3.5) was done using STAMP [194, 212, 213], and

all sequence alignment (Table S3.2) was done using CLUSTAL Omega [214,

215]. The sequences used in the analysis in Table S3.2 and their annotation

were directly obtained from datasets published with [14], which are available at

https://dx.doi.org/10.6084/m9.figshare.3823899.v3.

3.7 Supplementary Results

3.7.1 Radially inward release of ADP is unfavorable

We sought to assess whether there are alternative release pathways that were unexplored

by the locally enhanced sampling simulations because they are slightly disfavored

energetically relative to the pathway discussed in the main text. Based on the geometry

of the active site (Fig. S3.9) and an inward release pathway proposed for Pi release after

hydrolysis in the CI domain [156], we considered a radially inward release pathway, where

a nucleotide would be released into the KaiC central channel and subsequently escape

through the exit at the CI ring opening (release through the CII end of the channel is

sterically hindered due to the presence of the A-loops).

To generate an initial guess for the inward release pathway, we used adiabatic biased

MD (ABMD) [216] with the bias on the distance between the center-of-mass of the ADP
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molecule and the CII ring while holding the subunit D–E angle open (see Supplementary

Methods). We found that ABMD was less likely than SMD [160] to distort the protein

structure in the absence of a good choice of bias coordinate, presumably because it takes

advantage of spontaneous thermal fluctuations in the system. In the ABMD simulation,

the ribose and adenine moieties rotate with the phosphate groups in place such that the

base enters the central channel first (Fig. S3.7). This motion is likely enabled by the fact

that the hydrophobic protein-ligand interactions are much weaker than the electrostatic

interactions, which results in differential mobility of the charged and hydrophobic moieties

of the ligand during release. To accommodate this motion, the Walker A motif (i.e., the

P-loop) at the binding site and the two adjacent 422-loops rearrange.

Similarly to our treatment of the outward release pathway, we refined the inward

release pathway with the string method and computed free energies with umbrella

sampling (see Supplementary Methods). Subunit D–E angle widening and nucleotide

movement are concurrent in the resulting pathway (Fig. S3.7A). However, the free

energy barrier for reaching the first intermediate state on the inward release pathway is

approximately 50 kcal/mol (Fig. S3.7B), compared with 10 kcal/mol for the outward

pathway. This suggests that the inward pathway does not contribute significantly to

release under physiological conditions.

3.8 Supplementary Methods

3.8.1 System setup

The protonation states of the titratable sidechains were determined using PROPKA 3.1

[217, 218] at a pH = 8, representing standard buffer conditions in in vitro biochemical

assays of KaiC. The phosphate groups on T432 were modeled as dianionic phosphate

groups. All histidine residues were modeled as neutral, with a proton at the Nδ position;

the tautomers were determined by inspecting the histidine sidechain environments in
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the crystal structure. Four lysine residues in each KaiC subunit, K224, K232, K457 and

K465, as well as one glutamate residue, E357, were modeled as neutral. The geometry

of the E318 sidechain indicates that it forms a hydrogen bond with the phosphate

group on T432 in the protein crystal structure, suggesting that either pT432 or E318 is

protonated. However, the pKa estimates for the catalytic E318 varied widely between

10.2 in subunit A and 2.1 in subunit B of the crystal structure, likely due to subtle

variations in the distance between the E318 sidechain and the Mg2+ ion. This makes it

difficult to unambiguously determine the relative acidity of pT432 and E318. We thus

chose, arbitrarily, to make the E318 sidechains protonated in the simulation. Overall,

the protonation states set according to this procedure were found to be insensitive to

ATP/ADP binding in the CII domain.

3.8.2 Locally enhanced sampling

The locally enhanced sampling simulations were carried out using periodic boundary

conditions with cubic computational boxes. Particle-mesh Ewald was used to compute

electrostatic interactions with 1.2 nm cutoff in real space and a spline order of 6 and 144

grid points along all three spatial dimensions. The Lennard-Jones forces were smoothly

switched off from 1.0 to 1.2 nm. The non-bonded pair list was built with a cutoff distance

of 1.6 nm. The simulations were conducted in the NPT ensemble with a reference

temperature of 303 K and a reference pressure of 1 atm. A Langevin thermostat [219] with

a damping coefficient of 1 ps-1 was used. Isotropic volume fluctuations were controlled

via the Nosé-Hoover Langevin piston method [220, 221] with an oscillation period of 50

fs and a damping decay time of 25 fs. All bonds to hydrogen atoms were constrained using

the SHAKE algorithm [222]. The energy of the system was minimized with the default

algorithm in NAMD for 1000 steps, and then the system was equilibrated for 50,000 steps

with a 0.5 fs time step. The production run was 0.4 ns with a 1 fs time step.
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3.8.3 String method

The convergence of the string in the CV space was initially assessed by visual inspection of

projections onto 2D subspaces (Fig. S3.10), which suggested that all major conformational

rearrangements are complete well within 30 iterations. To verify this conclusion, we ran

an additional 70 iterations. Only the βnt–αlα distance variable showed further relaxation

(Fig. S3.20).

To assess the relaxation of conformational degrees of freedom outside the CV space,

we computed projections onto the first two principal components (see Results in the main

text) and compared the results with the corresponding umbrella sampling average (Fig.

S3.21). We chose to investigate these two particular degrees of freedom because they are

biologically relevant and involve large-scale global conformational changes not directly

controlled in the string calculation. Consistent with the CVs, most of the relaxation of

these degrees of freedom occurs in the first 10 iterations; subsequent iterations result

mainly in fluctuations around the umbrella sampling average.

It is important to emphasize that we draw all our quantitative conclusions from the

umbrella sampling, and we have taken care to ensure its convergence (see Methods in

the main text). The main purpose of the string is to generate a qualitatively reasonable

pathway for the choice of CVs and initialization of the umbrella sampling. For this

purpose, it appears that 30 iterations are sufficient.

3.8.4 Umbrella sampling and analysis

Averages against the stationary distribution were estimated as

〈f〉 =

∫
f(x)π(x) dx =

848∑
i=0

zi

∫
f(x)∑848

k=0 ψk(x)
πi(x) dx

where πi is the partition function of each window , ψi(x) = exp[−U(x)/RT ] and

U(x) is the harmonic restraining potential. In practice, we replace zi with the estimates
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from the EMUS estimator z̄i and approximate the integrals using umbrella sampling

trajectory averages. In particular, this identity can be used to estimate the expectation

of the quantity f , conditioned on the system being in a set of configurations S, which, in

this case, represents a bin in the 2D CV space. Specifically, we can rewrite the conditional

expectation of f as

〈f |x ∈ S〉 =
〈f1S〉
〈1S〉

where is the indicator function defined by

1S(x) =


1, x ∈ S

0, otherwise

3.8.5 Mg2+ standard binding free energy calculation

The simulation setup was similar to that used in the locally enhanced sampling

simulations, except that the time step used in all simulations was 2 fs, and for the bulk-

phase simulations, a spline order of 6 and 72 grid points was used for the particle-mesh

Ewald method.

Six restraints were defined on the distance between Mg2+ and Oβ2 of ADP, Oγ1

of T295, and the oxygen atoms on four water molecules to preserve the octahedral

coordination geometry. The force constants for all restraints are 10 kcal/mol·Å2, and

the centers were chosen based on the average distances over a preliminary simulation.

The free energy change due to the addition of the positional restraints (∆Gsite
t ) was

calculated using thermodynamic integration (TI) [223]; specifically, the force constants for

all restraints were simultaneously incremented from 0 to 10 kcal/mol·Å2 according to the

formula kλ = 10λ4, with values set to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999,

0.9999, 1. The process was then reversed to assess convergence (Fig. S3.14A). Finally,

∂G/∂λ for each restraint was linearly interpolated and then integrated and summed
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together to obtain . Each ∆Gsite
t state was simulated for 0.4 ns after 80 ps equilibration.

AFEP [210] was used to estimate ∆Gsite
int and ∆Gbulk

int . Van der Waals interactions

were turned off with a soft-core radius-switching coefficient of 6.0 Å2 from λ = 0 to

λ = 0.2 and a step size of 0.05, and then electrostatic interactions were turned off linearly

from λ = 0.2 to λ = 1 with a step size of 0.01. The calculations were then reversed

to assess convergence (Fig. S3.14B). Each λ step was simulated for 0.1 ns after 10 ps

equilibration. The simulations were post-processed using ParseFEP 2.0 [224], and the

BAR estimator [225] was used to determine ∆Gsite
int and ∆Gbulk

int . Electrostatic finite-size

effects were corrected using the method proposed in [226].

The term −RT lnFtC
◦ [176] accounts for the contribution to the free energy change

from the translational degrees of freedom of the Mg2+ ion after all positional restraints

are removed and it is decoupled from the protein in the standard state. Specifically, C◦ =

NA/1 mL ≈ 1/1661 Å-3 is a conversion factor to standard state concentration (1 M) and

Ft is defined in this case as

Ft =

∫
R3

exp

[
−

6∑
i=1

1

2
ki (‖r− 〈ri〉 ‖ − ‖ 〈ri〉 ‖)2 /RT

]
dV

where ki is the force constant of a Mg2+ positional restraint, and 〈ri〉 is the corresponding

position vector of one of the six atoms used to define the Mg2+ positional restraints,

averaged over an equilibrium simulation, assuming that the equilibrium Mg2+ position is

the origin. The integral was evaluated numerically over boxes centered at the origin with

successively larger dimensions until fluctuations in the results were within 10-7 Å3.

3.8.6 Determination of a hypothetical radially inward release pathway

The adiabatic biased MD (ABMD) [216], implemented in the ABMD bias functionality

in PLUMED 2.3 [205], was used in conjunction with SMD [160] to generate an initial

pathway for inward release into the KaiC central channel. ABMD adds a time-dependent
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bias to a given CV x to steer the CV to a target value xfin similar to the action of a

Brownian ratchet. In practice, the CV is transformed to X(t) = (x(t)− xfin)2, and a half

umbrella bias potential is applied to X(t) :

U(X) =


1
2κ (X(t)−Xm(t))2 , X(t) > Xm(t)

0, X(t) ≤ Xm(t)

where κ is the force constant, and Xm(t) = minτ<tX(τ). A key feature of ABMD is that

the bias potential does not do work on the system, because the potential is updated only

when its value is zero.

To generate the initial pathway, we started from a structure selected from the SMD

simulation (see Method in the main text) in which the subunit D–E angle was opened to

1.17 rad. ABMD was then applied on the ADP–CII center distance (see Table S3.1 for the

definition of the CV) from the initial distance of 3.07 nm to the target distance of 0.0 nm

with a force constant of 1,000.0 kJ/mol·nm4, while the subunit D–E angle was restrained

at 1.17 rad using a constant harmonic bias with a force constant of 100,000 kJ/mol·rad2.

The ADP–CII center distance reached the target value after 5 ns.

The initial pathway was refined using the string method and umbrella sampling,

similarly to the treatment of the outward release pathway (see Methods in the main text).

For the string calculation, 15 structures from the SMD and ABMD simulations were

selected to construct a two-step initial pathway where the subunit D–E angle was first

opened to 1.17 rad and then the ADP–CII center distance was reduced to 0.0 nm. The

structures were equilibrated for 5 ns with restraints in the 2D CV space, and then evolved

using the string method in a 7-dimensional CV space consisting of the ADP–CII center

distance variable and the six intersubunit angles for 30 iterations. The force constants

used in the production runs were 20,000 kJ/mol·nm2 for the distance variable and 10,000

kJ/mol·rad2 for the angle variables. The string was propagated with a constant multiplier

∆τ = 0.00005. Images from the string calculation were used as starting structures for
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umbrella sampling on the ADP–CII center distance variable. Each window was simulated

for 5 ns, and the force constant ranged from 4,000 to 60,000 kJ/mol·nm2 depending on

the local free energy gradient. In total, 90 windows were used to construct the free energy

profile.

3.9 Supplementary Figures

Figure S3.6: Locally enhanced sampling indicates that the release pathway for Mg·ADP
points radially outwards, rather than inwards towards the central channel of KaiC. (A)
The initial structure. (B) The final structure at 400 ps, with 200 replicas. Subunit D is
shown in ribbon diagram in yellow, and subunit E is shown in green. Mg·ADP is colored
by element, as in Fig. 3.1D.
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Figure S3.7: The radially inward Mg·ADP release pathway is highly unfavorable. (A)
CII intersubunit angle changes during inward release. (B) The free energy profile for
inward release, calculated using umbrella sampling. (C) The inward release pathway
involves a rotational and bending motion of the hydrophobic moieties of ADP; the three
snapshots represent structures at ADP–CII center distance of, from left to right, 31.9 Å,
25.7 Å and 17.3 Å.
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Figure S3.8: The movements of a local gating element near the exit point of the release
pathway, consisting of a β-hairpin (βnt; residue 468 to 483) and an α-loop-α motif (αlα;
residues 321 to 342). The structures are obtained from the string simulations. The
distance between the centers of mass of βnt and αlα takes the values of 11.0 Å in (A)
and 11.4 Å in (B). The residues in close contact with the nucleotides are shown both in
licorice and surface representation. The ADP–subunit D distance in (A) and (B) are 8.6
Å and 9.5 Å, respectively, representing structures of the protein very early in the release
process.

Figure S3.9: The geometry of the CII
active site located at the subunit D–E
interface. Subunit D is shown in yellow,
and subunit E is shown in green. Note
that the nucleotide makes more extensive
contact with subunit D than subunit E.
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Figure S3.10: Convergence of the string simulations. The nine-dimensional string is
represented in eight two-dimensional subspaces, with the ADP–subunit D distance degree
of freedom used as a common progress variable. The color gradient represents the progress
of the string, with yellow being the first iteration and blue the thirtieth.
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Figure S3.11: The CI intersubunit
angles are decoupled from the CII release
process. The figure shows the motion of
the six CI intersubunit angles along the
final string path, plotted as a function of
the ADP–subunit D distance.

Figure S3.12: The average electrostatic
interaction energy between a group of
active site residues (K294, T295, E319
and D378) and Mg·ADP (yellow),
the solvent (gray), or both (dashed),
conditioned on the ADP–subunit
D distance. There is a rapid loss of
interaction between the active site
residues and Mg·ADP around 10 Å,
which is not immediately compensated by
the solvent.
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Figure S3.13: Free energy simulations indicate that Mg2+ leaves with ADP. (A) The
thermodynamic cycle used to determine the standard binding free energy of Mg2+ in a CII
active site (∆G◦bind). Notationally, “+” indicates that Mg2+ is solvated in the bulk phase,

“:” indicates that Mg2+ is in complex with ADP in the active site, “*” indicates that
the position of Mg2+ is restrained, and “∅” indicates that Mg2+ is decoupled from the
environment. (B) The free energy change associated with each step in the thermodynamic
cycle. TI stands for thermodynamic integration, and AFEP stands for alchemical free
energy perturbation. The two values listed for are the results of the forward and backward
transformations, respectively (Fig. S3.14). See Methods for further details.
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Figure S3.14: The reversibility of the thermodynamic integration (A) and alchemical
free energy perturbation (B) calculations. (A) The cumulative free energy change
of imposing a harmonic distance restraint between Mg2+ and each of the six atoms
participating in the Mg2+ coordination geometry (forward) and then removing the
restraint (backward). (B) The cumulative free energy change of coupling the Mg2+ to
the environment through nonbond interactions (forward) and then decoupling the Mg2+

(backward), in either the CII active site (left) or the bulk phase (right). In both (A) and
(B) λ represents the switching variable. See Methods for further details.
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Figure S3.15: Principal component analysis. (A) The square root of the largest 10
eigenvalues. The eigenvalues represent the variance along the corresponding principal
component (PC). The largest spectral gap occurs between PC2 and PC3, which indicates
that the first two PCs represent the most significant large-scale conformational changes.
The vertical scale on the right shows the variance explained by each PC as a fraction of
the total variance in Cα positions. (B) The motion along PC1 and PC2 when steering
the subunit D–E angle at constant velocity over 100 ns; structures are saved every 10
ps. The force constant used in the SMD is 100,000 kJ/mol·rad2. The inset shows the
standard deviation of projections onto the first five PCs over the steering simulation.
Both the eigenvalues in (A) and the projections in (B) are calculated using the Cα atom
displacement vectors. The dashed curves represent the results of Nadaraya-Watson kernel
regression with the radial basis function kernel [227, 228]. The gamma parameter (i.e.,
the bandwidth for the radial basis function) was automatically chosen within the range
[10−1, 101] to minimize the mean-squared-error of leave-one-out cross-validation.
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Figure S3.16: The distribution of the A-loop angle, defined as the angle formed by
the Cα atoms of residues 486, 490, and 496. Panels correspond to different subunits as
indicated. Data are from the umbrella sampling simulations, without reweighting. The
A-loop angle in subunit A, B, C, E and F rarely, if ever, exceeds 40◦, while the subunit D
A-loop angle can reach up to 100◦. The differential flexibility of the A-loop suggests that
the A-loop extension observed in subunit D is a specific response to nucleotide release.
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Figure S3.17: The A-loop is coupled to a contraction motion in subunit D through an
adjacent β-hairpin (βAL; residues 436 to 459). (A) Superposition and (B, C) side-by-side
comparison of the contracted (yellow/blue) and expanded (white) states observed in the
umbrella sampling simulations. Cα displacements larger than 1.5 Å are indicated by green
arrows in (A). Key secondary structural elements are highlighted in blue: A-loop (residues
486 to 498), βAL, βnt (residues 468 to 483) and αlα (residues 321 to 342). Key residues
that couple the A-loop to the nucleotide through βAL (R451, E444 and R496) are shown
in licorice representation. (B) In the contracted state, the nucleotide is in contact with
W331, R451, W462, H463, F470 and I472. (C) In the expanded state, the nucleotide is in
contact with S330, W331, N327, I472, S473, D474, G460 and W462.
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Figure S3.18: The A-loop (residues 486
to 498) is coupled to the active site phos-
phorylation state via the 422-loop. When
the A-loop and 422-loop are not in close
contact, D417 on the 422-loop is more
likely to form a water-mediated hydrogen
bond network with pT432 as well as the
adjacent H429 and R385 (upper right).
However, when the 422-loop is in contact
with the A-loop, the increased distance
between the 422-loop and the active site
disrupts the hydrogen bond network
(lower left).
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Figure S3.19: CI/CII contact is mediated by the motion of a CI β-hairpin (βI/II;

residues 203 to 226). (A) The average CI/CII van der Waals (vdW) interaction energy
conditioned on the ADP–subunit D distance, calculated from umbrella sampling, shows
fluctuations on the order of 40 kcal/mol. (B) The variance of the CI/CII vdW interaction
energy is correlated with the βI/II/CII vdW interaction energy (including βI/II in all six

subunits). The scatter plot represents the umbrella sampling results, sampled every 100
ps, and the best linear fit line without reweighting (vdW[CI/CII] = 168.3 kcal/mol +
1.27 vdW[βI/II/CII]) is shown in yellow. (C) and (D) Structures representative of strong

and weak CI/CII interactions, respectively. Subunit D (yellow) and E (green) are shown
in surface representation, with a ribbon diagram of the secondary structure. The βI/II
structures in both subunits are rendered in blue, and the two salt bridge interactions that
couple neighboring βI/II structures, R216–E221 and R217–E214, are shown in licorice
representation.
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Figure S3.20: Comparison of the 30th (green circles) and 100th (blue squares) iterations
of the string calculation. The nine-dimensional string is represented in eight two-
dimensional subspaces, with the ADP–subunit D distance degree of freedom used as a
common progress variable.
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Figure S3.21: The string calculations projected onto the first two principal components
(PC). The red curves represent the umbrella sampling averages conditioned on the ADP–
active site distance, included as a reference curve for assessing string convergence.

Figure S3.22: The free energy profile for the nucleotide release pathway is estimated
using EMUS (A) and WHAM (B); the two methods produce comparable results. The
asymptotic variance of the EMUS estimator is plotted with a logarithmic scale in (C).
The error analysis suggests that the free energy profile has sufficiently converged, with the
exception of a small region near (11 Å, 61◦).
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3.10 Supplementary Tables

Table S3.1: The collective variable (CV) definitions. The first section of the table defines
atom groups, which are then used in the second section to define the nine collective
variables employed in the string calculation.

Group Atoms

ADP All non-hydrogen atoms of the ADP molecule at the CII subunit
D–E active site

active site (subunit D) Subunit D Cα atoms on residues 286, 288, 289, 290, 291, 292, 293,
294, 295, 296, 297, 298, 299, 317, 318, 319, 378, 379, 413, 414,
415, 440, 442, and 451

active site (subunit E) Subunit E Cα atoms on residues 432, 435, 436, 437, 455, 456, 457,
458, 459, and 460

αlα Subunit D Cα atoms on residues 329 to 334
βnt Subunit D Cα atoms on residues 473 to 476

CII Cα atoms on residues 260 to 498 in all subunits

subunit Xa Cα atoms on residues 260 to 498 in subunit X

Collective variable (CV) Type Groups

ADP–subunit D distance Center-of-mass (COM) distance ADP, active site (subunit D)

ADP–subunit E distance COM distance ADP, active site (subunit E)

βnt–αlα distance COM distance αlα, βnt

Subunit A–B angle COM angle subunit A, CII, subunit B

Subunit B–C angle COM angle subunit B, CII, subunit C

Subunit C–D angle COM angle subunit C, CII, subunit D

Subunit D–E angle COM angle subunit D, CII, subunit E

Subunit E–F angle COM angle subunit E, CII, subunit F

Subunit F–A angle COM angle subunit F, CII, subunit A

ADP–CII center distanceb COM distance ADP, CII

a X = A, B, C, D, E, F
b The ADP–CII center distance variable is only employed for the hypothetical radially

inward release pathway (see the Supplementary Results and Methods).
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Table S3.2: Conservation of nucleotide gating tryptophan residues (W331 and W462) in
KaiC CII domains. The sequences used in the analysis and their annotation were directly
obtained from datasets published with [14].

Phyluma Homolog Hits W331 W462 Identityb

cyanobacteria
KaiC1 100 97 95 0.77±0.10
KaiC2 15 0 0 0.348±0.007
KaiC3 24 21 0 0.50±0.09

α-proteobacteria
KaiC1 5 0 0 0.23±0.01
KaiC2 26 0 0 0.33±0.02
KaiC3 94 7 0 0.26±0.07

GNS bacteria

KaiC1 0 0 0 N/A

KaiC2 1 0 0 0.32
KaiC3 9 5 0 0.41±0.15

euryarchaeotes
KaiC1 132 0 2 0.24±0.06
KaiC2 111 0 0 0.25±0.06
KaiC3 206 0 4 0.25±0.05

a Only phyla that contain proteins with conserved CII
tryptophan residues are included from the original dataset.

b Identity is calculated based on comparison to KaiC in
Synechococcus Elongatus PCC 7942. The values reported
are the mean with standard deviation.
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CHAPTER 4

CHARACTERIZATION OF THE KAIB FOLDSWITCH

PATHWAY

4.1 Introduction

KaiB, a component of the Kai oscillator, functions primarily through its binding

interactions with KaiA and KaiC. The binding of KaiB to KaiC mediates the negative

feedback loop that suppresses KaiC phosphorylation at night. KaiB binds to the B-loop,

an unstructured loop region on the CI domain of KaiC [20, 77], in a cooperative fashion

[23, 140], and the binding interaction appears to require the ATP hydrolysis product,

ADP, in the CI nucleotide-binding pocket [28]. Once bound to KaiC, KaiB can sequester

KaiA from its site of action at CII, thus leading to KaiC auto-dephosphorylation [17].

When KaiB is not bound to KaiC, it exists in an equilibrium between tetrameric, dimeric,

and monomeric states, although the monomeric state dominates in the micromolar regime

[23]. KaiB is also a metamorphic protein with two known folds called the ground state

(gs) and the foldswitched (fs) state, and it appears to interact with KaiA and KaiC only

in the latter conformation [22].

Currently, several questions remain about KaiB’s function. First, model estimates

of the KaiB foldswitch and binding reactions suggest that it is slow, on the timescale

of hours [22], comparable to the kinetics of ATP hydrolysis in CI [26]. This raises the

question of exactly how the timescale of the switch to the dephosphorylation phase relates

to the kinetics of KaiB foldswitch and CI ATP hydrolysis. Is one of them rate-limiting,

or do both contribute to setting the timescale? Does KaiC play any role in the kinetics

of KaiB foldswitch? For example, does KaiB foldswitch become rapid once KaiC becomes

available for binding? Second, as one of the better documented examples of metamorphic

proteins [229–231], KaiB provides a unique opportunity to probe the biophysical basis

of multiple, stable protein folds, and the pathway(s) that allow their interconversion.
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Overall, it is clear that a detailed characterization of the KaiB foldswitch pathway is

critical for understanding the kinetics of the Kai oscillator, and may prove useful in future

engineering efforts to design oscillators with altered periods.

This chapter describes some preliminary results from our attempt to characterize

KaiB foldswitch using molecular dynamics (MD) simulations. We started with steered

MD (SMD) to generate an initial guess for the foldswitch pathway from the gsKaiB

monomer structure. The initial pathway was refined using the string method, and the

FAST method, an adaptive sampling method, was used to explore the KaiB conforma-

tional space. This is an ongoing study, and further details will be made available in future

publications.

4.2 Methods

4.2.1 Structural model for fsKaiB

Currently there are several NMR and crystal structures of the fsKaiB based on the

Thermosynechococcus elongatus KaiB [77], but no such structures exist for the S.

elongatus KaiB. The cryo-EM structure of the S. elongatus KaiABC complex (PDB ID:

5N8Y) [78] resolves the backbone configuration of the fsKaiB in complex with KaiA and

KaiC. Based on this structure (subunit G), the Rosetta Packer algorithm (with standard

energy weights) was used to generate five models for the side chain rotamers [232]. The

five models were virtually identical and agreed well with existing T. elongatus fsKaiB

structures. As such, one structure was chosen arbitrarily as a reference model for fsKaiB

for the purpose of subsequent steered MD and string calculations.

4.2.2 System setup

We used CHARMM-GUI [191–193] to setup the MD simulations. The initial protein

structure was chosen to be subunit A from a crystal structure of S. elongatus gsKaiB
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tetramer (PBD ID: 3DVL) [233]. The system was solvated with TIP3P water molecules,

and the final dimensions of the box after equilibration were 73.16 Å × 73.16 Å × 73.16

Å. 36 K+ ions and 36 Cl– ions were added to the water box for a final concentration

of 150 mM KCl. The total number of atoms in the system was 39,551. All molecular

visualizations were made in VMD 1.9.3 [194].

4.2.3 Minimization and equilibration

All MD simulations were performed using GROMACS 2019.4 [195], with the

CHARMM36m force field parameters for the protein (with CMAP correction) [196–

198, 234], TIP3P water [199], and ions [200]. Steepest descent was used for energy

minimization, until the largest force in the system was smaller than 1000.0 kJ/mol·nm.

The system was equilibrated first in the NVT ensemble for 25 ps with a 1 fs integration

timestep, followed by the NPT ensemble for 5 ns with a 2 fs integration timestep,

and lastly in the NVT ensemble for 5 ns using the average box size from the NPT

equilibration. Restraints were applied to all non-hydrogen atoms in the protein during

energy minimization and the initial NVT equilibration run, with a force constant of 400

kJ/mol·nm2 for the backbone atoms and 40 kJ/mol·nm2 for the sidechain atoms. The

velocity Verlet algorithm was used to integrate the equations of motion. The temperature

of the simulations was set at 303.15 K using Nóse-Hoover chain [235] with a time constant

of 1.0 ps, and the protein and the non-protein atoms were coupled to the thermostat

separately. For the NPT equilibration, Parrinello-Rahman coupling was used to set the

pressure at 1 bar, with a time constant of 5.0 ps. Periodic boundary conditions were

employed, and the particle-mesh Ewald method [202] was used to calculate electrostatic

forces with a real space cut-off distance of 1.2 nm. The Lennard-Jones forces were

smoothly switched off from 1.0 to 1.2 nm. The LINCS algorithm was used to constrain

bonds to hydrogen atoms [203].
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4.2.4 Collective variables

In total, 40 collective variables (CVs) are used to control KaiB foldswitch. All simulations

involving CVs are done with Plumed 2.5.3 [205]. These CVs, along with their definitions,

are given in Table 4.1. First, we explain the CV naming convention. All CV names have

the same “type[groups;reference]” format. The groups, or structural elements, employed by

the CV are comma-separated. The semicolon notation, when necessary, indicates the KaiB

fold referred to by the preceding structural elements. In addition, we use “/” and “+”

to represent the union of two secondary structural elements of the same type or different

types, respectively. For example, the CV coor[β3+α2/3,β4;gs] employes two groups of

atoms: the first includes β3, α2, and α3 and the second group includes β4; all of them

refer to the gsKaiB structure. Lastly, if a structural element is disucssed by itself and is

present in both KaiB folds (i.e., the N-terminal segment of the protein), the semicolon

notation is omitted.

The CVs coor[β1,β4;gs] and coor[β3+α2/3,β4;gs] are defined as the sum of all

pairwise contact functions between two groups of atoms, and the contact function between

each pair of atoms i and j is defined

sij =

1−
(
rij − d0

r0

)n
1−

(
rij − d0

r0

)m (4.1)

where rij is the distance between i and j, n = 6, m = 2n, and the values of r0 and d0 are

given in Table 4.1. This function is implemented in Plumed as the COORDINATION CV.

The CVs RMSDCα[NT,CT;fs] and RMSDbb[CT;fs] are dRMSD functions computed

as the root-mean-square deviation of pairwise atom distances from a reference structure:

dRMSD =

√√√√ 1

N(N − 1)

∑
i6=j

[
rij − rref

ij

]2
. (4.2)
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In particular, RMSDCα[NT,CT;fs] is an inter-dRMSD CV, which means that the indices i

and j iterate over two different groups of atoms. The dRMSD functions use an upper and

lower cutoff distance to accelerate computation; the cutoff values are given in Table 4.1.

The CVs dihe[α2;fs], dihe[α3;fs], and dihe[β3/4;fs] are the cosine-transformed sums of

dihedral angle differences from a reference structure:

sαβ =
1

2

∑
i

[
1 + cos

(
ϕi − ϕref

i

)]
(4.3)

In Plumed the sαβ function is implemented as the ALPHABETA CV.

For the CVs defined by the dRMSD and sαβ functions, the reference structure is

defined to be the cryo-EM structure of fsKaiB (PDB ID: 5N8Y; subunit G) [78].

4.2.5 Steered MD

Starting with the final NVT equilibration structure, an initial KaiB foldswitch pathway

was generated with a 5-ns constant-velocity steered MD (SMD) [160] using the MOVING-

RESTRAINT function of Plumed, which for each CV x applies a time-dependent

harmonic bias U(x) = 1
2κ(x − x0(t))2; here κ is the force constant, and x0(t) is the center

of the bias. How the system was steered using the 40 CVs is described in Table 4.2.
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4.2.6 String method

60 structures that were roughly equally spaced along the steered foldswitch pathway were

chosen to initialize the string method [161] after a 1 ns equilibration with restraints in the

same 40-dimensional CV space. In each iteration, the initial structure for each image was

steered (constant velocity) towards the center of the image over 15 ps with 1.2x the force

constants listed in Table 4.2, which was then followed by another 15 ps of equilibration

with a constant restraint at the image center. If the final structure was not within the

Voronoi cell of the image or over 3
√
RT/κ away from the image center, the process was

repeated with all the force constants further multiplied by a factor of 1.2. Here R is the

gas constant and T is the simulation temperature. Once the equilibration steps were

successful, the force constants were reduced to the original values (Table 4.2) over 15 ps,

which was then followed by a 65-ps production run with constant restraints; the last 50 ps

was used to approximate the local free energy gradient ∇F .

At the end of each iteration, the center of each image xi in the CV space was updated

according to

xi(τ + ∆τ) = xi(τ)−∆τP (x(τ))∇F (xi(τ)). (4.4)

The projection matrix P removes the component of ∇F parallel to the string at each

image. If the image is at either end of the string, the matrix P is not computed. Here, τ

tracks the progress of the gradient descent in the CV space. The string was propagated

with a constant multiplier ∆τ = 0.0001. The updated string was linearly interpolated and

smoothed (with a smoothing factor s = 0.4; see [161]) before the next iteration. Correction

for non-linear dependences between the CVs was not applied.

Convergence of the string was monitored using the Hausdorff distance from the initial

string [236]. The string method was implemented as an in-house Python wrapper for

Gromacs and Plumed.
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4.2.7 FAST method

A modified version of the FAST method [237, 238], an adaptive sampling method, was

used to explore the KaiB conformational space beyond the pathway identified by the

string method. For each iteration, a set of 60 initial structures were used to generate 10-

ns unbiased trajectories. The trajectories were aggregated and clustered using the regular

space clustering algorithm [239] implemented in PyEMMA [240]. The structures were

clustered in the space of all pairwise Cα distances. The minimal cluster center distance

dmin was chosen using a bisection algorithm such that the number of clusters fell between

2 to 5 times the number of initial structures. A random structure from each cluster was

chosen to be the “center” of the cluster for the following analysis.

The FAST method scores each cluster center i using the function

r(i) = φ(i) + αψ(i) + βχ(i) (4.5)

This function has three components and two weights, α and β. The first term, φ(i), is the

directed component that favors the optimization of certain structural metrics; here we

define φ(i) = [xmax − x(i)]/[xmax − xmin] for the CV x = RMSDbb[CT;fs] to favor the

minimization of dRMSD difference from the fsKaiB structure. The second term, ψ(i), is

the undirected component that favors exploration of new configurations and is defined to

be ψ(i) = [Cmax − Ci]/[Cmax − Cmin] where Ci is the number of structures in cluster

i. Lastly, the third term, χ(i), penalizes clusters that are structurally similar to existing

clusters:

χ(i) =
1

N

∑
j

(
1− e−r

2
ij/2d

2
min

)
(4.6)

where rij is the distance between the centers of clusters i and j in the space of all pairwise

Cα distances. This third term is computed iteratively to pick out the best clusters to seed

the next iteration using the following procedure:
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1. Rank all clusters using the first two terms of the scoring function r(i), which we

denote as ρ(i) = φ(i) + αψ(i).

2. Compute the third term χ(i) for each cluster; the index j in (4.6) iterates over

clusters from all past iterations. Denote this value as χold(i). The highest ranked

cluster is the cluster i that maximizes ρ(i) + βχold(i). If this is the first iteration, the

highest ranked cluster is simply the cluster i that maximizes ρ(i). Add i to an index

set S.

3. Compute the third term χ(i) for each cluster, but let the index j in (4.6) iterate over

the set S. Denote this value as χnew(i). The highest ranked cluster is the cluster

i /∈ S that maximizes ρ(i) + β[γχold(i) + (1− γ)χnew(i)]. If this is the first iteration,

the highest ranked cluster is the cluster i /∈ S that maximies ρ(i) + βχnew(i). Add i

to the index set S. Here, γ ∈ [0, 1] is a weight factor.

4. Repeat the previous step until S reaches the number of clusters required to seed the

next iteration (in this case 60).

For the current simulations, we chose α = 2, β = 2, and γ = 0.3. The structures from

the last iteration of the string method were used to seed the first iteration of the FAST

method. The FAST method was implemented as an in-house Python wrapper for Gromacs

and Plumed.
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4.3 Results

As detailed in the Methods section, SMD was used to generate an initial guess for the

pathway for KaiB foldswitching. As outlined in Table 4.2, the steered pathway primarily

revolves around the movement towards α1 during foldswitch of residues in and near

β4;gs, which forms α3;fs. To achieve this, the steered pathway first disrupts the C-

terminal segment of the protein fold, both its contacts with the N-terminal part of the

protein, especially the ground-state β sheet structure containing β1 and β4;gs, and

the contacts within the C-terminal segment. This is then followed by repositioning of

the β4;gs residues towards the target position, while preventing entanglement between

β4;gs with α2/3;gs; in particular, the interaction between α3;gs and α1, as well as the

interactions of the gs C-terminal loop, which wraps around the N-terminal structural

elements, needs to be disrupted to allow for β4;gs movement. The repositioning of β4;gs is

accompanied by RMSD, backbone dihedral, and distance restraints to enforce the fsKaiB

C-terminal secondary and tertiary structures. It is worth noting that attempts to apply

straightforward RMSD restraints did not lead to successful foldswitching, presumably due

to the complexity of the changes in protein topology.

The initial SMD pathway was relaxed using the string method. The progression of the

string method along the 40 CVs used to control the foldswitch process is shown in Table

4.3. Unsurprisingly, the string pathway shows qualitatively similar foldswitch patterns to

the steered pathway, in that the dissociation and repositioning of β4;gs takes place before

the formation of the correct fsKaiB secondary and tertiary structures (Fig. 4.1). However,

what the string pathway demonstrates is that a large portion of the foldswitch pathway

goes through molten globules as the topology of the C-terminal segment is rearranged

while little to no stable secondary structures exist. Furthermore, the molten globules

sampled in the string path are much more collapsed than those in the steered pathway

(see, e.g., the string progression for RMSDCα[NT,CT;fs] and RMSDbb[CT;fs] in Table

4.3). The convergence of the string method was monitored using the Hausdorff distance
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from the initial string (Table 4.3, last panel), which shows that the simuation has yet to

converge after the first 300 iterations.

In general, protein folding is characterized by the existence of multiple pathways. As

such, the foldswitch pathway identified in the SMD and refined using the string method

is likely only one of many competing pathways. Therefore, we have started to further

characterize the KaiB foldswitch process and discover potential alternative pathways

using the FAST method, with the string results as an initial starting point. The end

goal is to leverage recent advances in chemical kinetics, such as the dynamical Galerkin

approximation [241], to characterize the kinetics and energetics of the KaiB foldswitch

pathway(s) and its intermediates. This computational pipeline can then be applied

to KaiB in complex with KaiC to investigate the possible role of KaiC in setting the

timescale of KaiB foldswitch.
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Figure 4.1: Structures of the KaiB foldswitch string pathway. Starting with the gsKaiB
structure, the string pathway first unzips the contact between β1 and β4;gs and then
repositions β4;gs towards α1 as the pathway goes through molten globules. Lastly,
residues around β4;gs refolds into α3;fs as the C-terminal segment adopts the correct
fsKaiB secondary and tertiary structures. The gray segment (N-terminal): residues 1–50;
the yellow segment: residues 51–80; the green segment: residues 81–102. The structures
are chosen from the images 0, 18, 25, 30, 43, 54, and 58.

164



CHAPTER 5

CONCLUSION AND FUTURE OUTLOOK

The work presented in this thesis was motivated by the question of how the Kai oscillator

couples to metabolism. To address this question, we first employed kinetic modeling,

along with Bayesian MCMC, to investigate the interaction between KaiA and KaiC

(Chapter 2). The resulting model revealed unexpected ultrasensitivity in KaiC phos-

phorylation due to differential KaiA binding affinities to the ADP- vs. ATP-bound states

of KaiC. We argued that the ultrasensitivity plays a role in period stability by acting

as a synchronization mechanism at night. Delving into the molecular details, we then

used MD simulations to investigate the mechanism of ADP release in KaiC and how the

process may be accelerated by KaiA binding (Chapter 3). The simulations suggest that

KaiA binding is coupled to a partial dissociation of the subunit interface that forms the

nucleotide-binding pockets, thus allowing solvent influx to compensate for lost electrostatic

interactions between the protein and ADP. Together, these results provide new insights

that augment our current understanding of metabolic compensation.

Much of the work presented in this thesis is guided by the belief that an

understanding of the oscillator, and our ability to manipulate it, can only be achieved

through a detailed, quantitative analysis of the structural and biophysical basis of the

oscillator components and their interactions. In this spirit, I outline here three broad

areas of inquiry that could benefit from the approach taken in this thesis and further our

understanding of the Kai system.

First, many questions remain of the biochemistry of KaiC. As a homohexameric

protein with multiple catalytic activities, the MD simulations presented in this thesis only

begin to scratch the complexity of the protein. Is nucleotide exchange in KaiC concerted,

sequential, or stochastic? KaiA and KaiC appear to bind mostly with 1:1 stoichiometry

[134], but the complex is highly dynamic [164], and forms and dissociates on a very fast

timescale [25]; what does this say about the mechanism of nucleotide exchange? What is
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the pathway that allows communication between the CI and CII domain? Is intersubunit

communication important for accounting for the enzymatic activity of KaiC? Over the

phosphorylation cycles, are certain phosphoforms preferentially enriched in subpopulations

of KaiC, or are all phosphorylation states uniformly distributed in each KaiC hexamer?

Second, the exact molecular mechanism underlying the negative feedback loop is

unclear. Specifically, what sets the timescale of KaiB binding, ATP hydrolysis in CI

or KaiB foldswitch? How exactly does free energy dissipation in KaiC stabilize the

foldswitch KaiB conformation? What is the basis of the KaiB cooperative binding? Why

does KaiB binding exhibit an initial burst phase followed by slower binding kinetics

[22]? For cyanobacterial species that do not have KaiA, what is the function of KaiB

binding? It is known that KaiA adopts an inactivated conformation when sequestered in

an inhibitory complex with KaiB [77] and can disassemble into KaiA monomers as KaiB

dissociates from KaiC at the late dephosphorylation stage [78]; very little is known about

the structural basis of such transitions, and whether they contribute to the slowness of the

oscillator.

Lastly, the question of what sets the 24-h period of the oscillator is still unanswered.

It is likely that the period of the oscillator is dominated by a few slow steps in the system.

Can one write down an equation for the period in terms of the rates of such slow steps?

Currently, point mutants in KaiC have been identified that can elongate the period of

the oscillator by up to a factor of six, but mutants that accelerate the oscillator to a

comparable extent are not known. This suggests a separation of timescale that breaks

down as the oscillator becomes faster, where more and more steps contribute to the

bottleneck that limits the oscillator speed. What is the timescale hierarchy in the system?

What is the range of rate constants the system can tolerate and still generate oscillatory

dynamics? Does the range become smaller as the oscillator becomes faster? Moreover,

metabolism is not the only environmental factor that the oscillator has to contend with,

and how the oscillator period remains insensitive to temperature perturbations (i.e.,
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temperature compensation) is another major unresolved issue. Theoretical speculations of

the mechanism of temperature compensation abound, but which model is correct? Are the

various forms of compensation related to the more general phenomenon of (near-)perfect

adaptation [242]?

Over the past decade or so, the Kai oscillator has attracted significant experimental

and theoretical interests partly due to its simplicity. However, these efforts have only

highlighted how much we still do not understand about the oscillator, let alone being

able to rationally manipulate its behavior. Hopefully, the preceding discussion could

serve as a useful point of reference to stimulate further studies of the Kai oscillator. As

more becomes known about the oscillator, it is also important to ask what features of the

oscillator are evolutionary contingencies and what embody general principles required

for oscillation, a question that I attempted to tackle in Chapter 1. Such a distinction

likely cannot be made prior to a thorough, quantitative examination of the oscillator, an

approach advocated in this thesis, but an analysis of this question will also hinge on a

more comparative and phenomenological examination of clock biology. Such a synthesis

would go a long way in making circadian biology a more robust, predictive science.
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