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Everything to which we concede existence is a posit from the standpoint of a description
of the theory-building process, and simultaneously real from the standpoint of the theory
that is being built. Nor let us look down on the standpoint of the theory as make-believe;
for we can never do better than occupy the standpoint of some theory or other, the best

we can muster at the time. (Quine, Word and Object)
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ABSTRACT

Oscillatory dynamics is ubiquitous in biology, yet the complexity of the underlying
signaling pathways often makes quantitative understanding of such systems difficult. An
ideal model system for understanding biochemical oscillators is the Kai system, a post-
translational circadian oscillator found in the cyanobacterium Synechococcus elongatus.
The Kai oscillator consists of three soluble proteins named KaiA, KaiB, and KaiC, and
their periodic interactions, which are driven by ATP hydrolysis in KaiC, generate a near-
24-h period oscillation of KaiC phosphorylation states. The Kai oscillator interacts with
cellular metabolic conditions, in the form of ATP/ADP concentrations, that can act as
external timing cues, such that the period remains robust while the amplitude and phase
of the clock adjust. How the clock achieves such robust yet tunable dynamics is not fully
understood.

Understanding the interaction between KaiA and KaiC is key to understanding
how the clock senses metabolic conditions. KaiA is a nucleotide-exchange factor that
regulates the nucleotide-bound state of KaiC and thus the direction of its reversible
phosphotransferase activity. In this work, I dissect the KaiA-KaiC interaction at two
levels. First, I fit a detailed kinetic model of KaiA—KaiC interactions to experimental
kinetic data using Bayesian Markov chain Monte Carlo. This model revealed ultra-
sensitivity in KaiC phosphorylation as a result of nucleotide-dependent KaiA binding
affinity, which I argue is important for period stability. Second, I use molecular dynamics
simulations to probe the molecular mechanism of ADP release from KaiC, which reveals
coupling between the nucleotide-binding pockets and the A-loop, an unstructured region
in KaiC that binds to KaiA. This provides a hypothesis for how KaiA acts as a nucleotide-

exchange factor.



CHAPTER 1
INTRODUCTION

1.1 Overview of the Kai Oscillator

Oscillatory and pulsatile dynamics are ubiquitous in biology, such as cell division control,
circadian rhythms in gene expression, and the propagation of action potentials. Although
the biological elements underpinning these phenomena are different, it has long been
recognized that a few organizing motifs, such as positive and negative feedback loops,

are sufficient to characterize the qualitative behavior of such systems [1]. However,

the complexity of these signaling networks often makes it challenging to precisely map
the organizing motifs onto the underlying biochemical elements. Morever, quantitative
differences in spatiotemporal scales and robustness that cannot be easily explained by the
network topology suggest that a detailed analysis of their dynamics is necessary to better
understand and manipulate such systems.

The Kai system, a simple post-translational oscillator consisting of three soluble
proteins named KaiA, KaiB, and KaiC [2], is an ideal model for quantitative analysis of
biochemical oscillators. The periodic interactions among the three proteins, driven by ATP
hydrolysis, generate a robust, near-24-h period oscillation of the phosphorylation states
of KaiC. In vivo, the Kai system is embedded in a transcription-translation feedback loop
that controls the circadian rhythms of Synechococcus Elongatus PCC 7942 [3-5], a strain
of autotrophic freshwater cyanobacteria, where the global, daily promoter activities [6] are
controlled by the Kai system via a two-component signaling pathway [7, 8] consisting of
two histidine kinases SasA and CikA, which relay the phosphorylation state of KaiC to a
response regulator, RpaA.

The fact that species of cyanobacteria exhibit circadian rhythms in such activities
as nitrogen fixation, amino acid update, and cell division was known in the 1980s [9-11],

but it was not until 1998 when the kai genes were identified in S. elongatus. In 2005, two
1
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Figure 1.1: Overview of the Kai oscillator. The periodic interactions among KaiA, KaiB,
and KaiC, driven by the free energy of ATP hydrolysis, generates a robust, near-24-h
period oscillation of the KaiC phosphorylation states. Specifically, the binding of KaiA

to KaiC during the day leads to KaiC autophosphorylation via its action as a nucleotide-
exchange factor, while the binding of foldswitched KaiB during the night sequesters KaiA,
which leads to KaiC autodephosphorylation. Here, U stands for the unphosphorylated
state, T stands for the phosphothreonine-432 state, S stands for the phosphoserine-431
state, and D stands for the doubly phosphorylated state.

landmark papers demonstrated that the rhythmic in vivo cycling of KaiC phosphorylation
states can act independently of transcriptional feedback [12], and, even more surprisingly,
that the KaiC phosphorylation cycle can be reconstituted in vitro using the three

purified Kai proteins [13]. These studies prompted significant interest in the fundamental
structural, biochemical, and biophysical basis of the Kai oscillator, as well as theoretical
considerations into the source of its robust and tunable dynamics, which we briefly outline
below. Currently, S. elongatus is the prevailing model system in cyanobacterial circaidna
biology due to the relative ease of genetic manipulation. Proteins homologous to the clock
components in S. elongatus has been identified in other cyanobacterial species [14], but
whether such orthologous systems can generate self-sustained oscillation in vitro remains
unclear.

Details of the clock biochemistry will be discussed in the following chapters when



appropriate. However, it is instructive to take the conceptual viewpoint here and consider
the basic requirements for biochemical oscillation and how such requirements are mapped
onto the elementary processes of the clock. As summarized by Novék and Tyson [1],
biochemical oscillators require a) delayed negative feedback, b) nonlinearity, and c)
balance of timescale. In the Kai system, time is encoded in the phosphorylation states of
KaiC [12, 15], a hexameric protein [16] where each subunit has two phosphorylation sites
at S431 and T432 [17, 18]. At day, the autophosphorylation of KaiC is promoted by KaiA
[15], a nucleotide-exchange factor for KaiC [19]. This is then followed at the dusk with
the binding of KaiB to KaiC, which sequesters KaiA from its site of action and leads to
autodephosphorylation [17, 20]. The opposing effects of KaiA and KaiB on KaiC phos-
phorylation are the basis of the negative feedback loop in the system (Fig. 1.1).

The (de)phosphorylation of KaiC proceeds in an ordered manner, in that T432 is
preferentially (de)phosphorylated before S431 [17, 18]. This “kinetic ordering” has two
important consequences. First, it breaks the symmetry between the day and the night
phases of the clock; e.g., T432 is preferentially phosphorylated at midday, while S431 is
preferentially phosphorylated at midnight, even though the percentage KaiC phosphoryla-
tion level is the same at the two time points. Second, the ordered phosphorylation of KaiC
provides a mechanism to delay the onset of the the negative feedback. Specifically, the
phosphorylation of T432 and S431 appears to have different effects on KaiC conformation,
such that only the phosphorylation of the second site, S431, favors KaiB binding [21].

Kinetic ordering, however, is not the only source of delay in the system. KaiB is a
metamorphic protein, which means that it can stably fold into two conformations [22].
The conversion from the “ground state” (gs) to the “foldswitched state” (fs) appears to
be both kinetically and thermodynamically unfavorable, thus adding an additional layer
of delay to the onset of KaiA sequestration. The fsKaiB conformation, however, appears
to be stabilized by KaiC binding, such that fsKaiB monomers bind to KaiC subunits in a

1:1 stoichiometry in an all-or-none (i.e., cooperative) manner [23]. The cooperative KaiB—



KaiC interaction is believed to be an important source of nonlinearity in the system [21].

Thirdly, biochemical oscillation also requires a balance of timescales. This is a major
unresolved issue concerning the kinetics of the Kai oscillator. Here, balance of timescale
does not necessarily imply that all elementary processes in the system must have similar
rate constants. Indeed, the Kai oscillator appears to operate with a separation of timescale
at physiological conditions, where KaiA (un)binds to KaiC on the timescale of seconds
24, 25], but on the other hand KaiC catalytic activities [26] and KaiB foldswitch/binding
operate on the timescale of hours [22]. However, a complete description of the kinetics of
each step of the circadian cycle is currently unavailable. It is unclear how these identified
slow steps in the system contribute to the 24-h period (e.g., can one write down an
analytical expression for the period in terms of elementary rate constants?), nor is it clear
what the ranges of kinetic parameters that still give rise to robust oscillations are.

The analysis by Novak and Tyson is primarily rooted in a dynamical systems
perspective. From a thermodynamic perspective, however, one should also consider the
issue of phase coherence. Under thermal equilibrium, there is no net unidirectional flux
in the cycle of KaiC phosphorylation states, and the various phosphorylation states,
nucleotide-bound states (of KaiC), and protein complexes eventually reach a steady state
where the state populations are dictated by their equilibrium free energy differences. As a
result, although on a microscopic level, individual protein complexes can spontaneously
pass through the circadian cycle, on a bulk level there is no coherent oscillation. To
overcome this problem, the reactions described so far are coupled to the ATPase activity
of KaiC, which provides the nonequilibrium free energy to drive the system irreversibly
forward in time [27]. The exact relation between free energy dissipation and robustness
of the oscillation is an area of active research. A complementary argument is that the
slowness of the KaiB foldswitch process also plays a role in this regard by synchronizing
the KaiC population in the hyperphosphorylated state before switching to the dephosphor-

ylation phase.
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Figure 1.2: The Kai oscillator is robust yet tunable. A) the period of the Kai oscillator
is insensitive to changes in a wide range of % ATP conditions. B) both the peak and
trough of the KaiC phosphorylation cycle scale with %ATP, such that the size of the cycle
becomes larger at higher %ATP. C) the phase response of the Kai oscillator to an ADP
pulse; the shaded region represents the addition of 5 mM ADP to the reaction mixture
with 5 mM ATP. Panels A) and B) are adapted from [28], and panel C) is adapted from
29].

Lastly, the above account of the Kai oscillator focuses on clock function as it is
decoupled from the environment; as such, it is also instructive to consider the clock in
the context of environmental conditions. First, as implied in the preceding discussion,
the free-running clock under constant conditions has a self-sustained, near-24-h period
period [13], which can persist for weeks in vitro [30]. Moreover, the period of the clock
appears to be insensitive to environmental inputs such as temperature [31] and metabolic
conditions [28] (Fig. 1.2A). For in vitro studies, the cellular metabolic conditions are
usually measured and represented in terms of %ATP (i.e., [ATP] as a percentage of total
[ATP] and [ADP].) However, this insensitivity does not imply that the clock is decoupled
from the environment. Rather, the amplitude and phase of the phosphorylation cycle do
respond to such changes (Fig. 1.2B and C), and the clock can be entrained by regular
cycling of these signals [32, 33]. Taken together, the robustness of the period allows for
accurate timekeeping, while the responsiveness of the amplitude and phase allows the clock
to adapt to external timing cues (i.e., the zeitgebers). How to reconcile this remarkable

blend of robustness and tunability is another active area of research (see, for example,

28, 31, 34-36]), and a primary driving force behind this thesis.



1.2 Overview of the Thesis

What the above analysis has made clear is that the simplicity of the Kai oscillator allows
one to articulate the basic biochemical events in the system and how they contribute to
the oscillatory dynamics. However, what is less obvious is a “second-order” description

of the clock that accounts for how elementary processes in the clock interact with
environmental perturbations to generate robust yet tunable circadian rhythms. Broadly
put, therefore, the fundamental goal of this thesis is to investigate how the circadian clock
in S. elongatus responds to changes in cellular metabolic conditions. Analysis of this
question may in turn reveal new insights into the basic biochemistry of the system and
the principles of biochemical oscillation.

How the Kai oscillator responds to metabolism is a property of the circuit, and
therefore a natural first step is to investigate the kinetics of the reaction network (Chapter
2). Specifically, the observations that the function of KaiB is to sequester KaiA at
nighttime and that KaiA promotes phosphorylation via its function as a nucleotide-
exchange factor suggest that a detailed understanding of the KaiA-KaiC subsytem is
necessary to understand how the direction of phosphotransfer is regulated over the day-
night cycle and by changes in metabolic conditions. To this end, we measured the kinetics
of KaiC phosphorylation over a wide range of [KaiA] and %ATP conditions, and the
data was fitted with a detailed kinetic model using Bayesian parameter estimation. The
resulting model revealed unexpected ultrasensitivity in KaiC phosphorylation, which we
argued has important implications for the stability of the oscillator period against changes
in %ATP condition.

The analysis of the kinetic model is consistent with an emerging understanding
that nucleotide exchange in KaiC is a critical process that allows the system to sense
the metabolic condition, and how this process is regulated determines the direction of
KaiC phosphotransfer reactions. This observation motivated us to examine the molecular

mechanism of nucleotide exchange and how it may be accelerated by KaiA (Chapter 3).

6



We thus performed molecular dynamics simulations to characterize the energetic and
structural details of the ADP release pathway in KaiC. These simulations suggest that
ADP release requires concerted global motions that destabilize the KaiC subunit interface,
and such motions are coupled to conformational changes at the known KaiA binding site,
thus providing a molecular hypothesis for how KaiA functions as a nucleotide-exchange
factor.

Lastly, we turn our attention to KaiB and the dephosphorylation phase of the clock.
It has been argued that the timescale of KaiB binding and the resulting negative feedback
is controlled by the timescale of ATP hydrolysis and nucleotide exchange in KaiC, even
though KaiB foldswitch itself is comparably slow. To assess how KaiB contributes to the
slowness of the clock, it is necessary to determine the kinetics of KaiB foldswitch and how
it may be regulated by binding to KaiC. We are currently pursuing molecular dynamics
simulations of the KaiB foldswitch pathways and applying recent advance in the theory of
chemical kinetics to address these questions (Chaptuer 4). This is an ongoing study, and

further details will be made available in future publications.



CHAPTER 2
BAYESIAN MODELING REVEALS
METABOLITE-DEPENDENT ULTRASENSITIVITY IN THE
CYANOBACTERIAL CIRCADIAN CLOCK

This chapter was published as an article in Molecular Systems Biology

(doi:10.15252/msb.20199355) and appears below with minor formatting modifications.
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2.1 Abstract

Mathematical models can enable a predictive understanding of mechanism in cell biology

by quantitatively describing complex networks of interactions, but such models are
8



often poorly constrained by available data. Owing to its relative biochemical simplicity,
the core circadian oscillator in Synechococcus elongatus has become a prototypical
system for studying how collective dynamics emerge from molecular interactions. The
oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of
KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly-
detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly
to experimental data within a Bayesian parameter estimation framework. Analysis of
the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a
function of KaiA concentration, which we confirm experimentally. This ultrasensitivity
primarily results from the differential affinity of KaiA for competing nucleotide-bound
states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an
important role in metabolic compensation by suppressing premature phosphorylation at

nighttime.

2.2 Introduction

Achieving a predictive understanding of biological systems and chemical reaction networks
is challenging because complex behavior can emerge from even a small number of
interacting components. Classic examples include the propagation of action potentials

in neurobiology and chemical oscillators such as the Belousov—Zhabotinsky reaction.

The collective dynamics in such systems cannot be easily intuited through qualitative
reasoning alone, and thus mathematical modeling plays an important role in summarizing
and interpreting existing observations and formulating testable, quantitative hypotheses.
However, it can be difficult to rationalize how collective dynamics emerge from specific
molecular features. One approach to addressing this issue is to compare mathematical
representations of competing molecular mechanisms based on their abilities to fit
experimental data.

The circadian clock from the cyanobacterium Synechococcus elongatus [37] represents

9



a unique opportunity to use model fitting to learn biochemical mechanisms. This is
because the core oscillator can be reconstituted in a test tube from a small number of
components. The simplicity of the system makes it possible to both cleanly model the
basic biochemical events in the circadian cycle and to collect quantitative data under well-
controlled conditions. The core oscillator of S. elongatus consists of three proteins, KaiA,
KaiB, and KaiC, which self-organize to generate a near-24-h rhythm in KaiC phosphory-
lation. The basic biochemical events are well-established [2]. KaiC is an ATPase [26] that
phosphorylates and dephosphorylates itself by transfer of phosphoryl groups from and to
bound nucleotides [38, 39]; KaiA-dependent nucleotide exchange reactions drive the phos-
phorylation phase of the cycle [19], and KaiB-mediated sequestration of KaiA leads to de-
phosphorylation. The reconstituted oscillator retains many of the hallmarks of circadian
rhythms in living organisms [13, 29, 32, 33].

Yet, questions remain about how the clock couples to environmental conditions
while maintaining a robust ~24 h rhythm [28, 31-33]. The Kai oscillator senses changes
in the relative concentrations of ATP to ADP in solution, which allows entrainment
to metabolic rhythms [28, 29, 33]. KaiA modulates these dynamics via its function as
a nucleotide-exchange factor, but how the system adapts and responds to changes in
metabolic conditions is not clear. Models that account for the possible protein complexes,
including the interplay of nucleotide-bound and phosphorylation states, can be dauntingly
complex [e.g., 21, 40]. How to fit them to data and interpret the results is an area of
active research.

Here we use a data-driven Bayesian approach to estimate the parameters of a
molecularly-detailed kinetic model of the KaiA-KaiC subsystem, with the goal of learning
the features required to capture the behavior of the system during the phosphorylation
phase of the clock cycle quantitatively (Fig. 2.1A). The model describes the coupling
between KaiA, nucleotides (ATP and ADP) in solution, KaiC phosphorylation, and KaiC

nucleotide-bound states. To provide training data for the model, we collected kinetic time

10



series measuring KaiC phosphorylation kinetics over a wide range of KaiA concentrations
([KaiA]) and %ATP (defined as 100%[ATP]/(JATP] + [ADP])). Although such data do
not give us direct access to all relevant states of the KaiA-KaiC subsystem, they place
constraints on the underlying molecular interactions. Bayesian statistics [41, 42| have
found diverse applications in systems biology [43-50], including circadian biology [51-
53]. Here, they provide a unified framework for estimating parameter values, quantifying
the importance of specific model elements, and making mechanistic predictions from the
model.

By Markov chain Monte Carlo (MCMC) sampling, we obtain an ensemble of
parameter sets that fit the data. Even with extensive training data, many microscopic
parameters in the model are not tightly constrained. Despite this, we show that this
ensemble of fits robustly makes predictions that are borne out in experimental tests [54,
55]. In particular, the model reveals a previously unappreciated ultrasensitive dependence
of phosphorylation on the concentration of KaiA, with strong nonlinearity at low [KaiA],
conditions that likely apply near the nighttime to daytime transition point, when a large
fraction of KaiA molecules are inhibited. Importantly, we find that the threshold KaiA
concentration varies with the %ATP in solution. This ultrasensitive response primarily
arises from a differential affinity of KaiA for different nucleotide-bound states of KaiC.
This mechanism is analogous to substrate competition [56], where kinetic competition of
multiple enzyme substrates leads to ultrasensitivity.

Lastly, we consider the implications of these results for the full oscillator, in which
KaiC rhythmically switches between phosphorylation and dephosphorylation. A well-
known mechanism for the inhibition of KaiA is its sequestration into KaiBC complexes
[20] that form when KaiC is sufficiently phosphorylated [17]; this mechanism serves as
a delayed negative feedback loop in the oscillator. The KaiB-independent thresholding
phenomenon we describe here is strongest when KaiC phosphorylation is low and when

KaiC is ADP-bound. This suggests there are at least two mechanisms that work together

11



during the cycle to prevent KaiA from acting at inappropriate times, and that the relative

strength of the two mechanisms varies with the nucleotide pool.

A Model validation '
KaiA 0

X5 «— |
) = 5‘_?5? =

— e ,_.
i e | = :>.

Kinetic Naive Bayesian Robust Biophysical
data reaction network MCMC prediction mechanism
B. UBT®SAD [KaiA] (uM)
0.38 0.75 1.50 3.00 4.50 6.00
90
50 =
s * 1 ——t:—f
10 St t&m::_—_::: WA—A W ‘4,‘4“"" ¢ MH
90
O X
S 50 N >
B ] A —=2 A)/H % %

10] sttt | et | ot | | | e

90

50 ot % g

P A/‘ £
10! ——3 M ‘M “‘:A_,.___o—v ‘4’ — ‘Ao—v—‘

00l

0 4 8 120 4 8 120 4 8 120 4 8 120 4 8 120 4 8 12
Time (h)

Figure 2.1: Phosphorylation data are fit by a mechanistically naive kinetic model. A. An
outline of the data-driven Bayesian model fitting approach employed in this work. B. To
constrain the model, measurements of KaiC phosphorylation kinetics were collected at six
[KaiA] and three %ATP conditions. The curves represent the best fit model prediction.

C. A schematic of the mass-action kinetics model. The model elaborates on the auto-
phosphorylation reactions of KaiC by explicitly keeping track of the time evolution of the
KaiC phosphoforms and nucleotide-bound states; conversions among these states are

12



(Figure 2.1, continued) mediated by phosphotransfer, nucleotide exchange, ATP
hydrolysis, and KaiA (un)binding. Note that the KaiA binding reactions are second-
order, but KaiA concentration ([A]) is written as part of the effective first-order rate
constant. See the main text for a discussion of the state and rate constant nomenclature
and Fig. S2.5A for a schematic of the full model. D. The posterior distributions for log
KaiA dissociation constants (base 10). The horizontal axis represents the affinity for ADP-
bound KaiC, and the vertical axis represents the affinity for ATP-bound KaiC; X € {U,

T, S, D} and corresponds to the four colors of the KaiC phosphoforms, as in panel C. The
asterisks represent the best fit, and the contour lines represent the 95% and 68% highest
posterior density regions (HDR). The dashed line represents the KS;’TP = K;;’DP
so that densities above the line indicate higher affinity for the ADP-bound states and
densities below the line indicate higher affinity for the ATP-bound states.

line,

Incorporation of the ultrasensitive response to KaiA into a mathematical model of
the full oscillator suggests that this effect both stabilizes the period against changes in the
nucleotide pool and allows oscillations to persist even when KaiB binds KaiA relatively
weakly. Consistent with this prediction, we find that a substantial amount of KaiA is not
bound by KaiB even when the clock is dephosphorylating. These results shed new light on
metabolic compensation, a property that allows robust 24-h oscillation in spite of changes
in %ATP conditions [57]. Taken together, our results show how the Bayesian framework
combined with extensive training data can be used to discover unanticipated mechanisms

and direct experimental investigations.

2.3 Results

2.3.1 A molecular model of KaiA-KaiC dynamics

To probe the response of KaiC phosphorylation to a wide range of metabolic conditions,
we made kinetic measurements of KaiC phosphorylation at three %ATP conditions and
six [KaiA| conditions while holding the KaiC concentration constant (Fig. 2.1B). KaiC is
a homohexamer and each subunit has two duplicated ATPase domains, termed CI and CII
[16, 26, 58]. The CII domain can autophosphorylate via a bidirectional phosphotransferase

mechanism [38, 39] with two phosphorylation sites. Each KaiC subunit thus has four
13



phosphoforms: the unphosphorylated (U), phosphoserine-431 (S), phosphothreonine-432
(T), and doubly phosphorylated (D) states, each of which peaks at a distinct time in the
oscillation.[17, 18, 59].

Our strategy is to fit these data with a model of the KaiC catalytic cycle in CII with
a minimum of simplifying assumptions. To this end, we formulate a model based on mass-
action kinetics. We explicitly keep track of three properties of the CII domain of each
KaiC subunit: its phosphorylation status (right superscripts in Fig. 2.1C), nucleotide-
bound state (right subscript), and whether or not KaiA is bound (left superscript). We
do not consider CI or the hexameric nature of KaiC explicitly (see Appendix for further
discussion). There are thus 16 possible KaiC states, 8 of which are shown in Fig. 2.1C,
along with the phosphotransfer, nucleotide exchange, KaiA (un)binding, and hydrolysis
reactions that connect the states (see Fig. S2.5A for the full model structure). We also
considered the possibility that nucleotides might interact directly with KaiA, which could
allow KaiA’s activity to directly depend on nucleotides in solution. However, we did not
detect any direct interaction between KaiA and ATP or ADP using NMR spectroscopy
(Fig. 52.6), so we do not allow for this scenario in the model.

In the rest of this section, we further elaborate our model by stepping through the
four classes of reactions that we include; additional details can be found in Materials
and Methods. In the next section, we describe in qualitative terms the fitting procedure
and analyze the extent to which the model was constrained by the training dataset. For
readers who are primarily interested in the biochemical conclusions of the model, these

results can be skipped without loss of continuity.

Phosphotransfer The KaiC CII domain has reversible phosphotransferase activity [38,

39]; it can transfer a y-phosphate group from a bound ATP to a phosphorylation site, but
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unlike a typical phosphatase, it regenerates ATP from ADP during dephosphorylation, i.e.,

k
X Po~Y
Crp = Cpp (2.1)
kq
where (X,Y) € {(U, T),(U,S),(T,D), (S, D)}. This mechanism implies that the
nucleotide-bound state of KaiC has a significant impact on the net direction of its
phosphotransferase activity: an ATP-bound KaiC presumably cannot dephosphorylate,

and an ADP-bound KaiC cannot phosphorylate.

Nucleotide exchange KaiA binding to the CII domain [60, 61] stimulates KaiC auto-
phosphorylation [15, 24, 62]. Recent work has shown that KaiA can bind to KaiC and

act as a nucleotide-exchange factor [19] by facilitating conformational changes at the
subunit interface that promote solvent exposure of the nucleotide-binding pocket [63]. It is
currently unclear whether this nucleotide exchange activity is responsible for all of KaiA’s
effect on KaiC or whether it alters the KaiC catalytic cycle in other ways (see Appendix

for further analysis of this issue). The reversible binding of KaiA

kalA
o &l A (2.2)
kp

contributes two classes of rate constants, k, and ky,.

Because the CII domain of KaiC releases its bound nucleotide very slowly in the
absence of KaiA [19], we ignore the possibility of KaiA-independent nucleotide exchange
in the model. Under the assumptions that i) the apo state is in a quasi-steady state, ii)
the ADP and ATP on-rates are identical, and iii) ATP release is slow, nucleotide exchange

can be modeled as a one-step reaction:

kA
ATP + ACDP RELECN ACTP + ADP (2.3)
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where

ATP]

K — 0P 2.4
TP =™ [ATP] + [ADP] (2.4)
and k:PP is the ADP dissociation rate constant. Nucleotide exchange thus contributes one

class of rate constant, kPY. See Materials and Methods for the derivation of (2.4).

ATP hydrolysis Finally, we allow for irreversible ATP hydrolysis in the CII domain
ky
Crp — Cpp + Py (2.5)

which contributes one class of rate constants, kj,. This assumption is important because
this pathway is required in the model for sustained dephosphorylation by allowing ADP-
bound KaiC to accumulate in the absence of KaiA. Because each KaiC molecule consumes
relatively little ATP on the timescale of the simulations [26], we assume the solution ATP

and ADP concentrations are constant.

State-dependent rates Given the six classes of rate constants, kp, kq, ka, ky, kPP, and
ky, we make the model maximally general, or mechanistically naive, by allowing each rate
constant to potentially depend on the specific molecular state involved in the reaction.

For example, the KaiA dissociation rate constant is allowed to vary depending on the
nucleotide-bound state and phosphoform background of KaiC, and thus the dissociation
rate constants for the ADP-bound U (k;]})J ’DP) and ATP-bound T phosphoforms (k:g ’TP)
are two independent model parameters. In this way, the parameter fitting and model
comparison procedures automatically test specific biochemical hypotheses about the
functions of KaiA and KaiC. For example, allowing the KaiA off-rates to depend on the
nucleotide-bound states is equivalent to the hypothesis that KaiA has different dwell
times for ATP- versus ADP-bound states of KaiC. In fact, because each reaction has an

independent rate constant, except for thermodynamic constraints of detailed balance,

the fitting procedure effectively allows for simultaneous testing of all possible two-way
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interactions of the three categories of KaiC properties, without a priori preference for any

particular mechanism.

2.3.2  The data constrain the parameters to widely varying degrees

We estimate the model parameters through a Bayesian framework. In this framework,
we maximize the posterior probability, which is proportional to the product of the prior
distribution and the likelihood function. Here, we interpret the prior as representing
subjective beliefs on the model parameters before experimental inputs, while the likelihood
function quantifies the goodness of fit. Bayesian parameter estimation reduces to least-
squares fitting under the assumption of normally distributed residuals and uniform priors.
In practice, we find that direct numerical optimization of the posterior usually results in
fits that are trapped in low probability local maxima (Fig. S2.7B). Thus we instead draw
parameters from the prior distribution and then use a heuristic combination of Markov
chain Monte Carlo (MCMC) sampling and optimization (Powell’s algorithm) to explore
the parameter space. The MCMC method that we use [64, 65] efficiently searches the
parameter space by simulating an ensemble of parameter sets in parallel; the spread of
the ensemble reflects the geometry of the posterior distribution and is used to guide the
directions of Monte Carlo moves. See Materials and Methods for a more mathematical
treatment of the fitting procedure and comparison of different numerical optimization and
sampling methods.

We use this approach to fit the phosphorylation data (Fig. 2.1B) together with
previously published data on dephosphorylation [29], ATP hydrolysis rate [26], and
the KaiA dwell time for each KaiC phosphoform [24, 25] (see Materials and Methods).
Overall, the model achieves excellent agreement with the training data (Fig. 2.1B and
Fig. S2.8A-C). In the following analyses, we refer to model predictions using the best
fit parameter values, and quantify the uncertainties using the posterior distribution (see

Appendix for further discussion of the convergence of the simulations).
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We find that certain parameters, such as the hydrolysis rates in the U and T
phosphoforms and the KaiA off-rates from the U phosphoform, are tightly constrained,
while many others, mainly involving S and D phosphoforms, are less constrained, in
the sense that their posterior distributions span multiple orders of magnitude, exhibit
multimodality, or cannot be reproduced over multiple independent runs (Fig. S2.5B).
Some parameters are highly correlated and certain combinations of the parameters are
much better constrained than the individual parameters. For example, the posterior
distributions for the KaiA binding affinities (Fig. 2.1D) appear better constrained than
the on/off rates (Fig. S2.9B).

Taken together, these results are consistent with the notion that collective fits of
multiparameter models are generally “sloppy,” meaning that the sensitivities of different
combinations of parameters can range over orders of magnitude with no obvious gaps in
the spectrum [54, 55]. As we will see, we can nonetheless make useful predictions using the
ensemble of model parameters, because the model behavior is constrained along the stiffest
directions of the posterior distribution. By contrast, direct parameter measurements need
to be both complete and precise to achieve similar predictive validity [55]. We further

characterize the structure of the parameter space in Appendix and Fig. S2.9.

2.8.3 KaiC (de)phosphorylation goes through transient kinetic

imtermediates

In the model, we can breakdown the kinetics of KaiC phosphorylation reactions and
interpret the underlying molecular events. Here we consider the phosphorylation kinetics
at the standard reaction condition (3.5 pM KaiC, 1.5 pM KaiA, 100% ATP; Fig. 2.2A
and B, solid curves); we examine the effect of varying [KaiA] and %ATP in the following
sections.

At the beginning of the phosphorylation reaction, KaiC molecules are predominantly

in the ADP-bound U state (CBP), the end product of the dephosphorylation pathway
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Figure 2.2: The model captures the kinetics of KaiC phosphorylation. A. The time
evolution of all 16 KaiC states in a phosphorylation reaction with 100% ATP and either
1.5 uM (solid curves) or 0.2 pM (dashed curves) KaiA. The gray regions represent the
95% posterior interval. Refer to Fig. S2.5A for the KaiC state nomenclature. B. The
corresponding KaiA kinetics, broken down according to the phosphoform of the bound
KaiC. C. KaiA concentration can tune the sensitivity of the KaiC phosphorylation level
to %ATP. The points represent the measured total percentage phosphorylation levels
att = 12.25h (see Fig. 2.1B for the full kinetics), and the curves represent the model
prediction at the same time point. D. KaiA concentration can tune the sensitivity of
the clock period to %ATP. The period of the full KaiABC oscillator is calculated from
fluorescence polarization measurements (see Fig. S2.10 A and B for further analysis).

in the absence of KaiA (Fig. 2.2A). With the addition of abundant KaiA, the CBP
state becomes rapidly depleted within the first 10 minutes of the reaction and enters the
C%P state. Consistent with the kinetic ordering observed in the full oscillator, the Cgp
population is primarily converted into the T phosphoform over the S phosphoform. The
mechanism underlying the preference for the T phosphoform is not well constrained by
the data, but it appears to be the result of more than just a difference in the relative
U—T and U—S phosphorylation rates; a sensitivity analysis shows that the ordering
of phosphorylation is also dependent on KaiA (un)binding kinetics (see Appendix and
Fig. S2.11). The ADP- and KaiA-bound T phosphoform states are unstable kinetic
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intermediates, and the population accumulates at the C%P bottleneck for the first 4

hours. As phosphorylation reaches completion, the T phosphoform is converted first into
AC%) through the unstable ADP-bound intermediates, and then to the C]%P state; the
populations of the AC%P and C%P states are comparable at steady state. We note here,
however, that previous measurements indicate that approximately 30% of CII nucleotide-
binding pockets should be ADP-bound in the presence of KaiA at steady state [19], which
suggests that the stability of the ADP-bound form is systematically underestimated by the
model fit.

During the phosphorylation reaction, the amount of free KaiA is initially transiently
depleted due to association with the ADP-bound U phosphoform (Fig. 2.2B). Afterwards,
KaiA primarily associates with the ATP-bound S and D phosphoforms as they appear,
but does not bind to the T phosphoform strongly. Therefore, even in the absence of KaiB,
not all KaiA is free during the phosphorylation phase, and the amount of free KaiA is
predicted to depend on both the affinities of the nucleotide-bound states and the mixture
of KaiC phosphorylation states (Fig. 2.1D).

We were surprised to see that the model fit predicts that the KaiA binding affinity for
the ATP-bound T phosphoform is lower than those for the S and D phosphoforms. This is
apparently in contradiction with experimental results that show that S-phosphomimetic
mutants reduce A-loop exposure and weaken KaiA binding, while T-phosphomimetic
mutants have opposite effects [66, 67]. Our model predicts that the nucleotide bound
to CII has large impact on the affinity of KaiA for KaiC. One possibility is that
phosphomimetic mutations may change the average nucleotide-bound state by altering the
catalytic cycle, and that these nucleotide changes have a large effect on the experimental
measurements. Future tests of this hypothesis through experiments that directly control
for the bound nucleotide and models that represent both nucleotide- and phosphoform-
dependent KaiA binding affinity will likely be able to separate the direct effect of phos-

phorylation from nucleotide effects.
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The dephosphorylation pathway is simpler because KaiA is not involved. In the
model, KaiC by itself has no nucleotide exchange activity in CII, and thus phosphorylated
KaiC molecules enter a cycle of dephosphorylation by the transfer of phosphoryl groups
from the phosphorylation sites back to bound ADP molecules, followed by ATP hydrolysis
and removal of inorganic phosphate, until the protein reaches the CBP state (Fig. S2.8D).
The ADP-bound forms of the T, S, and D phosphoforms are only transiently populated,
suggesting that the dephosphorylation bottleneck is ATP hydrolysis, which makes bound
ADP available as a cofactor for dephosphorylation, rather than the phosphotransfer
itself. The kinetic preference for the D—S dephosphorylation pathway is the direct
result of faster dephosphorylation via the D—S reaction compared to the D—T reaction
(Fig. S2.5B; compare the posterior distribution of k;(?s with that of k(lijT) During this
process, KaiC can occasionally autophosphorylate, but it is driven irreversibly towards the
dephosphorylated state by ATP hydrolysis. We note here that the independence of the de-
phosphorylation reaction from solution ADP [29] is a built-in feature of the model, since
solution %ATP only affects the nucleotide exchange rate, which is assumed in the model

to be zero in the absence of KaiA.

2.8.4  KaiA concentration tunes clock sensitivity to %ATP

Our data and the model allow us to ask in detail how [KaiA] modulates the effect of
%ATP on KaiC phosphorylation (Fig. 2.2C). Consistent with previous measurements
28, 29], these results indicate that the near-steady-state (¢ = 12.25 h) total phosphory-
lation level of KaiC (%CY = %CT + %CS + %CP) is lower in the presence of ADP. Since
we simultaneously vary %ATP and [KaiA], the data reveal that this inhibitory effect can
be tuned by [KaiA]. In particular, the system is most insensitive to %ATP at either very
low or very high [KaiA], while the %ATP sensitivity is the highest around [KaiA] = 0.75
nM.

Some %ATP sensitivity remains even at saturating KaiA concentrations (Fig. 2.2C).
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This effect can be interpreted qualitatively in terms of the structure of the model. When
there is more KaiA in solution, more KaiC goes through intermediate states that are in
complex with KaiA, by Le Chatelier’s principle. This shifts a larger fraction of the KaiC
population to states that allow for exchange of bound ADP for ATP, which promotes
phosphorylation. On the other hand, as the %ATP decreases, the ATP to ADP exchange
rate decreases according to (2.4). When nucleotide exchange becomes less efficient, more
KaiC stays in ADP-bound states, which are prone to dephosphorylation. In summary,
[KaiA] and %ATP both act on the phosphorylation kinetics via the nucleotide exchange
step. Solution %ATP directly regulates the exchange rate constant and sets its upper
bound, while [KaiA] controls the population of exchange-competent KaiC and thus the
effective exchange rate. Therefore, the effects of KaiA and increasing solution %ATP are
not equivalent; because the effective exchange rate cannot exceed the limit set by %ATP,
even a saturating amount of KaiA cannot fully compensate for low %ATP. In this sense,
KaiA acts as an input regulator—high [KaiA] blunts the intrinsic sensitivity of KaiC to
ADP in solution.

Given that the metabolic sensitivity of the KaiA-KaiC subsystem can be tuned by
KaiA concentration, we asked whether metabolic sensitivity of the full oscillator period
may also be tuned by KaiA. Such a scenario might allow the [KaiA]/[KaiC] ratio to be
an important parameter in vivo for adjusting the sensitivity of the clock to the daily
metabolic thythm of the cell. To address this question, we characterized the dependence
of the period of the in vitro KaiABC oscillator on [KaiA] and %ATP using a fluorescence
polarization assay [30, 33] (Fig. 2.2D and Fig. S2.10A and B). Consistent with the
hypothesis, we found that low KaiA concentration enhances the period sensitivity to
%ATP compared to the standard condition (1.5 pM KaiA). These results suggest that the
KaiA activity, and how it is controlled, plays a critical role in determining how responsive

the oscillator is to metabolic changes.
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2.3.5 KaiC phosphorylation exhibits ultrasensitive dependence on KaiA

levels

In addition to inferring kinetics of states not easily accessible to experiments, the model
allows us to interpolate between the training data points and study the relation between
KaiC phosphorylation, [KaiA], and %ATP at a much finer resolution. This analysis shows
an ultrasensitive dependence of the steady-state %CY on KaiA concentration (Fig. 2.3A
and D left). Specifically, we see a threshold-hyperbolic stimulus-response relation [68, 69],
where KaiC phosphorylation is highly suppressed near the sub-micromolar [KaiA] regime,
but then follows a right-shifted hyperbolic stimulus-response function once [KaiA] exceeds
a threshold. Importantly, the threshold depends on %ATP. The model makes similar
predictions for the steady-state T, S, and D phoshoforms as well (Fig. S2.12A). However,
because of the T—D and S—D phosphotransfer reactions, the stimulus-response relations
of T and S are not monotonic functions of [KaiA] because high [KaiA] and high %ATP
conditions stabilize the D phosphoform at the expense of the T and S phosphoforms.

Previous studies of KaiA-KaiC interactions examined the response of KaiC at
relatively high KaiA concentrations (> 1.2 nM), comparable to the total amount of
KaiA used in an oscillating reaction. [70] investigated the steady-state stimulus-response
relation, but did not consider the effect of %ATP or fully characterize the low [KaiA]
regime. Previous reports of initial phosphorylation rates suggest that they exhibit a
hyperbolic dependence on [KaiA] [17, 21], similar to simple Michaelis-Menten enzyme-
substrate systems. However, this does not imply that the steady-state stimulus-response
relation is hyperbolic as well.

To assess the robustness of the model prediction of ultrasensitivity across the
ensemble, we use two metrics proposed by [71] to quantify the shape of the predicted
stimulus-response curves for %CF at any fixed %ATP: we use EC10 to measure the
extent to which the curve acts as a threshold and EC90 — EC10 to measure the extent

to which the curve acts as a switch. Here, ECz is the KaiA concentration required to
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reach 2% of the steady-state phosphorylation level at saturation. Fig. 2.3E shows the

distribution of these quantities in the ensemble at 25% ATP. Overall these statistics are

tightly constrained by the training data set, and are clearly distinct from those from

hyperbolic stimulus-response relations (Fig. 2.3E, dashed gray line).
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Figure 2.3: Substrate competition explains KaiC phosphorylation ultrasensitivity. A.
The predicted stimulus-response relation of the total steady-state KaiC phosphorylation

level as a function of %ATP and [KaiA]. B. Experimentally-determined stimulus-response
function of KaiC at three %ATP conditions; the curves are based on refitting the best fit
of the full model to the steady-state measurements. C. Similar to B. but for KaiC S431A,
which has only one phosphorylation site; the curves are based on independent fits to a
simple phenomenological substrate competition model.
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(Figure 2.3, continued) D. Cross sections of the stimulus-response relation at

three %ATP, computed using the full model (left) and model —n (right). E. Posterior
distributions for the shape measures of the stimulus-response functions at 25% ATP
predicted by the full model and model —n. The contours represent the 68% and 95%
HDRs, and the gray stars represent the model best fits. The shapes of the stimulus-
response functions are quantified using two metrics: EC10, which quantifies threshold-like
behavior, and EC90 — EC10, which quantifies switch-like behavior. The shape measures

of the experimentally-determined stimulus-response function at 25% ATP is shown as the
yellow star. The dashed line represents (EC10, EC90 — EC10) = (K/9,80K/9), which
characterizes the shape of a hyperbolic stimulus-response function [A]/(K + [A]) that has
no switching or thresholding. F. The stimulus-response functions of KaiC S431A at 100%
ATP in the presence of KaiC S431A/T432A (AA; left) and S431E/T432E (EE; right)
phosphomimetic mutants to probe the effect of kinetic competition on KaiC phosphoryla-
tion. G. The relations between EC50 (the midpoint of a stimulus-response function) and
KaiC AA/EE concentrations, quantified using the curves shown in F.

We then sought to experimentally determine the shape of the stimulus-response
function. We measured KaiC phosphorylation at ¢ = 24 h at various concentrations of
[KaiA] at three %ATP conditions (Fig. 2.3B and Fig. S2.12B). Consistent with model
prediction, the experimentally-derived stimulus-response relations are ultrasensitive with
a %ATP-dependent phosphorylation threshold, and the stimulus-response relation of the
S phosphoform at 100% ATP is non-monotonic. We then quantified the shape of the
stimulus-response curve for %CY at 25% ATP using the same two metrics defined above
(Fig. 2.3E, yellow star). At 25% ATP, the shape of the experimentally-derived stimulus-
response curve is close to that of the model prediction, but the model fit is systematically
less threshold-like (i.e., smaller EC10) and less switch-like (i.e., larger EC90 — EC10). This
inconsistency is likely due to a combination of training data under-determining the shape
of the curve at the sub-micromolar range (compare Fig. 2.2C with Fig. 2.3B) and the
fitting method under-estimating uncertainties (see Appendix).

Lastly, the saturating phosphorylation levels in the steady-state measurements appear
systematically lower than those implied by the training data set (compare Fig. 2.3B
with D left). This may be a result of batch-to-batch variations in protein and nucleotide

quantification. This difference can be corrected by refitting the full model to the steady-
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state measurement (Fig. 2.3B and Fig. S2.12C). The refit results suggest that errors
in protein and nucleotide concentrations primarily affect the kinetic properties of the S
phosphoform in the model (Fig. S2.12D), but the refitting does not change the qualitative

conclusions.

2.8.6 A substrate competition mechanism underlies ultrasensitivity in
KaiC phosphorylation

What is the mechanism of ultrasensitivity in KaiC phosphorylation? Given that each
KaiC subunit has two phosphorylation sites, a plausible explanation is multisite phos-
phorylation, whereby the concentration of the maximally phosphorylated state exhibits
an ultrasensitive dependence on the kinase concentration [71] (or in this case, the
nucleotide-exchange factor concentration), even if each consecutive phosphorylation step
follows mass-action kinetics. To examine this possibility, we measured the stimulus-
response relation of the KaiC S431A mutant, which has only one phosphorylation

site, and the results show ultrasensitivity comparable to that of the WT protein (Fig.
2.3C). Furthermore, because KaiC is its own phosphatase, it violates the assumption of
distributivity (i.e., at most one modification takes place before the dissociation of the
enzyme and substrate) [71]. Multisite phosphorylation thus cannot explain the observed
ultrasensitivity.

In the ensemble of parameter sets, the KaiA dissociation constant of the ADP-bound
(but not ATP-bound) U phosphoform <CBP) is in or below the nanomolar range, much
smaller than that of any other state of KaiC (Fig. 2.1D). This is consistent with recent
single molecule observations suggesting that the unphosphorylated form of KaiC can
bind very tightly to KaiA [25] and native mass spectrometry measurements suggesting
that KaiA binding to KaiC is enhanced by ATP hydrolysis, which would be needed to
produce ADP-bound KaiC [72]. Here, we argue that the key to understanding the origin

of ultrasensitivity in the model lies in the differential binding affinity of KaiA to the ADP-
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and ATP-bound states of KaiC. We note here that since the model does not consider the
hexameric structure of KaiC, we cannot rule out possible hexameric cooperative effects
that may contribute to ultrasensitivity.

In the model, differential KaiA binding affinity leads to the following dynamics:
KaiA promotes phosphorylation by catalyzing the exchange of the bound ADP for ATP,
but this process is in a kinetic competition with ATP hydrolysis, which returns KaiC to
the ADP-bound state. At the beginning of the phosphorylation reaction, almost all the
KaiA is bound to Cgp (Fig. 2.2A and B) due to its high abundance and high affinity for
KaiA (Fig. 2.1D). When [KaiA] is low, the competition between nucleotide exchange and
hydrolysis in the U phosphoform reaches a steady-state where [CBP] stays above [KaiA]
(Fig. 2.2A, dashed curves). Therefore, KaiA stays trapped by CBP and the phosphory-
lation products (mostly T) cannot undergo nucleotide exchange. In the absence of KaiA,
the autophosphatase activity of KaiC dominates, and the phosphorylation products revert
back to the U phosphoform.

When [KaiA] is high, however, the competition between nucleotide exchange and
hydrolysis in the U phosphoform pushes CBP below [KaiA] (Fig. 2.2A, solid curves),
which frees KaiA to catalyze the nucleotide exchange reactions of the phosphorylation
products. Once the flux of phosphorylation, KaiA binding, and nucleotide exchange
outweighs that of hydrolysis, dephosphorylation, and KaiA unbinding, the phosphor-
ylation products stay phosphorylated at steady state. Furthermore, the formation of
phosphorylated products positively feeds back to deplete CBP, further removing a KaiC
state that traps KaiA and leading to rapid saturation of phosphorylation past the [KaiA]
threshold. The [KaiA] threshold for phosphorylation depends on %ATP (Fig. 2.3A),
because when %ATP is low, more KaiA is needed to counteract the reduced ADP-to-ATP
exchange rate.

This mechanism is a form of substrate competition [56, 73], a previously identified

general scheme where the kinetic competition of multiple substrates for enzyme binding
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leads to ultrasensitivity. Here, KaiA plays the role of the enzyme, while the ADP-bound

U phosphoform and the T phosphoform (as well as the S and D phosphoforms to a lesser
extent due to phosphorylation ordering) are the substrates that compete for KaiA binding.
However, the fact that the phosphorylated and unphosphorylated forms of KaiC can
interconvert through phosphotransfer reactions distinguishes the Kai system from a typical
substrate competition scheme, where the substrates cannot interconvert.

The model suggests that the U phosphoform plays a special role in generating ultra-
sensitivity due to the significant difference in the affinity of KaiA for its ATP- vs. ADP-
bound states (Fig. 2.1D). This observation leads to two testable predictions. First, the
amount of KaiA required to activate phosphorylation should be higher when more U
phosphoform is present. We tested this prediction experimentally by measuring the
stimulus-response relation of KaiC S431A in the presence of KaiC S431A/T432A (AA),
which mimics the U phosphoform, or KaiC S431E/T432E (EE), which mimics the D
phosphoform. The KaiC AA and EE mutants act as competitors for the KaiA-KaiC
interaction (Fig. 2.3F). Consistent with the hypothesis, the EC50 (i.e., the midpoint of
the ultrasensitive switch) is positively correlated with the concentration of KaiC AA,
while varying the concentration of KaiC EE has little effect (Fig. 2.3G). Interestingly, the
presence of KaiC-AA in an oscillatory reaction also appears to reduce the amplitude of the
oscillation, but the effect is most pronounced at low %ATP (Fig. S2.10C).

Second, the substrate competition mechanism suggests that the model should exhibit
weaker nonlinearity if KaiA has the same affinity to ATP- vs. ADP-bound states of
a given KaiC phosphoform. To computationally test this prediction, we constructed
simplified models where KaiA on/off rates are set to be independent of the nucleotide-
bound state (model —n) or phosphorylation state (model —p) and fit the new models to the
experimental data ab initio. Consistent with the prediction, decoupling KaiA on/off rates
from the nucleotide-bound states results in a significant loss of ultrasensitivity (Fig. 2.3D

right and Fig. S2.13A). Model —p by contrast behaves similarly to the full model (Fig.
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Table 2.1: Effects of differential KaiA (un)binding kinetics

Log likelihood

Model Bayes factor®
Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 0.8 1

~n® 249.2 275.4 -0.3 10.4

—p° 392.4 303.2 24 2.2

-n,~p 204.4 266.4 2.6 19.7

% We define the Bayes factor as the ratio of the marginal likelihood function of
the full model over that of the simplified models. We adopt the convention
that a Bayes factor larger than 3.2 is substantial evidence against the model
[74].
b _n: on /off rates decoupled from nucleotide-bound state.
¢ —p: on/off rates decoupled from phosphorylation state.
S2.13C); consistent with the substrate competition mechanism, the ADP-bound states of
KaiC in model —p have higher affinity to KaiA than the ATP-bound states, regardless of
the phosphorylation state (Fig. S2.13B). We quantify the effects of such model reductions
by computing the Bayes factor, which is a metric for systematic model comparison that
favors goodness of fit but penalizes model complexity and parameter fine tuning [42]; it is
similar to the Bayesian information criterion [75], but makes no asymptotic assumptions.
The analysis shows that the loss of ultrasensitivity in model —n degrades the fit quality
significantly, while model —p is only marginally worse than the full model (Table 2.1).
Interestingly, a model where the KaiA on/off rates are completely independent of the state
of KaiC (model —n,—p; Fig. 52.13D and E) is much worse than either model —n or model
—p (Table 2.1). We conclude that the nucleotide-bound state of KaiC plays a key role in

regulating its interaction with KaiA and thus in determining phosphorylation kinetics.

2.3.7 Substrate competition may underlie metabolic compensation

Finally, we consider the implications of the ultrasensitivity for the full oscillator. For the
sake of clarity, we make a distinction in this section among three subpopulations of KaiA:
the sequestered KaiA, which refers to inactive KaiA in a KaiABC complex; the active
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KaiA, which refers to (free or bound) KaiA not sequestered by KaiB; and the free KaiA,

which is not associated with either KaiB or KaiC.
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Figure 2.4: Ultrasensitivity contributes to metabolic compensation. A. The time series
of the total input KaiC phosphorylation level (purple, left scale) and residual KaiA
concentration not precipitated with KaiB-FLAG (gray, right scale). B. A schematic

of the oscillator model by [28]. Here, BCS and BCP represent the KaiB-bound S and

D phosphoforms, respectively, which can sequester KaiA. The dashed line represents
the effect of introducing ultrasensitivity to the model. C. A cartoon representation of
introducing a KaiA sequestration affinity, K p, into the Phong model. The original
model has an effectively infinite sequestration affinity (dashed curve). D. A cartoon
representation of introducing a KaiA threshold to the Michaelis-Menten-type phosphor-
ylation rate constant in the Phong model.

30



(Figure 2.4, continued) E. The period of the oscillator model as a function of %ATP
and K, a measure of KaiA sequestration affinity, without (top) or with (bottom) a
phosphorylation threshold. All model simulations were done with 3.5 pM of KaiC and
1.5 pM of KaiA. White regions indicate unstable or no oscillation. F. The extent to
which KaiA can be sequestered by KaiB depends on the maximal S and D phosphoform
concentration, [Crsn"g)]? |, achieved over the phosphorylation cycle. The scaling of the EC50

of the phosphorylation stimulus-response function, which is a measure of the capacity of

the U phosphoform to suppress KaiA activity, compensates for the scaling of [CISHE}]?] with

%ATP.

We first consider the current understanding of how KaiA activity is regulated over
the circadian cycle. It is well-established that the regulation of KaiA during nighttime by
KaiB plays an essential role in producing the negative feedback loop. At dusk, the buildup
of KaiC D and S phosphoforms triggers the binding of KaiB to CI [17, 20, 21, 28, 76-79]
and subsequently the sequestration of KaiA by CI-bound KaiB [20, 24, 80]. In the absence
of active KaiA, the CII domain autodephosphorylates, and the KaiABC ternary complex
disassembles [78] at dawn as KaiC reaches its unphosphorylated state [12], freeing KaiA
and readying the clock for the next cycle.

This understanding of the negative feedback loop implies that the sequestration of
KaiA by KaiB is a source of nonlinearity in the system that is critical for generating
oscillation. Indeed, in many models of the Kai oscillator, the complete sequestration of
KaiA during dephosphorylation is either a built-in or required feature for stable oscillation
le.g., 28, 40, 81, 82]. However, our observation that phosphorylation is suppressed
nonlinearly at low [KaiA] suggests that complete sequestration of KaiA by KaiB is
not necessary to prevent phosphorylation at night. Indeed, there is mounting evidence
that KaiB sequestration by itself is insufficient to completely inactivate KaiA during
dephosphorylation. Specifically, measurements using native mass spectrometry, co-
immunoprecipitation (co-IP), and native PAGE suggest that there is a significant amount
of KaiA9Cg complex [24, 83] and free KaiA [80] throughout the entire phosphorylation

cycle.
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To confirm that KaiA is not fully sequestered by KaiBC complexes, we used immuno-
precipitation of FLAG-tagged KaiB to monitor the amount of uncomplexed KaiA in
supernatant, which we interpret to be a measure of active KaiA concentration (Fig. 2.4A
and Fig. S2.10D). The experiment shows that there is indeed a substantial amount of
active KaiA in solution in the first half of the dephosphorylation stage of the oscillation.
Taken together, these results suggest that either the binding of KaiA to KaiBC has lower
affinity than previously assumed, or that the sequestration kinetics are slow compared to
the length of the dephosphorylation stage. In either case, some KaiA appears to remain
free of KaiABC complexes at all times during the oscillation.

Given these results, we consider the role ultrasensitivity may play in regulating
KaiA’s ability to stimulate KaiC phosphorylation at nighttime. In particular, the fact
that the phosphorylation threshold scales with %ATP suggests that ultrasensitivity may
also lead to insensitivity of the period of the Kai oscillator to %ATP [28], a phenomenon
termed “metabolic compensation” [57]. As a proof of principle, we examine this possibility
using a simple model of the Kai oscillator proposed by [28], which we refer to as the
Phong model. The Phong model explicitly keeps track of the monomer phosphorylation
cycle and uses KaiB binding to the S phosphoform to generate negative feedback (Fig.
2.4B). In the Phong model, the KaiA sequestration affinity is effectively infinite. In light
of the co-IP experiment, we modify the model by assuming that the KaiA sequestration
reaction is in a quasi-equilibrium with a dissociation constant for KaiA binding to the
KaiBC complex, Kp (Fig. 2.4C; see Appendix for mathematical details). When Kp is
small (i.e., < 1073 nM), the modified model exhibits the same robust oscillations as the
original model over a large range of %ATP, but the range of %ATP that allows for stable
oscillation shrinks as Kp increases (Fig. 2.4E top), and the model is unstable when Kp is
in the micromolar range regardless of %ATP.

In the original Phong model, the dependence of KaiC phosphorylation on KaiA is

described by a Michaelis-Menten-like function with no ultrasensitivity. In this scenario, a
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small increase in active KaiA leads to a proportional increase in phosphorylation, making
the dephosphorylation phase of the clock strongly dependent on the strength of KaiB-
mediated KaiA sequestration. To test if ultrasensitivity can increase the robustness

of oscillations in the model, we introduce a phenomenological patch to the model in

the form of an ultrasensitive KaiA threshold to the phosphorylation rate function,

which varies as a function of %ATP and U phosphoform concentration (Fig. 2.4D; see
Appendix for mathematical details). Given that the ultrasensitivity is a result of substrate
competition, this modification effectively introduces an inhibitory interaction between

the U phosphoform and KaiA (Fig. 2.4B, dashed arrow). This modification amounts to
the assumption that the EC50 measured at steady state (Fig. 2.3A) in the absence of
KaiB corresponds to the active KaiA concentration required to re-enter the phosphory-
lation phase at the trough of the circadian oscillation. Remarkably, the resulting model
can generate stable oscillations over a larger range of both %ATP and K conditions, and
the period of oscillation is made much less dependent on %ATP. (Fig. 2.4F bottom). This
observation suggests that ultrasensitivity in KaiC phosphorylation plays a role in clock
stability that complements the function of KaiB-dependent KaiA sequestration.

Why does ultrasensitivity in KaiC phosphorylation allow for metabolic compensation?
The binding of KaiB to KaiC, and thus the sequestration and inactivation of KaiA,
depends on S431 phosphorylation of KaiC (i.e., the S and D phosphoforms). At low
%ATP, the maximal S and D concentrations, [C5::D], are lower (Fig. 2.4F). Thus
the maximal amount of KaiA sequestered by the KaiBC complex is smaller. This is
problematic for the stability of the clock at low %ATP, since the active KaiA can promote
premature KaiC U—T phosphorylation of some molecules, which can lead to phase
decoherence that manifests as decay of the oscillation (Fig. S2.10F). The ultrasensitive
stimulus-response that we report here implies that a finite amount of KaiA must be
liberated from KaiB before there is a noticeable impact on KaiC phosphorylation. In

other words, the inhibitory effect of ultrasensitivity is a synchronization mechanism at
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night. Importantly, the EC50 of the stimulus-response function scales with %ATP, such
that the capacity of phosphorylation suppression by CV is enhanced at low %ATP, which
compensates for weaker KaiB-mediated KaiA sequestration (Fig. 2.4F). The compensatory
relation between these two mechanisms as %ATP varies is likely key to period stability.
This relation likely also contributes to the scaling of the phosphorylation limit cycle size
with %ATP. At higher %ATP, the EC50 is smaller and thus more KaiA needs to be
sequestered to trigger dephosphorylation, which implies that higher concentrations of the
S and D phosphoforms need to accumulate to enable KaiB binding. Since KaiC phosphor-
ylation is ordered, this means that the T phosphoform concentration scales with %ATP as

well.

2.4 Discussion

In this work we undertook a data-driven kinetic modeling approach to understand the
mechanism and metabolic sensitivity of the KaiA-KaiC subsystem, part of the S. elongatus
circadian oscillator. We constructed a detailed yet mechanistically naive kinetic model,
which was fit to extensive experimental measurements of KaiC phosphorylation kinetics
within a Bayesian parameter estimation framework. Approaches that are similar in spirit
have been pursued in eukaryotic systems [e.g., 84-88]. However, owing to the greater
complexity of eukaryotic clocks, these studies combined direct experimental measurements,
cost function optimization, and hand tuning of selected parameters to account for
unknown or unconstrained biochemical processes. Because the Kai system can be studied
as a well-defined mixture of purified components, the participating molecular species are
known, and all the parameters in the model can be treated in a consistent manner to
enable objective comparison of mechanisms underlying collective oscillations.

This data-driven approach is to be contrasted with the more common hypothesis-
driven approach, whereby a model is built to examine how features of the oscillator

arise from proposed mechanisms. This hypothesis-driven approach has been employed
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extensively in the study of the cyanobacterial clock. These studies have revealed

insights into specific aspects of the oscillator function, such as entrainment [33, 83],
synchronization [81, 82, 89], irreversibility [90], and robustness against variations in
temperature [31, 34, 35, 91|, ATP/ADP concentration [28, 36], protein copy numbers

21, 83, 92|, and environmental noise in general [93-95]. This hypothesis-driven approach
is pedagogically powerful but relies on the ingenuity of the modeler to identify a priori
which mechanisms should be included. These approaches give little indication of the range
of the parameter space consistent with a proposed mechanism, which makes it difficult to
quantify the uncertainties of model predictions and validate them experimentally.

Not all parameters in our model were fully constrained by the data, as expected given
the complexity of the model [55]. Nevertheless, the ensemble of parameter sets still led
to consistent predictions. In particular, the model revealed unexpected ultrasensitivity
in KaiC phosphorylation as a function of KaiA, which we confirmed experimentally.

The source of ultrasensitivity in the model is a substrate competition mechanism that
arises from the differential affinity of ADP- and ATP-bound KaiC for KaiA. Previous
studies have considered the importance of the differential affinity of KaiA for KaiC states
but have focused on phosphorylation [25, 40]. We note here that the ultrasensitivity in
KaiC phosphorylation that we discovered and the ultrasensitivity in KaiB-dependent
KaiA sequestration that arises from opposing S and T phosphorylations within hexamers
[21] perform fundamentally different roles. Specifically, the cooperative binding of KaiB
to KaiC during the dephosphorylation stage provides the nonlinear, delayed negative
feedback loop essential for oscillation [1], whereas the mutual inhibition between KaiA
and ADP-bound KaiC, which effectively provides positive feedback on KaiA’s activity,
generates a KaiC phosphorylation threshold that contributes to period stability as %ATP
changes. The presence of nonlinearities and delayed feedback at multiple steps in a
molecular oscillator allows the system to achieve greater robustness [88, 96-98].

We hypothesized that ultrasensitivity in KaiC phosphorylation plays a role in
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stabilizing the oscillator at low %ATP conditions by suppressing premature phosphory-
lation during the dephosphorylation stage and thus promoting phase coherence. Currently,
the Kai oscillator model most robust against yet tunable by metabolic conditions appears
to be that of [36, 40]. In the Paijmans model, metabolic compensation is achieved both

at the hexamer and ensemble level. At the hexamer level, the onset of dephosphoryla-
tion is primarily controlled by the antagonistic effects of the T and S phosphoforms. Since
fewer subunits in the T phosphoform accumulate at low %ATP, fewer subunits in the S
phosphoform are needed to trigger dephosphorylation; therefore, the reduced amplitude
of oscillation counteracts the slower phosphorylation rate at low %ATP. At the ensemble
level, low %ATP limits the fraction of hexamers that are able to trigger dephosphoryla-
tion before the onset of KaiB-mediated delayed inhibition; this makes the dephosphoryla-
tion phase shorter, which compensates for the longer phosphorylation phase. It is worth
noting that, unlike the data, the Paijmans model is not oscillatory when %ATP reaches
below 50%, partly due to phase decoherence during dephosphorylation, an issue that can
potentially be addressed with ultrasensitivity in KaiC phosphorylation. In our model the
coupling between KaiA binding affinity and KaiC nucleotide-bound states is critical in
generating ultrasensitivity, a feature that is missing in the Paijmans model. It remains an
open question whether a hexameric model with no such coupling can nevertheless produce
ultrasensitivity in KaiC phosphorylation (see Appendix for further comparison between
this work and the Paijmans model). The ultimate goal of this line of research is to obtain
a molecularly detailed model of the complete Kai oscillator that is constrained by direct
fitting to empirical measurements.

In S. elongatus, the Kai oscillator is embedded in a transcription-translation feedback
loop [3-5]. However, with the exception of peroxiredoxin oxidation cycles [99, 100], cell-
autonomous circadian rhythms in eukaryotes are thought to be generated by interlocked
transcription-translation feedback loops [1]; the cooperative autoregulation of transcription

is a key source of nonlinearity and robustness in the circuit [e.g., 85, 101-104]. Our results
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raise the possibility that post-translational modifications and protein-protein interactions
may also contribute to robustness generally in circadian clocks by introducing ultra-
sensitivity, even if these processes do not generate self-sustaining rhythms that can be
decoupled from transcription. Overall, it is clear that post-translational steps such as
(de)phosphorylation [105-108], protein degradation [105, 109], and complex formation [88]
play an important role in eukaryotic circadian oscillators, but to our knowledge there is
currently no complete experimental characterization of the stimulus-response relations of

these processes.

2.5 Materials and Methods

2.5.1 Computational methods

Treatment of nucleotide exchange Here we derive (2.4) in Results. The nucleotide
exchange process can be modeled as a two-step reaction that includes an apo intermediate

state of KaiC, i.e.,

A T Aq Ko, A
Crp C Cpp (2.6)
kay kPP

where we have omitted the free ATP and ADP from the chemical equation. Here, l{:;f P and
kPP are the dissociation rate constants and kgrf) and k(]))nP are the binding rate constants
for ATP and ADP, respectively. Since KaiC requires nucleotides for hexamerization

[16, 76, 110], the apo state of KaiC is presumably both thermodynamically and kinetically
unstable in the presence of saturating amount of nucleotide (5 mM in our experiments).
Therefore, under the assumption that the KaiC apo state is in a quasi-steady state

throughout the reactions, we can eliminate the apo state and model nucleotide exchange

as a one-step reaction

A ke A
CTPﬁ Cpp (2.7)

kTP
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where

_ [ATP]

krp = k" [ATP] + Kon[ADP] (28)
_ [ATP]

kbp = ke " (1 ~ [ATP] + KOD[ADP]> (2:9)

and Kon = kDY /kXF is a ratio of the two nucleotide binding rate constants.

We make two further simplifying assumptions. First, we assume the on rates are
completely diffusion controlled and are thus the same for ATP and ADP, which allows
us to set Kop = 1. Second, based on fit results (Fig. S2.8F) showing that the posterior
for k‘;r P has a long tail to negative infinity in log space, we follow the approach proposed
by [111] and set k1T = 0; i.e., the dwell time of ATP-bound states are sufficiently long
that a bound ATP cannot be released without first giving up its y-phosphate group. This
assumption implies that the only ways for KaiC to enter an ADP-bound state are through
hydrolysis and phosphorylation, and solution ADP has no effect on the system except to
slow down the ADP to ATP exchange process. With these two assumptions, we eliminate

(2.9), and (2.8) reduces to (2.4).

Model parameterization In Results, we introduced a model parameterization scheme
in which rate constants for phosphotransfer, nucleotide exchange, KaiA (un)binding, and
ATP hydrolysis reactions depend on the participating molecular species. Although we use
this independent-rate scheme to interpret the model, including computing the sensitivity
ODEs, during the fitting itself we represent state-dependent effects by modifying each of
the six basic rate constants (kp, kq, ka, kp, k;PP, and ky,) by multiplicative Ak factors. For
example, the KaiA dissociation rate k:g TP _ kbAkg L represented by the product
between a base rate kj, and a modifier Akg’TP (compare Fig. S2.5 and Fig. S2.14). The
multiplicative-factor scheme introduces 38 Ak parameters. Because of the requirement for

detailed balance (see below), only 34 of these parameters are free; these free parameters
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Table 2.2: Full model parameters and their priors

State-dependent

Category offect Parameters Prior Unit
Basic N/A ki, kps ki, Ka, Ky, kPT 10V (1,3) b s—ld
Nucleotide . a AT AS AD
exchange KaiA & phos. Akrp , Akpp , Ak
hos. AT AES AKD
Hydrolysis P h h h
AU AT
Ak Ak
KaiA & phos. ’ ’
P Ak AR
KaiA on nuc.® & phos. Ak}f’DP, AkE’DP, Ak?’TP
Ak;g’DP, Ak;DP, AkE’DP,
KaiA off nuc. & phos. Ak ’DP,Akb ’TP, Ak:b’TP,
M
b
ARYS, AKSY,
phos. Ak;gD, ARDT, 1otaplace(iL) b N /A
AP, AEDS
(De)phos-
phorylation
Ak YT, AkivTU, Ay P,
KaiA & phos. Aki’DT, Ak, ’SD, Akﬁ’DS,
,US ASU
Akp =7, Aky
Global error N/A 2 Inv-Gamma M?
Frot g (1, 0.01) i
U 0) T
Initial N/A C P]07 [CEP]Oa [C"S[‘P]Oa Dirichl . A
conditions / gBP]O; [CEP]Oa [CDP]Oa e et(a> 2

@ phos., phosphoform; nuc., nucleotide-bound state
b The mean of the priors, u, is zero unless specified by Table 2.5.

Cq =

(20,100,1,1,1,1,1,1); points drawn from the distribution are scaled by the

total KaiC concentration. The support of the Dirichlet distribution implies that
only seven of the eight initial conditions are free fitting parameters.

d

or sTL-uM~! for the second-order rate constant k.
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Table 2.3: Detailed balance conditions

Cycle Detailed balance condition

ADS
spAky T Ak PY
Ak{? AP ARDPF

S, TP
{CTP= Dp: CDP’ P} Oka’™" = Ak

ADT
T’TP Ak, ’ AkD7DP

b Ak:ATD A/{:DDP

T, TP

cT _
{Ctp: CBp: CDP’ Crpy Oka’ " = Ak

AUT
T,DP T.0p Akp’
{CTP’ CDP’ CDP’ P} Oka’ —Ak W
AUS
AnU S,DP s,pp Akp’
{CPp, C DP? CDP’ Crpt Oka™ = Ak] ApASU
d

are listed on Table 2.2. The advantage of the multiplicative parameterization scheme is

that it facilitates 1 regularization, discussed below.

Detailed balance All elementary reactions, except ATP hydrolysis and nucleotide
exchange, are assumed to occur in equilibrium, and thus the free energy change over each
reversible cycle must be equal to zero. In practice, this means that the product of all rate
constants in the forward direction of each cycle listed on Table 2.3 must be equal to that
in the reverse direction (see also Fig. S2.14A). This introduces an additional algebraic
constraint for each such cycle, which is used to eliminate one free Ak parameter. In total,

one can eliminate four parameters.

Fitting data set To constrain the model parameters, we collected experimental
measurements that characterized different aspects of the KaiA-KaiC subsystem, which are
summarized in Table 2.4.

The dephosphorylation reaction data taken from [17] constrains the dephosphory-
lation rates and the ATP hydrolysis rates of KaiC in the absence of KaiA, because the
model structure dictates that dephosphorylation requires alternating phosphotransfer

and hydrolysis reactions. There is currently no direct measurement of CII hydrolysis rate
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Table 2.4: Fitting data set

1(\;%318"32)8 ment El; Q) [KaiA]® (pM) ATP g;ﬁs Phosphoform
o) % Son s e B0 s UTD
Dephosphorylation [29] 30 14 5 mM 21

ADP production [26] 30 1.2 1 mM 1 N/A

KaiA on/off rates [24] 25 Variable 1 mM N/A  Likely U
KaiA dwell time [25] 2528 1.0 N/A N/A T,S, D¢

% We report here on the KaiA monomer concentration. However, since KaiA functions as

a dimer, all KaiA concentration is divided by two in the models.
b %ATP, defined as 100%[ATP]/([ATP] + [ADP)); total [ATP] + [ADP] is held constant

mM.
¢ ?Fthi conservation of mass constraint implies that one of the four phosphoforms is not
a free state variable. We have chosen the S phophoform to be the constrained state
variable.
d Phosphomimetic mutants
in the presence of KaiA. However, the maximum ADP production rate of KaiC in the
presence of 1.2 pM of KaiA was reported to be 29.8 + 5.1 KaiC!-day™! [26], which we
take as an upper bound on the average CII hydrolysis rate in phosphorylation reactions
with [KaiA] = 0.375, 0.75, and 1.50 pM.

Because the phosphorylation reactions were measured in the presence of varying
%ATP and higher [ADP] inhibits phosphorylation by slowing down nucleotide exchange
(see equation 2.4), such measurements provide indirect constraints on the nucleotide
exchange rate. Similarly, because the reactions were measured in the presence of varying
[KaiA] conditions, they directly constrain the phosphorylation rates of KaiC with and
without KaiA, as well as the KaiA binding affinity, i.e., the ratio of KaiA on/off rates.
Although there are direct experimental measurements of KaiA binding and dissociation
[24, 25], these results cannot be directly mapped onto model rate constants. This

is primarily because the KaiC nucleotide-bound fractions are not measured in these

experiments, or, in the case of phosphomimetic mutants, it is unclear if the mutations
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affect nucleotide binding affinities. As a consequence, the experimental constraints on
KaiA on/off rates enter through the priors rather than the likelihood function, in contrast

to the other data (see below).

Initial conditions For each phosphorylation reaction in Table 2.4, we solve the ODE
model with the corresponding [KaiA] and %ATP condition. The predicted phosphoform
composition, as well as the ATP hydrolysis rate when appropriate, is compared to the
experimental measurements in the Bayesian parameter estimation formalism described
below. However, since the experimental data do not resolve the initial conditions for all
16 KaiC states in the model, we have chosen to directly estimate the initial concentrations
by treating them as free parameters in the fitting procedure. We take ¢t = 0 to be the time
point at which KaiA is mixed with KaiC, and thus all eight KaiA-bound KaiC states have
zero concentration at the onset of the experiment. Because total KaiC concentration is
conserved, this introduces seven additional parameters (see Table 2.2).

For the dephosphorylation reaction, we do not estimate the initial conditions. To
mimic the way the experiment was done, the dephosphorylation reaction is simulated
in two stages. In the first stage, we assume that 3.4 uM of dephosphorylated KaiC
is phosphorylated in the presence of 1.3 ptM KaiA and 100% ATP for 20 h. Since
the protein is initially dephosphorylated, we assume that [C%P]O = 3.4 pM while
the concentrations of all other KaiC states are set to zero. In the second stage, we
simulate the autodephosphorylation reaction after KaiA pull-down, which corresponds
to eliminating all free KaiA as well as KaiA-bound KaiC states from the simulation.
The amount of KaiC lost in the pull-down experiment was not reported in the original
experiment [29]. We therefore make the assumption that the amount of KaiC lost in the
pull-down experiment in the simulation is exactly equal to that in the experiment for the

purpose of computing the likelihood function.
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Table 2.5: Priors incorporating KaiA on/off constraints

Parameter Prior mean () Experimental measurements Source
o log kaexp Faexp = 0.0279 71 pM 1 24

i 1og kp exp Kby exp = 0.0663 71

Ak PT Ak —log il Khexp Tihexp = 108

AkS’DP, AkS’TP —log T}Sg,expkb,exp Tg,exp =043 s [25]
Akt])),DP’ AkE,TP “log Tlfexpkbﬁ}(p T]?,exp =0.26s

Bayesian parameter estimation We directly fit numerically integrated ODEs to
experimental data in the Bayesian parameter estimation framework [41]. The best fit

A

model parameters, 6, are obtained from the maximum a posteriori estimator:
0 = arg max p(A|D), (2.10)
0

where p(0|D) is the posterior distribution of the parameters 6, conditioned on the training

data set D. Using Bayes’ theorem, the posterior distribution can be written as

p(0|D) = (2.11)

Here, p(#) is the prior distribution, which represents subjective belief in the model
parameters 6 prior to experimental input; £(D|6) is the likelihood function, which
represents a probabilistic model of the experimental data set D given a particular model
M (implicit in the formulas) that depends on the parameters 0; p(D) is the evidence,
which is analogous to the partition function in statistical mechanics. Note that the
evidence p(D) does not depend on the parameter choice, and is thus an irrelevant constant
for the purpose of parameter estimation. The specific choices for the functional forms of

the likelihood function and priors are discussed further below.
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Model priors The priors for all model parameters used in Bayesian parameter
estimation are given in Table 2.2. Here, the choice of the prior distributions is primarily
motivated by the need for regularization (see below). In addition, as discussed above,

the experimental measurements on KaiA binding kinetics are incorporated into the priors
rather than the likelihood function (Table 2.5). Note that all the rate constants and their
multiplicative factors are estimated in the log space (base 10). This ensures that all rate

constants are positive.

¢! regularization As model complexity grows, the parameters become less constrained
by the data. To address this problem, we impose sparsity on the state-dependent effects
(i.e., the Ak factors) through ¢! regularization [112]. This is accomplished in the Bayesian
parameter estimation framework by using a Laplace prior centered at zero in the log
parameter space (or one in the real space). Intuitively, the Laplace prior imposes sparsity
by forcing the (marginalized) posterior distribution for each log Ak to peak at zero unless
there is experimental evidence in the fitting data set to suggest otherwise. Since the Aks
are multiplicative factors modifying the six basic rate constants, log Ak = 0 implies that
the state-dependent rate is identical to that of the base rate. This method is directly
analogous to the use of the lasso estimator in the context of linear least squares models

[112]. To see this, consider the Laplace distribution
L ~l6l/o
p(0;b) = e (2.12)

where [|0]|1 is the ¢!-norm of #. Then from (2.11) the negative log-posterior distribution
becomes

—Inp(8|D) = —In L(D|O) + A||0]|1 + const. (2.13)

where A = 1/b. In a linear model Y = X[ + € where Y is the response vector, X is

the design matrix, § is the parameter vector, and e is the error vector, the negative log-
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likelihood function reduces to the sum of squares ||[Y — X B||% /N, where N is the number of
dependent variables. Thus, maximizing the posterior is equivalent to minimizing the sum

of squares with an ¢! penalty, which is the lasso estimator.

Likelihood function To determine the functional form of the likelihood function, we
consider a kinetic experiment where measurements on some observables y are made at a
set of time points {¢;} with uncertainties {o;}. If we assume that the experimental errors

o; are independent and normally distributed, then the likelihood function is given by

cp) =[] \/%0-.e_[yexp(ti)_ymodel(ti§9)]2/20i2_ (2.14)

In other words, the likelihood function gives the probability for observing a given data
set provided that the model prediction is true. In practice, all posterior evaluations are
done in the log space (base e) for numerical stability. Thus, taken together, (2.11) can be

rewritten as,

. 2
np(0D) = - 3 [Yesxp(t:) —ngn;odel(ti, 0)]

7 2

+ In p(6) + constant. (2.15)

For the sake of simplicity, we assume that there is a single global error, o, for all
(de)phosphorylation measurements, which is then estimated during fitting as a
hyperparameter (see Table 2.2).

The choice of the Gaussian likelihood function applies to all (de)phosphorylation data
sets, but not the hydrolysis constraint, which only provides an upper bound on the average

hydrolysis rate per day [26]. Therefore, for the hydrolysis data a “half harmonic” is used
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as the log-likelihood function:

([ADP]model (9) - [ADP]eXp> i
— 5 , [ADP]
In £(D]f) = 202

exp < [ADP]

model (2.16)

0, 0< [ADP]model < [ADP]

exp

The total amount of ADP produced by the model during a phosphorylation reaction over
12 h, [ADP],0dels i given by the sum of all P; production over time plus all ADP-bound
KaiC states at ¢t = 12 h.

The log-likelihood values from the appropriate phosphorylation, dephosphorylation,
and hydrolysis reactions are added together to determine the log-likelihood of the data set
for each given model parameter choice. Since the phosphorylation data set is much larger
than the dephosphorylation data set, the fitting procedure tends to favor fitting the phos-
phorylation data set at the expense of fitting the dephosphorylation data set. To overcome
this problem, the log-likelihood function for the dephosphorylation reaction is multiplied

by a factor of 4 to increase the weight of the dephosphorylation data points.

Model fitting procedure To determine the posterior mode and the uncertainties
associated with the estimate, we employ a heuristic combination of ensemble MCMC
sampling and numerical optimization methods (Fig. S2.7A). This fitting procedure can

be divided into four steps that are analogous to those in a genetic algorithm:

1. Initialization. An ensemble MCMC method evolves a set of random walkers (i.e.,
parameter sets) simultaneously; we thus begin by drawing 224 walkers from the
prior distribution p(f) and use these walkers for simulated annealing [113, 114]. In
annealing, instead of sampling p(0|D) x L(D|0)p(#) (in the log space), a flattened
distribution E(D|9)5p(9) is sampled with an annealing schedule of 8 = 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0. Note that instead of letting  — o0, the simulation ends with
the target distribution at § = 1.0. Each temperature is sampled over 20,000 steps.
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2. Selection. The fitnesses of the walkers are determined by their log-posterior values
(equation 2.15). 10 walkers from the best 300 parameter sets sampled in the previous
step are chosen and subjected to numerical optimization to find the nearby local
maximums, which are then used to seed a sampling run in the next step. In the

spirit of elitist selection, the best walker is always included for the next generation.

3. Recombination and mutation. The initial walkers for the sampling run are generated
by adding a Gaussian noise N (0,c1) to the 10 optimized walkers (here, I is the
identity matrix and o = 0.001), and the number of initial walkers centered around

each optimized walker 6; is given by

p(6;D)"

224 ————.
>k p(0xD)”

(2.17)

That is, the proportion of the initial walkers generated from each optimized walker is
weighted by its posterior value with a temperature factor of g = 0.6; the temperature
factor is chosen to allocate more walkers to optimized walkers with lower posterior
values. The sampling run consists of 50,000 steps. Note that the purpose of the
Gaussian noise is to ensure that the proposal distribution is valid for any pair of
walkers for the ensemble MCMC method (see below), rather than to control the

mutation strength, as is done in evolution strategy [115].

4. Termination. The best walkers from the sampling run are compared to the optimized
walkers. If the best walkers do not escape to new local maximums with higher
posterior values, then the procedure is terminated after an additional 50,000
sampling steps. If, however, new local maximums are discovered during sampling,
the algorithm loops back to the selection step. This process is repeated until no
better local maximum is discovered at the end of sampling. Unless otherwise
specified, only the last 30,000 sampling steps (downsampled every 100 steps) are

used for post-analysis.

47



In general, the number of walkers in ensemble MCMC needs to be larger than the
number of free parameters; here the number 224 is chosen to optimize parallel performance
on a local computer cluster (8 nodes x 28 CPU cores/node).

We found that this procedure outperformed either ensemble MCMC or numerical
optimization by itself (compare Fig. S2.7A and B). For the full model we ran this
procedure three times to assess the reproducibility of the fit (see Appendix for further

discussion).

Markov chain Monte Carlo One major challenge in efficient MCMC sampling in
systems biology is that the target distributions are often poorly scaled. In the context
of ODE kinetic modeling, this means that different reaction rates and their associated
uncertainties can be separated by several orders of magnitude. This is almost certainly
true for the KaiA-KaiC subsystem because, among other things, the experimentally
measured rates of KaiA binding and dissociation are much faster than the ATP hydrolysis
rate of KaiC. Without a priori knowledge of the natural time scales, conventional
MCMC schemes are inefficient in such sampling problems, because only very small
displacements are accepted at appreciable rates. In this work we employ an ensemble
MCMC method developed by [64]. The advantage of the Goodman-Weare algorithm is
that it is affine invariant, which means that it performs equally well for isotropic and
poorly scaled measures, providing that the two can be related by a linear transformation
of the coordinate system. This appears to be the case for the present problem since the
Goodman-Weare algorithm vastly outperforms a standard Metropolis-Hastings scheme
with a (preconditioned) Gaussian proposal distribution (Fig. S2.7B).

In brief, the Goodman-Weare algorithm evolves an ensemble of walkers, rather than a
single one. At each step, individual walker positions are updated sequentially. For a given

walker 0}, at step 7, a walker ¢; is drawn randomly from the rest of the ensemble and a
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new position, 7, on the line connecting 6, and 6 is proposed by a “stretch move”
n=~0;+z 05 () — Qj} (2.18)

where z is a random number drawn from the distribution

Z ~g(z;a) = 5 s ellfed (2.19)

0, otherwise

The “stretch factor” « is a tunable parameter that controls the step size. In an N-

dimensional parameter space, the new walker 7 is accepted with the probability

= min zNﬁlm
o= min (125 B (2:20)

which guarantees that the scheme obeys detailed balance and thus converges to the target
distribution p(6|D) as 7 — oo. Note that no derivative of the posterior distribution is
required to draw from the proposal distribution. In this work we use a = 1.1, which gives

an average acceptance rate of 47% in steps 3 and 4 of the fitting procedure.

Numerical optimization The numerical optimization method used in this work

is a modified version of Powell’s method [116, 117]. Briefly, given an initial guess and
direction set, which is usually the Cartesian coordinate set, Powell’s method performs a
line search to minimize the objective function, here — In p(0|D), sequentially along each
vector in the direction set. The direction set is then updated by replacing the direction of
largest decrease in the objective function in the current iteration with the displacement
vector from the estimated minimum at the beginning to that at the end of the line
minimizations, provided that certain technical conditions are met to avoid the build-up
of linear dependence in the direction set. This process is repeated until a convergence

threshold is met. Note that unlike the original method, the modified Powell’s method does
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not guarantee that the vectors in the direction set are mutually conjugate.

Similar to the Goodman-Weare algorithm, Powell’s method is derivative-free. For
the current system Powell’s method converges faster than the Nelder-Mead method
[118], another commonly used derivative-free method, although the Nelder-Mead method

appears less prone to becoming trapped in local metastable states (Fig. S2.7C).

Software implementation The fitting procedure is implemented in an in-house Python
script that interfaces with several existing Python modules: numerical integration of the
model ODEs is done using the odespy package [119] with the BDF method; the Goodman-
Weare algorithm is implemented in emcee (version 2.2.1) [65]; Powell’s method and the
Nelder-Mead method are implemented in scipy (version 1.2.1) [120]. The derivative
evaluation step in ODE integration is accelerated using numba [121], and the script is
parallelized using mpidpy 2.0.0 [122-124].

The most computationally expensive step in the fitting procedure is the MCMC
sampling, because each move requires multiple ODE evaluations to compute the posterior
function. With 224 walkers and 8 nodes (each with 28 Intel E5-2680v4 2.4GHz cores), the
speed of MCMC sampling is 46,000 steps/hour.

Model comparison In the preceding sections all definitions of probability distributions
implicitly assume that there is a model M with a well-defined functional form, whose
parameters 6 need to be determined. For the sake of model comparison, we make this

assumption explicit and rewrite (2.11) as

L(DI6, M)p(8IM)

PO M) == v

(2.21)
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To compare two models M; and M, we need to compare the posterior probabilities for

each model, usually in the form of their ratios

= 23 (2.22)

Assuming that we have no prior preference for any model, the ratio becomes the Bayes

factor
p(DIM;)

B" = —-—
Y p(DIM;)

(2.23)

which we adopt as the metric for model comparison.

The primary difficulty in computing the Bayes factor is thus estimating the evidence,
or the marginal likelihood function, for each M;. There are several methods for computing
the evidence [74]. Here we derive a formula compatible with the ensemble MCMC scheme
that is directly analogous to free energy perturbation [125]. For the sake of simplicity, we

drop the model index ¢ from this point on. First, note that for a given model M,
p(DIAM) = [ L(DI6. M)p(6IAM) db = (L(DI6. M9 (2.24)

where the first equality follows from the law of total probability and the second equality
assumes that the prior p(f| M) is normalized (as a probability density function of 6).
Equation (2.24) suggests that the marginal likelihood function can be computed by
estimating the average of the likelihood function £(D|#, M) against the prior. Using
MCMC to estimate this integral is inefficient since there is very little overlap between the

likelihood function and the prior for the models of interest. Instead, we define

n(6) = LI, MPp(6LM) and 2y = [ ax(6) do
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for 0 < A <1 and then note that (2.24) can be recast as

1

Zl Z/\O Z)\l Z)‘Nfl

p(DIM) = — = (2.25)
A Zx Ly Zyn

for 0 = A\g < A1 < --- < Ay = 1, and the As are chosen to allow for sufficient overlap

between successive ¢y (#)s. Each fraction in (2.25) is given by

Zy,y [ LD|o, M) n-172ngy () d6 Nyt
n — n — L D Q’M n—1 n 226
2, T i, (6)d0 (@I, i) (226)
Therefore,
p(D|M) _ ﬂ <£('D|9 M))\nflfkn>_ — ﬂ <€lnq)\n_1(9)lnq)\n(9)>1 (2.27>
n=1 ’ 9n n=1 @

where the averages (-),. can be approximated with MCMC. Equation (2.27) is a version

Ay,
of the free energy perturbation formula. Note that (2.27) requires that the likelihood
function £(D|6, M) be properly normalized (as a probability density function of D), but
does not require the prior p(f| M) to be normalized, as any missing normalization constant
cancels out in each term of the product.

For each simplified model in Table 2.1 and Table S2.6, the ensemble of walkers from
the last time step of the model fitting procedure is used to initialize an MCMC sampling
run with A = 1.00. The lambda value is reduced by 0.01 at each subsequent stage until
A reaches 0.01. Each stage is sampled for 2,000 time steps using the Goodman-Weare
ensemble sampler [64]. Only the last 1,000 time steps from each stage is used to compute

the ensemble average in (2.27). The Bayes factors are then computed as the ratios of the

evidence for the full model to each simplified model.

Refitting The steady-state KaiC phosphorylation measurements (Fig. 2.3B and Fig.

S2.12B) are fit to the full model using Powell’s method, starting from the best fit based on
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the training data set. The priors on the kinetic parameters (Table 2.2) are centered on the
best fit values, so that the refit model can be interpreted as the “minimal” perturbation to

the best fit that enables agreement with the steady-state measurement.

Curve fitting The experimentally determined stimulus-response relations for KaiC
S431A (Fig. 2.3C and F) are fit to the simple inhibitor ultrasensitivity scheme described
in Box 5 of [56]. Using their notation, the amount of phosphorylated protein substrate

(%X P) as a function of kinase concentration ([K]) is given by

%X P([K]) =

K1)+ K1 K9 — K1[K] + 2K5[K] — K1/ [I]? + 2(K2 — [K])[I] + (K2 + [K])?
2K1[1] — 2(K1 — K9)(K7 + [K])

P max

+b (2.28)

Here, Pnax, [], K1, K2, and b are free model parameters. Unlike the Hill function, EC50
is not an explicit parameter of (2.28) and thus needs to be determined numerically. Note

that (2.28) can be reduced to a right-shifted hyperbolic function as Ko — 0:

1] — K] =[] = [K]|

AXPURY) = Boax = =50, 1)

+b, (2.29)

which is equivalent to a threshold-hyperbolic stimulus-response function,

Binax (K] — [1])
Ky + ([K] = [1])

%X P([K]) = H([K] — [1]) + b, (2.30)

where H is the unit step function.

Stimulus-response relations are fit using the NonlinearModelFit function in
Mathematica 12.0. We stress here that the curve fits are purely phenomenological and are
thus not intended to be interpreted in terms of the biochemical assumptions underlying
the model.
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Numerical method for the Phong model All numerical simulations of the modified
Phong model (Fig. 2.4E and Fig. S2.10E and F) were carried out in Mathematica

12.0 using the NDSolve function. To determine the period of the model for a given
parameter set, the model was simulated for 200 h and the first 100 h was discarded

to eliminate transient responses. The NDSolve function returns ODE solutions as
InterpolatingFunction objects, which were converted to time series sampled at every 0.1 h
for subsequent analyses. The troughs in the time series of the total KaiC phosphorylation
level (i.e. [CP] = [CT]+[C5]+ [CP] + [BCS) 4 [BCP)) were determined using the FindPeaks
function, and the average of the trough-to-trough time was taken to be the period of the
model. The model was considered non-oscillatory if one of the following conditions was

met:
1. The standard deviation of the [CT] time series is less than 0.1 pM (weak oscillation).

2. The standard deviation of the trough amplitude is larger than 0.001 pM (unstable

limit cycle).

3. The number of troughs is less than 3 (abnormally long period).

2.5.2  Experimental methods

Protein expression and purification KaiA, KaiB, KaiB-FLAG, and KaiC were
expressed and purified as previously described [28] with two modifications to the protocol:
anion exchange chromatography was performed using HiTrap Q columns (GE Healthcare),
and KaiC was purified using Ni-NTA affinity chromatography followed by size-exclusion
chromotography, omitting the anion exchange step. The expression, purification, and 6-
iodoacetofluorescein (6-IAF) labeling of KaiB K25C mutant as a fluorescence reporter in
the plate reader assay is described in [33]. All mutants of KaiC were constructed using
QuikChange IT XL Site-Directed Mutagenesis Kit (Agilent). For the KaiC-AA and -EE

mutants, the His-tags were not cleaved during purification; this ensures that these mutant
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proteins have shifted mobility in SDS-PAGE, allowing their bands to separate from those
of KaiC S431A.

The U-['5N] labeled N-terminal (residues 1-135) and C-terminal (residues 181-284)
domains of KaiA were expressed in BL21(DE3) E. coli (Novagen) in minimal (M9) media
supplemented with ®N-enriched NH4Cl. For the expression of the C-terminal domain,
M9 media enriched with 19N-NH,Cl was prepared using 98% deuterated water (D20).
The proteins were purified by Ni-NTA affinity chromatography followed by size-exclusion
chromatography using Superdex 75 1660 prep grade column, as described previously
20, 66, 67]. N-terminal KaiA eluted as ~15 kDa monomer [126], while C-terminal KaiA
eluted as a ~23 kDa homodimer [127].

GFP was expressed as a N-terminal 6xHis-tag fusion from the pET28a plasmid in
the BL21 (DE3) strain of E. coli. Harvested cells were sonicated for lysis and clarified
lysate was loaded onto a HisTrap FF column (GE Healthcare). The His tag was cleaved
by overnight incubation at 4 °C with SUMO protease (Invitrogen), after which the sample
was loaded again onto a HisTrap FF column to recover the cleaved products. The cleaved
proteins were further purified on a 5 mL HiTrap Q HP column (GE Healthcare) and then
a Superdex 200 10/300 GL size-exclusion column. The eluted fractions were concentrated
in a sample buffer (20 mM HEPES [pH 7.4, 150 mM KCI, 2.5 mM MgCly, 2 mM DTT),

aliquoted, and snap frozen in liquid nitrogen for storage in —80 °C.

In vitro clock reactions All in vitro clock reactions were done in the standard reaction
buffer (20 mM Tris-HCI [pH 8], 150 mM NaCl, 5 mM MgCly, 0.5 mM EDTA | 10%
glycerol, 50 pg/mL Kanamycin). KaiC concentration was 3.5 M in all experiments

unless otherwise specified; KaiB concentration was 3.5 pM for all oscillatory reactions,

and 6-IAF-labeled KaiB K25C concentration was 0.2 pM for plate reader assays. KaiA
concentration and %ATP were determined by each individual experiment, while the total

nucleotide concentration (i.e., [ATP] + [ADP]) was held constant at 5 mM. Phosphoryla-
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tion kinetics was resolved using SDS-PAGE on 10% acrylamide gels (37.5:1 acrylamide:bis-
acrylamide) run for 4.5 h at 30 mA constant current at 12 °C; the gels were stained in
SimplyBlue SafeStain (Invitrogen) and then imaged using Bio-Rad ChemiDoc Imager.
The oscillatory reactions (Fig. 2.2D and Fig. S2.10C) were also monitored using the plate

reader assay described in [33].

NMR spectroscopy A Bruker 600 MHz AVANCE III spectrometer equipped with

a TCI cryoprobe was used for all of the NMR experiments of the N- and C-terminal
domains of KaiA (Fig. S2.6). Chemical shifts were referenced to internal 2,2-dimethyl-2-
silapentane-5-sulfonate (10 pM). Data were processed using NMRPipe and visualized using
NMRDraw [128]. NMR samples were prepared with 100 pM monomer concentration of
protein in 20 mM Tris-HCI [pH 8], 150 mM NaCl, 5 mM MgCly, and 5% DoO buffer. All
experiments were performed at 30 °C. Samples were incubated with 1mM ATP or ADP,

when needed, for 30 minutes before spectral measurement.

Immunoprecipitation Immunoprecipitation of KaiB-FLAG and associated protein
complexes in a clock reaction (Fig. 2.4A) was done as previously described [28] using
monoclonal anti-FLAG M2 antibody (Sigma-Aldrich, product number F1804), and elution
with 3xFLAG peptide. The supernatant was analyzed by SDS-PAGE on 4-20% Criterion
TGX Stain-Free Precast Gels (BioRad) and stained with SYPRO Ruby (BioRad). 1.5 nM
GFP was added to the reaction mixture at the beginning of the time course and served as
an internal standard to correct for changes in protein concentration due to handling. The
relative supernatant KaiA concentration was determined as a ratio of KaiA band intensity
in each lane to the GFP band intensity and is normalized as percentage of the largest ratio

in the time course (Fig. S2.10D).
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2.6 Appendix

2.0.1 Additional biochemistry of the KaiC (de)phosphorylation reactions

In this work we construct a general model of the KaiA-KaiC subsystem based on a set

of assumptions of basic clock biochemistry; that is, KaiC is an ATPase and a reversible
phosphotransferase with two phosphorylation sites at S431 and T432, while KaiA

is a nucleotide-exchange factor that promotes the exchange of bound ADP for ATP

in CII nucleotide-binding pockets, and may directly stimulate hydrolysis. Through

model fitting, we demonstrate that this set of assumptions is sufficient to explain

the (de)phosphorylation kinetics of KaiC and its dependence on %ATP and [KaiA].

Our results, however, do not imply that the model includes all possible biochemical
mechanisms; in this section and the next we briefly discuss aspects of KaiC that we do not
consider in the model.

First, the current model does not account for the CI domain. The CI domain of KaiC
is required for the hexamerization of S. elongatus KaiC [110, 129] and its ATPase activity
is necessary to allow the binding of KaiB needed to transition into the dephosphorylation
phase of the oscillation [28, 77]. However, the ATPase activity of the CI domain has no
significant effect on the kinetics of the CII (de)phosphorylation reactions [28], and in the
current study we are not concerned with KaiB-dependent processes. Therefore the current
model does not keep track of the CI hydrolysis state or any allosteric coupling between the
CI and CII domains.

Second, the model does not explicitly consider the function of Mg2+. The presence
of Mg2t is required for the assembly of the KaiC hexamer [76, 110], and computational
analyses indicate that release of Mg2T independent of the bound nucleotide is highly
energetically unfavorable [63]. Given these results, we assume that Mg2t and nucleotide
cannot act independently of each other, and the model implicitly assumes that each bound

nucleotide is always in complex with a Mg2t ion. A recent study, however, shows that
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depletion of Mg2t promotes KaiC autophosphorylation, especially in buffers that lack
EDTA, [130]. Moreover, some structures of KaiC have two MgZ*t jons modeled in the
nucleotide-binding pocket, which has been interpreted to mean that KaiC kinase activity
relies on a two-metal-ion phosphotransfer mechanism [131]. Currently, the functions of
Mg2+ have not been characterized kinetically or mechanistically at a level necessary to

constrain its role in a molecularly detailed model.

2.6.2 The hexameric structure of KaiC

The current model does not consider any hexameric effects. There is evidence to suggest
that intersubunit interaction regulates KaiC autokinase activity [132] as well as the
ultrasensitive dependence of KaiBC complex formation on the KaiC hexamer phosphoform
composition [21]. However, explicitly accounting for the hexameric nature of KaiC, as

in [133] or [21], would lead to a significant increase in the number of model parameters,
which likely cannot be constrained by available data and makes interpretation of the
model difficult. Therefore, we only keep track of the states of KaiC subunits considered
independently, and the rate constants should be considered averages over hexameric
background configurations, weighted by their nonequilibrium state populations.

This leads to two simplifications concerning the KaiA-KaiC interactions. The first
issue relates to the stoichiometry of KaiAC complexes. During phosphorylation, KaiA
dimers bind to KaiC hexamers likely with either a 1:1 or 2:1 stoichiometry [72, 134].
Because the model does not consider the hexameric structure of KaiC, this stoichiometry
is not enforced explicitly, and each KaiC monomer can bind independently to KaiA.

The second issue relates to the effect of the phosphorylation state of the entire
hexamer on KaiA (un)binding kinetics. KaiA can inhibit KaiB binding to KaiC [21], even
though the KaiA and KaiB binding sites are on opposing sides of KaiC. This has been
interpreted as a result of cooperative allosteric transition between a kinase mode of KaiC,

stabilized by KaiA binding and the T phosphoform, and a phosphatase mode of KaiC,
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stabilized by KaiB binding and the S phosphoform [21]. A possible implication of this
proposed mechanism is that KaiC hexamers in the phosphatase mode may have uniformly
diminished affinity for KaiA at the CII interface, regardless of the phosphorylation state of
the subunits. Given that the current model is trained using primarily the phosphorylation
data set, the predicted KaiA dwell time (Fig. 52.8B) and dissociation constant (Fig. 2.1D)
likely reflect the property of KaiC subunits in the kinase mode, whereas experiments with
phosphomimetic mutants mimicking the S and D phosphorylation states presumably probe
the system kinetics in the phosphatase mode. Indeed, in the KaiC-EE titration experiment
(Fig. 2.3F right), the presence of KaiC-EE has virtually no effect on the KaiC S431A
stimulus-response curve, which may be partly due to the fact that the KaiC-EE hexamers
are in the phosphatase mode and may therefore have additionally reduced affinity for

KaiA, a condition not considered in our model.

2.6.3 Correlation structure in the posterior distribution

As discussed in the literature [55], often ratios of parameters are better constrained than
the parameters themselves. The parameter pairs that have a correlation coefficient larger
than 0.9 in log space are shown in Fig. S2.9A-C. Such correlations typically reflect that
thermodynamic, rather than kinetic, properties of the system are constrained. These
include the free energy of phosphotransfer between the S and D phosphoforms (Fig.
S2.9A) and the free energy for KaiA binding to the ATP-bound states of KaiC (Fig.

S2.9B; compare with Fig. 2.1D). Interestingly, there is a linear relation among k%l’DT,

kﬁ’TU, and k‘g’ bP (Fig. S2.9C); this implies that the data constrain the flux out of the
AC%P state, but the exact pathway is underdetermined.

More generally, we characterize the extent to which the model parameters, or linear
combinations thereof, are constrained by the data using the principal components of the

posterior distribution; that is, the eigenvectors of the covariance matrix from MCMC

sampling. The eigenvalues of the covariance matrix span multiple orders of magnitude
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with no obvious gap (Fig. S2.9D left), except for the stiffest direction (Fig. S2.9G),
which is almost entirely aligned with o2, the global error hyperparameter. In addition,
the directions of the principal components are in general not aligned with the directions
of the bare coordinates (Fig. S2.9D right), and there is no obvious interpretation for

the directions of most of the principal components (Fig. S2.9G). These features of the
ensemble indicate that the model is “sloppy” [55], and many model parameters are poorly
constrained by the data. Nevertheless, as we demonstrate in Results, the model can

still be used to make consistent predictions because the variabilities in the ensemble of
parameter sets obtained from MCMC sampling align with the softest degrees of freedom

of the posterior distribution.

2.6.4 Convergence of the model fit

We assessed the quality of the fit in three ways. First, we repeated the full procedure
three times to assess reproducibility of the fitting procedure (Fig. S2.5B). The three
independent runs yielded marginalized posterior distributions that are remarkably
consistent and tightly constrained for some parameters but diverge over several orders of
magnitude for others. The best fits from the three runs have log posterior values of 720,
714, and 705, respectively. Unless otherwise specified, in this work we base our analyses
on the run that produced the best fit with the highest posterior value. The ruggedness
of the posterior distribution demonstrates that given the model and training data set,
the parameter estimation problem is far from the asymptotic (i.e., large sample) regime.
Moreover, in our fitting procedure the vast majority of the walkers from the annealing step
are discarded for the sake of improving the MCMC sampling efficiency (the acceptance
rate is < 7% without pruning). Given the presence of multiple local maxima, this choice
likely resulted in an underestimation of the uncertainties in parameter values.

Second, we compared the model predictions with a test data set that probed the

phosphorylation reaction at two non-standard KaiC concentrations (Fig. S2.8E). The fit
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quality on the test data set is somewhat worse compared to the training set (compare
with Fig. 2.1B). In particular, the model overestimates the D phosphoform concentration
at 1.75 ntM KaiC and underestimates the T and D phosphoform concentrations at 7 pM
KaiC. This result suggests some degree of overfitting. This, however, is not a significant
issue because we base our conclusions on the ensemble of walkers rather than the behavior
of the best fit.

Lastly, we assessed the convergence of the MCMC simulations using the integrated
autocorrelation times for the 48 principal components of the posterior distribution (Fig.
S2.9E). The autocorrelation times for the largest and smallest principal components are
8,500 and 3,300 steps, respectively, which gives rough estimates of the times between
independent samples for the slowest and fastest degrees of freedom. These estimates are
far shorter than the length of the final MCMC runs in the fitting procedure (100,000
steps). We also checked the autocorrelation time for the KaiA binding affinities (Fig.

S2.9F), which is within the bound given by the principal components.

2.6.5 KaiA function cannot be solely explained in terms of nucleotide

exchange

Because of the generality of the model, the function of KaiA is not restricted to that of a
nucleotide-exchange factor. In particular, the phosphotransfer and ATP hydrolysis rates
are allowed to depend on KaiA binding. There is some experimental evidence to support
such effects—KaiA binding inhibits dephosphorylation [135] and the addition of KaiA
increases the ATPase activity of KaiC [26, 136]. However, the biochemical mechanisms
underlying these effects are not clear from the experiments; for example, does KaiA
increase KaiC ATPase activity by reconfiguring the KaiC active site, or does KaiA binding
indirectly promote ATP hydrolysis by shifting the KaiC population towards phosphoforms
that have high ATPase activity?

To test whether KaiA binding has a direct effect on KaiC catalytic activities, we
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construct simplified models where hydrolysis and /or phosphotransfer are/is independent

of KaiA binding and compare the resulting models to the full model using the Bayes factor
(Table S2.6). We find that decoupling either phosphotransfer (model —P) or hydrolysis
(model —H) from KaiA binding decreases the evidence for the simplified models, but the
effects are weak, especially in comparison to a model where both classes of reactions are
decoupled from KaiA binding (model —P,—H). These results indicate that the function

of KaiA cannot be solely explained by nucleotide exchange, but we cannot conclusively

distinguish between models —P and —H.

2.6.6 The experimental data admit two S phosphorylation pathways

We analyzed a random selection of 500 walkers to understand the implications of their
variations for the mechanisms of ordered phosphorylation. To simplify the analysis, we
converted each walker to two single-site models in which either S431 or T432 was available
for phosphorylation but not both. We asked how important each reaction rate constant

is to the overall T and S phosphoform concentrations in the single-site models using the
relative first-order sensitivities computed at the standard reaction condition (i.e., 100%
ATP with 1.5 uM KaiA). We focus on the initial phosphorylation rates because the
steady-state rates are determined by balances of many contributing processes, making
them harder to interpret. The parameter sensitivities at ¢ = 1 h are used as proxies for
the sensitivities of the initial phosphorylation rates.

Because each single-site model has 18 parameters, there are 36 sensitivities for the two
phosphoforms. To characterize this high-dimensional space, we used spectral clustering
(Fig. S2.11A). Overall, the parameter sensitivities are much more constrained by the data
for the T phosphoform than the S phosphoform, which is unsurprising given the relatively
low concentrations of the S phosphoform under all experimental conditions in the training
data. The clustering furthermore indicates that there are at least two plausible kinetic

ordering mechanisms, which differ primarily in terms of the phosphorylation pathways
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taken by the S phosphoform (Fig. S2.11A and B). In both clusters, the U — T transition
is most sensitive to kg T (i.e., the phosphorylation rate in the absence of KaiA).

In the first cluster (319 parameter sets), the U — S transition is most sensitive to
k? US in the presence of KaiA. This is primarily because k:g S is very small in this cluster
relative to kﬁ US (Fig. S2.11C); however, since, in this cluster, the U — S transition
is dominated by the KaiA-bound states, the S phosphoform has negative sensitivity to
the KaiA dissociation rate constant kg TP This suggests that in the first cluster, KaiA
(un)binding to the U phosphoform is important in determining the initial phosphorylation
rate of S. The best fit belongs to this first cluster.

The phosphorylation pathway suggested by the second cluster (181 parameter sets)
is more complex. In this cluster, the U—S transition is mostly independent of KaiA,
similar to the U—T reaction. However, the S phosphoform is limited by the dephosphor-
ylation reaction kzcslU, which is much faster than the corresponding phosphorylation rate
(Fig. S2.11C). In addition, the S phosphoform is sensitive to the rate constant for KaiA
binding, kS’DP, which is important for facilitating nucleotide exchange for the ADP-bound
S phosphoform, but tends to be slower in the second cluster (Fig. S2.11C). Therefore,
faster dephosphorylation and slower KaiA binding is important for determining the initial
S phosphorylation rate in the second cluster.

A comparison of Fig. S2.11C with Fig. S2.5B (blue distributions) shows that the
two clusters correspond to the bimodal posterior distributions for the rate constants kUS,

k‘f} ’US, kSU, and kg’DP. The two clusters, however, do not cleanly separate along the two

modes of k:g TP and I{:S’TP; the kinetic significance of this bimodal distribution is unclear.
As discussed above, the posterior distribution is fairly rugged and thus the fitting

procedure is not fully reproducible over independent runs. As a result, there are likely

multiple potential kinetic ordering mechanisms that remain unexplored through this

analysis. Regardless, the analysis suggests that kinetic ordering is likely a result of an

interplay between (de)phosphorylation and KaiA (un)binding kinetics, rather than purely
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the product of equilibrium free energies of phosphotransfer.

2.6.7 Comparison to the Paijmans model

Among all the computational work on the Kai oscillator, the model most similar to the
current work in terms of the treatment of the KaiA-KaiC subsystem is that by [40],
although the latter is a full oscillator model including KaiB, the CI domain, and the
allosteric transition between the active (i.e., phopshorylation phase) and inactive (dephos-
phorylation phase) KaiC conformations. The Paijmans model and the full model in this
work are both molecularly detailed, and describe how phosphotransfer, ATP hydrolysis,
KaiA (un)binding, and nucleotide exchange reactions control the phosphoform and
nucleotide-bound states of KaiC. However, there are some significant differences between
these two models, which we examine below.

The Paijmans model is more general than this work in two ways. First, the Paijmans
model explicitly considers the hexameric nature of KaiC. There is no intersubunit
coordination of phosphotransfer in the Paijmans model, but it explicitly considers the
binding of one KaiA dimer to a KaiC hexamer, which is assumed to uniformly accelerate
nucleotide exchange in all six subunits. In this work, however, we do not consider the
hexameric states of KaiC, and each KaiC monomer is allowed to bind to a KaiA dimer
independently. In this way the affinities and kinetics of KaiA binding in this work may
not be directly comparable to those in the Paijmans model. Second, the Paijmans
model allows for the exchange of bound ATP for ADP, such that KaiA accelerates the
exchange rates of both ATP and ADP while leaving the binding affinity unchanged.

In our model, however, we assume that there is no exchange of bound ATP for ADP,

KCH

effectively assuming that the affinity of KaiC for ATP is infinite (i.e., ATP/ADP = 0 in

the Paijmans model terminology). The treatments of nucleotide exchange in both models
are otherwise similar, in that both assume that the ATP/ADP on-rates are identical, that

the apo state is in a quasi-steady state, and that there is no KaiA-independent nucleotide
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exchange.

The current work goes beyond the Paijmans model in the following ways. First, we
determine the rate constants under the framework of Bayesian parameter estimation,
which enables more rigorous uncertainty quantification, while the parameters in the
Paijmans model were hand-tuned to reproduce selected experimental observations. Second,
for simplicity the Paijmans model does not consider any possible coupling between ATP
hydrolysis and KaiC phosphorylation states, between nucleotide exchange and KaiC
phosphorylation states, between ATP hydrolysis and KaiA binding, or between KaiC
nucleotide-bound states and KaiA binding. Although many of the state-dependent effects
are not fully constrained by data in this work, as we describe in Results, the ultra-
sensitivity in KaiC phosphorylation depends critically on the coupling between KaiC
nucleotide-bound states and KaiA binding. It is an open question whether a model that
lacks such effects but explicitly accounts for the hexameric nature of KaiC can generate
ultrasensitivity.

The difference in the treatment of KaiA binding affinity implies that some detailed
balance conditions are incompatible between the two models. In the Paijmans model, the
binding affinity of KaiA to KaiC hexamers during the phosphorylation phase depends
on the phosphoform composition of the subunits, and each subunit ¢ in the phosphoform
X; other than U contributes an additive factor of § ggiEaKaiA (X;) to the changes in KaiA
binding free energy, AG&E&KaiA. Due to detailed balance, the fact that KaiA binds
to different KaiC phosphoforms with differential affinities implies that KaiA binding
changes the free energy of phosphotransfer [see eq. 8 in [40]]. This condition is also present
in our model, but is complicated by the nucleotide-bound states of KaiC. Using the

multiplicative-factor parametrization scheme (see Materials and Methods), the detailed
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balance conditions in this work can be related to those in the Paijmans model by

T,DP
§5aCILKaiA iy _ s CILKaiA 7y — _ 7] Oka 531
9bind (T) Ipind (U) = HA T,DP (2.31)
ky,
S,DP
5oCIIKaiA (qy _ 5 CILKaiA 17y _ .y, OKa 5 39
9bind (S) 9bind (U) = nAkS’DP (2.32)
b
D,DP A ;. T, TP
CILKaiA CILKaiA Aky " Aky,
Sgpmd (D) = dgpimg MM (T) = —kT In %DP TP (2.33)
ARDPY 5k
D.DP A .S.TP
Kai Kai Ak Ak
S (D) — GgS A (S) = — kT In =2 b (2.34)

D,.DP S, TP
ARPPY ok

In general, this set of equations are inconsistent. That is, one cannot express the

) ggiInIaKaiA(X)s in the Paijmans model in terms of the Aks in our model. The only

condition under which these equations can be made consistent is when

ka PV okt - kPt okt
AkPPE AR ARPPE AR TP

that is, when the nucleotide-bound states have no effect on KaiA binding affinities to the

T and S phosphoforms.

2.6.8 Phenomenological modifications to the Phong model

In the model of [28], KaiA sequestration is determined by the equation
[Alactive = max(0, [Alotal = m[PC%] = n[PCP]). (2.35)

Here, [Ayota) is the total KaiA concentration; [BCS] and [BCP] are the concentrations

of the S and D phosphoforms in complex with KaiB, respectively; m and n are model
parameters describing the binding stoichiometries between KaiA and the KaiBC complex.
In this way, the KaiA binding affinity to the inhibitory complex is effectively infinite,

with no KaiA dissociation until [BCS] and [BCP] drop below a threshold. To make the
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representation of KaiA sequestration more realistic, we introduce a KaiA dissociation
constant Kp (Fig. 2.4C). Similar to the treatment in [88], we assume that the KaiA

sequestration reaction is in a quasi-equilibrium and replace (2.35) with

actve = ( Wotat = 8D = KD + y/11A)uatp + (W~ SD — Kp)?) (230

where we have defined SD = m[BCS] + n[BCP].
To introduce ultrasensitivity to the Phong model, we first note that the four phos-

phorylation rate constants for the U—T, U—S, T—D, and S—D transitions are given by

Michaelis-Menten kinetics with ADP serving as a competitive inhibitor,

kﬁlhos [Alactive 1

0008 = 2 3+ Alacrive 1 57 [ADP]/[ATP] (2:37)

where kéhos varies with the specific phosphorylation reaction. To introduce ultra-

sensitivity, we add a threshold term 7' (Fig. 2.4D),

kAhOS([A]active - T) 1
Fohos = 26, )+ (Wt = 7) 1+ Ky ADP]TATP] 1 (Wactive =) (2.58)

where

T = (0.3 + 1.5~ PRATP/100%y (1 4 0.08[CY]/uM) (2.39)

and H is the Heaviside function. The first part of the expression for the phosphorylation
threshold, 0.3 + 1.5¢5%ATP/ 100%, describes how the threshold changes as a function of
%ATP; the constants are determined by approximating the [KaiA] threshold in Fig. 2.3A
as an exponential function. The second part of the expression, 1 + 0.08]CV]/uM, describes

how the threshold changes as a function of CY concentration. This formula is defined by

a/puM + b([CY]/uM — 3.5)
a/pM + b(—3.5)
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where parameters a and b are determined by taking a linear fit, a + b[AA], of the data
from Fig. 2.3G (yellow line); that is, 1 + 0.08]CY]/uM gives the fractional changes to
the phosphorylation threshold as a result of any U phosphoform (in the form of AA
phosphomimetic mutant) additional to the 3.5 pM KaiC S431A in the experiment.

We use the original Phong model parameters in all analyses of the model with one
exception. In the final modified model with both a K and a phosphorylation threshold
(Fig. 2.4E bottom), the period is systematically longer than 24 h due to a slow down
in phosphorylation. To fix this problem, we change kﬁs and kzg ., the two rate constants
controlling the D—S transition, to 0.94 kzﬁg and 1.1 kgs

To assess whether the ultrasensitivity we introduced into the model with (2.38)
is consistent with our measurements, we simulated the KaiC-AA titration experiment
using the modified Phong model (Fig. S2.10E) and compared the predicted EC50 with
the experimental results (Fig. 2.3G). To perform this simulation, we set all phosphor-
ylation rates to the S and D states to zero, and represent KaiC-AA concentration as a
constant offset to the [CY] term in (2.39). A comparison of the model prediction with
the experimental result shows that EC50 scales with [AA] in the model similarly to the
experiment, but the EC50 in the model is consistently larger than the experiment by
about 0.15 pM. This result suggests that the ultrasensitivity we introduced into the model
by hand is reasonable, but to achieve precise agreement with experiment would require

fine tuning the Phong model parameters, which is outside the scope of the current work.

2.7 Supplementary Figures
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Figure S2.5: Overview of the model. A. A schematic of the full mass-action kinetic
model. Here, each arrow represents a reaction, and the associated rate constant is
represented using the notation introduced in the main text. The thickness of the arrows is
proportional to the best fit rate on a log scale (base 10) at 100% ATP and 1.5 pM KaiA.
B. The posterior distributions for all rate constants, initial conditions, and the global error
hyperparameter. The three distributions represent the results from three independent
runs; the log posterior values for the best fits from the three runs are listed. The red lines
represent the best fit from the best run (i.e., the blue distributions). See Materials and
Methods and Fig. S2.14 for further details on the model parameterization method.
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Figure S2.6: No evidence of direct nucleotide-KaiA interaction. 'H-N HSQC spectra
of the N-terminal fragment (residues 1-135) of KaiA in the presence and absence of ATP
(A) or ADP (B) show no significant differences in chemical shifts, while spectra of the C-
terminal fragment (residues 181-284) show subtle line broadening in the presence of ATP
(C) and ADP (D), suggesting weak, if any, interaction between the nucleotide and the
C-terminal fragment. Given these results, we do not include any direct KaiA-nucleotide

interaction in the model.
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Figure S2.7: Performance of the fitting procedure. A) The time evolution of the log
posterior values over the four steps of the fitting procedure (see Materials and Methods).
For step 1 and 3, the individual Markov chains that do not produce walkers used in the
next step are shown in beige. B) A comparison of the performance of Powell’s method, a
derivative-free numerical optimization method, Goodman-Weare (GW) ensemble MCMC
method, and conventional Metropolis-Hastings (MH) algorithm with a Gaussian trial
distribution. For the Metropolis-Hastings algorithm the covariance matrix of the trial
distribution is given by the global covariance of the fit (i.e., the last step in panel A),
scaled by a factor of 0.005 to give an average acceptance rate of 19.8%. A set of 224
walkers drawn from the prior distribution are used to initialize the simulations for all
three methods; the 224 walkers are evolved independently for the Powell’s and Metropolis-
Hastings methods, and in an ensemble for the Goodman-Weare method. Chains that do
not reach log posterior above 450 are shown in beige. C) A comparison of the performance
of Powell’s method with the Nelder-Mead simplex-based numerical optimization method.
The simulations are initialized using the same walkers as in step 2 of A).
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Figure S2.8: Behavior of the model. A. Model fit to the dephosphorylation dataset

[17]. B. The best fit KaiA dwell time as a function of KaiC phosphoform and nucleotide-
bound state. The error bars represent the 95% posterior interval, and the dashed lines
represent the experimental measurements [24, 25|, which did not resolve the nucleotide-
bound states. C. Inorganic phosphate production per KaiC monomer over the course of

a phosphorylation reaction. The gray region represents the experimental bounds on the
KaiC hydrolysis rate with 1.2 pM KaiA and no KaiA [26]. D. The kinetics of the dephos-
phorylation reaction in the absence of KaiA, broken down into the eight individual KaiC
states. The gray region represents the 95% posterior interval. Refer to Fig. S2.5A for the
KaiC state names. E. The predicted phosphorylation kinetics at 7 and 1.75 pM KaiC,
both at 100% ATP and 1.5 pM KaiA, compared to experimental measurements. Note that
these two time series are not part of the training set. F. The posterior distributions for
k:;fP and kPP, the dissociation rates for ATP and ADP, respectively, in an early iteration
of the model. The horizontal axis is on a base 10 log scale. The long tail to the left of the
posterior distribution for k:rT P suggests that the model can be simplified by setting the rate
to zero.
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Figure S2.9: Correlation structure in the MCMC ensemble. A), B), and C) show
parameters with correlation coefficients larger than 0.9. In B), “X” represents the KaiC
phosphoforms. In C), the projections of the 3D scatter plot onto pairwise correlations are
shown in gray. D) The principal component /eigenvalue spectrum of the covariance matrix
(left), and the alignment of the principal components with the coordinates (right). Here,

I denotes the intersection of the principal component ellipoid with the coordinates and P
denotes the projection of the principal components onto the corresponding coordinates
[55]. E) The integrated autocorrelation time for the 48 principal components (PC);

the principal components are indexed from the largest to the smallest. The integrated
autocorrelation time is calculated using an automated windowing procedure [137] from the
autocorrelation function averaged over the ensemble. F) The integrated autocorrelation
time for the KaiA dissociation constants as a function of KaiC phosphoform and
nucleotide-bound states. G) The ten largest vector components, ordered by absolute value,
for the first and last three principal components.
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Figure S2.10: The metabolic compensation property of the Kai oscillator. A.
Fluorescence polarization measurements of oscillatory reactions at various [KaiA] and
%ATP are fit to curves of the form FP(t) = Acos(2aT~ 1t + ¢) + bt + c to extract
the normalized amplitude (100A/¢; dimensionless) of the oscillator; see Fig. 2.2D for the
periods (') of the same reactions. Reactions with an amplitude A < 0.5 are considered
to be non-oscillatory. B. Representative traces demonstrating the effect of %ATP at 1.25
pM KaiA; The polarization data are shifted vertically to avoid overlaps and horizontally to
align the first peaks. C. Fluorescence polarization measurements of oscillatory reactions at
three %ATP conditions in the presence of 0.0, 2.5, and 4.5 ptM KaiC S431A/T431A (AA).
The period (left) and amplitude (right) of the reactions are extracted using the same

curve fit method as for panel A.; non-oscillatory reactions are not shown. D. SDS-PAGE
gel image of the supernatant from the KaiB-FLAG immunoprecipitation experiment. E.
Simulated KaiC AA titration experiment using the modified Phong model. The points

are model predictions and the solid line is a linear fit. The dotted line is the linear fit

to the experimental results (see Fig. 2.3G). The simulations are carried out at 100%

ATP, 1.5 pM KaiA, and Kp = 1073 pM condition. F. A Comparison of the metabolic
compensation property of the Phong model without (left) or with (right) a phosphoryla-
tion threshold at Kp = 1073 uM. The model exhibits phase decoherence at low %ATP
without a phosphorylation threshold.
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Figure S2.11: The mechanism of kinetic ordering is not well-constrained. A) Spectral
clustering on the relative sensitivity of the T and S phosphoform concentrations at t = 1
h to rate constants in the T- and S-site models, respectively. Only the parameters with
significant (> 0.2) relative sensitivities in either cluster are shown in the plot. “X” stands
for either the T (horizontal axis) or S (vertical axis) phosphoform. The sensitivities are
calculated using 500 sampled parameter sets chosen randomly from the ensemble. The
clustering analysis was done using the FindClusters function in Mathematica 12.0. B)
Model diagrams that highlight the reactions that have the highest relative sensitivities in
the first (left) and second (right) clusters; the D phosphoform is not shown for clarity. C)
Selected model parameter values in the two clusters. A comparison with blue distributions
in Fig. S2.5B indicates that the clustering based on sensitivity can be mapped onto the
modes of the posterior distribution.
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Figure S2.12: KaiC stimulus-response relations. A. The steady-state stimulus-response
relations for T, S, and D phosphoforms predicted by the model. B. The experimentally
determined stimulus-response functions of the T, S, and D phosphoforms at three %ATP
conditions; the curves are based on refitting the best fit to the steady-state measurements.
C. The model-predicted stimulus-response relation of the total steady-state KaiC phos-
phorylation level as a function of %ATP and [KaiA] after refitting to the steady-state
measurements. D. The differences in the log parameter values (base 10) of the best

fit before and after refit. The differences are ordered by magnitude and only the 10
parameters (in the multiplicative-factor scheme) with the largest changes are shown.
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Figure S2.13: KaiA binding affinities of simplified models. A. The posterior distributions
for the KaiA dissociation constants as a function of KaiC phosphoform in model —n, where
the KaiA on/off rates are decoupled from the nucleotide-bound states of KaiC. The dashed
lines represent the best fit. B. Similar to A., but for model —p, where the KaiA on/off
rates are decoupled from the KaiC phosphoform; the dashed lines represent the best fit.

C. Cross sections of the stimulus-response relation at three %ATP, computed using model
—p. The inset represents posterior distribution for the shape measures of the stimulus-
response function at 25% ATP. The contours represent the 68% and 95% HDRs, and the
gray star represents the model best fit. The shape of the stimulus-response function is
quantified using two metrics: EC10, which quantifies threshold-like behavior, and EC90 —
EC10, which quantifies switch-like behavior. The shape measures of the experimentally-
determined stimulus-response function at 25% ATP is shown as the yellow star. The
dashed line represents (EC10, EC90 — EC10) = (K/9,80K/9), which characterizes the
shape of a hyperbolic stimulus-response function [A]/(K 4+ [A]) that has no switching or
thresholding. D. Similar to A., but for model —n,—p, where there is a single KaiA on/off
rate in the model. E. Similar to C., but for model —n,—p.
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Figure S2.14: Overview
of the model with the
multiplicative-factor
parameterization scheme.
Panels A) and B) are
analogous to those

in Fig. S2.5, but the
rate constants are
represented as products
of the factors that are
actually optimized in the
MCMC simulations. In
B), the dk parameters
are fixed parameters
determined by detailed
balance conditions. The
parentheses denote state-
dependent effects; A:
KaiA-bound state,

P: phosphoform, N:
nucleotide-bound state.
The horizontal axis has
a log scale (base 10).
The rate constants have
the unit s (or st-pM-!
for the KaiA on rate
constant k) and the
multiplicative factors

are dimensionless. See
Materials and Methods
for further description

of the detailed balance
conditions and the model
parameterization method.



2.8 Supplementary Tables

Table S2.6: Effects of KaiA on KaiC function

Log likelihood

Model Bayes factor
Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 0.8 1

—p* 390.0 338.6 0.8 1.4

~Hf 355.5 308.8 0.9 2.5

-P—H 278.2 283.6 0.2 7.7

* —P: KaiA binding decoupled from (de)phosphorylation rates.
I —H: KaiA binding decoupled from KaiC hydrolysis rates.

2.9 Data and Software Availability

The code used to perform and analyze the MCMC simulations, as well as data from the

inference run, are available on github at https://github.com/luhong88 /KaiAC_MCMC.
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2.11 Future Directions

An objective of the line of research demonstrated in this work is to eventually extend

such model fitting procedure to account for the full Kai oscillator. A direct extension

of the ODE model put forward in this work is computationally intractable due to the
combinatorial complexity of the system as one considers additional degrees of freedom
associated with the states of CI and KaiB. As such, it is better to build upon existing
models of the full oscillator, such as the Paijmans model [40], and then fit the extended
model to experimental data. In this section, I outline four aspects of the Paijmans model
that can be further elaborated upon in future works. The equation numbers in this section

refer to those in [40].

KaiA affinity and KaiC nucleotide-bound state In the Paijmans model, the KaiA

binding affinity to each KaiC hexamer is determined by AGgiEdKaiA, where each monomer

CH KaiA (Xz)

i contributes an additive term dgy; depending on its phosphorylation state X

(see Eq. 4). Given our KaiAC modeling result, the coupling between nucleotide-bound
state and affinity is critical for generating ultrasensitivity in KaiC phosphorylation that is
missing in the Paijmans model. To introduce this effect, we replace all the ¢§ ggIHIdKaIA(X )

terms with 6gglgdKalA(X N;), where N; € {DP, TP} denotes the nucleotide-bound state of

the monomer 7 in the CII domain. This effectively introduces four more parameters to the

CII KaiA (U)

model. In the original model, dg;; is by definition set to zero, here we define the

reference state to be 5gCH K&IA(U TP) = 0. Correspondingly, we redefine kg{l.(lfaiA and
kgfg%{alA to be the KaiA (un)binding rates when all monomers of an active hexamer are
in the U, TP states.

Due to detailed balance, the differential KaiA binding affinity results in changes in

the relative stabilities of KaiC phosphoforms in the presence or absence of KaiA. In the

80



original Paijmans model, this relation is given by Eq. 8:

KaiA ) CH.KaiA(Y) o 5gCH.KaiA(X)

39y — 69%% Ibind bind

To account for the coupling between KaiA affinity and KaiC nucleotide-bound state, we

replace Eq. 8 with the following set of relations:

6gSD 5gKalA _ 5gCII KalA(D DP) 5gCII KaiA (S TP)

Eq. 9 is updated accordingly.

In the event that the resulting model is too hard to fit/constrain, one possible
simplification scheme is to couple KaiA binding affinity to the nucleotide-bound state of
KaiC only, similar to model —p. Another possibility is to introduce a single o gglg dKalA (DP)

to account for the effect of ADP relative to the ATP bound states of KaiC subunits.

Representation of KaiB fold switch The Paijmans model does not have an explicit
representation of KaiB, and the KaiB binding kinetics is represented by effective first-order
rate constants (see Table 3). This is a fine assumption, as the period and amplitude of the
oscillator is not strongly dependent on KaiB concentration [139] and its oligomerization
reactions serve to stabilize the monomeric KaiB concentration, which is the species that
participates in the clock reaction. However, there are still several aspects of KaiB function
that remains unclear, and it would be useful to introduce an explicit representation of
KaiB into the model to allow specific hypothesis testing. For example, is the free energy

of ATP hydrolysis in the CI domain directly coupled to KaiB fold switch? Is the timescale
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of KaiB fold switch determined by the ATPase activity of KaiC? When KaiB is in the
monomeric state, is the ground state vs. fold-switched state more stable?

To introduce explicit representation of KaiB is fairly straightforward:

KaiB% 224 4KaiB® 2 4KaiB®
ka1 kgs
Note that we do not model the KaiB dimer state explicitly. Experimental analysis
shows that the KaiB dimeric state is sparsely populated over a wide range of total KaiB
concentrations [23]; we therefore apply the quasi-steady state approximation and eliminate
the explicit representation of the dimer. Here, KaiB® is the only species capable of
binding to KaiC. We further assume that KaiB dissociate from CI while remaining in the

fold-switched conformation and then revert back to the ground state with a rate of kgg.

Cooperative KaiB binding In the original Paijmans model, there is no cooperative
KaiB binding. Instead, to set the timescale of the transition from phosphorylation to de-
phosphorylation, the model assumes slow and independent KaiB binding to KaiC, and
that no KaiA can be sequestered before a full ring of six KaiB monomers are bound.
These assumptions can be relaxed with an improved representation of KaiB
cooperative binding. Native MS analysis [23, 78] shows that the only detectable KaiB
binding stoichiometry with KaiC is KaiB1Cg and KaiBgCg. Based on this observation,

one can introduce a simple scheme for cooperativity as

kCI.KaiB kCI.5KaiB

Clg - KaiB® + 5KaiBf &
kCI.KaiB kCI.SKaiB
off off

Clg + 6KaiB®™® Clg - KaiBP

The KaiB on/off rates need to depend on the active vs. inactive state of CI. It is likely
that in the active state, the Clg - KaiBgS state is highly unfavorable, such that the KaiB{Cg
stoichiometry is observed during the early dephosphorylation stage when KaiC is only

starting to switching to the inactive state, while the KaiBgCg stoichiometry dominates
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afterwards. This description is consistent with the fact that native MS analysis using
teKaiC-DD does not observe the KaiB1Cg stoichiometry [140].
A more rigorous description considering all possible intermediate states is possible

should the current scheme be inadequate.

KaiA inactivation kinetics The Paijmans model does not consider the inactive

conformation of KaiA [77]. Here we introduce a simple description of KaiA inactivation

kin A
KaiA§et =22 KajAlpact
Kact
where the active state can bind to the CII domain, while the inactive state can bind to the
CI domain (in the presence of bound KaiB). Furthermore, we allow for dissociation of a

KaiA9B; complex during the late phosphorylation stage as a single unit [78]; e.g.,

. ;CLKaiAB . }KaiAB .
Clg - KaiB®- KaiAjet = Clg + KaiB® - KaiApat = Cl + KaiB® + KaiAfact
kCLKaiAB |KalAB

Again, the KaiAB on/off rates (e.g., kGIKAAB  LOLSKaiABY 101 CT need to depend on
the active vs. inactive state of CI.

This description of KaiA inactivation can be made more detailed to allow for
alternative (in)activation and (un)binding pathways (e.g., monomeric KaiA has been
detected during the late dephosphorylation stage [78]). However, given the level of
experimental characterization available for the inactivation process the current scheme

should be sufficient.
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CHAPTER 3
MOLECULAR DYNAMICS SIMULATIONS OF NUCLEOTIDE
RELEASE FROM THE CIRCADIAN CLOCK PROTEIN KAIC
REVEAL ATOMIC-RESOLUTION FUNCTIONAL INSIGHTS

This chapter was published as an article in PNAS (doi:10.1073/pnas.1812555115) and

appears below with minor formatting modifications.

Lu Hong?, Bodhi P. VaniP, Erik H. ThiedeP, Michael J. Rust®d€, and

Aaron R. Dinner?df

aGraduate Program in Biophysical Sciences, University of Chicago
bDepartment of Chemistry, University of Chicago

“Department of Molecular Genetics and Cell Biology, University of Chicago
dnstitute for Biophysical Dynamics, University of Chicago

“Institute for Genomics and Systems Biology, University of Chicago

fJames Franck Institute, University of Chicago

3.1 Abstract

The cyanobacterial clock proteins KaiA, KaiB, and KaiC form a powerful system to
study the biophysical basis of circadian rhythms, because an in vitro mixture of the
three proteins is sufficient to generate a robust ~24-h rhythm in the phosphorylation of
KaiC. The nucleotide-bound states of KaiC critically affect both KaiB binding to the
N-terminal domain (CI) and the phosphotransfer reactions that (de)phosphorylate the
KaiC C-terminal domain (CII). However, the nucleotide exchange pathways associated
with transitions among these states are poorly understood. In this study, we integrate
recent advances in molecular dynamics methods to elucidate the structure and energetics

of the pathway for Mg-ADP release from the CII domain. We find that nucleotide release
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is coupled to large-scale conformational changes in the KaiC hexamer. Solvating the
nucleotide requires widening the subunit interface leading to the active site, which is
linked to extension of the A-loop, a structure implicated in KaiA binding. These results
provide a molecular hypothesis for how KaiA acts as a nucleotide exchange factor. In turn,
structural parallels between the CI and CII domains suggest a mechanism for allosteric
coupling between the domains. We relate our results to structures observed for other

hexameric ATPases, which perform diverse functions.

3.2 Introduction

Circadian clocks are biochemical oscillators found in organisms in all kingdoms of
life. In general, a circadian oscillator is characterized by its ability to generate self-
sustaining oscillations with a near-24-hour period in the absence of external environmental
cues. Furthermore, the period of the oscillation is largely insensitive to temperature
and metabolic perturbations over the physiological range [37]. Circadian rhythms are
important for maintaining regular cellular and physiological activities, and defects in the
circadian clock can result in reduced fitness [141] and various health issues [142-146].
The core clock of the cyanobacterium Synechococcus elongatus PCC 7942 presents a
unique opportunity for elucidating the biophysical basis of circadian rhythms [141, 147],
because its molecular oscillations can be reconstituted in vitro from purified proteins [12],
and they show all of the hallmark properties of circadian rhythms described above. The
clock is based on periodic interactions among three soluble proteins: KaiA, KaiB, and
KaiC. These interactions give rise to near-24-hour oscillations in the phosphorylation
pattern of KaiC, and these oscillations are coupled to the external environment in part
through the relative concentrations of ATP and ADP [28, 29, 148].
KaiC is a homohexamer [16] (Fig. 3.1A) within the RecA /DnaB superfamily
[58, 149], which includes a large variety of ATPases in archaea, bacteria, and eukaryotes

[149]. Each subunit of S. elongatus KaiC has 519 residues that are organized into two
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10 15 20 25
ADP-subunit D distance (A)

Figure 3.1: The CII nucleotide release pathway involves both local and global con-
formational changes. (A) KaiC is a homohexamer with active sites located at the

subunit interfaces. The hexamer forms a double-ring architecture; the N-terminal

ring is termed the CI domain, and the C-terminal ring is termed the CII domain. The
secondary structures of subunits D and E are shown as yellow and green ribbon diagrams,
respectively, while the other four subunits are represented by a white van der Waals
surface. The CI-CII linker (residues 248 to 261) and the A-loop (residues 486 to 498)

of subunits D and E are colored blue. (B) A -hairpin (fyt; residues 468 to 483) and an
a-loop-a motif (ala; residues 321 to 342) show the biggest displacements in the locally
enhanced sampling simulations. The color represents the per-residue root-mean-square
deviation (RMSD) between initial and final protein backbone conformations, mapped onto
the initial structure. (C) The string calculation reveals concerted motion of the six CII
intersubunit angles during ADP dissociation at the subunit D—E active site. The inset
shows a schematic of the CII domain, illustrating the intersubunit angle variables and the
ADP-subunit distance variables employed in the simulation. (D) The nucleotide moves
radially outward in the string pathway; the arrows indicate the movement of N6 and P
atoms in ADP. In (A), (B), and (D), the Mg-ADP atoms are colored by element (C, cyan;
N, blue; O, red; P, gold; H, white; Mg, pink).
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domains formed by a tandem repeat of a common ATPase fold [150]; the N-terminal and
C-terminal domains are known as CI and CII, respectively. Thus the hexameric assembly
has a two-tiered ring structure. Both the CI and CII domains hydrolyze ATP, and the
CII domain can also reversibly transfer phosphoryl groups between amino acids S431 and
T432 and bound nucleotides (i.e., from ATP and to ADP) [38, 39, 59]. KaiC is a relative
of the AAA+ superfamily [149], and each KaiC globular domain shares close structural
similarity to F1-ATPase, part of the FoF{-ATP synthase [39]. Many of the proteins that
are evolutionarily related to KaiC use mechanochemical coupling to do work, and it is an
open question how the mechanisms of action of these ATPases relate to those of the KaiC
family, which uses ATP hydrolysis for signal transduction and timing.

Stimulation by KaiA promotes KaiC phosphorylation during the day [12, 15, 17, 24,
60, 61, 80], and sequestration of KaiA by KaiB leads to dephosphorylation during the
night [22, 28, 77, 83]. However, the molecular mechanism of KaiA’s action is unclear. The
activity of KaiA was initially defined by its ability to stimulate KaiC autokinase activity
[15]. Kinetic studies indicate that this activity also inhibits the rate of dephosphoryla-
tion [17]. Recent work shows that KaiA can act as a nucleotide exchange factor for CII,
which otherwise very slowly releases ADP with an estimated rate less than 0.1 h™! [19].
These observations, together with the fact that CII is a reversible phosphotransferase,
suggest that KaiA promotes phosphorylation by enabling exchange of ADP for ATP. Since
ATP cannot be used as a phosphotransfer acceptor in the dephosphorylation reaction,
the ability of KaiA to regulate the nucleotide bound state in CII provides a unifying
hypothesis that could explain both stimulation of phoshorylation and inhibition of dephos-
phorylation.

Thus, the mechanism of nucleotide exchange in CII is key to understanding the
regulation of KaiC phosphorylation. Indeed, control of nucleotide exchange is likely used
throughout the clock cycle. The binding of KaiB to the homologous CI domain requires

the ability of CI to go through a catalytic cycle [28, 76|, and structural studies of the
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KaiB-KaiC complex show that ADP is retained in the CI active site when KaiB is bound
[77, 78]. However, accessing this binding-competent state in CI requires S431 phosphory-
lation in the distal CII domain [17, 21, 79]. Taken together, these results suggest that the
CII ring influences nucleotide exchange in the CI ring, just as KaiA influences nucleotide
exchange in CII.

To the best of our knowledge, a nucleotide exchange pathway has not been previously
characterized for any homohexameric ATPase in the RecA/DnaB or AAA+ superfamilies.
However, structures of these proteins in certain nucleotide-bound states show that they
can take on conformations that lack Cg symmetry. Examples include the staggered
conformation of ClpX resulting from a rigid-body rotation of the small o and large
a8 domains [151], the split washer conformation at the apo interface of NSF [152], or
the staircase-like DNA-binding hairpin structures of the E1 helicase [153, 154]. These
structures have been interpreted to mean that hydrolysis proceeds sequentially or
stochastically, rather than concertedly, around the rings of these proteins [155]. Although
there are subtly asymmetric structures of the CI domain of KaiC with both ATP- and
ADP-bound active sites [156], it is not clear whether the full molecule functions in a
symmetric (i.e., concerted) or asymmetric fashion and, if the latter, how its structures
relate to those of other homohexameric ATPases.

What is the molecular mechanism of nucleotide exchange, and how is it influenced by
KaiA? How does the phosphorylated S431 (pS431) form of CII allow ADP accumulation
in CI? In principle, molecular dynamics (MD) simulations can provide atomic-resolution
answers to these questions. However, the size of the system and the timescale of nucleotide
exchange prohibit direct treatment by conventional methods. To overcome this challenge,
we implemented a pipeline of methods for enhancing the sampling of molecularly
rare events. The results of our simulations provide a detailed characterization of the
structure and energetics of the ADP release pathway in CII and give new insight into

how KaiC conformational changes during nucleotide release are coupled to KaiA binding.
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Implications for other homohexameric ATPases are discussed.

3.3 Results

3.3.1 Nucleotide release in CII involves both local and intersubunit

conformational changes

Our goal was to simulate nucleotide release and to understand how it is coupled
to changes in KaiC structure. In KaiC, the central channel is sufficiently large to
accommodate a free nucleotide, so it is not immediately obvious from the crystal
structure whether the nucleotide exits radially inward or outward. We thus performed
the simulation in stages that progressed from exploratory and qualitative to physically
well-controlled and quantitative, as follows. We first determined the general direction of
release using a method known as locally enhanced sampling [157-159], which floods the
protein with non-interacting copies of Mg-ADP that weakly interact with the protein
and activate local conformational dynamics to accelerate the release. Given the general
direction of release, we then sought to identify a manageable number of collective variables
(CVs) that could be used to characterize and control sampling along the pathway. We
used these CVs to generate an initial guess for the release pathway with steered molecular
dynamics (SMD) [160], which introduces an artificial force to drive the release. We then
used the string method [161, 162] to refine this guess to a minimum free energy path
without artificial driving forces. Finally, the free energy of the release pathway was
characterized using umbrella sampling [163]. While our conclusions are based only on
these final simulations, to explain the CVs that we use to analyze the dynamics, we briefly
review the findings of the full series of calculations (further detailed in Methods) in the
remainder of this section and the following one.

In both CI and CII, the active sites are located at the subunit interfaces, for a total of

12 sites per hexamer. Our calculations are based on a WT KaiC crystal structure [Protein
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Data Bank (PDB) ID: 3DVL] [164], which we modified to be in the phosphorylated T432-
only (pT432) form in all six subunits and with all bound ATPs replaced by ADPs in the
CII domain. Because the structure has almost perfect Cg symmetry, we arbitrarily chose
the active site at the interface of subunits D and E for the release simulations. The locally
enhanced sampling simulations show that Mg-ADP is released radially outward (Fig. 3.1
and Fig. S3.6); this is consistent with further analyses of the alternative possibility of
inward release, which appears highly unfavorable (see Supplementary Results and Fig.
S3.7). For steric reasons the outward release requires an increase in the distance between
the [-hairpin at residues 468 to 483 (which we denote () and an o-loop-a motif (ala) at
residues 321 to 342, both of which are located near the exit point of the release pathway
(Fig. 3.1B and Fig. S3.8). It is worth noting that [y is directly connected to the A-loop
(residues 486 to 498), which is implicated in KaiA binding. For these reasons, we included
the distance between the Byt and ala centers of mass as a CV.

To enable global structural changes, we also selected as CVs the six angles formed
by each pair of adjacent subunits in the CII ring (Fig. 3.1C Inset). This choice of CVs
is motivated by two observations. First, SAXS experiments indicate that the radius of
gyration of KaiC changes depending on the phosphorylation state of the protein, and
the variations in this parameter are attributed to contraction and expansion of the CII
ring [165]. Second, other multimeric nucleotide-binding proteins have been shown to
exhibit changes in solvent accessibility upon nucleotide binding at subunit interfaces
[151, 152, 166-173]. Two final CVs that we used to parameterize the release pathway
were the distances between the center of mass of the ADP and the centers of mass of the
active-site residues of the D and E subunits, respectively. We note that the two adjacent
subunits do not contribute equally to the active site; specifically, the nucleotide makes
more extensive contact with subunit D (Fig. 3.1D and Fig. S3.9). A summary of the CVs
is given in Table S3.1.

Among the nine CVs that we identified, we found that the subunit D-E angle
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and ADP-subunit D distance provided the best control in SMD, and we used them to
construct an initial guess for the release pathway. Specifically, we opened the intersubunit
angle, moved the Mg-ADP to increase the distance, and then closed the angle in a
stepwise manner. This pathway was then refined using the string method in the full nine-
dimensional CV space (Fig. S3.10). In the refined pathway, the intersubunit angle opens
and the Mg-ADP dissociates in a concerted fashion (Fig. 3.1C). With the exception of the
subunit A-B angle, which is diametrically opposed to the vacated active site, the angles
between the rest of the subunits are compressed, especially the subunit E-F angle. This
implies that ADP release in CII does not occur concurrently around the ring. No clear
trends are observed for the CI intersubunit angles (Fig. S3.11).

In summary, our simulations show that Mg-ADP dissociation from CII is coupled
to global conformational changes in that domain, which involves an asymmetric opening
of the subunit angles. Below, we further analyze the pathway from the string method to

understand the energetics of nucleotide release.

3.3.2  The energetics of Mg-ADP release are dominated by salt bridge

interactions

We used umbrella sampling to characterize the free energy in the (extended) neighborhood
of the string pathway. In this method, copies of the system are restrained to different
values of the CVs to enforce sampling, and the contributions from different copies are
then reweighted to obtain the correct equilibrium statistics (see Methods). Because the
computational cost of umbrella sampling grows exponentially with the number of CVs, we
again focused on the two-dimensional space defined by the ADP—subunit D distance and
the subunit D-E angle. Care was taken to ensure convergence, as discussed in Methods.
The free energy as a function of these CVs is shown in Fig. 3.2A. As the ADP—-
subunit D distance increases from 10 to 13 A, there is a steep rise in the free energy to

a plateau that is about 10 kcal /mol above the bound state, consistent with the fact that
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Figure 3.2: Electrostatic interactions dominate the energetics of nucleotide release. (A)
The free energy profile of the release process, calculated using umbrella sampling. (B)
and (C) show the interaction between Mg-ADP and key active site residues. The solid
lines show the coordination of the Mg2t ion, and the dotted lines represent hydrogen-
bond interactions. Colors are the same as in Fig. 1D. (B) A representative nucleotide-
bound structure, from (8.5 A, 60.2°) in (A). (C) A representative structure from the
region of rapid increase in free energy, specifically (10.4 A, 64.0°) in (A). (D) Alternative
projection of the umbrella sampling data in (A). The CVs are the subunit D-E angle and
the electrostatic interaction energy between solvent and active-site residues K294, T295,
E319, and D378.

nucleotide binding is required for the hexamerization of KaiC [16]. This rise coincides with
the disruption of electrostatic interactions in the active site: the sidechains of T295, E319,
and D378 directly and indirectly determine the coordination of the Mg2t ion, and the
sidechain of K294 makes a salt bridge to the terminal phosphate group of the ADP (Fig.
3.2B). Among these residues, K294 and T295 are Walker A residues, D378 is a Walker B
residue, and E319 is a catalytic glutamate [39]; the importance of such conserved residues
for nucleotide binding and catalysis is well-established for many AAA+ and RecA-like

ATPases [155]. The free energy plateau for ADP—subunit D distances greater than 10
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A is centered on subunit D-E angle values of about 64°, compared to 60° observed in
the crystal structure. Although this opening permits additional water molecules into the
active site, maximum solvation is not achieved until after loss of the protein-nucleotide
interactions (Fig. S3.12).

In addition to the interactions listed above, two arginine residues on the periphery of
the active site also exhibit strong electrostatic interactions with Mg-ADP for ADP—subunit
D distances up to 16 A (Fig. 3.2C). R451 forms salt bridges to each phosphate group
in turn as the ADP makes its way out of the protein. The interaction of Mg-ADP with
R459 from subunit E contrasts with those discussed so far in that it is net repulsive. Both
R451A and R459A abolish oscillation in vivo [174], confirming the importance of these two
residues. In particular, R459 is an arginine finger, a common motif required for sensing the
presence of y-phosphate groups during ATP hydrolysis [155, 174].

In all the nucleotide release simulations that we performed, the Mg2+ ion and
ADP dissociated from the active site together, even though no restraint was applied to
enforce either the Mg—ADP or Mg—active site distance. However, it has been suggested
for F1-ATPase that the Mg?" ion leaves prior to ADP dissociation [175], so we also
considered such a two-step release mechanism. To test this possibility, we ran a free energy
calculation to determine the standard binding free energy of the Mg2t ion to a CII active
site with bound ADP using the double annihilation method [176] (see Methods and Figs.
S3.13 and S3.14). The result of the calculation suggests that the standard binding free
energy of MgZt is at least —34 keal /mol, which is very strong. We thus disfavor the two-
step release mechanism.

Mg-ADP release is regulated by tryptophan residues. Two tryptophan residues close
to the protein surface also make extensive contact with the adenine base throughout
the release process (Figs. 3.2B and 3.2C). The sidechain of W331 forms hydrogen bond
interactions first with the adenine base, and then with the phosphate groups as ADP

moves out of the active site. The geometry in proximity of W462 is suggestive of m-
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stacking, although the force field does not explicitly include such effects. Previous
experiments point to the importance of these residues; the mutations W331F and W462F
lead to abnormal oscillations in vitro [79], and W331A traps KaiC in a constitutively
phosphorylated state [60].

Evolutionarily, W331 and W462 are highly conserved among KaiC proteins found
in KaiABC clusters in the cyanobacterial phylum, a clade known as KaiC1 (Table S3.1)
[14]. W331 is also conserved among KaiC3 homologs, which are functionally poorly
characterized [177]. Because of the proposed role of KaiA as a nucleotide exchange factor
[19] and the observation that KaiA-mediated phosphorylation has only been found among
KaiCl homologs [14], the simulation results are consistent with the notion that the
tryptophan residues, in particular W462, may play a role in KaiA-regulated nucleotide

exchange in the CII domain.

3.3.8  Subunit angle motion 1s coupled to quaternary conformational

changes

In the crystal structure of the KaiC protein employed in the present study, all six CII
intersubunit angles assume equilibrium values around 60° (the difference between the
largest and smallest angle is no more than 0.3°). The umbrella sampling calculation,
however, reveals an additional asymmetric metastable state where the subunit interface
from which the nucleotide is released opens to approximately 64°, while the nucleotide
remains bound (Fig. 3.2A). This metastable state is separated from the (essentially
symmetric) global minimum by a free energy barrier that is less than 2 kcal/mol,
indicating that interconversion between the states is thermally accessible. To understand
the significance of the large-angle asymmetric state, we projected the umbrella sampling
data onto a new CV space consisting of the subunit D-E angle and the electrostatic
interaction energy of water with the active site residues discussed above (K294, T295,

E319, and D378) (Fig. 3.2D). This free energy surface indicates that the subunits
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with a larger angle allow stronger interactions between active site residues and solvent,
facilitating nucleotide release. The existence of asymmetric quaternary states that are
thermodynamically stable in CII is consistent with the observation of a mixture of loose
and tight subunit interfaces in a high-resolution CI crystal structure (PDB ID: 4TLA)
[156], although the largest angle observed therein is only 61.7°.

Given the existence of multiple metastable states distinguished by the intersubunit
angles, we sought to determine if there are additional large-scale quaternary conforma-
tional changes that are associated with the release process but are not described by the
angles. To detect such motions, we applied principal component analysis (PCA) to the
Ca atoms in the structures obtained from umbrella sampling, without reweighting, after
aligning all structures with respect to the CII domain of subunit D. The first two principal
components, PC1 and PC2, account for most of the variance (43% and 28%, respectively)
(Fig. S3.15A). Structures representative of the extremes of these two PCs are shown in
Fig. 3.3A and B. PC1 represents the formation of a split washer structure with a helical
pitch up to about 11 A (Fig. 3.3C) in the CII domain, and a concomitant rigid-body
tilt in the CI domain. The split in the CII ring is located at the subunit D—E interface,
the site of Mg-ADP dissociation in the simulation. PC2 represents a concerted, circular
compression motion in both domains in response to the angle-widening motion at the
subunit D-E interface.

Given that the PCs are correlated with the subunit D—E angle, which possesses at
least two metastable states in the nucleotide bound state (Fig. 3.2A), we hypothesized
that motions in the direction of the PCs are accessible without nucleotide release. To test
this hypothesis, we measured motion along the aforementioned PCs in a 100 ns SMD
simulation of the bound state, with the artificial force in the direction of subunit D-E
angle widening (Fig. S3.15B). Although the PCs explore a smaller range of values, the
intersubunit angle variations in the nucleotide bound state clearly result in changes to the

first two PCs, which remain the most dominant modes.
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Figure 3.3: Principal component analysis (PCA) reveals large-scale conforma-

tional changes during nucleotide release. (A) Principal component (PC) 1 represents
the formation of a split washer structure in CII, and (B) PC2 represents a circular
compression in both domains. In (A) and (B), arrows show the Co difference vectors
between a pair of structures representing the extremes of motion along the PC, aligned
to minimize the difference in the CII domain of subunit D. Structures in (A) are chosen
to have similar PC2 values, and structures in (B) are chosen to have similar PC1 values,
such that the differences shown approximate motions in only the PC of interest. (C)
Conformations of the CII domain in the low PC1 (left) and high PC1 (right) structure,
respectively. The side-by-side comparison indicates that the PC1 eigenvector points in the
direction of increased helical pitch in the CII domain.

A-loop conformation is coupled to the intersubunit angle. We now use our simulation
results to elucidate possible mechanisms of KaiC regulation. As discussed in the

Introduction, an outstanding question is how KaiA promotes phosphorylation. Previous
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work suggests that KaiA binding stabilizes structures known as the A-loops (residues 486
to 498, preceding the C-terminal tails of KaiC) in an extended conformation [60, 178].
Thus, we explored whether the umbrella sampling simulations resulted in structures with
extended A-loops, with a view toward understanding the impact of KaiA binding on the

KaiC structure.

Extended

20 40 60 80
A-loop angle (deg)

Figure 3.4: The A-loop (residues 486 to 498) is coupled to nucleotide release. (A) The A-
loop (blue) of subunit D (yellow) samples an extended conformation. (B) The structure of
the subunit D A-loop in buried and extended states can be quantified using the angle
formed by the Co atoms at residues 486, 490 and 496, which are represented as gray
spheres. The values of this A-loop angle are 33.6° and 75.8° in the buried and extended
states shown in (B). The subunit D-E angle values in the buried and extended structures
are 62.9° and 65.7°, respectively. (C) Projection of the umbrella sampling data onto the
CV space consisting of the A-loop angle and the subunit D-E angle shows that a more
extended subunit D A-loop conformation is correlated with a larger subunit D-E angle.

We observed that the A-loop in subunit D sampled an extended conformation during
nucleotide release (Fig. 3.4A), albeit to a lesser extent than that in an NMR structure of
a KaiA fragment in complex with the KaiC C-terminus [60]. We only observe this state
in subunit D (Fig. 3.4A and Fig. S3.16), which suggests that it is a specific response to
Mg-ADP dissociation. To quantify this behavior, we calculated the angle formed by three

atoms at the beginning, middle, and end of the A-loop (Fig. 3.4B) and projected the free
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energy onto this A-loop angle and the subunit D-E angle. The resulting surface shows
that the A-loop is more likely to sample the extended state as the subunit D-E angle
widens (Fig. 3.4C). Because we expect allostery to be bidirectional (reflecting the fact
that free energies are state functions) [179], this finding is equivalent to A-loop extension
favoring a larger intersubunit angle, or, taking this logic one step further, KaiA binding
favoring a larger intersubunit angle. Given the importance of the intersubunit angle for
the energetics of nucleotide release, detailed in previous sections, the coupling of KaiA
binding to intersubunit angle opening may mechanistically explain its ability to act as a
nucleotide exchange factor.

The simulation hints at two other potential mechanisms that could couple the A-
loop to the active site. First, the A-loop may be both sterically and electrostatically
coupled to the active site via a S-hairpin (residues 436 to 459, which we denote Sar,)
(Fig. S3.17A). Ba7, is located directly between the active site and the A-loop and harbors
R451, which can interact electrostatically with the ADP, as well as E444, which forms a
salt bridge with R496 in the A-loop. More specifically, 541, is involved in contraction of
subunit D (Fig. S3.17B and C) as the ADP-subunit D distance reaches around 10-11
A, a point at which the free energy increases sharply (Fig. 3.2A). This contracted state
is characterized by 1) a subtle movement of ala, B1,, and the A-loop, 2) a decrease in
the distance between the R451 sidechain on 551, and the a-phosphate group on ADP
from approximately 8.6 A to 4.5 A, and 3) a remodeling of the release channel due to
the nucleotide movement. Among these conformational changes, the movement of ADP
towards R451 has the most obvious consequences for the energetics of the release pathway.
Bar thus connects the binding affinity of ADP (through the R451-ADP interaction) with
the A-loop conformation.

Second, the simulation suggests that A-loop conformation is coupled to the active
site phosphorylation state through the 422-loop [180] (Fig. S3.18), so called because the

A422V mutation alters the amplitude and phase-resetting behavior of the oscillator in
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vivo [181]. Our results suggest that the 422-loop couples to the active site via a water-
mediated hydrogen-bond network between pT432 and D417, a residue on the 422-loop.
This interaction, however, can be disrupted as the 422-loop moves away from the active
site and forms hydrophobic contacts with the A-loop. In the release simulation, these
two states appear to exist in a dynamic equilibrium, which presumably can be shifted by
the phosphorylation state of KaiC and the binding of KaiA, thus making the 422-loop a
potential feedback mechanism that communicates the KaiC phosphorylation state back to
the A-loop to modulate KaiA binding. This idea is consistent with the observations that,
even in the absence of KaiB, KaiC phosphorylation is less sensitive to KaiA in the pS431
state [21] and the binding affinity of KaiA to KaiC is reduced in the pS431 and doubly
phosphorylated (pT432/pS431) states [66].

3.3.4  CI/CII interaction is mediated by a CI [3-hairpin

As discussed in the Introduction, KaiB binding to CI is an important feedback process
that allows oscillations to occur. The formation of the KaiB-KaiC complex appears to
be determined by the retention of ADP in CI after hydrolysis [77, 78] and is critically
dependent on the S431 phosphorylation of the distal CII domain [17, 21, 79]. How the
phosphorylation state in CII is communicated to CI to allow KaiB binding is a major
unresolved question. Based on gel filtration experiments that monitor the binding of
separated CI and CII domains with phosphomimetic mutations, it has been suggested
that, when CII is in the pS431 state, it “stacks” more tightly with CI, even in the
absence of the linker that tethers the two domains together [67]. Because ADP does not
accumulate in the isolated CI domain, but ATP hydrolysis still occurs [19], a plausible
hypothesis is that phosphorylation-dependent interactions between CII and CI inhibit
nucleotide release from CI. We thus examined the CI/CII interactions in our umbrella
sampling simulation data to determine if there were structures that could provide hints

about how information is communicated between CI and CII.
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We observed changes in linker-independent CI/CII contact, as measured by their van
der Waals interaction energy (Fig. S3.19A). We specifically did not include the linker in
the energy calculation to mimic the CI/CII domain stacking experiment [67]. Because the
PCA results, detailed in a previous section, revealed motions between the two domains,
especially along PC1, we hypothesized that the CI/CII contact energy should change
with the values of the PCs. However, we found that its variance could not be explained
by projection onto the ten largest PCs. Instead, changes in CI/CII contact energy are
largely mediated by interactions between the CII domain and six S-hairpin structures
(residues 203 to 226, which we denote Br/11), one in each KaiC subunit (Fig. 53.19B).

By /11 is part of the [-sheet structure at the hydrophobic core of each CI globular domain,
and its secondary structure can become frayed near the turn region. When the two
domains separate, the turn region of /11 Moves away from the CII domain while leaving
the rest of the CI/CII interface largely unchanged (Fig. S3.19C and D). Salt bridges
connect neighboring f; JII hairpins: R216-E221 is stable throughout our simulations,

and E214-R217 is favored by reduced CI/CII contact. The simulations thus suggest new

targets for further study of CI/CII interactions.

3.4 Discussion

Our simulations can be synthesized into a new interpretation of the molecular events in
the oscillator cycle. Near dawn, KaiC is largely unphosphorylated [12]; while phosphor-
ylation can occur, it is not sustained because the ADP retained in the CII active site
allows rapid dephosphorylation [38, 39]. As KaiA is released from inhibitory complexes,
it binds the A-loop and stabilizes an extended conformation [60], favoring the opening of
subunit interfaces and exchange of ADP for ATP in solution. This shifts the equilibrium
towards phosphorylation which occurs first on T432 and then on S431 [17]. During this
part of the cycle, CI slowly hydrolyzes ATP [156], but the product ADP molecules can

be rapidly exchanged with ATP in solution [19], possibly because the CI/CII linker is in
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a favorable conformation similar to the extended A-loop (see discussion below). Phos-
phorylation on T432 favors A-loop extension, encouraging further phosphorylation [67].
However, subsequent phosphorylation of S431 eventually results in conformational changes
in the CI/CII linker and the fj /11 hairpin, among others, that restrict the ability of CI to
release ADP. Inhibition of ADP release in CI when S431 is phosphorylated may explain
why phosphomimetic mutants show decreased ATP hydrolysis at steady state [26]. As CI
ATPase activity causes ADP to accumulate, the B-loop adopts an extended conformation
that allows KaiB to bind [77]. KaiB cooperatively assembles in a ring-like structure on
the CI domain [78], which may further restrict nucleotide release from CI. KaiB bound

to KaiC adopts an alternative fold which can then bind to and inhibit KaiA [22, 77, 78].
Sequestration of KaiA limits nucleotide exchange in CII, and CII tends to dephosphorylate
[12], first T432 and then S431 [17], returning KaiC to the beginning of the cycle.

This model raises the question of how Kai systems that lack KaiA, such as those
from the marine Prochlorococcus cyanobacterial species [182], are able to build up their
KaiC phosphorylation levels [183]. A plausible answer comes from the fact that such
KaiC sequences are truncated near the A-loop, compared with S. elongatus KaiC [183].
Previous experiments on S. elongatus KaiC demonstrated that truncating the A-loop
can result in KaiA-independent, constitutive hyperphosphorylation [60], which suggests
that an analogous mechanism may allow Prochlorococcus KaiC to autophosphorylate
without KaiA. Our simulations thus make the prediction that Kai oscillators that lack
KaiA should have KaiCs with active sites that are more accessible to molecules in
solution, obviating the need for KaiA-like nucleotide exchange factors. Relative solvent
accessibilities of different KaiCs should be measurable with hydrogen-deuterium exchange
mass spectroscopy [23].

A striking feature of the simulation structures is their broken Cg symmetry, especially
the split washer and ring compression motion observed in the PCA. This is consistent

with a recent crystal structure of the CI domain with a mixture of bound ATP and ADP,
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which resulted in heterogeneous subunit structures that correlate with the hydrolysis
states of the active sites [156]. In addition to nucleotide binding, KaiA binding is another
potential source of KaiC asymmetry. Biochemical studies suggest that one dimer of KaiA
is sufficient to stimulate the phosphorylation of a KaiC hexamer [134]. Given that one
KaiA dimer can bind to at most two KaiC subunits [60, 61], it likely activates only part of
the ring at a time. This model is consistent with the asymmetric conformations observed
for other ring-shaped oligomeric ATPases, especially those in the AAA+ and RecA/DnaB
superfamilies [155, 184, 185].

The split washer structure of KaiC is also found in AAA+ ATPases such as the
bacterial replicative helicase DnaB [186], the Simian virus 40 replicative helicase Ltag
[187], as well as NSF, an eukaryotic protein involved in SNARE complex disassembly
during membrane trafficking [152]. In DnaB, NSF and KaiC, the split in the hexameric
ring is located at an apo subunit interface, suggesting that the split interface is implicated
in nucleotide exchange. The parallel between KaiC and NSF is especially striking, because
similar to KaiC, the D1 and D2 domains of NSF also assemble into double-tiered ring
structures with distinct functions. These split washer structures are reminiscent of the
helical structures of the RecA filament, where the helical pitch is dependent on the
states of the nucleotides bound to the subunits [166, 168]. However, the helical pitches
observed in the non-filamentous proteins are much smaller. Taken together, it is likely
that the hexameric ATPases can access similar quaternary conformational spaces despite
their significant sequence and functional divergences. This idea raises the possibility
that KaiC may be able to access other symmetry-broken states that are not explored in
our simulations but are observed in other hexameric ATPases, such as a conformation
with Co symmetry (i.e., a dimer of trimers), observed in the unfoldase ClpX [151], or
a conformation with C3 symmetry (i.e., a trimer of dimers), observed in the replicative
helicase DnaC of Geobacillus kaustophilus HTA426 [188]. Analysis of cryo-EM data

without symmetry averaging may reveal such states. Alternatively, a bis-His motif [189] or
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disulfide bond can be engineered at the subunit interface to limit the angle motion, which
should lead to a decrease in the nucleotide release rate.

An outstanding question for KaiC is whether its asymmetric features propagate
around the ring in an ordered fashion, as is believed for F{-ATPase, or in a stochastic
fashion, as is believed for ClpX [190]. An indirect way of distinguishing these possibilities
would be a mutant doping [132] or covalent linking [190] experiment where WT and CII-
catalytically-dead subunits are mixed in a single KaiC hexamer. Because a stochastic
mechanism implies independent catalytic cycles at individual active sites, the hybrid
protein should still be able to function in the full oscillator. On the other hand, a
sequential /rotary mechanism would predict abolition of oscillation, because the dead
subunits would prevent propagation of activity around the ring. Indeed, it is already
known that catalytically dead CII subunits can be efficiently phosphorylated when mixed
with WT CII [110].

(B) Cl

Linker

B-loop

Figure 3.5: CI and CII share similar conformations. In (A) and (B), Secondary
structural elements identified by the simulations as important for nucleotide release from
CII (A) and their homologs in CI (B) are colored in blue. In each case, the structure
shown is the domain from the D subunit of the crystal structure (PDB ID: 3DVL).
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We also speculate here on how our analysis of the nucleotide release pathway in CII
may shed light on the regulation of nucleotide release in CI. Given that the CI/CII double
ring structure likely arose as a result of gene duplication [150], it is unsurprising that the
CI and CII structures share many similarities (Fig. 3.5). In particular, the CI structural
element homologous to the A-loop is the linker between the CI and CII domains, which
adopts a conformation in the crystal structure that is reminiscent of an NMR A-loop
structure in complex with KaiA [60, 61]. Given the importance of the A-loop in regulating
nucleotide release in CII, this apparent analogy raises the possibility that CII may act
on CI through the linker in a way that is similar to how KaiA acts on CII through the
A-loop. If KaiA is a nucleotide exchange factor for CII, then it follows that CII may
act as a nucleotide exchange factor for CI and regulate its intersubunit angle opening.
This proposal makes the prediction that when CII is in a pS431 state that favors KaiB
binding, the CI/CII linker may adopt an alternative conformation that is more similar
to the buried A-loop in CII. Furthermore, the BAL and j; /11 hairpins, two structural
features that our simulations suggested deserve further study, are also homologous in the
two domains (Fig. 3.5). For example, it would be interesting to disrupt contacts at the
CI/CII interface by mutating residues in the R216-E221 and E214-R217 salt bridges, in
the hope of decoupling the two rings from each other, which should result in dysregulation
of KaiB binding and/or KaiA sequestration. Because a7, likely couples the A-loop to the
active site, this parallel suggests that there may be unexplored similarities between the

mechanism of CI/CII interaction and KaiA-KaiC interaction.

3.5 Conclusions

In this paper, we implemented a pipeline of enhanced sampling methods for molecular
dynamics to elucidate and quantitatively characterize the pathway for ADP release
from KaiC, a homohexameric ATPase that serves as the central component of the

cyanobacterial circadian clock. Nucleotides bind at the interface of KaiC subunits, and
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the energetics of its release are dominated by the interplay of active site solvation with
electrostatic interactions among charged active site residues, the Mg2t ion, and the

ADP phosphate groups. The calculations suggest that the Cg symmetry of the hexamer

is broken during operation, with the interface opening in a split washer fashion. We
identify specific interactions that couple this opening to extension of the A-loop, providing
a molecular mechanism for the role of KaiA as a nucleotide exchange factor for KaiC.
Parallels between structural elements in the two homologous domains of the protein
suggest the intriguing possibility that CII may serve as a nucleotide exchange factor for
CI. Overall, the information that the simulations provide about structures accessible to

KaiC reveal fruitful connections to other ATPases.

3.6 Methods

3.6.1 System setup

The initial coordinates of S. elongatus KaiC with bound ATP and Mg2+ were obtained
from the Protein Data Bank (PBD ID: 3DVL) [164]. The structural water was retained,
and the C-terminal tail (residues 499 to 519) in each subunit was deleted to reduce the
size of the system. In the 3DVL structure, which has a resolution of 2.8 A, no Mg2*
was present in the CI ATP binding sites. We introduced Mg?™T into all six CI nucleotide
binding sites using the Mg2t coordinates from a 1.94 A resolution KaiC CI structure
(PDB ID: 4TL7) [156] after aligning the ATP molecules modeled in each chain in the
two structures. In 4TL7, the CI Mg2t is coordinated by T530~1, O3 and OS2 of ATP,
and three water molecules, which are absent in 3DVL. To complete the octahedral Mg2+
coordination geometry, we added three water molecules to each CI active site based on
the 4TL7 crystal water positions and changed the coordinates of the three phosphate
groups in ATP to those in 4TL7. We used a similar procedure to model Mg-ADP in the

CII nucleotide binding sites, using the Mg-ADP coordinates in a 1.8 Aresolution, ADP-
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containing CI structure as a reference (PDB ID: 4TLA) [156].

The subunits in the 3DVL crystal structure are in the doubly phosphorylated
(pT432/pS431) state. In all subunits, we deleted the phosphate group on S431 and
retained the phosphate group on T432 to mimic the pT432 phosphorylation state.
Together, the nucleotides and phosphorylation states mimic a KaiC with CI in the pre-
hydrolysis state and CII in a kinase product state during the initial phosphorylation phase
of the oscillator.

The model system was solvated in a cubic box of TIP3P water molecules, and the
final dimensions of the box were 132 A x 132 A x 132 A. The system was neutralized,
and then brought to a final concentration of 150 mM KCI, which represents 194 KT ions
and 122 CI” ions. The total number of atoms in the system was 216,892. The system was
setup using CHARMM-GUI [191-193]. All molecular visualizations were made in VMD

1.9.2 [194]. Further details on the system setup are provided in Supplementary Methods.

3.6.2 Minimization and equilibration

Unless otherwise specified, all MD simulations were performed using GROMACS

5.1.4 [195], with the CHARMMS36 force field parameters for the protein (with CMAP
correction) [196-198], TIP3P water [199], ions [200], and the nucleotides [201]. The energy
of the system was minimized with the steepest descent method, until the largest force

in the system was smaller than 1000.0 kJ/mol-nm. The system was equilibrated in the
NVT ensemble for 25 ps with a 1 fs integration timestep, followed by the NPT ensemble
for 10 ns with a 2 fs integration timestep. The positions of all non-hydrogen atoms in

the protein and its ligands were constrained during energy minimization and the NVT
equilibration runs to stabilize the protein structure and enforce the octahedral Mgt
coordination geometry. The temperature of the simulations was set at 303.15 K using the
modified Berendsen thermostat with a time constant of 1.0 ps. For the NPT simulations,

the pressure was set at 1 bar using Parrinello-Rahman coupling with a time constant of
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5.0 ps. Periodic boundary conditions were employed, and the particle-mesh Ewald method
[202] was used to calculate electrostatic forces with a real space cut-off distance of 1.2

nm. The Lennard-Jones forces were smoothly switched off from 0 to 1.2 nm. All bonds to
hydrogen atoms were constrained using the LINCS algorithm [203] in the NVT and NPT

simulations.

3.6.3 Locally enhanced sampling

Locally enhanced sampling [157-159] was used initially to explore the structural changes
at the active sites during nucleotide release (Fig. 3.1B and Fig. S3.6). All locally enhanced
sampling simulations were performed using the implementation available in NAMD

2.9 [204] with CHARMMS36 force field parameters. The structure and topology files
required for the simulations were generated using the psfgen plugin for VMD 1.9.2 [194].
Specifically, each of the six Mg-ADP bound to CII active sites were duplicated 200 times.
The Mg-ADP copies at each active site do not interact with each other, while their intra-
and inter-molecular interactions were scaled down by a factor of 200. To preserve the
structural integrity of the ADP molecules, the force constants for all bond, angle, dihedral
angle and improper dihedral angle terms for ADP were manually multiplied by 200; in
addition, an artificial bond with a force constant of 60,000.0 kcal/ mol-A? and equilibrium
bond length of 2.91 A was added between the P and P3 atoms to prevent the a- and j3-
phosphate groups from collapsing onto each other. To preserve the interaction between
each Mg2t and its associated ADP, another artificial bond with a force constant of
40,000.0 kcal/ mol-A2 and equilibrium bond length of 2.50 A was added between the P3
and MG atoms. Further details on the simulation setup are provided in Supplementary

Methods.
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3.6.4 Steered MD (SMD)

Constant-velocity SMD simulations [160] were done using the moving restraint
functionality in PLUMED 2.3 [205], which applies a time-dependent bias of the form
U(z) = %/{(x — x0(t))? to a given CV x; here & is the force constant, and zo(t) is the
center of the biasing potential. The collective variables used in the SMD and subsequent
string and umbrella sampling calculations are defined in Table S3.1.

As described in Results, we used SMD to construct an initial pathway for the string
calculations; this pathway was generated in three steps. First, to open the intersubunit
angle, a harmonic bias with a force constant of 100,000 kJ/ mol-rad? was applied to the
subunit D-E angle, and the center of the potential was moved linearly, over the course of
1 ns, from 1.04 rad to 1.23 rad. Second, to pull out the ADP, a harmonic bias with a force
constant of 1,000 kJ/ mol-nm? was applied to the ADP-subunit D distance, and the center
of the potential was moved linearly from 0.8 nm to 3.0 nm over the course of 1 ns. During
the ADP pulling simulation, the subunit D-E angle was restrained at 1.23 rad. Finally,
the subunit D-E angle was closed from 1.23 rad to 1.13 rad using the same protocol as
that in the first step, while the ADP—subunit D distance was restrained at 3.0 nm.

We note that splitting the active site residues by their subunit membership and
steering on ADP—subunit D distance and/or ADP-subunit E distance independently
provided better control of nucleotide position in SMD simulations (and subsequent string
and umbrella sampling simulations) than a single CV measuring distance to the center of
mass of all active site residues. This is because the value of the intersubunit angle variable
affects the overall center of mass of the active site residues; tracking the distances to the
residues in the two subunits separately largely decouples the intersubunit angle from the

progress of the Mg-ADP out of the protein.
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3.6.5 String method

To initialize the images of the string, we selected 24 structures that are roughly equally
spaced along the SMD pathway in the CV space of subunit D-E angle and ADP—subunit
D distance and then equilibrated them for 5 ns with restraints in the same CV space.

The pathway was then refined by the string method with fixed end points, as described in
[161], implemented as an in-house Python wrapper for GROMACS and PLUMED. Briefly,
at each iteration of the calculation, each structure was equilibrated with a harmonic

restraint centered on the images for 20 ps. The string path was then updated via

OF (z"(7))

3
2+ 87) = 20(r) - 87’3 Pyt () 2L
j=0 ’

Here, the ith CV evaluated at the nth image is denoted as z'(7), and 7 tracks the
progress of the gradient descent in the CV space. The local gradient VF was computed
as the average displacement from each image during a 50 ps production run, scaled by the
force constants. The matrix P removes the component of VF' parallel to the string at each
image. The string was propagated with a constant multiplier A7 = 0.0001. The updated
string is linearly interpolated and smoothed before the next iteration. We did not apply
any correction for non-linear dependences between the CVs.

The string calculation employed nine collective variables, described in Table S3.1.
The force constants used in the production runs were 10,000 kJ/ mol-rad? for the angle
variables and 2,000 kJ/ mol-nm? for the distance variables. The force constants used in
equilibration were twice as large. We found that 30 iterations of the string simulations
were sufficient for generating a qualitatively reasonable pathway, which we used to

initialize the umbrella sampling (see Supplementary Methods, Figs. S3.20 and S3.21).
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3.6.6 Umbrella sampling and analysis

We performed umbrella sampling calculations [163] using the harmonic restraint
functionality in PLUMED 2.3. Images from the string simulations were used as starting
structures, and additional windows were added iteratively using structures generated

from existing windows until overlapping coverage was achieved for the free energy basin
surrounding the minimum free energy pathway in the two-dimensional subspace of the
ADP—-subunit D distance and subunit D—E angle. The force constant on the ADP—subunit
D distance ranged from 2,000 to 60,000 kJ/ mol-nm?2, and the force constant on the
subunit D-E angle ranged from 10,000 to 600,000 kJ/ mol-rad?, depending on the local
free energy gradient. Each window was simulated for either 5 ns or 3 ns, depending on
the area of the CV space covered, and the first 1 ns was discarded for subsequent analysis.
Overall, a total of 3.18 us of simulation time distributed over 849 windows was used to
construct the free energy surface.

EMUS [206] was used to construct the free energy surface (Fig. S3.22A) and estimate
the error associated with the free energy (Fig. S3.22C). WHAM [207, 208] yielded
comparable results (Fig. S3.22B). The method for calculating averages conditioned on
the CV coordinates (Figs. S3.12, S3.19A, and S3.21) is detailed in the Supplementary
Methods. To find the free energy projection onto additional CVs not used in the umbrella
sampling (Figs. 3.2D and 3.4C), we reran the EMUS calculation with a fictitious restraint
on the additional CVs with zero force constant, and then averaged over the original CVs

that were not of interest.

8.6.7 Mg*" standard binding free energy calculation

The standard binding free energy of Mg2™ to a CII active site populated with ADP is
estimated indirectly via a thermodynamic cycle using the double annihilation method;
the method is outlined in [176], and the discussion below uses the notation therein.

The starting structure was obtained from an equilibrated system with CII-bound
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Mg-ADP. The Mg2T to be removed is restrained at its equilibrium position using a

set of harmonic biasing potentials (AG?ite) to eliminate the wandering ligand problem
[209] before decoupling from the ligand-binding pocket (—AGisriltte) using alchemical free
energy perturbation (AFEP) [210]. The harmonic positional restraints are then removed

(—RT In F;C°; discussed further in the Supplementary Methods). A separate cubic TIP3P

water box (60 A each side) with one Mg?t and 150 mM KCI was used to calculate the
(bulk

nt

coupling free energy in water (A ). Taken together, the standard binding free energy
is

AGY g = —AGH™ + AGSE® + RTIn F,C° — AGHK

int

The values for each individual term contributing to the standard binding free energy are
listed in Fig. S3.13, along with a thermodynamic cycle illustrating their relations. With
the exception of AGfliltte, the free energy calculations appeared well converged (Fig. S3.14).
The value of AGY, ; reported in the Results section is based on the value of AGiSIiltte in

the forward AFEP transformation, which most favors the alternative mechanism. Further

details of the simulation protocol are provided in Supplementary Methods.

3.6.8 Interaction energy calculations

Energy calculations for the analyses in Fig. 3.2 and Figs. S3.12, S3.19A and B were done
with the NAMDEnergy 1.4 plugin for VMD using the same force field as that in the
simulation. The energy calculation used a switch function with a distance of 10 A and a
cutoff distance of 12 A for nonbonded interactions and did not employ periodic boundary

conditions.

3.0.9 Principal component analysis (PCA)

The PCA of KaiC structures (Fig. 3.3 and Figs. S3.15 and S3.21) was done using the

NMWiz 1.0 plugin for VMD [211]. KaiC structures obtained from umbrella sampling
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were downsampled to every 1 ns and aligned by their CII subunit D structures. Only

the Ca positions for residues 20 to 497 in all six subunits were used for the analysis.

No reweighting was performed for the PCA. The projection of each structure onto a
principal component was calculated by finding the dot product of the normalized principal
component eigenvector with the displacement vector of each structure from the average

umbrella sampling structure (without reweighting).

3.6.10 Structural and sequence alignment

All structural alignment (Fig. 3.5) was done using STAMP [194, 212, 213], and
all sequence alignment (Table S3.2) was done using CLUSTAL Omega [214,
215]. The sequences used in the analysis in Table S3.2 and their annotation
were directly obtained from datasets published with [14], which are available at
https://dx.doi.org/10.6084/m9.figshare.3823899.v3.

3.7 Supplementary Results

3.7.1 Radially tnward release of ADP is unfavorable

We sought to assess whether there are alternative release pathways that were unexplored
by the locally enhanced sampling simulations because they are slightly disfavored
energetically relative to the pathway discussed in the main text. Based on the geometry
of the active site (Fig. S3.9) and an inward release pathway proposed for P; release after
hydrolysis in the CI domain [156], we considered a radially inward release pathway, where
a nucleotide would be released into the KaiC central channel and subsequently escape
through the exit at the CI ring opening (release through the CII end of the channel is
sterically hindered due to the presence of the A-loops).

To generate an initial guess for the inward release pathway, we used adiabatic biased
MD (ABMD) [216] with the bias on the distance between the center-of-mass of the ADP
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molecule and the CII ring while holding the subunit D-E angle open (see Supplementary
Methods). We found that ABMD was less likely than SMD [160] to distort the protein
structure in the absence of a good choice of bias coordinate, presumably because it takes
advantage of spontaneous thermal fluctuations in the system. In the ABMD simulation,
the ribose and adenine moieties rotate with the phosphate groups in place such that the
base enters the central channel first (Fig. S3.7). This motion is likely enabled by the fact
that the hydrophobic protein-ligand interactions are much weaker than the electrostatic
interactions, which results in differential mobility of the charged and hydrophobic moieties
of the ligand during release. To accommodate this motion, the Walker A motif (i.e., the
P-loop) at the binding site and the two adjacent 422-loops rearrange.

Similarly to our treatment of the outward release pathway, we refined the inward
release pathway with the string method and computed free energies with umbrella
sampling (see Supplementary Methods). Subunit D-E angle widening and nucleotide
movement are concurrent in the resulting pathway (Fig. S3.7A). However, the free
energy barrier for reaching the first intermediate state on the inward release pathway is
approximately 50 kcal/mol (Fig. S3.7B), compared with 10 kcal/mol for the outward
pathway. This suggests that the inward pathway does not contribute significantly to

release under physiological conditions.

3.8 Supplementary Methods

3.8.1 System setup

The protonation states of the titratable sidechains were determined using PROPKA 3.1
[217, 218] at a pH = 8, representing standard buffer conditions in in vitro biochemical
assays of KaiC. The phosphate groups on T432 were modeled as dianionic phosphate
groups. All histidine residues were modeled as neutral, with a proton at the NJ position;

the tautomers were determined by inspecting the histidine sidechain environments in
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the crystal structure. Four lysine residues in each KaiC subunit, K224, K232, K457 and
K465, as well as one glutamate residue, E357, were modeled as neutral. The geometry
of the E318 sidechain indicates that it forms a hydrogen bond with the phosphate
group on T432 in the protein crystal structure, suggesting that either pT432 or E318 is
protonated. However, the pKa estimates for the catalytic E318 varied widely between
10.2 in subunit A and 2.1 in subunit B of the crystal structure, likely due to subtle
variations in the distance between the E318 sidechain and the Mgt ion. This makes it
difficult to unambiguously determine the relative acidity of pT432 and E318. We thus
chose, arbitrarily, to make the E318 sidechains protonated in the simulation. Overall,

the protonation states set according to this procedure were found to be insensitive to

ATP/ADP binding in the CII domain.

3.8.2  Locally enhanced sampling

The locally enhanced sampling simulations were carried out using periodic boundary
conditions with cubic computational boxes. Particle-mesh Ewald was used to compute
electrostatic interactions with 1.2 nm cutoff in real space and a spline order of 6 and 144
grid points along all three spatial dimensions. The Lennard-Jones forces were smoothly
switched off from 1.0 to 1.2 nm. The non-bonded pair list was built with a cutoff distance
of 1.6 nm. The simulations were conducted in the NPT ensemble with a reference
temperature of 303 K and a reference pressure of 1 atm. A Langevin thermostat [219] with
a damping coefficient of 1 ps! was used. Isotropic volume fluctuations were controlled

via the Nosé-Hoover Langevin piston method [220, 221] with an oscillation period of 50

fs and a damping decay time of 25 fs. All bonds to hydrogen atoms were constrained using
the SHAKE algorithm [222]. The energy of the system was minimized with the default
algorithm in NAMD for 1000 steps, and then the system was equilibrated for 50,000 steps

with a 0.5 fs time step. The production run was 0.4 ns with a 1 fs time step.
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3.8.83  String method

The convergence of the string in the CV space was initially assessed by visual inspection of
projections onto 2D subspaces (Fig. S3.10), which suggested that all major conformational
rearrangements are complete well within 30 iterations. To verify this conclusion, we ran
an additional 70 iterations. Only the Spt—ala distance variable showed further relaxation
(Fig. S3.20).

To assess the relaxation of conformational degrees of freedom outside the CV space,
we computed projections onto the first two principal components (see Results in the main
text) and compared the results with the corresponding umbrella sampling average (Fig.
S3.21). We chose to investigate these two particular degrees of freedom because they are
biologically relevant and involve large-scale global conformational changes not directly
controlled in the string calculation. Consistent with the CVs, most of the relaxation of
these degrees of freedom occurs in the first 10 iterations; subsequent iterations result
mainly in fluctuations around the umbrella sampling average.

It is important to emphasize that we draw all our quantitative conclusions from the
umbrella sampling, and we have taken care to ensure its convergence (see Methods in
the main text). The main purpose of the string is to generate a qualitatively reasonable
pathway for the choice of CVs and initialization of the umbrella sampling. For this

purpose, it appears that 30 iterations are sufficient.

3.8.4  Umbrella sampling and analysis
Averages against the stationary distribution were estimated as

848

f(x)
1= [ fnerds =35 [ s = mto) o
where 7; is the partition function of each window , ¥;(z) = exp[—U(z)/RT] and

U(z) is the harmonic restraining potential. In practice, we replace z; with the estimates
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from the EMUS estimator z; and approximate the integrals using umbrella sampling
trajectory averages. In particular, this identity can be used to estimate the expectation

of the quantity f, conditioned on the system being in a set of configurations .S, which, in
this case, represents a bin in the 2D CV space. Specifically, we can rewrite the conditional

expectation of f as

where is the indicator function defined by

1, z€S8

0, otherwise

3.8.5 Mg standard binding free energy calculation

The simulation setup was similar to that used in the locally enhanced sampling
simulations, except that the time step used in all simulations was 2 fs, and for the bulk-
phase simulations, a spline order of 6 and 72 grid points was used for the particle-mesh
Ewald method.

Six restraints were defined on the distance between Mg2Jr and OS2 of ADP, Ov1
of T295, and the oxygen atoms on four water molecules to preserve the octahedral
coordination geometry. The force constants for all restraints are 10 kcal/ mol-A2, and
the centers were chosen based on the average distances over a preliminary simulation.
The free energy change due to the addition of the positional restraints (AG:E‘ite) was
calculated using thermodynamic integration (TT) [223]; specifically, the force constants for
all restraints were simultaneously incremented from 0 to 10 kcal/ mol-A? according to the
formula k) = 10)\4, with values set to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999,
0.9999, 1. The process was then reversed to assess convergence (Fig. S3.14A). Finally,

OG /O for each restraint was linearly interpolated and then integrated and summed
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together to obtain . Each AG?M state was simulated for 0.4 ns after 80 ps equilibration.
AFEP [210] was used to estimate AGiSIiltte and AG?nlfclk. Van der Waals interactions
were turned off with a soft-core radius-switching coefficient of 6.0 A2 from A = 0 to
A = 0.2 and a step size of 0.05, and then electrostatic interactions were turned off linearly
from A = 0.2to A = 1 with a step size of 0.01. The calculations were then reversed
to assess convergence (Fig. S3.14B). Each A step was simulated for 0.1 ns after 10 ps
equilibration. The simulations were post-processed using ParseFEP 2.0 [224], and the
BAR estimator [225] was used to determine AGiSriltte and AG?&H‘. Electrostatic finite-size
effects were corrected using the method proposed in [226].
The term —RT In F;C° [176] accounts for the contribution to the free energy change
from the translational degrees of freedom of the Mgt ion after all positional restraints
are removed and it is decoupled from the protein in the standard state. Specifically, C° =

N4/1mL ~ 1/1661 A3 is a conversion factor to standard state concentration (1 M) and

F} is defined in this case as

6 4
R [ ew [—2 Sk (= (e |~ 1 ) 1) /T | av
=1

where k; is the force constant of a Mg2t positional restraint, and (r;) is the corresponding
position vector of one of the six atoms used to define the Mg2+ positional restraints,
averaged over an equilibrium simulation, assuming that the equilibrium Mg2t position is
the origin. The integral was evaluated numerically over boxes centered at the origin with

successively larger dimensions until fluctuations in the results were within 107 A3,

3.8.6  Determination of a hypothetical radially inward release pathway

The adiabatic biased MD (ABMD) [216], implemented in the ABMD bias functionality
in PLUMED 2.3 [205], was used in conjunction with SMD [160] to generate an initial

pathway for inward release into the KaiC central channel. ABMD adds a time-dependent
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bias to a given CV z to steer the CV to a target value zg, similar to the action of a
Brownian ratchet. In practice, the CV is transformed to X (t) = (z(t) — zg,)?, and a half

umbrella bias potential is applied to X (¢) :

I (X(t) = X)), X(t) > Xm(t)
UX) =

0, X(t) < Xpn(t)
where & is the force constant, and X, (t) = min;«; X (7). A key feature of ABMD is that
the bias potential does not do work on the system, because the potential is updated only
when its value is zero.

To generate the initial pathway, we started from a structure selected from the SMD
simulation (see Method in the main text) in which the subunit D-E angle was opened to
1.17 rad. ABMD was then applied on the ADP-CII center distance (see Table S3.1 for the
definition of the CV) from the initial distance of 3.07 nm to the target distance of 0.0 nm
with a force constant of 1,000.0 kJ/ mol-nm?, while the subunit D-E angle was restrained
at 1.17 rad using a constant harmonic bias with a force constant of 100,000 kJ/mol-rad?.
The ADP—CII center distance reached the target value after 5 ns.

The initial pathway was refined using the string method and umbrella sampling,
similarly to the treatment of the outward release pathway (see Methods in the main text).
For the string calculation, 15 structures from the SMD and ABMD simulations were
selected to construct a two-step initial pathway where the subunit D-E angle was first
opened to 1.17 rad and then the ADP—CII center distance was reduced to 0.0 nm. The
structures were equilibrated for 5 ns with restraints in the 2D CV space, and then evolved
using the string method in a 7-dimensional CV space consisting of the ADP—CII center
distance variable and the six intersubunit angles for 30 iterations. The force constants
used in the production runs were 20,000 kJ/ mol-nm? for the distance variable and 10,000
kJ/ mol-rad? for the angle variables. The string was propagated with a constant multiplier

A1 = 0.00005. Images from the string calculation were used as starting structures for
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umbrella sampling on the ADP—CII center distance variable. Each window was simulated
for 5 ns, and the force constant ranged from 4,000 to 60,000 kJ/ mol-nm? depending on
the local free energy gradient. In total, 90 windows were used to construct the free energy

profile.

3.9 Supplementary Figures

(A) (8

Figure S3.6: Locally enhanced sampling indicates that the release pathway for Mg-ADP
points radially outwards, rather than inwards towards the central channel of KaiC. (A)
The initial structure. (B) The final structure at 400 ps, with 200 replicas. Subunit D is
shown in ribbon diagram in yellow, and subunit E is shown in green. Mg-ADP is colored
by element, as in Fig. 3.1D.
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Figure S3.7: The radially inward Mg-ADP release pathway is highly unfavorable. (A)
CII intersubunit angle changes during inward release. (B) The free energy profile for
inward release, calculated using umbrella sampling. (C) The inward release pathway
involves a rotational and bending motion of the hydrophobic moieties of ADP; the three
snapshots represent structures at ADP-CII center distance of, from left to right, 31.9 A,

25.7 A and 17.3 A.

120



Figure S3.8: The movements of a local gating element near the exit point of the release
pathway, consisting of a S-hairpin (fyy; residue 468 to 483) and an a-loop-a motif (ala;
residues 321 to 342). The structures are obtained from the string simulations. The
distance between the centers of mass of Bnt and ala takes the values of 11.0 Ain (A)

and 11.4 A in (B). The residues in close contact with the nucleotides are shown both in
licorice and surface representation. The ADP-subunit D distance in (A) and (B) are 8.6
A and 9.5 A, respectively, representing structures of the protein very early in the release
process.

Figure S3.9: The geometry of the CII
active site located at the subunit D-E
interface. Subunit D is shown in yellow,
and subunit E is shown in green. Note
that the nucleotide makes more extensive
contact with subunit D than subunit E.
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Figure S3.10: Convergence of the string simulations. The nine-dimensional string is
represented in eight two-dimensional subspaces, with the ADP—subunit D distance degree

of freedom used as a common progress variable. The color gradient represents the progress
of the string, with yellow being the first iteration and blue the thirtieth.
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Figure S3.11: The CI intersubunit
angles are decoupled from the CII release
process. The figure shows the motion of
the six CI intersubunit angles along the
final string path, plotted as a function of
the ADP-subunit D distance.

Figure S3.12: The average electrostatic
interaction energy between a group of
active site residues (K294, T295, E319
and D378) and Mg-ADP (yellow),

the solvent (gray), or both (dashed),
conditioned on the ADP—subunit

D distance. There is a rapid loss of
interaction between the active site
residues and Mg-ADP around 10 A,
which is not immediately compensated by
the solvent.
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Figure S3.13: Free energy simulations indicate that MgZt leaves with ADP. (A) The
thermodynamic cycle used to determine the standard binding free energy of Mgt in a CII
active site (AGgm d). Notationally, “4” indicates that Mg2+ is solvated in the bulk phase,
“” indicates that Mg2t is in complex with ADP in the active site, “*” indicates that

the position of MgZt is restrained, and “@” indicates that Mg2t is decoupled from the
environment. (B) The free energy change associated with each step in the thermodynamic
cycle. TT stands for thermodynamic integration, and AFEP stands for alchemical free
energy perturbation. The two values listed for are the results of the forward and backward
transformations, respectively (Fig. S3.14). See Methods for further details.
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Figure S3.14: The reversibility of the thermodynamic integration (A) and alchemical
free energy perturbation (B) calculations. (A) The cumulative free energy change

of imposing a harmonic distance restraint between Mg2+ and each of the six atoms
participating in the Mg%t coordination geometry (forward) and then removing the
restraint (backward). (B) The cumulative free energy change of coupling the Mg?T to
the environment through nonbond interactions (forward) and then decoupling the Mg?™
(backward), in either the CII active site (left) or the bulk phase (right). In both (A) and
(B) A represents the switching variable. See Methods for further details.
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Figure S3.15: Principal component analysis. (A) The square root of the largest 10
eigenvalues. The eigenvalues represent the variance along the corresponding principal
component (PC). The largest spectral gap occurs between PC2 and PC3, which indicates
that the first two PCs represent the most significant large-scale conformational changes.
The vertical scale on the right shows the variance explained by each PC as a fraction of
the total variance in Co positions. (B) The motion along PC1 and PC2 when steering
the subunit D-E angle at constant velocity over 100 ns; structures are saved every 10

ps. The force constant used in the SMD is 100,000 kJ /mol-rad?. The inset shows the
standard deviation of projections onto the first five PCs over the steering simulation.
Both the eigenvalues in (A) and the projections in (B) are calculated using the Ca atom
displacement vectors. The dashed curves represent the results of Nadaraya-Watson kernel
regression with the radial basis function kernel [227, 228]. The gamma parameter (i.e.,
the bandwidth for the radial basis function) was automatically chosen within the range
(1071, 101 to minimize the mean-squared-error of leave-one-out cross-validation.
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Figure S3.16: The distribution of the A-loop angle, defined as the angle formed by

the Ca atoms of residues 486, 490, and 496. Panels correspond to different subunits as
indicated. Data are from the umbrella sampling simulations, without reweighting. The
A-loop angle in subunit A, B, C, E and F rarely, if ever, exceeds 40°, while the subunit D
A-loop angle can reach up to 100°. The differential flexibility of the A-loop suggests that
the A-loop extension observed in subunit D is a specific response to nucleotide release.
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(C) Expanded r’_\

Figure S3.17: The A-loop is coupled to a contraction motion in subunit D through an
adjacent S-hairpin (a7,; residues 436 to 459). (A) Superposition and (B, C) side-by-side
comparison of the contracted (yellow/blue) and expanded (white) states observed in the
umbrella sampling simulations. Cov displacements larger than 1.5 A are indicated by green
arrows in (A). Key secondary structural elements are highlighted in blue: A-loop (residues
486 to 498), BAL,, Pt (residues 468 to 483) and ala (residues 321 to 342). Key residues
that couple the A-loop to the nucleotide through a1, (R451, E444 and R496) are shown
in licorice representation. (B) In the contracted state, the nucleotide is in contact with
W331, R451, W462, H463, F470 and 1472. (C) In the expanded state, the nucleotide is in
contact with S330, W331, N327, 1472, S473, D474, G460 and W462.
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Figure S3.18: The A-loop (residues 486
to 498) is coupled to the active site phos-
phorylation state via the 422-loop. When
the A-loop and 422-loop are not in close
contact, D417 on the 422-loop is more
likely to form a water-mediated hydrogen
bond network with pT432 as well as the
adjacent H429 and R385 (upper right).
However, when the 422-loop is in contact
with the A-loop, the increased distance
between the 422-loop and the active site
disrupts the hydrogen bond network
(lower left).
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Figure S3.19: CI/CII contact is mediated by the motion of a CI S-hairpin (fy /T
residues 203 to 226). (A) The average CI/CII van der Waals (vdW) interaction energy
conditioned on the ADP—-subunit D distance, calculated from umbrella sampling, shows
fluctuations on the order of 40 kcal/mol. (B) The variance of the CI/CII vdW interaction
energy is correlated with the gy /1T /CII vdW interaction energy (including Sy /11 in all six
subunits). The scatter plot represents the umbrella sampling results, sampled every 100
ps, and the best linear fit line without reweighting (vdW[CI/CII] = 168.3 kcal/mol +
1.27 vdW|fy 11/ClI]) is shown in yellow. (C) and (D) Structures representative of strong
and weak CI/CII interactions, respectively. Subunit D (yellow) and E (green) are shown
in surface representation, with a ribbon diagram of the secondary structure. The f; /1
structures in both subunits are rendered in blue, and the two salt bridge interactions that
couple neighboring Sy /11 structures, R216-E221 and R217-E214, are shown in licorice
representation.
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Figure S3.20: Comparison of the 30th (green circles) and 100th (blue squares) iterations
of the string calculation. The nine-dimensional string is represented in eight two-
dimensional subspaces, with the ADP—subunit D distance degree of freedom used as a
common progress variable.
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Figure S3.22: The free energy profile for the nucleotide release pathway is estimated
using EMUS (A) and WHAM (B); the two methods produce comparable results. The
asymptotic variance of the EMUS estimator is plotted with a logarithmic scale in (C).

The error analysis suggests that the free energy profile has sufficiently converged, with the
exception of a small region near (11 A, 61°).
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3.10 Supplementary Tables

Table S3.1: The collective variable (CV) definitions. The first section of the table defines
atom groups, which are then used in the second section to define the nine collective
variables employed in the string calculation.

Group Atoms

ADP All non-hydrogen atoms of the ADP molecule at the CII subunit
D-E active site

active site (subunit D) Subunit D Ca atoms on residues 286, 288, 289, 290, 291, 292, 293,
294, 295, 296, 297, 298, 299, 317, 318, 319, 378, 379, 413, 414,
415, 440, 442, and 451

active site (subunit E) Subunit E Ca atoms on residues 432, 435, 436, 437, 455, 456, 457,
458, 459, and 460

ala Subunit D Ca atoms on residues 329 to 334

Bt Subunit D Ca atoms on residues 473 to 476

CII Ca atoms on residues 260 to 498 in all subunits

subunit X¢ Ca atoms on residues 260 to 498 in subunit X

Collective variable (CV)  Type Groups

ADP-subunit D distance  Center-of-mass (COM) distance ADP, active site (subunit D)
ADP-subunit E distance =~ COM distance ADP, active site (subunit E)
Bnt—ala distance COM distance ala, Bt

Subunit A-B angle COM angle subunit A, CII, subunit B
Subunit B-C angle COM angle subunit B, CII, subunit C
Subunit C-D angle COM angle subunit C, CII, subunit D
Subunit D-E angle COM angle subunit D, CII, subunit E
Subunit E-F angle COM angle subunit E, CII, subunit F
Subunit F-A angle COM angle subunit F, CII, subunit A
ADP-CII center distance® COM distance ADP, CII

“X=AB,C,DEF
b The ADP-CII center distance variable is only employed for the hypothetical radially
inward release pathway (see the Supplementary Results and Methods).
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Table S3.2: Conservation of nucleotide gating tryptophan residues (W331 and W462) in
KaiC CII domains. The sequences used in the analysis and their annotation were directly
obtained from datasets published with [14].

Phylum® Homolog Hits W331 W462 Identity”
KaiC1 100 97 95 0.77+0.10
cyanobacteria KaiC2 15 0 0 0.348+0.007
KaiC3 24 21 0 0.50+0.09
KaiC1 5 0 0 0.23+0.01
a-proteobacteria  KaiC2 26 0 0 0.33+0.02
KaiC3 94 7 0 0.26+0.07
KaiC1 0 0 N/A
GNS bacteria KaiC2 1 0 0 0.32
KaiC3 9 5 0 0.41+0.15
KaiC1 132 0 2 0.244+0.06
euryarchaeotes KaiC2 111 0 0 0.25+0.06
KaiC3 206 O 4 0.25+0.05

% Only phyla that contain proteins with conserved CII
tryptophan residues are included from the original dataset.

b Identity is calculated based on comparison to KaiC in
Synechococcus Elongatus PCC 7942. The values reported
are the mean with standard deviation.
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CHAPTER 4
CHARACTERIZATION OF THE KAIB FOLDSWITCH
PATHWAY

4.1 Introduction

KaiB, a component of the Kai oscillator, functions primarily through its binding
interactions with KaiA and KaiC. The binding of KaiB to KaiC mediates the negative
feedback loop that suppresses KaiC phosphorylation at night. KaiB binds to the B-loop,
an unstructured loop region on the CI domain of KaiC [20, 77], in a cooperative fashion
[23, 140], and the binding interaction appears to require the ATP hydrolysis product,
ADP, in the CI nucleotide-binding pocket [28]. Once bound to KaiC, KaiB can sequester
KaiA from its site of action at CII, thus leading to KaiC auto-dephosphorylation [17].
When KaiB is not bound to KaiC, it exists in an equilibrium between tetrameric, dimeric,
and monomeric states, although the monomeric state dominates in the micromolar regime
[23]. KaiB is also a metamorphic protein with two known folds called the ground state
(gs) and the foldswitched (fs) state, and it appears to interact with KaiA and KaiC only
in the latter conformation [22].

Currently, several questions remain about KaiB’s function. First, model estimates
of the KaiB foldswitch and binding reactions suggest that it is slow, on the timescale
of hours [22], comparable to the kinetics of ATP hydrolysis in CI [26]. This raises the
question of exactly how the timescale of the switch to the dephosphorylation phase relates
to the kinetics of KaiB foldswitch and CI ATP hydrolysis. Is one of them rate-limiting,
or do both contribute to setting the timescale? Does KaiC play any role in the kinetics
of KaiB foldswitch? For example, does KaiB foldswitch become rapid once KaiC becomes
available for binding? Second, as one of the better documented examples of metamorphic
proteins [229-231], KaiB provides a unique opportunity to probe the biophysical basis

of multiple, stable protein folds, and the pathway(s) that allow their interconversion.
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Overall, it is clear that a detailed characterization of the KaiB foldswitch pathway is
critical for understanding the kinetics of the Kai oscillator, and may prove useful in future
engineering efforts to design oscillators with altered periods.

This chapter describes some preliminary results from our attempt to characterize
KaiB foldswitch using molecular dynamics (MD) simulations. We started with steered
MD (SMD) to generate an initial guess for the foldswitch pathway from the gsKaiB
monomer structure. The initial pathway was refined using the string method, and the
FAST method, an adaptive sampling method, was used to explore the KaiB conforma-
tional space. This is an ongoing study, and further details will be made available in future

publications.

4.2 Methods

4.2.1 Structural model for fsKaiB

Currently there are several NMR and crystal structures of the fsKaiB based on the
Thermosynechococcus elongatus KaiB [77], but no such structures exist for the S.
elongatus KaiB. The cryo-EM structure of the S. elongatus KaiABC complex (PDB ID:
5N8Y) [78] resolves the backbone configuration of the fsKaiB in complex with KaiA and
KaiC. Based on this structure (subunit G), the Rosetta Packer algorithm (with standard
energy weights) was used to generate five models for the side chain rotamers [232]. The
five models were virtually identical and agreed well with existing T. elongatus fsKaiB
structures. As such, one structure was chosen arbitrarily as a reference model for fsKaiB

for the purpose of subsequent steered MD and string calculations.

4.2.2  System setup

We used CHARMM-GUI [191-193] to setup the MD simulations. The initial protein
structure was chosen to be subunit A from a crystal structure of S. elongatus gsKaiB
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tetramer (PBD ID: 3DVL) [233]. The system was solvated with TIP3P water molecules,
and the final dimensions of the box after equilibration were 73.16 A x 73.16 A x 73.16
A. 36 KT ions and 36 Cl ions were added to the water box for a final concentration

of 150 mM KCI. The total number of atoms in the system was 39,551. All molecular

visualizations were made in VMD 1.9.3 [194].

4.2.8  Minimization and equilibration

All MD simulations were performed using GROMACS 2019.4 [195], with the
CHARMM36m force field parameters for the protein (with CMAP correction) [196—

198, 234], TIP3P water [199], and ions [200]. Steepest descent was used for energy
minimization, until the largest force in the system was smaller than 1000.0 kJ/mol-nm.
The system was equilibrated first in the NV'T ensemble for 25 ps with a 1 fs integration
timestep, followed by the NPT ensemble for 5 ns with a 2 fs integration timestep,

and lastly in the NVT ensemble for 5 ns using the average box size from the NPT
equilibration. Restraints were applied to all non-hydrogen atoms in the protein during
energy minimization and the initial NVT equilibration run, with a force constant of 400
kJ /mol-nm? for the backbone atoms and 40 kJ/mol-nm? for the sidechain atoms. The
velocity Verlet algorithm was used to integrate the equations of motion. The temperature
of the simulations was set at 303.15 K using Nése-Hoover chain [235] with a time constant
of 1.0 ps, and the protein and the non-protein atoms were coupled to the thermostat
separately. For the NPT equilibration, Parrinello-Rahman coupling was used to set the
pressure at 1 bar, with a time constant of 5.0 ps. Periodic boundary conditions were
employed, and the particle-mesh Ewald method [202] was used to calculate electrostatic
forces with a real space cut-off distance of 1.2 nm. The Lennard-Jones forces were
smoothly switched off from 1.0 to 1.2 nm. The LINCS algorithm was used to constrain

bonds to hydrogen atoms [203].
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4.2.4  Collective variables

In total, 40 collective variables (CVs) are used to control KaiB foldswitch. All simulations
involving CVs are done with Plumed 2.5.3 [205]. These CVs, along with their definitions,
are given in Table 4.1. First, we explain the CV naming convention. All CV names have
the same “type[groups;reference]” format. The groups, or structural elements, employed by
the CV are comma-separated. The semicolon notation, when necessary, indicates the KaiB
fold referred to by the preceding structural elements. In addition, we use “/” and “+”
to represent the union of two secondary structural elements of the same type or different
types, respectively. For example, the CV coor[33+a2/3,54;gs] employes two groups of
atoms: the first includes 83, a2, and a3 and the second group includes 4; all of them
refer to the gsKaiB structure. Lastly, if a structural element is disucssed by itself and is
present in both KaiB folds (i.e., the N-terminal segment of the protein), the semicolon
notation is omitted.

The CVs coor[51,54;gs] and coor|[33+a2/3,54;gs] are defined as the sum of all

pairwise contact functions between two groups of atoms, and the contact function between

T (Tijf_o d0>n (4.1)

each pair of atoms ¢ and j is defined

where r;; is the distance between i and j, n = 6, m = 2n, and the values of ry and d are
given in Table 4.1. This function is implemented in Plumed as the COORDINATION CV.
The CVs RMSD¢,, [NT,CT;fs] and RMSDy,},[CT;fs] are dRMSD functions computed

as the root-mean-square deviation of pairwise atom distances from a reference structure:

= ; .. _ gref 2
dRMSD = N(N—l);[r” rl.j} . (4.2)
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In particular, RMSD ¢, [NT,CT;fs] is an inter-dRMSD CV, which means that the indices i

and j iterate over two different groups of atoms. The dRMSD functions use an upper and

lower cutoff distance to accelerate computation; the cutoff values are given in Table 4.1.
The CVs dihe[a2;fs|, dihe[a3;fs], and dihe[$3/4;fs] are the cosine-transformed sums of

dihedral angle differences from a reference structure:

508 = % Z [1 + cos <<pi - gpzr-efﬂ (4.3)

1
In Plumed the s, g function is implemented as the ALPHABETA CV.

For the CVs defined by the dRMSD and s, functions, the reference structure is

defined to be the cryo-EM structure of fsKaiB (PDB ID: 5N8Y; subunit G) [78].

4.2.5 Steered MD

Starting with the final NVT equilibration structure, an initial KaiB foldswitch pathway
was generated with a 5-ns constant-velocity steered MD (SMD) [160] using the MOVING-
RESTRAINT function of Plumed, which for each CV x applies a time-dependent
harmonic bias U(z) = %R(I — x0(t))?; here & is the force constant, and z((t) is the center

of the bias. How the system was steered using the 40 CVs is described in Table 4.2.
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4.2.6 String method

60 structures that were roughly equally spaced along the steered foldswitch pathway were
chosen to initialize the string method [161] after a 1 ns equilibration with restraints in the
same 40-dimensional CV space. In each iteration, the initial structure for each image was
steered (constant velocity) towards the center of the image over 15 ps with 1.2x the force
constants listed in Table 4.2, which was then followed by another 15 ps of equilibration
with a constant restraint at the image center. If the final structure was not within the
Voronoi cell of the image or over 3\/RT//<; away from the image center, the process was
repeated with all the force constants further multiplied by a factor of 1.2. Here R is the
gas constant and 7T is the simulation temperature. Once the equilibration steps were
successful, the force constants were reduced to the original values (Table 4.2) over 15 ps,
which was then followed by a 65-ps production run with constant restraints; the last 50 ps
was used to approximate the local free energy gradient VF.

At the end of each iteration, the center of each image x; in the CV space was updated

according to

z; (T + A7) = 24(1) — ATP(2(7))VF (2(7)). (4.4)

The projection matrix P removes the component of VI parallel to the string at each
image. If the image is at either end of the string, the matrix P is not computed. Here, 7
tracks the progress of the gradient descent in the CV space. The string was propagated
with a constant multiplier A7 = 0.0001. The updated string was linearly interpolated and
smoothed (with a smoothing factor s = 0.4; see [161]) before the next iteration. Correction
for non-linear dependences between the CVs was not applied.

Convergence of the string was monitored using the Hausdorff distance from the initial
string [236]. The string method was implemented as an in-house Python wrapper for

Gromacs and Plumed.
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4.2.7 FAST method

A modified version of the FAST method [237, 238], an adaptive sampling method, was
used to explore the KaiB conformational space beyond the pathway identified by the
string method. For each iteration, a set of 60 initial structures were used to generate 10-
ns unbiased trajectories. The trajectories were aggregated and clustered using the regular
space clustering algorithm [239] implemented in PyEMMA [240]. The structures were
clustered in the space of all pairwise Ca distances. The minimal cluster center distance
dpin Was chosen using a bisection algorithm such that the number of clusters fell between
2 to 5 times the number of initial structures. A random structure from each cluster was
chosen to be the “center” of the cluster for the following analysis.

The FAST method scores each cluster center ¢ using the function
r(i) = 8() + av(i) + Bx(3) (45)

This function has three components and two weights, o and 3. The first term, ¢(4), is the
directed component that favors the optimization of certain structural metrics; here we
define ¢(i) = [Tmax — 7(7)]/[Tmax — Tmin] for the CV 2 = RMSDy,;,[CT;fs] to favor the
minimization of dRMSD difference from the fsKaiB structure. The second term, (), is
the undirected component that favors exploration of new configurations and is defined to
be (i) = [Cmax — Cj]/[Crmax — Cuin] Where C; is the number of structures in cluster

i. Lastly, the third term, x(7), penalizes clusters that are structurally similar to existing

clusters:

X(i) = %Z (1 - eir?j/Qd?ﬂin> (4.6)
J

where 7;; is the distance between the centers of clusters 7 and j in the space of all pairwise
Ca distances. This third term is computed iteratively to pick out the best clusters to seed

the next iteration using the following procedure:
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1. Rank all clusters using the first two terms of the scoring function r(¢), which we

denote as p(i) = ¢(i) + arb(i).

2. Compute the third term x(¢) for each cluster; the index j in (4.6) iterates over
clusters from all past iterations. Denote this value as x1q(?). The highest ranked
cluster is the cluster ¢ that maximizes p(i) + Bx1q(7). If this is the first iteration, the
highest ranked cluster is simply the cluster 7 that maximizes p(i). Add i to an index

set S.

3. Compute the third term x(7) for each cluster, but let the index j in (4.6) iterate over
the set S. Denote this value as ynew(?). The highest ranked cluster is the cluster
i ¢ S that maximizes p(i) + S[vXo1a(?) + (1 — 7)Xnew(?)]. If this is the first iteration,
the highest ranked cluster is the cluster ¢ ¢ S that maximies p(7) + Bxnew(?). Add i

to the index set S. Here, v € [0,1] is a weight factor.

4. Repeat the previous step until S reaches the number of clusters required to seed the

next iteration (in this case 60).

For the current simulations, we chose a = 2, § = 2, and v = 0.3. The structures from
the last iteration of the string method were used to seed the first iteration of the FAST
method. The FAST method was implemented as an in-house Python wrapper for Gromacs

and Plumed.
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4.3 Results

As detailed in the Methods section, SMD was used to generate an initial guess for the
pathway for KaiB foldswitching. As outlined in Table 4.2, the steered pathway primarily
revolves around the movement towards a1 during foldswitch of residues in and near
[B4;gs, which forms a3;fs. To achieve this, the steered pathway first disrupts the C-
terminal segment of the protein fold, both its contacts with the N-terminal part of the
protein, especially the ground-state [ sheet structure containing 51 and f4;gs, and

the contacts within the C-terminal segment. This is then followed by repositioning of

the (4;gs residues towards the target position, while preventing entanglement between
B4;gs with «2/3;gs; in particular, the interaction between a3;gs and a1, as well as the
interactions of the gs C-terminal loop, which wraps around the N-terminal structural
elements, needs to be disrupted to allow for 54;gs movement. The repositioning of 34;gs is
accompanied by RMSD, backbone dihedral, and distance restraints to enforce the fsKaiB
C-terminal secondary and tertiary structures. It is worth noting that attempts to apply
straightforward RMSD restraints did not lead to successful foldswitching, presumably due
to the complexity of the changes in protein topology.

The initial SMD pathway was relaxed using the string method. The progression of the
string method along the 40 CVs used to control the foldswitch process is shown in Table
4.3. Unsurprisingly, the string pathway shows qualitatively similar foldswitch patterns to
the steered pathway, in that the dissociation and repositioning of £4;gs takes place before
the formation of the correct fsKaiB secondary and tertiary structures (Fig. 4.1). However,
what the string pathway demonstrates is that a large portion of the foldswitch pathway
goes through molten globules as the topology of the C-terminal segment is rearranged
while little to no stable secondary structures exist. Furthermore, the molten globules
sampled in the string path are much more collapsed than those in the steered pathway
(see, e.g., the string progression for RMSD¢,, [NT,CT;fs] and RMSDy,,[CT;fs] in Table

4.3). The convergence of the string method was monitored using the Hausdorff distance
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from the initial string (Table 4.3, last panel), which shows that the simuation has yet to
converge after the first 300 iterations.

In general, protein folding is characterized by the existence of multiple pathways. As
such, the foldswitch pathway identified in the SMD and refined using the string method
is likely only one of many competing pathways. Therefore, we have started to further
characterize the KaiB foldswitch process and discover potential alternative pathways
using the FAST method, with the string results as an initial starting point. The end
goal is to leverage recent advances in chemical kinetics, such as the dynamical Galerkin
approximation [241], to characterize the kinetics and energetics of the KaiB foldswitch
pathway(s) and its intermediates. This computational pipeline can then be applied
to KaiB in complex with KaiC to investigate the possible role of KaiC in setting the

timescale of KaiB foldswitch.
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B1/4;gs dissociation

gsKaiB

fsKaiB

fs 2°/ 3° structure formation

Figure 4.1: Structures of the KaiB foldswitch string pathway. Starting with the gsKaiB
structure, the string pathway first unzips the contact between 51 and (4;gs and then
repositions £4;gs towards al as the pathway goes through molten globules. Lastly,
residues around [34;gs refolds into a3;fs as the C-terminal segment adopts the correct
fsKaiB secondary and tertiary structures. The gray segment (N-terminal): residues 1-50;
the yellow segment: residues 51-80; the green segment: residues 81-102. The structures
are chosen from the images 0, 18, 25, 30, 43, 54, and 58.
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CHAPTER 5
CONCLUSION AND FUTURE OUTLOOK

The work presented in this thesis was motivated by the question of how the Kai oscillator
couples to metabolism. To address this question, we first employed kinetic modeling,
along with Bayesian MCMC, to investigate the interaction between KaiA and KaiC
(Chapter 2). The resulting model revealed unexpected ultrasensitivity in KaiC phos-
phorylation due to differential KaiA binding affinities to the ADP- vs. ATP-bound states
of KaiC. We argued that the ultrasensitivity plays a role in period stability by acting

as a synchronization mechanism at night. Delving into the molecular details, we then
used MD simulations to investigate the mechanism of ADP release in KaiC and how the
process may be accelerated by KaiA binding (Chapter 3). The simulations suggest that
KaiA binding is coupled to a partial dissociation of the subunit interface that forms the
nucleotide-binding pockets, thus allowing solvent influx to compensate for lost electrostatic
interactions between the protein and ADP. Together, these results provide new insights
that augment our current understanding of metabolic compensation.

Much of the work presented in this thesis is guided by the belief that an
understanding of the oscillator, and our ability to manipulate it, can only be achieved
through a detailed, quantitative analysis of the structural and biophysical basis of the
oscillator components and their interactions. In this spirit, I outline here three broad
areas of inquiry that could benefit from the approach taken in this thesis and further our
understanding of the Kai system.

First, many questions remain of the biochemistry of KaiC. As a homohexameric
protein with multiple catalytic activities, the MD simulations presented in this thesis only
begin to scratch the complexity of the protein. Is nucleotide exchange in KaiC concerted,
sequential, or stochastic? KaiA and KaiC appear to bind mostly with 1:1 stoichiometry
[134], but the complex is highly dynamic [164], and forms and dissociates on a very fast

timescale [25]; what does this say about the mechanism of nucleotide exchange? What is
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the pathway that allows communication between the CI and CII domain? Is intersubunit
communication important for accounting for the enzymatic activity of KaiC? Over the
phosphorylation cycles, are certain phosphoforms preferentially enriched in subpopulations
of KaiC, or are all phosphorylation states uniformly distributed in each KaiC hexamer?

Second, the exact molecular mechanism underlying the negative feedback loop is
unclear. Specifically, what sets the timescale of KaiB binding, ATP hydrolysis in CI
or KaiB foldswitch? How exactly does free energy dissipation in KaiC stabilize the
foldswitch KaiB conformation? What is the basis of the KaiB cooperative binding? Why
does KaiB binding exhibit an initial burst phase followed by slower binding kinetics
[22]7 For cyanobacterial species that do not have KaiA, what is the function of KaiB
binding? It is known that KaiA adopts an inactivated conformation when sequestered in
an inhibitory complex with KaiB [77] and can disassemble into KaiA monomers as KaiB
dissociates from KaiC at the late dephosphorylation stage [78]; very little is known about
the structural basis of such transitions, and whether they contribute to the slowness of the
oscillator.

Lastly, the question of what sets the 24-h period of the oscillator is still unanswered.
It is likely that the period of the oscillator is dominated by a few slow steps in the system.
Can one write down an equation for the period in terms of the rates of such slow steps?
Currently, point mutants in KaiC have been identified that can elongate the period of
the oscillator by up to a factor of six, but mutants that accelerate the oscillator to a
comparable extent are not known. This suggests a separation of timescale that breaks
down as the oscillator becomes faster, where more and more steps contribute to the
bottleneck that limits the oscillator speed. What is the timescale hierarchy in the system?
What is the range of rate constants the system can tolerate and still generate oscillatory
dynamics? Does the range become smaller as the oscillator becomes faster? Moreover,
metabolism is not the only environmental factor that the oscillator has to contend with,

and how the oscillator period remains insensitive to temperature perturbations (i.e.,
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temperature compensation) is another major unresolved issue. Theoretical speculations of
the mechanism of temperature compensation abound, but which model is correct? Are the
various forms of compensation related to the more general phenomenon of (near-)perfect
adaptation [242]7

Over the past decade or so, the Kai oscillator has attracted significant experimental
and theoretical interests partly due to its simplicity. However, these efforts have only
highlighted how much we still do not understand about the oscillator, let alone being
able to rationally manipulate its behavior. Hopefully, the preceding discussion could
serve as a useful point of reference to stimulate further studies of the Kai oscillator. As
more becomes known about the oscillator, it is also important to ask what features of the
oscillator are evolutionary contingencies and what embody general principles required
for oscillation, a question that I attempted to tackle in Chapter 1. Such a distinction
likely cannot be made prior to a thorough, quantitative examination of the oscillator, an
approach advocated in this thesis, but an analysis of this question will also hinge on a
more comparative and phenomenological examination of clock biology. Such a synthesis

would go a long way in making circadian biology a more robust, predictive science.
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