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To My Mom



“You Live Only As Long As the Last Person Who Remembers You.”
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ABSTRACT

Three-dimensional fluorescence imaging is an essential tool in biology, used for everything

from long-term imaging in developmental biology to short-term, high-resolution imaging

of single cells and molecules. In recent years, there has been an influx of new imaging

techniques that push the limits on both resolution and the ability to perform extended

time-course imaging. Many new techniques, like structured illumination microscopy (SIM),

require multiple images of the sample or increased excitation intensity to create a high-

resolution image. This increased exposure can lead to an increase of sample degradation

through photobleaching and phototoxicity.

In this work, we focus on reducing these damaging effects by developing and implementing

new imaging models for light-sheet microscopes that improve collection efficiency by allowing

for additional views of the sample to be acquired in such a way that there is no increase

in sample exposure or imaging time. As part of a collaboration with researchers at the

National Institutes of Health, we worked with two new microscope designs. In the three-

view diSPIM, we were able to improve quality for thin samples and show that for every

noise level, adding the third objective increased image resolution. In our work on reflective

imaging, our implementation allowed for imaging with a reflective coverslip, which improved

both collection efficiency and imaging speed. In addition to adding more views of the sample,

we worked on creating a more accurate imaging model of the diSPIM system to determine

if image quality improved for data that has previously been acquired. In simulations, we

found that a more precise model improved image quality, but using real data, we did not see

such significant improvements. This suggests that there might be other factors that have a

more significant contribution to the artifacts seen in the final reconstructions.

We also work on determining the theoretical resolution limits for structured illumina-

tion microscopes. This resolution limit allows us to choose the necessary parameters for

acquisition that produce an image quality that is adequate for analysis.

Finally, we look at different reconstruction methods for SIM and use both simulations
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and real data to determine if these reconstruction methods approach or converge to the

theoretical resolution limit. In addition to testing the theoretical vs. realized resolutions

limits, we used these reconstruction methods to test the viability of using fewer acquired

images during reconstruction. Previous reconstruction methods are unable to account for

redundancies in the data that occur when isotropic resolution is needed. With the methods

that we implemented, we found that using just four images during reconstruction, we could

get comparable image quality to reconstructions that used all nine images. This reduction

in data would allow for faster imaging and less exposure to the sample. Both of which are

necessary for imaging fast actions in live cells.
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CHAPTER 1

INTRODUCTION

Microscopes, since their invention around 1590, have been an essential tool in biology. While

its not clear who has the sole claim of inventorship, it is clear that its invention opened up

an entirely new world to scientists. It was now possible to see living things in everything

that surrounds us. The major limitation of these early microscopes was in the lens making

and light sources.

It wasn’t until the late 1800s, when the carbon arc lamp replaced kerosene lamps as the

light source, that scientists could get consistent, high intensity light for sample illumination.

In 1983, August Köhler published a new method for sample illumination that provided much

more uniform illumination of the sample, and for the first time removed the illumination

source from the imaging plane [24]. Around the same time, Ernst Abbe was developing new

theory around the limitations for optical imaging [1]. Together, these new advancements

helped to solidify the foundations of modern microscopy.

1.1 Introduction to Fluorescence Microscopy

Today, microscopy continues to be an invaluable tool for biologists, and is used in fields

such as molecular, cell, and developmental biology. The focus of recent advancements in

the field have mostly been in fluorescence microscopy. The first fluorescence microscope

was developed in 1911 [19] to image bacteria. Imaging was done using UV light to excite

intrinsic flurochromes in the cells. In 1994, researchers discovered ways to express and

fluoresce green fluorescent protein (GFP) outside of the jellyfish Aequorea victoria [4]. The

development of GFP was a huge breakthrough in the field of microscopy and was awarded the

Nobel Prize in Chemistry 2008, with over 20,000 publications in the biological sciences citing

GFP between 1992 and 2008 [10]. Today, fluorescence microscopy is a useful tool due to the

ability to label specific molecules in cells and study both their location and function in a cell.
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Advancements in the last 10–15 years have expanded the imaging capability of microscopes

down to the internal structures of bacteria with nanometer resolutions [11]. Along with

improved the spatiotemporal resolution for imaging of single molecules, advancements in

optics and detectors have improved in toto imaging for developing embryos.

The concept of selective plane illumination microscopy (SPIM) was first used in 1902 to

study gold particles by shining sunlight through a slit [34]. It wasn’t until Huisken et al. [22]

used SPIM in 2004 to image live embryos at nearly isotropic resolution the idea of using a

selective excitation plane in fluorescence microscopy took off. In this approach, a sheet of

light is used to excite a 2D plane perpendicular to the detection objective at its focal plane.

This geometry has two main advantages over previous methods such as widefield microscopy.

The first advantage is that due to only a single in-focus plane of the sample being excited,

the overall exposure to the sample is reduced, which makes the method less damaging to

cells during developmental imaging. The second major advantage is that the thickness of

the light-sheet determines the axial resolution. In a widefield microscope, there is no axial

sectioning ability, which reduces SNR as none of the out-of-focus light is rejected.

1.2 Introduction to Image Reconstruction

Many modern microscopes acquire multiple images of the sample in order to achieve the

necessary image quality needed for analysis. To extract the information contained in the

multiple sets of data, images need to be combined algorithmically to produce a single image

or image stack. This algorithmic process is referred to as image reconstruction.

Besides combining the different acquisitions, image reconstruction can also remove ar-

tifacts such as noise and blurring that are introduced by the imaging process. Blurring in

the images is the result of diffraction-limited optics. All imaging systems are band limited

which means that frequencies above a certain threshold are not captured during imaging.

This rejection of high-frequency components shows up in the image as blurring.

Noise contamination comes from a couple of different sources. One source of noise is
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the result of the quantum nature of light. Counting the number of photons on the detector

sensor is a stochastic process. When the photon count is low, this process follows a Poisson

distribution. The other source of noise is introduced when reading and digitizing the photon

counts in each sensor well.

1.2.1 Forward Models

For the image reconstruction to be able to reduce artifacts introduced during imaging, an

accurate model of the imaging system is needed. An imaging model is a mathematical model

that describes how objects in data space transform into measurement space during imaging.

For a continuous to continuous model, this mapping between data space D, and measurement

space M, is from one possibly infinite Hilbert space to another.

H : D 7→M (1.1)

Data space consists of all square-integrable functions in R3, and measurement space is the

space of all square-integrable functions in R2.

D = L2(R3) (1.2)

M = L2(R3) (1.3)

Because of the digitization by the detector during measurement, measurement space is not

a continuous space but a discrete space. This means that a more representative imaging

model would be a continuous to discrete imaging model. However, for the following work,

we only consider the continuous to continuous mapping in (1.3) or the discrete to discrete

mapping in (1.4).

Hm×n : Rn×1 7→ Rm×1 (1.4)
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If we assume the mapping between data space and measurement space is linear, we can

write (1.4) as

g = Hf + n+ b. (1.5)

Here, f is the fluorophore distribution being imaged, n is a random noise vector, b is a

background vector that can be constant or spatially varying, H is the linear system matrix

containing the physics of the imaging system, and g is the acquired set of data. This is a

very generalized equation and is applicable to any linear imaging system.

When a system is both linear and shift-invariant, meaning that the blurring of the mi-

croscope doesn’t change when the object is shifted, the forward model can be written as a

convolution.

Hf = f(r) ∗ h(r) =

∫
drf(r′)h(r − r′). (1.6)

Here, * denotes the convolution between f and h. h(r) is called the system point spread

function (PSF) for the system H. The advantage of writing the forward model as a convo-

lution is two-fold. Using a point-spread function rather than a system matrix significantly

reduces the memory needed to describe the system and allows reconstructions to be done in

an acceptable amount of time. A PSF will be on the order of N3 pixels, while the system

matrix would be on the order N6 pixels. For a small volume of 200× 200× 200 floats, the

memory needed for the PSF is only around 32 Mb, where as the memory needed for the

system matrix is 256 Tb.

1.2.2 Inverse Problems

Deriving reconstruction methods start with formulating an optimization or inverse problem

that the reconstructed high-resolution image needs to satisfy.

f̂ = arg min
f

Φ(f , g), (1.7)
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where f̂ is the solution to the optimization problem and Φ(f , g) is the cost function being

minimized. The cost function can be split into three terms,

Φ(f , g) = G(Hf , g) + εR(f) + P (f). (1.8)

The first term G(Hf , g) is the data fidelity and measures how well the forward model

applied to a reconstructed image agrees with the acquired data, the second term R(f)

is a regularization term that can be used to enforce prior knowledge such as smoothness,

on the reconstructed image, the final term P (f) enforces any additional constraints on

the reconstructed image, such as constraining all of the image pixels to be non-negative.

A constant parameter ε is added to control the balance between regularization and data

agreement.

1.2.3 Cost Functions

If the noise model is assumed to follow a Poisson distribution, then the image reconstruc-

tion can be formulated as an optimization problem that maximizes the likelihood function.

The likelihood function is a probability distribution for the underling fluorophore distribu-

tion given the acquired data. For a Poisson distribution, the likelihood function for f is

the product of Poisson likelihood functions for each pixel i assuming that the pixels are

independent.

L = p(f |g) =
∏
i

e−[(Hf)i+bi][(Hf)i + bi]
gi

gi!
. (1.9)

Finding the image that maximizes the likelihood function is equivalent to finding the image

that minimizes the negative log-likelihood function,

G(Hf , g) = −
∑
i

{
gi log

gi
(Hf)i + bi

+ [(Hf)i + bi]− gi
}
, (1.10)
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also known as the Csiszar I-divergence and is the data fidelity term used to set up the inverse

problem [7].

Richardson and Lucy independently proposed iterative solutions to the optimization

problem which includes only the data fidelity term in (1.10). This proposed solution is

commonly referred to as RL deconvolution [29, 25].

f t+1 =
f t

S

[
HT g

Hf t

]
, (1.11)

where t is the iteration number, S is the sensitivity matrix of the imaging system computed by

applying the transpose of H to a vector of ones, and division is point-wise. RL deconvolution

has no explicit positivity or smoothness constraints placed on the reconstructed images.

However, positivity is enforced as long as the initial estimate and acquired data is non-

negative.
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CHAPTER 2

MULTIVIEW LIGHT-SHEET MICROSCOPY.

2.1 Introduction

The use of selective plane illumination microscopy was a significant advance for developmen-

tal biology as it provided a more gentle method for imaging live cells over long periods of

time [22]. However, when only a single view of the sample is acquired, the acquired image

stack suffers from anisotropic resolution. The anisotropic resolution in SPIM is a result

of using a single objective lens for detection. Any finite aperture used for detection will

have poorer axial resolution when compared to the lateral resolution. Typically, the axial

resolution is two to three times worse than the lateral resolution.

In addition to the inherent limitations when using a single detection objective, SPIM

also has limitations that are result of the Gaussian laser beam used to create the excitation

light-sheet. What this means is that as the waist of the light-sheet is made smaller, the beam

starts to diverge faster away from the focal plane causing the effective FOV to shrink. In

order to achieve nearly isotropic resolution, the sample needs to be rotated while 4-8 views

of the sample are acquired [22].

Recent advancements have sought to create more isotropic resolution by adding additional

detection objectives to acquire multiple view of the sample without the need for sample

rotation. In [6], researchers developed IsoView microscopy. In this system the sample is

positioned at the center of four orthogonal objective lenses. Both excitation and detection

can be performed by all four of the lenses. This allows for multiple imaging configurations for

simultaneous detection. While techniques such as IsoView do provide isotropic resolution,

they do so at a considerable financial cost. Instead of a single objective lens and detector,

this microscope configuration requires four objective lenses and detectors. For labs with

financial constraints this could be a considerable barrier. Work done by Wu et al. provide

an alternative solution with a much smaller financial barrier.
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2.2 diSPIM with Spatially Varying PSF and TV Regularization

In [41], Wu et al. developed the dual-view inverted selective plane illumination microscopy

(diSPIM) system, which modifies the SPIM system to include a second perpendicular ob-

jective that is capable of both excitation and detection. This modified configuration allows

for the two lenses to rapidly switch between illuminating the sample and detecting emitted

fluorescence. This allows for acquisition of two perpendicular stacks of images, one with the

excess blurring in the z direction and the other with the excess blurring in the x direction,

as shown in Figure 2.1. These two stacks of differently blurred images serve as the inputs to

a joint deconvolution algorithm such as Richardson-Lucy introduced in Eqn. 1.11.

Figure 2.1: The diSPIM acquisition geometry. (Left) the upper objective is used to create
a sheet beam that is imaged by the objective on the right. A 3D stack of images can be
obtained by scanning the illuminated slice in x. (Right) The role of the objectives can
be rapidly switched to obtain a 3D stack of images in the z direction. Each stack suffers
excess blurring in the slice direction but they can be used as input to a joint deconvolution
algorithm.

In reality, there are additional physical effects that can degrade the quality of diSPIM

images and limit the size of objects that can be imaged. First, the illumination sheet is

not expected to have a strictly uniform profile through the object but will have more of an
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hourglass shape, as shown in Figure 2.2. Our work aims to use a more accurate blurring

model in the deconvolution that takes into account this non-uniform illumination sheet.

2.2.1 Beam Modeling

To incorporate the more physical beam into the deconvolution algorithm we derived a new

imaging model that accounts for the beam waist widening away from the center of the field

of view. Figure 2.2 shows how the beam width changes through the FOV.

x

z

ω0

Detection	O
bjective

Excitation	Objective

D

Figure 2.2: Illustration of the beam widening as the laser propagates through the FOV.
As the excitation light travels through the FOV, it is attenuated while being focused to the
focal place of the objective. After the focal plane, the beam begins to widen. The emission
light that is a result of exciting the fluorophore is attenuated as it travels from the sample
to the detection objective.

With illumination centered at x0, the fluorescence emission is given by,

Ex0(x, y, z) = f(x, y, z) G[x− x0, σB(z)] e−µI z. (2.1)

In this equation, G is the intensity the Gaussian excitation beam, f is the fluorophore

distribution in the sample we want to estimate, σB(z) is the depth-dependant standard

deviation of the Gaussian beam, and µI is the attenuation coefficient of the excitation beam
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as it travels through the sample. A model for the Gaussian beam [27] can be written as

G[x, σB(z)] =

(
σB0

σB(z)

)
exp

[
−2

x2

σB(z)2

]
, (2.2)

σB(z) = σB0

√
1 +

(
z

zR

)2

, (2.3)

zR =
π(σB0

)2

λex
, (2.4)

where σB0
is the radius of the beam at the focal spot, zR is the Rayleigh length of the beam,

and λex is the wavelength of the excitation beam. The Rayleigh length measures the distance

from the focal plane where the beam waist is
√

2 larger than σB0
. The intensity recorded

at the detector, DA, is the emitted fluorescence (2.1), multiplied by an attenuation factor

e−µF ∗(D−x), and acted on by the system point spread function. The attenuation factor is

the product of the attenuation coefficient for the emitted light as it leaves the sample, and

the distance D−x that the light travels through in the sample before it reaches the detector.

gA(x0, y0, z0) =

∫∫∫
dx dy dz [Ex0(x, y, z) e−µF ∗(x−D)]h(x0 − x, y0 − y, z0 − z) (2.5)

If the point spread function h is narrow compared to the slowly varying attenuation, we

can pull the two attenuation factors outside of the integrals. If we also assume that the

widening of the excitation beam is slow compared to the PSF, we replace z− > z0 in the

depth dependent beam waist formula.

gA(x0, y0, z0) = A(x0, z0)

∫∫∫
dx dy dz

[
f(x, y, z) ∗

G[x− x0, σB(z)]h(x0 − x, y0 − y, z0 − z)

]
(2.6)

A(x0, z0) = e−µI∗z0e−µF ∗(D−x0) (2.7)

The last assumption that we want to make is that hA can be approximated by a separable
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PSF. This assumption significantly reduces the computation time needed to compute the

forward model as it will allow us to use a series of convolutions. Later on in Section 2.4

we will see what happens when we can’t make this assumption. Rewriting (2.6) using a 3D

Gaussian function as the PSF gives us

gA(x0, y0, z0) =

∫
dz ð(z0 − z, σl)[∫∫

dy dx f(x, y, z)G(x0 − x, y, σb(z0)))ð(x0 − x, σa)ð(y0 − y, σl)
]
,

(2.8)

where ð(x, σ) is a zero-mean Gaussian function with a standard deviation (SD) σ, σl is the

lateral SD, and σa is the axial SD In this form, we see that for a fixed z, the integrals over

x and y can be computed as a series of 2D convolutions. The last integral is then a series of

1D convolutions with the resulting slices. The pseudo-code for this is shown in Algorithm 1.

Algorithm 1: Calculating the Forward Model, g = Hf

input : object f

output: acquired data g

1 for i← 0 to zmax do

2 temp(x, y, i) = f(x, y, i) ∗ ∗(G[x, σB(i)]ð(x, σA)ð(y, σL))

3 for i← 0 to xmax do

4 for j ← 0 to ymax do

5 g(i, j, z) = temp(i, j, z) ∗ ð(z, σL)

6 g(x, y, z)← e−µI z e−µF (x−xmax) g(x, y, z)

7 return g(x, y, z)

2.2.2 Multi-View Deconvolution

Reformulating the RL algorithm from a single view to a multi-view deconvolution allows

for two different approaches. Wu et al. use an ordered subset expectation maximization
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(OSEM) method in which the update of the object is done for view 1, and then the update

is done using view 2. The use of OSEM is done to speed up the convergence properties of the

algorithm. We wanted to investigate another algorithm in which the update is done for both

views at the same time. This ”one step” algorithm computed using the following formula:

f t+1 = f t
J∑
k=1

(
HT
k

gk
Hkf

t
k + bk

)
, (2.9)

where k ∈ {1, . . . , J}, J is the number of views, T denotes the matrix transpose, Hk is the

imaging matrix for view k, gk is the detected image for view k, and bk is the background

for view k.

2.2.3 Edge Preserving Regularization

One of the problems with using the MLEM approach for image deconvolution is that the

algorithm tends to amplify noise after a large number of iterations. This noise amplification

necessitates terminating the algorithm before convergence. In an effort to get rid of the

noise amplification we added a regularization term to the functional that we are trying to

minimize in Eqn. (1.10). Many of the objects imaged with the diSPIM system are piecewise

constant and so we want a regularization term that will smooth the amplified noise while at

the same time preserving the edges of the objects. With this requirement we decided to use

total variation (TV) regularization.

TV regularization adds an additional term to the optimization equation that penalizes

the `1-norm of the image gradient. The result of adding this term is an image with less

variation to try and minimize the image gradient. With this added term the functional we

are trying to minimize becomes,

Φ(f , g) = G(Hf , g) + λTV R(f) (2.10)

where, R(f) = |∇f |. (2.11)
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Here λTV is an adjustable parameter that we can adjust to achieve different levels of smooth-

ing in the image. Using the results described in Dey et al. [9], the regularized RL update

algorithm for a single view is given by,

f t+1 =
f t

1− λTV div

(
∇f t

|∇f t|

) (
HT g

Hf t + b

)
. (2.12)

Applying this to our multi-view system results in an update equation with the following

form for TV regularization.

f t+1 =
f t

1− λTV div

(
∇f t

|∇f t|

) J∑
k=1

(
HT
k

gk
Hkf

t
k + bk

)
(2.13)

2.2.4 Results

To compare the effectiveness of the two deconvolution methods, we use both qualitative and

quantitative metrics. The quantitative measurements used intensity plots across a line to

directly compare the ability of the reconstruction methods to recover the original image.

These intensity plots are generated using the software package Fiji [31]. The final measure

of effectiveness that we used was qualitative; does this produce an image that looks better

than the image produced by another method. For the qualitative measure using synthetic

data, we just looked at the image in one plane. For the real data, we looked at orthogonal

views, as well as the maximum intensity projections in those views.

Results on Synthetic Data

Using Matlab, we created a 240 x 360 x 240 - pixel image with an array of spheres centered

at the y=120 plane. A pixel size of 0.1625 µm was used to match the real data. Using

the forward model described by (2.8), we simulated the blurring effect that the diSPIM

system would cause. The forward model also included Poisson noise where the noisy pixel
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was selected from a Poisson random process with the noise-free pixel being the mean of the

distribution.

The numerical parameters used in the forward model are: zR = 9 µm, σ0 = 0.60 µm,

and σL = 0.20 µm. These values were either given in or derived from Wu et al. A reg-

ularization parameter of 0.001 was used to allow the algorithm to run for a large number

of iterations without the amplification of noise. This parameter was deemed optimal after

visually inspecting reconstructions that used a different value for regularization. Figure 2.3

shows the test image and the result of the forward model for both of the views. The first

estimate is the result of taking the average of both views. Using this image as f0, we used

both the ”one step” and OSEM algorithms to reconstruct the simulated data. The resulting

image after 1, 10, 20, and 500 iterations is shown in Figure 2.3.
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Figure 2.3: Comparing the two iterative algorithms used to deconvolve the simulated
images, we see that the image quality between the two methods is very similar even with
different stopping points.

Visually it seems that both algorithms recover the original image after a large number of

iterations. For a more quantitative analysis, we plotted intensity profiles across a horizontal

line centered at the midpoint of the image. These profiles, shown in Figure 2.4, confirm that

the intensity of the reconstructed image approaches that of the original image for both of
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the reconstruction methods.

(a) Intensity profile using the OSEM algorithm. (b) Intensity profile using the “one step” algorithm.

Figure 2.4: Intensity profiles generated from the reconstructed data by the two different
deconvolution algorithms.

Results on Real Data

To test the old PSF that does not account for beam widening with the new PSF that takes

beam widening into account we applied both algorithms with both PSF models to real data

acquired by the diSPIM imaging system. The data is of C. elegans cells labeled using green

fluorescent protein (GFP) histone markers. The images have an isotropic voxel size of 0.1625

x 0.1625 x 0.1625 µm3. Figure 2.5 shows the results of the deconvolution for both the old

and new PSF using both the “one step” and OSEM algorithms. Without the regularization

we can clearly see the amplification of noise as the number of iterations becomes large.
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Figure 2.5: YZ views of the C. elegans data set after deconvolution for the two methods,
for both the new and the old PSF.

Looking at the intensity profiles in Figure 2.6, we can see that after 10 and 60 iterations

the one step method with the new PSF seems to produces a more uniform intensity profile

than the other methods.
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(a) (b)

Figure 2.6: Plot profiles for both 10 and 60 iterations with no regularization.

To reduce the amplification of noise, we added in the TV regularization to try and smooth

out the images while still preserving the edges. The first lambda that we tried was 0.001

which is what we found to be the optimal parameter with the test image. Figure 2.7 shows

the results of the deconvolution using each of the four algorithms with regularization. We

can see that there is not much of a change in the images for this regularization parameter.

There is less noise contamination in the OSEM algorithm with the new PSF for 60 iterations,

but the changes are minimal for 1, 10, and 20 iterations, and is confirmed by the intensity

profiles in Figure 2.8.
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Figure 2.7: YZ views of the C. elegans data after deconvolution for the two methods, for
both the new and the old PSF, with a regularization parameter of 0.001.

For 10 iterations, we can see that there is a slight smoothing of the peaks and valleys

but the general shape of the intensity profiles is the same as if there was no regularization.

There is a bit more smoothing when we get to 60 iterations. This is consistent with what

we saw in Figure 2.7.
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(a) (b)

Figure 2.8: Plot profiles for both 10 and 60 iterations with a regularization parameter of
0.001.

To try and improve the image quality even more we increased the regularization parameter

to 0.005 to try and create more uniform intensity profiles. The reason for needing more

regularization is a result of more noise contamination in the real data as compared to the

simulations. In Figure 2.9 we can see that the images don’t have as much of a checkerboard

pattern as they did without regularization.
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Figure 2.9: YZ views of the C. elegans data after deconvolution for the two methods, for
both the new and the old PSF, with a regularization parameter of 0.005.

From the intensity profiles in Figure 2.10, we can see that a regularization of 0.005 creates

a more uniform image. With this level of regularization, the one step algorithm with new

PSF was able to achieve the most uniform profile.

Going from 10 to 60 iterations does not greatly effect the intensity profiles as it did with

a smaller regularization parameter or none at all.
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(a) (b)

Figure 2.10: Plot profiles for both 10 and 60 iterations with a regularization parameter of
0.001.

2.2.5 Conclusion

The results of the deconvolutions that include the effects of beam widening suggest that

this correction does not have a big impact in improving the image quality. With marginal

improvements, it is also important to consider that incorporating beam widening into the

model will reduce the speed of the reconstruction process. The reduction in speed when

using the model is more significant than the reduction that results from using regularization.

Without a fully shift-invariant forward model, we needed to use a series of 1D and 2D

convolutions rather than a single 3D convolution. If real-time imaging is the goal, then

including beam widening might not be worth it.

One possible explanation for not seeing larger improvements in image quality is that the

real data was acquired with parameters meant to try and keep the beam uniform across the

sample. The scenarios under which including the beam widening will be most beneficial are

when the beam has a large divergence across the sample. It is also possible that using a

separable point spread function reduces the gain that we would see when incorporating for

the beam thickness.
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2.3 Improving diSPIM Collection Efficiency

Using only two views reduces the sample exposure compared to IsoView. However, as little

as 20% of the light emitted from the sample reaches the detector in the diSPIM geometry.

Emitted light not reaching the detector increases the sample exposure that contributes to

phototoxicity without improving image quality. Our work aims to improve the collection

efficiency of light-sheet microscopes through system design and improved image modeling.

In the case of diSPIM, steric constraints and commercial availability restrict the largest

NA of symmetric perpendicular objectives to be 0.8 NA. In [40], we worked to overcome this

limitation by adding a third high-NA detection objective below the sample and coverslip

show in Figure 2.11.

Figure 2.11: Microscope configuration for our modified diSPIM. Placing a high NA ob-
jective below the coverslip improves both the system resolution and collection efficiency.
Reprinted from Yicong Wu et al. (2016). Used with permission.

The new objective is able to provide higher resolution information to the reconstruction

due to its higher NA And because the third objective is only capturing light that would
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otherwise be discarded, the collection efficiency is improved without increasing exposure

to the sample. Compared with the diSPIM system, this system was able to double the

volumetric resolution for thin samples.

Top, NA = 0.8 Bottom, NA = 1.2

Figure 2.12: Raw data acquired on the modified diSPIM system. The image on the left
is a slice acquired by a top objective and the image on the right is a slice acquired by the
bottom objective. In the zoomed in images we can see that the bottom view has both better
resolution and more noise. Scale bar is 10 µm. Reprinted from Yicong Wu et al. (2016).
Used with permission.

2.3.1 Modeling for the New View

The biggest hurdle and where we contributed the most, was in modeling the the third

objective. Due to its location, the bottom view detects more scatter than the top views

do. An additional challenge is that the bottom view, unlike the top views, is not aligned

perpendicular to the light-sheet. In fact, the light sheets are tilted at 45 degrees relative

to the bottom objective. This means the 2D slice being excited is not entirely in the focal

plane of the bottom objective. To overcome this problem, a rolling shutter on the camera’s

detector needs to be synchronized with the motion of the third objective as it is translated
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downward. This shutter acts as a slit that blocks out light not being emitted from the focal

plane. The combination of the objective motion and the rolling shutter allows this camera

to capture an in-focus view of the tilted light sheet. We found that without taking into

account this shutter during modeling, there was no improvement when adding the data from

the bottom view. It was only once we corrected for the shutter that we saw an improvement

in resolution.

Figure 2.13: The rolling shutter on the camera with the high NA objective is synced with
the shifting light-sheet to minimize out of focus light captured by the camera.

When modeling the shutter, we only need to model the forward model in two-dimensions

since the light-sheet is scanned and thus constant in one of the dimensions. Figure 2.13

shows the y - z plane, with the Gaussian beam that is swept in y to create the light sheet
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shown in brown and the response function of the pixel at ym (m for measured) shown in

red. The Gaussian beam is shown to be centered at (ym − ys), where s stands for shift.

The fluorophore distribution is denoted f(y, z). The rolling shutter can be thought of as a

slit with width W that constrains the measurement to only be responsive to shifts of the

Gaussian beam between −W/2 and W/2. The measurement at ym will be given by

m(ym) =

W/2∫
−W/2

dys

∞∫
−∞

dy [h (ym − y, z)G [y − (ym − ys) , w (z)] f(y, z)] (2.14)

=

∞∫
−∞

dy f(y, z)h (ym − y, z)
W/2∫
−W/2

dysG [(y − ym) + ys, w (z)] . (2.15)

Replacing the Gaussian beam in (2.15) with (2.2), we get an integral of the form

W/2∫
−W/2

dysG [(y − ym) + ys, w (z)] =

(
w0

w(z)

)2
W/2∫
−W/2

dys exp
[
−2 ((y − ym) + ys)

2 /w2(z)
]
.

(2.16)

Using a change of variables to set a = y− ym and b = w(z)/
√

2, we get an integral that has

a known closed form solution.

W/2∫
−W/2

dys exp
[
(a+ ys)

2 /b2
]

=
1

2

√
πb

[
erf

(
a+ (W/2)

b

)
− erf

(
a− (W/2)

b

)]
(2.17)

where

erf(x) =
2√
π

x∫
0

dt e−t
2
. (2.18)
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Plugging (2.17) back into (2.16) yields

W/2∫
−W/2

dysG [(y − ym) + ys, w (z)] = (2.19)

(
w0

w(z)

)2 1

2

√
π
w(z)√

2

erf

(y − ym) + (W/2)
w(z)√

2

− erf

(y − ym)− (W/2)
w(z)√

2

 . (2.20)

This final expression only depends on the difference between ym − y and z, just as the PSF

in (2.15) does.

If we let

s(y, z) =

(
w0

w(z)

)2 1

2

√
π
w(z)√

2

erf

y + (W/2)
w(z)√

2

− erf

y − (W/2)
w(z)√

2

 , (2.21)

then the measurement with the rolling shutter has the form,

m(ym) =

∞∫
−∞

dy f(y, z)h (ym − y, z) s (ym − y, z) . (2.22)

So rather than having to explicitly account for the Gaussian beam excitation and the rolling

shutter on the detector, we can modify the generic PSF h(y, z) by multiplying it by a

correction factor that accounts for both factors.

This gives an effective PSF of that we use in our forward model for the bottom view in

Figure 2.11

heff(x, y, z) = h(x, y, z) s(y, z). (2.23)

This also allows us to write the forward model for the three-view system as a convolution

between the fluorophore distribution and the effective PSF for each view,

gk(r) =

∫
dr′ f(r′) hk(r − r′) (2.24)
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Figure 2.14: Modifying the PSF based on a correction factor from using a rolling shutter
during image acquisition. The image on the left is a slice away from the focal plane through
the PSF without any corrections for the shutter. The image is saturated for better visualiza-
tion. The image in the center is the correction factor of the rolling shutter that is derived in
(2.21). Finally, the image on the right is the corrected PSF that we use for reconstruction.
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Figure 2.15: In the three-view diSPIM system, the two-top detection PSFs can be modeled
as the product of the light sheet and a widefield PSF for a 0.8 NA objective. The bottom
detection is modeled as the product of the light sheet with a convolution between a 1 µm slit
and a widefield PSF for a 1.2 NA objective. The effects of the slit on the bottom objective
can be seen in the ‘wings’ of the final PSF.

2.3.2 Estimation Theory for Noise and Resolution Trade-offs

A challenge with this microscope is that due to the location of the third objective, a rolling

shutter on the detector is needed to reject out of focus light. This reduces the photon flux

on the detector causing an increase in noise compared to the other two views. Given that

this view contains both better resolution but also more noise than the top two views, we

want to be able to estimate the SNR for both the two- and three-view diSPIM geometries.

In the section we use a Gaussian noise model rather than the Poisson noise model used
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in previous sections. Using a Gaussian model as the data fidelity term offers us a closed-

form solution to the inverse problem. The reason we make the change is that unlike the

previous sections where we are trying to accurately model the system, here we are looking

at comparing the information preserved by different imaging configurations, rather than

explicitly trying to predict the output. Using a more accurate noise model that contains

both Poisson and Gaussian noise would likely change the scale of the estimates derived here,

but should preserve the comparisons between different system configurations.

We begin by assuming that the noise vector n in (1.5) is a zero-mean Gaussian random

vector with covariance matrix K. If the noise is uncorrelated from pixel to pixel, K will be a

diagonal matrix with the variance σ2
i along the diagonal. For regularized least squares, the

cost function in (1.7) being minimized is

Φ(f , g) =
1

2

[
(g −Hf)TK−1(g −Hf) + α||f ||22

]
. (2.25)

For this case, there exists an explicit expression for the estimator

f̂ =
[
HTK−1H + αI

]
HTK−1g

= [F + αI] HTK−1g,

(2.26)

where F = HTK−1H. To measure the noise and resolution of this estimator, we want to be

able to derive the point spread function for the estimator and the covariance matrix for the

estimator.

Work done by [2, 28, 12, 13] has build a framework for this very task. Instead of deriving

the PSF, we derive the local impulse response (LIR) function. The reason that we can’t

use a PSF is that the resolution in the reconstructed image is position dependent. Qi et

al. proposed the idea of a contrast recovery coefficient (CRC) [28]. The CRCi is the peak

intensity of the LIR centered at the pixel i. The reasoning behind CRC is that the intensity

in the reconstructed image is conserved, and so a larger peak will correspond to a narrower
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LIR. Having a single value for resolution allows for faster comparisons between different

imaging models and reconstruction methods. We can plug (2.25) into equations derived

in [28] to compute CRC and the covariance matrix for the estimator.

CRCi(f) = (ei)
T [F + αI]−1 Fei, (2.27)

Kf̂ = [F + λI]−1 F [F + αI]−1 . (2.28)

For the light-sheet systems we are comparing, we can write the forward models as a convo-

lution between a system PSF and the sample. In the discrete domain, this allows us to write

the system matrix H as a circulant matrix, A. A circulant matrix is a special matrix where

each row is just the previous row shifted one element to the right (with wrap around). A

special property of circulant matrices is that they are diagonalized using the discrete Fourier

transform Q.

Γ (j) = diag

{∣∣∣O (j)
i

∣∣∣2} = Q†AT (j)
A (j)Q, (2.29)

where the O
(j)
i are the OFT elements of the matrix A (j). If we assume the noise is uniform

for each image, the covariance matrix for a single acquisition is Kj = σjI. Making these

substitutions for F gives

F =
J∑
j=1

[(
1

σ (j)

)2

Et
(j)

Q†Γ (j)QE (j)

]
. (2.30)

In the case where the excitation is uniform (or approximately uniform) across the sample,
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we can write out a closed form solution for both the CRC and variance of the estimate.

CRCi =
1

N

N∑
i=1

∑J
j=1

[(
1

σ (j)

)2 ∣∣∣O (j)
i

∣∣∣2](∑J
j=1

[(
1

σ (j)

)2 ∣∣∣O (j)
i

∣∣∣2]+ α

) (2.31)

Var{f̂k} =
1

N

N∑
i=1

∑J
j=1

[(
1

σ (j)

)2 ∣∣∣O (j)
i

∣∣∣2](∑J
j=1

[(
1

σ (j)

)2 ∣∣∣O (j)
i

∣∣∣2]+ α

)2
(2.32)

If the noise is uncorrelated from pixel to pixel and is uniform for each image, the co-

variance matrix for a single acquisition is Kj = σjI. In this case we can write out a simple

closed form solution for both the CRC and variance of the estimate by exploiting the circu-

lant structure of our system matrices. This structure allows us to use the Fourier transform

to diagonalize A and turn both the CRC and variance into sums over the optical transfer

function (OTF) elements.

CRCi =
1

N

N∑
k=1

λk
(λk + αωk)

Var{f̂k} =
1

N

N∑
k=1

λk

(λk + αωk)2
(2.33)

where

λi =
J∑
j=1

[(
1

σ (j)

)2 ∣∣∣O (j)
i

∣∣∣2] (2.34)

ωk are the diagonal elements of the matrix QDTDQ† with Q representing the discrete

Fourier transform and Q† representing the inverse Fourier transform.

2.3.3 Results

Using (2.33), we can trace out noise and resolution curves where CRC is the proxy for

resolution and variance is the proxy for noise. The curve is computed by sweeping out the

regularization parameter α. The PSFs we used are the ones depicted in Figure 2.15. The

resulting plots are shown in Figures 2.16 and 2.17.
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Figure 2.16: Noise and CRC curves for both the two- and three-view diSPIM configu-
rations. The noise for each top view is σ2

1,2 = 50 and the noise for the bottom view is

σ2
3 = 2500.

Figure 2.17: The ratio between the two configurations SNR curves. From the plot we can
determine that for every α the SNR of the three-view configuration is better.
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2.3.4 Conclusion

An issue with the diSPIM configuration is that the numerical aperture (NA) of the two

views is limited in order to keep the two views orthogonal to each other. We worked to

overcome this limitation by adding a third high-NA detection objective below the sample

and cover slip [40]. The new objective is able to provide higher-resolution information to the

reconstruction due to its larger NA. And because the third objective is only capturing light

that would otherwise be discarded, the collection efficiency is improved without increasing

exposure to the sample. Compared with the diSPIM microscope, this system was able to

double the volumetric resolution for thin samples.

To see if adding this third view to the diSPIM setup would always improve image quality,

we used results from estimation theory to compute the noise and resolution for each system

after reconstruction. Based on these results, we were able to determine that even though

the bottom objective contains more noise, the addition of the third view improves the SNR

compared with the original diSPIM. Furthermore, we can conclude that the addition of the

third view improves resolution for all noise levels in the final reconstructed image. This is

important to show as it validates our claim that resolution is improved in the three-view

system.

2.4 Imaging Thicker Samples with Reflective diSPIM

While adding this third view improved resolution for thin samples, it did not translate

to samples that were thicker than ∼12µm. For imaging thicker samples, we modified the

diSPIM system to acquire images of samples on reflective cover slips [39].
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Figure 2.18: Image of a EGFP-histone-labeled nuclei in a live nematode embryo acquired
in a 0.8/0.8 NA symmetric diSPIM geometry with a mirrored coverslip. The epi-fluorescence
contamination in the center of the image is caused by the reflective coverslip and needs to
be removed during image reconstruction. Reprinted from Yicong Wu et al. (2017). Used
with permission.

The difficulty with using a reflective coverslip is that the images are contaminated with

out-of-focus epi-fluorescence as shown in Figure 2.19. To remove the contamination, a more

rigorous modeling of the microscope was necessary. In conventional SPIM, the imaging

model is assumed to be linear shift-invariant with an Airy disk PSF modified slightly by

the light-sheet thickness. In the case of reflective imaging, we needed to use a shift-varying

forward model.
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Figure 2.19: A schematic showing the geometry of the symmetric diSPIM with a reflective
coverslip. The mirrored coverslip creates virtual objectives reflected across the coverslip
plane and results in four views of the sample being acquired, A, B, A’, and B’. Reprinted
from Yicong Wu et al. (2017). Used with permission.

2.4.1 Forward Model for Reflective Imaging

To account for the mirrored coverslip, the object f is reflected across the coverslip

f̃(x, y, z) =


f(x, y, z) z ≥ −x

f(−z, y,−x) z < −x
. (2.35)
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In the case of symmetric objectives, we can write the forward model for a single position of

the sample in the light-sheet as

gA(x′, y′)
∣∣
z′=−δ =

∫∫∫
dx dy dz

[
f̃(x, y, z)E(x− δ, y, z + δ)hA(x− x′, y − y′, z + δ)

]
(2.36)

E(x, y, z) = G(x, y, w(z)) +G(z, y, w(x)) (2.37)

G(x, y, w(z)) = (w0/w(z))2 exp
[
−2x2/w2(z)

]
, (2.38)

where w(z) = w0

√
1 + (z/ZR)2, w0 is the beam waist, ZR is the Rayleigh length given by

πw2
0/λex, λex is the excitation wavelength, and hA represents the emission PSF for objective

A. To create a 3D stack, the sample is shifted through the light-sheet a distance
√

2δ, +δ in

x and -δ tan(θ) in z.

Converting to Light Sheet Scanning Mode

The previous equations assume that the sample is being shifted while the light sheets are

fixed. It is equivalent to think about the sample being fixed and the light sheets being

scanned across the sample.

Conversion from stage-scanning stacks to light-sheet scanning stacks can be achieved by

the following transformations:

gALS(x′′, y′′, z′′) = gASS(x′′ + z′′, y′′, z′′) (2.39)

and

gBLS(x′′, y′′, z′′) = gBSS(x′′, y′′, z′′ + x′′). (2.40)

The first equation says that the value of the light sheet stack at (x′′, y′′, z′′) is obtained

by indexing the stage scanning scanning stack at δ = z′′ and setting x′ = x′′ + z′′ and

37



y′ = y′′. Note that the variables (x′′, y′′, z′′) are in the same coordinate system as (x, y, z).

One set represents dummy variables that are being averaged over since some finite chunk of

fluorophores in the (x, y, z) variables is contributing to our measurement in the (x′′, y′′, z′′)

variables.

Let’s focus on the stack measured by objective A. If we substitute (??) into (2.39) we

have

gALS(x′′, y′′, z′′) =

∫∫∫
dx dy dz f̃(x− z′′, y, z + z′′)E(x, y, z)hA(x−

(
x′′ + z′′

)
, y − y′′, z).

(2.41)

Now we change coordinates

x̃ = x− z′′

ỹ = y

z̃ = z + z′′. (2.42)

yielding,

gALS(x′′, y′′, z′′)

=

∫∫∫
dx̃ dỹ dz̃ f̃(x̃, ỹ, z̃)E(x̃+ z′′, ỹ, z̃ − z′′)hA(x̃+ z′′ −

(
x′′ + z′′

)
, ỹ − y′′, z̃ − z′′)

=

∫∫∫
dx̃ dỹ dz̃ f̃(x̃, ỹ, z̃)E(x̃+ z′′, ỹ, z̃ − z′′)hA(x̃− x′′, ỹ − y′′, z̃ − z′′). (2.43)

If we substitute for the illumination function, we obtain two terms:
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gALS(x′′, y′′, z′′)

=

∫∫∫
dx̃ dỹ dz̃ f̃(x̃, ỹ, z̃)G(z̃ − z′′, σ(x̃+ z′′))hA(x̃− x′′, ỹ − y′′, z̃ − z′′)

+

∫∫∫
dx̃ dỹ dz̃ f̃(x̃, ỹ, z̃)G(x̃+ z′′, σ(z̃ − z′′))hA(x̃− x′′, ỹ − y′′, z̃ − z′′).

(2.44)

The first term here represents conventional in-focus imaging of the light sheet that is parallel

to objective A. The second term represents epifluorescence contamination.

Converting to Discrete Imaging Model

So far everything has been in a continuous notation. For implementation of R-L we need to

start thinking in a discrete notation. We start with the light sheet scanning mode imaging

equation

gASS(x′, y′, δ) =

∫∫∫
dx dy dzf̃(x− δ, y, z + δ)E(x, y, z)hA(x− x′, y − y′, z). (2.45)

This equation comprises 4 cascaded operations. We loop over δ and for each δ, we

1. Shift f by δ in x and −δ in z. We represent this by a shifting matrix S.

2. Multiply by the illumination function. We represent this by a matrix D since this

would be a diagonal matrix (scaling each element in the vector representng the object

by the illumination).

3. Loop over z in the object and at each z, convolve with with lens response function. This

could be represented by an appropriate block circulant matrix with circulant blocks H.

4. Collapse over the z coordinate. This could be represented by a projection matrix P

having 1’s in appropriate locations since it will lead to summing of the appropriate
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elements.

For a given position of the light sheets demoted byδ, the detected image is now written

as

gA
δ = PAEδ f̃ , (2.46)

where Eδ is the excitation matrix shifted by +δ in x and −δ tan(θ) in z, A represents a

2D convolution with the detection PSF at every slice z, and P is a projection operator that

sums the convolved elements along the z-axis. From (2.46), we can use the RL framework

in (1.11) for reconstructing the two image stacks.

2.4.2 Simulations

To validate this forward model, we ran simulations of the forward model applied to known

phantoms. We could then use the simulated data to see if it was consistent with the data

that had already been acquired on a prototype of the system. Figures 2.20 and 2.21 show

the simulated forward model when we applied it to a 3D phantom of spheres.
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Figure 2.20: Geometry used for simulating the acquisition of data when using a reflective
coverslip. The object includes both the real and mirrored phantom and is shifted along the
coverslip shown in red.

Figure 2.21: Simulated acquisition data when using a reflective coverslip with a diSPIM
system. We can see that in stage-scanning mode the sample has been compressed in the z
dimension and expanded in the x dimension.

The data in Figure 2.21 has similar characteristics to the real data that was acquired on

the prototype system and is shown in Figure 2.23.

In addition to being able to verify that the forward model was an accurate representation

of the new system, it allowed us to confirm that our reconstruction implementation was
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correct. Using noise-free simulation data, we should be able to recover the underlying object

if the reconstruction algorithm is working properly. Figure 2.22 shows some of the initial

reconstructed images after a small number of iterations.

Figure 2.22: Reconstructed images using the noiseless simulations shown in Figure 2.21.
As the number of iterations increases we can see that the spheres start to become more well
defined, but that the spheres closer to the coverslip have a much small diameter than the
phantom has.

Our initial reconstructions were very promising, but there was a major obstacle the the

reconstructions. So far, all of the simulations and reconstructions had been implemented in

Python, the problem was that a single iteration of the reconstruction was taking over 24

hours to run. This is not feasible if we wanted to use the system for real lab work.

In an effort to improve performance, the code was first ported to C and then to CUDA to

see if the reconstruction runtime could be improved. Moving to C did improve performance

but it was still too long with each iteration taking over 10 hours to run. Moving to CUDA

and running the reconstructions on the GPU saw a much larger boost in performance. On

the GPU, each iteration was taking around one hour to run which was fast enough to test

the code on real data.
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Figure 2.23: Data acquired during the initial testing of the microscope when using a
reflective coverslip.

Figure 2.24 shows some of the reconstructed data after a few iterations. These results

helped us validate that the forward model was correctly modeling the new geometry. How-

ever, the reconstructions with real data were taking even longer to run since they were larger

image stacks used in simulation.

Figure 2.24: Initial reconstructed data after three iterations. We see that even after a
few iterations, the contamination from the coverslip has been significantly reduced, if not
eliminated entirely. In the image on the left, we also see one of the challenges with the stage
scanning implementation. Because the sample is shifted across the field-of-view, we have
to expand the volume to include all of these shifts. This requirement increases both the
memory and computation burden during reconstruction.

With the computational resources we had access to, there was not much more we could

do to improve the speed. The bottleneck in the reconstruction was having to transfer the
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data between the CPU and GPU. The reason for doing this is that the GPUs we had access

to did not have enough memory to store all of the data needed during reconstruction.

At this point, our collaborators were able to port our code to Matlab and run it on their

own systems. Having GPUs with more memory allowed them to remove the transfer of

data back and forth between the CPU and GPU. The were also able to replace a series of

2D convolutions with a 3D convolution where the 2D slice is zero-padded. These changes

brought the total reconstruction time to under an hour for some of the datasets. Figure 2.25

shows some of the reconstruction using the final implementations of the forward model and

reconstructions.
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Figure 2.25: The image on the top, shows a 2D slice of data what was reconstructed using
a naive light-sheet deconvolution that does not accurately account for the reflective coverslip.
Continued on the next page.
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Figure 2.25: Cont. In the image on the bottom, we see a 2D slice of data that is recon-
structed with the final implementation of the modeling . Comparing the two, we can see
that accurate modeling is needed to remove the contamination at the coverslip. We also see
that the nuclei have a more isotropic resolution using the more complete model. Scale bars
are 10 µm. Reprinted from Yicong Wu et al. (2017). Used with permission.

2.4.3 Conclusions

Using a reflective coverslip helps direct emitted light previously lost back up to the detection

objectives creating reflected images. The mirror also allowed us to image with asymmetric

geometry of a 0.71/1.1 NA objectives. Because of the mirrored views, this effectively gives

us 2-1.1NA views of the sample which is not possible in a diSPIM geometry due to steric

constraints. In this imaging configuration, we have improved the collection efficiency to

around 60%. Also, because the excitation beam is reflected, there is no need to alternate

excitation and detection, which speeds up acquisition time by a factor of two. One objective

can both excite and detect the emission by using a filter to reject the lower wavelength

excitation light.
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CHAPTER 3

RESOLUTION LIMITS IN STRUCTURED ILLUMINATION

MICROSCOPY

The next two chapters look at a different imaging technique called Structured Illumination

microscopy (SIM). Chapter 3, focuses on our analysis of the theoretical bounds on the

resolution in reconstructed SIM images. Most measures of resolution improvement use the

cutoff frequency of an imaging system to determine resolution improvement. Instead of using

the cutoff frequency, we calculate what the effective point spread function would be after

image reconstruction and use its FWHM to measure resolution improvement. In Chapter 4,

we use simulated data to test if different reconstruction methods can achieve these resolution

bounds. In these chapters, the SIM that we refer to is known as Linear SIM. There are other

classes of systems referred to nonlinear SIM that have resolutions closer to those found in

super-resolution systems. A more thorough review on the differences can be found in [38].

3.1 Introduction

3.1.1 Structured Illumination Microscopy

SIM is a super-resolution imaging technique that was developed in the 1990’s. Publications

by Gustafsson et al. [18] and Heintzmann et al. [20] in 1999, both showed that using mod-

ulated illumination or interference, it was possible to achieve resolutions beyond the Abbe

diffraction limit discovered by Ernst Abbe in 1873 [1]. In 2001, Gustafsson published an

article titled, ”Surpassing the lateral resolution limit by a factor of two using structured illu-

mination microscopy” that brought together the theory, results, and implementation details

to show that SIM improve lateral resolution by a factor of two [17].

SIM is one of the best super-resolution imaging techniques for live cell imaging as it

requires no special dyes, only requires nine images per high-resolution image compared with
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the tens of thousands of acquisitions needed for PALM [3] and STORM [30], and is capable

of exciting 2D slices rather than point scanning the sample [21].

Using a modulated excitation allows the microscope to detect higher resolution compo-

nents present in the object. These higher resolution components show up in the detected

image as artifacts in the form of aliasing. Additional processing is required to decode the

high-resolution components from the image and create an artifact-free high-resolution image.

3.1.2 Two-Photon Microscopy

Two-photon (2P) excitation relies on near simultaneous excitations by two long wavelength

photons [16]. The use of 2P in microscopy has resulted in greater depth penetration due to

reduced scattering of the excitation light and in an increase in spatial resolution due to the

high photon flux needed to get two simultaneous absorptions [8].

3.2 Imaging Model

All structured illumination microscopes acquire multiple images of the sample that must be

processed algorithmically in order to generate a artifact-free high-resolution image. For this

process to work, there needs to be an accurate model of the imaging system. The model

described in (1.5) is a very general equation for modeling an imaging system. For a SIM

specific model, H needs to be explicitly calculated using the specifics of the SIM system

being modeled.

3.2.1 Coherent Interference

In the continuous domain, when the modulated excitation is the result of coherent interfer-

ence between two laser beams, the excitation intensity is modeled as

E
(j)
1p (r,k) = 1 + α cos(r · k + φ (j)), (3.1)
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where k is the modulation frequency, φ (j) is the relative phase of the pattern, and α ∈ [0, 1]

models the depth of the modulation depth. The detected intensity at the detector can be

written as

g
(j)
1p (r,k) =

∫
dr′

[
E

(j)
1p (r′,k)f(r′)

]
hem(r− r′)

= [E
(j)
1p (r,k)f(r)] ∗ hem(r), (3.2)

where f(r) is the fluorophore distribution being imaged and hem(r) is the PSF of the detec-

tion objective for emission photons.

The widefield image that resolution improvement is measured against is computed using

gwide(r) = Ewide [f(r) ∗ hem(r)] (3.3)

Ewide =
J−1∑
j=0

E
(j)
1p (r,k), (3.4)

where (3.4) is a constant that is used to keep the excitation dose of the SIM and widefield

simulations equal.

3.2.2 Point Scanning

Due to the high flux needed for 2P excitation, 2P-SIM systems rely on a point-scanning

system to create the modulated excitation pattern rather than using coherent interference

to create the modulation. In a 2P-SIM system, a diffraction limited spot is scanned across

the sample while the intensity is modulated with position. The resulting 2P-SIM excitation

pattern is computed by integrating over all scanner positions.

E
(j)
2p (r,k) =

∫
drs

[
(1 + α cos(rs · k + φ (j)))hex(r− rs)

]2
(3.5)
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Here, hex(r) is the PSF of the objective for excitation photons and represents the shape of

the spot being scanned across the sample.

The image acquired by the detector is written as

g
(j)
2p (r,k) =

∫
dr′

[
E

(j)
2p (r′,k)f(r′)

]
hem(r− r′)

= [E
(j)
2p (r,k)f(r)] ∗ hem(r). (3.6)

We can see that this form is identical to (3.2) just with a different form of excitation. We

can rewrite (3.5) by simplifying the integral over scanning positions:

E
(j)
2p (r,k) =

∫
drs

[
(1 + α cos(rs · k + φ (j)))hex(r− rs)

]2
=

∫
drs (1 + α cos(rs · k + φ (j)))

2
h2
ex(r− rs)

= (1 + α cos(r · k + φ (j)))
2
∗ h2

ex(r)

=
(
E

(j)
1p (r,k)

)2
∗ h2

ex(r). (3.7)

Plugging (3.7) into (3.6) we get that the image at the detector can be written as,

g
(j)
2p (r,k) =

([
(E

(j)
1p (r,k))

2
∗ h2

ex(r)

]
f(r)

)
∗ hem(r). (3.8)

Comparing (3.2) and (3.8), we see that the forward models for one-photon and two-photon

SIM are of the same form with the only difference being the effective excitation of the

fluorophore distribution. We also simulate a scanning two-photon microscope without struc-

tured illumination so that we can measure the resolution improvement that we get from
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using structured illumination.

g 2p-scan(r) = E 2p-scan

[
f(r) ∗ h2

ex(r)
]

(3.9)

E 2p-scan =
J−1∑
j=0

E
(j)
2p (r,k) (3.10)

3.3 Frequency Shifting Reconstruction

Reconstructions for SIM typically use three images that are acquired with relative phase

differences of 0°, 120°, and 240°. Taking the Fourier transform of (3.2) for each of the three

images allows the acquired data to be written as a 3×3 system of linear equations.


g (0)(ν)

g (1)(ν)

g (2)(ν)

 =
1

2


2 α α

2 α e−i2π/3 α ei2π/3

2 α e−i4π/3 α ei4π/3




f(ν)

f(ν − k)

f(ν + k)

 (3.11)

where − represents the Fourier transform. Details on how to calculate the Fourier transform

of the detected image can be found in (3.4.1). Inverting the 3×3 matrix in (3.11) allows us

to solve for the three frequency components and shift them back to their correct location in

k-space. After shifting, the inverse Fourier transform is taken to recover the high-resolution

image. Tikhonov filtering [35, 36] is incorporated to improve the SNR of the final high-

resolution image. With Tikhonov filtering we use a constant, η, to control the strength of

the filter. When η is close to zero, resolution is enhanced but the noise level is increased. As

η is made larger, the noise in the images is reduced at the expense of poorer resolution.
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3.4 Theoretical Resolution Limits for Structured Illumination

Microscopy

In structured illumination microscopy (SIM), resolution is determined by the numerical aper-

ture of the microscope’s objective and the excitation and emission wavelengths. Resolution

improvement can be approximated by comparing the cutoff frequency achievable with SIM

and without SIM.

Without SIM, the cutoff frequency for widefield microscopes is computed using,

νwidec = νc,em =
2NA

λem
. (3.12)

The cutoff frequency for two-photon microscopes is computed using the same equation, but

due to the fact that two-photon excitation squares the excitation PSF, the cutoff frequency

for two-photon microscopes is twice the widefield excitation cutoff frequency.

ν
2p−scan
c = 2 νc,ex =

4NA

λex
. (3.13)

Comparing the two cutoff frequencies, we see that the widefield cutoff frequency is dependent

on the emission wavelength of the fluorescent dye while the two-photon cutoff frequency is

only dependent on the wavelength used for excitation. This is caused by differences in how

the emission photons are captured by the detector.

However, the cutoff frequency for both one-photon and two-photon SIM systems is de-

termined by both the excitation and emission wavelengths. The excitation wavelength de-

termines what the maximum frequency of the illumination pattern can be, and the emission

wavelength determines the cutoff frequency on the detection side. These two contributions

combine to create a cutoff frequency for SIM that is simply the sum of the emission cutoff

52



frequency and the frequency of the excitation pattern, ν.

ν
1p−sim
c = ν + νc,em (3.14)

ν
2p−sim
c = ν + νc,em (3.15)

As before, we introduce β ∈ [0, 1] to rewrite the frequency of the excitation pattern in terms

of the excitation cutoff frequency. When (β = 1), the maximum frequency allowed is used

for the excitation pattern and when (β = 0), the excitation is constant across the FOV.

ν
1p−sim
c = β

2NA

λex
+

2NA

λem
(3.16)

ν
2p−sim
c = β

4NA

λex
+

2NA

λem
(3.17)

At this point we take the ratio of the cutoff frequency with SIM and without SIM to see

how much improvement there is when using SIM. This ratio, Qsim, can be used as a proxy

to measure the resolution improvement that SIM provides.

Q
1p
sim =

β (2 NA/λex) + (2 NA/λem)

(2 NA/λem)
= 1 + β (λem/λex) (3.18)

Q
2p
sim =

β (4 NA/λex) + (2 NA/λem)

(4 NA/λex)
= λex/(2λem) + β (3.19)

For one-photon SIM, the excitation and emission wavelengths are only slightly different

due to the Stokes shift with the excitation wavelength being the smaller of the two. This

means that when β is set to one, the improvement is slightly larger than two. For two-photon

SIM, the excitation wavelength is generally smaller than twice the emission wavelength, and

so when using the highest excitation frequency allowed, the improvement factor is slightly

less than two. If we use this as a measure of resolution, we expect that for one-photon SIM,

the minimum resolvable distance will be cut in half. For the two-photon SIM system, we
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expect that the minimum distance resolvable will decrease, but it won’t quite be a factor of

two improvement.

3.4.1 Resolution Limits in SIM using Linear Reconstructions

Section 3.4 looks at the improvement factor when using SIM in terms of cutoff frequency and

how much it is increased. This improvement factor is often used as a proxy for determining

the resolution improvement gained with SIM. However, in practice, this improvement factor

is not a reliable way to determine resolution improvement because, in 2P-SIM, the contrast

of the shifted peaks decreases as the excitation frequency increases.

The decreased contrast is the result of using a diffraction-limited spot to produce the

modulated excitation. Looking at the Fourier transform of the two-photon excitation pattern

shows the shifted peaks get multiplied by the excitation OTF evaluated at the frequency

of the modulated pattern. Since every imaging system introduces noise, as the excitation

frequency increases, more of the higher frequency components fall below the noise level and

results in decreased resolution in the final reconstructed image.

For a better measure of resolution, we use 1D simulations to compute the effective OTF

in both one-photon and two-photon SIM after performing the linear reconstruction described

in Section 3.3. We then compute the effective PSF by taking the inverse Fourier transform

of the effective OTFs. We use the FWHM of this effective PSF as our measure of resolution

to determine the resolution improvement that SIM can provide.

One-Photon OTF

To compute the effective OTF, we start by taking the Fourier transform of the forward model

in (3.2) with respect to r, obtaining

g
(j)
1p (ω,k) = Oem(ω)

[
E

(j)
1p (ω,k) ∗ f(ω)

]
(3.20)
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Here we denote the Fourier transform using −. The next step is to expand out the Fourier

transform of the excitation pattern.

E
(j)
1p (ω,k) =

∫ ∞
−∞

dr
[
1 + α cos(r · k + φ (j))

]
e−i2πr·ω (3.21)

= δ(ω) + πα
(
e−iφ

(j)
δ(k + 2πω) + e iφ

(j)
δ(k− 2πω)

)
(3.22)

= δ(ω) +
α

2

(
e−iφ

(j)
δ

(
ω +

k

2π

)
+ e iφ

(j)
δ

(
ω − k

2π

))
. (3.23)

Plugging (3.23) into (3.20) we get

g
(j)
1p (ω,k) = Oem(ω)

[
f(ω) +

α

2
e± iφ

(j)
f

(
ω ∓ k

2π

)]
. (3.24)

At this point we can change the excitation vector from angular frequency to linear frequency

such that k = 2πν.

g
(j)
1p (ω,ν) = Oem(ω)

[
f(ω) +

α

2
e± iφ

(j)
f (ω ∓ ν)

]
(3.25)

Two-Photon OTF

We start by taking the Fourier transform of the forward model in (3.6) just as we did for

one-photon.

g
(j)
2p (ω,k) = Oem(ω)

([
O

2p
ex(ω)

(
E

(j)
1p (ω,k) E

(j)
1p (ω,k)

)]
∗ f(ω)

)
(3.26)
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Next, we compute the Fourier transform of the squared one-photon excitation pattern.

(
E

(j)
1p (ω,k)E

(j)
1p (ω,k)

)
=

∫ ∞
−∞

dr
[
1 + α cos(r · k + φ (j))

]2
e−i2πr·ω (3.27)

=
1

4

[
2 (α2 + 2) δ(ω) +

πα e−i2φ
(j)[

α e i4φ
(j)
δ(k− πω) + α δ(k + πω) +

8e3iφ (j)
δ(k− 2πω) + 8e iφ

(j)
δ(k + 2πω)

]]
(3.28)

=
(α2 + 2)

2
δ(ω) +

α2

4

[
e i2φ

(j)
δ

(
2

k

2π
− ω

)
+ e−i2φ

(j)
δ

(
2

k

2π
+ ω

)]
+

α

[
e iφ

(j)
δ

(
k

2π
− ω

)
+ e−iφ

(j)
δ

(
k

2π
+ ω

)]
(3.29)

Now we plug this back into (3.33).

g
(j)
2p (ω,k) (3.30)

= Oem(ω)

[
(α2 + 2)

2
O

2p
ex(0) f(ω)

+ α
∑

m∈{−1,1}
e imφ

(j)
O

2p
ex

(
k

2π

)
f

(
k

2π
−mω

)

+
α2

4

∑
m∈{−1,1}

e i2mφ
(j)
O

2p
ex

(
2

k

2π

)
f

(
ω −m 2

k

2π

)]
(3.31)
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Again the last step we do is to change the excitation vector from angular frequency to linear

frequency such that k = 2πν.

g
(j)
2p (ω,ν) (3.32)

= Oem(ω)

[
(α2 + 2)

2
O

2p
ex(0) f(ω)

+ α e± iφ
(j)
O

2p
ex (ν) f (ω ∓ ν)

+
α2

4
e±i2φ

(j)
O

2p
ex (2ν) f (ω ∓ 2ν)

]
(3.33)

Calculating the PSFs

To calculate the PSFs, we begin with plotting the OTFs in (3.24) and (3.33) when our

object is a point source (delta function). In Figure 3.1 we are showing the OTFs for both

one-photon and two-photon SIM after we have performed the linear reconstruction by shifting

the frequencies to where they should be. In this figure, we use the following parameters:

an α of one, a NA of 0.95 on both detection and excitation objectives, an excitation wave

length of 488 nm, an emission wavelength of 510 nm, and a β set to 0.6 so that the excitation

frequency is 60% of the excitation objectives cutoff frequency.
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Figure 3.1: Reconstructed MTFs for both 1P (left) and 2P (right) SIM. These are plotted
against the MTFs for the baseline configurations we compare SIM to. The piecewise behavior
in both of the reconstructed MTFs is the result of the detection objectives and occurs at the
crossover point when the detection MTF is less than the MTF of the excitation and sample.

After computing these MTFs we can take the inverse Fourier transfer to get the recon-

structed PSFs. In Figure 3.2 we are plotting the corresponding PSFs for the MTFs in Figure

3.1.
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Figure 3.2: Reconstructed PSFs for both 1P (left) and 2P (right) SIM. These are plotted
against the PSFs for the baseline configurations we compare SIM to.

Using the reconstructed PSFs, we can measure the FWHM to measure the resolution

of SIM after linear reconstruction. In Figure 3.3 we have plotted the FWHM as a function

of β. In the figure we see that as the excitation frequency increases, the FWHM decreases

which is what we expect based on the calculations in section 3.4. However, here we see

that for 2P-SIM, the resolution plateaus around 60% of the maximum frequency and then

starts to increase. This is not something that was predicted by just computing the cutoff

frequency for SIM. The reason of this plateau is that in 2P-SIM, the shifted frequency lobes

are multiplied by the 2P excitation OTF. This means that the contrast of the shifted, higher

frequencies is reduced as the excitation frequency increases.
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Figure 3.3: Computed FWHM of reconstructed PSFs for both 1P (left) and 2P (right) SIM
plotted against the excitation frequency. Both the 1P and 2P curves are calculated using a
0.95 NA objective, and an emission wavelength of 510 nm. The 1P curve uses an excitation
wavelength of 488 nm, and the 2P curve uses an excitation wavelength of 900 nm.

3.4.2 Theoretical Resolution Limits of Deconvolution

In the last section we looked as resolution improvements after linear reconstructions. In this

section we will look at the resolution improvement that we expect from using our iterative

reconstructions.

Deconvolved OTF and PSF

To begin, we start with laying out what the goal of a perfect reconstruction look entails.

The goal of deconvolution is to recover the higher frequency components that have been

reduced by the system OTF. In a perfect reconstruction, all frequencies in the passband
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of the microscope would be recovered such that the reconstructed OTF would be a rect

function, for a 1D imaging system. Figure 3.4 is a plot of what the OTF would look like for

a widefield microscope before and after a perfect reconstruction.

Figure 3.4: In the spatial frequency domain, a perfect reconstruction would pass unmod-
ulated all of the frequencies below the cutoff frequency. This can be represented as a rect
function.

To measure the resolution of this perfect reconstruction, we can take the inverse Fourier

transform and measure resolution based on the resulting PSF. For a cutoff frequency of νc,
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the inverse Fourier transform is calculated using

PSF(x) =

∫ ∞
∞

dν OTF(ν)ei2πνx (3.34)

=

∫ νc

−νc
dν ei2πνx (3.35)

=
1

i2πx
ei2πνx

∣∣∣∣νc
−νc

(3.36)

=
1

πx

[ei2πνcx − e−i2πνcx]

2i
(3.37)

= 2νc
sin(2πνcx)

2νcπx
(3.38)

= 2νc sinc(2νcx). (3.39)

In the final form of the PSF (3.39), we use the normalized version of the sinc function. In

Figure 3.5 we plot the PSF for widefield without deconvolution against the PSF that results

from a perfect deconvolution.
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Figure 3.5: Comparing the PSF before and after a perfect reconstruction in a noiseless
diffraction limited system.

3.4.3 Measuring Resolution

There are multiple ways that we can measure the resolution from the system PSF. A common

way to calculate resolution is to measure the FWHM of the PSF, and use that as the system

resolution. From the reconstruction PSF we can calculate the half maximum by solving the

following equation for ×. The FWHM is then twice the half maximum.

sinc (2 νc x) =
1

2
. (3.40)

Another way to measure resolution is to use the Rayleigh Criteria. Using this method

involves finding the distance between two point sources such that the contrast between the

two peaks is 26%. Figure 3.6 shows the Rayleigh distance both before and after the perfect
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reconstruction.

Figure 3.6: Comparing the Rayleigh distances before and after a perfect reconstruction in
a noiseless diffraction limited imaging system. The plot on the (left) shows the minimum
resolvable distance between two point sources prior to reconstruction, and the image on the
(right) shows the minimum resolvable distance after reconstruction.

3.4.4 Results

Using these two different methods for computing the resolution from a PSF, we can calculate

what that resolution is for different excitation frequencies in SIM, and compare it to a

scanning two-photon microscope. For this comparison, we used the same parameters from

section 4.3. Table 3.1 shows the best resolutions an iterative reconstruction can achieve for

the 2P scanning microscope configuration. We see that the FWHM measure of resolution

is 15% smaller than the resolution computed using the Rayleigh Criteria. This shows that

measuring the resolution on a single point source can give a false sense of performance as it
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will be unable to differentiate non-point sources at that distance.

Table 3.1: A table showing the best resolution after deconvolution for a scanning two-
photon microscope.

lp/um min two-point resolution (nm) min FWHM (nm)

scanning two-photon 4.22 165.42 142.90

In Tables 3.3 and 3.2, we compute the best achievable resolutions for reconstructions for

1P and 2P SIM for both measures of resolution. These are the computed values that we use

in Figs. 4.7 and 4.8.

Table 3.2: A table showing the best resolution after deconvolution for a two-photon SIM.

Frequency (%) lp/um min two-point resolution (nm) min FWHM (nm)

100 7.95 87.88 75.92
95 7.74 90.28 77.99
90 7.53 92.81 80.17
85 7.31 95.49 82.49
80 7.10 98.33 84.94
75 6.89 101.34 87.54
70 6.68 104.54 90.31
65 6.47 107.95 93.26
60 6.26 111.59 96.40
55 6.05 115.49 99.77
50 5.84 119.67 103.37
45 5.63 124.16 107.25
40 5.41 129.00 111.44
35 5.20 134.23 115.96
30 4.99 139.91 120.86
25 4.78 146.09 126.20
20 4.57 152.84 132.03
15 4.36 160.24 138.42
10 4.15 168.39 145.47
5 3.94 177.42 153.27
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Table 3.3: A table showing the best resolution after deconvolution for a one-photon SIM.

Frequency (%) lp/um min two-point resolution (nm) min FWHM (nm)

100 7.62 91.67 79.19
95 7.42 94.08 81.27
90 7.23 96.61 83.46
85 7.03 99.28 85.77
80 6.84 102.11 88.21
75 6.65 105.10 90.79
70 6.45 108.27 93.53
65 6.26 111.64 96.44
60 6.06 115.23 99.54
55 5.87 119.05 102.84
50 5.67 123.14 106.37
45 5.48 127.51 110.15
40 5.28 132.21 114.21
35 5.09 137.27 118.58
30 4.89 142.73 123.30
25 4.70 148.64 128.40
20 4.50 155.07 133.95
15 4.31 162.07 140.01
10 4.11 169.74 146.63
5 3.92 178.17 153.91
0 3.73 187.48 161.95
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CHAPTER 4

RECONSTRUCTION IN STRUCTURED ILLUMINATION

MICROSCOPY

In Chapter 3 we calculated the theoretical bounds on the resolution for structured illumina-

tion microscopy. In this chapter, we begin by discretizing the imaging models for SIM so they

can be used for simulating images acquired on SIM systems. Using the discretized imaging

models, We then implement multiple reconstruction methods and compare the resolution in

the reconstructed data to the theoretical bounds we found in Chapter 3.

The reconstruction methods we develop aim to simplify and correct previous implemen-

tations of iterative reconstruction methods in SIM. Simplification is achieved by removing

the need for hyperparameter estimation. Orieux et al. [26], have developed a Bayesian-based

reconstruction method for SIM. Their work uses a Bayesian framework that requires the

estimation of two hyperparameters using iterative sampling of the image conditional pos-

terior law. Sampling is performed using a Markov chain Monte Carlo (MCMC) algorithm

called the Gibbs algorithm [23, 14]. In addition to the need for parameter estimation, they

found that their reconstruction method is very sensitive to the parameters used to model

the excitation modulation in the forward model.

In this chapter we implement two different iterative reconstruction schemes: Richardson-

Lucy (RL) deconvolution [29, 25] and `2-constrained, total-variation (TV) minimization

using methods developed by Chambolle and Pock (CP) [5]. Each method only has a single

parameter that could be tuned to change the image quality in the reconstructed image,

making them easier to implement. While there is a previous paper that claims to use TV

reconstructions for SIM data, they have mistakes in how they derive the update equations

for non-shift invariant data like SIM.
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4.1 Discrete Imaging Model

As the acquired data is discrete, the previous imaging models require translation from the

continuous domain to the discrete domain. Discretization begins with the transformation of

each acquired image into a one-dimensional vector g (j) of length N , by concatenating the

pixels in lexicographical order. Convolution with the system point spread function is replaced

by matrix multiplication with a system matrix A (j). To preserve point-wise multiplication,

the effective excitation is replaced with a diagonal matrix E (j). Lastly, an additive noise

vector n (j) can be included to represent noise introduced during the imaging process.

g (j)(r) =
[
E (j)(r,k)f(r)

]
∗ hem(r) −→ g (j) = A (j)E (j)f + n (j) (4.1)

Combining all J equations is simplified using the notion of a repeating matrix found in

Orieux et al. [26]. A repeating matrix R, is a JN × N matrix formed by concatenating J -

N × N identity matrices. Multiplication with the repeating matrix creates J copies of the

matrix. The last step is replacing the other matrices in (4.1) with JN × JN block-diagonal

matrices and replacing the length N vectors with concatenated vectors of length JN .

g = AERf + n = Hf + n (4.2)

where H = AER (4.3)

The block-diagonal matrix A is formed with A (j) blocks, E is the block-diagonal matrix

formed with E (j) blocks, g is a length JN vector formed by concatenating the J - g (j)

vectors, and n is a length JN vector formed by concatenating the J - n (j) vectors.

4.2 Iterative Reconstructions

The previous reconstruction method requires the use of shifting, scaling, interpolation, and

filtering during different steps of the reconstruction process. These steps have the potential to
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introduce artifacts in the high-resolution image. In an iterative reconstruction, the algorithm

is responsible for placing folded-over frequencies in the correct location, thus eliminating

possible sources of error introduced during reconstruction.

4.2.1 RL/MLEM

Richardson-Lucy (RL) deconvolution is a statistical reconstruction method widely used in

fluorescence microscopy. In medical imaging, this statistical reconstruction method is often

referred to as maximum-likelihood expectation-maximization (MLEM) [32]. The iterative

update we use is a generalization of (1.11) used by Richardson and Lucy [29, 25].

Plugging (4.3) into (1.11) gives

f t+1 =
f j

S

[
(AER)T g

AERf t

]
=
f t

S

[
RTETAT g

AERf t

]

f t+1 =
f t

S

 J∑
j=1

(E (j))(A (j))
T g (j)

A (j)E (j)f t

 (4.4)

where j is the SIM image index and S is the sensitivity matrix that was introduced in (1.11).

For multi-view systems, this calculation can be reduced to

S =
J∑
j=1

(E (j))(A (j))
T
1 (4.5)

If the system matrices or PSFs are normalized, (4.5) can be further reduced to the sum of

the excitation matrices.

S =
J∑
j=1

E (j) (4.6)

Translating this discrete update equation back to the continuous domain brings back the
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convolutions present in the continuous forward models

f t+1(r) =
f t(r)

S(r)

 J∑
j=1

E (j)(r)

(
h
† (j)
em (r) ∗

(
g (j)(r)

h
(j)
em(r) ∗ E (j)(r)f t(r)

)) , (4.7)

where † denotes the Hermitian adjoint of a function. Writing the update as a convolution

allows us to exploit the convolution-multiplication theorem and perform the convolutions in

the spatial frequency domain. This greatly improves both memory usage and computation

speed in the implemented reconstruction.

A well-known issue with using RL is that the noise level in the reconstruction increases as

the number of iterations increases. To get around this issue the algorithm should be stopped

early as a type of regularization. The next section uses a cost function that employs explicit

constraints to help remove some of the ambiguities associated with early stopping.

4.2.2 Total-Variation Minimization

Total-variation (TV) is a regularized reconstruction method that eliminates the need for

early stopping by penalizing the TV-norm in the cost function. The TV-norm or `1 norm

of the image gradient is smaller in regions of constant intensities. Thus minimizing the

TV-norm promotes regions of uniform intensity with sharp cutoffs between different objects.

The TV method implemented in this section is the solution to a `2-constrained, total-

variation minimization problem. In the constrained form, the TV-norm is the lone term in

the cost function, but a valid solution also has to satisfy a separate data fidelity and positivity

constraint. The data fidelity constraint requires that the `2-norm of the difference between

the detected images and the forward model applied to the reconstructed images be smaller

than some constant ε. The positivity constraint requires all pixels in the reconstructed image

to be non-negative.

f̂ = arg min
f

‖ (|∇f |) ‖1 s.t.
∣∣∣∣Hf − g∣∣∣∣2 ≤ ε, f i ≥ 0 ∀ i (4.8)
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This constrained optimization problem can be rewritten as an unconstrained optimization

in the form of (1.8) through the use of indicator functions. In this form the cost function to

minimize is given by

Φ(f , g) =

{
‖ (|∇f |) ‖1 + δp(f) + δball(ε)(Hf − g)

}
, (4.9)

where ε is the data constraint parameter and δp and δball(ε) are indicator functions used to

enforce the positivity and `2 constraints.

δp(f) ≡


0 f i ≥ 0 ∀ i

∞ otherwise

δball(ε)(f) ≡


0

∣∣∣∣f ∣∣∣∣2 ≤ ε

∞
∣∣∣∣f ∣∣∣∣2 > ε

. (4.10)

In this new form, (4.9) is a convex function and opens the doors to the many methods

for solving convex optimization problems. For this work we chose to use the primal-dual

formulation for convex objective functions first introduced by Chambolle and Pock [5] with

applications to imaging. In the primal-dual formulation, a second objective function, the

dual, is maximized. When convergence is reached, the primal and the dual should be equal.

Thus, this difference called the primal-dual gap gives a well defined criteria for convergence.

Convergence is reached when the primal-dual gap is within some tolerance of zero. Im-

plementation of the update equations for this reconstruction method follow the framework

developed by Sidky et al. [33]. The psuedo-code for this implementation can be found in

Section A.1.

4.3 Simulations

In these simulations we only consider the 2D case where the modulated excitation intensity

is only along the plane perpendicular to the optical axis. Using the imaging models derived

in Section 3.2, simulated SIM images were generated for use in both the qualitative and
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quantitative evaluation of achievable resolutions after reconstruction. The two phantoms

shown in Figure 4.1 were used to generate SIM data used for quantitative evaluation. The

first, a bar pattern phantom, is used to determine what frequencies are resolvable after

reconstruction, and the second, a phantom with point sources and uniform regions, is used

for visual assessment.

Figure 4.1: Phantoms used to simulate SIM data for the qualitative assessment of image
quality after image reconstruction.

To quantitatively measure the resolution of reconstructed images while also accounting for

the non-linear effects of the iterative reconstructions, we use a method proposed by Gong et

al. for measuring point source resolution. They found that by reconstructing a low-contrast

point source on a uniform background, and reconstructing the uniform background without

a point source, they could achieve more stable FWHM measurements that did not simply

approach the pixel size of the reconstructed images [15]. The two phantoms are shown in

Figure 4.2.
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Figure 4.2: Phantoms used to measure the noise and resolution in reconstructed SIM
images.

Following their method, we run noiseless simulations on a phantom with a uniform signal

and on a phantom that has the same uniform signal but with a single low-contrast (less than

%10 contrast) point source in the center of the signal. We also run a noisy simulation on

the phantom with uniform signal so that we can measure noise. All of the simulated images

are then reconstructed.

To measure resolution, we subtract the reconstructed uniform phantom from the re-

constructed phantom that contains the low contrast point source. A Gaussian is fit to an

intensity profile across the resulting point source in the subtraction image. From the fitted

Gaussian we compute the FWHM from the standard deviation. To measure noise, we mea-

sure the standard deviation of the intensity in the uniform region for the reconstruction on

the noisy simulation.
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4.3.1 One-Photon SIM Simulations

For single-photon SIM, we simulate the nine acquired images using (3.2) with the following

parameters:

k0 = β 2π νc,ex (4.11)

k (0) = [k0 cos(π/4), k0 sin(π/4)] (4.12)

k (1) = [k0 cos(2 ∗ π/3 + π/4), k0 sin(2 ∗ π/3 + π/4)] (4.13)

k (2) = [k0 cos(−2 ∗ π/3 + π/4), k0 sin(−2 ∗ π/3 + π/4)] (4.14)

φ = [0, 2π/3, 4π/3], (4.15)

where β ∈ [0, 1] is a parameter that changes the frequency of the excitation intensity, k0

and νc,ex are the respective magnitudes of the frequency vectors k and ν, and the subscript

em or ex denotes whether the wavelength of light used was from emission or excitation

photons. With β = 1, we are using the highest excitation frequency that can be passed

by the excitation objective, and choosing β = 0 removes the modulation of the excitation

intensity. Airy patterns are used for the objective PSFs and are computed in the spatial

frequency domain using

Oem(ν) =
1

π

(
2 cos−1

(
ν

νc,em

)
− sin

(
2 cos−1

(
ν

νc,em

)))
, (4.16)

where

νc,em =
2 NA

λem
(4.17)

is the cutoff frequency for an objective and Oem is the Fourier transform of the PSF hem.

In our simulations we set α to 1, along with using an NA of 0.95, an excitation wavelength

of 488 nm, and an emission wavelength of 510 nm. In addition to simulating the nine

structured illumination images, we use (3.3) to simulate the single-photon widefield image.

For simulations with noise, we draw an image taken from a Poisson distribution with the
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simulated image pixel values as the mean of the Poisson distribution.

4.3.2 Two-Photon SIM Simulations

For the two-photon simulations (4.11) becomes

k0 = β 4π νc,ex, (4.18)

with an extra factor of two coming from squaring the excitation PSF. Plugging (4.18) into

(4.12) – (4.14), we can calculate the orientation and frequency of the modulated excitation.

The relative phases remain the same as those used in the one-photon SIM simulations.

In these simulations, we use an NA of 0.95, an excitation wavelength of 900 nm, and an

emission wavelength of 510 nm. After simulating the nine structured illumination images,

we use (3.9) to simulate a non-SIM two-photon image that we use to measure the resolution

improvement when using structured illumination.
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4.3.3 Simulated Bar and Points Phantoms

Figure 4.3: Simulated widefield data using each of the phantoms as the sample we are
interested in imaging. These non-SIM images are used to assess resolution improvement
gained when using SIM.

Figure 4.3 shows the simulated widefield images that we use to measure the resolution

improvement gained when using structured illumination.
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Figure 4.4: Simulated data for each phantom using the non-SIM, two-photon scanning
microscope.

In Figure 4.4 we have the simulated non-SIM 2P scanning images that we use to measure

resolution improvement with using 2P-SIM.
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4.3.4 Simulated Uniform and Low-contrast Point Source Phantoms

Figure 4.5: Subtraction image (left) computed from the two noise-free simulated widefield
images used to measure resolution and the noisy widefield simulation (right) used to measure
noise.

Figure 4.5 shows the subtraction image of two noise-free widefield images and the noisy

widefield simulation for the uniform signal.
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Figure 4.6: Subtraction image (left) computed from the two noise-free simulated two-
photon scanning images used to measure resolution and the noisy two-photon scanning sim-
ulation (right) used to measure noise.

In Figure 4.6 we have the subtraction image of two noise-free simulated two-photon

scanning microscope images and the noisy two-photon scanning simulation for the uniform

signal.

4.4 Reconstructions of Simulated Data

4.4.1 Measuring Noise and Resolution

Following Section 4.3 we can measure the noise and resolution properties for the different

reconstruction methods. In each reconstruction method there is a tunable parameter the we

can use to vary the noise and resolution properties of the final image. In the conventional

reconstruction we have η, with RL we have number of iterations, and with TV we have the

constraint parameter ε.

By varying each parameter and measuring the FWHM and noise of the resulting re-
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constructed images, we can trace out noise vs resolution curves to compare each of the

reconstructions. To help negate any differences in the mean, we normalize the noise by the

mean to get the relative standard deviation (RSD). Using 3.4.2, we include on the plots the

theoretical resolution limits for both the SIM reconstruction and the baseline reconstruction

(widefield one-photon illumination or non-SIM two-photon scanning).

One-Photon Curves

In Figure 4.7, we want to minimize both the noise and resolution so that better values are

closer to the origin of the plot. As the first check we see that all of the reconstructions

performed on the one-photon SIM images outperform RL deconvolution on the widefield

image.

Figure 4.7: Calculated noise vs resolution plots from reconstructed one-photon SIM simu-
lation data. The simulated data had a mean intensity of 25 counts.
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Comparing the iterative reconstructions against the conventional reconstruction meth-

ods, we see that for every noise level, a better resolution is achieved when an iterative

reconstruction is used. The iterative reconstructions also approach the theoretical resolution

limit while the conventional reconstructions fail to saturate this limit. However, saturation

of this limit comes at the cost of increased noise. One thing to note is that in the RL with

four images, there is 4/9 of the exposure when compared to the freq shifted and RL nine

images reconstructions. As such, the importance of noise, resolution, and exposure need to

be determined for the specific imaging task.

Two-Photon Curves

Figure 4.8: Calculated noise vs resolution plots from reconstructed two-photon SIM simu-
lation data. The simulated data had a mean intensity of 25 counts.

81



As in the case of one-photon SIM, we see in Figure 4.8 that using SIM outperforms the

baseline reconstruction which in this case is a two-photon scanning microscope. We also find

that when using the same dataset, RL outperforms the conventional reconstruction method.

Unlike the one-photon SIM reconstructions, neither the iterative nor the conventional recon-

struction methods saturate the theoretical resolution limits. This is caused by the reduced

contrast of higher frequency components in a scanning configuration. Another difference is

that RL with only four images is no longer better than the conventional method. In this

case, one would need to weigh the need for better resolution/noise or lower exposure during

the acquisition process.

4.4.2 Reconstructed Bar and Points Phantoms

A potential issue with just using noise and resolution curves as the metric for image quality

is that there are no indicators of error in the reconstruction. To check if any artifacts are

introduced during the reconstruction process, reconstructions are done on simulated data

that use the qualitative phantoms described in Section 4.3.3.

One-Photon Reconstructions

As we did with the noise and resolution curves, we run the RL deconvolution algorithm

on the widefield simulations. This allows us to make sure that the resolution with 1P-SIM

using the conventional reconstruction algorithm is better than we could achieve by running

iterative reconstructions on non-SIM widefield simulation data.
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Figure 4.9: Reconstructed image for the widefield simulation (left) and the reconstructed
image for 1P-SIM when using a smoothing parameter of η = 5x10−3. In the reconstructed
SIM image, the bars are resolvable on the middle pattern while this is not the case for the
for the non-SIM reconstruction.
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Figure 4.10: Reconstructed image for the widefield simulation (left) and the reconstructed
image for 1P-SIM when using a smoothing parameter of η = 5x10−3. In the reconstructed
SIM image, the bottom left pattern is fully resolvable and is not resolvable in non-SIM
reconstruction, indicating that the use of structured illumination does increase resolution.

Figures 4.9–4.10 show that resolution is improved by using 1P-SIM as we expect it to. In

Figure 4.11 we show the reconstructed 1P-SIM images for the conventional reconstruction

method and images using our implementation of RL deconvolution when using both nine

acquired images and when using only four acquired images. With iterative reconstruction

methods, we see that there is greater contrast in the bar patterns compared to the bar

patterns in the reconstructed image that use the conventional reconstruction method.
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Figure 4.11: Reconstructions of the 1P-SIM simulation data when using the conventional
reconstruction (left), RL deconvolution (center), and RL deconvolution with only four ac-
quisition images.

Figure 4.12 shows the reconstructed images when the same methods are applied to sim-

ulated data using the bar phantom. Again, we are able to see that contrast is improved

through the use of iterative reconstruction methods.

Figure 4.12: Reconstructions of the 1P-SIM simulation data when using the conventional
reconstruction (left), RL deconvolution (center), and RL deconvolution with only four ac-
quisition images.

To better show the contrast improvements achieved using an iterative reconstruction

method, we plot the intensity profiles across the bottom-left pattern in the bar phantom for

each of the reconstructions in Figure4.13.
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Figure 4.13: Intensity profiles for the bottom-left frequency pattern for each reconstruction
method applied to the 1P-SIM simulation data.

Two-Photon Reconstructions

The same reconstruction process in Section 4.4.2 was also applied to the simulated two-

photon SIM data.
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Figure 4.14: Reconstructed image for the non-SIM 2P scanning simulation (left) and the
reconstructed image for 2P-SIM when using a smoothing parameter of η = 5x10−3.

Figure 4.15: Reconstructed image for the non-SIM 2P scanning simulation (left) and the
reconstructed image for 2P-SIM when using a smoothing parameter of η = 5x10−3.

Similar to the one-photon simulations, Figures 4.14 and 4.15 show that resolution in
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reconstructed 2P-SIM images is improved when compared to reconstructed non-SIM two-

photon images.

Figure 4.16: Reconstructions of the 2P-SIM simulation data when using the conventional
reconstruction (left), RL deconvolution (center), and RL deconvolution with only four ac-
quisition images.

Figure 4.17: Reconstructions of the 2P-SIM simulation data when using the conventional
reconstruction (left), RL deconvolution (center), and RL deconvolution with only four acqui-
sition images. For these acquisition parameters, artifacts are introduced if only four images
are used in the reconstruction.

Figure 4.16 and 4.17 again show that using RL deconvolution produces sharper recon-

structions and improved contrast when compared to the conventional reconstruction method.

Using only four images in the reconstruction introduces artifacts that were not present in

similar reconstructions on the simulated 1P-SIM data. The artifacts are most pronounced
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in larger objects in the image and appear as a honeycomb-like structure. However, while

less pronounced, these artifacts are also present in small structures and have the potential to

show false objects in the reconstructed image. For more automated pipelines, these artifacts

could lead to incorrect results and conclusions.

This is a good example of why looking at the actual reconstructions is so important. If

we had just looked at an intensity plot similar to Figure 4.13, we would not know that RL

deconvolution using only four images introduces artifacts.

Figure 4.18: Intensity profiles for the lower left frequency pattern for each reconstruction
of the 2P-SIM simulated phantom. This is a good example of when metrics used to compare
reconstructions can be misleading.

4.4.3 TV Reconstruction

So far, the only iterative reconstruction method compared to the conventional reconstruction

method has been RL deconvolution. This section presents the results of reconstructions that

use the constrained TV method presented in Section 4.2.2.
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One-Photon Reconstructions

Figure 4.19: Reconstructions of the 1P-SIM simulation data when using RL deconvolution
(left), TV reconstruction (center), and TV reconstruction with only four acquisition images.

Comparing the two iterative methods, we see the the bars are slightly wider when using

TV. We also see that the intensity is more uniform when using regularization. Both of these

traits are to be expected and is the reason to use regularized reconstruction algorithm. The

wider bars with regularization can more easily be seen when plotting the intensity of the

reconstructions along a line profile as shown in Figure 4.20.
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Figure 4.20: Intensity profiles for the lower left frequency pattern for each reconstruction
of the 1P-SIM simulated phantom. This is a good example of when metrics used to compare
reconstructions can be misleading.

Two-Photon Reconstructions

Applying the same reconstruction methods to simulated 2P-SIM data, we see that both RL

and TV reconstructions produce reconstructions of similar resolutions. In Figure 4.21 we see

that the TV reconstruction is able to resolve the lower left bar pattern as we saw with the

RL reconstructions.
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Figure 4.21: Reconstructions of the 2P-SIM simulation data when using RL deconvolution
(left), TV reconstruction (center), and TV reconstruction with only four acquisition images.

However, for these reconstructions we find that there are artifacts introduced in the image

when only 4 images are used in the reconstruction. These artifacts appear as a ”honeycomb”

pattern. In cases like this, using TV reconstructions allow us to remove some of these artifacts

by using a larger constraint parameter. This promotes smoothness in the image. But there

is no such thing as free lunch. The trade off for reducing the artifacts is a reduction in

resolution.

4.5 Real Data

To test the robustness of the different reconstruction methods and how they perform on

real data, we use data acquired by our collaborators on a scanning two-photon structured

illumination microscope [37].

4.5.1 Parameter Estimation

For reconstructions done on real data, the parameters for the excitation pattern must be

directly measured from the acquired data as we are no longer working with perfect systems.

The first step deals with determining the frequency and phase of the excitation intensity,

and begins by taking the Fourier transform of each of the acquired images. In the frequency

domain, the magnitude and orientation of the frequency is measured by finding the zero
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frequency peaks that are located at −k and k. Using the measured k̂, the phase for each

acquisition is found by solving the following equation for each of the J acquisitions.

φ̂j = arg min
φ

∣∣∣∣ (1 + cos(kj · r + φ)
)
− gj(r)

∣∣∣∣2
2 (4.19)

For real data, we also need to account for a background term that is added by the cam-

era, as well as any possible autofluorescence that the sample may generate. Each of the

reconstruction methods have a unique way to account for a background term.

In both the conventional and TV reconstructions, we subtract the background from each

image prior to reconstruction. To account for the noise, we subtract the minimum intensity

value from each image to ensure that there are no negative values. For RL deconvolution, we

simply add in a background term to the forward model. This changes the update equation

in (4.7) to

f t+1(r) =
f t(r)

S(r)

 J∑
j=1

E (j)(r)

(
h
† (j)
em (r) ∗

(
g (j)(r)

h
(j)
em(r) ∗ E (j)(r)f t(r) + b

)) . (4.20)

4.5.2 Bead Data

The first data set we tested the reconstructions on are images of 87 nm glass beads fixed

on a slide. Acquisition was done using a 1.4 NA oil immersion objective and an excitation

wavelength of 850 nm. The emission wavelength for the fluorescent dye is centered around

500 nm. Figure 4.22 is the average of all nine images that were acquired with modulated

excitation. This is a pseudo-image of what an image acquired without the modulation would

look like and is the baseline comparisons for computing the resolution improvement for SIM.
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Figure 4.22: Artificial widefield image of the 87 nm beads created by averaging the nine
acquired 2P-SIM images. This is the image used as the baseline image for calculating im-
provement with SIM.

The top right image in Figure 4.23 is the extracted ROI shown in Figure 4.22. This

images is what we compare all of the reconstruction methods with. With the traditional

reconstruction method (top-left), we see that the resolution has definitely improved but the

background has a patchy texture that the averaged image doesn’t have. In the two images

that use TV reconstruction (middle row), we also see improvement in resolution, but there

is also a background texture not present in the averaged image. In this case, the background

seems to be the sum of waves that emanate from the beads. In the bottom row, images that

used RL seem to have even more improved resolution as the two adjacent beads are easier

to discern from one another. And while there is still a textured background, it is greatly

reduced compared to the other methods.
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Figure 4.23: Results of the different reconstruction methods applied to real acquired data.
The top row includes the traditional reconstruction (left) and the baseline non-SIM image
(right). The middle and bottom rows show the results of the two iterative reconstruction
methods we implemented. The left column shows reconstructions when only four images
are used in the reconstruction which is not possible with the traditional method. The right
column includes the reconstructions when all nine of the acquired images are used in the
reconstruction.
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For each of the ROIs in Figure 4.23, we plotted the intensity of the image across a line

through the peaks of adjacent beads and is shown in Figure 4.24. The location of the line

is shown on the insert in Figure 4.22. From the line profiles we can see that all of the

reconstruction methods are able to resolve the two beads. However, we find that there is a

greater contrast between the peaks and valley for the iterative reconstruction methods.

Figure 4.24: Intensity profiles for each reconstruction method along a line profile through
adjacent beads. These plots allow us to determine if the peaks are resolvable for any of the
reconstruction methods.

4.6 Conclusions

When using simulated data, we found that an iterative reconstruction was better able to reach

and saturate the theoretical resolution bounds that we described in the previous chapter.

While this is true for both one and two-photon simulations, convergence to the limit happens

at a much faster rate in the one-photon reconstructions. One reason for this difference can
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be attributed to the fact that the two-photon reduces the contrast of the higher frequency

components that need to be recovered to achieve the best resolution.

In simulations with bar patterns, we found that even though both the linear and iterative

reconstruction were able to resolve the same bars, the sharpness and contrast were greatly

improved when using an iterative reconstructions. However, when using an unconstrained

algorithm like RL, we found that the reconstructed bars were narrower than the bars in

the underlying real data. Using a regularized reconstruction algorithm produced bars that

better approximated the width of the underlying data.

For the one real data we have, we found that there was some improvement in resolution

using the iterative algorithms, the biggest difference between the reconstructed data was in

the background. Because RL allows for seamless integration of both a constant and spa-

tially varying background as seen in (1.11), it performs best for data that has a non-zero

background. The other two algorithms don’t have such a seamless background integration.

Because of this, it is important to know what the background noise looks like in the recon-

structed images so that its texture is not mistaken for signals from the samples.
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CHAPTER 5

CONCLUSIONS

As the speed of new microscope development continues to expand exponentially, there is an

ever-growing number of systems that rely on multiple acquisitions of the sample to enhance

image quality. In such systems, it is crucial to consider the trade-offs with noise, resolution,

and exposure when acquiring more images.

Throughout this work, we have investigated ways to improve image quality while holding

exposure constant or even reducing it. These methods take advantage of information that

is already present either in the data or modify the system to acquire data that is previously

uncollected. All of our work has shown how vital accurate modeling of the systems are for

increasing utility and extracting more information from the data we collect.

In the case of light-sheet microscopes, we worked to improve the model for diSPIM.

Improving model accuracy works to extract more information from data previously collected.

Our work focused on including the effects of using a Gaussian beam to create the light-sheet

into the imaging model. In previous works, the physics of Gaussian beams is often ignored,

and a simpler model substituted. In simulations, we found that including beam widening of

the excitation light-sheet in the imaging model results in reconstructed data that has a more

isotropic resolution. Transitioning to real data did not show as noticeable of an improvement.

We also worked on ways to improve the collection efficiency during imaging to take

advantage of information already being extracted from the sample. To improve collection

efficiency, we added additional detection objectives (three-view diSPIM) or redirected emis-

sion photons back to the detection objectives (reflective diSPIM). In each case, we found

that accurate modeling was necessary to take advantage of the additional information.

With the three-view diSPIM, we found that the addition of a third objective required the

use of a rolling shutter on the camera. Since the light-sheets are no longer entirely contained

in the focal plane of this objective, a rolling shutter needs to be synced with the motion of

the objective to reject light not coming from the focal plane during imaging. Without an
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accurate model for this shutter, the increase in image quality of the reconstructed images

would not have been as significant.

We found that replacing the glass coverslip with a reflective coverslip in the diSPIM sys-

tem improved imaging speed, collection efficiency, and image quality. Because the reflective

coverslip creates reflected images in the acquired data, it is necessary to have an accurate

model to account for the now four views collected. Without this new model, entirely remov-

ing the contamination from the coverslip was not possible during reconstruction.

Transitioning to SIM, we found that having an accurate forward model allowed us to

compute what the theoretical resolutions limits are for both one- and two-photon SIM.

Having known limitations makes it possible to choose imaging configurations and parameters

to acquire data that has sufficient image quality for different use cases. Forgoing maximum

system resolution improves image contrast.

After discretizing the forward model, we implemented two iterative reconstruction meth-

ods to test the upper bounds on the reconstructed resolution. In simulations, we found that

reconstructions using RL deconvolution were able to converge quickly to the upper bound,

and at the same time did not cross it. By converging but not crossing our theoretical bound,

the simulations help to validate our calculations.
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der Physik 401.3 (1931), pp. 273–294.

[17] M. G L Gustafsson. “Surpassing the lateral resolution limit by a factor of two using

structured illumination microscopy”. In: Journal of Microscopy 198.2 (2000), pp. 82–

87.

[18] Mats GL Gustafsson, DA Agard, JW Sedat, et al. “I5M: 3D widefield light microscopy

with better than 100nm axial resolution”. In: Journal of microscopy 195.1 (1999),

pp. 10–16.
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[24] August Köhler. “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke”.

In: Zeitschrift für wissenschaftliche Mikroskopie und für Mikroskopische Technik 10.4

(1893), pp. 433–440.

[25] L. B. Lucy. “An iterative technique for the rectification of observed distributions”. In:

The Astronomical Journal 79.6 (1974), p. 745.

[26] Francois Orieux et al. “Bayesian estimation for optimized structured illumination mi-

croscopy”. In: IEEE Transactions on Image Processing 21.2 (2012), pp. 601–614.

[27] Donald C. O’Shea. Elements of Modern Optical Design. Reading, Massachusetts: Wi-

ley, 1985.

[28] J Qi and R M Leahy. “A theoretical study of the contrast recovery and variance of

MAP reconstructions from PET data.” In: IEEE transactions on medical imaging 18.4

(1999), pp. 293–305.

[29] W Richardson. “Bayesian-based iterative method of image restoration”. In: Journal of

the Optical Society of America 62.I (1972), pp. 55–59.

102



[30] Michael J Rust, Mark Bates, and Xiaowei Zhuang. “Sub-diffraction-limit imaging

by stochastic optical reconstruction microscopy (STORM)”. In: Nature Methods 3.10

(2006), pp. 793–795.

[31] Johannes Schindelin et al. “Fiji: an open-source platform for biological-image analysis”.

In: Nature Methods 9.7 (2012), pp. 676–682. issn: 1548-7105. doi: 10.1038/nmeth.

2019. url: https://doi.org/10.1038/nmeth.2019.

[32] Shepp, L. A. and Vardi, Y. “Maximum Likelihood Reconstruction for Emission To-

mography”. In: IEEE Transactions on Medical Imaging 1.2 (1982), pp. 113–122.

[33] Emil Y. Sidky, Jakob H. Jorgensen, and Xiaochuan Pan. “Convex optimization prob-

lem prototyping for image reconstruction in computed tomography with the Cham-

bollePock algorithm”. In: Physics in Medicine and Biology 57.10 (2012), pp. 3065–

3091.

[34] H. Siedentopf and R. Zsigmondy. “Uber Sichtbarmachung und Größenbestimmung
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APPENDIX A

SUPPLEMENTARY MATERIAL

A.1 Total Variation Minimization

Algorithm 2: Pseudocode for Chambolle-Pock L2 constrained, TV-

minimization.
INPUT : data ~g, data-error tolerance ε

OUTPUT: object estimate fN, pN, qN

Set : ν ← ||H||2/||∇||2, L ← ||(H, ν∇)||2, τ ← 1/L, σ ← 1/L, θ ← 1,

n← 0, λ0 ← 1

Initialize : f0 = 0I, p0 = 0D, and ~q0 = 0V

1 f̄0 ← f0

2 while n ¡ N do

3 λn ← λ02− log2 n

4 p′n ← pn + σ(Hf̄n − ~g)

5 pn+1 ← max (||p′n||2 − σε, 0)
p′n
||p′n||2

6 ~q′n ← ~qn + σν∇f̄n

7 ~qn+1 ← ~q′n((λ/ν)/max (λ/ν, | ~q′n|))

8 fn+1 ← fn − τ HTpn+1 + ν div(~q′n+1)

9 f̄n+1 ← fn+1 + θ(fn+1 − fn)

10 cPD ← λ
ν ||(|ν ∇fn+1|)||1 + ε||pn+1||2 + pTn+1~g

11 L2Diff ← ||fn+1 − fn||2 / ||fn+1||2

12 if cPD < 10−6 || L2Diff < 10−8 then

13 return

14 n← n+ 1

15 return
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