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ABSTRACT

The observable diversity in animal behaviors and perceptions evolves as adaptive responses

to various ecological pressures. In order to evolve these diverse behavioral phenotypes, ge-

netic mutations need to occur that alter the connectivity and activity of neural circuits that

represent the proximate cause of behavior. My thesis work consisted of two complementary

projects that examined how evolution shapes the functional connectivity of neural circuits

related to color vision. For my first project, I conducted a series of experiments characteriz-

ing the organization of the eye in closely related Heliconius butterflies where males exhibit

different mate preferences for females with either white or yellow wing patterns. Both wing

color and mate preference are genetically simple traits, which allowed for a targeted exami-

nation of how natural genetic variation gives rise to different behaviors. Results revealed a

surprising amount of diversity in eye organization across species and sex, with one feature in

particular correlated with male mate preference. This feature was a signature of differences

in photoreceptor synaptic connectivity, with evidence for inhibition of UV photoreceptors

by long wavelength sensitive photoreceptors present in males that prefer yellow females but

not in males that prefer white females. My second project used a theoretical, machine learn-

ing approach to simulate the evolution of tetrachromatic color vision from a trichromatic

ancestor. The results of my simulations showed that the learning trajectories and specific

computational mechanisms used for color vision in these circuits were predictable and de-

pended on the specific network architecture of the original trichromatic network. Together,

my results show how an evolutionary perspective and approach can lead to insights into how

neural circuits are organized and function to produce adaptive behaviors.
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CHAPTER 1

INTRODUCTION

1.1 Background

Animals exhibit a rich diversity of behaviors and perceptual capacities that can be both

divergent among closely related species and convergent between distantly related species.

These diverse behaviors evolve as an adaptive response to ecological pressures in order to

survive and navigate complex natural environments. However, the evolutionary processes

that give rise to behavioral variability do not occur in isolation and are not de novo searches

for globally optimal solutions [1, 2]. Instead, factors such as phylogenetic history [3], de-

velopment [4], and evolvability [5] have the capacity to constrain and bias evolutionary

trajectories. Accounting for these constraints and studying the mechanistic basis of adap-

tation has been invaluable for better understanding evolutionary patterns in morphological

traits [6], protein sequences [7], and gene regulatory networks [8]. Direct application of these

concepts to behavior, in contrast, have been relatively limited (but see [9, 10, 11, 12, 13]).

Because behavior is the product of a complex nervous system interacting with a dynamic

environment, data broadly indicate that behavioral evolution is subject to especially strong

constraints [14, 15, 16]. Investigating how these constraints influence evolution by studying

the mechanisms underlying behavioral adaptation could yield a deeper understanding of how

and why animals, including humans, behave the way they do.

The proximate cause of diverse animal behaviors is the functional output of neural cir-

cuits comprised of individual neurons acting in concert [17, 18]. Because modifying behavior

requires modifying the output of these circuits, many have suggested that neural circuits

and the computations they implement represent the biological substrate upon which natural

selection directly acts [9, 15, 16]. However, the inherently complex and highly integrated

organization of neural circuits potentially limits innovation and resists modification, making

evolution of the brain and behavior conservative [14, 19, 20]. Circuits and cells can be multi-
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functional, so adaptive changes to physiology in one context can easily be disruptive to other

functions. Additionally, circuits must interface with both upstream and downstream pro-

cessing areas. Even small changes to local circuit function could conceivably have large and

deleterious effects on how large scale sensory-motor circuits function to generate observable

behavior.

Constraints on circuit evolution do not necessarily strictly prohibit particular evolution-

ary trajectories, but rather bias evolution into more accessible and plastic pathways [4, 21].

Different brain regions and aspects of circuit organization can vary in the degree of evolution-

ary plasticity they exhibit [9, 22]. The gross anatomical organization of the brain appears

to be rigidly constrained and varies little across deep phylogenetic relationships [23, 24],

but notable counter-examples exist in the mushroom bodies and visual systems of insects

[25, 26, 27]. Cell types and the genes regulating their development are also highly conserved,

including homology of telencephalon neurons in birds and mammals [28] or Pax6 regulating

eye development in insects and vertebrates [29]. Ciliary and rhabdomeric photoreceptors

are also homologous between insects and vertebrates, but substantial functional differences

highlight the need to examine these basic homologies at the level of circuits [30].

Other features of brain organization are more plastic and are regularly co-opted for

adaptive evolution. Neuromodulatory systems are one system regularly implicated as targets

for evolutionary change [14, 22]. Acting through G-protein coupled receptors, these systems

are modular and diverse, which can allow for a large amount of flexibility. For example,

swimming behavior in a closely related pair of nudibranchs use homologous motor circuits,

but serotonin modulates the circuit in one species to produce a novel swim pattern [31].

Additionally, rather than directly altering the core synaptic connections across the brain,

these systems can often act more subtly in ways such as varying the overall excitability

of a circuit. A classical example of this situation is modulation of the ventral pallidum

by differential expression of the vasopressin 1A receptor causing differences in reproductive

behavior and pair bonding in mammals [32].
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A second aspect of brain organization that appears to be disproportionately targeted

for evolutionary change, and the focus of my thesis work, are peripheral sensory systems

[22]. Examples of rapid peripheral evolution can be found across numerous taxa and sensory

systems including chemosensation [33], audition [34], and vision [35]. Animal behaviors are

triggered and regulated by environmental cues, so modifications to the response properties

of the receptors directly interacting with the environment provides a direct way for animals

to adapt to diverse habitats. Peripheral sensory systems also benefit from being relatively

independent, modular, and feed forward [9]. These aspects of peripheral sensory systems al-

lows for behavior to evolve without requiring changes to complex circuits and can minimize

deleterious, pleiotropic effects. However, because these changes are relatively simple, evolu-

tion of sensory reception can only influence behavior to a potentially limited degree. Shifts

in sensory reception adapt animals to the statistics of the natural environment, including

co-evolution of signal-receiver dynamics for conspecific communication [36]. Radical shifts in

a behavioral repertoire, in contrast, would likely require changing how sensory information

is processed in complex circuits, although exceptions do exist [37, 38, 39].

Understanding how the brain and behavior evolves and functions requires an integrated

approach linking different levels of nervous system analysis [9]. First, the goal of the nervous

system is to produce adaptive behaviors that allow an animal to successfully interact with

its natural environment. Clear and complete descriptions of these behavioral repertoires

and how they vary between species is a necessary component of understanding how the

nervous system might function to implement the observable behavior. Behavioral evolution

also necessarily includes a genetic component, as genetic mutation is the core mechanism

responsible for generating phenotypic diversity. Interactions between genes, development,

and circuits are particularly important as a major source of phylogenetic constraint. These

complementary top-down and bottom-up approaches to understanding the neural basis and

evolution of behavior converge on and are linked by the functional organization of neural

circuits.
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My thesis work consists of two projects exploring how neural circuits related to color vi-

sion evolve. In particular, both projects are related to understanding how differences in the

sensory periphery might contribute to the evolution of behavior and perception. The first

project takes a bottom-up approach examining how genetic variability affects the functional

organization of the eye in Heliconius butterflies that have different mate choice preferences

based on wing color. The second project uses a top-down, theoretical approach to neural

circuit evolution, focusing on how phylogenetic history might constrain neural computation

associated with trichromatic and tetrachromatic color vision. Common to both of these

projects is that changes in the visual periphery are associated with behavioral evolution.

However, both projects also find that relatively simple shifts in spectral sensitivity are insuf-

ficient, and behavioral evolution requires more substantial changes to neural computation.

1.2 Genetic basis of behavior

Most, if not all, animal behaviors have a genetic component that describes some amount of

variability between species or individuals within a population [40, 41]. As genetic methods

have become increasingly sophisticated and affordable, mapping behaviors to specific regions

ranging from entire chromosomes to single mutations has also become increasingly common.

Studies in model organisms such as rodents, Drosophila, and humans broadly confirm intu-

itions that the genetic architecture responsible for behavioral variation is complex [22]. Most

behaviors are associated with numerous epistatic genetic loci with exponentially distributed

effect sizes. Although progress is being made, the complexity of these multi-gene behaviors,

in general, limits the ability to link genes and behavior at the level of neural circuits.

A growing number of studies, including the experimental portion of my thesis, have iden-

tified behaviors with simpler and tractable genetic origins. Typically these studies involve

pairs of sister taxa exhibiting different behaviors such as pair bonding in mammals [32] or

burrowing in Peromyscus mice [42, 43]. Despite the fundamentally different behavioral phe-

notypes in species pairs, these complex sensory-motor behaviors can often be described by
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a surprisingly small number of genetic loci that each have large effect sizes. Identification

of the specific genes located within these loci can further lead to functional studies exam-

ining how patterns of gene expression affect the behavior of interest. Genetic methods that

allow for experimenters to manipulate when and where candidate genes are expressed are a

powerful way to better understand the genetic and molecular basis for behavior.

Further analysis of how this genetic variability directly changes neural circuit function

and computation is often difficult or impossible to achieve. Behaviors such as pair bonding

involve complex sensory-motor transformations that engage circuits potentially spanning the

entire brain. Studying the effect of the vasopressin 1A receptor on local circuits in the ventral

pallidum is relatively straightforward [32], but this brain region is just one node in a larger

circuit. Understanding how this localized change in activity propagates to downstream

targets that are not fully described is then an enormous task. However, assessing how

specific evolutionary changes integrate into the functional organization of an entire neural

circuits is an important aspect for understanding behavioral evolution. These insights could

reveal broader evolutionary patterns that describe why particular genes or brain regions are

targeted for modification.

My thesis work on male mate preference in Heliconius butterflies overcomes many of

the challenges that can prevent in-depth, circuit focused studies on behavioral evolution.

Assortative mating in these butterflies is a vision dominated behavior that appears to have

a genetically simple origin. In particular, males preferentially court females with conspecific

wing patterns, meaning that evolutionary changes are likely confined to circuits strictly

involved in visual processing. My experiments characterizing the organization of the eye in

butterflies with different mate preferences identified a potential difference in the synaptic

connections of photoreceptors that may explain mate choice preferences. Importantly, the

courtship circuit of insects is thought to be genetically specified by a specific transcription

factor, making the entire sensory-motor circuit tractable. This courtship circuit has already

allowed for several studies into courtship differences between species of Drosophila and can
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facilitate future investigations into how the circuit differences I uncovered integrate into the

full circuit.

1.3 Comparative physiology

Complementary to mapping the genetic basis of behavior are comparative studies examining

circuit function in species with varying degrees of shared phylogenetic history and behav-

ioral similarities. This comparative approach provides snapshots into the diversity of neural

systems structure and function [3], which can give insights into how rigidly constrained or

plastic neural systems are. One important result using these methods has been the realization

that cell types [44, 45], gross morphology [23, 24], and genes regulating development [46, 47]

share deep homologies that can span taxa as distantly related as insects and vertebrates.

This conservation broadly supports notions about brain evolution being slow, conservative,

and constrained. However, conserved features of the nervous system can have vastly different

functions across taxa [30]. Functional comparisons of these identified homologous features

can subsequently be mapped onto phylogenetic trees that can lead to inferences about when

and where major evolutionary events may have occurred [3].

Parallel to studies examining how homologous circuits diverge in function are comparisons

of the circuits underlying convergent behaviors in relatively unrelated taxa. These studies

are important because they lend insights into the extent to which neural circuits can find

alternative solutions to similar computational problems. Interestingly, circuits that perform

similar tasks often share similar organizational schemes and implement similar computations,

such as the olfactory and visual systems of vertebrates and insects [48, 49, 50]. These

structures are not necessarily homologous, but instead represent convergent mechanisms for

convergent behaviors. A clear example of homologous computation in non-homologous brain

regions comes from distantly related Gymnotiform and Mormyrid fish that independently

evolved electro-sensation. The circuit computations associated with this novel sensory system

appear to be highly similar between these two groups, but the specific anatomical regions
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of the brain are distinct [51]. An open question that emerges from these observations is

why circuits often converge on similar organizations. One possibility is that circuits may be

plastic and flexible enough to find and implement computations that are optimal solutions

for a behavior. Alternatively, matching the deep homologies of cell types and gene networks,

basic principles guiding circuit structure and function may have emerged in the earliest stages

of nervous system evolution that constrain and bias nervous system structure and function.

Examining the potential conflict between optimality and constraint in neural computa-

tion would benefit from a system that is relatively simple, tractable, and well-studied. For

the second project in my thesis, I have identified color perception as such a system. Moti-

vated by the diversity in photoreceptor spectral tuning across butterflies, I used a machine

learning approach to simulate the evolution of tetrachromatic vision from trichromatic an-

cestors. Although the neural implementation of color computations may be complex in a real

biological system, the theoretical basis for color vision is well-described and relatively sim-

ple, and my neural networks broadly conformed to these theoretical expectations. Evolution

of the network ‘eye’ had minimal negative effects on color vision, but also was insufficient

to improve color vision. Allowing the circuits to evolve led to improved color vision that

followed predictable learning trajectories that were constrained by the specific parameters

of the original trichromatic network. Overall, the results from this theoretical study suggest

that considering the phylogenetic history of an animal is important for understanding how

its neural circuits are designed to produce observable behavior.
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CHAPTER 2

EVOLUTION OF DIVERGENT MATE CHOICE

PREFERENCES IN HELICONIUS CYDNO BUTTERFLIES

2.1 Abstract

Heliconius butterflies mate assortatively, with males across this species rich genus prefer-

entially courting females with conspecific wing patterns. In the cydno clade of Heliconius

butterflies, white vs. yellow wing color is a Mendelian trait that correlates with male mate

preferences. Males that are homozygous at the wing color locus preferentially court females

of the same color, while heterozygotes show no color preference. The candidate mate choice

gene, sens2, is differentially expressed in the eyes of white and yellow males, suggesting the

hypothesis that differences in eye organization contribute to differences in male courtship

preferences. Here, I conducted a series of experiments using electrophysiology, eyeshine, and

antibody staining to characterize the functional organization of the Heliconius cydno eye.

Eye organization was surprisingly variable across species and sex, with one feature correlated

with male mate preference. This feature suggests that males preferring yellow females have

UV photoreceptors that receive synaptic inhibition from green sensitive photoreceptors. The

effect on unknown, downstream circuits is unclear, but differences in synaptic connectivity

between photoreceptors has the potential to have large, non-linear effects on male perception

and behavior.
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2.2 Introduction

2.2.1 Background

Heliconius butterflies are a diverse group of neotropical species that have been an influential

model in the study of ecology, evolution, and behavior since the time of Darwin [52, 53]. A

relatively recent adaptive radiation of this genus has led to 42 identified species, but the true

diversity lies in the numerous subspecies and more than 400 described color patterns [54]. A

major ecological factor driving the evolution of this diversity is predator avoidance, as these

colorful wing patterns serve as conspicuous and honest warning signals that these chemically

defended animals are unpalatable. Distantly related pairs of sympatric species often converge

on similar phenotypes that can co-vary across wide geographic ranges [55, 56, 57]. Potential

avian predators learn to avoid the locally abundant morphs, which results in strong purifying

selection against hybrid or novel phenotypes [58, 59].

Wing patterns that diverge between closely related species and converge between dis-

tantly related co-mimetic species has made Heliconius a valuable model system for studying

the genetic and molecular basis for phenotypic evolution [55, 60]. Paired with genus-wide

diversity in wing pattern, this combination of convergence and divergence allows for com-

parative studies that can potentially uncover larger evolutionary patterns linking genotype

to phenotype [61]. Additionally, much of the diversity can be attributed to a small number

of unlinked Mendelian loci [62, 63, 64, 65, 66] that further allows for in-depth studies on how

variability in specific genes results in different wing patterns. Genetic mapping of a few of

these Mendelian loci has revealed that the same genes and even the same regulatory regions

are often used repeatedly to generate similar phenotypes, such as the role of optix in making

red wings and WntA in melanic patterning [67, 68, 69, 70].

In addition to a role in aposematic signaling, diverse wing patterns also function as an

important pre-mating reproductive barrier [71]. Many sympatric species are interfertile, but

hybridization rates are estimated to be very low in natural settings [72, 73, 74]. Although the
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courtship ritual itself is an elaborate and multimodal behavior with many potential factors

contributing to pre-mating reproductive isolation [75, 76], visual perception of color patterns

is the dominant cue mediating preference [63, 71, 77]. In particular, males preferentially

approach and court females with conspecific wing patterns compared to the wing patterns

of hybrids or closely related species [57, 63, 73, 74, 78, 79]. Further, male preference for

conspecific wing patterns has a genetic basis that is often genetically linked to the Mendelian

loci controlling wing pattern [57, 63, 80, 81]. Together, the association between wing color

and mate preference has the potential to play a significant role in reproductive isolation and

speciation [60, 71].

The correlation between wing pattern and mate choice behavior makes Heliconius but-

terflies an excellent model system for studying the evolution of neural computation. Genetic

linkage between wing and behavioral phenotypes suggests this complex behavioral decision is

also controlled by a limited number of genetic loci. Genetic mapping of male mate preference

has confirmed this expectation for two pairs of species, including the butterflies examined

here (Fig. 2.1) [63, 81]. Thus, consistent with other studies into the genetic basis of natural,

species-specific behaviors (see chapter 1 for details), limited amounts of genetic variability

can lead to radically different behaviors. Because both the mate choice behavior and the

underlying genetics appear to be relatively straightforward and tractable, this system has

the potential for detailed examinations of how genetic and behavioral variability converge at

the level of neural circuits.

Behavioral details such as the sequence of the courtship ritual and female choice are

undoubtedly important and interesting aspects of the mating behavior, but they also are

not directly related to male preference [71]. Instead, the behavior of interest is specifically

about perception and preference for specific wing patterns, which suggests that behaviorally

relevant circuit differences will be confined to brain areas involved in visual processing.

Identification and localization of the specific genes responsible for behavioral differences can

further narrow and guide the search for where neural circuits change. The behaviorally
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relevant stimulus is also well-defined, as wings can be easily parameterized into patterns and

reflectance spectra. Thus, visual stimuli can be precisely controlled and tailored to better

understand how neural circuits process natural stimuli.

Finally, data from other insects, primarily but not exclusively Drosophila, suggests that

the entire sensory-motor courtship circuit of a male insect is genetically specified by the

transcription factor fruitless [82, 83]. If this is also true for butterflies, access to this clearly

defined circuit would allow for a complete and detailed study of butterfly courtship. Overlap

of candidate mate choice genes and fruitless would allow for highly targeted investigations

of neurons likely involved in wing pattern perception and preference. Importantly, it would

also allow for future studies aimed at understanding how differences at one node in a circuit

propagate throughout the system to influence behavioral output. This capacity to gain

a broader view of the circuit could lead to insights into evolutionary patterns about why

particular parts of a circuit are modified compared to others. Overall, courtship in Heliconius

overcomes many of the barriers preventing detailed circuit analysis of other systems that have

clear links between genes and behavior, which can potentially lead to greater insights into

how the neural circuits directly responsible for behavior evolve.

2.2.2 Study system

This study focuses on male courtship preferences in a small group of closely related butterflies

in the cydno clade of Heliconius that are distinguished by a forewing color band that appears

to humans as either white or yellow (Fig. 2.1). Heliconius cydno galanthus and H. pachinus

are parapatric species from opposite coasts of Costa Rica that are monomorphic for white

and yellow wings, respectively [63]. A second cydno subspecies, H.c. alithea, is found in

Ecuador and is polymorphic with individuals that are either white or yellow [57]. Like many

Heliconius color patterns, wing color in these butterflies is inherited as a Mendelian trait

with white dominant to yellow. A recent genome wide association study (GWAS) identified

single nucleotide polymorphisms (SNPs) in the regulatory regions of the gene aristaless1 that
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Figure 2.1: Study system
A) Color patterns and wing reflectance of butterflies used in this study.
B) Males were repeatedly given the choice to court either a white or yellow female over the
course of days. Data shows the proportion of trials a male chose the white female. For H.c.
galanthus and H. pachinus, wing color genotype predicts male preference. For H.c. alithea,
yellow males preferentially court yellow females, while white males show no preference.
C) A GWAS was used to identify SNPs associated with either wing color (top) or mate
preference (middle). The bottom panel shows a zoomed in overlay of the color and preference
SNPs. Note different scales on y-axis. Single peaks of significantly associated SNPs 200 kb
apart are consistent with genetically linked Mendelian traits.
D) qPCR for the candidate mate choice gene, sens2, in whole heads of developing butterflies
shows differential expression in late pupal stages.
All data in this figure was provided to me by Nick VanKuren and Marcus Kronforst.
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were perfectly associated with color. CRISPR knockouts of aristaless1 have confirmed its

role in white and yellow patterning [84].

This Mendelian wing color phenotype correlates with male courtship preferences. When

given a choice to court either a white or yellow female, white H.c. galanthus and yellow

H. pachinus males preferentially court females of the same color (Fig. 2.1) [63, 85]. Con-

trolled breeding experiments generating hybrids between these two species allowed for an

examination of the genetics underlying this preference [63]. First generation hybrids (F1

hybrids) have an H.c. galanthus allele and an H. pachinus allele for the entire genome. In

contrast to the parent species, F1 males have no color preference and instead court white and

yellow females with equal frequency. Because of genetic recombination, each genetic locus

for second generation hybrids (F2 hybrids) is independently either homozygous for the H.c.

galanthus allele, homozygous for the H. pachinus allele, or heterozygous. F2 males exhibited

a wide range of female color preferences, and these preferences can largely be explained by

the genotype at the wing color locus (Fig. 2.1). Males homozygous for the white allele pre-

fer white females, males homozygous for the yellow allele prefer yellow females, and white

heterozygotes have no preference.

Similar behavioral experiments in the polymorphic H.c. alithea allowed for fine scale

genetic mapping of preference and the identification of a candidate gene (Fig. 2.1). Matching

H. pachinus behavior, yellow H.c. alithea males that are homozygous for the yellow allele

preferentially court yellow females [57]. White males with unknown wing color genotypes,

in contrast, have no color preference on average. Genetic mapping of H.c. alithea preference

using a GWAS identified SNPs approximately 200 kb from the wing color locus that were

significantly associated with preference for white or yellow females (Fig. 2.1). These SNPs

explain nearly 20% of the variability in male mate preference and are in linkage disequilibrium

with the wing color locus. The candidate mate choice gene that emerged from the GWAS is a

transcription factor called senseless2 (sens2), with the significant SNPs located in regulatory

regions rather than the coding sequence. Although little is known about the cellular and
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molecular function of sens2, its paralog senseless is known to be involved in the development

of all peripheral sensory structures [86, 87, 88].

Differential expression of sens2 in developing white and yellow butterflies further sup-

ported a role of this gene in male courtship preference. qPCR was first used to measure the

relative expression levels of sens2 mRNA in whole heads of butterflies across several devel-

opmental times (Fig. 2.1D). During early pupal development, sens2 was expressed at low

levels in both white and yellow butterflies. Expression remained low for yellow butterflies

in the late pupal stages of development, but white butterflies showed a significant increase

in sens2 expression. Around the time of eclosion, yellow butterflies then increase expression

to match white butterflies. This differential expression could reflect delayed expression in

the same brain regions of yellow butterflies compared to white. Alternatively, differential

expression could be specific to one brain region, with the later, equal expression localized to

a different brain region with functions unrelated to courtship preference.

To localize the source of sens2 expression, butterfly eyes and brains were stained with

antibodies specific to sens2 at two time points. Early in development, sens2 expression

is found in the R9 photoreceptors of both white and yellow butterflies (data not shown).

Matching qPCR, there was no evidence for differential expression at this early stage of

development in these photoreceptors that are potentially non-functional in adults (see below

for details). For newly eclosed butterflies, however, only white H.c. galanthus males and

all females showed strong sens2 expression in the eye (Fig. 2.2). Yellow H.c. alithea males,

in contrast, had either limited or no sens2 expression (Fig. 2.2). This expression appeared

spatially homogeneous and only in the proximal 2/3 of the eye. Precise identification of

which cell types expressed sens2 was not possible, but the staining pattern did point towards

expression in the R3-R8 photoreceptors that express a long wavelength sensitive opsin (see

below for details). Because qPCR showed equal expression in white and yellow butterflies

at the time of eclosion, additional expression in the central brain is also likely. Results from

ongoing staining experiments are inconclusive at this time, but data from a single study in
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Figure 2.2: Antibody staining for senseless2
Thin sections of 3 hour old butterfly eyes were stained with antibodies specific to UV1, UV2,
and senseless2. The eye diagram at the top left shows the approximate location of the slices
shown, meaning the unstained center of the images are part of the optic lobes, and the radial
staining pattern is a longitudinal view of photoreceptors. The top row is representative of
all H.c. galanthus examined. Staining for sens2 in yellow H.c. alithea males could be either
weak (middle) or absent (bottom). Sens2 staining only extends over the proximal 2/3 of the
eye.
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Drosophila suggests that expression might be found in the mushroom bodies [89].

Differential expression of the candidate mate choice gene, sens2, in the eyes of develop-

ing white and yellow Heliconius butterflies suggested the hypothesis that differences in the

functional organization of the eye can explain differences in male mate preferences. Sens2

could affect eye physiology in numerous ways including changes in opsin expression, changes

in the spatial distribution of photoreceptor types, or changes in the downstream synaptic

connections. To test this hypothesis, I conducted a series of experiments examining both the

spectral sensitivity of single photoreceptors and the distribution of these photoreceptor types

across the eye. Considering that this group of species have generally similar ecological niches

and behaviors outside of courtship preference, my experiments revealed a surprising amount

of variability in eye organization. One feature of eye organization suggestive of changes in

synaptic connectivity was correlated with mate preference and was also consistent with sens2

expression in long wavelength sensitive photoreceptors. Overall, these results are consistent

with ideas about the periphery being an evolutionarily labile part of the nervous system

that can rapidly evolve. Before describing these experiments, I begin with an overview of

the general anatomy and physiology of the butterfly eye.

2.2.3 Butterfly eye anatomy

Butterflies have compound eyes that are broadly similar to the ancestral insect eye, but

several evolutionary modifications have led to improved color vision in these diurnal, highly

visual animals [90]. Compound eyes are comprised of optically isolated unit eyes called

ommatidia that contain multiple photoreceptors and sample light from a restricted region

of visual space (Fig. 2.3). Spatial resolution varies between species and between different

regions of the eye but is typically 1− 2◦ for butterflies [91, 92]. With 12-15,000 ommatidia

per eye, Heliconius have the largest eyes relative to body size of any butterfly studied and

are also one of the few that do not vary between sexes [93].

In an ommatidium, incident light is focused into the light sensing rhabdom by a pair of
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Figure 2.3: Anatomy of the eye
Butterfly eyes are composed of 1000s of unit eyes called ommatidia. The left shows a longitu-
dinal view of an ommatidium and the right shows a cross section. There are 9 photoreceptors,
with R9 being small and located at the most proximal part of the eye. In every ommatidium,
the R3-R8 cells express the long wavelength sensitive opsin. The R1 and R2 cells express
either a UV opsin or a blue opsin, which generates three distinct types of ommatidia.

lenses biologically analogous to a Keplerian telescope [94]. Photoreceptors express rhodopsin

in microvilli called rhabdomeres, and for butterflies and other insects with apposition eyes,

the rhabdom is formed through the fusion of rhabdomeres from every photoreceptor [95].

The rhabdom is approximately 500 µm long and 1-2 µm in diameter, and the behavior of

light in it is well described using waveguide optics [96]. Light that is not absorbed in the

rhabdom reaches the basement membrane where tracheae have been modified into a reflective

tapetum that reflects light back through the eye [97]. The tapetum likely evolved to increase

sensitivity in nocturnal moths and has been retained in most butterfly lineages.

Butterfly ommatidia have 9 photoreceptors that vary both in spectral sensitivity and

their projections into the optic lobes [90]. In response to light, photoreceptors depolarize

through a G protein coupled transduction cascade and release histamine as an inhibitory
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neurotransmitter [98, 99]. The R3-R8 photoreceptors are homologous to the Drosophila R1-

R6 photoreceptors and typically express a long wavelength sensitive opsin [100]. Although

these photoreceptors extend the full length of the eye for Heliconius, the contribution to

the distal part of the rhabdom can be minimal [101, 102]. This functional tiering is what

suggests that sens2 is expressed is these photoreceptors. Axons extend into the lamina,

which is the first optic neuropil and the start of motion processing. In most insects, lamina

projections typically maintain a strict retinotopic organization, but in the butterfly Papilio

xuthus, photoreceptors often extend axons into the projection areas of neighboring ommatidia

[103, 104].

The R1 and R2 photoreceptors express short wavelength sensitive opsins that define three

ommatidial types (Fig. 2.3)[90]. These two photoreceptors are a duplicated, homologous pair

of the Drosophila R7 photoreceptor [100]. In the ancestral butterfly eye, expression of a UV

or blue sensitive opsin is determined in a stochastic, cell-autonomous way [105]. This cell-

fate process leads to three types of ommatidia (UV-UV, blue-blue, and UV-blue) that are

heterogeneously distributed across the eye in a fixed proportion, although dorsal and ventral

patterning can differ [106, 107]. In most insects, axons from this pair of photoreceptors

bypass the lamina and project directly to the medulla, which is the second optic neuropil

[108, 109]. However, electron microscopy in the butterfly P. xuthus has shown that synaptic

connections with the R3-R8 photoreceptors are also found in the lamina [103, 104].

The R9 photoreceptor is small, occupies the most proximal part of the rhabdom, and is

potentially non-functional [90]. It is homologous to the Drosophila R8 photoreceptor and also

projects directly to the medulla. In Drosophila, opsin expression in this cell is dictated by

the cell-autonomous decision of the R7 cell. Thus, the duplication of the R7 photoreceptor

into the R1 and R2 photoreceptors is thought to be a developmental path to increasing

the number of ommatidial types from 2 to 3 rather than a way to increase the number of

functional photoreceptors [105].

The ancestral butterfly eye had only UV, blue, and green sensitive photoreceptors, but
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a combination of screening pigments and gene duplications has led to a huge diversity in

spectral tuning. Colored screening pigments that are expressed in photoreceptors near the

rhabdom act as spectral filters (Fig. 2.3) [110, 111, 112, 113, 114]. By selectively absorbing

some wavelengths of light, these screening pigments can shift and narrow the spectral sen-

sitivity of a photoreceptor. Red screening pigments that absorb short wavelength light are

commonly observed and typically function to convert a green sensitive photoreceptor into a

red photoreceptor [106, 113, 115]. Despite expressing the same opsin, green and red photore-

ceptors are perceptually unique for most butterflies studied, including Heliconius [115, 116].

Several species have multiple screening pigments and between 8 and 15 unique photoreceptor

types, but Heliconius appear to have only red and yellow pigments [117, 118, 119, 120, 121].

The second mechanism butterflies use to expand the number of photoreceptor types is

duplication of the opsin coding genes [90, 122]. Duplication of the blue and green opsins have

been observed in multiple butterfly lineages, and the derived opsin can shift in either the long

or short wavelength direction. These duplications often have a relatively clear relationship

to species specific behaviors such as courtship. For example, Lycaenid butterflies have a

duplicated blue opsin sensitive to longer wavelengths than the ancestral blue, and this group

often has wings with blue color patterns [123]. Pierid butterflies also have a duplicated blue

gene, but the sensitivity of this novel opsin is shifted towards violet, and these butterflies

typically have wings with UV color patterns [124].

The one known example of a UV gene duplication in butterflies occurred at the base

of Heliconius [125]. UV1 is UV sensitive and its spectral sensitivity broadly matches the

ancestral UV opsin, while the derived UV2 opsin has a sensitivity shifted towards violet

[126]. Expression patterns of UV1 and UV2 vary across the genus and are often sexually

dimorphic [127]. The evolution of UV2 has been hypothesized to function in discriminating

two types of yellow [128]. Yellow wings in most butterflies have an unknown molecular

composition, and the spectral reflectance has the appearance of a ramp function, with a

slow and smooth increase in reflectance for longer wavelengths. Heliconius, in contrast,
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have evolved 3-hydroxy-dl-kynurenine (3-OHK) as a genus specific yellow pigment. The

reflectance spectrum of 3-OHK has the appearance of a step function, with a sharp transition

from low to high reflectance around 450 nm. Although direct experimental evidence is

lacking, a perceptual model has shown that UV2 is better at discriminating these two yellows

than UV1 [128]. If true, in an environment where mimicry is common, improved ability to

discriminate Heliconius yellow from non-Heliconius yellow would be advantageous.

2.3 Results

Experiments characterizing the functional organization of the Heliconius eye were conducted

on 7 groups of butterflies separated on the basis of species, sex, and wing color. Six groups

of males included: 1) white H.c. alithea, 2) yellow H.c. alithea, 3) white H.c. galanthus, 4)

yellow H. pachinus, 5) F1 hybrids bred from crosses between H.c. galanthus and H. pachinus,

and 6) red H. melpomene as a closely related outgroup. Corresponding groups of females

were initially planned, but results showed that female eyes were similar regardless of species

and were thus grouped together. Throughout the text, references to particular species are

specific to males, and females are referred to as a distinct homogeneous group.

In order to interpret results in the context of male mate preference, it is first important

to understand the differences between white and yellow wings beyond a binary classification

based on human perception (Fig. 2.1A). White wing patterns are a structural color with

a relatively flat reflectance spectrum between 300 and 700 nm. As described above, yellow

is derived from 3-OHK and has a relatively sharp transition from low to high reflectance

around 450 nm. For long wavelengths, yellow wings do have slightly stronger reflectance,

but the shape of the reflectance differs little, suggesting this minor intensity difference may

not be important for perception and preference. Thus, to a first approximation, white and

yellow wings differ primarily in the presence and absence of short wavelength reflectance,

respectively. Nothing is known about how the central brain processes visual information, but

explaining mate preference needs to account for these differences in wing spectral reflectance.
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UV Blue Green Red Total
white H.c. alithea 43 21 27 2 87
yellow H.c. alithea 40 30 25 2 91

H.c. galanthus 12 22 22 5 61
F1 hybrids 19 21 7 0 47
H. pachinus 8 5 11 1 25

H. melpomene 25 15 29 14 83

females 22 12 28 9 71

Total 169 126 149 24 468

Table 2.1: Electrophysiology cell counts
Photoreceptors were recorded from 7 groups of butterflies. I identified four types of pho-
toreceptors with distinct spectral sensitivities. Each line shows the number of each cell type
recorded from each group.

2.3.1 Photoreceptor types

Butterflies have 4 spectrally distinct types of photoreceptors

To characterize the functional organization of the eye, I first measured the spectral sensitivity

of single photoreceptors using intacellular electrophysiology. Voltage responses to monochro-

matic stimuli were transformed into a spectral tuning curve using the Naka-Rushton equa-

tion, which is standard for the field (see methods for details)[129]. These spectral tuning

curves were then fit with a standard rhodopsin template that has the wavelength of peak sen-

sitivity (λMax) as the single fit parameter [130, 131]. Across the seven groups of butterflies,

I recorded from a total of 468 photoreceptors (Table 2.1) that could broadly be classified

as UV sensitive (<400 nm), blue sensitive (400-500 nm), or long wavelength (LW) sensitive

(>500 nm).

Although the Heliconius genome encodes only a single LW opsin gene [115], photoreceptor

recordings revealed two distinct types of LW sensitive photoreceptor types defined as green

and red, following previously published conventions (Fig. 2.4). For green photoreceptors,

λMax = 548.6 ± 9.8 nm, and this significantly different between species or sex (Fig. 2.4B,
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Figure 2.4: Long wavelength sensitive photoreceptors
A) Normalized spectral sensitivity is plotted for green and red sensitive photoreceptors. Data
is shown as the mean ± SEM.
B) Box plots show λMax measured for each green photoreceptor using a standard rhodopsin
template. Green photoreceptors did not vary with species or sex. Too few red photoreceptors
were recorded for a similar analysis.

F6,124 = 0.25, p = 0.96). The overall shape of the spectral tuning curve matched the

rhodopsin template, but the Heliconius photoreceptors had substantially broader tuning

than expected. This broad tuning was consistent across cells and was not significantly

affected by the magnitude of the voltage response (r = 0.11, p = 0.20).

Red photoreceptors were the second type of long wavelength sensitive cells (Fig. 2.4).

These cells were narrowly tuned with λMax around 600 nm and presumably are tuned

through a combination of the single LW opsin and red screening pigments [113, 126]. I

recorded from only a small number of red photoreceptors, and these were primarily from

H. melpomene. This is likely due to functional tiering of an ommatidium, with red pho-

toreceptors proximal to the relatively distal electrode path I used to target UV and blue

photoreceptors. The limited sample size prevented statistical analysis, but red photorecep-
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Figure 2.5: Blue photoreceptors
A) Normalized spectral sensitivity is plotted for blue photoreceptors. Data is averaged over
all photoreceptors corresponding to group ’a’ in panel B. Data is shown as the mean ± SEM.
B) λMax was measured for each blue sensitive photoreceptor using a standard rhodopsin
tuning template. Groups with different letters above the figure are significantly different
with p < 0.05 using Tukey’s HSD.

tors are unlikely to vary with species, sex, or wing color because every group has the same

LW opsin gene (Fig. 2.4) and the same red screening pigment (Fig. 2.12).

Blue photoreceptors were maximally sensitive to wavelengths near 450 nm, and responses

were generally well fit by the rhodopsin template (Fig. 2.5, R2 = 0.79± 0.21). Spectral sen-

sitivity did not vary significantly across six of the seven butterfly groups (λMax = 448.6±4.2

nm), but peak sensitivity was shifted to a slightly longer wavelengths for H. pachinus males

(Fig. 2.5, λMax = 456.5 ± 3.5 nm, F6,109 = 5.04, p < 0.001, Tukey’s HSD, p < 0.05 for all

pairwise comparisons including H. pachinus). No blue photoreceptors were recorded from

H. pachinus females, so I was unable to test if this was a sex dependent shift. Notably, my

recordings from blue photoreceptors differ markedly from the blue photoreceptors recorded

in H. erato (λMax = 470 nm) [126]. The protein coding sequence is nearly identical across
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Figure 2.6: UV photoreceptors
A) Normalized spectral sensitivity is plotted for UV photoreceptors as mean ± SEM. The
two tuning curves correspond to groups labeled ’a’ and ’c’ in panel B.
B) λMax measured for each UV photoreceptor using a standard rhodopsin tuning template.
Dotted lines show the expected tuning of UV1 and UV2 based on results published in H.
erato. Groups with different letters above the figure are significantly different with p < 0.05
using Tukey’s HSD.

species, so the reason for the observed differences is unclear and possibly due to method-

ological differences.

In contrast to blue and green photoreceptors, the spectral sensitivity of UV photore-

ceptors showed substantial variability both within and between groups (F6,148 = 21.70, p

< 0.001). Across all UV photoreceptors, λMax varied relatively continuously from 350 to

400 nm (Fig. 2.6), and standard deviations within a group were nearly 3 times larger than

blue photoreceptors. Tuning width did not vary significantly and generally matched the

rhodopsin template (R2 = 0.79 ± 0.20). For both females (λMax = 357.8 ± 5.2 nm, t21 =

1.6 p = 0.13) and H. melpomene (λMax = 359.1 ± 10.4 nm, t29 = 1.6 p = 0.11), spectral

tuning was not significantly different from the expected tuning of UV1 (λMax = 356 nm).

24



Similarly, UV photoreceptors for H. pachinus (λMax = 382.2±10.6 nm, t7 = 2.1, p = 0.076)

were not significantly different from the expected tuning of UV2 (λMax = 390 nm).

For the remaining groups, however, UV photoreceptor tuning was intermediate to both

UV1 and UV2 (Fig. 2.6). The shift away from UV1 tuning was small but significant for H.c.

galanthus (λMax = 361.0 ± 7.3 nm, t11 = 2.4, p = 0.036). Deviations from both UV1 and

UV2 were clearer for both H.c. alithea (λMax = 376.6± 10.5 nm, p < 0.001) and F1 hybrids

(λMax = 367.7 ± 8.1 nm, p < 0.001). Protein sequences for UV1 and UV2 are identical

across all groups and most of the genus, so opsin variability cannot explain these differences.

Previously published results [126], my results (see below), and the lack of tuning width

variability all further suggested that screening pigments were unlikely to contribute to UV

spectral sensitivity. Instead, these results suggested the hypothesis that UV photoreceptors

can co-express both UV1 and UV2.

UV photoreceptors co-express UV1 and UV2

Electrophysiology alone was unable to test for co-expression, so I next turned to qPCR and

antibody staining. qPCR was used to detect the relative expression levels of UV1 and UV2

mRNA in the eyes of adult butterflies and showed evidence supporting co-expression (Fig

2.7). H.c. galanthus, H. melpomene, and females predominantly expressed UV1 mRNA,

but variable amounts of UV2 were also detected in all but one H.c. galanthus and one

female. This generally matched the spectral tuning results, with these three groups having

UV photoreceptor tuning close to but not perfectly matching the expected UV1 tuning.

Similarly, H. pachinus predominately expressed UV2, but some UV1 mRNA was detected

in every individual. Every H.c. alithea expressed more UV2 than UV1, but some individuals

had expression levels showing nearly equal amounts of UV1 and UV2. This co-expression

could potentially explain spectral sensitivity intermediate to both UV1 and UV2. F1 hybrids

were not available for qPCR, but would presumably have relative expression levels similar

to H.c. alithea.
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Figure 2.7: qPCR for UV1 and UV2
qPCR was used to detect the relative expression levels of UV1 and UV2 mRNA within
a single butterfly. One H.c. galanthus and one female had no detectable UV2 expression.
F1 hybrids were not available for qPCR. Groups with different letters above the figure are
significantly different with p < 0.05 using Tukey’s HSD. Note that data are shown on a
log scale both above and below the zero line, with negative numbers indicating more UV2
expression.

Although qPCR was consistent with co-expression, detecting an mRNA does not ensure

expression of the protein, as post-transcriptional regulation could potentially lead to selective

translation of just one UV opsin [127, 132]. In order to ask if both UV opsins were expressed,

I stained thin cross sections of the eye with antibodies specific to UV1, UV2, and blue

rhodopsin (Fig. 2.8). Across all groups, butterflies always showed strong expression of the

opsin matching the preferentially expressed mRNA, and co-expression of both UV1 and UV2

was also commonly observed. Because some butterflies had a clear lack of co-expression, the

co-expression I did detect likely reflects a real signal rather than non-specific staining of

opsins that have highly similar amino acid sequences.

Consistent with qPCR and electrophysiology, antibody staining also suggested that indi-

viduals differed in the relative levels of co-expression (Fig. 2.8). Strong and detailed claims
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Figure 2.8: Antibody staining for UV1 and UV2
Cross sections of the eyes were stained for antibodies specific to UV1, UV2, and blue. Blue
and one of the UV opsins were always strongly expressed. Fluorescent signals for the second
UV opsin could be strong, weak, or absent. Expression patterns were consistent with qPCR
results.
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based on the intensity of a fluorescent signal is not feasible, but some basic conclusions were

apparent. Only one UV opsin was detected in some butterflies, but it is unclear if the second

UV opsin was not expressed or expressed at levels below the detection threshold. Other

butterflies, including every F1 hybrid and many H.c. alithea, had strong fluorescent signals

for both UV1 and UV2, suggesting relatively equal co-expression. Weak signals of the non-

preferred opsin that were barely above background but matched the expression pattern of

the preferred opsin were also observed in every group (Fig. 2.8). This variability in fluo-

rescence intensity is consistent with qPCR and suggests that UV photoreceptors can vary

continuously between expression of a single opsin and perfect co-expression. This variability

both between and within groups could potentially explain the variable spectral sensitivities,

with different proportions of UV1 and UV2 leading to shifts in λMax.

UV1 and UV2 co-expression shifts λMax

Antibody staining and qPCR provided strong evidence that UV photoreceptors have variable

levels of UV1 and UV2 co-expression, but it remained unclear how this might affect spectral

tuning. One possibility, which has been observed in P. xuthus photoreceptors that co-express

opsins with peak sensitivities at 515 and 575 nm, is that UV1 and UV2 responses sum

relatively independently, leading to an abnormally wide tuning curve [133]. Alternatively,

matching my spectral sensitivity curves, co-expression could shift the tuning center with no

effect on tuning width. To test these options, I created a linear model that combines UV1

and UV2 in variable proportions (Fig. 2.9).

For this model, I assumed that published recordings from H. erato with sensitivity peaks

at 356 and 390 nm reflected purely UV1 and UV2 responses, respectively [126]. Using

these values, I then generated UV1 and UV2 tuning curves using the standard rhodopsin

tuning template. Combining these two tuning curves in variable proportions showed that

co-expression can shift peak sensitivity to any wavelength between 356 and 390 nm (Fig.

2.9). Increases in tuning width were also observed, but this change was relatively small.
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Figure 2.9: Effect of co-expression on UV spectral tuning
A) Spectral tuning curves for UV1 (λMax = 356 nm) and UV2 (λMax = 390 nm) were created
and combined in variable proportions. This toy model shows that different proportions of
UV1 and UV2 shift λMax substantially and lead to minor increases in tuning width.
B) The co-expression model was fit to each UV photoreceptor. Boxplot shows the percent
contribution of UV1 to each tuning curve. Groups with different letters above the figure are
significantly different with p < 0.05 using Tukey’s HSD.
C) Fit coefficients of the mixed model are shown for every UV photoreceptor for three
representative groups. Data in panel B was generated as UV1/(UV1+UV2).

To further verify the effect of UV1 and UV2 co-expression, I fit this model to the exper-

imentally recorded UV photoreceptors. As expected, because co-expression has little effect

on tuning width, the standard rhodopsin template (R2 = 0.79±0.20) and this co-expression

model (R2 = 0.81± 0.17) fit the data similarly well (t312 = 0.94, p = 0.35). Results broadly

matched qPCR and antibody staining, as H.c. galanthus, H. melpomene, and female pho-

toreceptors had a primary contribution from UV1, H. pachinus had a primary contribution

from UV2, and H.c. alithea and F1 hybrids had relatively equal contributions from UV1 and
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Figure 2.10: Predicted photoreceptor response to wings
A) Wing reflectance spectra are overlaid with spectral sensitivity curves for UV1, UV2, and
blue photoreceptors generated with the rhodopsin template. Green and red photoreceptors
are omitted for clarity.
B) Photoreceptor tuning curves were convolved with wing reflectance and normalized to 1.

UV2. For butterflies that I recorded multiple UV photoreceptors from, the percent contri-

bution of UV1 and UV2 typically clustered closely together, suggesting that co-expression

is similar within a butterfly and varies between individuals.

Together, these results show that the spectral sensitivity of photoreceptors in the cydno

clade of Heliconius butterflies varies substantially for only for UV photoreceptors. This

variability likely has biological significance for these closely related species [125, 128], and the

degree to which the level of co-expression is precisely controlled remains an open question.

However, UV photoreceptor spectral sensitivity is unlikely a contributing factor in male

preference for white or yellow females. First, although there is a slight correlation between

strength of UV2 expression and strength of preference for yellow females, the distribution of

UV tuning was the same for white and yellow H.c. alithea. These butterflies do, however, have

behavioral differences, so this interesting trend between preference and UV photoreceptors

appears to be correlative rather than causal.

Second, from a computational perspective, the precise tuning of UV photoreceptors is
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unlikely to have a large enough affect on color perception to flip preference between white

and yellow (Fig. 2.10). White and yellow wings differ primarily in the presence or absence

of UV reflectance, and it is unclear how small shifts in UV sensitivity could lead to a large

change in perception and preference. A simple convolution between the spectral sensitivity

of white or yellow wings and UV1 or UV2 rhodopsin confirms this intuition. White wings

strongly excite and yellow wings weakly excite UV photoreceptors regardless of whether peak

sensitivity is observed at 356 or 390 nm (Fig. 2.10B).

2.3.2 Distribution of photoreceptor types

A second aspect of eye organization that could potentially influence courtship preference

is the spatial distribution of photoreceptor types across the eye. Different proportions of

photoreceptor types have been shown to be behaviorally relevant for both Drosophila [134]

and birds [135, 136]. In Drosophila, the number of blue and green sensitive photoreceptors

are anti-correlated, and flies preferentially approach wavelengths exciting the photoreceptor

that is predominately expressed [134]. This anti-correlated expression of photoreceptor types

is also observed in Heliconius. The R1 and R2 photoreceptors always express either UV or

blue, meaning an increase in one type necessarily results in a matching decrease in the other.

Similarly, increases in the number of red photoreceptors leads to a matching decrease in the

number of green photoreceptors.

Variability in the distribution of photoreceptor types could be important for Heliconius

mate preference behavior, although the effect of photoreceptor distribution has never been

behaviorally tested in any butterfly. Because white and yellow wing reflectance is similar

for long wavelengths, the proportion of green and red photoreceptors is unlikely to influence

this specific preference, but the proportion of UV and blue might. As shown above (Fig.

2.10), white and yellow wings strongly and weakly excite UV photoreceptors, respectively.

Blue photoreceptors are also strongly excited by white wings, and perhaps importantly, have

peak sensitivity closely matched to wavelengths where yellow wings transition from low to
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high reflectance. Thus, although strength of excitation in single photoreceptors is unlikely

to affect preference behavior, a population response that varies due to differing proportions

of UV and blue photoreceptors could potentially affect perception and preference.

Eyeshine

My first approach to assess the distribution of photoreceptor types was to conduct eyeshine

assays, which allow for quantification of the distribution of screening pigments across the

entire eye [106, 114]. Using a modified epi-fluorescent microscope, this fast and non-invasive

procedure generates images analogous to a cat’s eyes reflecting light in the dark, with each

ommatidium having a color indicating the type of screening pigment present (Fig. 2.11). Be-

cause red screening pigment is a necessary component of red photoreceptors [106, 126, 137],

this method provides a relatively direct read out of the proportion of red and green photore-

ceptors. Additionally, each of the three ommatidial types (UV-UV, blue-blue, and UV-blue)

have generally been shown to always be associated with the same screening pigment within

a species [117, 120, 124, 138]. The mapping between screening pigment color and ommatidia

type is unknown for any Heliconius butterfly, and whether this mapping is consistent across

species is also unknown. With these caveats, a difference in eyeshine distribution would at

least hint at a change in the relative distribution of UV and blue photoreceptors.

I imaged the eyeshine of each butterfly along the entire dorsal-ventral axis of the eye,

passing through the approximate center (Fig. 2.11). An average of 12.1±1.2 photos amount-

ing to 3, 714.8±784.0 ommatidia were imaged for each butterfly, which is on the order of 1/4

of an eye [93]. Images from the ventral eye had nearly twice as many ommatidia per photo

as the rest of the eye (476.8± 124.8 vs. 242.5± 37.7). This difference reflects an increase in

ventral eye spatial resolution rather than a change in the experimental procedure [92, 114].

Consistent with eyeshine from other Heliconius butterflies [106, 115], every butterfly

I examined had a heterogeneous combination of red and yellow ommatidia (Fig. 2.11).

Measuring the spectral transmittance of these two pigment types confirmed that these were
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Figure 2.11: Example eyeshine images
Shown are all 12 eyeshine images from an H. pachinus male. Non-overlapping images progress
from the dorsal eye to the ventral eye, with the first and last image adjacent to the head
capsule. Note that the increased number of ommatidia in ventral images reflects increased
spatial resolution and not a difference in methodology.

the same across butterflies (Fig. 2.12). PCA on the transmittance spectra of the 4,751

ommatidia examined clearly separated red and yellow ommatidia, but the data did not cluster

by species or sex (data not shown). Transmittance spectra for red and yellow ommatidia

were quite similar, which is consistent with Nymphalid butterflies having only a single type

screening pigment [101, 106, 114]. Color differences are instead thought to arise either from

changes in the concentration of pigment or distance from rhabdom [118].

The two pigments were the same across butterflies, but the distribution of red and yellow
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Figure 2.12: Screening pigment spectral transmittance
A) Transmittance spectra of screening pigments were measured using a monochromatic cam-
era and intensity matched monochromatic light. Red or yellow pigment color was determined
visually, and transmittance was measured as pixel intensity at each wavelength.
B). Screening pigment transmittance is shown for red and yellow ommatidia measured in
both the dorsal and ventral eye. Transmittance did not vary with species or sex, so data
was grouped together and plotted as the mean ± SEM.

pigments varied across the eye (Fig. 2.13). In the dorsal eye, ommatidia were primarily

yellow, and this was generally similar across all individuals, although F1 hybrids had sig-

nificantly more yellow than H. melpomene (Tukey’s HSD, p = 0.018) and females (Tukey’s

HSD, p = 0.012)(Fig. 2.15A). The ventral eye, in contrast, had a more even mix of red

and yellow ommatidia. To examine the transition from the dorsal yellow eye to the mixed

ventral eye, I modified the experimental set-up to image the anterior portion of the eye in

several butterflies (Fig. 2.14). The proportion of yellow ommatidia switched from the dorsal

distribution to the ventral distribution over a span of approximately 50 rows of ommatidia,

showing a relatively sharp boundary matching observations in other butterfly species [117].
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Figure 2.13: Dorsal-ventral differences in eyeshine distribution
Example eyeshine images show differences in the proportion of red and yellow ommatidia in
the dorsal and ventral eye for three males.

In the ventral eye, the proportion of red and yellow screening pigment varied significantly

with both species and sex (F6,79 = 182.3, p < 0.001, Fig. 2.15B). Female distributions clus-

tered together regardless of species and had more red ommatidia than yellow. H. melpomene

eyes had even more red ommatidia, perhaps reflecting a need for red photoreceptors in this

red-winged species. H.c. galanthus eyes had an approximately equal mix of red and yellow

ommatidia, and H. pachinus males had significantly more yellow (Tukey’s HSD, p < 0.05).

F1 hybrids had eyeshine distributions intermediate to but not significantly different from

these two parent species. Finally, the ventral eyes of H.c. alithea had the most yellow om-

matidia, but the lack of significant differences between white and yellow individuals (Tukey’s
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Figure 2.14: Transition from dorsal to ventral eyeshine distribution.
A) Example eyeshine images along the anterior portion of an H. melpomene eye. The top of
each image is adjacent to cuticle.
B) The proportion of yellow ommatidia was quantified for each row of ommatidia. Shown
is data for two H. melpomene. Results are similar but less clear for other species that
substantially more yellow in the ventral eye.

HSD, p = 0.90) suggests screening pigment distributions are not related to male mate pref-

erences. Regardless, variability between species with similar ecological niches and a strong

sexual dimorphism suggests that these distributions are involved in a sexually dimorphic

behavior such as courtship.

Ommatidia types

Variation in the proportion of red and yellow ommatidia in the ventral eye suggested that

variation also existed in the proportion of UV and blue photoreceptors. If screening pigments

are predictive of ommatidial type, there should be a linear correlation between the percent
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Figure 2.15: Quantification of eyeshine distributions
A) The proportion of red and yellow ommatidia were calculated for the most dorsal regions
of the eye. Asterisks indicate significant differences with p < 0.05.
B) Same as A, but for the ventral half of the eye. All pairwise comparisons are significant
with Tukey’s HSD and p < 0.05 except where noted.

of yellow ommatidia and the percent of UV photoreceptors. However, qPCR comparing the

relative mRNA expression for UV and blue opsins suggested the relationship between omma-

tidia screening pigment and ommatidia type was not consistent between groups (Fig. 2.18B).

H.c. alithea males had the largest proportion of yellow ommatidia, while H. melpomene and

females had the least amount of yellow ommatidia, yet qPCR showed similar proportions

of mRNA for UV and blue. Further, even though H.c. galanthus and H. pachinus had

intermediate proportions of yellow ommatidia, H.c. galanthus appeared to have less UV

and H. pachinus more UV than the other groups. Overall, these results suggested screen-

ing pigment and ommatidia type were uncoupled between groups, but qPCR is a relatively

imprecise method to draw clear conclusions.

To more directly test how the proportion of UV and blue photoreceptors varied across
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Figure 2.16: Detecting ommatidial types
In eye sections stained with UV1, UV2, and blue opsin antibodies, the proportion of UV-
UV, blue-blue, and UV-blue ommatidia was measured with an automated program. The
left shows the original antibody staining for a white H.c. alithea female. UV1 and UV2 are
combined into a single UV channel. Fluorescence is binarized. The right shows the results
of the automated program.

groups, I quantified the proportion of ommatidia types using antibody staining. Photore-

ceptors in cross sections of the eye were labeled with antibodies specific to UV1, UV2, and

blue rhodopsin. UV1 and UV2 were combined into a single color channel because butterflies

did not have distinct UV1 and UV2 photoreceptors but were instead co-expressed. Each

ommatidia was then classified as UV-UV, blue-blue, or UV-blue using an automated pro-

gram (Fig. 2.16). Each cross section of eye contained an average of 559.8 ± 236.3 ommatidia

(range 159-1296).

Results for the quantification of ommatidial types are shown in Fig. 2.17. Each of 7

groups have 3 values that add up to 100%, which makes any sort of quantitative analysis

difficult (but see below and Fig. 2.18). Inspection of the plots, however, do show that

the distribution of ommatidial types varies with species and sex, but not wing color. The
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Figure 2.17: Distribution of 3 ommatidial types
Each panel shows the percent of ommatidia that had 2 UV, 2 blue, or 1 UV and 1 blue
photoreceptor.

distributions for H.c. alithea were similar for individuals with white and yellow wings, but

they did appear different from the other species. In particular, the plurality of ommatidia was

UV-blue for H.c. alithea, but was blue-blue for every other group. Relating this distribution

to the eyeshine distribution, the percent of yellow ommatidia matched the sum of the UV-

UV and UV-blue types. Thus, for H.c. alithea, it seems that red ommatidia are blue-blue,

and yellow ommatidia are either UV-UV or UV-blue.

A similarly clear relationship between eyeshine and ommatidia types could not be estab-

lished for the remaining groups. However, a relationship matching H.c. alithea was unlikely.

In particular, H. melpomene and females have a small number of yellow ommatidia that
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Figure 2.18: Proportion of photoreceptors expressing blue rhodopsin
A) Every ommatidia has two photoreceptors expressing either UV or blue rhodopsin. The
plot shows the percent of these 2 photoreceptors that expressed UV rhodopsin.
B) qPCR was used to detect the relative expression levels of mRNA for UV and blue opsins

cannot match the sum of UV-UV and UV-blue ommatidia (Fig. 2.17). Instead, yellow

ommatidia most likely correspond to either UV-UV or UV-blue ommatidia, but not both.

Hypothesizing a relationship for F1 hybrids and their H.c. galanthus and H. pachinus

parents was not feasible as multiple combinations were possible (Fig. 2.17). Consistent

with qPCR, H.c. galanthus had predominantly blue-blue ommatidia. These proportions

for H.c galanthus also match the distribution from previously published results [127]. The

best prediction for the relationship between screening pigment and ommatidia type in H.c.

galanthus is the opposite of H.c. alithea, with yellow corresponding to blue-blue. H. pachinus

had a relatively even mix of the three ommatidial types, and F1 hybrids were intermediate to

the two parent species. For these two groups, a relationship between eyeshine and ommatidia

types matching H.c. alithea was the best fit. Overall, however, no confidence can be given

to predictions of the relationship between screening pigment and ommatidia type for these

three groups since other associations were nearly equivalent.
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Reducing each group from three types of ommatidia to the percent of photoreceptors

expressing blue rhodopsin allowed for a more quantitative comparison (Fig. 2.18A). These

data largely agreed with results from qPCR, although limited sample sizes for some groups

limited the statistical power. H.c. galanthus had significantly more blue photoreceptors

(71.9% ± 6.6%) than every group except for H. melpomene (p = 0.30). H. pachinus similarly

had the most UV, although this was not significantly different from the other groups except

H.c. galanthus (p < 0.001).

Overall, the distribution of photoreceptor types and screening pigments vary substantially

with species and sex, but no clear relationship emerged that relates these differences to

mate choice. The lack of differences between white and yellow H.c. alithea further reject

a possible mate choice relationship. The data do suggest that, within a species or sex,

screening pigments and ommatidia type are correlated. However, the relationship is almost

certainly not maintained across groups. The strong sexual dimorphism does suggest a role in

a sexually dimorphic behavior. One possibility is that males eyes vary to match differences

in seemingly similar habitats that have not yet been fully characterized. Female eyes may

instead be optimized for a behavior such as egg laying.

2.3.3 Photoreceptor synaptic connections

Photoreceptor spectral tuning and the distribution of ommatidial types varied with species

and sex, and these differences likely have important biological consequences. However, with-

out differences between white and yellow H.c. alithea, these differences are unlikely to con-

tribute to male preference for white or yellow females. Additionally, from a computational

perspective, there is no obvious mechanism for these relatively simple and linear changes

in eye organization to lead to changes in preference. Every photoreceptor responds more

strongly to white wings than yellow wings, so no changes to λMax or the proportion of

photoreceptor types can make the eye respond more strongly to yellow (Fig. 2.10). In-

stead, flipping preference between colors that primarily differ in the presence or absence of
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Figure 2.19: Example data
Shown are the responses of a UV photoreceptor from two different white H.c. alithea males.
Both cells had similar responses at λMax = 400 nm. Responses to 550 nm, in contrast,
varied in response polarity. Each line shows a single trial. On the x-axis, 0 marks the onset
of a 25 ms light flash. For photoreceptors with negative responses to long wavelength light,
differences in the temporal response to UV light were common across trials.

short wavelength reflectance likely requires a substantial nonlinear transformation of sensory

information.

The voltage response of UV and blue photoreceptors to off-peak, long wavelength light

showed a signature of such a non-linear computation that has the potential to influence

courtship preferences. Photoreceptor responses to wavelengths surrounding λMax were gen-

erally well described by a rhodopsin tuning template, but UV and blue photoreceptors also

had residual responses to long wavelength light that varied in polarity (Fig. 2.19). When

rhodopsin absorbs a photon, it begins a transduction cascade leading to photoreceptor de-

polarization [139]. Residual responses to long wavelength light matched this expected de-

polarizing response for some photoreceptors, but others surprisingly showed hyperpolarizing

responses that cannot be explained by photoreceptor transduction cascades (Fig. 2.20, 2.21).

Instead, negative responses must originate from an external source, which is presumed to

be long wavelength sensitive photoreceptors. Notably, voltage responses for cells with neg-

ative tail tuning return to positive for wavelengths > 650 nm, suggesting the positive tail

represents the default tuning state of a photoreceptor.
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Figure 2.20: Tail tuning in blue photoreceptors
A) Spectral tuning curves are shown for blue cells that have either depolarizing responses to
all stimuli or hyperpolarizing responses to a subset of stimuli.
B) The proportion of cells with positive tails was measured for each group. The percent of
positive cells was measured for each individual, shown as small open circles. Filled circles
with errorbars show the mean ± SEM.

The two most likely origins of the negative tails were either experimental noise or synap-

tic connections. When photoreceptors depolarize, the extracellular media hyperpolarizes

and can be detected as the electroretinogram (ERG) with an extracellular electrode. If a

photoreceptor is poorly isolated, the negative tails could reflect ERG signal leaking into

the electrode rather than a real biological signal. Alternatively, negative tails could be a

signature of inhibitory synaptic connections from LW sensitive photoreceptors. Insect pho-

toreceptors use histamine as an inhibitory neurotransmitter [99], so inhibitory connections

between long wavelength photoreceptors and UV or blue photoreceptors could be detected

as a hyperpolarizing response. Based on anatomical data from the well-studied butterfly P.

xuthus, these connections would most likely occur in the lamina, although it is unclear how
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Figure 2.21: Tail tuning in UV photoreceptors
A) Spectral tuning curves are shown for blue cells that have either depolarizing or hyperpo-
larizing responses to long wavelength stimuli.
B) The proportion of cells with positive tails was measured for each group. Small open
circles show the percent of positive tails for cells measured in a single butterfly. Filled circles
show the average percentage ± SEM. Asterisks denote significance with p < 0.05.

these hyperpolarizing currents would propagate and be detected by the electrode located in

the distal eye.

One way to distinguish between these potential sources of the negative tails was to mea-

sure response latency. The ERG represents the collective response of potentially hundreds

of photoreceptors. Because 6 of 8 photoreceptors per ommatidium express the LW opsin

that respond strongly to long wavelength light, an ERG response should occur more quickly

than the depolarizing response of a single photoreceptor. Synaptic connections, in contrast,

should have delayed response times, with monosynaptic connections typically having delays

on the order of 5-10 ms. Thus, the relative response latencies should suggest the origin of

the hyperpolarizing response.
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Figure 2.22: Photoreceptor response latencies for intensity matched stimuli
A, B, C) Latencies to the onset of a photoreceptor response were measured for UV (A), blue
(B), and green (C) photoreceptors. Solid lines show latencies for cells with positive tails and
dotted lines show latencies for cells with negative tails. Error bars show SEM.
D) Boxplots show latency distributions for λMax, and tail latencies for 550 nm. Groups
sharing the same letter above are statistically the same. Green photoreceptors respond the
fastest, but post-hoc analysis of the tuning curves showed that I used slightly higher intensity
light for green tuning curves, on average. See Fig. 2.23 for details.

Response latencies for both UV and blue photoreceptors were consistent with negative

tails originating from monosynaptic inhibition (Fig. 2.22, 2.23). Latencies were first mea-

sured for spectral tuning curves using intensity matched stimuli spanning the full visual

range (Fig. 2.22). For the wavelengths surrounding λMax, latencies for cells with positive

and negative tails were not significantly different for UV (t62 = 1.2, p = 0.23) or blue (t43 =

0.33, p = 0.74) cells and were on the order of 20-25 ms (see below for precise quantification).
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Figure 2.23: Photoreceptor response latencies for different light intensities
A) Normalized voltage response at λMax in solid lines and negative tails in dotted lines over
3 log units of light attenuation.
B) Response latencies for the curves shown in panel A. Error bars in both panels are SEM.

Positive tail responses were slightly delayed compared to λMax for both UV (mean delay

= 1.8 ± 3.5 ms, median delay = 0.9 ms, t187 = 57.3, p < 0.001) and blue (mean delay =

2.1 ± 3.5 ms, median delay = 0.8 ms, t85 = 5.5, p < 0.001) photoreceptors. For UV cells,

negative tails were delayed significantly more compared to both λMax (mean delay = 5.5 ±

3.6 ms, median delay = 4.8 ms, t183 = 62.2, p < 0.001) and the positive tail (t308 = 9.3,

p < 0.001). Negative tails for blue cells were also delayed significantly more compared to

both λMax (mean delay = 5.2 ± 3.4 ms, median delay = 4.6 ms, t125 = 17.2, p < 0.001)

and the positive tail (t210 = 6.5, p < 0.001). Together, these results are consistent with

monosynaptic inhibition from LW photoreceptors being the source of negative tails.

Response latencies can depend on light intensity, response magnitude, or both. To assess

the effect of these variables on response latency, I next measured responses and latencies

for λMax and negative tails (λ =550 nm) over 4 log units of light intensity (Fig. 2.23). At

λMax for the highest light intensity, blue and green photoreceptors responded with a latency

of 19.3 ± 1.7 ms (t73 = 0.2, p = 0.85). Latencies of 20.5 ± 1.7 ms for UV photoreceptors

at λMax were slightly but significantly slower than both green (t78 = 3.1, p < 0.01) and
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blue (t93 = 3.1, p < 0.01) photoreceptors. Light intensity had a similar effect on latency

for all photoreceptors, with latencies increasing by an average of 5.6 ms per log unit of light

attenuation.

Similar to the spectral tuning curves, negative tails for these intensity-response curves

were delayed relative to λMax for both UV and blue photoreceptors (Fig. 2.23). At the

highest light intensity, negative tails for UV and blue photoreceptors had similar delays of

5.3 ± 2.6 ms (t41 = 0.13, p = 0.89) that was significantly longer than λMax latencies (t42

= 93.6, p < 0.001). This delay was maintained over 2 log units of attenuation, increasing at

a slightly higher rate of 7.9 ms per log unit of light intensity.

Overall, these results indicate that negative tails in UV and blue photoreceptors originate

from monosynaptic connections with LW sensitive photoreceptors. For UV cells, negative

tails spanned from 460 nm to 630 nm, suggesting that inhibition came from broadly sensitive

green photoreceptors (Fig. 2.21, 2.24). Negative tails were shifted for blue cells, with hyper-

polarizing responses between 530 nm and 670 nm (Fig. 2.20). This could possibly mean that

blue cells receive inhibition from red photoreceptors rather than green. However, the tuning

of blue photoreceptors overlaps substantially with green photoreceptors, so it is possible that

this overlap obscures inhibition from green photoreceptors at shorter wavelengths.

The presumed anatomical correlate of these positive and negative tails are the absence

and presence, respectively, of synapses connecting LW photoreceptors to UV and blue pho-

toreceptors. Antibody staining for sens2 (Fig. 2.2) similarly pointed towards expression

in LW photoreceptors, suggesting a possible role of this candidate mate choice gene in the

formation of these synapses. If this is true, I would expect butterflies with different mate

preferences to have different proportions of positive and negative tails since sens2 is differ-

entially expressed in the eyes of white and yellow males. To test this hypothesis, I next

compared the proportion of UV and blue cells with positive and negative tails across the

seven groups.

The proportion of blue photoreceptors with positive tails was not significantly affected
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Figure 2.24: Sunlight irradiance
Figure shows the irradiance of sunlight overlaid with the tuning curves of UV and blue
photoreceptors with negative tails as well as green photoreceptors. Green photoreceptor
tuning overlaps substantially with negative tails. Sunlight irradiance data was provided to
me by Susan Finkbeiner.

by species, sex, or wing color (Fig. 2.20B, F6,57 = 0.26, p = 0.95). I recorded from a total of

126 blue photoreceptors across all groups, and 46.9% had positive tails. Similar proportions

across all groups suggest that tails in blue photoreceptors serve a more general biological

purpose rather than courtship. Blue photoreceptors, but no other photoreceptor types, also

appear to be inhibited by LW photoreceptors in the butterflies Troides aeacus formosanus

[120] and P. xuthus [140], suggesting that this result may be widespread across butterflies.

The proportion of positive and negative tails for UV photoreceptors, in contrast, did vary

across groups, including differences based on wing color and mate preference (Fig. 2.21B,

F6,63 = 6.37, p < 0.001). For females and H. melpomene, 80.8% of UV photoreceptors had

positive tails, suggesting positive tails are the ancestral tuning state. Similarly, 83.3% of

UV photoreceptor tails (10 of 12) in H.c. galanthus were positive. This ratio was reversed

in H. pachinus, with only 25% (2 of 8) UV photoreceptors having positive tails (χ2 = 6.8,

p < 0.01). F1 hybrids had an intermediate proportion of 52.6% of UV photoreceptors with

positive tails (10 of 19), which was not significantly different from either parent species.
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Differences between H.c. galanthus, H. pachinus, and their F1 hybrid offspring were

consistently found for every aspect of eye organization I examined. However, unlike the

other features, the proportion of UV cells with positive tails also varied between white and

yellow H.c. alithea (Fig. 2.21B). For white males, 53.5% of UV photoreceptors had positive

tails (23 of 43), which matches F1 hybrids both in tail proportion and lack of courtship color

preference. Yellow males, in contrast, had only 30% of UV photoreceptors with positive

tails (12 of 40), which matches H. pachinus both in tail proportion and preference for yellow

females. These proportions were significantly different between white and yellow males both

when analyzing total counts (χ2 = 4.7, p = 0.030) and when proportions were calculated for

each individual and then compared (t24 = 3.5, p = 0.002).

Together, tail tuning of UV photoreceptors correlates well with male mate preferences.

Males that prefer white females as well as females and the outgroup H. melpomene pre-

dominantly have UV photoreceptors with positive tails. Males preferring yellow females, in

contrast, primarily have UV photoreceptors with negative tails suggesting inhibition from

LW sensitive photoreceptors. Males with no preference are intermediate, with a relatively

even mix of positive and negative tail photoreceptors. The difference between white and yel-

low H.c. alithea is particularly important, as these butterflies are genetically similar across

the population, with the only consistent genetic difference being at the wing color locus.

This result also fits with the differential expression of sens2 in LW photoreceptors, suggest-

ing that expression of this candidate mate choice gene might inhibit the formation of synaptic

connections between LW and UV photoreceptors.

Tail tuning affects the adaptation state of UV photoreceptors

Positive and negative tails reflecting differences in synaptic connectivity between photorecep-

tors could have numerous different effects on neural computation, perception, and behavior.

Inhibition of UV and blue photoreceptors could lead to both shortened temporal responses

of the photoreceptor or a decrease in total neurotransmitter release to downstream synaptic
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partners. Understanding how these differences in synaptic connectivity in the peripheral

visual system influence behavior and perception would necessitate identifying and recording

from neurons in the central brain.

These positive and negative tails could also have an effect on the responses and excitabil-

ity of the photoreceptors themselves. In a natural environment, short wavelength light is

relatively limited, with UV irradiance approximately 4 log units less than wavelengths > 400

nm (Fig. 2.24). Photoreceptors adapt to ambient light levels in a mostly cell-autonomous

way to maintain sensitivity. Thus, the null hypothesis in a natural environment is that UV

photoreceptors would be relatively dark-adapted compared to LW photoreceptors. However,

tails make UV photoreceptors responsive to long wavelength light that might affect the adap-

tation state of a cell. Positive tails respond to the relatively intense long wavelength light

in an environment, and this could potentially make the UV photoreceptors less sensitive by

making them relatively light adapted. In contrast, UV cells with negative tails might not be

affected by long wavelength light or even be sensitized.

To test this hypothesis, I recorded from UV photoreceptors under conditions simulating

natural light. Bright green LEDs (λ = 534 nm) were added to the electrophysiology set-up

to selectively stimulate photoreceptors responsive to long wavelength light. Spectral tuning

curves were then measured both in the presence and absence of the green LEDs. Turning on

the LEDs suppressed the responses of green photoreceptors to 20.9 ± 10.6% of the original

response (Fig. 2.25A), showing that the LEDs had the intended effect. I then recorded from

UV photoreceptors with positive and negative tails to examine if or how long wavelength

stimulation affected responses to UV light.

Using the green LEDs, I measured UV photoreceptor spectral response curves (Fig.

2.25B) and the response to λMax over 4 log units of light intensity (Fig. 2.26). Results

for the two types of recording agreed with each other. With the green LEDs turned on, the

resting potential of UV photoreceptors decreased by 5.6 ± 4.8 mV (t18 = 5.1, p < 0.001),

which is consistent with the addition of inhibitory currents from LW photoreceptors (Fig.
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Figure 2.25: Photoreceptor tuning curves in the presence of green LEDs
A, B) Voltage responses were measured in A) green cells and B) UV cells in the absence and
presence of LEDs simulating natural light conditions.

2.26C). The resting potential of UV photoreceptors with positive tails were not significantly

affected by the LEDs (t17 = 1.7, p = 0.10). Response magnitudes were decreased for nearly

every UV photoreceptor when the LEDs were turned on. For photoreceptors with negative

tails and maximum light intensity, the LEDs reduced the λMax response to 78.8 ± 18.0% of

the response without LEDs (Fig. 2.26B). LEDs attenuated the response of photoreceptors

with positive tails significantly more (t29 = 2.4, p = 0.01, Cohen’s d = 0.77) to 65.1 ± 17.6%

of the maximum response.

Responses at λMax to different light intensities showed that the true effect of the LEDs

on UV photoreceptor responses was unclear (Fig. 2.26A). In the absence of the LEDs,

UV photoreceptor responses began to saturate at the highest light intensities. In contrast,

responses in the presence of the LEDs were still in the linear part of the response curve at

the highest light intensity. Thus, it is unclear if the LEDs lowered the maximum response

of a photoreceptor, shifted the intensity needed to elicit a half maximum response, or both.

Together, these results showed that long wavelength light influences the responses of UV
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Figure 2.26: Effect of green LEDs on photoreceptor responses
A) Voltage responses to λMax was measured over 4 log units of light intensity in the presence
and absence of LEDs simulating natural light conditions.
B) The change in voltage response at 0 log units of attenuation was quantified.
C) The change in resting potential after turning on the LED was measured and different for
UV cells with positive and negative tails.

photoreceptors. A 13% difference in response magnitude for positive and negative tailed

cells seems modest, and how it might influence downstream circuits is unclear. This small

difference might also be underestimated due to the lack of response saturation in the presence

of the LEDs. This effect could also be amplified and have a compound effect with any

potential effects on synaptic transmission that inhibition from LW photoreceptors might

have.

2.3.4 Photoreceptor temporal dynamics

Finally, I noticed throughout my recordings that photoreceptors appeared to have different

temporal responses depending on spectral sensitivity. I explored this observed difference by

measuring the temporal response of photoreceptors to 25 ms flashes of light at λMax and

the highest light intensity (Fig. 2.27). The slope of the onset response did not differ between
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Figure 2.27: Temporal dynamics of photoreceptor responses
A) Example traces show the response of green, blue, and UV photoreceptors to the λMax
stimulus.
B) The temporal width of photoreceptor responses at λMax was measured as the time spent
voltage was above 50% of the maximum.
C) The presence of an LED decreased response widths in UV photoreceptors to match the
temporal response of green photoreceptors.

cell types, but the decay time did. I quantified this by measuring the length of time the

voltage response of a had a response voltage greater than 50% of the maximum.

The temporal width of a photoreceptor response varied with the type of opsin it expressed

(Fig. 2.27B, F6,328 = 29.92, p < 0.001). Green photoreceptors had the narrowest response

profile, with a temporal width of 38.2 ± 7.3 ms. All blue cells and UV cells with positive

tails had significantly longer response widths of 50.5 ± 10.3 ms (Tukey’s HSD, p < 0.01).

UV photoreceptors with negative tails had the widest temporal responses, with an average

of 64.9 ± 19.4 ms (Tukey’s HSD, p < 0.001). Response widths for these UV photoreceptors

could be over 100 ms, with a relatively continuous distribution across the range of observed

temporal profiles. The presence of the green LEDs decreased the response widths of UV
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photoreceptors, and widths were not significantly different from green (Tukey’s HSD, p >

0.05). Blue photoreceptor tuning curves overlapped with the 534 nm LEDs too much to

conduct a similar analysis, but I would expect a similar result for these cells.

2.4 Discussion

Vision is the primary sensory modality mediating courtship behavior in Heliconius but-

terflies. With limited understanding of Heliconius visual perception and its neural basis,

characterizing the functional organization of the eye and determining the visual information

broadly available to the central brain was an important first step in studying the neural

basis for male courtship preferences. Additionally, differential expression of the candidate

mate choice gene, sens2, in the eyes of white and yellow males indicated that the peripheral

visual system might be a source of circuit differences contributing to male choice. Here, I

used a combination of electrophysiology, eyeshine, and antibody staining to provide a rel-

atively complete picture of eye organization in the cydno clade of Heliconius. Considering

that these closely related butterflies appear to have similar ecological niches and habitats,

my experiments identified a surprising amount of diversity in eye organization.

2.4.1 Photoreceptor spectral sensitivity

The Heliconius genome encodes four different opsin proteins sensitive to wavelengths between

300 and 700 nm [125]. Across the genus different species consistently express the blue and

LW opsins, with the LW opsin combining with red screening pigment to generate a distinct

and behaviorally relevant red photoreceptor [115, 127]. Expression of either the ancestral

UV1 or derived, genus-specific UV2 opsin, in contrast, varies substantially across the genus

[127].

Within the group of butterflies I examined, UV spectral sensitivity varied substantially

and relatively continuously between 350 and 400 nm. The combination of electrophysiol-
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ogy, qPCR, and antibody staining pointed towards variable levels of UV1 and UV2 co-

expression leading to tuning differences between cells. Co-expression of multiple opsins has

been observed in several butterfly species [119, 123, 124, 133, 141]. Expression of UV1 and

UV2 in different photoreceptors of an individual is relatively common in Heliconius, but

co-expression in the same photoreceptor has only been detected in the eye of female H. doris

[127]. The biological relevance and the degree to which co-expression levels are precisely

controlled within an individual are interesting questions worthy of future investigation.

There was an intriguing trend relating UV opsin expression to mate preference in my

data. In general, groups with stronger preferences for yellow females typically had stronger

expression of UV2. However, the lack of differences between white and yellow H.c. alithea,

the simple convolution between wing reflectance and photoreceptor sensitivity, and sens2

expression most likely in LW photoreceptors all point towards this relationship being cor-

relative rather than causal. Regardless, this trend cannot be entirely discounted without a

more thorough investigation.

This relationship between UV opsin expression and color preference is consistent with

an alternative hypothesis about the genus-wide function of UV2. The 3-OHK based yellow

pigment is unique to Heliconius and the spectral reflectance differs substantially from yellow

pigments in non-Heliconius species [125]. Although direct behavioral evidence is lacking,

substantial circumstantial evidence including a modeling study indicates that UV2 is better

than UV1 for discriminating the two types of yellow pigment [128, 142]. Males that prefer

yellow females would then benefit from expressing UV2, while UV1 may be optimal for non-

courtship behaviors and preferentially expressed in other males. If true, it is unclear why

some butterflies such as H. erato express UV1 and UV2 in different photoreceptors, while

the cydno butterflies here co-express the two in the same photoreceptors.

Blue photoreceptors also showed a degree of spectral tuning differences. In particular,

H. pachinus males had blue photoreceptors with a λMax that was shifted to longer wave-

lengths by 8 nm. Protein sequences are the same across groups, so opsin differences cannot
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explain this variability. One possibility is that, since photoreceptors share a rhabdom, UV

photoreceptors act analogously to a screening pigment by absorbing short wavelength light

before it reaches a blue photoreceptor [143]. Since UV photoreceptors for H. pachinus males

had the longest λMax that was not significantly different from the expected tuning of UV2,

absorbance of slightly longer wavelength light could lead to this apparent shift in tuning.

The cause of the large, 20 nm difference in blue tuning between my recordings and recordings

from H. erato [126] is unclear, but a similar phenomenon of optical coupling in the rhabdom

could play a role.

2.4.2 Origin of tail tuning

UV and blue photoreceptors had residual tail tuning that cannot be explained by standard

rhodopsin tuning templates. Positive tails were somewhat understandable, as the depo-

larizing response matches the expected response of a photoreceptor responding to a visual

stimulus. For stimuli > 650 nm, cells with negative tails returned to positive, suggesting

that the residual depolarizing responses are the default tuning state of the photoreceptors.

However, the tuning of this positive tail was abnormally long and flat, particularly for UV

photoreceptors. It is unclear where this tail originates, and a previous report of positive

tails in photoreceptors was similarly unable to identify a possible source [120]. Sensitizing

pigments have been identified in the R1-6 photoreceptors of Drosophila that contribute to

UV sensitivity in LW sensitive cells [144, 145]. A similar mechanism may play a role here,

although there is no prior data to support this claim.

Latency measurements indicated that negative tails most likely originate from monosy-

naptic inhibition. The wavelengths evoking hyperpolarizing responses overlapped substan-

tially with green photoreceptor tuning, suggesting LW photoreceptors as the specific source.

Green photoreceptors most likely form synaptic connections with the UV photoreceptors,

and a contribution from red photoreceptors is unclear but possible. Synapses from green or

red is unclear for the blue cells with negative tails. These connections may serve a similar
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function to horizontal cells found in the vertebrate retina.

Similar reports of negative tails indicative of synaptic inhibition have also been reported

for the butterflies T.a. formosanus [120], P. aegeus [146], and P. xuthus [140]. All of these

studies found inhibition of blue photoreceptors specifically, while my experiments are the

first to detect inhibition of UV photoreceptors. Electron microscopy in the lamina of P.

xuthus has provided a potential anatomical correlate of these responses, finding synapse like

structures between photoreceptors [103]. A more recent investigation specifically interested

in the possibility of inhibition between photoreceptors used antibody staining for the two

known histamine channels in the optic lobes of P. xuthus. Photoreceptor axons were found

to express the Drosophila homolog of the HisCl1 channel, which was previously known to be

expressed only in glia [140].

2.4.3 Tail tuning and courtship

White and yellow wings differ primarily in the presence and absence of short wavelength

reflectance. Discriminating the two colors is most likely a simple task for the butterflies just

like it is for humans. Courtship preference, however, is complex decision and behavior rather

than a simple discrimination. To shift the preference from one color to the other would likely

require a more substantial transformation of sensory information than simple, small shifts

in spectral sensitivity or photoreceptor type distributions.

Differences in UV photoreceptor tail tuning that likely correspond to differences in synap-

tic connectivity provide the potential for a large change in sensory processing. The differential

expression of sens2 presumably in LW photoreceptors of white and yellow males lends further

support to the role of peripheral synaptic connectivity in mate preference. Males preferring

white females generally lacked inhibition of UV photoreceptors, while UV photoreceptors for

yellow preferring males usually showed signatures of inhibition. Males without preference

showed an even mix of positive and negative tails. The molecular mechanism of sens2 action

is unknown, but it is predicted to be a transcription factor that may cause the expression of
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synapse forming proteins. How butterflies have different proportions of positive and nega-

tive tails rather than all or none is also unclear. There could be stochastic expression with

biased probabilities of sens2 expression due to the SNPs identified in the GWAS. Such a

mechanism would be similar to the stochastic, cell-autonomous decision of the R1 and R2

photoreceptors to express either a UV or blue opsin [105].

Synaptic inhibition in the periphery could have a multitude of large and small effects

on sensory processing. The central brain processing associated with mate choice or visual

behavior in Heliconius is effectively completely unknown except for a couple studies of gross

anatomy [147, 148]. Speculating on the possible downstream effectors of mate choice and

generating a model would likely be relatively easy but so unconstrained that it would be

biologically uninformative.

2.4.4 Vision in a natural environment

Butterflies are highly visual, diurnal animals that live in complex natural environments.

The butterflies examined here generally live in heavily forested regions of the neotropics.

Of particular interest to behavior and perception related to eye organization is that short

wavelength light is limited in a natural environment. The forested habitats of these butterflies

further decreases the relative amount of short wavelength light. The eyes of Heliconius may

be adapted to these differences in ambient light levels in natural environments.

Differences in the ambient light conditions could be related to the slight differences I

observed in the distribution of UV and blue photoreceptors. Most groups I examined had

between 50 and 60% of the R1 and R2 photoreceptors expressing blue rhodopsin, but H.c.

galanthus increased significantly to more than 70% blue. Behavioral experiments have shown

that one subspecies of H. cydno preferentially choose habitats that are shaded rather than

in open sunlight (Brett Seymoure, unpublished data). This might decrease the need and

usefulness of UV photoreceptors for these butterflies, leading to less UV opsin expression.

However, these comparisons were between distantly related species and careful comparisons
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within the cydno clade or butterflies with known opsin distributions have not been conducted.

The temporal dynamics of photoreceptor responses may also be tuned to natural condi-

tions. In my experiments that were primarily conducted in a dark adapted state, different

photoreceptor types had different temporal response profiles. Green photoreceptors were

the narrowest and followed the stimulus with relatively good fidelity. Blue and UV pho-

toreceptors, in contrast, had responses that were temporally extended, especially for UV

photoreceptors with negative tails. However, simulating natural conditions with the LEDs

narrowed the temporal response of UV photoreceptors to match green photoreceptors.

One possible explanation for this is that the molecular biology of individual photorecep-

tors changes to account for these differences in temporal response. Green LEDs simulated

natural conditions and led to significant decreases in the temporal response of UV photore-

ceptors. If the cellular biology of every photoreceptor was the same, UV photoreceptors

might then have severely truncated temporal responses in a natural environment. However,

different photoreceptor types may have different cellular compositions that account for this

effect. For natural conditions to evoke similar temporal responses across cell types, UV pho-

toreceptors would need to have temporally extended responses as the default, which is what

I observed in my experiments using unnatural, dark adapted conditions.

2.4.5 Sexual dimorphism

Every aspect of eye organization that I examined was sexually dimorphic. In each case, male

eyes varied substantially with species, but female eyes were similar regardless of species or

wing color. These dimorphic features of the eye suggest a role in a dimorphic behavior such

as courtship. Both the UV photoreceptor sensitivity and UV tail tuning appeared related to

different aspects of courtship behavior. Large differences in eyeshine, however, had no clear

relationship to courtship. Eyeshine could instead be related to a different sexually dimorphic

behavior.

An alternative dimorphic behavior that might be responsible for the similarities across
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females is egg laying. Females lay eggs exclusively on Passiflora plants, and choosing good

plants plays an important role in lifetime fitness. Anecdotal experience from rearing but-

terflies in a green house suggests that Heliconius females are very picky about what plants

they use. In some cases, it seemed that females might prefer not to lay eggs over laying

eggs on poor quality host plants. Vision is probably an important sensory modality for this

behavioral decision, and female eyes may be optimized for this task. Male eyes would then

be more free to vary with respect to natural light conditions.

2.4.6 Future directions

An important next step in understanding the neural mechanism of courtship preference is

to confirm the role of tail tuning in courtship behavior. One approach to achieve this would

be to knock out sens2 expression in males that typically prefer white females and ask if

both courtship behavior and UV photoreceptor tail tuning change. If sens2 is important

for courtship preferences, the lack of this gene should increase the attractiveness of yellow

females to H.c. galanthus and also increase the proportion of UV cells with negative tails.

Antibody staining for sens2 in the central brains of white and yellow butterflies is also needed

to assess if sens2 might affect courtship in multiple brain regions.

Second, direct experimental evidence is needed to confirm that negative tails are in

fact created through monosynaptic inhibition from LW photoreceptors. Response latencies,

different proportions among groups, and sens2 expression all suggest that it is, but each

of these results is subject to noise or error. Anatomical studies could first be used and

compared to the results from P. xuthus [103, 140]. Physiological evidence could also be

gained through the use of histamine antagonists or agonists. Antagonists should eliminate

the negative tail and have no effect on positive tail cells. Agonists, in contrast, should give

results similar to the LED experiments. Effects on positive tail cells would be less clear, as

all UV photoreceptors may express histamine channels, but only some may have synaptic

connections.
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A final step would be to investigate the overall neural basis for courtship behavior and how

these peripheral changes might influence downstream circuitry. This would require gaining

experimental access to a potential mate choice circuit. In Drosophila, the transcription factor

Fruitless is expressed in approximately 2,000 neurons that are both necessary and sufficient

for courtship behavior [83]. This expression is also sexually dimorphic, limited to only males.

Extensive work in Drosophila has shown that this transcription factor specifies and marks

almost the entire courtship circuit [149].

Work on Fruitless outside of Drosophila is limited, but siRNA knockdowns of this gene

in developing locusts also impairs courtship [82]. Locusts are hemimetabolous insects that

diverged from holometabolous insects more than 350 million years ago, suggesting deep

homology of this gene and its role in courtship. A first step to gaining access to the Heliconius

courtship circuit would be to confirm the role of Fruitless using a CRISPR knockdown.

Assuming that is successful, integrations of of either GFP or gCaMP would facilitate study

of a circuit potentially dedicated to mating behavior.
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2.5 Methods

Animals

The animals used in this study were reared in a greenhouse at the University of Chicago,

and the population was regularly supplemented with shipments from breeders located in

South America. The H.c. galanthus, H. pachinus, and H. melpomene were from Costa Rica,

while H.c. alithea were from Ecuador. Exact age of each experimental animal was unknown,

but butterflies were at least 3 days old, and the best data typically came from individuals

without naturally occurring wing damage suggesting they were relatively young.

For all experiments, butterflies were prepared in the same way under a dissecting mi-

croscope using beeswax containing a small amount of Canada balsam that increased wax

viscosity. For each step, a metal spatula was heated with an alcohol lamp and a small

amount of wax was melted onto it. I first removed the legs, waxed the abdomen to the

thorax, and waxed the wings together and to the thorax. The butterfly was then placed in

a collar made from electron microscope film with the tip folded at 90 degrees. In the folded

edge was a small rounded triangular cut that snugly held the butterfly neck in place. The

butterfly was then waxed to the collar by its belly and its ‘shoulders’. The head was then

stabilized by waxing the mouth parts to the collar and finally a small amount of wax behind

each eye. A light push with a forceps on the head capsule that resulted in no head movement

meant that the butterfly was well restrained.

2.5.1 qPCR

Eyes were dissected from a butterfly with a razor blade, immediately placed in RNAlater

and stored at −80◦C. Prior to mRNA extraction, eyes were repeatedly washed and spun

in a centrifuge to remove residual RNAlater. mRNA was then extracted and converted to

cDNA using a standard kit (Qiagen). Expression levels for UV1, UV2, blue, and green

rhodopsin mRNA were measured using qPCR with SYBR green. Primers for each opsin
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Primer
UV1 Forward 5’-CGCTCACTGTGTGCTTCCTCTT-3’
UV1 Reverse 5’-AGTCTTGCAAGCTACCGCGG-3’
UV2 Forward 5’-TACCGTGTGCTTCCTTTATGTTG-3’
UV2 Reverse 5’-ACCCTTGCAAGCGATCGCAG-3’
Blue Forward 5’-TGCGACATATTTGCCGTGCT-3’
Blue Reverse 5’-GAGACGCCTGCACTCTGTTC-3’
Green Forward 5’-GATGTTCATGATGGCACCGC-3’
Green Reverse 5’-CATTGTAGCGGTCGAAAGCG-3’

Table 2.2: qPCR primers

are shown in table 2.2. Each primer was tested for specificity using Sanger sequencing

and efficient amplification using qPCR with serial 10 fold dilutions of genomic DNA. For

each individual, all primers were tested on the same qPCR plate in triplicate. Results with

standard deviations greater than 1 across the replicates were discarded and tested again.

Relative expression level differences were then measured as the difference in PCR cycles to

reach threshold for two different genes.

2.5.2 Antibody staining

The eyes of restrained butterflies were dissected into 0.01 M phosphate buffered saline (PBS)

using a razor blade. Excess cuticle, fat, and tracheae were removed from the eye. A small

amount of cuticle was left attached and served as landmarks for identifying the dorsal-ventral

axis of the eye. Dissected eyes were then transferred to 4% paraformaldehyde in PBS for 15

minutes. Fixed eyes were then cryoprotected in a solution of 25% sucrose in PBS overnight

at 4◦ C. Heliconius eyes float in both the fixative and sucrose, so eyes were submerged using

a plastic mesh grid.

Thin eye sections for antibody staining were cut using a cryostat. An eye was coated

in a small droplet of TissueTek OCT and frozen at −20◦ C. The eye was oriented to slice

the middle and slightly ventral part of the eye. The first 5-10 sections that stained well as

cross sections were sliced at 14 µm and placed on adhesive slides (SuperFrost Plus, Fisher

Scientific). Longitudinal sections from deeper in the eye were difficult to slice due to the
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presence of lens, retina, and neural tissue with different degrees of density and hardness, so

slices were increased to 20-25 µm.

Eyes were stained with antibodies specific to UV1, UV2, and blue or sens2. Animal in-

jections, serum collection, and affinity purification were performed by GenScript for each an-

tibody. UV1 and UV2 antibodies targeted the same but divergent N-terminal portion of the

protein. UV1 antibodies were made in guinea pig against the peptide DGLDSVDLAVIPEH,

and UV2 antibodies were made in mouse against the peptide AISHPKYRQELQRRMP. Blue

antibodies were a gift from Michael Perry and were made in rabbit against the peptide INH-

PRYRAELQKRLPC. The blue antibody was used on butterflies that were at least 3 days

old, while sens2 was used on butterflies that were less than 12 hours old.

Eyes were stained on slides in a humid chamber using a 2 day procedure. Slides were

first washed for 5 minutes in cold acetone, 3 X 10 minutes in PBS, and 3 X 10 minutes

in 0.3% Triton X-100 in PBS (PBST). These washing steps removed excess melanin from

the eyes. Slides were then washed for 5 minutes in 1% sodium dodecyl sulfate in PBS as

an antigen retrieval step and 3 X 10 minutes in PBST. Slides were then blocked for 1 hour

in 1% bovine serum albumin (BSA) in PBS. Primary antibodies, all at a 1:300 dilution in

blocking solution, were then applied overnight at 4◦ C. Prior to staining with secondary

antibodies, eyes were first washed 5 X 10 minutes in PBST. Goat anti-rabbit Alexafluor 488

(Abcam), donkey anti-guinea pig Alexafluor 555 (Abcam), and donkey anti-mouse Alexafluor

647 (Abcam) were all diluted 1:2000 in blocking solution and slides were stained for 2 hours

at room temperature. After staining, slides were washed 6 X 10 minutes in PBST and stored

for imaging using a coverslip and Polymount (Fisher Scientific). Stained eyes were imaged

using a Zeiss LSM 510 confocal microscope using a 20X objective. Minor adjustments in

contrast and brightness were made using ImageJ [150].

The distribution of UV-UV, blue-blue, and UV-blue ommatidia were counted using an

automated MatLab program and checked visually. First, binary images of the UV stain, blue

stain, and merged stain were generated in imageJ. In MatLab, ommatidia were detected from
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the merged binary image using the program bwareafilt. Minimum and maximum sizes were

used to exclude noise, typically only analyzing clusters that were between 20 and 200 pixels

in size. The binary UV and blue images were then analyzed to determine if each ommatidia

contained that opsin. Blue typically had lots of background staining, so at least 10% of the

pixels defining an ommatidium needed fluorescence of an opsin to be considered expressed.

2.5.3 Electrophysiology

Recording apparatus

After butterflies were restrained in the collar, a small triangular hole was cut in the dorsal

eye using a razor blade, with the hole positioned such that the electrode would pass through

a relatively distal part of the eye. A small drop of silicon grease was applied immediately

to prevent desiccation. A silver chloride reference electrode was inserted in a small hole cut

in the anterior portion of the head capsule that avoided the central brain. The butterfly

was then placed in a Faraday cage with the eye positioned at the center of a Cardan arm

perimeter device. This device is a pair of rotational platforms with a 3-D printed arm that

created an imaginary sphere holding the light source a fixed distance from the eye.

Photoreceptor responses were evoked using monochromatic light. The light source was

a combination of a 26 W deuterium lamp and 20 W halogen lamp that primarily provide

UV and human visible light, respectively (DH-2000S, Ocean Optics). This white light was

connected to a scanning monochromator with 1 nm resolution and a full width half maximum

of 4 nm using a 1 mm fiber optic cable. The output of the monochromator was connected

to the Cardan arm perimeter device using two more 1 mm fiber optic cables and an optical

shutter (OZ optics). The Cardan arm was equipped with a collimator and lens that had a 4

cm focal length (Edmund Optics).

Stimuli ranged from 310-700 nm in 10 nm steps. The deuterium lamp created high and

unstable intensities at 590, 650, and 660 nm, so these were excluded from experiments. The
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intensity of each stimulus was calibrated to 1.5 X 1015 photons/cm2/s using a variable neutral

density filter in a rotational motor (Newport) mounted on the Cardan arm perimeter device

between the lens and the butterfly. Stimulus intensity was calibrated before each experiment

using a photodiode (Newport) placed at the location of the butterfly eye. The light source

also had a filter holder that allowed for light attenuation between 0 and 4 log units.

Experimental procedure

Photoreceptor responses were recorded using intracellular sharp electrodes. Electrodes were

pulled from borosilicate glass with a 1.0 mm outer diameter and 0.5 mm inner diameter

using a P-97 electrode puller and 2.5 mm box filament (Sutter instruments). Electrodes were

pulled to a resistance between 90 and 120 MΩ and filled with 3 M KCl. Exact parameters

for electrode creation varied over time and new filaments, but were generally around ramp +

10, pull 65, velocity 70, delay 100, and pressure 350. Electrode recordings were amplified by

a 0.1X headstage and high impedance amplifier (AxoClamp 900A, Molecular Devices) and

digitized at 10 kHz (DigiData1550, Molecular Devices). Responses were collected and saved

as 600 ms trials using Clampex.

The electrode moved along the dorsal-ventral axis of the eye using a micromanipulator

(Sutter Instruments), passing through the approximate center of the eye. Recordings were

made primarily from the ventral half of the eye. When a photoreceptor was penetrated by

the electrode, the baseline voltage dropped to between -40 and -60 mV and hyperpolarizing

ERG responses changed to a depolarizing response. Typically only cells with at least a 25 mV

response to light were recorded. This threshold was relaxed to 15 mV for UV photoreceptors

in order to better estimate the percent of positive and negative tails in an individual. The

maximum voltage response did not affect the probability of observing a positive or negative

tail.

Photoreceptor responses to monochromatic stimuli were presented in a pseudo-random

order using an automated program written in MatLab. Light flashes of 25 ms were presented
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with 3 s between each trial, which was sufficient to prevent adaptation. Each stimulus was

presented four times, and the standard deviation of the response was typically less than 1

mV. When possible, photoreceptor responses were recorded for multiple levels of overall log

attenuation.

In addition to recording photoreceptor tuning curves, I also measured the relationship

between the voltage response and light intensity (V-Log(I) curves). After recording the

tuning curve, I identified the wavelength that evoked the largest response. I then recorded

the response to this stimulus for 12 different intensities ranging from full intensity to 4 log

units of attenuation. Similar to the tuning curves, each V-Log(I) curve had 4 trials separated

by 3 s.

For some green and UV photoreceptors that maintained stable recordings over long peri-

ods, I also measured the responses to monochromatic stimuli in the presence of green LEDs

meant to simulate natural daylight. Surrounding the stimulating lens were 6 LEDs with

peak tuning at 534 nm and a full width half maximum of 12 nm, with an intensity of 3.2 X

1015 photons/cm2/s. Prior to presenting monochromatic stimuli, LEDs were turned on for

15 s. Tuning curves and V-Log(I) curves were measured in the same way described above.

Responses were measured again after turning off the LEDs, and data for photoreceptors that

failed to recover at least 80% of the original response were discarded.

Data analysis of tuning curves

One issue with recording the response to isoquantal stimuli is that photoreceptors have

a saturating non-linearity. This non-linearity causes the observed width of photoreceptor

tuning to be affected by stimulus intensity. To control for this, photoreceptor response

curves were transformed into sensitivity curves by fitting the data with the Naka-Rushton

equation (equation 2.1), which is essentially a modified Hill equation. This transformation

normalizes the width of photoreceptor tuning (Fig. 2.28) and is standard for the field.
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Figure 2.28: Naka-Rushton transformation
A) Responses to monochromatic light were measured at 3 intensities for this blue photore-
ceptor. Response amplitudes are normalized to 1 to show the effect of intensity on tuning
width.
B) A V-Log(I) curve was generated in response to 450 nm for this photoreceptor and fit with
the Naka-Rushton equation.
C) Tuning curves in A were adjusted using the fit parameters from the V-Log(I) curve.
Intensities that are too high lead to abnormally narrow tuning curves. Intensities in the
linear part of the V-Log(I) curve get adjusted to similar widths.
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VMax
=

In

(In +Kn)
(2.1)

I fit these spectral sensitivity curves with an established rhodopsin template [130, 131].

This model has 11 parameters that describe the shape of the tuning curve for a photoreceptor

(Equations 2.2 to 2.6, but λMax was the only free parameter that varies between cells.

S =
1

[eA(a−x) + e(B(b−x) + expC(c−x) +D]
+ Aβexp

−(λ− λβ)
2

d (2.2)

x =
λMax

λ
(2.3)

a = 0.8795 + 0.0459e

−(λMax − 300)2

11940 (2.4)

λβ = 189 + 0.315λMax (2.5)

d = −40.5 + 0.195λmax (2.6)

and constants A = 69.7, B = 28, b = 0.922, C = -14.9, c=1.104, D = 0.674, and Aβ

= 0.26. For UV photoreceptors, I set Aβ = 0, and thus only fit the alpha peak of the

photoreceptor.

I also used this template to ask if UV photoreceptor responses had both UV1 and UV2

components. For this analysis, I assumed that photoreceptor responses in H. erato repre-

sented exclusively UV1 or UV2 rhodopsin tuning, which would be consistent with RNA-Seq

results. I used this data to generate a UV1 template and a UV2 template with tuning centers

of 356 nm and 390 nm, respectively and fit equation 2.7 to each individual cell, with a and

b representing the relative contribution of each gene to the response of a photoreceptor and
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c is a normalizing factor that adjusts response amplitude.

S =
a ∗ UV 1 + b ∗ UV 2

c
(2.7)

Tail tuning analysis

Response latencies were measured as the time from light onset to response onset. TTL

pulses controlling the light shutter were split and sent to the computer in addition to the

shutter. Using the photodiode, light onset consistently occurred 11.9 ± 0.1 ms after sending

the TTL pulse. To measure response latency, the standard deviation of the resting potential

was measured over the 100 ms preceding the TTL pulse. Response onset was then defined

as the time for voltage response to first exceed five times this baseline variability.

2.5.4 Eyeshine

Apparatus

Eyeshine images were collected using a custom built epi-fluorescent microscope based on

a previously published design (Fig. 2.29) [106]. This procedure makes use of a reflective

tapetum in the back of the eye, as incident light that is not absorbed by rhodopsin or

screening pigments exits the eye as a colored eye shine. This eye shine was then imaged

using a 20X objective with a 0.4 numerical aperture (Zeiss LD-Plan-Neofluar). Two arms of

the microscope that create the light beam and magnify the image are connected by a half

silvered mirror.

In the vertical arm of the microscope, a collimated white light source was expanded

and re-collimated. Light entered the microscope through a fiber optic cable and collimator

connected to the same halogen-deuterium lamp described above. Because the light source

was effectively a point source, this arm served to expand this light beam by two lenses with

focal lengths 4.0 and 8.0 mm placed confocal to each other. An adjustable diaphragm was
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Figure 2.29: Diagram of eyeshine microscope
The eye was imaged by a 20X microscope objective with a high numerical aperture and long
working distance. In the vertical arm of the microscope, a point source of white light is
expanded and collimated by lenses 1 and 2, which are placed confocal to each other. Light
reflects off a tapetum in the butterfly eye, and light that is not absorbed by rhodopsin or
screening pigments re-enters the microscope. Lenses 3 and 4 in the horizontal arm, which
are confocal to each other, magnify the image, which is then photographed. Diaphragms are
placed in the focal plane of all lenses to limit background illumination. The arrow under
lens 4 indicates that the exact position varies from image to image to focus the image. Red
and blue lines show the light path before and after entering the eye, respectively.

placed at the focal point of both lenses to control the amount of background light.

In the second arm of the microscope, the eyeshine was imaged by a digital camera (Canon

EOS Rebel T5). Two lenses with focal lengths of 8.0 and 2.0 mm were used to magnify the

eyeshine image. These lenses were approximately confocal with each other. However, the

best focused images typically required small adjustments in the location of the second lens for

unknown reasons. A diaphragm between these two lenses was adjusted in order to eliminate

background illumination. This magnified image was then photographed by a a lens with a

12.0 mm focal length immediately adjacent to an infinity focused digital camera.
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Experimental procedure

Butterflies were restrained in the collar and placed on a rotating platform in front of the

microscope. The eye was positioned near the axis of rotation, but precision was not necessary.

The rotation platform was attached to a a series of linear stages that allowed for adjustments

in all three dimensions. To prevent light adaptation that eliminates an observable eyeshine,

light was applied as 1 s flashes with 5 s between flashes.

Eyeshine images were collected along the entire dorsal-ventral axis of the eye. Eyeshine

was first located in the dorsal eye adjacent to the head capsule. The butterfly and lens 4

positions were then adjusted until the maximum number of ommatidia were observed and

in focus. The eyeshine was then imaged with a shutter time of 300 ms. Image quality was

assessed on line and new images were taken until an image with sufficiently high quality

was generated. After each area of the eye was imaged, the butterfly was then rotated and

positioned. The new location where eyeshine was imaged was close but non-overlapping with

the previous image.

Data analysis

To analyze group differences, the number of yellow and red ommatidia were quantified manu-

ally. Images for all butterflies were randomized, and the number of red and yellow ommatidia

in each image were counted blind to the species, sex, and wing color of the butterfly in each

image. Statistical comparisons required deciding how to reduce the set of images for each

butterfly to a single percentage of yellow ommatidia. I conducted four analyses by grouping

images into the dorsal two images, middle two images, ventral two images, and ventral half

of the images. The groups were then compared using a one factor ANOVA and post-hoc

t-tests with p-values corrected using Tukey’s HSD.
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Screening pigment spectral transmittance

The spectral reflectance of screening pigments was measured using images of the eyeshine

generated from monochromatic light stimuli and captured by a monochromatic camera. I

first located and focused the eyeshine on a region of the eye and took a reference image

using the standard eyeshine set up described above. I then switched the DSLR with a

monochromatic camera fitted with an infinity focused lens that had millisecond control over

the shutter time (Allied Vision Technologies, Model GX1050). Additionally, rather than

directly connecting the white light source to the microscope, light was first passed through

a monochromator (Monoscan 2000).

The main challenge for this experiment was controlling for light intensity across different

wavelengths. The white light source and monochromator resulted in variable intensities

that could not be adjusted on the eyeshine microscope. However, preliminary tests using

a mirror rather than a butterfly showed that shutter times could be adjusted to account

for these differences. Neutral density filters were used to normalize the intensity of each

wavelength as much as possible. Remaining differences were accounted for by adjusting the

shutter time. Pixel intensities on the camera using a mirror in front of the objective were

similar across wavelengths using these dynamic shutter times.

To conduct an experiment, I first positioned the butterfly and generated an eyeshine

image using white light and the DSLR as described above. The camera was then switched to

the monochromatic camera and the light source was switched to monochromatic. Because

the microscope objective was UV-resistant, images were only collected from 400-800 nm in

10 nm steps. Each stimulus was applied for a time that amounted to 1 X 1015 photons,

which was an average of 6.6 seconds across all stimuli. After all stimuli were presented, the

DSLR and white light were again placed on the microscope and a second reference eyeshine

was taken to ensure the same location was imaged across the entire experiment.

Eyeshine reflectance spectra were measured using ImageJ. Using the reference eyeshine

image, ommatidia were manually selected as either yellow or red. These regions of interest
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were then analyzed for pixel intensity for each wavelength of stimulation. Ommatidia with

maximum pixel intensities below 50 or above 250 were removed from the analysis. PCA was

then used on the reflectance spectra to test for differences. Each wavelength was a variable

and each ommatidium was an observation. The first 3 principle components were compared

between screening pigment color, species, and sex.
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CHAPTER 3

ANCESTRAL COMPUTATIONS CONSTRAIN THE

EVOLUTION OF NOVEL COMPUTATIONS

3.1 Abstract

Phylogenetic history has the capacity to constrain and bias future evolutionary trajectories

by varying how accessible novel phenotypes are. These constraints may be especially impor-

tant for the evolution of complex neural circuits mediating diverse animal behaviors. Here,

I simulated the evolution of color vision circuits using standard machine learning algorithms

to ask how ancestral trichromatic networks influence the performance and computations

of tetrachromatic networks. I trained multiple trichromatic networks to simulate different

trichromatic ancestors, biologically analogous to butterflies, birds, spiders, etc. The input

layer of these trichromatic networks was then mutated to tetrachromatic, simulating the

evolution of a novel photoreceptor. Each network was re-trained multiple independent times

to simulate multiple independent origins of independent origins of a novel color vision pheno-

type. Performance metrics showed that trichromatic ancestry did not prohibit the evolution

of tetrachromatic vision, but the rate of learning was affected by the specific trichromatic

network. Examining the computations implemented by the hidden layer showed that trichro-

matic ancestry severely constrains tetrachromatic computations to a limited region of the

theoretically available computational state space. Together, our network results suggest that

phylogenetic history is an important aspect of the functional organization of neural circuits.

Considering the role of evolution on neural circuit function could be valuable for improving

our understanding of basic principles that dictate brain organization, neural computation,

and behavior.
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3.2 Introduction

Biological systems such as the nervous system are not constructed as a de novo search for op-

timality [2, 151]. Instead, existing phenotypes are the product of evolutionary processes that

are constrained and biased by phylogenetic history [14]. Complex, high dimensional adap-

tive landscapes may prevent some evolutionary trajectories even if they would be beneficial,

while also making other paths more accessible [4, 5]. Examining the interaction between

phylogenetic constraints and a purely adaptive view of evolution is is an important aspect

of understanding larger patterns of evolution and the observable biodiversity.

Due to the complex organization of neural circuits, phylogenetic history may impose

especially strong constraints on the evolution of the brain and behavior [14]. Systems neu-

roscientists often view neural computation through a perspective that either implicitly or

explicitly assumes optimal neural coding. However, constraints may prevent a system from

reaching a globally optimal solution. Instead, computations may be implemented in ways

that are only locally optimal and not intuitive. For example, the jamming avoidance response

in weakly electric Gymnotiform fish is elegant in its implementation, but substantially sim-

pler algorithms are theoretically possible [152]. Constraints on the system may be an im-

portant factor for the observed computations in this well-studied system. An appreciation

and consideration of phylogenetic history and its role in shaping neural circuit structure and

function could lead to greater insights into principles defining how nervous systems process

information and generate behavior.

Motivated by insect visual systems, color vision represents an attractive system for study-

ing the evolution of neural computation. The ancestral insect eye most likely comprised ultra-

violet (UV), blue, and green photoreceptors potentially capable of trichromatic color vision

[153]. A common adaptation, most notably in butterflies, is the addition of a fourth, red sen-

sitive photoreceptor used to expand the range of color vision to tetrachromatic [102, 115, 154].

No clear ecological or selective pressures have been identified to explain which insects do and

do not have tetrachromatic vision, raising the possibility that evolutionary constraint in-
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fluences and possibly impedes color vision evolution [153]. Evolving a new photoreceptor

is genetically simple, and the periphery is generally thought to be evolutionarily flexible

[22, 122, 155]. A novel photoreceptor alone, however, might be unable to confer expanded

and improved color vision. Instead, making use of the novel color dimension may require

changes to processing circuits, which is where constraints may be important.

The relatively simple and well-described opponent coding mechanism underlying color

vision makes it especially amenable to evolutionary questions. Opponent neurons compare

different photoreceptor responses with spectrally antagonistic excitation and inhibition and

arise early in visual circuits [156, 157]. In theory, tri- and tetrachromatic vision require

only 2 and 3 unique channels, respectively [158, 159, 160], and this simplicity can facili-

tate comparisons across species and color vision circuits (Fig. 3.1A). Moreover, despite this

low dimensional computation, the available computational state space is large, as numerous

unique combinations of opponent channel can lead to perceptually equivalent color discrim-

ination [158, 159]. Assuming discrete inputs to an opponent neuron, this leads to an upper

bound of 15 and 560 unique ways to implement tri- and tetrachromatic vision, Relaxing

this assumption of discrete inputs to continuous can lead to an effectively infinite compu-

tational state space. This lack of constraint on how to implement opponent coding means

that similarities between independent origins of tetrachromatic vision can more confidently

be ascribed to evolutionary rather than computational constraints.

Experimental data on the computations underlying color vision are relatively sparse

outside of primates and bees. A long history of color vision research in bees has identified

opponent cell types that have every combination of spectral inputs from UV, blue, and green

photoreceptors [161], and a recent modeling study suggests the population of color neurons

are developed using a random wiring scheme [162]. These cells, however, are a randomly

selected subset of the population, and the functional role of these neurons is unclear. While

these recordings are valuable, a clear test of evolution would require identifying and compar-

ing homologous neurons [3, 163]. Butterflies have both species diversity in color perception
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and the potential to record from a specific subset of neurons, although these experiments

are difficult.

For this study, I adopted a theoretical approach using machine learning algorithms to

simulate the evolution of color vision. This approach allowed us to simulate numerous

trichromatic ancestors and numerous independent origins of tetrachromatic vision for each

one. Comparisons of network performance, network computation, and homologous hidden

units allowed us to formulate predictions about how phylogenetic history may impact the

evolution of novel computations in a neural circuit implementing color vision computations.

Overall, the results of my simulations suggest that the evolution of neural computation is

heavily constrained by circuit history, with the ancestral trichromatic computation biasing

evolved tetrachromatic computations into a severely restricted portion of the theoretically

infinite computational state space.

3.3 Model

Feed-forward, 3-layer neural networks were trained to learn color vision computations using a

standard backpropagation learning algorithm (Fig. 3.1, see methods for details). The input

layer represented an eye with UV, blue, green, and red photoreceptors and responded to

monochromatic light stimuli (Fig. 3.1B). Photoreceptor responses were scaled by a random

luminance factor to remove brightness as a learnable cue (Fig. 3.S1). The output layer was

a filter bank of narrowly tuned Gaussians (Fig. 3.1D) that mimicked wavelength selective

neurons found in both insects [164, 165] and primates [166, 167]. Networks had a single

hidden layer, and my analyses focused on networks with 30 hidden units, but results were

qualitatively similar regardless of hidden layer size (Fig. 3.S1).

Using this simple network design, I simulated color vision evolution using a two stage

training procedure (Fig. 3.1C). First, a network was initialized with random starting weights

and pre-trained for trichromatic vision with an input layer that had UV, blue, and green pho-

toreceptors. This trained network, mimicking a trichromatic ancestor, was then ‘mutated
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Figure 3.1: Network Design
A) Trichromatic circuits have two color opponent channels. Evolving tetrachromacy, which
requires a third opponent channel, could occur through inheriting the original two channels
and adding a third (top) or a novel three channels could be generated (bottom).
B) Tuning curves for input layer simulating UV, blue, green, and red photoreceptors.
C) A network was first trained with a trichromatic input layer. Trained networks then had
a green photoreceptor mutated to red and the network was repeatedly and independently
retrained, simulating an ancestral trichromatic network and numerous independent origins
of tetrachromatic vision.
D) The output layer was a filter bank of narrowly tuned Gaussians tiling the visual range.
Shown are 7 of the 34 output units with the RFs for a representative trichromatic and
tetrachromatic network shown.
E) Network performance was measured as the MSE between the expected and observed RF
for each individual output unit. By design, long wavelength output units perform signifi-
cantly worse than tetrachromatic networks. Shading shows the 25th and 75th percentile.
Asterisks indicate significance with Cohen’s d > 0.50.
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by converting a subset of green photoreceptors to red, matching the known evolutionary

history of butterfly photoreceptors [90]. This mutated network was then retrained for tetra-

chromatic vision 100 unique times, which I viewed as biologically analogous to 100 species

that independently evolved tetrachromatic vision from the same trichromatic ancestor. I

generated and evolved 100 trichromatic networks to simulate distinct phylogenetic lineages

(e.g. butterflies, spiders, birds, etc.), for a total of 10,000 networks.

If ancestry constrained evolutionary trajectories, I expected networks sharing the same

trichromatic starting weights to be more similar than networks with different trichromatic

starting weights. These potential constraints could be unique to a trichromatic ancestor, but

they could also be more broadly applicable to any set of starting weights. To control for this

possibility, I trained and analyzed an additional set of de novo networks. These networks

lacked a pre-training step and were instead trained for tetrachromatic vision directly from

random starting weights. Mirroring the evolved networks, I generated 100 sets of random

starting weights and trained each starting point 100 unique times, again for a total of 10,000

de novo networks.

3.4 Results

3.4.1 Network performance

Tetrachromatic networks have an expanded range of good color vision

I first validated my network design and training protocol by comparing the performance of

tri- and tetrachromatic networks trained from random starting weights. Because trichromatic

networks lacked a red photoreceptor, I expected performance differences primarily for long

wavelength stimuli. Thus, rather than measuring overall network performance, I instead

opted to analyze each output unit individually. For each output unit, I constructed a tuning

curve by measuring its response to the full range of wavelengths and luminance factors (Fig.

3.1D). Performance was then defined as the mean squared error (MSE) between the observed
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tuning curve and the training target.

Performance generally followed the Fisher Information of the input layer, with output

units centered on wavelengths where photoreceptors intersect having the lowest MSE. Tetra-

chromatic networks performed generally well across the entire visual range, while long wave-

length output units for trichromatic networks performed poorly (Fig. 3.1E). This impaired

performance was because only green photoreceptors responded to long wavelength stimuli,

which made luminance a confounding variable. In the absence of luminance variation, tri- and

tetrachromatic networks performed similarly well for all output units (Fig. 3.S1). Notably,

for short and middle wavelength output units, trichromatic networks performed slightly but

significantly better than tetrachromatic networks, which likely reflected a smaller range of

learnable stimuli but an equal number of hidden units.

Mutating the input layer impairs network performance

De novo networks demonstrated that tetrachromatic networks have an expanded range of

color vision but did not address questions about color vision evolution. To simulate evolution,

the input layer of fully trained trichromatic networks was mutated by converting a subset

of green photoreceptors to red (Fig. 3.1C). This mutation, prior to any retraining, resulted

in a mismatched tetrachromatic input layer and trichromatic hidden layer. This situation

likely mirrors biology, where a novel photoreceptor necessarily precedes changes to central

brain circuitry. Output units tuned to short wavelengths were unaffected by the mutation,

while performance was significantly impaired for middle and long wavelength output units

(Fig. 3.2A). Interestingly, the effect of mutation was similar across all networks (Fig. 3.2A,

note error bar size), suggesting that changes to peripheral sensing caused similar disruptions

to sensory perception regardless of the specific computations implemented by each network.

The impaired MSE performance of mutant networks could arise through numerous changes

to the tuning of output units. To examine the specific tuning changes, I fit Gaussians to

output unit tuning curves and compared the fit parameters (Fig. 3.S2). For tri- and tetra-
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Figure 3.2: Evolved network performance over training time
The performance of evolved networks was tracked over training time and compared to tri-
and tetrachromatic networks trained from random starting weight after A) 0, B) 3, C) 10,
D) 25, E) 50, and F) 100 training epochs. 50 training epochs matches the total training
time of the tri- and tetrachromatic networks. Shading shows the 25th and 75th percentile
and was omitted for tri- and tetrachromatic networks for clarity. Blue and black asterisks
show performance that is significantly different between the evolved networks and tri- and
tetrachromatic networks, respectively, with Cohen’s d > 0.50.

chromatic networks, the tuning centers, widths, and amplitudes generally matched the target

tuning. Mutant networks typically maintained a narrow, single peaked tuning curve, with

tuning widths and amplitudes largely matching the original network. The primary difference

accounting for impaired MSE performance was a 5-10 nm shift in the tuning center. This

result suggests that the effect of a novel photoreceptor on color vision may be smaller than

the MSE performance metric initially showed, with mutant networks likely retaining trichro-

matic color vision. However, even small perceptual deficits could lead to selection against
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the expression of a novel photoreceptor in a natural population.

Every network successfully gained tetrachromatic performance

Peripheral sensory structures have been proposed as an important and especially flexible

target for evolutionary change that can lead to adaptive behavior without large-scale changes

to central processing. The seemingly minor fitness cost associated with a novel photoreceptor

in mutant networks was consistent with peripheral structures being evolutionarily labile.

However, a novel red photoreceptor alone was insufficient to expand the range of color vision,

indicating that modifications to color computation were necessary. To ask whether ancestral

trichromatic circuits were capable of adapting to a mutated input layer, I next re-trained

mutant networks and tracked performance over training time (Fig. 3.2).

Networks compensated for the impaired performance of mutant networks quickly, but im-

provement to tetrachromatic vision proceeded slowly. Within 3 re-training epochs, evolved

network performance broadly matched the performance of the original trichromatic networks

(Fig. 3.2B). Long wavelength output units continued to improve over training, becoming ef-

fectively tetrachromatic within 25-50 training epochs, which matched the total training time

of de novo networks (Fig. 3.2C). Interestingly, short and middle wavelength output unit

performance matched trichromatic networks, which was significantly better than tetrachro-

matic networks. However, this improvement came at the expense of long wavelength output

unit performance, which remained slightly but significantly worse than de novo networks.

Extending training to 100 epochs improved this performance to match the long wavelength

output unit performance of de novo networks (Fig. 3.2D).

Different starting networks learn at different rates

With enough re-training epochs, every evolved network performed similarly to de novo tetra-

chromatic networks, indicating that trichromatic ancestry did not prohibit the eventual evo-

lution of tetrachromacy. However, rather than strictly prohibiting an adaptive phenotype,
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Figure 3.3: Starting weights constrain learning rates
A) Performance after 10 training epochs is shown for networks that share the same starting
weights. Examples for networks derived from two sets of starting weights are shown for
evolved (left) and de novo (right) networks.
B) For each group of 100 networks, performance after 10 training epochs was reduced to a
single performance metric by averaging across all 100 networks and 34 output units. Each
distribution was mean-centered and plotted in order of decreased performance. Large solid
circles correspond to the examples shown in panel A.
C) For each group of 100 networks, the performance variability was measured for each output
unit after 10 training epochs. Asterisks indicated significance with Cohen’s d > 0.50.

evolutionary constraints are primarily thought to affect how accessible an adaptive pheno-

type is [4]. For my networks, this could mean that some trichromatic network configurations

were amenable to tetrachromacy while others resisted adapting to the novel red photorecep-

tor. To investigate this possibility, I compared the performance of networks derived from

the same trichromatic starting point after 10 re-training epochs.

Visual inspection of network performance after 10 training epochs suggested that starting

weights influenced learning rate (Fig. 3.3A). Some trichromatic networks facilitated evolu-
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tion, with the average performance approaching tetrachromatic performance after 10 epochs

(Fig. 3.3A). Other trichromatic networks impeded evolution, with descendant networks

showing minimal performance improvements beyond the original trichromatic network (Fig.

3.3A). Starting weights appeared to similarly affect learning for de novo networks trained

from random starting weights. Regardless of starting weights, de novo networks tended to

perform well in regions that became MSE minima, while performance between these regions

of good performance were more variable (Fig. 3.3A). This result was reminiscent of exper-

imental behavior, where discrimination thresholds near Fisher Information maximums are

often similar across species, while thresholds between these regions of best discrimination

vary more substantially [154, 168].

I quantified these visually observed effects by separating networks into groups of 100 net-

works that either shared or did not share the same starting weights, resulting in four classes:

1) evolved networks with the same trichromatic starting weights, 2) evolved networks with

different trichromatic starting weights, 3) de novo networks with the same random starting

weights, and 4) de novo networks with different random starting weights. Since I started

with 100 sets of starting weights, each class comprised 100 unique groups. Groups were first

reduced to a single value representing mean performance by averaging performance across all

networks and long wavelength output units within a group. The distribution of this perfor-

mance metric for each class was then mean-centered and compared to the other classes (Fig.

3.3B). The distribution of this performance metric was significantly different for every pair-

wise comparison between classes (Kolmogorov-Smirnov test with Bonferroni correction, p <

0.001). The performance distribution for groups of evolved networks sharing the same start-

ing weights was the most variable, suggesting that trichromatic ancestry imposed stronger

constraints than random starting weights would have predicted.

Group differences in mean performance could emerge in two different ways. First, ev-

ery network derived from the same set of starting weights could follow a similar learning

trajectory that differs from other sets of starting weights. Alternatively, networks sharing
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the same starting weights could have a broad range of performance, with the specific start-

ing weights skewing the proportion of networks that learn quickly or slowly. To distinguish

between these options, I calculated performance variability for each output unit within a

group of 100 networks. For both evolved and de novo networks, groups of networks sharing

the same starting weights showed significantly less performance variability than groups with

different starting weights (Fig. 3.3C). Interestingly, the total variability across all networks

and output units was the same for every class of networks, but the distribution of variability

varied substantially between evolved and de novo networks. Because evolved networks were

pre-trained to perform well for short and middle wavelength output units, variability was

mostly confined to long wavelength output units. De novo network variability was more

evenly distributed across all output units, but MSE minima were less variable.

Together, network performance results showed that starting weights affect the early evo-

lutionary response to a novel photoreceptor but do not strictly prohibit evolution. Mutant

networks compensated for the modified input layer quickly, but learning new computations

was comparatively slow. Given the gradient descent learning algorithm, this result was ex-

pected with enough training epochs. Interestingly, pre-training networks with a trichromatic

input layer facilitated evolved network performance that exceeded expectations set by net-

works trained from random starting weights. This result matches ideas both in biology and

machine learning about curriculum learning, where learning through the iterative addition

of complexity facilitates improved learning outcomes [169]. In this way, constraints imposed

by an ancestral circuit might actually be beneficial in some evolutionary contexts.
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3.4.2 Hidden layer computations: Opponent channels

Starting weights constrain the overarching computational structure of the

hidden layer

Every network successfully evolved tetrachromacy, which I viewed as biologically analogous

to convergent evolution both within and across distinct phylogenetic lineages. A convergent

phenotype alone, however, is not sufficient to conclude that starting weights constrained

the network and could instead reflect similar selective pressures (i.e. the same training cost

function). Differences in learning rate hinted at constraint, but a rigorous test required

assessing the degree of similarity in the underlying computational mechanism of color vision.

Thus, I next turned to analyzing the hidden layer, focusing on the weights connecting the

input layer to the hidden layer. The high dimensionality of the hidden layer posed an

analytical challenge, which I first approached by using principle component analysis (PCA)

to examine the overarching structure of hidden layer computations.

Consistent with color vision theory [158, 159, 170], PCA reduced the dimensionality of

the hidden layer from 30 hidden units to 3 color opponent channels (i.e. eigenvectors) that

described 48.5 ± 12.2, 27.6 ± 5.5, and 16.0 ± 5.7 percent of the variance in hidden unit

computations. Each channel had a UV, blue, green, and red component that consistently

showed opponent interactions indicated by a combination of positive and negative input

weights (Fig. 3.4A). To assess computational similarities, networks were again separated

into classes and groups that either shared or did not share the same starting weights. The

three opponent channels for each network were concatenated into a single 12 dimensional

vector (3 channels X 4 input weights) and compared within a group of 100 networks using

hierarchical clustering (Fig. 3.4).

I first analyzed groups of de novo networks where each network had different random

starting weights. Networks in these groups used diverse sets of opponent channel, spanning

the full range of color opponent combinations (Fig. 3.4B). Networks rarely clustered together,
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Figure 3.4: Network opponent channels
A. The three opponent channels for all 100 networks independently trained from a single set
of starting weights are shown for evolved (left) and de novo networks (right).
B. Opponent channels for groups of 100 networks that either shared (top) or did not share
(bottom) the same starting weights were compared using hierarchical clustering. Depicted
are example dendrograms for evolved and de novo networks, with the top row corresponding
to the networks in panel A.
C. Euclidean distances were measured between the opponent channels of every pair of net-
works within a group of 100. Shading shows the 25th and 75th percentile.
D. Cluster sizes are shown for the largest two clusters for each set of 100 networks. Since
there are 100 sets of starting weights, there are 100 groups of 100 networks, with the between
group variability illustrated by the boxplots. The clustering threshold was set at a Euclidean
distance of 1.0, but results did not qualitatively change for different thresholds.
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with the largest cluster containing between 3 and 7 networks out of 100 (Fig. 3.4D). I also

looked at the distribution of Euclidean distances between every pair of networks in a group,

and consistent with small cluster sizes, pairwise distances tended to be large (Fig. 3.4C).

Moreover, this distribution of pairwise distances closely matched a null distribution created

with opponent channels generated from random numbers (Fig. 3.S3B, Jensen-Shannon Di-

vergence = 0.02). This result suggested that my network design and training protocol were

not biased and utilized the full computational state space.

I next compared groups of de novo networks sharing the same random starting weights

to the baseline computational similarities established from groups with different random

starting weights. The distribution of pairwise distances for these groups was shifted sub-

stantially towards zero (Fig. 3.4C, JSD = 0.31). These smaller distances led to significantly

increased clustering, with the largest cluster containing an average of 33.8 ± 17.1 networks

(Fig. 3.4D, Cohens d = 2.4). Thus, starting weights did constrain and bias network evolu-

tion, but de novo networks also retained some diversity in how tetrachromatic computations

were implemented.

Trichromatic starting weights constrained computations significantly more than random

starting weights. Groups of evolved networks sharing the same starting weights typically

converged on just a few computational motifs. Pairwise distances were shifted further to-

wards 0 (Fig. 3.4C, JSD = 0.19) and the largest cluster contained 79.2 ± 17.7 networks

(Fig. 3.4D, Cohens d = 1.9). It required only 2.5 ± 2.1 clusters in order to cluster 90 out of

100 networks, whereas de novo networks sharing the same random starting weights needed

12.3 ± 7.9 clusters (Cohens d = 1.7). Together, these results showed that starting weights

constrained network computations, and trichromatic weights impose especially strong con-

straints that bias a network into a severely restricted region of the available computational

state space.
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Evolved networks inherit the original opponent channels and consistently add

the same novel channel

Finally, I examined groups of evolved networks with different trichromatic starting weights.

The largest cluster had 19.4 ± 4.6 networks, and 13.7 ± 2.9 clusters were required to cluster

90 networks. Thus, these groups were most comparable to, but significantly less similar than

groups of de novo networks with the same random starting weights (Cohens d = 1.2). The

pairwise distance distribution was visually consistent with the clustering result (Fig. 3.4C),

but the two classes were statistically similar (JSD = 0.05). Interestingly, this pairwise

distance distribution matched the distance distribution of the original trichromatic networks

visually and statistically (Fig. 3.S3B, JSD = 0.01). This similarity was surprising because

the inherently smaller dimensionality of trichromatic networks that have only two opponent

channels with three input weights should lead to smaller distances.

To understand how this similarity arose, I analyzed each opponent channel individually

rather than as the concatenated group of three (Fig. 3.S3A). I first noticed that the new,

third channel for nearly every evolved network had green vs. red opponency regardless of the

specific trichromatic starting weights (Fig. 3.4A), and hierarchical clustering of the third

channel confirmed this similarity (Fig. 3.S3). In contrast, the first and second channel

matched previous results (Fig. 3.4), with groups sharing the same starting weights more

similar than groups with different starting weights. Calculating the Euclidean distance

between these first two evolved channels and the original two trichromatic channels they

evolved from allowed us to ask how much training affected opponent tuning. Evolved network

distances (0.33 ± 0.20) were significantly smaller than de novo network distances (0.55 ±

0.20, Cohens d = 1.1) or evolved networks with shuffled trichromatic channels (0.66 ± 0.28,

Cohens d = 1.3).

Overall, these results indicated that networks evolve tetrachromatic vision by inherit-

ing the original two opponent channels and adding a third, orthogonal channel specifically

implementing green vs. red color opponency. This result is consistent with how networks
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performed, as limited disruption to short wavelength computations led to limited disruptions

in short wavelength performance. Thus, maintenance of this performance may play a causal

role in biasing tetrachromatic computations. De novo networks, in contrast, were more free

to vary and find distinct computational solutions that span the full computational state

space.

3.4.3 Hidden layer computations: Hidden unit tuning

Learning targets a specific subset of evolved network hidden units

The opponent channels revealed by PCA describe the combined tuning of a population of

individual hidden units. Similar opponent channels between networks sharing the same

starting weights could emerge from similar modifications to hidden unit tuning. This would

be consistent with an adaptive hotspot hypothesis of evolution that proposes circuit nodes

can vary in how evolutionarily flexible they are [12, 14]. Alternatively, evolved networks

could exhibit a wide diversity of tuning despite opponent channel similarities. For example,

distantly related South American and African electric fish often use similar electro-sensation

computations, but the specific anatomical locus of these computations can vary substantially

[51].

To distinguish between these options in my networks, I compared the tuning of single

hidden units before and after tuning using the cosine distance. This distance metric specif-

ically measures changes in opponent tuning while ignoring changes in overall weight size

(Fig. 3.5A). Because each starting network was independently trained 100 times, this anal-

ysis generated a distribution of distances for each starting hidden unit (Fig. 3.5B). The

hidden units for each starting network were then arranged in order of median distance or

distance variability and compared between evolved and de novo networks.

In contrast to opponent channel results, evolved network cosine distances were signif-

icantly larger (Fig. 3.5E) and more variable (Fig. 3.5F) than de novo networks. Large
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Figure 3.5: Tuning changes in single hidden units
A) Schematic of distance measurements. Length of the blue arrows is the city block distance,
and the distance from the open cyan circle to each of the filled circles is the same. Cosine
distance measures the change in the vector direction. Cyan and black sit on the same vector
so have 0 cosine distance. The cosine distance between cyan and red, in contrast, is large
because the vectors from the origin are different.
B) Tuning changes for each hidden unit were measured as the cosine distance between the
input weights before training and the input weights after training. Shown are representative
examples for a group of networks sharing the same trichromatic or random starting weights.
Boxplots show the variability of homologous hidden units ranked by median cosine distance.
C) Shown are the tuning curves of four representative hidden units. The blue line shows the
tuning of the original hidden unit. Lightly shaded lines show the tuning for 1 of 100 trained
networks. The dark line is the mean ± SEM. Colors of each plot correspond to the colored
boxes in panel B. Note the differences in the y-axis.
D) Median cosine distances are compared between evolved and de novo networks. The plot is
essentially equivalent to panel B, but medians are averaged across each group of 100 networks
sharing the same starting weights. Shading shows the 25th and 75th percentile .Asterisks
show significance with Cohen’s d > 0.50.
E) Rather than ranking hidden units by median cosine distance, they were now ranked by
the variance of the cosine distance.
F) Instead cosine distances, this plot shows the city block distances for each hidden unit.
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distances for 10-15 hidden units per network were typically associated with the development

of green vs. red opponency in hidden units that originally had small weights and weak or

no opponency (Fig. 3.5C, yellow and magenta). In contrast, hidden units with the small-

est cosine distances always had large input weights and clear opponent tuning (Fig. 3.5C,

green). Performing the same analysis on networks with 50 hidden units similarly found 10-15

hidden units with especially large distances (Fig. 3.S4. The extra hidden units compared

to 30 hidden unit networks had the smallest distances and varied little between networks.

This result is broadly consistent with an adaptive hotspot explanation for network evolution.

Many hidden units were rigidly constrained and did not vary, and tuning curves of these hid-

den units suggest an important role in short wavelength discrimination. A small subset of

hidden units, in contrast, were flexible and adapted to expand and improve color vision. As

expected, green vs. red opponency appeared in these hidden units, but surprisingly, these

computationally flexible hidden units could vary substantially relative to each other.

Hidden unit outputs are robust to input variability

In addition to having large cosine distances, evolved network hidden units also showed high

variability (Fig. 3.5B,E). Differences in the specific opponent tuning of homologous hidden

units could be an important factor in how different networks function, but the variation could

also reflect network computations that are robust to perturbation. To distinguish between

these possibilities, I generated tuning curves for the output response of the hidden layer.

Previous analyses focused on the input weights from each of the four input layer photore-

ceptors, biologically analogous to looking at the dendrites of a neuron. Before connecting to

the filter bank output layer, however, hidden unit responses are passed through a sigmoid

non-linearity that transforms responses to values between 0 and 1. I measured output tuning

curves for wavelengths spanning the full visual range and compared the tuning of homologous

hidden units using hierarchical clustering (Fig. 3.S5).

The sigmoid non-linearity typically made hidden unit responses robust to differences in
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input tuning. In general, hidden unit outputs exhibited binary 0 or 1 responses with relatively

sharp transition zones (Fig. 3.S5A,B). Because of this non-linearity, input units could vary

substantially with only minor effects on the output. One exception to this, however, is when

input responses for two hidden units have positive and negative responses. When this occurs,

small differences are magnified and can flip responses between 0 and 1 easily. For evolved

network hidden units, these deviations typically occurred at long wavelengths where novel

green vs. red computations were developing (Fig. 3.S5). Differences between homologous de

novo hidden units, in contrast, could exhibit these zero-crossing deviations anywhere along

the visual spectrum.

Surprisingly, despite larger and more variable input tuning, output tuning for homologous

hidden units in evolved networks were more similar than de novo networks. Visual inspection

of the pairwise distance distribution suggested that evolved network hidden unit outputs were

substantially more similar, but statistically the distributions were relatively similar (JSD =

0.04, Fig. 3.S5C). Combining all hidden units (100 starting networks X 30 hidden units),

the largest cluster had an average of 46.4 ± 23.8 hidden units for evolved networks and

36.6 ± 24.6 hidden units for de novo networks (Fig. refmodeling s5D). Using the stringent

significance criterion, this difference was marginally not significant (Cohen’s d = 0.41). When

ranking hidden units for each trichromatic or random starting network from 1 to 30 by

cluster size, however, comparisons were highly significant (Cohen’s d > 1.0) for all but the

5 least variable hidden units. Overall, these results broadly mirror the opponent channel

analysis and are opposite to the input weight analysis. Importantly, PCA was independent

and unaware of the eventual sigmoid non-linearity, suggesting that the opponent channel

analysis captured computationally relevant tuning differences.

De novo networks vary connection strength more than evolved networks

In addition to changes in opponent tuning, hidden units could also increase or decrease the

overall strength of connection. Proportional changes to input weight sizes appeared to be the
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Figure 3.6: Weight magnitudes differ between evolved and de novo networks
A. Weight magnitudes were defined as the sum of the absolute value of the four input weights
to a hidden unit. Hidden units for each network were then ranked in order of increasing size.
B. Hidden units for a network were ranked by weight magnitude before and after training.
Heat maps show how the rank of hidden unit changed after training.
C. In order to remove the influence of weight magnitude on opponent channel results (Fig.
3.4), input weights for each hidden unit were proportionally scaled so that the weight magni-
tudes were equal to 1. The same opponent channel analysis was then completed. Solid lines
show the distances without re-scaling the weights and match Fig. 3.4C. Cluster sizes are
based on a clustering threshold of 1.0 to match the original analysis. Lowering this threshold
increases the difference between evolved and de novo networks as it removes ceiling effects
(i.e. the largest cluster can only have 100 out of 100 networks in a group).

primary way that de novo network hidden units learned. Hidden units for de novo networks

had small cosine distances, but city block distances were substantially bigger and more

variable than evolved network hidden units (Fig. 3.5C, black). To examine this learning

difference between evolved and de novo networks in greater detail, I quantified connection

strength as the sum of the absolute value of the four input weights to a each hidden unit.

Connection strength of a hidden unit was then compared before and after training as well

as between homologous hidden units (Fig. 3.6A).

For all networks, training almost exclusively led to decreases in the connection strength
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of a hidden unit (Fig. 3.6A). Random starting weights were large and varied little between

hidden units. Training these random starting weights with a tetrachromatic input layer

decreased connection strength, leading to a relatively uniform distribution. Networks with

only a trichromatic input layer decreased connection strengths significantly more, with 10-

12 out of 30 hidden units having connection strengths close to 0. Evolved networks derived

from these trichromatic networks suppressed weights further, with 16-18 hidden units having

connection strengths near zero.

This extra decrease in connection strength for trichromatic networks was reminiscent of

L2 regularization, which is commonly used in machine learning to prevent over-fitting. This

effect was specifically due to trichromatic networks having long wavelength output units that

were, by design, unable to successfully learn (Fig. 3.S6). This apparent regularization effect

could potentially explain why trichromatic networks outperformed tetrachromatic networks

for short and middle wavelength output units (Fig. 3.2). I investigated this by generat-

ing a new set of de novo tetrachromatic networks with an L2 regularization term explicitly

added to the training protocol (Fig. 3.S6). As expected, these networks had smaller con-

nection strengths, but network performance failed to improve beyond networks without L2

regularization.

Hidden unit opponent tuning and connection strength combined give rise to

opponent channels

Training decreased connection strengths, but it was unclear whether homologous hidden units

consistently converged on similar connection strengths. To investigate connection strength

variability, I compared relative connection strength from before and after training. For each

starting network, hidden units were ranked from 1 to 30 in order of increasing connection

strength. Similarly, I assigned ranks to hidden units for each trained network and asked if

starting rank was correlated with trained rank (Fig. 3.6B). For both evolved and de novo

networks, starting rank was significantly correlated with trained rank (p < 0.001). Driven
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primarily by hidden units with large connection strengths, the evolved network correlation

(r = 0.72 ± 0.10) was significantly stronger than the de novo network correlation (r = 0.43

± 0.12, Cohens d = 1.9).

Together with the small cosine distances for de novo networks, this result raised the

possibility that connection strength rather than opponent tuning were the important factor

driving opponent channel similarities. In other words, the observed opponent channels might

disproportionately reflect the tuning of a small number of hidden units with large connec-

tion strengths rather than real variability in overarching network computation. Since de

novo network connection strengths varied more, the apparent increase in opponent channel

similarities for evolved networks might not be due to constraints on the opponent tuning.

To control for this possibility, I removed the influence of connection strength by normalizing

the connection strength of each hidden unit to a unit vector. Using these normalized hidden

units, I then recalculated the opponent channels and performed the same analyses as seen

in Fig. 3.4.

Normalizing hidden unit connection strength led to increases in opponent channel simi-

larities for both evolved and de novo networks (Fig. 3.6C). For de novo networks, the largest

cluster nearly doubled in size, and the distribution of pairwise distances shifted towards 0 to

approximately match evolved networks that did not have normalized connection strengths.

Normalizing connection strength led to more modest increases in opponent channel similari-

ties for evolved networks, although this may be due to ceiling effects since evolved networks

were already highly similar. Regardless, evolved network opponent channels remained sig-

nificantly more similar than de novo networks (Fig. 3.6C, pairwise distance distribution:

JSD = 0.10; cluster size: Cohens d = 1.2).

Together, these results showed that the opponent channels observed in Fig. 3.4 are cre-

ated through a combination of connection strength and opponent tuning. Even though de

novo network hidden units have small cosine distances reflecting small changes in opponent

tuning, these small changes in opponent tuning across a network combine to have a large
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influence on the opponent channels as well as the output tuning curves. Evolved network

computations, in contrast, were constrained by the computations of the ancestral trichro-

matic network. A subset of hidden units, however, were relatively unconstrained and free to

vary. This flexibility may be important for allowing the network to traverse the computa-

tional space and lead to the observed differences in learning rate.

3.5 Discussion

In this study, I designed a simple neural network model trained with standard machine

learning algorithms to simulate the evolution of tetrachromatic vision from a trichromatic

ancestor. Results were consistent with ideas about phylogenetic history constraining and

biasing evolution for network performance, the overarching computational structure of a

network, and the tuning of single hidden units. Similarities between evolved networks that

surpassed the similarity expectations set by de novo networks suggest that circuit structures

pre-trained for a particular function impose especially strong constraints on how neural cir-

cuits compute. Related to biology, these findings broadly suggest that phylogenetic relation-

ships and history are important to consider when attempting to understand the functional

organization of circuits underlying behavior.

3.5.1 Constraints on evolution

Evolution does not necessarily prohibit an animal from reaching any particular phenotype.

Major evolutionary shifts do occur, with often cited examples including the turtle carapace

and bird feathers [4, 171]. However, these innovations appear to be unlikely and rare.

For example, insects may benefit from shifting from a compound eye to a simple eye with

better resolution, but phylogenetic history and developmental patterns make this unlikely

to happen. By simulating convergent evolution both across and within distinct phylogenetic

lineages, my simulations were capable of a detailed examination of how these constraints
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might influence neural computation.

Expanding the range of color vision necessitates evolving a new photoreceptor. Consistent

with ideas about the peripheral nervous system being amenable to evolution [22], mutating

the input layer had limited detrimental effects on performance. The MSE performance

metric likely overestimated the effect of mutation due to output tuning curves having a long

wavelength shift. Thus, they observed tuning curves were poorly matched to the target,

but further inspection showed that the output layer maintained regularly spaced, narrowly

tuned tuning curves that should allow for trichromatic color vision, although a direct measure

color vision impairment was not feasible. If the impairment was as minimal as it appeared,

it provides a means for a novel photoreceptor to remain in a population while computational

circuits adapt. This result suggests that the initial mutation is not an important aspect for

explaining the observed diversity of color vision in butterflies and insects.

Although the novel photoreceptor did not impair color vision, it was also insufficient to

improve color vision. Novel, neutral variants present in a population at low frequency are

more likely to go extinct than drift to fixation. Thus, an inability for the color vision circuits

to adapt to the novel input might be a strong constraint on evolution. Different sets of

starting weights learned at different rates, and these differences were significantly larger for

evolved networks. Slowly learning networks may be more rigidly locked into a particular

computational pattern. In a real biological system, this might mean that the number of

mutations with positive effect are smaller and traversing the computational state space is

more difficult. If the adaptive phenotype is not readily accessible, it is less likely to evolve.

Accessibility of a new computational phenotype might be related to how flexible the indi-

vidual hidden units were. The non-linear transformation of hidden unit responses permitted

input weights to vary substantially without huge consequences to computation, except for

when the sign of an input changed. This combination may have facilitated large changes that

allowed for novel computations to be implemented while also limiting deleterious pleiotropic

effects on existing computations. Hidden units that have more flexibility could potentially
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make more targeted changes to computations and find computational solutions for tetra-

chromatic inputs more easily.

Although single hidden units were free to vary, opponent channel computations were

highly constrained. De novo networks with different random starting weights showed agreed

with color vision theory, showing that an effectively infinite number of opponent channel

combinations can lead to perceptually equivalent color discrimination. Evolved networks,

however, were constrained to implement the same computations as the original trichromatic

network. In retrospect, this makes sense because these original computations were necessary

for short wavelength color vision. Disrupting these computations would likely disrupt that

performance, making it a non-viable evolutionary path.

There was no clear relationship between the observed opponent channels and the tuning

of individual hidden units. De novo network hidden units were largely unchanged in terms

of opponent tuning, suggesting that a random wiring scheme is sufficient to implement color

vision. Evidence for this type of organization has been found for both vertebrates [172, 173]

and invertebrates [162]. Nonetheless, the percent of variance explained for the opponent

channels suggested that they described real variability in the overarching computations of

the network. This relationship may be due to slight biases towards particular computations

in the population of hidden units. Alternatively, hidden unit tuning curves were complex

and could potentially encode differing proportions of each opponent channel.

3.5.2 What does an epoch mean

An important aspect for relating these model results to biology is attempting to understand

what a training epoch might mean in biological time. This relationship conceivably could

be different for different taxa. In particular, vertebrate cortex undergoes substantial activity

dependent development that restructures circuits. Thus, for vertebrates, the entirety of

training could conceivably occur within a single individual. Experimental data from two

mammalian systems supports this idea.
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First, new world monkeys have only two opsin encoding genes, with the long wavelength

sensitive opsin (green) having multiple alleles with distinct spectral sensitivities (green and

red) [39]. Because this is an X-linked gene, males and homozygous females are necessarily

dichromatic. Because of X-inactivation, heterozygous females, in contrast, randomly express

one of the two opsins in each photoreceptor, and behavioral experiments have conclusively

shown that these females exhibit trichromatic vision [174]. Thus, even within a single species

and population, mechanisms of cortical development are flexible enough to code for trichro-

matic vision when the periphery allows for it.

A second example comes from genetic manipulation of dichromatic laboratory mice [175].

Similar to primates, the long wavelength gene is X-linked, but there is no evidence for nat-

ural allelic variation. Experiments introduced an allele using genetic methods and created

a situation similar to the new world primates. Similarly, heterozygous females were behav-

iorally trichromatic, although caveats to the conclusions exist [176]. Together, color vision

in these two systems suggests that activity dependent plasticity is a powerful developmental

mechanism that can enhance the flexibility of cortical circuits.

In contrast to the mammalian cortex, insect nervous systems appear to be more rigidly

constrained and genetically specified [177, 178, 179], although a degree of activity dependent

development can be observed [180, 181, 182]. For these animals, single epochs may be bet-

ter thought of as generations. Because the backpropagation algorithm necessarily improves

performance each epoch, training epochs could potentially be thought of even as numer-

ous generations between adaptive genetic mutations. Some training epochs have a large

effect on network performance, while others have a smaller effect, mirroring the exponential

distribution of effect size that different genetic loci often have on behavioral traits.

Some degree of activity dependent development is known in insects, both in the visual

[183] and olfactory systems [180, 184], although the extent of flexibility and function remains

an open question. Conceivably, small amounts of developmental plasticity could match the

first few training epochs, where mutant networks quickly recover trichromatic performance.
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These changes entail shifting connection strengths, but don’t fundamentally alter the com-

putations. Plasticity that could mediate this has been observed anatomically in the olfactory

system [180], but the functional effect of differing numbers of synaptic connections remains

untested.

3.5.3 Curriculum learning

Classroom education, pet training, and behavioral experiments in a laboratory environment

regularly use training techniques referred to as ‘shaping’ [185, 186]. Introducing numerous

complex features of a task simultaneously can make learning difficult. In contrast, breaking

tasks down into smaller, simpler tasks and iteratively adding complexity makes the task

simpler overall and increases rates of learning. Implementing analogous methods in machine

learning can lead to similar results, with networks performing and generalizing better [169].

My network simulations suggest that curriculum learning may also be valuable on evo-

lutionary time scales. For regions of visual space where tri- and tetrachromatic networks

performed well, trichromatic networks were significantly better. It first appeared that this

was simply due to networks having the same number of hidden units but a restricted range

of learnable stimuli. However, evolved networks inherited this improved performance. Since

trichromatic computations require only 2 opponent channels, the dimensionality of the state

space is much lower (4 inputs X 3 channels for tetrachromatic computations vs. 3 inputs X

2 channels for trichromatic computations). The stimulus set was identical for the network

types, but the lower dimensionality of the feasible computations seems to have allowed for

better computational solutions to be found.

3.5.4 Color vision as a special case

The simplicity of the computational state space for color vision was both a benefit and

limitation of this study. At least in theory, there is a near infinite number of ways to

implement color vision, which is supported by my network results [158, 159]. This means
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that there is not necessarily a single globally optimal solution or local minimums. The benefit

of this simplicity was that it isolated the effects of phylogenetic constraint. Because there

is no single globally optimal solution, I can more confidently attribute my results showing

strong similarities between networks sharing the same starting weights to constraints on

learning trajectories.

However, this relatively simple computational landscape may not be reflective of the

average computation implemented by a neural circuit. Computations for other behaviors and

perceptions are conceivably much more complex, with the potential for local minima that

vary in performance and barriers of bad performance that vary in how difficult they are to

pass. The results presented here clearly show that ancestry constrains learning trajectories,

but an important next step is to understand how these constraints might interact with

complex computational landscapes. Perhaps networks will be capable of finding globally

optimal solutions regardless of starting point. Alternatively, barriers may prevent globally

optimal solutions and force a network to find a local optimum or prevent novel computations

all together.

One way to address the interaction between constraint and optimality would be to identify

a complex computation amenable to models of its evolution. Modifying the color vision

circuits presented here is also an option though. For my models, both the input and output

layers were symmetrical. Varying output unit widths or the number of output units for select

regions of the spectrum could alter the computational state space and make some sets of

computations better. This may reflect biology as well, as animals have different ecological

needs and colors can vary in behavioral relevance across species and habitats [187]. A

multitude of evidence indicates that photoreceptor tuning can adjust rapidly to suit these

species specific needs [153]. It is possible, but untested, that the circuits implementing color

vision also adapt.
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3.5.5 Predictions for experiment

Directly relating simulation results to a real biological system is difficult, but my results do

give predictions for future experimental work. Butterflies would be an excellent system for

study, as they are a species rich group that heavily rely on color vision for natural behavior.

The evolution of red photoreceptors is relatively common as well as numerous examples of

species specific photoreceptors [90, 122, 123]. Comparative physiology across these animals

could lead to insights about how color computations evolved from the shared trichromatic

ancestors.

One prediction from these models is that color vision systems would be highly similar

across butterflies. Similar to model hidden units, I would expect most neurons involved in

color vision to have largely similar tuning properties across animals. Methods to identify

and target homologous neurons would be necessary to test this prediction. One cell type of

particular interest may be a large axon tract that directly connects the optic lobes to the

mushroom bodies [188] and is known to include color opponent neurons (Michiyo Kinoshita,

personal communications). A second prediction is that I might find an abundance of neurons

specifically implementing green vs. red opponency. Butterfly anatomy might make the circuit

especially amenable to this type of change, as the first optic neuropil exclusively receives

input from green and red photoreceptors [103, 104].

3.5.6 Concluding remarks

Overall, my modeling results showed that ancestry constrained the evolution of novel com-

putations. This result largely agrees with conceptual ideas in evolutionary biology as well

as experiments on non-neural systems. Observations from the nervous system suggest these

constraints are similarly important to the brain and behavior, with data from a limited but

growing number of systems supporting this notion. These constraints have the potential

to have a big impact on how neural circuits implement behaviorally relevant computations.

The field of systems neuroscience often implicitly assumes optimal implementation of com-
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putations, but barriers to evolution may make locally optimal solutions more accessible.

Further examination and consideration of these constraints, circuit evolution, and phyloge-

netic history is an important aspect for understanding evolutionary patterns and principles

that guide basic brain function.

105



3.6 Methods

3.6.1 Network design

Color vision networks were designed as 3 layer, feed forward networks that responded to

monochromatic light stimuli. Preliminary networks were generated using a broad array

of tuning parameters for both the input and output layers. The particular set of tuning

parameters used in this study was chosen because it maximized performance differences

between tri- and tetrachromatic networks. The input layer, simulating photoreceptors, had

Gaussian tuning curves with 35 nm standard deviations centered on 350 (UV), 430 (blue),

520 (green), and 600 nm (red). Responses were scaled by a luminance factor between 1 and

100 and passed through a saturating nonlinearity that capped the response at 50. A total

of 34 output units evenly tiled the visual range, from 320 to 650 nm in 10 nm increments.

Each output unit had a standard deviation of 7.5 nm. The hidden layer had between 10

and 50 hidden units, with analyses focused on 30 hidden units. Hidden unit responses were

passed through a sigmoid nonlinearity.

Networks were trained with the Levenberg-Marquardt backpropagation algorithm, which

is the Matlab default. Alternative learning algorithms failed to perform well. Training

samples were monochromatic light stimuli paired with a luminance factor. Wavelengths

varied from 300 to 670 nm in 5 nm increments, and luminance factors varied continuously

from 1 to 100. Each training epoch had 400 novel pairs of wavelength and luminance factor.

Using this large training set minimized the influence of training data on learning trajectories

and effectively isolated the effect of starting weights. Severely reduced training sets with 10

nm wavelength increments and 6 discrete luminance factors (228 total stimuli) resulted in

only minor performance decrements.

Circuit evolution was simulated using a two stage training process. First, I trained

trichromatic networks with a UV, blue, and two green input unit units. Starting weights were

set with the Nguyen-Widrow initialization algorithm. The two green input units had identical
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starting weights, making them function as a single input. After 50 training epochs, one of

the green input units was mutated to red, and the network was trained for 100 more epochs.

The un-mutated, trichromatic network was also trained for 50 more epochs (100 total), and

these networks were used for all analyses. I trained 100 trichromatic networks using different

random starting weights. Each trichromatic network was independently evolved 100 times

using different sets of training data, for a total of 10,000 networks. In preliminary analyses

I compared networks with different starting weights and the same training epochs. Results

did not differ from networks with different starting weights and different training data.

As a comparison for evolved networks, I also trained a set of de novo networks. These

networks were not pre-trained with a trichromatic input layer, but were otherwise identical

to the evolved networks. Instead, these networks were directly trained for tetrachromatic

vision from random starting weights. Mirroring the evolved networks, I generated 100 sets

of random starting weights, again using the Nguyen-Widrow initialization algorithm. Each

random network was trained 100 independent times using a tetrachromatic input layer. All

analyses on these networks were performed in the same way as the evolved networks.

3.6.2 Network analysis

My goal in analyzing these networks was to compare the effects of starting weight on output

layer performance and hidden layer computations. To accomplish this, I regularly separated

networks into groups of 100. Four types of group were made: 1) evolved networks with the

same trichromatic starting weights, 2) evolved networks with different trichromatic starting

weights, 3) de novo networks with the same random starting weights, and 4) de novo networks

with different random starting weights. With 100 unique starting points for evolved and de

novo networks, this meant that each group type was comprised of 100 groups of 100 networks.

Using network simulations meant that I generated a large sample size. Having 10,000

evolved and de novo networks separated into 100 groups meant that nearly every statistical

comparison was highly significant. I opted to instead employ a stricter significance criterion
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based on effect size. Throughout the paper, rather than report p values, I instead report

significance based on Cohens d > 0.50.

3.6.3 Network performance

I measured tuning curves for each of the 34 output units and compared them to the target

response. Output unit responses were calculated for stimuli between 300 and 670 nm in 1

nm increments. Tuning curves were made by averaging the response across 10 luminance

factors ranging from 10 to 100 in steps of 10. Performance was then defined as the MSE

between the observed and expected tuning curve. Results were qualitatively similar when

calculating the MSE for any single luminance factor. Overall performance decreased slightly

without averaging, but the general shape of the performance figures was unchanged.

I assessed the effect of starting weights on performance by analyzing networks in groups

that shared or did not share the same starting weights (see above). Fully trained networks

showed little variation across all networks, so I instead analyzed performance after 10 training

epochs. Performance was measured both as the average and standard deviation. Looking at

average performance, I reduced each group to a single performance value by averaging across

all networks and output units in a group. Each group type had 100 groups, and thus each

group type resulted in a distribution of average performance. Mean centered distributions

were compared between group types using a two tailed Kolmogorov Smirnov test with α =

0.05. I also calculated the standard deviation of performance. Unlike average performance,

I did not pool across output units for this analysis and instead examined each output unit

individually.

3.6.4 Opponent channels

The overarching computational structure of the hidden layer was analyzed by using PCA to

extract the opponent channels. For this analysis, each hidden unit was an observation, and

the UV, blue, green, and red input weights were the variables. PCA reduced the dimension-
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ality to 4 eigenvectors, the first three of which consistently had color opponent interactions.

The fourth typically had all positive input weights and was not analyzed further. I used

the same grouping scheme described above to compare networks that either shared or did

not share the same starting weights. All opponent channels were scaled to unit vectors to

make them comparable, but the sign was arbitrary. To account for this, I calculated every

pairwise correlation between an opponent channel for one network and all other networks

in a group of 100. Opponent channels with at least 50 negative correlations had its sign

flipped. I tried several different procedures, and this correlation based method maximized

similarities between networks.

Similarities and differences between networks were measured using agglomerative hierar-

chical clustering. I compared both single channels and the full set of three opponent channels

together. I also generated groups of random opponent channels as a null hypothesis. These

opponent channels were made with a random number generator, scaled to a unit vector,

and sign flipped using the same correlation procedure. There was no prior expectation on

how the opponent channels should be ordered, and efforts to maximize similarities found

no procedure better than ordering and labeling opponent channels according to percent of

variance explained. To examine the full set of channels, I concatenated the three channels

into a 12 dimensional vector (3 channels X 4 input weights). I clustered networks using

Euclidean distances between networks and a complete linkage algorithm, which maximized

cophenetic correlations (c > 0.85). The clustering threshold was set at 1.0, but results did

not depend on the precise threshold. In addition to cluster size, I also examined the dis-

tribution of all pairwise distances within a group of 100 networks. Pairwise distances were

binned in distance intervals of 0.1 for visualization purposes and intervals of 0.01 for analysis

since this bin size maximized distribution entropy. The distributions of pairwise distances

were compared between group types using the Jensen-Shannon divergence, a metric related

to the Kullback-Leibler divergence.

Opponent channels emerged through hidden units that varied both in relative opponent
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interactions and in overall connection strength. To isolate the effects of relative opponent

tuning, the weight magnitudes for each hidden unit were individually scaled to a unit vector.

Using these networks with modified weights that preserved opponent tuning, I performed

the identical opponent channel analysis.

3.6.5 Hidden unit weight changes

Changes to hidden unit tuning were tracked over training. Each hidden unit was treated as a

4 dimensional vector with a UV, blue, green, and red axis. Hidden units could independently

vary in overall connection strength (i.e. vector length) or relative opponent interactions (i.e.

vector direction), and I analyzed each using city block and cosine distances, respectively.

Distances were calculated between the original, untrained hidden unit and the same hidden

unit after training was complete. Since each starting point was independently trained 100

times, this resulted in a distribution of changes.

For each starting network, I calculated the mean distance and the standard deviation for

each hidden unit. The hidden units for each network were then arranged in ascending order.

Evolved networks were compared to de novo networks using Cohens d.
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3.7 Supplemental figures

Figure 3.S1: [Effect of hidden layer size on performance
A) Performance is shown for tetrachromatic and trichromatic networks that vary in the size
of the hidden layer.
B) Tri- and tetrachromatic networks were trained with stimuli that lacked differences in
luminance.
C) Each panel shows the performance of evolved networks with different hidden layer sizes
after 100 training epochs.
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Figure 3.S2: Output unit RFs change little in mutant networks
A) Example output unit tuning curves are shown for a representative example of a network
trained for trichromatic vision before and after mutating the input layer.
B, C, D) Rather than calculating the MSE, Gaussian tuning curves were fit to each in-
dividual output unit. Plots show the fit parameters of these Gaussians for trichromatic,
tetrachromatic, and evolved networks. In panel C, the dotted line shows the tuning width
of the target output unit RF. Data is shown as the mean ± SEM, with asterisks denoting
significant differences between mutant networks and either tri- or tetrachromatic networks.
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Figure 3.S3: Hierarchical clustering of single opponent channels
A) Each opponent channel was clustered individually, with plots showing the distribution of
pairwise distances. Data largely matches results for the combined analysis (Fig. 3.4), except
for the shift in the third channel for groups of evolved networks with different starting
weights.
B) Distribution of pairwise distances is compared between groups of de novo networks with
different starting weights and a null distribution made from random numbers (left), and
between evolved networks with different starting weights and the original 100 trichromatic
networks that were subsequently evolved.
C) Dendrogram shows the similarities in opponent channels for the original 100 trichromatic
networks that were evolved into tetrachromatic networks.
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Figure 3.S4: Opponent channels for networks with different hidden layer sizes
A, B) Hierarchical clustering of networks that had 15 or 50 hidden units. The clustering
threshold was set at a Euclidean distance 1.0. Note that, due to the slow speed of training,
only 50 trichromatic networks with 50 hidden units were generated, with each evolved 50
times.
C, D) Cosine distances were calculated for hidden units before and after training for networks
with different hidden layer sizes. Plots show hidden units ranked by median distance (C)
and distance variability (D). Ranked hidden units are aligned to hidden unit 50, such that
the 15 hidden layer networks are plotted as ranked hidden units 36 to 50 on the x-axis.
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Figure 3.S5: Hidden unit output responses
A) Each plot shows the input tuning of homologous hidden units trained from the same
starting weights. Each point represents the response of the input layer photoreceptors to a
monochromatic stimulus convolved with the input weights.
B) Input responses of a hidden unit are passed through a sigmoid non-linearity that scales
responses to values between 0 and 1. Notice that variability is primarily observed for regions
where input tuning curves are on both sides of the 0 line.
C, D) Homologous output units were analyzed using hierarchical clustering. Even though
cosine distances for the input weights are larger and more variable for evolved networks,
output tuning curves are more similar than de novo networks.
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Figure 3.S6: Alternative training protocols
Trichromatic networks were generated without long wavelength output units. Tetrachromatic
networks were generated using an L2 regularization term explicitly added to the training pro-
tocol. Figures show the performance (A) and connection strength (B) for these networks.
Combined, these two sets of networks suggest that the performance enhancement of trichro-
matic networks is specifically due to output units that are unable to learn by design.
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CHAPTER 4

CONCLUSIONS

4.1 Summary of results

For my thesis work, I completed two projects that used complementary approaches to ex-

amine the evolution of neural computation in circuits related to color vision. Color vision

was a good model system as the computations associated with color perception are rela-

tively simple, well-understood, and tractable relative to other sensory systems [158, 189].

These aspects of color vision make it accessible for comparative studies across different neu-

ral circuits. My projects represent a first step in understanding the evolution of color vision

computation and neural circuits and lay the foundation for future experimental work that

has the potential to uncover broad patterns of neural circuit evolution.

The experimental portion of my thesis examined the neural basis of courtship prefer-

ences in Heliconius butterflies. Although the project was specifically focused on studying a

complex behavioral decision of which females to court, this decision is primarily mediated

through color vision. Males preferentially court white or yellow females (or both), and this

was shown to have a genetic origin associated with a single genetic locus. Characterizing the

functional organization of the eye revealed a surprising amount of diversity across species and

sex. One feature in particular that represented a signature of synaptic connectivity and color

opponent computations between photoreceptors correlated well with male mate preference.

Males preferring yellow females had UV photoreceptors that usually had inhibition from LW

photoreceptors, while males preferring white females lacked these connections. Future inves-

tigations into how central brain circuits process information could lead to greater insights

into how this difference in peripheral connectivity influences male preference. Experiments

could also be extended to other Heliconius species, a genus where male preference for conspe-

cific wing patterns that have a Mendelian genetic origin is common [71]. With convergence

and divergence of wing patterns in these mimetic butterflies, this diversity could potentially
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reveal patterns of how and why particular circuit modifications are made to change behavior.

My second project took a theoretical approach to the evolution of color vision using

neural networks trained with standard machine learning algorithms. This project was par-

ticularly interested in asking how phylogenetic history might constrain the evolution of new

perceptions and the underlying computations. Multiple networks were trained for trichro-

matic vision to simulate distinct phylogenetic lineages. Convergent and parallel evolution

was then simulated by repeatedly mutating the ‘eye’ of these networks to tetrachromatic

and observing how the performance and computations responded. Results were broadly

consistent with conceptual ideas in evolutionary biology about how evolutionary constraints

bias but do not prohibit evolutionary trajectories [4]. An obvious next step continuing the

modeling approach would be to add complexity to the computation, making the adaptive

landscape more rugged and less symmetrical. This added complexity would add optimality

into the equation, asking how optimal solutions interact with the constraints I observed.

The modeling results also generated predictions for future experimental studies. A real

nervous system is significantly more complex than my three layer neural networks, but my

results would predict that butterflies with independent origins of tetrachromatic vision would

nonetheless have optic lobe circuits and computations that are highly similar because they

share a similar trichromatic ancestor.

4.2 Evolution of peripheral sensory systems

The peripheral nervous system is thought to be particularly amenable to evolutionary mod-

ification. Because the periphery is relatively, feed-forward and modular, modifications can

occur with limited pleiotropic effects. Changes in sensitivity or a new receptor type can en-

hance the detectability of behaviorally relevant sensory cues, but neural processing of these

novel peripheral responses can potentially proceed without substantial alterations. Sensory

receptors for vision [35], audition [34], and chemosensation [33] can rapidly diversify, and

tuning changes can occur with a limited number of genetic mutations. These changes often
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appear related to adaptation to the statistics of the natural environment, but have also been

shown to be capable of enacting large behavioral changes [37, 38, 39]. The peripheral motor

system seems similarly capable of modification, with research often focusing on homologous

neurons comprising central pattern generators [190].

Both of my projects examined how evolution of the peripheral visual system might con-

tribute to the evolution of color vision behaviors and perceptions. Results from each project

were broadly consistent with peripheral sensory systems being evolutionarily labile. The

Heliconius butterflies I studied are very closely related, yet eye organization varied substan-

tially between species and with sex. Most of these differences likely require few or no changes

to how the central brain processes in the incoming sensory information. For example, UV2

is thought to be useful for increasing the discriminability of the genus specific 3-OHK yel-

low pigment from other yellow pigments. This enhanced discrimination does not require

circuit changes, but instead simply emerges for free from the shifted spectral sensitivity. For

the theory project, the first step in network evolution was the mutation of the input layer

from tri- to tetrachromatic by the addition of a novel red photoreceptor. This mutation

impaired network performance slightly, but the networks retained trichromatic color vision

to a large degree. This lack of deleterious effects showed that central circuits might be robust

to changes of the periphery.

Results from my project also highlighted the potentially limited capacity of simple pe-

ripheral changes alone to enact large changes in behavior. In my butterfly experiments, the

difference in eye organization that was related to mate preference was not a simple change

in spectral sensitivity but rather a signature of differences in photoreceptor synaptic con-

nectivity. Simple models further showed that simple, linear changes would be unable to

lead to a radical shift in preference for wings that differ primarily in presence or absence

of UV reflectance. Synaptic connectivity differences could have large, non-linear effects on

processing that enables this big shift in perception and behavioral preference. Despite the

complexity of this modification compared to shifts in spectral sensitivity, a potential neural
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correlate of male preference was still observed in the peripheral visual system. Overall, this

result suggests that both peripheral circuits and receptors may be especially amenable to

evolutionary change.

Similarly for my theory project, a novel photoreceptor alone was insufficient to confer

improved and expanded color vision. Gaining the capacity for green vs. red discrimination

instead required retraining the networks so that it could develop a new set of computations.

This result in particular highlights the limitations in the evolution of sensory receptors.

Changes in peripheral sensing can adapt an animal to the statistics of the natural environ-

ment, but they cannot necessarily lead to novel computations. Large shifts in perception

such as adding a novel color dimension to color vision, however, does require a shift in how

sensory information is processed.

4.3 Constraints on evolution

Evolutionary processes are constrained and biased by phylogenetic history [4]. Evolutionary

trajectories can be biased into paths that are more accessible while preventing evolution

of a phenotype that may be optimal. Throughout biology, consideration of evolutionary

constraints and the mechanisms of evolution has been an important aspect of understanding

broader evolutionary patterns [6]. Due to the inherently complex and highly integrated

organization of neural circuits, these constraints may be especially strong for evolution of

the brain and behavior [14]. Thus, evolutionary constraints may play an important role in

how neural circuits and the computations they implement are organized to mediate adaptive,

observable behaviors.

Direct tests of phylogenetic constraint were not feasible for my experimental study focused

on eye organization in a small group of closely related butterflies. However, my results as

well as genus-wide preferences for conspecific wing patterns make this system an excellent

model for future investigations into this issue. First, the possibility of gaining genetic access

to a courtship specific circuit through the transcription factor fruitless would allow for in-
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depth studies of neural computation evolution. Circuit differences between butterflies with

different preferences could then be understood in the context of how the circuit functions as

a whole, and potentially lead to intuitions into why photoreceptor synaptic connectivity is

the locus for evolutionary change. The power of this well-defined circuit has already been

illustrated through the study of two Drosophila species with different pheromone preferences

[13]. Second, diversity across the genus in Mendelian wing patterns could allow for wide

spread comparative studies of the neural basis for courtship. Combining in-depth circuit

studies related to genetic variability with comparative studies across the genus would allow

for these complementary bottom-up and top-down approaches to be combined into a single

model system that could reveal patterns of how neural circuits evolve.

The effect of phylogenetic history on evolution was the focus of my theoretical project.

This project combined parallel evolution of tetrachromatic vision within a lineage as well

as convergent evolution across lineages. Every network was capable of learning the novel

computation, which is consistent with evolution not strictly prohibiting any evolutionary

trajectories. Further, phylogenetic history did in fact constrain the evolution of novel com-

putations. If I was to examine just a single evolution from different lineages, I might con-

clude that color vision is not constrained since networks used a variety of computational

mechanisms. However, the precise evolutionary trajectories were contingent on the specific

trichromatic starting points. Parallel evolution within a lineage consistently converged on

a severely limited number of computations even though the potential computational space

was effectively infinite. Overall, these modeling results suggest that phylogenetic history is

an important aspect to consider when trying to understand how neural circuits implement

behaviorally relevant computations.

4.4 Final remarks

Evolution in the fundamental concept and theory that unites and underlies all of biology.

Within neuroscience, an evolutionary perspective has the capacity to bridge gaps between

121



different levels of analysis including genetics, cellular biology, and systems neuroscience.

Ultimately all of these aspects of nervous system combine, converge, and interact at the

level of neural circuits and the computations they implement to mediate adaptive behaviors.

Exploring how evolutionary processes and constraints affect nervous system organization has

not only intrinsic value, but can also lead to insights into the basic principles underlying the

functional organization of the brain.
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