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ABSTRACT 

Drug combinations are a cornerstone of cancer therapy, but the vast number of possible 

drug combinations makes it infeasible to screen them all experimentally when identifying new 

therapies—for example, testing all possible 4-drug combinations for 200 compounds in 100 cell 

lines would require more than 6 billion experiments, each requiring multiple drug concentrations 

and replicate measurements. To overcome this problem, efforts have been made to develop 

computational models capable of predicting drug combination efficacy to select lead candidates 

prior to experimentally testing them. While these models have traditionally aimed to predict drug 

synergy, recent evidence has emerged suggesting that many cancer drug combinations may 

derive their efficacy from independent drug action (IDA), where patients only receive benefit 

from the single most effective drug in a drug combination. 

In this thesis, I present my work to develop a method capable of using the IDA model to 

predict clinical drug combination efficacy using in vitro monotherapy data. This work resulted in 

the creation of IDACombo, an R package which enables IDA based predictions of drug 

combination efficacy using monotherapy data from high-throughput cancer cell line (CCL) 

screens. I show that IDACombo predictions closely agree with measured drug combination 

efficacies both in vitro (Pearson’s correlation = 0.94 when comparing predicted efficacies to 

measured efficacies for >5000 combinations) and in a systematically selected set of clinical trials 

(accuracy > 88% for predicting PFS/TTP or OS benefit in 26 first line therapy trials). This work 

provides a framework for translating monotherapy cell line data into clinically meaningful 

efficacy predictions for hundreds of thousands of 2-drug combinations and millions of 

combinations of 3 or more drugs.
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

CANCER INCIDENCE, MORTALITY, AND COSTS 

Cancer is one of the most significant causes of loss of human life. According to the 

American Cancer Society, it is estimated that there will be more than 1.7 million new cancer 

cases and 600,000 cancer fatalities in the United States in 2019 (Siegel et al., 2019). This makes 

cancer the second leading cause of death in the US, surpassed only by heart disease, with 

approximately 39% of US men and 38% of US women expected to be diagnosed with invasive 

cancer during their lifetimes. Worldwide, the World Health Organization (WHO) estimates that 

there were 18.1 million new cancer cases with 9.6 million cancer deaths (approximately one 

death every 3.3 seconds) in 2018 (Bray et al., 2018). By WHO estimates, this made cancer the 

first or second leading cause of premature mortality (death before age 70) in 91 of 172 countries 

in 2015. 

Beyond the loss of human lives caused by cancer, the economic costs of cancer are also 

large. These costs can be broadly divided into two categories—the lost economic productivity 

from people who have died from cancer before the end of their working years and the medical 

costs associated with treating cancer patients. There were an estimated $94.4 billion in lost 

earnings for persons aged 16 to 84 who died from cancer in the US in 2015 (Islami et al., 2019), 

and it is estimated that the US will spend roughly $185 billion on medical care costs for cancer 

patients in 2020 (Mariotto et al., 2011, adjusted for inflation). As such, it can be estimated that 

cancer costs approximately $280 billion a year in the US alone.  

 Fortunately, progress has been made in reducing cancer incidence and mortality over the 

past 45 years. Improved cancer therapies and measures to reduce cancer incidence have led to an 

estimated 2.6 million averted cancer deaths in the US since the annual number of cancer deaths 
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peaked in 1991 (Siegel et al., 2019). Much of this progress is due to a decrease in lung cancer 

incidence following efforts to improve awareness of the risks associated with tobacco and lung 

cancer development. This has had such a profound effect because lung cancer is the most 

common type of cancer in the US and is very deadly, with an estimated 5-year survival rate of 

only 25.1% between 2009 and 2015 (Howlader et al., 2019). Tobacco risk awareness efforts, 

along with improvements in lung cancer therapies, have led to a 27.4% reduction in lung cancer 

incidence rates and a 34.7% reduction in lung cancer death rates from 1991 to 2016.  

For many other cancers, however, improvements in survival have been achieved based 

solely on improvements in cancer therapies. Leukemia, for example, has had a relatively stable 

US incidence rate since 1975, but 5-year survival rates for leukemia have improved from 34.6% 

in 1975 to 66.5% in 2011. Likewise, myeloma has seen a 42% increase in its US incidence rate 

since 1975—possibly due to an aging population (Turesson et al., 2018)—but 5-year survival 

rates for myeloma have improved from 24.6% from 1975-1977 to 53.7% from 2009-2015 

(Howlader et al., 2019). Much of the credit for these improvements in cancer outcomes is due to 

the success of drug combinations for treating cancer. 

THE USE OF DRUG COMBINATIONS FOR CANCER TREATMENT 

The development of drug combinations for cancer treatment began more than 60 years 

ago. Drug combinations were tested in mouse models of leukemia in the early 1950’s (Law, 

1952; Skipper et al., 1954; Venditti et al., 1956), and, by the late 1950’s, clinical trials of drug 

combinations had demonstrated that they could be safely administered in human leukemia 

patients (Frei et al., 1958). While an early drug combination trial in acute leukemia patients 

identified no significant benefit from the combination (6-Mercaptopurine + Azaserine, Heyn et 

al., 1960), later studies of different drug combinations (6-Mercaptopurine + Methotrexate and 6-
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Mercaptopurine + Prednisone) demonstrated that drug combinations could improve outcomes for 

leukemia patients versus monotherapy (Frei et al., 1961, 1965). This laid the groundwork for the 

use of drug combinations in cancer, and, in the decades following this discovery, drug 

combinations transformed clinical outcomes for breast cancer, Hodgkin’s disease, leukemia, 

ovarian cancer, testicular cancer, and many others (Devita et al., 1975; DeVita and Chu, 2008; 

Bukowska et al., 2015). Given their hugely successful clinical record, the development of new 

cancer drug combinations remains an important area of ongoing research, as do the continued 

efforts to understand the ways in which drugs interact when used in combination. 

HISTORICAL MODELS OF DRUG COMBINATION EFFICACY 

Drug Interaction Definitions 

 Over the past 150 years, numerous theories have been proposed for how drugs can 

interact when administered as a combination, each with different underlying assumptions and 

often leading to different conclusions when applied to experimental data (Vlot et al., 2019; 

Wooten et al., 2019). These theories have been principally concerned with creating ways to 

classify drug combinations into distinct classes of drug interactions, with different theories 

proposing different numbers of drug interaction classes. While some theories propose up to 11 

interaction classes (Berenbaum, 1989), most suffice with just three, which can be broadly 

defined as follows: 

1. Antagonism: where one drug opposes the effect of another drug. 

2. Independence/Additivity: where the combined drugs do not interact in any way that 

affects their individual activities—the choice of “independence” or “additivity” for 

this class is determined by the theory which defines the term and its underlying 

assumptions. 
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3. Synergy: where interactions between the combined drugs results in an effect beyond 

that which would be expected from the combined independent activities of the drugs. 

While an exhaustive summary of all of the proposed drug combination interaction models 

is beyond the scope of this thesis, many detailed reviews have been written on this topic over the 

past 30 years. In my opinion, some of the most helpful have been written by Berenbaum (1989), 

Greco et al. (1995), Foucquier and Guedj (2015), and Pemovska et al. (2018). Given the high 

level of interest in understanding and developing novel drug combinations, however, new models 

of defining drug antagonism, additivity, and synergy are constantly being proposed, including 

models that are in preprint as of the writing of this thesis (Wooten et al., 2019). That said, I will 

provide a brief introduction to the development of the Loewe Additivity and Bliss Independence, 

which are the most well established and widely used models, as well as independent drug action 

model (IDA), which is also known as Gaddum’s independence or the highest single agent (HSA) 

model and which is the model with which my work is primarily concerned. 

Loewe Additivity and Bliss Independence 

The beginnings of Loewe additivity trace back to a 19th century lecture by Fraser (1872a, 

1872b) at the Royal College of Physicians in Edinburgh, where he presented experiments into 

the use of drug antagonists as physiological antidotes to counteract poisons. One of the ways he 

presented his results was by plotting the pairs of concentrations of a combined poison and 

antidote which resulted in the death of rabbits treated with the combined poison and antidote 

(administered 5 minutes apart). 56 years later, Loewe (1928) named such plots isobolograms and 

he named the curves produced by such plots as isoboles. Using these plots and lines, he 

introduced formal definitions for drug antagonism, additivity, and synergy by hypothesizing the 

shape that a reference isobole should have when independently acting drugs are combined to 
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produce an additive effect and by then classifying deviations from this reference isobole (i.e. as 

observed in experimental results) as synergy or antagonism. In more recent years, mathematical 

definitions have been created for this reference additivity isobole (Chou and Talalay, 1984) 

which may be used to test whether screening results for a drug combination are classified as 

antagonistic, additive, or synergistic based on Loewe’s model. 

 An alternative definition for the expected additive effect of a combination of 

independently acting drugs was proposed a decade later by Bliss (1939). This method, often 

termed “Bliss Independence”, defines the expected independent (additive) effect of a drug 

combination by using probabilities calculated for each monotherapy in a combination which 

represent likelihoods that each monotherapy will cause a treated individual to reach a predefined 

efficacy endpoint. These monotherapy probabilities are then used to calculate the expected 

probability that at least one of the drugs in a combination will cause a treated individual to reach 

the efficacy endpoint when the drugs are administered together. 

 These two drug combination models, Loewe Additivity and Bliss Independence, have 

traditionally been the primary models used for defining drug antagonism, additivity, or synergy, 

and the suitability of each has been a source of much debate over the past century, with each 

gathering support from different groups of researchers. Given their overlapping but differently 

defined terminology, an agreement was reached in 1992 called the Saariselkä agreement, which 

defined a set of consensus terminology between the two models and stipulated that researchers 

should explicitly state whether their analyses utilize the Loewe or Bliss model (Greco et al., 

1995; Tang et al., 2015). 
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Gaddum’s Independence/Independent Drug Action 

 A third model of drug combination interactions was proposed, perhaps inadvertently, 

only a year after the Bliss model. In the first edition of his book, Pharmacology, Gaddum 

included a section titled “The combined effect of two drugs” which he prefaced by saying that 

the diagrams he uses to describe the effects of drug combinations are from the work of Loewe 

(Gaddum, 1940). He then proceeded to describe an isobologram similar to those presented in 

Loewe’s work (Loewe, 1928), but which significantly differs in the regions of the isobologram 

which are classified as antagonistic or synergistic. Gaddum’s isobologram indicates that a 

combination should be considered synergistic in any case where the effect of the combination is 

greater than the effect that can be achieved with either monotherapy, even if the combination 

effect is less than additive. While Loewe did make a clear distinction between combinations 

where effect of a drug combination is less than additive but more than either monotherapy alone 

vs combinations where the effect of the drug combination is less than can be achieved with either 

monotherapy (Loewe, 1928), he still considered both of these situations to be forms of 

antagonism. This makes Gaddum’s interpretation a departure from Loewe’s, and it effectively 

shifts Gaddum’s non-interaction reference away from drug additivity (as was used by both 

Loewe and Bliss) to instead be the effect of the single most effective monotherapy. 

It is not clear, however, if this change was intentional on Gaddum’s part, as Gaddum 

stated in the text that, “The simplest way of determining how the interaction of the two drugs 

should be classified is to administer half the dose of A necessary for a given effect with half the 

corresponding dose of B. If this combination does not cause the effect the drugs are antagonists” 

(Gaddum, 1940, p. 354). This statement is consistent with Loewe’s model, but it is inconsistent 

with the labels on Gaddum’s isobologram, which is directly adjacent to the statement. This 
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description remained in Pharmacology through the third edition, which was published in 1948, 

but it was omitted in the fourth edition of the text, which was published in 1953. The section on 

drug combinations was omitted in its entirety starting with the sixth edition of the book, which 

was published in 1968 and renamed to Gaddum’s Pharmacology, being now revised by Burgen 

and Mitchell given Gaddum’s death a few years earlier (Burgen and Mitchell, 1968). The 

inconsistent and changing description of antagonism and synergy in Pharmacology raises the 

possibility that the original deviation from Loewe’s theory was an oversight, possibly stemming 

from the process of translating Loewe’s paper (which was published in German) into English. 

However, I have been unable to find any sources outside of Gaddum’s book where he either 

expresses support for Loewe’s theory or proposes the alterations to it that are inferred from the 

isobologram he included in Pharmacology, so I cannot conclusively determine whether or not 

Gaddum intended to introduce a new model of drug combination effect. 

 Regardless of his intentions, Gaddum’s description of drug interactions in Pharmacology 

was later used by others as the basis for the model of drug combination interaction which has 

become known as Gaddum’s Independence, HSA, or IDA (Berenbaum, 1989; Palmer and 

Sorger, 2017). The principle of this model is that the expected effect of a combination of one or 

more independently acting drugs (i.e. not antagonists or synergists) is simply the single effect of 

the most effective monotherapy in the combination. Despite the obvious consequence that this 

model predicts no benefit for individual patients when treated with a drug combination versus 

treating those same patients with the most effective monotherapies for each patient, IDA can 

confer large benefits from drug combinations at a population level by giving each patient 

multiple chances to receive at least one efficacious drug when the ideal drug for each patient is 

not known. This may often be the case, as patient responses to different drugs are heterogeneous, 
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so that it is unknown which drugs any individual patient will respond best to. The clinical 

relevance of this model was recently established by Palmer and Sorger (2017), who 

demonstrated that the clinical effects of many cancer drug combinations could be adequately 

modeled using IDA without any need for additivity or synergy. This report, along with the ease 

with which drug combination effects can be modeled using IDA, presented a clear opportunity 

for my research into developing a method to predict drug combination efficacy using 

monotherapy data from CCL screens. The results of this research are covered in detail in chapter 

3. 

RECENT AVAILABILITY OF HIGH THROUGHPUT CANCER CELL LINE SCREENING DATASETS 

 Before such a model could be created, however, I had to identify a source of 

monotherapy data from CCL screens, as screening the necessary number of cell lines and drugs 

myself was infeasible. Fortunately, numerous large CCL drug screening datasets have been 

publically released in the past decade, with several screens having tested hundreds of drugs in 

rough a thousand CCLs. Two other students in the lab and I wrote a thorough review on these 

publically available high-throughput CCL screens (Ling et al., 2018). Our review describes the 

current publically available CCL screening datasets and analyzes the properties of the drugs and 

cell lines available in each dataset and the overlap between datasets. These analyses, and their 

implications for the use of these datasets, are covered in detail in chapter 2.  

COMPUTATIONAL APPROACHES TO PREDICT DRUG COMBINATION EFFICACY 

 Given the established clinical success of using drug combinations in cancer, there is 

obvious utility in developing new drug combinations for cancer treatment. Unfortunately, this is 

a difficult task, because there are too many possible drug combinations (many orders of 

magnitude more than the number of possible monotherapies) to test them all experimentally. To 
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overcome this problem, efforts have been made to develop computational methods that can 

identify promising drug combinations before physically testing them. So far, these methods have 

mostly focused on estimating drug synergy, where the effect of a drug combination is greater 

than the additive effect of the drugs in the combination. Such models have been developed using 

a variety of modeling approaches, including those based on mechanistic understandings, drug 

similarity, known interaction frequencies, and machine learning (Bulusu et al., 2016; Weinstein 

et al., 2017).  

A recently completed effort to improve these predictive models for drug synergy was 

initiated by DREAM Challenges (dreamchallenges.org) in partnership with Astrazeneca and the 

Sanger Institute (Menden et al., 2019). The challenge gave 160 research teams access to one of 

the largest available drug combination screens and tasked them with developing novel 

approaches for predicting drug synergy based on information such as gene expression, 

monotherapy response, drug structure, and drug mechanisms. While many of the developed 

methods performed near the limits of experimental reproducibility in the training dataset, 

applying the models to an independent screen by O’Neil et al. (2016) resulted in performance 

that was little better than random classification. These results suggest that significant challenges 

remain to be overcome before such methods become clinically useful on a large scale—though 

they certainly do nothing to limit the immense potential that predictive models of synergy have 

for transforming drug combination design in the future.  

THESIS MOTIVATION AND HYPOTHESIS 

 Given the urgent need for computational models to predict drug combination efficacy, the 

challenges associated with creating such models based on drug synergy, and the large number of 

researchers already working to overcome the limitations of synergy based models, I chose to 
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explore non-synergy based approaches for predicting drug combination efficacy. Since the 

earliest drug combination trials in cancer, researchers have considered the possibility that drug 

combinations confer patient benefit via drug independence rather than drug synergy (Frei et al., 

1961). The rationale for this idea is that patient populations are phenotypically heterogeneous 

such that different patients may respond best to different drugs. As a result, a patient population 

may benefit from a drug combination simply because the combination gives each patient 

multiple chances to receive the most effective drug for them and not because the drugs in the 

combination are interacting additively or synergistically. 

 As previously mentioned, this idea is consistent with the IDA model, which Palmer and 

Sorger (2017) recently showed to have high clinical relevance. In addition to its suggested 

clinical relevance, an algorithm based on IDA is attractive because of its ability to directly 

calculate drug combination efficacy using monotherapy drug screens without the need for large 

drug combination training datasets. Since numerous large monotherapy datasets already exist 

which have tested hundreds to thousands of compounds in dozens to hundreds of cell lines (Ling 

et al., 2018), this allows efficacy predictions to be made for hundreds of thousands of 2-drug 

combinations and hundreds of millions of 3- and 4-drug combinations using existing datasets. 

 Thus, I hypothesized that an algorithm could be constructed based on IDA which could 

use monotherapy CCL screening data to make clinically meaningful predictions of drug 

combination efficacy. In this thesis, I present the research resulting from that hypothesis in two 

primary parts. Part 1 is the characterization of the available CCL screening datasets necessary for 

the drug combination model. This work is presented in chapter 2. Part 2 of the research is the 

actual development, validation, and use of the drug combination model, which I named 

IDACombo. This work is presented in chapter 3.  
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CHAPTER 2: EVALUATING THE PROMISES AND PITFALLS OF HIGH THROUGHPUT 

CANCER CELL LINE SCREENS 

INTRODUCTION 

Purpose and Rationale of This Research 

CCLs have been used in pre-clinical research for decades to evaluate drug efficacy prior 

to advancing to more costly and difficult in vivo studies. This is in part because CCLs represent 

an easy-to-manipulate system for high-throughput drug and genomic screens on a scale simply 

unattainable in animal and patient settings due to safety, ethical, and logistical concerns. 

Additionally, automated liquid handling systems have made it possible to quickly screen 

thousands of compounds against many hundreds of CCLs while technological advances in 

genome sequencing have allowed detailed genomic characterization of each cell line screened. 

Improvements in RNA interference and genome editing technologies have also enabled genome-

wide shRNA and CRISPR-Cas9 CCL screens to interrogate the necessity of nearly every gene in 

the genome in hundreds of CCLs.  This wealth of drug sensitivity and genomic data has led to 

the clinical approval of bortezomib for myeloma treatment (Shoemaker, 2006), the initiation of 

several ongoing clinical trials (Holbeck et al., 2017), and numerous attempts to discover 

biomarkers associated with cancer drug response. 

Despite these accomplishments, there is still much work to be done in developing new 

drugs and drug biomarkers to treat what remains an expansive list of poor prognosis cancers. 

Given the critical role of CCL screens in this effort, Jessica Fessler, Robert Gruener, and I set out 

to create a comprehensive list of publically available CCL screening datasets and to examine 

how well these screens currently represent both the diversity of human cancers encountered in 

the clinic and the diversity of targetable pathways that are known to be deregulated in cancer. 
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Jessica Fessler began this project by identifying a number of available datasets and beginning a 

manuscript describing those datasets. Robert Gruener and I then identified additional screening 

datasets, harmonized the cell line and drug identifiers between each dataset, analyzed how well 

the CCLs and drugs used to create each dataset represented the spectrum of human cancers and 

the targetable pathways in cancer, and assessed the extent of overlap between each screen. These 

results, along with all of the figures and tables in this chapter, were published as a review article 

(Ling et al., 2018), and they ultimately provided us with a detailed knowledge of existing 

datasets and their strengths and limitations. Importantly, this project also provided us with a 

means to harmonize drug and CCL identifiers between screens so that I could use multiple 

screening datasets together in my eventual efforts to translate monotherapy screening data into 

predictions of drug combination efficacy. 

A Brief History of Cancer Cell Line Screening 

Numerous CCL screens have been performed over the last three decades, and the format 

and size of these screens has varied considerably. A very brief description to the history of these 

screens is provided in this section to demonstrate the progression of CCL screens. Given the 

large number of CCL screens available to date, we chose to focus most of our attention on large-

scale screens with cell lines representing multiple cancer types. That said, several screens 

comprised of only a single cancer type are briefly mentioned by virtue of their being either 

relatively large or important in developing screening techniques. Furthermore, we only 

considered screens with publicly available screening data. A brief tabular summary of reviewed 

screens is included in Table 1. Individual summaries for each screen can be found in our 

published review on this subject (Ling et al., 2018). 
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Study Name 
Type of 

Screen 
Institution 

# Cell 

Lines 
# of Tested Reagents Source 

Pan-Cancer CCL Screens 

NCI60 compound NCI 74 49,278 compounds 
https://wiki.nci.nih.gov/display

/NCIDTPdata/ 

GlaxoSmithKline compound GlaxoSmithKline 310 19 compounds Greshock et al., 2010 

CGP/GDSC compound 

Wellcome Trust Sanger Institute and 

Massachusetts General Hospital 

Cancer Center 

1073 249 compounds 
Garnett et al., 2012; Iorio et al., 

2016 

CCLE compound Broad Institute 503 24 compounds Barretina et al., 2012 

CTRP v1 compound Broad Institute 242 354 compounds Basu et al., 2013 

CTRP v2 compound Broad Institute 887 496 compounds Seashore-Ludlow et al., 2015 

gCSI compound Genentech 429 16 compounds Haverty et al., 2016 

FIMM compound 
Institute for Molecular Medicine 

Finland 
50 52 compounds Mpindi et al., 2016 

NCI-ALMANAC 
drug 

combination 
NCI 60 

104 compounds 
(5,334 combinations) 

Holbeck et al., 2017 

Single-Cancer CCL Screens 

Daemen et al. 

(Breast Cancer) 
compound 

Lawrence Berkeley National 

Laboratory 
70 88 compounds Daemen et al., 2013 

Colorectal Cancer 

Organoid Screen 
compound 

Hubrecht Institute, Wellcome Trust 

Sanger Institute, Broad Institute 

19 

(organoids) 
83 compounds van de Wetering et al., 2015 

NCI-Sarcoma 

Project 
compound NCI 64 440 compounds Teicher et al., 2015 

NCI-SCLC 

Project 
compound NCI 70 515 compounds Polley et al., 2016 

PRISM (NSCLC) compound Broad Institute 96 374 - 8,400 compounds Yu et al., 2016 

shRNA & CRISPR/Cas9 CCL Screens 

Achilles 2.0 shRNA Broad Institute 102 
54,020 shRNAs 
(targeting 11,194 genes) 

Cheung et al., 2011 

Achilles 2.4.3 shRNA Broad Institute 216 
54,020 shRNAs 
(targeting 11,194 genes) 

Cowley et al., 2014 

Achilles 2.20.2 shRNA Broad Institute 501 
107,523 shRNAs 
(targeting 25,579 genes) 

Tsherniak et al., 2017 

Achilles 3.3.8 CRISPR/Cas9 Broad Institute 33 
123,411 sgRNAs 
(targeting 19,060 genes) 

Aguirre et al., 2016 

Munoz et al., 

2016 

CRISPR/Cas9 
& shRNA 

Novartis Institutes for Biomedical 

Research 
5 

51,413 sgRNAs 
(targeting 2707 genes) 

Munoz et al., 2016 

Tzelepis et al. 

(AML) 
CRISPR/Cas9 Wellcome Trust Sanger Institute 7 

90,709 sgRNAs 
(targeting 18,010 genes) 

Tzelepis et al., 2016 

Wang et al. 

(AML) 
CRISRP/Cas9 Broad Institute 14 

187,536 sgRNAs 
(targeting 18,543 genes) 

Wang et al., 2017 

Table 1. Available in vitro CCL screen datasets. This table provides summary information 

for the CCL screens we review in this article. Cell line and compound numbers reflect the 

latest releases of each dataset, with duplicated cell lines in each study being counted as a single 

cell line, and only cell lines with available screening data included. 

 

CCL Drug Screens 

 To date, the majority of large-scale CCL drug screens have been performed either by the 

National Cancer Institute (NCI) or the Broad Institute, with other notable screens having also 

been performed by GlaxoSmithKline, the Sanger Institute, the MGH cancer center, Genentech, 

the Institute for Molecular Medicine Finland, Novartis, and Berkeley National Laboratory (see 

Table 1 for references). The NCI began one of the first major CCL drug screening efforts in the 
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1980’s when it created the NCI60—an initiative to screen large numbers of known and novel 

compounds against a small group of CCLs. In its long history, the NCI60 has screened over 

100,000 compounds and has been responsible for leading to a number of important cancer-

related drug discoveries (Shoemaker, 2006). Among its breakthroughs, the NCI60 was used in 

the first study which integrated analysis of both molecular pharmacology and gene expression 

data for a large set of CCLs (Scherf et al., 2000). Since then, the genomes and transcriptomes of 

the CCLs used in drug screens have been extensively characterized, paving the way for studies 

which integrate genomic and drug sensitivity data. 

Rather than focusing on screening huge compound libraries like the NCI-60, more recent large-

scale CCL screens have focused on smaller compound sets screened in much larger numbers of 

CCLs. This approach has increased the genetic diversity of the screens, which has allowed 

researchers to draw links between genetic features and drug sensitivity. Tissue-specific cell line 

screens are also becoming more common. These screens usually contain more cell lines for a 

given cancer type compared to the pan-cancer screens and can be useful for interrogating 

diversity within a particular cancer type. Finally, recent advances in technology and screening 

techniques have allowed high-throughput screening of 2-drug combinations in Project NCI-

ALMANAC (Holbeck et al., 2017) as well as the ability to pool CCLs together into single 

wells/tumors for both in vitro and in vivo drug screening using the PRISM method (Yu et al., 

2016). 

CCL shRNA/CRISPR-Cas9 Screens 

The advent of high-throughput methods for introducing shRNAs and gene edits via 

CRISPR-Cas9 into CCLs has allowed scientists to assess individual gene function by knocking 

down/out genes in panels of CCLs. By far the largest project using these methods is Project 
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Achilles at the Broad Institute (see Table 1). Project Achilles has gradually increased the number 

of CCLs screened with shRNAs since first publishing in 2011 to now include 501 CCLs 

screened with shRNAs covering >25,000 gene products. Project Achilles also includes a 

CRISPR/Cas9 screen, which identified certain liabilities with CRISPR/Cas9 screening that could 

lead to a high rate of false-positive gene dependencies (Aguirre et al., 2016). This problem has 

been further researched by multiple groups, leading to the development of potential solutions and 

enabling the use of CRISPR/Cas9 screens to discover novel gene dependencies and drug 

sensitivities in CCLs (Munoz et al., 2016; Tzelepis et al., 2016; Wang et al., 2017). 

MATERIALS AND METHODS 

Identifying High-Throughput Cancer Cell Line Screens 

 Jessica Fessler began identifying CCL screens before I joined Stephanie’s lab. After 

Jessica left and Robert Gruener and I took over this project, I used PubMed and online search 

engines to manually search the literature for high-throughput CCL screens that tested dozens to 

hundreds of compounds in dozens to hundreds of cell lines or which performed genome-wide 

shRNA or CRISPR/Cas9 screens in dozens to hundreds of cell lines. Priority was given to 

studies which screened multiple types of cancer, but some single cancer screens were included if 

they contained a relatively large number of cell lines for that cancer type or if that study provided 

technical innovations which impacted the field of CCL screening. As previously mentioned, the 

selected screens are summarized in Table 1. After identifying the studies, I wrote short text 

summaries for each study, a process which Jessica had begun for several studies before I joined 

the lab. These summaries are included in the review article which resulted from this project 

(Ling et al., 2018), but they are omitted in this thesis as they are not necessary for understanding 

either the analyses presented in this chapter or those presented in chapter 3. 
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Harmonizing Cell Line Identifiers between Cancer Cell Line Screens and Annotating Cell Lines 

 I began by downloading cell line information from Cellosaurus, which is an online 

repository of cell line information that includes detailed records for nearly 115,000 cell lines. I 

then downloaded the xml version of Cellosaurus (https://web.expasy.org/cellosaurus/) on 

8/18/2017 and used R version 3.4.2 (R Core Team, 2017) with the XML R package (Lang and 

the CRAN Team, 2017) to parse the xml file to extract species, gender, disease type, ethnicity, 

commonly used names, Cellosaurus identifiers, and BioSample IDs for each cell line. Using R, I 

was then able to match the Cellosaurus identifiers to the cell line names used in each of the CCL 

screening datasets. 

 For further annotation, I downloaded the xml version of BioSample (Barrett et al., 2012) 

on 10/23/2017, which is an NCBI repository for descriptions of cell lines. I parsed the xml file to 

extract cell line BioSample identifiers, tissue source, disease type, sex, ethnicity, and age for 

each cell line using the same process as was used for Cellosaurus. This allowed to me to add the 

BioSample information for each cell line using the BioSample IDs which were present from both 

Cellosaurus and BioSample. 

 I then manually curated the cell line information, occasionally using COSMIC (Forbes et 

al., 2017) to fill in information that was missing from Cellosaurus or BioSample. This ultimately 

resulted in a dataset which included the original names used for each cell line in each dataset, a 

harmonized identifier from Cellosaurus, alternative cell line names, gender, ethnicity, age, and 

disease type information for each cell line used in any of the CCL screens selected for the study. 

This information is included in Table S1. 

https://web.expasy.org/cellosaurus/
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Harmonizing Compound Identifiers between Cancer Cell Line Screens and Annotating 

Compounds 

 The majority of the work to harmonize and annotate the compounds used in the CCL 

screens in our analysis was performed by Robert Gruener. He accomplished this by using 

PubChem's Identifier Exchange Service 

(https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi) to identify synonyms for all 

named compounds in the original datasets and to convert these synonyms to PubChem IDs. He 

then matched PubChem IDs back to their original name and used the PubChemID(s) identified to 

match the compounds among the datasets. This ensured the highest degree of overlap, and the 

results were manually checked and curated as needed to ensure correctness, an effort to which I 

helped to a very small degree. This method also identified overlap in highly related compounds, 

for example irinotecan and its active metabolite SN-38. In most circumstances, overlap based on 

very close relatedness such as this was considered appropriate and kept. Additionally, the Broad 

Drug Repurposing Hub (Corsello et al., 2017) was used to add information such as molecular 

targets and clinical phase to the information already provided for each compound by the screens 

in which they were used. These efforts resulted in a list of drugs with their original identifiers 

from each CCL screen, a harmonized identifier, their clinical phase, their general mechanism of 

action, and their specific molecular targets. This information is included in Table S2. 

 Efforts were also made to determine which biological pathways were affected by each 

compound. Robert and I both contributed to this effort, which was accomplished by utilizing the 

Broad Institute's MSigDB database (Liberzon et al., 2015; Subramanian et al., 2005). We used 

the database’s Canonical Pathways gene set (Fabregat et al., 2018; Kanehisa et al., 2017; 

Liberzon et al., 2015; Milacic et al., 2012) (http://www.biocarta.com/) to represent general cell 
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biology pathways as well as its Cancer Modules (Segal et al., 2004) and Oncogenic Pathways to 

represent cancer specific pathways. I then used R to match the molecular targets of each 

compound to the pathways which included those targets, allowing us to determine which 

pathways each compound targeted. 

RESULTS 

Screened Cancer Cell Lines Represent a Diverse Range of Cancers and Age Groups, but Gender 

and Ethnic Diversity Need to be Improved 

Human cancers are a complex set of diseases which can arise from essentially every 

tissue in the body and vary widely in both incidence and mortality. As such, CCL screens are 

faced with the task of balancing a need to select diverse sets of CCLs which represent a wide 

range of human cancers with the need to collect a large enough set of CCLs for any individual 

cancer type to capture the genetic and phenotypic heterogeneity within that cancer. To assess 

how well current CCL screens have accomplished this task, we identified screened CCLs by 

name using Cellosaurus (https://web.expasy.org/cellosaurus/) and then matched age, gender, and 

ethnicity information from a combination of Cellosaurus, the BioSample database (Barrett et al., 

2012), and COSMIC (Forbes et al., 2017). An examination of the cell lines used in the studies 

covered by this review (see Table S1) shows that there are over 1,600 unique cell lines screened 

among the 20 datasets, covering more than 30 tissues of origin and over 200 cancer 

types/subsets. These include both common cancers (e.g. breast cancers) and extremely rare 

cancers (e.g. leiomyosarcomas) as well as highly specific cancer subsets (e.g. B-cell 

prolymphocytic leukemia). Interestingly, the proportions of CCLs representing any given cancer 

type correlate well with the American Cancer Society’s (Siegel et al., 2017) estimated number of 

deaths from those cancers (Figure 1A, R2=0.71, data collected by Robert and plotted by myself). 
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This suggests that current screens have been relatively successful in capturing the diversity of 

human cancers while prioritizing the cancers that cause the most deaths. 

Beyond representing a diversity of human cancers, currently screened CCLs also 

represent a wide range of ages of onset in human cancer as well as relatively even proportions of 

male and female cancers (Figures 1B and 1C), enabling these datasets to be used to study age- 

Figure 1. Screened CCLs correlate with cancer fatality while capturing age, gender, and 

ethnicity to varying extents. Data for this figure is included in Table S1. A) Correlation is 

shown between cancer mortality (obtained from Siegel et al., 2017) and the number of unique 

cell lines screened from each cancer type. Cancer type was determined by bioinformatic and 

manual curation using Cellosaurus, the BioSample database, COSMIC, or annotations 

provided by the datasets themselves. Only cell lines with available screening results are 

included. B-D) As with part A, age of collection, gender, and ethnicity for screened CCLs 

were determined by bioinformatic and manual curation using Cellosaurus, the BioSample 

database, and COSMIC. Part B shows the number of unique cell lines collected from patients 

at given ages, while parts C and D show the distribution of genders and ethnicities 

respectively for screened cell lines from each cancer type. 
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and gender-specific phenomenon in cancer drug sensitivity. Certain cancer types do, however, 

deviate significantly from clinical gender proportions. In lung cancer, for example, there are 

more than twice as many screened male CCLs as there are female CCLs (207 male, 84 female, 

Figure 1C). This disparity can be especially pronounced in cancer types with fewer screened 

CCLs such as liver cancer, for which there are 24 male CCLs and only 4 CCLs that we identified 

as female. If potential gender differences are to be studied in in vitro drug sensitivity for these 

cancers, care will need to be taken in designing future CCL screens to adequately represent both 

males and females in each cancer type. 

Unlike age and gender, ethnicity is generally poorly annotated for CCLs. Based on the 

sources mentioned above, the ethnicity of many screened CCLs is unknown; however, most 

screened CCLs of known ethnicity are of either Caucasian or Asian descent (Figure 1D), with 

87% of the Asian CCLs being Japanese. CCLs of African and Hispanic descent are particularly 

poorly represented. We were unable to identify any African CCLs in 7 of the 15 cancer 

categories, and Hispanic CCLs were absent in all but 1 of the categories. 

Screened Drugs Target a Broad Array of Pathways Relevant to Cancer 

Beyond including a diverse set of CCLs, it is also important for these screens to target a 

diverse set of molecular targets and to include compounds from all stages of the drug 

development pipeline. As for molecular targets, the shRNA and CRISPR screens easily cover the 

most molecular targets, with most screens targeting over 11,000 and even up to 25,000 gene 

products. Of the 14 compound-based screens, NCI-60 contained by far the most compounds 

(approximately 49,000) with the remaining screens collectively containing 1329 unique 

compounds. Given the large number of poorly characterized compounds screened in NCI-60, we 

were only able to identify molecular targets for 1.6% of NCI-60 compounds. For screens other 



 

21 

  

than NCI-60, we were able to identify molecular targets for 70% of tested compounds. 

Completion rates for finding clinical trial stage information were similar but slightly lower, with  

our results suggesting that 857 of the screened compounds are currently in or have completed 

testing in clinical trials (Figure 2A). 

1,234 genes were impacted by these drugs, with many genes targeted by multiple 

compounds. Figure 2B shows the ten most frequently targeted genes, which were each targeted 

by at least 22 unique compounds in the CCL screens we reviewed. Encouragingly, many of these 

top gene targets are recognizable as important in cancer. 

To further investigate the role of these targeted genes in general cell biology and cancer 

pathways, we investigated the pathways targeted by each compound. While the most commonly 

targeted canonical biology pathway was unsurprisingly “pathways in cancer,” many other 

biologically significant pathways are also impacted (Figure 2C). Indeed, 1,234 of the 1,329 

Figure 2. Targets and clinical 

stage of compounds in CCL 

screens. Compounds used in 

Figure 2 are the 1,207 unique 

compounds from the 14 CCL 

drug screens reviewed in this 

paper with targeted information 

from the CCL screens or the 

Broad DRH. A) The clinical 

stage distribution for the drugs 

with current clinical trial 

information from Broad DRH B) 

Shows the ten most commonly 

targeted genes and the number of 

unique compounds against them. 

C) Shows the 10 most 

commonly targeted pathways in 

MSigDB’s Canonical Pathway 

Gene Set (C2:CP) based on the 

number of unique compounds 

which target at least one gene 

target in that pathway. 
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canonical biology pathways are impacted by at least one compound, with a median of 21 unique 

drugs impacting a given pathway. Regarding cancer specific pathways, 592 of the 620 pathways 

were impacted by at least one compound, with a median of 28 unique compounds per pathway. 

Overall, the coverage of the majority of the general biology pathways and cancer specific 

pathways along with the proportion of drugs approved or in clinical trials suggests that CCL 

screens have, in general, selected a relevant yet broad array of compounds for screening. 

Extensive Cell Line Overlap Exists Between Different Cancer Cell Line Screens 

To investigate how similar the CCL screens are in terms of the types of cancers they 

screened, we used the information in Table S1 to determine the relative abundance of a cancer 

type in the pan-cancer datasets. Figure 3 shows that the proportion of represented cancer types is 

largely similar across pan-cancer datasets, with the most prominent deviations from the average 

occurring in the datasets that screened the fewest cell lines. For instance, the NCI-60 and NCI-

ALMANAC screening sets omit sarcomas and pancreatic cancer cell lines, the Achilles v3.3.8 

dataset focuses more specifically on sarcomas and pancreatic cancers than other datasets, and the 

FIMM dataset has a larger proportion of haematopoietic/lymphoid, breast, and female 

reproductive cancers. However, on the whole, many of the large pan-cancer studies represent the 

various cancer types in similar proportions.  

Some of this similarity can be explained by the fact that many of the pan-cancer datasets 

use highly overlapping sets of CCLs for their screens (Figure 4A). For example, CTRPv2 

contains at least 79% of the cell lines used in any other Broad Institute screen, and NCI-
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ALMANAC is entirely composed of CCLs from NCI60. Of the 1,561 unique CCLs screened 

across all studies, 594 are unique to a single study, 229 are included in two studies, and 738 are 

included in three or more studies (Figure 4B), with some cell lines being included in most 

screens—such as the A549, a lung adenocarcinoma line which is included in 14 of the 20 

datasets. The 594 CCLs that are unique to a single screen are mostly used in either GDSC or 

CTRPv2, the two datasets with the greatest number of cell lines, though several of the single-

cancer screens also contribute a number of unique cell lines (Figure 4C). 

Figure 3. Many tissue types are represented in the assessed CCL screens. Cell line tissue 

type vs. dataset. Tissue type was determined by bioinformatic and manual curation using 

Cellosaurus, the BioSample database, COSMIC, or annotations provided by the datasets 

themselves, and then similar cancer types were grouped in the broad groups shown. The data 

for this figure is included in Table S1. Note that cancer types are colored at the right in the 

reverse order (from top to bottom) as they are plotted in the bargraph (from top to bottom), 

such that the top cancer type in the legend (lung cancer) is plotted as the lowest portion of 

each bargraph (0% to x).  
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Figure 4. Legend on page 25. 
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Extensive Compound Overlap Also Exists Between Cancer Cell Line Screens 

In total, there are over 50,000 unique screening agents with publicly available data in 

these datasets, most of which can be attributed to NCI-60. NCI-60 has data for close to 49,300 

compounds with almost 49,000 of these agents being unique to the NCI-60 screen (Figure 5C). 

However, it should be noted that the majority of these compounds failed to meet NCI-60's 

screening standards by either missing the minimum range requirements, not passing a minimum 

consistency among replicates, or by having results for fewer than 35 cell lines. Taking this into 

consideration, only ~21,000 compounds are both publicly available from the NCI-60 and passed 

their standards. Comparatively, the other CCL screens we reviewed screened a combined total of 

approximately 2,800 agents, of which about 1,300 are unique (Table S2). Similar to the relatively 

high overlap among cell lines in these datasets, there was an appreciable amount of overlap 

among the drugs screened (Figure 5A). There are 766 compounds overlapped in at least 2 

datasets, about 240 of which overlapped in 4 or more datasets (Figure 5B). 

DISCUSSION 

Over the past three decades, CCL screens have done much to aid in the development and 

understanding of cancer treatments, and they have also done much to improve themselves over 

time. That said, as with all cancer research, much remains to be done. While our results  

Figure 4, continued. Cell line overlap and frequency between CCL screens. 

A) Heatmap of cell line overlap between reviewed studies. Overlap is based on Table S1, with 

each color scale being relevant to the amount of overlap each column study has with the study 

in that row. Note that only cell lines with available screening data (compound, shRNA, or 

CRISPR/Cas9) are counted for each dataset. Of particular importance, this means the overlap 

between CTRPv2 cell lines and CCLE cell lines with genomic data is much higher than that 

represented here. B) Distribution of the number of datasets in which each screened cell line is 

included. C) Number of cell lines that are unique to a single dataset. Note that this also only 

includes cell lines with available screening data, such that many of the unique CTRPv2 cell 

lines are unique in the sense of being used for a drug screen, but they are present without 

pharmacological profiling in CCLE. 
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Figure 5. Legend on page 27. 
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demonstrate that numerous cancer types are represented in these screens in numbers 

proportionate to the mortality rate of each cancer, many cancer types are still represented by only 

a handful of CCLs. This seriously limits the power of any studies seeking to identify drug 

sensitivities or genomic associations that are unique to these poorly represented cancers, and it 

greatly increases the likelihood that the full range of disease specific genotypes and phenotypes 

are not captured by the few CCLs representing those diseases. 

Likewise, while our analysis suggests that, while both male and female CCLs are well 

represented in most cancers, severe gender imbalances do exist in certain cancer types, such as 

liver cancer. This effectively prevents the use of these screens for efforts to identify gender-

specific drug sensitivity associations in these cancer types. Perhaps even more concerning, 

ethnicity information for the CCLs used in these screens is largely missing, with nearly all 

recorded ethnicities being Caucasian or Asian across all cancer types. As it is becoming 

increasingly apparent that ethnicity affects cancer progression and treatment response (Sekine et 

al., 2008; Keenan et al., 2015; Costa and Gradishar, 2017),  this raises two primary concerns 

about discoveries made using currently available CCL screens. First, the probable lack of ethnic 

diversity suggests that some of these discoveries may not translate to patients from 

underrepresented ethnic groups. Second, the high level of uncertainty in CCL ethnicity prevents 

researchers from properly controlling for ethnicity while searching for pharmacogenomic 

Figure 5, continued. Compound overlap and frequency between CCL screens. 

A) Heatmap of compound overlap between reviewed studies. Overlap is based on data from 

Table S2, with each color scale being relevant to the amount of overlap each column study 

has with the study in that row. Note that only compounds with available screening data are 

counted for each dataset, and duplicate tests of the same compound were excluded. B) 

Distribution of the number of datasets in which each screened compound is included. Note 

that the 8,000 diversity-oriented synthesis molecules tested in PRISM are excluded in this 

plot. C) Number of compounds that are unique to each dataset. Note that the 8,000 diversity-

oriented synthesis molecules tested in PRISM are also excluded in this plot. 
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associations—greatly reducing the ability of these datasets to detect ethnic-specific associations. 

Given its importance to the utility of these datasets, ethnicity will need to be carefully considered 

and recorded when designing the next generation of CCL screens, and efforts to improve 

ethnicity information for existing CCLs should be considered (i.e. by contacting labs/institutions 

who generated CCLs of unknown ethnicity or searching for literature describing the generation 

of these CCLs). Taken together, these results suggest that significant improvements are 

necessary in the number and diversity of CCLs used in these screens to adequately represent the 

diversity of human cancers. This will likely involve greatly expanding the number of CCLs 

screened in future studies, which may be especially important for identifying biomarkers relevant 

to targeted therapies, which are expected to only be effective in a subset of cell lines tested. 

Indeed, previous reports have suggested that up to 85% of the cell lines tested in some screens 

are insensitive to the majority of tested compounds (Bouhaddou et al., 2016), placing serious 

limits on the power to identify biomarkers associated with response to those treatments—limits 

which future screens will need to overcome. 

Fortunately, others in the field are already aware of the need for additional in vitro cancer 

models to meet this challenge (Williams and McDermott, 2017). As large-scale sequencing 

efforts in patient tumors has revealed complex diversity and sub-grouping within cancer types, 

efforts have begun to generate in vitro cancer models which capture this diversity. Two large 

projects with this goal have emerged in recent years. One is the Cancer Cell Line Factory at the 

Broad Institute, which aims to generate more than 10,000 CCLs for use by the research facility 

(Boehm and Golub, 2015). The other is the Human Cancer Model Initiative collaboration 

between the NCI, Cancer Research UK, the Sanger Institute, and the foundation Hubrecht 

Organoid Technology, which aims to create as many as 1000 new in vitro cancer models with 
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detailed clinical information, carefully controlled culture condition, and modern culture 

techniques such as conditionally reprogrammed cells and organoids 

(https://ocg.cancer.gov/programs/HCMI). Patient-derived tumor xenografts have also been 

explored as a means of expanding the genetic diversity of pre-clinical drug screens (Gao et al., 

2015). Hopefully, these efforts will greatly increase the diversity and clinical relevance of 

available pre-clinical cancer models for future screens. 

Despite the limitations this analysis revealed in current CCL screens, however, our 

analysis also reveals a great many strengths to these datasets. These efforts have resulted in 

publically available datasets containing screening data for over 1,600 CCLs representing every 

major cancer type, >50,000 compounds targeting more than 93% of all known canonical and 

cancer related cellular pathways, and shRNAs and CRISPR/Cas9 screens which cover nearly 

every gene in the human genome. Furthermore, most of the CCLs used in these screens have 

undergone extensive molecular profiling—including whole-exome sequencing, RNA 

sequencing, mRNA array profiling, and proteomic profiling—which makes them ideal resources 

with which to identify and validate biomarkers of drug sensitivity.  Furthermore, the high degree 

of overlap between these screens both in terms of screened compounds and CCLs provides a 

large number of technical replicates and the differences in screened compounds and CCLs 

between screens allows for independent datasets with which to validate findings from other 

screens. 

Given these strengths, these screens remain an important tool in the effort to identify new 

treatments and biomarkers for cancer treatment, and the constantly ongoing work to improve the 

in vitro models and screening techniques use to generate these datasets ensures that this will 

continue to be the case. It is my hope that these results will help researchers in their efforts to 

https://ocg.cancer.gov/programs/HCMI
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improve these screens, as well as in using already existing screens to their fullest potential. 

Whatever use other researchers find for these results, the efforts to harmonize cell line and drug 

identifiers between screens was essential for the success of my primary research project, which 

was to develop an algorithm capable of using the monotherapy data from these CCL screens to 

predict drug combination efficacy in the clinic. The results of that research are presented in the 

next chapter.  
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CHAPTER 3: CLINICAL TRIAL OUTCOMES FOR CANCER DRUG COMBINATIONS 

CAN BE PREDICTED BY MODELING INDEPENDENT DRUG ACTION USING CANCER 

CELL LINE SCREENS 

INTRODUCTION 

In the early 1960’s, Frei et al. (1961, 1965) first demonstrated that drug combinations 

could be more effective than monotherapy in acute leukemia patients. In the decades following 

this discovery, drug combinations transformed the clinical outcomes for many other types of 

cancer beyond leukemia (Bukowska et al., 2015; DeVita and Chu, 2008; Devita et al., 1975), 

making drug combinations an essential part of modern cancer therapy. Unfortunately, the vast 

number of possible drug combinations (many orders of magnitude greater than the number of 

possible monotherapies) makes it infeasible to test them all experimentally when developing new 

therapies. To overcome this problem, efforts have been made to develop computational methods 

that can identify promising drug combinations before physically testing them.  

As discussed in detail in chapter 1, these methods have mostly focused on estimating 

drug synergy using a variety of modeling approaches, including those based on mechanistic 

understandings, drug similarity, known interaction frequencies, and machine learning (Bulusu et 

al., 2016; Weinstein et al., 2017). Unfortunately, largescale efforts to use these models to predict 

drug synergy have resulted in performance that was little better than random classification 

(Menden et al., 2019). These results suggest that significant challenges remain to be overcome 

before such methods become clinically useful on a large scale—though they certainly do nothing 

to limit the immense potential that predictive models of synergy have for transforming drug 

combination design in the future. Given these challenges, and the large number of researchers 
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already working to overcome them, I chose to explore non-synergy based approaches for 

predicting drug combination efficacy. 

Since the earliest drug combination trials in cancer, researchers have considered the 

possibility that drug combinations confer patient benefit via drug independence rather than drug 

synergy (Frei et al., 1961). The rationale for this idea is that patient populations are 

phenotypically heterogeneous such that different patients may respond best to different drugs. As 

a result, a patient population may benefit from a drug combination simply because the 

combination gives each patient multiple chances to receive the most effective drug for them and 

not because the drugs in the combination are interacting additively or synergistically. 

While, as discussed in detail in chapter 1, there are multiple theories for how drug 

combination efficacies should be calculated when drugs act independently (Foucquier and Guedj, 

2015), I chose to focus on IDA, which hypothesizes that the effect of a drug combination may be 

merely the effect of the single most effective drug in the combination. Evidence for the clinical 

relevance of this model was recently provided by Palmer and Sorger (2017), who examined 8 

clinical trials that tested drug combinations in cancer and concluded that IDA could explain the 

results of 5 of the trials without the need for synergistic drug action. While identifying 

synergistic combinations likely remains an essential part of finding the most effective drug 

combinations, these results suggest that IDA is a clinically relevant mechanism by which drug 

combinations can improve patient outcomes in cancer. 

In addition to its suggested clinical relevance, an algorithm based on IDA is attractive 

because of its ability to directly calculate drug combination efficacy using monotherapy drug 

screens without the need for large drug combination training datasets. Since numerous large 

monotherapy datasets already exist which have tested hundreds to thousands of compounds in 
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dozens to hundreds of cell lines (Ling et al., 2018), this allows efficacy predictions to be made 

for hundreds of thousands of 2-drug combinations and hundreds of millions of 3- and 4-drug 

combinations using existing datasets. In this paper, I present an IDA based algorithm for 

predicting drug combination efficacies using in vitro monotherapy screening data. I validate its 

predictions using both an in vitro dataset which measured monotherapy and drug combination 

efficacies and clinical results from a systematically selected set of phase III clinical trials. 

Furthermore, I use the algorithm to prospectively predict the efficacies of thousands of 2-drug 

combinations in 27 cancer types/subtypes and demonstrate how those predictions can be used to 

quickly identify candidate drug combinations for future clinical development. 

MATERIALS AND METHODS 

Data and Software Availability 

The data and code necessary to reproduce the analyses in this paper, along with detailed 

readme files to aid investigators in navigating and understanding each analysis and script in the 

project, have been uploaded in their entirety to Open Science Framework (OSF, https://osf.io/). 

They are stored in the “IDACombo Paper” project, which can be accessed using this link. Figure 

6 shows how the various analysis folders in this project relate to each other, and also gives a 

general overview of the experimental steps performed in this chapter. Since the readme files 

included in the OSF directories provide detailed information about the purpose of each script in 

the analysis, they serve as a detailed description of the experimental methods used to complete 

the analyses performed in this chapter. As such, I have included these readme files in Appendix 

I. 

Most analyses were performed using R v3.4.2 (R Core Team, 2017) with Microsoft R 

Open v3.4.2 (Microsoft, R Core Team, 2017) and RStudio v1.1.463 (RStudio Team, 2015). 

https://osf.io/
https://osf.io/sym6h/?view_only=316b326f8e674326a57302842b85b2d7
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Processing of the raw dose-response data from CTRPv2 and GDSC was performed using the 

Mesabi compute cluster at the Minnesota Supercomputing Institute (MSI) at the University of 

Minnesota (http://www.msi.umn.edu) and R v3.4.4. 

The IDACombo R package created for this analysis is available on GitHub. Additional R 

packages used in the analysis are listed in Table 1 along with their citations and web-links. 

IDA and Bliss Independence drug combination efficacy predictions with IDACombo 

As shown in Figure 7A, IDA predictions of drug combination efficacy are produced by 

predicting that the effect of a combination of 2 or more drugs on a cell line will be equal to the 

effect of the single most efficacious drug in the combination. The efficacy of the drug 

combination is then summarized by calculating the mean predicted efficacy across all cell lines  

Figure 6: Analysis pipeline in “IDACombo Paper” OSF project. This figure outlines how 

the various analysis folders in the OSF project for the work complete in this chapter are 

related to each other and to the figures in this chapter. This is primarily included here to assist 

readers in interpreting Appendix I, but it also provides a general overview of the workflow for 

the analyses performed in chapter 3. 

http://www.msi.umn.edu/
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being used in the analysis, and this average efficacy is used in downstream analyses. This 

equates to equation 1 below, where µcombo,IDA is the mean IDA predicted efficacy of a 

combination of drugs A to Z in n cell lines and where EAk and EZk are the respective efficacies 

of drugs A and Z in cell line k.  

 µ𝑐𝑜𝑚𝑏𝑜,𝐼𝐷𝐴 =
∑ 𝑚𝑖𝑛(𝐸𝐴𝑘 , … , 𝐸𝑍𝑘)
𝑛
𝑘=1

𝑛
 (1) 

Note that this is well defined for any efficacy metric where a decrease in the efficacy 

metric indicates a decrease in the ability of a drug to kill cells (i.e. for a metric such as viability 

relative to untreated cells). If a decrease in the efficacy metric indicates an increase in the ability 

Package Name 
Package 

Version Package Citation Package WebLink 

car 2.1.5 Fox and Weisberg, 2011 https://CRAN.R-project.org/package=car  

ComplexHeatmap 1.14.0 Gu et al., 2016 
https://bioconductor.org/packages/release/bi

oc/html/ComplexHeatmap.html  

drc 3.0.1 Ritz et al., 2015 https://CRAN.R-project.org/package=drc  

IDACombo 1.0.0 This chapter.  

parallel 3.4.2 R Core Team, 2017 
Created by the R Core team and included in 

R since R version 2.14.0. 

pbapply 1.3.3 
Solymos and Zawadzki, 

2017 

https://CRAN.R-

project.org/package=pbapply  

powerSurvEpi 0.0.9 Qiu et al., 2015 
https://CRAN.R-

project.org/package=powerSurvEpi  

precrec 0.9.1 
Saito and Rehmsmeier, 

2017 

https://CRAN.R-

project.org/package=precrec  

progress 1.1.2 Csárdi and FitzJohn, 2016 
https://CRAN.R-

project.org/package=progress  

RColorBrewer 1.1.2 Neuwirth, 2014 
https://CRAN.R-

project.org/package=RColorBrewer  

readr 1.1.1 Wickham et al., 2017 https://CRAN.R-project.org/package=readr  

readxl 1.0.0 
Wickham and Bryan, 

2017 
https://CRAN.R-project.org/package=readxl  

rgl 0.98.1 Adler et al., 2017 https://CRAN.R-project.org/package=rgl  

rvest 0.3.2 Wickham, 2016 https://CRAN.R-project.org/package=rvest  

sandwich 2.4.0 Zeileis, 2004, 2006 
https://CRAN.R-

project.org/package=sandwich  

xlsx 0.5.7 Dragulescu, 2014 https://CRAN.R-project.org/package=xlsx  

Table 2: R packages used in chapter 3 analysis. This table lists all of the R packages used in 

the analyses in this chapter, along with their version numbers, citations, and weblinks. 

https://cran.r-project.org/package=car
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://cran.r-project.org/package=drc
https://cran.r-project.org/package=pbapply
https://cran.r-project.org/package=pbapply
https://cran.r-project.org/package=powerSurvEpi
https://cran.r-project.org/package=powerSurvEpi
https://cran.r-project.org/package=precrec
https://cran.r-project.org/package=precrec
https://cran.r-project.org/package=progress
https://cran.r-project.org/package=progress
https://cran.r-project.org/package=RColorBrewer
https://cran.r-project.org/package=RColorBrewer
https://cran.r-project.org/package=readr
https://cran.r-project.org/package=readxl
https://cran.r-project.org/package=rgl
https://cran.r-project.org/package=rvest
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=xlsx
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of a drug to kill cells (i.e. if the used metric is viability reduction, etc.), then the equation must be 

modified to equation 2. 

 µ𝑐𝑜𝑚𝑏𝑜,𝐼𝐷𝐴 =
∑ 𝑚𝑎𝑥(𝐸𝐴𝑘, … , 𝐸𝑍𝑘)
𝑛
𝑘=1

𝑛
 (2) 

 

Bliss Independence predictions of drug combination efficacy are based on rearranged 

equations from Bliss et al. (Bliss, 1939) while assuming that the coefficient of association 

between drugs in a combination is equal to 0. This equates to equation 3 below, where µcombo,Bliss 

is the mean Bliss Independence predicted efficacy of a combination of drugs A to Z in n cell 

lines and where PAk and PZk are the respective probabilities of an individual cell surviving 

treatment with drugs A and Z in cell line k. These probabilities can be taken as the viabilities of 

cell line k when treated with drugs A or Z relative to an untreated control. 

 µ𝑐𝑜𝑚𝑏𝑜,𝐵𝑙𝑖𝑠𝑠 =
∑ 𝑃𝐴𝑘 ×…× 𝑃𝑍𝑘
𝑛
𝑘=1

𝑛
 (3) 

Note that Bliss Independence is only defined for probabilities between 0 and 1, so any 

viabilities which fell below 0 or above 1 were rounded up to 0 or down to 1 respectively for Bliss 

Independence calculations in our analysis. 

For both IDA and Bliss Independence based predictions, prediction uncertainties were 

estimated using Monte Carlo simulations with 10000 iterations each. 

Efficacy Metrics: Percent Growth vs. Percent Viability 

Percent relative growth (shortened to “percent growth” throughout this paper) is the 

primary efficacy metric available in NCI-ALMANAC. It can be interpreted such that -100% 

growth indicates complete cell death at the study’s endpoint, 0% growth indicates no increase in 

viability at the study’s endpoint relative to the viability measured at the start of the study (i.e. 
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time 0, the time a treatment was added to the cells), and 100% growth indicates identical 

viability to an untreated control at the study’s endpoint. Notably, calculating this metric requires 

a cell viability measurement to be taken at time 0, when a treatment is first added to the cell line. 

A full description of how percent growth is calculated is available on the NCI-60 screening 

methodology webpage. 

Percent relative viability (shortened to “percent viability” throughout this paper), on the 

other hand, is the primary metric used for CTRPv2 and GDSC. Unlike percent growth, percent 

viability is not calculated using a time zero (time of drug addition) timepoint. Instead, it is simply 

the ratio of the viability of a treated cell line at a study’s endpoint divided by the viability of an 

untreated control at the study’s endpoint. As such, it can be interpreted such that 0% viability 

indicates complete cell death at a study’s endpoint and 100% viability indicates identical 

viability to an untreated control at the study’s endpoint. Notably, this means that percent viability 

is not able to differentiate between treatments that are cytotoxic and treatments that are 

cytostatic. 

Processing CTRPv2 and GDSC cell line drug screening data 

CTRPv2 and GDSC often use slightly different names for the same drugs and cell lines, 

so these identifiers were matched between the two datasets using the harmonized identifiers 

provided by Ling et al. (2018). The code used to do this is included in the “Harmonizing GDSC 

and CTRPv2” folder of the “IDACombo Paper” project on OSF. 

Following identifier harmonization, four-parameter log-logistic dose-response curves 

were fit to the raw drug response data using the drc R package v3.0.1 (Ritz et al., 2015) and the 

code included in the “Reprocessing raw CTRPv2 and GDSC data” folder of the “IDACombo 

Paper” OSF project. This was done because the available sources of processed dose-response 
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data for CTRPv2 and GDSC were generated using different algorithms between the two datasets. 

Recalculating the curves from the raw data allowed us to harmonize the analysis method for both 

datasets, and it allowed us to utilize information from all raw data points when estimating 

uncertainties in downstream analyses. 

NCI-ALMANAC Analysis 

The November 2017 release of NCI-ALMANAC was downloaded from this link on 

5/17/2019. IDACombo was used to predict drug combination efficacies for the combinations 

included in NCI-ALMANAC using the monotherapy data in NCI-ALMANAC. To avoid 

evaluating the accuracy of IDACombo for the same drug combination more than once, 

predictions were only made for each drug combination using the maximum tested monotherapy 

concentrations for each drug in the combination. Since Holbeck et al. (2017) reported protocol 

differences between the different screening sites used to create NCI-ALMANAC, data for each 

monotherapy and drug combination was restricted to whichever site performed the most 

experiments for that monotherapy/combination. Furthermore, if multiple experiments were 

performed for the same treatment/cell line pair, the results of those experiments were averaged. 

The monotherapy based drug combination efficacy predictions for each cell line were then 

averaged across all cell lines to produce a mean predicted efficacy for each drug combination, 

and the measured efficacies in NCI-ALMANAC were also averaged to produce a mean 

measured efficacy for each drug combination. These predicted and measured mean efficacies 

were then compared. All data and code used for this analysis is included in the “NCI-

ALMANAC Analysis” folder of the “IDACombo Paper” project on OSF. 

https://wiki.nci.nih.gov/download/attachments/338237347/ComboDrugGrowth_Nov2017.zip?version=1&modificationDate=1510057275000&api=v2
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Identifying Clinical Trials for IDACombo Clinical Validation 

As outlined in Figure 9, the rvest  R package v0.3.2 (Wickham, 2016) was used to search 

ClinicalTrials.gov with 9,165 search strings designed to identify trials that tested at least two of 

the drugs in CTRPv2 or GDSC. Search results were then compiled, resulting in the identification 

of 22290 clinical trial records. These records were filtered to identify only completed, phase III 

clinical trials, resulting in 1106 clinical trial records. Web scraping with rvest was then 

performed again on ClinicalTrials.gov to search the records of each trial for listed publications 

associated with the trial. This resulted in the identification of 1537 publications associated with 

636 clinical trials. Web scraping with rvest was then performed on PubMed.gov to collect the 

abstracts for each of these publications, which were then manually inspected to determine if the 

trial met the following inclusion criteria: 1. Completed, phase III clinical trial; 2. ≥50 patients per 

trial arm; 3. All cytotoxic drugs in control and test therapies are available in at least one of either 

CTRPv2 or GDSC; 4. ≥50 cell lines available for predictions of tested control and test therapies; 

5. Test therapy is control therapy plus one or more additional drugs; 6. Clinically relevant drug 

concentrations for each drug in a trial are not > 2x the tested drug concentrations in the dataset(s) 

necessary to predict that trial’s efficacy (i.e. CTRPv2 and/or GDSC); and 7. Trial is not 

substantially the same as another selected trial (i.e. same treatment groups, doses, cancer type, 

patient population, and outcomes). After trials were selected based on publication abstracts, the 

full articles were downloaded and reviewed for final selection and collection of trial information. 

This resulted in the identification of 54 clinical trials for use in the validation analysis—48 of 

which reported PFS/TTP results and 50 of which reported OS results. These trials tested 62 

unique drug treatments (46 unique control vs test treatment comparisons) involving 32 unique 

drugs. The selected trials and are listed in Table S3. The data and code used in this selection 
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process are included in the “Identifying Clinical Trials” folder of the “IDACombo Paper” project 

on OSF. 

Identification of Clinically Relevant Drug Concentrations 

In order to ensure that our drug combination efficacy predictions are clinically relevant, I 

surveyed the published literature to identify clinical plasma concentrations for all of the late-

stage clinical drugs in CTRPv2 or GDSC. For drugs involved in the clinical trials identified for 

the clinical validation of IDACombo, I searched for plasma concentrations produced by the drug 

doses used in those trials. As such, multiple concentrations were identified for some drugs, each 

corresponding to a different dose of that drug. When multiple concentrations existed for a drug, 

the highest clinical concentration was used for the prospective analysis. All clinical 

concentrations as well as their corresponding citations are included in Table S4, with 

concentrations for the clinical trial analysis in the first sheet of the table and concentrations for 

the prospective analysis in the second sheet. 

Clinical concentrations were defined using published clinical trials which measured 

patient plasma concentrations over time after drug administration. Since many drugs that are 

administered via bolus IV exhibit extremely high plasma concentrations at the time of 

administration with a very rapid decrease in concentration immediately after administration, I 

decided that Cmax values were not appropriate for use in our model. As such, I opted to define 

our clinical concentration as the maximum plasma concentration achieved at least 6 hours after 

drug administration, which I called Csustained. I chose 6 hours because I observed that the 

exponential decline in plasma concentration for bolus IV drugs is typically finished by 6 hours, 

though I also found that the idea of using 6 hour plasma concentrations to define clinical drug 
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activity is not unique to our study (Cantarovich et al., 1988). A graphical demonstration of how 

Csustained values were determined is included in Figure 11. 

Estimating Clinical Trial Powers with IDACombo 

Cell line viabilities were estimated at Csustained drug concentrations using the fitted 

four-parameter log-logistic dose-response curves calculated from the raw CTRPv2 and GDSC 

data. These monotherapy viabilities were used to estimate mean viabilities for the control and 

test treatments using IDACombo either using IDA based predictions or Bliss Independence 

based predictions. Since the efficacy predictions were made using viability, where 100% 

viability indicates a hazard of 1 (all cancer cells are alive relative to untreated) and 0% viability 

indicates a hazard of 0 (all cancer cells are dead), a hazard ratio could then be estimated for each 

control/test treatment comparison by dividing the mean test treatment viability by the mean 

control treatment viability. The estimated hazard ratios were then used to estimate PFS/TTP/OS 

power for each trial using the powerSurvEpi R package v0.0.9 (Qiu et al., 2015) and the number 

of PFS/TTP/OS events observed in each trial. Uncertainties for hazard ratios and trial powers 

were estimated using Monte Carlo simulations with 10000 iterations each. All clinical trial 

power predictions were performed using the data and scripts included in the “Clinical Trial 

Validation Analysis” folder of the “IDACombo Paper” project on OSF. 

Prospective Analysis 

The prospective analysis was performed using all drugs in CTRPv2 and GDSC that have 

reached phase III or IV clinical trials, with selected phase 2 drugs included based on our lab’s 

interests. For each selected drug, cell line viabilities were estimated using drug concentrations 

from 0 to Csustained and the fitted four-parameter log-logistic dose-response curves calculated 

from the raw CTRPv2 and GDSC data. These monotherapy viabilities were then used to estimate 
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mean viabilities for the control and test treatments using IDACombo using IDA based 

predictions both with all available cell lines and with cancer-specific sets of cell lines. The 

Figure 7. Legend on page 43. 
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predicted mean drug combination viabilities were then used to calculate hazard ratios between 

the predicted drug combination efficacy and the best monotherapy efficacy (HRC/Mbest) in the 

same way as was done for the clinical trial analysis. Since this hazard ratio would not allow for 

comparisons of drug combinations that did not share the same most effective monotherapy, I 

developed an IDAcomboscore metric which is calculated using equation 4, where Δvia is equal to 

the mean viability when cell lines are treated with the best monotherapy (i.e. monotherapy 

resulting in the lowest mean viability) minus the mean viability when cell lines are treated with 

the drug combination. 

 IDAcomboscore = ∆via − ∆via × HRC Mbest⁄  (4) 

The resulting metric is larger for drug combinations that are expected to be more 

efficacious, and it rewards drug combinations that maximally decrease the mean cell line 

Figure 7, continued. IDACombo allows drug combination efficacy predictions to be 

made using monotherapy cell line data, and these predictions can be validated against 

measured efficacies or used to identify novel efficacious drug combinations. 

A) Example calculations demonstrating how IDACombo predicts drug combination efficacies 

based on IDA. In this example, three cell lines (cell lines 1 to 3) with measured efficacies for 

three monotherapies at their selected concentrations (drugs A to C) are used to predict the 

efficacy of the combination of drugs A + B + C. Highlighted cells indicate the best 

monotherapy for that cell line (i.e. provides greatest reduction in viability). B) Example 

describing strategy for validation of IDACombo efficacy predictions using in vitro 

measurements of efficacy. Measured and predicted average viabilities for each treatment can 

be directly compared by calculating their correlation and calculating prediction errors. C) 

Example describing strategy for validation of IDACombo efficacy predictions using 

published clinical trial results. Predicted combination efficacies can be used to calculate study 

powers, and a power threshold (80%) can be set to classify trials as likely or unlikely to detect 

a significant improvement in a trial outcome (i.e. PFS). These predictions can then be 

compared to observed trial outcomes. D) Intro to the analysis techniques available for using 

IDACombo predictions to identify novel efficacious drug combinations. High-throughput 

analyses using summary statistics can be used to compare efficacy predictions for many drug 

combinations at once, or detailed analyses can be used to explore the efficacy of a single drug 

combination at varying concentrations of each drug in the combination. 
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viability relative to monotherapy while also having a low HR relative to the most effective 

monotherapy in the combination. 

All data and code used to perform the prospective analysis is included in the “Prospective 

Analysis” folder of the “IDACombo Paper” project on OSF. Notably, this folder also includes a 

subfolder, “./Outputs/Cluster_Heatmaps/”, with efficacy prediction plots and tables for 

predictions made with all cell lines and with 27 cancer type/subtype specific sets of cell lines in 

both CTRPv2 and GDSC. For plots and tables of all cell line predictions, combinations are only 

included if at least 50 cell lines were available for predicting the efficacy of that combination. 

For cancer type/subtype specific predictions, at least 3 cell lines were required for a combination 

to be plotted. 

RESULTS 

IDACombo R Package 

To ascertain the utility of an IDA based algorithm for predicting drug combination 

efficacy, I developed the IDACombo R package, which uses experimentally measured in vitro 

monotherapy response data to estimate drug combination efficacies. As shown in Figure 7A, the 

algorithm relies on the principle of IDA, simply predicting that the efficacy of a drug 

combination in a given cell line or patient will be equal to the effect of the single best drug in 

that combination. Notably, while this approach cannot predict any benefit of a drug combination 

versus the most effective monotherapy in an individual cell line or patient, the approach can 

identify drug combinations that are predicted to be more effective than monotherapy when 

responses are averaged across a population of cell lines or patients (see “Average” column in 

Figure 7A). In this way, IDACombo is suitable for improving outcomes in situations where 
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precision medicine is not yet able to identify which of several available drugs will be most 

effective for an individual patient. 

To ensure that the model is useful, I validate IDACombo predictions using both in vitro 

data and clinical trial data. In vitro validation is performed by directly comparing predicted 

combination efficacies to experimentally measured combination efficacies as shown in Figure 

7B, and a detailed outline for our in vitro validation pipeline is included in Figure 8A. Clinical 

validation of IDACombo predictions is performed by using those predictions to estimate clinical 

trial powers and comparing those predicted powers to the published results of each trial as 

illustrated in Figure 7C. A detailed outline of our clinical validation pipeline is included in 

Figure 8B. 

Beyond model validation, IDACombo predictions can also be used to identify novel 

efficacious drug combinations either by using summary statistics to compare many drug 

combinations at once or by performing detailed analyses of individual drug combinations where 

efficacies are predicted and analyzed for numerous concentrations of each drug in a combination 

(Figure 7D). A prospective analysis for EGFR-WT lung cancer is presented at the end of the 

results section. 

In Vitro Validation of IDACombo 

To validate the in vitro utility of the algorithm, I compared predictions made with 

IDACombo to measured combination efficacies for approximately 5000 drug combinations 

available in the NCI-ALMANAC dataset (Holbeck et al., 2017) using the analysis pipeline 

described in Figure 8A. Briefly, monotherapy data from NCI-ALMANAC was used to predict 

efficacies for the drug combinations in the dataset, and the predicted combination efficacies were 

compared to the measured combination efficacies (see materials and methods for more details). 
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Notably, the efficacy metric used in NCI-ALMANAC is percent growth, which should not be 

confused with percent viability which is used for the clinical trial validation and prospective 

analyses later in this paper. These terms are defined and compared in the materials and methods. 

As shown in Figure 9A, the predicted combination efficacies in NCI-ALMANAC 

strongly correlate with the measured efficacies (Pearson’s r = 0.937, Spearman’s rho = 0.929). 

Furthermore, the large majority of predicted efficacies were within 10% growth of the observed 

values with a median error of 4.99% growth (Figure 9B), and the predictions were slightly 

Figure 8. Pipelines to validate IDACombo predictions both in vitro and in clinical trial 

data. A) In vitro validation strategy. Monotherapy data from NCI-ALMANAC is used to 

predict drug combination efficacies, and these efficacies are compared to the measured 

combination efficacies that are also in NCI-ALMANAC. B) Clinical trials are systematically 

identified using ClinicalTrials.gov and PubMed.gov, and efficacy predictions are made for 

each treatment in each trial using clinical drug concentrations and monotherapy cell line data 

from CTRPv2 and/or GDSC. These predictions are used to estimate powers for each trial, and 

these powers are compared to clinical trial outcomes. 
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skewed towards being conservative estimates, with 60.6% of combination efficacies being 

predicted to be less effective than they actually are and 39.4% being predicted to be more 

effective than they actually are (Figure 9C). These results suggest that most drug combinations in 

NCI-ALMANAC can be accurately modeled via IDA, and they support the use of IDACombo to 

computationally predict drug combination efficacy using single agent screening data. 

Figure 9. Agreement between predicted 

and observed combination efficacies in 

NCI-ALMANAC. A) Scatterplot showing 

the high correlation between the IDA-Combo 

predicted average percent growth in NCI-

ALMANAC for each drug combination 

versus the experimentally observed average 

percent growth. The green line is a reference 

diagonal with slope = 1 and intercept = 0. 

Note that predictions were only made for the 

maximum concentration tested in NCI-

ALMANAC for each drug. B) Density plot 

showing that the absolute values of the 

differences between the predicted percent 

growths and the observed percent growths 

for each drug combination are generally 

below 10%, with >50% of drug combinations 

having an absolute prediction error below 

5%. The red line marks a difference of ±10% 

growth between predicted and observed 

values. C) Density plot showing that the 

differences between the predicted percent 

growths and the observed percent growths 

for each drug combination have a slight 

tendency towards being positive—indicating 

that IDA-Combo underestimates efficacy 

more often than it underestimates efficacies. 
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Clinical Validation of IDACombo 

While the in vitro validation results 

suggest that the IDACombo approach is 

promising, they do not establish the clinical 

utility of the model, as it is likely that most of 

the combinations tested in NCI-ALMANAC 

are not clinically useful. Thus, even though 

IDACombo accurately predicts efficacy for 

most of the NCI-ALMANAC combinations, it 

is possible that the clinically efficacious drug 

combinations tested in NCI-ALMANAC are 

all within the subset of combinations that are 

poorly predicted by IDACombo. To explore 

this possibility, I sought to validate 

IDACombo predictions of clinical trial 

efficacy against published clinical trial results. 

The analysis pipeline for this clinical 

validation is outlined in Figure 8B.  

Identifying clinical trials and clinical drug 

concentrations for clinical validation of 

IDACombo 

My first priority for evaluating the 

clinical utility of IDACombo was to identify a 

Figure 10. Selection pipeline for clinical 

trial validation. Flowchart detailing how 

completed, phase III clinical trials were 

selected for the clinical trial validation 

analysis. Searches of ClinicalTrials.gov and 

PubMed.gov were performed via web 

scraping (see materials and methods) to 

identify published results for trials that may 

meet our inclusion criteria, and the identified 

clinical trial publications were then manually 

inspected to identify trials that met the 

study’s inclusion criteria. 
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diverse and unbiased set of clinical trials against which I could test IDACombo’s predictions. To 

this end, I systematically searched clinicaltrials.gov for completed, phase III clinical trials that 

tested cancer drug combinations for which I could make IDACombo predictions using the 

Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2013) and the Cancer 

Therapeutics Response Portal Version 2 (CTRPv2) (Basu et al., 2013) monotherapy CCL 

screening datasets. My pipeline for selecting clinical trials is illustrated in Figure 10 and 

described in detail in the materials and methods. Ultimately, this resulted in the identification of 

54 clinical trials for our clinical validation of IDACombo which tested 62 unique treatments 

involving 32 drugs. A list of these trials is included in Table S3. To ensure the clinical relevance 

of IDACombo’s predictions for these trials, I searched published phase I and II clinical trials to 

identify clinical plasma concentrations for each drug at the administered doses used in each trial. 

Since maximum plasma concentrations (Cmax) are extremely transient for some drugs, 

especially those administered via IV bolus, I decided to use the maximum plasma concentrations 

achieved at least 6 hours after drug administration (a metric I termed Csustained,6hr) as the 

concentrations for IDACombo predictions. Figure 11A illustrates how Csustained is calculated 

for drugs with constantly decreasing plasma concentrations over time, and Figure 11B illustrates 

how Csustained is calculated for drugs with increasing plasma concentrations beyond 6 hours. A 

more detailed description of this metric and why it was chosen is included in the materials and 

methods. Csustained values for each drug in the clinical trial analysis, along with the citations 

used to determine them, are included in Table S4.  
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IDACombo predictions of clinical trial power closely agree with clinical trial results for trial in 

chemo-naïve patients, but not for trials in patients who had received previous chemotherapy 

Following clinical trial and drug concentration selection, IDACombo was used to predict 

efficacies for the control and experimental treatments of each trial. The predicted efficacies were 

then used to calculate hazard ratios (HRs) between treatment groups in each trial, and the HRs 

Figure 11. Calculating Csustained,6hr 

from clinical plasma concentration curves. 

This figure gives two examples to illustrate 

how Csustained is calculated from plasma 

concentration curves identified in published 

clinical trials. A) When mean plasma drug 

concentrations constantly decrease following 

administration of a drug, Csustained,6hr is 

simply the mean plasma concentration at 6 

hours after drug administration. B) When 

mean plasma drug concentrations continue 

rising for more than 6 hours following 

administration of a drug, Csustained,6hr is 

the maximum plasma concentration achieved 

at least 6 hours after drug administration. 

Error bars represent mean ± standard error. 
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were used to estimate the statistical power each trial had to detect significant improvements in 

progression-free survival (PFS), time to progression (TTP), or overall survival (OS). These 

powers are included in Table S3 and are plotted in Figure 12, with trials separated based on 

Figure 12. Clinical trial validation results show accurate efficacy predictions for trials in 

previously untreated patients but not for trials in previously treated patients. 
IDACombo was used to make efficacy predictions for the control and experimental arm 

treatments of the clinical trials selected using the pipeline in Figure 10. Hazard ratios were 

then calculated using these predictions, and study powers were calculated for each available 

comparison of a control therapy vs. an experimental therapy. These comparisons are 

separated based on whether or not the experimental arm statistically improved either 

PFS/TTP (panels A & C) or OS (panels B & D) in the published trial results. Predicted 

powers for each comparison on plotted on the y-axes, and an 80% power threshold is used to 

classify whether or not a comparison is expected to yield a statistically significant 

improvement. Comparisons are colored according to the dataset used to make predictions for 

the compared treatments. Panels A & B show results for trials in which patients had received 

no previous chemotherapy treatments. Panels C & D show results for trials in patients who 

had received previous chemotherapy. Error bars represent mean ± standard error. 
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whether or not a statistical improvement in PFS/TTP or OS was observed in the clinic. 

Encouragingly, using a standard 80% power cutoff to classify trials as likely or unlikely to detect 

a statistically significant improvement, our predicted powers for PFS/TTP correctly classified 

88.5% of clinical trials in which patients had not received cancer drug treatment prior to trial 

entry (Figure 12A), with >85% sensitivity and specificity. For OS powers in treatment-naïve 

trials (Figure 12B), accuracy, sensitivity, and specificity were >90%, but it is difficult to 

confidently assess the suitability of IDACombo for predicting OS benefit, because I only 

identified 3 clinical trials in treatment-naïve patients which detected a statistically significant 

improvement in OS. Unfortunately, the model performed much more poorly for clinical trials in 

patients who had undergone cancer drug treatment prior to entering the trial (Figures 12C and 

12D). While the reasons for this poor performance in previously treated patients are not 

immediately clear, several possible explanations are discussed in detail in the discussion section 

of this chapter. 

Clinical IDACombo predictions for targeted therapies 

It should be noted that the previous predictions were made using all of the available cell 

lines in CTRPv2 or GDSC, so the predictions were not based exclusively on cell lines of the 

same cancer type as was being tested in each trial. For targeted therapies, however, it is often the 

case that the therapy is only effective in a specific molecular subtype of cancer. Two of the 

clinical trials selected for our analysis tested targeted therapies and reported full study results for 

patients with and without the molecular features targeted by those therapies. To evaluate the 

suitability of IDACombo to predict the efficacy of targeted therapies, I made power predictions 

for these two trials using sets of cell lines with or without the relevant molecular features for 

each reported patient subgroup. The resulting predictions for these trials are shown in Table 3. 
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Notably, IDACombo’s predictions agreed with clinical findings that there is a higher expected 

benefit for patients with the molecular features targeted by the targeted therapies than for patients 

without those molecular features. However, the subtype-specific predictions did not reach the 

80% power cutoff necessary to correctly classify the trials. This may be due to the fact that very 

few cell lines were available for these subtype-specific predictions, leading to relatively high 

prediction uncertainties and a relatively small population in which to detect phenotypic 

heterogeneity. 

Clinical IDACombo predictions with cancer-specific sets of cell lines perform more poorly than 

predictions with all available cell lines 

To further assess the utility of making predictions with sets of cell lines matched to 

patient phenotypes, I predicted clinical trial powers using cancer-specific sets of cell lines for 

each clinical trial (Figure 13). Note that clinical trials were excluded if fewer than 5 cancer-

specific cell lines were available with which to make predictions. The cancer-specific predictions 

Di Leo et al., 2008: Adding Lapatinib to Paclitaxel for Breast Cancer 

Cancer 

Subtype 

Lapatinib 

Improved 

OS 

Measured 

OS HR 

Lapatinib 

Improved 

TTP 

Measured 

TTP HR 

Predicted 

HR 

Predicted 

OS 

Power 

Predicted 

TTP 

Power 

# Available 

Cell Lines 

HER2- False 0.89 False 1.05 0.83 0.24 0.35 14 

HER2+ False 0.74 True 0.35 0.61 0.33 0.55 6 

Wu et al., 2013: Adding Erlotinib to Gemcitabine and Carboplatin for NSCLC 

Cancer 

Subtype 

Erlotinib 

Improved 

OS 

Measured 

OS HR 

Erlotinib 

Improved 

PFS 

Measured 

PFS HR 

Predicted 

HR 

Predicted 

OS 

Power 

Predicted 

PFS 

Power 

# Available 

Cell Lines 

EGFR-

WT 
False 0.77 False 0.97 0.93 0.06 0.07 124 

EGFR-

Mutant 
True 0.48 True 0.25 0.64 0.35 0.53 7 

Table 3. IDA-combo predictions can identify subtype-specific responses to combinations 

of targeted therapies. For two clinical trials that only identified test arm benefit for subsets of 

patients with specific molecular subtypes, clinical powers were calculated using IDACombo 

with groups of cell lines that either had or lacked those molecular subtypes. This table 

summarizes those predicted trial powers and the observed results of these trials. 
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resulted in accuracies > 80% for trials in chemo-naïve patients, but model performance was 

generally reduced and prediction uncertainties increased for cancer-specific predictions versus 

pan-cancer predictions. This result, along with the analysis of the two targeted therapy trials, 

suggests that predictions made using cancer and subtype-specific sets of cell lines could be 

Figure 13. Using only cancer-specific cell lines does not improve model performance for 

clinical trial power predictions. Identical to Figure 12, except that predictions were made 

for each trial using sets of cell lines specific to the cancer type being studied in each trial. A) 

Predicted power of each trial in previously untreated patients to detect a significant 

improvement in PFS/TTP at an alpha of 0.05 versus whether or not the study actually 

detected a significant improvement in PFS/TTP. B) Predicted power of each study in 

previously untreated patients to detect a significant improvement in OS at an alpha of 0.05 

versus whether or not the study actually detected a significant improvement in OS. C) 

Predicted power of each trial in previously treated patients to detect a significant 

improvement in PFS/TTP at an alpha of 0.05 versus whether or not the study actually 

detected a significant improvement in PFS/TTP. D) Predicted power of each study in 

previously treated patients to detect a significant improvement in OS at an alpha of 0.05 

versus whether or not the study actually detected a significant improvement in OS. Error bars 

represent mean ± standard error. 
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preferable to pan-cancer predictions if sufficient numbers of cell lines were available for each 

cancer type, but there are currently too few cell lines available for each cancer type in these 

datasets for this approach to be viable. In the meantime, pan-cancer predictions appear to be 

adequate for most of the drug combinations used in our clinical trial dataset. 

Clinical IDACombo prediction accuracy drops when predicting efficacy for trials with drugs 

which have plasma concentrations beyond the tested in vitro concentrations 

Beyond the selection of cell lines, I also wanted to investigate the importance of drug 

concentration selection for IDACombo predictions. Several of the trials identified from 

ClinicalTrials.gov tested drugs with Csustained concentrations above the tested concentrations 

for those drugs in CTRPv2 or GDSC, with several trials including drugs with Csustained 

concentrations > 2x the tested in vitro concentrations in GDSC (Figures 14A and 14C). To 

determine whether or not this would affect IDACombo based power predictions for these trials, I 

calculated model performance for both PFS/TTP and OS for these trials (specifically trials in 

chemo-naïve patients) and compared model performance to whether or not trials included drugs 

with Csustained concentrations higher than tested in vitro concentrations. Trials with at least one 

drug with a Csustained concentration > 2x the maximum tested in vitro concentration for that 

drug showed largely reduced accuracy, specificity, and precision in both PFS/TTP and OS 

predictions relative to trials with drugs that have Csustained concentrations ≤2x the maximum 

tested in vitro concentrations (Figures 14B and 14D). As a result of this finding, only trials with 

drugs that have Csustained concentrations ≤2x the maximum tested in vitro concentrations were 

included in the other clinical analyses in this paper. 
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Clinical IDACombo predictions are affected by selected drug concentrations, but remain 

accurate, sensitive, and specific across a range of concentrations 

Figure 14. IDACombo predictions become less accurate when made using drug 

concentrations beyond the tested monotherapy concentration range. A) Similar to Figure 

12A, this plot shows predicted clinical trial powers for PFS/TTP in trials with chemo-naïve 

patients, separated based on whether or not the trial actually observed a statistical 

improvement in PFS/TTP with the test treatment. Trial points are sized according to the 

maximum ratio of the Csustained concentrations used for the drugs in the trial to the 

maximum tested concentrations of those drugs in CTRPv2 or GDSC. Ratios above 1 indicate 

that the Csustained concentration is higher than the maximum available concentration in 

CTRPv2 or GDSC. Notably, most of the incorrectly classified trails have ratios > 1 and most 

of the correctly classified trials have ratios < 1. B) Barplot showing PFS/TTP model 

performance for trials with chemo-naïve patients that fall within three different ranges of 

ratios of drug Csustained concentration to tested concentration in CTRPv2 or GDSC. 

Notably, trials with a Csustained/tested concentration ratio > 2 are predicted much more 

poorly than trials with a ratio between 0 and 1 or with a ratio between 1 and 2. C) Same as A, 

except for OS in trials with chemo-naïve patients. D) Same as B, except for OS in trials with 

chemo-naïve patients. Error bars represent mean ± standard error. 
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I further examined the importance of drug concentration selection by assessing whether 

or not prediction performance was harmed by using drug concentrations that deviated from 

clinical plasma concentrations. When predictions were made using the maximum concentrations 

tested for each drug in either CTRPv2 or GDSC rather than Csustained concentrations, 

prediction accuracies in treatment-naïve trials fell dramatically (69.2% accuracy for PFS/TTP 

and 70.4% accuracy for OS) (Figures 15A and 15B). Alternatively, when the Csustained 

concentrations for each drug in a trial were multiplied by factors between 0.1 and 10, I found that 

uniformly increasing drug concentrations kept the method’s sensitivity high but decreased 

accuracy, specificity, and precision for both PFS/TTP and OS. Uniformly decreasing 

concentrations quickly reduced sensitivity and precision (Figures 15C and 15D). These results 

suggest that correctly identifying clinical drug concentrations is important for in vitro predictions 

using IDA, with underestimated concentrations decreasing model performance more than 

overestimated concentrations when clinical dose ratios between drugs are preserved. 

Clinical predictions with Bliss Independence are less accurate than predictions with IDA 

Another possibility I wished to explore was whether or not an alternative model of drug 

combination efficacy could perform better than IDA for predicting clinical trial outcomes in our 

dataset. One of the most well established models for calculating the expected efficacy of a 

combination of non-interacting drugs is Bliss Independence (Bliss, 1939), which is described in 

detail and compared to IDA in the materials and methods. To determine the utility of Bliss 

Independence for predicting clinical drug combination efficacy, I predicted clinical trial powers 

using Bliss Independence instead of IDA. As can be seen in Figure 16, Bliss Independence based 

predictions were generally less accurate, specific, and precise than the IDA based predictions in 
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Figure 12, suggesting that IDA is a more useful model for clinical drug combinations, at least for 

the trials in our dataset.  

Overall, the clinical trial validation results suggests that IDACombo is capable of making 

highly accurate clinical predictions for drug combinations in previously untreated patients using 

Figure 15. Clinical power predictions are dose-dependent. A&B) Similar to Figure 12A 

and 12B, all available cell lines were used to create predictions of study power for trials in 

chemo-naïve patients and compared to whether or not the trials saw a statistically significant 

improvement in PFS/TTP (A) or OS (B). In this figure, however, maximum tested 

concentrations were used for each drug instead of Csustained concentrations. Notably, these 

predictions with the maximum tested concentration of each drug results in much poorer model 

performance than the Csustained predictions in Figure 12. C&D) In an effort to determine 

how sensitive our method is to dose perturbation, power predictions were made for each trial 

in chemo-naïve patients using Csustained drug concentrations which have been multiplied by 

a multiplication factor between 0.1 and 10. Model performance metrics for PFS/TTP (C) or 

OS (D) were then calculated using predictions from each dose multiplication factor, and those 

metrics are plotted here. Error bars represent mean ± standard error. 
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only in vitro monotherapy information. The success of this tool bridges the gap not only between 

monotherapies and combinations, but also between cell lines and patients. 

Prospective Efficacy Predictions 

Pan-cancer IDACombo predictions reveal patterns based on drug mechanisms of action 

Given the encouraging validation results both in vitro and in clinical trial data, I chose to 

create efficacy predictions for all possible 2-drug combinations of clinically advanced drugs 

available in CTRPv2 or GDSC. The analysis of these results necessitated a different analysis 

Figure 16. Predictions made using Bliss independence are less accurate than those made 

with independent drug action. Power predictions were made for the clinical trials shown in 

Figure 12, but using the Bliss independence model rather than the IDA model. In general, 

when compared to the IDA predictions in Figure 12, Bliss Independence inflates estimated 

powers, leading to decreased precision, specificity, and accuracy while providing marginal 

improvements in sensitivity. Error bars represent mean ± standard error. 
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strategy than was used for the clinical validation analysis, however, because power calculations 

were not convenient given the lack of knowledge about how many PFS/TTP or OS events would 

be observed in future trials of these combinations and the lack of knowledge about which control 

treatment each combination should be best compared to. As a result, I developed the 

IDAcomboscore, which is described in detail in the materials and methods. Generally, the 

IDAcomboscore can be interpreted such that a higher comboscore indicates a more effective 

drug combination relative to the most effective single drug in the combination. 

IDAcomboscores were calculated for all possible 2-drug combinations of clinically 

advanced drugs in CTRPv2 and GDSC using either all available cell lines (pan-cancer) or 

cancer-specific sets of cell lines. The “Prospective Analysis” folder of the “IDACombo Paper” 

project on OSF (see Data and Software Availability in materials and methods) includes full plots 

of these scores, as well as plots comparing IDAcomboscores calculated using different sets of 

cell lines. Pan-cancer IDAcomboscores are plotted in Figure 17 for combinations of CTRPv2 

drugs which had at least one IDAcomboscore >= 0.004 (this cutoff was determined based on 

heatmap cluster boundaries between drugs with higher and lower comboscores). Notably, the 

heatmap suggests that combinations of drugs which work via the same mechanisms of action are 

not expected to be more efficacious than the best monotherapy under IDA (see combinations of 

topoisomerase inhibitors, EGFR inhibitors, MEK inhibitors, mTOR inhibitors, or alkylating 

agents). This is not surprising, since IDA predicts that the best drug combinations will be 

comprised of drugs which target completely separate populations of cells/patients, and drugs that 

have the same mechanism of action are likely to target the same populations of cells/patients. An 

exception to this, however, can be found in the combination of navitoclax and obatoclax, which 

is predicted to be efficacious despite their both being classified as BCL inhibitors. The most 
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Figure 17. IDAcomboscore predictions for late-stage clinical drugs in CTRPv2. 

IDAcomboscores were calculated for all two-drug combinations of late-stage clinical drugs in 

CTRPv2 using all available cell lines for each drug combination. These comboscores are 

plotted here, with darker blue squares representing higher comboscores and, therefore, greater 

predicted drug combination efficacies relative to the constituent monotherapies. Black boxes 

represent missing values, where efficacies could not be predicted for a combination. The first 

bar, farthest left on the right side of the heatmap, indicates whether or not that drug is 

currently used for cancer treatment, the second bar indicates what stage of clinical trials that 

drug has reached, and the third bar indicates if the known Csustained concentration for the 

drug was higher than the maximum tested concentration in CTRPv2 such that predictions had 

to be made with a lower than clinical concentration. The barplot on top of the heatmap 

indicates the average viability achieved using that drug as a monotherapy (full bar indicates 

100% viability). Late-stage clinical drugs that were not predicted to combine well with any 

other drugs (i.e. with a comboscore < 0.004) were excluded from this plot to save space, but a 

full heatmap with all late-stage clinical drugs can be found in the “IDACombo Paper” project 

on OSF (see materials and methods). Combinations of drugs with the same mechanisms of 

action are highlighted for several drug mechanisms. 
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likely explanation for this is that obatoclax has been found to have effects other than BCL 

inhibition.  Indeed, it has been reported that obatoclax can be highly effective in cell lines that 

are relatively resistant to navitoclax (Stamelos et al., 2016). 

An examination of combinations between drugs with different mechanisms of action (so 

called “class effect”) is more difficult than assessing combinations of drugs with the same 

mechanisms of action, because most mechanisms of action are only represented by a single drug 

in Figure 17. This makes it impossible to be confident that the predicted combination efficacy of 

two drugs will be informative about the combination efficacy for two different drugs of the same 

mechanisms. One conclusion that can be made from the figure, however, is that there is clear 

structure in the data, with drugs clustering together based on similar combination partner 

preferences and efficacy intensities.  Some of this structure can be explained by drug 

mechanisms of action, as drugs with the same mechanism of action often end up in the same 

hierarchical clusters (at least, this is the case for the few mechanisms of action for which I have 

more than one drug). This does not fully explain the clustering, however, as we can see with 

topoisomerase inhibitors and EGFR inhibitors, which are divided between several small clusters.  

A more detailed analysis of the drugs’ mechanisms of action may partially explain this, as, for 

the topoisomerase inhibitors, drugs are separated by whether or not they inhibit topoisomerase I 

or II and whether or not they act by binding DNA or intercalating DNA. This is highly 

speculative, however, given the small number of drugs available for each mechanism of action. It 

is also notable that drugs which have similar average viabilities across all cell lines when used as 

a monotherapy tend to be more closely clustered. This suggests that the clustering observed in 

Figure 17 may be explained partially by similarity in drug mechanisms and partially by similarity 

in the average monotherapy efficacies of drugs at their clinical concentrations. Unfortunately, a 
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more detailed analysis of which mechanisms and monotherapy efficacies provide the most 

effective combinations is prevented by the limited number of drugs available for each drug 

mechanism. 

The accuracy of cancer-specific IDACombo predictions is currently limited by the number of 

available cell lines for each cancer type 

Another difficulty in this analysis is that clinical trials are typically designed to treat a 

single cancer type, and an analysis of pan-cancer predictions does not provide information about 

which cancer types each combination would be most effective in. The most direct solution to this 

problem is to analyze predictions made with cancer-specific sets of cell lines, but, as mentioned 

in the clinical trial validation analysis, many cancer types have very few available cell lines. To 

determine how much of a limitation this is, I sought to determine how many cell lines are 

necessary to create accurate predictions using IDACombo. Since the true efficacy of most drug 

combinations is not known, I decided to use agreement between predictions made using CTRPv2 

and GDSC as a metric of prediction accuracy. Notably, I only compared CTRPv2 and GDSC 

predictions for combinations in which Csustained was available for both drugs in both datasets 

and which had at least 400 cell lines available to make predictions with—this resulted in 

comparisons for 351 drug combinations involving 27 compounds. 

For the comparison, I calculated Spearman’s ρ between CTRPv2 and GDSC predictions 

made with varying number of cell lines and plotted them in Figure 18A. This revealed that a ρ as 

high as 0.8 could be achieved using 250 or more cell lines, and that this correlation slowly 

decreased to ~0.7 as the number of cell lines was reduced to 50. With less than 50 cell lines, ρ 

decreased more rapidly, to ~0.6 with 25 cell lines and ~0.3 with 5 cell lines. This suggests that 

most cancer-specific predictions will be suboptimal, owing to their having less than 50 cell lines 
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available to make predictions with, but it also suggests that there is some level of reproducibility 

using those numbers of cell lines. To quantify this reproducibility specifically for the cancer 

Figure 18. IDAcomboscore agreement between CTRPv2 and GDSC is affected by the 

number of cell lines available to make predictions with. In an effort to determine how 

many cell lines are required to estimate drug combination efficacy, IDAcomboscore 

correlations between CTRPv2 and GDSC are plotted versus the number of cell lines used to 

make those predictions. A) IDA-comboscore predictions were made using randomly sampled 

sets of cell lines of varying sizes. Sampling was performed three times for each number of 

cell lines, and error bars represent the standard deviation of the triplicate correlation 

measurements. Notably, agreement between CTRPv2 and GDSC decreases rapidly as the 

number of cell lines is reduced below 50. B) Correlations are plotted for predictions made 

using cancer-specific cell lines (see Figure 13, the “IDACombo Paper” project on OSF, and 

materials and methods). Note that the x-axis denotes the median number of cell line available 

for that cancer type for each drug combination, as the number of cell lines available for each 

cancer type varies from drug to drug. Subsets of breast cancer and lung cancer are highlighted 

in the plot. Note that for both panels A and B, correlations were only calculated for drug 

combinations that used drugs for which their clinical doses were available in both CTRP and 

GDSC so as to avoid calculating correlations between predictions made with different drug 

concentrations between the two datasets. 
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types available in CTRPv2 and GDSC, I plotted Spearman ρ’s between cancer-specific 

IDAcomboscores versus the median number of cell lines available for each of 25 cancer 

types/subtypes (Figure 18B). The results largely agreed with the downsampling approach in 

Figure 18A, showing that Spearman ρ’s for cancer-specific predictions ranged from ~0.7 to ~0.3 

depending roughly on how many cell lines were available for each cancer type. A full list of 

correlation coefficients for each cancer type can be found in Table S5. These findings suggest 

that highly reproducible cancer-specific predictions are currently possible for some cancer types, 

but IDACombo predictions for most cancer types would likely be significantly improved by 

increasing the number of cell lines available for those cancer types. 

IDACombo predicts that navitoclax will efficaciously combine with taxanes in EGFR wild type 

lung cancer 

The cancer subtype with the most available cell lines is currently EGFR wild type lung 

cancer. To demonstrate how cancer-specific predictions can be used to identify novel efficacious 

drug combinations, I performed an example analysis aimed at identifying efficacious 2-drug 

combinations with navitoclax, a BCL inhibitor currently in phase I/II clinical trials for lung 

cancer in various combinations, in EGFR wild type lung cancer. I did this by identifying the 

highest predicted IDAcomboscores for navitoclax combinations in EGFR wild type lung cancer 

(Figure 19A). The combination with the highest predicted efficacy was with daporinad 

(APO866), which is an NAMPT inhibitor that has yet to enter phase III trials after three phase II 

trials failed to show significant efficacy for daporinad monotherapy in refractory B-CLL, 

advanced melanoma, or cutaneous T-cell lymphoma (BioAlliance Pharma, 2013; Goldinger et 

al., 2015). Strikingly, the second and fourth best combinations were both with taxanes (paclitaxel 

and docetaxel). Given the stalled clinical development of daporinad and the shared mechanism of 
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action of paclitaxel and docetaxel, I decided to further investigate the combination of navitoclax 

with taxanes. To do this, I then calculated mean viabilities for the combinations of navitoclax + 

taxane using a range of concentrations from 0 μM up to the achievable clinically sustained 

plasma concentration for each drug. This analysis revealed that the navitoclax + taxane 

combination is predicted to be superior to the best achievable monotherapy efficacy across a 

wide range of drug concentrations for both combinations with docetaxel and paclitaxel (Figures 

18B and 18C). In fact, the analysis predicts that the maximal monotherapy efficacy can be 

achieved using combinations of the drugs at much lower doses (approximately one third) than 

are required to achieve the same effect with monotherapy. This is important, because it suggests 

that combinations that are predicted to be efficacious by IDACombo may still be superior to 

monotherapy even if the clinical use of the combination requires lower doses to be used for each 

drug to limit toxicities.  

Furthermore, a search of the published literature revealed that other groups have tested 

the combination of navitoclax with taxanes in vitro, in vivo, and in a phase I clinical trial. Tan et 

al. (2011) found that combining a taxane with navitoclax resulted in greater than additive benefit 

in a panel of non-small cell lung cancer (NSCLC) cell lines and that the combination of 

navitoclax + docetaxel showed statistically superior efficacy to monotherapy in three xenograft 

mouse models of NSCLC using two treatment schemas. Similarly, Chen et al. (2011) found that 

docetaxel showed greater than additive benefit when combined with navitoclax in a panel of  

human solid tumor cell lines, and experiments in a xenograft mouse model of ovarian cancer 

showed that the combination of navitoclax + docetaxel showed superior efficacy to monotherapy 

across a range of drug doses and treatment schedules. Furthermore, a phase I trial of navitoclax 
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with docetaxel in patients with solid tumors showed that the combination could be safely 

administered (Puglisi et al., 2011). A separate phase I trial of the combination of nativoclax + 

paclitaxel reported modest activity of the combination in patients with solid tumors, though the 

study was discontinued due to toxicity issues partially resulting from the inclusion of  carboplatin 

Figure 19. IDA-Combo predicts strong benefits for combinations of navitoclax and 

taxanes. A) An ordered bar plot of the IDA-comboscores predicted for combinations of 

navitoclax with other drugs that have reached late-stage clinical trials. Each bar represents a 

different combination of navitoclax with another drug. B & C) 3-D plots of measured and 

predicted average cell viabilities at different concentrations of navitoclax and docetaxel (B) or 

paclitaxel (C). The transparent plane represents the lowest average viability achievable with 

monotherapy. The red arrow represents the difference between the best observed 

monotherapy effect and the best predicted combination effect, which suggests that the 

combination therapy will reduce tumor cell viability below what is achievable with 

monotherapy alone. 
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in a second arm of the study (Vlahovic et al., 2014). To our knowledge, the combination of 

navitoclax with a taxane has not been clinically tested beyond a phase I trial. 

Given these findings and our own predictions, I believe the combination of navitoclax 

with taxanes would be significantly more efficacious than either monotherapy alone in EGFR 

wild type lung cancer patients who have not received previous chemotherapy. More importantly, 

these findings demonstrate the feasibility of using IDACombo predictions to identify novel drug 

combinations for further development. 

DISCUSSION 

Our results demonstrate that IDACombo can be used with monotherapy cell line 

screening data to accurately predict drug combination efficacy both in vitro and in the clinic. 

While this does nothing to diminish the importance of continued efforts to understand and 

predict drug synergy and additivity, it does demonstrate that clinically meaningful predictions 

can be made using the simpler IDA hypothesis while methods which account for additivity and 

synergy continue to improve. One critical importance of our work lies in the fact that, while it is 

currently infeasible to experimentally test the vast number of possible cancer drug combinations, 

the algorithmic simplicity of IDACombo could allow researchers to computationally predict the 

efficacies of hundreds of millions of drug combinations in a matter of weeks to months. This 

enables data driven drug combination selection and could significantly speed up the rate of novel 

cancer drug combination discovery. 
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IDACombo works well despite the limited number of available cancer-specific cell lines and 

uncertainties in clinically relevant drug concentrations 

Beyond the surprising utility of the relatively simple IDA model for predicting clinical 

trial outcomes, the close agreement of IDACombo’s clinical predictions with published clinical 

trial results (at least for trials in chemo-naïve trials) is remarkable for two other reasons. 

First, these results demonstrate that in vitro drug screening data can be used to generate 

clinically meaningful predictions for drug combination efficacies in patients, and, furthermore, 

they suggest that many of these predictions can be made using pan-cancer sets of cell lines. This 

is somewhat unexpected given the wide range of genetic and phenotypic diversities observed 

between different cancer types. On the other hand, our results suggest that it will be necessary to 

make predictions using cell lines of the appropriate cancer type/subtype for targeted therapies, 

and I believe it is likely that cancer-specific IDACombo predictions could be comparable to or 

better than pan-cancer predictions if not for the fact that many cancer types currently have 

relatively few available cell lines in CTRPv2 and GDSC. The solution to this problem, however, 

may be more complicated than simply increasing the number of cell lines for each cancer type. 

That is because it must also be noted that, beyond the limited numbers of cell lines available for 

many cancer types, the ethnic diversity of available CCLs is also very limited—particularly for 

ethnicities other than Caucasian or Asian (Ling et al., 2018). This means that caution will be 

necessary when applying the predictions made in this paper to ethnicities that are poorly 

represented in the cell lines currently available in CTRPv2 and GDSC. Fortunately, others in the 

field have already recognized the need to increase the number and genetic diversity of available 

CCLs (Boehm and Golub, 2015), and the Broad Institute has received an NCI contract to create 

new CCLs (https://portals.broadinstitute.org/cellfactory). This has already lead to the creation of 

https://portals.broadinstitute.org/cellfactory
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over 100 validated cancer models. The use of these models in future monotherapy drug screens 

may improve predictions made with IDACombo even further. 

The second reason that the success of IDACombo is remarkable is that, despite our 

extensive efforts to identify clinical relevant drug concentrations for each drug in our analysis, 

these concentrations remain only rough estimates of true clinically relevant concentrations. 

Beyond the fact that measured plasma concentrations are simply unavailable for some drugs and 

doses for patients of each cancer type, this is largely because there is little available information 

about how plasma drug concentrations relate to intratumoral drug concentrations in vivo. 

Similarly, there is little available information about how media drug concentrations relate to 

intracellular drug concentrations in vitro. In the single study I was able to find that did examine 

these relationships, researchers found that the clinically relevant in vitro drug concentration for 

paclitaxel may be an order of magnitude below clinically measured plasma concentrations 

(Zasadil et al., 2014). Even with this information, the appropriate paclitaxel concentration to use 

for different cancer types is unclear, because the concentrations identified by Zasadil et al. were 

based on only two cell lines and six patients in a single cancer type. Given that our results 

suggest that varying drug concentrations can significantly affect prediction performance, it is 

possible that IDACombo predictions could be improved by future research aimed at identifying 

the in vitro drug concentrations that most closely mimic the drug exposure of tumor cells in the 

clinic. It is notable, however, that IDACombo works as well as it does with such high 

uncertainties in both the cell line populations and the drug concentrations I used to estimate 

clinical trial powers. 
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There are several limitations of IDACombo that may be addressed by future research 

Despite the impressive accuracy of IDACombo for predicting clinical trial powers in this 

study, there are several limitations of the method that must be considered when using it in the 

future. 

First, while IDACombo’s predicted efficacies strongly correlate with measured efficacies 

in NCI-ALMANAC and deviations of predicted efficacies from measured efficacies are 

generally small, it is still obvious that examples can be found where the measured effect of a 

drug combination is significantly different from the predicted effect. These may represent true 

cases of drug synergy, additivity, or antagonism, and the drug interactions present in these 

combinations could have a significant impact on the clinical behavior of these treatments. Given 

this result and the fact that synergistic drug combinations are likely to outperform combinations 

that work via IDA (Palmer and Sorger, 2017), it is likely that predictions based on IDA will fail 

to identify a subset of highly effective drug combinations. Synergy and additivity based 

prediction methods will need to be developed to identify such combinations. Fortunately, 

however, the results of our clinical trial validation analysis suggest that this is not a problem for 

most clinical drug combinations, as the large majority of them were predicted well using 

IDACombo, at least for trials in previously untreated patients. 

This brings us to a second, and perhaps more serious, limitation of the method, which is 

an apparent unsuitability of cell-line based IDA predictions for patients who have undergone 

previous cancer drug treatment. We do not have sufficient data from our analyses to definitively 

explain this finding, but I can propose several hypotheses for future testing. First, there is the 

possibility that the difference in model performance between previously treated and previously 

untreated patients is coincidental—merely due to the model working better for some drugs than 
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for others and to different drugs being tested in trials of previously treated or untreated patients.  

Upon a closer inspection of the drugs involved in misclassified trials, however, I believe this is 

unlikely to be the case. Of the 11 drugs involved in trials that were misclassified for PFS/TTP 

improvement, all except vandetanib (which was used in only one trial) were also used in trials 

that were correctly classified, and 8 of the 11 drugs were used in correctly classified trials at least 

as often as they were used in misclassified trials. A more likely explanation for this finding could 

be that the cell line models in CTRPv2 and GDSC may more accurately represent chemo-naïve 

tumors than previously treated tumors. It is well known that drug treatment can induce clonal 

selection in tumors in ways that alter the tumors’ drug sensitivities (Ibragimova et al., 2017). 

While these altered sensitivities may be reflected in cell lines that were generated from the 

tumors of previously treated patients (Berendsen et al., 1988), it is likely that the cell lines in 

CTRPv2 and GDSC were derived under a diverse set of circumstances. As such, I would not 

expect our population of available cell lines to be a good representation of a population of tumors 

which had all recently received similar drug treatments. In the future, it may be possible to test 

this hypothesis by creating panels of cell lines that are derived from patients who had received 

the same prior therapies as the patients in the trials which were poorly predicted in this study and 

then test whether predictions made with these cell line panels agree with the clinical findings of 

those trials. 

A third limitation of this study is that our method is currently unable to make predictions 

for combinations which include immunotherapies or drugs which function by acting systemically 

on non-tumor cells, such as drugs that act systemically to block hormone synthesis. This is 

because our predictions rely on in vitro drug screening data, and the in vitro systems that have 

been used for high-throughput CCL drug screens lack the ability to mimic immune responses or 
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non-tumor processes such as systemic hormone production. This does not mean, however, that 

IDA based predictions of drug combination efficacy are unsuitable for immunotherapies or drugs 

which act outside of the tumor. Efforts are underway to generate in vitro models which may be 

suitable for screening immunotherapies in the future (Dijkstra et al., 2018) and which could 

allow for IDA based predictions to be made for immunotherapy combinations. While those 

models mature, however, IDA based predictions of efficacy for combinations with 

immunotherapies/systemically acting therapies may be made using the results of monotherapy 

based clinical trials and the method developed by Palmer and Sorger (2017), providing that 

cross-resistance can be estimated between combined treatments. 

IDACombo can quickly translate in vitro monotherapy drug screens into clinically relevant 

efficacy predictions for combinations of any number of drugs 

Despite the limitations of this analysis, our results suggest that IDACombo predictions 

closely agree with the published results of clinical trials in previously untreated patients. This 

supports the notion that IDA is sufficient to explain the activity of many drug combinations used 

to treat cancer, and it provides a framework for translating monotherapy cell line data into 

clinically meaningful predictions of drug combination efficacy. As demonstrated in our 

prospective analysis, this can be done in a high-throughput fashion and recapitulates known 

mechanistic relationships between compounds. As available datasets grow in their number of 

compounds and cell lines, it is likely that the relationships revealed by IDACombo will become 

more complex. Furthermore, our example analysis to identify efficacious 2-drug combinations 

with navitoclax in EGFR wild type lung cancer demonstrates the ease with which IDACombo 

predictions can be assessed for expected efficacy to identify candidate drug combinations for 

further development. While this was only demonstrated for 2-drug combinations, this method 
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can also be used to predict the efficacy of combinations of more than two drugs, as was 

demonstrated in the clinical validation analysis. The only difference with such an analysis from 

that shown in the prospective analysis is that drug concentrations need to be varied for more than 

two drugs, which results in a higher dimensional dataset. While this makes visualization of the 

data more difficult, algorithmic processing of the data remains trivial. 

As long as clinically relevant concentrations can be estimated for each drug, IDACombo 

can be used to generate predictions for hundreds of thousands of 2-drug combinations and 

millions of combinations of 3 or more drugs using existing in vitro datasets. As these datasets 

grow and novel in vitro models make in vitro testing feasible for more classes of therapy, the 

number of combination efficacies that can be predicted with IDACombo will also grow. It is our 

hope that these predictions will help researchers identify promising combinations for future 

clinical development and that they will ultimately lead to improved therapies for cancer patients. 
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CHAPTER 4: CONCLUSIONS: SIGNIFICANCE, INNOVATIONS, AND FUTURE 

DIRECTIONS 

SIGNIFICANCE OF THIS WORK 

 The research I have presented in this thesis fills two important gaps in the field of cancer 

biology: 1. The ability to translate drug screening information from cell lines into clinically 

meaningful information about how patients will respond to those drugs, and 2. The ability to 

predict the efficacy of drug combinations using only monotherapy data. 

The first development is critical for the field, because, as discussed in chapter 2, cell lines 

provide an extremely tractable model in which high-throughput screening methods can and have 

been used to screen tens of thousands of compounds relatively quickly and cheaply as compared 

to animal experiments and without the ethical concerns of testing new drugs in animals or 

patients. As such, the ability to translate cell line information into clinically relevant efficacy 

predictions has the potential to not only greatly accelerate the rate at which clinically useful 

compounds are identified, but it also has the potential to reduce the number of futile animal 

experiments and clinical trials. This is especially important given that the overall success rate for 

cancer drugs which enter clinical trials becoming FDA approved is only 11.4% (Wong et al., 

2018). 

The second development is equally critical for the field, because, as discussed in chapter 

3, there are simply too many possible drug combinations to test them all experimentally. The 

ability to use monotherapy data rather than needing to generate drug combination data for the 

identification of new clinically useful drug combinations has the potential to save potentially 

millions or billions of dollars in screening costs. After all, research suggests that combinations 

including up to 4 drugs may be required to overcome some aggressive cancers (Horn et al., 



 

76 

  

2016), and testing all possible 4-drug combinations for even 200 compounds in 1000 cell lines 

would require more than 64 billion experiments, each requiring multiple drug concentrations and 

replicate measurements. Furthermore, as discussed in chapter 2, the monotherapy data necessary 

for model I have developed is already largely mature and publically available, allowing us to 

make predictions for hundreds of millions of drug combinations using existing data. 

INNOVATIONS THAT LEAD TO THE SUCCESS OF THIS RESEARCH 

Accounting for Drug Concentrations in a Model of Drug Combination Efficacy 

The success of this research depended on several innovations. The first innovation was to 

model drug responses in a dose dependent fashion. Many previous efforts to model drug 

combination efficacy have done so using generalized metrics such as IC50 or AUC which 

summarize efficacy into a single value for each drug/cell line pair  (Bansal et al., 2014; Gilvary 

et al., 2019; He et al., 2018; Jaeger et al., 2017; Menden et al., 2019). Such metrics do not allow 

models to recognize when a drug combination provides benefit over monotherapy for only a 

specific range of drug concentrations. This is a critical limitation, because it is well established 

that the same drug combination may result in the drugs interacting antagonistically or 

synergistically depending on what concentrations are used for each drug (Meletiadis et al., 2007). 

Indeed, when our dose-aware model of drug combination efficacy is applied to different drugs, it 

is common to see different levels of benefit from the combination versus monotherapy 

depending on what concentrations are used for each drug. 

The challenge of making a clinically relevant dose-aware model of drug combination 

efficacy, however, was not trivial. While the algorithms and code for the model are relatively 

straightforward, identifying concentrations for each drug that are clinically relevant proved to be 

painstaking and time-intensive task which required me to read hundreds of phase I and II clinical 
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trials in which drug plasma concentrations had been measured in patients and, as was discussed 

in detail in chapter 3, to create what may be a new metric of drug plasma concentration 

(Csustained). Furthermore, even despite our extensive efforts, there is still a great deal of 

uncertainty about the appropriateness of the concentrations we identified. This is because: 1. 

Interactions between drugs can affect the pharmacokinetics of each drug in a combination, and it 

is impossible to measure plasma concentrations for each drug in every possible combination, 2. 

The relationships between plasma drug concentrations and tumor drug concentrations are largely 

unknown and are difficult to study, 3. The relationships between media drug concentrations and 

intracellular cell line concentrations are also largely unknown, 4. Drug concentration kinetics in 

vitro are often unknown and may not recapitulate clinical pharmacokinetic profiles, and 5. The 

most suitable time point at which to define drug concentrations is unknown and may vary from 

drug to drug. In the future, it may be possible to improve the performance of my model by 

further studying these factors to identify even more clinically relevant drug concentrations for 

each drug. Regardless of these difficulties, however, my research demonstrates that IDACombo 

produces highly accurate predictions of drug combination efficacy for trials in previously 

untreated patients regardless of uncertainties in the drug concentrations selected. 

Metrics of Combination Efficacy 

The second area of innovation that contributed to the success of my work was the 

techniques I developed to classify combination efficacy. By using average efficacies across 

populations of cell lines to calculate hazard ratios, I was able to directly use my efficacy 

predictions for clinical trial power calculations. This was essential given that the goal for this 

research was to aid in the development of new drug combination clinical trials, and because the 

success of clinical trials is determined by much more than the absolute efficacy of the 
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experimental treatment. The ratio of patients in the control and test arms, the number of observed 

endpoint events, and the efficacy of the control treatment relative to the experimental treatment 

are also critically important to whether or not a clinical trial will meet its endpoint criteria. Since, 

as with clinical trial results, efficacy predictions made by IDACombo are an average across a 

population, the results of my model can also be used to explore how the expected benefit from a 

drug combination differs in different populations. As discussed in chapters 2 and 3, however, this 

is currently difficult for many cancer types, subtypes, and patient ethnicities, because those 

populations are represented by only a handful of cell lines. As efforts continue to increase the 

number and diversity of CCL models, this will allow IDACombo to predict drug combination 

efficacy that will be relevant to an increasingly wide range of patient populations. 

Constructing a Clinical Validation Dataset 

A third innovation in my research was the construction of a clinical trial dataset to 

validate my algorithm’s clinical utility. By systematically searching the published literature for 

clinical trials which tested cancer drug combinations, I was able to generate a validation dataset 

with which to directly benchmark the accuracy, sensitivity, specificity, and precision of 

IDACombo for predicting clinical trial outcomes. Furthermore, the unbiased nature of this 

dataset was ensured by establishing inclusion criteria for clinical trials before using IDACombo 

to predict clinical trial outcomes (with the exception of omitting trials that tested drugs that had 

clinical concentrations >2x their maximum tested concentrations in vitro, which was a problem 

that I was not initially aware we would encounter). Beyond validating IDACombo, this approach 

also provides a direct method for translating IDACombo predictions into established criteria 

(study power) used in designing new clinical trials, which may enable researchers to more 

accurately estimate study sizes in the future, potentially reducing the number of patients exposed 
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to unproven therapies or, alternatively, preventing the failure of clinical trials which are testing 

efficacious therapies with an inappropriately small number of patients. 

As with my efforts to account for clinical drug concentrations, however, constructing a 

clinical trial dataset against which to validate IDACombo was difficult and time-consuming. 

Beyond the computational work to identifying candidate clinical trials, I had to screen more than 

a thousand clinical trial papers manually to determine whether or not each trial met the inclusion 

criteria and, if it did, to extract and summarize the study design elements and outcomes for each 

trial. As with my efforts to identify clinically relevant drug concentrations, my efforts to identify 

relevant clinical trials also have some significant limitations. The most notable limitation is that 

my search relied on ClinicalTrials.gov, which is a website which was not created until 1997 (it 

became publically available in 2000), and which not all clinical trials are required to register on. 

Given that much of the work which established the utility of drug combinations for cancer was 

performed before 1997 (see chapter 1), it is likely that this approach omits many relevant clinical 

trials. Despite this limitation, however, the approached identified dozens of relevant trials in an 

unbiased fashion, providing what I believe is a robust validation set. Future efforts to identify 

additional cancer drug combination trials may further improve the ability of the field to 

benchmark algorithms to predict clinical drug combination efficacy. 

FUTURE DIRECTIONS 

 As I have discussed the future opportunities created by this research in detail at the ends 

of chapters 2 and 3, I will discuss previously mentioned opportunities in brief and general terms 

here so as to avoid unnecessary repetition. 

As is often pointed out throughout this thesis, there are many research avenues which 

may yield further improvements on the presented results. Much may be done to improve our 
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confidence in the clinically relevant drug concentrations used with IDACombo, and doing so will 

likely require a rethinking of when and where we measure drug concentrations both in patients 

and in in vitro models. Given the importance of drug concentrations on the efficacy of drug 

combinations, I believe it is likely that useful insights may be obtained from detailed studies of 

how drug concentrations change over time in patient tumors and how in vitro drug concentration 

dynamics affect CCLs. 

Further improvements to IDACombo’s predictions may also be made by increasing the 

number and diversity of the in vitro cancer models used to generate the monotherapy data upon 

which IDACombo relies. Fortunately, this need is already understood (Williams and McDermott, 

2017) and efforts to address it are well underway (Boehm and Golub, 2015; Gao et al., 2015). 

Beyond allowing IDACombo to make more accurate cancer type and subtype specific 

predictions, these efforts may also allow researchers to use IDACombo to identify gender and 

ethnic differences in drug combination sensitivities. Similarly, the development of new types of 

in vitro models and screening techniques may someday allow IDACombo to be useful for 

predicting the efficacy of combinations involving immunotherapies or therapies which act 

outside of the tumor as methods are developed which allow in vitro measurements of efficacy for 

those types of therapies.  

 While work in these areas may further improve the utility of IDACombo, the 

performance of the model is already remarkably good, and the most exciting future extensions of 

my research will likely involve using IDACombo to identify novel drug combinations for 

clinical development. As the scope of my thesis work was merely to create and validate this 

method, very little has been done so far to use IDACombo for the identification of novel drug 

combinations. The IDACombo package has been designed to make it easy for researchers to use 
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it to predict the efficacies of combinations of current standard of care treatments with one or 

more additional drugs, requiring only that monotherapy efficacy data be available in a sufficient 

number of CCLs (generally ≥50) for the necessary compounds at their desired concentrations. 

These predictions can then be used to calculate HRs for the novel combinations versus the 

standard of care treatments, and power calculations can be easily performed to estimate the 

likelihood of observing a statistically significant improvement in patient outcomes in a clinical 

trial. Beyond being used to select combinations for clinical development, these calculations can 

also be used to aid in the design of such trials by helping researchers determine the necessary 

sample sizes for each trial so as to avoid exposing an unnecessarily large number of patients to 

experimental treatments or, conversely, to prevent effective drug combinations from failing to 

gain FDA approval due to their being tested in trials with inappropriately small numbers of 

patients. 

It is my hope that the ease with which IDACombo allows efficacy predictions to be made 

for large numbers of drug combinations will greatly increase the speed at which new efficacious 

drug combinations are identified for cancer treatment and ultimately, that these new treatments 

will improve outcomes for cancer patients. 
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APPENDIX I: README FILES FOR CHAPTER 3 ANALYSIS CODE 

APPENDIX PREFACE 

Please note that the code for the analyses performed in chapter 3 of this thesis and the 

readme files describing that code were written with the intention of the work being presented in a 

primary research article. As such, the figure and table numbers represented in the code on OSF 

and the readme files below are not consistent with the figure and table numbers used in this 

thesis. A mapping of the readme paper figure/table numbers to the same figures and tables in the 

thesis is provided in Table 4 below. 

Identifier in Thesis 
Identifier in OSF code 

and readme files 

Table 2 Table S4 

Figure 7 Figure 1 

Figure 8 Figure 2 

Figure 9 Figure 3 

Figure 10 Figure 4 

Figure 11 Figure S1 

Table S3 Table S2 

Table S4 Table S1 

Figure 12 Figure 5 

Table 3 Table 1 

Figure 13 Figure S2 

Figure 14 Figure S3 

Figure 15 Figure S4 

Figure 16 Figure S5 

Figure 17 Figure 6 

Figure 18 Figure S6 

Table S5 Table S3 

Figure 19 Figure 7 

 

NCI-ALMANAC ANALYSIS README 

This folder contains the data and scripts used to perform IDACombo model validation against 

NCI-ALMANAC by predicting combination efficacy using the monotherapy data from NCI-

ALMANAC and then comparing the predictions to the measured combination efficacies also 

present in NCI-ALMANAC. 

Table 4. Mapping of 

table and figure 

identifiers in this 

paper to their 

respective identifiers 

in the OSF 

repository. 
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The analysis was performed in two steps: 

1. Combination efficacies were predicted using IDACombo and NCI-ALMANAC's 

monotherapy information, and the measured combination efficacies in NCI-

ALMANAC were averaged across all cell lines for each combination.  

2. The results of step 1 were plotted to create Figure 3: Agreement between predicted 

and observed combination efficacy in NCI-ALMANAC. 

Step 1: IDACombo Predictions and Observed Efficacy Summary 

 Code: 

1. "NCI-ALMANAC Analysis.R": Predict combination efficacy using NCI-

ALMANAC monotherapy data and summarize measured combination 

efficacies. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. parallel v3.4.2: R Core Team (2017). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. URL https://www.R-project.org/. 

2. pbapply v1.3.3: Peter Solymos and Zygmunt Zawadzki (2017). pbapply: 

Adding Progress Bar to '*apply' Functions. R package version 1.3-3. 

https://CRAN.R-project.org/package=pbapply 

3. IDACombo: Chapter 3. 

 Input Files: 

1. "./Inputs/ComboDrugGrowth_Nov2017.csv": NCI-ALMANAC data. 

Downloaded from 

"https://wiki.nci.nih.gov/download/attachments/338237347/ComboDrugGrow

th_Nov2017.zip?version=1&modificationDate=1510057275000&api=v2" on 

5/17/2019. This link was from 

"https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-ALMANAC". 



 

117 

  

2. "./Inputs/ComboCompoundNames_small.txt": List of drugs and drug 

identifiers used in NCI-ALMANAC. 

 Output Files: 

1. "./Outputs/ALMANAC_Results.txt": Predicted and observed combination 

efficacies for NCI-ALMANAC combinations. 

Step 2: Creating Figure 3: Agreement between predicted and observed combination efficacy in 

NCI-ALMANAC 

 Code: 

1. "Making Figure 3_Agreement between predicted and observed combination 

efficacy in NCI-ALMANAC.R": Creates plots for Figure 3. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

  1. None. 

 Input Files: 

1. "./Outputs/ALMANAC_Results.txt": See step 1. 

2. "./Inputs/ComboCompoundNames_small.txt": List of drugs and drug 

identifiers used in NCI-ALMANAC. 

 Output Files: 

1. "./Outputs/Figure_3_Agreement between predicted and observed combination 

efficacy in NCI-ALMANAC.tiff": Figure 3. 

HARMONIZING CTRPV2 AND GDSC README 

README for "Harmonizing Datasets" code. 

This code was written to harmonize the cell line and compound names between GDSC (2016) 

and CTRPv2. 
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Code: 

1. "./Harmonizing_Datasets.R": adds harmonized drug and cell line identifiers to 

CTRPv2 and GDSC raw data. 

Coding Environment: 

 R version 3.4.2 (2017-09-28) -- "Short Summer" 

 Platform: x86_64-w64-mingw32/x64 (64-bit) 

 Microsoft R Open 3.4.2 

 RStudio version 1.1.463 

Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). readr: 

Read Rectangular Text Data. R package version 1.1.1. https://CRAN.R-

project.org/package=readr 

2. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read Excel 

Files. R package version 1.0.0. https://CRAN.R-project.org/package=readxl 

Input data: 

1. "./Inputs/Table S2_Screened Cell Line Info_Ling et al_2018.xlsx" and 

"./Inputs/Table S3_Screened Drug Info_Ling et al_2018.xlsx" were obtained from 

Ling et al., 2018: Ling, A., Gruener, R.F., Fessler, J., and Huang, R.S. (2018). 

More than fishing for a cure: The promises and pitfalls of high throughput cancer 

cell line screens. Pharmacol. Ther. 

2. "./Inputs/v17a_public_raw_data.xlsx" downloaded on 2/26/2018: 

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-

6.0/v17a_public_raw_data.xlsx 

3. "./Inputs/GDSC_Screened_Compounds.xlsx" downloaded on 2/26/2018: 

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-

6.0/Screened_Compounds.xlsx 

4. "./Inputs/GDSC_fitted_drug_data.xlsx" downloaded on 2/27/2018: 

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-

6.0/v17_fitted_dose_response.xlsx 

5. "./Inputs/raw_GDSC.txt" is produced by the script "Harmonizing_Datasets.R" by 

removing some comment characters the first time the script is run (lines 22 and 

23). 
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6. "v20.data.curves_post_qc.txt", "v20.data.per_cpd_well.txt", 

"v20.meta.per_cell_line.txt", "v20.meta.per_compound.txt", and 

"v20.meta.per_experiment.txt" were downloaded on 2/26/2018: 

ftp://anonymous:guest@caftpd.nci.nih.gov/pub/OCG-

DCC/CTD2/Broad/CTRPv2.0_2015_ctd2_ExpandedDataset/CTRPv2.0_2015_ct

d2_ExpandedDataset.zip 

Output Data: 

1. "./Outputs/Harmonized_raw_GDSC": raw GDSC drug response data with 

harmonized identifiers 

2. "./Outputs/Harmonized_raw_CTRP": raw CTRPv2 drug response data with 

harmonized identifiers 

3. "./Outputs/CTRP_Compound_Meta.txt": compound metadata for CTRPv2 with 

original and harmonized drug identifiers 

4. "./Outputs/Harmonized_GDSC_Screened_Compounds.txt": list of GDSC 

compounds with original and harmonized drug identifiers 

REPROCESSING RAW CTRPV2 AND GDSC DATA README 

This folder contains the data and scripts used to reprocess the raw dose-response data from 

CTRPv2 and GDSC. The process was carried out in two steps. Note that the "Recalculating 

IC50s" file names are poorly chosen, as the scripts are actually fitting dose reponse curves and 

not simply calculating IC50s. 

The first step was to fit dose-respones curves to the raw data using the drc package (Ritz et al., 

2015). It was performed using the Mesabi compute cluster at the Minnesota Supercomputing 

Institute (https://www.msi.umn.edu). Files for this step are contained in the "Inputs", 

"MSI_Cluster_Script", and "MSI_Outputs" folders. 

 Code: 

1. "./MSI_Outputs/Recalculating IC50s.R": Primary code for fitting dose-response 

curves to raw CTRPv2 and GDSC data 

2. "./MSI_Outputs/job_Recalculate_GDSC_CTRP_Preds": job file to establish job 

parameters for scheduler 

3. "./MSI_Outputs/Submit_Recalc_Jobs.sh": shell script used to initiate several jobs 

at once, allowing the process to be divided into multiple jobs that could run 

simultaneously. 

 Coding Environment: 

  R version 3.4.4 
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Mesabi compute cluster, Minnesota Supercomputing Institute 

(https://www.msi.umn.edu) 

  4 cores, single node 

  28 gb memory 

 Packages 

1. drc v3.0.1: Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015) Dose-Response 

Analysis Using R PLOS ONE, 10(12), e0146021 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). readr: 

Read Rectangular Text Data. R package version 1.1.1. https://CRAN.R-

project.org/package=readr 

 Input Files: 

1. "./Inputs/Harmonized_raw_GDSC.txt": From "../Harmonizing CTRPv2 and 

GDSC/" 

2. "./Inputs/Harmonized_raw_CTRP.txt": From "../Harmonizing CTRPv2 and 

GDSC/" 

3. "./Inputs/v20.meta.per_assay_plate.txt" and 

"./Inputs/v20.meta.per_experiment.txt": downloaded on 2/26/2018 from: 

ftp://anonymous:guest@caftpd.nci.nih.gov/pub/OCG-

DCC/CTD2/Broad/CTRPv2.0_2015_ctd2_ExpandedDataset/CTRPv2.0_2015_ct

d2_ExpandedDataset.zip 

 Output Files: 

1. pdf files of curve fits for each cell line and drug in CTRPv2 and GDSC. 

Organized by drug: ./MSI_Outputs/CurveFits/ 

2. rds files of drc fitted models: ./MSI_Outputs/FittedModels/ 

3. txt files of summary information for each fit, separated into clusters of 

information for ~100 drugs: ./MSI_Outputs/ 

The second step was to combine the txt data from the multiple Mesabi jobs into single output 

files as well as calculate AUC values based on the fitted model parameters. 

 Code: 
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1. "./Combining_MSI_Job_Outputs_and_Calculating_AUCs.R": Combines Mesabi 

txt outputs and calculates AUC values. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages: 

1. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

2. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). readr: 

Read Rectangular Text Data. R package version 1.1.1. https://CRAN.R-

project.org/package=readr 

 Input Files: 

1. "./Inputs/Harmonized_raw_GDSC.txt": From "../Harmonizing CTRPv2 and 

GDSC/" 

2. "./Inputs/Harmonized_raw_CTRP.txt": From "../Harmonizing CTRPv2 and 

GDSC/" 

3. MSI_Output txt files: "./MSI_Outputs/*_Results_*_*.txt" created in first step. 

 Output Files: 

1. "./Ouputs/Recalculated_CTRP_12_21_2018.txt" 

2. "./Outputs/Recalculated_GDSC_12_21_2018.txt" 

IDENTIFYING CLINICAL TRIALS README 

README for "Identifying Clinical Trials" code. 

This code was written to use webscraping to search clinicaltrials.gov and pubmed.gov for 

published phase 3 clinical trials that tested drug combinations for which we can make efficacy 

predictions using IDA-Combo and CTRPv2 or GDSC. The first step computationally identifies 
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papers from clinical trials that could be useful for our clinical trial validation analysis. In the 

second step, the identified papers are manually currated to identify trials that are useful for our 

IDA-Combo clinical validation analysis. Finally, a third step adds clinical plasma concentrations 

(Csustaioned 6 hours) to the trial information. 

Step 1 

 Code: 

1. "Gathering Clinical Trial Data.R": webscraping to search clinicaltrials.gov for phase 

3 clinical trials that tested at least two drugs from CTRPv2 or GDSC for which we 

can make combination efficacy predictions, then identifies published papers from that 

trial and uses web scraping to search pubmed.gov for abstracts for those papers. 

 Notes: 

The script was first run from line 1 to 31 (which downloads clinicaltrials.gov search 

records) and then lines 27-31 were commented out and a linux command line command 

(line 34) was used to concatenate the outputs of lines 27-31 (note that this command 

was run mannually outside of R). This concatenated output is loaded in line 37, and the 

script was subsequently completed. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages: 

1. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal Progress 

Bars. R package version 1.1.2. https://CRAN.R-project.org/package=progress 

2. rvest v0.3.2: Hadley Wickham (2016). rvest: Easily Harvest (Scrape) Web Pages. R 

package version 0.3.2. https://CRAN.R-project.org/package=rvest 

 Input Files: 
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1. "./Inputs/CTRP_Results_Clin_Range_all_ccl_v2.tbd" and 

"./Inputs/GDSC_Results_Clin_Range_all_ccl_v2.tbd": These files are outputs from 

deprecated code which was originally used for the prospective analysis. They are only 

used to tell the script which drug combinations IDA-Combo can make predictions for 

using CTRPv2 and GDSC, so they were never updated--especially since we didn't 

want to go through an updated output from this script, which may add hundreds of 

papers to review and require re-running all downstream analyses. We have verified 

that these files contain all of the combinations included in the most recent version of 

the prospective analysis. 

 Output Files: 

1. "./Outputs/Article.Info.P3&4_10_08_2018.txt": A list of all of the articles identified 

as potentially useful for our clinical trial IDA-Combo validation analysis. Includes 

abstracts for all papers. 

2. "./Outputs/Completed.Info.P3&4_10_08_2018.txt: clinicaltrials.gov records for all 

identified completed phase 3 trials of potential utility for our analysis. 

Step 2: 

 Manual curration of identified clinical trial publications. First, papers are judged for 

whether or not they meet the inclusion criteria based on abstracts (see 

"Article.Info.P3&4_10_08_2018_manual_updates.txt"). Next, papers that made it past the first 

step are downloaded in their entirety and a more thorough assesment is made for whether or not 

they meet the inclusion criteria (see "SelectedArticle.Info.P3&4_10_08_2018.xlsx"). Finally, 

detailed results from the selected papers are collated into a table for downstream analysis and a 

final determination of whether or not each trial meets the inclusion criteria is made (see 

"ClinicalTrialValidationInputs_10_08_2018_predose.xlsx"). 

 Column Descriptors for "ClinicalTrialValidationInputs_10_08_2018_predose.xlsx" 

  A: NCT.Number: clinical trial identifier from clinicaltrials.gov for trial each paper 

is reporting results for 

  B: Citation: citation for papers 

  C: Authors: paper authors 
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  D: Unique Study ID: our own assigned ID for each study 

  E:Title: paper title 

  F: Disease_Type: type of cancer studied in trial 

  G: Condensed_Cancer_Type: a more formatted version of Disease_Type which 

groups trials into broader cancer categories. 

  H:Skip_Study: a flag for whether or not the trial has met the final inclusion 

criteria. F for studies that meet the inclusion criteria, and T_* for trials that will be 

excluted from final analysis. Reason for exclusion is included. 

  I: Test in GDSC: Flag for whether or not predictions can be made for this trial 

using GDSC 

  J: Test in CTRP: Flag for whether or not predictions can be made for this trial 

using CTRPv2 

  K: Patients have undergone previous drug treatment: Information about whether 

or not patients in the trial had undergone drug treatment prior to entering the 

clinical trial. 

  L: Study_Type: Classification of what type of control group-test group 

comparison was being made in each trial. 

  M: Study Treatments: Information about treatments used in the trial 

  N: Control Drugs: List of drugs used in control group treatment for trial 

  O: Control Drug DoseKeys: Keys to allow 

"Add_Clinical_Concentrations_To_Clinical_Trials_Data.R" to automatically add 

control treatment drug plasma concentrations to the table in step 3. 

  P: Test Group Drugs: List of drugs used in the test group treatment for trial 
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  Q: Test Group Drug DoseKeys: Keys to allow 

"Add_Clinical_Concentrations_To_Clinical_Trials_Data.R" to automatically add 

test treatment drug plasma concentrations to the table in step 3. 

  R: Specific_Outcomes: Early, crude summary of clinical trial outcomes 

  S/T: Control_OS (months)/Test_OS (months): Median Overall Survival (OS) 

times for control and test arms of trial in months. 

  U: OS_HR: OS hazard ratio (HR) 

  V: OS Significantly Improved in Test: Whether or not study reported statistically 

significant improvement in OS in test group vs control group (p > 0.05). 

  W-AT: Similar to OS columns (S-V) except for progression free survival (PFS), 

relapse free survival (RFS), time to progression (TTP), event free survival (EFS), 

disease free survival (DFS), or failure free survival (FFS). 

  AU/AV: Control_Objective_Response (%)/Test_Objective_Response (%): 

objective response rates in control arm and test arm respectively in percent. 

  AX: Objective Response Significantly Improved in Test: Whether or not objective 

response rate was reported to be statistically improved in test arm vs control arm (p 

> 0.05). 

  AY: Trial Considered a Success: Whether or not trial met primary criteria for trial 

success. 

  Az: General_Outcome: Summary of trial outcome 

  BA: Specific Population: Information about whether or not recorded results are 

for specific subgroup of cancer type 

  BB: n_Patients: number of patients in trial 
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  BC: n_Test_Patients: number of patients in test arm 

  BD: n_Control_Patients: number of patients in control arm 

  BE-BF: n_Test_OS_Events/n_Control_OS_Events: Number of OS events 

obeserved in trial in test arm or control arm respectively 

  BG: Total_OS_Events: Number of total OS events observed in trial 

  BH-BY: Similar to BE-BG but for PFS, DFS, EFS, TTP, RFS, or FFS. 

  BZ-CC: Stage_*_Percent: Percentage of patients in study who had stage I, II, III, 

or IV cancer. 

  CD: Event Notes: Note for whether or not event numbers are exact or were 

estimated based on plotted Kaplan-Meier curves. Note, estimated numbers will 

tend to be overestimated as it is difficult to account for all censored individuals. 

  CE: Data Entry Complete: Check for whether data entry for that study is 

completed in this table. Note that this will be marked complete even with missing 

information if trial failed to meet inclusion criteria (i.e. see "Skip_Study" column 

H.  

Step 3: 

 Code: 

1. "Add_Clinical_Concentrations_To_Clinical_Trials_Data.R": A script that adds 

clinical trial plasma concentrations (Csustained 6 hours) to clinical trial data. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 



 

127 

  

 Packages: 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). readr: Read 

Rectangular Text Data. R package version 1.1.1. https://CRAN.R-

project.org/package=readr 

2. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read Excel Files. 

R package version 1.0.0. https://CRAN.R-project.org/package=readxl  

 Input Files: 

1. "./Outputs/ClinicalTrialValidationInputs_10_08_2018_predose.xlsx": The clinical 

trial information currated in Step 2. 

2. "./Inputs/Clinical Trial Drug Plasma Concentrations.xlsx": A list of clinical plasma 

concentrations for each drug at a given dose. Manually assembled. See "Source" 

column for paper from which each concentration is derived. Csustained is median 

maximum plasma drug concentration measured at least 6 hours after drug is 

administered to patients. 

 Output Files: 

1. "ClinicalTrialValidationInputs_10_08_2018.RDS": R data file of clinical trial 

information with drug concentrations. Save as R data file instead of text file to avoid 

rounding errors for drug concentrations. 

CLINICAL TRIAL VALIDATION ANALYSIS README 

This folder contains the data and scripts used to perform the clinical trial analysis presented in 

the paper, where monotherapy data from CTRPv2 and GDSC was used to predict the efficacy of 

control and test treatments in the phase 3 clinical trials identified using the data and scripts in the 

"./Identifying Clinical Trials/" folder. This analysis pertains to Figures 5, S1, S2, S3, and S4 and 

Tables 1 and S2. 

The analysis was performed in several steps: 

1. Viability estimates were calculated at clinical concentrations for each drug to be used 

in the analysis 

2. Drug combination efficacy predictions were made for each treatment in each trial 

based on Independent Drug Action using IDACombo. 

3. Analysis summary figures and tables were created for the main clinical trial analysis. 

Figures 5, S2, and S3 and Tables 1 and S2. 

4. Viability estimates were recalculated at more concentrations to allow for analysis of 

how perturbing drug concentrations would affect clinical trial validation results. 
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5. Drug combination efficacy predictions were remade for each treatment in each trial 

using perturbed drug concentrations. Predictions still based on Independent Drug 

Action using IDACombo. 

6. Figure S4 created based on concentration perturbation analysis. 

7. Drug combination efficacy predictions were remade for each treatment in each trial 

based on Bliss Independence using IDACombo. 

8. Figure S5 was created based on Bliss Independence results. 

Step 1: Viability calculations for clinical drug concentrations 

 Code: 

1. "CalculateViabilityAndUncertaintyForTrialConcentrations.R": Calculate 

viability and viability uncertainty estimates from fitted curves for CTRPv2 

and GDSC using clinical drug concentrations. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. drc v3.0.1: Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015) Dose-

Response Analysis Using R PLOS ONE, 10(12), e0146021 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

4. sandwich v2.4.0: Achim Zeileis (2004). Econometric Computing with HC and 

HAC Covariance Matrix Estimators. Journal of Statistical Software 11(10), 

 1-17. URL http://www.jstatsoft.org/v11/i10/. AND Achim Zeileis (2006). 

Object-Oriented Computation of Sandwich Estimators. Journal of Statistical 

Software 16(9), 1-16. URL http://www.jstatsoft.org/v16/i09/. 

 Input Files: 

1. "./Inputs/ClinicalTrialValidationInputs_10_08_2018.RDS": List of clinical 

trial results, treatments, and drug concentrations created using "../Identifying 
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Clinical Trials/Add_Clinical_Concentrations_To_Clinical_Trials_Data.R". 

(see "../Identifying Clinical Trials/README.txt") 

2. "./Inputs/CTRP_GDSC_tested_compound_doses.txt": List of maximum and 

minimum drug concentrations tested for each drug in CTRPv2 and/or GDSC. 

Note, some drugs were tested at different dose ranges depending on the cell 

line. The minimums and maximums recorded in this file are median values 

based on the minimum and maximum concentrations used for each cell line. 

For some compounds, a handful of cell lines may have been tested with lower 

or higher concentrations than the majority of cell lines. These values are based 

on the concentration range used for the majority of cell lines. 

3. "../Reprocessing raw CTRPv2 and GDSC 

data/Outputs/Recalculated_GDSC_12_21_2018.txt": Summary of reprocessed 

GDSC dose-response curves produced by the code in the "../Reprocessing raw 

CTRPv2 and GDSC data/" folder.  

4. "C:/Users/Lingy/Desktop/Huang Lab/Drug Combo Project/Reprocessing raw 

CTRPv2 and GDSC data/Outputs/Recalculated_CTRP_12_21_2018.txt": : 

Summary of reprocessed CTRPv2 dose-response curves produced by the code 

in the "../Reprocessing raw CTRPv2 and GDSC data/" folder. 

5. "../Reprocessing raw CTRPv2 and GDSC data/MSI_Outputs/FittedModels/*": 

Fitted dose-response models for each drug in CTRPv2 and GDSC. 

6. "./Outputs/PFS_TTP_no_Chemo_Figure_5_Data_ratio_cutoff_2.rds": 

Information for clinical trials plotted in Figure 5A 

7. "./Outputs/OS_no_Chemo_Figure_5_Data_ratio_cutoff_2.rds": Information 

for clinical trials plotted in Figure 5B 

 Output Files: 

1. "./Outputs/Clinical_Trial_Info.rds": An updated version of 

"./Inputs/ClinicalTrialValidationInputs_10_08_2018.RDS" with additional 

information added. Saved as data frame R object in rds format. 

2. "./Outputs/CTRP_Viabilities_and_Uncertainties.rds": Calculated CTRPv2 

viabilities at defined concentrations for each drug/cell line pair. Saved as data 

frame R object in rds format. 

3. "./Outputs/GDSC_Viabilities_and_Uncertainties.rds": Calculated GDSC 

viabilities at defined concentrations for each drug/cell line pair. Saved as data 

frame R object in rds format. 

Step 2: Drug combination efficacy predictions based on Independent Drug Action 

 Code: 

1. "Clinical_Trial_Validation.R": Uses viaibilites from Step 1 and IDACombo to 

predict efficacy of test and control treatments in the clinical trials. Then 

calculates hazard ratios and powers for each trial based on those predictions. 
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 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. IDACombo: Chapter 3. 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

i. 3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

3. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read 

Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

4. xlsx v0.5.7: Adrian A. Dragulescu (2014). xlsx: Read, write, format Excel 

2007 and Excel 97/2000/XP/2003 files. R package version 0.5.7. 

https://CRAN.R-project.org/package=xlsx 

5. powerSurvEpi v0.0.9: Weiliang Qiu, Jorge Chavarro, Ross Lazarus, Bernard 

Rosner and Jing Ma. (2015). powerSurvEpi: Power and Sample Size 

Calculation for Survival Analysis of Epidemiological Studies. R package 

version 0.0.9. https://CRAN.R-project.org/package=powerSurvEpi 

 Input Files: 

1. "./Outputs/Clinical_Trial_Info.rds": See step 1 outputs.  

2. "./Outputs/CTRP_Viabilities_and_Uncertainties.rds": See step 1 outputs. 

3. "./Outputs/GDSC_Viabilities_and_Uncertainties.rds": See step 1 outputs. 

4. "./Inputs/Table S2_Screened Cell Line Info_plus_BRCA_Info.xlsx": A 

manually modified version of Table S2 from Ling et al., 2018: Ling, A., 

Gruener, R.F., Fessler, J., and Huang, R.S. (2018). More than fishing for a 

cure: The promises and pitfalls of high throughput cancer cell line screens. 

Pharmacol. Ther. This version of the file is modified to identify cell lines that 

harbor EGFR, HER2, PR, and/or ER abberations.   

 Output Files: 
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1. "./Outputs/Clinical_Trial_Predictions.rds": Clinical trial information with 

added efficacy predictions. Saved as list R object in RDS format.  

2. "./Outputs/Clinical_Trial_Predictions.xlsx": Clinical trial information with 

added efficacy predictions. Saved as xlsx format to be made into Table S2. 

Step 3: Summary figures and tables for main clinical trial validation analysis 

 Step 3 part 1: 

  Code: 

1. "Create Figure 5_Clinical Trial Validation Results.R": Creates Figure 

5, which is a summary of clinical trial efficacy predictions made using 

Independent Drug Action and all available cell lines. 

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

  Input Files: 

1. "./Outputs/Clinical_Trial_Predictions.rds": See step 2 outputs.  

  Output Files: 

1. "./Outputs/Figures and Tables/Figure_5_Clinical trial validation 

results_ratio_cutoff_2.tiff": Figure 5. 

 Step 3 part 2: 

  Code: 

1. "Create Figure S2_Cancer Specific Clinical Trial Validation.R": 

Creates Figure S2, which is a summary of clinical trial efficacy 
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predictions made using Independent Drug Action and cancer specific 

sets of cell lines. 

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

  Input Files: 

1. "./Outputs/Clinical_Trial_Predictions.rds": See step 2 outputs.  

  Output Files: 

1. "./Outputs/Figures and Tables/Figure_S2_Cancer Specific Clinical 

trial validation results_ratio_cutoff_ratio_cutoff_2.tiff": Figure S2. 

 Step 3 part 3: 

  Code: 

1. "Create Figure S3_Clinical conentrations beyond tested range.R": 

Creates Figure S3, which is an analysis of how making predictions 

with concentrations beyond the tested concentrations ranges in 

CTRPv2 or GDSC affects model performance.  

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 
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1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

  Input Files: 

1. "./Outputs/Clinical_Trial_Predictions.rds": See step 2 outputs.  

  Output Files: 

1. "./Outputs/Figures and Tables/Figure_S3_Clinical concentrations 

beyond tested range.tiff": Figure S3. 

 Step 3 part 4: 

  Code: 

1. "Create Table 1_Subtype Trials.R": Gets data for Table 1, which is a 

summary of predictions made in trials that reported full results for 

patients with a given molecular subtype of cancer.  

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

  Input Files: 

1. "./Outputs/Clinical_Trial_Predictions.rds": See step 2 outputs.  

  Output Files: 

1. "./Outputs/Figures and Tables/Wu_2013_Table.txt": Data for Table 1 

from Wu et al., 2013. (Lancet Oncol. 2013 Jul;14(8):777-86. doi: 

10.1016/S1470-2045(13)70254-7. Epub  2013 Jun 17.). 



 

134 

  

2. "./Outputs/Figures and Tables/DiLeo_2008_Table.txt": Data for Table 

1 from Di Leo et al., 2008 (J Clin Oncol. 2008 Dec 1;26(34):5544-52. 

doi: 10.1200/JCO.2008.16.2578. Epub 2008 Oct 27.). 

Step 4: Viability calculations for perturbed clinical drug concentrations 

 Code: 

1. "CalculateViabilityAndUncertaintyForDosePerturbationTrialConcentrations.R

": Calculate viability and viability uncertainty estimates from fitted curves for 

CTRPv2 and GDSC using perturbed clinical drug concentrations. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. drc v3.0.1: Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015) Dose-

Response Analysis Using R PLOS ONE, 10(12), e0146021 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

2. 3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

3. 4. sandwich v2.4.0: Achim Zeileis (2004). Econometric Computing with HC 

and HAC Covariance Matrix Estimators. Journal of Statistical Software 

11(10),  1-17. URL http://www.jstatsoft.org/v11/i10/. AND Achim Zeileis 

(2006). Object-Oriented Computation of Sandwich Estimators. Journal of 

Statistical Software 16(9), 1-16. URL http://www.jstatsoft.org/v16/i09/. 

 Input Files: 

1. "./Inputs/ClinicalTrialValidationInputs_10_08_2018.RDS": List of clinical 

trial results, treatments, and drug concentrations created using "../Identifying 

Clinical Trials/Add_Clinical_Concentrations_To_Clinical_Trials_Data.R". 

(see "../Identifying Clinical Trials/README.txt") 

2. "./Inputs/CTRP_GDSC_tested_compound_doses.txt": List of maximum and 

minimum drug concentrations tested for each drug in CTRPv2 and/or GDSC. 
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Note, some drugs were tested at different dose ranges depending on the cell 

line. The minimums and maximums recorded in this file are median values 

based on the minimum and maximum concentrations used for each cell line. 

For some compounds, a handful of cell lines may have been tested with lower 

or higher concentrations than the majority of cell lines. These values are based 

on the concentration range used for the majority of cell lines. 

3. "../Reprocessing raw CTRPv2 and GDSC 

data/Outputs/Recalculated_GDSC_12_21_2018.txt": Summary of reprocessed 

GDSC dose-response curves produced by the code in the "../Reprocessing raw 

CTRPv2 and GDSC data/" folder.  

4. "C:/Users/Lingy/Desktop/Huang Lab/Drug Combo Project/Reprocessing raw 

CTRPv2 and GDSC data/Outputs/Recalculated_CTRP_12_21_2018.txt": : 

Summary of reprocessed CTRPv2 dose-response curves produced by the code 

in the "../Reprocessing raw CTRPv2 and GDSC data/" folder. 

5. "../Reprocessing raw CTRPv2 and GDSC data/MSI_Outputs/FittedModels/*": 

Fitted dose-response models for each drug in CTRPv2 and GDSC. 

 Output Files: 

1. "./Outputs/Clinical_Trial_Info_Dose_Perturbation.rds": An updated version of 

"./Inputs/ClinicalTrialValidationInputs_10_08_2018.RDS" with additional 

information added. Saved as data frame R object in rds format. 

2. "./Outputs/Dose_Perturbation_Dose_Multipliers.rds": A list of the dose 

multipliers used to perturb drug concentrations. Saved as data frame R object 

in rds format.  

3. "./Outputs/CTRP_Viabilities_and_Uncertainties_Dose_Perturbation.rds": 

Calculated CTRPv2 viabilities at perturbed concentrations for each drug/cell 

line pair. 

4. "./Outputs/GDSC_Viabilities_and_Uncertainties_Dose_Perturbation.rds": 

Calculated GDSC viabilities at perturbed concentrations for each drug/cell 

line pair. 

Step 5: Drug combination efficacy predictions based on Independent Drug Action with perturbed 

drug concentrations 

 Code: 

1. "Dose_Perturbation_Analysis.R": Uses viaibilites from Step 4 and 

IDACombo to predict efficacy of test and control treatments in the clinical 

trials using perturbed drug concentrations. Then calculates hazard ratios and 

powers for each trial based on those predictions. 

 Coding Environment: 
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  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. IDACombo: Chapter 3. 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

2. 3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

3. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read 

Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

4. xlsx v0.5.7: Adrian A. Dragulescu (2014). xlsx: Read, write, format Excel 

2007 and Excel 97/2000/XP/2003 files. R package version 0.5.7. 

https://CRAN.R-project.org/package=xlsx 

5. powerSurvEpi v0.0.9: Weiliang Qiu, Jorge Chavarro, Ross Lazarus, Bernard 

Rosner and Jing Ma. (2015). powerSurvEpi: Power and Sample Size 

Calculation for Survival Analysis of Epidemiological Studies. R package 

version 0.0.9. https://CRAN.R-project.org/package=powerSurvEpi 

 Input Files: 

1. "./Outputs/Clinical_Trial_Info.rds": See step 1 outputs.  

2. "./Outputs/CTRP_Viabilities_and_Uncertainties.rds": See step 1 outputs. 

3. "./Outputs/GDSC_Viabilities_and_Uncertainties.rds": See step 1 outputs. 

4. "./Inputs/Table S2_Screened Cell Line Info_plus_BRCA_Info.xlsx": A 

manually modified version of Table S2 from Ling et al., 2018: Ling, A., 

Gruener, R.F., Fessler, J., and Huang, R.S. (2018). More than fishing for a 

cure: The promises and pitfalls of high throughput cancer cell line screens. 

Pharmacol. Ther. This version of the file is modified to identify cell lines that 

harbor EGFR, HER2, PR, and/or ER abberations.    

 Output Files: 

1. "./Outputs/OS_Dose_Perturbation_Results.rds": Information about OS model 

performance when concentrations are multiplied by a range of multiplication 

factors. Saved in rds format. 
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2. "./Outputs/PFS_TTP_Dose_Perturbation_Results.rds": Information about 

PFS/TTP model performance when concentrations are multiplied by a range 

of multiplication factors. Saved in rds format. 

3. "./Outputs/PFS_TTP_Max_Tested_Predictions.rds": Clinical trial information 

and efficacy predictions when efficacy is predicted using maximum tested 

concentrations for each drug. Only includes trials plotted in Figure 5A. 

4. "./Outputs/OS_Max_Tested_Predictions.rds": Clinical trial information and 

efficacy predictions when efficacy is predicted using maximum tested 

concentrations for each drug. Only includes trials plotted in Figure 5B. 

Step 6: Summary figure for dose perturbation analysis 

 Code: 

1. "Create Figure S4_Dose perturbation results.R": Creates Figure S4, which is a 

summary of dose perturbation analysis. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. 1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

 Input Files: 

1. "./Outputs/OS_Max_Tested_Predictions.rds": See step 5 outputs. 

2. "./Outputs/PFS_TTP_Max_Tested_Predictions.rds": See step 5 outputs. 

3. "./Outputs/PFS_TTP_Dose_Perturbation_Results.rds": See step 5 outputs. 

4. "./Outputs/OS_Dose_Perturbation_Results.rds": See step 5 outputs. 

 Output Files: 

1. "./Outputs/Figures and Tables/Figure_S4_Clinical power predictions are dose 

dependent.tiff": Figure S4. 

Step 7: Drug combination efficacy predictions based on Bliss Independence 
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 Code: 

1. "Clinical_Trial_Validation_Bliss_Independence.R": Uses viaibilites from 

Step 1 and IDACombo to predict efficacy of test and control treatments in the 

clinical trials. Then calculates hazard ratios and powers for each trial based on 

those predictions. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. IDACombo: Chapter 3. 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

2. 3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

3. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read 

Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

4. xlsx v0.5.7: Adrian A. Dragulescu (2014). xlsx: Read, write, format Excel 

2007 and Excel 97/2000/XP/2003 files. R package version 0.5.7. 

https://CRAN.R-project.org/package=xlsx 

5. powerSurvEpi v0.0.9: Weiliang Qiu, Jorge Chavarro, Ross Lazarus, Bernard 

Rosner and Jing Ma. (2015). powerSurvEpi: Power and Sample Size 

Calculation for Survival Analysis of Epidemiological Studies. R package 

version 0.0.9. https://CRAN.R-project.org/package=powerSurvEpi 

 Input Files: 

1. "./Outputs/Clinical_Trial_Info.rds": See step 1 outputs.  

2. "./Outputs/CTRP_Viabilities_and_Uncertainties.rds": See step 1 outputs. 

3. "./Outputs/GDSC_Viabilities_and_Uncertainties.rds": See step 1 outputs. 

4. "./Inputs/Table S2_Screened Cell Line Info_plus_BRCA_Info.xlsx": A 

manually modified version of Table S2 from Ling et al., 2018: Ling, A., 

Gruener, R.F., Fessler, J., and Huang, R.S. (2018). More than fishing for a 
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cure: The promises and pitfalls of high throughput cancer cell line screens. 

Pharmacol. Ther. This version of the file is modified to identify cell lines that 

harbor EGFR, HER2, PR, and/or ER abberations.   

 Output Files: 

1. "./Outputs/Clinical_Trial_Predictions_Bliss_Independence.rds": Clinical trial 

information with added Bliss Independence efficacy predictions. Saved as list 

R object in RDS format.  

2. "./Outputs/Clinical_Trial_Predictions_Bliss_Independence.xlsx": Clinical trial 

information with added Bliss Independence efficacy predictions. Saved as 

xlsx format for easy viewing. 

Step 8: Summary figure for Bliss Independence predictions 

 Code: 

1. "Create Figure S5_Bliss Independence Predictions.R": Creates Figure S5, 

which is a summary of efficacy predictions based on Bliss Independence. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

 Input Files: 

1. "./Outputs/Clinical_Trial_Predictions_Bliss_Independence.rds": See step 7 

outputs. 

 Output Files: 

1. "./Outputs/Figures and 

Tables/Figure_S5_Bliss_Independence_ratio_cutoff_2.tiff": Figure S5. 
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PROSPECTIVE ANALYSIS README 

This folder contains the data and scripts used to perform the prospective analysis presented in the 

paper, where monotherapy data from CTRPv2 and GDSC was used to predict the efficacy of 2-

drug combinations of drugs that have reached late-stage clinical trials. This analysis pertains to 

figures 5, 6, and S6 and table S3. 

The analysis was performed in several steps: 

1. Viability estimates were calculated at specific concentrations for each drug to be used 

in the analysis 

2. Drug combination efficacy predictions were made with IDACombo using all cell 

lines and using cell line sets specific to 27 cancer types/subtypes. 

3. Analysis summary figures and tables were created for each cancer type (and the all 

cell line analysis). Note: these figures and tables are human readable and are stored in 

"./Outputs/Cluster_Heatmaps/". 

4. Cell line downsampling analysis. Drug combination efficacy predictions were remade 

several times as in step 2, except using increasingly smaller numbers of cell lines in 

order to identify how agreement between GSDC and CTRPv2 predictions changed as 

fewer cell lines were available for predictions. 

5. Figures and tables were created for use in the paper. 

Step 1: Viability calculations 

 Code: 

1. "CalculateViabilityAndUncertaintyFromClinicalConcentrations.R": Calculate 

viability and viability uncertainty estimates from fitted curves for CTRPv2 

and GDSC. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 
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1. drc v3.0.1: Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015) Dose-

Response Analysis Using R PLOS ONE, 10(12), e0146021 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. https://CRAN.R-

project.org/package=readr 

4. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read 

Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

5. sandwich v2.4.0: Achim Zeileis (2004). Econometric Computing with HC and 

HAC Covariance Matrix Estimators. Journal of Statistical Software 11(10), 1-

17. URL http://www.jstatsoft.org/v11/i10/. AND Achim Zeileis (2006). 

Object-Oriented Computation of Sandwich Estimators. Journal of Statistical 

Software 16(9), 1-16. URL http://www.jstatsoft.org/v16/i09/. 

 Input Files: 

1. "./Inputs/GDSC_CTRP_Clin_Drugs_cSustained.xlsx": Manually currated list 

of clinically relevant drug concentrations. Csustained is maximum plasma 

drug concentration achieved at least 6 hours after drug was administered to 

patient. See STAR Methods for details. 

2. "./Inputs/CTRP_GDSC_tested_compound_doses.txt": List of maximum and 

minimum drug concentrations tested for each drug in CTRPv2 and/or GDSC. 

Note, some drugs were tested at different dose ranges depending on the cell 

line. The minimums and maximums recorded in this file are median values 

based on the minimum and maximum concentrations used for each cell line. 

For some compounds, a handful of cell lines may have been tested with lower 

or higher concentrations than the majority of cell lines. These values are based 

on the concentration range used for the majority of cell lines. 

3. "../Reprocessing raw CTRPv2 and GDSC 

data/Outputs/Recalculated_GDSC_12_21_2018.txt": Summary of reprocessed 

GDSC dose-response curves produced by the code in the "../Reprocessing raw 

CTRPv2 and GDSC data/" folder.  

4. "C:/Users/Lingy/Desktop/Huang Lab/Drug Combo Project/Reprocessing raw 

CTRPv2 and GDSC data/Outputs/Recalculated_CTRP_12_21_2018.txt": : 

Summary of reprocessed CTRPv2 dose-response curves produced by the code 

in the "../Reprocessing raw CTRPv2 and GDSC data/" folder.  

5. "../Reprocessing raw CTRPv2 and GDSC data/MSI_Outputs/FittedModels/*": 

Fitted dose-response models for each drug in CTRPv2 and GDSC. 

 Output Files: 
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1. "./Inputs/Updated_ClinConc.rds": An updated version of 

"./Inputs/GDSC_CTRP_Clin_Drugs_cSustained.xlsx" with additional 

information added. Saved as data frame R object in RDS format. 

2. "./Inputs/Recalculated_CTRP_Data_Viabilities.rds": Calculated CTRPv2 

viabilities at defined concentrations for each drug/cell line pair in detailed 

format. Saved as data frame R object in RDS format. 

3. "./Inputs/Recalculated_GDSC_Data_Viabilities.rds": Calculated GDSC 

viabilities at defined concentrations for each drug/cell line pair in detailed 

format. Saved as data frame R object in RDS format. 

4. "./Inputs/Simple_Recalculated_CTRP_Data_Viabilities.rds": Calculated 

CTRPv2 viabilities at defined concentrations for each drug/cell line pair in 

simplified format for direct use with IDACombo. Saved as data frame R 

object in RDS format. 

5. "./Inputs/Simple_Recalculated_GDSC_Data_Viabilities.rds": Calculated 

GDSC viabilities at defined concentrations for each drug/cell line pair in 

simplified format for direct use with IDACombo. Saved as data frame R 

object in RDS format. 

Step 2: Drug combination efficacy predictions 

 Code: 

1. "Predict_Drug_Combo_Efficacy_Tissue_Specific.R": Uses viaibilites from 

Step 1 and IDACombo to predict efficacy of 2-drug combinations of late-

stage clinical drugs in CTRPv2 and GDSC. Makes cancer type/subtype 

specific predictions as well as predictions with all available cell lines. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 

 Packages 

1. IDACombo: Chapter 3. 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 
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3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois (2017). 

readr: Read Rectangular Text Data. R package version 1.1.1. https://CRAN.R-

project.org/package=readr 

4. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read 

Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

5. pbapply v1.3.3: Peter Solymos and Zygmunt Zawadzki (2017). pbapply: 

Adding Progress Bar to '*apply' Functions. R package version 1.3-3. 

https://CRAN.R-project.org/package=pbapply 

6. parallel v3.4.2: R Core Team (2017). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. URL https://www.R-project.org/. 

 Input Files: 

1. "./Inputs/Simple_Recalculated_CTRP_Data_Viabilities.rds": See step 1 

outputs.  

2. "./Inputs/Simple_Recalculated_GDSC_Data_Viabilities.rds": See step 1 

outputs. 

3. "./Inputs/Table S2_Screened Cell Line Info_plus_BRCA_Info.xlsx": A 

manually modified version of Table S2 from Ling et al., 2018: Ling, A., 

Gruener, R.F., Fessler, J., and Huang, R.S. (2018). More than fishing for a 

cure: The promises and pitfalls of high throughput cancer cell line screens. 

Pharmacol. Ther. This version of the file is modified to identify cell lines that 

harbor EGFR, HER2, PR, and/or ER abberations.   

 Output Files: 

1. "./Outputs/CTRP_Combo_Prediction_Results_*.rds": CTRPv2 based drug 

combination efficacy predictions for 2-drug combinations of drugs that have 

reached late-stage clinical trials. Saved as list R object in RDS format.  

2. "./Outputs/GDSC_Combo_Prediction_Results_*.rds": GDSC based drug 

combination efficacy predictions for 2-drug combinations of drugs that have 

reached late-stage clinical trials. Saved as list R object in RDS format. 

Step 3: Summary figures and tables for combination efficacy predictions 

 Step 3 part 1: 

  Code: 

1. "Making_Drug_Combo_Efficacy_Figures.R": Creates summary 

figures and tables for drug combination efficacy predictions created in 

step 2 using all available cell lines. 

  Coding Environment: 
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   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

2. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: 

Read Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

3. RColorBrewer v1.1.2: Erich Neuwirth (2014). RColorBrewer: 

ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-

project.org/package=RColorBrewer 

4. ComplexHeatmap v1.14.0: Gu, Z. (2016) Complex heatmaps reveal 

patterns and correlations in multidimensional genomic data. 

Bioinformatics. 

  Input Files: 

1. "./Inputs/Updated_ClinConc.rds": See step 1 outputs.  

2. "./Outputs/CTRP_Combo_Prediction_Results_All_ccls.rds": See step 

2 outputs. 

3. "./Outputs/GDSC_Combo_Prediction_Results_All_ccls.rds": See step 

2 outputs. 

4. "./Inputs/Drug_Target_Info.xlsx": Manually currated list of drug 

targets for CTRPv2 and/or GDSC drugs that have reached late-stage 

clinical trials. 

  Output Files: 

1. "./Outputs/Cluster_Heatmaps/": This script produces numerous 

summary figures and tables which are all contained within this folder. 

Specifically, this script populates the 

"./Outputs/Cluster_Heatmaps/All_ccls/" folder and adds two files to 

the 

"./Outputs/Cluster_Heatmaps/GDSC_CTRP_Correlation_Outputs/" 

folder. To shorten this README file, another README file has been 

created in the "./Outputs/Cluster_Heatmaps/" folder describing the 

files contained within that folder. 
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 Step 3 part 2: 

  Code: 

1. "Making_Drug_Combo_Efficacy_Figures_Tissue_Specific.R": 

Creates summary figures and tables for drug combination efficacy 

predictions created in step 2 using cancer type/subtype specific sets of 

cell lines. Also produces comparisons of cancer specific predictions to 

predictions made with all cell lines.  

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

2. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: 

Read Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

3. RColorBrewer v1.1.2: Erich Neuwirth (2014). RColorBrewer: 

ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-

project.org/package=RColorBrewer 

4. ComplexHeatmap v1.14.0: Gu, Z. (2016) Complex heatmaps reveal 

patterns and correlations in multidimensional genomic data. 

Bioinformatics. 

  Input Files: 

1. "./Inputs/Updated_ClinConc.rds": See step 1 outputs.  

2. "./Outputs/Cluster_Heatmaps/All_ccls/CTRP_IDA_comboscore_matri

x_All_ccls.rds": Step 3 part 1 output. See 

"./Outputs/Cluster_Heatmaps/README". 

3. "./Outputs/Cluster_Heatmaps/All_ccls/GDSC_IDA_comboscore_matr

ix_All_ccls.rds": Step 3 part 1 output. See 

"./Outputs/Cluster_Heatmaps/README". 
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4. "./Outputs/Cluster_Heatmaps/All_ccls/CTRP_drug_targets_All_ccls.t

xt": Step 3 part 1 output. See 

"./Outputs/Cluster_Heatmaps/README". 

5. "./Outputs/Cluster_Heatmaps/All_ccls/GDSC_drug_targets_All_ccls.t

xt": Step 3 part 1 output. See 

"./Outputs/Cluster_Heatmaps/README". 

6. "./Inputs/Drug_Target_Info.xlsx": Manually currated list of drug 

targets for CTRPv2 and/or GDSC drugs that have reached late-stage 

clinical trials. 

7. "./Outputs/CTRP_Combo_Prediction_Results_*.rds": See step 2 

outputs. 

8. "./Outputs/GDSC_Combo_Prediction_Results_*.rds": See step 2 

outputs. 

  Output Files: 

1. "./Outputs/Cluster_Heatmaps/": This script produces numerous 

summary figures and tables which are all contained within this folder. 

Specifically, this script populates the folders with cancer type/subtype 

specifc names and adds numerous files to the 

"./Outputs/Cluster_Heatmaps/GDSC_CTRP_Correlation_Outputs/" 

folder. To shorten this README file, another README file has been 

created in the "./Outputs/Cluster_Heatmaps/" folder describing the 

files contained within that folder. 

Step 4: Cell line downsampling analysis 

 Code: 

1. "Predict_Drug_Combo_Efficacy_Downsample_CCLs.R": Uses viabilities 

calculated in step 1 and IDACombo to predict drug combination efficacy for 

2-drug combinations of drugs in CTRPv2 and GDSC that have reached late-

stage clinical trials, but predictions are made using increasingly smaller 

numers of cell lines to determine how prediction agreement between CTRPv2 

and GDSC is affected by the number of cell lines used to make the 

predictions. 

 Coding Environment: 

  R version 3.4.2 (2017-09-28) -- "Short Summer" 

  Platform: x86_64-w64-mingw32/x64 (64-bit) 

  Microsoft R Open 3.4.2 

  RStudio version 1.1.463 
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 Packages 

1. IDACombo: Chapter 3. 

2. progress v1.1.2: Gábor Csárdi and Rich FitzJohn (2016). progress: Terminal 

Progress Bars. R package version 1.1.2. https://CRAN.R-

project.org/package=progress 

i. 3. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

3. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: Read 

Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

 Input Files: 

1. "./Inputs/Simple_Recalculated_CTRP_Data_Viabilities.rds": See step 1 

outputs.  

2. "./Inputs/Simple_Recalculated_GDSC_Data_Viabilities.rds": See step 1 

outputs. 

 Output Files: 

1. "./Outputs/Downsample/CTRP_Combo_Prediction_Results*.rds": Prediction 

results based on different numbers of cell lines (note: predictions were made 

using each number of cell lines 5 times, randomly selecting the cell lines used 

each time). Saved as data frame R object in RDS format. 

Step 5: Creating figures and tables for paper 

 Step 5 part 1: 

  Code: 

1. "Making Figure 6_IDA_ComboScore predictions for late stage clinical 

drugs in CTRPv2.R": Creates figure 6. 

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 
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1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

2. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: 

Read Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

3. RColorBrewer v1.1.2: Erich Neuwirth (2014). RColorBrewer: 

ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-

project.org/package=RColorBrewer 

4. ComplexHeatmap v1.14.0: Gu, Z. (2016) Complex heatmaps reveal 

patterns and correlations in multidimensional genomic data. 

Bioinformatics. 

  Input Files: 

1. "./Inputs/Updated_ClinConc.rds": See step 1 outputs.  

2. "./Outputs/CTRP_Combo_Prediction_Results_All_ccls.rds": See step 

2 outputs. 

3. "./Outputs/GDSC_Combo_Prediction_Results_All_ccls.rds": See step 

2 outputs. 

4. "./Inputs/Drug_Target_Info.xlsx": Manually currated list of drug 

targets for CTRPv2 and/or GDSC drugs that have reached late-stage 

clinical trials. 

  Output Files: 

1. "./Outputs/Figures_and_Tables/Figure_6_IDA_Comboscore_Predictio

ns_for_late_stage_clinical_drugs_in_CTRPv2.tiff": Figure 6.  

 Step 5 part 2: 

  Code: 

1. "Making Figure 7 Plots_IDA_Combo predicts strong benefits for 

combinations of navitoclax and taxanes.R": Creates plots for figure 7. 

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 

   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 
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  Packages 

1. readr v1.1.1: Hadley Wickham, Jim Hester and Romain Francois 

(2017). readr: Read Rectangular Text Data. R package version 1.1.1. 

 https://CRAN.R-project.org/package=readr 

2. readxl v1.0.0: Hadley Wickham and Jennifer Bryan (2017). readxl: 

Read Excel Files. R package version 1.0.0. https://CRAN.R-

project.org/package=readxl 

3. rgl v0.98.1: Daniel Adler, Duncan Murdoch and others (2017). rgl: 3D 

Visualization Using OpenGL. R package version 0.98.1. 

https://CRAN.R-project.org/package=rgl 

4. car v2.5.1: John Fox and Sanford Weisberg (2011). An {R} 

Companion to Applied Regression, Second Edition. Thousand Oaks 

CA: Sage. URL: 

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion 

  Input Files: 

1. "./Outputs/CTRP_Combo_Prediction_Results_All_ccls.rds": See step 

2 outputs. 

2. "./Outputs/CTRP_Combo_Prediction_Results_EGFR_WT_lung_canc

er.rds": See step 2 outputs. 

  Output Files: 

1. "./Outputs/Figures_and_Tables/Figure_7A_Navitoclax_IDA_ComboS

cores_in_EGFR_WT_Lung_Cancer.tiff": Figure 7A. 

2. "./Outputs/Figures_and_Tables/Navitoclax_Docetaxel_Viability.png": 

Figure 7B. 

3. "./Outputs/Figures_and_Tables/Navitoclax_Paclitaxel_Viability.png": 

Figure 7C.   

 Step 5 part 3: 

  Code: 

1. "Making Figure 

S6_GDSC_CTRP_Agreement_vs_n_Cell_Lines_and_Cancer_Types.

R": Creates plots for figure S6. 

  Coding Environment: 

   R version 3.4.2 (2017-09-28) -- "Short Summer" 

   Platform: x86_64-w64-mingw32/x64 (64-bit) 
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   Microsoft R Open 3.4.2 

   RStudio version 1.1.463 

  Packages 

1. xlsx v0.5.7: Adrian A. Dragulescu (2014). xlsx: Read, write, format 

Excel 2007 and Excel 97/2000/XP/2003 files. R package version 0.5.7. 

https://CRAN.R-project.org/package=xlsx 

  Input Files: 

1. "./Outputs/Downsample/*_Combo_Prediction_Results_*.rds": See 

step 4 outputs. 

2. "./Outputs/Cluster_Heatmaps/GDSC_CTRP_Correlation_Outputs/*.tx

t": See step 3 outputs and "./Outputs/Cluster_Heatmaps/README". 

  Output Files: 

1. "./Outputs/Figures_and_Tables/Figure_S6_GDSC_CTRP_Agreement

_vs_n_Cell_Lines_and_Cancer_Type.tiff": Figure S6. 

2. "./Outputs/Figures_and_Tables/Table_Sx_GDSC_CTRP_Agreement_

vs_n_Cell_Lines_and_Cancer_Type.xlsx": Table S3. 

 


