
THE UNIVERSITY OF CHICAGO

DESIGN AND LEARNING IN MECHANICAL SYSTEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

BY

MENACHEM STERN

CHICAGO, ILLINOIS

DECEMBER 2019

Copyright c© 2019 by Menachem Stern

All Rights Reserved

In dedication to my beloved family, whose support made it all possible.

‘Tell me and I forget, teach me and I may remember, involve me and I learn.’

– Benjamin Franklin

Table of Contents

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . ix

ABSTRACT . xi

1 INTRODUCTION . 1

2 SELF-FOLDING ORIGAMI AT ANY ENERGY SCALE 8
2.1 Results . 10

2.1.1 Vertex transfer function . 10
2.1.2 Loop equation and tuneable stiffness . 12
2.1.3 Mountain-Valley choice strongly affects foldability 16

2.2 Discussion . 23
2.3 Supplementary Figures . 25
2.4 Supplementary Notes . 28
2.5 Supplementary Methods . 39

3 THE COMPLEXITY OF FOLDING SELF-FOLDING ORIGAMI 42
3.1 Results . 47

3.1.1 4-vertex and chains of 4-vertices . 47
3.1.2 Branch selection through mechanical advantage 48
3.1.3 Loops of vertices create glassy energy landscapes 49
3.1.4 Folding islands . 53

3.2 Discussion . 56
3.3 Appendix A - Design of folding branches and the energy landscape 58
3.4 Appendix B - Energy and vertex constraints . 60
3.5 Appendix C - Effects of material properties and imperfections 65
3.6 Appendix D - Dot product and attractor size . 69
3.7 Appendix E - Computation of folding islands . 70

4 SHAPING THE TOPOLOGY OF FOLDING PATHWAYS IN MECHANICAL SYSTEMS 73
4.1 Results . 75

4.1.1 Avoided bifurcation in linkage networks 75
4.1.2 Misfolding in self-folding sheets . 78

v

4.1.3 Avoided bifurcation in a 4-vertex . 78
4.1.4 Stiffness profiles in large self-folding sheets 81
4.1.5 Larger folding angles and adiabatic folding 82
4.1.6 External folding forces applied to creases 84
4.1.7 Folding speed-dependent target structures 85

4.2 Discussion . 86
4.3 Supplementary Figures . 87
4.4 Supplementary Notes . 91

5 SUPERVISED LEARNING IN A MECHANICAL SYSTEM 107
5.1 Results . 109

5.1.1 A mechanical supervised training protocol 112
5.1.2 Heterogeneous crease stiffness . 113
5.1.3 Generalization and sheet size . 117
5.1.4 Complex classification problems . 118
5.1.5 Experimental considerations . 119

5.2 Discussion . 121
5.3 Supplementary Notes . 122

6 LEARNED MULTI-STABILITY IN MECHANICAL NETWORKS 136
6.1 Results . 138

6.1.1 Linear and non-linear elasticity . 139
6.1.2 Optimal non-linearity . 144
6.1.3 Pattern Recognition . 145

6.2 Discussion . 146
6.3 Supplementary Notes . 148

7 DISCUSSION . 160

A TECHNICAL INFORMATION . 164
A.1 Origami modeling and folding . 164

A.1.1 Simplified energy model . 164
A.1.2 Finite element simulations . 167
A.1.3 Experimental models . 168

A.2 Energy landscapes for general factor graphs . 169
A.2.1 Physical systems as factor graphs . 170
A.2.2 Elastic networks . 172
A.2.3 Optimization, design and learning . 174

REFERENCES . 176

vi

List of Figures

1.1 Self-folding origami and Elastic networks . 4

2.1 Designing self-folding origami . 11
2.2 Loop equations uncover folding modes of variable face bending over orders of magni-

tude. 13
2.3 Mountain-Valley choices fall into three classes based on foldability of typical modes . 17
2.4 Entropy of crease patterns as a function of face bending energy 19
2.5 Face bending for large folding angles and in finite element simulations 22
2.6 Modes of 4-vertices and quads . 25
2.7 Folding of an added face diagonal is a robust proxy for face bending 26
2.8 Classes of Mountain-Valley choices occur with widely varying frequency and face

bending . 27

3.1 Bifurcated folding motions . 44
3.2 Bifurcations for vertices and chains of vertices . 45
3.3 Loops of vertices give rise to a glassy landscape . 46
3.4 Large patterns have an exponential number of branches (i.e., minima) of decreasing

attractor size . 52
3.5 Spatial distribution of actuators determines folding success 54
3.6 Energy landscape of a quad loop pattern at fixed norm of folding angles ||ρ|| 59
3.7 Stretching energy scaling in a 4-vertex E(||~ρ||) depends on the direction of ~ρ 61
3.8 Number of folding branches for patterns of different sizes, folded to magnitude ||~ρc|| . . 63
3.9 Finite element models of realistic sheets, simulated with COMSOL Multiphysics . . . 64
3.10 Varying material models changes landscape details but maintains underlying structure

of exponential minima . 66
3.11 Large meshes require the applied vector of torques ~τ to be closely aligned with the

folding angles ~ρdesired of the desired branch for successful folding 70

4.1 Stiff joints in a linkage network can change the connectivity of non-linear modes in
state space . 75

4.2 Heterogeneous stiff creases can simplify the landscape of self-folding sheets near the
flat state . 77

4.3 Stiff creases change the topological connectivity of undesired modes and promote fold-
ing at slow speeds . 79

vii

4.4 Sheets with stiff creases dramatically improve folding for a wide range of external
forces applied to specific creases . 82

4.5 Folding speed can controllably select between different folding pathways 83
4.6 Modes of the 4-bar linkage . 87
4.7 Each of the linkage modes can be lifted with proper hinge stiffness values 88
4.8 Lifting modes in origami 4-vertices . 89
4.9 Performance of Linear and Quadratic Programming stiffness selection protocols for

large origami patterns . 90
4.10 A pattern for which slow folding with LP stiffness profile fails 90

5.1 Training thin sheets to classify spatial force patterns 109
5.2 Supervised training of thin sheets . 111
5.3 Supervised learning of cap-like force distributions . 114
5.4 Training increases the variance of crease stiffness across the sheet 115
5.5 Effect of training set size and sheet size on test accuracy 116
5.6 Training sheets to classify Iris specimens . 117
5.7 Learning is successful even with simplified training rules and experimentally realizable

stiffness range . 120
5.8 Origami Sheets used for training . 125
5.9 Defining force distributions using the force-fold mapping of an origami sheet 132
5.10 Training a sheet on a force distribution derived from a different sheet 133

6.1 Designing vs learning multiple states . 138
6.2 Non-linear interactions are essential for learning multiple states in sequence 140
6.3 Non-linear springs apply a Bayesian prior to the strain distribution 142
6.4 Optimal non-linearity for learned and designed states 144
6.5 Elastic networks learn to recognize handwritten digits 146
6.6 Number of stable configurations in a network of linear springs grows linearly with the

size of the system . 149
6.7 The sum energy of two springs goes through a transition at ξ = 1 152
6.8 Programming stored states using the learning paradigm exhibits finite capacity 156
6.9 Effects of node connectivity and state similarity on the quality of encoded states 158

A.1 Counting folding modes and angle verification . 165
A.2 Finite element simulation of origami sheets . 167
A.3 Cardstock self-folding origami patterns . 169
A.4 Physical systems as factor graphs . 171
A.5 More complex networks as factor graphs . 172
A.6 Factor graphs of a growing elastic network . 173

viii

Acknowledgments

First of all I would like to thank my advisor, Prof. Arvind Murugan, for being a mentor and a

friend, for his encouragement, guidance, and patience. Few are the people who could grant so

much trust and inspiration in the study of such outlandish ideas. This work would not have been

possible without his support, for which I am extremely grateful.

I would also like to thank Dr. Matthew Pinson, who was a close collaborator on many of the

projects presented here. For many discussions, suggestions and encouraging words, I am indebted

to him and other collaborators, in particular Chukwunonso Arinze and Viraaj Jayaram, who played

important roles in the study of design and learning in origami.

I am grateful to Prof. Thomas Witten, who has been a major source of support for the entire

time. He was always open to hearing me out, and kindly allowed me to regularly join and present

in his group meeting. His openness and attentiveness made me feel welcome in the UChicago soft

matter community, and I consider my discussions with him to have been especially enjoyable.

I am thankful to Prof. Wendy Zhang, my research advisor for the first year in Chicago, as well

as Profs. Heinrich Jaeger and Ivo Peters (U. of Southampton), with whom I have worked closely

on the hydrodynamics of suspension droplets. Their advice and support allowed me to experience

and enjoy a much broader scope of soft matter physics research. I would also like to thank my

thesis committee members, Profs. Dam Son and Savdeep Sethi for the support and discussions on

different aspects of the work.

Finally, I would like to especially thank the dear members of my family. My mother, Hava,

for her never-ending support, even from faraway. My wife, Shahar, for her love, support and

ix

encouragement during the periods together and apart. For the great discussions on physics, biology

and statistics, and feeling of home no matter where we went. Our daughter Talia who joined

halfway through, for her cheerfulness, inspiration, and limitless energy. Their love and support

were vital for the success of my studies.

x

Abstract

For millennia, people have designed diverse machines to perform countless different tasks. Design

– the creation of a system according to a rational plan, is so ubiquitous in the engineering of me-

chanical systems, that the word became synonymous with the final engineered product. However,

recent advances in neuroscience and computer science suggest a different approach to constructing

mechanical systems, namely learning. If a system can modify the properties of its components

in response to external inputs, it may be able to learn desired behaviors by observing examples of

use. Learning mechanical systems may have distinct advantages over designed systems, such as

the potential to be trained for a task by an end-user rather than a designer, and the ability to adapt

to new tasks while still capable of accomplishing previously established ones.

In this work, we study and compare design and learning approaches in two types of mechan-

ical systems, self-folding origami and elastic networks. By utilizing an energy-based viewpoint,

we show how these systems are designed to perform certain tasks (e.g. folding in a desired way, or

having predefined multi-stability), and how they can learn to perform such tasks by experiencing

examples of use. We elucidate the distinct advantages and disadvantages of design and learning

approaches in these specific systems. Finally, we lay out explicit analogies between learning me-

chanical systems and learning in neuroscience and computer science. Thus, we hope that future

mechanical engineering disciplines will exploit the surge in learning theory to create new classes

of learning machines, capable of feats yet impervious to traditional design frameworks.

xi

Chapter 1

Introduction

Mechanical systems, or machines, convert energy to relative motion of their constituents, in order

to perform a certain function. These systems are ubiquitous in nature and technology. Included

in this category are the simplest machines employed by humans since antiquity, such as the axe,

lever and wheel, up to intricate systems like evolved proteins and man-made power plants. The

study, understanding, and ultimately engineering of these systems had contributed immeasurably to

society. In recent years physical machines have been somewhat overshadowed by the information

age computation based systems, that are electronic in nature and devoid of moving (macroscopic)

parts. However, there is no doubt that mechanical systems will continue to have a crucial role in

human experience.

Though mechanical systems architectures, as well as the tasks they perform, are extremely

diverse, we may divide machines into two broad classes according to the principles by which they

are created. The everyday objects we interact with and refer to as machines are usually designed

specifically to perform a certain task [1]. One simple example is the collapsible umbrella; it opens

up in a swift, predictable motion to protect the user from the rain, and when not in use may

be collapsed back to allow for compact storage. How is such a machine designed? It is clear

that a random collection of rods, hinges and pieces of fabric do not naturally form a working

umbrella. Instead, these different components are brought together by rational design principles.

1

The designer moves the components around, connects them in different ways, and even replaces

them altogether, in order to obtain a final product that achieves the desired functionality. Though

often aided by trial and error and previous experience, the design process focuses on optimizing

the mechanical system and its interacting components in order to facilitate the system’s goals.

While the majority of engineered systems around us are designed, living systems (that can also

be regarded as mechanical), are generically evolved. A typical example for such a system is an

animal, evolved through mutation and natural selection to be fit (able to thrive and reproduce) in

its natural environment [2]. In contrast to designed systems, an evolved system does not change its

components via a rational optimization framework. Instead, animal individuals are born and either

succeed or fail in rearing offspring according to their intrinsic fitness (and chance). In other words,

the evolution process produces many individual examples of animals, and proceeds by prolifer-

ating the fittest examples. Following the scientific description of systems as evolving, analogies

have been drawn between evolution and the process of learning [3]. While an animal learns, the

structure of its brain changes in a way that allows it to acquire new memories or abilities. Cru-

cially, these modifications are facilitated by sensory input, or examples (similarly to evolution); we

cannot learn information we were never exposed to.

This idea of learning, or utilizing examples of a desired task in order to ‘train’ the system to

perform that task, has been embraced by the fields of statistics, and more recently, computer science

(machine learning) [4]. These fields make use of the vast quantities of data, available through

modern monitoring and computation, to train algorithms for various tasks, from distinguishing

handwritten digits to predicting the price of stocks. Though learning frameworks are now routine

in data science, these ideas have only recently been explored in engineering [5], and have so far

focused mostly on application of machine learning algorithms to analyze engineered systems.

We propose that the ideas of learning theory could be applied to mechanical systems in a

novel fashion. “Smart materials” [6] that change in response to external manipulation may be

used as learning models. In other words, these materials can be trained to perform desired tasks

just by observing examples and modifying their structure accordingly. This approach of training

2

mechanical systems for specific tasks has only recently been considered [7, 8], and it may have

considerable advantaged in comparison to the traditional design approach. In particular, while

design requires expert knowledge of the system at hand in order to rationally modify it for a desired

task, training by example may be done by an end-user with a specific desired task in mind.

In this work we study and compare design and learning approaches for mechanical systems.

We address two distinct systems that have seen many applications in engineering and art: Self-

folding origami and elastic networks. Origami is a mechanical network described by a crease

pattern on a thin flat material sheet. Origami can be actuated by folding the creases, giving rise to

intricate 3d structures, possibly fit for specific functions (e.g. paper plane). Self-folding origami

is a special class of origami, in which the topology of the crease pattern constrains all of the

creases to fold simultaneously. In principle, this means the entire pattern can be actuated by folding

just one crease. This type of origami structures, discovered relatively recently [9], has garnered

much interest in the engineering community for their possible advantages. These include easy

manufacturing (etching creases on a thin 2d sheet) and deployment (few actuators necessary to

fold the entire structure). Furthermore, for thin sheets, the folding of origami depends only on

the geometry of the pattern (and not on the material) so that engineered application of self-folding

origami were realized over many length scales [10]. Though studied for decades in engineering,

mathematics and arts, the study of self-folding origami with physics based approaches is relatively

new [11]. This line of research has focused on the characterization of folding in self-folding

sheets [12, 13] and the design of particular target folded shapes [14] (Fig. 1.1(a)).

In contrast to origami, an elastic network is a general concept that refers to any system that

could be modeled as a collection of nodes connected by springs. Most materials, natural or man-

ufactured, indeed belong to this category. Compound mechanical structures, like the collapsible

umbrella discussed above, can also be considered as elastic networks. Thus the relevance of this

type of models to our everyday experience is hard to overstate. Though most elastic networks

change predictably under small strains (in the linear response regime), they may have vastly differ-

ent responses to large strains, depending on their microscopic structure and topology [16]. When

3

(a) (b)

Figure 1.1: Self-folding origami and Elastic networks
(a) (Top) The famous Miura pattern where all creases fold simultaneously to a compact shape.
(Bottom) Different folded designs obtainable by small variations of the Miura pattern (adapted
from Figs. 1,2 of Ref. [14]). (b) Two and three dimensional elastic networks manufactured using
plastic bonds and designed to exhibit long range (allosteric) actuation modes (adapted from Fig. 4
of Ref. [15]).

4

such structures are constructed of macroscopic parts, they are often renamed “metamaterials” [17],

with impressive modularity that allows for the design of intricate desired responses. Indeed, elas-

tic networks have recently been designed to exhibit remarkable properties such as auxetic [18]

and allosteric (long range) modes [15], as seen in Fig. 1.1(b). It is important to note that many

of these scientific achievements were possible by the study and imitation of elastic networks in

living systems, such as proteins and cytoskeletons, that exhibit a variety of unique mechanical

responses [19].

To study these origami and elastic systems, we adopt an energy based point of view. Our

analyses are based on exploring the configuration space of the system (i.e. a space where each

dimension corresponds to the available states of each degree of freedom), and assigning an energy

value to every configuration. Pictorially, one may imagine a high-dimensional ‘energy landscape’

that may be very complex, with a large number of important features such as local minima, maxima

and saddle points of varying order [20]. In equilibrium, the system will occupy one of the local

minima in the energy landscape. A soft mode may be defined as a relatively low energy valley

connected to a local minimum, such that actuating the system along this mode is easy in practice.

With this energy landscape framework in mind, the process of creating a mechanical system for a

specific goal becomes a question of sculpting such high dimensional energy landscapes, subject to

physical limitations.

As discussed above, energy landscapes may be adapted by either rational considerations (de-

sign), or the system experiencing examples of use (training, or learning). This work will explore

methods of design and learning to create mechanical systems with desired properties, or fit to per-

form certain tasks. The work will be divided into five main chapters, each of which is a reprint of

one paper, either published or submitted for publication. The majority of chapters focus on design

and learning in self-folding origami, while the last main chapter centers on elastic networks. In

the following we detail the contents of these chapters. The final chapter will be reserved for a

discussion.

Chapter 2 serves as a more thorough introduction to self-folding origami and its description

5

using energy based models. Most known origami patterns with a self-folding topology are either

completely soft (having zero-energy folding modes) or completely rigid (not folding at all). We

study the creation of disordered self-folding patterns with an arbitrary chosen folding energy scale,

bridging the gap between the two extremes. This is done by using a design approach, i.e. chang-

ing the pattern geometry using a rational process (namely, optimizing the residues of some ‘loop

equations’) in order to tune the folding energy. This chapter is a reprint of Ref. [21].

Chapter 3 discusses self-folding origami as an example of a complex (glassy) system. We

show that the flat, unfolded state, connects exponentially many distinct folding modes, such that

actuating the folding motion one is interested in effectively requires a great deal of control. From

an energy perspective, the landscape of origami folding is glassy, with exponentially many local

minima. By employing computational strategies of solving NP-complete problems (e.g. Sudoku),

we suggest a ‘folding island’ algorithm that allows the correct folding of origami with just a few

actuators. This chapter is a reprint of Ref. [22]. Though in itself not directly related to design or

learning frameworks, this chapter introduces the idea of folding complexity that is crucial for the

next two chapters.

Chapter 4 studies a design approach for rescuing ‘self-foldability’ in self-folding origami. We

earlier established that folding origami is an exponentially hard (NP-complete) problem for sheets

with free folding creases. We find that if creases can have a heterogeneous stiffness profile, one can

modify (design) the folding pathway topology in interesting ways. For example, unwanted folding

modes may be eliminated from the flat state fork by means of saddle-node bifurcations. We show

that one can optimize the stiffness profile to prefer a single folding motion, effectively eliminating

all others. Such sheets have their self-folding property rescued, as any forces applied to them will

actuate only the desired folding motion. This chapter is a reprint of Ref. [23].

Chapter 5 proposes self-folding origami as a system that can be trained with an analogy of

supervised learning. We show that self-folding sheets, folded using sets of ‘training forces’, can

be programmed to exhibit a desired force-fold map. In analogy to machine learning algorithms

that distinguish cats and dogs in images, our sheets effectively act as force classifiers, able to

6

learn distinctions between sets of applied forces. The analogy to learning algorithms goes deeper,

as we show that these trained sheet classifiers are able to generalize (correctly classify unseen

‘test’ forces). The problem of achieving the desired force-fold map (classification problem) is

approached using a learning framework, as a design approach to achieving such results is hard to

define in general. This chapter is a reprint of Ref. [24].

Chapter 6 compares design and learning approaches for solving the same problem, namely, how

to obtain an elastic network with multiple predefined stable states. By design, multi-stability may

be obtained by optimizing the stiffness coefficients in a network of linear springs, using solutions

to sets of linear equations. We find that learning these multiple stable states in a growing network

requires the use of completely different, non-linear springs, to stabilize the desired states. This

result is connected to the idea of sparse regression in statistics, where springs associated with each

individual stable state only store information about that state. The advantage of learning multi-

stability is in the flexibility of this method. The system can learn new states continually, where

new stable states can be learned in the network while retaining old ones. In comparison, our

design approach to multi-stability requires complete redesign of the network whenever a single

new state is to be added. This chapter is a reprint of Ref. [25].

7

Chapter 2

Self-folding origami at any energy scale

Programmed instabilities and weak spots have emerged as a powerful tool to design a unique

preferred deformation mode into mechanical structures [26, 27]. Such mechanisms are attrac-

tive in actuators [28, 29], meta-materials [30], art, architecture [31, 32], robotics [33] and other

applications at different length scales because mechanisms require minimal control at the time of

deployment; as seen in folding chairs or unfolding umbrellas, the designed deformation is a unique

one-dimensional path in configuration space through which the structure is naturally guided under

any external force. Mechanisms [34], even more so than marginal structures [35], are delicately

poised at the boundary between being rigid and floppy. Despite much recent interest in large

extended mechanisms [10, 14, 31, 36, 37, 38, 39] and some critical contributions towards the

same [36, 40, 41, 42, 43, 44], most work has focused on deformations with high symmetry, and

the space of designed disordered deformations remains largely unexplored.

A prominent and ancient example of designed deformation is origami. In particular, rigid

origami is the study of stiff sheets that do not bend except at the prescribed creases [36]. If creases

are placed at just the correct angles relative to each other, the sheet as a whole has exactly one al-

lowed deformation in which all the creases fold at the same time. Such sheets can be described [45]

as self-folding because the allowed mode will be actuated by almost any applied force; there is no

need to precisely tailor the folding forces. While a general origami pattern might have several

8

folding motions, a self-folding pattern will have a unique extended motion that requires less en-

ergy than all others.

However, even in this well-studied area, most known examples of self-folding crease patterns

are in fact rigidly-foldable (i.e., foldable at precisely zero energy cost). With the exception of

some influential works discussed below [36, 40, 41, 42, 43, 44], rigidly-foldable crease patterns

are often periodic structures made of repeating units, such as Miura Ori and its derivatives [12, 13].

Further, origami design has often been limited to the mountain-valley (MV) pattern implicit in

Miura-Ori [9, 14, 36]. Many such studies of rigid origami have also been restricted to so-called

flat-foldable or near-flat-foldable vertices [36, 46] (i.e. patterns in which all creases fold to angle

π simultaneously); the flat-foldability restriction on angles in a crease pattern leads to dramatic

algebraic simplifications in rigidity calculations. As a result, Miura-Ori derivatives are often rigidly

foldable, with the stiff sheet between creases (i.e., the ‘faces’) not bending at all when the creases

are folded.

Restricting study to the rigid foldable patterns with no face bending misses a larger space of

near-perfect mechanisms in which face bending or energy cost of actuation can be made arbitrarily

small. Understanding the full space of crease patterns as a function of folding energy is also crucial

for self-folding origami applications [10], since applications vary widely in material stiffness and

actuation torques (or energies) available. For example, folding a structure made of stiff plates

connected by Shape-Memory Polymer hinges [47, 48] that provide low actuation torques might

require nearly-rigid foldable patterns; but using Shape-Memory Alloys [49] or ionic electroactive

polymer [10] hinges that provide higher torques would allow use of less foldable patterns as well.

Similarly, one might wish to prevent accidental deployment of a self-folding hydrogel capsule [50]

due to small pH fluctuations, necessitating less foldable patterns.

Surprisingly little is known about general self-folding origami patterns that are not exactly

rigidly foldable. Important contributions include Huffman’s work [41] on general n-valent vertices

and Tachi’s simulation scheme of origami patterns [36]. Wu et. al. introduced analytic methods to

analyze motions of multi-vertex patterns [44], extending Belcastro and Hull’s condition for testing

9

rigid-foldability [42] for non-flat foldable patterns. Tachi went beyond rigid foldability for general

patterns by establishing design principles for first order foldability [40, 43].

Energy scale-dependent origami design and statistical properties of typical patterns are the

basic building blocks needed for a physically motivated theory of origami [39], relevant to both

natural [29] and synthetic [10, 51] systems. In this work, we present a systematic exploration of

the space of self-folding crease patterns as a function of folding energy by solving equations in se-

quence. We further show that Mountain-Valley choices strongly affect foldability; e.g., 62% of all

Mountain-Valley choices account for 10% of highly foldable patterns. Finally, we find an entropy-

energy relationship quantifying the number of crease patterns with given folding energy, describing

how many more crease patterns become available for a given increase in available actuation energy,

e.g., in active hinges [10].

2.1 Results

2.1.1 Vertex transfer function

As in past work [12, 14, 36], we study patterns made of general 4-vertices, like those shown in

Fig. 2.1, since vertices with three or fewer edges are completely rigid while vertices with more

than four edges are too soft (i.e., have multiple continuous degrees of freedom). Assuming the

angles θ12, θ23, θ34, θ41 between creases of the vertex add to 2π, we note two primary facts about

generalized 4-vertices studied earlier [12]; Three of the four creases must fold in a common ori-

entation (say, Mountain, black in Fig. 2.2a) with the final odd-one-out crease folding the other

way (Valley state, red). The final odd-one-out crease can be any one of the two creases whose

neighboring angles add to less than π [12] (Fig. 2.6). Once the discrete odd-one-out choice in

Mountain-Valley has been made, a 4-vertex has exactly one folding degree of freedom (Fig. 2.2a);

the folding angle ρi at any crease i completely determines any other folding angle ρ j. For two

10

d)c)

a) b)

e)

Figure 2.1: Designing self-folding origami
(a) Forces applied to a ‘self-folding’ sheet will preferentially actuate the one pathway designed
to have significantly less face bending than the other two pathways shown (i.e., designed to have
Edesigned/Eothers � 1). (b) The celebrated Miura Ori pattern is a special highly symmetric pattern
with Edesigned/Eothers ≡ 0. (c,d,e) We study a larger space of experimentally relevant crease
patterns by going beyond rigidly foldable symmetric patterns. The folding energy scale of such
patterns can be made as small as needed in a systematic manner; Edesigned ∼ ρ

4n+2
crease where ρcrease

is the median crease folding angle, and n the number of solved loop equations that are derived here.
Patterns in (c,d,e) are geometrically distinct from traditionally studied limits (Kawasaki vertices,
Miura-Ori Mountain Valley choice). These patterns solve exactly only one (d,e) or two (c) loop
equations.

11

chosen adjacent creases, symbolically write,

ρ1 = T (ρ2; {θ}) (2.1)

where {θ} are the four in-plane angles between creases.

For small fold angles ρi, we can linearize the above relationship and write

ρ1 ≈ R({θ})ρ2 + O(ρ2
2). (2.2)

R’s determine the mechanical advantage and dynamic range of folding angles at a vertex.

Similar transfer functions have appeared in the literature over the years [34, 36, 39, 41, 52, 53].

We emphasize that the transfer functions T,R depend on the Mountain-Valley configuration at the

vertex [12]. Explicit forms of T,R for general 4-vertices, including their MV dependence, are

presented in Supplementary Note 1.

2.1.2 Loop equation and tuneable stiffness

While a single 4-vertex (Fig. 2.2a) always has one degree of freedom, four vertices linked to form

a quad are generically rigid. In fact, the number of folding degrees of freedom (i.e., 12 folding

angles ρi) exactly matches the number of constraints relating these folding angles (3 at each vertex).

Hence a generic quad has, at best, a discrete set of folded states — the folding motion between

such states will generically involve face bending or other such violation of constraints.

Thus, smooth folding motions (modes) require fine-tuning of the in-plane angles at each vertex

(‘design parameters’). An intuitive way to understand the fine tuning required is to write a consis-

tency loop condition for a fold angle ρ, say that of AD (see Fig. 2.2b), transported around the quad

(i.e. forming a closed loop),

ρ = T D(T C(T B(T A(ρ)))) (2.3)

This nonlinear loop equation needs to be satisfied as a function of ρ, not just at particular values of

12

A

B C

D

Random quads

Quads solving

Quads solving

Quads solving

. .
 .

Loop equ a tions

a)

b)

c)

Order by
order in ρ

Loop eqn.
residues

Fa
ce

 b
en

di
ng

10-8 10-6 10-4 10-2 100 102 104 10610-12

10-10

10-8

10-6

10-4

10-2

100

102

Figure 2.2: Loop equations uncover folding modes of variable face bending over orders of magni-
tude.
(a) Folding angles ρ1, ρ2 of adjacent creases at a 4-vertex are related by a transfer function T ,
determined by in-plane angles θ. (b) For a quad to be foldable, a fold angle ρmust return as ρwhen
transported around the loop using transfer functions T A,T B,T C,T D. For a smooth folding motion,
the equation must be satisfied order by order in ρ. (c) Face bending can be dramatically reduced
in a controlled manner by solving loop equations in sequence. Random quads (red triangles), not
designed to solve any loop equation, show face bending comparable to crease folding. Quads
solving the first loop equation ΠR = 1 (orange ×s) typically have face bending < 10−2 Rad. The
residue of the highest loop equation not solved determines the extent of face bending; hence orange
points and green points show the drop of face bending with decreasing ΣK and ΣL respectively.

13

ρ, in order to have a smooth folding mode. Taylor expanding the right hand side and subtracting ρ,

0 ≡ f1ρ + f2ρ
2 + f3ρ

3 + . . . (2.4)

where f1 = ΠR − 1. Setting fi = 0 ∀i gives - potentially - an infinite set of equations for the

design parameters (i.e., in-plane angles θs) - to have a folding motion to all orders in ρ. Similar

loop equations for lowest order foldability were derived by Tachi [40, 43] earlier.

We can write the series of loop equations, defined term by term using the expansion of the

transfer function of Equation (2.4). The loop equations are computed explicitly in Supplementary

Note 1, while here we write them symbolically as:

ΠR : RARBRCRD = 1

ΣK : KA + KB + KC + KD = 0

ΣL : LA + LB + LC + LD = 0.

... (2.5)

As shown in Supplementary Note 1, RV is a property of in-plane angles at a single vertex V.

KV, LV, . . . are products of functions of a single vertex V and of RV′ at other vertices V , V′.

MATLAB Code to compute loop equations to arbitrary order is given as Supplementary Mate-

rial. For a quad, we verified that the first five equations are independent. Combined with Tachi’s

earlier work [36] that discovered a 6-parameter family of rigidly foldable quads with a special sym-

metry (flat foldability), our work suggests that only the first 5 loop equations are fully independent

(See Supplementary Note 2), as each loop equation constrains one parameter of the 11d {θ} design

space. Here we focus on exploring the full space of creases patterns as a function of foldability

and Mountain-Valley choices.

When a quad does not satisfy all loop equations exactly, there is no perfect zero-energy mode.

Allowing a single diagonal fold (Fig. 2.2c inset) adds an additional degree of freedom and thus

14

allows any augmented quad (a quad with an additional face diagonal crease) to fold. Measuring

the angle ρface of a freely folding diagonal is a proxy for the face bending energy in the presence

of a stiff face (Fig. 2.7).

We note that stretching energy in thin sheets scales the same way with ρface as bending energy

due to a virial theorem [54, 55], but is expected to be considerably smaller [54, 55]. Further, for thin

sheets, bending strain is much larger than stretching strain in low energy configurations [54, 55].

Hence, in the following, we model both the energy and geometry by considering only face bending.

We later check the validity of this thin sheet approximation using finite element simulations in

COMSOL (see Fig. 2.5 and Fig. 2.7). Thickness in real application varies, e.g., 0.05 mm thick

NiTi sheets of width 50mm for stents [49] to 1 um thick GaAs sheets of width 100 um [56] for

optically actuated mirrors.

To study the relationship between loop equations and face bending quantitatively, we generated

random quadrilateral patterns with random Mountain-Valley assignments and used them to solve

loop equations order by order using gradient descent. We then added a crease along the face diag-

onal (Fig. 2.2c inset), simulated folding of each augmented quad from the unfolded state through

small folding angles. In this way, we find,

ρface = a1|ΠR − 1|ρcrease + a3|ΣK|ρ3
crease+

a5|ΣL|ρ5
crease + . . . (2.6)

where ρcrease > 0 is the median crease folding angle and the coefficient ai depend on the details

(i.e., θi j) of the quad. Thus, as noted in Fig. 2.1a, the energy required to actuate the designed mode,

Edesigned ∼ ρ
2
face ∼ ρ

4n+2
crease,

drops rapidly with the number n of the exactly satisfied loop equations in the hierarchy. Applying

the loop equation hierarchy to different seeds of pattern designs allows discovery of soft foldable

patterns devoid of symmetries or order in space (Fig. 2.1c,d,e). Such soft patterns may have in-

15

teresting mechanical properties that distinguish them significantly from the well-studied Miura ori

pattern (Fig. 2.1b).

Remarkably, the relationship between face bending ρface and n strongly persists even if face

bending is determined after folding to a large angle ρcrease ∼ 1 Rad. As shown in Fig. 2.2c,

the loop equations when solved in sequence provide a controlled and systematic reduction in face

bending over 9 orders of magnitude. Solving each successive equation reduces face bending by a

factor of ∼ 102. In addition, the residue of the leading loop equation not exactly solved is highly

predictive of face bending. Thus the value of ΣK is predictive of face bending for quads that solve

ΠR = 1 (orange ×) while ΣL is predictive of face bending for quads that solve ΠR = 1 and ΣK = 0

(green +) and so on.

Equation (2.5) thus provides a simple design principle for exploring the crease patterns at

any chosen folding energy scale over many orders of magnitude; one simply solves the hierarchy

of loop equations to the extent needed. Note that if the creases themselves have non-zero folding

energy (e.g., due to finite thickness), the folding energy Edesigned would be bounded from below by

such an energy scale; crease patterns cannot be made softer than the intrinsic stiffness of individual

creases.

2.1.3 Mountain-Valley choice strongly affects foldability

The loop equations explicitly depend on the Mountain-Valley (MV) choices around the quad. The

equations can be defined for any given MV choice, opening up the full space of origami patterns.

Almost all work-to-date on origami is based on Miura-Ori’s Mountain-Valley choice. In the fol-

lowing, we show that different MV choices lead to different typical foldability in a statistical sense.

We find that some MV choices are intrinsically more conducive to solving the loop equations

than others. Hence we can categorize MV choices by foldability classes. To define these classes

precisely, note that at each vertex, one can define the ‘broken’ direction to be the two longitudinal

creases whose MV states differ (see key in Fig. 2.3a). The two creases in the orthogonal ‘unbroken’

direction have the same MV state. The crucial observation is that the creases in the unbroken

16

Examples Examples

Examples Examples

Natural class (N)

En
tr

op
y

 S

Semi-natural class (S) Unnatural class (U)

a) b)

R

RR

R

Key: R= |R|>1, = |R|<1R= OR

R

RR

R

R

RR

R R

RR

R

Natural

Semi-natural

Unnatural

Total

Figure 2.3: Mountain-Valley choices fall into three classes based on foldability of typical modes
(a) For example, Semi-natural MV configurations dictate that |R| > 1 at three vertices and |R| < 1
at one, which is statistically less compatible with ΠR = 1 than Natural configurations (two |R| >
1, two |R| < 1). (b) Consequently, when random modes of N, S and U types are sampled, U
(Unnatural) type modes tend to be much stiffer than S or N type. We sampled 106 random modes,
simulated folding and recorded their stiffness; we show the histogram binned by (log) face bending
energy log ρ2

face/ρ
∗2
crease ∼ log E, which we call the entropy S (E). (ρ∗crease = median ρcrease).

Among soft patterns (E < 10−1), 90% of random modes are of Natural MV type which account
for only 6/16th of all MV configurations. S and U type modes dominate at high energies E > 10−1.
The histogram captures a statistical relationship between MV choices and foldability for ‘typical
quad patterns and MV classes.

17

direction typically fold more than the broken creases; hence |Ri j| ≈ |ρi/ρ j| < 1 if i is in the broken

direction and j unbroken (see Equation (2.2)).

Intuitively, some MV choices tend to make |R| > 1 at two of the four vertices around a quad

and |R| < 1 at the other two. These Natural MV assignments (Fig. 2.3a) are most easily compatible

with ΠR = 1 (equation (2.5)). Semi-Natural MV patterns have |R| > 1 at three vertices and |R| < 1

at the fourth (or vice-versa). Finally, Unnatural quads have all four |R| > 1 (or |R| < 1); the in-plane

θ angles of such a quad must be fine-tuned to be foldable.

The class of a MV choice thus determines how easy it is to solve the first loop equation ΠR = 1.

Random quads with Unnatural MV choice are far less foldable than Natural or Semi-natural types

(see also Fig.2.8).

To quantify this statement, we sampled ∼ 106 random quads by displacing the vertices of a

regular square lattice randomly and independently. We then simulated folding each of these quads

with a random folding torque to obtain a folding mode with max ρcrease ∼ 1 Rad; we noted the

resulting Mountain-Valley data as well as the resultant face bending ρface for each mode. The

histogram, binned by face bending energy log E = log ρ2
face + const is shown in Fig. 2.3b; we

define the entries of this histogram to be the entropy S (E) since
∫ E2
E1

eS (E)d log E gives the number

of modes in our random ensemble in the energy range E1 − E2 (S (E) is defined only up to an

additive normalization constant).

First, in Fig. 2.3b, we note that the total entropy follows a simple law up to quite stiff modes,

S (E) = 1
2 log E that we explore further below. We also see that 90% of modes softer than E ∼ 10−1

are accounted for by Natural MV configurations, even though such configurations only account for

6/16 of all Mountain-Valley choices. Most of the remaining 10% of soft mdoes are accounted for

by Semi-natural configurations (8/16 of all choices). Among stiff modes E > 10−1, the situation

is reversed and Semi-natural and Unnatural configurations form a majority.

Thus, in addition to opening the door to arbitrary MV choices, our work suggests previously

unnoticed MV classes that qualitatively differ in their typical foldability. Such widely varying en-

tropy of MV classes suggests important lessons in design; Natural configurations can be expected

18

En
tr

op
y

 S

Figure 2.4: Entropy of crease patterns as a function of face bending energy
We sampled ∼ 105 random quad meshes made of A quads (for A = 1, 2, 4, 6), folded them
with the same fixed Mountain-Valley choice and noted the face bending energy per quad Ē ≡
(1/A)

∑
ρ2

face/median ρ2
crease. The entropy of patterns is S = A

2 log Ē. (eS (Ē)d log Ē is the number
of random patterns in an energy interval d log Ē.). Thus the probability of finding a soft crease
pattern eS (Ē)d log Ē ∼ Ē

A
2 in a random ensemble diminishes exponentially with mesh size A (for

fixed Ē) but only as a power law in energy Ē (for fixed A).

to be more forgiving of error in laying out creases while Unnatural configurations need to be highly

fine-tuned to be foldable.

Entropy-energy relationship for large crease patterns

We have seen that a quad’s folding mode can be made arbitrarily soft by solving a series of loop

equations; but soft modes are rarer than stiff modes. In the following section we generalize these

considerations to large origami meshes.

We sampled crease patterns made of A quads by displacing the vertices of a regular lattice

with A inner faces randomly and independently, in much the same way as for the quad above. We

19

folded the resulting crease pattern using a torque that selects chosen MV data until max(ρcrease) =

1 Rad and recorded the resulting face bending ρface on each quad. We then made a histogram of

(1/A)
∑
ρ2

face/median ρ2
crease ∼ E/A ≡ Ē from a large sampling of such lattices of different sizes;

see Fig. 2.4.

We again define the entropy of crease patterns (now for a given MV) as the logarithm of the

above histogram. We find that this entropy is extensive in pattern size A and has a simple form,

S (Ē) =
A
2

(
log

Ē
E0

)
+ . . . (2.7)

where Ē is the (intensive) face bending energy per quad, the ellipsis represent sub-leading cor-

rections in A and E0 is a constant discussed later. By construction, eS (Ē)d log Ē is the number of

crease patterns of chosen MV with folding energy within an interval d log Ē around Ē.

We can understand the extensive scaling of entropy S with A and the log E dependence using

the loop equations. As seen in Fig. 2c, for a single quad, face bending energy is simply related

to loop equation residues, e.g., Ē ∼ ρ2
f ace ∼ (ΣK)2 for the green points. On the other hand, we

find that the fraction of quads in our random ensemble with loop residue less than |ΣK| is simply

proportional to |ΣK|; this is because patterns in our random ensemble appear to be uniformly

distributed in their residues. Hence the total number of patterns of energy less than E scales as
√

E. Setting
∫ Ē
0 eS (Ẽ)d log Ẽ ∼

√
Ē (by our definition of entropy), we find S (Ē) = 1

2 log Ē. (Note

that the energy is not quite linear in the residue of the first loop equation ΠR − 1 in Fig. 2c which

is reflected in Fig. 2.3b as well.)

For large quad meshes, the above arguments apply to each quad since we need to solve loop

equations independently for each quad in order to make softer patterns. For example, imposing a

loop equation now removes A times as many design variables. Hence we find S (Ē) = (A/2) log Ē.

Finally, note the log E dependence for large lattices in Equation (2.7) is expected to break down

near an energy scale E0 (the 105 samples generated here were not sufficient to probe this scale). In

particular, Tachi’s results [36] on rigid foldable patterns imply an entropy of
√

A at zero energy.

20

Our investigations of entropy of folding modes as a function of energy connects to earlier work

on crumpling transitions [57]; consider a sheet with a thermally variable crease pattern held at

fixed temperature. At high temperatures, if the entropy of stiff modes is sufficiently high, the sheet

might crumple for entropic reasons, even if energetically disfavored. Earlier analytic approaches

were restricted to the entropy of rigid-foldable modes on regular lattices [58, 59] while our work

is off-lattice and has a continuum energy E. Our entropy S (E), based on quad meshes, only grows

logarithmically in energy and hence does not show a first order transition.

The entropy-energy relationship in Equation (2.7) has theoretical and practical implications. In

particular, the probability of a random pattern (when folded with a fixed MV) being softer than

energy E decreases exponentially with mesh size A but only as a power law with E.

Such results are useful in understanding the trade-off between energy scales and design free-

dom. Self-folding origami applications vary greatly in the energy Ematerial needed to bend an

uncreased face to a given angle; e.g., compare a Young’s modulus of ∼ 103 Pa for hydrogels [50]

to ∼ 107 Pa for NiTi alloy in origami stents [49]. Similarly, actuation mechanisms for active hinges

are diverse, including electric [10], optical [56] , thermal [49] and chemical (pH) [50] methods.

Hence, the actuation energy Eactuation provided by active hinges (defined as work done by hinges

during folding to 1 Rad) can vary widely; e.g., compare torques of ∼ 6 · 10−3Nm in 30 mm-long

shape-memory polymer hinges [47, 48] to 5× or 400× that torque in ionic electroative polymers or

shape-memory alloys respectively [10].

Taken together, Eactuation/Ematerial can vary greatly across applications. Our energy-entropy

relation shows that the fraction of all patterns suitable for such an application is

∼ (Eactuation/Ematerial)A/2 (for large A).

Additionally, micron-scale applications might often have a design requirement to prevent inad-

vertent actuation due to uncontrolled noisy processes of a lower energy scale Enoise; e.g., sponta-

neous temperature [49] or pH fluctuations in hydrogels [50] or random mechanical kicks. To avoid

inadvertent actuation, the folding energy of patterns must be in the ‘Goldilocks’ zone between

Enoise and Eactuation. The fraction of all patterns in the ‘Goldilocks’ zone can be computed to be

21

a)

b)

Fa
ce

 b
en

di
ng

Crease folding

Figure 2.5: Face bending for large folding angles and in finite element simulations
(a) Face bending for a quad when folded along different Mountain-Valley modes. While stiffness
for small folding angles is predicted by the loop equation residue |ΠR−1|, the initially-soft red mode
becomes stiffer than others at large folding angles. The other three modes show non-monotonic
bistable face bending. (b) Finite element simulations (COMSOL Multiphysics) of a 2D plate
model of the same quad when folded along the red and green modes with a fixed magnitude of
folding force. The associated face deformation elastic energy is localized to a diagonal furrow as
predicted for thin plates [54]. (Material model: Melamine resin, Elastic modulus 6 GPa, density
1800 kg m−3, thickness of plates is ∼ 1/1000 of width.)

(Eactuation/Ematerial)A/2 − (Enoise/Ematerial)A/2 for large A.

Equation (2.7) thus provides a basic guideline for how many more patterns become available if

the actuation energy Eactuation is raised, say, at the cost of higher power input[47] or if the energy

of uncontrolled processes Enoise is lowered.

While our results were derived for the simplest random ensemble, they can be adapted to other

ensembles of patterns relevant to specific applications.

Face bending along folding modes

In this work, face bending was measured by augmenting the quad with a diagonal crease (see

Supplementary Methods) and then setting crease folding to one representative angle (∼ 1 Rad) in

22

Equation (2.6). It is reasonable to expect face bending behaves as non-linear function of crease

folding for large folding angles. In this section we study the face bending of folding modes for

variable crease folding amplitudes.

In Fig. 2.5a, we show face bending as a function of crease folding for four different folding

modes. We see that the loop equation residue |ΠR − 1| is a good predictor of face bending up to

crease folding of ∼ π/2 Rad. For larger folding, strongly non-linear effects kick in; the initially-soft

red mode become stiffer than others rapidly while other modes show non-monotonic behavior.Non-

monotonic bistable behavior has been seen before in experiments on highly symmetric flat-foldable

patterns [13, 14].

To visualize what face bending stresses might look like in a real material without a diagonal

crease, we show results of a finite element simulation in COMSOL in Fig. 2.5b of two select modes

from Fig. 2.5a. Unlike our simplified model, this simulation accounts for stretching, bending of

all 9 faces, finite thickness of the material and finite width of creases. While our simple diag-

onal crease model cannot capture the precise folding energies seen in the COMSOL simulation,

we see that the bending stress is localized to a furrow along the diagonal, a result expected for

thin sheets [54] (see Fig. 2.7 for more analysis and simulations). Further, when folded in COM-

SOL with a small but fixed folding force (note: not to fixed angle), the red mode shows higher

stresses, implying that it is softer than the green mode, in agreement with our face bending model

in Fig. 2.5a.

2.2 Discussion

In this work we have studied self-folding origami meshes as a function of folding energy, free from

assumptions about Mountain-Valley data or symmetries such as flat-foldability. We found a design

principle for self-folding patterns of arbitrary stiffness in terms of a series of loop equations applied

to each quad in the pattern. These general patterns can exhibit diverse curvatures in 3 dimensions

as compared to Miura-Ori. Related recent work [14] has achieved remarkable 3-dim structures by

23

gradual modulation of Miura-Ori patterns on length scales much larger than the repeating unit cell;

however our work allows design on arbitrary length scales without being limited to any underlying

repetitive motif.

Mountain-Valley (MV) data was found to greatly affect foldability. Natural MV types are

typically much softer than Semi-natural or Unnatural types. This notion informs design decisions

for soft self-folding modes, both as soft Natural modes are more numerous, but also as they are

projected to be less prone to large stiffness fluctuations due to manufacturing errors.

We complemented these design principles with a statistical understanding of the space of all

large quad meshes; we determined the total entropy of crease patterns of any given folding en-

ergy. Such a relationship tells us the number of patterns with a ‘Goldilocks’ folding energy that

is lower than available actuation energy but high enough to prevent inadvertent actuation due to

noisy uncontrolled processes.

While our work focused on quad meshes for concreteness, the loop equation hierarchy apply

to any pattern made of arbitrary combinations of polygons, provided all vertices have valence four.

We leave investigations of mechanisms with other topologies to future work.

In conclusion, understanding the space of crease patterns as a function of an energy scale

combined with statistical results on the foldability of ‘typical’ patterns are crucial ingredients in

developing a physically relevant theory of self-folding origami.

24

2.3 Supplementary Figures

a)

b)
c)

Figure 2.6: Modes of 4-vertices and quads
(a) A 4-Vertex is the intersection of four creases labeled α, β, γ, δ. The in-plane angles between
creases labeled with θ. The 4-vertex has to zero-energy folding modes, both of which have an ‘odd-
one-out’ crease whose MV state is opposite to the rest. The odd-one-out crease must be picked
such that the two neighboring in-plane angles sum to less than π (orange creases). (b) A quad is
compose of four 4-vertices connected in a loop. Putative folding modes are uniquely defined by
noting the MV choices for each crease (black - mountain, red - valley). (c) A trapezoidal quad that
is rigid-foldable due to symmetry.

25

a) b)

c)

d) All modes of augmented quad
Legal modes

Crease folding

Crease folding

Fa
ce

 b
en

di
ng

Fa
ce

 b
en

di
ng

Crease folding

Crease folding

Fa
ce

 b
en

di
ng

N
or

m
al

iz
ed

 E
la

st
ic

 E
ne

rg
y

Fa
ce

 b
en

di
ng

x x

x

x

Figure 2.7: Folding of an added face diagonal is a robust proxy for face bending
(a) We augment the quad studied in Fig. 5 of the paper with different face diagonals, seen in each
inset. Whether augmented with the usual face diagonal, the other face diagonal or an X-shape
double diagonal, face folding along different modes reported in Fig. 5a of the paper remains qual-
itatively the same (For the X-shaped double diagonal, we plot the average of two face folding
angles). Any augmentation that adds one degree of freedom to the simple quad does not change
its folding modes. (b) Face diagonals (and thus loop equations) applied to individual quads are
useful in designing large origami patterns. Face folding of quads that are part of a large pattern
(solid lines) closely approximates the behavior of each quad when ‘cut out’ and folded in isolation
(dashed lines). Loop equations, applied quad by quad to tune foldability, can be used to design
large patterns of desired foldability. (c) Finite element simulations of the center plate show that
face diagonals are good approximations for thin origami patterns. Applying boundary conditions
of a folding mode, the elastic energy is increasingly localized to a diagonal furrow as the thick-
ness t of the plate is decreased relative to lateral dimensions L (Young’s modulus Y = 3 GPa
(material = PVC), L ∼ 10cm. Simulations using COMSOL). (d) Augmented quads have multiple
folding modes with distinct Mountain-Valley types. We sampled 1000 augmented quads and made
a histogram of total number of folding motions (yellow bars); typical augmented quads have ∼14
distinct modes. However, many of these, when restricted to the simple quad, are not legal folding
motions (e.g., in right inset, one vertex has 2 valley and 2 mountain folds). We only consider
modes of the augmented quad that induce legal MV patterns on the simple quad; the histogram
(pink bars) indicates ∼3 such modes for typical augmented quads. Diagonal face creases have
been used before to study deformations of Miura lattices [14] and bistability of flat foldable crease
patterns [13].

26

a)

b)

O

C

L

H

Fraction of random ensemble

Fraction of random ensemble Face bending

Face bending

Natural 1

Natural 2

Semi-n
atural

Unnatural

Figure 2.8: Classes of Mountain-Valley choices occur with widely varying frequency and face
bending
We generated 1000 random quads by displacing vertices randomly and folded them using random
torques. (a) Most of the ensemble folded in the Natural 1 (∼ 55%) or Semi-natural type (∼ 28%)
of Mountain-Valley type (blue bars). The average face bending (i.e., stiffness) during folding
(green bars) was significantly higher for Unnatural and Semi-natural Mountain-Valley types, as
also shown in Fig. 3 of the main paper. (b) We classified the same set of random quads by the
type of Mountain or Valley data of the four internal creases. For example, quads of type O have
internal creases of the same type - the MV states of external legs are ignored in this classification.
C and L type quads are the most common (blue bars) and that H and C type quads are less foldable
than others (green bars). Note that the two kinds of classification shown here in (a) and (b) are
independent; e.g., a quad of type, say O, could be Natural,Semi-Natural or Unnatural and vice-
versa.

27

2.4 Supplementary Notes

Supplementary Note 1 - Vertex transfer and Loop equations

The basic unit of Origami consists of a quadrivalent vertex, the intersection of four creases. Creases

are labeled with Greek letters α,β,γ,δ, where the angles between them (design space) are noted with

θ, subscripted by the corresponding adjacent two creases. The angle to which a certain crease folds

is given by ρ, subscripted with the corresponding crease label (see Fig. 2.6a).

Any folded configuration of the vertex is given by the four crease folding (or dihedral) angles

ρα, ρβ, ργ, ρδ. If we are given any one folding angle, say ρα, and the in-plane angles θαβ, θβγ, θγδ, θδα,

we can use spherical trigonometry to compute the remaining three fold angles ρβ, ργ, ρδ.

In the main text, we wrote these equations symbolically in terms of transfer functions Tαβ.

Here we present implicit formulas for these transfer functions in terms of Cα ≡ cos ρα:

Adjacent transfer relation α→ β, ρβ = Tαβ(ρα; {θ}) :

(cβγcγδ − sδαsαβCα)2 + (cγδcδα − sαβsβγCβ)2 − (c2
δα+c2

βγ−1)(c2
αβ+c2

γδ−1) (2.8)

= ((cδαcαβ + sδαsαβCα)(cαβcβγ + sαβsβγCβ) − (cδαcβγ + cαβcγδ))2

Transverse transfer α→ γ, ργ = Tαγ(ρα; {θ}) :

(cδαcαβ + sδαsαβCα) = (cβγcγδ + sβγsγδCγ) (2.9)

Reverse adjacent transfer α→ δ, ρδ = Tαδ(ρα; {θ}) :

(cαβcβγ − sγδsδαCδ)2 + (cβγcγδ − sδαsαβCα)2 − (c2
γδ+c2

αβ−1)(c2
δα+c2

βγ−1) (2.10)

= ((cγδcδα + sγδsδαCδ)(cδαcαβ + sδαsαβCα) − (cγδcαβ + cδαcβγ))2

28

where sαβ ≡ sin(θαβ), cαβ ≡ cos(θαβ),Cα ≡ cos(ρα) and similarly for all other factors. Note that,

in these equations, we have adopted a convention in which at the flat unfolded state ρ = π and

hence C = −1.

Linearization and branches: We will primarily use the more complex transverse transfer

function Tαβ between two consecutive creases. The transfer function can be linearized about the

flat state, ρα = π − ε ρα, to find

ε ρβ = Rαβ ε ρα, with R2
αβ =

−B ±
√

B2 − 4AC
2A

, (2.11)

with

A ≡ (sαβsβγ)2(1 − (cδαcαβ − sδαsαβ)2) (2.12)

B ≡ 2(sδαsαβ)(sαβsβγ)((cδαcβγ + cαβcγδ) − 2(cδαcαβ − sδαsαβ)(cαβcβγ − sαβsβγ)) (2.13)

C ≡ (sδαsαβ)2(1 − (cαβcβγ − sαβsβγ)2) (2.14)

Note that we have two distinct solutions since Equation (2.9) is quadratic in cos ρα, cos ρβ.

This choice arises because a single vertex has two distinct folding modes [12]. We pick between

these two branches by setting one of the two creases whose sum of angles around it are less than

π (see Fig. 2.6a), to be the odd-one-out in the Mountain/Valley pattern. For the vertex shown here,

the two options for the odd-one-out crease are highlighted in orange. The larger value of R should

be used when ρα and ργ have opposite signs (i.e., are of opposite Mountain-Valley state). One

intuitive explanation is that if the angles at the vertex were all π2 , R would be infinite if ρα, ργ have

opposite signs. The choice of branch for each vertex around the quad sets the MV class of the

quad, as discussed in the main text.

29

Loop equation around a quadrilateral

Strategy

Now consider a quadrilateral made of four general vertices (Fig. 2.6b). At each vertex a, we write

the transfer equation between creases forming the sides of the quadrilateral, ρi = Ta(ρi+1).

We may rewrite this equation as za ≡ ρi − Ta(ρi+1) = 0. As the quantity za vanishes for each

vertex of the quadrilateral, we define z ≡
∑

a za = 0. The flat state trivially has z = 0, as all ρ = 0;

we want to find a continuous path ρi(t) in folding angle space, parameterized by some variable t,

beginning at the flat state and maintaining z = 0.

In the spirit of perturbation theory we compute successive derivatives of z with respect to t, in

order to set them to zero at t = 0:

ż|t=0 = 0

z̈|t=0 = 0 (2.15)

...z |t=0 = 0

...

Henceforth we omit the designation |t=0 as all derivatives are evaluated at t = 0.

Since at each order, four new variables enter (higher t derivatives of each Ci ≡ cos(ρi)), and

four new quantities must be set to zero (the four components of the appropriate t derivative of z),

we might expect that there is exactly one solution for {Ċi, C̈i, ...} and our task is simply to find

it. However, that solution is the trivial Ci(t) = 0 for all t. In order to have a non-trivial solution,

we must make a matrix corresponding to the highest derivatives singular: see below. But since

these matrices appears in the equation at every order, solving each additional order requires the

imposition of one more constraint.

30

Zeroth loop equation

The first equation is trivially satisfied for any path ρi(t); to see this, note that

ż =
∂z
∂Ci

Ċi (2.16)

where repeated indices are summed over.

Here it is worthwhile to note the two different 4-dimensional vector spaces with which we are

working. Ci has i = 1, 2, 3, 4 running over the internal edges of the quad pattern shown above,

while the four components of z are associated with the four vertices. Thus ∂za
∂Ci

is a matrix operator

from edge space to corner space, and higher derivatives are higher order tensor operators. Of

course, the a, i component of this operator will be zero if edge i does not join vertex a.

Now from Eqn. 2.9, ∂za
∂Ci

turns out to be zero at Cα = Cβ = −1 if the sum of the four in-plane

angles at vertex a is 2π, as in the case we are considering. So any set of Ċis will satisfy this

condition and we do not have any non-trivial constraint.

First loop equation

The first non-trivial condition is at second order (repeated indices summed over),

z̈ =
∂z
∂Ci

C̈i +
∂2z

∂Ci∂C j
ĊiĊ j =

∂2z
∂Ci∂C j

ĊiĊ j (2.17)

Working out ∂2z
∂Ci∂C j

, we find that z̈a will be zero if Ċa+1 = RaĊa (where again Ra is the linear

transfer coefficient between creases i and i+1). In other words, the equation above will be satisfied

together if Ċ is a zero eigenvector of the matrix,



R1 −1 0 0

0 R2 −1 0

0 0 R3 −1

−1 0 0 R4


. (2.18)

31

The first loop equation is thus obtained by imposing that the above matrix is singular (so that

it has a non-trivial zero eigenvector):

R1R2R3R4 = 1 (2.19)

where the explicit form of R is given in equation (2.11). If the first loop equation is satisfied, the

solution Ċ that satisfies equation (2.17) obeys

Ċi+1 = RiĊi, (2.20)

For later use, we take Ċ to be normalized to have magnitude 1.

Second loop equation

Now, the third order derivative is

...z =
∂z
∂Ci

...
Ci + 3

∂2z
∂Ci∂C j

C̈iĊ j +
∂3z

∂Ci∂C j∂Ck
ĊiĊ jĊk (2.21)

= 3
∂2z

∂Ci∂C j
C̈iĊ j +

∂3z
∂Ci∂C j∂Ck

ĊiĊ jĊk (2.22)

≡ 3MC̈ + v111. (2.23)

Here we have made the definition v111 = ∂3z
∂Ci∂C j∂Ck

ĊiĊ jĊk, intended as a special case of the

general definition

vp1p2...pn =
∂nz

∂Ci1∂Ci2 ...∂Cin

dp1Ci1
dtp1

dp2Ci2
dtp2

...
dpnCin

dtpn
. (2.24)

We have also defined the matrix M = ∂2z
∂Ci∂C j

Ċ j. Note that M has one vertex index (from z)

and one edge index i (from Ci). Since Ċ is known, M and v111 are explicitly known: they can be

written as

32

M =



D1Ċ2 −D1Ċ1 0 0

0 D2Ċ3 −D2Ċ2 0

0 0 D3Ċ4 −D3Ċ3

−D4Ċ4 0 0 D4Ċ1


, and v111 = −3



D1Ċ1Ċ2K1

D2Ċ2Ċ3K2

D3Ċ3Ċ4K3

D4Ċ4Ċ1K4


(2.25)

with D, E, F and K define at a given vertex by

Ki =
ĊiE + Ċi+1F

D
, (2.26)

with D =
C
R

+
B
2
, E = 4s3

αβsβγ(cαβcβγ − sαβsβγ)s2
δα, F = 4s3

αβs2
βγsδα(cαβcδα − sαβsδα).

(2.27)

We know from equation (2.17) that M is singular. Hence, if we want
...z |t=0 = 0, we need to

ensure that v111 is in the range of M.

The condition for this to lie in the range of M is that

K1 + K2 + K3 + K4 = 0 . (2.28)

This can be seen in various ways, including by making the ansatz

C̈ =



Ċ1(Ċ2
2K1 + Ċ2

3(K1 + K2) + Ċ2
4(K1 + K2 + K3))

Ċ2(Ċ2
3K2 + Ċ2

4(K2 + K3) + Ċ2
1(K2 + K3 + K4))

Ċ3(Ċ2
4K3 + Ċ2

1(K3 + K4) + Ċ2
2(K3 + K4 + K1))

Ċ4(Ċ2
1K4 + Ċ2

2(K4 + K1) + Ċ2
3(K4 + K1 + K2))


. (2.29)

We then have

33

3MC̈ = 3



D1Ċ1Ċ2((Ċ2
2 + Ċ2

3 + Ċ2
4)K1 − Ċ2

1(K2 + K3 + K4))

D2Ċ2Ċ3((Ċ2
3 + Ċ2

4 + Ċ2
1)K2 − Ċ2

2(K3 + K4 + K1))

D3Ċ3Ċ4((Ċ2
4 + Ċ2

1 + Ċ2
2)K3 − Ċ2

3(K4 + K1 + K2))

D4Ċ4Ċ1((Ċ2
1 + Ċ2

2 + Ċ2
3)K4 − Ċ2

4(K1 + K2 + K3))


, (2.30)

which is equal to v111 iff K1 + K2 + K3 + K4 = 0.

Third loop equation

The fourth order derivative is

....z =
∂z
∂Ci

....
C i + 4

∂2z
∂Ci∂C j

...
CiĊ j + 3

∂2z
∂Ci∂C j

C̈iC̈ j

+ 6
∂3z

∂Ci∂C j∂Ck
C̈iĊ jĊk +

∂4z
∂Ci∂C j∂Ck∂Cl

ĊiĊ jĊkĊl (2.31)

= 4M
...
C + 3v22 + 6v211 + v1111 = 0.

Once again, we can evaluate the vector terms explicitly:

3v22 = 3



C1C̈2
1 + A1C̈2

2 + B1C̈1C̈2

C2C̈2
2 + A2C̈2

3 + B2C̈2C̈3

C3C̈2
3 + A3C̈2

4 + B3C̈3C̈4

C4C̈2
4 + A4C̈2

1 + B4C̈4C̈1


, v1111 = 6



G1Ċ2
1Ċ2

2

G2Ċ2
2Ċ2

3

G3Ċ2
3Ċ2

4

G4Ċ2
4Ċ2

1



34

6v211 = −6



E1(2C̈1Ċ1Ċ2 + C̈2Ċ2
1) + F1(2C̈2Ċ1Ċ2 + C̈1Ċ2

2)

E2(2C̈2Ċ2Ċ3 + C̈3Ċ2
2) + F2(2C̈3Ċ2Ċ3 + C̈2Ċ2

3)

E3(2C̈3Ċ3Ċ4 + C̈4Ċ2
3) + F3(2C̈4Ċ3Ċ4 + C̈3Ċ2

4)

E4(2C̈4Ċ4Ċ1 + C̈1Ċ2
4) + F4(2C̈1Ċ4Ċ1 + C̈4Ċ2

1)


(2.32)

where G = −4s4
αβs2

βγs2
δα. Let us define Li by setting,

3v22 + 6v211 + v1111 ≡



Ċ1Ċ2D1L1

Ċ2Ċ3D2L2

Ċ3Ċ4D3L3

Ċ4Ċ1D4L4


(2.33)

By comparison with equations (2.26) and (2.28), we see that there will be a solution if we can

write with

L1 + L2 + L3 + L4 = 0 . (2.34)

We can work out the explicit form of Li from the above equations,

DiLi =3(
Ci
Ri

Γ2
i + AiRiΓ

2
i+1 + BiΓiΓi+1)

− 6
(
Ei(2ĊiΓi + Γi+1Ċi) + Fi(2Ċi+1Γi+1 + Ċi+1Γi)

)
+ 6GiĊiĊi+1, (2.35)

with Γi = Ċ2
i+1Ki + Ċ2

i+2(Ki + Ki+1) + Ċ2
i+3(Ki + Ki+1 + Ki+2). (2.36)

Note that here and hereafter, subscript indices i + 1, i + 2 and i + 3 must be understood as modulo

4. Since Γi+1 = Γi − Ki, we can write

DiLi =3(
Ci
Ri

Γ2
i + AiRi(Γi − Ki)

2 + BiΓi(Γi − Ki))

− 6(Ei(2ĊiΓi + (Γi − Ki)Ċi) + Fi(2Ċi+1(Γi − Ki) + Ċi+1Γi)) + 6GiĊiĊi+1.

35

Using the definitions of R, K and D this further simplifies

Li = −12KiΓi +
3AiRiK2

i
Di

+ 6K2
i + 6

FiKi
Di

Ċi+1 + 6
Gi
Di

ĊiĊi+1 . (2.37)

Generating arbitrary loop equations

The nth order derivative of z has two types of term. The first is the single term nM dn−1C
dtn−1 . The

second is terms of the form vp1(n−p1), vp1p2(n−p1−p2) and vp1p2p3(n−p1−p2−p3), with numerical

factors that can be straightforwardly determined by combinatorics. Importantly, terms of this form

can have at most 4 indices, because the equation for z is a fourth order polynomial in the Cis.

Furthermore, the highest t derivative of a Ci that appears in these terms is n − 2, and the first n − 2

derivatives of C were calculated using the equations arising from the first n − 1 derivatives of z.

Thus the equation arising from setting the nth derivative of z to zero is

nM
dn−1C
dtn−1 + Vn = 0, (2.38)

where Vn is the sum of known vectors. As in the derivation of the second and third loop

equations, we then define Ln by

Vn
i = ĊiĊi+1DiL

n
i , (2.39)

and the n − 1th loop equation is Ln
1 + Ln

2 + Ln
3 + Ln

4 = 0. Finally,

dn−1Ci

dtn−1 = Ċi(Ċ2
i+1Ln

i + Ċ2
i+2(Ln

i + Ln
i+1) + Ċ2

i+3(Ln
i + Ln

i+1 + Ln
i+2)). (2.40)

MATLAB code to generate such equations is provided as supplementary material.

36

Supplementary Note 2 - Flat foldability, rigid foldability and

the loop equations

Flat-foldability

A flat foldable pattern is an origami pattern that can be folded completely flat down to a plane.

Kawasaki-Justin showed that a necessary condition for a single 4-vertex to be flat-foldable is that

opposing in-plane angles at the vertex sum to π. (Bern and Hayes [46] showed that no simple

global criterion exists to check if a pattern is globally flat foldable, i.e., avoids global collisions

while folding flat.)

Despite the name, flat foldability of vertices does not imply any foldability of a crease pattern

made of such vertices. In fact, such a crease pattern may not be foldable even to first order! If one

would like to reach the flat-folded state of a generic crease pattern with flat foldable 4-vertices, the

system would have to be “snapped” through states with large face bending, requiring energy input.

Flat-foldable vertices are more restricted than general vertices in the number of design param-

eters available and the folded geometries they can acquire. Flat-foldable vertices have only two

independent design parameters (i.e., in-plane angles) at each vertex since opposite angles need to

sum to π; in contrast, general vertices studied in this paper have three independent in-plane angles.

Further, the folded geometries that a flat-foldable vertex can acquire is limited; the four folding

angles ρ1, ρ2, ρ3, ρ4 at a vertex are constrained such that |ρ1| = |ρ3|, |ρ2| = |ρ4|. That is, opposite

creases are forced to fold to the same extent. In contrast, general vertices can achieve arbitrary

folding angles ρ1, ρ2, ρ3, ρ4, allowing more kinds of local geometry.

Tachi’s loop equation for flat-foldable quads

Tachi identified a single loop equation as a necessary and sufficient condition for quads made

of flat foldable vertices to also be rigidly foldable with no face bending at all to any order [36].

Tachi later derived a 1-st order loop equation for general non-flat foldable quads [43]. In contrast,

we studied general quads with possibly non-flat foldable vertices and found that general patterns

are faced with a hierarchy of loop equations. Solving these in sequence produces a more and more

37

foldable pattern over orders of magnitude.

Our results for tunable foldability of general crease patterns with arbitrary Mountain-Valley

choice relate to Tachi’s work on rigid foldability of crease patterns with ‘flat-foldable’ vertices. For

quads with flat foldable vertices, the first of our loop equations, ΠR = 1 is the only independent

equation. Solving it immediately solves all other equations. Thus, for quads with flat foldable

vertices, first order foldability implies rigid foldability. This is consistent with Tachi’s result that

there is only one loop equation for quads with flat foldable vertices. We have also numerically

verified that quads with flat foldable vertices satisfying Tachi’s loop equation automatically satisfy

all of our loop equations.

The amount of rigid foldable patterns

To be rigidly foldable with no face bending, the in-plane angles of a quad must solve our

infinite hierarchy of loop equations. Since a quad has only 11 independent design parameters (i.e.,

in-plane angles θ), no rigidly foldable quads can be expected to exist unless the loop equations are

somehow not independent.

We verified that the first five of our loop equations are indeed independent; for example, as

quads solve the fourth loop equation ΣM = 0 more and more precisely, the residue of the fifth

equation ΣN stays finite. Thus, the space of rigidly foldable quad patterns is at most 11 − 5 = 6

parameter. Combined with Tachi’s results showing a 6 parameter space of rigidly foldable quads,

this indicates that higher loop equations, beyond the 5th loop equation, are not actually indepen-

dent. (To see this, note that ‘flat foldable’ quads studied by Tachi [36] have 7 independent design

parameters. On imposing Tachi’s single loop equation needed for rigid foldability, one obtains a 6

parameter family of rigidly foldable quads.)

To summarize, our work shows that space of rigidly foldable quads is no more than a 6 pa-

rameter family and Tachi’s earlier work [36] already demonstrated the existence of a 6 parameter

rigidly foldable family.

Other rigidly foldable patterns:

In principle, there could exist other 6 parameter (or lower) families of rigidly foldable quads

38

that are not flat foldable and hence not in Tachi’s family. Indeed, non-flat foldable but rigidly

foldable quads can easily exist due to symmetry. For example, the trapezoid-like crease pattern

(Fig. 2.6c) shows a member of a 5-parameter family of quads that is rigidly foldable due to sym-

metry. The reflection symmetry in these trapezoids means that the transfer functions cancel to all

orders in pairs of adjacent vertices. Besides such solutions due to symmetry, we were not able

to find any rigidly foldable non-flat foldable quads by sampling random quads and solving loop

equations by gradient descent. While such numeric searches cannot mathematically rule out the

possibility of rigidly foldable quads (besides those described by Tachi) that are solutions of all our

loop equations, any such rigidly foldable quads cannot constitute more than a 6-parameter family.

2.5 Supplementary Methods

Manufacturing origami prototypes

We made origami prototypes by cutting 120 lb cardstock using a laser cutter. Patterns were roughly

of size 10 cm x 10 cm. Creases were created using a perforation pattern of 0.6 mm cuts with

0.7 mm gaps. These patterns were folded by hand according to their respective designed MV

configurations. Prototypes in Fig. 2.1b and 2.1e were recolored using Adobe Photoshop to ensure

distinct colors in Fig. 2.1.

Folding using constraint matrices

We simulate the folding of rigid origami using the constraint matrices introduced by Tachi [40].

For each vertex with edges ei, in-plane angles θi j and creases folded to a general set of fold angles

ρi. Define Ai j = R(θi j, ni j), the S O(3) rotation matrix by θi j degrees about the normal ni j to the

face between edge i and j (i.e., ni j = ei × e j where ei and e j are unit vectors along the edges). Let

Bi = R(ρi, ei) be the rotation matrix about edge i by an angle ρi. If the vertex is folded without

any tearing, gaps or bending of faces between edges, the product of these rotation matrices should

39

bring us back to the origin; F({ρi}) = A12B2A23B3A34B4A41B1 = I. If a small change in fold

angles δρ does not violate these constraints, it must satisfy, δF =
∑

i
∂F
∂ρi
δρi = 0. Note that F is an

S O(3) matrix and hence δF is a skew-symmetric so(3) matrix. Hence we can define Cai =
εabcδFbc
δρi

which allows us to re-write the constraint equation as C(ρ)δρ = 0.

Thus, the allowed motions δρ at any given folded state ρ are given by the zero modes of C(ρ).

Hence we solve the differential equation ρ̇ = (I − C+C)τapp where τapp is set of folding torques

applied to creases and C+ is the pseudo-inverse of C. Here I − C+C projects the change of angles

caused by τapp to the null space of C. We solve the above equation using MATLAB’s ODE solver.

Sampling random simple / augmented quads

A simple quad is uniquely defined by specifying the coordinates of 12 points on a plane. Provided

the points are connected through non-intersecting lines, the resulting graph will describe a sim-

ple quad (Fig. 2.7d). The same set of points also uniquely define the augmented quad, with the

convention that the center diagonal is drawn from the bottom left to the top right (Fig. 2.7d).

Each simple quad is sampled by first setting the 12 points to define a perfect square lattice

of unit length 1. Then, both coordinates of each point are altered randomly by adding a number

drawn out of a uniform distribution on [−0.5, 0.5]. The resulting quad is guaranteed to have a

convex quadrilateral at its center, so the corresponding augmented quad can be constructed using

the same coordinate set.

A large mesh is sampled similarly, using a larger square lattice as the initial state, e.g., a 2 × 2

quads mesh starts with a 4 × 4 square lattice. Lattice points are then displaced using a random

uniform distribution. Finally, the center face of each quad is augmented with a diagonal crease.

Detection of folding modes

For each augmented quad (or mesh) sampled by the method described above, we obtain a list

of all zero energy modes by applying random normalized torques to the flat state, and folding it

using the constraint matrix method. As the simple quad is made of 12 creases, the torque on the

40

quad is a 12-component vector, one value for every crease. After sampling a number of random

torques and recording the resulting folding modes, we sample an additional number of torques and

record more unique modes. This step is repeated as long as new unique zero modes are found. By

this procedure (nearly) all zero modes are detected, barring those corresponding to small surface

areas on the 12-sphere. For larger quad meshes, we carry out the same procedure but with torques

vectors of length corresponding to the number of creases in the pattern.

Foldability along a folding mode

Sampled augmented quads were analyzed to find their zero modes, in particular those that are

compatible with the corresponding simple quads. However, the existence of a zero mode informs

us little about how it behaves when folding the quad. In particular, it is known there exist quads

that are bistable (having stable configurations divided by modes that are not precise zero modes).

In our setting, bistable modes would have face folding grow up to some angle and then overturn.

Such behavior would seem to indicate that the more folded configuration costs less energy.

We study a few of the sampled quads and analyze all of their legal modes (those compatible

with the corresponding simple quad). To improve numerical stability, simulation is started in the

folded state where the maximum crease angle is 1 Rad. The pattern is then folded backwards

toward the flat states at intervals of 0.05 Rad, and forward towards π using the same interval. We

note that patterns are folded until the maximum crease angle reaches 3.1 Rad. Folding very close to

angle π is avoided, as this angle value indicates a collision of faces, after which the system leaves

the domain of validity of our analysis.

41

Chapter 3

The complexity of folding self-folding

origami

Single degree of freedom mechanical structures are attractive in a range of fields as almost any

force will actuate that specific designed mode. Much like an umbrella or a folding chair, such

‘self-folding’ structures can be reliably deployed even in uncertain environments with unreliable

actuation forces. This principle has found wide use in kinetic or deployable architecture, heart

stents, MEMS, sensors and robots on a range of length scales [10, 26, 27, 60]; recently, self-folding

origami has become a popular framework for such applications [14, 31, 34, 36, 45, 51].

The self-folding approach is similar in spirit to other bottom-up methods such as self-assembly

of particles [61] and self-folding of polymers [62]; these methods exploit careful programming of

interactions to allow for careless actuation at deployment. However, in these other self-actuating

frameworks, the interactions needed for the desired assembly or folding inevitably create many

other ‘distractor’ states (e.g., kinetic traps in self-assembly [63, 64, 65] or in protein folding [62,

66, 67]), necessitating more care at deployment than one would naively expect.

Here, we show that it is difficult to fold self-folding origami (a thin sheet pre-creased to allow

only a single folding motion) because of a similar inevitable proliferation of distractor folding

42

branches. The distractor branches, shown schematically in Fig. 3.1, meet at a bifurcation at the flat

state but are dead-ends since they are of zero energy only to linear order. The number of distractors

grows exponentially with size of the sheet and consequently, most spatial distributions of folding

forces will actuate a distractor (Fig. 3.1c,d). As a result, despite having only one extended degree of

freedom, self-folding crease patterns require multiple actuators placed at carefully chosen spatial

locations for successful actuation.

We trace the origin of distractors to frustrated loops of vertices, each of which can fold along

one of two branches. Such frustrated loops create a glassy energy landscape for the sheet around

the flat state, i.e., a landscape with an exponential number of local minima corresponding to the

distractors. Material properties are expected to modify the precise details of this landscape, yet

will not change its fundamental glassy nature. Successful folding must be seeded by actuation at

a carefully chosen set of creases that picks out the ground state of the glassy landscape, much like

with protein folding [67, 68, 69, 70] and other satisfiability problems [71]. We find that the spatial

arrangement of actuators needed can be understood heuristically in terms of unfrustrated ‘folding

islands’, the largest sub-pattern containing a given actuated crease that will fold when cut out of

the full pattern.

In this way, our work shows fundamental limits to the programmability of self-folding sheets

due to an inevitable glassy landscape of undesired states. In conjunction with similar limits in other

bottom up approaches like self-assembly [61] and self-folding polymers [62], our work adds to a

common picture of glassiness intrinsic to bottom-up methods based on frustrated and disordered

interactions, independent of the details of specific implementations.

In addition, our results provide a practical means of understanding where to place active

creases; e.g., in hydrogels or shape memory alloys, one must choose the active hinges; our the-

ory predicts which combination of hinges would be successful and even predicts that sometimes,

adding a new active crease (aiding in the right direction) to an existing successful actuation can in

fact prevent folding.

Our results on glassiness and the difficulty of physically folding origami superficially resem-

43

con�guration space

Exponential number of
distractor branches

(a) (b)

(c) (d)

Creased sheet

Unsuccessful
actuator
combination

Successful
actuator
combination

�at state

x

x

x
x

x

xx

x

fo
rc

e

Branched degree of freedom Single degree of freedom

Figure 3.1: Bifurcated folding motions
(a) Structures designed with only one folding motion (‘mechanisms’) are thought to be easy to
control since any applied force not exactly perpendicular to that motion will actuate it. (b) How-
ever, if a mechanism has a branched degree of freedom (bifurcation), the applied force (green)
must make a smaller angle with the desired branch than with the undesired branch. (c) We show
that programming a stiff sheet with one folding motion inevitably creates an exponential number
of other dead-end ‘distractor’ branches that are of zero energy only to linear order. The applied
force needs to be highly aligned with the desired folding motion in order to avoid the distractors.
(d) Consequently, we must actuate multiple creases in a carefully selected combination (green) to
successfully fold a self-folding crease pattern.

bles earlier works, such as Bern and Hayes’ classic result on NP-hardness of flat-foldability [46]

and others [34, 72, 73, 74]. However, Bern and Hayes focused on the ordering of folds in multi-

stage folding, also investigated later in [48, 75, 76]. Here, we focus on self-folding sheets with a

single temporal stage. More significantly, many earlier works [46, 74] concern the computational

difficulty in finding a consistent global Mountain-Valley assignments (e.g., ‘forcing sets’ [72, 73]),

while our work concerns whether the physics of folding can find a desired global Mountain-Valley

assignment, taking into account physical effects such as mechanical advantage and energy land-

scapes that play no role in these earlier works. A recent work [77] considers similar actuation

questions for single vertices and simple loops of vertices; in contrast, we use an energy model and

focus on statistical results for large quadrilateral meshes with an exponential number of distractors.

44

(b)

(c) (d)

(a)

Figure 3.2: Bifurcations for vertices and chains of vertices
(a) A single vertex has two distinct folding branches, in which 3 creases form a mountain fold
(black line) and 1 becomes a valley fold (magenta), or vice-versa. The distinct branches are iden-
tifiable by the odd-one out crease which folds opposite to the rest, with the two choices marked by
blue and red lines. (b) The two branches meet at a bifurcation at the flat state. Φ1 and Φ2 corre-
spond to the two eigenvectors of folding angles that span the 2d null space of the vertex. Given
a folding amplitude (e.g. ||~ρ|| = 0.1), we blow out the energy of any configuration on a circle of
that radius, with two clearly identified zero-energy configurations (and their negatives). (c) When
a selected crease is actuated, the vertex chooses the branch in which that actuated crease folds
more relative to other creases (rule of mechanical advantage). Since the odd-one-out crease and
its transverse crease tend to fold less than the other crease pair, the odd-one-out crease is generally
adjacent to the actuated crease. (d) When N vertices are linked together into an open-ended chain,
the chain can fold in 2N different folding branches. Given an actuated crease, the resulting MV
data can be predicted by applying the branch selection rule of (c) to vertices in sequence, as each
successive vertex is actuated through the crease linking it to the prior vertex.

45

(a)

(c)

(b)

Figure 3.3: Loops of vertices give rise to a glassy landscape
(a-b) When a chain of vertices is closed by adding a final vertex, the resulting branches are no
longer of zero energy. E.g., if vertices V1,V2,V3 are at one of their two zero energy states (red
dots), V4’s folding state is constrained since the folding state of creases V1 − V4 and V3 − V4 are
already set. The resulting energy for V4 is generically not zero (red dot for V4). We computed the
energy in the 4d linearized null-space at a fixed norm ||~ρ||. (c) The heatmap and surface plot show
a 2d projection onto the two top eigenvectors Φ1, Φ2 in the linearized null space.

46

3.1 Results

3.1.1 4-vertex and chains of 4-vertices

When a vertex with n creases is folded, the n dihedral fold angles ρi, i = 1, . . . , n are related by

3 equations [41]. Thus n-valent vertices with n ≤ 3 will be completely rigid, while vertices with

n ≥ 5 have multiple degrees of freedom. 4-vertices are of special interest as they have precisely

one degree of freedom.

However, a crucial caveat to this Maxwell counting is that only 2 of the 3 vertex equations are

independent when the vertex is laid out flat [77] (i.e., unfolded). Consequently, it was shown [12]

that a generic 4-vertex has two distinct folding branches that meet at a bifurcation at the flat state

(Fig. 3.2). To see this quantitatively, we follow Tachi’s use of rotation matrices [37, 42] to derive

three constraint equations Ta(~ρ;~θ) = 0, a = 1, 2, 3 associated with the vertex where ~ρ are the fold

angles at creases and ~θ are the in-plane angles between creases (see appendix B). We expand the

constraints Ta in a series in ρi about the flat state ~ρ = 0 as Ta(~ρ) = Ci
aρi + Di j

a ρiρ j + . . . (where

repeated indices are summed over). Configurations that violate these constraints will have Ta(~ρ) ,

0 and we can associate an energy EVertex ≡
∑

a T 2
a with these configurations. See Appendix B for

more discussion on alternative choices of energy.

Such an energy of a general vertex configuration scales as ||~ρ||2. However, Ci
a has rank 2, giving

a two dimensional space of zero modes in the linear approximation about the flat state ~ρ = 0. The

energy scales as ||~ρ||4 for folding modes in this linearized null space (with no bent faces). Fig. 3.2b

shows the energy for folding modes within the linearized null space as we fold to larger angles.

We see that two special folding branches within the linearized null space have zero energy to all

orders. Thus, a generic 4-vertex has a full 2d vector space of zero modes at the flat state in a linear

approximation, but only two 1d branches of zero energy upon non-zero folding. This is consistent

with Maxwell counting, as one constraint is redundant at, but only at, the flat state.

The two folding branches differ qualitatively in the sign of their fold angles. Both branches

47

satisfy the following rule [78, 79]; three of the four creases must fold in a common orientation

(say, ‘Valley’ fold) with the final ‘odd-one-out’ crease folding the other way (‘Mountain’ fold).

The final odd-one-out crease can be either one of the two creases whose neighboring angles add

to less than π; see Fig. 3.2a. This discrete choice gives rise to the two branches. Note that the two

creases capable of being the odd-one-out are always adjacent.

3.1.2 Branch selection through mechanical advantage

When external folding torques τi, 1 = 1 . . . 4 are applied to the creases of a 4-vertex and released,

the vertex will relax into one of the two branches (Fig. 3.2a) with corresponding folding angles

~ρα, α = 1, 2. In the linear regime ||~ρ|| � 1, using our energy model (Eq. 3.1) we find that computing

the normalized dot product between the applied vector of torques (‘applied force’) ~τ and the folding

angles ~ρα of the two branches identifies the actuated branch; the vertex will relax into the branch

with higher dot product τ · ~ρα/||~τ||||~ρα||. This rule is equivalent to selection based on mechanical

advantage; when one crease is actuated, the vertex folds into the branch in which that crease’s

folding is larger relative to other creases (i.e., contributes more to the norm ||~ρα||).

Our mechanical advantage rule is based on a model energy landscape where the angular bisec-

tor of the two branches separates their attractor basins. In real material vertices, the dividing line

between the attractors might be closer to one branch than the other (appendix C); such complica-

tions do not change our results qualitatively. In contrast, a recent work [77] assumed that actuation

might fail if the applied force has a positive dot product with any other available branch. In such

a model, even applied forces perfectly aligned with a branch may be classified as incapable of

evoking that branch, in contrast to energy landscape-based models.

Our mechanical advantage rule can be restated as a heuristic in terms of Mountain-Valley (MV)

choices. In either folding branch, the crease with odd-one-out MV state and its transverse crease

fold less than the other pair of creases that share a common MV state [77] (To see this intuitively,

consider the limiting case in which all in-plane angles are nearly 90 degrees and the vertex folds in

half along one pair of creases with the same MV state; the other pair of creases barely fold at all).

48

Combining this observation with the dot product rule, we conclude that when a single crease is

actuated, the vertex will choose the branch in which the crease transverse to the control crease will

fold with the same MV state (Fig. 3.2c).

This branch-picking rule is easily extended to chains or trees of vertices, as long as no loops

are present. If we actuate at one select crease at a vertex in this chain, we can determine the

branch choice at that vertex using the above rule and thus the MV state of all creases at that vertex.

Any neighboring vertex is actuated by the creases connecting them. In the absence of loops, there

is only one path from the controlled vertex to any other and hence the mode-propagation rule

unambiguously determines the branch choice at each vertex (Fig. 3.2d).

In this way, for any given actuated crease, the branch selection and propagation rule unambigu-

ously selects one branch out of the 2N bifurcated folding branches of an N vertex chain. Thus,

at least with idealized materials, a choice of branch can easily be made in the loop-less case. In

contrast, we will now show that patterns with loops, even if made from idealized materials, are

intrinsically difficult to fold.

3.1.3 Loops of vertices create glassy energy landscapes

If 4-vertices are connected around a loop, we can no longer make an independent choice of folding

branch at each of the vertices. For example, for a loop of four 4-vertices like that in Fig. 3.3a, we

can make independent branch choices for three of the vertices - say for V1,V2 and V3 - which puts

them in one of their zero energy states (red or blue points in Fig. 3.3b). The final vertex’s folding

branch is then completely determined because the state of two creases at V4 are already determined

(namely, creases V3 − V4 and V4 − V1). Generically, the resulting state for V4 will not be of zero

energy [13] (red dots in Fig. 3.3b). We thus find that the resulting folding branch is of non-zero

energy, unlike for chains of vertices.

Such thin sheet configurations with non-zero energy will also show face bending. We add a stiff

face diagonal to each inner face in a crease pattern with face stiffness parameter κ f (see Appendix

B for more details, specifically on the balance of stretching and bending). The energy model of a

49

generic configuration with loops thus becomes

E ≡ EVertex + EFace =
∑

a
T 2

a +
1
2
κ f ~ρ

2
f (3.1)

where ~ρ f are the face bending angles.

Going through the 23 = 8 independent branch choices for V1,V2,V3 (which then determine

the state of V4), we should expect to generically find 8 branches of non-zero energy. In fact, these

folding branches are of zero energy to quadratic order but of non-zero energy at next order; i.e.,

the energy of these branches scale as κρ4 with κ , 0. In contrast, κ = 0 for all the 2N folding

branches of a chain of vertices. To gain more intuition about these branches and their energies, we

fixed the overall folding magnitude ||~ρ|| for a single 4-loop and computed the energy as a function

of the angular directions in ~ρ space. A two-dimensional projection is shown in Fig. 3.3c where

each branch shows up as a local minimum with depth proportional to κ.(See Appendix B for more

details, including accounting for finite face bending and stretching energies at different ||~ρ||).

Thus, we find that loops of vertices have a glassy folding energy landscape, much like a spin

network with frustrated loops [80], and unlike trees or chains of spins.

A desired branch’s energy can be made arbitrarily low or even zero to all orders in folding by

fine-tuning in-plane angles using ‘loop’ equations [21, 43]. While the design process can make a

desired folding branch be the ground state of the landscape, it does not change the glassy attractor

structure shown in Fig. 3.3c; see appendix A (Fig. 3.6) for comparison. Different actuated creases

initialize the folding process in different parts of the glassy landscape; folding then involves flowing

downhill to a local minimum. Hence, actuating a desired branch in such a landscape can be difficult

in the presence of a multitude of distractor branches.

Large patterns - number, attractor size of distractors

Large patterns made of many 4-vertices contain many loops and the number of distractor branches

grows rapidly. We generated quadrilateral meshes of random geometry made of
√

A×
√

A vertices,

50

folded each mesh with random applied forces ~τ and allowed it to relax into a local energy minimum

until no more new minima were discovered. In this way, we determined the following landscape

properties:

(a) The total number of distinct branches Nbranches for a given quadrilateral mesh grows expo-

nentially with the size of the mesh, with the precise number of minima depending on the distance

||~ρ|| from the flat state at which folding is stopped (Fig. 3.4a).

The increase in the exponential number of minima with folding distance arises because of the

well-studied relationship between stretching and bending in thin sheets [54, 55, 21]. As discussed

in Appendix B, close enough to the flat state, face bending and stretching energies are comparable.

In this regime, as suggested by Fig 3a, choosing the states of three vertices around the loop strongly

constraints the state of the fourth vertex. As one folds more, face bending becomes less expensive

than stretching for thin sheets. Consequently, constraints on the fourth vertex weaken, revealing a

larger (but still exponential) number of branches at larger ||~ρ||, shown in Fig. 3.4a.

Note that while our numeric results unambiguously show exponential growth for all the ||~ρ||

shown in Fig 4a, we find that the precise form cannot be numerically determined with confidence,

despite Nbranches varying over 2.5 orders of magnitude. Note that in the limit of free face bending,

our self-folding mesh is transformed into the fully triangulated patterns studied recently in [81].

(b) The attractor size of each distractor branch (taken to be the fraction of random actuation

forces that actuate the branch) is generally small; see Fig. 3.4b. The largest attractor for the 4 × 4

mesh sampled is only ≈ 15% i.e., only 15% of random torques will actuate that branch. Most

branches have far smaller attractor basins. The typical attractor size is expected to drop sharply

with A. Data for small patterns suggest up to A = 64 suggests a power law dependence of the mean

attractor size.

Actuation of large loopy patterns

How many creases need to be actuated - and which ones - to pick the desired branch in a landscape

with an exponential number of other minima? Such landscapes arise in diverse areas of physics

51

(b)(a)

Figure 3.4: Large patterns have an exponential number of branches (i.e., minima) of decreasing
attractor size
We characterized the landscape by sampling random quadrilateral meshes of size up to A = 81 ver-
tices and folded each one with random torques until no new stable branches were found (κ f = 10−6,
see Eq. 3.1). (a) Quadrilateral meshes show an exponential number of distinct folding branches
(i.e., local minima) in its energy landscape; the precise scaling depends on the total extent of fold-
ing ||~ρ||, reflecting the relative importance of bending and stretching energies (Appendix B). (b)
The size of attractor basins around different branches for a fixed pattern does not exceed 15% of
the total space for a 4 × 4 mesh.

for the same reason – frustrated disordered interactions – and are often referred to as ‘complex’ or

‘glassy’ [62, 67, 71, 80, 82].

To answer this question for self-folding origami, we study a random pattern with a chosen

branch, shown in Fig. 3.5a. Since the crease locations at which folding torques are applied can

be better controlled than the precise magnitude of torques in many applications [10], we applied

folding torques of fixed magnitude to different randomly selected subsets of creases. The applied

torques were always of the correct sign (mountain or valley) needed at that crease for the chosen

branch. As seen in Fig. 3.5b, actuators are needed on 18 out of a total of 60 creases to have a 50%

probability of folding the pattern.

For applications where the precise torque magnitudes can be controlled in addition to location

(as explored recently in [77]), we must characterize how closely the applied vector of torques must

align with the folding angles of the desired branch (see Fig. 3.1). We present such results on dot

products in appendix D.

Requiring a large number of actuators or precise control of torque magnitudes defeats the

52

purpose of designing a single degree of freedom mechanism; it is hard to call a system requiring

such delicate control ‘self-folding’.

How then can self-folding origami be folded with a minimal number of actuators? A lesson

can be drawn from similar glassy landscape search problems in models of protein folding (e.g.,

Levinthal’s paradox [67, 69, 70, 83]) and related NP-hard satisfiability (SAT) problems [71, 84]

that vary from the Traveling Salesman Problem to Sudoku [85]. A common element in these sat-

isfiability problems is that random seeding of the search for the global minimum leads to repeated

backtracking after reaching local minima, both in the context of computer algorithms (as the DPLL

algorithm for k-SAT [71]) or for physical dynamics (as in protein folding) [84]. However, careful

seeding of the search - e.g., if the right boxes are filled in first in Sudoku [85] or if the right parts of

the protein are folded first - can greatly reduce or even eliminate backtracking [71] before reaching

the global minimum.

Correct seeding is even more important for origami since folding is assumed to happen at ‘zero

temperature’ (e.g., without any noise or fluctuations). As a result, the structure cannot backtrack

out of a local minimum as in the case of non-zero temperature SAT problems [84].

3.1.4 Folding islands

To understand the role of frustration and seeding in the origami context, we must consider both the

branch selection rule and the effect of loops. Even in the absence of loops, when an actuated vertex

is folded into its desired branch, the MV state propagated to a target vertex as shown in Fig. 3.2d,

can disagree with the desired folding branch at the target vertex and thus fold it incorrectly.

The situation is complicated by the presence of loops since a target vertex can be reached from

a control crease by multiple paths. The mechanical advantage heuristic applied to different paths,

which reach a particular vertex from different directions, may not be consistent. For example,

different paths might imply different folding branches for the target vertex. Thus, in the presence of

loops, the mechanical advantage heuristic (or any other such path-based heuristic) is not sufficient

to folding all vertices into desired branches.

53

(a)(a)

(h)

�

(b)

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

of actuators

� �

� �

(d)

(c)

�� ��

Area of union of folding islands
 (UFI)

0.0 0.2 0.4 0.6 0.8 1.0

Pr
ob

ab
ili
ty

 o
f s

uc
ce

ss

Pr
ob

ab
ili
ty

 o
f s

uc
ce

ss

of actuators

Pr
ob

ab
ili
ty

 o
f s

uc
ce

ss

Pr
ob

ab
ili
ty

 o
f s

uc
ce

ss

(e) (f)

�

(g)

(i) (j)

Figure 3.5: Spatial distribution of actuators determines folding success
(a) A 4x4 quadrilateral mesh pattern, with its designed soft branch indicated by line colors (black
- mountain, red - valley). (b) If standard actuators are placed on randomly chosen creases of the
pattern, at least 18 actuators (∼ 30% of creases) are needed to have a 50% chance of successful
folding. (c) If just one crease is pressed, the resulting branches typically have a decreasing folding
magnitude for creases away from the actuated crease. (d) The ‘folding island’ of a crease is the
largest sub-pattern that folds correctly when cut out from the full pattern and actuated at that crease.
The area of the union of folding islands relative to the entire pattern (denoted UFI) provides a
simple design heuristic; (e) Actuated crease sets with UFI < 1 generally do not successfully fold
the pattern while (f) actuators with UFI = 1 are successful. (g) However, successful actuation
can sometimes be ruined by actuating an additional crease (orange) with a small folding island. (h)
Actuated crease sets of given size are dramatically more likely to fold successfully if their UFI = 1
(green) rather than UFI < 1 (red). (i) Using the data in (b) we find that UFI is a sharper predictor
of success than the number of actuators. (j) Folding islands also explain a counter-intuitive effect
where successful actuation can sometimes be ruined by actuating an additional crease (orange)
with a small folding island. The obtained branch is different than the designed one primarily in
creases close to the “bad” actuator (thick lines).

54

As a result, while a designed folding branch guarantees a globally consistent configuration of

vertex branch choices (e.g., blue dots in Fig. 3.3b), such a global configuration may be difficult to

reach using the local MV propagation rule in Fig. 3.2c from a single actuator. Hence successfully

folding a large pattern in a desired branch can require actuating multiple creases at the same time.

A clue to finding good sets of actuators is seen in Fig. 3.5c: When actuated at a single crease,

the obtained (undesired) branch is generally ‘localized’, where folding amplitudes near the actu-

ated crease are larger than far away from it. This suggests that globally desired folding might be

achieved with cooperative local actuators, each of which fold their local neighborhoods correctly.

To find the number of actuators needed for successful actuation of a desired branch, we identify

unfrustrated sub-patterns called ‘folding islands’. We define the folding island of a crease (with

respect to a desired folding branch) as the largest contiguous region of the pattern that will fold

in the desired branch, if that region is cut out and actuated at the chosen crease. For computation

of the folding islands see appendix E. Fig. 3.5d shows that folding islands for different creases

can vary greatly in size and generally do not cover the whole pattern. While folding islands can be

approximately deduced using the simple MV propagation rule in Fig. 3.2c, the exact shape depends

on the precise in-plane angles.

These considerations suggest a heuristic necessary condition for a set of actuated creases to fold

a pattern; the union of their folding islands should cover the whole pattern. If not, as in Fig. 3.5e,

when folding reaches the boundary of a folding island, folding will jam in a high energy distractor

branch as vertices outside the union of islands will fold incorrectly. On the other hand, the two

actuators shown in Fig. 3.5f, whose folding islands together cover the entire pattern, successfully

fold the pattern.

Folding islands provide a new perspective on why randomly placed actuators (Fig. 3.5b) were

poor at folding the pattern. In Fig. 3.5h, we went through the different actuated crease sets used in

Fig. 3.5b and computed the area of the Union of Folding Islands (which we denote UFI, defined

as the fraction of all creases belonging to the union) for each set. We see, for example, that a set of

5 actuators is 60× more likely to fold the pattern if it has UFI = 1 rather than UFI < 1. Similarly,

55

Fig. 3.5i shows all the data in Fig. 3.5b, but plotted against UFI instead of number of actuators.

These results show the union of folding islands and thus spatial placement of actuators is a much

better predictor of folding success than the number of actuators (We find a few cases of successful

actuation e.g., at UFI = 0.8 when the folding islands cover most vertices). In particular, the

condition UFI = 1 eliminates many spatial arrangements of actuators that are nearly guaranteed

to fail.

Folding islands also shed light on a counter-intuitive phenomenon shown in Fig. 3.5g. While

the two actuators in Fig. 3.5f can successfully fold the pattern, adding another actuator with a very

small folding island as in Fig. 3.5g, can stop the previously successful folding! Fig. 3.5j shows the

resulting undesired branch, which is different than the desired branch in the bold creases. Thus,

the interaction between the green and orange actuators leads to misfolding mostly in proximity to

the orange actuator (just outside of its small folding island), consistent with the falling influence

of actuators with distance as shown in Fig. 3.5c. Such effects reduce the probability of success in

Fig. 3.5g when UFI = 1 to be less than 1. Predicting these subtle competition between different

control creases requires knowledge of the precise in-plane angles of the pattern and we are unable

to formulate a strict necessary and sufficient condition for successful folding without full pattern

information. Nevertheless, identifying the folding islands provides a useful design heuristic to

greatly reduce the number of actuators needed, as seen in Fig. 3.5h,i. See Appendix E for more on

how folding islands can be incorporated into an algorithmic framework for actuator placement that

is vastly more feasible than blind search (experimental or in simulations) through all combinations

of actuators.

3.2 Discussion

Sheets with crease patterns designed to exhibit exactly one folding behavior are nevertheless dif-

ficult to fold. We traced this difficulty to the fact that stabilizing one folding behavior using

frustrated interactions between binary degrees of freedom (bifurcated origami vertices [12, 41])

56

inevitably stabilizes an exponential number of other distractor behaviors – i.e., a ‘complex’ or

‘glassy’ landscape [82]. Thus our results establish fundamental limits on the programmability of

energy landscapes for sheets, paralleling similar limitations in other bottom-up approaches such

as self-assembly of particles [61] and self-folding of polymers [62] as well as classic NP-hard

satisfiability (SAT) problems [71, 84].

Self-folding with real materials can introduce other complications, specific to those realiza-

tions, that make folding more difficult than described in our paper. In appendix C, we explore

several other models of self-folding sheets, incorporating stiffness of creases, variable bending vs

stretching energy of sheets using COMSOL, and manufacturing error in crease placement. We find

that the statistical properties of the glassy landscape remain unchanged. Thus, our work points at a

fundamental glassy difficulty that is intrinsic to self-folding, reliant only on frustrated interactions

between bifurcated 4-vertices – and hence must be faced by any material realization.

We saw that many actuators are needed to successfully fold self-folding sheets, if their locations

are randomly chosen. However, carefully choosing the set of actuated creases can reduce their

number dramatically. We interpreted successful combinations in terms of unfrustrated sub-patterns

called folding islands that successfully fold when cut out of the full pattern. The connection to

protein folding and other NP-hard problems drawn here suggests other ways forward, including

temporal staging, folding funnels and chaperoned folding [62, 71].

Recent self-folding origami applications vary greatly in the materials used and in actuation

mechanisms for active hinges, including electric [10], optical [56], thermal [49] and chemical

(pH) [50] methods. In many applications, energy can be selectively input to specific creases,

e.g., by controlling the electric current to shape-memory polymer hinges [47, 48] or light input to

hydrogels [13]. Our work suggest which combinations of creases should be given energy input for

successful folding, even showing how adding an actuator can ruin successful folding (Fig. 3.5h).

Going beyond self-folding patterns, our considerations also apply to each temporal stage of multi-

stage sequential folding patterns [48, 75, 76].

The folding difficulty described here and the resulting need for careful actuation mathemati-

57

cally applies only at the flat state; but since the energy barriers between branches grow more slowly

with folding for a softer sheet, careful actuation needs to be maintained until a larger folding angle

for soft sheets.

Recent experiments on controlled repeated crumpling and extension of sheets suggests an in-

ability to refold along existing creases, leading to the formation of new creases [86]. While the

4-vertex patterns studied here are not good models of crumpled soft paper with significant face

bending, our results do suggest that the difficulty of refolding a crease pattern, and thus the propen-

sity to create new creases, grows with the softness of the sheet and when unfolded closer to the flat

state.

3.3 Appendix A - Design of folding branches and the energy

landscape

An origami pattern containing loops made of 4-vertices inevitably has many folding branches of

finite energy. For a generic pattern of some particular topology (e.g. a ‘quad’ made of four 4-

vertices in a loop), the folding branches have non-zero energies distributed over a wide range

when folded with the same magnitude ρ ≡ ||~ρ|| (Fig. 3.6a). However, all these energies scale as

E ∼ ρ4, since the folding branches are within the null space of the linear part of the expression for

energy.

For many applications, one requires softer folding branches, that could be folded to a non-

linear extent (large ρ) with a small input energy. Designing such soft folding branches can be

accomplished by fine-tuning in-plane angles using ‘loop’ equations [43, 21]. The process entails

picking a branch and modifying the geometry of the pattern to make that branch gradually softer.

Each successive loop equation, when solved exactly, changes the scaling of the folding energy for

the designed branch

E(~ρ) ∼ ρ2+4n, (3.2)

58

(a)

(b)

Figure 3.6: Energy landscape of a quad loop pattern at fixed norm of folding angles ||ρ||
(a) A generic quad loop pattern has 3− 7 folding branches seen as minima in the energy landscape
(Left - heat map; Right - corresponding 3D surface). Generic minima have energies that scale as
E ∼ ρ4. (b) By solving loop equations [21, 43], we can design one specific folding branch to
be qualitatively softer than all others (identified as the much deeper minimum). The rest of the
branches retain their original energy scaling and thus become distractors in the energy landscape.

where n loop equations are solved in sequence.

We can thus design a specific branch of the pattern to be a soft as needed, but what becomes

of all the other folding branches of the pattern? We find that the other branches, for which no loop

equations are solved, remain qualitatively the same. Their number in general does not change, and

neither does their energy. As their energy still scales with ρ4, we are left with a distinct energy

landscape, where the one designed branch is qualitatively softer than all of the rest (Fig. 3.6b). We

thus call the other branches ‘distractors’, as they correspond to high energy minima in a glassy

landscape, with energy much higher than the ground state (i.e. the designed branch).

A remarkable fact about the distractor branches is that they do not have to comply with sin-

gle vertex rules. One might find a distractor branch in which a few vertices have ‘illegal’ (non-

59

Kawasaki-Justin) configurations, e.g. 4 valleys/mountain, 2 valleys/mountains, etc. Clearly, ver-

tices with such configurations must contribute to the energy of the entire pattern, but they can do so

within the linearized null space of the pattern. It is notable that all designed soft branches must be

‘legal’ at the single vertex level. The energy of any configuration containing ‘illegal’ assignments

for any vertex scales at least as E ∼ ρ4.

3.4 Appendix B - Energy and vertex constraints

A single 4-vertex has 2 zero energy folding branches that extend to arbitrary overall folding mag-

nitude ||~ρ||. These modes cost no energy as the corresponding choices of ~ρ exactly satisfy the vertex

constraints.

Vertex constraints are derived for any closed vertex by considering a condition such that the

vertex does not tear open when folded [37, 42]. A small disk surrounding the vertex configuration

is defined by the folding angles ρi and the in-plane angles between the creases θi. One can ‘walk

around’ the edge of the disk around the vertex and eventually return to to same point only if the

vertex is not torn anywhere. This motion around the vertex consists of rotating with the θi angle

about the central axis of the vertex, and then rotating about the dihedral angle ρi until one returns to

the original position. If one orients the current vertex face such that the face occupies the xy-plane

and the crease is on the x-axis, these two rotations can be expressed as [37, 42]

Ri =


1 0 0

0 cos ρi − sin ρi

0 sin ρi cos ρi




cos θi − sin θi 0

sin θi cos θi 0

0 0 1

 . (3.3)

In general Ri = AiBi where Ai is a rotation matrix about an axis along crease i by angle ρi while

Bi is a rotation matrix about an axis perpendicular to face i by angle θi.

The condition that the vertex is not torn becomes

60

10-3 10-2 10-1

||ρ||

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E

2

1

4

1

Random Direction
Null Space Direction

Figure 3.7: Stretching energy scaling in a 4-vertex E(||~ρ||) depends on the direction of ~ρ
For random directions we have E ∼ ρ2, while for directions within the linearized null space of the
system E ∼ ρ4. Only two special directions (not shown) exist for which E = 0 to all orders in
folding.

∏
i

Ri = I, (3.4)

where the product is taken over all creases and faces i, and I the 3 × 3 identity matrix. Equation

(3.4) can be shown to be equivalent to 3 independent equations for the off-diagonal upper matrix.

Crucially, these are 3 non-linear constrains relating the folding values ρi around the vertex. A

4-vertex is a 1 DoF object, as 3 equation relate its 4 folding angles.

Near the flat state, all ρi ≈ 0, and the matrices of equations (3.3-3.4) become essentially 2d

rotation matrices about an axis perpendicular to the flat vertex; hence one vertex constraint is lost.

The preceding considerations apply to all vertices constructing the pattern.

As shown in the main text, the constraints can be expanded about any configuration, in partic-

ular the flat state ~ρ = 0:

Ta(~ρ) = Ci
aρi + Di j

a ρiρ j + . . . (3.5)

Violation of these vertex constraints can be interpreted as a stretching energy at that vertex,

61

EVertex = T 2
a . Fig. 3.7 illustrates the vertex energy in this model. Random configurations of ~ρ

for which Caiρ
i , 0 are characterized by an energy that grows quadratically in ρ. Configuration

existing in the 2d linearized null space of the vertex have a scaling E ∼ ρ4. Large patterns made

of 4-vertices have a high dimensional linearized null space where the energy scales like that of

a vertex. However, we show in the main text that patterns with loops are frustrated, such that in

general no zero energy folding branches exist.

In addition to vertex energy, when vertices form loops, one also expects face bending in thin

sheets [54, 87]. We model such face bending by adding stiff face diagonals to each inner face;

that is, we add face diagonals with torsional springs on them of stiffness κ f and rest angle ρ f = 0.

Putting these together, our energy model is,

E(~ρ) ≡ EVertex + EFace

=
∑

a
T 2

a +
1
2
κ f

∑
i∈ f aces

ρ2
i ,

(3.6)

with κ f a proper dimensional face stiffness factor. As a sheet is made thinner, the bending

modulus is reduced relative to stretching [54, 55], effectively reducing κ f .

Every folding branch of generic looped patterns balances stretching (i.e., vertex) and bending

(i.e., face) energies, with relative importance depending on the folding amplitude ρ. To illus-

trate the importance of the different ρ scaling of the two energy terms, we counted the number

of branches for quadrilateral meshes of different sizes, at different values of folding magnitude ρc

(Fig. 3.8).

Note that the stretching term scales as ρ4 (for branches in the linearized null space), while

the bending term scales as ρ2. Thus, at smaller folding magnitudes bending of faces is expensive

and suppressed. In contrast, at large folding magnitudes stretching is more expensive and faces

can bend much more freely. As explored in earlier work [21], the number of branches of origami

patterns scales exponentially with the ratio of face bending to crease folding, consistent with these

results.

Finally, while these models quantify the violation of constraints (using vertex energy and face

62

0.01 0.02 0.03 0.04 0.05 0.06 0.07
ρc

101

102

103

N
u
m

b
er

o
f
b
ra

n
ch

es

A
4
9
16
25
36
49

Figure 3.8: Number of folding branches for patterns of different sizes, folded to magnitude ||~ρc||
At large folding angles the same patterns have many more folding branches due to the lesser
importance of face bending compared to stretching. Main text Fig. 3.4a shows vertical slices of
the same data, illustrating the exponential size scaling of the branch number (κ f = 10−6).

bending respectively) and a glassy landscapes emerges in this context, the results hold for arbitrar-

ily stiff sheets. However, these results cannot be derived directly for strictly infinitely stiff sheets, a

mathematical idealization that assign infinite energy to all non-zero-energy folding configurations.

Consequently, that mathematical limit misses the glassy landscape that exists for arbitrarily stiff

sheets. In this sense, softness is a singular perturbation and strictly infinitely stiff sheets are not a

good approximation of realistic sheets, no matter how stiff, for the question of actuation.

Folding method

When external folding torques are applied to creases of a pattern, we fold the pattern by accounting

for both the external and the internal forces generated by the energy model above (Eq. 3.1).

Given an external folding torque τi applied to crease i, the folding of an ‘overdamped’ but

unconstrained crease follows γρ̇i = τi, with γ the stiffness of the crease. In self-folding patterns,

folding motions are 1d such that there exists preferable configurations ρi. This notion is encoded

63

Actuated crease

=

=

=

=

Actuated crease

Branch #1 Branch #2

Figure 3.9: Finite element models of realistic sheets, simulated with COMSOL Multiphysics
show that the mechanical advantage rule identifies the right folding branch. When a torque is
applied to just one crease, the resulting branch is predicted by the mechanical advantage rule
(Fig. 3.2c). We used the COMSOL shell model to simulate folding a realistic origami vertex
(experiencing elastic strains). The folded configurations match those expected from our simplified
vertex model defined only by vertex constraints, even though the COMSOL model accounts for
many real world complications not accounted for by our simple model (e.g., finite crease stiffness
and thickness, delocalized bending and stretching). Pattern parameters: Length ∼ 0.2m, crease
width 0.015m, thickness 10−4m. Material parameters of the faces are density ρ = 1760kg/m3,
Young’s modulus Y = 8 · 108Pa. Material parameters of the creases are density ρ = 930kg/m3,
Young’s modulus Y = 5 · 106Pa.

by the energy model presented above, as unfavorable configurations require more bending of the

faces. Thus, if left on its own, the pattern will change its configuration introducing internal torques

γρ̇i = −
∂E(~ρ)
∂ρi

.

These considerations allow construction of a folding algorithm, implemented as an ODE sys-

tem:

γ
dρi
dt

= τi −
∂E(~ρ)
∂ρi

(3.7)

In practical computation we usually start the solution from the flat state ρi = 0 and solve this

system with a fixed external torque τi until one of the dihedral angles reaches a certain predefined

value (say, 0.5rad). The equations are solved using MATLAB ODE solver.

64

3.5 Appendix C - Effects of material properties and

imperfections

So far, we have considered a simplified model for self-folding origami made of stiff elastic materi-

als. Bending energy is represented by stiff face diagonals, while all stretching energies are focused

at the vertices as constraints. Creases themselves are free folding with no stiffness. Our model is

a good approximation for self-folding origami in which the sheet is very thin and faces don’t bend

too much.

However, real origami made of realistic elastic materials is more complicated. This appendix

illustrates how changing the energy model to incorporate the imperfections and complications of

real materials - e.g., manufacturing error, crease stiffness, non-localized bending and stretching,

finite thickness of sheets - modifies the configuration energy landscape.

The main results are that while these complications can indeed change details of the landscape,

such as the precise number and energy of the minima, the underlying exponential structure and

statistical properties of the landscape remain unchanged since they arise from the bifurcation of

the 4-vertex. We thus conclude that while folding in specific real materials can face additional

complications than those described here, our results point at foundational hurdles intrinsic to the

concept of self-folding that must be faced by any material.

Stiff creases

So far we modeled idealized origami patterns in which the faces are stiff and the creases fold freely

without any resistance. In real materials, the creases can offer some resistance to folding as well.

We can model such complications by introducing a torsional spring on each crease. The energy

model will be modified to:

65

(e) (f)

(a) (b)

(g)

(c)

(h)

(d)

Figure 3.10: Varying material models changes landscape details but maintains underlying structure
of exponential minima
(a) Simulating a 4-vertex with stiff creases results in the same two modes of an idealized vertex,
as long as creases are not overwhelmingly stiff. The shift in minima position causes a moderate
deviation from the mechanical advantage rule for sufficiently stiff creases. (b,c) Comparing a
pattern with free folding faces and creases to the same pattern with stiff faces and creases, the
number of branches remains similar. Furthermore, the distribution of branch energies and attractor
sizes is statistically indistinguishable, implying the glassy structure retains the same statistics. (d)
When branches of the patterns with free folding and stiff faces\creases are paired up, we find that
most random attempts to fold the system enter the same branch for both patterns, showing how
corresponding branches remain ”close” in configuration space. (e) Realistic origami structures are
expected to have manufacturing errors in vertex placement. The blue and orange pattern’s vertices
differ in location by 2% of the mean lattice spacing. (f,g,h) The same metrics as in (b,c,d) show
how the landscape of patterns with manufacturing errors retain the same statistics as the originals.

66

E = EVertex + EFace + ECrease

=
∑

a
T 2

a +
1
2
κ f

∑
f aces

ρ2
f +

1
2
κc

∑
creases

ρ2. (3.8)

We compared the branching statistics of a 3x3 looped disordered mesh (Fig. 3.10e, blue) by

considering 5 · 103 initial random torque schemes in the simplified and stiff crease models. Com-

pared to the supplied external torque, the stiffness of faces was assigned a value k f = 0.1τ and

the stiffness of creases was kc = 0.02τ. The number of branches found for these two models

were different by less than 1%. As shown in Fig. 3.10b,c the statistics of the landscape are also

very similar; the energy of minima and their attractor region sizes have nearly identical cumulative

distribution functions, showing that the glassy attractor structure is essentially the same. Another

metric by which we can estimate how similar the landscapes are is by pairing up the closest attrac-

tors (in the dot product sense) between the two landscapes. We find that the majority (∼ 64%) of

the folding torque schemes lead to paired up branches in the two models. In contrast, only rarely

does the same torque leads to approximately orthogonal branches in both models, showing that the

expected resulting branches are well correlated.

Mechanical advantage rule

In the idealized model considered in the paper, we find that the mechanical advantage rule predicts

the branching of a 4-vertex for any applied torque. The simplified 4-vertex will always fold into

the branch that has the larger dot product with the applied torque. A graphical representation of

this fact is seen in Fig. 3.2c, in which the ridge in the angular energy function is always located

halfway between the two minima.

This idealization will be modified for more complicated (and realistic) elastic models, for which

the energy ridge might be shifted closer to one of the branching minima. One way to model

such alterations is again considering stiff creases (modified with torsional springs). We find that

67

the energy ridge can be moved towards one of the minima by increasing the stiffness of creases

(Fig. 3.10a). However, a significant deviation requires very stiff creases that overwhelm the vertex

constraints (meaning the origami pattern will more effectively bend and stretch than fold). As long

as the pattern retains its folding topology, when creases are not too stiff and can be practically

folded, the mechanical advantage rule is approximately correct.

To test this prediction under more real world complications, we simulated an origami vertex

made of realistic materials with COMSOL Multiphysics (Fig. 3.9). This COMSOL model includes

finite thickness of the sheet, creases of finite width, thickness and stiffness, face bending and

stretching that is distributed generally over the sheet, among other complications that were not

accounted for in our simplified model. Despite this, the mechanical advantage rule does in fact

predict the correct branch folded by the tested initial torque schemes.

Finally, we emphasize that real world deviations from the mechanical advantage rule can only

change the relative attractor size of the two branches at each vertex. The qualitative glassy land-

scape relies only on the existence of two branches at each vertex and not tied to their precise size.

Manufacturing errors

An additional complication to realistic origami patterns is the impossibility of perfectly manufac-

turing a designed pattern. Any physical manufacturing process will inevitably introduce errors in

the pattern by placing vertices slightly off of their designed position. The effect of such errors on

the energy of the designed branch was discussed previously [21], but even if the pattern could still

fold into the designed branch, it remains possible that the designed actuation scheme will not work.

This might happen if the designed applied torques (e.g. chosen by considering the folding islands

method) now lead to a different uncorrelated high energy minimum (distractor) in the landscape.

We simulated two patterns, one with vertices displaced by 2% compared to the other (Fig. 3.10e).

To check whether the energy landscape changed considerably due to this perturbation, we com-

puted the same metrics as discussed previously in this section (Fig. 3.10fg) for 5 · 103 random

torque schemes. The statistics of the energy landscape are once more essentially the same, with

68

the same distribution of branch energies and attractor sizes. Moreover, paired up branches between

the two patterns (by dot product proximity) have highly overlapping attractors, as ∼ 55% of the

random folding torques fold into paired up branches (Fig. 3.10h). However, there is indeed a signif-

icant probability that a designed actuation scheme for the original pattern will fail for the displaced

pattern (in this sample ∼ 45%). Still, by controlling the manufacturing error one could make the

energy landscape of the displaced pattern a better approximation of the original landscape, such

that the success of actuation would be nearly guaranteed.

3.6 Appendix D - Dot product and attractor size

In the main paper, we mostly considered actuators applying equal torques to reflect many appli-

cations where the precise locations of actuators is easily controlled but the precise magnitudes of

applied torque is not.

Here, we study vectors of folding torques ~τ whose components might be variable in mag-

nitude across the pattern. We might expect folding to be successful if the dot product D =

~τ · ~ρdesired/||~τ||||~ρdesired || between the applied torque and the desired mode is higher than the dot

products ~τ · ~ρα/||~τ||||~ρα|| with all distractor modes α. In practice, how large does D need to be for

successful folding of the desired branch?

To determine the dot product needed, we actuated folding using random torques as in the main

paper but now characterized success of folding as a function of the dot product (Fig. 3.11). We

see that, for sufficiently large patterns, a dot product of D ∼ 1 between the applied force and the

desired branch is needed to have a significant chance of success.

Naively, a high dot product might seem easy to achieve; but note that in high dimensions (e.g.

4x4 patterns have a 60d configuration space), a vanishingly small fraction of all vectors (e.g., ~τ)

have a non-negligible dot product D with any fixed vector (e.g., ~ρdesired).

In conclusion, large patterns require a high dot product D ∼ ~τ · ~ρdesired between the applied

vector of torques ~τ and the folding angles of the desired branch ~ρdesired to fold successfully;

69

0.0 0.2 0.4 0.6 0.8 1.0
Dot Product

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

in
g

Pr
ob

ab
ilit

y

A

4
9
16
25
36

Figure 3.11: Large meshes require the applied vector of torques ~τ to be closely aligned with the
folding angles ~ρdesired of the desired branch for successful folding
By folding random quadrilateral meshes of different sizes with random ~τ and determining the suc-
cess of folding, we find that the dot product D = ~τ ·~ρdesired/(||~τ|| · ||~ρdesired ||) in a large quadrilateral
mesh must be close to 1. Since ‘most’ vectors in high dimensional space are orthogonal, only a
vanishingly small fraction of applied vectors of torques can successful fold the desired branch.

since random vectors have vanishing dot products in high dimensional spaces, high dot product

D is increasingly difficult to achieve. Such finely-tuned torques applied to every crease of a large

pattern defeats the purpose of building ‘self-folding’ origami structures.

3.7 Appendix E - Computation of folding islands

As discussed in the main text, identifying the folding islands of the pattern provides a design princi-

ple for actuation schemes that successfully fold the desired branch. We find that choosing actuators

whose union of folding islands covers the entire pattern dramatically improves the probability of

successful folding. In this section we outline how folding islands are found, and some limitations

regarding these procedures.

The folding island of a crease is defined as the largest contiguous region that can be folded

successfully when cut out of the pattern. In principle, there might exist distinct folding islands of

70

equal area for a given actuator; in this case, we associate both of these maximal folding islands

to the actuator with the understanding that when combined with another actuator, the more favor-

able folding island can be used. However, we did not find any such instances in our numerical

exploration of patterns.

The method we employ to compute the folding island of a given crease is directly derived from

the definition. (a) For the given pattern (e.g. Fig. 3.5a) and a given actuator crease, we first try

folding a sub-pattern composed of just the two vertices connected to it. (b) We check whether any

vertex in this set folds into the desired branch. If so, such vertices are included into the folding

island. (c) We then enumerate the candidate vertices for the folding island found at the boundary

of the current folding island - i.e., we enumerate all vertices connected to vertices already in the

folding island. We pick a random member from this list, add it to the folding island and attempt to

fold. (d) If the putative extended folding island folds correctly (including the new added vertex),

the new vertex is included into the folding island. (e) We go back to step (c) and repeat until we

can no longer add any vertices that fold successfully when the initial crease is actuated. When the

process terminates, we are guaranteed a correctly folding region that is not contained in any larger

folding region. (f) We repeat the entire process multiple times from scratch to explore alternative

orderings of growth. The largest resulting folding islands over many runs is taken to be the true

folding island.

Given enough trials, the algorithm will pick out the largest folding subset (defined to be the

true folding island). With finite running time, the algorithm can, in principle, underestimate the

size of the true largest folding island. In such a case, the heuristic of unions of folding island

(UFI) is an even better metric than implied by Fig. 3.5 since some actuation schemes that worked

at UFI < 1 should actually be described by UFI = 1. In practice, we found that testing putative

boundary vertices by order of their distance (instead of a random order) from the actuator crease

was particularly effective - this method quickly provided folding islands at least as large as those

obtained after a small fixed number of random order trials, but is much faster. We used this faster

method to compute the large number of folding islands needed for Fig. 3.5.

71

Design principle for actuator placement

Our results suggest a design principle for actuator placement: we first work out the folding island

for each crease (through simulation or experiments). Then, using algorithms for the Set Covering

Problem [88], we can identify minimal combinations of actuator creases whose folding islands

cover the whole pattern. (The Set Covering Problem is a classic problem in computer science;

given a set of subsets S of a ‘universe’ set U, one is asked to find a minimal combination of

subsets S whose union is U. Many algorithms exist [88]. Here, U represents our vertices and

S represents the set of folding islands of each vertex in the pattern.) Thus we have replaced a

mechanically difficult problem at the time of actuation with a computationally difficult problem at

the time of design. Further, by reducing properties of actuators combinations to a property of single

actuators (i.e., their folding island), the above proposal is vastly more feasible than an exhaustive

computational or experimental search through all combinations of actuators.

We can offer a rule of thumb for identifying which creases are likely to have large folding

islands. Each vertex may be considered to “point” to two of its neighbors, along the transverse

line whose two creases have the same sign of folding in the desired state. If the folding propagates

from an actuator to the vertex via one of these neighbors, the vertex will fold correctly, by the

mechanical advantage rule discussed above. Paths of pointing can be constructed, and if a crease

is pointed to by many, long paths, it will tend to have a large folding island. The effect of loops

and material complications means that this rule gives only a guide, not an exact prescription.

Applying these ideas to common patterns, note that Miura Ori has a sequence of long nar-

row folding islands along the zig-zag creases that fold in the same MV state. We previously

showed [21] that origami patterns can be classified into three classes: Natural, Semi-natural and

Unnatural. Natural patterns are the easiest to design and resemble Miura-Ori in that they contain

one direction along which rows of creases are either all mountains or valleys; columns of creases in

the perpendicular direction have alternating MV states. Such patterns should generally be expected

to have long thin islands along the homogeneous direction. In contrast, semi-natural and unnatural

patterns (e.g., that in Fig 3.5) tend to have compact islands.

72

Chapter 4

Shaping the topology of folding pathways in

mechanical systems

When a heterogeneous mechanical structure like an elastic network or a thin sheet with creases is

strained to large extents, it typically shows multiple stable states [12, 89]. As we vary the strain

level, these states can smoothly deform and appear or disappear in bifurcations, creating a com-

plex network of pathways in configuration space. The geometry and topology of such pathways

determines which configurations are smoothly accessible from a given part of configuration space

and which ones are not. The response of the material to applied forces is strongly shaped by the

network of such pathways [77, 90, 91].

Such non-linear features of configuration space have proven to be a double-edged sword. When

designed, multiple pathways and multistability can be exploited to create mechanical switches,

shape-able sheets, and many other metamaterials [10, 12, 17, 26, 27, 60, 92, 93]. However, such

non-linear features can also create problems [14, 17, 22, 81]. For example, self-folding origami,

despite the name, has an exponential number of misfolding pathways that meet at a ‘branch point’

at the flat state [14, 31, 34, 36, 51], making it nearly impossible to fold into the desired folding

mode [22, 81, 94, 95]. Similar ‘branch points’ in mechanical linkages pose challenges in robotics

73

and other applications [96, 97, 98].

In this work we suggest a design principle that sculpts the topology of dynamical pathways

to desired and undesired states. We focus on elastic networks and creased sheets where rods or

plates are connected at flexible joints. We show that heterogeneous stiffness in such joints can

completely change the topological connectivity of non-linear pathways in configuration space.

With a distribution of stiffnesses predicted by our equations, undesired pathways can be arranged

to end in saddle-node bifurcations. Such bifurcations make undesired states inaccessible from parts

of configuration space, at least in the limit of adiabatic folding. Finally, we find that pathways are

accessible only at specific folding speeds, allowing dynamical selection between distinct behaviors.

While similar design principles to eliminate dynamical pathways to undesired states are com-

mon place in protein folding and self-assembly of macromolecular structures and viruses [65, 99,

100, 101], such ideas have not been systematically explored in meta-materials design.

Designing the topology of the bifurcation diagram presents several benefits. Once this topology

has been designed for a material, it is not modified by entire classes of applied folding forces but

determines the response to such forces. For example, in the context of self-folding origami, other

approaches [77] have attempted to find fine-tuned folding forces that will fold a creased sheet

successfully. In contrast, our approach produces systems that are truly ‘self-folding’ [11], i.e., our

stiffened sheets fold along the desired pathway for almost arbitrary applied forces. Similarly, other

approaches [10] have sought to introduce directional asymmetry so that, e.g., individual creases

will fold in one way (say, Mountain) but not the other (Valley). Counter-intuitively, our approach

shows that even symmetric stiffness in individual creases - an inevitable feature of real materials -

can effectively pick a global Mountain-Valley pattern through their collective behavior.

We begin by showing that heterogeneous stiffness in hinges of a mechanical linkage changes

the topology of folding pathways by creating saddle-node bifurcations. We show that hinge stiff-

ness predicted from a Linear (or Quadratic) Programming problem can eliminate exponentially

many undesired pathways at saddle-node bifurcations and demonstrate such an elimination for

folding pathways present at the flat state of thin creased sheets. We show that such a stiffened thin

74

(a) (b) (c) (d)

= bifurcation

TS TS

1
2

3

= Stiff hinge
= Free hinge

1
2

3

Saddle-node

TS

 bifurcationEn
er

gy

En
er

gy

TS TS

c

Figure 4.1: Stiff joints in a linkage network can change the connectivity of non-linear modes in
state space
(a-b) The 4-bar linkage has only one degree of freedom but two distinct zero energy motions that
meet at a branch point at the flat state, making the mechanism difficult to control. The two motions
can be seen as minima in the energy landscape at a fixed total strain ρ. (c-d) We can eliminate
a chosen motion in a saddle-node bifurcation at ρc by making the joints stiff to different extents
(i.e., adding torsional springs that are relaxed in the flat state, larger orange circles denote stiffer
springs). The bifurcation diagram shows that such a stiffness profile changes the connectivity of
the two non-linear modes. One of the two modes is destroyed in a saddle-node bifurcation at ρc
and is thus inaccessible from the flat state ρ = 0 (φ - angle variable in the 2-dimensional linearized
null space at the flat state, see Supplementary Note 1).

sheet is truly ‘self-folding’ since the sheet can be folded robustly by a host of folding protocols and

forces without any fine-tuning. Finally, we show that controlling the position of saddle-node bifur-

cations in configuration space, specific folding pathways can be made accessible at specific folding

speeds. Consequently, we find that folding speed can select between different target structures.

4.1 Results

4.1.1 Avoided bifurcation in linkage networks

We first demonstrate our ideas on a simple but canonical model, namely the 4-bar mechanical

linkage [102, 103] in Figure 4.1(a-b). While the structure has only one Maxwell degree of freedom,

the flat state is a special point - it sits at a bifurcation where the degree of freedom is branched (and

associated with a self-stress mode) [104]. When compressed as shown, the linkage must choose

75

one of the two distinct zero energy motions that conserve rod lengths. The associated energy

landscape, at some fixed compression, has two minima corresponding to these motions with an

energy barrier (transition state TS) between them; see Figure 4.1b. (See Supplementary note 1

for precise energy model.) Many studies [90, 91, 98] have sought to predict and eliminate such

‘branch points’ in complex mechanisms.

We take a different approach and observe that experimental realizations of such mechanisms

[21, 105, 106] have imperfections that lift the energies of all the modes. If an imperfection can

raise the energy of the undesired zero mode more than it raises the energies of the desired mode

and the transition state TS, the undesired mode would disappear in a saddle-node bifurcation with

the transitions state.

One such imperfection is stiffness in the joints. We model the stiffness of joint i by a torsional

spring of stiffness κi that is relaxed in the flat configuration shown, i.e., at the branch point. That

is, we assume a joint energy Ei = κiρ
2
i /2, ρi being the folding angle measured from the flat state

configuration.

We find that if the joints have unequal stiffness κi, the energies of different modes are lifted to

different extents. In fact, one of the modes undergoes a saddle-node bifurcation with the transition

state TS separating the two modes (see Figure 4.1(c,d)) at a finite folding extent ρ = ρc where

ρ ≡ ||ρ||. The distance ρc is given by a competition between rod compression (or bending in

alternative models) at the transition state ∼ Kρ4, with K a compression modulus, and the spring

energy ∼ κρ2; as shown in the Supplementary Note 1, ρc ∼
√
κ/K. Other choices of κi can

eliminate the other mode.

Thus joint stiffnesses change the topological connectivity of undesired modes in state space;

see Figure 4.1d. As a result, the undesired mode can be made inaccessible from the flat state,

which now continuously connects with only the desired mode. If the network is actuated slowly

relative to relaxation timescales of the stiff joints, the network will fold into the desired mode and

stay in that state even for ρ > ρc, despite the reappearance of the undesired mode at finite ρ.

76

Saddle-node
constraint Minimize distortion

Predicted
stiffness

 Stiff
creases

LP

TS Saddle-node bifurcation(a) (b)

(d) (e) (f) (g)

QP

1

2

3
4

1

2

3
4

1

2
3

4

(c)

p

Figure 4.2: Heterogeneous stiff creases can simplify the landscape of self-folding sheets near the
flat state
(a) An origami 4-vertex has a choice between two distinct folding modes at the flat state (φ - null
space angle variable, see Supplementary Note 2). (b) Stiff creases completely eliminates a chosen
mode by combining it with a nearby transition state (TS) in a saddle-node bifurcation (Thickness of
orange strip indicates stiffness.) (c) Trade-off: Stiff creases distort the desired mode while eliminat-
ing undesired modes. Stiffness profiles that minimize energy distortion (e.g., Linear Programming
(LP) method) cause large geometric distortion and vice-versa (e.g., Quadratic Programming (QP)
method). (d) The exponentially many misfolding modes of large sheets are all eliminated if the
stiffness profile κi satisfies a linear constraint, shown here as a simplex. (e) We can minimize dis-
tortion (energy or geometry) of the desired mode by optimizing crease stiffness on this simplex.
(f-g) All but one chosen minimum in a pattern’s energy landscape (at small overall folding) can be
eliminated by stiff creases predicted by the procedure in (e).

77

4.1.2 Misfolding in self-folding sheets

Self-folding sheets (or self-folding origami) are structures programmed to have one unique low or

zero energy mode [9, 10, 11]. However, self-folding sheets, even when programmed with a single

zero energy mode, have been shown to have exponentially many undesirable misfolding modes

accessible from the flat state [22, 81]. We show how crease stiffness can change the topological

connectivity of these modes and leave only the desired folding mode accessible from the flat state.

To solve the misfolding problem for diverse folding forces, our approach intentionally ignores

external folding forces when reprogramming the topological connectivity of modes. Since folding

success relies on the bifurcation diagram topology, our results are mathematically robust to several

classes of folding forces as shown later.

4.1.3 Avoided bifurcation in a 4-vertex

The atomic unit of self-folding origami is a 4-vertex [41]. Much like the 4-bar linkage, the 4-vertex

has one degree of freedom but the flat unfolded 4-vertex is at a branch point, a meeting point of

two distinct folding motions [12, 77], distinguished by the Mountain-Valley states of the creases

(Figure 4.2(a)) [78, 79]. These two motions are shown as zero energy minima in Figure 4.2(a)

using a model of vertex energy presented in the Supplementary Note 2, with a transition state

TS separating them. This binary choice is the origin of the exponentially many misfolds of large

self-folding sheets.

As with the 4-bar linkage, we wish to lift and eliminate one of the two folding motions, making

it inaccessible from the flat state. We introduce stiffness at the creases modeled as a torsional spring

with ρ = 0 rest angle and energy ECrease, i = κiρ
2
i /2. The energy of the origami vertex is,

E = EVertex + ECrease (4.1)

where EVertex accounts for bending of vertex faces [41] and ECrease =
∑

i κiρ
2
i /2 accounts for

crease stiffness. For details on the energy model see Supplementary Note 2. Crucially, EVertex

78

(c) (d)

(a)
Flat state

Total folding

time

st
ra

in slow
fast

LP
QP

None

(b) Flat state

To
ta

l f
ol

di
ng Slow

Slow

desired
 m

ode

undesired 1

undesired 2

p

Su
cc

es
s

ra
te

Strain rate

Figure 4.3: Stiff creases change the topological connectivity of undesired modes and promote
folding at slow speeds
(a) The energy landscape of a quad with stiff creases has a unique mode at low strain ρ but becomes
more complex at higher strain. (b) However, slow folding will recover the desired state provided
the unique mode at low strain is continuously connected to the desired state and does not undergo
a saddle-node bifurcation (blue line). Slow folding can be successful even if the unique mode at
small strain ρ is quite distorted relative to the desired mode. (c) Bifurcation diagram as a function
of total folding ρ for a specific 16-vertex pattern shows select undesired modes (solid lines) being
eliminated at bifurcations with saddles (dashed lines). Only the desired mode (blue) survives -
albeit distorted - to the flat state. (d) Simulations of folding at a finite strain rate (relative to
relaxation timescale of hinges) show high success for slow folding and failures at higher folding
speeds (Data from 50 random 16−vertex patterns).

scales with a high power ρ4 for the two special folding motions.

Let us find the conditions on κi for lifting and eliminating a chosen branch - the ‘undesired

branch’ - of the 4-vertex. We assume the folding angles of the undesired mode and the desired

mode are ρ̃U and ρ̃D respectively and that of the transition state TS separating them is ρ̃TS, all

assumed to be defined near the flat state and normalized (with unity magnitude). See Figure 4.2(a).

Let ETS(ρ) be the energy of TS at some chosen total folding ρ ≡ ||ρ||. As the vertex null

space (at fixed ρ) is 1-dimensional and compact [22], these features (ρ̃U, ρ̃D, ρ̃TS and ETS) can all

be computed numerically efficiently using peak analysis. Here, we will focus on eliminating the

undesired minimum up to a distance ρc from the flat state and return to larger folding behaviors

later. To lift and eliminate the undesired minimum, we should choose a heterogeneous stiffness

79

profile that raises the undesired mode more than the transition state TS. This constraint - requiring

a saddle-node bifurcation - can be written as,

1
2
ρ2

c

∑
i∈creases

κi
[
(ρ̃U)2

i − (ρ̃TS)2
i

]
≥ ETS (4.2)

In addition, all crease stiffnesses must be non-negative:

κi ≥ 0 (4.3)

Note that both constraints are linear in the stiffnesses κi.

Any set κi satisfying the above constraints that predominantly raises the undesired mode will

eliminate it in a saddle-node bifurcation at a total folding distance ρc, making it inaccessible from

the flat state.

Only the desired mode is stable in the neighborhood of the flat state but it can be significantly

distorted by the stiff creases. As shown in Figure 4.2, with stiff creases, the desired mode is

of non-zero energy (‘Energy distortion’) and can also have distorted folding angles (‘Geometric

distortion’, defined by one minus the normalized dot product of the desired mode and the obtained

minimum). We wish to formulate design principles for choosing stiffness profiles κi, consistent

with the above constraints, that best facilitate designed folding motions.

We devise two design strategies: (1) Minimizing energy of the desired mode (Energy optimiza-

tion), (2) Minimizing geometric distortion of the desired mode (Geometric optimization). We find

that different crease stiffness profiles generally trade-off energy and geometric distortion.

Energy optimization is simple: the desired mode has non-zero energy E(ρD) =
∑
κi(ρD)2

i /2

because of crease stiffness. As this function is linear in κi, optimization subject to the saddle-node

constraints Equations (4.2-4.3) is equivalent to a Linear Programming (LP) problem [107, 108]:

80

minimize
κi

E(ρD) =
1
2

∑
i

(ρD)2
i κi

subject to ρ2
c

∑
i

[
(ρ̃U)2

i − (ρ̃TS)2
i

]
κi ≥ 2ETS ,

κi ≥ 0, i ∈ creases .

(4.4)

Linear Programming problems are solved in polynomial time, as long as an efficient algorithm

is used. Further, the optimal stiffness profile κi is generically sparse. In a 4-vertex, only one crease

needs to be stiff.

Geometric distortion is minimized if fold angles in the surviving minimum with stiff creases

closely corresponds to the fold angles ρD of the desired branch without stiff creases. Here, we use

the gradient of the energy with stiff creases, but evaluated at ρD, as a proxy for such geometric

distortion. As shown in the Supplementary Note 4, this proxy, after projecting out the component

of the gradient in the ρD direction, is FQP = ρ2
D

∑
i∈creases κ

2
i (ρD)2

i −
∑

i, j κiκ j(ρD)2
i (ρD)2

j . FQP is

a positive semi-definite quadratic function of κi. Optimization of FQP - with the linear constraints

in Equations (4.2-4.3) - is facilitated by efficient Quadratic Programming (QP) algorithms.

In practice, the LP and QP prescriptions do well at optimizing their respective strategies (i.e.

energy and geometry) for a single vertex. Figure 4.2(c) shows how these prescriptions indeed

do better than choosing random stiffness profiles that satisfy the constraints. The black line κi ∼

(ρD)−n
i for positive n, shows that stiffness profiles trade-off energetic and geometric distortion.

4.1.4 Stiffness profiles in large self-folding sheets

Large origami patterns have exponentially many distractor minima states, making them near im-

possible to fold correctly [22, 81]. Still, the ideas of the previous section can be used to lift all

but one of these minima at small folding angles. Crucially, the desired self-folding motion of a

large pattern [21, 43] is consistent with exactly one of the two folding modes for each of its con-

stituent 4-vertices. Thus, for a pattern with V vertices, the saddle-node constraint in Equation (4.2)

81

(a)

2

Folding torques Fi
ext (b) Target angle ritarget based folding

ext

ext

ext

ext

ext
target

target

Figure 4.4: Sheets with stiff creases dramatically improve folding for a wide range of external
forces applied to specific creases
We consider folding by (a) different folding torques Fext

i or (b) springs that target desired fold

angles ρtarget
i for different creases i. (a) Forces Fext

i are much more likely to fold into the de-
sired mode with stiff creases (red data) (predicted by linear programming) than with freely folding
creases (gray). Even folding forces Fext

i very poorly aligned with the desired pathway (ρD)i result
in the desired pathway (Averaged over 5 random 16-vertex patterns, 100 random Fext

i for each data

point). (b) Patterns folded using springs of given target angle ρtarget
i on select random creases i.

Successful folding into the desired mode is dramatically improved in patterns with stiff (LP pre-
dicted) creases compared to free folding creases. Even a single actuator is successful a significant
fraction of the time (Data averaged over 10 random patterns).

generalizes to V linear constraints, one for each vertex v:

ρ2
c

∑
i∈creases of v

κi
[
(ρ̃U,v)2

i − (ρ̃TS,v)2
i

]
≥ 2ETS,v. (4.5)

Note that the constraints are dependent since vertices share creases. These linear constraints,

along with κi > 0, define a simplex in the space of crease stiffnesses as shown in Figure 4.2d. We

can still use LP and QP algorithms as before to find optimized stiffness profiles.

4.1.5 Larger folding angles and adiabatic folding

Figure 4.2(f-g) shows that applying a LP stiffness profile to a quad pattern lifts all but one minimum

close to the flat state. However, we noticed that folding beyond a certain angle gives rise to many

new minima (Figure 4.3a). To understand this, note that the saddle-node bifurcation constraint,

82

(a) (c)

slow

fast
intermediate

Strain rate
Slow Fast1.62 2.65

Flat state
To

ta
l f

ol
di

ng SlowFast

(b)

Figure 4.5: Folding speed can controllably select between different folding pathways
(a) While slow folding follows the continuous deformation of the unique mode at low strain ρ
(blue), fast folding results in a state that most ‘resembles’ that low-ρ mode (green). If the unique
low-ρ mode is significantly distorted in geometry relative to the slow folding target, slow and
fast folding can result in very different outcomes. (b-c) We systematically attempted folding at
different strain rates (relative to a fixed hinge relaxation timescale) for the 16-vertex pattern with
stiff creases shown. We find three distinct outcomes at slow, intermediate, fast rates that completely
differ in their Mountain-valley states, geometry and energy. The slow folding outcome corresponds
to following the blue path in (b) while the intermediate and fast pathways cross over from blue to
the magenta and green modes respectively at some intermediate folding angles.

Equation (4.2), only ensures the absence of undesired modes up to a total folding ρc at which

ETS(ρc) is computed. Intuitively, crease stiffness (∼ ρ2) becomes less important than face bending

(∼ ρ4) as folding proceeds and undesired modes are restored in a series of saddle-node bifurcations.

At first sight, the reappearance of undesired modes at large ρ might seem disappointing. How-

ever, if folding is carried out adiabatically - i.e., slowly relative to hinge relaxation timescales -

these modes do not impact folding at all. Adiabatic folding, by definition, will follow the con-

tinuous deformation of the unique low-ρ minimum (blue paths in Figure 4.3(b-c)), even if it is

significantly distorted relative to the desired state. Undesired states, on the other hand, are not

continuously connected to the low-ρ mode.

To test whether our stiff crease prescriptions are able to consistently create such adiabatic path-

ways, we sampled 50 random patterns, each with a programmed low-energy motion using the loop

equations of [21, 43]. Such patterns have ∼ 103 higher energy undesired modes [22] and thus

folding almost always fails (Figure 4.3d).

We then augmented the sampled patterns with stiff creases resulting from LP and QP prescrip-

83

tions and simulated folding at varying speeds. In simulations, we assume the crease hinges follow

a first order equation with a relaxation timescale τrelax; this timescale is known to vary with mate-

rial implementation [109]. These stiff patterns achieve a success rate in excess of 90% when folded

slowly (Figure 4.3(d)), compared with the expected < 0.1% success rate with free folding creases.

Thus our stiffness heuristics are useful for slow folding, yet imperfect.

The small fraction of failed cases represent patterns where the unique low-ρ mode and the

desired high-ρ mode undergo distinct saddle-node bifurcations at intermediate ρ and thus do not

connect up. Such bifurcations are mathematically forbidden if these states are the lowest energy

states for all ρ. Complex optimization methods that account for details of non-linear energy land-

scape at all intermediate ρ might be able to better protect from such bifurcations. However, we

find that simple heuristics, e.g., based on the energy of low and high-ρ states alone, are sufficient

to protect the adiabatic pathway from bifurcations for complex patterns. See Supplementary Note

5 for more analysis of failures.

4.1.6 External folding forces applied to creases

Our crease stiffness prescriptions are meant to eliminate undesired modes in the intrinsic energy

landscape of a sheet and not just for a particular model of folding - hence no particular folding

forces are assumed. Once undesired modes are eliminated, many typical classes of folding forces

cannot re-introduce such modes near the flat state.

Besides strain-controlled folding tested above, another important class of folding forces [10,

13] involves folding torques Fi applied to specific creases i; see Figure 4.4. A related method

involves setting target folding angles ρtarget
i for particular creases (see Supplementary Note 3).

Near the flat state, both of these methods change the energy landscape by a linear tilt (∼ Fiρi).

Mathematically, such tilts cannot create new undesired minima close enough to the flat state. We

tested folding success in these methods of actuation as a function of the number of actuated creases.

Folding success is enhanced by orders of magnitude due to the stiff creases predicted here as shown

in Figure 4.4. Hence our approach to modifying the topology of the bifurcation diagram is also

84

useful when external folding forces are present – in fact, such a modification is necessary for

successful folding.

Earlier works [77] have tried to find such specific folding torques or folding springs to fold

along a desired mode. Mathematically, such approaches appear similar to ours since they both

involve quadratic modifications to the energy function. However, our crease stiffness is a quadratic

potential centered at the branch point (i.e., the flat state) and hence is able to modify the topology

of that point successfully while springs with finite target angles [77] are effectively linear tilts at

the branch point. As noted in [77], successfully folding the pattern using such a method requires

undesired branches to have negative dot products with the desired branch, a very unlikely scenario

for larger patterns. In contrast, our quadratic potentials at the flat state face no such restriction and

thus work in a dramatically larger context.

Our approach is also different in practice. Prior approaches [22, 77] sought sheets with freely

folding creases that must be carefully actuated using calculated folding forces. Our approach

designs sheets with calculated crease stiffness profiles that can be carelessly actuated.

4.1.7 Folding speed-dependent target structures

We have seen that the unique low-ρ minimum funnels adiabatic folding to the desired state in a

glassy landscape, even if the unique low-ρ mode is significantly distorted relative to it. However,

the success rate drops with folding rate; see Figure 4.3d.

Such a drop in success rate is to be expected since very fast folding essentially takes the pat-

tern from the unique low-ρ state to high-ρ with quenched geometry and then relaxes to the nearest

minimum. Thus, as suggested by Figure 4.5a, fast folding from the unique low-ρ minimum repro-

ducibly picks the folded configuration with closest geometric resemblance to the low-ρ minimum.

These considerations suggest an intriguing possibility - programming the bifurcation diagram

using stiff creases can program different folding pathways that are followed at different speeds of

folding.

We tested this hypothesis on a 16-vertex pattern with LP springs whose unique low-ρ mode has

85

significant geometric distortion relative to the adiabatic folding outcome; see Figure 4.5b. We sys-

tematically folded this structure at increasing speeds relative to its hinge relaxation timescale. We

find three completely distinct but reproducible folded structures in regimes of slow, intermediate

and fast folding; see Figure 4.5c.

4.2 Discussion

In this paper, we argued that meta-materials design should be conceptualized as targeted design

of an entire dynamic pathway that avoids undesired behaviors, and not just target a desired final

state. We showed how such pathways and their topological connectivity can be programmed by

controlling the bifurcation diagram; we applied our method to remove the exponentially many

misfolding motions intrinsic to self-folding origami.

We showed that the bifurcation diagram can be modified by stiff joints, an inevitable feature

of most experimental realizations of origami, linkage networks and other meta-materials. Thus,

our proposal is conservative - it does not require specific directional information at hinges [10],

temporal staging [48] or using non-flat sheets [41]. Our general approach applies to any other

heterogeneous bulk imperfection that couples to different folding modes unequally.

A particularly intriguing direction suggested by our work is the ability to geometrically pro-

gram different behaviors at different speeds. These outcomes can have independently tuneable

mechanical properties, such as energy absorption [21]. While such complex speed-dependent

phenomena are actively studied in materials (e.g., cornstarch [110, 111]), our approach suggests

that speed-dependent behaviors can be dictated simply by the bifurcation geometry of the meta-

material.

86

4.3 Supplementary Figures

A B D C

A

B

D

C

A

B

D

C

(a) (b) (c)

Figure 4.6: Modes of the 4-bar linkage
(a) A stiff parallelogram type 4-bar linkage bifurcates from the top ’flat’ state into two distinguish-
able motions, (b) The two motions are defined by the relations imposed on angles θ1, θ2, (c) The
two special zero-energy motions span a linearized null space, configurations in which scale quarti-
cally with the distance form the flat state E ∼ ρ4. In contrast, random configurations of the linkage
have an energy that scales quadratically with this distance E ∼ ρ2.

87

(a) (b) (c)
Stiff hinge

Figure 4.7: Each of the linkage modes can be lifted with proper hinge stiffness values
(a) With freely rotating hinges, the two zero-modes bifurcate at the flat state in the center of the
landscape diagram, whose radius corresponds to ρ, and angle φ is the mixing angle of the two zero-
modes spanning the linearized null space (contours represent scaled energy E/ρ2), (b) Choosing
the two hinges denoted by large orange circles to be stiffer than the other two, the right mode is
lifted, making only the left mode continuously accessible from the flat state, shown as a continuous
blue valley starting at ρ = 0. The right mode is regained at a larger radius ρ > ρc , as seen in the
contour curvature, (c) By making the other two hinges stiffer, the left mode is lifted near the flat
state.

88

(a) (b) (c)

Stiff crease

Figure 4.8: Lifting modes in origami 4-vertices
Just like in the 4-bar linkage example, each of the two zero-modes of the origami 4-vertex can be
lifted given a proper crease stiffness profile. (a) The modes of a vertex with perfectly soft creases
bifurcate at the flat state, so that two minima appear in the linearized null space for any value of
the folding magnitude ρ (φ is the mixing angle of two vectors spanning the linearized null space),
(b) The heterogeneous crease stiffness described here, with stiffer creases denoted by larger orange
circles, lifts the right mode, so that only the left mode is continuously accessible from the flat state
(the right mode is again regained at larger folding values ρ > ρc), (c) Changing the crease stiffness
profile as shown, we can instead lift the left mode near the flat state.

89

7 6 5 4 3 2
ln(Energy Distortion)

6

5

4

3

2

1
ln
(G
e
o
m
e
tr
ic
D
is
to
rt
io
n
)

i Profile
LP
QP
n

Random

(a) (b) (c)

D

Figure 4.9: Performance of Linear and Quadratic Programming stiffness selection protocols for
large origami patterns
a) LP and QP stiffness optimize energetic and geometric distortion of the designed folding motion
for quad patterns. LP and QP stiffness profiles improve these distortions by orders of magnitude
compared to random profiles. b) Larger patterns with many vertices are harder to optimize, with
designed motion energy scaling as soft power laws with system size. c) Geometric distortion grows
with system size.

Slow Folding

Slow Unfolding

Desired Motion

Figure 4.10: A pattern for which slow folding with LP stiffness profile fails
The low-ρ unique minimum, rather then continuously connecting to the desired state, terminates
in a saddle-node bifurcation and discontinuously jumps to a distractor folded state.

90

4.4 Supplementary Notes

Supplementary Note 1 - 4-bar linkage

The 4-bar linkage [102, 103] discussed in the main text is composed of 2 pairs of rods with lengths

L1, L2 (Supplementary Figure 4.6(a)). For simplicity, let us assume that points A and D are held

fixed in space with distance L2 between them. Points B and C are allowed to move in a plane,

with an energy cost associated with changing the lengths of the three rods from their relaxed state

E = 1
2 K∆L2 (alternatively, energy cost can arise from bending the three rods from their relaxed

straight configuration).

This system is a one degree-of-freedom mechanism, as there are 3 constraints (rod lengths)

imposed on 4 variables (x, y positions of nodes B,C). As such, configurations satisfying the con-

straints define one-dimensional motions. These particular cases are fully described in terms of the

angles θ1, θ2 between rods LAB, LCD and the x-axis. When accounting for the non-linearity of the

constraints, one finds two one-dimensional solutions (Supplementary Figure 4.6(b)) for the system

motions given by [95]

θα2 = θ1 (4.6)

θ
β
2 = cos−1

{ [1 + (L2
L1

)2]cosθ1 − 2 L2
L1

[1 + (L2
L1

)2] − 2 L2
L1

cosθ1

}

The two solutions share a configuration θ1 = 0 → θ2 = 0. Consider this special ’flat state’

θ1 = θ2 = 0, for which the node positions are P0 = [xB = L1, yB = 0, xC = L1 + L2, yC =

0]. Let us denote the distance of a configuration from the flat state by ρ ≡ ||P − P0||. When

constraints are allowed to be broken by compression (or bending) of the rods, allowing nonzero

energy configurations in the full 4-dimensional ρ-space, the configuration energy generically scales

as E ∼ K(P − P0)2 ∼ ρ2. However, close to the flat state the two special zero-energy motions

91

span a linearized null space in which the energy scales more softly ENS ∼ K(P − P0)4 ∼ ρ4

(Supplementary Figure 4.6(c)). To see this, note that to lowest order in ρ, the two zero-energy

motions are composed of just vertical motions of points B,C:

v± =
1
√

2
[0, 1, 0,±1]

These vertical motions are small compared to rod lengths, and the Pythagorean theorem tells us

that the energy difference due to rod extension vanishes to quadratic order. Figure 4.1 shows the

energy of configurations in the null space for given magnitudes of the vector P − P0.

As the null space energy of the system scales like ρ4, we show that placing heterogeneous

quadratic torsional springs on the hinges raises the energy of one motion more than the other. This

facilitates the removal of the flat state bifurcation, and the mechanical preference of just one of the

two motions. Let us first define the energy model for the 4-bar linkage:

E(ρ) ≡
1
2

K
∑

i∈bars
∆L2

i +
1
2

∑
j∈hinges

κ jθ
2
j , (4.7)

With torsional springs κ j attached to each of the four hinges, such that the springs are relaxed

at the flat state. With stiff hinges, the energy of all configurations now scale as ρ2 (including

those in the linearized null space). However, as different hinges have different stiffness values, it

is possible to raise the energy of different configurations to differing extents. If all hinges are free

(Supplementary Figure 4.7(a)), we again have the two zero-modes established before. The middle

row shows the scaled null space energy E/ρ2, with radius ρ and angle φ is the mixing angle of the

two zero-modes spanning the 2-dimensional null space:

ρ = ρ(v+ sin φ + v− cos φ)

The energy is scaled by ρ2 so that the low energy paths in the landscape are clearly visible in

the contour topography as blue valleys between red ridges.

92

Let us now choose a heterogeneous hinge stiffness profile as seen in Supplementary Fig-

ure 4.7(b). Here, large circles correspond to stiff hinges with stiffness values κ1 = 10−4K, while

small circles denote softer hinges with κ2 = 10−6K. With this choice we find that one of the orig-

inal zero-modes is lifted up to a distance from the flat state ρc ∼
√
κ1/K = 10−2. At ρ ∼ ρc, the

lifted mode returns by a saddle-node bifurcation, and is clearly seen as a stable minimum in larger

radii. By switching the locations of the stiff and soft hinges, we find that the other zero-mode is

lifted near the flat state (Supplementary Figure 4.7(c)). As in the other choice of hinge stiffness

value, the lifted zero mode returns via a saddle-node bifurcation at ρ ∼ ρc.

In general, when heterogeneous stiffness profiles are applied to the hinges, a critical crossover

value arises ρc ∼
√
κ̃/K (κ̃ the dominant hinge stiffness scale), where the stiff hinge energy is

comparable to the intrinsic energy. We find that one minimum exists in the energy landscape at

distances ρ � ρc. The unique minimum corresponds to one of the two zero-modes of the original

system, and continuously connects to it when ρ is increased. The other zero-mode of the system

is always regained at ρ ∼ ρc via a saddle-node bifurcation. If a random heterogeneous stiffness

profile is chosen, the zero-mode that survives close to the flat state is decided by which pair of

hinges is stiffer, as described by Supplementary Figure 4.7(b-c).

Finally, given a fluctuation energy scale ε, effectively removing the bifurcation requires the

energy barriers when the second minimum is regained to be larger than ε. This requirement estab-

lishes a lower bound on the hinge stiffness κ̃ >
√
εK.

Supplementary Note 2 - Origami energy model

4-Vertex energy

Any origami vertex embedded in 3-dimensional space gives rise to 3 constraints relating the di-

hedral angles by which the different creases fold (i.e. angles between faces) [37, 42]. These

constraints are derived for any vertex by requiring that the vertex faces do not bend when folded.

Consider a small disk surrounding the vertex, whose configurations is defined by the folding angles

93

ρi and the in-plane angles between the creases αi. If the folded vertex faces do not bend anywhere,

it is possible to trace the edge of the disk around the vertex and return to the starting point using

simple 3d rotations. The tracing motion around the vertex consists of alternating rotations with the

circular section angle about the central axis of the vertex αi, and then rotating about the dihedral

angle ρi. This is done for each crease, until one returns to the original position on the vertex. If

one orients the current vertex face such that the face occupies the xy-plane and the crease is on the

x-axis, these two rotation matrices are given by

Ri =


1 0 0

0 cos ρi − sin ρi

0 sin ρi cos ρi




cosαi − sinαi 0

sinαi cosαi 0

0 0 1

 . (4.8)

In general Ri = AiBi where Ai is a rotation matrix about an axis along crease i by angle ρi,

while Bi is a rotation matrix about an axis perpendicular to face i by angle αi.

The condition that the vertex faces do not bend becomes

∏
i

Ri = I, (4.9)

where the product is taken over all creases and faces i, and I is the 3×3 identity matrix. Supplemen-

tary Equation (4.9) can be shown to be equivalent to 3 independent equations for the off-diagonal

upper triangle of the matrix. Crucially, these are 3 non-linear constraints relating the folding val-

ues ρi around the vertex. The 4-vertex is a one degree-of-freedom object, as 3 equation relate its 4

folding angles.

Similarly to the linkage discussed above, the fact that an origami 4-vertex can only support

one-dimensional motions does not imply that only one such motion exists. A single 4-vertex is

known to have two zero-energy folding motions that meet at the flat, unfolded state. These special

motions exactly satisfy the three vertex constraints.

Near the flat state, all ρi ≈ 0, and the matrices of equations (4.8-4.9) are approximately 2d

rotations about an axis perpendicular to the flat vertex. One vertex constraint thus becomes degen-

94

erate, and a linearized 2d null space emerges. The preceding considerations apply to all vertices

constructing the pattern.

The constraint equations can be expanded about the flat state ρ = 0:

Ta(ρ) = Ci
aρi + Di j

a ρiρ j + . . . (4.10)

We take the energy of the vertex to be,

EVertex =
1
2
κf

∑
a

T 2
a

with κf a face bending modulus [43, 39, 14, 81]. Thus our energy is a measure of the violation of

vertex constraints in Supplementary Equation 4.9. For thin sheets, violation of vertex constraints

manifests as bending of vertex faces since stretching is energetically expensive compared to bend-

ing [54].

With this definition of vertex energy, we find that configurations ~ρ that violate the linear con-

straints Supplementary Equation 4.9, i.e., Ci
aρi , 0, are characterized by an energy E ∼ ρ2. On

the other hand, configurations ρ in the 2d linearized null space satisfy Ci
aρi = 0, thus their energy

scales as E ∼ ρ4 [22] (The two special zero-energy motions of the vertex satisfy the constraints to

all orders in ρ).

These two distinct scaling laws allow us to avoid the flat state bifurcation by lifting one of the

zero-modes, in a similar manner to the way it was done for the 4-bar linkage. If the creases them-

selves have a heterogeneous profile of stiffness (or bending rigidity), some folding configurations

can be made energetically favorable compared to others. This last notion is encoded in the energy

model of the vertex

E = EVertex + ECrease = κfT
2
a +

1
2

∑
i∈creases

κiρ
2
i , (4.11)

95

with κi the stiffness of crease i. In practical applications, the folding stiffness moduli of the

creases κi will depend on each crease’s thickness, length and material properties. Generally the

length and material are given by the type of application, so that the value of κi can be set by proper

choice of the crease thickness t. It is known that for general elastic materials κ ∼ t3 [55].

Supplementary Figure 4.8 shows how changing the crease stiffness profile κi allows us to

choose which of the two modes is lifted near the flat state, while the scale of the crease stiffness

sets the folding value ρc ∼
√
κ̃i/κf in which the lifted mode returns via a saddle-node bifurcation.

As we had for the 4-bar linkage, the linearized null space is spanned by two vectors v1,v2, such

that configurations in the null space are given by

ρ = ρ(v1 sin φ + v2 cos φ).

Large patterns with loops

When 4-vertices form a closed loop, an extra constraint is defined by the requirement that folding

angles are consistent around each loop [21]. Just as for the independent vertex constraints, the

extra constraint can be broken at the expense of bending the stiff face encompassed by the loop.

We model this bending by adding a stiff ’face’ crease inside each loop of vertices [22]. Since both

vertex and loop constraints are broken by bending the same stiff faces, the bending modulus is the

same κf. Together with the heterogeneous stiff creases defined in the main text, the origami energy

model is given by [43, 39, 14, 81]

Esheet(ρ) ≡ EVertex + ELoop + ECrease

= κf
∑

a
T 2

a +
1
2
κf

∑
f∈faces

ρ2
f +

1
2

∑
i∈creases

κiρ
2
i ,

(4.12)

We note that in the linearized null space about the flat state, both the vertex and loop terms

scale as ρ4 , while the crease bending term generically scales as ρ2. Thus, at small folding magni-

96

tudes ρ � ρc ∼
√
κ̄i/κf bending of creases is expensive and suppressed - minimizing the convex

quadratic energy term. In contrast, at large folding magnitudes ρ � ρc, face bending becomes

expensive, such that all bending occurs at the creases. We conclude that by choosing a crease stiff-

ness profile appropriately, the flat state branching can be avoided for arbitrarily large self-folding

origami patterns.

Supplementary Note 3 - Folding methods

Patterns with stiff creases as defined above will settle to the flat state, the global minimal energy

configuration of Esheet (Supplementary Equation 4.12). When external folding torques Fext
i (ρ, t)

are applied to the creases i across the pattern, the sheet is folded away from the flat state by

balancing the external forces and the internal forces due to face and crease bending (Supplementary

Equation 4.12). We define folding through the equation,

τrelax
dρi
dt

= −
∂Esheet(ρ)

∂ρi
+ Fext

i (ρ, t) (4.13)

Here, τrelax is the folding relaxation timescale of the creases, determined by the elastic prop-

erties of the material [10]. This critical parameter sets the relevant timescale for all dynamics. For

example, adiabatic folding implies the folding forces Fext(t) change slowly relative to τrelax while

fast folding implies Fext(t) change fast relative to τrelax.

In some cases, the folding forces can be captured by an energy function Efolding, i.e., Fext
i (ρ, t) =

−
∂Efolding(ρ)

∂ρi
. In these select cases, we can write,

τrelax
dρi
dt

= −
∂(Esheet(ρ) + Efolding(ρ))

∂ρi
≡ −

∂Etot(ρ)
∂ρi

.

97

Torque-based folding

Several experiments [10] apply constant folding torques Fi to specific creases. One simple model

of such folding experiments would be the following time-dependent energy,

Etot = Esheet − a(t)
∑

i
Fiρi (4.14)

Here a(t) describes a time-dependent protocol for ramping up the folding forces Fi. We take

a(t) = vt, where v measures the speed of folding.

Simulations: We simulated folding using Supplementary Equation 4.14 but without stiff creases

and find no success unless Fi has high dot product with the desired mode (Figure 4.4(a)). It is hard

to call high dot-product based folding ‘self-folding’ since such actuation requires a large number

of actuator creases, and the torques Fi on each crease need to be tuned carefully.

However, with stiff creases, the 16 vertex pattern folds with large success rates for substantially

smaller dot products. For example, a dot product of 0.2 suffices to fold the pattern correctly for

∼ 80% of the patterns and forces sampled. The data shown is averaged over 5 patterns and 20

different random torque vectors Fi (for each sample and dot product), folded using a sufficiently

slow protocol a(t).

Topologically protected bifurcations:

Figure 4.4(a) shows that sheets with stiff creases have dramatically higher success rate in fold-

ing using specific Fi, even though the crease stiffness profiles were chosen without any knowledge

of these folding forces. We can understand the reason for success mathematically - our stiff crease

prescription attempts to program the bifurcation diagram to eliminate misfolding pathways. Such

topological properties of bifurcation diagrams are robust to the kinds of deformations induced by

these folding forces.

The folding forces in Supplementary Equation 4.14 above modify the energy by a linear term

98

∑
i Fiρi. Such modification cannot create new minima near the flat state since Esheet has a saddle-

node bifurcation only at a finite ρc.

To understand this first in a simple example, consider the function f (x) + λx where f (x) has

one unique minimum at some point x0. In addition to the minimum at x0, if f (x) was posed at

a saddle-node bifurcation at some point x1 (e.g., f (x) ∼ (x − x1)3 near x1), then f (x) + λx will

develop a new minimum at x1 for infinitesimal λ. Instead, if f (x) were some finite distance away

from a saddle-node bifurcation in a neighborhood of x1, we are guaranteed that no new minima

are created by small enough λ.

In analogy, our design principles eliminated all undesired minima in Esheet at saddle-node bi-

furcations at some finite distance ρc away from the flat state. Thus adding the linear term
∑

i Fiρi

cannot create new minima in this landscape close enough to the flat state. Thus we can mathemat-

ically anticipate the significant success seen in Figure 4.4(a) with slow folding.

Target angle-based folding

A related method of folding involves target angles ρtarget
i for different creases. Such a target-based

folding can be modeled by springs with rest angles at ρtarget
i that are ‘turned on’ by some actuation

method (e.g., temperature, light changes [13, 10]),

Etot = Esheet +
1
2

∑
i
ηi(ρi − a(t)ρtarget

i)2 (4.15)

where a(t) describes the time-dependent protocol by which such creases are actuated; a(t) = 0

before actuation and the target angles are ramped up to final target ρtarget
i . We take a(t) = vt and

simulate slow folding. ηi is the strength of the springs with target angles; only a select set of

creases are actuated in this manner (ηi , 0).

Simulations: we applied the folding method of Supplementary Equation 4.15 to 16 vertex pat-

terns. This time, instead of varying the dot product between external forcing and the desired mode,

99

we vary the number of creases that are actuated using target angle folding (the creases chosen are

those who fold most in the desired mode ρD). When the creases are soft, we again see that this

model of folding can rarely find the desired mode (Figure 4.4(b)), even if a few creases are actu-

ated simultaneously. On the other hand, applying the LP stiffness profile to the creases improves

the success rate dramatically, even while actuating just 1 or 2 creases (data is averaged over 10

patterns).

Topologically protected bifurcations:

Sheets with designed stiff creases show high success rates with this mode of folding as well.

Again, we could have anticipated this success mathematically. Note that Supplementary Equa-

tion 4.15 can be expanded and written as,

Etot ∼ Esheet +
1
2

∑
i
ηiρ

2
i − a(t)

∑
i
ηiρ

target
i ρi

where we have dropped a term independent of ρi. The linear term a(t)
∑
ρ

target
i ρi is mathematically

identical to the linear term in torque-based folding with Fi = ηiρ
target
i . Hence folding can be

expected to succeed for the same reasons.

However, the quadratic term ηiρ
2
i resembles an additional stiffness for the creases about the flat

state, in addition to the designed stiffness κi present in Esheet. Such extra stiffness could potentially

be problematic. To see this, note that in the main paper, the designed stiffness κi were carefully

chosen to satisfy a linear lifting condition (or saddle-node bifurcation condition) of the form,

∑
i∈creases

Riκi ≥ ETS(ρc) (4.16)

where Ri ≡
1
2ρ

2
c
[
(ρ̃U)2

i − (ρ̃TS)2
i

]
and ρ̃U, ρ̃TS, ρc, ETS were defined in the main text.

Shifting a solution κi of the above equation by κi + ηi could, in principle, violate the above

equation. The simulation results in Figure 4.4(b) show that such violations do not occur often for

100

random patterns. However, when such violation do occur, they would result in undesired minima

reappearing.

If ηi are known at the time of design, we can simply account for them in the above lifting

constraint and use the following constraint instead,

∑
i∈creases

Riκi ≥ ETS(ρc) −
∑

i∈creases
Riηi (4.17)

where Ri ≡
1
2ρ

2
c
[
(ρ̃U)2

i − (ρ̃TS)2
i

]
.

To summarize, our crease stiffness prescription is designed to solve the misfolding problem

for general. Thus we do not account for specific forces in the procedure to determine optimal

crease stiffness profiles. In addition to the folding results shown in the main paper, the simulation

results in Figure 4.4 show that the predicted stiffness profiles work for a range of folding forces

and models, even if the forces were not known at design time. On the other hand, Supplementary

Equation 4.17 shows how specific folding forces and methods can be accounted for at design time

to change failed cases into successfully folding protocols.

Strain-based folding

In some methods of folding [10], the sheet is generally compressed without specific forces Fi

applied to specific creases. Without crease stiffness, such folding without specific forces is almost

certain to misfold. We tested the folding success of such folding methods in patterns with stiff

creases in simulation.

Patterns are initially set at a small folding magnitude ρ � ρc, and allowed to relax (with fixed

ρ) influenced by the sheet potential. As argued above, we find that when heterogeneous crease

stiffness profiles are present, there exists a unique minimum at fixed small ρ (up to Z2 symmetry).

The pattern is folded with a strain based algorithm, such that the external torques applied to the

101

pattern are proportional to the folding angles of the configuration. That is, we use an energy,

E = Esheet − a(t)
∑

i
Fiρi, Fi =

1
2
ρi(t) (4.18)

In practice, folding the pattern at a specified rate is achieved by an iterative two step algorithm:

1) Increase ρ by a specified amount ∆ρ, keeping the direction ~ρ fixed, 2) Relax the configuration

using the origami energy model (keeping ρ fixed).

While the first step in each iteration increases the magnitude of folding, the second step modi-

fies the configuration in the angular directions by gradient descent, finding the nearest angular min-

imum. The slow folding limit is obtained by setting ∆ρ � ρc in step 1, so that the one-dimensional

tracks are followed adiabatically. The folding algorithm is implemented using MATLAB con-

strained optimization functionality. Results on the success of strain based folding methods with

heterogeneous crease stiffness profiles are given in Figure 4.3.

Supplementary Note 4 - Crease stiffness selection

In the main text we present general arguments for the choice of crease stiffness profiles. Designed

motions in large self-folding origami patterns can be approximately decomposed to individual

4-vertices making a binary choice between their two zero-modes. This idea suggests that the

designed motion can be targeted for adiabatic folding by lifting the undesired motion in each 4-

vertex independently. The argument gives rise to a set of linear constraints lifting the unwanted

minimum at a specific chosen ρc value. Together with a positivity constraint, these two inequality

constraints limit the choice of stiffness profile, but maintain much of the stiffness design freedom.

We note that the simple structure of the constraints guarantees the existence of a large feasible

solution space, as the constraints ask for semi-positive κ vectors that exist above the hyper-plane

defined by Equation 2 of the main text.

Although any random stiffness profile satisfying the inequality constraints will keep only the

minimum related to the desired minimum, we further discuss how the design freedom can be

102

utilized to minimize the energetic or geometric distortion of the resulting motion. These consid-

erations give rise to the Linear and Quadratic Programming methods for selecting the stiffness

profile.

Optimizing the energetic distortion of the desired mode ρD is performed by minimization of its

energy due to the stiff creases:

ECrease(ρD) =
1
2

∑
i∈creases

κi(ρD)2
i (4.19)

This function is manifestly linear in κi, such that minimizing it (subject to the linear constraints)

can be easily performed performed using Linear Programming, an efficient polynomial algorithm.

As the linear optimization function generically looks for solution with small κ values, we find that

this algorithm obtains solutions that saturate the lifting constraint of Equation 4.2.

Geometric distortion involves changing the minimal energy configurations due to the crease

stiffness. We find this kind of distortion is present in every case that the creases of an origami

pattern are made stiffer in a heterogeneous manner. If one wishes to design a pattern to have

a specific precise folded state, it might be important to control geometric distortions due to stiff

creases. To reduce the geometric distortion in a folded state we can optimize the energy due to stiff

creases such that its angular minimum (energy minimum at given ρ) is close to the desired folded

state. The gradient of crease energy at the desired mode configuration is:

∂E
∂ρi

(ρ = ρD) = (κ ? ρD)i, (4.20)

where ? indicates element wise multiplication. If ρD is an exact angular minimum of the

energy function, we know that the normalized dot product between ∂E
∂ρi

and (ρD)i has to be unity,

as the angular components of the gradient vanish and the force is entirely in the ρD direction:

∂E
∂ρi

(ρ = ρD) · (ρD)i

|| ∂E
∂ρi

(ρ = ρD)|| · ||(ρD)i||
= 1, (4.21)

103

where the numerator multiplies the vectors ρD and the energy gradient at ρ = ρD, while the

denominator multiplies their norms. By writing these terms explicitly and rearranging them, we

find that a configuration ρD that has no geometric distortion satisfies

ρ2
D

∑
i∈creases

κ2
i (ρD)2

i −
∑

i, j∈creases
κiκ j(ρD)2

i (ρD)2
j = 0 (4.22)

Evidently, a solution for which this condition is satisfied is κi = const. Unfortunately, a ho-

mogeneous crease stiffness profile does not lift any of the modes near the flat state. We would

like to find stiffness profiles that are heterogeneous to lift all but one minimum, but still optimize

geometric distortion. This can be done if instead of demanding the condition of Supplementary

Equation 4.22 be satisfied, we treat it as a function to be minimized subject to the linear constraints:

FQP ≡ ρ
2
D

∑
i∈creases

κ2
i (ρD)2

i −
∑

i, j∈creases
κiκ j(ρD)2

i (ρD)2
j (4.23)

Crucially, the function FQP is manifestly quadratic in the stiffness profile κi, and positive semi-

definite. These properties allow us to optimize FQP with Quadratic Programming, another efficient

polynomial algorithm. We use MATLAB Linear and Quadratic Programming routines to find

these stiffness profile solutions. The main text shows how these schemes optimize energetic and

geometric distortions of the chosen vertex motion.

For single 4-vertices, one could sample random stiffness profiles that satisfy the linear con-

straints and come close to optimizing mode distortions. The major gains of using our stiffness

optimization protocols manifest when considering larger patterns. As shown in Supplementary

Figure 4.9(a), even for simple looped patterns (quads), LP and QP stiffness protocols achieve op-

timized distortion values better by orders of magnitude compared to other schemes, including the

ρ−n
D prescription that worked well for single vertices. The superior performance of the optimized

protocols was established over a sample of 100 patterns.

For larger patterns still, random stiffness profiles that satisfy the linear constraints are usually

accompanied by very high energetic and geometric distortions. Our optimized stiffness selection

104

protocols are superior to any other choice, yet are themselves subject to degradation for large pat-

terns. Supplementary Figure 4.9(b-c), shows how the optimum energetic and geometric distortions

(achieved by LP and QP, respectively) grow with pattern size.

Finally, we tested the robustness of our method to manufacturing errors in the stiffness profile.

We simulated such errors in small and large patterns by perturbing the optimal solutions (obtained

by either LP or QP) with relative values of up to 5%. We find that the resulting unique low-ρ

mode is essentially a perturbed version of the one obtained for the optimal solution. The fact that

small perturbations in κ lead to small distortion of the unique low-ρ mode means that our method

is expected to be robust to manufacturing errors in the stiffness profile κ.

Supplementary Note 5 - Adiabatic failures and bifurcations

along the desired pathway

The main text discusses how selecting an appropriate crease stiffness profile establishes a smooth

folding motion connecting a unique minimum close to the flat state and a desired nonlinear folded

configuration. Indeed, we find that the designed folded configuration frequently connects contin-

uously to the unique small ρ minimum established by stiffness profiles due to LP or QP springs.

This gives rise to the heuristic approach of folding self-folding origami: Design the pattern with a

heterogeneous crease stiffness profile (solving LP or QP), and fold the pattern slowly.

Although this idea appears to work for many crease patterns (> 90% of the 3×3 patterns in our

sample), it is not universally successful. In some patterns (Supplementary Figure 4.10) we observe

that the desired folded configuration does not connect continuously to the unique low-ρ minimum,

but instead terminates at a saddle-node bifurcation. In turn, the unique low-ρ minimum itself is

also terminated with a saddle node-bifurcation. Thus, failure to fold adiabatically is associated

with a saddle-node bifurcation along the desired pathway.

Such failures can be mathematically ruled out if the states along adiabatic pathway are always

the lowest energy state for each ρ since ground states cannot undergo saddle-node bifurcations.

105

In fact, we know that the pathway has lowest energy at low and high ρ — there is only one state

at low ρ and at high, the pathway connects with the desired mode which is designed to be the

lowest energy state by solving loop equations [21]. However, such protection does not extend to

intermediate ρ. If a lower energy state exists at finite ρ, the desired pathway could undergo a saddle-

node bifurcation like that shown in Supplementary Figure 4.10, preventing adiabatic folding.

In the particular case presented here, the likely candidate is a distractor configuration shown in

blue. When this distractor folded state is unfolded slowly, it morphs into a state that has smaller

energy than the unique low-ρ minimum. This allows the unique low-ρ minimum to terminate in a

saddle-node bifurcation. When folded slowly from the flat state, the adiabatic pathway described

by the unique low-ρ minimum abruptly terminates, and the folded state snaps into another config-

uration, which itself adiabatically morphs into a distractor mode.

106

Chapter 5

Supervised learning in a mechanical system

The design of mechanical metamaterials usually assumes that desired force-response properties

are given as a top-down specification. For example, principles of topological protection can be

used to design materials where forces at specific sites lead to localized deformations [17, 112].

Elastic networks can be pruned to exhibit allostery [15], so that a deformation at one specific site is

communicated to a specific distant site. In these examples and many others [1, 21, 23, 113, 114], we

rationally optimize design parameters, e.g., spring constants and geometry, to achieve a specified

force-response relationship.

A different scenario, closely connected to supervised learning in computer science, is when the

desired force-response is so complex that it cannot be specified in a top-down manner; however,

it might still be easy to give examples of the desired force-response relationship. The goal is

to learn or infer the right force-response relationship from these training examples, with success

evaluated on the ability to extrapolate the learned relationship to unseen test examples. Learning

from examples in this manner offers several advantages for materials, primarily in the form of

tailoring the force-response relationship to real use cases. Consider a class of spatial force patterns

(e.g. exerted by cat paws), which when applied to a sheet, should fold it into one geometry and

another class of force patterns (dog paws) that should result in a different folded geometry. While

it might be easy to obtain and apply physical examples of forces from these classes, it is hard to

107

mathematically list what features distinguish these two classes, especially given the large variation

within the classes themselves. A learning process that automatically learns the right features from

a training set can naturally solve this problem. Second, even when distinguishing features are

known, learning offers a natural way of arriving at the right design parameters without need for

a complex optimization algorithm. Finally, and most critically, successful learning promises a

material that can show the correct response to novel inputs not seen during training.

While naturally occurring systems like neural networks [115], slime molds [116], and plant

transport networks [117] use similar ideas to adapt their response to environmental inputs, physi-

cal supervised learning has thus far not been used to obtain functional man-made materials. Here

we propose an approach for the supervised training of a mechanical material through repeated

physical actuation. We work with a model of creased thin sheets where crease stiffnesses can

change as a result of repeated folding. We assume a training set, that is, a list of force patterns and

desired responses. Each training example of force pattern is applied to the sheet; if the response is

the desired one, as determined by a ‘supervisor’, folded creases are allowed to soften in proportion

to their folding strain. If the response is incorrect, creases stiffen instead. We then test the trained

sheet by applying unseen force patterns (test examples) drawn from the same underlying distribu-

tion as the training data. We study test and training errors and thus the sheet’s ability to generalize

to novel patterns as a function of its size.

Our proposal here relies on a plastic element, namely crease stiffness. Materials that stiffen

or soften with strain have been demonstrated in several contexts [118, 119, 120, 121], including

recently in the training of mechanical metamaterials [8]. We discuss how learning performance

may be affected by limitations on the dynamic range of stiffness and other practical constraints

in such materials. We hope our results here will provoke further work on how the constraints of

mechanics intersect with learning.

108

(a) (c) (d)(b)

Stiff crease

‘Cat’

‘Dog’

Untrained sheet Trained sheet

Cats

Dogs

Training
examples

Test
examples

Cats

Dogs

Figure 5.1: Training thin sheets to classify spatial force patterns
a) We consider thin stiff sheets with creases whose stiffnesses (indicated by thickness of green
segments) can be changed by repeated folding. b) Such sheets can fold in response to a spatial
force pattern Fa applied across the sheet. To emphasize the high dimensional nature of Fa, we
visualize Fa as an image where the grayscale value of each pixel corresponds to the force at a
particular location on the sheet. c) An untrained sheet with uniform stiffness shows random folded
responses for different spatial force patterns. d) By modifying crease stiffness values, we train the
sheet to classify entire classes of force patterns by showing one distinct folded response for each
class.

5.1 Results

We demonstrate our results with a creased thin self-folding sheet (Fig. 5.1a), which is naturally

multi-stable. Our analysis can be generalized to other disordered mechanical systems, such as

elastic networks [8], that are also generically multi-stable. It was previously shown that creased

sheets, such as those of self-folding origami, can be folded into exponentially many discrete folded

structures from the flat, unfolded state [22, 81]. Such exponential multi-stability can be a prob-

lem [22, 23] from an engineering standpoint, as precise controlled folding is required to obtain the

desired folded structure.

Here we exploit such multi-stability to train a classifier of input force patterns. If we apply a

spatial force pattern F across the flat sheet (see Fig. 5.1a-b), the sheet will fold into a particular

folded structure ρ(F), e.g., described by dihedral folding angles at each crease ρi (see Supplemen-

tary Note 1). To emphasize the high dimensional nature of space of force patterns, in Fig. 5.1b-d,

we represent each force with a gray-scale image where each pixel can be interpreted as a force at

a designated point on the sheet. The set of all force patterns {F } that lead to one particular folded

109

structure ρm is defined as the ‘attractor’ of folded structure m in the space of force patterns (color

coded regions in Fig. 5.2b). The complex attractor structure of force-response for a thin sheet

naturally serves as a classifier of force patterns, albeit a random classifier (Fig. 5.1c). The goal of

the training protocol is obtain a sheet with a specific desired mapping between force patterns and

folded structures (Fig. 5.1d).

Previously, we found that the folded response to a given force pattern can be modified by

changing the stiffness ki of different creases i in the sheet [23]. Here, we employ a ‘supervised

learning’ approach to naturally tune stiffness values ki so that the sheet classifies forces as desired.

Intuitively, this is done by applying examples of force patterns to the sheet and modifying crease

stiffness accordingly, in a way that reinforces the correct response and discourages incorrect folding

(Fig. 5.2a). Such training, carried out iteratively for different force pattern examples, has the effect

of morphing the attractor structure to better approximate the desired response (Fig.5.2b).

Consider two distributions of force patterns, each designated as a particular class (e.g. ‘cats’

and ‘dogs’). An example is shown in Fig. 5.3a (top) where the two classes of forces are defined

by spherical caps in force space. We define all forces belonging to these distributions by S dog =

{F |F · Fdog ≥ D,F · Fdog > F · Fcat}, and similarly for S cat. Here D = 0.6 sets the size of the

caps. (In Fig. 5.3a, S dog is blue and S cat is orange.)

Assume we are given two sets of labeled force patterns as training examples F dog = {F ∈

S dog} , F cat = {F ∈ S cat}, each with n training force patterns (in Fig. 5.3a (bottom) we sample

sets with n = 20). Together, F dog and F cat are defined as the training set. We desire all forces in

S dog to result in one common folded structure, while all forces in S cat fold the sheet to a distinct

but common folded structure. While S dog, S cat are separable in some 2d projection of force space,

learning is non-trivial since the sheet must learn the 2 dimensions in which these distributions are

separable.

110

(a)

(b) Untrained response

Learning rule:

Apply force

folded structure

Trained response

Figure 5.2: Supervised training of thin sheets
a) A sheet with random crease geometry is folded with a training force pattern F a, resulting in
a folded structure ρ. The stiffness ki of each crease i is modified according to a local learning
rule; if the folded structure ρ is the desired response for F a as determined by a supervisor, creases
soften in proportion to their folding strain ρi. Otherwise, creases stiffen. b) This rule trains the
sheet to perform the desired classification of force patterns. The untrained sheet shows multiple
folded structures in response to force patterns (2d cross-section of force pattern space shown). The
trained sheet shows only two folded responses that mimic the desired mapping of force patterns to
folded structures.

111

5.1.1 A mechanical supervised training protocol

In our training protocol, each of the training force patterns F a is applied to the sheet in sequence,

to obtain a folded structure ρ(F a). A supervisor determines whether the resulting folded state

ρ(F a) is correct or incorrect by comparing it to a reference state ρref(F) for those classes. (The

reference state can be selected in several ways. Here, we average the response of the untrained

sheet on training examples in each class; see Supplementary Note 2.)

We then apply the following learning rule that stiffens or softens each crease in proportion to

folding in that crease,

dki
dt

=


− αρr

i , if ρ(F a) is correct

+ αρr
i , otherwise

(5.1)

for the stiffness ki of each crease i. α is a learning rate, setting how fast stiffness values ki are

updated due to training examples. r models non-linearities in strain-based softening or stiffening of

materials; we use r = 2. Such plasticity is experimentally seen in several materials [122, 123, 124];

we discuss other learning rules and experimental constraints later.

After each round of training the pattern is unfolded back to the flat state. The same supervised

learning step is then repeated in sequence for all training force patterns. A training epoch is defined

as one pass through the entire training set.

We find that as training proceeds, the number of observed folded structures decreases (fewer

colors), and nearly all training force patterns fold the sheet into the ‘blue’ or the ‘orange’ labeled

structures after epoch 40 (diamonds in Fig. 5.3b). The fraction of training force patterns that fold

the sheet into the correct structure is defined as the training accuracy.

However, a successfully trained sheet should correctly classify previously unseen ‘test‘ force

patterns, sampled from the same distributions. We tested the trained sheet by applying such test

examples drawn from the caps S dog, S cat and recording the resulting folded structure. In analogy

to the training sets, the fraction of test examples yielding the correct folded structure is defined

as the test accuracy. High test accuracy is observed (Fig. 5.3c,d) (∼ 80% of the test examples

112

classified correctly); thus the sheet generalizes and is able to have the right response to novel test

force patterns through the changes induced by training examples.

5.1.2 Heterogeneous crease stiffness

Our learning rule facilitates classification by creating heterogeneous crease stiffness across the

sheet (Fig. 5.4a). Indeed, as training proceeds, we find that the variance ∆k2 of stiffness grows

(Fig. 5.4b). If the sheet is trained beyond the optimal point, the stiffness variance still grows, but

the classifier eventually fails, as seen in Fig. 5.3b-c. The failure mode of over-training is typically

that all forces fold the sheet into a single folded structure, resulting in no classification.

We can understand this relationship between heterogeneous stiffness (∆k) and training using a

simple model. A heterogeneous crease stiffness profile k with high stiffness ki in crease i but no

stiffness elsewhere, will lift the energy of structures ρ with small folding ρi in crease i less than

structures with large ρi. Hence heterogeneous k can raise the energy of select structures, reducing

their attractor size, while other structures remain low in energy and grow in attractor size. If we

assume that folding angles ρa of structure a are randomly distributed (verified earlier in [21]) and

assume a random stiffness pattern with standard deviation ∆k, the energies
∑

i kiρ
2
i of different

structures will be distributed as a Gaussian with mean µ = αk̄ and standard deviation σ = β∆k

where k̄ is the mean stiffness, and α, β some numerical parameters.

If structures above energy EF are inaccessible to folding, the number of accessible folded

structures is,

#(∆k,N) ∼ 2N[1 − erf(
αk̄ − EF
β∆k

)]. (5.2)

Hence the number of surviving folded structures should decrease fast with ∆k. This effect is

indeed observed for trained origami sheets of different sizes (Fig. 5.4d). From numerical explo-

ration of the energy distributions in this model, we find that α is a constant regardless of sheet size,

while β ∼ N−0.5 shrinks with sheet size (central limit theorem). Using this form of β in Eq. 5.2

predicts that the elimination of structures happens at a lower ∆k for larger sheets, consistent with

113

(b)

(c) (d)

0 10 20 30 40 50 60
Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Training
Test

Untrained

Epoch 40

Epoch 20

Epoch 60

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.6

0

0.2

0.4

0.8

1

0.6

0

0.2

0.4

0.8

1

0.6

0

0.2

0.4

0.8

1

0.6

0

0.2

0.4

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0

0.2

0.4

0.8

1

0

0.2

0.4

0.6

0.8

1

Te
st

 a
cc

ur
ac

y

(a)

0.6

0

0.2

0.4

0.8

1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

0.6

0

0.2

0.4

0.8

1

Figure 5.3: Supervised learning of cap-like force distributions
a) We define distributions S dog (blue) and S dog (orange) of force patterns as two spherical caps in
the space of applied forces (2d projection shown). Training examples (diamonds) are drawn from
both distributions. b) An untrained sheet folds into many distinct folded structures (different colors)
in response to applied force patterns. As training progresses, most force patterns are classified as
either blue or orange according to the cap they belong to. When over-trained, all force patterns
result in only one folded structure (orange). c) The trained sheet reaches peak performance after
∼ 40 epochs of supervised training (i.e., passes through the training examples). The trained sheet
not only classifies the training set correctly (training accuracy), but generalizes to unseen test force
patterns (test accuracy). d) The trained sheet is highly accurate when classifying force patterns
near the center of the spherical caps, but less accurate close to the true decision boundary between
the distributions.

114

14 16 18 20 22 24 26 28
of creases

0.1

0.2

0.3

0.4

0.5

0 20 40 60
Epoch

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 s
tif

fn
es

s

Untrained sheet
(a) (c)

(d)(b)

homogeneous
 stiffness

heterogeneous
stiffness

Trained sheet

Optimal Training

0 0.1 0.2 0.3
0

1

2

3

4

5
lo

g
(#

 o
f S

ta
te

s) 13
19
28

of creases

Figure 5.4: Training increases the variance of crease stiffness across the sheet
a) Untrained sheets have a homogeneous distribution of crease stiffnesses, while trained sheets
have heterogeneous stiffness profiles (width of green lines). b) As the sheet is trained, the stiffness
of different creases changes to different extents, such that the variance in stiffness values grows
over training time (envelope shows the least and most stiff creases). c) Larger sheets with more
creases require smaller variance in their stiffness values for optimal training. d) An untrained sheet
starts with exponentially many available folded structures. During training, the number of available
folded structures decreases exponentially with increasing stiffness variance ∆k2, allowing the sheet
to classify a few distinct classes.

115

0 10 20 30 40
Training set size

-0.05

0

0.05

0.1

0.15

Ac
cu

ra
cy

 d
iff

er
en

ce
0 5 10 15

Training set size

0.4

0.6

0.8

1

Ac
cu

ra
cy

Training Accuracy
Test accuracy

Large sheet(b)

(a) (c) Small sheet

Accuracy Accuracy

>

Figure 5.5: Effect of training set size and sheet size on test accuracy
a) With fewer distinct training examples, training accuracy is high but test accuracy is low (over-
fitting). Increasing the number of training examples improves test accuracy, at the expense of
training accuracy. b) Sheets with more creases show larger improvements in test accuracy with in-
creasing number training examples, as expected of complex models with more fitting parameters.
c) A small untrained sheet (13 creases) shows ∼ 10 folded structures (color coded) in response to
different force patterns. A larger sheet (49 creases) sheet shows ∼ 400 folded structures instead,
each with smaller attractor regions in the space of force patterns. Consequently, larger sheets can
create more flexible classification surfaces by combining smaller attractor regions; such complex
models with more fitting parameters require more training examples to avoid overfitting.

our results in Fig. 5.4c-d.

We conclude that as the training protocol proceeds, the stiffness variance ∆k2 grows, and the

number of available folded structures decreases. The last surviving folded structures, reinforced by

the learning rule of Eq (5.1), classify the force distributions correctly. Thus, the learning process

merges attractors of the untrained sheet such that the surviving attractors recapitulate features of

the desired force-fold mapping.

116

(a) (c)(b)

2 3 4
Sepal width

5

6

7

8

Se
pa

l l
en

gt
h

4 6
Petal length

2

3

Se
pa

l w
id

th

1 1.5 2
Petal width

3

4

5

6

Pe
ta

l l
en

gt
h

I. Virginica

I. Versicolor

2 3 4
Sepal width

5

6

7

8

Se
pa

l l
en

gt
h

4 6
Petal length

2

3

Se
pa

l w
id

th

1 1.5 2
Petal width

3

4

5

6

Pe
ta

l l
en

gt
h

0 5 10 15 20
Epoch

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

Training
Test

I. Virginica
I. Versicolor

Untrained sheet Trained sheet

Figure 5.6: Training sheets to classify Iris specimens
a) We train a sheet to classify individual Iris specimens as one of two species based on petal and
sepal lengths and widths [125]. We translate these four measurements into a spatial pattern of
forces applied to the sheet. b) Folding response of an untrained (28 crease) sheet due to force
patterns derived from the Iris data (shown in every cross section). c) The sheet is trained using
10 random examples (diamonds) of each species from the database [125] and then tested on 80
unseen test examples (circles). Matrix shows the classification of Iris flowers at optimal training
of the sheet (91% test accuracy; mistakes denoted by x).

5.1.3 Generalization and sheet size

Statistical learning theory [126] suggests that two critical parameters set the quality of learning:

(1) the number of training examples seen, (2) complexity of the learning model. An increased

number of training examples usually decreases training accuracy. However, test accuracy - i.e., the

response to novel examples or the ability to generalize - improves. Furthermore, the improvement

of test accuracy is larger for complex models with more fitting parameters. Intuitively, complex

models ‘overfit’ details of small training sets, and thus show low test accuracy even if training

accuracy is high.

Our sheets exhibit signatures of these learning theory results, with the size of the sheet (num-

ber of creases) playing the role of model complexity. For a sheet of fixed size, trained on the

distributions of Fig. 5.3, we observe that increasing the number of training examples increases

test accuracy and decreases training accuracy (Fig. 5.5a). In Fig. 5.5b, we find the test accuracy

of larger sheets with more creases improves more dramatically with the size of the training set,

compared to smaller sheets.

117

These results suggest that sheets with more creases correspond to more complex classifica-

tion models (e.g., a neural network with more neurons). For example, crease stiffnesses are the

learnable parameters in our approach; hence increasing their number amounts to using a training

model with more parameters. Further, untrained sheets with more creases support exponentially

more folded structures [22, 81] as shown by the color coded force-to-folded-structure relationship

in Fig. 5.5c. The training protocol achieves correct classification by merging different colored re-

gions. Thus, larger sheets can approximate more complex decision boundaries by combining the

smaller regions shown in Fig. 5.5c., and thus act as more complex models to be favored when the

amount of training data is large. In the Discussions, we use these results to contrast memory and

learning in mechanical systems.

5.1.4 Complex classification problems

The attractor structure of disordered thin sheets is complex, and contains an exponential number

of attractors. Hence, sheets can be expected to learn more complex features than those shown

previously in Fig. 5.3.

We tested our learning protocol on the classic Iris data set [127], used extensively in the past to

benchmark classification algorithms. This data set reports four measurements - length and width

of petals and sepals - for individual specimens of different Iris species. While different Iris species

cannot be distinguished by any one of these properties, we wanted to test if our sheet can learn the

combination of features needed to distinguish species.

We picked the two most similar species in this data set, Iris Versicolor and Iris Virginica

(Fig. 5.6a). We translated the four flower measurements to four force components applied to a

sheet (see Supplementary Note 4). We then applied our training algorithm with a training set con-

sisting of 10 examples of I. Versicolor and I. Virginica (diamonds in Fig. 5.6c). The resulting

trained sheet was tested on 80 unseen examples of these species; the trained sheet was able to

identify the species of 91% of previously unseen specimens correctly.

We have tested our training protocol on more complex, higher dimensional distributions (Sup-

118

plementary Note 3). For example, we used the folding behavior of one thin sheet (the master) as the

target behavior for another thin sheet with a distinct crease geometry. We find that the trained sheet

is able to correctly predict the response of the master sheet to forces not seen during training. Thus,

using our training protocol, sheets can learn and generalize complex force-to-folded-response maps

from examples.

5.1.5 Experimental considerations

Our learning framework requires materials that can plastically stiffen or soften when strained re-

peatedly [128]. Several such materials and structures are known, including shape memory poly-

mers [129, 130], shape memory alloys (Nitinol) [131], and fluidic flexible matrix composites [132].

Such materials have the advantage of truly variable, user controlled stiffness. Other materials can

show a plastic change in stiffness in response to aging under strain, such as Ethylene Vinyl Acetate

(EVA) foam [133] and thermoplastic Polyurethane [134]. EVA was used recently [8] to show such

behavior in a mechanical system trained for auxetic response.

The specific learning rule used in the paper requires the ability to soften or stiffen depending

on the supervisor’s judgement of outcome. Such a learning rule can be implemented by materials

that stiffen under strain in one condition (say, high temperature, low pH) but soften under strain in

another condition.

However, the results here also hold for simpler learning rules, e.g., that only require plastic

softening under strain. For example, we can modify the learning rule (Eq. 5.1) to:

dki
dt

=


− αρ2

i , if ρ(F) is correct

0, otherwise
(5.3)

Such a rule is easily implemented with a strain-softening material with no stiffening needed.

For example, if the folded outcome ρ(F) is judged correct, we hold the sheet in the folded state

ρ(F) for a longer length of time (allowing significant softening) than when the outcome is judged

incorrect (no softening). We tested this simplified learning rule for the classification problem in

119

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (c)

0 5 10 15 20 25 30 35
Epoch

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

100 101

Stiffness dynamic range

0

0.2

0.4

0.6

0.8

1

Te
st

 a
cc

ur
ac

y

Shape Memory
Polymers

Training
Test

(b)

Learning rule:

0

Figure 5.7: Learning is successful even with simplified training rules and experimentally realizable
stiffness range
a) A sheet (13 crease) trained on the classification problem of Fig. 5.3, with a simplified, exper-
imentally viable learning rule shown in (c). b) At peak training, the dynamic range of crease
stiffness values is ∼ 2, well within the ranges supported by existing shape memory polymers (red
filled region) [129]. c) Trained sheet reaches a peak accuracy of ∼ 80% on test force examples
(circles).

Fig. 5.3; we find similar accuracy as earlier (see Fig. 5.7a).

Another significant experimental constraint is the dynamic range of crease stiffnesses ki achiev-

able in real materials without failure or fracture at the creases. Fortunately, we find that for well

trained sheets, the difference in crease stiffness is moderate (Fig. 5.4c), and does not exceed 30%

of the mean stiffness value for a medium sized (28 crease) sheet. Fig. 5.7b shows that our required

dynamic range in stiffness is within the range for experimentally available materials such as shape

memory polymers [129, 135].

Finally, another failure mode for our training protocol is overtraining. While the variance in

crease stiffness ∆k2 is critical to eliminate attractors, overtraining can result in a sheet with only

one folded structure. Our analysis, presented in Fig. 5.4, suggests that large sheets should be easier

to train experimentally since the stiffness variance needed is more moderate, while the transition

to overtraining does not become much more rapid.

120

5.2 Discussion

In this work, we have demonstrated the supervised training of a mechanical system, a thin creased

sheet, to classify input force patterns. As required for learning, the trained sheet not only shows

the correct response for training forces, but can generalize and show the correct response to unseen

test examples of forces. We studied the relationship between training error, test error, and the size

of the sheet which plays the role of model complexity in supervised learning [126].

We can contrast the learning framework here with that of memory formation in mechanical

systems [136]. A robust memory implies a trained model that shows the correct response for all

of the training examples (i.e., low training error), even at the expense of overfitting such training

data. In contrast, in learning, we seek a model that generalizes and responds correctly to unseen

examples (i.e., low test error), even at some expense of training error. With this view, large sheets

trained with a small number of training examples can serve as memory while smaller sheets with

more training examples lead to generalization, and hence learning.

Supervised training of mechanical systems offers advantages over traditional mechanical de-

sign. On a practical level, a material with an intrinsic mechanical learning rule can be trained by

an end-user rather than an expert designer, according to the task at hand. In the case of sheets pre-

sented here, the same sheet can be used to classify different data distributions depending on how

it was trained. Such properties are highly sought after, e.g. in adaptive robotics [137]. Finally, as

learning allows generalization, materials can be trained to show a desired force-response behavior

even if some examples of use are not available at the time of training.

121

5.3 Supplementary Notes

Supplementary Note 1 - Folding origami sheets

Energy of folded structures

The origami sheets used in this work are based on a self-folding origami energy model developed

and validated in previous studies [21, 37, 42]. The effects of stiff creases are modeled by using

torsional spring elements on each crease [22, 23]. Here we discuss in detail how the energy of a

folded structure is computed.

For thin origami sheets with free-folding creases, the primary contribution to the energy of a

folded structure is due to bending of the sheet faces. Instead of modelling the faces directly, we

look at the mechanical constraints inherent to the geometry of the vertices. An origami vertex is

known to apply 3 constraints on the dihedral folding angles of the creases connected to it (due to to

embedding of the sheet in 3d-space). The constraints can be derived by noting that the vertex must

not tear open when folded. Thus, starting from any crease, alternating rotations about the dihedral

and sector angles around the vertex have to result in an identity operation [22, 23, 37].

Suppose there are N creases denoted by an index i, each forded to an angle ρi, and N sectors

with angles θi around the vertex. Rotations about one dihedral angle and one sector would combine

to form a rotation matrix

Ri =


1 0 0

0 cos ρi − sin ρi

0 sin ρi cos ρi




cos θi − sin θi 0

sin θi cos θi 0

0 0 1

 . (5.4)

For the vertex to be closed (i.e. not torn open) in a folded structure, the combination of rotation

about all crease dihedral angles and sector angles must be the identity:

122

A ≡
n∏

i=1
Ri = I. (5.5)

A folded structure with values ρi that do not satisfy Eq. 5.5 must cause the sheet faces to bend.

Mathematically, this effect will manifest in finite off-diagonal values in the matrix A ≡
∏N

i=1 Ri.

As there are 3 independent non-diagonal elements, we say that the vertex imparts 3 mechanical

constrains on the dihedral angles ρi around it.

At the flat state all ρi = 0 all constraints are trivially satisfied, so we can write down an expan-

sion for the 3 off-diagonal terms of A (T1 ≡ A12,T2 ≡ A13,T3 ≡ A23) in powers of the folding

angles:

Ta(ρi) = Ci
aρi + Di j

a ρiρ j + . . . (5.6)

Then, the energy of breaking these constraints is taken as the sum of squares of the residues Ta

of the constraint equations EVertex ∼
∑

a Ta(ρi)2. Summing this vertex energy over all the vertices

of the sheet gives rise to the total face bending energy. The energy due to folding of a stiff crease

(modeled as a torsional spring with modulus κi) is quadratic in the folding angle ECrease,i = 1
2kiρ

2
i .

The total energy of a folded sheet with stiff creases is thus computed as

Esheet(ρ) ≡ EFace + ECrease =
∑

v∈vertices

3∑
a=1

Tva(ρv)2 +
1
2

∑
i∈creases

kiρ
2
i . (5.7)

Note that we do not assign an explicit energy scale to the face bending term, so it is implicitly

combined with the crease stiffness scale k̄.

Folding protocol

Now that the energy of every folded structure ρi of a specific sheet is defined. We can use this

energy landscape to simulate the folding of the sheet. Experimentally there are multiple different

ways to fold origami sheets [10], and we have previously outlined how these methods can be

123

simulated numerically [23].

One way that an origami sheet can be folded is by applying torques directly to the different

creases. Suppose a crease i of a flat sheet is subjected to an external torque Fext
i . Such a torque

will induce folding in the crease, but the sheet generally resists folding due to the extra energy that

might be associated with a folded structure. Assuming that the folding process is over-damped, we

may write a dynamical folding equation

τrelax
dρi
dt

= −
∂Esheet(ρ)

∂ρi
+ Fext

i , (5.8)

where ρ is the current folded structure, and τrelax a time scale of the over-damped dynamics. In

this work we utilize a specific way of folding the origami sheets. Suppose a set of external torques

F ext is given (this could be a training or a test example as described in the main text). First,

the sheet is folded very fast with a strong external torque F ext, until a certain folding magnitude

ρ ≡ ||ρ|| is reached. For fast folding we can initially disregard the sheet energy and thus get to a

state

ρfast = ρ
F ext

||F ext||
.

Then the sheet is relaxed subject to the constraint that the overall folding magnitude is fixed (i.e.

finding an energy minimum on a hyper-sphere of radius ρ in ρ-space):

minimize
ρi

Esheet(ρ)

subject to ||ρ|| = ρ.

(5.9)

Finding a local minimum on the hyper-sphere guarantees that this folded structure would nat-

urally occur if the sheet is folded with appropriate torques, as any neighboring configuration costs

more energy, and the local minimum will attract the folding process. This algorithm is used to

mimic experimental fast folding of origami sheets, followed by clamping of a crease at a specific

folded dihedral angle. Here we also adjust the clamped angle such that the overall magnitude of

124

13 creases 19 creases 49 creases28 creases

Figure 5.8: Origami Sheets used for training
The size of each sheet is determined by the number creases.

folding ρ remains fixed and different (discrete) folded structures may be compared more easily.

Such fast folding was tested extensively [23], and found to obtain the same results as numerically

solving the ODE of Eq. 5.8.

Origami sheets and applied force patterns

In this project we use specific self-folding origami sheets. These are triangulated thin sheets,

chosen to have the property of self-foldability. As discussed above, a single vertex induces 3

mechanical constrains on the angles of creases surrounding it. Thus each vertex has to connect at

least 4 creases or it would be locally rigid. On top of that, for a sheet to self-fold, it needs to have

one global degree of freedom, so that the number of creases needs to be one more than the number

of constraints.

A simple way of generating patterns meeting these requirements is shown in Fig. 5.8. These

are 4 specific geometries used throughout this work as the sheets to be trained. Note that we label

them according to their size, given by the number creases in each sheet. The number of creases

in these sheets are 13, 19, 28, 49 and the numbers of internal vertices are 4, 6, 9, 16. Subtracting

3 times the number of vertices from the number of creases leaves us with one global degree of

freedom for each of these sheets, as required.

The number of supported folded structures for these sheets grows exponentially with the num-

ber of internal vertices, such that these sheets can fold in approximately 24, 26, 29, 216 distinct

125

ways [22, 81]. In fact, any sheet with these topologies (yet different geometries) will have a sim-

ilar number of distinct folded structures. The exact details of the supported folded structures is

dependent on the specific geometry, but we only require the existence of many distinct folded

structures for the purpose of training.

These specific sheets, used for training classifiers throughout this work, are definitely not spe-

cial. We attempted training classifiers using sheets with different geometries and obtained compa-

rable results. In analogy to learning algorithms, the details of the sheet and its supported folded

structures correspond to the family of models that the training protocol selects from. For origami,

we believe the available classification models are given by merger of attractors of folded structures,

supported by the sheet. Since the number of available models to choose from is exponentially large,

we reason that the geometry of the sheet should play little role in the success of classification.

Therefore, any self-folding origami sheet could be used for training classifiers.

The choice of force patterns applied to the sheets is constrained by the problem definition as

training and tests sets. Still, there is usually freedom in how these forces are applied. For example,

suppose we wish to train the 13 crease sheet of Fig. 5.8 on 2d force distributions, such as the

spherical caps shown in Fig. 5.3. The training and test sets could thus be supplied as pairs of

numbers, together with a label (blue\orange). A simple choice for training on such a data set is to

pick two creases in the sheet and apply torques directly to these creases, as in Eq. (5.8). Here we

utilize a different approach.

For an untrained sheet with homogeneous stiffness, it is known that all folded structures reside

in the linear null space of the vertex constraint matrix C at the flat state [22]. Thus, forces applied

in a direction within this null space are more ‘natural’ for the sheet, and in general cost much less

energy due to face bending. We compute the span of the null space for each one of these sheets,

and find that the dimension of the null space is dNS = #creases − 2#vertices. Therefore the 13 crease

sheet has a 5d null space, while the 49 crease sheets has 17d null space. Then, the training and

test examples are mapped to forces in the null space as follows. For a n − d data set, we choose

n random orthonormal vectors in the null space. Each training\test example is mapped to a force

126

pattern by assigning every component to one of the random orthonoraml vectors. Now these forces

can be directly applied to the sheet to facilitate the training protocol.

Training results in heterogeneous crease stiffness values that change the geometry of the folded

structures, so that they do not strictly reside in the null space of the untrained sheet. Still, for the

moderate heterogeneity developed during training, the observed folded structures are very close to

the null space, such that the described mapping is still useful and practical.

Supplementary Note 2 - Training origami sheets

Learning rule

As discussed in the main text, self-folding origami sheets naturally give rise to complex mapping

of force patterns to folded structures, with exponentially many structures supported by the sheet.

The learning rule developed in this work is meant to modify that map by changing crease stiffness

coefficients, such that only a small number of folded structures are retained, corresponding to the

desired classes. Here we will define precisely how the learning rule is chosen and applied to the

sheet in order to develop the desired mapping.

According to the specification of the classification problem, the trainer has no a-priori knowl-

edge of the true underlying force distributions. Instead they are supplied with a list of labeled force

patterns (‘cats’ and ‘dogs’). These training examples are used to find a reference folded structure

in the following way. We fold an untrained sheet with every ‘dog’ example in the training set and

record the folding angles of the obtained folded structures. Then, a reference ‘dog’ structure ρ̂dog

is defined as the average of all of these folded structures (normalized appropriately)

ρ̂dog ≡

∑
F∈F dog ρU(F)

||
∑
F∈F dog ρU(F)||

, (5.10)

with F dog the set of ‘dog’ training force patterns and ρU(F) the folded response of the un-

127

trained sheet to force pattern F . A similar reference state ρ̂cat is obtained for the ‘cat’ training

examples. Crucially, once the reference structures are set for the untrained sheet, they are kept

fixed throughout the training process. These reference structures are used to define the learning

rule discussed in the main text. Suppose that during the training protocol, we choose a random

‘dog’ example F dog and apply it to the sheet. The normalized resulting folded structure is writ-

ten as ρ(F dog). The learning rule then compares this folded structure to the reference structures

defined above and the stiffness coefficients are modified as follows:

if ρ(F dog) · ρ̂dog > ρ(F dog) · ρ̂cat :
dki
dt

= −αρ2
i (F dog)

else :
dki
dt

= +αρ2
i (F dog)

ki ≥ 0, i ∈ creases

. (5.11)

In essence, the learning rule checks whether the observed folded structure is closer to the ‘dog’

reference then to the ‘cat’ reference. If it does, the stiffness of creases that fold considerably in

that structure is reduced, effectively reinforcing this force-fold mapping. An opposite modification

occurs if the folded structure is far away from the ‘dog’ reference. A similar training rule is used

when ‘cat’ forces patterns are applied, with the understanding that we wish to compare the resulting

folded structure ρ(F cat) to the ‘cat’ reference ρ̂cat.

Assigning labels to folded structures

To begin with, we are given labeled force patterns, and an untrained sheet with many available

folded structures. It is important to note that these folded structures are equivalent and not intrin-

sically labeled. Thus, as part of the learning protocol we must specify how to label these folded

structures, and in particular which of them to call ‘dog’ and ‘cat’ (or ‘blue’ and ‘orange’). A simple

solution would be to choose 2 of the folded structures in advance and assign the classification labels

to them. Unfortunately, this turns out to be too restrictive for a couple of reasons. First, the choice

128

may be far from ideal in the sense that these labeled folded structures are very different than the

actual folded response of the sheet to the labeled force patterns. Furthermore, as the training pro-

cess modifies the stiffness of different creases, the folded structures supported by the sheet change

as well, either by moving around or disappearing altogether in saddle-node bifurcations [23]. We

thus take a different approach to labeling folded structures, as detailed below.

Suppose we have trained a sheet for some time, and it now has a particular stiffness profile

on its creases ki. To find a folded structure of this sheet to be labeled ‘dog’, we apply each of

the ‘dog’ training examples once, and record the discrete resulting folded structures due to all of

them {ρ(F ∈ F dog)}. We then count the training force patterns that folded into each one of the

structures in this set. The folded structure that resulted from the largest number of training force

patterns is chosen to be labeled as ‘dog’. In case of a tie, e.g. two or more folded structures

folding as a result of the same number of force patterns, one of these structures is randomly chosen

to serve as the label. Thus, the labels for ‘dog’ and ‘cat’ are decided through simple plurality

rules every time we compute the classification accuracy of the sheet. Note that force patterns may

also fold the sheet into structures not labeled as either ‘cat’ or ‘dog’, in which case they count

as failed classification. If both ‘dog’ and ‘cat’ labels are chosen to be associated with the same

folded structure, a plurality rule between the two classes decides which class is labeled with that

structure (i.e. whether more ‘cat’ or ‘dog’ force patterns folded into that structure), while the other

is assigned with the runner up structure of that labels’ plurality vote. Finally, if the sheet is over-

trained to the point where only one folded structure remains, that structure is labeled as both ‘cat’

and ‘dog’, such that classification fails completely, by definition.

Effective cost function

In this work we have defined our learning rule as a supervised physical process modifying the stiff-

ness coefficients of an origami sheet. It is interesting to compare this kind of learning protocol to

more established learning algorithms originating in computer science and statistics. One important

difference is that traditional learning algorithms are usually defined as an optimization problem,

129

where the function to be optimized (often called cost or loss function) incorporates the training

data.

A simple example is linear regression, where the cost function is usually chosen as a least

squares form, where the differences are taken between a linear model h(x) and the observations y:

Cost ≡
∑

d∈data
(h(xd) − yd)2

h(x) = a0 + a1x

. (5.12)

The regression (or learning algorithm) then optimizes the cost function with respect to the

model parameters a ≡ (a0, a1)

minimize
a

Cost({x}, {y};a).

This optimization can be achieved in any number of ways, but a practically favored method (at

least for more advanced algorithms like deep learning) is mini-batch stochastic gradient descent

(SGD) [117]. In an extreme case, when the mini-batches are chosen to be of size 1, a single

training example (x, y) is chosen at random in each step, and one computes the gradient (with

respect to parameters a) of the cost function defined with this example alone G ≡ ∇a(h(x) − y)2.

Now, training proceeds by modifying the parameters in proportion to the the gradient of this single

example cost function

a→ a − αG, (5.13)

where α is a scalar known as the learning rate. We may compare this single example SGD with

our origami training protocol. It is relatively easy to see that our training rule (Eq. 5.11), once a

standard wait time is chosen at the folded state, has the form of SGD, making it similar in essence

130

to other learning algorithms. To find out what effective cost function gives rise to the origami

learning rule, we integrate Eq. 5.11 with respect to the stiffness coefficients

costmap(ρ(F dog)) = f
∑

i∈creases
kiρ

2
i (F dog)

if ρ(F dog) · ρ̂dog > ρ(F dog) · ρ̂cat : f = +1

else : f = −1

. (5.14)

Similarly to the linear regression example, our origami training protocol attempts to minimize

this derived cost function, one training example at a time. Inspecting this function, note that it is

very similar to the energy of the torsional springs in the folded structure ECrease(ρ) ∼
∑

i kiρ
2
i . The

difference is in the ‘supervising factor’ f that can be ±1 whether the folded structure is accepted

or not. We conclude that our origami training protocol is attempting to minimize the energy of

accepted folded structures, while maximizing the energy of rejected structures.

Supplementary Note 3 - Using origami sheets to define

classification problems

The force distributions classified in the main text are relatively simple. Both the spherical cap and

the Iris data distributions can be well separated by a hyper-plane, a very simple decision boundary.

It is interesting to study the type of decision boundaries naturally trainable in origami sheets – and

whether they can be used to classify intrinsically high dimensional data.

There are many ways to obtain high dimensional distributions. Here we choose to study distri-

butions derived from the folding maps of origami sheets. Consider a relatively simple sheet with

2 internal vertices (Fig. 5.9a). It is known that such sheets support 4 discrete folded structures,

and that the linearized null space in which they reside is 3-dimensional. Therefore, if we sample

random force patterns within this null space, we expect to see the sheet folding into 4 distinct struc-

131

(a) (b) (c)

Figure 5.9: Defining force distributions using the force-fold mapping of an origami sheet
a) Origami sheets with 2 internal vertices support 4 discrete folded structures. b) Sample force
patterns on a 2-sphere show the force-fold mapping (4 color coded regions). c) When some at-
tractor regions are merged (here, blue, yellow and purple are merged), we obtain an intrinsically
2-dimensional separator surface between two classes of force patterns.

tures (color coded regions in Fig. 5.9b). The forces F1, F2, F3 are assigned by randomly choosing

Euler angles on the 2-sphere, and 3000 data points are sampled on the positive octant. Note that

we sample normalized forces on the surface of a 2 − sphere, such that the distribution of force

patterns is actually 2-dimensional.

Now, suppose we wish to classify forces to 2 classes (‘blue’\‘orange’). A simple way to create

2 neighboring sets of points is to take the data of Fig. 5.9b and merge some attractor regions to

create larger groups of points. In Fig. 5.9c, we merge the ‘blue’, ‘yellow’, and ‘purple’ folded

structures to create one region we define as ‘blue’. This process yields two distributions that are

intrinsically 2-dimensional, and not naturally separable by a hyper-plane. Larger sheets can be

similarly used to create force distributions in higher dimensional space.

With this process, we have access to a new variety of 2-way classification problems, on which

we can try to train origami sheets using the training protocol described in the main text. Crucially,

the sheet used to classify such distributions is different than the sheet used to derive the distribution.

In other words, we ask if our training protocol can induce an origami sheet to mimic the force-fold

mapping of another sheet.

Suppose we want to classify the distribution seen in Fig. 5.10a, derived form a 2-vertex sheet

as described above. We wish to train a 13 crease sheet to classify this force pattern data. The

132

0 5 10 15 20 25 30

Epoch
0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

Training
Test

(a) (b)Desired classification (c) (d)Untrained sheet Trained sheetOptimal
training

Figure 5.10: Training a sheet on a force distribution derived from a different sheet
a) Target classification, a sample distribution derived from a small, 2-vertex origami sheet. b) The
force-fold map of an untrained 13 crease sheet is very different from the desired mapping. c) With
training, the accuracy of classification improves and peaks at 82%. d) The optimally trained sheet
has a complex decision boundary that resembles (but different than) the desired boundary.

untrained sheet has 24 discrete folded structures that do not align with the target distribution in any

representation that we tested (Fig. 5.10b). The problem of classification here is to train this sheet

to have just 2 folded structures with the right force-fold mapping as in the target distribution.

The target distribution is mapped to applied force patterns on the 13 crease sheet by the con-

struction describe in Supplementary Note 1: choosing random orthonormal vectors in the null

space of the 13 crease sheet and mapping the distribution as components of these vectors. We then

randomly sample 20 ‘blue’ and 20 ‘orange’ force patterns, marked as diamonds in Fig. 5.10, to

serve as the training set. As we train the sheet, the classification accuracy improves dramatically

and reaches a maximum of 82% (test accuracy) after 23 epochs (Fig. 5.10c). To qualify the classi-

fication better, we look at the classification results corresponding to the maximal accuracy at epoch

23 (Fig. 5.10d). We observe that the trained decision boundary resembles the desired boundary, so

that the training protocol indeed produced a reasonable classification.

Note a few artifacts that still remain in the trained map: 1) there are 3 folded structures left,

rather than 2 (a small third color coded region exists, labeled yellow), 2) a second orange region

appeared inside the bulk blue region, emphasizing that the decision boundaries between folded

structures in sheets are generally not hyper-planes. We conclude that origami sheets can be trained

to classify distributions derived from other sheets, that are intrinsically higher dimensional than

133

the problems discussed in the main text. We leave questions of the sheet size and the complexity

of decision boundaries to future studies.

Supplementary Note 4 - Transforming Iris data to applied

forces on sheets

The Iris data set [125] classified in the main text is a classical problem for classification. In this

work we are able train an origami sheet to correctly classify two species of Iris (I. Versicolor, I.

Virginica) at an accuracy of 91%. Here we discuss how the Iris data is used to generate training

and test sets of applied force patterns to be used on origami sheets.

Each Iris example in the data set is given as a vector with 4 features (components): sepal

length, sepal width, petal length, petal width. These length measurements are all given in cm. In

addition to these measurements, each Iris is labeled as one of the Iris species in the study. To

generate force pattern sets from this data, we would like the different measurements for each Iris

example to be components of force vectors in the null space of the origami sheet, as described in

Supplementary Note 1. However, the raw Iris data is not suited for this purpose due to two reasons.

The dimensionful measurements of Iris lengths, if directly translated to forces, would be far too

great for our sheets and will cause it to fold too much and cause the sheet faces to collide. More

crucially, sepal and petal lengths tend to be considerably larger than their widths, and the same

goes for the variance of these variables. This will causes the width variables to be perceived as less

important in the training protocol, and have a negative effect on the classification results.

Fortunately, diverse data like this is an issue regularly faced by learning algorithms, and it is

generically solved by applying an invertible transformation to the data. The transformed data is

then better suited for the learning algorithm in use. A typical example of such a transformation in

data sets is to normalize each feature (divide by the mean of that feature) and translate it such that

the mean of the transformed data is 0. This transformation is especially useful for classification

algorithms like logistic regression, where the different features have different dimensional units.

134

In our case however, the standard transformation above is not useful, due to a particular prop-

erty of origami sheets, namely their Z2 symmetry. If forces F are applied to the sheet and it folds

into a state ρ, then folding the same sheet with forces −F will result in a state −ρ. This is true

for any self-folding origami sheet, regardless of the stiffness profile on its creases. This property

cannot be changed by training the sheet. Thus, force patterns of opposite sign and different labels

cannot be correctly classified. A simple way to avoid this issue is to limit the force patterns to reside

in a restricted part of force space. We choose to limit the distributions such that the transformed

Iris data will all be in the positive 4-hyperoctant.

In addition, we want the data to span as much as possible of the positive hyperoctant. This will

increase the expressive of our training protocol, as more discrete folded structures would become

available if the applied force patterns are more diverse. We thus need to transform the Iris data to

be all positive, and stretch it such that all features have similar variance.

To achieve these goals we apply the following linear (invertible) transformation to the Iris data

of the Versicolor and Virginica species. Suppose an Iris example is given as a vector x (where the

components are sepal length, sepal width, petal length, petal width in this order). The vector is

transformed by

x∗ = Ax + b

A =



0.264 0 0 0

0 0.580 0 0

0 0 0.303 0

0 0 0 0.836


, b = −0.880. (5.15)

Then the transformed vector is used to define the force patterns applied to the origami sheet, as

described in Supplementary Note 1. After training is concluded, the transformation can be inverted

to relate the origami classification results with the original Iris data, as shown in the main text.

135

Chapter 6

Learned multi-stability in mechanical

networks

Materials design is generally predicated on knowing the desired material behavior at the time of

design. If an adaptable material with multiple behaviors is desired, all potential desired behaviors

are usually specified in advance. As a result, we can optimize design parameters compatible with

all of the specified desired behaviors. Among mechanical metamaterials, such design has been

fruitfully used to create materials that switch from being soft to stiff, transparent to opaque or

energy absorbing to elastic, by simply switching between different stable geometric states of the

material [12, 13, 17, 138, 139, 140, 141, 142, 143, 144, 145].

Here, we explore an alternative approach, where a material learns desired behaviors on the

fly by physically experiencing such behaviors in sequence, e.g., by being held in each desired

state for a period of time. Such a learning framework for materials offers many complementary

strengths to the conventional design framework. For example, the precise behaviors needed can

be inferred from the actual conditions of use in real time, instead of an a priori specification.

New functionalities can be gained during, and due to, use. Such benefits have made learning a

powerful framework in neuroscience and artificial neural networks, but this framework is relatively

136

unexplored in the context of materials [7, 15, 146].

However, learning in the context of materials presents challenges in addition to such oppor-

tunities. In the learning framework, the desired behaviors are not all known ahead of time but

presented sequentially. Thus material parameters to encode each desired behavior must be chosen

independently without knowledge of future desired behaviors. Most critically, each stored behav-

ior or state needs to survive the parameter changes due to the subsequent learned behaviors and

not be overwritten by them. It is not clear what kinds of material properties and interactions would

allow such sequential learning of multiple behaviors.

In this work we contrast the requirements for design and learning of multiple stable states in a

simple elastic network. In the design model, we search over all spring constants on a computer to

stabilize a set of states that are specified beforehand. In the learning model, the desired states are

learned in sequence by example, placing the material in each of these states for a period of time.

During this time, stabilizing elastic rods or springs with a rest length grow between particles within

some distance in space, mimicking the seeded growth of microtubules [147] or self-assembling

DNA nanotubes [148]. Thus, in contrast to design, the learning model is constrained by locality

in space and time – material parameters are modified only by the local geometry of the current

configuration being experienced [7, 146].

As a direct consequence, we find that successful learning requires non-linear elasticity of a

specific type. Parameterizing the elastic energy of springs in the network as E ∼ xξ for large

extensions x, we find that our design procedure is optimal for ξ ≈ 2 (Hooke’s law) but learning

requires 0 < ξ ≤ 1. Such nonlinear springs have been demonstrated using metamaterial de-

signs [149, 150]. We relate this distinction to the way springs are unequally strained in a learned

state – springs learned for that state are nearly unstrained while all other springs are highly strained.

Such ‘sparse’ strain profiles are stabilized by ξ ≤ 1 springs but not for ξ > 1.

We establish these results by relating spring non-linearity to Bayesian priors used in statistical

regression; such priors can pick out sparse solutions to equations in which some variables are

exactly zero. Much in the way Bayesian priors dictate sparsity in statistical regression, the non-

137

(b) Design

(a) Desired energy landscape (c) Sequential learning

Learned networkDesigned network

time

Figure 6.1: Designing vs learning multiple states
(a) We seek to create an elastic network with specific stable configurations. (b) In the design
approach, all desired states are specified beforehand and then network parameters (connectivity,
spring constants, rest lengths) are optimized to stabilize these states. (c) In learning, the material is
physically placed in the desired states in sequence and the network grows incrementally according
to the local geometry of that state (Eq. 6.1). Hence information about each desired state is localized
to only a fraction of network links (different colors). For learning to succeed, network changes due
to learning state 2 should not interfere with the stability of state 1 or vice-versa.

linearity of springs dictates that information about each learned state is localized in the material.

We hope our analysis of a simple mechanical model will stimulate further work on the conditions

under which materials can learn new functionalities on the fly.

6.1 Results

We seek to create an elastic network of springs connecting N particles in 2 dimensions, such that

the network has M desired stable states (Fig. 6.1a). Each desired stable state m = 1, . . .M is

specified by the positions x(m) of the N particles (up to rigid body translations and rotations).

In our design model, we connect the N particles by Hookean (linear) springs, and solve an

optimization problem for spring constants ki j and rest lengths li j that minimizes residual forces at

each of the desired configurations x(m) (Fig. 6.1b); see Supplementary Note 1 for details.

In the learning model, desired stable states are acquired by sequentially placing the material

in the desired configurations (Fig. 6.1c). When left in a configuration x(1) for a length of time,

unstretched elastic rods grow between every pair of particles i, j at a rate f (ri j) set by their separa-

138

tion ri j; we assume that f vanishes rapidly outside of a characteristic length scale R, so only nodes

within a distance less than R are stabilized by such rods. Such elastic elements that grow between

specific sites are found both in living systems (e.g., microtubules growing between centrosomes

and centromeres [147, 151]) and in synthetic systems (e.g., self-assembling DNA nanotubes [148]

growing between seeds).

Since the number of rods grows with time, the effective spring constant for the set of rods

connecting two particles i, j grows with time and is given by,

dkeff
i j

dt
= k0 f (ri j). (6.1)

Here k0 is the spring constant of each rod, whose rest length li j is assumed equal to the particle

separation ri j, i.e., rods are unstretched in the desired state. In simulations, we pick f to be a step

function of range R, f (r < R) = 1, f (r > R) = 0.

Equation 6.1 describes the learning rule for this material; the effective spring constant and rest

length between two particles i, j is determined by the geometric configurations experienced by the

material and the amount of time spent in each configuration. When the material is deformed and

held in a second distinct configuration x(2), additional rods start growing between the particles

according to their positions in the new configuration. In some cases, two particles can be joined by

multiple springs with different rest lengths.

6.1.1 Linear and non-linear elasticity

We ran the design and learning algorithms using rods with linear Hookean elasticity, i.e., with

elastic energy Ei j ∼ k0s2
i j when strained by si j. The design algorithm, when run on a pair of

randomly generated desired states x(1) and x(2) of 10 particles, resulted in an elastic network with

two stable minima that resemble x(1) and x(2), as seen Fig. 6.2a. These states can be retrieved by

any initial condition within wide attractor regions around x(1), x(2).

In contrast, learning the same two states x(1), x(2) with linear springs fails (Fig. 6.2b); the two

139

Designed network

Learned network

Learned network

Figure 6.2: Non-linear interactions are essential for learning multiple states in sequence
(a) Energy landscape of a designed network with linear (ξ = 2) springs successfully stabilizes
desired states (black stars). (b) In the learned network, linear (ξ = 2) springs learned for each
desired state destabilize the other state, but non-linear (ξ = 0.5) learned springs stabilize both
desired states. (c,d) Repeating learning for non-linear springs with E ∼ sξ, we find that learned
states overwrite each other for ξ > 1 but are protected from each other with sufficiently non-linear
ξ ≤ 1 springs.

140

desired states are not stable minima of the learned network. The rods grown to encode state x(1)

destabilize, or overwrite, state x(2) and vice-versa. Initial conditions near either x(1) or x(2) relax

to new minima very different from x(1), x(2).

Why do linear springs allow stabilization of multiple states with design but not with sequential

learning? In design, the desired configurations are known ahead of time and so each spring’s

parameters can be chosen cognizant of all desired configurations. In fact, one can check that

changing one of the desired states, e.g., x(1) → x(1) + δx(1) changes stiffness ki j and rest length li j

for all springs. In this sense, information about each desired state is stored in every spring.

However, in a learning model capable of acquiring arbitrary stable states in sequence, the

parameter changes made to store a state x(m) cannot depend on the details of future desired

states [152], and indeed, in this model, does not depend on past encoded states either. That is,

changing a desired configuration, e.g., x(m) → x(m) + δx(m) changes the spring parameters ki j,

li j only for springs grown while learning state m. Thus, information about each stored state is

confined to a subset of springs.

Consequently, to stabilize a state x(m), the elastic dynamics should only attempt to minimize

strain to zero in a subset of all springs while leaving all other springs stretched arbitrarily as needed.

However, the mechanics cannot possibly know which subset of springs was learned to stabilize a

particular state x(m) and thus which subset to satisfy.

A clue to solving this problem comes from sparse regression [153, 154]. As an example,

consider an under-determined problem As = b for a vector s. If we know a priori that an s exists

which has some components that are strictly zero and others non-zero, we can find such ‘sparse’

solutions s by adding a ‘Bayesian prior’ ||s||ξ =
∑

i sξi to the least squares loss function,

E = ||As − b||2 + ||s||ξ (6.2)

and then minimizing E [153, 155]. If ξ ≤ 1, such a Bayesian prior ||s||ξ biases the search

towards solutions s in which some elements of s are strictly zero while others are non-zero (i.e.,

141

(a)

(b) (c)

(d)

Figure 6.3: Non-linear springs apply a Bayesian prior to the strain distribution
(a) The energy of the two red springs is represented by red contours, that of all other springs by
black contours. The whole system’s energy minima will be at points where these contours are
tangent to one another. (b) If ξ > 1, the minimum is at a generic point with no special features.
(c) If ξ ≤ 1, the minimum is very likely to be at a red cusp, corresponding to a configuration in
which one of the red springs is unstrained. (d) Typical stable states of a large N = 100 network
have many unstrained springs if and only if ξ ≤ 1.

‘sparse’ solutions). We emphasize that the Bayesian prior sξ contains no information about which

components of s are to be set to zero; rather, it biases regression towards such solutions and away

from generic solutions in which all entries of s are non-zero.

We employ a similar strategy here by identifying s above with the vector of strains in different

springs. Let us assume that the network spring energies take a non-linear form,

E(s) ∼ k0
s2

(σ2 + s2)1−0.5ξ
, (6.3)

where k0 is the spring constant and si j ≡ (ri j − li j) is the strain relative to rest length li j. ξ

parameterizes the non-linearity (Fig. 6.2c); ξ = 2 is a linear Hookean spring while ξ < 2 springs

have softer restoring forces at large distances, E ∼ sξ. Finally, σ is a small length scale within

which the interaction is linear for any ξ and is introduced to keep the model realistic, reflecting

practical realizations of non-linear ξ < 2 springs [149, 150]; our results below hold for σ → 0 as

well. See Supplementary Note 2 for details.

142

We repeated the same learning procedure on the same states as earlier - but with non-linear

springs ξ < 2. While the results for 1 < ξ < 2 are qualitatively similar to linear springs ξ = 2, ξ < 1

shows qualitatively different results – learning succeeds in stabilizing multiple states (Fig. 6.2b,d).

How do we understand this result? It is clear that forces due to ξ < 1 springs diminish with

strain and thus weaken the effect of strained springs that code for other states. However, the

analogy with Bayesian priors goes further by explaining the sharp change in behavior at ξ = 1 due

to the non-analytic nature of sξ. Following work in sparse regression [153], in Fig. 6.3b,c, we plot

the energy contours for the red springs shown, where the two red springs have incompatible rest

lengths. The constant energy contours are cusped for ξ < 1 but not ξ > 1. At the cusps, one of the

two red springs is completely unstrained while the other contains all the strain. When minimized

in conjunction with other springs (dashed black contours), minima are exceedingly likely to be at

cusps for ξ < 1, where strain is localized to one spring.

Thus, non-linear ξ < 1 springs stabilize states with bimodal strain distributions - some springs

are highly strained while others are unstrained. To complete the analogy with sparse regression,

note that the energy of the system in Fig. 6.3 resembles Eq. 6.2. Let Fext represent forces on the

particle in Fig. 6.2a due to the black springs (assumed constant for simplicity). In the limit of small

core sizes σ → 0, the red spring energies are given by E(r) = k(r − l)ξ ≡ ksξ, so that the total

energy of the subsystem shown is,

E = −Fext · x + k
∑
red

sξa = −Fext · x + k||s||ξ, (6.4)

where ||s||ξ is the ξ-norm of the strain vector s for the red springs. The non-linear elastic energy

has the analytic form of sparse regression, Eq. 6.2, and thus one of the red springs is unstrained in

each stable minimum. Note that the springs now play a dual role, both providing the equation that

is to be solved (the equivalent of As = b in sparse regression), and providing the bias towards a

bimodal strain distribution.

To test this analogy in larger elastic networks, we let a N = 100 particle network learn two

143

(a) (b)

(c) (d)

Figure 6.4: Optimal non-linearity for learned and designed states
(a-b) Barrier heights around designed states are highest for ξ∗ ≈ 2 (linear springs) but highest
for learned states at a specific non-linearity 0 < ξ∗ < 1. Further, learning more states requires
stronger non-linearity ξ∗. (c) We find similar results by quantifying learning quality by attractor
size around stable states. (d) Learning rules that connect more distant nodes, i.e., larger range R
for f (r) in Eq. 6.1, lead to larger attractor basins (see SI for details). L is the system length.

distinct states, and measured the strain in each spring after relaxing to one of the states (Fig. 6.3d).

For non-linear springs ξ < 1, we find a bimodal strain distribution - half of the springs are con-

siderably strained, while the other half are at (approximately) zero strain. This result is in stark

contrast to the designed minima with linear springs ξ = 2, for which all springs are strained.

6.1.2 Optimal non-linearity

The quality of both learning and design can be quantified by the attractor size and barrier heights

around stored states. Large attractors and high energy barriers allow robust retrieval of states from

a larger range of initial conditions. These measures have long been used to quantify quality of

learning in neural networks [156, 157, 158].

We find that quality of designed and learned states, as measured by barrier heights, is highest

at distinct ξ∗; see Fig. 6.4a,b. The quality of designed states, for our simple design algorithm, is

optimal for linear springs ξ∗ ≈ 2 and is relatively insensitive to the number of designed states.

144

However, the optimal ξ∗ for learned states is 0 < ξ∗ < 1 and varies with the number of learned

states. We find similar results by measuring attractor radius instead of barrier heights (Fig. 6.4c).

See Supplementary Note 3.

Much as in sparse regression [159, 160], the optimal ξ∗ for learning can be understood as a

balance of two factors – sparsity (smaller ξ) and convexity (larger ξ). Smaller ξ leads to more

sharply cusped energy contours in Fig. 6.3c and thus a stronger bias towards bimodal strain dis-

tributions with zero strain in some springs (i.e,. sparsity). However, smaller ξ → 0 also leads to

vanishing restoring forces outside the immediate vicinity of the unstrained configuration, creating

a ‘golf course’ landscape with vanishing attractors. Thus while smaller ξ locally stabilizes each

desired minimum using bimodal strain distributions, larger ξ enlarges the attractor basin, making

these minima easier to find. Similar considerations in canonical sparse regression problems select

ξ∗ = 1 as an optimal choice [153].

The radius of spring connection R plays an important role in setting the optimal ξ∗ value. We

observe that the additional stabilizing contributions of the springs afforded at larger R facilitates

the optimal stabilization of the system at higher ξ∗, and thus with attractors of larger size, as seen

in Fig. 6.4d (for more information see Supplementary Note 4). L is the length scale of the system.

6.1.3 Pattern Recognition

Finally, we ask whether our learned network with large robust attractors around the learned states

can perform pattern recognition. To do this, we turn to the MNIST handwritten digits database [161],

and try to teach an elastic network to recognize the digits ‘0’ and ‘1’ from examples of these digits.

We trained the elastic network with 5000 samples of the digits 0 and 1 each from the MNIST

database in the following way; each 400 pixel image was interpreted as a 1-d configuration of 400

particles by interpreting each pixel’s gray-scale value as a particles position in the interval [0, 1].

The particles in such a state are connected by elastic rods according to the learning rule in Eq. 6.1.

For ξ < 1, we find that the training generally creates two distinct large attractors corresponding to

an idealized 0 and 1 respectively (Fig. 6.5d).

145

(a) (b) (c) (d)Training
examples

Initial
conditions springs springs

Figure 6.5: Elastic networks learn to recognize handwritten digits
(a) Images representing two particle configurations that we wish to stabilize (adapted from
MNIST). The 400 pixel gray-scale values in each image are interpreted as positions of 400 particles
in 1-dimension. We learned a non-linear spring network using 5000 randomly drawn examples of
0s and 1s each. (b) Learned networks are then tested by initializing at configurations corresponding
to new unseen examples of ‘0’ and ‘1’. (c) Linear networks fail to learn stereotyped states; ini-
tializing at each test example results in an unique uninterpretable state. (d) In contrast, non-linear
networks learn two stereotyped states corresponding to ‘0’ and ‘1’ that are reliably retrieved in
response to unseen examples of ‘0’ and ‘1’ from the MNIST database.

We then test the network by using novel unseen examples of 0s and 1s from MNIST as initial

conditions for the particles. While these test images are not identical to any particular 0 or 1 used

in training, the elastic network still retrieves the correct stored 0 or 1 state. Thus the non-linear

ξ ≤ 1 elastic network learns states 0 and 1 with sufficiently large attractors to accommodate the

typical handwriting variations seen in the MNIST database.

6.2 Discussion

In this work we contrasted a design and a learning framework for creating multi-stable elastic net-

works. We found that continually learning novel states without overwriting existing states requires

a specific non-linear elasticity ξ ≤ 1. The learning model here relies on spontaneous growth of

stabilizing rods between nearby nodes, a behavior displayed by microtubules [147], DNA nan-

otubes [148] and other such seeded self-assembling tubes [162, 163, 164].

146

The non-linearity ξ plays a unique role as a material design parameter. Most material param-

eters (e.g., li j, ki j of springs here) encode information about desired states. But ξ encodes an

assumption about how information about desired states is distributed among parameters li j, ki j of

different springs. Learning localizes information about each state to a subset of all springs. Hence

stabilizing learned states requires ξ < 1, establishing states in which some springs are fully relaxed

even if others are highly strained, i.e., the strain profile is sparse. In this way, the non-linearity ξ

is mathematically analogous to Bayesian priors in statistical regression that encode assumptions

about the sparse nature of solutions. However, the elastic network here goes beyond the classic

sparsity problem (Eq. 6.2); the network has 2-d spatial geometry absent in Eq. 6.2 and is more

closely related to (unsolved) sparse reconstruction of 2-d maps from pairwise distances between

cities [165]. Consequently, we can explore how physical parameters with no analog in Eq. 6.2,

such as the maximum range of learned interactions R (Fig. 6.4d) and spatial correlations between

stored states, affect the optimal non-linearity ξ (Supplementary Note 4).

Learning and design have complementary strengths, as seen before in neural networks and

spin glasses. For example, Hopfield [166] introduced neural networks that can learn arbitrary

novel memories in sequence using a biologically plausible ‘Hebbian’ learning rule. Gardner [167]

showed that the same model has a higher memory capacity if we assume an optimally designed

network in lieu of learning. However, Gardner’s network can be designed only when all desired

memories are known — and must be redesigned from scratch to include new memories.

Similarly, in materials, design might be sufficient if all desired states are known beforehand

and unlimited computational power is available, since design allows optimization over all design

parameters. In contrast, learning is a physically constrained exploration of the same design param-

eters. However, such constrained exploration can be superior when the desired behaviors are not

known a priori and revealed only during use of the material itself. We hope the simple mechanical

model studied here will stimulate further work on realistic learning rules that allow materials to

acquire new functionalities on the fly.

147

6.3 Supplementary Notes

Supplementary Note 1 - Design of multiple stable states with

linear and non-linear springs

As a simple model for weakly strained elastic materials, linear (Hookean) springs are often used

for theoretical constructions of elastic networks. Each of the two nodes connected by a linear

spring of stiffness k and rest length l, and separated by distance r, feels a force |F| = k|r − l|. The

energy associated with the straining of the spring is E = 1
2k(r − l)2.

Suppose we construct a network with N nodes embedded in d-dimensional space. Each 2 nodes

(located at xi, x j) are connected by a linear spring of stiffness ki j and rest length li j. The energy of

the elastic network is

E({x}) =
1
2

N∑
i=1

N∑
j=i+1

ki j(ri j − li j)
2, (6.5)

where ri j ≡ ||xi − x j|| are the distances between nodes. The stable configurations (minima) of

this energy function are found by equating the gradient of Eq. 6.5 with respect to node positions to

zero:

0 = ∂xa E =

N∑
i=1

N∑
j=i+1

ki j(ri j − li j)
∂ri j

∂xa
. (6.6)

This procedure gives Nd equations that have to be satisfied simultaneously for the Nd node

coordinates. Note that Eq. 6.6 is not linear in node coordinates, as the distances in dimension

d are computed by ri j =

√∑
d(xi,d − x j,d)2 (manifestly nonlinear in xi for d > 1, but even for

d = 1 → ri j = |xi − x j|). Due to the nonlinear relation of ri j to xi, x j, multiple solutions {x?} can

148

4 5 6 7 8 9 10 11 12
N

25

50

75

100

125

150

175

Nu
m

be
ro

fm
in

im
a

Figure 6.6: Number of stable configurations in a network of linear springs grows linearly with the
size of the system

satisfy Eq. 6.6 simultaneously. Even though one still needs to check the second derivative at the

proposed configuration {x?} to test if it is a stable minimum, in practice we find that there indeed

exist multiple stable points for two-dimensional embeddings. Simulating small systems with up to

12 nodes in 2d, we find that the number of minima scales linearly with node number (Fig. 6.6).

These multiple minima in the potential energy landscape, if moved around, could be utilized to

program the desired stable configurations. This is possible by careful choice of the stiffness values

ki j and rest lengths li j of all springs. Note that even tough Eq. 6.6 is nonlinear in node positions

{x}, it is linear in both ki j and ai j ≡ ki j · li j. Suppose we want to solve the system of equations 6.6

for M different node configurations denoted by {x}m, giving rise to distance matrices rm
i j . Solution

to such linear systems of equations can generally be found if the number of equations (NdM) is

less than the number of variables (0.5N2d). To design linear springs with multiple desired stable

points, we thus numerically solve Eq. 6.6 simultaneously for the desired configurations {x}m to get

the values of ki j, li j, and then check that the obtained elastic network is indeed stable in all of these

configurations.

149

The particular algorithm discussed above is only defined for linear springs with ξ = 2, as

defined in the main text. Still, a design protocol for spring-node systems with any value of non-

linearity ξ is possible. With non-linear springs the force balance of Eq. 6.6 becomes:

0 = ∂xa E ∼
N∑

i=1

N∑
j=i+1

ki j(ri j − li j)
ξ−1∂ri j

∂xa
, (6.7)

which is unfortunately non-linear in the rest lengths li j. In similar spirit to the above algorithm,

we minimize the sum-squared of all NdM equations due to the set of Eq. 6.7 over the design

parameters ki j, li j. If minimization succeeds in finding perfect (zero) solutions, it gives sets ki j, li j

for which the nodes feel very little force in all of the M stable states. We can then numerically

check whether these states are stable.

The capacity of designed networks to store multiple stable states MC is expected to scale lin-

early with system size (number of nodes N). This idea arises as stabilizing M states requires the

simultaneous satisfaction of NdM constraints using 0.5N2d parameters as discussed above. These

two numbers match for a critical number of states MC ∼ N, and for M > MC no solution ex-

ists in general. Unfortunately, this prediction is difficult to corroborate numerically due to the

computationally NP-hard nature of the design problem.

Supplementary Note 2 - Energy model for nonlinear springs

The main text establishes that to enable the learning paradigm to store multiple stable states in an

elastic networks, one needs to utilize nonlinear springs with certain properties. Most importantly,

if a spring is to hold information about one configuration associated to it, the spring should apply

a strong force only when the system is close to its associated configuration. One simple way to

parametrize such forcing is to use a spring whose force when pulled away from the preferred length

is F ∼ (r − l)ξ−1. Clearly, if one chooses ξ = 2, the limit of linear springs is obtained once more,

where the force gets stronger the further the spring is strained.

150

If one chooses 0 < ξ < 1, the spring’s response weakens as it is strained. Unfortunately such

springs are nonphysically singular for r = l. One way to counter this singularity is to introduce a

linear ”core” spring, with some length scale σ, such that the spring behaves like a linear spring for

|r − l| < σ, and non-linearly otherwise. If we define a non-dimensional strain u ≡ (r − l)σ−1, the

energy of such a spring can can be written as:

E(u) =
1
2

kσξ ·
u2

(1 + u2)1−0.5ξ
, (6.8)

with r the spring length, k stiffness, l, σ the rest length and ”core” size, respectively. The

prefactor σξ is chosen so that the long range forces u→ ∞ are independent of the core size σ, and

that the ξ = 2 limit is the desired linear spring. In this model, spring non-linearity is controlled

by the exponent ξ, defined in a way to recapitulate the behavior of regularizers in optimization

problems. A choice of ξ = 2 gives rise to linear springs, akin to ridge regularization, while ξ = 1

gives long range constant forces E ∼ u, similar to LASSO regularization. The extreme limit ξ = 0

defines springs whose energy is a Lorentzian. Outside the core region, such springs exert forces

that diminish quickly as F ∼ u−1. In general, the force due to the nonlinear springs is

F(u) = kσξ−1u ·
1 + 0.5ξu2

(1 + u2)2−0.5ξ
. (6.9)

The crucial property of this family of spring potentials is the force behavior at large strains, far

beyond the core u � 1. At large strains the force applied by the springs is F ∼ uξ−1, a form which

goes through an important transition at ξ = 1. For springs with ξ > 1, the restoring force grows with

strain, while for ξ < 1 the force diminishes. This transition causes an important change of behavior

when such spring potentials are summed together, as shown in Fig. 6.7. The minima of individual

springs are preserved for ξ < 1, while these minima are overwritten for springs with ξ > 1. We

conclude that only springs with ξ < 1 (or more generally, springs whose force diminishes with

151

= 0.0

= 0.5
E s

pr
in

g

= 1.0

= 1.5

Coordinates
= 2.0

Figure 6.7: The sum energy of two springs goes through a transition at ξ = 1
The energy minimum of each spring is preserved for ξ < 1, while these minima are overwritten
for ξ > 1. In essence, the information on minima of ξ < 1 springs is stored with each individual
spring. (Black dotted lines correspond to the individual potentials of two nonlinear springs with
given ξ, bold blue lines show the sum of the two potentials, shifted up for clarity).

range) enable the learning paradigm described in the main text. In learning, we would like the

information about each stored state to be localized to a subset of springs, and that adding more

springs for new states does not overwrite the previously stored information. Figure 6.7 clarifies

that springs whose force grow with strain are completely unfit for this purpose.

152

Supplementary Note 3 - Numerical exploration of mechanical

networks

Testing predictions about learning elastic networks requires the numerical construction of such

networks, and the ability to explore their potential energy landscape. This section describes some

of the technical aspects involved in simulating these networks and deducing their properties. The

codes to produce and study the elastic networks is implemented in Python and available upon

request.

Network construction

The elastic networks simulated for this work consist of N nodes embedded in a 2d box of size

1 × 1. For each desired system configuration (stored state), node positions are sampled uniformly

at random within the boundary of the box. Each multi-stable system of this type with M states is

thus described by M × N × 2 positions in the range [0, 1]. Springs are attached between pairs of

nodes according the paradigm studied (design, learning).

For the study of design, we fully connect all pairs of nodes in the system with linear springs

(ξ = 2). These springs are chosen to take into account all of the desired states simultaneously. The

choice of springs (stiffness and rest length values) is made by solving the set of equations 6.6 in

Supplementary Note 1. Construction of fully connected designed networks with non-linear springs

(ξ , 2) is facilitated by optimizing forces at the desired stored states (Supplementary Note 1).

System with learned states are constructed by attaching a set of springs between pairs of nodes

for each stored state. We generally do not fully connect the nodes, instead opting to connect a

spring between nodes within a certain chosen distance R, as outlined in the main text. All springs

in this paradigm have the same spring stiffness k, core size σ and non-linearity parameter ξ. The

springs only differ in their rest length, chosen so that the springs are relaxed in their respective

state. Thus, learning is ’easy’ in the sense that no computation is required to choose the new set of

153

springs in new stored states. This suggests learning can be performed by a rather simple, physically

passive system, whose time evolution depends only on its current configuration.

Estimation of attractor size and barrier height

When M > 1 states are encoded into a network, it is of immediate interest to check whether these

states are stable at all. We define a stable state ~X(m) (N ×2 spatial vector) by the following require-

ment: when the system is released from ~X(m) and allowed to relax to a nearby stable minimum

of the potential energy landscape, the relaxed configuration ~X(m)
∗ is close in configuration space

to ~X(m). We consider states to be preserved if the average displacement per degree of freedom

after relaxation is much smaller than the size of the box. The potential core size σ is used as this

stability cutoff
||~X(m)
∗ −

~X(m)||
2N < σ, where the typical core size is ∼ 1% of the box size. If the different

encoded states pass this test, we say that the states are stable, and the encoding was successful. See

Supplementary Note 4 for more details on the stability of stored states.

In an effort to find optimal schemes for storing stable states in elastic networks, basic stability

does not suffice, and we require additional measures of merit. A natural approach is to study the

attractor basins of the encoded states, specifically their spatial extent and the energetic barriers

surrounding them. The larger the attractor basin, the configuration can more reliably be retrieved

when the system is released farther away from its minimum. High energy barriers surrounding

the state basins improve their stability when the system is subjected to finite temperatures or other

types of noise.

Unfortunately both attractor size and energy barrier are non-local properties of the attractor,

requiring many high-dimensional measurements away from the stable state. Rather than exhaus-

tively studying the attractor basin shape and height, we employ a procedure as follows: at the stable

state, choose a random direction and take the system a small amount in that direction. Relax the

system from the new position and verify whether it relaxed into the same stable state. If so repeat

the last step, but take the system slightly farther away in the same direction as before. Repeat

these steps until the system no longer relaxes to the initial state, but instead reaches another stable

154

point of the landscape. Measuring the distance required to move the system in order to escape the

attractor, and the energy at that distance, furnishes an estimate of both the attractor size and the

energy barriers around it. We repeat the above process to average the results over many different

random directions in configuration space.

An important correction is needed for the above estimation, in particular for the flatter spring

potentials ξ � 1. Attractors arising from these potentials tend to be very flat far from the core

region σ surrounding each stored state. Although flat regions mathematically belong to some at-

tractor basin, releasing the system in these regions will require long relaxation times, and relaxation

dynamics are highly unstable to external noise. We therefore define a ’useful’ attractor, such that

the gradient that leads relaxation towards the stable point is large enough. In practice, we cut-off

the attractor defined by the previous algorithm when the relaxation force is smaller than a fraction

(∼ 0.5) of the typical force within the core distance σ. The inclusion of this force (gradient) re-

quirement gives rise to an optimal non-linearity value 0 < ξ < 1 for learned states, as shown in the

main text.

Supplementary Note 4 - Stability of learned states

In the main text we established the usefulness of learning with non-linear springs as a means of

programming multiple stable states into an elastic network. In this section we discuss some limita-

tions of this idea, such as the finite capacity of node-spring networks, and the effect of connectivity

within a state and correlations between states on the quality of learning.

Storing capacity

Nonlinear spring networks (with ξ < 1) can stabilize multiple states through sparsity - springs

associated with a certain state dominate the response of the network when it is situated close to

that state. Springs associated with other states are highly stretched, yet apply small forces that

further diminish at high strains. Still, force contributions of springs unrelated to the desired state

155

(a) (b) (c)

Figure 6.8: Programming stored states using the learning paradigm exhibits finite capacity
a) Each stored state is affected by springs associated with other states. Initially the new springs
have a small effect and the state remains a stable attractor. However, eventually states destabilize
due to the forces exerted by the other stored states (Blue squares denote a certain stored state, black
circles show the nearby stable configuration). This state fails when 13 statess are simultaneously
encoded (N = 100, ξ = 0.6). b) When node displacement is averaged over stored states, we
observe a sharp failure of all stored states close to a specific load, defined as the capacity (12 − 13
states in this case). c) Capacity scales linearly with system size N.

are finite and act to destabilize that state.

The learned networks studied in this work exhibit destabilization of learned states due to the

effect of springs associated with other stored states. Figure 6.8a shows a typical scenario observed

in these networks, where a desired state is stable when the overall number of learned states is

low. Then, an abrupt threshold (capacity) is passed after which the state destabilizes completely

and the system relaxes into a configuration that looks completely different from the desired stored

state. Generically, all learned states fail in this way at a similar capacity value (Fig. 6.8b). This

capacity is well-defined and observed to depend on the parameters of the system, such as size N

and non-linearity ξ.

Let us now argue for a scaling relation of the storing capacity. Suppose a system of N nodes is

used to learn M +1 states. In configurations close to state 1, N springs will apply a stabilizing force

FS , while the rest N × M springs will act to destabilize the state with force FDS . All stabilizing

springs provide a force in the same stabilizing direction such that FS ∼ N. If we assume the N×M

destabilizing forces due to unrelated springs are randomly oriented and similar in magnitude, the

156

total destabilizing force would behave like a random walk and have a magnitude FDS ∼
√

N × M.

The capacity of the system is reached when the magnitude of the destabilizing force is equal to

that of the stabilizing force, so that

FDS (MC) ∼ FS → MC ∼ N. (6.10)

The capacity of a learning network is expected to scale linearly with system size, similarly to

other Hopfield-inspired learning models [166]. This prediction was tested in networks with of sizes

N = 6 − 26 and for several values of the non-linearity ξ. Results shown in Fig. 6.8c are consistent

with the linear scaling suggested above. Theoretical arguments of a similar nature suggest another

scaling relation MC ∼ exp(−ξ), also in agreement with numerical data. However, we regard

the capacity dependence on non-linearity to be of lesser interest, as other metrics for quality of

encoding (barrier height and attractor size), discussed in the main text, are more important for the

robustness of learning.

Connectivity of nodes

It is well known that the rigidity of elastic networks strongly depends on node coordination - the

number of springs connected to the different nodes. Rigid networks are characterized by coordina-

tion numbers exceeding the Maxwell condition [168]. Then, a stable state of the over-constrained

network can be understood as a minimum point of the energy landscape constructed of the spring

potentials. Further increasing the coordination of nodes - or their connectivity to other nodes,

usually results in stable states surrounded by higher energy barriers.

This argument suggests an intriguing possibility, that increasing connectivity in learned net-

work may improve the stability and quality of the state storage. Such an outcome is possible as

the act of adding more non-linear (ξ < 1) springs associated with a certain stored state is not ex-

pected to significantly alter the state itself, since the rest lengths are chosen to stabilize this state.

157

(a) (b) (c)

(d) (e) (f)

10 20 30 40 50
Mean connectivity Z

0.1

0.2

0.3

0.4

0.5

0.6

O
p
ti
m
a
l

Stored states
2
3
4
5

Figure 6.9: Effects of node connectivity and state similarity on the quality of encoded states
(a-c) Connectivity between nodes 〈Z〉 increases with the effective connection radius R. We find
that the more internally connected a state is, the larger its attractor size, and higher the optimal
value of the non-linearity parameter ξ (N = 100). (d-f) Trying to store similar states is more
difficult than random states. When the mean distance between nodes in successive states are small,
attractors basin are also small, and successful encoding requires small values of ξ and flat potentials
(N = 100).

On the other hand, the extra springs may increase the height of energy barriers surrounding the

state, making it more stable against temperature and noise. Furthermore, increasing connectivity

may also enlarge the attractor regions of stored states, as the extra constraints induced by the new

springs may suppress ’distractor’ states (spurious energy minima due to partial satisfaction of the

frustrated interactions).

In the context our learning paradigm, connectivity is controlled by the effective radius of rod

growth R defined in the main text. If states are constructed by randomly placing N nodes in a

d-dimensional square box of length L, it is easy to see that the average connectivity scales as

〈Z〉 ∼ NRd while R � L. We use N = 100, ξ < 1 networks to test the effect of node connectivity

on the attractor size of stored states. Results presented in Figure 6.9(a-c) verify that the quality of

state storage, as measured by the attractor size of states, improves with their connectivity.

158

State similarity

In most of this work we considered stored states that are completely uncorrelated between them-

selves, i.e. the position of a node in each stored state is independent of its position in other states.

In practice, it might be easier conceive of elastic networks whose different stable states are not too

different from one another, in which neighboring nodes in one configuration will remain neighbors

in other configurations. Furthermore, some applications (e.g. classification of similar objects) may

require different stored states to be correlated to differing extents. In general, encoding correlated

(i.e. similar) states is expected to negatively affect the stability of these states and their quality (as

measured by attractor properties as size and barrier heights).

To test the impact of similarity between states, we embedded a N = 100 network with states in

which the average displacement of nodes in successive states was controlled. Figure 6.9(d-f) shows

that the larger the difference between states, the larger their respective attractor sizes. In addition,

larger differences between states allows their stabilization at higher ξ values, which is expected

to improve the heights of energy barriers surrounding them and further suppress distractor states.

Still, we show that it is possible to encode multiple states in elastic networks, even when the

average difference between stored states is a small multiple of σ (the potential core size, within

which states are indistinguishable).

159

Chapter 7

Discussion

In this work we demonstrated and compared design and learning approaches for programming

mechanical systems to perform defined tasks. Both approaches allowed us to achieve the desired

results for self-folding origami and elastic networks. Studying these systems using the lens of

simplified energy models was indeed a fruitful choice, as the energy landscape viewpoint often

facilitated the definition of the desired goals (i.e. desired functionality was defined by desirable

features of the energy landscape). The best example in this work is how multi-stability in elastic

networks was envisioned as an energy landscape with minima at specific points in configuration

space. Such a graphical representation suggests a design paradigm that minimizes forces at these

points, and a growth (learning) framework that automatically chooses these points as minima.

We have discussed the benefits and drawbacks of design and learning in both mechanical sys-

tems, and arrive at some broad conclusions. Design can often be defined as a one-step process,

optimizing a certain design function to achieve the desired goal. Thus, a design problem can often

be solved on a computer without the need of constructing actual physical systems. Moreover, a

design process follows a rational understanding of the system at hand and the task it needs to per-

form. In this work, our design approaches optimized rationally defined function, like the energy of

folded states in origami, or the forces at stable elastic network states. In such cases, the solution

to the optimization problem has a clear physical interpretation. For example, the sheets of chapter

160

4 fold successfully into the desired states because they have the lowest energy in the landscape,

ensuring they survive the saddle-node bifurcations. These advantages have made design the de

facto approach for engineering mechanical systems. However, design has drawbacks as well. In

particular, designing large systems tends to be a computationally (NP-)hard problem, as it entails

computational optimization of generically non-convex functions. Furthermore, as shown in chap-

ter 6, design usually does not account for future unforeseen uses for the system. If the system needs

to perform a new task on top of the previous ones, it generally needs to be completely redesigned.

Learning in physical systems, a concept not well studied so far, can give rise to impressive

advantages compared to design. Learning systems can be modified according to use cases in re-

sponse to external inputs. Such adaptive systems can be trained to perform tasks, e.g. classification

of forces, even if the task is not clearly defined. For example, origami can correctly classify ‘cats’

and ‘dogs’ even if it did not train by observing all of these cats and dogs, and without any specifica-

tion of what cat and dog actually are. Thus, just as in neuroscience and computer science, learning

is a powerful approach that can program tasks to a system without specifying rules or constraints,

that might be unknown at the time of training. In other words, a trained system is guaranteed to

fail for a use case not specified at the time of design, while a learned system may generalize what

it learned to correctly handle such cases. Learning in mechanical systems tends to be computation-

ally easy, as the system employs a physical learning rule that modifies it due to use. This suggests

that constructing large (many degrees of freedom) learning systems may be much more feasible

than large designed systems. Moreover, continual learning of new tasks is an advantage that cannot

be reproduced in design; a learning system may be able to adapt to new tasks without forgetting

old ones, as we demonstrated on elastic networks.

Learning systems also have important disadvantages, both practical and conceptual. On a

practical level, physically reasonable learning rules are quite a bit more limited than computer

science machine learning rules. In some sense, they must be local in space and time, as a part

of a system may only be modified according to the example it sees at that moment (with some

leeway possible for neighbor interactions and temporal memory effects). Though such learning

161

rules naturally exist, e.g. Hebbian rule [152] in neurons, these rules likely heavily constrain the

type of tasks physical systems can potentially learn to perform. In addition, engineering systems

that implement such learning rules is far from trivial. Synthetic smart materials that change due to

use are relatively new, and the extent of possible modifications is in active research. Thus, much

more work would be required to construct synthetic physical systems that can learn any meaningful

tasks. We do note that such research is currently actively undertaken for both self-folding origami

and elastic networks.

A more fundamental disadvantage of learning is the issue of interpretability – the understand-

ing of what the system has learned. Plaguing both neuroscience and machine learning, this idea

that the system learned to perform a task does not mean that we, as its creators, understand how

it actually does it. A learning system generically extracts some statistical information from the

examples it observes, informing it on how to react if such correlations are again presented in the

future. Unfortunately, the extracted information is generally opaque to both the trainer and the

user. The problem is even worse when the learning system embodies a very complicated mathe-

matical model (such as neural networks, natural and artificial). Our learning mechanical systems

are somewhat similar. For example, the origami classifiers learn a suitable landscape for classify-

ing the input forces, but what the learning rule actually optimizes is not completely clear (chapter

5), i.e. it is hard to tell what features are programmed into the energy landscape.

In this age, learning algorithms have taken off as a means of accomplishing complicated com-

putational tasks, from detecting fraudulent interactions [169] to playing Go [170]. We propose to

use these lessons in the creation of new classes of mechanical systems, possibly fit for accomplish-

ing tasks previously impervious to design. A learning system may in some cases be trained by

an end-user for specific tasks, allowing for more flexibility and usability than designed systems.

Though methods of design will assuredly dominate the engineering process of most machines in

the foreseeable future, learning physical machines might in fact be able to successfully occupy

niches owing to some distinct advantages of learning.

Furthermore, we believe that mechanical systems themselves are an interesting avenue for

162

studying different concepts of learning. This work explored such ideas by identifying physically

motivated learning rules, training origami and elastic networks by a user through analogies of both

supervised and unsupervised learning. The migration of ideas from computer science to physics

has often been be reciprocal [171], as exemplified by the recent connection of spin-glass physics

with deep neural networks [172]. It is thus interesting to ask whether physically inspired sys-

tems can serve as a basis for constructing machine learning algorithms, perhaps endowed with

potential novel properties. Finally, recent years saw massive interest in interpretable learning al-

gorithms [173]. Mechanical systems have been used by society for so long, that people have

developed strong intuitions about how these system operate.

Indeed, owing to model simplicity, our learning elastic networks are relatively easy to inter-

pret in terms of the features that are encoded in the energy landscape during training. Moreover,

these networks are naturally symmetric to translations and rotations (as all rigid bodies are), so that

the learned solutions are symmetric to these operations. Enforcing symmetries on learning algo-

rithms is a current research focus in machine learning [174]. Thus, we propose that physical, and

especially mechanical systems, are particularly well suited for studying unique and interpretable

learning algorithms. We hope that such efforts could enable future physics research to establish a

general, physically motivated and interpretable theory of learning.

163

Appendix A

Technical Information

A.1 Origami modeling and folding

Large parts of this work, in particular chapters 2-4, were based on a specific mechanical system

model: self-folding origami. We have studied these systems through several methods: simplified

energy based models, realistic models with finite element simulations, and experiments. In this

section we will discuss some technical details about these methods.

A.1.1 Simplified energy model

The theoretical model used to compute the energy of folded states in self-folding origami, and to

numerically fold the sheet due to external forces, was explained in detail in previous chapters (e.g.

Chapter 3, Appendix B). Here we briefly discuss several issues regarding the implementation of

this model. The simplified energy model and numerical folding of origami were implemented as

MATLAB codes, available upon request.

A fundamental issue in the study of origami is the definition of a folding mode. In principle,

self-folding modes are 1d motions, completely defined by a discrete choice (between the exponen-

tially many discrete modes), and one continuous number detailing the amount of overall folding

164

(a) (b) (c)

Figure A.1: Counting folding modes and angle verification
a) Relatively small changes in the dot product detection threshold significantly affects the number

of detected modes, as many folding modes may be clustered close together. b) The number of
detected modes saturates after a number of random trials equal ∼ 20 times the number of

expected folding modes 2# vertices (data shown for dot product threshold of 0.95). c)
Representative folded configurations are checked to ensure no sheet faces are colliding.

(e.g. ρ). However, for a generic pattern it is hard to find these 1d motions from the pattern geome-

try [81].

Thus, rather than computing the folding modes ab initio, we find them using constrained energy

optimization. For a pattern with n creases, a folding vector ρ is sampled uniformly on a surface

of the (n − 1)-sphere of radius ||ρ|| ≡ ρ ∼ 1. This folded state is in general not part of a folding

mode. We can find such folding modes by locally minimizing the energy E(ρ) subject to the

constraint of fixed folding magnitude ρ. For origami with uniform stiffness, these local minima ρ∗

are guaranteed to be configurations belonging to a folding mode that emanates from the flat state

ρ = 0. Moreover, for small enough ρ these vectors are a good representation of the folding motion,

as one can approximate it as ρmode(ρ) ≈ ρ · ρ∗. This constrained minimization is performed using

MATLAB’s fmincon function. After a mode ρ∗ is found, we normalize it so that ||ρ∗|| = 1.

Now that we can detect folding modes for an origami sheet, we wish to enumerate them. Nu-

merical optimization is not exact and gives rise to numerical errors. Thus, if optimization starts

at two separate but close initial vectors, it might converge on two slightly different points on the

sphere, even if they both correspond to the same mode. To ensure that modes are not detected

and counted twice, we employ a simple check on every new candidate mode: if the dot product

165

of it’s representative vector ρ∗ with all previous accepted mode is smaller than some threshold,

the mode is accepted and added to the least of modes. If, on the other hand, the candidate mode

has a high dot product with any previous mode, it is regarded as already detected and discarded.

This simple algorithm generally results in mode under-counting, as some genuinely independent

folding motions could be very similar, as seen in real origami models [175]. Fig. A.1a shows the

modes counted after long sampling, as a function of the dot product threshold. The dot product

threshold we employ varies somewhat for different tasks, but is generally in the range 0.95 − 0.99.

Another issue that leads to mode under-counting is the sample size. If a pattern has N modes,

it is clear that we need to sample at least N points on the sphere to have a chance of detecting

all of them. Of course, many random samples lead to repeated modes, so in practice we have to

sample many multiple times of N. Assuming the actual number of modes in a self-folding pattern

V internal vertices is N ≈ 2V [81], we find that the number of samples required to find at least 90%

of the branches is around 20N (Fig. A.1b). Although both considerations lead to under-counting

of the folding modes, choosing a high dot product threshold and large enough sampling, we can

guarantee finding a representative fraction of the folding modes and thus establish the exponential

relations described in chapter 3.

Finally, we note that numerically folding the origami is limited to relatively small angles, such

that all dihedral angles are smaller than π. If a dihedral angle is equal to π, this means that on

two faces of a physical sheet collide and further folding is impossible. Thus, our simplified energy

model is completely inadequate for folded configurations with any ρ ≥ π. In fact, even if no angle

is that large, distant faces may still collide due to aggregated folding effects. To avoid such issues

we generally look at relatively small overall folding, so that all dihedral angels are much smaller

than π. In large patterns where colliding faces may be a concern, we use the MeshLab program to

render 3d images of the folded sheet and visually check that there are no such collisions (Fig. A.1c).

166

(a) (b) (c)

Load (N/m²)
x (dm)

y
(d

m
)

0 4 8 12 16
x10 ³

Top view

Side view

Figure A.2: Finite element simulation of origami sheets
a) Geometry of a self-folding sheet. The side of each face is L ∼ 10cm and the creases have a
small width w ∼ 0.5cm. b) In finite element simulations, sheets are folded by applying vertical

loads on a few faces. Folding is then numerically performed until a stable equilibrium is reached.
c) The folded structures are examined and compared to the folding modes predicted by our

simplified energy model.

A.1.2 Finite element simulations

Our simplified energy models are derived to incorporate all crucial aspects of self-folding origami.

Still, these are idealizations of real elastic thin sheets. To study how the complicating factors of

realistic thin sheets modify our results, we simulate origami patterns with finite element methods

(FEM) using COMSOL Multiphysics [176]. These simulations generally show that our simplified

energy models capture the essential details of real origami.

To perform these simulations we use COMSOL’s 2d plate model. The chosen geometry of

the pattern is encoded, with the faces having a length scale of L ∼ 10cm, and creases of width

w ∼ 0.5cm (Fig. A.2a). The width of the sheet is chosen to be d = 0.01cm, both for faces and

creases. Then, to facilitate folding mainly at the creases, we choose two different materials for

faces and creases. The faces are chosen to have the properties of a relatively stiff material like

Melamine resin or Acetal (with Young’s modulus Y = 6GPa), while the creases are made of a

much softer material like a Silicone elastomer (Young’s modulus Y = 5MPa). These choices

cause essentially all bending to occur at the creases, as dictated by the simplified energy model.

An important difference between the finite element simulation and the simplified model is in

167

the folding method. Here, we fold the pattern by applying area loads on some faces of the sheet,

while clamping some other elements (points or lines) in place. This method is much closer to

how origami would be folded in a real experiment. Fig. A.2b shows how vertical surface loads

of different magnitudes are applied (upwards) on two of the faces, in order to fold the sheet. In

this example, the sheet is constrained by requiring that two lines (highlighted in black) remain in

place. The loads are applied, and the simulation folds the sheet until a force equilibrium is reached.

Our simulations are generally computed with meshes built using the ‘extremely fine’ setting, and

excluding geometric non-linearities.

The folded sheets are then examined carefully (Fig. A.2c). To compare these results with the

folding modes predicted by our simplified model, we estimate the crease dihedral angles from

these structures by sampling a few points on the faces. When compared to the simple model

modes, we find a good agreement between the two sets of dihedral angles, with differences usually

bound by 20%. Furthermore, the dihedral angle ranking in both models is usually the same, so

that the folded structures do appear to be very similar. Other important elements of our simplified

model, such as face bending localizing to a thin ‘crease’, and the idea of folding mode decided by

mechanical advantage, were discussed in chapters 2 and 3. We conclude that a realistic and detailed

finite element simulations of self-folding sheets are in agreement with the essential features of our

simplified energy model. This observation grants us some confidence that the more interesting

ideas we study in the simplified model, such as the methods of design or learning in these sheets,

could be recreated in real sheets.

A.1.3 Experimental models

One type of experimental origami model is made by cutting 120 lb cardstock using a laser cutter.

Patterns are roughly of size 10 cm x 10 cm. Creases were created using a perforation pattern of

0.6 mm cuts with 0.7 mm gaps. These patterns were folded by hand according to their respective

designed MV configurations (Figure A.3).

A second type of experimental prototype uses two identical PVC sheets of width ∼ 0.5 cm, cut

168

Figure A.3: Cardstock self-folding origami patterns

to the right pattern with a laser cutter. A sheet of paper is then sandwiched between the two PVC

sheets, allowing for creases of width ∼ 0.5 cm .

A.2 Energy landscapes for general factor graphs

Much of the work on self-folding origami, presented here, was accomplished using specialized

Matlab code discussed earlier. To explore physical design and learning principles in a much

broader context, we have developed a general purpose for simulation of generic conservative phys-

ical systems. This set of tools, developed in Cython-boosted Python, facilitates the simulation of

both the thermodynamics and design\learning of any friction-less mechanical system. Fundamen-

tally, we utilize the fact that any conservative physical system can be represented by a factor graph,

giving rise to a huge class of generic energy landscapes. Specifically, we use these ideas to con-

struct general elastic networks with linear or non-linear springs, and then explore such networks.

In this section, we elucidate the representation of conservative physical systems as factor graphs

and describe how to construct the elastic networks of chapter 6 using these tools. We then discuss

how these landscapes can be ‘physically’ explored, and how they can be modified by either design

or learning processes. The Python codes for factor graph based energy landscapes are available on

GitHub [177].

169

A.2.1 Physical systems as factor graphs

The static properties of any classical physical system, subjected only to conservative forces and

fields, can be fully described by an energy function E(x;p), where x stand for the configuration

for all the physical degrees of freedom in the system, and p specifies all the interaction parameters.

We define the configuration vector x as the physical state of the system. For example, in an elastic

network, x corresponds to the location of all the nodes in the network, while in origami sheets,

the state could be defined as the dihedral folding angles of all creases. We note that the physical

state x is in general constructed of the physical description of multiple discrete ‘objects’ (e.g. node

locations in the network).

Besides specifying the physical configuration of all the objects x, computing the energy re-

quires knowing how those discrete objects interact. This interaction is defined by the physical

force these objects exert, whose description usually contains some parameters p that determine the

exact form of the interaction. For example, the energy of two nodes in positions xa, xb (in one

dimension), connected by a linear spring, is E = 1
2k(xb − xa)2. Here, we may set x = {xa, xb}

and p = {k}, such that the energy of the linear spring is defined as E = f (x;p) ≡ 1
2 p1(x2 − x1)2.

Pointless as this may seem for any particular single interaction, such a representation can be very

powerful when multiple different interactions are considered between different types of discrete

physical objects.

Note that in many typical examples in physics, the energy can be written as a sum over inter-

action energies of many interactions, each between a small set of physical objects. In an elastic

network, one can write the total energy as a sum of spring energies, each spring connecting a pair

of nodes. If these interactions are similar in form, yet different in the identity of interacting objects

and the values of the interaction parameters, one can write the total energy as a sum of interaction

terms

ETotal(x;p) =
∑

i∈Interactions
Ei(xi;pi). (A.1)

170

(a)

(b)

(e)

(d)

(c)

Figure A.4: Physical systems as factor graphs
a) Circle denotes a physical object. b) Square stands for an interaction term. c) Unary interaction
of a physical object (e.g. external field). d) Binary interaction between two objects (e.g. spring
connecting 2 nodes). e) Interaction connecting four physical variables (e.g. origami 4-vertex).

This sum can be represented graphically by a construction known as a factor graph, a bipartite

graph with two types of elements, often drawn as circles and squares (Fig. A.4(a,b)). Let a physical

object o be represented by a circle, associated with all the physical degrees of freedom xo of the

object. In addition, let an interaction i be represented by a square, associated with all the interaction

parameters pi, and the functional form of the energy for that interaction Ei(x;pi). An interaction

between different objects (or between objects and fields) can now be drawn as circles and squares

that are connected by lines associating objects with their appropriate interactions. See Fig. A.4(c-

e) for examples of graphical representations of different interaction types, including binary springs

and origami 4-vertices. Note that in such factor graphs, lines always connect circles (objects) to

squares (interactions). No line connects two circles or two squares, and all squares have to be

connected to circles.

In general, there can exist multiple types of objects and interactions in the same system (Fig-

ure A.5). A simple example could be a system of Ising spins, for which there is one type of

physical object (simple binary spins xo = ±1), but there can be more than one interaction (nearest

neighbor binary interaction, and interactions with an external field). Another example could be 3

nodes connected by 2 springs, and having an additional bond bending interaction. In this example

the bond bending energy is effectively a 3-body interaction that is not symmetric in the physical

171

(a) (b)

Figure A.5: More complex networks as factor graphs
a) Ising chain where spins interact with a local external field (orange squares) and their nearest
neighbors (res squares). b) 3 nodes connected by 2 springs (red squares) and a bond bending

energy term that treats different node locations differently (orange square).

objects (the locations of the 3 nodes enter differently in the bond bending energy computation).

When an interaction is not symmetric in the objects associated with it, care should be taken to

distinguish the lines connecting these objects and the interaction.

Large networks of interacting objects can be graphically represented as multiple object circles

and interaction squares connected in a general bipartite graph. Given the full description of the

physical degrees of freedom x (contents of each circle) and the interaction forms and parameters

between them p (contents of each square), one can compute the energy of the system as a sum over

all the squares in the diagram.

Crucially, this pictorial description of a physical system can readily be implemented as a com-

puter code. We have developed Python software that constructs generic factor graphs, with generic

descriptions of what the objects (circles) and interactions (squares) could be. These tools are thus

able to compute and explore energy landscapes of diverse classes of systems, including elastic net-

works, origami, polymers, spin models, constraint satisfaction problems, electrostatics, and many

more [177].

A.2.2 Elastic networks

The elastic networks studied in chapter 6 were constructed using the factor graphs described above.

In these systems, the physical variables corresponds to node position, so that each circle in the

factor graph corresponds to a single node. If the node is embedded in d−dimensional space, the

circle contains a d−dimensional position vector. The interactions in the elastic network, i.e. the

172

(a) (b) (d)(c)

Figure A.6: Factor graphs of a growing elastic network
a) At first, nodes are not connected by any spring. b) When nodes are placed in position {1}, a

spring grows between them with a rest length `{1} corresponding to their distance. c) As the nodes
are placed displaced to position {2}, a new spring of appropriate rest length `{2} is formed. d) The

spring growth process is repeated for all stored states, resulting in a factor graph with many
squares (spring interactions) connected between the pairs of circles (physical nodes).

physical springs, are represented by squares, each square corresponding to a single spring. We

consider nonlinear springs, each contributing an energy term (see Fig. 6.2):

Espring(u) = kσξ ·
u2

(1 + u2)1−0.5ξ
, (A.2)

with u ≡ (r − l)σ−1 and r the distance between the two connected nodes. Since this distance

is a property of these nodes and not the springs, the parameters in Eq. A.2 associated with the

spring itself are the spring stiffness k, its rest length l, the core radius σ and the power parameter ξ.

Thus, every square in the factor graph contains a vector of the form (k, l, σ, ξ). In our study, we fix

most of these parameters, so that all our non-linear springs have the same values of k, σ. In every

particular learning network, we also fix the power parameter ξ for all springs. Thus, all springs

in the network are the same, except for their rest length l, that is decided when the spring grows

during the network’s placement in a particular state.

The elastic network starts with free nodes and no springs. When it is placed in the first state

a spring grows between each pair of nodes in some proximity. The rest length of that spring l1

is equal to the distance between the nodes. The factor graph corresponding to this is a square

connecting two circles. To encode a second state in the system, the positions of all the nodes are

173

changed (so that the vector components in each circle change). Then, a new non-linear spring

grows between the pair of nodes, with a different rest length l2. Graphically, this process corre-

sponds to connecting a second square between the same two circles. As more states are encoded,

extra springs grow to stabilize them. The factor graphs associated with continual learning (for just

two nodes) is shown in Fig. A.6. The entire elastic network is represented by factor graphs of this

kind between all pairs of nodes. The total energy in the elastic networks may be computed as a

sum over all the squares in the graph, each of which contributes a term with the form of Eq. A.2.

A.2.3 Optimization, design and learning

The total energy associated with a factor graph, computed as a sum over all squares in the graph,

is the energy of one particular physical state of the system. In other words, energy is computed for

one particular setting of all the physical variables (circles) and interactions (squares). Naturally,

physical systems may change their configuration according to some deterministic or stochastic

equations of motion. A simple case we consider is overdamped dynamics at zero temperature. In

such cases the system will change it’s state by descending to a nearby state with a smaller energy.

The exception to this rule is when the system reaches a local minimum in the energy landscape,

and is then said to be stable. Such overdamped dynamics can be stated as a gradient descent

optimization algorithm, where in every time step the system changes slightly in the direction where

the energy drops most sharply. Thus, physical overdamped dynamics can be simulated by a step

wise modification of all the circles in the factor graph to minimize the overall energy. Gradient

descent optimization was implemented in our Python code for the purpose of these dynamics, and

used to relax elastic networks into their nearby stable states.

As opposed to the physical dynamics which modify the circles in the factor graph, design

and learning have to do with modifying the system parameters for a particular purpose. Thus, if

we restrict ourselves to systems that do not change the number of degrees of freedom (i.e. fixed

structure of circles), design and learning entail modification of the contents of the squares. In the

simplest cases, we can live the structure of the squares fixed (i.e. same interaction type), and only

174

change the interaction parameters. For example, we can change the stiffness coefficient or rest

length of a spring.

In the factor graph representation, a design could be phrased as an optimization of some design

function over the contents of all squares. Such an optimization is a one step process, where the

optimal solution is the optimal squares (i.e. interactions that best facilitate the design goal). This

approach was used in Chapter 6 to find a design solution for linear springs that stabilize multiple

desired states. In that example, the design function we optimized was the residual forces on the

nodes due to the springs. When these forces vanish at the desired physical configuration, the

system is in a stable state (or a saddle point).

A physical learning algorithm also modifies the squares of the factor graph, yet with some

notable differences compared to design. Chiefly, the function optimized in learning is some kind

of a cost function that always contains information about training examples (examples do not have

to be incorporated into the design process). In physical systems, we also expects the training

examples to be exhibited in sequence, so that training is a gradual process (in contrast to the one

step nature of designed optimization). In our learned networks, the training examples are the

sequence of states to be stabilized, each of which forms a new square between pairs of circles. Our

Python library was constructed to facilitate simple incorporation of design and learning schemes

for generic factor graphs.

175

References

[1] Don Norman. The design of everyday things: Revised and expanded edition. Basic books,
2013.

[2] Charles Darwin. On the origin of species, 1859. Routledge, 2004.

[3] John William S Pringle. On the parallel between learning and evolution. Behaviour, 1951.

[4] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre GR Day, Clint Richardson,
Charles K Fisher, and David J Schwab. A high-bias, low-variance introduction to machine
learning for physicists. Physics Reports, 2019.

[5] ML Maher. Machine learning in engineering design: Learning generalized design proto-
types from examples. In Development of Knowledge-Based Systems for Engineering, pages
161–181. Springer, 1998.

[6] Murat Bengisu and Marinella Ferrara. Materials that Move: Smart Materials, Intelligent
Design. Springer, 2018.

[7] Jason W Rocks, Henrik Ronellenfitsch, Andrea J Liu, Sidney R Nagel, and Eleni Katifori.
Limits of multifunctionality in tunable networks. Proceedings of the National Academy of
Sciences, 116(7):2506–2511, 2019.

[8] Nidhi Pashine, Daniel Hexner, Andrea J Liu, and Sidney R Nagel. Directed aging, memory
and nature’s greed. arXiv preprint arXiv:1903.05776, 2019.

[9] Koryo Miura. Method of packaging and deployment of large membranes. Proc 31st Congr
Int Astronaut Fed, 1980.

[10] Edwin A Peraza-Hernandez, Darren J Hartl, Richard J Malak Jr, and Dimitris C Lagoudas.
Origami-inspired active structures: a synthesis and review. Smart Materials and Structures,
23(9):094001, 2014.

[11] Christian D Santangelo. Extreme mechanics: Self-folding origami. Annu. Rev. Conden. Ma.
P., 8:165–183, 2017.

[12] Scott Waitukaitis, Rémi Menaut, Bryan Gin-ge Chen, and Martin van Hecke. Origami
multistability: From single vertices to metasheets. Physical Review Letters, 114(5):055503,
2015.

176

[13] Jesse L Silverberg, Jun-Hee Na, Arthur A Evans, Bin Liu, Thomas C Hull, Christian D San-
tangelo, Robert J Lang, Ryan C Hayward, and Itai Cohen. Origami structures with a critical
transition to bistability arising from hidden degrees of freedom. Nat. Mater., 14(4):389–393,
1 April 2015.

[14] Levi H Dudte, Etienne Vouga, Tomohiro Tachi, and L Mahadevan. Programming curvature
using origami tessellations. Nat. Mater., 25 January 2016.

[15] Jason W Rocks, Nidhi Pashine, Irmgard Bischofberger, Carl P Goodrich, Andrea J Liu, and
Sidney R Nagel. Designing allostery-inspired response in mechanical networks. Proceed-
ings of the National Academy of Sciences, 114(10):2520–2525, 2017.

[16] Fl J Lockett and FJ Lockett. Nonlinear viscoelastic solids. Academic Press London, 1972.

[17] Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. Flexible me-
chanical metamaterials. Nat. Rev. Mater., 2(11):17066, 2017.

[18] Daniel R Reid, Nidhi Pashine, Justin M Wozniak, Heinrich M Jaeger, Andrea J Liu, Sid-
ney R Nagel, and Juan J de Pablo. Auxetic metamaterials from disordered networks. Pro-
ceedings of the National Academy of Sciences, 115(7):E1384–E1390, 2018.

[19] Klaus Kroy. Elasticity, dynamics and relaxation in biopolymer networks. Current opinion
in colloid & interface science, 11(1):56–64, 2006.

[20] Martin Goldstein. Viscous liquids and the glass transition: a potential energy barrier picture.
The Journal of Chemical Physics, 51(9):3728–3739, 1969.

[21] Matthew B Pinson, Menachem Stern, Alexandra Carruthers Ferrero, Thomas A Witten,
Elizabeth Chen, and Arvind Murugan. Self-folding origami at any energy scale. Nat. Com-
mun., 8:15477, 18 May 2017.

[22] Menachem Stern, Matthew B Pinson, and Arvind Murugan. The complexity of folding
self-folding origami. Physical Review X, 7(4):041070, 2017.

[23] Menachem Stern, Viraaj Jayaram, and Arvind Murugan. Shaping the topology of folding
pathways in mechanical systems. Nature communications, 9(1):4303, 2018.

[24] Menachem Stern, Chukwunonso Arinze, Leron Perez, Stephanie Palmer, and Arvind Muru-
gan. Supervised learning in a mechanical system. arXiv preprint arXiv:1910.09547, 2019.

[25] Menachem Stern, Matthew B Pinson, and Arvind Murugan. Learned multi-stability in me-
chanical networks. arXiv preprint arXiv:1902.08317, 2019.

[26] Sergio Pellegrino. Deployable Structures. Springer, May 2014.

[27] Pedro M Reis, Heinrich M Jaeger, and Martin van Hecke. Designer matter: A perspective.
Extreme Mechanics Letters, 5:25–29, December 2015.

[28] Howon Lee, Chunguang Xia, and Nicholas X Fang. First jump of microgel; actuation speed
enhancement by elastic instability. Soft Matter, 6(18):4342–4345, 2010.

177

[29] Yoël Forterre, Jan M Skotheim, Jacques Dumais, and Lakshminarayanan Mahadevan. How
the venus flytrap snaps. Nature, 433(7024):421–425, 2005.

[30] Jongmin Shim, Claude Perdigou, Elizabeth R Chen, Katia Bertoldi, and Pedro M Reis.
Buckling-induced encapsulation of structured elastic shells under pressure. Proc. Natl.
Acad. Sci. U.S.A., 109(16):5978–5983, April 2012.

[31] Tomohiro Tachi. One-dof cylindrical deployable structures with rigid quadrilateral panels.
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures:
Proceedings, 2010.

[32] Charles Hoberman. Reversibly expandable doubly-curved truss structure. US Patent Office,
July 1990.

[33] Jean-Pierre Merlet. Parallel Robots. Springer Science & Business Media, December 2012.

[34] Erik D Demaine and Joseph O’Rourke. Geometric Folding Algorithms. Linkages, Origami,
Polyhedra. Cambridge University Press, July 2007.

[35] Andrea J Liu and Sidney R Nagel. The jamming transition and the marginally jammed solid.
Annual Review of Condensed Matter Physics, 1(1):347–369, August 2010.

[36] Tomohiro Tachi. Generalization of rigid foldable quadrilateral mesh origami. Proceedings
of the International Association for Shell and Spatial Structures (IASS) Symposium, 2009.

[37] Tomohiro Tachi. Geometric considerations for the design of rigid origami structures. In
Proceedings of the International Association for Shell and Spatial Structures (IASS) Sym-
posium, volume 12, pages 458–460, 2010.

[38] Yan Chen, Rui Peng, and Zhong You. Origami of thick panels. Science, 349(6246):396–400,
July 2015.

[39] Arthur A Evans, Jesse L Silverberg, and Christian D Santangelo. Lattice mechanics of
origami tessellations. Physical Review E, 92(1):013205, 2015.

[40] Tomohiro Tachi. Simulation of rigid origami. Origami, 4:175–187, 2009.

[41] David A Huffman. Curvature and creases: A primer on paper. IEEE Trans. Comput., C-
25(10):1010–1019, 1 October 1976.

[42] Sarah-Marie Belcastro and Thomas C Hull. Modelling the folding of paper into three dimen-
sions using affine transformations. Linear Algebra and its applications, 348(1):273–282,
2002.

[43] Tomohiro Tachi. Design of infinitesimally and finitely flexible origami based on reciprocal
figures. Journal for Geometry and Graphics, 16(2):223–234, 2012.

[44] Weina Wu and Zhong You. Modelling rigid origami with quaternions and dual quaternions.
In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 466, pages 2155–2174. The Royal Society, 2010.

178

[45] Jun-Hee Na, Arthur A. Evans, Jinhye Bae, Maria C. Chiappelli, Christian D. Santangelo,
Robert J. Lang, Thomas C. Hull, and Ryan C. Hayward. Programming reversibly self-
folding origami with micropatterned photo-crosslinkable polymer trilayers. Advanced Ma-
terials, 27(1):79–85, 2015.

[46] Marshall Bern and Barry Hayes. The complexity of flat origami. Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 175–183, 1996.

[47] Samuel M Felton, Michael T Tolley, Byunghyun Shin, Cagdas D Onal, Erik D Demaine,
Daniela Rus, and Robert J Wood. Self-folding with shape memory composites. Soft Matter,
9(32):7688–7694, 24 July 2013.

[48] Elliot Hawkes, Byoungkwon An, Nadia M Benbernou, Hiroto Tanaka, Sangbae Kim, Erik D
Demaine, Daniela Rus, and Robert J Wood. Programmable matter by folding. Proceedings
of the National Academy of Sciences, 107(28):12441–12445, 13 July 2010.

[49] Kaori Kuribayashi, Koichi Tsuchiya, Zhong You, Dacian Tomus, Minoru Umemoto,
Takahiro Ito, and Masahiro Sasaki. Self-deployable origami stent grafts as a biomedical
application of ni-rich TiNi shape memory alloy foil. Materials Science and Engineering: A,
419(1–2):131–137, 15 March 2006.

[50] Tae Soup Shim, Shin-Hyun Kim, Chul-Joon Heo, Hwan Chul Jeon, and Seung-Man Yang.
Controlled origami folding of hydrogel bilayers with sustained reversibility for robust mi-
crocarriers. Angew. Chem. Int. Ed Engl., 51(6):1420–1423, 6 February 2012.

[51] Robert J Lang. The science of origami. Physics world, 20(2):30, 2007.

[52] Thomas Hull. Project Origami. Activities for Exploring Mathematics, Second Edition.
CRC Press, December 2012.

[53] Bryan Gin-ge Chen, Bin Liu, Arthur A Evans, Jayson Paulose, Itai Cohen, Vincenzo Vitelli,
and Christian D Santangelo. Topological mechanics of origami and kirigami. Phys. Rev.
Lett., 116(13):135501, March 2016.

[54] Alex Lobkovsky, Sharon Gentges, Hao Li, David Morse, and Thomas A Witten. Scaling
properties of stretching ridges in a crumpled elastic sheet. Science, 270(5241):1482, 1995.

[55] Thomas A Witten. Stress focusing in elastic sheets. Reviews of Modern Physics, 79(2):643,
2007.

[56] José M Zanardi Ocampo, Pablo O Vaccaro, Thomas Fleischmann, Te-Sheng Wang,
Kazuyoshi Kubota, Tahito Aida, Toshiaki Ohnishi, Akira Sugimura, Ryo Izumoto, Makoto
Hosoda, and Shigeki Nashima. Optical actuation of micromirrors fabricated by the micro-
origami technique. Appl. Phys. Lett., 28 October 2003.

[57] Yacov Kantor and David R Nelson. Crumpling transition in polymerized membranes. Phys-
ical review letters, 58(26):2774, 1987.

179

[58] Mark Bowick, Philippe Di Francesco, Oliver Golinelli, and Emmanuel Guitter. Three-
dimensional folding of the triangular lattice. Nuclear Physics B, 450(3):463–494, 1995.

[59] Francois David and Emmanuel Guitter. Crumpling transition in elastic membranes: renor-
malization group treatment. EPL (Europhysics Letters), 5(8):709, 1988.

[60] Jesse L Silverberg, Arthur A Evans, Lauren McLeod, Ryan C Hayward, Thomas Hull,
Christian D Santangelo, and Itai Cohen. Using origami design principles to fold repro-
grammable mechanical metamaterials. Science, 345(6197):647–650, 2014.

[61] Sahand Hormoz and Michael P Brenner. Design principles for self-assembly with short-
range interactions. Proceedings of the National Academy of Sciences, 108(13):5193–5198,
29 March 2011.

[62] Vijay S Pande, Alexander Yu Grosberg, and Toyoichi Tanaka. Heteropolymer freezing
and design: Towards physical models of protein folding. Rev. Mod. Phys., 72(1):259–314,
1 January 2000.

[63] William M Jacobs, Aleks Reinhardt, and Daan Frenkel. Communication: Theoreti-
cal prediction of free-energy landscapes for complex self-assembly. J. Chem. Phys.,
142(2):021101, 14 January 2015.

[64] Zorana Zeravcic, Vinothan N Manoharan, and Michael P Brenner. Size limits of self-
assembled colloidal structures made using specific interactions. Proceedings of the National
Academy of Sciences, 111(45):15918–15923, 2014.

[65] Arvind Murugan, James Zou, and Michael P Brenner. Undesired usage and the robust self-
assembly of heterogeneous structures. Nat. Commun., 6:6203, 11 February 2015.

[66] Victor I Abkevich, Alexander M Gutin, and Eugene I Shakhnovich. Free energy landscape
for protein folding kinetics: Intermediates, traps, and multiple pathways in theory and lattice
model simulations. J. Chem. Phys., 101(7):6052–6062, 1 January 1994.

[67] Martin Karplus. The levinthal paradox: yesterday and today. Fold. Des., 2(4):S69–75, 1997.

[68] Cyrus Levinthal. How to fold graciously. Mossbauer spectroscopy in biological systems,
67:22–24, 1969.

[69] Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and
Mihalis Yannakakis. On the complexity of protein folding. J. Comput. Biol., 5(3):423–465,
1998.

[70] J Thomas Ngo, Joe Marks, and Martin Karplus. Computational complexity, protein structure
prediction, and the levinthal paradox. In Kenneth M Merz, Jr. and Scott M Le Grand, editors,
The Protein Folding Problem and Tertiary Structure Prediction, pages 433–506. Birkhäuser
Boston, 1994.

180

[71] Giulio Biroli, Simona Cocco, and Rémi Monasson. Phase transitions and complexity in
computer science: an overview of the statistical physics approach to the random satisfiability
problem. Physica A: Statistical Mechanics and its Applications, 306:381–394, 1 January
2002.

[72] Zachary Abel, Jason Cantarella, Erik D Demaine, David Eppstein, Thomas C Hull, Jason S
Ku, Robert J Lang, and Tomohiro Tachi. Rigid origami vertices: Conditions and forcing
sets. arXiv, 6 July 2015.

[73] Brad Ballinger, Mirela Damian, David Eppstein, Robin Flatland, Jessica Ginepro, and
Thomas Hull. Minimum forcing sets for miura folding patterns. In Proceedings of the
Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, pages
136–147, Philadelphia, PA, USA, 2015. Society for Industrial and Applied Mathematics.

[74] Esther M Arkin, Michael A Bender, Erik D Demaine, Martin L Demaine, Joseph SB
Mitchell, Saurabh Sethia, and Steven S Skiena. When can you fold a map? Computa-
tional Geometry, 29(1):23–46, 2004.

[75] Shivendra Pandey, Margaret Ewing, Andrew Kunas, Nghi Nguyen, David H Gracias, and
Govind Menon. Algorithmic design of self-folding polyhedra. Proceedings of the National
Academy of Sciences, 108(50):19885–19890, 1 January 2011.

[76] Byoungkwon An, Nadia Benbernou, Erik D Demaine, and Daniela Rus. Planning to fold
multiple objects from a single self-folding sheet. Robotica, 29(1):87–102, 1 January 2011.

[77] Tomohiro Tachi and Thomas C Hull. Self-foldability of rigid origami. J. Mech. Robot.,
9(2):021008, 2017.

[78] Toshikazu Kawasaki. On the relation between mountain-creases and valley-creases of a flat
origami. In Proceedings of the 1st International Meeting of Origami Science and Technol-
ogy, pages 229–237, 1989.

[79] Thomas Hull. On the mathematics of flat origamis. Congressus numerantium, pages 215–
224, 1994.

[80] Kurt Binder and Peter A Young. Spin glasses: Experimental facts, theoretical concepts, and
open questions. Reviews of Modern physics, 58(4):801, 1986.

[81] Bryan Gin-ge Chen and Christian D Santangelo. Branches of triangulated origami near the
unfolded state. Phys. Rev. X, 8(1):011034, 2018.

[82] Yan V Fyodorov. Complexity of random energy landscapes, glass transition, and absolute
value of the spectral determinant of random matrices. Phys. Rev. Lett., 92(24):240601,
18 June 2004.

[83] Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. J. Comput. Biol., 5(1):27–40, 1998.

181

[84] Florent Krzkakala and Lenka Zdeborová. Phase transitions and computational difficulty in
random constraint satisfaction problems. J. Phys. Conf. Ser., 95(1):012012, 2008.

[85] Inês Lynce and Joël Ouaknine. Sudoku as a SAT problem. In In Proc. of the Ninth Interna-
tional Symposium on Artificial Intelligence and Mathematics, 2006.

[86] Omer Gottesman, Efi Efrati, and Shmuel M Rubinstein. Furrows in the wake of propagating
d-cones. Nature Communications, 6, 2015.

[87] A Jamie Wood. Witten’s lectures on crumpling. Physica A: Statistical Mechanics and its
Applications, 313(1):83–109, 2002.

[88] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

[89] Bin Liu, Jesse L Silverberg, Arthur A Evans, Christian D Santangelo, Robert J Lang,
Thomas C Hull, and Itai Cohen. Topological kinematics of origami metamaterials. Nat.
Phys., 14:811–815, 2018.

[90] Charles W Wampler. Manipulator inverse kinematic solutions based on vector formulations
and damped least-squares methods. IEEE T. Syst. Man Cyb., 16(1):93–101, 1986.

[91] Charles W Wampler, Jonathan D Hauenstein, and Andrew J Sommese. Mechanism mobility
and a local dimension test. Mech. Mach. Theory, 46(9):1193–1206, 2011.

[92] Naomi Oppenheimer and Thomas A Witten. Shapeable sheet without plastic deformation.
Phys. Rev. E, 92(5):052401, 2015.

[93] Bastiaan Florijn, Corentin Coulais, and Martin van Hecke. Programmable mechanical meta-
materials. Phys. Rev. Lett., 113(17):175503, 2014.

[94] Yan Chen and Woon Huei Chai. Bifurcation of a special line and plane symmetric bricard
linkage. Mech. Mach. Theory, 46(4):515–533, 2011.

[95] David Rocklin, Vincenzo Vitelli, and Xiaoming Mao. Folding mechanisms at finite temper-
ature. Preprint at http://arXiv.org/abs/1802.02704, 2018.

[96] David H Myszka, Andrew P Murray, and Charles W Wampler. Mechanism branches, turn-
ing curves, and critical points. In ASME 2012 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, pages 1513–1525.
American Society of Mechanical Engineers, 2012.

[97] David H Myszka, Andrew P Murray, and Charles W Wampler. Computing the branches,
singularity trace, and critical points of single Degree-of-Freedom, Closed-Loop linkages. J.
Mech. Robot., 6(1):011006, 2013.

[98] Jon Kieffer. Differential analysis of bifurcations and isolated singularities for robots and
mechanisms. IEEE T. Robotic. Autom., 10(1):1–10, 1994.

182

[99] Eric J Deeds, Orr Ashenberg, Jaline Gerardin, and Eugene I Shakhnovich. Robust pro-
tein protein interactions in crowded cellular environments. Proc. Natl. Acad. Sci. U. S. A.,
104(38):14952–14957, 2007.

[100] William M Jacobs and Eugene I Shakhnovich. Evidence of evolutionary selection for co-
translational folding. Proc. Natl. Acad. Sci. U. S. A., 114(43):11434–11439, 2017.

[101] Christopher M Dobson. Protein folding and misfolding. Nature, 426(6968):884–890, 2003.

[102] Richard Scheunemann Hartenberg and Jacques Denavit. Kinematic synthesis of linkages.
McGraw-Hill, 1964.

[103] J Michael McCarthy. Geometric design of linkages, volume 11. Springer Science & Busi-
ness Media, 2006.

[104] Bryan Gin-ge Chen, Nitin Upadhyaya, and Vincenzo Vitelli. Nonlinear conduction via soli-
tons in a topological mechanical insulator. Proc. Natl. Acad. Sci. U. S. A., 111(36):13004–
13009, 2014.

[105] Larry L Howell. Compliant mechanisms. John Wiley & Sons, 2001.

[106] Sridhar Kota and GK Ananthasuresh. Designing compliant mechanisms. Mech. Eng. CIME,
117(11):93–97, 1995.

[107] Vasek Chvatal, Vaclav Chvatal, et al. Linear programming. Macmillan, 1983.

[108] Robert J Vanderbei et al. Linear programming. Springer, 2015.

[109] Douglas P Holmes, Matthieu Roché, Tarun Sinha, and Howard A Stone. Bending and
twisting of soft materials by non-homogenous swelling. Soft Matter, 7(11):5188–5193,
2011.

[110] Eric Brown, Nicole A Forman, Carlos S Orellana, Hanjun Zhang, Benjamin W Maynor,
Douglas E Betts, Joseph M DeSimone, and Heinrich M Jaeger. Generality of shear thicken-
ing in dense suspensions. Nat. Mater., 9(3):220–224, 2010.

[111] Neil YC Lin, Christopher Ness, Michael E Cates, Jin Sun, and Itai Cohen. Tunable shear
thickening in suspensions. Proc. Natl. Acad. Sci. U. S. A., 113(39):10774–10778, 2016.

[112] Lisa M Nash, Dustin Kleckner, Alismari Read, Vincenzo Vitelli, Ari M Turner, and
William TM Irvine. Topological mechanics of gyroscopic metamaterials. Proceedings of
the National Academy of Sciences, 112(47):14495–14500, 2015.

[113] Jason Z Kim, Zhixin Lu, Steven H Strogatz, and Danielle S Bassett. Conformational control
of mechanical networks. Nature Physics, page 1, 2019.

[114] Jason Z Kim, Zhixin Lu, and Danielle S Bassett. Design of large sequential conformational
change in mechanical networks. arXiv preprint arXiv:1906.08400, 2019.

183

[115] Stephen Grossberg. Adaptive pattern classification and universal recoding: Ii. feedback,
expectation, olfaction, illusions. Biological cybernetics, 23(4):187–202, 1976.

[116] Andrew Adamatzky. Physarum machines: computers from slime mould, volume 74. World
Scientific, 2010.

[117] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[118] Leonard Mullins. Softening of rubber by deformation. Rubber chemistry and technology,
42(1):339–362, 1969.

[119] H E Read and GA Hegemier. Strain softening of rock, soil and concretea review article.
Mechanics of Materials, 3(4):271–294, 1984.

[120] AV Lyulin, B Vorselaars, MA Mazo, NK Balabaev, and MAJ Michels. Strain softening
and hardening of amorphous polymers: Atomistic simulation of bulk mechanics and local
dynamics. EPL (Europhysics Letters), 71(4):618, 2005.

[121] Jan A Åström, PB Sunil Kumar, Ilpo Vattulainen, and Mikko Karttunen. Strain hardening,
avalanches, and strain softening in dense cross-linked actin networks. Physical Review E,
77(5):051913, 2008.

[122] YW Deng, TL Yu, and CH Ho. Effect of aging under strain on the physical properties of
polyester–urethane elastomer. Polymer journal, 26(12):1368, 1994.

[123] Seong-Gu Hong, Keum-Oh Lee, and Soon-Bok Lee. Dynamic strain aging effect on the
fatigue resistance of type 316l stainless steel. International Journal of Fatigue, 27(10-
12):1420–1424, 2005.

[124] Shan Zi Gui and Yukuo Nanzai. Aging in quenched poly (methyl methacrylate) under
inelastic tensile strain. Polymer journal, 33(5):444, 2001.

[125] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179–188, 1936.

[126] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[127] Anil K Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern recognition: A
review. IEEE Transactions on pattern analysis and machine intelligence, 22(1):4–37, 2000.

[128] Izabela K Kuder, Andres F Arrieta, Wolfram E Raither, and Paolo Ermanni. Variable stiff-
ness material and structural concepts for morphing applications. Progress in Aerospace
Sciences, 63:33–55, 2013.

[129] Geoff McKnight and Chris Henry. Variable stiffness materials for reconfigurable surface
applications. In Smart Structures and Materials 2005: Active Materials: Behavior and
Mechanics, volume 5761, pages 119–126. International Society for Optics and Photonics,
2005.

184

[130] Patrick T Mather, Xiaofan Luo, and Ingrid A Rousseau. Shape memory polymer research.
Annual Review of Materials Research, 39:445–471, 2009.

[131] William B Cross, Anthony H Kariotis, and Frederick J Stimler. Nitinol characterization
study. NASA, CR-1433, 1969.

[132] Michael Philen, Ying Shan, Kon-Well Wang, Charles Bakis, and Christopher Rahn. Fluidic
flexible matrix composites for the tailoring of variable stiffness adaptive structures. In 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
page 1703, 2007.

[133] Jing Jin, Shuangjun Chen, and Jun Zhang. Uv aging behaviour of ethylene-vinyl acetate
copolymers (eva) with different vinyl acetate contents. Polymer degradation and stability,
95(5):725–732, 2010.

[134] A Boubakri, Nader Haddar, K Elleuch, and Yves Bienvenu. Impact of aging conditions
on mechanical properties of thermoplastic polyurethane. Materials & Design, 31(9):4194–
4201, 2010.

[135] Dimitris C Lagoudas. Shape memory alloys: modeling and engineering applications.
Springer, 2008.

[136] Nathan C Keim, Joseph D Paulsen, Zorana Zeravcic, Srikanth Sastry, and Sidney R Nagel.
Memory formation in matter. Reviews of Modern Physics, 91(3):035002, 2019.

[137] Jamie K Paik, An Byoungkwon, Daniela Rus, and Robert J Wood. Robotic origamis: Self-
morphing modular robot. In ICMC, 2012.

[138] Johannes TB Overvelde, Twan A De Jong, Yanina Shevchenko, Sergio A Becerra, George M
Whitesides, James C Weaver, Chuck Hoberman, and Katia Bertoldi. A three-dimensional
actuated origami-inspired transformable metamaterial with multiple degrees of freedom.
Nature communications, 7:10929, 2016.

[139] Sicong Shan, Sung H Kang, Jordan R Raney, Pai Wang, Lichen Fang, Francisco Candido,
Jennifer A Lewis, and Katia Bertoldi. Multistable architected materials for trapping elastic
strain energy. Advanced Materials, 27(29):4296–4301, 2015.

[140] Gabi Steinbach, Dennis Nissen, Manfred Albrecht, Ekaterina V Novak, Pedro A Sánchez,
Sofia S Kantorovich, Sibylle Gemming, and Artur Erbe. Bistable self-assembly in homoge-
neous colloidal systems for flexible modular architectures. Soft Matter, 12(10):2737–2743,
2016.

[141] Lingling Wu, Xiaoqing Xi, Bo Li, and Ji Zhou. Multi-Stable mechanical structural materi-
als. Adv. Eng. Mater., 20(2):1700599, February 2018.

[142] Yi Yang, Marcelo A Dias, and Douglas P Holmes. Multistable kirigami for tunable archi-
tected materials. Phys. Rev. Materials, 2(11):110601, November 2018.

185

[143] Kaikai Che, Chao Yuan, Jiangtao Wu, H Jerry Qi, and Julien Meaud. Three-dimensional-
printed multistable mechanical metamaterials with a deterministic deformation sequence.
Journal of Applied Mechanics, 84(1):011004, 2017.

[144] Hang Yang and Li Ma. Multi-stable mechanical metamaterials with shape-reconfiguration
and zero poisson’s ratio. Mater. Des., 152:181–190, August 2018.

[145] Fu et. al. Morphable 3d mesostructures and microelectronic devices by multistable buckling
mechanics. Nat. Mater., 17(3):268–276, March 2018.

[146] Daniel Hexner, Andrea J Liu, and Sidney R Nagel. Role of local response in manipulating
the elastic properties of disordered solids by bond removal. Soft matter, 14(2):312–318,
2018.

[147] Henry Hess and Jennifer L Ross. Non-equilibrium assembly of microtubules: from
molecules to autonomous chemical robots. Chem. Soc. Rev., 46(18):5570–5587, September
2017.

[148] Abdul M Mohammed and Rebecca Schulman. Directing self-assembly of dna nanotubes
using programmable seeds. Nano letters, 13(9):4006–4013, 2013.

[149] Midori Isobe and Ko Okumura. Initial rigid response and softening transition of highly
stretchable kirigami sheet materials. Scientific reports, 6:24758, 2016.

[150] Jiayao Ma, Jichao Song, and Yan Chen. An origami-inspired structure with graded stiffness.
International Journal of Mechanical Sciences, 136:134–142, 2018.

[151] Marileen Dogterom and Thomas Surrey. Microtubule organization in vitro. Curr. Opin. Cell
Biol., 25(1):23–29, February 2013.

[152] Donald O Hebb. The organization of behavior. Wiley, 1949.

[153] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[154] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

[155] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity:
the lasso and generalizations. CRC press, 2015.

[156] John Hertz, Anders Krogh, and Richard G Palmer. Introduction to the theory of neural
computation. Addison-Wesley/Addison Wesley Longman, 1991.

[157] Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite numbers of
patterns in a spin-glass model of neural networks. Physical Review Letters, 55(14):1530,
1985.

[158] Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Spin-glass models of neural
networks. Physical Review A, 32(2):1007, 1985.

186

[159] Jerome H Friedman. Fast sparse regression and classification. International Journal of
Forecasting, 28(3):722–738, 2012.

[160] Angshul Majumdar and Rabab K Ward. Non-convex group sparsity: Application to color
imaging. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on, pages 469–472. IEEE, 2010.

[161] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[162] Sinan Li, Pingang He, Jianhua Dong, Zhixin Guo, and Liming Dai. DNA-directed self-
assembling of carbon nanotubes. J. Am. Chem. Soc., 127(1):14–15, January 2005.

[163] Jeffrey D Hartgerink, Juan R Granja, Ronald A Milligan, and M Reza Ghadiri. Self-
Assembling peptide nanotubes. J. Am. Chem. Soc., 118(1):43–50, January 1996.

[164] Werner J Blau and Alexander J Fleming. Materials science. designer nanotubes by molecu-
lar self-assembly. Science, 304(5676):1457–1458, June 2004.

[165] Adel Javanmard and Andrea Montanari. Localization from incomplete noisy distance mea-
surements. Foundations of Computational Mathematics, 13(3):297–345, 2013.

[166] John J Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[167] Elizabeth Gardner. The space of interactions in neural network models. Journal of physics
A: Mathematical and general, 21(1):257, 1988.

[168] James C Maxwell. L. on the calculation of the equilibrium and stiffness of frames. The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(182):294–
299, 1864.

[169] Philip K Chan and Salvatore J Stolfo. Toward scalable learning with non-uniform class and
cost distributions: A case study in credit card fraud detection. In KDD, volume 1998, pages
164–168, 1998.

[170] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[171] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali
Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical
sciences. arXiv preprint arXiv:1903.10563, 2019.

[172] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pages 192–
204, 2015.

187

[173] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

[174] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural
information processing systems, pages 2537–2545, 2014.

[175] Yan Chen, Huijuan Feng, Jiayao Ma, Rui Peng, and Zhong You. Symmetric waterbomb
origami. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 472(2190):20150846, 2016.

[176] COMSOL AB. Comsol multiphysics v. 5.4. www.comsol.com. comsol ab, stockholm, swe-
den.

[177] Menachem Stern. FactorGraph-Landscapes, https://doi.org/10.5281/zenodo.3266234, July
2019.

188

